Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/livepatch.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/signal.h>
  52
  53#include <asm/param.h>
  54#include <linux/uaccess.h>
  55#include <asm/unistd.h>
  56#include <asm/siginfo.h>
  57#include <asm/cacheflush.h>
 
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
 185	    !klp_patch_pending(current))
 186		clear_thread_flag(TIF_SIGPENDING);
 187
 188}
 189EXPORT_SYMBOL(recalc_sigpending);
 190
 191void calculate_sigpending(void)
 192{
 193	/* Have any signals or users of TIF_SIGPENDING been delayed
 194	 * until after fork?
 195	 */
 196	spin_lock_irq(&current->sighand->siglock);
 197	set_tsk_thread_flag(current, TIF_SIGPENDING);
 198	recalc_sigpending();
 199	spin_unlock_irq(&current->sighand->siglock);
 200}
 201
 202/* Given the mask, find the first available signal that should be serviced. */
 203
 204#define SYNCHRONOUS_MASK \
 205	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 206	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 207
 208int next_signal(struct sigpending *pending, sigset_t *mask)
 209{
 210	unsigned long i, *s, *m, x;
 211	int sig = 0;
 212
 213	s = pending->signal.sig;
 214	m = mask->sig;
 215
 216	/*
 217	 * Handle the first word specially: it contains the
 218	 * synchronous signals that need to be dequeued first.
 219	 */
 220	x = *s &~ *m;
 221	if (x) {
 222		if (x & SYNCHRONOUS_MASK)
 223			x &= SYNCHRONOUS_MASK;
 224		sig = ffz(~x) + 1;
 225		return sig;
 226	}
 227
 228	switch (_NSIG_WORDS) {
 229	default:
 230		for (i = 1; i < _NSIG_WORDS; ++i) {
 231			x = *++s &~ *++m;
 232			if (!x)
 233				continue;
 234			sig = ffz(~x) + i*_NSIG_BPW + 1;
 235			break;
 236		}
 237		break;
 238
 239	case 2:
 240		x = s[1] &~ m[1];
 241		if (!x)
 242			break;
 243		sig = ffz(~x) + _NSIG_BPW + 1;
 244		break;
 245
 246	case 1:
 247		/* Nothing to do */
 248		break;
 249	}
 250
 251	return sig;
 252}
 253
 254static inline void print_dropped_signal(int sig)
 255{
 256	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 257
 258	if (!print_fatal_signals)
 259		return;
 260
 261	if (!__ratelimit(&ratelimit_state))
 262		return;
 263
 264	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 265				current->comm, current->pid, sig);
 266}
 267
 268/**
 269 * task_set_jobctl_pending - set jobctl pending bits
 270 * @task: target task
 271 * @mask: pending bits to set
 272 *
 273 * Clear @mask from @task->jobctl.  @mask must be subset of
 274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 275 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 276 * cleared.  If @task is already being killed or exiting, this function
 277 * becomes noop.
 278 *
 279 * CONTEXT:
 280 * Must be called with @task->sighand->siglock held.
 281 *
 282 * RETURNS:
 283 * %true if @mask is set, %false if made noop because @task was dying.
 284 */
 285bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 286{
 287	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 288			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 289	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 290
 291	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 292		return false;
 293
 294	if (mask & JOBCTL_STOP_SIGMASK)
 295		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 296
 297	task->jobctl |= mask;
 298	return true;
 299}
 300
 301/**
 302 * task_clear_jobctl_trapping - clear jobctl trapping bit
 303 * @task: target task
 304 *
 305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 306 * Clear it and wake up the ptracer.  Note that we don't need any further
 307 * locking.  @task->siglock guarantees that @task->parent points to the
 308 * ptracer.
 309 *
 310 * CONTEXT:
 311 * Must be called with @task->sighand->siglock held.
 312 */
 313void task_clear_jobctl_trapping(struct task_struct *task)
 314{
 315	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 316		task->jobctl &= ~JOBCTL_TRAPPING;
 317		smp_mb();	/* advised by wake_up_bit() */
 318		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 319	}
 320}
 321
 322/**
 323 * task_clear_jobctl_pending - clear jobctl pending bits
 324 * @task: target task
 325 * @mask: pending bits to clear
 326 *
 327 * Clear @mask from @task->jobctl.  @mask must be subset of
 328 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 329 * STOP bits are cleared together.
 330 *
 331 * If clearing of @mask leaves no stop or trap pending, this function calls
 332 * task_clear_jobctl_trapping().
 333 *
 334 * CONTEXT:
 335 * Must be called with @task->sighand->siglock held.
 336 */
 337void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 338{
 339	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 340
 341	if (mask & JOBCTL_STOP_PENDING)
 342		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 343
 344	task->jobctl &= ~mask;
 345
 346	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 347		task_clear_jobctl_trapping(task);
 348}
 349
 350/**
 351 * task_participate_group_stop - participate in a group stop
 352 * @task: task participating in a group stop
 353 *
 354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 355 * Group stop states are cleared and the group stop count is consumed if
 356 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 357 * stop, the appropriate `SIGNAL_*` flags are set.
 358 *
 359 * CONTEXT:
 360 * Must be called with @task->sighand->siglock held.
 361 *
 362 * RETURNS:
 363 * %true if group stop completion should be notified to the parent, %false
 364 * otherwise.
 365 */
 366static bool task_participate_group_stop(struct task_struct *task)
 367{
 368	struct signal_struct *sig = task->signal;
 369	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 370
 371	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 372
 373	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 374
 375	if (!consume)
 376		return false;
 377
 378	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 379		sig->group_stop_count--;
 380
 381	/*
 382	 * Tell the caller to notify completion iff we are entering into a
 383	 * fresh group stop.  Read comment in do_signal_stop() for details.
 384	 */
 385	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 386		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 387		return true;
 388	}
 389	return false;
 390}
 391
 392void task_join_group_stop(struct task_struct *task)
 393{
 394	/* Have the new thread join an on-going signal group stop */
 395	unsigned long jobctl = current->jobctl;
 396	if (jobctl & JOBCTL_STOP_PENDING) {
 397		struct signal_struct *sig = current->signal;
 398		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
 399		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
 400		if (task_set_jobctl_pending(task, signr | gstop)) {
 401			sig->group_stop_count++;
 402		}
 403	}
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 413{
 414	struct sigqueue *q = NULL;
 415	struct user_struct *user;
 416
 417	/*
 418	 * Protect access to @t credentials. This can go away when all
 419	 * callers hold rcu read lock.
 420	 */
 421	rcu_read_lock();
 422	user = get_uid(__task_cred(t)->user);
 423	atomic_inc(&user->sigpending);
 424	rcu_read_unlock();
 425
 426	if (override_rlimit ||
 427	    atomic_read(&user->sigpending) <=
 428			task_rlimit(t, RLIMIT_SIGPENDING)) {
 429		q = kmem_cache_alloc(sigqueue_cachep, flags);
 430	} else {
 431		print_dropped_signal(sig);
 432	}
 433
 434	if (unlikely(q == NULL)) {
 435		atomic_dec(&user->sigpending);
 436		free_uid(user);
 437	} else {
 438		INIT_LIST_HEAD(&q->list);
 439		q->flags = 0;
 440		q->user = user;
 441	}
 442
 443	return q;
 444}
 445
 446static void __sigqueue_free(struct sigqueue *q)
 447{
 448	if (q->flags & SIGQUEUE_PREALLOC)
 449		return;
 450	atomic_dec(&q->user->sigpending);
 451	free_uid(q->user);
 452	kmem_cache_free(sigqueue_cachep, q);
 453}
 454
 455void flush_sigqueue(struct sigpending *queue)
 456{
 457	struct sigqueue *q;
 458
 459	sigemptyset(&queue->signal);
 460	while (!list_empty(&queue->list)) {
 461		q = list_entry(queue->list.next, struct sigqueue , list);
 462		list_del_init(&q->list);
 463		__sigqueue_free(q);
 464	}
 465}
 466
 467/*
 468 * Flush all pending signals for this kthread.
 469 */
 470void flush_signals(struct task_struct *t)
 471{
 472	unsigned long flags;
 473
 474	spin_lock_irqsave(&t->sighand->siglock, flags);
 475	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 476	flush_sigqueue(&t->pending);
 477	flush_sigqueue(&t->signal->shared_pending);
 478	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 479}
 480EXPORT_SYMBOL(flush_signals);
 481
 482#ifdef CONFIG_POSIX_TIMERS
 483static void __flush_itimer_signals(struct sigpending *pending)
 484{
 485	sigset_t signal, retain;
 486	struct sigqueue *q, *n;
 487
 488	signal = pending->signal;
 489	sigemptyset(&retain);
 490
 491	list_for_each_entry_safe(q, n, &pending->list, list) {
 492		int sig = q->info.si_signo;
 493
 494		if (likely(q->info.si_code != SI_TIMER)) {
 495			sigaddset(&retain, sig);
 496		} else {
 497			sigdelset(&signal, sig);
 498			list_del_init(&q->list);
 499			__sigqueue_free(q);
 500		}
 501	}
 502
 503	sigorsets(&pending->signal, &signal, &retain);
 504}
 505
 506void flush_itimer_signals(void)
 507{
 508	struct task_struct *tsk = current;
 509	unsigned long flags;
 510
 511	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 512	__flush_itimer_signals(&tsk->pending);
 513	__flush_itimer_signals(&tsk->signal->shared_pending);
 514	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 515}
 516#endif
 517
 518void ignore_signals(struct task_struct *t)
 519{
 520	int i;
 521
 522	for (i = 0; i < _NSIG; ++i)
 523		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 524
 525	flush_signals(t);
 526}
 527
 528/*
 529 * Flush all handlers for a task.
 530 */
 531
 532void
 533flush_signal_handlers(struct task_struct *t, int force_default)
 534{
 535	int i;
 536	struct k_sigaction *ka = &t->sighand->action[0];
 537	for (i = _NSIG ; i != 0 ; i--) {
 538		if (force_default || ka->sa.sa_handler != SIG_IGN)
 539			ka->sa.sa_handler = SIG_DFL;
 540		ka->sa.sa_flags = 0;
 541#ifdef __ARCH_HAS_SA_RESTORER
 542		ka->sa.sa_restorer = NULL;
 543#endif
 544		sigemptyset(&ka->sa.sa_mask);
 545		ka++;
 546	}
 547}
 548
 549bool unhandled_signal(struct task_struct *tsk, int sig)
 550{
 551	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 552	if (is_global_init(tsk))
 553		return true;
 554
 555	if (handler != SIG_IGN && handler != SIG_DFL)
 556		return false;
 557
 558	/* if ptraced, let the tracer determine */
 559	return !tsk->ptrace;
 560}
 561
 562static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 563			   bool *resched_timer)
 564{
 565	struct sigqueue *q, *first = NULL;
 566
 567	/*
 568	 * Collect the siginfo appropriate to this signal.  Check if
 569	 * there is another siginfo for the same signal.
 570	*/
 571	list_for_each_entry(q, &list->list, list) {
 572		if (q->info.si_signo == sig) {
 573			if (first)
 574				goto still_pending;
 575			first = q;
 576		}
 577	}
 578
 579	sigdelset(&list->signal, sig);
 580
 581	if (first) {
 582still_pending:
 583		list_del_init(&first->list);
 584		copy_siginfo(info, &first->info);
 585
 586		*resched_timer =
 587			(first->flags & SIGQUEUE_PREALLOC) &&
 588			(info->si_code == SI_TIMER) &&
 589			(info->si_sys_private);
 590
 591		__sigqueue_free(first);
 592	} else {
 593		/*
 594		 * Ok, it wasn't in the queue.  This must be
 595		 * a fast-pathed signal or we must have been
 596		 * out of queue space.  So zero out the info.
 597		 */
 598		clear_siginfo(info);
 599		info->si_signo = sig;
 600		info->si_errno = 0;
 601		info->si_code = SI_USER;
 602		info->si_pid = 0;
 603		info->si_uid = 0;
 604	}
 605}
 606
 607static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 608			kernel_siginfo_t *info, bool *resched_timer)
 609{
 610	int sig = next_signal(pending, mask);
 611
 612	if (sig)
 613		collect_signal(sig, pending, info, resched_timer);
 614	return sig;
 615}
 616
 617/*
 618 * Dequeue a signal and return the element to the caller, which is
 619 * expected to free it.
 620 *
 621 * All callers have to hold the siglock.
 622 */
 623int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 624{
 625	bool resched_timer = false;
 626	int signr;
 627
 628	/* We only dequeue private signals from ourselves, we don't let
 629	 * signalfd steal them
 630	 */
 631	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 632	if (!signr) {
 633		signr = __dequeue_signal(&tsk->signal->shared_pending,
 634					 mask, info, &resched_timer);
 635#ifdef CONFIG_POSIX_TIMERS
 636		/*
 637		 * itimer signal ?
 638		 *
 639		 * itimers are process shared and we restart periodic
 640		 * itimers in the signal delivery path to prevent DoS
 641		 * attacks in the high resolution timer case. This is
 642		 * compliant with the old way of self-restarting
 643		 * itimers, as the SIGALRM is a legacy signal and only
 644		 * queued once. Changing the restart behaviour to
 645		 * restart the timer in the signal dequeue path is
 646		 * reducing the timer noise on heavy loaded !highres
 647		 * systems too.
 648		 */
 649		if (unlikely(signr == SIGALRM)) {
 650			struct hrtimer *tmr = &tsk->signal->real_timer;
 651
 652			if (!hrtimer_is_queued(tmr) &&
 653			    tsk->signal->it_real_incr != 0) {
 654				hrtimer_forward(tmr, tmr->base->get_time(),
 655						tsk->signal->it_real_incr);
 656				hrtimer_restart(tmr);
 657			}
 658		}
 659#endif
 660	}
 661
 662	recalc_sigpending();
 663	if (!signr)
 664		return 0;
 665
 666	if (unlikely(sig_kernel_stop(signr))) {
 667		/*
 668		 * Set a marker that we have dequeued a stop signal.  Our
 669		 * caller might release the siglock and then the pending
 670		 * stop signal it is about to process is no longer in the
 671		 * pending bitmasks, but must still be cleared by a SIGCONT
 672		 * (and overruled by a SIGKILL).  So those cases clear this
 673		 * shared flag after we've set it.  Note that this flag may
 674		 * remain set after the signal we return is ignored or
 675		 * handled.  That doesn't matter because its only purpose
 676		 * is to alert stop-signal processing code when another
 677		 * processor has come along and cleared the flag.
 678		 */
 679		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 680	}
 681#ifdef CONFIG_POSIX_TIMERS
 682	if (resched_timer) {
 683		/*
 684		 * Release the siglock to ensure proper locking order
 685		 * of timer locks outside of siglocks.  Note, we leave
 686		 * irqs disabled here, since the posix-timers code is
 687		 * about to disable them again anyway.
 688		 */
 689		spin_unlock(&tsk->sighand->siglock);
 690		posixtimer_rearm(info);
 691		spin_lock(&tsk->sighand->siglock);
 692
 693		/* Don't expose the si_sys_private value to userspace */
 694		info->si_sys_private = 0;
 695	}
 696#endif
 697	return signr;
 698}
 699EXPORT_SYMBOL_GPL(dequeue_signal);
 700
 701static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 702{
 703	struct task_struct *tsk = current;
 704	struct sigpending *pending = &tsk->pending;
 705	struct sigqueue *q, *sync = NULL;
 706
 707	/*
 708	 * Might a synchronous signal be in the queue?
 709	 */
 710	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 711		return 0;
 712
 713	/*
 714	 * Return the first synchronous signal in the queue.
 715	 */
 716	list_for_each_entry(q, &pending->list, list) {
 717		/* Synchronous signals have a postive si_code */
 718		if ((q->info.si_code > SI_USER) &&
 719		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 720			sync = q;
 721			goto next;
 722		}
 723	}
 724	return 0;
 725next:
 726	/*
 727	 * Check if there is another siginfo for the same signal.
 728	 */
 729	list_for_each_entry_continue(q, &pending->list, list) {
 730		if (q->info.si_signo == sync->info.si_signo)
 731			goto still_pending;
 732	}
 733
 734	sigdelset(&pending->signal, sync->info.si_signo);
 735	recalc_sigpending();
 736still_pending:
 737	list_del_init(&sync->list);
 738	copy_siginfo(info, &sync->info);
 739	__sigqueue_free(sync);
 740	return info->si_signo;
 741}
 742
 743/*
 744 * Tell a process that it has a new active signal..
 745 *
 746 * NOTE! we rely on the previous spin_lock to
 747 * lock interrupts for us! We can only be called with
 748 * "siglock" held, and the local interrupt must
 749 * have been disabled when that got acquired!
 750 *
 751 * No need to set need_resched since signal event passing
 752 * goes through ->blocked
 753 */
 754void signal_wake_up_state(struct task_struct *t, unsigned int state)
 755{
 756	set_tsk_thread_flag(t, TIF_SIGPENDING);
 757	/*
 758	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 759	 * case. We don't check t->state here because there is a race with it
 760	 * executing another processor and just now entering stopped state.
 761	 * By using wake_up_state, we ensure the process will wake up and
 762	 * handle its death signal.
 763	 */
 764	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 765		kick_process(t);
 766}
 767
 768/*
 769 * Remove signals in mask from the pending set and queue.
 770 * Returns 1 if any signals were found.
 771 *
 772 * All callers must be holding the siglock.
 773 */
 774static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 775{
 776	struct sigqueue *q, *n;
 777	sigset_t m;
 778
 779	sigandsets(&m, mask, &s->signal);
 780	if (sigisemptyset(&m))
 781		return;
 782
 783	sigandnsets(&s->signal, &s->signal, mask);
 784	list_for_each_entry_safe(q, n, &s->list, list) {
 785		if (sigismember(mask, q->info.si_signo)) {
 786			list_del_init(&q->list);
 787			__sigqueue_free(q);
 788		}
 789	}
 
