Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/init.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/user.h>
19#include <linux/sched/debug.h>
20#include <linux/sched/task.h>
21#include <linux/sched/task_stack.h>
22#include <linux/sched/cputime.h>
23#include <linux/file.h>
24#include <linux/fs.h>
25#include <linux/proc_fs.h>
26#include <linux/tty.h>
27#include <linux/binfmts.h>
28#include <linux/coredump.h>
29#include <linux/security.h>
30#include <linux/syscalls.h>
31#include <linux/ptrace.h>
32#include <linux/signal.h>
33#include <linux/signalfd.h>
34#include <linux/ratelimit.h>
35#include <linux/tracehook.h>
36#include <linux/capability.h>
37#include <linux/freezer.h>
38#include <linux/pid_namespace.h>
39#include <linux/nsproxy.h>
40#include <linux/user_namespace.h>
41#include <linux/uprobes.h>
42#include <linux/compat.h>
43#include <linux/cn_proc.h>
44#include <linux/compiler.h>
45#include <linux/posix-timers.h>
46#include <linux/livepatch.h>
47#include <linux/cgroup.h>
48#include <linux/audit.h>
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/signal.h>
52
53#include <asm/param.h>
54#include <linux/uaccess.h>
55#include <asm/unistd.h>
56#include <asm/siginfo.h>
57#include <asm/cacheflush.h>
58
59/*
60 * SLAB caches for signal bits.
61 */
62
63static struct kmem_cache *sigqueue_cachep;
64
65int print_fatal_signals __read_mostly;
66
67static void __user *sig_handler(struct task_struct *t, int sig)
68{
69 return t->sighand->action[sig - 1].sa.sa_handler;
70}
71
72static inline bool sig_handler_ignored(void __user *handler, int sig)
73{
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
77}
78
79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80{
81 void __user *handler;
82
83 handler = sig_handler(t, sig);
84
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 return true;
88
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 return true;
92
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
96 return true;
97
98 return sig_handler_ignored(handler, sig);
99}
100
101static bool sig_ignored(struct task_struct *t, int sig, bool force)
102{
103 /*
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
106 * unblocked.
107 */
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 return false;
110
111 /*
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
115 */
116 if (t->ptrace && sig != SIGKILL)
117 return false;
118
119 return sig_task_ignored(t, sig, force);
120}
121
122/*
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
125 */
126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127{
128 unsigned long ready;
129 long i;
130
131 switch (_NSIG_WORDS) {
132 default:
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
135 break;
136
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
141 break;
142
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
145 break;
146
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
148 }
149 return ready != 0;
150}
151
152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153
154static bool recalc_sigpending_tsk(struct task_struct *t)
155{
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
161 return true;
162 }
163
164 /*
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
168 */
169 return false;
170}
171
172/*
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
175 */
176void recalc_sigpending_and_wake(struct task_struct *t)
177{
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
180}
181
182void recalc_sigpending(void)
183{
184 if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185 !klp_patch_pending(current))
186 clear_thread_flag(TIF_SIGPENDING);
187
188}
189EXPORT_SYMBOL(recalc_sigpending);
190
191void calculate_sigpending(void)
192{
193 /* Have any signals or users of TIF_SIGPENDING been delayed
194 * until after fork?
195 */
196 spin_lock_irq(¤t->sighand->siglock);
197 set_tsk_thread_flag(current, TIF_SIGPENDING);
198 recalc_sigpending();
199 spin_unlock_irq(¤t->sighand->siglock);
200}
201
202/* Given the mask, find the first available signal that should be serviced. */
203
204#define SYNCHRONOUS_MASK \
205 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207
208int next_signal(struct sigpending *pending, sigset_t *mask)
209{
210 unsigned long i, *s, *m, x;
211 int sig = 0;
212
213 s = pending->signal.sig;
214 m = mask->sig;
215
216 /*
217 * Handle the first word specially: it contains the
218 * synchronous signals that need to be dequeued first.
219 */
220 x = *s &~ *m;
221 if (x) {
222 if (x & SYNCHRONOUS_MASK)
223 x &= SYNCHRONOUS_MASK;
224 sig = ffz(~x) + 1;
225 return sig;
226 }
227
228 switch (_NSIG_WORDS) {
229 default:
230 for (i = 1; i < _NSIG_WORDS; ++i) {
231 x = *++s &~ *++m;
232 if (!x)
233 continue;
234 sig = ffz(~x) + i*_NSIG_BPW + 1;
235 break;
236 }
237 break;
238
239 case 2:
240 x = s[1] &~ m[1];
241 if (!x)
242 break;
243 sig = ffz(~x) + _NSIG_BPW + 1;
244 break;
245
246 case 1:
247 /* Nothing to do */
248 break;
249 }
250
251 return sig;
252}
253
254static inline void print_dropped_signal(int sig)
255{
256 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257
258 if (!print_fatal_signals)
259 return;
260
261 if (!__ratelimit(&ratelimit_state))
262 return;
263
264 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 current->comm, current->pid, sig);
266}
267
268/**
269 * task_set_jobctl_pending - set jobctl pending bits
270 * @task: target task
271 * @mask: pending bits to set
272 *
273 * Clear @mask from @task->jobctl. @mask must be subset of
274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
276 * cleared. If @task is already being killed or exiting, this function
277 * becomes noop.
278 *
279 * CONTEXT:
280 * Must be called with @task->sighand->siglock held.
281 *
282 * RETURNS:
283 * %true if @mask is set, %false if made noop because @task was dying.
284 */
285bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286{
287 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290
291 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 return false;
293
294 if (mask & JOBCTL_STOP_SIGMASK)
295 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296
297 task->jobctl |= mask;
298 return true;
299}
300
301/**
302 * task_clear_jobctl_trapping - clear jobctl trapping bit
303 * @task: target task
304 *
305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306 * Clear it and wake up the ptracer. Note that we don't need any further
307 * locking. @task->siglock guarantees that @task->parent points to the
308 * ptracer.
309 *
310 * CONTEXT:
311 * Must be called with @task->sighand->siglock held.
312 */
313void task_clear_jobctl_trapping(struct task_struct *task)
314{
315 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316 task->jobctl &= ~JOBCTL_TRAPPING;
317 smp_mb(); /* advised by wake_up_bit() */
318 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319 }
320}
321
322/**
323 * task_clear_jobctl_pending - clear jobctl pending bits
324 * @task: target task
325 * @mask: pending bits to clear
326 *
327 * Clear @mask from @task->jobctl. @mask must be subset of
328 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
329 * STOP bits are cleared together.
330 *
331 * If clearing of @mask leaves no stop or trap pending, this function calls
332 * task_clear_jobctl_trapping().
333 *
334 * CONTEXT:
335 * Must be called with @task->sighand->siglock held.
336 */
337void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338{
339 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340
341 if (mask & JOBCTL_STOP_PENDING)
342 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343
344 task->jobctl &= ~mask;
345
346 if (!(task->jobctl & JOBCTL_PENDING_MASK))
347 task_clear_jobctl_trapping(task);
348}
349
350/**
351 * task_participate_group_stop - participate in a group stop
352 * @task: task participating in a group stop
353 *
354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355 * Group stop states are cleared and the group stop count is consumed if
356 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
357 * stop, the appropriate `SIGNAL_*` flags are set.
358 *
359 * CONTEXT:
360 * Must be called with @task->sighand->siglock held.
361 *
362 * RETURNS:
363 * %true if group stop completion should be notified to the parent, %false
364 * otherwise.
365 */
366static bool task_participate_group_stop(struct task_struct *task)
367{
368 struct signal_struct *sig = task->signal;
369 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370
371 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372
373 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374
375 if (!consume)
376 return false;
377
378 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379 sig->group_stop_count--;
380
381 /*
382 * Tell the caller to notify completion iff we are entering into a
383 * fresh group stop. Read comment in do_signal_stop() for details.
384 */
385 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387 return true;
388 }
389 return false;
390}
391
392void task_join_group_stop(struct task_struct *task)
393{
394 /* Have the new thread join an on-going signal group stop */
395 unsigned long jobctl = current->jobctl;
396 if (jobctl & JOBCTL_STOP_PENDING) {
397 struct signal_struct *sig = current->signal;
398 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
399 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
400 if (task_set_jobctl_pending(task, signr | gstop)) {
401 sig->group_stop_count++;
402 }
403 }
404}
405
406/*
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
410 */
411static struct sigqueue *
412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
413{
414 struct sigqueue *q = NULL;
415 struct user_struct *user;
416
417 /*
418 * Protect access to @t credentials. This can go away when all
419 * callers hold rcu read lock.
420 */
421 rcu_read_lock();
422 user = get_uid(__task_cred(t)->user);
423 atomic_inc(&user->sigpending);
424 rcu_read_unlock();
425
426 if (override_rlimit ||
427 atomic_read(&user->sigpending) <=
428 task_rlimit(t, RLIMIT_SIGPENDING)) {
429 q = kmem_cache_alloc(sigqueue_cachep, flags);
430 } else {
431 print_dropped_signal(sig);
432 }
433
434 if (unlikely(q == NULL)) {
435 atomic_dec(&user->sigpending);
436 free_uid(user);
437 } else {
438 INIT_LIST_HEAD(&q->list);
439 q->flags = 0;
440 q->user = user;
441 }
442
443 return q;
444}
445
446static void __sigqueue_free(struct sigqueue *q)
447{
448 if (q->flags & SIGQUEUE_PREALLOC)
449 return;
450 atomic_dec(&q->user->sigpending);
451 free_uid(q->user);
452 kmem_cache_free(sigqueue_cachep, q);
453}
454
455void flush_sigqueue(struct sigpending *queue)
456{
457 struct sigqueue *q;
458
459 sigemptyset(&queue->signal);
460 while (!list_empty(&queue->list)) {
461 q = list_entry(queue->list.next, struct sigqueue , list);
462 list_del_init(&q->list);
463 __sigqueue_free(q);
464 }
465}
466
467/*
468 * Flush all pending signals for this kthread.
469 */
470void flush_signals(struct task_struct *t)
471{
472 unsigned long flags;
473
474 spin_lock_irqsave(&t->sighand->siglock, flags);
475 clear_tsk_thread_flag(t, TIF_SIGPENDING);
476 flush_sigqueue(&t->pending);
477 flush_sigqueue(&t->signal->shared_pending);
478 spin_unlock_irqrestore(&t->sighand->siglock, flags);
479}
480EXPORT_SYMBOL(flush_signals);
481
482#ifdef CONFIG_POSIX_TIMERS
483static void __flush_itimer_signals(struct sigpending *pending)
484{
485 sigset_t signal, retain;
486 struct sigqueue *q, *n;
487
488 signal = pending->signal;
489 sigemptyset(&retain);
490
491 list_for_each_entry_safe(q, n, &pending->list, list) {
492 int sig = q->info.si_signo;
493
494 if (likely(q->info.si_code != SI_TIMER)) {
495 sigaddset(&retain, sig);
496 } else {
497 sigdelset(&signal, sig);
498 list_del_init(&q->list);
499 __sigqueue_free(q);
500 }
501 }
502
503 sigorsets(&pending->signal, &signal, &retain);
504}
505
506void flush_itimer_signals(void)
507{
508 struct task_struct *tsk = current;
509 unsigned long flags;
510
511 spin_lock_irqsave(&tsk->sighand->siglock, flags);
512 __flush_itimer_signals(&tsk->pending);
513 __flush_itimer_signals(&tsk->signal->shared_pending);
514 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
515}
516#endif
517
518void ignore_signals(struct task_struct *t)
519{
520 int i;
521
522 for (i = 0; i < _NSIG; ++i)
523 t->sighand->action[i].sa.sa_handler = SIG_IGN;
524
525 flush_signals(t);
526}
527
528/*
529 * Flush all handlers for a task.
530 */
531
532void
533flush_signal_handlers(struct task_struct *t, int force_default)
534{
535 int i;
536 struct k_sigaction *ka = &t->sighand->action[0];
537 for (i = _NSIG ; i != 0 ; i--) {
538 if (force_default || ka->sa.sa_handler != SIG_IGN)
539 ka->sa.sa_handler = SIG_DFL;
540 ka->sa.sa_flags = 0;
541#ifdef __ARCH_HAS_SA_RESTORER
542 ka->sa.sa_restorer = NULL;
543#endif
544 sigemptyset(&ka->sa.sa_mask);
545 ka++;
546 }
547}
548
549bool unhandled_signal(struct task_struct *tsk, int sig)
550{
551 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
552 if (is_global_init(tsk))
553 return true;
554
555 if (handler != SIG_IGN && handler != SIG_DFL)
556 return false;
557
558 /* if ptraced, let the tracer determine */
559 return !tsk->ptrace;
560}
561
562static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
563 bool *resched_timer)
564{
565 struct sigqueue *q, *first = NULL;
566
567 /*
568 * Collect the siginfo appropriate to this signal. Check if
569 * there is another siginfo for the same signal.
570 */
571 list_for_each_entry(q, &list->list, list) {
572 if (q->info.si_signo == sig) {
573 if (first)
574 goto still_pending;
575 first = q;
576 }
577 }
578
579 sigdelset(&list->signal, sig);
580
581 if (first) {
582still_pending:
583 list_del_init(&first->list);
584 copy_siginfo(info, &first->info);
585
586 *resched_timer =
587 (first->flags & SIGQUEUE_PREALLOC) &&
588 (info->si_code == SI_TIMER) &&
589 (info->si_sys_private);
590
591 __sigqueue_free(first);
592 } else {
593 /*
594 * Ok, it wasn't in the queue. This must be
595 * a fast-pathed signal or we must have been
596 * out of queue space. So zero out the info.
597 */
598 clear_siginfo(info);
599 info->si_signo = sig;
600 info->si_errno = 0;
601 info->si_code = SI_USER;
602 info->si_pid = 0;
603 info->si_uid = 0;
604 }
605}
606
607static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
608 kernel_siginfo_t *info, bool *resched_timer)
609{
610 int sig = next_signal(pending, mask);
611
612 if (sig)
613 collect_signal(sig, pending, info, resched_timer);
614 return sig;
615}
616
617/*
618 * Dequeue a signal and return the element to the caller, which is
619 * expected to free it.
620 *
621 * All callers have to hold the siglock.
622 */
623int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
624{
625 bool resched_timer = false;
626 int signr;
627
628 /* We only dequeue private signals from ourselves, we don't let
629 * signalfd steal them
630 */
631 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
632 if (!signr) {
633 signr = __dequeue_signal(&tsk->signal->shared_pending,
634 mask, info, &resched_timer);
635#ifdef CONFIG_POSIX_TIMERS
636 /*
637 * itimer signal ?
638 *
639 * itimers are process shared and we restart periodic
640 * itimers in the signal delivery path to prevent DoS
641 * attacks in the high resolution timer case. This is
642 * compliant with the old way of self-restarting
643 * itimers, as the SIGALRM is a legacy signal and only
644 * queued once. Changing the restart behaviour to
645 * restart the timer in the signal dequeue path is
646 * reducing the timer noise on heavy loaded !highres
647 * systems too.
648 */
649 if (unlikely(signr == SIGALRM)) {
650 struct hrtimer *tmr = &tsk->signal->real_timer;
651
652 if (!hrtimer_is_queued(tmr) &&
653 tsk->signal->it_real_incr != 0) {
654 hrtimer_forward(tmr, tmr->base->get_time(),
655 tsk->signal->it_real_incr);
656 hrtimer_restart(tmr);
657 }
658 }
659#endif
660 }
661
662 recalc_sigpending();
663 if (!signr)
664 return 0;
665
666 if (unlikely(sig_kernel_stop(signr))) {
667 /*
668 * Set a marker that we have dequeued a stop signal. Our
669 * caller might release the siglock and then the pending
670 * stop signal it is about to process is no longer in the
671 * pending bitmasks, but must still be cleared by a SIGCONT
672 * (and overruled by a SIGKILL). So those cases clear this
673 * shared flag after we've set it. Note that this flag may
674 * remain set after the signal we return is ignored or
675 * handled. That doesn't matter because its only purpose
676 * is to alert stop-signal processing code when another
677 * processor has come along and cleared the flag.
678 */
679 current->jobctl |= JOBCTL_STOP_DEQUEUED;
680 }
681#ifdef CONFIG_POSIX_TIMERS
682 if (resched_timer) {
683 /*
684 * Release the siglock to ensure proper locking order
685 * of timer locks outside of siglocks. Note, we leave
686 * irqs disabled here, since the posix-timers code is
687 * about to disable them again anyway.
688 */
689 spin_unlock(&tsk->sighand->siglock);
690 posixtimer_rearm(info);
691 spin_lock(&tsk->sighand->siglock);
692
693 /* Don't expose the si_sys_private value to userspace */
694 info->si_sys_private = 0;
695 }
696#endif
697 return signr;
698}
699EXPORT_SYMBOL_GPL(dequeue_signal);
700
701static int dequeue_synchronous_signal(kernel_siginfo_t *info)
702{
703 struct task_struct *tsk = current;
704 struct sigpending *pending = &tsk->pending;
705 struct sigqueue *q, *sync = NULL;
706
707 /*
708 * Might a synchronous signal be in the queue?
709 */
710 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
711 return 0;
712
713 /*
714 * Return the first synchronous signal in the queue.
715 */
716 list_for_each_entry(q, &pending->list, list) {
717 /* Synchronous signals have a postive si_code */
718 if ((q->info.si_code > SI_USER) &&
719 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
720 sync = q;
721 goto next;
722 }
723 }
724 return 0;
725next:
726 /*
727 * Check if there is another siginfo for the same signal.
728 */
729 list_for_each_entry_continue(q, &pending->list, list) {
730 if (q->info.si_signo == sync->info.si_signo)
731 goto still_pending;
732 }
733
734 sigdelset(&pending->signal, sync->info.si_signo);
735 recalc_sigpending();
736still_pending:
737 list_del_init(&sync->list);
738 copy_siginfo(info, &sync->info);
739 __sigqueue_free(sync);
740 return info->si_signo;
741}
742
743/*
744 * Tell a process that it has a new active signal..
745 *
746 * NOTE! we rely on the previous spin_lock to
747 * lock interrupts for us! We can only be called with
748 * "siglock" held, and the local interrupt must
749 * have been disabled when that got acquired!
750 *
751 * No need to set need_resched since signal event passing
752 * goes through ->blocked
753 */
754void signal_wake_up_state(struct task_struct *t, unsigned int state)
755{
756 set_tsk_thread_flag(t, TIF_SIGPENDING);
757 /*
758 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
759 * case. We don't check t->state here because there is a race with it
760 * executing another processor and just now entering stopped state.
761 * By using wake_up_state, we ensure the process will wake up and
762 * handle its death signal.
763 */
764 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
765 kick_process(t);
766}
767
768/*
769 * Remove signals in mask from the pending set and queue.
770 * Returns 1 if any signals were found.
771 *
772 * All callers must be holding the siglock.
773 */
774static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
775{
776 struct sigqueue *q, *n;
777 sigset_t m;
778
779 sigandsets(&m, mask, &s->signal);
780 if (sigisemptyset(&m))
781 return;
782
783 sigandnsets(&s->signal, &s->signal, mask);
784 list_for_each_entry_safe(q, n, &s->list, list) {
785 if (sigismember(mask, q->info.si_signo)) {
786 list_del_init(&q->list);
787 __sigqueue_free(q);
788 }
789 }
790}
791
792static inline int is_si_special(const struct kernel_siginfo *info)
793{
794 return info <= SEND_SIG_PRIV;
795}
796
797static inline bool si_fromuser(const struct kernel_siginfo *info)
798{
799 return info == SEND_SIG_NOINFO ||
800 (!is_si_special(info) && SI_FROMUSER(info));
801}
802
803/*
804 * called with RCU read lock from check_kill_permission()
805 */
806static bool kill_ok_by_cred(struct task_struct *t)
807{
808 const struct cred *cred = current_cred();
809 const struct cred *tcred = __task_cred(t);
810
811 return uid_eq(cred->euid, tcred->suid) ||
812 uid_eq(cred->euid, tcred->uid) ||
813 uid_eq(cred->uid, tcred->suid) ||
814 uid_eq(cred->uid, tcred->uid) ||
815 ns_capable(tcred->user_ns, CAP_KILL);
816}
817
818/*
819 * Bad permissions for sending the signal
820 * - the caller must hold the RCU read lock
821 */
822static int check_kill_permission(int sig, struct kernel_siginfo *info,
823 struct task_struct *t)
824{
825 struct pid *sid;
826 int error;
827
828 if (!valid_signal(sig))
829 return -EINVAL;
830
831 if (!si_fromuser(info))
832 return 0;
833
834 error = audit_signal_info(sig, t); /* Let audit system see the signal */
835 if (error)
836 return error;
837
838 if (!same_thread_group(current, t) &&
839 !kill_ok_by_cred(t)) {
840 switch (sig) {
841 case SIGCONT:
842 sid = task_session(t);
843 /*
844 * We don't return the error if sid == NULL. The
845 * task was unhashed, the caller must notice this.
846 */
847 if (!sid || sid == task_session(current))
848 break;
849 /* fall through */
850 default:
851 return -EPERM;
852 }
853 }
854
855 return security_task_kill(t, info, sig, NULL);
856}
857
858/**
859 * ptrace_trap_notify - schedule trap to notify ptracer
860 * @t: tracee wanting to notify tracer
861 *
862 * This function schedules sticky ptrace trap which is cleared on the next
863 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
864 * ptracer.
865 *
866 * If @t is running, STOP trap will be taken. If trapped for STOP and
867 * ptracer is listening for events, tracee is woken up so that it can
868 * re-trap for the new event. If trapped otherwise, STOP trap will be
869 * eventually taken without returning to userland after the existing traps
870 * are finished by PTRACE_CONT.
871 *
872 * CONTEXT:
873 * Must be called with @task->sighand->siglock held.
874 */
875static void ptrace_trap_notify(struct task_struct *t)
876{
877 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
878 assert_spin_locked(&t->sighand->siglock);
879
880 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
881 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
882}
883
884/*
885 * Handle magic process-wide effects of stop/continue signals. Unlike
886 * the signal actions, these happen immediately at signal-generation
887 * time regardless of blocking, ignoring, or handling. This does the
888 * actual continuing for SIGCONT, but not the actual stopping for stop
889 * signals. The process stop is done as a signal action for SIG_DFL.
890 *
891 * Returns true if the signal should be actually delivered, otherwise
892 * it should be dropped.
893 */
894static bool prepare_signal(int sig, struct task_struct *p, bool force)
895{
896 struct signal_struct *signal = p->signal;
897 struct task_struct *t;
898 sigset_t flush;
899
900 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
901 if (!(signal->flags & SIGNAL_GROUP_EXIT))
902 return sig == SIGKILL;
903 /*
904 * The process is in the middle of dying, nothing to do.
905 */
906 } else if (sig_kernel_stop(sig)) {
907 /*
908 * This is a stop signal. Remove SIGCONT from all queues.
909 */
910 siginitset(&flush, sigmask(SIGCONT));
911 flush_sigqueue_mask(&flush, &signal->shared_pending);
912 for_each_thread(p, t)
913 flush_sigqueue_mask(&flush, &t->pending);
914 } else if (sig == SIGCONT) {
915 unsigned int why;
916 /*
917 * Remove all stop signals from all queues, wake all threads.
918 */
919 siginitset(&flush, SIG_KERNEL_STOP_MASK);
920 flush_sigqueue_mask(&flush, &signal->shared_pending);
921 for_each_thread(p, t) {
922 flush_sigqueue_mask(&flush, &t->pending);
923 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
924 if (likely(!(t->ptrace & PT_SEIZED)))
925 wake_up_state(t, __TASK_STOPPED);
926 else
927 ptrace_trap_notify(t);
928 }
929
930 /*
931 * Notify the parent with CLD_CONTINUED if we were stopped.
932 *
933 * If we were in the middle of a group stop, we pretend it
934 * was already finished, and then continued. Since SIGCHLD
935 * doesn't queue we report only CLD_STOPPED, as if the next
936 * CLD_CONTINUED was dropped.
937 */
938 why = 0;
939 if (signal->flags & SIGNAL_STOP_STOPPED)
940 why |= SIGNAL_CLD_CONTINUED;
941 else if (signal->group_stop_count)
942 why |= SIGNAL_CLD_STOPPED;
943
944 if (why) {
945 /*
946 * The first thread which returns from do_signal_stop()
947 * will take ->siglock, notice SIGNAL_CLD_MASK, and
948 * notify its parent. See get_signal().
949 */
950 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
951 signal->group_stop_count = 0;
952 signal->group_exit_code = 0;
953 }
954 }
955
956 return !sig_ignored(p, sig, force);
957}
958
959/*
960 * Test if P wants to take SIG. After we've checked all threads with this,
961 * it's equivalent to finding no threads not blocking SIG. Any threads not
962 * blocking SIG were ruled out because they are not running and already
963 * have pending signals. Such threads will dequeue from the shared queue
964 * as soon as they're available, so putting the signal on the shared queue
965 * will be equivalent to sending it to one such thread.
966 */
967static inline bool wants_signal(int sig, struct task_struct *p)
968{
969 if (sigismember(&p->blocked, sig))
970 return false;
971
972 if (p->flags & PF_EXITING)
973 return false;
974
975 if (sig == SIGKILL)
976 return true;
977
978 if (task_is_stopped_or_traced(p))
979 return false;
980
981 return task_curr(p) || !signal_pending(p);
982}
983
984static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
985{
986 struct signal_struct *signal = p->signal;
987 struct task_struct *t;
988
989 /*
990 * Now find a thread we can wake up to take the signal off the queue.
991 *
992 * If the main thread wants the signal, it gets first crack.
993 * Probably the least surprising to the average bear.
994 */
995 if (wants_signal(sig, p))
996 t = p;
997 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
998 /*
999 * There is just one thread and it does not need to be woken.
1000 * It will dequeue unblocked signals before it runs again.
1001 */
1002 return;
1003 else {
1004 /*
1005 * Otherwise try to find a suitable thread.
1006 */
1007 t = signal->curr_target;
1008 while (!wants_signal(sig, t)) {
1009 t = next_thread(t);
1010 if (t == signal->curr_target)
1011 /*
1012 * No thread needs to be woken.
1013 * Any eligible threads will see
1014 * the signal in the queue soon.
1015 */
1016 return;
1017 }
1018 signal->curr_target = t;
1019 }
1020
1021 /*
1022 * Found a killable thread. If the signal will be fatal,
1023 * then start taking the whole group down immediately.
1024 */
1025 if (sig_fatal(p, sig) &&
1026 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1027 !sigismember(&t->real_blocked, sig) &&
1028 (sig == SIGKILL || !p->ptrace)) {
1029 /*
1030 * This signal will be fatal to the whole group.
1031 */
1032 if (!sig_kernel_coredump(sig)) {
1033 /*
1034 * Start a group exit and wake everybody up.
1035 * This way we don't have other threads
1036 * running and doing things after a slower
1037 * thread has the fatal signal pending.
1038 */
1039 signal->flags = SIGNAL_GROUP_EXIT;
1040 signal->group_exit_code = sig;
1041 signal->group_stop_count = 0;
1042 t = p;
1043 do {
1044 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1045 sigaddset(&t->pending.signal, SIGKILL);
1046 signal_wake_up(t, 1);
1047 } while_each_thread(p, t);
1048 return;
1049 }
1050 }
1051
1052 /*
1053 * The signal is already in the shared-pending queue.
1054 * Tell the chosen thread to wake up and dequeue it.
1055 */
1056 signal_wake_up(t, sig == SIGKILL);
1057 return;
1058}
1059
1060static inline bool legacy_queue(struct sigpending *signals, int sig)
1061{
1062 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1063}
1064
1065static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1066 enum pid_type type, bool force)
1067{
1068 struct sigpending *pending;
1069 struct sigqueue *q;
1070 int override_rlimit;
1071 int ret = 0, result;
1072
1073 assert_spin_locked(&t->sighand->siglock);
1074
1075 result = TRACE_SIGNAL_IGNORED;
1076 if (!prepare_signal(sig, t, force))
1077 goto ret;
1078
1079 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1080 /*
1081 * Short-circuit ignored signals and support queuing
1082 * exactly one non-rt signal, so that we can get more
1083 * detailed information about the cause of the signal.
1084 */
1085 result = TRACE_SIGNAL_ALREADY_PENDING;
1086 if (legacy_queue(pending, sig))
1087 goto ret;
1088
1089 result = TRACE_SIGNAL_DELIVERED;
1090 /*
1091 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1092 */
1093 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1094 goto out_set;
1095
1096 /*
1097 * Real-time signals must be queued if sent by sigqueue, or
1098 * some other real-time mechanism. It is implementation
1099 * defined whether kill() does so. We attempt to do so, on
1100 * the principle of least surprise, but since kill is not
1101 * allowed to fail with EAGAIN when low on memory we just
1102 * make sure at least one signal gets delivered and don't
1103 * pass on the info struct.
1104 */
1105 if (sig < SIGRTMIN)
1106 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1107 else
1108 override_rlimit = 0;
1109
1110 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1111 if (q) {
1112 list_add_tail(&q->list, &pending->list);
1113 switch ((unsigned long) info) {
1114 case (unsigned long) SEND_SIG_NOINFO:
1115 clear_siginfo(&q->info);
1116 q->info.si_signo = sig;
1117 q->info.si_errno = 0;
1118 q->info.si_code = SI_USER;
1119 q->info.si_pid = task_tgid_nr_ns(current,
1120 task_active_pid_ns(t));
1121 rcu_read_lock();
1122 q->info.si_uid =
1123 from_kuid_munged(task_cred_xxx(t, user_ns),
1124 current_uid());
1125 rcu_read_unlock();
1126 break;
1127 case (unsigned long) SEND_SIG_PRIV:
1128 clear_siginfo(&q->info);
1129 q->info.si_signo = sig;
1130 q->info.si_errno = 0;
1131 q->info.si_code = SI_KERNEL;
1132 q->info.si_pid = 0;
1133 q->info.si_uid = 0;
1134 break;
1135 default:
1136 copy_siginfo(&q->info, info);
1137 break;
1138 }
1139 } else if (!is_si_special(info) &&
1140 sig >= SIGRTMIN && info->si_code != SI_USER) {
1141 /*
1142 * Queue overflow, abort. We may abort if the
1143 * signal was rt and sent by user using something
1144 * other than kill().
1145 */
1146 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1147 ret = -EAGAIN;
1148 goto ret;
1149 } else {
1150 /*
1151 * This is a silent loss of information. We still
1152 * send the signal, but the *info bits are lost.
1153 */
1154 result = TRACE_SIGNAL_LOSE_INFO;
1155 }
1156
1157out_set:
1158 signalfd_notify(t, sig);
1159 sigaddset(&pending->signal, sig);
1160
1161 /* Let multiprocess signals appear after on-going forks */
1162 if (type > PIDTYPE_TGID) {
1163 struct multiprocess_signals *delayed;
1164 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1165 sigset_t *signal = &delayed->signal;
1166 /* Can't queue both a stop and a continue signal */
1167 if (sig == SIGCONT)
1168 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1169 else if (sig_kernel_stop(sig))
1170 sigdelset(signal, SIGCONT);
1171 sigaddset(signal, sig);
1172 }
1173 }
1174
1175 complete_signal(sig, t, type);
1176ret:
1177 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1178 return ret;
1179}
1180
1181static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1182{
1183 bool ret = false;
1184 switch (siginfo_layout(info->si_signo, info->si_code)) {
1185 case SIL_KILL:
1186 case SIL_CHLD:
1187 case SIL_RT:
1188 ret = true;
1189 break;
1190 case SIL_TIMER:
1191 case SIL_POLL:
1192 case SIL_FAULT:
1193 case SIL_FAULT_MCEERR:
1194 case SIL_FAULT_BNDERR:
1195 case SIL_FAULT_PKUERR:
1196 case SIL_SYS:
1197 ret = false;
1198 break;
1199 }
1200 return ret;
1201}
1202
1203static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1204 enum pid_type type)
1205{
1206 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1207 bool force = false;
1208
1209 if (info == SEND_SIG_NOINFO) {
1210 /* Force if sent from an ancestor pid namespace */
1211 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1212 } else if (info == SEND_SIG_PRIV) {
1213 /* Don't ignore kernel generated signals */
1214 force = true;
1215 } else if (has_si_pid_and_uid(info)) {
1216 /* SIGKILL and SIGSTOP is special or has ids */
1217 struct user_namespace *t_user_ns;
1218
1219 rcu_read_lock();
1220 t_user_ns = task_cred_xxx(t, user_ns);
1221 if (current_user_ns() != t_user_ns) {
1222 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1223 info->si_uid = from_kuid_munged(t_user_ns, uid);
1224 }
1225 rcu_read_unlock();
1226
1227 /* A kernel generated signal? */
1228 force = (info->si_code == SI_KERNEL);
1229
1230 /* From an ancestor pid namespace? */
1231 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1232 info->si_pid = 0;
1233 force = true;
1234 }
1235 }
1236 return __send_signal(sig, info, t, type, force);
1237}
1238
1239static void print_fatal_signal(int signr)
1240{
1241 struct pt_regs *regs = signal_pt_regs();
1242 pr_info("potentially unexpected fatal signal %d.\n", signr);
1243
1244#if defined(__i386__) && !defined(__arch_um__)
1245 pr_info("code at %08lx: ", regs->ip);
1246 {
1247 int i;
1248 for (i = 0; i < 16; i++) {
1249 unsigned char insn;
1250
1251 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1252 break;
1253 pr_cont("%02x ", insn);
1254 }
1255 }
1256 pr_cont("\n");
1257#endif
1258 preempt_disable();
1259 show_regs(regs);
1260 preempt_enable();
1261}
1262
1263static int __init setup_print_fatal_signals(char *str)
1264{
1265 get_option (&str, &print_fatal_signals);
1266
1267 return 1;
1268}
1269
1270__setup("print-fatal-signals=", setup_print_fatal_signals);
1271
1272int
1273__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1274{
1275 return send_signal(sig, info, p, PIDTYPE_TGID);
1276}
1277
1278int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1279 enum pid_type type)
1280{
1281 unsigned long flags;
1282 int ret = -ESRCH;
1283
1284 if (lock_task_sighand(p, &flags)) {
1285 ret = send_signal(sig, info, p, type);
1286 unlock_task_sighand(p, &flags);
1287 }
1288
1289 return ret;
1290}
1291
1292/*
1293 * Force a signal that the process can't ignore: if necessary
1294 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1295 *
1296 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1297 * since we do not want to have a signal handler that was blocked
1298 * be invoked when user space had explicitly blocked it.
1299 *
1300 * We don't want to have recursive SIGSEGV's etc, for example,
1301 * that is why we also clear SIGNAL_UNKILLABLE.
1302 */
1303static int
1304force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1305{
1306 unsigned long int flags;
1307 int ret, blocked, ignored;
1308 struct k_sigaction *action;
1309 int sig = info->si_signo;
1310
1311 spin_lock_irqsave(&t->sighand->siglock, flags);
1312 action = &t->sighand->action[sig-1];
1313 ignored = action->sa.sa_handler == SIG_IGN;
1314 blocked = sigismember(&t->blocked, sig);
1315 if (blocked || ignored) {
1316 action->sa.sa_handler = SIG_DFL;
1317 if (blocked) {
1318 sigdelset(&t->blocked, sig);
1319 recalc_sigpending_and_wake(t);
1320 }
1321 }
1322 /*
1323 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1324 * debugging to leave init killable.
1325 */
1326 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1327 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1328 ret = send_signal(sig, info, t, PIDTYPE_PID);
1329 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1330
1331 return ret;
1332}
1333
1334int force_sig_info(struct kernel_siginfo *info)
1335{
1336 return force_sig_info_to_task(info, current);
1337}
1338
1339/*
1340 * Nuke all other threads in the group.
1341 */
1342int zap_other_threads(struct task_struct *p)
1343{
1344 struct task_struct *t = p;
1345 int count = 0;
1346
1347 p->signal->group_stop_count = 0;
1348
1349 while_each_thread(p, t) {
1350 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1351 count++;
1352
1353 /* Don't bother with already dead threads */
1354 if (t->exit_state)
1355 continue;
1356 sigaddset(&t->pending.signal, SIGKILL);
1357 signal_wake_up(t, 1);
1358 }
1359
1360 return count;
1361}
1362
1363struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1364 unsigned long *flags)
1365{
1366 struct sighand_struct *sighand;
1367
1368 rcu_read_lock();
1369 for (;;) {
1370 sighand = rcu_dereference(tsk->sighand);
1371 if (unlikely(sighand == NULL))
1372 break;
1373
1374 /*
1375 * This sighand can be already freed and even reused, but
1376 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1377 * initializes ->siglock: this slab can't go away, it has
1378 * the same object type, ->siglock can't be reinitialized.
1379 *
1380 * We need to ensure that tsk->sighand is still the same
1381 * after we take the lock, we can race with de_thread() or
1382 * __exit_signal(). In the latter case the next iteration
1383 * must see ->sighand == NULL.
1384 */
1385 spin_lock_irqsave(&sighand->siglock, *flags);
1386 if (likely(sighand == tsk->sighand))
1387 break;
1388 spin_unlock_irqrestore(&sighand->siglock, *flags);
1389 }
1390 rcu_read_unlock();
1391
1392 return sighand;
1393}
1394
1395/*
1396 * send signal info to all the members of a group
1397 */
1398int group_send_sig_info(int sig, struct kernel_siginfo *info,
1399 struct task_struct *p, enum pid_type type)
1400{
1401 int ret;
1402
1403 rcu_read_lock();
1404 ret = check_kill_permission(sig, info, p);
1405 rcu_read_unlock();
1406
1407 if (!ret && sig)
1408 ret = do_send_sig_info(sig, info, p, type);
1409
1410 return ret;
1411}
1412
1413/*
1414 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1415 * control characters do (^C, ^Z etc)
1416 * - the caller must hold at least a readlock on tasklist_lock
1417 */
1418int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1419{
1420 struct task_struct *p = NULL;
1421 int retval, success;
1422
1423 success = 0;
1424 retval = -ESRCH;
1425 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1426 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1427 success |= !err;
1428 retval = err;
1429 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1430 return success ? 0 : retval;
1431}
1432
1433int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1434{
1435 int error = -ESRCH;
1436 struct task_struct *p;
1437
1438 for (;;) {
1439 rcu_read_lock();
1440 p = pid_task(pid, PIDTYPE_PID);
1441 if (p)
1442 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1443 rcu_read_unlock();
1444 if (likely(!p || error != -ESRCH))
1445 return error;
1446
1447 /*
1448 * The task was unhashed in between, try again. If it
1449 * is dead, pid_task() will return NULL, if we race with
1450 * de_thread() it will find the new leader.
1451 */
1452 }
1453}
1454
1455static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1456{
1457 int error;
1458 rcu_read_lock();
1459 error = kill_pid_info(sig, info, find_vpid(pid));
1460 rcu_read_unlock();
1461 return error;
1462}
1463
1464static inline bool kill_as_cred_perm(const struct cred *cred,
1465 struct task_struct *target)
1466{
1467 const struct cred *pcred = __task_cred(target);
1468
1469 return uid_eq(cred->euid, pcred->suid) ||
1470 uid_eq(cred->euid, pcred->uid) ||
1471 uid_eq(cred->uid, pcred->suid) ||
1472 uid_eq(cred->uid, pcred->uid);
1473}
1474
1475/*
1476 * The usb asyncio usage of siginfo is wrong. The glibc support
1477 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1478 * AKA after the generic fields:
1479 * kernel_pid_t si_pid;
1480 * kernel_uid32_t si_uid;
1481 * sigval_t si_value;
1482 *
1483 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1484 * after the generic fields is:
1485 * void __user *si_addr;
1486 *
1487 * This is a practical problem when there is a 64bit big endian kernel
1488 * and a 32bit userspace. As the 32bit address will encoded in the low
1489 * 32bits of the pointer. Those low 32bits will be stored at higher
1490 * address than appear in a 32 bit pointer. So userspace will not
1491 * see the address it was expecting for it's completions.
1492 *
1493 * There is nothing in the encoding that can allow
1494 * copy_siginfo_to_user32 to detect this confusion of formats, so
1495 * handle this by requiring the caller of kill_pid_usb_asyncio to
1496 * notice when this situration takes place and to store the 32bit
1497 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1498 * parameter.
1499 */
1500int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1501 struct pid *pid, const struct cred *cred)
1502{
1503 struct kernel_siginfo info;
1504 struct task_struct *p;
1505 unsigned long flags;
1506 int ret = -EINVAL;
1507
1508 clear_siginfo(&info);
1509 info.si_signo = sig;
1510 info.si_errno = errno;
1511 info.si_code = SI_ASYNCIO;
1512 *((sigval_t *)&info.si_pid) = addr;
1513
1514 if (!valid_signal(sig))
1515 return ret;
1516
1517 rcu_read_lock();
1518 p = pid_task(pid, PIDTYPE_PID);
1519 if (!p) {
1520 ret = -ESRCH;
1521 goto out_unlock;
1522 }
1523 if (!kill_as_cred_perm(cred, p)) {
1524 ret = -EPERM;
1525 goto out_unlock;
1526 }
1527 ret = security_task_kill(p, &info, sig, cred);
1528 if (ret)
1529 goto out_unlock;
1530
1531 if (sig) {
1532 if (lock_task_sighand(p, &flags)) {
1533 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1534 unlock_task_sighand(p, &flags);
1535 } else
1536 ret = -ESRCH;
1537 }
1538out_unlock:
1539 rcu_read_unlock();
1540 return ret;
1541}
1542EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1543
1544/*
1545 * kill_something_info() interprets pid in interesting ways just like kill(2).
1546 *
1547 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1548 * is probably wrong. Should make it like BSD or SYSV.
1549 */
1550
1551static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1552{
1553 int ret;
1554
1555 if (pid > 0) {
1556 rcu_read_lock();
1557 ret = kill_pid_info(sig, info, find_vpid(pid));
1558 rcu_read_unlock();
1559 return ret;
1560 }
1561
1562 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1563 if (pid == INT_MIN)
1564 return -ESRCH;
1565
1566 read_lock(&tasklist_lock);
1567 if (pid != -1) {
1568 ret = __kill_pgrp_info(sig, info,
1569 pid ? find_vpid(-pid) : task_pgrp(current));
1570 } else {
1571 int retval = 0, count = 0;
1572 struct task_struct * p;
1573
1574 for_each_process(p) {
1575 if (task_pid_vnr(p) > 1 &&
1576 !same_thread_group(p, current)) {
1577 int err = group_send_sig_info(sig, info, p,
1578 PIDTYPE_MAX);
1579 ++count;
1580 if (err != -EPERM)
1581 retval = err;
1582 }
1583 }
1584 ret = count ? retval : -ESRCH;
1585 }
1586 read_unlock(&tasklist_lock);
1587
1588 return ret;
1589}
1590
1591/*
1592 * These are for backward compatibility with the rest of the kernel source.
1593 */
1594
1595int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1596{
1597 /*
1598 * Make sure legacy kernel users don't send in bad values
1599 * (normal paths check this in check_kill_permission).
1600 */
1601 if (!valid_signal(sig))
1602 return -EINVAL;
1603
1604 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1605}
1606EXPORT_SYMBOL(send_sig_info);
1607
1608#define __si_special(priv) \
1609 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1610
1611int
1612send_sig(int sig, struct task_struct *p, int priv)
1613{
1614 return send_sig_info(sig, __si_special(priv), p);
1615}
1616EXPORT_SYMBOL(send_sig);
1617
1618void force_sig(int sig)
1619{
1620 struct kernel_siginfo info;
1621
1622 clear_siginfo(&info);
1623 info.si_signo = sig;
1624 info.si_errno = 0;
1625 info.si_code = SI_KERNEL;
1626 info.si_pid = 0;
1627 info.si_uid = 0;
1628 force_sig_info(&info);
1629}
1630EXPORT_SYMBOL(force_sig);
1631
1632/*
1633 * When things go south during signal handling, we
1634 * will force a SIGSEGV. And if the signal that caused
1635 * the problem was already a SIGSEGV, we'll want to
1636 * make sure we don't even try to deliver the signal..
1637 */
1638void force_sigsegv(int sig)
1639{
1640 struct task_struct *p = current;
1641
1642 if (sig == SIGSEGV) {
1643 unsigned long flags;
1644 spin_lock_irqsave(&p->sighand->siglock, flags);
1645 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1646 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1647 }
1648 force_sig(SIGSEGV);
1649}
1650
1651int force_sig_fault_to_task(int sig, int code, void __user *addr
1652 ___ARCH_SI_TRAPNO(int trapno)
1653 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1654 , struct task_struct *t)
1655{
1656 struct kernel_siginfo info;
1657
1658 clear_siginfo(&info);
1659 info.si_signo = sig;
1660 info.si_errno = 0;
1661 info.si_code = code;
1662 info.si_addr = addr;
1663#ifdef __ARCH_SI_TRAPNO
1664 info.si_trapno = trapno;
1665#endif
1666#ifdef __ia64__
1667 info.si_imm = imm;
1668 info.si_flags = flags;
1669 info.si_isr = isr;
1670#endif
1671 return force_sig_info_to_task(&info, t);
1672}
1673
1674int force_sig_fault(int sig, int code, void __user *addr
1675 ___ARCH_SI_TRAPNO(int trapno)
1676 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1677{
1678 return force_sig_fault_to_task(sig, code, addr
1679 ___ARCH_SI_TRAPNO(trapno)
1680 ___ARCH_SI_IA64(imm, flags, isr), current);
1681}
1682
1683int send_sig_fault(int sig, int code, void __user *addr
1684 ___ARCH_SI_TRAPNO(int trapno)
1685 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1686 , struct task_struct *t)
1687{
1688 struct kernel_siginfo info;
1689
1690 clear_siginfo(&info);
1691 info.si_signo = sig;
1692 info.si_errno = 0;
1693 info.si_code = code;
1694 info.si_addr = addr;
1695#ifdef __ARCH_SI_TRAPNO
1696 info.si_trapno = trapno;
1697#endif
1698#ifdef __ia64__
1699 info.si_imm = imm;
1700 info.si_flags = flags;
1701 info.si_isr = isr;
1702#endif
1703 return send_sig_info(info.si_signo, &info, t);
1704}
1705
1706int force_sig_mceerr(int code, void __user *addr, short lsb)
1707{
1708 struct kernel_siginfo info;
1709
1710 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1711 clear_siginfo(&info);
1712 info.si_signo = SIGBUS;
1713 info.si_errno = 0;
1714 info.si_code = code;
1715 info.si_addr = addr;
1716 info.si_addr_lsb = lsb;
1717 return force_sig_info(&info);
1718}
1719
1720int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1721{
1722 struct kernel_siginfo info;
1723
1724 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1725 clear_siginfo(&info);
1726 info.si_signo = SIGBUS;
1727 info.si_errno = 0;
1728 info.si_code = code;
1729 info.si_addr = addr;
1730 info.si_addr_lsb = lsb;
1731 return send_sig_info(info.si_signo, &info, t);
1732}
1733EXPORT_SYMBOL(send_sig_mceerr);
1734
1735int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1736{
1737 struct kernel_siginfo info;
1738
1739 clear_siginfo(&info);
1740 info.si_signo = SIGSEGV;
1741 info.si_errno = 0;
1742 info.si_code = SEGV_BNDERR;
1743 info.si_addr = addr;
1744 info.si_lower = lower;
1745 info.si_upper = upper;
1746 return force_sig_info(&info);
1747}
1748
1749#ifdef SEGV_PKUERR
1750int force_sig_pkuerr(void __user *addr, u32 pkey)
1751{
1752 struct kernel_siginfo info;
1753
1754 clear_siginfo(&info);
1755 info.si_signo = SIGSEGV;
1756 info.si_errno = 0;
1757 info.si_code = SEGV_PKUERR;
1758 info.si_addr = addr;
1759 info.si_pkey = pkey;
1760 return force_sig_info(&info);
1761}
1762#endif
1763
1764/* For the crazy architectures that include trap information in
1765 * the errno field, instead of an actual errno value.
1766 */
1767int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1768{
1769 struct kernel_siginfo info;
1770
1771 clear_siginfo(&info);
1772 info.si_signo = SIGTRAP;
1773 info.si_errno = errno;
1774 info.si_code = TRAP_HWBKPT;
1775 info.si_addr = addr;
1776 return force_sig_info(&info);
1777}
1778
1779int kill_pgrp(struct pid *pid, int sig, int priv)
1780{
1781 int ret;
1782
1783 read_lock(&tasklist_lock);
1784 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1785 read_unlock(&tasklist_lock);
1786
1787 return ret;
1788}
1789EXPORT_SYMBOL(kill_pgrp);
1790
1791int kill_pid(struct pid *pid, int sig, int priv)
1792{
1793 return kill_pid_info(sig, __si_special(priv), pid);
1794}
1795EXPORT_SYMBOL(kill_pid);
1796
1797/*
1798 * These functions support sending signals using preallocated sigqueue
1799 * structures. This is needed "because realtime applications cannot
1800 * afford to lose notifications of asynchronous events, like timer
1801 * expirations or I/O completions". In the case of POSIX Timers
1802 * we allocate the sigqueue structure from the timer_create. If this
1803 * allocation fails we are able to report the failure to the application
1804 * with an EAGAIN error.
1805 */
1806struct sigqueue *sigqueue_alloc(void)
1807{
1808 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1809
1810 if (q)
1811 q->flags |= SIGQUEUE_PREALLOC;
1812
1813 return q;
1814}
1815
1816void sigqueue_free(struct sigqueue *q)
1817{
1818 unsigned long flags;
1819 spinlock_t *lock = ¤t->sighand->siglock;
1820
1821 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1822 /*
1823 * We must hold ->siglock while testing q->list
1824 * to serialize with collect_signal() or with
1825 * __exit_signal()->flush_sigqueue().
1826 */
1827 spin_lock_irqsave(lock, flags);
1828 q->flags &= ~SIGQUEUE_PREALLOC;
1829 /*
1830 * If it is queued it will be freed when dequeued,
1831 * like the "regular" sigqueue.
1832 */
1833 if (!list_empty(&q->list))
1834 q = NULL;
1835 spin_unlock_irqrestore(lock, flags);
1836
1837 if (q)
1838 __sigqueue_free(q);
1839}
1840
1841int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1842{
1843 int sig = q->info.si_signo;
1844 struct sigpending *pending;
1845 struct task_struct *t;
1846 unsigned long flags;
1847 int ret, result;
1848
1849 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1850
1851 ret = -1;
1852 rcu_read_lock();
1853 t = pid_task(pid, type);
1854 if (!t || !likely(lock_task_sighand(t, &flags)))
1855 goto ret;
1856
1857 ret = 1; /* the signal is ignored */
1858 result = TRACE_SIGNAL_IGNORED;
1859 if (!prepare_signal(sig, t, false))
1860 goto out;
1861
1862 ret = 0;
1863 if (unlikely(!list_empty(&q->list))) {
1864 /*
1865 * If an SI_TIMER entry is already queue just increment
1866 * the overrun count.
1867 */
1868 BUG_ON(q->info.si_code != SI_TIMER);
1869 q->info.si_overrun++;
1870 result = TRACE_SIGNAL_ALREADY_PENDING;
1871 goto out;
1872 }
1873 q->info.si_overrun = 0;
1874
1875 signalfd_notify(t, sig);
1876 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1877 list_add_tail(&q->list, &pending->list);
1878 sigaddset(&pending->signal, sig);
1879 complete_signal(sig, t, type);
1880 result = TRACE_SIGNAL_DELIVERED;
1881out:
1882 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1883 unlock_task_sighand(t, &flags);
1884ret:
1885 rcu_read_unlock();
1886 return ret;
1887}
1888
1889static void do_notify_pidfd(struct task_struct *task)
1890{
1891 struct pid *pid;
1892
1893 WARN_ON(task->exit_state == 0);
1894 pid = task_pid(task);
1895 wake_up_all(&pid->wait_pidfd);
1896}
1897
1898/*
1899 * Let a parent know about the death of a child.
1900 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1901 *
1902 * Returns true if our parent ignored us and so we've switched to
1903 * self-reaping.
1904 */
1905bool do_notify_parent(struct task_struct *tsk, int sig)
1906{
1907 struct kernel_siginfo info;
1908 unsigned long flags;
1909 struct sighand_struct *psig;
1910 bool autoreap = false;
1911 u64 utime, stime;
1912
1913 BUG_ON(sig == -1);
1914
1915 /* do_notify_parent_cldstop should have been called instead. */
1916 BUG_ON(task_is_stopped_or_traced(tsk));
1917
1918 BUG_ON(!tsk->ptrace &&
1919 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1920
1921 /* Wake up all pidfd waiters */
1922 do_notify_pidfd(tsk);
1923
1924 if (sig != SIGCHLD) {
1925 /*
1926 * This is only possible if parent == real_parent.
1927 * Check if it has changed security domain.
1928 */
1929 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1930 sig = SIGCHLD;
1931 }
1932
1933 clear_siginfo(&info);
1934 info.si_signo = sig;
1935 info.si_errno = 0;
1936 /*
1937 * We are under tasklist_lock here so our parent is tied to
1938 * us and cannot change.
1939 *
1940 * task_active_pid_ns will always return the same pid namespace
1941 * until a task passes through release_task.
1942 *
1943 * write_lock() currently calls preempt_disable() which is the
1944 * same as rcu_read_lock(), but according to Oleg, this is not
1945 * correct to rely on this
1946 */
1947 rcu_read_lock();
1948 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1949 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1950 task_uid(tsk));
1951 rcu_read_unlock();
1952
1953 task_cputime(tsk, &utime, &stime);
1954 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1955 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1956
1957 info.si_status = tsk->exit_code & 0x7f;
1958 if (tsk->exit_code & 0x80)
1959 info.si_code = CLD_DUMPED;
1960 else if (tsk->exit_code & 0x7f)
1961 info.si_code = CLD_KILLED;
1962 else {
1963 info.si_code = CLD_EXITED;
1964 info.si_status = tsk->exit_code >> 8;
1965 }
1966
1967 psig = tsk->parent->sighand;
1968 spin_lock_irqsave(&psig->siglock, flags);
1969 if (!tsk->ptrace && sig == SIGCHLD &&
1970 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1971 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1972 /*
1973 * We are exiting and our parent doesn't care. POSIX.1
1974 * defines special semantics for setting SIGCHLD to SIG_IGN
1975 * or setting the SA_NOCLDWAIT flag: we should be reaped
1976 * automatically and not left for our parent's wait4 call.
1977 * Rather than having the parent do it as a magic kind of
1978 * signal handler, we just set this to tell do_exit that we
1979 * can be cleaned up without becoming a zombie. Note that
1980 * we still call __wake_up_parent in this case, because a
1981 * blocked sys_wait4 might now return -ECHILD.
1982 *
1983 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1984 * is implementation-defined: we do (if you don't want
1985 * it, just use SIG_IGN instead).
1986 */
1987 autoreap = true;
1988 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1989 sig = 0;
1990 }
1991 if (valid_signal(sig) && sig)
1992 __group_send_sig_info(sig, &info, tsk->parent);
1993 __wake_up_parent(tsk, tsk->parent);
1994 spin_unlock_irqrestore(&psig->siglock, flags);
1995
1996 return autoreap;
1997}
1998
1999/**
2000 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2001 * @tsk: task reporting the state change
2002 * @for_ptracer: the notification is for ptracer
2003 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2004 *
2005 * Notify @tsk's parent that the stopped/continued state has changed. If
2006 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2007 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2008 *
2009 * CONTEXT:
2010 * Must be called with tasklist_lock at least read locked.
2011 */
2012static void do_notify_parent_cldstop(struct task_struct *tsk,
2013 bool for_ptracer, int why)
2014{
2015 struct kernel_siginfo info;
2016 unsigned long flags;
2017 struct task_struct *parent;
2018 struct sighand_struct *sighand;
2019 u64 utime, stime;
2020
2021 if (for_ptracer) {
2022 parent = tsk->parent;
2023 } else {
2024 tsk = tsk->group_leader;
2025 parent = tsk->real_parent;
2026 }
2027
2028 clear_siginfo(&info);
2029 info.si_signo = SIGCHLD;
2030 info.si_errno = 0;
2031 /*
2032 * see comment in do_notify_parent() about the following 4 lines
2033 */
2034 rcu_read_lock();
2035 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2036 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2037 rcu_read_unlock();
2038
2039 task_cputime(tsk, &utime, &stime);
2040 info.si_utime = nsec_to_clock_t(utime);
2041 info.si_stime = nsec_to_clock_t(stime);
2042
2043 info.si_code = why;
2044 switch (why) {
2045 case CLD_CONTINUED:
2046 info.si_status = SIGCONT;
2047 break;
2048 case CLD_STOPPED:
2049 info.si_status = tsk->signal->group_exit_code & 0x7f;
2050 break;
2051 case CLD_TRAPPED:
2052 info.si_status = tsk->exit_code & 0x7f;
2053 break;
2054 default:
2055 BUG();
2056 }
2057
2058 sighand = parent->sighand;
2059 spin_lock_irqsave(&sighand->siglock, flags);
2060 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2061 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2062 __group_send_sig_info(SIGCHLD, &info, parent);
2063 /*
2064 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2065 */
2066 __wake_up_parent(tsk, parent);
2067 spin_unlock_irqrestore(&sighand->siglock, flags);
2068}
2069
2070static inline bool may_ptrace_stop(void)
2071{
2072 if (!likely(current->ptrace))
2073 return false;
2074 /*
2075 * Are we in the middle of do_coredump?
2076 * If so and our tracer is also part of the coredump stopping
2077 * is a deadlock situation, and pointless because our tracer
2078 * is dead so don't allow us to stop.
2079 * If SIGKILL was already sent before the caller unlocked
2080 * ->siglock we must see ->core_state != NULL. Otherwise it
2081 * is safe to enter schedule().
2082 *
2083 * This is almost outdated, a task with the pending SIGKILL can't
2084 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2085 * after SIGKILL was already dequeued.
2086 */
2087 if (unlikely(current->mm->core_state) &&
2088 unlikely(current->mm == current->parent->mm))
2089 return false;
2090
2091 return true;
2092}
2093
2094/*
2095 * Return non-zero if there is a SIGKILL that should be waking us up.
2096 * Called with the siglock held.
2097 */
2098static bool sigkill_pending(struct task_struct *tsk)
2099{
2100 return sigismember(&tsk->pending.signal, SIGKILL) ||
2101 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2102}
2103
2104/*
2105 * This must be called with current->sighand->siglock held.
2106 *
2107 * This should be the path for all ptrace stops.
2108 * We always set current->last_siginfo while stopped here.
2109 * That makes it a way to test a stopped process for
2110 * being ptrace-stopped vs being job-control-stopped.
2111 *
2112 * If we actually decide not to stop at all because the tracer
2113 * is gone, we keep current->exit_code unless clear_code.
2114 */
2115static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2116 __releases(¤t->sighand->siglock)
2117 __acquires(¤t->sighand->siglock)
2118{
2119 bool gstop_done = false;
2120
2121 if (arch_ptrace_stop_needed(exit_code, info)) {
2122 /*
2123 * The arch code has something special to do before a
2124 * ptrace stop. This is allowed to block, e.g. for faults
2125 * on user stack pages. We can't keep the siglock while
2126 * calling arch_ptrace_stop, so we must release it now.
2127 * To preserve proper semantics, we must do this before
2128 * any signal bookkeeping like checking group_stop_count.
2129 * Meanwhile, a SIGKILL could come in before we retake the
2130 * siglock. That must prevent us from sleeping in TASK_TRACED.
2131 * So after regaining the lock, we must check for SIGKILL.
2132 */
2133 spin_unlock_irq(¤t->sighand->siglock);
2134 arch_ptrace_stop(exit_code, info);
2135 spin_lock_irq(¤t->sighand->siglock);
2136 if (sigkill_pending(current))
2137 return;
2138 }
2139
2140 set_special_state(TASK_TRACED);
2141
2142 /*
2143 * We're committing to trapping. TRACED should be visible before
2144 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2145 * Also, transition to TRACED and updates to ->jobctl should be
2146 * atomic with respect to siglock and should be done after the arch
2147 * hook as siglock is released and regrabbed across it.
2148 *
2149 * TRACER TRACEE
2150 *
2151 * ptrace_attach()
2152 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2153 * do_wait()
2154 * set_current_state() smp_wmb();
2155 * ptrace_do_wait()
2156 * wait_task_stopped()
2157 * task_stopped_code()
2158 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2159 */
2160 smp_wmb();
2161
2162 current->last_siginfo = info;
2163 current->exit_code = exit_code;
2164
2165 /*
2166 * If @why is CLD_STOPPED, we're trapping to participate in a group
2167 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2168 * across siglock relocks since INTERRUPT was scheduled, PENDING
2169 * could be clear now. We act as if SIGCONT is received after
2170 * TASK_TRACED is entered - ignore it.
2171 */
2172 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2173 gstop_done = task_participate_group_stop(current);
2174
2175 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2176 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2177 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2178 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2179
2180 /* entering a trap, clear TRAPPING */
2181 task_clear_jobctl_trapping(current);
2182
2183 spin_unlock_irq(¤t->sighand->siglock);
2184 read_lock(&tasklist_lock);
2185 if (may_ptrace_stop()) {
2186 /*
2187 * Notify parents of the stop.
2188 *
2189 * While ptraced, there are two parents - the ptracer and
2190 * the real_parent of the group_leader. The ptracer should
2191 * know about every stop while the real parent is only
2192 * interested in the completion of group stop. The states
2193 * for the two don't interact with each other. Notify
2194 * separately unless they're gonna be duplicates.
2195 */
2196 do_notify_parent_cldstop(current, true, why);
2197 if (gstop_done && ptrace_reparented(current))
2198 do_notify_parent_cldstop(current, false, why);
2199
2200 /*
2201 * Don't want to allow preemption here, because
2202 * sys_ptrace() needs this task to be inactive.
2203 *
2204 * XXX: implement read_unlock_no_resched().
2205 */
2206 preempt_disable();
2207 read_unlock(&tasklist_lock);
2208 cgroup_enter_frozen();
2209 preempt_enable_no_resched();
2210 freezable_schedule();
2211 cgroup_leave_frozen(true);
2212 } else {
2213 /*
2214 * By the time we got the lock, our tracer went away.
2215 * Don't drop the lock yet, another tracer may come.
2216 *
2217 * If @gstop_done, the ptracer went away between group stop
2218 * completion and here. During detach, it would have set
2219 * JOBCTL_STOP_PENDING on us and we'll re-enter
2220 * TASK_STOPPED in do_signal_stop() on return, so notifying
2221 * the real parent of the group stop completion is enough.
2222 */
2223 if (gstop_done)
2224 do_notify_parent_cldstop(current, false, why);
2225
2226 /* tasklist protects us from ptrace_freeze_traced() */
2227 __set_current_state(TASK_RUNNING);
2228 if (clear_code)
2229 current->exit_code = 0;
2230 read_unlock(&tasklist_lock);
2231 }
2232
2233 /*
2234 * We are back. Now reacquire the siglock before touching
2235 * last_siginfo, so that we are sure to have synchronized with
2236 * any signal-sending on another CPU that wants to examine it.