 790}
 791
 792static inline int is_si_special(const struct kernel_siginfo *info)
 793{
 794	return info <= SEND_SIG_PRIV;
 795}
 796
 797static inline bool si_fromuser(const struct kernel_siginfo *info)
 798{
 799	return info == SEND_SIG_NOINFO ||
 800		(!is_si_special(info) && SI_FROMUSER(info));
 801}
 802
 803/*
 804 * called with RCU read lock from check_kill_permission()
 805 */
 806static bool kill_ok_by_cred(struct task_struct *t)
 807{
 808	const struct cred *cred = current_cred();
 809	const struct cred *tcred = __task_cred(t);
 810
 811	return uid_eq(cred->euid, tcred->suid) ||
 812	       uid_eq(cred->euid, tcred->uid) ||
 813	       uid_eq(cred->uid, tcred->suid) ||
 814	       uid_eq(cred->uid, tcred->uid) ||
 815	       ns_capable(tcred->user_ns, CAP_KILL);
 
 
 
 
 
 816}
 817
 818/*
 819 * Bad permissions for sending the signal
 820 * - the caller must hold the RCU read lock
 821 */
 822static int check_kill_permission(int sig, struct kernel_siginfo *info,
 823				 struct task_struct *t)
 824{
 825	struct pid *sid;
 826	int error;
 827
 828	if (!valid_signal(sig))
 829		return -EINVAL;
 830
 831	if (!si_fromuser(info))
 832		return 0;
 833
 834	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 835	if (error)
 836		return error;
 837
 838	if (!same_thread_group(current, t) &&
 839	    !kill_ok_by_cred(t)) {
 840		switch (sig) {
 841		case SIGCONT:
 842			sid = task_session(t);
 843			/*
 844			 * We don't return the error if sid == NULL. The
 845			 * task was unhashed, the caller must notice this.
 846			 */
 847			if (!sid || sid == task_session(current))
 848				break;
 849			/* fall through */
 850		default:
 851			return -EPERM;
 852		}
 853	}
 854
 855	return security_task_kill(t, info, sig, NULL);
 856}
 857
 858/**
 859 * ptrace_trap_notify - schedule trap to notify ptracer
 860 * @t: tracee wanting to notify tracer
 861 *
 862 * This function schedules sticky ptrace trap which is cleared on the next
 863 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 864 * ptracer.
 865 *
 866 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 867 * ptracer is listening for events, tracee is woken up so that it can
 868 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 869 * eventually taken without returning to userland after the existing traps
 870 * are finished by PTRACE_CONT.
 871 *
 872 * CONTEXT:
 873 * Must be called with @task->sighand->siglock held.
 874 */
 875static void ptrace_trap_notify(struct task_struct *t)
 876{
 877	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 878	assert_spin_locked(&t->sighand->siglock);
 879
 880	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 881	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 882}
 883
 884/*
 885 * Handle magic process-wide effects of stop/continue signals. Unlike
 886 * the signal actions, these happen immediately at signal-generation
 887 * time regardless of blocking, ignoring, or handling.  This does the
 888 * actual continuing for SIGCONT, but not the actual stopping for stop
 889 * signals. The process stop is done as a signal action for SIG_DFL.
 890 *
 891 * Returns true if the signal should be actually delivered, otherwise
 892 * it should be dropped.
 893 */
 894static bool prepare_signal(int sig, struct task_struct *p, bool force)
 895{
 896	struct signal_struct *signal = p->signal;
 897	struct task_struct *t;
 898	sigset_t flush;
 899
 900	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 901		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 902			return sig == SIGKILL;
 903		/*
 904		 * The process is in the middle of dying, nothing to do.
 905		 */
 906	} else if (sig_kernel_stop(sig)) {
 907		/*
 908		 * This is a stop signal.  Remove SIGCONT from all queues.
 909		 */
 910		siginitset(&flush, sigmask(SIGCONT));
 911		flush_sigqueue_mask(&flush, &signal->shared_pending);
 912		for_each_thread(p, t)
 913			flush_sigqueue_mask(&flush, &t->pending);
 914	} else if (sig == SIGCONT) {
 915		unsigned int why;
 916		/*
 917		 * Remove all stop signals from all queues, wake all threads.
 918		 */
 919		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 920		flush_sigqueue_mask(&flush, &signal->shared_pending);
 921		for_each_thread(p, t) {
 922			flush_sigqueue_mask(&flush, &t->pending);
 923			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 924			if (likely(!(t->ptrace & PT_SEIZED)))
 925				wake_up_state(t, __TASK_STOPPED);
 926			else
 927				ptrace_trap_notify(t);
 928		}
 929
 930		/*
 931		 * Notify the parent with CLD_CONTINUED if we were stopped.
 932		 *
 933		 * If we were in the middle of a group stop, we pretend it
 934		 * was already finished, and then continued. Since SIGCHLD
 935		 * doesn't queue we report only CLD_STOPPED, as if the next
 936		 * CLD_CONTINUED was dropped.
 937		 */
 938		why = 0;
 939		if (signal->flags & SIGNAL_STOP_STOPPED)
 940			why |= SIGNAL_CLD_CONTINUED;
 941		else if (signal->group_stop_count)
 942			why |= SIGNAL_CLD_STOPPED;
 943
 944		if (why) {
 945			/*
 946			 * The first thread which returns from do_signal_stop()
 947			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 948			 * notify its parent. See get_signal().
 949			 */
 950			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 951			signal->group_stop_count = 0;
 952			signal->group_exit_code = 0;
 953		}
 954	}
 955
 956	return !sig_ignored(p, sig, force);
 957}
 958
 959/*
 960 * Test if P wants to take SIG.  After we've checked all threads with this,
 961 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 962 * blocking SIG were ruled out because they are not running and already
 963 * have pending signals.  Such threads will dequeue from the shared queue
 964 * as soon as they're available, so putting the signal on the shared queue
 965 * will be equivalent to sending it to one such thread.
 966 */
 967static inline bool wants_signal(int sig, struct task_struct *p)
 968{
 969	if (sigismember(&p->blocked, sig))
 970		return false;
 971
 972	if (p->flags & PF_EXITING)
 973		return false;
 974
 975	if (sig == SIGKILL)
 976		return true;
 977
 978	if (task_is_stopped_or_traced(p))
 979		return false;
 980
 981	return task_curr(p) || !signal_pending(p);
 982}
 983
 984static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 985{
 986	struct signal_struct *signal = p->signal;
 987	struct task_struct *t;
 988
 989	/*
 990	 * Now find a thread we can wake up to take the signal off the queue.
 991	 *
 992	 * If the main thread wants the signal, it gets first crack.
 993	 * Probably the least surprising to the average bear.
 994	 */
 995	if (wants_signal(sig, p))
 996		t = p;
 997	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
 998		/*
 999		 * There is just one thread and it does not need to be woken.
1000		 * It will dequeue unblocked signals before it runs again.
1001		 */
1002		return;
1003	else {
1004		/*
1005		 * Otherwise try to find a suitable thread.
1006		 */
1007		t = signal->curr_target;
1008		while (!wants_signal(sig, t)) {
1009			t = next_thread(t);
1010			if (t == signal->curr_target)
1011				/*
1012				 * No thread needs to be woken.
1013				 * Any eligible threads will see
1014				 * the signal in the queue soon.
1015				 */
1016				return;
1017		}
1018		signal->curr_target = t;
1019	}
1020
1021	/*
1022	 * Found a killable thread.  If the signal will be fatal,
1023	 * then start taking the whole group down immediately.
1024	 */
1025	if (sig_fatal(p, sig) &&
1026	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1027	    !sigismember(&t->real_blocked, sig) &&
1028	    (sig == SIGKILL || !p->ptrace)) {
1029		/*
1030		 * This signal will be fatal to the whole group.
1031		 */
1032		if (!sig_kernel_coredump(sig)) {
1033			/*
1034			 * Start a group exit and wake everybody up.
1035			 * This way we don't have other threads
1036			 * running and doing things after a slower
1037			 * thread has the fatal signal pending.
1038			 */
1039			signal->flags = SIGNAL_GROUP_EXIT;
1040			signal->group_exit_code = sig;
1041			signal->group_stop_count = 0;
1042			t = p;
1043			do {
1044				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1045				sigaddset(&t->pending.signal, SIGKILL);
1046				signal_wake_up(t, 1);
1047			} while_each_thread(p, t);
1048			return;
1049		}
1050	}
1051
1052	/*
1053	 * The signal is already in the shared-pending queue.
1054	 * Tell the chosen thread to wake up and dequeue it.
1055	 */
1056	signal_wake_up(t, sig == SIGKILL);
1057	return;
1058}
1059
1060static inline bool legacy_queue(struct sigpending *signals, int sig)
1061{
1062	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1063}
1064
1065static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1066			enum pid_type type, bool force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067{
1068	struct sigpending *pending;
1069	struct sigqueue *q;
1070	int override_rlimit;
1071	int ret = 0, result;
1072
1073	assert_spin_locked(&t->sighand->siglock);
1074
1075	result = TRACE_SIGNAL_IGNORED;
1076	if (!prepare_signal(sig, t, force))
 
1077		goto ret;
1078
1079	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1080	/*
1081	 * Short-circuit ignored signals and support queuing
1082	 * exactly one non-rt signal, so that we can get more
1083	 * detailed information about the cause of the signal.
1084	 */
1085	result = TRACE_SIGNAL_ALREADY_PENDING;
1086	if (legacy_queue(pending, sig))
1087		goto ret;
1088
1089	result = TRACE_SIGNAL_DELIVERED;
1090	/*
1091	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
 
1092	 */
1093	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1094		goto out_set;
1095
1096	/*
1097	 * Real-time signals must be queued if sent by sigqueue, or
1098	 * some other real-time mechanism.  It is implementation
1099	 * defined whether kill() does so.  We attempt to do so, on
1100	 * the principle of least surprise, but since kill is not
1101	 * allowed to fail with EAGAIN when low on memory we just
1102	 * make sure at least one signal gets delivered and don't
1103	 * pass on the info struct.
1104	 */
1105	if (sig < SIGRTMIN)
1106		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1107	else
1108		override_rlimit = 0;
1109
1110	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1111	if (q) {
1112		list_add_tail(&q->list, &pending->list);
1113		switch ((unsigned long) info) {
1114		case (unsigned long) SEND_SIG_NOINFO:
1115			clear_siginfo(&q->info);
1116			q->info.si_signo = sig;
1117			q->info.si_errno = 0;
1118			q->info.si_code = SI_USER;
1119			q->info.si_pid = task_tgid_nr_ns(current,
1120							task_active_pid_ns(t));
1121			rcu_read_lock();
1122			q->info.si_uid =
1123				from_kuid_munged(task_cred_xxx(t, user_ns),
1124						 current_uid());
1125			rcu_read_unlock();
1126			break;
1127		case (unsigned long) SEND_SIG_PRIV:
1128			clear_siginfo(&q->info);
1129			q->info.si_signo = sig;
1130			q->info.si_errno = 0;
1131			q->info.si_code = SI_KERNEL;
1132			q->info.si_pid = 0;
1133			q->info.si_uid = 0;
1134			break;
1135		default:
1136			copy_siginfo(&q->info, info);
 
 
1137			break;
1138		}
1139	} else if (!is_si_special(info) &&
1140		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1141		/*
1142		 * Queue overflow, abort.  We may abort if the
1143		 * signal was rt and sent by user using something
1144		 * other than kill().
1145		 */
1146		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1147		ret = -EAGAIN;
1148		goto ret;
1149	} else {
1150		/*
1151		 * This is a silent loss of information.  We still
1152		 * send the signal, but the *info bits are lost.
1153		 */
1154		result = TRACE_SIGNAL_LOSE_INFO;
1155	}
1156
1157out_set:
1158	signalfd_notify(t, sig);
1159	sigaddset(&pending->signal, sig);
1160
1161	/* Let multiprocess signals appear after on-going forks */
1162	if (type > PIDTYPE_TGID) {
1163		struct multiprocess_signals *delayed;
1164		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1165			sigset_t *signal = &delayed->signal;
1166			/* Can't queue both a stop and a continue signal */
1167			if (sig == SIGCONT)
1168				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1169			else if (sig_kernel_stop(sig))
1170				sigdelset(signal, SIGCONT);
1171			sigaddset(signal, sig);
 
 
 
 
 
1172		}
1173	}
1174
1175	complete_signal(sig, t, type);
 
 
 
1176ret:
1177	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1178	return ret;
1179}
1180
1181static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
 
1182{
1183	bool ret = false;
1184	switch (siginfo_layout(info->si_signo, info->si_code)) {
1185	case SIL_KILL:
1186	case SIL_CHLD:
1187	case SIL_RT:
1188		ret = true;
1189		break;
1190	case SIL_TIMER:
1191	case SIL_POLL:
1192	case SIL_FAULT:
1193	case SIL_FAULT_MCEERR:
1194	case SIL_FAULT_BNDERR:
1195	case SIL_FAULT_PKUERR:
1196	case SIL_SYS:
1197		ret = false;
1198		break;
1199	}
1200	return ret;
1201}
1202
1203static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1204			enum pid_type type)
1205{
1206	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1207	bool force = false;
1208
1209	if (info == SEND_SIG_NOINFO) {
1210		/* Force if sent from an ancestor pid namespace */
1211		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1212	} else if (info == SEND_SIG_PRIV) {
1213		/* Don't ignore kernel generated signals */
1214		force = true;
1215	} else if (has_si_pid_and_uid(info)) {
1216		/* SIGKILL and SIGSTOP is special or has ids */
1217		struct user_namespace *t_user_ns;
1218
1219		rcu_read_lock();
1220		t_user_ns = task_cred_xxx(t, user_ns);
1221		if (current_user_ns() != t_user_ns) {
1222			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1223			info->si_uid = from_kuid_munged(t_user_ns, uid);
1224		}
1225		rcu_read_unlock();
1226
1227		/* A kernel generated signal? */
1228		force = (info->si_code == SI_KERNEL);
1229
1230		/* From an ancestor pid namespace? */
1231		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1232			info->si_pid = 0;
1233			force = true;
1234		}
1235	}
1236	return __send_signal(sig, info, t, type, force);
1237}
1238
1239static void print_fatal_signal(int signr)
1240{
1241	struct pt_regs *regs = signal_pt_regs();
1242	pr_info("potentially unexpected fatal signal %d.\n", signr);
1243
1244#if defined(__i386__) && !defined(__arch_um__)
1245	pr_info("code at %08lx: ", regs->ip);
1246	{
1247		int i;
1248		for (i = 0; i < 16; i++) {
1249			unsigned char insn;
1250
1251			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1252				break;
1253			pr_cont("%02x ", insn);
1254		}
1255	}
1256	pr_cont("\n");
1257#endif
1258	preempt_disable();
1259	show_regs(regs);
1260	preempt_enable();
1261}
1262
1263static int __init setup_print_fatal_signals(char *str)
1264{
1265	get_option (&str, &print_fatal_signals);
1266
1267	return 1;
1268}
1269
1270__setup("print-fatal-signals=", setup_print_fatal_signals);
1271
1272int
1273__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
 
 
 
 
 
 
1274{
1275	return send_signal(sig, info, p, PIDTYPE_TGID);
1276}
1277
1278int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1279			enum pid_type type)
1280{
1281	unsigned long flags;
1282	int ret = -ESRCH;
1283
1284	if (lock_task_sighand(p, &flags)) {
1285		ret = send_signal(sig, info, p, type);
1286		unlock_task_sighand(p, &flags);
1287	}
1288
1289	return ret;
1290}
1291
1292/*
1293 * Force a signal that the process can't ignore: if necessary
1294 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1295 *
1296 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1297 * since we do not want to have a signal handler that was blocked
1298 * be invoked when user space had explicitly blocked it.
1299 *
1300 * We don't want to have recursive SIGSEGV's etc, for example,
1301 * that is why we also clear SIGNAL_UNKILLABLE.
1302 */
1303static int
1304force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1305{
1306	unsigned long int flags;
1307	int ret, blocked, ignored;
1308	struct k_sigaction *action;
1309	int sig = info->si_signo;
1310
1311	spin_lock_irqsave(&t->sighand->siglock, flags);
1312	action = &t->sighand->action[sig-1];
1313	ignored = action->sa.sa_handler == SIG_IGN;
1314	blocked = sigismember(&t->blocked, sig);
1315	if (blocked || ignored) {
1316		action->sa.sa_handler = SIG_DFL;
1317		if (blocked) {
1318			sigdelset(&t->blocked, sig);
1319			recalc_sigpending_and_wake(t);
1320		}
1321	}
1322	/*
1323	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1324	 * debugging to leave init killable.
1325	 */
1326	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1327		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1328	ret = send_signal(sig, info, t, PIDTYPE_PID);
1329	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1330
1331	return ret;
1332}
1333
1334int force_sig_info(struct kernel_siginfo *info)
1335{
1336	return force_sig_info_to_task(info, current);
1337}
1338
1339/*
1340 * Nuke all other threads in the group.
1341 */
1342int zap_other_threads(struct task_struct *p)
1343{
1344	struct task_struct *t = p;
1345	int count = 0;
1346
1347	p->signal->group_stop_count = 0;
1348
1349	while_each_thread(p, t) {
1350		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1351		count++;
1352
1353		/* Don't bother with already dead threads */
1354		if (t->exit_state)
1355			continue;
1356		sigaddset(&t->pending.signal, SIGKILL);
1357		signal_wake_up(t, 1);
1358	}
1359
1360	return count;
1361}
1362
1363struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1364					   unsigned long *flags)
1365{
1366	struct sighand_struct *sighand;
1367
1368	rcu_read_lock();
1369	for (;;) {
 
 
 
 
 
 
1370		sighand = rcu_dereference(tsk->sighand);
1371		if (unlikely(sighand == NULL))
 
 
1372			break;
1373
1374		/*
1375		 * This sighand can be already freed and even reused, but
1376		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1377		 * initializes ->siglock: this slab can't go away, it has
1378		 * the same object type, ->siglock can't be reinitialized.
1379		 *
1380		 * We need to ensure that tsk->sighand is still the same
1381		 * after we take the lock, we can race with de_thread() or
1382		 * __exit_signal(). In the latter case the next iteration
1383		 * must see ->sighand == NULL.
1384		 */
1385		spin_lock_irqsave(&sighand->siglock, *flags);
1386		if (likely(sighand == tsk->sighand))
 
1387			break;
1388		spin_unlock_irqrestore(&sighand->siglock, *flags);
 
 
 
1389	}
1390	rcu_read_unlock();
1391
1392	return sighand;
1393}
1394
1395/*
1396 * send signal info to all the members of a group
1397 */
1398int group_send_sig_info(int sig, struct kernel_siginfo *info,
1399			struct task_struct *p, enum pid_type type)
1400{
1401	int ret;
1402
1403	rcu_read_lock();
1404	ret = check_kill_permission(sig, info, p);
1405	rcu_read_unlock();
1406
1407	if (!ret && sig)
1408		ret = do_send_sig_info(sig, info, p, type);
1409
1410	return ret;
1411}
1412
1413/*
1414 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1415 * control characters do (^C, ^Z etc)
1416 * - the caller must hold at least a readlock on tasklist_lock
1417 */
1418int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1419{
1420	struct task_struct *p = NULL;
1421	int retval, success;
1422
1423	success = 0;
1424	retval = -ESRCH;
1425	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1426		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1427		success |= !err;
1428		retval = err;
1429	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1430	return success ? 0 : retval;
1431}
1432
1433int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1434{
1435	int error = -ESRCH;
1436	struct task_struct *p;
1437
1438	for (;;) {
1439		rcu_read_lock();
1440		p = pid_task(pid, PIDTYPE_PID);
1441		if (p)
1442			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1443		rcu_read_unlock();
1444		if (likely(!p || error != -ESRCH))
1445			return error;
1446
1447		/*
1448		 * The task was unhashed in between, try again.  If it
1449		 * is dead, pid_task() will return NULL, if we race with
1450		 * de_thread() it will find the new leader.
1451		 */
1452	}
1453}
1454
1455static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1456{
1457	int error;
1458	rcu_read_lock();
1459	error = kill_pid_info(sig, info, find_vpid(pid));
1460	rcu_read_unlock();
1461	return error;
1462}
1463
1464static inline bool kill_as_cred_perm(const struct cred *cred,
1465				     struct task_struct *target)
1466{
1467	const struct cred *pcred = __task_cred(target);
1468
1469	return uid_eq(cred->euid, pcred->suid) ||
1470	       uid_eq(cred->euid, pcred->uid) ||
1471	       uid_eq(cred->uid, pcred->suid) ||
1472	       uid_eq(cred->uid, pcred->uid);
1473}
1474
1475/*
1476 * The usb asyncio usage of siginfo is wrong.  The glibc support
1477 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1478 * AKA after the generic fields:
1479 *	kernel_pid_t	si_pid;
1480 *	kernel_uid32_t	si_uid;
1481 *	sigval_t	si_value;
1482 *
1483 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1484 * after the generic fields is:
1485 *	void __user 	*si_addr;
1486 *
1487 * This is a practical problem when there is a 64bit big endian kernel
1488 * and a 32bit userspace.  As the 32bit address will encoded in the low
1489 * 32bits of the pointer.  Those low 32bits will be stored at higher
1490 * address than appear in a 32 bit pointer.  So userspace will not
1491 * see the address it was expecting for it's completions.
1492 *
1493 * There is nothing in the encoding that can allow
1494 * copy_siginfo_to_user32 to detect this confusion of formats, so
1495 * handle this by requiring the caller of kill_pid_usb_asyncio to
1496 * notice when this situration takes place and to store the 32bit
1497 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1498 * parameter.
1499 */
1500int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1501			 struct pid *pid, const struct cred *cred)
1502{
1503	struct kernel_siginfo info;
1504	struct task_struct *p;
1505	unsigned long flags;
1506	int ret = -EINVAL;
1507
1508	clear_siginfo(&info);
1509	info.si_signo = sig;
1510	info.si_errno = errno;
1511	info.si_code = SI_ASYNCIO;
1512	*((sigval_t *)&info.si_pid) = addr;
1513
1514	if (!valid_signal(sig))
1515		return ret;
1516
1517	rcu_read_lock();
1518	p = pid_task(pid, PIDTYPE_PID);
1519	if (!p) {
1520		ret = -ESRCH;
1521		goto out_unlock;
1522	}
1523	if (!kill_as_cred_perm(cred, p)) {
1524		ret = -EPERM;
1525		goto out_unlock;
1526	}
1527	ret = security_task_kill(p, &info, sig, cred);
1528	if (ret)
1529		goto out_unlock;
1530
1531	if (sig) {
1532		if (lock_task_sighand(p, &flags)) {
1533			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1534			unlock_task_sighand(p, &flags);
1535		} else
1536			ret = -ESRCH;
1537	}
1538out_unlock:
1539	rcu_read_unlock();
1540	return ret;
1541}
1542EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1543
1544/*
1545 * kill_something_info() interprets pid in interesting ways just like kill(2).
1546 *
1547 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1548 * is probably wrong.  Should make it like BSD or SYSV.
1549 */
1550
1551static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1552{
1553	int ret;
1554
1555	if (pid > 0) {
1556		rcu_read_lock();
1557		ret = kill_pid_info(sig, info, find_vpid(pid));
1558		rcu_read_unlock();
1559		return ret;
1560	}
1561
1562	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1563	if (pid == INT_MIN)
1564		return -ESRCH;
1565
1566	read_lock(&tasklist_lock);
1567	if (pid != -1) {
1568		ret = __kill_pgrp_info(sig, info,
1569				pid ? find_vpid(-pid) : task_pgrp(current));
1570	} else {
1571		int retval = 0, count = 0;
1572		struct task_struct * p;
1573
1574		for_each_process(p) {
1575			if (task_pid_vnr(p) > 1 &&
1576					!same_thread_group(p, current)) {
1577				int err = group_send_sig_info(sig, info, p,
1578							      PIDTYPE_MAX);
1579				++count;
1580				if (err != -EPERM)
1581					retval = err;
1582			}
1583		}
1584		ret = count ? retval : -ESRCH;
1585	}
1586	read_unlock(&tasklist_lock);
1587
1588	return ret;
1589}
1590
1591/*
1592 * These are for backward compatibility with the rest of the kernel source.
1593 */
1594
1595int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1596{
1597	/*
1598	 * Make sure legacy kernel users don't send in bad values
1599	 * (normal paths check this in check_kill_permission).
1600	 */
1601	if (!valid_signal(sig))
1602		return -EINVAL;
1603
1604	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1605}
1606EXPORT_SYMBOL(send_sig_info);
1607
1608#define __si_special(priv) \
1609	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1610
1611int
1612send_sig(int sig, struct task_struct *p, int priv)
1613{
1614	return send_sig_info(sig, __si_special(priv), p);
1615}
1616EXPORT_SYMBOL(send_sig);
1617
1618void force_sig(int sig)
 
1619{
1620	struct kernel_siginfo info;
1621
1622	clear_siginfo(&info);
1623	info.si_signo = sig;
1624	info.si_errno = 0;
1625	info.si_code = SI_KERNEL;
1626	info.si_pid = 0;
1627	info.si_uid = 0;
1628	force_sig_info(&info);
1629}
1630EXPORT_SYMBOL(force_sig);
1631
1632/*
1633 * When things go south during signal handling, we
1634 * will force a SIGSEGV. And if the signal that caused
1635 * the problem was already a SIGSEGV, we'll want to
1636 * make sure we don't even try to deliver the signal..
1637 */
1638void force_sigsegv(int sig)
 
1639{
1640	struct task_struct *p = current;
1641
1642	if (sig == SIGSEGV) {
1643		unsigned long flags;
1644		spin_lock_irqsave(&p->sighand->siglock, flags);
1645		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1646		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1647	}
1648	force_sig(SIGSEGV);
 
1649}
1650
1651int force_sig_fault_to_task(int sig, int code, void __user *addr
1652	___ARCH_SI_TRAPNO(int trapno)
1653	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1654	, struct task_struct *t)
1655{
1656	struct kernel_siginfo info;
1657
1658	clear_siginfo(&info);
1659	info.si_signo = sig;
1660	info.si_errno = 0;
1661	info.si_code  = code;
1662	info.si_addr  = addr;
1663#ifdef __ARCH_SI_TRAPNO
1664	info.si_trapno = trapno;
1665#endif
1666#ifdef __ia64__
1667	info.si_imm = imm;
1668	info.si_flags = flags;
1669	info.si_isr = isr;
1670#endif
1671	return force_sig_info_to_task(&info, t);
1672}
1673
1674int force_sig_fault(int sig, int code, void __user *addr
1675	___ARCH_SI_TRAPNO(int trapno)
1676	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1677{
1678	return force_sig_fault_to_task(sig, code, addr
1679				       ___ARCH_SI_TRAPNO(trapno)
1680				       ___ARCH_SI_IA64(imm, flags, isr), current);
1681}
1682
1683int send_sig_fault(int sig, int code, void __user *addr
1684	___ARCH_SI_TRAPNO(int trapno)
1685	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1686	, struct task_struct *t)
1687{
1688	struct kernel_siginfo info;
1689
1690	clear_siginfo(&info);
1691	info.si_signo = sig;
1692	info.si_errno = 0;
1693	info.si_code  = code;
1694	info.si_addr  = addr;
1695#ifdef __ARCH_SI_TRAPNO
1696	info.si_trapno = trapno;
1697#endif
1698#ifdef __ia64__
1699	info.si_imm = imm;
1700	info.si_flags = flags;
1701	info.si_isr = isr;
1702#endif
1703	return send_sig_info(info.si_signo, &info, t);
1704}
1705
1706int force_sig_mceerr(int code, void __user *addr, short lsb)
 
1707{
1708	struct kernel_siginfo info;
1709
1710	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1711	clear_siginfo(&info);
1712	info.si_signo = SIGBUS;
1713	info.si_errno = 0;
1714	info.si_code = code;
1715	info.si_addr = addr;
1716	info.si_addr_lsb = lsb;
1717	return force_sig_info(&info);
1718}
1719
1720int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1721{
1722	struct kernel_siginfo info;
1723
1724	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1725	clear_siginfo(&info);
1726	info.si_signo = SIGBUS;
1727	info.si_errno = 0;
1728	info.si_code = code;
1729	info.si_addr = addr;
1730	info.si_addr_lsb = lsb;
1731	return send_sig_info(info.si_signo, &info, t);
1732}
1733EXPORT_SYMBOL(send_sig_mceerr);
 
1734
 
1735int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1736{
1737	struct kernel_siginfo info;
1738
1739	clear_siginfo(&info);
1740	info.si_signo = SIGSEGV;
1741	info.si_errno = 0;
1742	info.si_code  = SEGV_BNDERR;
1743	info.si_addr  = addr;
1744	info.si_lower = lower;
1745	info.si_upper = upper;
1746	return force_sig_info(&info);
1747}
 