2237 */
2238 spin_lock_irq(¤t->sighand->siglock);
2239 current->last_siginfo = NULL;
2240
2241 /* LISTENING can be set only during STOP traps, clear it */
2242 current->jobctl &= ~JOBCTL_LISTENING;
2243
2244 /*
2245 * Queued signals ignored us while we were stopped for tracing.
2246 * So check for any that we should take before resuming user mode.
2247 * This sets TIF_SIGPENDING, but never clears it.
2248 */
2249 recalc_sigpending_tsk(current);
2250}
2251
2252static void ptrace_do_notify(int signr, int exit_code, int why)
2253{
2254 kernel_siginfo_t info;
2255
2256 clear_siginfo(&info);
2257 info.si_signo = signr;
2258 info.si_code = exit_code;
2259 info.si_pid = task_pid_vnr(current);
2260 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2261
2262 /* Let the debugger run. */
2263 ptrace_stop(exit_code, why, 1, &info);
2264}
2265
2266void ptrace_notify(int exit_code)
2267{
2268 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2269 if (unlikely(current->task_works))
2270 task_work_run();
2271
2272 spin_lock_irq(¤t->sighand->siglock);
2273 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2274 spin_unlock_irq(¤t->sighand->siglock);
2275}
2276
2277/**
2278 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2279 * @signr: signr causing group stop if initiating
2280 *
2281 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2282 * and participate in it. If already set, participate in the existing
2283 * group stop. If participated in a group stop (and thus slept), %true is
2284 * returned with siglock released.
2285 *
2286 * If ptraced, this function doesn't handle stop itself. Instead,
2287 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2288 * untouched. The caller must ensure that INTERRUPT trap handling takes
2289 * places afterwards.
2290 *
2291 * CONTEXT:
2292 * Must be called with @current->sighand->siglock held, which is released
2293 * on %true return.
2294 *
2295 * RETURNS:
2296 * %false if group stop is already cancelled or ptrace trap is scheduled.
2297 * %true if participated in group stop.
2298 */
2299static bool do_signal_stop(int signr)
2300 __releases(¤t->sighand->siglock)
2301{
2302 struct signal_struct *sig = current->signal;
2303
2304 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2305 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2306 struct task_struct *t;
2307
2308 /* signr will be recorded in task->jobctl for retries */
2309 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2310
2311 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2312 unlikely(signal_group_exit(sig)))
2313 return false;
2314 /*
2315 * There is no group stop already in progress. We must
2316 * initiate one now.
2317 *
2318 * While ptraced, a task may be resumed while group stop is
2319 * still in effect and then receive a stop signal and
2320 * initiate another group stop. This deviates from the
2321 * usual behavior as two consecutive stop signals can't
2322 * cause two group stops when !ptraced. That is why we
2323 * also check !task_is_stopped(t) below.
2324 *
2325 * The condition can be distinguished by testing whether
2326 * SIGNAL_STOP_STOPPED is already set. Don't generate
2327 * group_exit_code in such case.
2328 *
2329 * This is not necessary for SIGNAL_STOP_CONTINUED because
2330 * an intervening stop signal is required to cause two
2331 * continued events regardless of ptrace.
2332 */
2333 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2334 sig->group_exit_code = signr;
2335
2336 sig->group_stop_count = 0;
2337
2338 if (task_set_jobctl_pending(current, signr | gstop))
2339 sig->group_stop_count++;
2340
2341 t = current;
2342 while_each_thread(current, t) {
2343 /*
2344 * Setting state to TASK_STOPPED for a group
2345 * stop is always done with the siglock held,
2346 * so this check has no races.
2347 */
2348 if (!task_is_stopped(t) &&
2349 task_set_jobctl_pending(t, signr | gstop)) {
2350 sig->group_stop_count++;
2351 if (likely(!(t->ptrace & PT_SEIZED)))
2352 signal_wake_up(t, 0);
2353 else
2354 ptrace_trap_notify(t);
2355 }
2356 }
2357 }
2358
2359 if (likely(!current->ptrace)) {
2360 int notify = 0;
2361
2362 /*
2363 * If there are no other threads in the group, or if there
2364 * is a group stop in progress and we are the last to stop,
2365 * report to the parent.
2366 */
2367 if (task_participate_group_stop(current))
2368 notify = CLD_STOPPED;
2369
2370 set_special_state(TASK_STOPPED);
2371 spin_unlock_irq(¤t->sighand->siglock);
2372
2373 /*
2374 * Notify the parent of the group stop completion. Because
2375 * we're not holding either the siglock or tasklist_lock
2376 * here, ptracer may attach inbetween; however, this is for
2377 * group stop and should always be delivered to the real
2378 * parent of the group leader. The new ptracer will get
2379 * its notification when this task transitions into
2380 * TASK_TRACED.
2381 */
2382 if (notify) {
2383 read_lock(&tasklist_lock);
2384 do_notify_parent_cldstop(current, false, notify);
2385 read_unlock(&tasklist_lock);
2386 }
2387
2388 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2389 cgroup_enter_frozen();
2390 freezable_schedule();
2391 return true;
2392 } else {
2393 /*
2394 * While ptraced, group stop is handled by STOP trap.
2395 * Schedule it and let the caller deal with it.
2396 */
2397 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2398 return false;
2399 }
2400}
2401
2402/**
2403 * do_jobctl_trap - take care of ptrace jobctl traps
2404 *
2405 * When PT_SEIZED, it's used for both group stop and explicit
2406 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2407 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2408 * the stop signal; otherwise, %SIGTRAP.
2409 *
2410 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2411 * number as exit_code and no siginfo.
2412 *
2413 * CONTEXT:
2414 * Must be called with @current->sighand->siglock held, which may be
2415 * released and re-acquired before returning with intervening sleep.
2416 */
2417static void do_jobctl_trap(void)
2418{
2419 struct signal_struct *signal = current->signal;
2420 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2421
2422 if (current->ptrace & PT_SEIZED) {
2423 if (!signal->group_stop_count &&
2424 !(signal->flags & SIGNAL_STOP_STOPPED))
2425 signr = SIGTRAP;
2426 WARN_ON_ONCE(!signr);
2427 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2428 CLD_STOPPED);
2429 } else {
2430 WARN_ON_ONCE(!signr);
2431 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2432 current->exit_code = 0;
2433 }
2434}
2435
2436/**
2437 * do_freezer_trap - handle the freezer jobctl trap
2438 *
2439 * Puts the task into frozen state, if only the task is not about to quit.
2440 * In this case it drops JOBCTL_TRAP_FREEZE.
2441 *
2442 * CONTEXT:
2443 * Must be called with @current->sighand->siglock held,
2444 * which is always released before returning.
2445 */
2446static void do_freezer_trap(void)
2447 __releases(¤t->sighand->siglock)
2448{
2449 /*
2450 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2451 * let's make another loop to give it a chance to be handled.
2452 * In any case, we'll return back.
2453 */
2454 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2455 JOBCTL_TRAP_FREEZE) {
2456 spin_unlock_irq(¤t->sighand->siglock);
2457 return;
2458 }
2459
2460 /*
2461 * Now we're sure that there is no pending fatal signal and no
2462 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2463 * immediately (if there is a non-fatal signal pending), and
2464 * put the task into sleep.
2465 */
2466 __set_current_state(TASK_INTERRUPTIBLE);
2467 clear_thread_flag(TIF_SIGPENDING);
2468 spin_unlock_irq(¤t->sighand->siglock);
2469 cgroup_enter_frozen();
2470 freezable_schedule();
2471}
2472
2473static int ptrace_signal(int signr, kernel_siginfo_t *info)
2474{
2475 /*
2476 * We do not check sig_kernel_stop(signr) but set this marker
2477 * unconditionally because we do not know whether debugger will
2478 * change signr. This flag has no meaning unless we are going
2479 * to stop after return from ptrace_stop(). In this case it will
2480 * be checked in do_signal_stop(), we should only stop if it was
2481 * not cleared by SIGCONT while we were sleeping. See also the
2482 * comment in dequeue_signal().
2483 */
2484 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2485 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2486
2487 /* We're back. Did the debugger cancel the sig? */
2488 signr = current->exit_code;
2489 if (signr == 0)
2490 return signr;
2491
2492 current->exit_code = 0;
2493
2494 /*
2495 * Update the siginfo structure if the signal has
2496 * changed. If the debugger wanted something
2497 * specific in the siginfo structure then it should
2498 * have updated *info via PTRACE_SETSIGINFO.
2499 */
2500 if (signr != info->si_signo) {
2501 clear_siginfo(info);
2502 info->si_signo = signr;
2503 info->si_errno = 0;
2504 info->si_code = SI_USER;
2505 rcu_read_lock();
2506 info->si_pid = task_pid_vnr(current->parent);
2507 info->si_uid = from_kuid_munged(current_user_ns(),
2508 task_uid(current->parent));
2509 rcu_read_unlock();
2510 }
2511
2512 /* If the (new) signal is now blocked, requeue it. */
2513 if (sigismember(¤t->blocked, signr)) {
2514 send_signal(signr, info, current, PIDTYPE_PID);
2515 signr = 0;
2516 }
2517
2518 return signr;
2519}
2520
2521bool get_signal(struct ksignal *ksig)
2522{
2523 struct sighand_struct *sighand = current->sighand;
2524 struct signal_struct *signal = current->signal;
2525 int signr;
2526
2527 if (unlikely(current->task_works))
2528 task_work_run();
2529
2530 if (unlikely(uprobe_deny_signal()))
2531 return false;
2532
2533 /*
2534 * Do this once, we can't return to user-mode if freezing() == T.
2535 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2536 * thus do not need another check after return.
2537 */
2538 try_to_freeze();
2539
2540relock:
2541 spin_lock_irq(&sighand->siglock);
2542 /*
2543 * Every stopped thread goes here after wakeup. Check to see if
2544 * we should notify the parent, prepare_signal(SIGCONT) encodes
2545 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2546 */
2547 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2548 int why;
2549
2550 if (signal->flags & SIGNAL_CLD_CONTINUED)
2551 why = CLD_CONTINUED;
2552 else
2553 why = CLD_STOPPED;
2554
2555 signal->flags &= ~SIGNAL_CLD_MASK;
2556
2557 spin_unlock_irq(&sighand->siglock);
2558
2559 /*
2560 * Notify the parent that we're continuing. This event is
2561 * always per-process and doesn't make whole lot of sense
2562 * for ptracers, who shouldn't consume the state via
2563 * wait(2) either, but, for backward compatibility, notify
2564 * the ptracer of the group leader too unless it's gonna be
2565 * a duplicate.
2566 */
2567 read_lock(&tasklist_lock);
2568 do_notify_parent_cldstop(current, false, why);
2569
2570 if (ptrace_reparented(current->group_leader))
2571 do_notify_parent_cldstop(current->group_leader,
2572 true, why);
2573 read_unlock(&tasklist_lock);
2574
2575 goto relock;
2576 }
2577
2578 /* Has this task already been marked for death? */
2579 if (signal_group_exit(signal)) {
2580 ksig->info.si_signo = signr = SIGKILL;
2581 sigdelset(¤t->pending.signal, SIGKILL);
2582 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2583 &sighand->action[SIGKILL - 1]);
2584 recalc_sigpending();
2585 goto fatal;
2586 }
2587
2588 for (;;) {
2589 struct k_sigaction *ka;
2590
2591 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2592 do_signal_stop(0))
2593 goto relock;
2594
2595 if (unlikely(current->jobctl &
2596 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2597 if (current->jobctl & JOBCTL_TRAP_MASK) {
2598 do_jobctl_trap();
2599 spin_unlock_irq(&sighand->siglock);
2600 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2601 do_freezer_trap();
2602
2603 goto relock;
2604 }
2605
2606 /*
2607 * If the task is leaving the frozen state, let's update
2608 * cgroup counters and reset the frozen bit.
2609 */
2610 if (unlikely(cgroup_task_frozen(current))) {
2611 spin_unlock_irq(&sighand->siglock);
2612 cgroup_leave_frozen(false);
2613 goto relock;
2614 }
2615
2616 /*
2617 * Signals generated by the execution of an instruction
2618 * need to be delivered before any other pending signals
2619 * so that the instruction pointer in the signal stack
2620 * frame points to the faulting instruction.
2621 */
2622 signr = dequeue_synchronous_signal(&ksig->info);
2623 if (!signr)
2624 signr = dequeue_signal(current, ¤t->blocked, &ksig->info);
2625
2626 if (!signr)
2627 break; /* will return 0 */
2628
2629 if (unlikely(current->ptrace) && signr != SIGKILL) {
2630 signr = ptrace_signal(signr, &ksig->info);
2631 if (!signr)
2632 continue;
2633 }
2634
2635 ka = &sighand->action[signr-1];
2636
2637 /* Trace actually delivered signals. */
2638 trace_signal_deliver(signr, &ksig->info, ka);
2639
2640 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2641 continue;
2642 if (ka->sa.sa_handler != SIG_DFL) {
2643 /* Run the handler. */
2644 ksig->ka = *ka;
2645
2646 if (ka->sa.sa_flags & SA_ONESHOT)
2647 ka->sa.sa_handler = SIG_DFL;
2648
2649 break; /* will return non-zero "signr" value */
2650 }
2651
2652 /*
2653 * Now we are doing the default action for this signal.
2654 */
2655 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2656 continue;
2657
2658 /*
2659 * Global init gets no signals it doesn't want.
2660 * Container-init gets no signals it doesn't want from same
2661 * container.
2662 *
2663 * Note that if global/container-init sees a sig_kernel_only()
2664 * signal here, the signal must have been generated internally
2665 * or must have come from an ancestor namespace. In either
2666 * case, the signal cannot be dropped.
2667 */
2668 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2669 !sig_kernel_only(signr))
2670 continue;
2671
2672 if (sig_kernel_stop(signr)) {
2673 /*
2674 * The default action is to stop all threads in
2675 * the thread group. The job control signals
2676 * do nothing in an orphaned pgrp, but SIGSTOP
2677 * always works. Note that siglock needs to be
2678 * dropped during the call to is_orphaned_pgrp()
2679 * because of lock ordering with tasklist_lock.
2680 * This allows an intervening SIGCONT to be posted.
2681 * We need to check for that and bail out if necessary.
2682 */
2683 if (signr != SIGSTOP) {
2684 spin_unlock_irq(&sighand->siglock);
2685
2686 /* signals can be posted during this window */
2687
2688 if (is_current_pgrp_orphaned())
2689 goto relock;
2690
2691 spin_lock_irq(&sighand->siglock);
2692 }
2693
2694 if (likely(do_signal_stop(ksig->info.si_signo))) {
2695 /* It released the siglock. */
2696 goto relock;
2697 }
2698
2699 /*
2700 * We didn't actually stop, due to a race
2701 * with SIGCONT or something like that.
2702 */
2703 continue;
2704 }
2705
2706 fatal:
2707 spin_unlock_irq(&sighand->siglock);
2708 if (unlikely(cgroup_task_frozen(current)))
2709 cgroup_leave_frozen(true);
2710
2711 /*
2712 * Anything else is fatal, maybe with a core dump.
2713 */
2714 current->flags |= PF_SIGNALED;
2715
2716 if (sig_kernel_coredump(signr)) {
2717 if (print_fatal_signals)
2718 print_fatal_signal(ksig->info.si_signo);
2719 proc_coredump_connector(current);
2720 /*
2721 * If it was able to dump core, this kills all
2722 * other threads in the group and synchronizes with
2723 * their demise. If we lost the race with another
2724 * thread getting here, it set group_exit_code
2725 * first and our do_group_exit call below will use
2726 * that value and ignore the one we pass it.
2727 */
2728 do_coredump(&ksig->info);
2729 }
2730
2731 /*
2732 * Death signals, no core dump.
2733 */
2734 do_group_exit(ksig->info.si_signo);
2735 /* NOTREACHED */
2736 }
2737 spin_unlock_irq(&sighand->siglock);
2738
2739 ksig->sig = signr;
2740 return ksig->sig > 0;
2741}
2742
2743/**
2744 * signal_delivered -
2745 * @ksig: kernel signal struct
2746 * @stepping: nonzero if debugger single-step or block-step in use
2747 *
2748 * This function should be called when a signal has successfully been
2749 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2750 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2751 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2752 */
2753static void signal_delivered(struct ksignal *ksig, int stepping)
2754{
2755 sigset_t blocked;
2756
2757 /* A signal was successfully delivered, and the
2758 saved sigmask was stored on the signal frame,
2759 and will be restored by sigreturn. So we can
2760 simply clear the restore sigmask flag. */
2761 clear_restore_sigmask();
2762
2763 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2764 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2765 sigaddset(&blocked, ksig->sig);
2766 set_current_blocked(&blocked);
2767 tracehook_signal_handler(stepping);
2768}
2769
2770void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2771{
2772 if (failed)
2773 force_sigsegv(ksig->sig);
2774 else
2775 signal_delivered(ksig, stepping);
2776}
2777
2778/*
2779 * It could be that complete_signal() picked us to notify about the
2780 * group-wide signal. Other threads should be notified now to take
2781 * the shared signals in @which since we will not.
2782 */
2783static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2784{
2785 sigset_t retarget;
2786 struct task_struct *t;
2787
2788 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2789 if (sigisemptyset(&retarget))
2790 return;
2791
2792 t = tsk;
2793 while_each_thread(tsk, t) {
2794 if (t->flags & PF_EXITING)
2795 continue;
2796
2797 if (!has_pending_signals(&retarget, &t->blocked))
2798 continue;
2799 /* Remove the signals this thread can handle. */
2800 sigandsets(&retarget, &retarget, &t->blocked);
2801
2802 if (!signal_pending(t))
2803 signal_wake_up(t, 0);
2804
2805 if (sigisemptyset(&retarget))
2806 break;
2807 }
2808}
2809
2810void exit_signals(struct task_struct *tsk)
2811{
2812 int group_stop = 0;
2813 sigset_t unblocked;
2814
2815 /*
2816 * @tsk is about to have PF_EXITING set - lock out users which
2817 * expect stable threadgroup.
2818 */
2819 cgroup_threadgroup_change_begin(tsk);
2820
2821 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2822 tsk->flags |= PF_EXITING;
2823 cgroup_threadgroup_change_end(tsk);
2824 return;
2825 }
2826
2827 spin_lock_irq(&tsk->sighand->siglock);
2828 /*
2829 * From now this task is not visible for group-wide signals,
2830 * see wants_signal(), do_signal_stop().
2831 */
2832 tsk->flags |= PF_EXITING;
2833
2834 cgroup_threadgroup_change_end(tsk);
2835
2836 if (!signal_pending(tsk))
2837 goto out;
2838
2839 unblocked = tsk->blocked;
2840 signotset(&unblocked);
2841 retarget_shared_pending(tsk, &unblocked);
2842
2843 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2844 task_participate_group_stop(tsk))
2845 group_stop = CLD_STOPPED;
2846out:
2847 spin_unlock_irq(&tsk->sighand->siglock);
2848
2849 /*
2850 * If group stop has completed, deliver the notification. This
2851 * should always go to the real parent of the group leader.
2852 */
2853 if (unlikely(group_stop)) {
2854 read_lock(&tasklist_lock);
2855 do_notify_parent_cldstop(tsk, false, group_stop);
2856 read_unlock(&tasklist_lock);
2857 }
2858}
2859
2860/*
2861 * System call entry points.
2862 */
2863
2864/**
2865 * sys_restart_syscall - restart a system call
2866 */
2867SYSCALL_DEFINE0(restart_syscall)
2868{
2869 struct restart_block *restart = ¤t->restart_block;
2870 return restart->fn(restart);
2871}
2872
2873long do_no_restart_syscall(struct restart_block *param)
2874{
2875 return -EINTR;
2876}
2877
2878static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2879{
2880 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2881 sigset_t newblocked;
2882 /* A set of now blocked but previously unblocked signals. */
2883 sigandnsets(&newblocked, newset, ¤t->blocked);
2884 retarget_shared_pending(tsk, &newblocked);
2885 }
2886 tsk->blocked = *newset;
2887 recalc_sigpending();
2888}
2889
2890/**
2891 * set_current_blocked - change current->blocked mask
2892 * @newset: new mask
2893 *
2894 * It is wrong to change ->blocked directly, this helper should be used
2895 * to ensure the process can't miss a shared signal we are going to block.
2896 */
2897void set_current_blocked(sigset_t *newset)
2898{
2899 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2900 __set_current_blocked(newset);
2901}
2902
2903void __set_current_blocked(const sigset_t *newset)
2904{
2905 struct task_struct *tsk = current;
2906
2907 /*
2908 * In case the signal mask hasn't changed, there is nothing we need
2909 * to do. The current->blocked shouldn't be modified by other task.
2910 */
2911 if (sigequalsets(&tsk->blocked, newset))
2912 return;
2913
2914 spin_lock_irq(&tsk->sighand->siglock);
2915 __set_task_blocked(tsk, newset);
2916 spin_unlock_irq(&tsk->sighand->siglock);
2917}
2918
2919/*
2920 * This is also useful for kernel threads that want to temporarily
2921 * (or permanently) block certain signals.
2922 *
2923 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2924 * interface happily blocks "unblockable" signals like SIGKILL
2925 * and friends.
2926 */
2927int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2928{
2929 struct task_struct *tsk = current;
2930 sigset_t newset;
2931
2932 /* Lockless, only current can change ->blocked, never from irq */
2933 if (oldset)
2934 *oldset = tsk->blocked;
2935
2936 switch (how) {
2937 case SIG_BLOCK:
2938 sigorsets(&newset, &tsk->blocked, set);
2939 break;
2940 case SIG_UNBLOCK:
2941 sigandnsets(&newset, &tsk->blocked, set);
2942 break;
2943 case SIG_SETMASK:
2944 newset = *set;
2945 break;
2946 default:
2947 return -EINVAL;
2948 }
2949
2950 __set_current_blocked(&newset);
2951 return 0;
2952}
2953EXPORT_SYMBOL(sigprocmask);
2954
2955/*
2956 * The api helps set app-provided sigmasks.
2957 *
2958 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2959 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2960 *
2961 * Note that it does set_restore_sigmask() in advance, so it must be always
2962 * paired with restore_saved_sigmask_unless() before return from syscall.
2963 */
2964int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2965{
2966 sigset_t kmask;
2967
2968 if (!umask)
2969 return 0;
2970 if (sigsetsize != sizeof(sigset_t))
2971 return -EINVAL;
2972 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2973 return -EFAULT;
2974
2975 set_restore_sigmask();
2976 current->saved_sigmask = current->blocked;
2977 set_current_blocked(&kmask);
2978
2979 return 0;
2980}
2981
2982#ifdef CONFIG_COMPAT
2983int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2984 size_t sigsetsize)
2985{
2986 sigset_t kmask;
2987
2988 if (!umask)
2989 return 0;
2990 if (sigsetsize != sizeof(compat_sigset_t))
2991 return -EINVAL;
2992 if (get_compat_sigset(&kmask, umask))
2993 return -EFAULT;
2994
2995 set_restore_sigmask();
2996 current->saved_sigmask = current->blocked;
2997 set_current_blocked(&kmask);
2998
2999 return 0;
3000}
3001#endif
3002
3003/**
3004 * sys_rt_sigprocmask - change the list of currently blocked signals
3005 * @how: whether to add, remove, or set signals
3006 * @nset: stores pending signals
3007 * @oset: previous value of signal mask if non-null
3008 * @sigsetsize: size of sigset_t type
3009 */
3010SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3011 sigset_t __user *, oset, size_t, sigsetsize)
3012{
3013 sigset_t old_set, new_set;
3014 int error;
3015
3016 /* XXX: Don't preclude handling different sized sigset_t's. */
3017 if (sigsetsize != sizeof(sigset_t))
3018 return -EINVAL;
3019
3020 old_set = current->blocked;
3021
3022 if (nset) {
3023 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3024 return -EFAULT;
3025 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3026
3027 error = sigprocmask(how, &new_set, NULL);
3028 if (error)
3029 return error;
3030 }
3031
3032 if (oset) {
3033 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3034 return -EFAULT;
3035 }
3036
3037 return 0;
3038}
3039
3040#ifdef CONFIG_COMPAT
3041COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3042 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3043{
3044 sigset_t old_set = current->blocked;
3045
3046 /* XXX: Don't preclude handling different sized sigset_t's. */
3047 if (sigsetsize != sizeof(sigset_t))
3048 return -EINVAL;
3049
3050 if (nset) {
3051 sigset_t new_set;
3052 int error;
3053 if (get_compat_sigset(&new_set, nset))
3054 return -EFAULT;
3055 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3056
3057 error = sigprocmask(how, &new_set, NULL);
3058 if (error)
3059 return error;
3060 }
3061 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3062}
3063#endif
3064
3065static void do_sigpending(sigset_t *set)
3066{
3067 spin_lock_irq(¤t->sighand->siglock);
3068 sigorsets(set, ¤t->pending.signal,
3069 ¤t->signal->shared_pending.signal);
3070 spin_unlock_irq(¤t->sighand->siglock);
3071
3072 /* Outside the lock because only this thread touches it. */
3073 sigandsets(set, ¤t->blocked, set);
3074}
3075
3076/**
3077 * sys_rt_sigpending - examine a pending signal that has been raised
3078 * while blocked
3079 * @uset: stores pending signals
3080 * @sigsetsize: size of sigset_t type or larger
3081 */
3082SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3083{
3084 sigset_t set;
3085
3086 if (sigsetsize > sizeof(*uset))
3087 return -EINVAL;
3088
3089 do_sigpending(&set);
3090
3091 if (copy_to_user(uset, &set, sigsetsize))
3092 return -EFAULT;
3093
3094 return 0;
3095}
3096
3097#ifdef CONFIG_COMPAT
3098COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3099 compat_size_t, sigsetsize)
3100{
3101 sigset_t set;
3102
3103 if (sigsetsize > sizeof(*uset))
3104 return -EINVAL;
3105
3106 do_sigpending(&set);
3107
3108 return put_compat_sigset(uset, &set, sigsetsize);
3109}
3110#endif
3111
3112static const struct {
3113 unsigned char limit, layout;
3114} sig_sicodes[] = {
3115 [SIGILL] = { NSIGILL, SIL_FAULT },
3116 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3117 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3118 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3119 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3120#if defined(SIGEMT)
3121 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3122#endif
3123 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3124 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3125 [SIGSYS] = { NSIGSYS, SIL_SYS },
3126};
3127
3128static bool known_siginfo_layout(unsigned sig, int si_code)
3129{
3130 if (si_code == SI_KERNEL)
3131 return true;
3132 else if ((si_code > SI_USER)) {
3133 if (sig_specific_sicodes(sig)) {
3134 if (si_code <= sig_sicodes[sig].limit)
3135 return true;
3136 }
3137 else if (si_code <= NSIGPOLL)
3138 return true;
3139 }
3140 else if (si_code >= SI_DETHREAD)
3141 return true;
3142 else if (si_code == SI_ASYNCNL)
3143 return true;
3144 return false;
3145}
3146
3147enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3148{
3149 enum siginfo_layout layout = SIL_KILL;
3150 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3151 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3152 (si_code <= sig_sicodes[sig].limit)) {
3153 layout = sig_sicodes[sig].layout;
3154 /* Handle the exceptions */
3155 if ((sig == SIGBUS) &&
3156 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3157 layout = SIL_FAULT_MCEERR;
3158 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3159 layout = SIL_FAULT_BNDERR;
3160#ifdef SEGV_PKUERR
3161 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3162 layout = SIL_FAULT_PKUERR;
3163#endif
3164 }
3165 else if (si_code <= NSIGPOLL)
3166 layout = SIL_POLL;
3167 } else {
3168 if (si_code == SI_TIMER)
3169 layout = SIL_TIMER;
3170 else if (si_code == SI_SIGIO)
3171 layout = SIL_POLL;
3172 else if (si_code < 0)
3173 layout = SIL_RT;
3174 }
3175 return layout;
3176}
3177
3178static inline char __user *si_expansion(const siginfo_t __user *info)
3179{
3180 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3181}
3182
3183int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3184{
3185 char __user *expansion = si_expansion(to);
3186 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3187 return -EFAULT;
3188 if (clear_user(expansion, SI_EXPANSION_SIZE))
3189 return -EFAULT;
3190 return 0;
3191}
3192
3193static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3194 const siginfo_t __user *from)
3195{
3196 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3197 char __user *expansion = si_expansion(from);
3198 char buf[SI_EXPANSION_SIZE];
3199 int i;
3200 /*
3201 * An unknown si_code might need more than
3202 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3203 * extra bytes are 0. This guarantees copy_siginfo_to_user
3204 * will return this data to userspace exactly.