1748
1749#ifdef SEGV_PKUERR
1750int force_sig_pkuerr(void __user *addr, u32 pkey)
1751{
1752	struct kernel_siginfo info;
1753
1754	clear_siginfo(&info);
1755	info.si_signo = SIGSEGV;
1756	info.si_errno = 0;
1757	info.si_code  = SEGV_PKUERR;
1758	info.si_addr  = addr;
1759	info.si_pkey  = pkey;
1760	return force_sig_info(&info);
1761}
1762#endif
1763
1764/* For the crazy architectures that include trap information in
1765 * the errno field, instead of an actual errno value.
1766 */
1767int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1768{
1769	struct kernel_siginfo info;
1770
1771	clear_siginfo(&info);
1772	info.si_signo = SIGTRAP;
1773	info.si_errno = errno;
1774	info.si_code  = TRAP_HWBKPT;
1775	info.si_addr  = addr;
1776	return force_sig_info(&info);
1777}
1778
1779int kill_pgrp(struct pid *pid, int sig, int priv)
1780{
1781	int ret;
1782
1783	read_lock(&tasklist_lock);
1784	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1785	read_unlock(&tasklist_lock);
1786
1787	return ret;
1788}
1789EXPORT_SYMBOL(kill_pgrp);
1790
1791int kill_pid(struct pid *pid, int sig, int priv)
1792{
1793	return kill_pid_info(sig, __si_special(priv), pid);
1794}
1795EXPORT_SYMBOL(kill_pid);
1796
1797/*
1798 * These functions support sending signals using preallocated sigqueue
1799 * structures.  This is needed "because realtime applications cannot
1800 * afford to lose notifications of asynchronous events, like timer
1801 * expirations or I/O completions".  In the case of POSIX Timers
1802 * we allocate the sigqueue structure from the timer_create.  If this
1803 * allocation fails we are able to report the failure to the application
1804 * with an EAGAIN error.
1805 */
1806struct sigqueue *sigqueue_alloc(void)
1807{
1808	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1809
1810	if (q)
1811		q->flags |= SIGQUEUE_PREALLOC;
1812
1813	return q;
1814}
1815
1816void sigqueue_free(struct sigqueue *q)
1817{
1818	unsigned long flags;
1819	spinlock_t *lock = &current->sighand->siglock;
1820
1821	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1822	/*
1823	 * We must hold ->siglock while testing q->list
1824	 * to serialize with collect_signal() or with
1825	 * __exit_signal()->flush_sigqueue().
1826	 */
1827	spin_lock_irqsave(lock, flags);
1828	q->flags &= ~SIGQUEUE_PREALLOC;
1829	/*
1830	 * If it is queued it will be freed when dequeued,
1831	 * like the "regular" sigqueue.
1832	 */
1833	if (!list_empty(&q->list))
1834		q = NULL;
1835	spin_unlock_irqrestore(lock, flags);
1836
1837	if (q)
1838		__sigqueue_free(q);
1839}
1840
1841int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1842{
1843	int sig = q->info.si_signo;
1844	struct sigpending *pending;
1845	struct task_struct *t;
1846	unsigned long flags;
1847	int ret, result;
1848
1849	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1850
1851	ret = -1;
1852	rcu_read_lock();
1853	t = pid_task(pid, type);
1854	if (!t || !likely(lock_task_sighand(t, &flags)))
1855		goto ret;
1856
1857	ret = 1; /* the signal is ignored */
1858	result = TRACE_SIGNAL_IGNORED;
1859	if (!prepare_signal(sig, t, false))
1860		goto out;
1861
1862	ret = 0;
1863	if (unlikely(!list_empty(&q->list))) {
1864		/*
1865		 * If an SI_TIMER entry is already queue just increment
1866		 * the overrun count.
1867		 */
1868		BUG_ON(q->info.si_code != SI_TIMER);
1869		q->info.si_overrun++;
1870		result = TRACE_SIGNAL_ALREADY_PENDING;
1871		goto out;
1872	}
1873	q->info.si_overrun = 0;
1874
1875	signalfd_notify(t, sig);
1876	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1877	list_add_tail(&q->list, &pending->list);
1878	sigaddset(&pending->signal, sig);
1879	complete_signal(sig, t, type);
1880	result = TRACE_SIGNAL_DELIVERED;
1881out:
1882	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1883	unlock_task_sighand(t, &flags);
1884ret:
1885	rcu_read_unlock();
1886	return ret;
1887}
1888
1889static void do_notify_pidfd(struct task_struct *task)
1890{
1891	struct pid *pid;
1892
1893	WARN_ON(task->exit_state == 0);
1894	pid = task_pid(task);
1895	wake_up_all(&pid->wait_pidfd);
1896}
1897
1898/*
1899 * Let a parent know about the death of a child.
1900 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1901 *
1902 * Returns true if our parent ignored us and so we've switched to
1903 * self-reaping.
1904 */
1905bool do_notify_parent(struct task_struct *tsk, int sig)
1906{
1907	struct kernel_siginfo info;
1908	unsigned long flags;
1909	struct sighand_struct *psig;
1910	bool autoreap = false;
1911	u64 utime, stime;
1912
1913	BUG_ON(sig == -1);
1914
1915 	/* do_notify_parent_cldstop should have been called instead.  */
1916 	BUG_ON(task_is_stopped_or_traced(tsk));
1917
1918	BUG_ON(!tsk->ptrace &&
1919	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1920
1921	/* Wake up all pidfd waiters */
1922	do_notify_pidfd(tsk);
1923
1924	if (sig != SIGCHLD) {
1925		/*
1926		 * This is only possible if parent == real_parent.
1927		 * Check if it has changed security domain.
1928		 */
1929		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1930			sig = SIGCHLD;
1931	}
1932
1933	clear_siginfo(&info);
1934	info.si_signo = sig;
1935	info.si_errno = 0;
1936	/*
1937	 * We are under tasklist_lock here so our parent is tied to
1938	 * us and cannot change.
1939	 *
1940	 * task_active_pid_ns will always return the same pid namespace
1941	 * until a task passes through release_task.
1942	 *
1943	 * write_lock() currently calls preempt_disable() which is the
1944	 * same as rcu_read_lock(), but according to Oleg, this is not
1945	 * correct to rely on this
1946	 */
1947	rcu_read_lock();
1948	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1949	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1950				       task_uid(tsk));
1951	rcu_read_unlock();
1952
1953	task_cputime(tsk, &utime, &stime);
1954	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1955	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1956
1957	info.si_status = tsk->exit_code & 0x7f;
1958	if (tsk->exit_code & 0x80)
1959		info.si_code = CLD_DUMPED;
1960	else if (tsk->exit_code & 0x7f)
1961		info.si_code = CLD_KILLED;
1962	else {
1963		info.si_code = CLD_EXITED;
1964		info.si_status = tsk->exit_code >> 8;
1965	}
1966
1967	psig = tsk->parent->sighand;
1968	spin_lock_irqsave(&psig->siglock, flags);
1969	if (!tsk->ptrace && sig == SIGCHLD &&
1970	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1971	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1972		/*
1973		 * We are exiting and our parent doesn't care.  POSIX.1
1974		 * defines special semantics for setting SIGCHLD to SIG_IGN
1975		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1976		 * automatically and not left for our parent's wait4 call.
1977		 * Rather than having the parent do it as a magic kind of
1978		 * signal handler, we just set this to tell do_exit that we
1979		 * can be cleaned up without becoming a zombie.  Note that
1980		 * we still call __wake_up_parent in this case, because a
1981		 * blocked sys_wait4 might now return -ECHILD.
1982		 *
1983		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1984		 * is implementation-defined: we do (if you don't want
1985		 * it, just use SIG_IGN instead).
1986		 */
1987		autoreap = true;
1988		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1989			sig = 0;
1990	}
1991	if (valid_signal(sig) && sig)
1992		__group_send_sig_info(sig, &info, tsk->parent);
1993	__wake_up_parent(tsk, tsk->parent);
1994	spin_unlock_irqrestore(&psig->siglock, flags);
1995
1996	return autoreap;
1997}
1998
1999/**
2000 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2001 * @tsk: task reporting the state change
2002 * @for_ptracer: the notification is for ptracer
2003 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2004 *
2005 * Notify @tsk's parent that the stopped/continued state has changed.  If
2006 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2007 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2008 *
2009 * CONTEXT:
2010 * Must be called with tasklist_lock at least read locked.
2011 */
2012static void do_notify_parent_cldstop(struct task_struct *tsk,
2013				     bool for_ptracer, int why)
2014{
2015	struct kernel_siginfo info;
2016	unsigned long flags;
2017	struct task_struct *parent;
2018	struct sighand_struct *sighand;
2019	u64 utime, stime;
2020
2021	if (for_ptracer) {
2022		parent = tsk->parent;
2023	} else {
2024		tsk = tsk->group_leader;
2025		parent = tsk->real_parent;
2026	}
2027
2028	clear_siginfo(&info);
2029	info.si_signo = SIGCHLD;
2030	info.si_errno = 0;
2031	/*
2032	 * see comment in do_notify_parent() about the following 4 lines
2033	 */
2034	rcu_read_lock();
2035	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2036	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2037	rcu_read_unlock();
2038
2039	task_cputime(tsk, &utime, &stime);
2040	info.si_utime = nsec_to_clock_t(utime);
2041	info.si_stime = nsec_to_clock_t(stime);
2042
2043 	info.si_code = why;
2044 	switch (why) {
2045 	case CLD_CONTINUED:
2046 		info.si_status = SIGCONT;
2047 		break;
2048 	case CLD_STOPPED:
2049 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2050 		break;
2051 	case CLD_TRAPPED:
2052 		info.si_status = tsk->exit_code & 0x7f;
2053 		break;
2054 	default:
2055 		BUG();
2056 	}
2057
2058	sighand = parent->sighand;
2059	spin_lock_irqsave(&sighand->siglock, flags);
2060	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2061	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2062		__group_send_sig_info(SIGCHLD, &info, parent);
2063	/*
2064	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2065	 */
2066	__wake_up_parent(tsk, parent);
2067	spin_unlock_irqrestore(&sighand->siglock, flags);
2068}
2069
2070static inline bool may_ptrace_stop(void)
2071{
2072	if (!likely(current->ptrace))
2073		return false;
2074	/*
2075	 * Are we in the middle of do_coredump?
2076	 * If so and our tracer is also part of the coredump stopping
2077	 * is a deadlock situation, and pointless because our tracer
2078	 * is dead so don't allow us to stop.
2079	 * If SIGKILL was already sent before the caller unlocked
2080	 * ->siglock we must see ->core_state != NULL. Otherwise it
2081	 * is safe to enter schedule().
2082	 *
2083	 * This is almost outdated, a task with the pending SIGKILL can't
2084	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2085	 * after SIGKILL was already dequeued.
2086	 */
2087	if (unlikely(current->mm->core_state) &&
2088	    unlikely(current->mm == current->parent->mm))
2089		return false;
2090
2091	return true;
2092}
2093
2094/*
2095 * Return non-zero if there is a SIGKILL that should be waking us up.
2096 * Called with the siglock held.
2097 */
2098static bool sigkill_pending(struct task_struct *tsk)
2099{
2100	return sigismember(&tsk->pending.signal, SIGKILL) ||
2101	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2102}
2103
2104/*
2105 * This must be called with current->sighand->siglock held.
2106 *
2107 * This should be the path for all ptrace stops.
2108 * We always set current->last_siginfo while stopped here.
2109 * That makes it a way to test a stopped process for
2110 * being ptrace-stopped vs being job-control-stopped.
2111 *
2112 * If we actually decide not to stop at all because the tracer
2113 * is gone, we keep current->exit_code unless clear_code.
2114 */
2115static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2116	__releases(&current->sighand->siglock)
2117	__acquires(&current->sighand->siglock)
2118{
2119	bool gstop_done = false;
2120
2121	if (arch_ptrace_stop_needed(exit_code, info)) {
2122		/*
2123		 * The arch code has something special to do before a
2124		 * ptrace stop.  This is allowed to block, e.g. for faults
2125		 * on user stack pages.  We can't keep the siglock while
2126		 * calling arch_ptrace_stop, so we must release it now.
2127		 * To preserve proper semantics, we must do this before
2128		 * any signal bookkeeping like checking group_stop_count.
2129		 * Meanwhile, a SIGKILL could come in before we retake the
2130		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2131		 * So after regaining the lock, we must check for SIGKILL.
2132		 */
2133		spin_unlock_irq(&current->sighand->siglock);
2134		arch_ptrace_stop(exit_code, info);
2135		spin_lock_irq(&current->sighand->siglock);
2136		if (sigkill_pending(current))
2137			return;
2138	}
2139
2140	set_special_state(TASK_TRACED);
2141
2142	/*
2143	 * We're committing to trapping.  TRACED should be visible before
2144	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2145	 * Also, transition to TRACED and updates to ->jobctl should be
2146	 * atomic with respect to siglock and should be done after the arch
2147	 * hook as siglock is released and regrabbed across it.
2148	 *
2149	 *     TRACER				    TRACEE
2150	 *
2151	 *     ptrace_attach()
2152	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2153	 *     do_wait()
2154	 *       set_current_state()                smp_wmb();
2155	 *       ptrace_do_wait()
2156	 *         wait_task_stopped()
2157	 *           task_stopped_code()
2158	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2159	 */
2160	smp_wmb();
2161
2162	current->last_siginfo = info;
2163	current->exit_code = exit_code;
2164
2165	/*
2166	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2167	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2168	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2169	 * could be clear now.  We act as if SIGCONT is received after
2170	 * TASK_TRACED is entered - ignore it.
2171	 */
2172	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2173		gstop_done = task_participate_group_stop(current);
2174
2175	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2176	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2177	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2178		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2179
2180	/* entering a trap, clear TRAPPING */
2181	task_clear_jobctl_trapping(current);
2182
2183	spin_unlock_irq(&current->sighand->siglock);
2184	read_lock(&tasklist_lock);
2185	if (may_ptrace_stop()) {
2186		/*
2187		 * Notify parents of the stop.
2188		 *
2189		 * While ptraced, there are two parents - the ptracer and
2190		 * the real_parent of the group_leader.  The ptracer should
2191		 * know about every stop while the real parent is only
2192		 * interested in the completion of group stop.  The states
2193		 * for the two don't interact with each other.  Notify
2194		 * separately unless they're gonna be duplicates.
2195		 */
2196		do_notify_parent_cldstop(current, true, why);
2197		if (gstop_done && ptrace_reparented(current))
2198			do_notify_parent_cldstop(current, false, why);
2199
2200		/*
2201		 * Don't want to allow preemption here, because
2202		 * sys_ptrace() needs this task to be inactive.
2203		 *
2204		 * XXX: implement read_unlock_no_resched().
2205		 */
2206		preempt_disable();
2207		read_unlock(&tasklist_lock);
2208		cgroup_enter_frozen();
2209		preempt_enable_no_resched();
2210		freezable_schedule();
2211		cgroup_leave_frozen(true);
2212	} else {
2213		/*
2214		 * By the time we got the lock, our tracer went away.
2215		 * Don't drop the lock yet, another tracer may come.
2216		 *
2217		 * If @gstop_done, the ptracer went away between group stop
2218		 * completion and here.  During detach, it would have set
2219		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2220		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2221		 * the real parent of the group stop completion is enough.
2222		 */
2223		if (gstop_done)
2224			do_notify_parent_cldstop(current, false, why);
2225
2226		/* tasklist protects us from ptrace_freeze_traced() */
2227		__set_current_state(TASK_RUNNING);
2228		if (clear_code)
2229			current->exit_code = 0;
2230		read_unlock(&tasklist_lock);
2231	}
2232
2233	/*
2234	 * We are back.  Now reacquire the siglock before touching
2235	 * last_siginfo, so that we are sure to have synchronized with
2236	 * any signal-sending on another CPU that wants to examine it.
2237	 */
2238	spin_lock_irq(&current->sighand->siglock);
2239	current->last_siginfo = NULL;
2240
2241	/* LISTENING can be set only during STOP traps, clear it */
2242	current->jobctl &= ~JOBCTL_LISTENING;
2243
2244	/*
2245	 * Queued signals ignored us while we were stopped for tracing.
2246	 * So check for any that we should take before resuming user mode.
2247	 * This sets TIF_SIGPENDING, but never clears it.
2248	 */
2249	recalc_sigpending_tsk(current);
2250}
2251
2252static void ptrace_do_notify(int signr, int exit_code, int why)
2253{
2254	kernel_siginfo_t info;
2255
2256	clear_siginfo(&info);
2257	info.si_signo = signr;
2258	info.si_code = exit_code;
2259	info.si_pid = task_pid_vnr(current);
2260	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2261
2262	/* Let the debugger run.  */
2263	ptrace_stop(exit_code, why, 1, &info);
2264}
2265
2266void ptrace_notify(int exit_code)
2267{
2268	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2269	if (unlikely(current->task_works))
2270		task_work_run();
2271
2272	spin_lock_irq(&current->sighand->siglock);
2273	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2274	spin_unlock_irq(&current->sighand->siglock);
2275}
2276
2277/**
2278 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2279 * @signr: signr causing group stop if initiating
2280 *
2281 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2282 * and participate in it.  If already set, participate in the existing
2283 * group stop.  If participated in a group stop (and thus slept), %true is
2284 * returned with siglock released.
2285 *
2286 * If ptraced, this function doesn't handle stop itself.  Instead,
2287 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2288 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2289 * places afterwards.
2290 *
2291 * CONTEXT:
2292 * Must be called with @current->sighand->siglock held, which is released