3205 */
3206 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3207 return -EFAULT;
3208 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3209 if (buf[i] != 0)
3210 return -E2BIG;
3211 }
3212 }
3213 return 0;
3214}
3215
3216static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3217 const siginfo_t __user *from)
3218{
3219 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3220 return -EFAULT;
3221 to->si_signo = signo;
3222 return post_copy_siginfo_from_user(to, from);
3223}
3224
3225int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3226{
3227 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3228 return -EFAULT;
3229 return post_copy_siginfo_from_user(to, from);
3230}
3231
3232#ifdef CONFIG_COMPAT
3233int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3234 const struct kernel_siginfo *from)
3235#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3236{
3237 return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3238}
3239int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3240 const struct kernel_siginfo *from, bool x32_ABI)
3241#endif
3242{
3243 struct compat_siginfo new;
3244 memset(&new, 0, sizeof(new));
3245
3246 new.si_signo = from->si_signo;
3247 new.si_errno = from->si_errno;
3248 new.si_code = from->si_code;
3249 switch(siginfo_layout(from->si_signo, from->si_code)) {
3250 case SIL_KILL:
3251 new.si_pid = from->si_pid;
3252 new.si_uid = from->si_uid;
3253 break;
3254 case SIL_TIMER:
3255 new.si_tid = from->si_tid;
3256 new.si_overrun = from->si_overrun;
3257 new.si_int = from->si_int;
3258 break;
3259 case SIL_POLL:
3260 new.si_band = from->si_band;
3261 new.si_fd = from->si_fd;
3262 break;
3263 case SIL_FAULT:
3264 new.si_addr = ptr_to_compat(from->si_addr);
3265#ifdef __ARCH_SI_TRAPNO
3266 new.si_trapno = from->si_trapno;
3267#endif
3268 break;
3269 case SIL_FAULT_MCEERR:
3270 new.si_addr = ptr_to_compat(from->si_addr);
3271#ifdef __ARCH_SI_TRAPNO
3272 new.si_trapno = from->si_trapno;
3273#endif
3274 new.si_addr_lsb = from->si_addr_lsb;
3275 break;
3276 case SIL_FAULT_BNDERR:
3277 new.si_addr = ptr_to_compat(from->si_addr);
3278#ifdef __ARCH_SI_TRAPNO
3279 new.si_trapno = from->si_trapno;
3280#endif
3281 new.si_lower = ptr_to_compat(from->si_lower);
3282 new.si_upper = ptr_to_compat(from->si_upper);
3283 break;
3284 case SIL_FAULT_PKUERR:
3285 new.si_addr = ptr_to_compat(from->si_addr);
3286#ifdef __ARCH_SI_TRAPNO
3287 new.si_trapno = from->si_trapno;
3288#endif
3289 new.si_pkey = from->si_pkey;
3290 break;
3291 case SIL_CHLD:
3292 new.si_pid = from->si_pid;
3293 new.si_uid = from->si_uid;
3294 new.si_status = from->si_status;
3295#ifdef CONFIG_X86_X32_ABI
3296 if (x32_ABI) {
3297 new._sifields._sigchld_x32._utime = from->si_utime;
3298 new._sifields._sigchld_x32._stime = from->si_stime;
3299 } else
3300#endif
3301 {
3302 new.si_utime = from->si_utime;
3303 new.si_stime = from->si_stime;
3304 }
3305 break;
3306 case SIL_RT:
3307 new.si_pid = from->si_pid;
3308 new.si_uid = from->si_uid;
3309 new.si_int = from->si_int;
3310 break;
3311 case SIL_SYS:
3312 new.si_call_addr = ptr_to_compat(from->si_call_addr);
3313 new.si_syscall = from->si_syscall;
3314 new.si_arch = from->si_arch;
3315 break;
3316 }
3317
3318 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3319 return -EFAULT;
3320
3321 return 0;
3322}
3323
3324static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3325 const struct compat_siginfo *from)
3326{
3327 clear_siginfo(to);
3328 to->si_signo = from->si_signo;
3329 to->si_errno = from->si_errno;
3330 to->si_code = from->si_code;
3331 switch(siginfo_layout(from->si_signo, from->si_code)) {
3332 case SIL_KILL:
3333 to->si_pid = from->si_pid;
3334 to->si_uid = from->si_uid;
3335 break;
3336 case SIL_TIMER:
3337 to->si_tid = from->si_tid;
3338 to->si_overrun = from->si_overrun;
3339 to->si_int = from->si_int;
3340 break;
3341 case SIL_POLL:
3342 to->si_band = from->si_band;
3343 to->si_fd = from->si_fd;
3344 break;
3345 case SIL_FAULT:
3346 to->si_addr = compat_ptr(from->si_addr);
3347#ifdef __ARCH_SI_TRAPNO
3348 to->si_trapno = from->si_trapno;
3349#endif
3350 break;
3351 case SIL_FAULT_MCEERR:
3352 to->si_addr = compat_ptr(from->si_addr);
3353#ifdef __ARCH_SI_TRAPNO
3354 to->si_trapno = from->si_trapno;
3355#endif
3356 to->si_addr_lsb = from->si_addr_lsb;
3357 break;
3358 case SIL_FAULT_BNDERR:
3359 to->si_addr = compat_ptr(from->si_addr);
3360#ifdef __ARCH_SI_TRAPNO
3361 to->si_trapno = from->si_trapno;
3362#endif
3363 to->si_lower = compat_ptr(from->si_lower);
3364 to->si_upper = compat_ptr(from->si_upper);
3365 break;
3366 case SIL_FAULT_PKUERR:
3367 to->si_addr = compat_ptr(from->si_addr);
3368#ifdef __ARCH_SI_TRAPNO
3369 to->si_trapno = from->si_trapno;
3370#endif
3371 to->si_pkey = from->si_pkey;
3372 break;
3373 case SIL_CHLD:
3374 to->si_pid = from->si_pid;
3375 to->si_uid = from->si_uid;
3376 to->si_status = from->si_status;
3377#ifdef CONFIG_X86_X32_ABI
3378 if (in_x32_syscall()) {
3379 to->si_utime = from->_sifields._sigchld_x32._utime;
3380 to->si_stime = from->_sifields._sigchld_x32._stime;
3381 } else
3382#endif
3383 {
3384 to->si_utime = from->si_utime;
3385 to->si_stime = from->si_stime;
3386 }
3387 break;
3388 case SIL_RT:
3389 to->si_pid = from->si_pid;
3390 to->si_uid = from->si_uid;
3391 to->si_int = from->si_int;
3392 break;
3393 case SIL_SYS:
3394 to->si_call_addr = compat_ptr(from->si_call_addr);
3395 to->si_syscall = from->si_syscall;
3396 to->si_arch = from->si_arch;
3397 break;
3398 }
3399 return 0;
3400}
3401
3402static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3403 const struct compat_siginfo __user *ufrom)
3404{
3405 struct compat_siginfo from;
3406
3407 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3408 return -EFAULT;
3409
3410 from.si_signo = signo;
3411 return post_copy_siginfo_from_user32(to, &from);
3412}
3413
3414int copy_siginfo_from_user32(struct kernel_siginfo *to,
3415 const struct compat_siginfo __user *ufrom)
3416{
3417 struct compat_siginfo from;
3418
3419 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3420 return -EFAULT;
3421
3422 return post_copy_siginfo_from_user32(to, &from);
3423}
3424#endif /* CONFIG_COMPAT */
3425
3426/**
3427 * do_sigtimedwait - wait for queued signals specified in @which
3428 * @which: queued signals to wait for
3429 * @info: if non-null, the signal's siginfo is returned here
3430 * @ts: upper bound on process time suspension
3431 */
3432static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3433 const struct timespec64 *ts)
3434{
3435 ktime_t *to = NULL, timeout = KTIME_MAX;
3436 struct task_struct *tsk = current;
3437 sigset_t mask = *which;
3438 int sig, ret = 0;
3439
3440 if (ts) {
3441 if (!timespec64_valid(ts))
3442 return -EINVAL;
3443 timeout = timespec64_to_ktime(*ts);
3444 to = &timeout;
3445 }
3446
3447 /*
3448 * Invert the set of allowed signals to get those we want to block.
3449 */
3450 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3451 signotset(&mask);
3452
3453 spin_lock_irq(&tsk->sighand->siglock);
3454 sig = dequeue_signal(tsk, &mask, info);
3455 if (!sig && timeout) {
3456 /*
3457 * None ready, temporarily unblock those we're interested
3458 * while we are sleeping in so that we'll be awakened when
3459 * they arrive. Unblocking is always fine, we can avoid
3460 * set_current_blocked().
3461 */
3462 tsk->real_blocked = tsk->blocked;
3463 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3464 recalc_sigpending();
3465 spin_unlock_irq(&tsk->sighand->siglock);
3466
3467 __set_current_state(TASK_INTERRUPTIBLE);
3468 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3469 HRTIMER_MODE_REL);
3470 spin_lock_irq(&tsk->sighand->siglock);
3471 __set_task_blocked(tsk, &tsk->real_blocked);
3472 sigemptyset(&tsk->real_blocked);
3473 sig = dequeue_signal(tsk, &mask, info);
3474 }
3475 spin_unlock_irq(&tsk->sighand->siglock);
3476
3477 if (sig)
3478 return sig;
3479 return ret ? -EINTR : -EAGAIN;
3480}
3481
3482/**
3483 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3484 * in @uthese
3485 * @uthese: queued signals to wait for
3486 * @uinfo: if non-null, the signal's siginfo is returned here
3487 * @uts: upper bound on process time suspension
3488 * @sigsetsize: size of sigset_t type
3489 */
3490SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3491 siginfo_t __user *, uinfo,
3492 const struct __kernel_timespec __user *, uts,
3493 size_t, sigsetsize)
3494{
3495 sigset_t these;
3496 struct timespec64 ts;
3497 kernel_siginfo_t info;
3498 int ret;
3499
3500 /* XXX: Don't preclude handling different sized sigset_t's. */
3501 if (sigsetsize != sizeof(sigset_t))
3502 return -EINVAL;
3503
3504 if (copy_from_user(&these, uthese, sizeof(these)))
3505 return -EFAULT;
3506
3507 if (uts) {
3508 if (get_timespec64(&ts, uts))
3509 return -EFAULT;
3510 }
3511
3512 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3513
3514 if (ret > 0 && uinfo) {
3515 if (copy_siginfo_to_user(uinfo, &info))
3516 ret = -EFAULT;
3517 }
3518
3519 return ret;
3520}
3521
3522#ifdef CONFIG_COMPAT_32BIT_TIME
3523SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3524 siginfo_t __user *, uinfo,
3525 const struct old_timespec32 __user *, uts,
3526 size_t, sigsetsize)
3527{
3528 sigset_t these;
3529 struct timespec64 ts;
3530 kernel_siginfo_t info;
3531 int ret;
3532
3533 if (sigsetsize != sizeof(sigset_t))
3534 return -EINVAL;
3535
3536 if (copy_from_user(&these, uthese, sizeof(these)))
3537 return -EFAULT;
3538
3539 if (uts) {
3540 if (get_old_timespec32(&ts, uts))
3541 return -EFAULT;
3542 }
3543
3544 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3545
3546 if (ret > 0 && uinfo) {
3547 if (copy_siginfo_to_user(uinfo, &info))
3548 ret = -EFAULT;
3549 }
3550
3551 return ret;
3552}
3553#endif
3554
3555#ifdef CONFIG_COMPAT
3556COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3557 struct compat_siginfo __user *, uinfo,
3558 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3559{
3560 sigset_t s;
3561 struct timespec64 t;
3562 kernel_siginfo_t info;
3563 long ret;
3564
3565 if (sigsetsize != sizeof(sigset_t))
3566 return -EINVAL;
3567
3568 if (get_compat_sigset(&s, uthese))
3569 return -EFAULT;
3570
3571 if (uts) {
3572 if (get_timespec64(&t, uts))
3573 return -EFAULT;
3574 }
3575
3576 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3577
3578 if (ret > 0 && uinfo) {
3579 if (copy_siginfo_to_user32(uinfo, &info))
3580 ret = -EFAULT;
3581 }
3582
3583 return ret;
3584}
3585
3586#ifdef CONFIG_COMPAT_32BIT_TIME
3587COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3588 struct compat_siginfo __user *, uinfo,
3589 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3590{
3591 sigset_t s;
3592 struct timespec64 t;
3593 kernel_siginfo_t info;
3594 long ret;
3595
3596 if (sigsetsize != sizeof(sigset_t))
3597 return -EINVAL;
3598
3599 if (get_compat_sigset(&s, uthese))
3600 return -EFAULT;
3601
3602 if (uts) {
3603 if (get_old_timespec32(&t, uts))
3604 return -EFAULT;
3605 }
3606
3607 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3608
3609 if (ret > 0 && uinfo) {
3610 if (copy_siginfo_to_user32(uinfo, &info))
3611 ret = -EFAULT;
3612 }
3613
3614 return ret;
3615}
3616#endif
3617#endif
3618
3619static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3620{
3621 clear_siginfo(info);
3622 info->si_signo = sig;
3623 info->si_errno = 0;
3624 info->si_code = SI_USER;
3625 info->si_pid = task_tgid_vnr(current);
3626 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3627}
3628
3629/**
3630 * sys_kill - send a signal to a process
3631 * @pid: the PID of the process
3632 * @sig: signal to be sent
3633 */
3634SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3635{
3636 struct kernel_siginfo info;
3637
3638 prepare_kill_siginfo(sig, &info);
3639
3640 return kill_something_info(sig, &info, pid);
3641}
3642
3643/*
3644 * Verify that the signaler and signalee either are in the same pid namespace
3645 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3646 * namespace.
3647 */
3648static bool access_pidfd_pidns(struct pid *pid)
3649{
3650 struct pid_namespace *active = task_active_pid_ns(current);
3651 struct pid_namespace *p = ns_of_pid(pid);
3652
3653 for (;;) {
3654 if (!p)
3655 return false;
3656 if (p == active)
3657 break;
3658 p = p->parent;
3659 }
3660
3661 return true;
3662}
3663
3664static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3665{
3666#ifdef CONFIG_COMPAT
3667 /*
3668 * Avoid hooking up compat syscalls and instead handle necessary
3669 * conversions here. Note, this is a stop-gap measure and should not be
3670 * considered a generic solution.
3671 */
3672 if (in_compat_syscall())
3673 return copy_siginfo_from_user32(
3674 kinfo, (struct compat_siginfo __user *)info);
3675#endif
3676 return copy_siginfo_from_user(kinfo, info);
3677}
3678
3679static struct pid *pidfd_to_pid(const struct file *file)
3680{
3681 struct pid *pid;
3682
3683 pid = pidfd_pid(file);
3684 if (!IS_ERR(pid))
3685 return pid;
3686
3687 return tgid_pidfd_to_pid(file);
3688}
3689
3690/**
3691 * sys_pidfd_send_signal - Signal a process through a pidfd
3692 * @pidfd: file descriptor of the process
3693 * @sig: signal to send
3694 * @info: signal info
3695 * @flags: future flags
3696 *
3697 * The syscall currently only signals via PIDTYPE_PID which covers
3698 * kill(<positive-pid>, <signal>. It does not signal threads or process
3699 * groups.
3700 * In order to extend the syscall to threads and process groups the @flags
3701 * argument should be used. In essence, the @flags argument will determine
3702 * what is signaled and not the file descriptor itself. Put in other words,
3703 * grouping is a property of the flags argument not a property of the file
3704 * descriptor.
3705 *
3706 * Return: 0 on success, negative errno on failure
3707 */
3708SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3709 siginfo_t __user *, info, unsigned int, flags)
3710{
3711 int ret;
3712 struct fd f;
3713 struct pid *pid;
3714 kernel_siginfo_t kinfo;
3715
3716 /* Enforce flags be set to 0 until we add an extension. */
3717 if (flags)
3718 return -EINVAL;
3719
3720 f = fdget(pidfd);
3721 if (!f.file)
3722 return -EBADF;
3723
3724 /* Is this a pidfd? */
3725 pid = pidfd_to_pid(f.file);
3726 if (IS_ERR(pid)) {
3727 ret = PTR_ERR(pid);
3728 goto err;
3729 }
3730
3731 ret = -EINVAL;
3732 if (!access_pidfd_pidns(pid))
3733 goto err;
3734
3735 if (info) {
3736 ret = copy_siginfo_from_user_any(&kinfo, info);
3737 if (unlikely(ret))
3738 goto err;
3739
3740 ret = -EINVAL;
3741 if (unlikely(sig != kinfo.si_signo))
3742 goto err;
3743
3744 /* Only allow sending arbitrary signals to yourself. */
3745 ret = -EPERM;
3746 if ((task_pid(current) != pid) &&
3747 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3748 goto err;
3749 } else {
3750 prepare_kill_siginfo(sig, &kinfo);
3751 }
3752
3753 ret = kill_pid_info(sig, &kinfo, pid);
3754
3755err:
3756 fdput(f);
3757 return ret;
3758}
3759
3760static int
3761do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3762{
3763 struct task_struct *p;
3764 int error = -ESRCH;
3765
3766 rcu_read_lock();
3767 p = find_task_by_vpid(pid);
3768 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3769 error = check_kill_permission(sig, info, p);
3770 /*
3771 * The null signal is a permissions and process existence
3772 * probe. No signal is actually delivered.
3773 */
3774 if (!error && sig) {
3775 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3776 /*
3777 * If lock_task_sighand() failed we pretend the task
3778 * dies after receiving the signal. The window is tiny,
3779 * and the signal is private anyway.
3780 */
3781 if (unlikely(error == -ESRCH))
3782 error = 0;
3783 }
3784 }
3785 rcu_read_unlock();
3786
3787 return error;
3788}
3789
3790static int do_tkill(pid_t tgid, pid_t pid, int sig)
3791{
3792 struct kernel_siginfo info;
3793
3794 clear_siginfo(&info);
3795 info.si_signo = sig;
3796 info.si_errno = 0;
3797 info.si_code = SI_TKILL;
3798 info.si_pid = task_tgid_vnr(current);
3799 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800
3801 return do_send_specific(tgid, pid, sig, &info);
3802}
3803
3804/**
3805 * sys_tgkill - send signal to one specific thread
3806 * @tgid: the thread group ID of the thread
3807 * @pid: the PID of the thread
3808 * @sig: signal to be sent
3809 *
3810 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3811 * exists but it's not belonging to the target process anymore. This
3812 * method solves the problem of threads exiting and PIDs getting reused.
3813 */
3814SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3815{
3816 /* This is only valid for single tasks */
3817 if (pid <= 0 || tgid <= 0)
3818 return -EINVAL;
3819
3820 return do_tkill(tgid, pid, sig);
3821}
3822
3823/**
3824 * sys_tkill - send signal to one specific task
3825 * @pid: the PID of the task
3826 * @sig: signal to be sent
3827 *
3828 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3829 */
3830SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3831{
3832 /* This is only valid for single tasks */
3833 if (pid <= 0)
3834 return -EINVAL;
3835
3836 return do_tkill(0, pid, sig);
3837}
3838
3839static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3840{
3841 /* Not even root can pretend to send signals from the kernel.
3842 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3843 */
3844 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3845 (task_pid_vnr(current) != pid))
3846 return -EPERM;
3847
3848 /* POSIX.1b doesn't mention process groups. */
3849 return kill_proc_info(sig, info, pid);
3850}
3851
3852/**
3853 * sys_rt_sigqueueinfo - send signal information to a signal
3854 * @pid: the PID of the thread
3855 * @sig: signal to be sent
3856 * @uinfo: signal info to be sent
3857 */
3858SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3859 siginfo_t __user *, uinfo)
3860{
3861 kernel_siginfo_t info;
3862 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3863 if (unlikely(ret))
3864 return ret;
3865 return do_rt_sigqueueinfo(pid, sig, &info);
3866}
3867
3868#ifdef CONFIG_COMPAT
3869COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3870 compat_pid_t, pid,
3871 int, sig,
3872 struct compat_siginfo __user *, uinfo)
3873{
3874 kernel_siginfo_t info;
3875 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3876 if (unlikely(ret))
3877 return ret;
3878 return do_rt_sigqueueinfo(pid, sig, &info);
3879}
3880#endif
3881
3882static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3883{
3884 /* This is only valid for single tasks */
3885 if (pid <= 0 || tgid <= 0)
3886 return -EINVAL;
3887
3888 /* Not even root can pretend to send signals from the kernel.
3889 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3890 */
3891 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3892 (task_pid_vnr(current) != pid))
3893 return -EPERM;
3894
3895 return do_send_specific(tgid, pid, sig, info);
3896}
3897
3898SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3899 siginfo_t __user *, uinfo)
3900{
3901 kernel_siginfo_t info;
3902 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3903 if (unlikely(ret))
3904 return ret;
3905 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3906}
3907
3908#ifdef CONFIG_COMPAT
3909COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3910 compat_pid_t, tgid,
3911 compat_pid_t, pid,
3912 int, sig,
3913 struct compat_siginfo __user *, uinfo)
3914{
3915 kernel_siginfo_t info;
3916 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3917 if (unlikely(ret))
3918 return ret;
3919 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3920}
3921#endif
3922
3923/*
3924 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3925 */
3926void kernel_sigaction(int sig, __sighandler_t action)
3927{
3928 spin_lock_irq(¤t->sighand->siglock);
3929 current->sighand->action[sig - 1].sa.sa_handler = action;
3930 if (action == SIG_IGN) {
3931 sigset_t mask;
3932
3933 sigemptyset(&mask);
3934 sigaddset(&mask, sig);
3935
3936 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
3937 flush_sigqueue_mask(&mask, ¤t->pending);
3938 recalc_sigpending();
3939 }
3940 spin_unlock_irq(¤t->sighand->siglock);
3941}
3942EXPORT_SYMBOL(kernel_sigaction);
3943
3944void __weak sigaction_compat_abi(struct k_sigaction *act,
3945 struct k_sigaction *oact)
3946{
3947}
3948
3949int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3950{
3951 struct task_struct *p = current, *t;
3952 struct k_sigaction *k;
3953 sigset_t mask;
3954
3955 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3956 return -EINVAL;
3957
3958 k = &p->sighand->action[sig-1];
3959
3960 spin_lock_irq(&p->sighand->siglock);
3961 if (oact)
3962 *oact = *k;
3963
3964 sigaction_compat_abi(act, oact);
3965
3966 if (act) {
3967 sigdelsetmask(&act->sa.sa_mask,
3968 sigmask(SIGKILL) | sigmask(SIGSTOP));
3969 *k = *act;
3970 /*
3971 * POSIX 3.3.1.3:
3972 * "Setting a signal action to SIG_IGN for a signal that is
3973 * pending shall cause the pending signal to be discarded,
3974 * whether or not it is blocked."
3975 *
3976 * "Setting a signal action to SIG_DFL for a signal that is
3977 * pending and whose default action is to ignore the signal
3978 * (for example, SIGCHLD), shall cause the pending signal to
3979 * be discarded, whether or not it is blocked"
3980 */
3981 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3982 sigemptyset(&mask);
3983 sigaddset(&mask, sig);
3984 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3985 for_each_thread(p, t)
3986 flush_sigqueue_mask(&mask, &t->pending);
3987 }
3988 }
3989
3990 spin_unlock_irq(&p->sighand->siglock);
3991 return 0;
3992}
3993
3994static int
3995do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3996 size_t min_ss_size)
3997{
3998 struct task_struct *t = current;
3999
4000 if (oss) {
4001 memset(oss, 0, sizeof(stack_t));
4002 oss->ss_sp = (void __user *) t->sas_ss_sp;
4003 oss->ss_size = t->sas_ss_size;
4004 oss->ss_flags = sas_ss_flags(sp) |
4005 (current->sas_ss_flags & SS_FLAG_BITS);
4006 }
4007
4008 if (ss) {
4009 void __user *ss_sp = ss->ss_sp;
4010 size_t ss_size = ss->ss_size;
4011 unsigned ss_flags = ss->ss_flags;
4012 int ss_mode;
4013
4014 if (unlikely(on_sig_stack(sp)))
4015 return -EPERM;
4016
4017 ss_mode = ss_flags & ~SS_FLAG_BITS;
4018 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4019 ss_mode != 0))
4020 return -EINVAL;
4021
4022 if (ss_mode == SS_DISABLE) {
4023 ss_size = 0;
4024 ss_sp = NULL;
4025 } else {
4026 if (unlikely(ss_size < min_ss_size))
4027 return -ENOMEM;
4028 }
4029
4030 t->sas_ss_sp = (unsigned long) ss_sp;
4031 t->sas_ss_size = ss_size;
4032 t->sas_ss_flags = ss_flags;
4033 }
4034 return 0;
4035}
4036
4037SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4038{
4039 stack_t new, old;
4040 int err;
4041 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4042 return -EFAULT;
4043 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4044 current_user_stack_pointer(),
4045 MINSIGSTKSZ);
4046 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4047 err = -EFAULT;
4048 return err;
4049}
4050
4051int restore_altstack(const stack_t __user *uss)
4052{
4053 stack_t new;
4054 if (copy_from_user(&new, uss, sizeof(stack_t)))
4055 return -EFAULT;
4056 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4057 MINSIGSTKSZ);
4058 /* squash all but EFAULT for now */
4059 return 0;
4060}
4061
4062int __save_altstack(stack_t __user *uss, unsigned long sp)
4063{
4064 struct task_struct *t = current;
4065 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4066 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4067 __put_user(t->sas_ss_size, &uss->ss_size);
4068 if (err)
4069 return err;
4070 if (t->sas_ss_flags & SS_AUTODISARM)
4071 sas_ss_reset(t);
4072 return 0;
4073}
4074
4075#ifdef CONFIG_COMPAT
4076static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4077 compat_stack_t __user *uoss_ptr)
4078{
4079 stack_t uss, uoss;
4080 int ret;
4081
4082 if (uss_ptr) {
4083 compat_stack_t uss32;
4084 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4085 return -EFAULT;
4086 uss.ss_sp = compat_ptr(uss32.ss_sp);
4087 uss.ss_flags = uss32.ss_flags;
4088 uss.ss_size = uss32.ss_size;
4089 }
4090 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4091 compat_user_stack_pointer(),
4092 COMPAT_MINSIGSTKSZ);
4093 if (ret >= 0 && uoss_ptr) {
4094 compat_stack_t old;
4095 memset(&old, 0, sizeof(old));
4096 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4097 old.ss_flags = uoss.ss_flags;
4098 old.ss_size = uoss.ss_size;
4099 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4100 ret = -EFAULT;
4101 }
4102 return ret;
4103}
4104
4105COMPAT_SYSCALL_DEFINE2(sigaltstack,
4106 const compat_stack_t __user *, uss_ptr,
4107 compat_stack_t __user *, uoss_ptr)
4108{
4109 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4110}
4111
4112int compat_restore_altstack(const compat_stack_t __user *uss)
4113{
4114 int err = do_compat_sigaltstack(uss, NULL);
4115 /* squash all but -EFAULT for now */
4116 return err == -EFAULT ? err : 0;
4117}
4118
4119int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4120{
4121 int err;
4122 struct task_struct *t = current;
4123 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4124 &uss->ss_sp) |
4125 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4126 __put_user(t->sas_ss_size, &uss->ss_size);
4127 if (err)
4128 return err;
4129 if (t->sas_ss_flags & SS_AUTODISARM)
4130 sas_ss_reset(t);
4131 return 0;
4132}
4133#endif
4134
4135#ifdef __ARCH_WANT_SYS_SIGPENDING
4136
4137/**
4138 * sys_sigpending - examine pending signals
4139 * @uset: where mask of pending signal is returned
4140 */
4141SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4142{
4143 sigset_t set;
4144
4145 if (sizeof(old_sigset_t) > sizeof(*uset))
4146 return -EINVAL;
4147
4148 do_sigpending(&set);
4149
4150 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4151 return -EFAULT;
4152
4153 return 0;
4154}
4155
4156#ifdef CONFIG_COMPAT
4157COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4158{
4159 sigset_t set;
4160
4161 do_sigpending(&set);
4162
4163 return put_user(set.sig[0], set32);
4164}
4165#endif
4166
4167#endif
4168
4169#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4170/**
4171 * sys_sigprocmask - examine and change blocked signals
4172 * @how: whether to add, remove, or set signals
4173 * @nset: signals to add or remove (if non-null)
4174 * @oset: previous value of signal mask if non-null
4175 *
4176 * Some platforms have their own version with special arguments;
4177 * others support only sys_rt_sigprocmask.
4178 */
4179
4180SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4181 old_sigset_t __user *, oset)
4182{
4183 old_sigset_t old_set, new_set;
4184 sigset_t new_blocked;
4185
4186 old_set = current->blocked.sig[0];
4187
4188 if (nset) {
4189 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4190 return -EFAULT;
4191
4192 new_blocked = current->blocked;
4193
4194 switch (how) {
4195 case SIG_BLOCK:
4196 sigaddsetmask(&new_blocked, new_set);
4197 break;
4198 case SIG_UNBLOCK:
4199 sigdelsetmask(&new_blocked, new_set);
4200 break;
4201 case SIG_SETMASK:
4202 new_blocked.sig[0] = new_set;
4203 break;
4204 default:
4205 return -EINVAL;
4206 }
4207
4208 set_current_blocked(&new_blocked);
4209 }
4210
4211 if (oset) {
4212 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4213 return -EFAULT;
4214 }
4215
4216 return 0;
4217}
4218#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4219
4220#ifndef CONFIG_ODD_RT_SIGACTION
4221/**
4222 * sys_rt_sigaction - alter an action taken by a process
4223 * @sig: signal to be sent
4224 * @act: new sigaction
4225 * @oact: used to save the previous sigaction
4226 * @sigsetsize: size of sigset_t type
4227 */
4228SYSCALL_DEFINE4(rt_sigaction, int, sig,
4229 const struct sigaction __user *, act,
4230 struct sigaction __user *, oact,
4231 size_t, sigsetsize)
4232{
4233 struct k_sigaction new_sa, old_sa;
4234 int ret;
4235
4236 /* XXX: Don't preclude handling different sized sigset_t's. */
4237 if (sigsetsize != sizeof(sigset_t))
4238 return -EINVAL;
4239
4240 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4241 return -EFAULT;
4242
4243 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4244 if (ret)
4245 return ret;
4246
4247 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4248 return -EFAULT;
4249
4250 return 0;
4251}
4252#ifdef CONFIG_COMPAT
4253COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4254 const struct compat_sigaction __user *, act,
4255 struct compat_sigaction __user *, oact,
4256 compat_size_t, sigsetsize)
4257{
4258 struct k_sigaction new_ka, old_ka;
4259#ifdef __ARCH_HAS_SA_RESTORER
4260 compat_uptr_t restorer;
4261#endif
4262 int ret;
4263
4264 /* XXX: Don't preclude handling different sized sigset_t's. */
4265 if (sigsetsize != sizeof(compat_sigset_t))
4266 return -EINVAL;
4267
4268 if (act) {
4269 compat_uptr_t handler;
4270 ret = get_user(handler, &act->sa_handler);
4271 new_ka.sa.sa_handler = compat_ptr(handler);
4272#ifdef __ARCH_HAS_SA_RESTORER
4273 ret |= get_user(restorer, &act->sa_restorer);
4274 new_ka.sa.sa_restorer = compat_ptr(restorer);
4275#endif
4276 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4277 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4278 if (ret)
4279 return -EFAULT;
4280 }
4281
4282 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4283 if (!ret && oact) {
4284 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4285 &oact->sa_handler);
4286 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4287 sizeof(oact->sa_mask));
4288 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4289#ifdef __ARCH_HAS_SA_RESTORER
4290 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4291 &oact->sa_restorer);
4292#endif
4293 }
4294 return ret;
4295}
4296#endif
4297#endif /* !CONFIG_ODD_RT_SIGACTION */
4298
4299#ifdef CONFIG_OLD_SIGACTION
4300SYSCALL_DEFINE3(sigaction, int, sig,
4301 const struct old_sigaction __user *, act,
4302 struct old_sigaction __user *, oact)
4303{
4304 struct k_sigaction new_ka, old_ka;
4305 int ret;
4306
4307 if (act) {
4308 old_sigset_t mask;
4309 if (!access_ok(act, sizeof(*act)) ||
4310 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4311 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4312 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4313 __get_user(mask, &act->sa_mask))
4314 return -EFAULT;
4315#ifdef __ARCH_HAS_KA_RESTORER
4316 new_ka.ka_restorer = NULL;
4317#endif
4318 siginitset(&new_ka.sa.sa_mask, mask);
4319 }
4320
4321 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4322
4323 if (!ret && oact) {
4324 if (!access_ok(oact, sizeof(*oact)) ||
4325 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4326 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4327 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4328 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4329 return -EFAULT;
4330 }
4331
4332 return ret;
4333}
4334#endif
4335#ifdef CONFIG_COMPAT_OLD_SIGACTION
4336COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4337 const struct compat_old_sigaction __user *, act,
4338 struct compat_old_sigaction __user *, oact)
4339{
4340 struct k_sigaction new_ka, old_ka;
4341 int ret;
4342 compat_old_sigset_t mask;
4343 compat_uptr_t handler, restorer;
4344
4345 if (act) {
4346 if (!access_ok(act, sizeof(*act)) ||
4347 __get_user(handler, &act->sa_handler) ||
4348 __get_user(restorer, &act->sa_restorer) ||
4349 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4350 __get_user(mask, &act->sa_mask))
4351 return -EFAULT;
4352
4353#ifdef __ARCH_HAS_KA_RESTORER
4354 new_ka.ka_restorer = NULL;
4355#endif
4356 new_ka.sa.sa_handler = compat_ptr(handler);
4357 new_ka.sa.sa_restorer = compat_ptr(restorer);
4358 siginitset(&new_ka.sa.sa_mask, mask);
4359 }
4360
4361 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4362
4363 if (!ret && oact) {
4364 if (!access_ok(oact, sizeof(*oact)) ||
4365 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4366 &oact->sa_handler) ||
4367 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4368 &oact->sa_restorer) ||
4369 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4370 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4371 return -EFAULT;
4372 }
4373 return ret;
4374}
4375#endif
4376
4377#ifdef CONFIG_SGETMASK_SYSCALL
4378
4379/*
4380 * For backwards compatibility. Functionality superseded by sigprocmask.
4381 */
4382SYSCALL_DEFINE0(sgetmask)
4383{
4384 /* SMP safe */
4385 return current->blocked.sig[0];
4386}
4387
4388SYSCALL_DEFINE1(ssetmask, int, newmask)
4389{
4390 int old = current->blocked.sig[0];
4391 sigset_t newset;
4392
4393 siginitset(&newset, newmask);
4394 set_current_blocked(&newset);
4395
4396 return old;
4397}
4398#endif /* CONFIG_SGETMASK_SYSCALL */
4399
4400#ifdef __ARCH_WANT_SYS_SIGNAL
4401/*
4402 * For backwards compatibility. Functionality superseded by sigaction.