2293 * on %true return.
2294 *
2295 * RETURNS:
2296 * %false if group stop is already cancelled or ptrace trap is scheduled.
2297 * %true if participated in group stop.
2298 */
2299static bool do_signal_stop(int signr)
2300	__releases(&current->sighand->siglock)
2301{
2302	struct signal_struct *sig = current->signal;
2303
2304	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2305		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2306		struct task_struct *t;
2307
2308		/* signr will be recorded in task->jobctl for retries */
2309		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2310
2311		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2312		    unlikely(signal_group_exit(sig)))
2313			return false;
2314		/*
2315		 * There is no group stop already in progress.  We must
2316		 * initiate one now.
2317		 *
2318		 * While ptraced, a task may be resumed while group stop is
2319		 * still in effect and then receive a stop signal and
2320		 * initiate another group stop.  This deviates from the
2321		 * usual behavior as two consecutive stop signals can't
2322		 * cause two group stops when !ptraced.  That is why we
2323		 * also check !task_is_stopped(t) below.
2324		 *
2325		 * The condition can be distinguished by testing whether
2326		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2327		 * group_exit_code in such case.
2328		 *
2329		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2330		 * an intervening stop signal is required to cause two
2331		 * continued events regardless of ptrace.
2332		 */
2333		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2334			sig->group_exit_code = signr;
2335
2336		sig->group_stop_count = 0;
2337
2338		if (task_set_jobctl_pending(current, signr | gstop))
2339			sig->group_stop_count++;
2340
2341		t = current;
2342		while_each_thread(current, t) {
2343			/*
2344			 * Setting state to TASK_STOPPED for a group
2345			 * stop is always done with the siglock held,
2346			 * so this check has no races.
2347			 */
2348			if (!task_is_stopped(t) &&
2349			    task_set_jobctl_pending(t, signr | gstop)) {
2350				sig->group_stop_count++;
2351				if (likely(!(t->ptrace & PT_SEIZED)))
2352					signal_wake_up(t, 0);
2353				else
2354					ptrace_trap_notify(t);
2355			}
2356		}
2357	}
2358
2359	if (likely(!current->ptrace)) {
2360		int notify = 0;
2361
2362		/*
2363		 * If there are no other threads in the group, or if there
2364		 * is a group stop in progress and we are the last to stop,
2365		 * report to the parent.
2366		 */
2367		if (task_participate_group_stop(current))
2368			notify = CLD_STOPPED;
2369
2370		set_special_state(TASK_STOPPED);
2371		spin_unlock_irq(&current->sighand->siglock);
2372
2373		/*
2374		 * Notify the parent of the group stop completion.  Because
2375		 * we're not holding either the siglock or tasklist_lock
2376		 * here, ptracer may attach inbetween; however, this is for
2377		 * group stop and should always be delivered to the real
2378		 * parent of the group leader.  The new ptracer will get
2379		 * its notification when this task transitions into
2380		 * TASK_TRACED.
2381		 */
2382		if (notify) {
2383			read_lock(&tasklist_lock);
2384			do_notify_parent_cldstop(current, false, notify);
2385			read_unlock(&tasklist_lock);
2386		}
2387
2388		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2389		cgroup_enter_frozen();
2390		freezable_schedule();
2391		return true;
2392	} else {
2393		/*
2394		 * While ptraced, group stop is handled by STOP trap.
2395		 * Schedule it and let the caller deal with it.
2396		 */
2397		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2398		return false;
2399	}
2400}
2401
2402/**
2403 * do_jobctl_trap - take care of ptrace jobctl traps
2404 *
2405 * When PT_SEIZED, it's used for both group stop and explicit
2406 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2407 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2408 * the stop signal; otherwise, %SIGTRAP.
2409 *
2410 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2411 * number as exit_code and no siginfo.
2412 *
2413 * CONTEXT:
2414 * Must be called with @current->sighand->siglock held, which may be
2415 * released and re-acquired before returning with intervening sleep.
2416 */
2417static void do_jobctl_trap(void)
2418{
2419	struct signal_struct *signal = current->signal;
2420	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2421
2422	if (current->ptrace & PT_SEIZED) {
2423		if (!signal->group_stop_count &&
2424		    !(signal->flags & SIGNAL_STOP_STOPPED))
2425			signr = SIGTRAP;
2426		WARN_ON_ONCE(!signr);
2427		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2428				 CLD_STOPPED);
2429	} else {
2430		WARN_ON_ONCE(!signr);
2431		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2432		current->exit_code = 0;
2433	}
2434}
2435
2436/**
2437 * do_freezer_trap - handle the freezer jobctl trap
2438 *
2439 * Puts the task into frozen state, if only the task is not about to quit.
2440 * In this case it drops JOBCTL_TRAP_FREEZE.
2441 *
2442 * CONTEXT:
2443 * Must be called with @current->sighand->siglock held,
2444 * which is always released before returning.
2445 */
2446static void do_freezer_trap(void)
2447	__releases(&current->sighand->siglock)
2448{
2449	/*
2450	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2451	 * let's make another loop to give it a chance to be handled.
2452	 * In any case, we'll return back.
2453	 */
2454	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2455	     JOBCTL_TRAP_FREEZE) {
2456		spin_unlock_irq(&current->sighand->siglock);
2457		return;
2458	}
2459
2460	/*
2461	 * Now we're sure that there is no pending fatal signal and no
2462	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2463	 * immediately (if there is a non-fatal signal pending), and
2464	 * put the task into sleep.
2465	 */
2466	__set_current_state(TASK_INTERRUPTIBLE);
2467	clear_thread_flag(TIF_SIGPENDING);
2468	spin_unlock_irq(&current->sighand->siglock);
2469	cgroup_enter_frozen();
2470	freezable_schedule();
2471}
2472
2473static int ptrace_signal(int signr, kernel_siginfo_t *info)
2474{
2475	/*
2476	 * We do not check sig_kernel_stop(signr) but set this marker
2477	 * unconditionally because we do not know whether debugger will
2478	 * change signr. This flag has no meaning unless we are going
2479	 * to stop after return from ptrace_stop(). In this case it will
2480	 * be checked in do_signal_stop(), we should only stop if it was
2481	 * not cleared by SIGCONT while we were sleeping. See also the
2482	 * comment in dequeue_signal().
2483	 */
2484	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2485	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2486
2487	/* We're back.  Did the debugger cancel the sig?  */
2488	signr = current->exit_code;
2489	if (signr == 0)
2490		return signr;
2491
2492	current->exit_code = 0;
2493
2494	/*
2495	 * Update the siginfo structure if the signal has
2496	 * changed.  If the debugger wanted something
2497	 * specific in the siginfo structure then it should
2498	 * have updated *info via PTRACE_SETSIGINFO.
2499	 */
2500	if (signr != info->si_signo) {
2501		clear_siginfo(info);
2502		info->si_signo = signr;
2503		info->si_errno = 0;
2504		info->si_code = SI_USER;
2505		rcu_read_lock();
2506		info->si_pid = task_pid_vnr(current->parent);
2507		info->si_uid = from_kuid_munged(current_user_ns(),
2508						task_uid(current->parent));
2509		rcu_read_unlock();
2510	}
2511
2512	/* If the (new) signal is now blocked, requeue it.  */
2513	if (sigismember(&current->blocked, signr)) {
2514		send_signal(signr, info, current, PIDTYPE_PID);
2515		signr = 0;
2516	}
2517
2518	return signr;
2519}
2520
2521bool get_signal(struct ksignal *ksig)
2522{
2523	struct sighand_struct *sighand = current->sighand;
2524	struct signal_struct *signal = current->signal;
2525	int signr;
2526
2527	if (unlikely(current->task_works))
2528		task_work_run();
2529
2530	if (unlikely(uprobe_deny_signal()))
2531		return false;
2532
2533	/*
2534	 * Do this once, we can't return to user-mode if freezing() == T.
2535	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2536	 * thus do not need another check after return.
2537	 */
2538	try_to_freeze();
2539
2540relock:
2541	spin_lock_irq(&sighand->siglock);
2542	/*
2543	 * Every stopped thread goes here after wakeup. Check to see if
2544	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2545	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2546	 */
2547	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2548		int why;
2549
2550		if (signal->flags & SIGNAL_CLD_CONTINUED)
2551			why = CLD_CONTINUED;
2552		else
2553			why = CLD_STOPPED;
2554
2555		signal->flags &= ~SIGNAL_CLD_MASK;
2556
2557		spin_unlock_irq(&sighand->siglock);
2558
2559		/*
2560		 * Notify the parent that we're continuing.  This event is
2561		 * always per-process and doesn't make whole lot of sense
2562		 * for ptracers, who shouldn't consume the state via
2563		 * wait(2) either, but, for backward compatibility, notify
2564		 * the ptracer of the group leader too unless it's gonna be
2565		 * a duplicate.
2566		 */
2567		read_lock(&tasklist_lock);
2568		do_notify_parent_cldstop(current, false, why);
2569
2570		if (ptrace_reparented(current->group_leader))
2571			do_notify_parent_cldstop(current->group_leader,
2572						true, why);
2573		read_unlock(&tasklist_lock);
2574
2575		goto relock;
2576	}
2577
2578	/* Has this task already been marked for death? */
2579	if (signal_group_exit(signal)) {
2580		ksig->info.si_signo = signr = SIGKILL;
2581		sigdelset(&current->pending.signal, SIGKILL);
2582		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2583				&sighand->action[SIGKILL - 1]);
2584		recalc_sigpending();
2585		goto fatal;
2586	}
2587
2588	for (;;) {
2589		struct k_sigaction *ka;
2590
2591		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2592		    do_signal_stop(0))
2593			goto relock;
2594
2595		if (unlikely(current->jobctl &
2596			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2597			if (current->jobctl & JOBCTL_TRAP_MASK) {
2598				do_jobctl_trap();
2599				spin_unlock_irq(&sighand->siglock);
2600			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2601				do_freezer_trap();
2602
2603			goto relock;
2604		}
2605
2606		/*
2607		 * If the task is leaving the frozen state, let's update
2608		 * cgroup counters and reset the frozen bit.
2609		 */
2610		if (unlikely(cgroup_task_frozen(current))) {
2611			spin_unlock_irq(&sighand->siglock);
2612			cgroup_leave_frozen(false);
2613			goto relock;
2614		}
2615
2616		/*
2617		 * Signals generated by the execution of an instruction
2618		 * need to be delivered before any other pending signals
2619		 * so that the instruction pointer in the signal stack
2620		 * frame points to the faulting instruction.
2621		 */
2622		signr = dequeue_synchronous_signal(&ksig->info);
2623		if (!signr)
2624			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2625
2626		if (!signr)
2627			break; /* will return 0 */
2628
2629		if (unlikely(current->ptrace) && signr != SIGKILL) {
2630			signr = ptrace_signal(signr, &ksig->info);
2631			if (!signr)
2632				continue;
2633		}
2634
2635		ka = &sighand->action[signr-1];
2636
2637		/* Trace actually delivered signals. */
2638		trace_signal_deliver(signr, &ksig->info, ka);
2639
2640		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2641			continue;
2642		if (ka->sa.sa_handler != SIG_DFL) {
2643			/* Run the handler.  */
2644			ksig->ka = *ka;
2645
2646			if (ka->sa.sa_flags & SA_ONESHOT)
2647				ka->sa.sa_handler = SIG_DFL;
2648
2649			break; /* will return non-zero "signr" value */
2650		}
2651
2652		/*
2653		 * Now we are doing the default action for this signal.
2654		 */
2655		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2656			continue;
2657
2658		/*
2659		 * Global init gets no signals it doesn't want.
2660		 * Container-init gets no signals it doesn't want from same
2661		 * container.
2662		 *
2663		 * Note that if global/container-init sees a sig_kernel_only()
2664		 * signal here, the signal must have been generated internally
2665		 * or must have come from an ancestor namespace. In either
2666		 * case, the signal cannot be dropped.
2667		 */
2668		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2669				!sig_kernel_only(signr))
2670			continue;
2671
2672		if (sig_kernel_stop(signr)) {
2673			/*
2674			 * The default action is to stop all threads in
2675			 * the thread group.  The job control signals
2676			 * do nothing in an orphaned pgrp, but SIGSTOP
2677			 * always works.  Note that siglock needs to be
2678			 * dropped during the call to is_orphaned_pgrp()
2679			 * because of lock ordering with tasklist_lock.
2680			 * This allows an intervening SIGCONT to be posted.
2681			 * We need to check for that and bail out if necessary.
2682			 */
2683			if (signr != SIGSTOP) {
2684				spin_unlock_irq(&sighand->siglock);
2685
2686				/* signals can be posted during this window */
2687
2688				if (is_current_pgrp_orphaned())
2689					goto relock;
2690
2691				spin_lock_irq(&sighand->siglock);
2692			}
2693
2694			if (likely(do_signal_stop(ksig->info.si_signo))) {
2695				/* It released the siglock.  */
2696				goto relock;
2697			}
2698
2699			/*
2700			 * We didn't actually stop, due to a race
2701			 * with SIGCONT or something like that.
2702			 */
2703			continue;
2704		}
2705
2706	fatal:
2707		spin_unlock_irq(&sighand->siglock);
2708		if (unlikely(cgroup_task_frozen(current)))
2709			cgroup_leave_frozen(true);
2710
2711		/*
2712		 * Anything else is fatal, maybe with a core dump.
2713		 */
2714		current->flags |= PF_SIGNALED;
2715
2716		if (sig_kernel_coredump(signr)) {
2717			if (print_fatal_signals)
2718				print_fatal_signal(ksig->info.si_signo);
2719			proc_coredump_connector(current);
2720			/*
2721			 * If it was able to dump core, this kills all
2722			 * other threads in the group and synchronizes with
2723			 * their demise.  If we lost the race with another
2724			 * thread getting here, it set group_exit_code
2725			 * first and our do_group_exit call below will use
2726			 * that value and ignore the one we pass it.
2727			 */
2728			do_coredump(&ksig->info);
2729		}
2730
2731		/*
2732		 * Death signals, no core dump.
2733		 */
2734		do_group_exit(ksig->info.si_signo);
2735		/* NOTREACHED */
2736	}
2737	spin_unlock_irq(&sighand->siglock);
2738
2739	ksig->sig = signr;
2740	return ksig->sig > 0;
2741}
2742
2743/**
2744 * signal_delivered - 
2745 * @ksig:		kernel signal struct
2746 * @stepping:		nonzero if debugger single-step or block-step in use
2747 *
2748 * This function should be called when a signal has successfully been
2749 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2750 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2751 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2752 */
2753static void signal_delivered(struct ksignal *ksig, int stepping)
2754{
2755	sigset_t blocked;
2756
2757	/* A signal was successfully delivered, and the
2758	   saved sigmask was stored on the signal frame,
2759	   and will be restored by sigreturn.  So we can
2760	   simply clear the restore sigmask flag.  */
2761	clear_restore_sigmask();
2762
2763	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2764	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2765		sigaddset(&blocked, ksig->sig);
2766	set_current_blocked(&blocked);
2767	tracehook_signal_handler(stepping);
2768}
2769
2770void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2771{
2772	if (failed)
2773		force_sigsegv(ksig->sig);
2774	else
2775		signal_delivered(ksig, stepping);
2776}
2777
2778/*
2779 * It could be that complete_signal() picked us to notify about the
2780 * group-wide signal. Other threads should be notified now to take
2781 * the shared signals in @which since we will not.
2782 */
2783static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2784{
2785	sigset_t retarget;
2786	struct task_struct *t;
2787
2788	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2789	if (sigisemptyset(&retarget))
2790		return;
2791
2792	t = tsk;
2793	while_each_thread(tsk, t) {
2794		if (t->flags & PF_EXITING)
2795			continue;
2796
2797		if (!has_pending_signals(&retarget, &t->blocked))
2798			continue;
2799		/* Remove the signals this thread can handle. */
2800		sigandsets(&retarget, &retarget, &t->blocked);
2801
2802		if (!signal_pending(t))
2803			signal_wake_up(t, 0);
2804
2805		if (sigisemptyset(&retarget))
2806			break;
2807	}
2808}
2809
2810void exit_signals(struct task_struct *tsk)
2811{
2812	int group_stop = 0;
2813	sigset_t unblocked;
2814
2815	/*
2816	 * @tsk is about to have PF_EXITING set - lock out users which
2817	 * expect stable threadgroup.
2818	 */
2819	cgroup_threadgroup_change_begin(tsk);
2820
2821	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2822		tsk->flags |= PF_EXITING;
2823		cgroup_threadgroup_change_end(tsk);
2824		return;
2825	}
2826
2827	spin_lock_irq(&tsk->sighand->siglock);
2828	/*
2829	 * From now this task is not visible for group-wide signals,
2830	 * see wants_signal(), do_signal_stop().
2831	 */
2832	tsk->flags |= PF_EXITING;
2833
2834	cgroup_threadgroup_change_end(tsk);
2835
2836	if (!signal_pending(tsk))
2837		goto out;
2838
2839	unblocked = tsk->blocked;
2840	signotset(&unblocked);
2841	retarget_shared_pending(tsk, &unblocked);
2842
2843	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2844	    task_participate_group_stop(tsk))
2845		group_stop = CLD_STOPPED;
2846out:
2847	spin_unlock_irq(&tsk->sighand->siglock);
2848
2849	/*
2850	 * If group stop has completed, deliver the notification.  This
2851	 * should always go to the real parent of the group leader.
2852	 */
2853	if (unlikely(group_stop)) {
2854		read_lock(&tasklist_lock);
2855		do_notify_parent_cldstop(tsk, false, group_stop);
2856		read_unlock(&tasklist_lock);
2857	}
2858}
2859
 
 
 
 
 
 
 
 
2860/*
2861 * System call entry points.
2862 */
2863
2864/**
2865 *  sys_restart_syscall - restart a system call
2866 */
2867SYSCALL_DEFINE0(restart_syscall)
2868{
2869	struct restart_block *restart = &current->restart_block;
2870	return restart->fn(restart);
2871}
2872
2873long do_no_restart_syscall(struct restart_block *param)
2874{
2875	return -EINTR;
2876}
2877
2878static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2879{
2880	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2881		sigset_t newblocked;
2882		/* A set of now blocked but previously unblocked signals. */
2883		sigandnsets(&newblocked, newset, &current->blocked);
2884		retarget_shared_pending(tsk, &newblocked);
2885	}
2886	tsk->blocked = *newset;
2887	recalc_sigpending();
2888}
2889
2890/**
2891 * set_current_blocked - change current->blocked mask
2892 * @newset: new mask
2893 *
2894 * It is wrong to change ->blocked directly, this helper should be used
2895 * to ensure the process can't miss a shared signal we are going to block.
2896 */
2897void set_current_blocked(sigset_t *newset)
2898{
2899	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2900	__set_current_blocked(newset);
2901}
2902
2903void __set_current_blocked(const sigset_t *newset)
2904{
2905	struct task_struct *tsk = current;
2906
2907	/*
2908	 * In case the signal mask hasn't changed, there is nothing we need
2909	 * to do. The current->blocked shouldn't be modified by other task.
2910	 */
2911	if (sigequalsets(&tsk->blocked, newset))
2912		return;
2913
2914	spin_lock_irq(&tsk->sighand->siglock);
2915	__set_task_blocked(tsk, newset);
2916	spin_unlock_irq(&tsk->sighand->siglock);
2917}
2918
2919/*
2920 * This is also useful for kernel threads that want to temporarily
2921 * (or permanently) block certain signals.
2922 *
2923 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2924 * interface happily blocks "unblockable" signals like SIGKILL
2925 * and friends.
2926 */
2927int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2928{
2929	struct task_struct *tsk = current;
2930	sigset_t newset;
2931
2932	/* Lockless, only current can change ->blocked, never from irq */
2933	if (oldset)
2934		*oldset = tsk->blocked;
2935
2936	switch (how) {
2937	case SIG_BLOCK:
2938		sigorsets(&newset, &tsk->blocked, set);
2939		break;
2940	case SIG_UNBLOCK:
2941		sigandnsets(&newset, &tsk->blocked, set);
2942		break;
2943	case SIG_SETMASK:
2944		newset = *set;
2945		break;
2946	default:
2947		return -EINVAL;
2948	}
2949
2950	__set_current_blocked(&newset);
2951	return 0;
2952}
2953EXPORT_SYMBOL(sigprocmask);
2954
2955/*
2956 * The api helps set app-provided sigmasks.
2957 *
2958 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2959 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2960 *
2961 * Note that it does set_restore_sigmask() in advance, so it must be always
2962 * paired with restore_saved_sigmask_unless() before return from syscall.
2963 */
2964int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2965{
2966	sigset_t kmask;
2967
2968	if (!umask)
2969		return 0;
2970	if (sigsetsize != sizeof(sigset_t))
2971		return -EINVAL;
2972	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2973		return -EFAULT;
2974
2975	set_restore_sigmask();
2976	current->saved_sigmask = current->blocked;
2977	set_current_blocked(&kmask);
2978
2979	return 0;
2980}
2981
2982#ifdef CONFIG_COMPAT
2983int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2984			    size_t sigsetsize)
2985{
2986	sigset_t kmask;
2987
2988	if (!umask)
2989		return 0;
2990	if (sigsetsize != sizeof(compat_sigset_t))
2991		return -EINVAL;
2992	if (get_compat_sigset(&kmask, umask))
2993		return -EFAULT;
2994
2995	set_restore_sigmask();
2996	current->saved_sigmask = current->blocked;
2997	set_current_blocked(&kmask);
2998
2999	return 0;
3000}
3001#endif
3002
3003/**
3004 *  sys_rt_sigprocmask - change the list of currently blocked signals
3005 *  @how: whether to add, remove, or set signals
3006 *  @nset: stores pending signals
3007 *  @oset: previous value of signal mask if non-null
3008 *  @sigsetsize: size of sigset_t type
3009 */
3010SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3011		sigset_t __user *, oset, size_t, sigsetsize)
3012{
3013	sigset_t old_set, new_set;
3014	int error;
3015
3016	/* XXX: Don't preclude handling different sized sigset_t's.  */
3017	if (sigsetsize != sizeof(sigset_t))
3018		return -EINVAL;
3019
3020	old_set = current->blocked;
3021
3022	if (nset) {
3023		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3024			return -EFAULT;
3025		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3026
3027		error = sigprocmask(how, &new_set, NULL);
3028		if (error)
3029			return error;
3030	}
3031
3032	if (oset) {
3033		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3034			return -EFAULT;
3035	}
3036
3037	return 0;
3038}
3039
3040#ifdef CONFIG_COMPAT
3041COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3042		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3043{
3044	sigset_t old_set = current->blocked;
3045
3046	/* XXX: Don't preclude handling different sized sigset_t's.  */
3047	if (sigsetsize != sizeof(sigset_t))
3048		return -EINVAL;
3049
3050	if (nset) {
3051		sigset_t new_set;
3052		int error;
3053		if (get_compat_sigset(&new_set, nset))
3054			return -EFAULT;
3055		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3056
3057		error = sigprocmask(how, &new_set, NULL);
3058		if (error)
3059			return error;
3060	}
3061	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3062}
3063#endif
3064
3065static void do_sigpending(sigset_t *set)
3066{
3067	spin_lock_irq(&current->sighand->siglock);
3068	sigorsets(set, &current->pending.signal,
3069		  &current->signal->shared_pending.signal);
3070	spin_unlock_irq(&current->sighand->siglock);
3071
3072	/* Outside the lock because only this thread touches it.  */
3073	sigandsets(set, &current->blocked, set);
 
3074}
3075
3076/**
3077 *  sys_rt_sigpending - examine a pending signal that has been raised
3078 *			while blocked
3079 *  @uset: stores pending signals
3080 *  @sigsetsize: size of sigset_t type or larger
3081 */
3082SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3083{
3084	sigset_t set;
 
3085
3086	if (sigsetsize > sizeof(*uset))
3087		return -EINVAL;
3088
3089	do_sigpending(&set);
3090
3091	if (copy_to_user(uset, &set, sigsetsize))
3092		return -EFAULT;
3093
3094	return 0;
3095}
3096
3097#ifdef CONFIG_COMPAT
3098COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3099		compat_size_t, sigsetsize)
3100{
3101	sigset_t set;
 
3102
3103	if (sigsetsize > sizeof(*uset))
3104		return -EINVAL;
3105
3106	do_sigpending(&set);
3107
3108	return put_compat_sigset(uset, &set, sigsetsize);
 
3109}
3110#endif
3111
3112static const struct {
3113	unsigned char limit, layout;
3114} sig_sicodes[] = {
3115	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3116	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3117	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3118	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3119	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3120#if defined(SIGEMT)
3121	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3122#endif
3123	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3124	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3125	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3126};
3127
3128static bool known_siginfo_layout(unsigned sig, int si_code)
3129{
3130	if (si_code == SI_KERNEL)
3131		return true;
3132	else if ((si_code > SI_USER)) {
3133		if (sig_specific_sicodes(sig)) {
3134			if (si_code <= sig_sicodes[sig].limit)
3135				return true;
3136		}
3137		else if (si_code <= NSIGPOLL)
3138			return true;
3139	}
3140	else if (si_code >= SI_DETHREAD)
3141		return true;
3142	else if (si_code == SI_ASYNCNL)
3143		return true;
3144	return false;
3145}
3146
3147enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3148{
3149	enum siginfo_layout layout = SIL_KILL;
3150	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3151		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3152		    (si_code <= sig_sicodes[sig].limit)) {
3153			layout = sig_sicodes[sig].layout;
3154			/* Handle the exceptions */
3155			if ((sig == SIGBUS) &&
3156			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3157				layout = SIL_FAULT_MCEERR;
3158			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3159				layout = SIL_FAULT_BNDERR;
3160#ifdef SEGV_PKUERR
3161			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3162				layout = SIL_FAULT_PKUERR;
3163#endif
3164		}
 
 
 
3165		else if (si_code <= NSIGPOLL)
3166			layout = SIL_POLL;
3167	} else {
3168		if (si_code == SI_TIMER)
3169			layout = SIL_TIMER;
3170		else if (si_code == SI_SIGIO)
3171			layout = SIL_POLL;
3172		else if (si_code < 0)
3173			layout = SIL_RT;
 
 
 
 
 
 
 
 
 
3174	}
3175	return layout;
3176}
3177
3178static inline char __user *si_expansion(const siginfo_t __user *info)
3179{
3180	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3181}
3182
3183int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3184{
3185	char __user *expansion = si_expansion(to);
3186	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3187		return -EFAULT;
3188	if (clear_user(expansion, SI_EXPANSION_SIZE))
3189		return -EFAULT;
3190	return 0;
3191}
3192
3193static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3194				       const siginfo_t __user *from)
3195{
3196	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3197		char __user *expansion = si_expansion(from);
3198		char buf[SI_EXPANSION_SIZE];
3199		int i;
3200		/*
3201		 * An unknown si_code might need more than
3202		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3203		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3204		 * will return this data to userspace exactly.
3205		 */
3206		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3207			return -EFAULT;
3208		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3209			if (buf[i] != 0)
3210				return -E2BIG;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3211		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3212	}
3213	return 0;
3214}
3215
3216static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3217				    const siginfo_t __user *from)
3218{
3219	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3220		return -EFAULT;
3221	to->si_signo = signo;
3222	return post_copy_siginfo_from_user(to, from);
3223}
3224
3225int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3226{
3227	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3228		return -EFAULT;
3229	return post_copy_siginfo_from_user(to, from);
3230}
3231
3232#ifdef CONFIG_COMPAT
3233int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3234			   const struct kernel_siginfo *from)
3235#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3236{
3237	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3238}
3239int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3240			     const struct kernel_siginfo *from, bool x32_ABI)
3241#endif
3242{
3243	struct compat_siginfo new;
3244	memset(&new, 0, sizeof(new));
3245
3246	new.si_signo = from->si_signo;
3247	new.si_errno = from->si_errno;
3248	new.si_code  = from->si_code;
3249	switch(siginfo_layout(from->si_signo, from->si_code)) {
3250	case SIL_KILL:
3251		new.si_pid = from->si_pid;
3252		new.si_uid = from->si_uid;
3253		break;
3254	case SIL_TIMER:
3255		new.si_tid     = from->si_tid;
3256		new.si_overrun = from->si_overrun;
3257		new.si_int     = from->si_int;
3258		break;
3259	case SIL_POLL:
3260		new.si_band = from->si_band;
3261		new.si_fd   = from->si_fd;
3262		break;
3263	case SIL_FAULT:
3264		new.si_addr = ptr_to_compat(from->si_addr);
3265#ifdef __ARCH_SI_TRAPNO
3266		new.si_trapno = from->si_trapno;
3267#endif
3268		break;
3269	case SIL_FAULT_MCEERR:
3270		new.si_addr = ptr_to_compat(from->si_addr);
3271#ifdef __ARCH_SI_TRAPNO
3272		new.si_trapno = from->si_trapno;
3273#endif
3274		new.si_addr_lsb = from->si_addr_lsb;
3275		break;
3276	case SIL_FAULT_BNDERR:
3277		new.si_addr = ptr_to_compat(from->si_addr);
3278#ifdef __ARCH_SI_TRAPNO
3279		new.si_trapno = from->si_trapno;
 
 
3280#endif
3281		new.si_lower = ptr_to_compat(from->si_lower);
3282		new.si_upper = ptr_to_compat(from->si_upper);
3283		break;
3284	case SIL_FAULT_PKUERR:
3285		new.si_addr = ptr_to_compat(from->si_addr);
3286#ifdef __ARCH_SI_TRAPNO
3287		new.si_trapno = from->si_trapno;
3288#endif
3289		new.si_pkey = from->si_pkey;
3290		break;
3291	case SIL_CHLD:
3292		new.si_pid    = from->si_pid;
3293		new.si_uid    = from->si_uid;
3294		new.si_status = from->si_status;
3295#ifdef CONFIG_X86_X32_ABI
3296		if (x32_ABI) {
3297			new._sifields._sigchld_x32._utime = from->si_utime;
3298			new._sifields._sigchld_x32._stime = from->si_stime;
3299		} else
3300#endif
3301		{
3302			new.si_utime = from->si_utime;
3303			new.si_stime = from->si_stime;
3304		}
3305		break;
3306	case SIL_RT:
3307		new.si_pid = from->si_pid;
3308		new.si_uid = from->si_uid;
3309		new.si_int = from->si_int;
3310		break;
3311	case SIL_SYS:
3312		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3313		new.si_syscall   = from->si_syscall;
3314		new.si_arch      = from->si_arch;
3315		break;
3316	}
3317
3318	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3319		return -EFAULT;
3320
3321	return 0;
3322}
3323
3324static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3325					 const struct compat_siginfo *from)
3326{
 
 
 
 
 