4403 */
4404SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4405{
4406 struct k_sigaction new_sa, old_sa;
4407 int ret;
4408
4409 new_sa.sa.sa_handler = handler;
4410 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4411 sigemptyset(&new_sa.sa.sa_mask);
4412
4413 ret = do_sigaction(sig, &new_sa, &old_sa);
4414
4415 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4416}
4417#endif /* __ARCH_WANT_SYS_SIGNAL */
4418
4419#ifdef __ARCH_WANT_SYS_PAUSE
4420
4421SYSCALL_DEFINE0(pause)
4422{
4423 while (!signal_pending(current)) {
4424 __set_current_state(TASK_INTERRUPTIBLE);
4425 schedule();
4426 }
4427 return -ERESTARTNOHAND;
4428}
4429
4430#endif
4431
4432static int sigsuspend(sigset_t *set)
4433{
4434 current->saved_sigmask = current->blocked;
4435 set_current_blocked(set);
4436
4437 while (!signal_pending(current)) {
4438 __set_current_state(TASK_INTERRUPTIBLE);
4439 schedule();
4440 }
4441 set_restore_sigmask();
4442 return -ERESTARTNOHAND;
4443}
4444
4445/**
4446 * sys_rt_sigsuspend - replace the signal mask for a value with the
4447 * @unewset value until a signal is received
4448 * @unewset: new signal mask value
4449 * @sigsetsize: size of sigset_t type
4450 */
4451SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4452{
4453 sigset_t newset;
4454
4455 /* XXX: Don't preclude handling different sized sigset_t's. */
4456 if (sigsetsize != sizeof(sigset_t))
4457 return -EINVAL;
4458
4459 if (copy_from_user(&newset, unewset, sizeof(newset)))
4460 return -EFAULT;
4461 return sigsuspend(&newset);
4462}
4463
4464#ifdef CONFIG_COMPAT
4465COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4466{
4467 sigset_t newset;
4468
4469 /* XXX: Don't preclude handling different sized sigset_t's. */
4470 if (sigsetsize != sizeof(sigset_t))
4471 return -EINVAL;
4472
4473 if (get_compat_sigset(&newset, unewset))
4474 return -EFAULT;
4475 return sigsuspend(&newset);
4476}
4477#endif
4478
4479#ifdef CONFIG_OLD_SIGSUSPEND
4480SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4481{
4482 sigset_t blocked;
4483 siginitset(&blocked, mask);
4484 return sigsuspend(&blocked);
4485}
4486#endif
4487#ifdef CONFIG_OLD_SIGSUSPEND3
4488SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4489{
4490 sigset_t blocked;
4491 siginitset(&blocked, mask);
4492 return sigsuspend(&blocked);
4493}
4494#endif
4495
4496__weak const char *arch_vma_name(struct vm_area_struct *vma)
4497{
4498 return NULL;
4499}
4500
4501static inline void siginfo_buildtime_checks(void)
4502{
4503 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4504
4505 /* Verify the offsets in the two siginfos match */
4506#define CHECK_OFFSET(field) \
4507 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4508
4509 /* kill */
4510 CHECK_OFFSET(si_pid);
4511 CHECK_OFFSET(si_uid);
4512
4513 /* timer */
4514 CHECK_OFFSET(si_tid);
4515 CHECK_OFFSET(si_overrun);
4516 CHECK_OFFSET(si_value);
4517
4518 /* rt */
4519 CHECK_OFFSET(si_pid);
4520 CHECK_OFFSET(si_uid);
4521 CHECK_OFFSET(si_value);
4522
4523 /* sigchld */
4524 CHECK_OFFSET(si_pid);
4525 CHECK_OFFSET(si_uid);
4526 CHECK_OFFSET(si_status);
4527 CHECK_OFFSET(si_utime);
4528 CHECK_OFFSET(si_stime);
4529
4530 /* sigfault */
4531 CHECK_OFFSET(si_addr);
4532 CHECK_OFFSET(si_addr_lsb);
4533 CHECK_OFFSET(si_lower);
4534 CHECK_OFFSET(si_upper);
4535 CHECK_OFFSET(si_pkey);
4536
4537 /* sigpoll */
4538 CHECK_OFFSET(si_band);
4539 CHECK_OFFSET(si_fd);
4540
4541 /* sigsys */
4542 CHECK_OFFSET(si_call_addr);
4543 CHECK_OFFSET(si_syscall);
4544 CHECK_OFFSET(si_arch);
4545#undef CHECK_OFFSET
4546
4547 /* usb asyncio */
4548 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4549 offsetof(struct siginfo, si_addr));
4550 if (sizeof(int) == sizeof(void __user *)) {
4551 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4552 sizeof(void __user *));
4553 } else {
4554 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4555 sizeof_field(struct siginfo, si_uid)) !=
4556 sizeof(void __user *));
4557 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4558 offsetof(struct siginfo, si_uid));
4559 }
4560#ifdef CONFIG_COMPAT
4561 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4562 offsetof(struct compat_siginfo, si_addr));
4563 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4564 sizeof(compat_uptr_t));
4565 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4566 sizeof_field(struct siginfo, si_pid));
4567#endif
4568}
4569
4570void __init signals_init(void)
4571{
4572 siginfo_buildtime_checks();
4573
4574 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4575}
4576
4577#ifdef CONFIG_KGDB_KDB
4578#include <linux/kdb.h>
4579/*
4580 * kdb_send_sig - Allows kdb to send signals without exposing
4581 * signal internals. This function checks if the required locks are
4582 * available before calling the main signal code, to avoid kdb
4583 * deadlocks.
4584 */
4585void kdb_send_sig(struct task_struct *t, int sig)
4586{
4587 static struct task_struct *kdb_prev_t;
4588 int new_t, ret;
4589 if (!spin_trylock(&t->sighand->siglock)) {
4590 kdb_printf("Can't do kill command now.\n"
4591 "The sigmask lock is held somewhere else in "
4592 "kernel, try again later\n");
4593 return;
4594 }
4595 new_t = kdb_prev_t != t;
4596 kdb_prev_t = t;
4597 if (t->state != TASK_RUNNING && new_t) {
4598 spin_unlock(&t->sighand->siglock);
4599 kdb_printf("Process is not RUNNING, sending a signal from "
4600 "kdb risks deadlock\n"
4601 "on the run queue locks. "
4602 "The signal has _not_ been sent.\n"
4603 "Reissue the kill command if you want to risk "
4604 "the deadlock.\n");
4605 return;
4606 }
4607 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4608 spin_unlock(&t->sighand->siglock);
4609 if (ret)
4610 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4611 sig, t->pid);
4612 else
4613 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4614}
4615#endif /* CONFIG_KGDB_KDB */
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/slab.h>
14#include <linux/export.h>
15#include <linux/init.h>
16#include <linux/sched/mm.h>
17#include <linux/sched/user.h>
18#include <linux/sched/debug.h>
19#include <linux/sched/task.h>
20#include <linux/sched/task_stack.h>
21#include <linux/sched/cputime.h>
22#include <linux/fs.h>
23#include <linux/tty.h>
24#include <linux/binfmts.h>
25#include <linux/coredump.h>
26#include <linux/security.h>
27#include <linux/syscalls.h>
28#include <linux/ptrace.h>
29#include <linux/signal.h>
30#include <linux/signalfd.h>
31#include <linux/ratelimit.h>
32#include <linux/tracehook.h>
33#include <linux/capability.h>
34#include <linux/freezer.h>
35#include <linux/pid_namespace.h>
36#include <linux/nsproxy.h>
37#include <linux/user_namespace.h>
38#include <linux/uprobes.h>
39#include <linux/compat.h>
40#include <linux/cn_proc.h>
41#include <linux/compiler.h>
42#include <linux/posix-timers.h>
43#include <linux/livepatch.h>
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/signal.h>
47
48#include <asm/param.h>
49#include <linux/uaccess.h>
50#include <asm/unistd.h>
51#include <asm/siginfo.h>
52#include <asm/cacheflush.h>
53#include "audit.h" /* audit_signal_info() */
54
55/*
56 * SLAB caches for signal bits.
57 */
58
59static struct kmem_cache *sigqueue_cachep;
60
61int print_fatal_signals __read_mostly;
62
63static void __user *sig_handler(struct task_struct *t, int sig)
64{
65 return t->sighand->action[sig - 1].sa.sa_handler;
66}
67
68static int sig_handler_ignored(void __user *handler, int sig)
69{
70 /* Is it explicitly or implicitly ignored? */
71 return handler == SIG_IGN ||
72 (handler == SIG_DFL && sig_kernel_ignore(sig));
73}
74
75static int sig_task_ignored(struct task_struct *t, int sig, bool force)
76{
77 void __user *handler;
78
79 handler = sig_handler(t, sig);
80
81 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
82 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
83 return 1;
84
85 return sig_handler_ignored(handler, sig);
86}
87
88static int sig_ignored(struct task_struct *t, int sig, bool force)
89{
90 /*
91 * Blocked signals are never ignored, since the
92 * signal handler may change by the time it is
93 * unblocked.
94 */
95 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
96 return 0;
97
98 /*
99 * Tracers may want to know about even ignored signal unless it
100 * is SIGKILL which can't be reported anyway but can be ignored
101 * by SIGNAL_UNKILLABLE task.
102 */
103 if (t->ptrace && sig != SIGKILL)
104 return 0;
105
106 return sig_task_ignored(t, sig, force);
107}
108
109/*
110 * Re-calculate pending state from the set of locally pending
111 * signals, globally pending signals, and blocked signals.
112 */
113static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
114{
115 unsigned long ready;
116 long i;
117
118 switch (_NSIG_WORDS) {
119 default:
120 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
121 ready |= signal->sig[i] &~ blocked->sig[i];
122 break;
123
124 case 4: ready = signal->sig[3] &~ blocked->sig[3];
125 ready |= signal->sig[2] &~ blocked->sig[2];
126 ready |= signal->sig[1] &~ blocked->sig[1];
127 ready |= signal->sig[0] &~ blocked->sig[0];
128 break;
129
130 case 2: ready = signal->sig[1] &~ blocked->sig[1];
131 ready |= signal->sig[0] &~ blocked->sig[0];
132 break;
133
134 case 1: ready = signal->sig[0] &~ blocked->sig[0];
135 }
136 return ready != 0;
137}
138
139#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
140
141static int recalc_sigpending_tsk(struct task_struct *t)
142{
143 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
144 PENDING(&t->pending, &t->blocked) ||
145 PENDING(&t->signal->shared_pending, &t->blocked)) {
146 set_tsk_thread_flag(t, TIF_SIGPENDING);
147 return 1;
148 }
149 /*
150 * We must never clear the flag in another thread, or in current
151 * when it's possible the current syscall is returning -ERESTART*.
152 * So we don't clear it here, and only callers who know they should do.
153 */
154 return 0;
155}
156
157/*
158 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
159 * This is superfluous when called on current, the wakeup is a harmless no-op.
160 */
161void recalc_sigpending_and_wake(struct task_struct *t)
162{
163 if (recalc_sigpending_tsk(t))
164 signal_wake_up(t, 0);
165}
166
167void recalc_sigpending(void)
168{
169 if (!recalc_sigpending_tsk(current) && !freezing(current) &&
170 !klp_patch_pending(current))
171 clear_thread_flag(TIF_SIGPENDING);
172
173}
174
175/* Given the mask, find the first available signal that should be serviced. */
176
177#define SYNCHRONOUS_MASK \
178 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
179 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
180
181int next_signal(struct sigpending *pending, sigset_t *mask)
182{
183 unsigned long i, *s, *m, x;
184 int sig = 0;
185
186 s = pending->signal.sig;
187 m = mask->sig;
188
189 /*
190 * Handle the first word specially: it contains the
191 * synchronous signals that need to be dequeued first.
192 */
193 x = *s &~ *m;
194 if (x) {
195 if (x & SYNCHRONOUS_MASK)
196 x &= SYNCHRONOUS_MASK;
197 sig = ffz(~x) + 1;
198 return sig;
199 }
200
201 switch (_NSIG_WORDS) {
202 default:
203 for (i = 1; i < _NSIG_WORDS; ++i) {
204 x = *++s &~ *++m;
205 if (!x)
206 continue;
207 sig = ffz(~x) + i*_NSIG_BPW + 1;
208 break;
209 }
210 break;
211
212 case 2:
213 x = s[1] &~ m[1];
214 if (!x)
215 break;
216 sig = ffz(~x) + _NSIG_BPW + 1;
217 break;
218
219 case 1:
220 /* Nothing to do */
221 break;
222 }
223
224 return sig;
225}
226
227static inline void print_dropped_signal(int sig)
228{
229 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
230
231 if (!print_fatal_signals)
232 return;
233
234 if (!__ratelimit(&ratelimit_state))
235 return;
236
237 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
238 current->comm, current->pid, sig);
239}
240
241/**
242 * task_set_jobctl_pending - set jobctl pending bits
243 * @task: target task
244 * @mask: pending bits to set
245 *
246 * Clear @mask from @task->jobctl. @mask must be subset of
247 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
248 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
249 * cleared. If @task is already being killed or exiting, this function
250 * becomes noop.
251 *
252 * CONTEXT:
253 * Must be called with @task->sighand->siglock held.
254 *
255 * RETURNS:
256 * %true if @mask is set, %false if made noop because @task was dying.
257 */
258bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
259{
260 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
261 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
262 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
263
264 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
265 return false;
266
267 if (mask & JOBCTL_STOP_SIGMASK)
268 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
269
270 task->jobctl |= mask;
271 return true;
272}
273
274/**
275 * task_clear_jobctl_trapping - clear jobctl trapping bit
276 * @task: target task
277 *
278 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
279 * Clear it and wake up the ptracer. Note that we don't need any further
280 * locking. @task->siglock guarantees that @task->parent points to the
281 * ptracer.
282 *
283 * CONTEXT:
284 * Must be called with @task->sighand->siglock held.
285 */
286void task_clear_jobctl_trapping(struct task_struct *task)
287{
288 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
289 task->jobctl &= ~JOBCTL_TRAPPING;
290 smp_mb(); /* advised by wake_up_bit() */
291 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
292 }
293}
294
295/**
296 * task_clear_jobctl_pending - clear jobctl pending bits
297 * @task: target task
298 * @mask: pending bits to clear
299 *
300 * Clear @mask from @task->jobctl. @mask must be subset of
301 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
302 * STOP bits are cleared together.
303 *
304 * If clearing of @mask leaves no stop or trap pending, this function calls
305 * task_clear_jobctl_trapping().
306 *
307 * CONTEXT:
308 * Must be called with @task->sighand->siglock held.
309 */
310void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
311{
312 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
313
314 if (mask & JOBCTL_STOP_PENDING)
315 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
316
317 task->jobctl &= ~mask;
318
319 if (!(task->jobctl & JOBCTL_PENDING_MASK))
320 task_clear_jobctl_trapping(task);
321}
322
323/**
324 * task_participate_group_stop - participate in a group stop
325 * @task: task participating in a group stop
326 *
327 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
328 * Group stop states are cleared and the group stop count is consumed if
329 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
330 * stop, the appropriate %SIGNAL_* flags are set.
331 *
332 * CONTEXT:
333 * Must be called with @task->sighand->siglock held.
334 *
335 * RETURNS:
336 * %true if group stop completion should be notified to the parent, %false
337 * otherwise.
338 */
339static bool task_participate_group_stop(struct task_struct *task)
340{
341 struct signal_struct *sig = task->signal;
342 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
343
344 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
345
346 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
347
348 if (!consume)
349 return false;
350
351 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
352 sig->group_stop_count--;
353
354 /*
355 * Tell the caller to notify completion iff we are entering into a
356 * fresh group stop. Read comment in do_signal_stop() for details.
357 */
358 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
359 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
360 return true;
361 }
362 return false;
363}
364
365/*
366 * allocate a new signal queue record
367 * - this may be called without locks if and only if t == current, otherwise an
368 * appropriate lock must be held to stop the target task from exiting
369 */
370static struct sigqueue *
371__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
372{
373 struct sigqueue *q = NULL;
374 struct user_struct *user;
375
376 /*
377 * Protect access to @t credentials. This can go away when all
378 * callers hold rcu read lock.
379 */
380 rcu_read_lock();
381 user = get_uid(__task_cred(t)->user);
382 atomic_inc(&user->sigpending);
383 rcu_read_unlock();
384
385 if (override_rlimit ||
386 atomic_read(&user->sigpending) <=
387 task_rlimit(t, RLIMIT_SIGPENDING)) {
388 q = kmem_cache_alloc(sigqueue_cachep, flags);
389 } else {
390 print_dropped_signal(sig);
391 }
392
393 if (unlikely(q == NULL)) {
394 atomic_dec(&user->sigpending);
395 free_uid(user);
396 } else {
397 INIT_LIST_HEAD(&q->list);
398 q->flags = 0;
399 q->user = user;
400 }
401
402 return q;
403}
404
405static void __sigqueue_free(struct sigqueue *q)
406{
407 if (q->flags & SIGQUEUE_PREALLOC)
408 return;
409 atomic_dec(&q->user->sigpending);
410 free_uid(q->user);
411 kmem_cache_free(sigqueue_cachep, q);
412}
413
414void flush_sigqueue(struct sigpending *queue)
415{
416 struct sigqueue *q;
417
418 sigemptyset(&queue->signal);
419 while (!list_empty(&queue->list)) {
420 q = list_entry(queue->list.next, struct sigqueue , list);
421 list_del_init(&q->list);
422 __sigqueue_free(q);
423 }
424}
425
426/*
427 * Flush all pending signals for this kthread.
428 */
429void flush_signals(struct task_struct *t)
430{
431 unsigned long flags;
432
433 spin_lock_irqsave(&t->sighand->siglock, flags);
434 clear_tsk_thread_flag(t, TIF_SIGPENDING);
435 flush_sigqueue(&t->pending);
436 flush_sigqueue(&t->signal->shared_pending);
437 spin_unlock_irqrestore(&t->sighand->siglock, flags);
438}
439
440#ifdef CONFIG_POSIX_TIMERS
441static void __flush_itimer_signals(struct sigpending *pending)
442{
443 sigset_t signal, retain;
444 struct sigqueue *q, *n;
445
446 signal = pending->signal;
447 sigemptyset(&retain);
448
449 list_for_each_entry_safe(q, n, &pending->list, list) {
450 int sig = q->info.si_signo;
451
452 if (likely(q->info.si_code != SI_TIMER)) {
453 sigaddset(&retain, sig);
454 } else {
455 sigdelset(&signal, sig);
456 list_del_init(&q->list);
457 __sigqueue_free(q);
458 }
459 }
460
461 sigorsets(&pending->signal, &signal, &retain);
462}
463
464void flush_itimer_signals(void)
465{
466 struct task_struct *tsk = current;
467 unsigned long flags;
468
469 spin_lock_irqsave(&tsk->sighand->siglock, flags);
470 __flush_itimer_signals(&tsk->pending);
471 __flush_itimer_signals(&tsk->signal->shared_pending);
472 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
473}
474#endif
475
476void ignore_signals(struct task_struct *t)
477{
478 int i;
479
480 for (i = 0; i < _NSIG; ++i)
481 t->sighand->action[i].sa.sa_handler = SIG_IGN;
482
483 flush_signals(t);
484}
485
486/*
487 * Flush all handlers for a task.
488 */
489
490void
491flush_signal_handlers(struct task_struct *t, int force_default)
492{
493 int i;
494 struct k_sigaction *ka = &t->sighand->action[0];
495 for (i = _NSIG ; i != 0 ; i--) {
496 if (force_default || ka->sa.sa_handler != SIG_IGN)
497 ka->sa.sa_handler = SIG_DFL;
498 ka->sa.sa_flags = 0;
499#ifdef __ARCH_HAS_SA_RESTORER
500 ka->sa.sa_restorer = NULL;
501#endif
502 sigemptyset(&ka->sa.sa_mask);
503 ka++;
504 }
505}
506
507int unhandled_signal(struct task_struct *tsk, int sig)
508{
509 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
510 if (is_global_init(tsk))
511 return 1;
512 if (handler != SIG_IGN && handler != SIG_DFL)
513 return 0;
514 /* if ptraced, let the tracer determine */
515 return !tsk->ptrace;
516}
517
518static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
519 bool *resched_timer)
520{
521 struct sigqueue *q, *first = NULL;
522
523 /*
524 * Collect the siginfo appropriate to this signal. Check if
525 * there is another siginfo for the same signal.
526 */
527 list_for_each_entry(q, &list->list, list) {
528 if (q->info.si_signo == sig) {
529 if (first)
530 goto still_pending;
531 first = q;
532 }
533 }
534
535 sigdelset(&list->signal, sig);
536
537 if (first) {
538still_pending:
539 list_del_init(&first->list);
540 copy_siginfo(info, &first->info);
541
542 *resched_timer =
543 (first->flags & SIGQUEUE_PREALLOC) &&
544 (info->si_code == SI_TIMER) &&
545 (info->si_sys_private);
546
547 __sigqueue_free(first);
548 } else {
549 /*
550 * Ok, it wasn't in the queue. This must be
551 * a fast-pathed signal or we must have been
552 * out of queue space. So zero out the info.
553 */
554 clear_siginfo(info);
555 info->si_signo = sig;
556 info->si_errno = 0;
557 info->si_code = SI_USER;
558 info->si_pid = 0;
559 info->si_uid = 0;
560 }
561}
562
563static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
564 siginfo_t *info, bool *resched_timer)
565{
566 int sig = next_signal(pending, mask);
567
568 if (sig)
569 collect_signal(sig, pending, info, resched_timer);
570 return sig;
571}
572
573/*
574 * Dequeue a signal and return the element to the caller, which is
575 * expected to free it.
576 *
577 * All callers have to hold the siglock.
578 */
579int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
580{
581 bool resched_timer = false;
582 int signr;
583
584 /* We only dequeue private signals from ourselves, we don't let
585 * signalfd steal them
586 */
587 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
588 if (!signr) {
589 signr = __dequeue_signal(&tsk->signal->shared_pending,
590 mask, info, &resched_timer);
591#ifdef CONFIG_POSIX_TIMERS
592 /*
593 * itimer signal ?
594 *
595 * itimers are process shared and we restart periodic
596 * itimers in the signal delivery path to prevent DoS
597 * attacks in the high resolution timer case. This is
598 * compliant with the old way of self-restarting
599 * itimers, as the SIGALRM is a legacy signal and only
600 * queued once. Changing the restart behaviour to
601 * restart the timer in the signal dequeue path is
602 * reducing the timer noise on heavy loaded !highres
603 * systems too.
604 */
605 if (unlikely(signr == SIGALRM)) {
606 struct hrtimer *tmr = &tsk->signal->real_timer;
607
608 if (!hrtimer_is_queued(tmr) &&
609 tsk->signal->it_real_incr != 0) {
610 hrtimer_forward(tmr, tmr->base->get_time(),
611 tsk->signal->it_real_incr);
612 hrtimer_restart(tmr);
613 }
614 }
615#endif
616 }
617
618 recalc_sigpending();
619 if (!signr)
620 return 0;
621
622 if (unlikely(sig_kernel_stop(signr))) {
623 /*
624 * Set a marker that we have dequeued a stop signal. Our
625 * caller might release the siglock and then the pending
626 * stop signal it is about to process is no longer in the
627 * pending bitmasks, but must still be cleared by a SIGCONT
628 * (and overruled by a SIGKILL). So those cases clear this
629 * shared flag after we've set it. Note that this flag may
630 * remain set after the signal we return is ignored or
631 * handled. That doesn't matter because its only purpose
632 * is to alert stop-signal processing code when another
633 * processor has come along and cleared the flag.
634 */
635 current->jobctl |= JOBCTL_STOP_DEQUEUED;
636 }
637#ifdef CONFIG_POSIX_TIMERS
638 if (resched_timer) {
639 /*
640 * Release the siglock to ensure proper locking order
641 * of timer locks outside of siglocks. Note, we leave
642 * irqs disabled here, since the posix-timers code is
643 * about to disable them again anyway.
644 */
645 spin_unlock(&tsk->sighand->siglock);
646 posixtimer_rearm(info);
647 spin_lock(&tsk->sighand->siglock);
648
649 /* Don't expose the si_sys_private value to userspace */
650 info->si_sys_private = 0;
651 }
652#endif
653 return signr;
654}
655
656/*
657 * Tell a process that it has a new active signal..
658 *
659 * NOTE! we rely on the previous spin_lock to
660 * lock interrupts for us! We can only be called with
661 * "siglock" held, and the local interrupt must
662 * have been disabled when that got acquired!
663 *
664 * No need to set need_resched since signal event passing
665 * goes through ->blocked
666 */
667void signal_wake_up_state(struct task_struct *t, unsigned int state)
668{
669 set_tsk_thread_flag(t, TIF_SIGPENDING);
670 /*
671 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
672 * case. We don't check t->state here because there is a race with it
673 * executing another processor and just now entering stopped state.
674 * By using wake_up_state, we ensure the process will wake up and
675 * handle its death signal.
676 */
677 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
678 kick_process(t);
679}
680
681/*
682 * Remove signals in mask from the pending set and queue.
683 * Returns 1 if any signals were found.
684 *
685 * All callers must be holding the siglock.
686 */
687static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
688{
689 struct sigqueue *q, *n;
690 sigset_t m;
691
692 sigandsets(&m, mask, &s->signal);
693 if (sigisemptyset(&m))
694 return 0;
695
696 sigandnsets(&s->signal, &s->signal, mask);
697 list_for_each_entry_safe(q, n, &s->list, list) {
698 if (sigismember(mask, q->info.si_signo)) {
699 list_del_init(&q->list);
700 __sigqueue_free(q);
701 }
702 }
703 return 1;
704}
705
706static inline int is_si_special(const struct siginfo *info)
707{
708 return info <= SEND_SIG_FORCED;
709}
710
711static inline bool si_fromuser(const struct siginfo *info)
712{
713 return info == SEND_SIG_NOINFO ||
714 (!is_si_special(info) && SI_FROMUSER(info));
715}
716
717/*
718 * called with RCU read lock from check_kill_permission()
719 */
720static int kill_ok_by_cred(struct task_struct *t)
721{
722 const struct cred *cred = current_cred();
723 const struct cred *tcred = __task_cred(t);
724
725 if (uid_eq(cred->euid, tcred->suid) ||
726 uid_eq(cred->euid, tcred->uid) ||
727 uid_eq(cred->uid, tcred->suid) ||
728 uid_eq(cred->uid, tcred->uid))
729 return 1;
730
731 if (ns_capable(tcred->user_ns, CAP_KILL))
732 return 1;
733
734 return 0;
735}
736
737/*
738 * Bad permissions for sending the signal
739 * - the caller must hold the RCU read lock
740 */
741static int check_kill_permission(int sig, struct siginfo *info,
742 struct task_struct *t)
743{
744 struct pid *sid;
745 int error;
746
747 if (!valid_signal(sig))
748 return -EINVAL;
749
750 if (!si_fromuser(info))
751 return 0;
752
753 error = audit_signal_info(sig, t); /* Let audit system see the signal */
754 if (error)
755 return error;
756
757 if (!same_thread_group(current, t) &&
758 !kill_ok_by_cred(t)) {
759 switch (sig) {
760 case SIGCONT:
761 sid = task_session(t);
762 /*
763 * We don't return the error if sid == NULL. The
764 * task was unhashed, the caller must notice this.
765 */
766 if (!sid || sid == task_session(current))
767 break;
768 default:
769 return -EPERM;
770 }
771 }
772
773 return security_task_kill(t, info, sig, NULL);
774}
775
776/**
777 * ptrace_trap_notify - schedule trap to notify ptracer
778 * @t: tracee wanting to notify tracer
779 *
780 * This function schedules sticky ptrace trap which is cleared on the next
781 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
782 * ptracer.
783 *
784 * If @t is running, STOP trap will be taken. If trapped for STOP and
785 * ptracer is listening for events, tracee is woken up so that it can
786 * re-trap for the new event. If trapped otherwise, STOP trap will be
787 * eventually taken without returning to userland after the existing traps
788 * are finished by PTRACE_CONT.
789 *
790 * CONTEXT:
791 * Must be called with @task->sighand->siglock held.
792 */
793static void ptrace_trap_notify(struct task_struct *t)
794{
795 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
796 assert_spin_locked(&t->sighand->siglock);
797
798 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
799 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
800}
801
802/*
803 * Handle magic process-wide effects of stop/continue signals. Unlike
804 * the signal actions, these happen immediately at signal-generation
805 * time regardless of blocking, ignoring, or handling. This does the
806 * actual continuing for SIGCONT, but not the actual stopping for stop
807 * signals. The process stop is done as a signal action for SIG_DFL.
808 *
809 * Returns true if the signal should be actually delivered, otherwise
810 * it should be dropped.
811 */
812static bool prepare_signal(int sig, struct task_struct *p, bool force)
813{
814 struct signal_struct *signal = p->signal;
815 struct task_struct *t;
816 sigset_t flush;
817
818 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
819 if (!(signal->flags & SIGNAL_GROUP_EXIT))
820 return sig == SIGKILL;
821 /*
822 * The process is in the middle of dying, nothing to do.
823 */
824 } else if (sig_kernel_stop(sig)) {
825 /*
826 * This is a stop signal. Remove SIGCONT from all queues.
827 */
828 siginitset(&flush, sigmask(SIGCONT));
829 flush_sigqueue_mask(&flush, &signal->shared_pending);
830 for_each_thread(p, t)
831 flush_sigqueue_mask(&flush, &t->pending);
832 } else if (sig == SIGCONT) {
833 unsigned int why;
834 /*
835 * Remove all stop signals from all queues, wake all threads.
836 */
837 siginitset(&flush, SIG_KERNEL_STOP_MASK);
838 flush_sigqueue_mask(&flush, &signal->shared_pending);
839 for_each_thread(p, t) {
840 flush_sigqueue_mask(&flush, &t->pending);
841 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
842 if (likely(!(t->ptrace & PT_SEIZED)))
843 wake_up_state(t, __TASK_STOPPED);
844 else
845 ptrace_trap_notify(t);
846 }
847
848 /*
849 * Notify the parent with CLD_CONTINUED if we were stopped.
850 *
851 * If we were in the middle of a group stop, we pretend it
852 * was already finished, and then continued. Since SIGCHLD
853 * doesn't queue we report only CLD_STOPPED, as if the next
854 * CLD_CONTINUED was dropped.
855 */
856 why = 0;
857 if (signal->flags & SIGNAL_STOP_STOPPED)
858 why |= SIGNAL_CLD_CONTINUED;
859 else if (signal->group_stop_count)
860 why |= SIGNAL_CLD_STOPPED;
861
862 if (why) {
863 /*
864 * The first thread which returns from do_signal_stop()
865 * will take ->siglock, notice SIGNAL_CLD_MASK, and
866 * notify its parent. See get_signal_to_deliver().
867 */
868 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
869 signal->group_stop_count = 0;
870 signal->group_exit_code = 0;
871 }
872 }
873
874 return !sig_ignored(p, sig, force);
875}
876
877/*
878 * Test if P wants to take SIG. After we've checked all threads with this,
879 * it's equivalent to finding no threads not blocking SIG. Any threads not
880 * blocking SIG were ruled out because they are not running and already
881 * have pending signals. Such threads will dequeue from the shared queue
882 * as soon as they're available, so putting the signal on the shared queue
883 * will be equivalent to sending it to one such thread.
884 */
885static inline int wants_signal(int sig, struct task_struct *p)
886{
887 if (sigismember(&p->blocked, sig))
888 return 0;
889 if (p->flags & PF_EXITING)
890 return 0;
891 if (sig == SIGKILL)
892 return 1;
893 if (task_is_stopped_or_traced(p))
894 return 0;
895 return task_curr(p) || !signal_pending(p);
896}
897
898static void complete_signal(int sig, struct task_struct *p, int group)
899{
900 struct signal_struct *signal = p->signal;
901 struct task_struct *t;
902
903 /*
904 * Now find a thread we can wake up to take the signal off the queue.
905 *
906 * If the main thread wants the signal, it gets first crack.
907 * Probably the least surprising to the average bear.
908 */
909 if (wants_signal(sig, p))
910 t = p;
911 else if (!group || thread_group_empty(p))
912 /*
913 * There is just one thread and it does not need to be woken.
914 * It will dequeue unblocked signals before it runs again.
915 */
916 return;
917 else {
918 /*
919 * Otherwise try to find a suitable thread.
920 */
921 t = signal->curr_target;
922 while (!wants_signal(sig, t)) {
923 t = next_thread(t);
924 if (t == signal->curr_target)
925 /*
926 * No thread needs to be woken.
927 * Any eligible threads will see
928 * the signal in the queue soon.
929 */
930 return;
931 }
932 signal->curr_target = t;
933 }
934
935 /*
936 * Found a killable thread. If the signal will be fatal,
937 * then start taking the whole group down immediately.
938 */
939 if (sig_fatal(p, sig) &&
940 !(signal->flags & SIGNAL_GROUP_EXIT) &&
941 !sigismember(&t->real_blocked, sig) &&
942 (sig == SIGKILL || !p->ptrace)) {
943 /*
944 * This signal will be fatal to the whole group.
945 */
946 if (!sig_kernel_coredump(sig)) {
947 /*
948 * Start a group exit and wake everybody up.
949 * This way we don't have other threads
950 * running and doing things after a slower
951 * thread has the fatal signal pending.
952 */
953 signal->flags = SIGNAL_GROUP_EXIT;
954 signal->group_exit_code = sig;
955 signal->group_stop_count = 0;
956 t = p;
957 do {
958 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
959 sigaddset(&t->pending.signal, SIGKILL);
960 signal_wake_up(t, 1);
961 } while_each_thread(p, t);
962 return;
963 }
964 }
965
966 /*
967 * The signal is already in the shared-pending queue.
968 * Tell the chosen thread to wake up and dequeue it.
969 */
970 signal_wake_up(t, sig == SIGKILL);
971 return;
972}
973
974static inline int legacy_queue(struct sigpending *signals, int sig)
975{
976 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
977}
978
979#ifdef CONFIG_USER_NS
980static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
981{
982 if (current_user_ns() == task_cred_xxx(t, user_ns))
983 return;
984
985 if (SI_FROMKERNEL(info))
986 return;
987
988 rcu_read_lock();
989 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
990 make_kuid(current_user_ns(), info->si_uid));
991 rcu_read_unlock();
992}
993#else
994static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
995{
996 return;
997}
998#endif
999
1000static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1001 int group, int from_ancestor_ns)
1002{
1003 struct sigpending *pending;
1004 struct sigqueue *q;
1005 int override_rlimit;
1006 int ret = 0, result;
1007
1008 assert_spin_locked(&t->sighand->siglock);
1009
1010 result = TRACE_SIGNAL_IGNORED;
1011 if (!prepare_signal(sig, t,
1012 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1013 goto ret;
1014
1015 pending = group ? &t->signal->shared_pending : &t->pending;
1016 /*
1017 * Short-circuit ignored signals and support queuing
1018 * exactly one non-rt signal, so that we can get more
1019 * detailed information about the cause of the signal.
1020 */
1021 result = TRACE_SIGNAL_ALREADY_PENDING;
1022 if (legacy_queue(pending, sig))
1023 goto ret;
1024
1025 result = TRACE_SIGNAL_DELIVERED;
1026 /*
1027 * fast-pathed signals for kernel-internal things like SIGSTOP
1028 * or SIGKILL.
1029 */
1030 if (info == SEND_SIG_FORCED)
1031 goto out_set;
1032
1033 /*
1034 * Real-time signals must be queued if sent by sigqueue, or
1035 * some other real-time mechanism. It is implementation
1036 * defined whether kill() does so. We attempt to do so, on
1037 * the principle of least surprise, but since kill is not
1038 * allowed to fail with EAGAIN when low on memory we just
1039 * make sure at least one signal gets delivered and don't
1040 * pass on the info struct.
1041 */
1042 if (sig < SIGRTMIN)
1043 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1044 else
1045 override_rlimit = 0;
1046
1047 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1048 if (q) {
1049 list_add_tail(&q->list, &pending->list);
1050 switch ((unsigned long) info) {
1051 case (unsigned long) SEND_SIG_NOINFO:
1052 clear_siginfo(&q->info);
1053 q->info.si_signo = sig;
1054 q->info.si_errno = 0;
1055 q->info.si_code = SI_USER;
1056 q->info.si_pid = task_tgid_nr_ns(current,
1057 task_active_pid_ns(t));
1058 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1059 break;
1060 case (unsigned long) SEND_SIG_PRIV:
1061 clear_siginfo(&q->info);
1062 q->info.si_signo = sig;
1063 q->info.si_errno = 0;
1064 q->info.si_code = SI_KERNEL;
1065 q->info.si_pid = 0;
1066 q->info.si_uid = 0;
1067 break;
1068 default:
1069 copy_siginfo(&q->info, info);
1070 if (from_ancestor_ns)
1071 q->info.si_pid = 0;
1072 break;
1073 }
1074
1075 userns_fixup_signal_uid(&q->info, t);
1076
1077 } else if (!is_si_special(info)) {
1078 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1079 /*
1080 * Queue overflow, abort. We may abort if the
1081 * signal was rt and sent by user using something
1082 * other than kill().
1083 */
1084 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1085 ret = -EAGAIN;
1086 goto ret;
1087 } else {
1088 /*
1089 * This is a silent loss of information. We still
1090 * send the signal, but the *info bits are lost.
1091 */
1092 result = TRACE_SIGNAL_LOSE_INFO;
1093 }
1094 }
1095
1096out_set:
1097 signalfd_notify(t, sig);
1098 sigaddset(&pending->signal, sig);
1099 complete_signal(sig, t, group);
1100ret:
1101 trace_signal_generate(sig, info, t, group, result);
1102 return ret;
1103}
1104
1105static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1106 int group)
1107{
1108 int from_ancestor_ns = 0;
1109
1110#ifdef CONFIG_PID_NS
1111 from_ancestor_ns = si_fromuser(info) &&
1112 !task_pid_nr_ns(current, task_active_pid_ns(t));
1113#endif
1114
1115 return __send_signal(sig, info, t, group, from_ancestor_ns);
1116}
1117
1118static void print_fatal_signal(int signr)
1119{
1120 struct pt_regs *regs = signal_pt_regs();
1121 pr_info("potentially unexpected fatal signal %d.\n", signr);
1122
1123#if defined(__i386__) && !defined(__arch_um__)
1124 pr_info("code at %08lx: ", regs->ip);
1125 {
1126 int i;
1127 for (i = 0; i < 16; i++) {
1128 unsigned char insn;
1129
1130 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1131 break;
1132 pr_cont("%02x ", insn);
1133 }
1134 }
1135 pr_cont("\n");
1136#endif
1137 preempt_disable();
1138 show_regs(regs);
1139 preempt_enable();
1140}
1141
1142static int __init setup_print_fatal_signals(char *str)
1143{
1144 get_option (&str, &print_fatal_signals);
1145
1146 return 1;
1147}
1148
1149__setup("print-fatal-signals=", setup_print_fatal_signals);
1150
1151int
1152__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1153{
1154 return send_signal(sig, info, p, 1);
1155}
1156
1157static int
1158specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1159{
1160 return send_signal(sig, info, t, 0);
1161}
1162
1163int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1164 bool group)
1165{
1166 unsigned long flags;
1167 int ret = -ESRCH;
1168
1169 if (lock_task_sighand(p, &flags)) {
1170 ret = send_signal(sig, info, p, group);
1171 unlock_task_sighand(p, &flags);
1172 }
1173
1174 return ret;
1175}
1176
1177/*
1178 * Force a signal that the process can't ignore: if necessary
1179 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1180 *
1181 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1182 * since we do not want to have a signal handler that was blocked
1183 * be invoked when user space had explicitly blocked it.
1184 *
1185 * We don't want to have recursive SIGSEGV's etc, for example,
1186 * that is why we also clear SIGNAL_UNKILLABLE.
1187 */
1188int
1189force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1190{
1191 unsigned long int flags;
1192 int ret, blocked, ignored;
1193 struct k_sigaction *action;
1194
1195 spin_lock_irqsave(&t->sighand->siglock, flags);
1196 action = &t->sighand->action[sig-1];
1197 ignored = action->sa.sa_handler == SIG_IGN;
1198 blocked = sigismember(&t->blocked, sig);
1199 if (blocked || ignored) {
1200 action->sa.sa_handler = SIG_DFL;
1201 if (blocked) {
1202 sigdelset(&t->blocked, sig);
1203 recalc_sigpending_and_wake(t);
1204 }
1205 }
1206 /*
1207 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1208 * debugging to leave init killable.
1209 */
1210 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1211 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1212 ret = specific_send_sig_info(sig, info, t);
1213 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1214
1215 return ret;
1216}
1217
1218/*
1219 * Nuke all other threads in the group.
1220 */
1221int zap_other_threads(struct task_struct *p)
1222{
1223 struct task_struct *t = p;
1224 int count = 0;
1225
1226 p->signal->group_stop_count = 0;
1227
1228 while_each_thread(p, t) {
1229 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1230 count++;
1231
1232 /* Don't bother with already dead threads */
1233 if (t->exit_state)
1234 continue;
1235 sigaddset(&t->pending.signal, SIGKILL);
1236 signal_wake_up(t, 1);
1237 }
1238
1239 return count;
1240}
1241
1242struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1243 unsigned long *flags)
1244{
1245 struct sighand_struct *sighand;
1246
1247 for (;;) {
1248 /*
1249 * Disable interrupts early to avoid deadlocks.
1250 * See rcu_read_unlock() comment header for details.
1251 */
1252 local_irq_save(*flags);
1253 rcu_read_lock();
1254 sighand = rcu_dereference(tsk->sighand);
1255 if (unlikely(sighand == NULL)) {
1256 rcu_read_unlock();
1257 local_irq_restore(*flags);
1258 break;
1259 }
1260 /*
1261 * This sighand can be already freed and even reused, but
1262 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1263 * initializes ->siglock: this slab can't go away, it has
1264 * the same object type, ->siglock can't be reinitialized.
1265 *
1266 * We need to ensure that tsk->sighand is still the same
1267 * after we take the lock, we can race with de_thread() or
1268 * __exit_signal(). In the latter case the next iteration
1269 * must see ->sighand == NULL.
1270 */
1271 spin_lock(&sighand->siglock);
1272 if (likely(sighand == tsk->sighand)) {
1273 rcu_read_unlock();
1274 break;
1275 }
1276 spin_unlock(&sighand->siglock);
1277 rcu_read_unlock();
1278 local_irq_restore(*flags);
1279 }
1280
1281 return sighand;
1282}
1283
1284/*
1285 * send signal info to all the members of a group
1286 */
1287int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1288{
1289 int ret;
1290
1291 rcu_read_lock();
1292 ret = check_kill_permission(sig, info, p);
1293 rcu_read_unlock();
1294
1295 if (!ret && sig)
1296 ret = do_send_sig_info(sig, info, p, true);
1297
1298 return ret;
1299}
1300
1301/*
1302 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1303 * control characters do (^C, ^Z etc)
1304 * - the caller must hold at least a readlock on tasklist_lock
1305 */
1306int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1307{
1308 struct task_struct *p = NULL;
1309 int retval, success;
1310
1311 success = 0;
1312 retval = -ESRCH;
1313 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1314 int err = group_send_sig_info(sig, info, p);
1315 success |= !err;
1316 retval = err;
1317 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1318 return success ? 0 : retval;
1319}
1320
1321int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1322{
1323 int error = -ESRCH;
1324 struct task_struct *p;
1325
1326 for (;;) {
1327 rcu_read_lock();
1328 p = pid_task(pid, PIDTYPE_PID);
1329 if (p)
1330 error = group_send_sig_info(sig, info, p);
1331 rcu_read_unlock();
1332 if (likely(!p || error != -ESRCH))
1333 return error;
1334
1335 /*
1336 * The task was unhashed in between, try again. If it
1337 * is dead, pid_task() will return NULL, if we race with
1338 * de_thread() it will find the new leader.
1339 */
1340 }
1341}
1342
1343static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1344{
1345 int error;
1346 rcu_read_lock();
1347 error = kill_pid_info(sig, info, find_vpid(pid));
1348 rcu_read_unlock();
1349 return error;
1350}
1351
1352static int kill_as_cred_perm(const struct cred *cred,
1353 struct task_struct *target)
1354{
1355 const struct cred *pcred = __task_cred(target);
1356 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1357 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1358 return 0;
1359 return 1;
1360}
1361
1362/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1363int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1364 const struct cred *cred)
1365{
1366 int ret = -EINVAL;
1367 struct task_struct *p;
1368 unsigned long flags;
1369
1370 if (!valid_signal(sig))
1371 return ret;
1372
1373 rcu_read_lock();
1374 p = pid_task(pid, PIDTYPE_PID);
1375 if (!p) {
1376 ret = -ESRCH;
1377 goto out_unlock;
1378 }
1379 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1380 ret = -EPERM;
1381 goto out_unlock;
1382 }
1383 ret = security_task_kill(p, info, sig, cred);
1384 if (ret)
1385 goto out_unlock;
1386
1387 if (sig) {
1388 if (lock_task_sighand(p, &flags)) {
1389 ret = __send_signal(sig, info, p, 1, 0);
1390 unlock_task_sighand(p, &flags);
1391 } else
1392 ret = -ESRCH;
1393 }
1394out_unlock:
1395 rcu_read_unlock();
1396 return ret;
1397}
1398EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1399
1400/*
1401 * kill_something_info() interprets pid in interesting ways just like kill(2).
1402 *
1403 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1404 * is probably wrong. Should make it like BSD or SYSV.
1405 */
1406
1407static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1408{
1409 int ret;
1410
1411 if (pid > 0) {
1412 rcu_read_lock();
1413 ret = kill_pid_info(sig, info, find_vpid(pid));
1414 rcu_read_unlock();
1415 return ret;
1416 }
1417
1418 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1419 if (pid == INT_MIN)
1420 return -ESRCH;
1421
1422 read_lock(&tasklist_lock);
1423 if (pid != -1) {
1424 ret = __kill_pgrp_info(sig, info,
1425 pid ? find_vpid(-pid) : task_pgrp(current));
1426 } else {
1427 int retval = 0, count = 0;
1428 struct task_struct * p;
1429
1430 for_each_process(p) {
1431 if (task_pid_vnr(p) > 1 &&
1432 !same_thread_group(p, current)) {
1433 int err = group_send_sig_info(sig, info, p);
1434 ++count;
1435 if (err != -EPERM)
1436 retval = err;
1437 }
1438 }
1439 ret = count ? retval : -ESRCH;
1440 }
1441 read_unlock(&tasklist_lock);
1442
1443 return ret;
1444}
1445
1446/*
1447 * These are for backward compatibility with the rest of the kernel source.
1448 */
1449
1450int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1451{
1452 /*
1453 * Make sure legacy kernel users don't send in bad values
1454 * (normal paths check this in check_kill_permission).
1455 */
1456 if (!valid_signal(sig))
1457 return -EINVAL;
1458
1459 return do_send_sig_info(sig, info, p, false);
1460}
1461
1462#define __si_special(priv) \
1463 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1464
1465int
1466send_sig(int sig, struct task_struct *p, int priv)
1467{
1468 return send_sig_info(sig, __si_special(priv), p);
1469}
1470
1471void
1472force_sig(int sig, struct task_struct *p)
1473{
1474 force_sig_info(sig, SEND_SIG_PRIV, p);
1475}
1476
1477/*
1478 * When things go south during signal handling, we
1479 * will force a SIGSEGV. And if the signal that caused
1480 * the problem was already a SIGSEGV, we'll want to
1481 * make sure we don't even try to deliver the signal..
1482 */
1483int
1484force_sigsegv(int sig, struct task_struct *p)
1485{
1486 if (sig == SIGSEGV) {
1487 unsigned long flags;
1488 spin_lock_irqsave(&p->sighand->siglock, flags);
1489 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1490 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1491 }
1492 force_sig(SIGSEGV, p);
1493 return 0;
1494}
1495
1496int force_sig_fault(int sig, int code, void __user *addr
1497 ___ARCH_SI_TRAPNO(int trapno)
1498 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1499 , struct task_struct *t)
1500{
1501 struct siginfo info;
1502
1503 clear_siginfo(&info);
1504 info.si_signo = sig;
1505 info.si_errno = 0;
1506 info.si_code = code;
1507 info.si_addr = addr;
1508#ifdef __ARCH_SI_TRAPNO
1509 info.si_trapno = trapno;
1510#endif
1511#ifdef __ia64__
1512 info.si_imm = imm;
1513 info.si_flags = flags;
1514 info.si_isr = isr;
1515#endif
1516 return force_sig_info(info.si_signo, &info, t);
1517}
1518
1519int send_sig_fault(int sig, int code, void __user *addr
1520 ___ARCH_SI_TRAPNO(int trapno)
1521 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1522 , struct task_struct *t)
1523{
1524 struct siginfo info;
1525
1526 clear_siginfo(&info);
1527 info.si_signo = sig;
1528 info.si_errno = 0;
1529 info.si_code = code;
1530 info.si_addr = addr;
1531#ifdef __ARCH_SI_TRAPNO
1532 info.si_trapno = trapno;
1533#endif
1534#ifdef __ia64__
1535 info.si_imm = imm;
1536 info.si_flags = flags;
1537 info.si_isr = isr;
1538#endif
1539 return send_sig_info(info.si_signo, &info, t);
1540}
1541
1542#if defined(BUS_MCEERR_AO) && defined(BUS_MCEERR_AR)
1543int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1544{
1545 struct siginfo info;
1546
1547 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1548 clear_siginfo(&info);
1549 info.si_signo = SIGBUS;
1550 info.si_errno = 0;
1551 info.si_code = code;
1552 info.si_addr = addr;
1553 info.si_addr_lsb = lsb;
1554 return force_sig_info(info.si_signo, &info, t);
1555}
1556
1557int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1558{
1559 struct siginfo info;
1560
1561 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1562 clear_siginfo(&info);
1563 info.si_signo = SIGBUS;
1564 info.si_errno = 0;
1565 info.si_code = code;
1566 info.si_addr = addr;
1567 info.si_addr_lsb = lsb;
1568 return send_sig_info(info.si_signo, &info, t);
1569}
1570EXPORT_SYMBOL(send_sig_mceerr);
1571#endif
1572
1573#ifdef SEGV_BNDERR
1574int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1575{
1576 struct siginfo info;
1577
1578 clear_siginfo(&info);
1579 info.si_signo = SIGSEGV;
1580 info.si_errno = 0;
1581 info.si_code = SEGV_BNDERR;
1582 info.si_addr = addr;
1583 info.si_lower = lower;
1584 info.si_upper = upper;
1585 return force_sig_info(info.si_signo, &info, current);
1586}
1587#endif
1588
1589#ifdef SEGV_PKUERR
1590int force_sig_pkuerr(void __user *addr, u32 pkey)
1591{
1592 struct siginfo info;
1593
1594 clear_siginfo(&info);
1595 info.si_signo = SIGSEGV;
1596 info.si_errno = 0;
1597 info.si_code = SEGV_PKUERR;
1598 info.si_addr = addr;
1599 info.si_pkey = pkey;
1600 return force_sig_info(info.si_signo, &info, current);
1601}
1602#endif
1603
1604/* For the crazy architectures that include trap information in
1605 * the errno field, instead of an actual errno value.
1606 */
1607int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1608{
1609 struct siginfo info;
1610
1611 clear_siginfo(&info);
1612 info.si_signo = SIGTRAP;
1613 info.si_errno = errno;
1614 info.si_code = TRAP_HWBKPT;
1615 info.si_addr = addr;
1616 return force_sig_info(info.si_signo, &info, current);
1617}
1618
1619int kill_pgrp(struct pid *pid, int sig, int priv)
1620{
1621 int ret;
1622
1623 read_lock(&tasklist_lock);
1624 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1625 read_unlock(&tasklist_lock);
1626
1627 return ret;
1628}
1629EXPORT_SYMBOL(kill_pgrp);
1630
1631int kill_pid(struct pid *pid, int sig, int priv)
1632{
1633 return kill_pid_info(sig, __si_special(priv), pid);
1634}
1635EXPORT_SYMBOL(kill_pid);
1636
1637/*
1638 * These functions support sending signals using preallocated sigqueue
1639 * structures. This is needed "because realtime applications cannot
1640 * afford to lose notifications of asynchronous events, like timer
1641 * expirations or I/O completions". In the case of POSIX Timers
1642 * we allocate the sigqueue structure from the timer_create. If this
1643 * allocation fails we are able to report the failure to the application
1644 * with an EAGAIN error.
1645 */
1646struct sigqueue *sigqueue_alloc(void)
1647{
1648 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1649
1650 if (q)
1651 q->flags |= SIGQUEUE_PREALLOC;
1652
1653 return q;
1654}
1655
1656void sigqueue_free(struct sigqueue *q)
1657{
1658 unsigned long flags;
1659 spinlock_t *lock = ¤t->sighand->siglock;
1660
1661 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1662 /*
1663 * We must hold ->siglock while testing q->list
1664 * to serialize with collect_signal() or with
1665 * __exit_signal()->flush_sigqueue().
1666 */
1667 spin_lock_irqsave(lock, flags);
1668 q->flags &= ~SIGQUEUE_PREALLOC;
1669 /*
1670 * If it is queued it will be freed when dequeued,
1671 * like the "regular" sigqueue.
1672 */
1673 if (!list_empty(&q->list))
1674 q = NULL;
1675 spin_unlock_irqrestore(lock, flags);
1676
1677 if (q)
1678 __sigqueue_free(q);
1679}
1680
1681int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1682{
1683 int sig = q->info.si_signo;
1684 struct sigpending *pending;
1685 unsigned long flags;
1686 int ret, result;
1687
1688 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1689
1690 ret = -1;
1691 if (!likely(lock_task_sighand(t, &flags)))
1692 goto ret;
1693
1694 ret = 1; /* the signal is ignored */
1695 result = TRACE_SIGNAL_IGNORED;
1696 if (!prepare_signal(sig, t, false))
1697 goto out;
1698
1699 ret = 0;
1700 if (unlikely(!list_empty(&q->list))) {
1701 /*
1702 * If an SI_TIMER entry is already queue just increment
1703 * the overrun count.
1704 */
1705 BUG_ON(q->info.si_code != SI_TIMER);
1706 q->info.si_overrun++;
1707 result = TRACE_SIGNAL_ALREADY_PENDING;
1708 goto out;
1709 }
1710 q->info.si_overrun = 0;
1711
1712 signalfd_notify(t, sig);
1713 pending = group ? &t->signal->shared_pending : &t->pending;
1714 list_add_tail(&q->list, &pending->list);
1715 sigaddset(&pending->signal, sig);
1716 complete_signal(sig, t, group);
1717 result = TRACE_SIGNAL_DELIVERED;
1718out:
1719 trace_signal_generate(sig, &q->info, t, group, result);
1720 unlock_task_sighand(t, &flags);
1721ret:
1722 return ret;
1723}
1724
1725/*
1726 * Let a parent know about the death of a child.
1727 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1728 *
1729 * Returns true if our parent ignored us and so we've switched to
1730 * self-reaping.
1731 */
1732bool do_notify_parent(struct task_struct *tsk, int sig)
1733{
1734 struct siginfo info;
1735 unsigned long flags;
1736 struct sighand_struct *psig;
1737 bool autoreap = false;
1738 u64 utime, stime;
1739
1740 BUG_ON(sig == -1);
1741
1742 /* do_notify_parent_cldstop should have been called instead. */
1743 BUG_ON(task_is_stopped_or_traced(tsk));
1744
1745 BUG_ON(!tsk->ptrace &&
1746 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1747
1748 if (sig != SIGCHLD) {
1749 /*
1750 * This is only possible if parent == real_parent.
1751 * Check if it has changed security domain.
1752 */
1753 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1754 sig = SIGCHLD;
1755 }
1756
1757 clear_siginfo(&info);
1758 info.si_signo = sig;
1759 info.si_errno = 0;
1760 /*
1761 * We are under tasklist_lock here so our parent is tied to
1762 * us and cannot change.
1763 *
1764 * task_active_pid_ns will always return the same pid namespace
1765 * until a task passes through release_task.
1766 *
1767 * write_lock() currently calls preempt_disable() which is the
1768 * same as rcu_read_lock(), but according to Oleg, this is not
1769 * correct to rely on this
1770 */
1771 rcu_read_lock();
1772 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1773 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1774 task_uid(tsk));
1775 rcu_read_unlock();
1776
1777 task_cputime(tsk, &utime, &stime);
1778 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1779 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1780
1781 info.si_status = tsk->exit_code & 0x7f;
1782 if (tsk->exit_code & 0x80)
1783 info.si_code = CLD_DUMPED;
1784 else if (tsk->exit_code & 0x7f)
1785 info.si_code = CLD_KILLED;
1786 else {
1787 info.si_code = CLD_EXITED;
1788 info.si_status = tsk->exit_code >> 8;
1789 }
1790
1791 psig = tsk->parent->sighand;
1792 spin_lock_irqsave(&psig->siglock, flags);
1793 if (!tsk->ptrace && sig == SIGCHLD &&
1794 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1795 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1796 /*
1797 * We are exiting and our parent doesn't care. POSIX.1
1798 * defines special semantics for setting SIGCHLD to SIG_IGN
1799 * or setting the SA_NOCLDWAIT flag: we should be reaped
1800 * automatically and not left for our parent's wait4 call.
1801 * Rather than having the parent do it as a magic kind of
1802 * signal handler, we just set this to tell do_exit that we
1803 * can be cleaned up without becoming a zombie. Note that
1804 * we still call __wake_up_parent in this case, because a
1805 * blocked sys_wait4 might now return -ECHILD.
1806 *
1807 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1808 * is implementation-defined: we do (if you don't want
1809 * it, just use SIG_IGN instead).
1810 */
1811 autoreap = true;
1812 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1813 sig = 0;
1814 }
1815 if (valid_signal(sig) && sig)
1816 __group_send_sig_info(sig, &info, tsk->parent);
1817 __wake_up_parent(tsk, tsk->parent);
1818 spin_unlock_irqrestore(&psig->siglock, flags);
1819
1820 return autoreap;
1821}
1822
1823/**
1824 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1825 * @tsk: task reporting the state change
1826 * @for_ptracer: the notification is for ptracer
1827 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1828 *
1829 * Notify @tsk's parent that the stopped/continued state has changed. If
1830 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1831 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1832 *
1833 * CONTEXT:
1834 * Must be called with tasklist_lock at least read locked.
1835 */
1836static void do_notify_parent_cldstop(struct task_struct *tsk,
1837 bool for_ptracer, int why)
1838{
1839 struct siginfo info;
1840 unsigned long flags;
1841 struct task_struct *parent;
1842 struct sighand_struct *sighand;
1843 u64 utime, stime;
1844
1845 if (for_ptracer) {
1846 parent = tsk->parent;
1847 } else {
1848 tsk = tsk->group_leader;
1849 parent = tsk->real_parent;
1850 }
1851
1852 clear_siginfo(&info);
1853 info.si_signo = SIGCHLD;
1854 info.si_errno = 0;
1855 /*
1856 * see comment in do_notify_parent() about the following 4 lines
1857 */
1858 rcu_read_lock();
1859 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1860 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1861 rcu_read_unlock();
1862
1863 task_cputime(tsk, &utime, &stime);
1864 info.si_utime = nsec_to_clock_t(utime);
1865 info.si_stime = nsec_to_clock_t(stime);
1866
1867 info.si_code = why;
1868 switch (why) {
1869 case CLD_CONTINUED:
1870 info.si_status = SIGCONT;
1871 break;
1872 case CLD_STOPPED:
1873 info.si_status = tsk->signal->group_exit_code & 0x7f;
1874 break;
1875 case CLD_TRAPPED:
1876 info.si_status = tsk->exit_code & 0x7f;
1877 break;
1878 default:
1879 BUG();
1880 }
1881
1882 sighand = parent->sighand;
1883 spin_lock_irqsave(&sighand->siglock, flags);
1884 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1885 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1886 __group_send_sig_info(SIGCHLD, &info, parent);
1887 /*
1888 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1889 */
1890 __wake_up_parent(tsk, parent);
1891 spin_unlock_irqrestore(&sighand->siglock, flags);
1892}
1893
1894static inline int may_ptrace_stop(void)
1895{
1896 if (!likely(current->ptrace))
1897 return 0;
1898 /*
1899 * Are we in the middle of do_coredump?
1900 * If so and our tracer is also part of the coredump stopping
1901 * is a deadlock situation, and pointless because our tracer
1902 * is dead so don't allow us to stop.
1903 * If SIGKILL was already sent before the caller unlocked
1904 * ->siglock we must see ->core_state != NULL. Otherwise it
1905 * is safe to enter schedule().
1906 *
1907 * This is almost outdated, a task with the pending SIGKILL can't
1908 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1909 * after SIGKILL was already dequeued.
1910 */
1911 if (unlikely(current->mm->core_state) &&
1912 unlikely(current->mm == current->parent->mm))
1913 return 0;
1914
1915 return 1;
1916}
1917
1918/*
1919 * Return non-zero if there is a SIGKILL that should be waking us up.
1920 * Called with the siglock held.
1921 */
1922static int sigkill_pending(struct task_struct *tsk)
1923{
1924 return sigismember(&tsk->pending.signal, SIGKILL) ||
1925 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1926}
1927
1928/*
1929 * This must be called with current->sighand->siglock held.
1930 *
1931 * This should be the path for all ptrace stops.
1932 * We always set current->last_siginfo while stopped here.
1933 * That makes it a way to test a stopped process for
1934 * being ptrace-stopped vs being job-control-stopped.
1935 *
1936 * If we actually decide not to stop at all because the tracer
1937 * is gone, we keep current->exit_code unless clear_code.
1938 */
1939static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1940 __releases(¤t->sighand->siglock)
1941 __acquires(¤t->sighand->siglock)
1942{
1943 bool gstop_done = false;
1944
1945 if (arch_ptrace_stop_needed(exit_code, info)) {
1946 /*
1947 * The arch code has something special to do before a
1948 * ptrace stop. This is allowed to block, e.g. for faults
1949 * on user stack pages. We can't keep the siglock while
1950 * calling arch_ptrace_stop, so we must release it now.
1951 * To preserve proper semantics, we must do this before
1952 * any signal bookkeeping like checking group_stop_count.
1953 * Meanwhile, a SIGKILL could come in before we retake the
1954 * siglock. That must prevent us from sleeping in TASK_TRACED.
1955 * So after regaining the lock, we must check for SIGKILL.
1956 */
1957 spin_unlock_irq(¤t->sighand->siglock);
1958 arch_ptrace_stop(exit_code, info);
1959 spin_lock_irq(¤t->sighand->siglock);
1960 if (sigkill_pending(current))
1961 return;
1962 }
1963
1964 set_special_state(TASK_TRACED);
1965
1966 /*
1967 * We're committing to trapping. TRACED should be visible before
1968 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1969 * Also, transition to TRACED and updates to ->jobctl should be
1970 * atomic with respect to siglock and should be done after the arch
1971 * hook as siglock is released and regrabbed across it.