3327	clear_siginfo(to);
3328	to->si_signo = from->si_signo;
3329	to->si_errno = from->si_errno;
3330	to->si_code  = from->si_code;
3331	switch(siginfo_layout(from->si_signo, from->si_code)) {
3332	case SIL_KILL:
3333		to->si_pid = from->si_pid;
3334		to->si_uid = from->si_uid;
3335		break;
3336	case SIL_TIMER:
3337		to->si_tid     = from->si_tid;
3338		to->si_overrun = from->si_overrun;
3339		to->si_int     = from->si_int;
3340		break;
3341	case SIL_POLL:
3342		to->si_band = from->si_band;
3343		to->si_fd   = from->si_fd;
3344		break;
3345	case SIL_FAULT:
3346		to->si_addr = compat_ptr(from->si_addr);
3347#ifdef __ARCH_SI_TRAPNO
3348		to->si_trapno = from->si_trapno;
3349#endif
3350		break;
3351	case SIL_FAULT_MCEERR:
3352		to->si_addr = compat_ptr(from->si_addr);
3353#ifdef __ARCH_SI_TRAPNO
3354		to->si_trapno = from->si_trapno;
3355#endif
3356		to->si_addr_lsb = from->si_addr_lsb;
3357		break;
3358	case SIL_FAULT_BNDERR:
3359		to->si_addr = compat_ptr(from->si_addr);
3360#ifdef __ARCH_SI_TRAPNO
3361		to->si_trapno = from->si_trapno;
 
 
 
 
 
 
 
3362#endif
3363		to->si_lower = compat_ptr(from->si_lower);
3364		to->si_upper = compat_ptr(from->si_upper);
3365		break;
3366	case SIL_FAULT_PKUERR:
3367		to->si_addr = compat_ptr(from->si_addr);
3368#ifdef __ARCH_SI_TRAPNO
3369		to->si_trapno = from->si_trapno;
3370#endif
3371		to->si_pkey = from->si_pkey;
3372		break;
3373	case SIL_CHLD:
3374		to->si_pid    = from->si_pid;
3375		to->si_uid    = from->si_uid;
3376		to->si_status = from->si_status;
3377#ifdef CONFIG_X86_X32_ABI
3378		if (in_x32_syscall()) {
3379			to->si_utime = from->_sifields._sigchld_x32._utime;
3380			to->si_stime = from->_sifields._sigchld_x32._stime;
3381		} else
3382#endif
3383		{
3384			to->si_utime = from->si_utime;
3385			to->si_stime = from->si_stime;
3386		}
3387		break;
3388	case SIL_RT:
3389		to->si_pid = from->si_pid;
3390		to->si_uid = from->si_uid;
3391		to->si_int = from->si_int;
3392		break;
3393	case SIL_SYS:
3394		to->si_call_addr = compat_ptr(from->si_call_addr);
3395		to->si_syscall   = from->si_syscall;
3396		to->si_arch      = from->si_arch;
3397		break;
3398	}
3399	return 0;
3400}
3401
3402static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3403				      const struct compat_siginfo __user *ufrom)
3404{
3405	struct compat_siginfo from;
3406
3407	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3408		return -EFAULT;
3409
3410	from.si_signo = signo;
3411	return post_copy_siginfo_from_user32(to, &from);
3412}
3413
3414int copy_siginfo_from_user32(struct kernel_siginfo *to,
3415			     const struct compat_siginfo __user *ufrom)
3416{
3417	struct compat_siginfo from;
3418
3419	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3420		return -EFAULT;
3421
3422	return post_copy_siginfo_from_user32(to, &from);
3423}
3424#endif /* CONFIG_COMPAT */
3425
3426/**
3427 *  do_sigtimedwait - wait for queued signals specified in @which
3428 *  @which: queued signals to wait for
3429 *  @info: if non-null, the signal's siginfo is returned here
3430 *  @ts: upper bound on process time suspension
3431 */
3432static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3433		    const struct timespec64 *ts)
3434{
3435	ktime_t *to = NULL, timeout = KTIME_MAX;
3436	struct task_struct *tsk = current;
3437	sigset_t mask = *which;
3438	int sig, ret = 0;
3439
3440	if (ts) {
3441		if (!timespec64_valid(ts))
3442			return -EINVAL;
3443		timeout = timespec64_to_ktime(*ts);
3444		to = &timeout;
3445	}
3446
3447	/*
3448	 * Invert the set of allowed signals to get those we want to block.
3449	 */
3450	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3451	signotset(&mask);
3452
3453	spin_lock_irq(&tsk->sighand->siglock);
3454	sig = dequeue_signal(tsk, &mask, info);
3455	if (!sig && timeout) {
3456		/*
3457		 * None ready, temporarily unblock those we're interested
3458		 * while we are sleeping in so that we'll be awakened when
3459		 * they arrive. Unblocking is always fine, we can avoid
3460		 * set_current_blocked().
3461		 */
3462		tsk->real_blocked = tsk->blocked;
3463		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3464		recalc_sigpending();
3465		spin_unlock_irq(&tsk->sighand->siglock);
3466
3467		__set_current_state(TASK_INTERRUPTIBLE);
3468		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3469							 HRTIMER_MODE_REL);
3470		spin_lock_irq(&tsk->sighand->siglock);
3471		__set_task_blocked(tsk, &tsk->real_blocked);
3472		sigemptyset(&tsk->real_blocked);
3473		sig = dequeue_signal(tsk, &mask, info);
3474	}
3475	spin_unlock_irq(&tsk->sighand->siglock);
3476
3477	if (sig)
3478		return sig;
3479	return ret ? -EINTR : -EAGAIN;
3480}
3481
3482/**
3483 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3484 *			in @uthese
3485 *  @uthese: queued signals to wait for
3486 *  @uinfo: if non-null, the signal's siginfo is returned here
3487 *  @uts: upper bound on process time suspension
3488 *  @sigsetsize: size of sigset_t type
3489 */
3490SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3491		siginfo_t __user *, uinfo,
3492		const struct __kernel_timespec __user *, uts,
3493		size_t, sigsetsize)
3494{
3495	sigset_t these;
3496	struct timespec64 ts;
3497	kernel_siginfo_t info;
3498	int ret;
3499
3500	/* XXX: Don't preclude handling different sized sigset_t's.  */
3501	if (sigsetsize != sizeof(sigset_t))
3502		return -EINVAL;
3503
3504	if (copy_from_user(&these, uthese, sizeof(these)))
3505		return -EFAULT;
3506
3507	if (uts) {
3508		if (get_timespec64(&ts, uts))
3509			return -EFAULT;
3510	}
3511
3512	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3513
3514	if (ret > 0 && uinfo) {
3515		if (copy_siginfo_to_user(uinfo, &info))
3516			ret = -EFAULT;
3517	}
3518
3519	return ret;
3520}
3521
3522#ifdef CONFIG_COMPAT_32BIT_TIME
3523SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3524		siginfo_t __user *, uinfo,
3525		const struct old_timespec32 __user *, uts,
3526		size_t, sigsetsize)
3527{
3528	sigset_t these;
3529	struct timespec64 ts;
3530	kernel_siginfo_t info;
3531	int ret;
3532
3533	if (sigsetsize != sizeof(sigset_t))
3534		return -EINVAL;
3535
3536	if (copy_from_user(&these, uthese, sizeof(these)))
3537		return -EFAULT;
3538
3539	if (uts) {
3540		if (get_old_timespec32(&ts, uts))
3541			return -EFAULT;
3542	}
3543
3544	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3545
3546	if (ret > 0 && uinfo) {
3547		if (copy_siginfo_to_user(uinfo, &info))
3548			ret = -EFAULT;
3549	}
3550
3551	return ret;
3552}
3553#endif
3554
3555#ifdef CONFIG_COMPAT
3556COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3557		struct compat_siginfo __user *, uinfo,
3558		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3559{
3560	sigset_t s;
3561	struct timespec64 t;
3562	kernel_siginfo_t info;
3563	long ret;
3564
3565	if (sigsetsize != sizeof(sigset_t))
3566		return -EINVAL;
3567
3568	if (get_compat_sigset(&s, uthese))
3569		return -EFAULT;
3570
3571	if (uts) {
3572		if (get_timespec64(&t, uts))
3573			return -EFAULT;
3574	}
3575
3576	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3577
3578	if (ret > 0 && uinfo) {
3579		if (copy_siginfo_to_user32(uinfo, &info))
3580			ret = -EFAULT;
3581	}
3582
3583	return ret;
3584}
3585
3586#ifdef CONFIG_COMPAT_32BIT_TIME
3587COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3588		struct compat_siginfo __user *, uinfo,
3589		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3590{
3591	sigset_t s;
3592	struct timespec64 t;
3593	kernel_siginfo_t info;
3594	long ret;
3595
3596	if (sigsetsize != sizeof(sigset_t))
3597		return -EINVAL;
3598
3599	if (get_compat_sigset(&s, uthese))
3600		return -EFAULT;
3601
3602	if (uts) {
3603		if (get_old_timespec32(&t, uts))
3604			return -EFAULT;
3605	}
3606
3607	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3608
3609	if (ret > 0 && uinfo) {
3610		if (copy_siginfo_to_user32(uinfo, &info))
3611			ret = -EFAULT;
3612	}
3613
3614	return ret;
3615}
3616#endif
3617#endif
3618
3619static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3620{
3621	clear_siginfo(info);
3622	info->si_signo = sig;
3623	info->si_errno = 0;
3624	info->si_code = SI_USER;
3625	info->si_pid = task_tgid_vnr(current);
3626	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3627}
3628
3629/**
3630 *  sys_kill - send a signal to a process
3631 *  @pid: the PID of the process
3632 *  @sig: signal to be sent
3633 */
3634SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3635{
3636	struct kernel_siginfo info;
3637
3638	prepare_kill_siginfo(sig, &info);
 
 
 
 
 
3639
3640	return kill_something_info(sig, &info, pid);
3641}
3642
3643/*
3644 * Verify that the signaler and signalee either are in the same pid namespace
3645 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3646 * namespace.
3647 */
3648static bool access_pidfd_pidns(struct pid *pid)
3649{
3650	struct pid_namespace *active = task_active_pid_ns(current);
3651	struct pid_namespace *p = ns_of_pid(pid);
3652
3653	for (;;) {
3654		if (!p)
3655			return false;
3656		if (p == active)
3657			break;
3658		p = p->parent;
3659	}
3660
3661	return true;
3662}
3663
3664static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3665{
3666#ifdef CONFIG_COMPAT
3667	/*
3668	 * Avoid hooking up compat syscalls and instead handle necessary
3669	 * conversions here. Note, this is a stop-gap measure and should not be
3670	 * considered a generic solution.
3671	 */
3672	if (in_compat_syscall())
3673		return copy_siginfo_from_user32(
3674			kinfo, (struct compat_siginfo __user *)info);
3675#endif
3676	return copy_siginfo_from_user(kinfo, info);
3677}
3678
3679static struct pid *pidfd_to_pid(const struct file *file)
3680{
3681	struct pid *pid;
3682
3683	pid = pidfd_pid(file);
3684	if (!IS_ERR(pid))
3685		return pid;
3686
3687	return tgid_pidfd_to_pid(file);
3688}
3689
3690/**
3691 * sys_pidfd_send_signal - Signal a process through a pidfd
3692 * @pidfd:  file descriptor of the process
3693 * @sig:    signal to send
3694 * @info:   signal info
3695 * @flags:  future flags
3696 *
3697 * The syscall currently only signals via PIDTYPE_PID which covers
3698 * kill(<positive-pid>, <signal>. It does not signal threads or process
3699 * groups.
3700 * In order to extend the syscall to threads and process groups the @flags
3701 * argument should be used. In essence, the @flags argument will determine
3702 * what is signaled and not the file descriptor itself. Put in other words,
3703 * grouping is a property of the flags argument not a property of the file
3704 * descriptor.
3705 *
3706 * Return: 0 on success, negative errno on failure
3707 */
3708SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3709		siginfo_t __user *, info, unsigned int, flags)
3710{
3711	int ret;
3712	struct fd f;
3713	struct pid *pid;
3714	kernel_siginfo_t kinfo;
3715
3716	/* Enforce flags be set to 0 until we add an extension. */
3717	if (flags)
3718		return -EINVAL;
3719
3720	f = fdget(pidfd);
3721	if (!f.file)
3722		return -EBADF;
3723
3724	/* Is this a pidfd? */
3725	pid = pidfd_to_pid(f.file);
3726	if (IS_ERR(pid)) {
3727		ret = PTR_ERR(pid);
3728		goto err;
3729	}
3730
3731	ret = -EINVAL;
3732	if (!access_pidfd_pidns(pid))
3733		goto err;
3734
3735	if (info) {
3736		ret = copy_siginfo_from_user_any(&kinfo, info);
3737		if (unlikely(ret))
3738			goto err;
3739
3740		ret = -EINVAL;
3741		if (unlikely(sig != kinfo.si_signo))
3742			goto err;
3743
3744		/* Only allow sending arbitrary signals to yourself. */
3745		ret = -EPERM;
3746		if ((task_pid(current) != pid) &&
3747		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3748			goto err;
3749	} else {
3750		prepare_kill_siginfo(sig, &kinfo);
3751	}
3752
3753	ret = kill_pid_info(sig, &kinfo, pid);
3754
3755err:
3756	fdput(f);
3757	return ret;
3758}
3759
3760static int
3761do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3762{
3763	struct task_struct *p;
3764	int error = -ESRCH;
3765
3766	rcu_read_lock();
3767	p = find_task_by_vpid(pid);
3768	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3769		error = check_kill_permission(sig, info, p);
3770		/*
3771		 * The null signal is a permissions and process existence
3772		 * probe.  No signal is actually delivered.
3773		 */
3774		if (!error && sig) {
3775			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3776			/*
3777			 * If lock_task_sighand() failed we pretend the task
3778			 * dies after receiving the signal. The window is tiny,
3779			 * and the signal is private anyway.
3780			 */
3781			if (unlikely(error == -ESRCH))
3782				error = 0;
3783		}
3784	}
3785	rcu_read_unlock();
3786
3787	return error;
3788}
3789
3790static int do_tkill(pid_t tgid, pid_t pid, int sig)
3791{
3792	struct kernel_siginfo info;
3793
3794	clear_siginfo(&info);
3795	info.si_signo = sig;
3796	info.si_errno = 0;
3797	info.si_code = SI_TKILL;
3798	info.si_pid = task_tgid_vnr(current);
3799	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800
3801	return do_send_specific(tgid, pid, sig, &info);
3802}
3803
3804/**
3805 *  sys_tgkill - send signal to one specific thread
3806 *  @tgid: the thread group ID of the thread
3807 *  @pid: the PID of the thread
3808 *  @sig: signal to be sent
3809 *
3810 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3811 *  exists but it's not belonging to the target process anymore. This
3812 *  method solves the problem of threads exiting and PIDs getting reused.
3813 */
3814SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3815{
3816	/* This is only valid for single tasks */
3817	if (pid <= 0 || tgid <= 0)
3818		return -EINVAL;
3819
3820	return do_tkill(tgid, pid, sig);
3821}
3822
3823/**
3824 *  sys_tkill - send signal to one specific task
3825 *  @pid: the PID of the task
3826 *  @sig: signal to be sent
3827 *
3828 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3829 */
3830SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3831{
3832	/* This is only valid for single tasks */
3833	if (pid <= 0)
3834		return -EINVAL;
3835
3836	return do_tkill(0, pid, sig);
3837}
3838
3839static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3840{
3841	/* Not even root can pretend to send signals from the kernel.
3842	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3843	 */
3844	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3845	    (task_pid_vnr(current) != pid))
3846		return -EPERM;
3847
 
 
3848	/* POSIX.1b doesn't mention process groups.  */
3849	return kill_proc_info(sig, info, pid);
3850}
3851
3852/**
3853 *  sys_rt_sigqueueinfo - send signal information to a signal
3854 *  @pid: the PID of the thread
3855 *  @sig: signal to be sent
3856 *  @uinfo: signal info to be sent
3857 */
3858SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3859		siginfo_t __user *, uinfo)
3860{
3861	kernel_siginfo_t info;
3862	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3863	if (unlikely(ret))
3864		return ret;
3865	return do_rt_sigqueueinfo(pid, sig, &info);
3866}
3867
3868#ifdef CONFIG_COMPAT
3869COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3870			compat_pid_t, pid,
3871			int, sig,
3872			struct compat_siginfo __user *, uinfo)
3873{
3874	kernel_siginfo_t info;
3875	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3876	if (unlikely(ret))
3877		return ret;
3878	return do_rt_sigqueueinfo(pid, sig, &info);
3879}
3880#endif
3881
3882static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3883{
3884	/* This is only valid for single tasks */
3885	if (pid <= 0 || tgid <= 0)
3886		return -EINVAL;
3887
3888	/* Not even root can pretend to send signals from the kernel.
3889	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3890	 */
3891	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3892	    (task_pid_vnr(current) != pid))
3893		return -EPERM;
3894
 