1972 *
1973 * TRACER TRACEE
1974 *
1975 * ptrace_attach()
1976 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
1977 * do_wait()
1978 * set_current_state() smp_wmb();
1979 * ptrace_do_wait()
1980 * wait_task_stopped()
1981 * task_stopped_code()
1982 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
1983 */
1984 smp_wmb();
1985
1986 current->last_siginfo = info;
1987 current->exit_code = exit_code;
1988
1989 /*
1990 * If @why is CLD_STOPPED, we're trapping to participate in a group
1991 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1992 * across siglock relocks since INTERRUPT was scheduled, PENDING
1993 * could be clear now. We act as if SIGCONT is received after
1994 * TASK_TRACED is entered - ignore it.
1995 */
1996 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1997 gstop_done = task_participate_group_stop(current);
1998
1999 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2000 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2001 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2002 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2003
2004 /* entering a trap, clear TRAPPING */
2005 task_clear_jobctl_trapping(current);
2006
2007 spin_unlock_irq(¤t->sighand->siglock);
2008 read_lock(&tasklist_lock);
2009 if (may_ptrace_stop()) {
2010 /*
2011 * Notify parents of the stop.
2012 *
2013 * While ptraced, there are two parents - the ptracer and
2014 * the real_parent of the group_leader. The ptracer should
2015 * know about every stop while the real parent is only
2016 * interested in the completion of group stop. The states
2017 * for the two don't interact with each other. Notify
2018 * separately unless they're gonna be duplicates.
2019 */
2020 do_notify_parent_cldstop(current, true, why);
2021 if (gstop_done && ptrace_reparented(current))
2022 do_notify_parent_cldstop(current, false, why);
2023
2024 /*
2025 * Don't want to allow preemption here, because
2026 * sys_ptrace() needs this task to be inactive.
2027 *
2028 * XXX: implement read_unlock_no_resched().
2029 */
2030 preempt_disable();
2031 read_unlock(&tasklist_lock);
2032 preempt_enable_no_resched();
2033 freezable_schedule();
2034 } else {
2035 /*
2036 * By the time we got the lock, our tracer went away.
2037 * Don't drop the lock yet, another tracer may come.
2038 *
2039 * If @gstop_done, the ptracer went away between group stop
2040 * completion and here. During detach, it would have set
2041 * JOBCTL_STOP_PENDING on us and we'll re-enter
2042 * TASK_STOPPED in do_signal_stop() on return, so notifying
2043 * the real parent of the group stop completion is enough.
2044 */
2045 if (gstop_done)
2046 do_notify_parent_cldstop(current, false, why);
2047
2048 /* tasklist protects us from ptrace_freeze_traced() */
2049 __set_current_state(TASK_RUNNING);
2050 if (clear_code)
2051 current->exit_code = 0;
2052 read_unlock(&tasklist_lock);
2053 }
2054
2055 /*
2056 * We are back. Now reacquire the siglock before touching
2057 * last_siginfo, so that we are sure to have synchronized with
2058 * any signal-sending on another CPU that wants to examine it.
2059 */
2060 spin_lock_irq(¤t->sighand->siglock);
2061 current->last_siginfo = NULL;
2062
2063 /* LISTENING can be set only during STOP traps, clear it */
2064 current->jobctl &= ~JOBCTL_LISTENING;
2065
2066 /*
2067 * Queued signals ignored us while we were stopped for tracing.
2068 * So check for any that we should take before resuming user mode.
2069 * This sets TIF_SIGPENDING, but never clears it.
2070 */
2071 recalc_sigpending_tsk(current);
2072}
2073
2074static void ptrace_do_notify(int signr, int exit_code, int why)
2075{
2076 siginfo_t info;
2077
2078 clear_siginfo(&info);
2079 info.si_signo = signr;
2080 info.si_code = exit_code;
2081 info.si_pid = task_pid_vnr(current);
2082 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2083
2084 /* Let the debugger run. */
2085 ptrace_stop(exit_code, why, 1, &info);
2086}
2087
2088void ptrace_notify(int exit_code)
2089{
2090 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2091 if (unlikely(current->task_works))
2092 task_work_run();
2093
2094 spin_lock_irq(¤t->sighand->siglock);
2095 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2096 spin_unlock_irq(¤t->sighand->siglock);
2097}
2098
2099/**
2100 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2101 * @signr: signr causing group stop if initiating
2102 *
2103 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2104 * and participate in it. If already set, participate in the existing
2105 * group stop. If participated in a group stop (and thus slept), %true is
2106 * returned with siglock released.
2107 *
2108 * If ptraced, this function doesn't handle stop itself. Instead,
2109 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2110 * untouched. The caller must ensure that INTERRUPT trap handling takes
2111 * places afterwards.
2112 *
2113 * CONTEXT:
2114 * Must be called with @current->sighand->siglock held, which is released
2115 * on %true return.
2116 *
2117 * RETURNS:
2118 * %false if group stop is already cancelled or ptrace trap is scheduled.
2119 * %true if participated in group stop.
2120 */
2121static bool do_signal_stop(int signr)
2122 __releases(¤t->sighand->siglock)
2123{
2124 struct signal_struct *sig = current->signal;
2125
2126 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2127 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2128 struct task_struct *t;
2129
2130 /* signr will be recorded in task->jobctl for retries */
2131 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2132
2133 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2134 unlikely(signal_group_exit(sig)))
2135 return false;
2136 /*
2137 * There is no group stop already in progress. We must
2138 * initiate one now.
2139 *
2140 * While ptraced, a task may be resumed while group stop is
2141 * still in effect and then receive a stop signal and
2142 * initiate another group stop. This deviates from the
2143 * usual behavior as two consecutive stop signals can't
2144 * cause two group stops when !ptraced. That is why we
2145 * also check !task_is_stopped(t) below.
2146 *
2147 * The condition can be distinguished by testing whether
2148 * SIGNAL_STOP_STOPPED is already set. Don't generate
2149 * group_exit_code in such case.
2150 *
2151 * This is not necessary for SIGNAL_STOP_CONTINUED because
2152 * an intervening stop signal is required to cause two
2153 * continued events regardless of ptrace.
2154 */
2155 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2156 sig->group_exit_code = signr;
2157
2158 sig->group_stop_count = 0;
2159
2160 if (task_set_jobctl_pending(current, signr | gstop))
2161 sig->group_stop_count++;
2162
2163 t = current;
2164 while_each_thread(current, t) {
2165 /*
2166 * Setting state to TASK_STOPPED for a group
2167 * stop is always done with the siglock held,
2168 * so this check has no races.
2169 */
2170 if (!task_is_stopped(t) &&
2171 task_set_jobctl_pending(t, signr | gstop)) {
2172 sig->group_stop_count++;
2173 if (likely(!(t->ptrace & PT_SEIZED)))
2174 signal_wake_up(t, 0);
2175 else
2176 ptrace_trap_notify(t);
2177 }
2178 }
2179 }
2180
2181 if (likely(!current->ptrace)) {
2182 int notify = 0;
2183
2184 /*
2185 * If there are no other threads in the group, or if there
2186 * is a group stop in progress and we are the last to stop,
2187 * report to the parent.
2188 */
2189 if (task_participate_group_stop(current))
2190 notify = CLD_STOPPED;
2191
2192 set_special_state(TASK_STOPPED);
2193 spin_unlock_irq(¤t->sighand->siglock);
2194
2195 /*
2196 * Notify the parent of the group stop completion. Because
2197 * we're not holding either the siglock or tasklist_lock
2198 * here, ptracer may attach inbetween; however, this is for
2199 * group stop and should always be delivered to the real
2200 * parent of the group leader. The new ptracer will get
2201 * its notification when this task transitions into
2202 * TASK_TRACED.
2203 */
2204 if (notify) {
2205 read_lock(&tasklist_lock);
2206 do_notify_parent_cldstop(current, false, notify);
2207 read_unlock(&tasklist_lock);
2208 }
2209
2210 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2211 freezable_schedule();
2212 return true;
2213 } else {
2214 /*
2215 * While ptraced, group stop is handled by STOP trap.
2216 * Schedule it and let the caller deal with it.
2217 */
2218 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2219 return false;
2220 }
2221}
2222
2223/**
2224 * do_jobctl_trap - take care of ptrace jobctl traps
2225 *
2226 * When PT_SEIZED, it's used for both group stop and explicit
2227 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2228 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2229 * the stop signal; otherwise, %SIGTRAP.
2230 *
2231 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2232 * number as exit_code and no siginfo.
2233 *
2234 * CONTEXT:
2235 * Must be called with @current->sighand->siglock held, which may be
2236 * released and re-acquired before returning with intervening sleep.
2237 */
2238static void do_jobctl_trap(void)
2239{
2240 struct signal_struct *signal = current->signal;
2241 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2242
2243 if (current->ptrace & PT_SEIZED) {
2244 if (!signal->group_stop_count &&
2245 !(signal->flags & SIGNAL_STOP_STOPPED))
2246 signr = SIGTRAP;
2247 WARN_ON_ONCE(!signr);
2248 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2249 CLD_STOPPED);
2250 } else {
2251 WARN_ON_ONCE(!signr);
2252 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2253 current->exit_code = 0;
2254 }
2255}
2256
2257static int ptrace_signal(int signr, siginfo_t *info)
2258{
2259 /*
2260 * We do not check sig_kernel_stop(signr) but set this marker
2261 * unconditionally because we do not know whether debugger will
2262 * change signr. This flag has no meaning unless we are going
2263 * to stop after return from ptrace_stop(). In this case it will
2264 * be checked in do_signal_stop(), we should only stop if it was
2265 * not cleared by SIGCONT while we were sleeping. See also the
2266 * comment in dequeue_signal().
2267 */
2268 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2269 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2270
2271 /* We're back. Did the debugger cancel the sig? */
2272 signr = current->exit_code;
2273 if (signr == 0)
2274 return signr;
2275
2276 current->exit_code = 0;
2277
2278 /*
2279 * Update the siginfo structure if the signal has
2280 * changed. If the debugger wanted something
2281 * specific in the siginfo structure then it should
2282 * have updated *info via PTRACE_SETSIGINFO.
2283 */
2284 if (signr != info->si_signo) {
2285 clear_siginfo(info);
2286 info->si_signo = signr;
2287 info->si_errno = 0;
2288 info->si_code = SI_USER;
2289 rcu_read_lock();
2290 info->si_pid = task_pid_vnr(current->parent);
2291 info->si_uid = from_kuid_munged(current_user_ns(),
2292 task_uid(current->parent));
2293 rcu_read_unlock();
2294 }
2295
2296 /* If the (new) signal is now blocked, requeue it. */
2297 if (sigismember(¤t->blocked, signr)) {
2298 specific_send_sig_info(signr, info, current);
2299 signr = 0;
2300 }
2301
2302 return signr;
2303}
2304
2305int get_signal(struct ksignal *ksig)
2306{
2307 struct sighand_struct *sighand = current->sighand;
2308 struct signal_struct *signal = current->signal;
2309 int signr;
2310
2311 if (unlikely(current->task_works))
2312 task_work_run();
2313
2314 if (unlikely(uprobe_deny_signal()))
2315 return 0;
2316
2317 /*
2318 * Do this once, we can't return to user-mode if freezing() == T.
2319 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2320 * thus do not need another check after return.
2321 */
2322 try_to_freeze();
2323
2324relock:
2325 spin_lock_irq(&sighand->siglock);
2326 /*
2327 * Every stopped thread goes here after wakeup. Check to see if
2328 * we should notify the parent, prepare_signal(SIGCONT) encodes
2329 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2330 */
2331 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2332 int why;
2333
2334 if (signal->flags & SIGNAL_CLD_CONTINUED)
2335 why = CLD_CONTINUED;
2336 else
2337 why = CLD_STOPPED;
2338
2339 signal->flags &= ~SIGNAL_CLD_MASK;
2340
2341 spin_unlock_irq(&sighand->siglock);
2342
2343 /*
2344 * Notify the parent that we're continuing. This event is
2345 * always per-process and doesn't make whole lot of sense
2346 * for ptracers, who shouldn't consume the state via
2347 * wait(2) either, but, for backward compatibility, notify
2348 * the ptracer of the group leader too unless it's gonna be
2349 * a duplicate.
2350 */
2351 read_lock(&tasklist_lock);
2352 do_notify_parent_cldstop(current, false, why);
2353
2354 if (ptrace_reparented(current->group_leader))
2355 do_notify_parent_cldstop(current->group_leader,
2356 true, why);
2357 read_unlock(&tasklist_lock);
2358
2359 goto relock;
2360 }
2361
2362 for (;;) {
2363 struct k_sigaction *ka;
2364
2365 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2366 do_signal_stop(0))
2367 goto relock;
2368
2369 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2370 do_jobctl_trap();
2371 spin_unlock_irq(&sighand->siglock);
2372 goto relock;
2373 }
2374
2375 signr = dequeue_signal(current, ¤t->blocked, &ksig->info);
2376
2377 if (!signr)
2378 break; /* will return 0 */
2379
2380 if (unlikely(current->ptrace) && signr != SIGKILL) {
2381 signr = ptrace_signal(signr, &ksig->info);
2382 if (!signr)
2383 continue;
2384 }
2385
2386 ka = &sighand->action[signr-1];
2387
2388 /* Trace actually delivered signals. */
2389 trace_signal_deliver(signr, &ksig->info, ka);
2390
2391 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2392 continue;
2393 if (ka->sa.sa_handler != SIG_DFL) {
2394 /* Run the handler. */
2395 ksig->ka = *ka;
2396
2397 if (ka->sa.sa_flags & SA_ONESHOT)
2398 ka->sa.sa_handler = SIG_DFL;
2399
2400 break; /* will return non-zero "signr" value */
2401 }
2402
2403 /*
2404 * Now we are doing the default action for this signal.
2405 */
2406 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2407 continue;
2408
2409 /*
2410 * Global init gets no signals it doesn't want.
2411 * Container-init gets no signals it doesn't want from same
2412 * container.
2413 *
2414 * Note that if global/container-init sees a sig_kernel_only()
2415 * signal here, the signal must have been generated internally
2416 * or must have come from an ancestor namespace. In either
2417 * case, the signal cannot be dropped.
2418 */
2419 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2420 !sig_kernel_only(signr))
2421 continue;
2422
2423 if (sig_kernel_stop(signr)) {
2424 /*
2425 * The default action is to stop all threads in
2426 * the thread group. The job control signals
2427 * do nothing in an orphaned pgrp, but SIGSTOP
2428 * always works. Note that siglock needs to be
2429 * dropped during the call to is_orphaned_pgrp()
2430 * because of lock ordering with tasklist_lock.
2431 * This allows an intervening SIGCONT to be posted.
2432 * We need to check for that and bail out if necessary.
2433 */
2434 if (signr != SIGSTOP) {
2435 spin_unlock_irq(&sighand->siglock);
2436
2437 /* signals can be posted during this window */
2438
2439 if (is_current_pgrp_orphaned())
2440 goto relock;
2441
2442 spin_lock_irq(&sighand->siglock);
2443 }
2444
2445 if (likely(do_signal_stop(ksig->info.si_signo))) {
2446 /* It released the siglock. */
2447 goto relock;
2448 }
2449
2450 /*
2451 * We didn't actually stop, due to a race
2452 * with SIGCONT or something like that.
2453 */
2454 continue;
2455 }
2456
2457 spin_unlock_irq(&sighand->siglock);
2458
2459 /*
2460 * Anything else is fatal, maybe with a core dump.
2461 */
2462 current->flags |= PF_SIGNALED;
2463
2464 if (sig_kernel_coredump(signr)) {
2465 if (print_fatal_signals)
2466 print_fatal_signal(ksig->info.si_signo);
2467 proc_coredump_connector(current);
2468 /*
2469 * If it was able to dump core, this kills all
2470 * other threads in the group and synchronizes with
2471 * their demise. If we lost the race with another
2472 * thread getting here, it set group_exit_code
2473 * first and our do_group_exit call below will use
2474 * that value and ignore the one we pass it.
2475 */
2476 do_coredump(&ksig->info);
2477 }
2478
2479 /*
2480 * Death signals, no core dump.
2481 */
2482 do_group_exit(ksig->info.si_signo);
2483 /* NOTREACHED */
2484 }
2485 spin_unlock_irq(&sighand->siglock);
2486
2487 ksig->sig = signr;
2488 return ksig->sig > 0;
2489}
2490
2491/**
2492 * signal_delivered -
2493 * @ksig: kernel signal struct
2494 * @stepping: nonzero if debugger single-step or block-step in use
2495 *
2496 * This function should be called when a signal has successfully been
2497 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2498 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2499 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2500 */
2501static void signal_delivered(struct ksignal *ksig, int stepping)
2502{
2503 sigset_t blocked;
2504
2505 /* A signal was successfully delivered, and the
2506 saved sigmask was stored on the signal frame,
2507 and will be restored by sigreturn. So we can
2508 simply clear the restore sigmask flag. */
2509 clear_restore_sigmask();
2510
2511 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2512 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2513 sigaddset(&blocked, ksig->sig);
2514 set_current_blocked(&blocked);
2515 tracehook_signal_handler(stepping);
2516}
2517
2518void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2519{
2520 if (failed)
2521 force_sigsegv(ksig->sig, current);
2522 else
2523 signal_delivered(ksig, stepping);
2524}
2525
2526/*
2527 * It could be that complete_signal() picked us to notify about the
2528 * group-wide signal. Other threads should be notified now to take
2529 * the shared signals in @which since we will not.
2530 */
2531static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2532{
2533 sigset_t retarget;
2534 struct task_struct *t;
2535
2536 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2537 if (sigisemptyset(&retarget))
2538 return;
2539
2540 t = tsk;
2541 while_each_thread(tsk, t) {
2542 if (t->flags & PF_EXITING)
2543 continue;
2544
2545 if (!has_pending_signals(&retarget, &t->blocked))
2546 continue;
2547 /* Remove the signals this thread can handle. */
2548 sigandsets(&retarget, &retarget, &t->blocked);
2549
2550 if (!signal_pending(t))
2551 signal_wake_up(t, 0);
2552
2553 if (sigisemptyset(&retarget))
2554 break;
2555 }
2556}
2557
2558void exit_signals(struct task_struct *tsk)
2559{
2560 int group_stop = 0;
2561 sigset_t unblocked;
2562
2563 /*
2564 * @tsk is about to have PF_EXITING set - lock out users which
2565 * expect stable threadgroup.
2566 */
2567 cgroup_threadgroup_change_begin(tsk);
2568
2569 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2570 tsk->flags |= PF_EXITING;
2571 cgroup_threadgroup_change_end(tsk);
2572 return;
2573 }
2574
2575 spin_lock_irq(&tsk->sighand->siglock);
2576 /*
2577 * From now this task is not visible for group-wide signals,
2578 * see wants_signal(), do_signal_stop().
2579 */
2580 tsk->flags |= PF_EXITING;
2581
2582 cgroup_threadgroup_change_end(tsk);
2583
2584 if (!signal_pending(tsk))
2585 goto out;
2586
2587 unblocked = tsk->blocked;
2588 signotset(&unblocked);
2589 retarget_shared_pending(tsk, &unblocked);
2590
2591 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2592 task_participate_group_stop(tsk))
2593 group_stop = CLD_STOPPED;
2594out:
2595 spin_unlock_irq(&tsk->sighand->siglock);
2596
2597 /*
2598 * If group stop has completed, deliver the notification. This
2599 * should always go to the real parent of the group leader.
2600 */
2601 if (unlikely(group_stop)) {
2602 read_lock(&tasklist_lock);
2603 do_notify_parent_cldstop(tsk, false, group_stop);
2604 read_unlock(&tasklist_lock);
2605 }
2606}
2607
2608EXPORT_SYMBOL(recalc_sigpending);
2609EXPORT_SYMBOL_GPL(dequeue_signal);
2610EXPORT_SYMBOL(flush_signals);
2611EXPORT_SYMBOL(force_sig);
2612EXPORT_SYMBOL(send_sig);
2613EXPORT_SYMBOL(send_sig_info);
2614EXPORT_SYMBOL(sigprocmask);
2615
2616/*
2617 * System call entry points.
2618 */
2619
2620/**
2621 * sys_restart_syscall - restart a system call
2622 */
2623SYSCALL_DEFINE0(restart_syscall)
2624{
2625 struct restart_block *restart = ¤t->restart_block;
2626 return restart->fn(restart);
2627}
2628
2629long do_no_restart_syscall(struct restart_block *param)
2630{
2631 return -EINTR;
2632}
2633
2634static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2635{
2636 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2637 sigset_t newblocked;
2638 /* A set of now blocked but previously unblocked signals. */
2639 sigandnsets(&newblocked, newset, ¤t->blocked);
2640 retarget_shared_pending(tsk, &newblocked);
2641 }
2642 tsk->blocked = *newset;
2643 recalc_sigpending();
2644}
2645
2646/**
2647 * set_current_blocked - change current->blocked mask
2648 * @newset: new mask
2649 *
2650 * It is wrong to change ->blocked directly, this helper should be used
2651 * to ensure the process can't miss a shared signal we are going to block.
2652 */
2653void set_current_blocked(sigset_t *newset)
2654{
2655 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2656 __set_current_blocked(newset);
2657}
2658
2659void __set_current_blocked(const sigset_t *newset)
2660{
2661 struct task_struct *tsk = current;
2662
2663 /*
2664 * In case the signal mask hasn't changed, there is nothing we need
2665 * to do. The current->blocked shouldn't be modified by other task.
2666 */
2667 if (sigequalsets(&tsk->blocked, newset))
2668 return;
2669
2670 spin_lock_irq(&tsk->sighand->siglock);
2671 __set_task_blocked(tsk, newset);
2672 spin_unlock_irq(&tsk->sighand->siglock);
2673}
2674
2675/*
2676 * This is also useful for kernel threads that want to temporarily
2677 * (or permanently) block certain signals.
2678 *
2679 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2680 * interface happily blocks "unblockable" signals like SIGKILL
2681 * and friends.
2682 */
2683int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2684{
2685 struct task_struct *tsk = current;
2686 sigset_t newset;
2687
2688 /* Lockless, only current can change ->blocked, never from irq */
2689 if (oldset)
2690 *oldset = tsk->blocked;
2691
2692 switch (how) {
2693 case SIG_BLOCK:
2694 sigorsets(&newset, &tsk->blocked, set);
2695 break;
2696 case SIG_UNBLOCK:
2697 sigandnsets(&newset, &tsk->blocked, set);
2698 break;
2699 case SIG_SETMASK:
2700 newset = *set;
2701 break;
2702 default:
2703 return -EINVAL;
2704 }
2705
2706 __set_current_blocked(&newset);
2707 return 0;
2708}
2709
2710/**
2711 * sys_rt_sigprocmask - change the list of currently blocked signals
2712 * @how: whether to add, remove, or set signals
2713 * @nset: stores pending signals
2714 * @oset: previous value of signal mask if non-null
2715 * @sigsetsize: size of sigset_t type
2716 */
2717SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2718 sigset_t __user *, oset, size_t, sigsetsize)
2719{
2720 sigset_t old_set, new_set;
2721 int error;
2722
2723 /* XXX: Don't preclude handling different sized sigset_t's. */
2724 if (sigsetsize != sizeof(sigset_t))
2725 return -EINVAL;
2726
2727 old_set = current->blocked;
2728
2729 if (nset) {
2730 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2731 return -EFAULT;
2732 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2733
2734 error = sigprocmask(how, &new_set, NULL);
2735 if (error)
2736 return error;
2737 }
2738
2739 if (oset) {
2740 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2741 return -EFAULT;
2742 }
2743
2744 return 0;
2745}
2746
2747#ifdef CONFIG_COMPAT
2748COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2749 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2750{
2751 sigset_t old_set = current->blocked;
2752
2753 /* XXX: Don't preclude handling different sized sigset_t's. */
2754 if (sigsetsize != sizeof(sigset_t))
2755 return -EINVAL;
2756
2757 if (nset) {
2758 sigset_t new_set;
2759 int error;
2760 if (get_compat_sigset(&new_set, nset))
2761 return -EFAULT;
2762 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2763
2764 error = sigprocmask(how, &new_set, NULL);
2765 if (error)
2766 return error;
2767 }
2768 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2769}
2770#endif
2771
2772static int do_sigpending(sigset_t *set)
2773{
2774 spin_lock_irq(¤t->sighand->siglock);
2775 sigorsets(set, ¤t->pending.signal,
2776 ¤t->signal->shared_pending.signal);
2777 spin_unlock_irq(¤t->sighand->siglock);
2778
2779 /* Outside the lock because only this thread touches it. */
2780 sigandsets(set, ¤t->blocked, set);
2781 return 0;
2782}
2783
2784/**
2785 * sys_rt_sigpending - examine a pending signal that has been raised
2786 * while blocked
2787 * @uset: stores pending signals
2788 * @sigsetsize: size of sigset_t type or larger
2789 */
2790SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2791{
2792 sigset_t set;
2793 int err;
2794
2795 if (sigsetsize > sizeof(*uset))
2796 return -EINVAL;
2797
2798 err = do_sigpending(&set);
2799 if (!err && copy_to_user(uset, &set, sigsetsize))
2800 err = -EFAULT;
2801 return err;
2802}
2803
2804#ifdef CONFIG_COMPAT
2805COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2806 compat_size_t, sigsetsize)
2807{
2808 sigset_t set;
2809 int err;
2810
2811 if (sigsetsize > sizeof(*uset))
2812 return -EINVAL;
2813
2814 err = do_sigpending(&set);
2815 if (!err)
2816 err = put_compat_sigset(uset, &set, sigsetsize);
2817 return err;
2818}
2819#endif
2820
2821enum siginfo_layout siginfo_layout(int sig, int si_code)
2822{
2823 enum siginfo_layout layout = SIL_KILL;
2824 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2825 static const struct {
2826 unsigned char limit, layout;
2827 } filter[] = {
2828 [SIGILL] = { NSIGILL, SIL_FAULT },
2829 [SIGFPE] = { NSIGFPE, SIL_FAULT },
2830 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2831 [SIGBUS] = { NSIGBUS, SIL_FAULT },
2832 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2833#if defined(SIGEMT) && defined(NSIGEMT)
2834 [SIGEMT] = { NSIGEMT, SIL_FAULT },
2835#endif
2836 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2837 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
2838 [SIGSYS] = { NSIGSYS, SIL_SYS },
2839 };
2840 if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit))
2841 layout = filter[sig].layout;
2842 else if (si_code <= NSIGPOLL)
2843 layout = SIL_POLL;
2844 } else {
2845 if (si_code == SI_TIMER)
2846 layout = SIL_TIMER;
2847 else if (si_code == SI_SIGIO)
2848 layout = SIL_POLL;
2849 else if (si_code < 0)
2850 layout = SIL_RT;
2851 /* Tests to support buggy kernel ABIs */
2852#ifdef TRAP_FIXME
2853 if ((sig == SIGTRAP) && (si_code == TRAP_FIXME))
2854 layout = SIL_FAULT;
2855#endif
2856#ifdef FPE_FIXME
2857 if ((sig == SIGFPE) && (si_code == FPE_FIXME))
2858 layout = SIL_FAULT;
2859#endif
2860 }
2861 return layout;
2862}
2863
2864int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2865{
2866 int err;
2867
2868 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2869 return -EFAULT;
2870 if (from->si_code < 0)
2871 return __copy_to_user(to, from, sizeof(siginfo_t))
2872 ? -EFAULT : 0;
2873 /*
2874 * If you change siginfo_t structure, please be sure
2875 * this code is fixed accordingly.
2876 * Please remember to update the signalfd_copyinfo() function
2877 * inside fs/signalfd.c too, in case siginfo_t changes.
2878 * It should never copy any pad contained in the structure
2879 * to avoid security leaks, but must copy the generic
2880 * 3 ints plus the relevant union member.
2881 */
2882 err = __put_user(from->si_signo, &to->si_signo);
2883 err |= __put_user(from->si_errno, &to->si_errno);
2884 err |= __put_user(from->si_code, &to->si_code);
2885 switch (siginfo_layout(from->si_signo, from->si_code)) {
2886 case SIL_KILL:
2887 err |= __put_user(from->si_pid, &to->si_pid);
2888 err |= __put_user(from->si_uid, &to->si_uid);
2889 break;
2890 case SIL_TIMER:
2891 /* Unreached SI_TIMER is negative */
2892 break;
2893 case SIL_POLL:
2894 err |= __put_user(from->si_band, &to->si_band);
2895 err |= __put_user(from->si_fd, &to->si_fd);
2896 break;
2897 case SIL_FAULT:
2898 err |= __put_user(from->si_addr, &to->si_addr);
2899#ifdef __ARCH_SI_TRAPNO
2900 err |= __put_user(from->si_trapno, &to->si_trapno);
2901#endif
2902#ifdef __ia64__
2903 err |= __put_user(from->si_imm, &to->si_imm);
2904 err |= __put_user(from->si_flags, &to->si_flags);
2905 err |= __put_user(from->si_isr, &to->si_isr);
2906#endif
2907 /*
2908 * Other callers might not initialize the si_lsb field,
2909 * so check explicitly for the right codes here.
2910 */
2911#ifdef BUS_MCEERR_AR
2912 if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AR)
2913 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2914#endif
2915#ifdef BUS_MCEERR_AO
2916 if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AO)
2917 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2918#endif
2919#ifdef SEGV_BNDERR
2920 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2921 err |= __put_user(from->si_lower, &to->si_lower);
2922 err |= __put_user(from->si_upper, &to->si_upper);
2923 }
2924#endif
2925#ifdef SEGV_PKUERR
2926 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2927 err |= __put_user(from->si_pkey, &to->si_pkey);
2928#endif
2929 break;
2930 case SIL_CHLD:
2931 err |= __put_user(from->si_pid, &to->si_pid);
2932 err |= __put_user(from->si_uid, &to->si_uid);
2933 err |= __put_user(from->si_status, &to->si_status);
2934 err |= __put_user(from->si_utime, &to->si_utime);
2935 err |= __put_user(from->si_stime, &to->si_stime);
2936 break;
2937 case SIL_RT:
2938 err |= __put_user(from->si_pid, &to->si_pid);
2939 err |= __put_user(from->si_uid, &to->si_uid);
2940 err |= __put_user(from->si_ptr, &to->si_ptr);
2941 break;
2942 case SIL_SYS:
2943 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2944 err |= __put_user(from->si_syscall, &to->si_syscall);
2945 err |= __put_user(from->si_arch, &to->si_arch);
2946 break;
2947 }
2948 return err;
2949}
2950
2951#ifdef CONFIG_COMPAT
2952int copy_siginfo_to_user32(struct compat_siginfo __user *to,
2953 const struct siginfo *from)
2954#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
2955{
2956 return __copy_siginfo_to_user32(to, from, in_x32_syscall());
2957}
2958int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
2959 const struct siginfo *from, bool x32_ABI)
2960#endif
2961{
2962 struct compat_siginfo new;
2963 memset(&new, 0, sizeof(new));
2964
2965 new.si_signo = from->si_signo;
2966 new.si_errno = from->si_errno;
2967 new.si_code = from->si_code;
2968 switch(siginfo_layout(from->si_signo, from->si_code)) {
2969 case SIL_KILL:
2970 new.si_pid = from->si_pid;
2971 new.si_uid = from->si_uid;
2972 break;
2973 case SIL_TIMER:
2974 new.si_tid = from->si_tid;
2975 new.si_overrun = from->si_overrun;
2976 new.si_int = from->si_int;
2977 break;
2978 case SIL_POLL:
2979 new.si_band = from->si_band;
2980 new.si_fd = from->si_fd;
2981 break;
2982 case SIL_FAULT:
2983 new.si_addr = ptr_to_compat(from->si_addr);
2984#ifdef __ARCH_SI_TRAPNO
2985 new.si_trapno = from->si_trapno;
2986#endif
2987#ifdef BUS_MCEERR_AR
2988 if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AR))
2989 new.si_addr_lsb = from->si_addr_lsb;
2990#endif
2991#ifdef BUS_MCEERR_AO
2992 if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AO))
2993 new.si_addr_lsb = from->si_addr_lsb;
2994#endif
2995#ifdef SEGV_BNDERR
2996 if ((from->si_signo == SIGSEGV) &&
2997 (from->si_code == SEGV_BNDERR)) {
2998 new.si_lower = ptr_to_compat(from->si_lower);
2999 new.si_upper = ptr_to_compat(from->si_upper);
3000 }
3001#endif
3002#ifdef SEGV_PKUERR
3003 if ((from->si_signo == SIGSEGV) &&
3004 (from->si_code == SEGV_PKUERR))
3005 new.si_pkey = from->si_pkey;
3006#endif
3007
3008 break;
3009 case SIL_CHLD:
3010 new.si_pid = from->si_pid;
3011 new.si_uid = from->si_uid;
3012 new.si_status = from->si_status;
3013#ifdef CONFIG_X86_X32_ABI
3014 if (x32_ABI) {
3015 new._sifields._sigchld_x32._utime = from->si_utime;
3016 new._sifields._sigchld_x32._stime = from->si_stime;
3017 } else
3018#endif
3019 {
3020 new.si_utime = from->si_utime;
3021 new.si_stime = from->si_stime;
3022 }
3023 break;
3024 case SIL_RT:
3025 new.si_pid = from->si_pid;
3026 new.si_uid = from->si_uid;
3027 new.si_int = from->si_int;
3028 break;
3029 case SIL_SYS:
3030 new.si_call_addr = ptr_to_compat(from->si_call_addr);
3031 new.si_syscall = from->si_syscall;
3032 new.si_arch = from->si_arch;
3033 break;
3034 }
3035
3036 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3037 return -EFAULT;
3038
3039 return 0;
3040}
3041
3042int copy_siginfo_from_user32(struct siginfo *to,
3043 const struct compat_siginfo __user *ufrom)
3044{
3045 struct compat_siginfo from;
3046
3047 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3048 return -EFAULT;
3049
3050 clear_siginfo(to);
3051 to->si_signo = from.si_signo;
3052 to->si_errno = from.si_errno;
3053 to->si_code = from.si_code;
3054 switch(siginfo_layout(from.si_signo, from.si_code)) {
3055 case SIL_KILL:
3056 to->si_pid = from.si_pid;
3057 to->si_uid = from.si_uid;
3058 break;
3059 case SIL_TIMER:
3060 to->si_tid = from.si_tid;
3061 to->si_overrun = from.si_overrun;
3062 to->si_int = from.si_int;
3063 break;
3064 case SIL_POLL:
3065 to->si_band = from.si_band;
3066 to->si_fd = from.si_fd;
3067 break;
3068 case SIL_FAULT:
3069 to->si_addr = compat_ptr(from.si_addr);
3070#ifdef __ARCH_SI_TRAPNO
3071 to->si_trapno = from.si_trapno;
3072#endif
3073#ifdef BUS_MCEERR_AR
3074 if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AR))
3075 to->si_addr_lsb = from.si_addr_lsb;
3076#endif
3077#ifdef BUS_MCEER_AO
3078 if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AO))
3079 to->si_addr_lsb = from.si_addr_lsb;
3080#endif
3081#ifdef SEGV_BNDERR
3082 if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_BNDERR)) {
3083 to->si_lower = compat_ptr(from.si_lower);
3084 to->si_upper = compat_ptr(from.si_upper);
3085 }
3086#endif
3087#ifdef SEGV_PKUERR
3088 if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_PKUERR))
3089 to->si_pkey = from.si_pkey;
3090#endif
3091 break;
3092 case SIL_CHLD:
3093 to->si_pid = from.si_pid;
3094 to->si_uid = from.si_uid;
3095 to->si_status = from.si_status;
3096#ifdef CONFIG_X86_X32_ABI
3097 if (in_x32_syscall()) {
3098 to->si_utime = from._sifields._sigchld_x32._utime;
3099 to->si_stime = from._sifields._sigchld_x32._stime;
3100 } else
3101#endif
3102 {
3103 to->si_utime = from.si_utime;
3104 to->si_stime = from.si_stime;
3105 }
3106 break;
3107 case SIL_RT:
3108 to->si_pid = from.si_pid;
3109 to->si_uid = from.si_uid;
3110 to->si_int = from.si_int;
3111 break;
3112 case SIL_SYS:
3113 to->si_call_addr = compat_ptr(from.si_call_addr);
3114 to->si_syscall = from.si_syscall;
3115 to->si_arch = from.si_arch;
3116 break;
3117 }
3118 return 0;
3119}
3120#endif /* CONFIG_COMPAT */
3121
3122/**
3123 * do_sigtimedwait - wait for queued signals specified in @which
3124 * @which: queued signals to wait for
3125 * @info: if non-null, the signal's siginfo is returned here
3126 * @ts: upper bound on process time suspension
3127 */
3128static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
3129 const struct timespec *ts)
3130{
3131 ktime_t *to = NULL, timeout = KTIME_MAX;
3132 struct task_struct *tsk = current;
3133 sigset_t mask = *which;
3134 int sig, ret = 0;
3135
3136 if (ts) {
3137 if (!timespec_valid(ts))
3138 return -EINVAL;
3139 timeout = timespec_to_ktime(*ts);
3140 to = &timeout;
3141 }
3142
3143 /*
3144 * Invert the set of allowed signals to get those we want to block.
3145 */
3146 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3147 signotset(&mask);
3148
3149 spin_lock_irq(&tsk->sighand->siglock);
3150 sig = dequeue_signal(tsk, &mask, info);
3151 if (!sig && timeout) {
3152 /*
3153 * None ready, temporarily unblock those we're interested
3154 * while we are sleeping in so that we'll be awakened when
3155 * they arrive. Unblocking is always fine, we can avoid
3156 * set_current_blocked().
3157 */
3158 tsk->real_blocked = tsk->blocked;
3159 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3160 recalc_sigpending();
3161 spin_unlock_irq(&tsk->sighand->siglock);
3162
3163 __set_current_state(TASK_INTERRUPTIBLE);
3164 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3165 HRTIMER_MODE_REL);
3166 spin_lock_irq(&tsk->sighand->siglock);
3167 __set_task_blocked(tsk, &tsk->real_blocked);
3168 sigemptyset(&tsk->real_blocked);
3169 sig = dequeue_signal(tsk, &mask, info);
3170 }
3171 spin_unlock_irq(&tsk->sighand->siglock);
3172
3173 if (sig)
3174 return sig;
3175 return ret ? -EINTR : -EAGAIN;
3176}
3177
3178/**
3179 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3180 * in @uthese
3181 * @uthese: queued signals to wait for
3182 * @uinfo: if non-null, the signal's siginfo is returned here
3183 * @uts: upper bound on process time suspension
3184 * @sigsetsize: size of sigset_t type
3185 */
3186SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3187 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
3188 size_t, sigsetsize)
3189{
3190 sigset_t these;
3191 struct timespec ts;
3192 siginfo_t info;
3193 int ret;
3194
3195 /* XXX: Don't preclude handling different sized sigset_t's. */
3196 if (sigsetsize != sizeof(sigset_t))
3197 return -EINVAL;
3198
3199 if (copy_from_user(&these, uthese, sizeof(these)))
3200 return -EFAULT;
3201
3202 if (uts) {
3203 if (copy_from_user(&ts, uts, sizeof(ts)))
3204 return -EFAULT;
3205 }
3206
3207 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3208
3209 if (ret > 0 && uinfo) {
3210 if (copy_siginfo_to_user(uinfo, &info))
3211 ret = -EFAULT;
3212 }
3213
3214 return ret;
3215}
3216
3217#ifdef CONFIG_COMPAT
3218COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
3219 struct compat_siginfo __user *, uinfo,
3220 struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
3221{
3222 sigset_t s;
3223 struct timespec t;
3224 siginfo_t info;
3225 long ret;
3226
3227 if (sigsetsize != sizeof(sigset_t))
3228 return -EINVAL;
3229
3230 if (get_compat_sigset(&s, uthese))
3231 return -EFAULT;
3232
3233 if (uts) {
3234 if (compat_get_timespec(&t, uts))
3235 return -EFAULT;
3236 }
3237
3238 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3239
3240 if (ret > 0 && uinfo) {
3241 if (copy_siginfo_to_user32(uinfo, &info))
3242 ret = -EFAULT;
3243 }
3244
3245 return ret;
3246}
3247#endif
3248
3249/**
3250 * sys_kill - send a signal to a process
3251 * @pid: the PID of the process
3252 * @sig: signal to be sent
3253 */
3254SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3255{
3256 struct siginfo info;
3257
3258 clear_siginfo(&info);
3259 info.si_signo = sig;
3260 info.si_errno = 0;
3261 info.si_code = SI_USER;
3262 info.si_pid = task_tgid_vnr(current);
3263 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3264
3265 return kill_something_info(sig, &info, pid);
3266}
3267
3268static int
3269do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
3270{
3271 struct task_struct *p;
3272 int error = -ESRCH;
3273
3274 rcu_read_lock();
3275 p = find_task_by_vpid(pid);
3276 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3277 error = check_kill_permission(sig, info, p);
3278 /*
3279 * The null signal is a permissions and process existence
3280 * probe. No signal is actually delivered.
3281 */
3282 if (!error && sig) {
3283 error = do_send_sig_info(sig, info, p, false);
3284 /*
3285 * If lock_task_sighand() failed we pretend the task
3286 * dies after receiving the signal. The window is tiny,
3287 * and the signal is private anyway.
3288 */
3289 if (unlikely(error == -ESRCH))
3290 error = 0;
3291 }
3292 }
3293 rcu_read_unlock();
3294
3295 return error;
3296}
3297
3298static int do_tkill(pid_t tgid, pid_t pid, int sig)
3299{
3300 struct siginfo info;
3301
3302 clear_siginfo(&info);
3303 info.si_signo = sig;
3304 info.si_errno = 0;
3305 info.si_code = SI_TKILL;
3306 info.si_pid = task_tgid_vnr(current);
3307 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3308
3309 return do_send_specific(tgid, pid, sig, &info);
3310}
3311
3312/**
3313 * sys_tgkill - send signal to one specific thread
3314 * @tgid: the thread group ID of the thread
3315 * @pid: the PID of the thread
3316 * @sig: signal to be sent
3317 *
3318 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3319 * exists but it's not belonging to the target process anymore. This
3320 * method solves the problem of threads exiting and PIDs getting reused.
3321 */
3322SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3323{
3324 /* This is only valid for single tasks */
3325 if (pid <= 0 || tgid <= 0)
3326 return -EINVAL;
3327
3328 return do_tkill(tgid, pid, sig);
3329}
3330
3331/**
3332 * sys_tkill - send signal to one specific task
3333 * @pid: the PID of the task
3334 * @sig: signal to be sent
3335 *
3336 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3337 */
3338SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3339{
3340 /* This is only valid for single tasks */
3341 if (pid <= 0)
3342 return -EINVAL;
3343
3344 return do_tkill(0, pid, sig);
3345}
3346
3347static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3348{
3349 /* Not even root can pretend to send signals from the kernel.
3350 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3351 */
3352 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3353 (task_pid_vnr(current) != pid))
3354 return -EPERM;
3355
3356 info->si_signo = sig;
3357
3358 /* POSIX.1b doesn't mention process groups. */
3359 return kill_proc_info(sig, info, pid);
3360}
3361
3362/**
3363 * sys_rt_sigqueueinfo - send signal information to a signal
3364 * @pid: the PID of the thread
3365 * @sig: signal to be sent
3366 * @uinfo: signal info to be sent
3367 */
3368SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3369 siginfo_t __user *, uinfo)
3370{
3371 siginfo_t info;
3372 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3373 return -EFAULT;
3374 return do_rt_sigqueueinfo(pid, sig, &info);
3375}
3376
3377#ifdef CONFIG_COMPAT
3378COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3379 compat_pid_t, pid,
3380 int, sig,
3381 struct compat_siginfo __user *, uinfo)
3382{
3383 siginfo_t info;
3384 int ret = copy_siginfo_from_user32(&info, uinfo);
3385 if (unlikely(ret))
3386 return ret;
3387 return do_rt_sigqueueinfo(pid, sig, &info);
3388}
3389#endif
3390
3391static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3392{
3393 /* This is only valid for single tasks */
3394 if (pid <= 0 || tgid <= 0)
3395 return -EINVAL;
3396
3397 /* Not even root can pretend to send signals from the kernel.
3398 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3399 */
3400 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3401 (task_pid_vnr(current) != pid))
3402 return -EPERM;
3403
3404 info->si_signo = sig;
3405
3406 return do_send_specific(tgid, pid, sig, info);
3407}
3408
3409SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3410 siginfo_t __user *, uinfo)
3411{
3412 siginfo_t info;
3413
3414 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3415 return -EFAULT;
3416
3417 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3418}
3419
3420#ifdef CONFIG_COMPAT
3421COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3422 compat_pid_t, tgid,
3423 compat_pid_t, pid,
3424 int, sig,
3425 struct compat_siginfo __user *, uinfo)
3426{
3427 siginfo_t info;
3428
3429 if (copy_siginfo_from_user32(&info, uinfo))
3430 return -EFAULT;
3431 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3432}
3433#endif
3434
3435/*
3436 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3437 */
3438void kernel_sigaction(int sig, __sighandler_t action)
3439{
3440 spin_lock_irq(¤t->sighand->siglock);
3441 current->sighand->action[sig - 1].sa.sa_handler = action;
3442 if (action == SIG_IGN) {
3443 sigset_t mask;
3444
3445 sigemptyset(&mask);
3446 sigaddset(&mask, sig);
3447
3448 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
3449 flush_sigqueue_mask(&mask, ¤t->pending);
3450 recalc_sigpending();
3451 }
3452 spin_unlock_irq(¤t->sighand->siglock);
3453}
3454EXPORT_SYMBOL(kernel_sigaction);
3455
3456void __weak sigaction_compat_abi(struct k_sigaction *act,
3457 struct k_sigaction *oact)
3458{
3459}
3460
3461int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3462{
3463 struct task_struct *p = current, *t;
3464 struct k_sigaction *k;
3465 sigset_t mask;
3466
3467 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3468 return -EINVAL;
3469
3470 k = &p->sighand->action[sig-1];
3471
3472 spin_lock_irq(&p->sighand->siglock);
3473 if (oact)
3474 *oact = *k;
3475
3476 sigaction_compat_abi(act, oact);
3477
3478 if (act) {
3479 sigdelsetmask(&act->sa.sa_mask,
3480 sigmask(SIGKILL) | sigmask(SIGSTOP));
3481 *k = *act;
3482 /*
3483 * POSIX 3.3.1.3:
3484 * "Setting a signal action to SIG_IGN for a signal that is
3485 * pending shall cause the pending signal to be discarded,
3486 * whether or not it is blocked."
3487 *
3488 * "Setting a signal action to SIG_DFL for a signal that is
3489 * pending and whose default action is to ignore the signal
3490 * (for example, SIGCHLD), shall cause the pending signal to
3491 * be discarded, whether or not it is blocked"
3492 */
3493 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3494 sigemptyset(&mask);
3495 sigaddset(&mask, sig);
3496 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3497 for_each_thread(p, t)
3498 flush_sigqueue_mask(&mask, &t->pending);
3499 }
3500 }
3501
3502 spin_unlock_irq(&p->sighand->siglock);
3503 return 0;
3504}
3505
3506static int
3507do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
3508{
3509 struct task_struct *t = current;
3510
3511 if (oss) {
3512 memset(oss, 0, sizeof(stack_t));
3513 oss->ss_sp = (void __user *) t->sas_ss_sp;
3514 oss->ss_size = t->sas_ss_size;
3515 oss->ss_flags = sas_ss_flags(sp) |
3516 (current->sas_ss_flags & SS_FLAG_BITS);
3517 }
3518
3519 if (ss) {
3520 void __user *ss_sp = ss->ss_sp;
3521 size_t ss_size = ss->ss_size;
3522 unsigned ss_flags = ss->ss_flags;
3523 int ss_mode;
3524
3525 if (unlikely(on_sig_stack(sp)))
3526 return -EPERM;
3527
3528 ss_mode = ss_flags & ~SS_FLAG_BITS;
3529 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3530 ss_mode != 0))
3531 return -EINVAL;
3532
3533 if (ss_mode == SS_DISABLE) {
3534 ss_size = 0;
3535 ss_sp = NULL;
3536 } else {
3537 if (unlikely(ss_size < MINSIGSTKSZ))
3538 return -ENOMEM;
3539 }
3540
3541 t->sas_ss_sp = (unsigned long) ss_sp;
3542 t->sas_ss_size = ss_size;
3543 t->sas_ss_flags = ss_flags;
3544 }
3545 return 0;
3546}
3547
3548SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3549{
3550 stack_t new, old;
3551 int err;
3552 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3553 return -EFAULT;
3554 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3555 current_user_stack_pointer());
3556 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3557 err = -EFAULT;
3558 return err;
3559}
3560
3561int restore_altstack(const stack_t __user *uss)
3562{
3563 stack_t new;
3564 if (copy_from_user(&new, uss, sizeof(stack_t)))
3565 return -EFAULT;
3566 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
3567 /* squash all but EFAULT for now */
3568 return 0;
3569}
3570
3571int __save_altstack(stack_t __user *uss, unsigned long sp)
3572{
3573 struct task_struct *t = current;
3574 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3575 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3576 __put_user(t->sas_ss_size, &uss->ss_size);
3577 if (err)
3578 return err;
3579 if (t->sas_ss_flags & SS_AUTODISARM)
3580 sas_ss_reset(t);
3581 return 0;
3582}
3583
3584#ifdef CONFIG_COMPAT
3585static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3586 compat_stack_t __user *uoss_ptr)
3587{
3588 stack_t uss, uoss;
3589 int ret;
3590
3591 if (uss_ptr) {
3592 compat_stack_t uss32;
3593 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3594 return -EFAULT;
3595 uss.ss_sp = compat_ptr(uss32.ss_sp);
3596 uss.ss_flags = uss32.ss_flags;
3597 uss.ss_size = uss32.ss_size;
3598 }
3599 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3600 compat_user_stack_pointer());
3601 if (ret >= 0 && uoss_ptr) {
3602 compat_stack_t old;
3603 memset(&old, 0, sizeof(old));
3604 old.ss_sp = ptr_to_compat(uoss.ss_sp);
3605 old.ss_flags = uoss.ss_flags;
3606 old.ss_size = uoss.ss_size;
3607 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3608 ret = -EFAULT;
3609 }
3610 return ret;
3611}
3612
3613COMPAT_SYSCALL_DEFINE2(sigaltstack,
3614 const compat_stack_t __user *, uss_ptr,
3615 compat_stack_t __user *, uoss_ptr)
3616{
3617 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3618}
3619
3620int compat_restore_altstack(const compat_stack_t __user *uss)
3621{
3622 int err = do_compat_sigaltstack(uss, NULL);
3623 /* squash all but -EFAULT for now */
3624 return err == -EFAULT ? err : 0;
3625}
3626
3627int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3628{
3629 int err;
3630 struct task_struct *t = current;
3631 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3632 &uss->ss_sp) |
3633 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3634 __put_user(t->sas_ss_size, &uss->ss_size);
3635 if (err)
3636 return err;
3637 if (t->sas_ss_flags & SS_AUTODISARM)
3638 sas_ss_reset(t);
3639 return 0;
3640}
3641#endif
3642
3643#ifdef __ARCH_WANT_SYS_SIGPENDING
3644
3645/**
3646 * sys_sigpending - examine pending signals
3647 * @uset: where mask of pending signal is returned
3648 */
3649SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
3650{
3651 sigset_t set;
3652 int err;
3653
3654 if (sizeof(old_sigset_t) > sizeof(*uset))
3655 return -EINVAL;
3656
3657 err = do_sigpending(&set);
3658 if (!err && copy_to_user(uset, &set, sizeof(old_sigset_t)))
3659 err = -EFAULT;
3660 return err;
3661}
3662
3663#ifdef CONFIG_COMPAT
3664COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3665{
3666 sigset_t set;
3667 int err = do_sigpending(&set);
3668 if (!err)
3669 err = put_user(set.sig[0], set32);
3670 return err;
3671}
3672#endif
3673
3674#endif
3675
3676#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3677/**
3678 * sys_sigprocmask - examine and change blocked signals
3679 * @how: whether to add, remove, or set signals
3680 * @nset: signals to add or remove (if non-null)
3681 * @oset: previous value of signal mask if non-null
3682 *
3683 * Some platforms have their own version with special arguments;
3684 * others support only sys_rt_sigprocmask.
3685 */
3686
3687SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3688 old_sigset_t __user *, oset)
3689{
3690 old_sigset_t old_set, new_set;
3691 sigset_t new_blocked;
3692
3693 old_set = current->blocked.sig[0];
3694
3695 if (nset) {
3696 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3697 return -EFAULT;
3698
3699 new_blocked = current->blocked;
3700
3701 switch (how) {
3702 case SIG_BLOCK:
3703 sigaddsetmask(&new_blocked, new_set);
3704 break;
3705 case SIG_UNBLOCK:
3706 sigdelsetmask(&new_blocked, new_set);
3707 break;
3708 case SIG_SETMASK:
3709 new_blocked.sig[0] = new_set;
3710 break;
3711 default:
3712 return -EINVAL;
3713 }
3714
3715 set_current_blocked(&new_blocked);
3716 }
3717
3718 if (oset) {
3719 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3720 return -EFAULT;
3721 }
3722
3723 return 0;
3724}
3725#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3726
3727#ifndef CONFIG_ODD_RT_SIGACTION
3728/**
3729 * sys_rt_sigaction - alter an action taken by a process
3730 * @sig: signal to be sent
3731 * @act: new sigaction
3732 * @oact: used to save the previous sigaction
3733 * @sigsetsize: size of sigset_t type
3734 */
3735SYSCALL_DEFINE4(rt_sigaction, int, sig,
3736 const struct sigaction __user *, act,
3737 struct sigaction __user *, oact,
3738 size_t, sigsetsize)
3739{
3740 struct k_sigaction new_sa, old_sa;
3741 int ret = -EINVAL;
3742
3743 /* XXX: Don't preclude handling different sized sigset_t's. */
3744 if (sigsetsize != sizeof(sigset_t))
3745 goto out;
3746
3747 if (act) {
3748 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3749 return -EFAULT;
3750 }
3751
3752 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3753
3754 if (!ret && oact) {
3755 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3756 return -EFAULT;
3757 }
3758out:
3759 return ret;
3760}
3761#ifdef CONFIG_COMPAT
3762COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3763 const struct compat_sigaction __user *, act,
3764 struct compat_sigaction __user *, oact,
3765 compat_size_t, sigsetsize)
3766{
3767 struct k_sigaction new_ka, old_ka;
3768#ifdef __ARCH_HAS_SA_RESTORER
3769 compat_uptr_t restorer;
3770#endif
3771 int ret;
3772
3773 /* XXX: Don't preclude handling different sized sigset_t's. */
3774 if (sigsetsize != sizeof(compat_sigset_t))
3775 return -EINVAL;
3776
3777 if (act) {
3778 compat_uptr_t handler;
3779 ret = get_user(handler, &act->sa_handler);
3780 new_ka.sa.sa_handler = compat_ptr(handler);
3781#ifdef __ARCH_HAS_SA_RESTORER
3782 ret |= get_user(restorer, &act->sa_restorer);
3783 new_ka.sa.sa_restorer = compat_ptr(restorer);
3784#endif
3785 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3786 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3787 if (ret)
3788 return -EFAULT;
3789 }
3790
3791 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3792 if (!ret && oact) {
3793 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3794 &oact->sa_handler);
3795 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3796 sizeof(oact->sa_mask));
3797 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3798#ifdef __ARCH_HAS_SA_RESTORER
3799 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3800 &oact->sa_restorer);
3801#endif
3802 }
3803 return ret;
3804}
3805#endif
3806#endif /* !CONFIG_ODD_RT_SIGACTION */
3807
3808#ifdef CONFIG_OLD_SIGACTION
3809SYSCALL_DEFINE3(sigaction, int, sig,
3810 const struct old_sigaction __user *, act,
3811 struct old_sigaction __user *, oact)
3812{
3813 struct k_sigaction new_ka, old_ka;
3814 int ret;
3815
3816 if (act) {
3817 old_sigset_t mask;
3818 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3819 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3820 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3821 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3822 __get_user(mask, &act->sa_mask))
3823 return -EFAULT;
3824#ifdef __ARCH_HAS_KA_RESTORER
3825 new_ka.ka_restorer = NULL;
3826#endif
3827 siginitset(&new_ka.sa.sa_mask, mask);
3828 }
3829
3830 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3831
3832 if (!ret && oact) {
3833 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3834 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3835 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3836 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3837 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3838 return -EFAULT;
3839 }
3840
3841 return ret;
3842}
3843#endif
3844#ifdef CONFIG_COMPAT_OLD_SIGACTION
3845COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3846 const struct compat_old_sigaction __user *, act,
3847 struct compat_old_sigaction __user *, oact)
3848{
3849 struct k_sigaction new_ka, old_ka;
3850 int ret;
3851 compat_old_sigset_t mask;
3852 compat_uptr_t handler, restorer;
3853
3854 if (act) {
3855 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3856 __get_user(handler, &act->sa_handler) ||
3857 __get_user(restorer, &act->sa_restorer) ||
3858 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3859 __get_user(mask, &act->sa_mask))
3860 return -EFAULT;
3861
3862#ifdef __ARCH_HAS_KA_RESTORER
3863 new_ka.ka_restorer = NULL;
3864#endif
3865 new_ka.sa.sa_handler = compat_ptr(handler);
3866 new_ka.sa.sa_restorer = compat_ptr(restorer);
3867 siginitset(&new_ka.sa.sa_mask, mask);
3868 }
3869
3870 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3871
3872 if (!ret && oact) {
3873 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3874 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3875 &oact->sa_handler) ||
3876 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3877 &oact->sa_restorer) ||
3878 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3879 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3880 return -EFAULT;
3881 }
3882 return ret;
3883}
3884#endif
3885
3886#ifdef CONFIG_SGETMASK_SYSCALL
3887
3888/*
3889 * For backwards compatibility. Functionality superseded by sigprocmask.
3890 */
3891SYSCALL_DEFINE0(sgetmask)
3892{
3893 /* SMP safe */
3894 return current->blocked.sig[0];
3895}
3896
3897SYSCALL_DEFINE1(ssetmask, int, newmask)
3898{
3899 int old = current->blocked.sig[0];
3900 sigset_t newset;
3901
3902 siginitset(&newset, newmask);
3903 set_current_blocked(&newset);
3904
3905 return old;
3906}
3907#endif /* CONFIG_SGETMASK_SYSCALL */
3908
3909#ifdef __ARCH_WANT_SYS_SIGNAL
3910/*
3911 * For backwards compatibility. Functionality superseded by sigaction.
3912 */
3913SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3914{
3915 struct k_sigaction new_sa, old_sa;
3916 int ret;
3917
3918 new_sa.sa.sa_handler = handler;
3919 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3920 sigemptyset(&new_sa.sa.sa_mask);
3921
3922 ret = do_sigaction(sig, &new_sa, &old_sa);
3923
3924 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3925}
3926#endif /* __ARCH_WANT_SYS_SIGNAL */
3927
3928#ifdef __ARCH_WANT_SYS_PAUSE
3929
3930SYSCALL_DEFINE0(pause)
3931{
3932 while (!signal_pending(current)) {
3933 __set_current_state(TASK_INTERRUPTIBLE);
3934 schedule();
3935 }
3936 return -ERESTARTNOHAND;
3937}
3938
3939#endif
3940
3941static int sigsuspend(sigset_t *set)
3942{
3943 current->saved_sigmask = current->blocked;
3944 set_current_blocked(set);
3945
3946 while (!signal_pending(current)) {
3947 __set_current_state(TASK_INTERRUPTIBLE);
3948 schedule();
3949 }
3950 set_restore_sigmask();
3951 return -ERESTARTNOHAND;
3952}
3953
3954/**
3955 * sys_rt_sigsuspend - replace the signal mask for a value with the
3956 * @unewset value until a signal is received
3957 * @unewset: new signal mask value
3958 * @sigsetsize: size of sigset_t type
3959 */
3960SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3961{
3962 sigset_t newset;
3963
3964 /* XXX: Don't preclude handling different sized sigset_t's. */
3965 if (sigsetsize != sizeof(sigset_t))
3966 return -EINVAL;
3967
3968 if (copy_from_user(&newset, unewset, sizeof(newset)))
3969 return -EFAULT;
3970 return sigsuspend(&newset);
3971}
3972
3973#ifdef CONFIG_COMPAT
3974COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3975{
3976 sigset_t newset;
3977
3978 /* XXX: Don't preclude handling different sized sigset_t's. */
3979 if (sigsetsize != sizeof(sigset_t))
3980 return -EINVAL;
3981
3982 if (get_compat_sigset(&newset, unewset))
3983 return -EFAULT;
3984 return sigsuspend(&newset);
3985}
3986#endif
3987
3988#ifdef CONFIG_OLD_SIGSUSPEND
3989SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3990{
3991 sigset_t blocked;
3992 siginitset(&blocked, mask);
3993 return sigsuspend(&blocked);
3994}
3995#endif
3996#ifdef CONFIG_OLD_SIGSUSPEND3
3997SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3998{
3999 sigset_t blocked;
4000 siginitset(&blocked, mask);
4001 return sigsuspend(&blocked);
4002}
4003#endif
4004
4005__weak const char *arch_vma_name(struct vm_area_struct *vma)
4006{
4007 return NULL;
4008}
4009
4010void __init signals_init(void)
4011{
4012 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
4013 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
4014 != offsetof(struct siginfo, _sifields._pad));
4015 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4016
4017 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4018}
4019
4020#ifdef CONFIG_KGDB_KDB
4021#include <linux/kdb.h>
4022/*
4023 * kdb_send_sig - Allows kdb to send signals without exposing
4024 * signal internals. This function checks if the required locks are
4025 * available before calling the main signal code, to avoid kdb
4026 * deadlocks.
4027 */
4028void kdb_send_sig(struct task_struct *t, int sig)
4029{
4030 static struct task_struct *kdb_prev_t;
4031 int new_t, ret;
4032 if (!spin_trylock(&t->sighand->siglock)) {
4033 kdb_printf("Can't do kill command now.\n"
4034 "The sigmask lock is held somewhere else in "
4035 "kernel, try again later\n");
4036 return;
4037 }
4038 new_t = kdb_prev_t != t;
4039 kdb_prev_t = t;
4040 if (t->state != TASK_RUNNING && new_t) {
4041 spin_unlock(&t->sighand->siglock);
4042 kdb_printf("Process is not RUNNING, sending a signal from "
4043 "kdb risks deadlock\n"
4044 "on the run queue locks. "
4045 "The signal has _not_ been sent.\n"
4046 "Reissue the kill command if you want to risk "
4047 "the deadlock.\n");
4048 return;
4049 }
4050 ret = send_signal(sig, SEND_SIG_PRIV, t, false);
4051 spin_unlock(&t->sighand->siglock);
4052 if (ret)
4053 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4054 sig, t->pid);
4055 else
4056 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4057}
4058#endif /* CONFIG_KGDB_KDB */