 
3895	return do_send_specific(tgid, pid, sig, info);
3896}
3897
3898SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3899		siginfo_t __user *, uinfo)
3900{
3901	kernel_siginfo_t info;
3902	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3903	if (unlikely(ret))
3904		return ret;
 
3905	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3906}
3907
3908#ifdef CONFIG_COMPAT
3909COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3910			compat_pid_t, tgid,
3911			compat_pid_t, pid,
3912			int, sig,
3913			struct compat_siginfo __user *, uinfo)
3914{
3915	kernel_siginfo_t info;
3916	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3917	if (unlikely(ret))
3918		return ret;
3919	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3920}
3921#endif
3922
3923/*
3924 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3925 */
3926void kernel_sigaction(int sig, __sighandler_t action)
3927{
3928	spin_lock_irq(&current->sighand->siglock);
3929	current->sighand->action[sig - 1].sa.sa_handler = action;
3930	if (action == SIG_IGN) {
3931		sigset_t mask;
3932
3933		sigemptyset(&mask);
3934		sigaddset(&mask, sig);
3935
3936		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3937		flush_sigqueue_mask(&mask, &current->pending);
3938		recalc_sigpending();
3939	}
3940	spin_unlock_irq(&current->sighand->siglock);
3941}
3942EXPORT_SYMBOL(kernel_sigaction);
3943
3944void __weak sigaction_compat_abi(struct k_sigaction *act,
3945		struct k_sigaction *oact)
3946{
3947}
3948
3949int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3950{
3951	struct task_struct *p = current, *t;
3952	struct k_sigaction *k;
3953	sigset_t mask;
3954
3955	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3956		return -EINVAL;
3957
3958	k = &p->sighand->action[sig-1];
3959
3960	spin_lock_irq(&p->sighand->siglock);
3961	if (oact)
3962		*oact = *k;
3963
3964	sigaction_compat_abi(act, oact);
3965
3966	if (act) {
3967		sigdelsetmask(&act->sa.sa_mask,
3968			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3969		*k = *act;
3970		/*
3971		 * POSIX 3.3.1.3:
3972		 *  "Setting a signal action to SIG_IGN for a signal that is
3973		 *   pending shall cause the pending signal to be discarded,
3974		 *   whether or not it is blocked."
3975		 *
3976		 *  "Setting a signal action to SIG_DFL for a signal that is
3977		 *   pending and whose default action is to ignore the signal
3978		 *   (for example, SIGCHLD), shall cause the pending signal to
3979		 *   be discarded, whether or not it is blocked"
3980		 */
3981		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3982			sigemptyset(&mask);
3983			sigaddset(&mask, sig);
3984			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3985			for_each_thread(p, t)
3986				flush_sigqueue_mask(&mask, &t->pending);
3987		}
3988	}
3989
3990	spin_unlock_irq(&p->sighand->siglock);
3991	return 0;
3992}
3993
3994static int
3995do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3996		size_t min_ss_size)
3997{
3998	struct task_struct *t = current;
3999
4000	if (oss) {
4001		memset(oss, 0, sizeof(stack_t));
4002		oss->ss_sp = (void __user *) t->sas_ss_sp;
4003		oss->ss_size = t->sas_ss_size;
4004		oss->ss_flags = sas_ss_flags(sp) |
4005			(current->sas_ss_flags & SS_FLAG_BITS);
4006	}
4007
4008	if (ss) {
4009		void __user *ss_sp = ss->ss_sp;
4010		size_t ss_size = ss->ss_size;
4011		unsigned ss_flags = ss->ss_flags;
4012		int ss_mode;
4013
4014		if (unlikely(on_sig_stack(sp)))
4015			return -EPERM;
4016
4017		ss_mode = ss_flags & ~SS_FLAG_BITS;
4018		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4019				ss_mode != 0))
4020			return -EINVAL;
4021
4022		if (ss_mode == SS_DISABLE) {
4023			ss_size = 0;
4024			ss_sp = NULL;
4025		} else {
4026			if (unlikely(ss_size < min_ss_size))
4027				return -ENOMEM;
4028		}
4029
4030		t->sas_ss_sp = (unsigned long) ss_sp;
4031		t->sas_ss_size = ss_size;
4032		t->sas_ss_flags = ss_flags;
4033	}
4034	return 0;
4035}
4036
4037SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4038{
4039	stack_t new, old;
4040	int err;
4041	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4042		return -EFAULT;
4043	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4044			      current_user_stack_pointer(),
4045			      MINSIGSTKSZ);
4046	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4047		err = -EFAULT;
4048	return err;
4049}
4050
4051int restore_altstack(const stack_t __user *uss)
4052{
4053	stack_t new;
4054	if (copy_from_user(&new, uss, sizeof(stack_t)))
4055		return -EFAULT;
4056	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4057			     MINSIGSTKSZ);
4058	/* squash all but EFAULT for now */
4059	return 0;
4060}
4061
4062int __save_altstack(stack_t __user *uss, unsigned long sp)
4063{
4064	struct task_struct *t = current;
4065	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4066		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4067		__put_user(t->sas_ss_size, &uss->ss_size);
4068	if (err)
4069		return err;
4070	if (t->sas_ss_flags & SS_AUTODISARM)
4071		sas_ss_reset(t);
4072	return 0;
4073}
4074
4075#ifdef CONFIG_COMPAT
4076static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4077				 compat_stack_t __user *uoss_ptr)
4078{
4079	stack_t uss, uoss;
4080	int ret;
4081
4082	if (uss_ptr) {
4083		compat_stack_t uss32;
4084		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4085			return -EFAULT;
4086		uss.ss_sp = compat_ptr(uss32.ss_sp);
4087		uss.ss_flags = uss32.ss_flags;
4088		uss.ss_size = uss32.ss_size;
4089	}
4090	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4091			     compat_user_stack_pointer(),
4092			     COMPAT_MINSIGSTKSZ);
4093	if (ret >= 0 && uoss_ptr)  {
4094		compat_stack_t old;
4095		memset(&old, 0, sizeof(old));
4096		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4097		old.ss_flags = uoss.ss_flags;
4098		old.ss_size = uoss.ss_size;
4099		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4100			ret = -EFAULT;
4101	}
4102	return ret;
4103}
4104
4105COMPAT_SYSCALL_DEFINE2(sigaltstack,
4106			const compat_stack_t __user *, uss_ptr,
4107			compat_stack_t __user *, uoss_ptr)
4108{
4109	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4110}
4111
4112int compat_restore_altstack(const compat_stack_t __user *uss)
4113{
4114	int err = do_compat_sigaltstack(uss, NULL);
4115	/* squash all but -EFAULT for now */
4116	return err == -EFAULT ? err : 0;
4117}
4118
4119int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4120{
4121	int err;
4122	struct task_struct *t = current;
4123	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4124			 &uss->ss_sp) |
4125		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4126		__put_user(t->sas_ss_size, &uss->ss_size);
4127	if (err)
4128		return err;
4129	if (t->sas_ss_flags & SS_AUTODISARM)
4130		sas_ss_reset(t);
4131	return 0;
4132}
4133#endif
4134
4135#ifdef __ARCH_WANT_SYS_SIGPENDING
4136
4137/**
4138 *  sys_sigpending - examine pending signals
4139 *  @uset: where mask of pending signal is returned
4140 */
4141SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4142{
4143	sigset_t set;
 
4144
4145	if (sizeof(old_sigset_t) > sizeof(*uset))
4146		return -EINVAL;
4147
4148	do_sigpending(&set);
4149
4150	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4151		return -EFAULT;
4152
4153	return 0;
4154}
4155
4156#ifdef CONFIG_COMPAT
4157COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4158{
4159	sigset_t set;
4160
4161	do_sigpending(&set);
4162
4163	return put_user(set.sig[0], set32);
4164}
4165#endif
4166
4167#endif
4168
4169#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4170/**
4171 *  sys_sigprocmask - examine and change blocked signals
4172 *  @how: whether to add, remove, or set signals
4173 *  @nset: signals to add or remove (if non-null)
4174 *  @oset: previous value of signal mask if non-null
4175 *
4176 * Some platforms have their own version with special arguments;
4177 * others support only sys_rt_sigprocmask.
4178 */
4179
4180SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4181		old_sigset_t __user *, oset)
4182{
4183	old_sigset_t old_set, new_set;
4184	sigset_t new_blocked;
4185
4186	old_set = current->blocked.sig[0];
4187
4188	if (nset) {
4189		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4190			return -EFAULT;
4191
4192		new_blocked = current->blocked;
4193
4194		switch (how) {
4195		case SIG_BLOCK:
4196			sigaddsetmask(&new_blocked, new_set);
4197			break;
4198		case SIG_UNBLOCK:
4199			sigdelsetmask(&new_blocked, new_set);
4200			break;
4201		case SIG_SETMASK:
4202			new_blocked.sig[0] = new_set;
4203			break;
4204		default:
4205			return -EINVAL;
4206		}
4207
4208		set_current_blocked(&new_blocked);
4209	}
4210
4211	if (oset) {
4212		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4213			return -EFAULT;
4214	}
4215
4216	return 0;
4217}
4218#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4219
4220#ifndef CONFIG_ODD_RT_SIGACTION
4221/**
4222 *  sys_rt_sigaction - alter an action taken by a process
4223 *  @sig: signal to be sent
4224 *  @act: new sigaction
4225 *  @oact: used to save the previous sigaction
4226 *  @sigsetsize: size of sigset_t type
4227 */
4228SYSCALL_DEFINE4(rt_sigaction, int, sig,
4229		const struct sigaction __user *, act,
4230		struct sigaction __user *, oact,
4231		size_t, sigsetsize)
4232{
4233	struct k_sigaction new_sa, old_sa;
4234	int ret;
4235
4236	/* XXX: Don't preclude handling different sized sigset_t's.  */
4237	if (sigsetsize != sizeof(sigset_t))
4238		return -EINVAL;
4239
4240	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4241		return -EFAULT;
 
 
4242
4243	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4244	if (ret)
4245		return ret;
4246
4247	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4248		return -EFAULT;
4249
4250	return 0;
 
 
 
 
 
4251}
4252#ifdef CONFIG_COMPAT
4253COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4254		const struct compat_sigaction __user *, act,
4255		struct compat_sigaction __user *, oact,
4256		compat_size_t, sigsetsize)
4257{
4258	struct k_sigaction new_ka, old_ka;
4259#ifdef __ARCH_HAS_SA_RESTORER
4260	compat_uptr_t restorer;
4261#endif
4262	int ret;
4263
4264	/* XXX: Don't preclude handling different sized sigset_t's.  */
4265	if (sigsetsize != sizeof(compat_sigset_t))
4266		return -EINVAL;
4267
4268	if (act) {
4269		compat_uptr_t handler;
4270		ret = get_user(handler, &act->sa_handler);
4271		new_ka.sa.sa_handler = compat_ptr(handler);
4272#ifdef __ARCH_HAS_SA_RESTORER
4273		ret |= get_user(restorer, &act->sa_restorer);
4274		new_ka.sa.sa_restorer = compat_ptr(restorer);
4275#endif
4276		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4277		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4278		if (ret)
4279			return -EFAULT;
4280	}
4281
4282	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4283	if (!ret && oact) {
4284		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4285			       &oact->sa_handler);
4286		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4287					 sizeof(oact->sa_mask));
4288		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4289#ifdef __ARCH_HAS_SA_RESTORER
4290		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4291				&oact->sa_restorer);
4292#endif
4293	}
4294	return ret;
4295}
4296#endif
4297#endif /* !CONFIG_ODD_RT_SIGACTION */
4298
4299#ifdef CONFIG_OLD_SIGACTION
4300SYSCALL_DEFINE3(sigaction, int, sig,
4301		const struct old_sigaction __user *, act,
4302	        struct old_sigaction __user *, oact)
4303{
4304	struct k_sigaction new_ka, old_ka;
4305	int ret;
4306
4307	if (act) {
4308		old_sigset_t mask;
4309		if (!access_ok(act, sizeof(*act)) ||
4310		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4311		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4312		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4313		    __get_user(mask, &act->sa_mask))
4314			return -EFAULT;
4315#ifdef __ARCH_HAS_KA_RESTORER
4316		new_ka.ka_restorer = NULL;
4317#endif
4318		siginitset(&new_ka.sa.sa_mask, mask);
4319	}
4320
4321	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4322
4323	if (!ret && oact) {
4324		if (!access_ok(oact, sizeof(*oact)) ||
4325		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4326		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4327		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4328		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4329			return -EFAULT;
4330	}
4331
4332	return ret;
4333}
4334#endif
4335#ifdef CONFIG_COMPAT_OLD_SIGACTION
4336COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4337		const struct compat_old_sigaction __user *, act,
4338	        struct compat_old_sigaction __user *, oact)
4339{
4340	struct k_sigaction new_ka, old_ka;
4341	int ret;
4342	compat_old_sigset_t mask;
4343	compat_uptr_t handler, restorer;
4344
4345	if (act) {
4346		if (!access_ok(act, sizeof(*act)) ||
4347		    __get_user(handler, &act->sa_handler) ||
4348		    __get_user(restorer, &act->sa_restorer) ||
4349		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4350		    __get_user(mask, &act->sa_mask))
4351			return -EFAULT;
4352
4353#ifdef __ARCH_HAS_KA_RESTORER
4354		new_ka.ka_restorer = NULL;
4355#endif
4356		new_ka.sa.sa_handler = compat_ptr(handler);
4357		new_ka.sa.sa_restorer = compat_ptr(restorer);
4358		siginitset(&new_ka.sa.sa_mask, mask);
4359	}
4360
4361	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4362
4363	if (!ret && oact) {
4364		if (!access_ok(oact, sizeof(*oact)) ||
4365		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4366			       &oact->sa_handler) ||
4367		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4368			       &oact->sa_restorer) ||
4369		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4370		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4371			return -EFAULT;
4372	}
4373	return ret;
4374}
4375#endif
4376
4377#ifdef CONFIG_SGETMASK_SYSCALL
4378
4379/*
4380 * For backwards compatibility.  Functionality superseded by sigprocmask.
4381 */
4382SYSCALL_DEFINE0(sgetmask)
4383{
4384	/* SMP safe */
4385	return current->blocked.sig[0];
4386}
4387
4388SYSCALL_DEFINE1(ssetmask, int, newmask)
4389{
4390	int old = current->blocked.sig[0];
4391	sigset_t newset;
4392
4393	siginitset(&newset, newmask);
4394	set_current_blocked(&newset);
4395
4396	return old;
4397}
4398#endif /* CONFIG_SGETMASK_SYSCALL */
4399
4400#ifdef __ARCH_WANT_SYS_SIGNAL
4401/*
4402 * For backwards compatibility.  Functionality superseded by sigaction.
4403 */
4404SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4405{
4406	struct k_sigaction new_sa, old_sa;
4407	int ret;
4408
4409	new_sa.sa.sa_handler = handler;
4410	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4411	sigemptyset(&new_sa.sa.sa_mask);
4412
4413	ret = do_sigaction(sig, &new_sa, &old_sa);
4414
4415	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4416}
4417#endif /* __ARCH_WANT_SYS_SIGNAL */
4418
4419#ifdef __ARCH_WANT_SYS_PAUSE
4420
4421SYSCALL_DEFINE0(pause)
4422{
4423	while (!signal_pending(current)) {
4424		__set_current_state(TASK_INTERRUPTIBLE);
4425		schedule();
4426	}
4427	return -ERESTARTNOHAND;
4428}
4429
4430#endif
4431
4432static int sigsuspend(sigset_t *set)
4433{
4434	current->saved_sigmask = current->blocked;
4435	set_current_blocked(set);
4436
4437	while (!signal_pending(current)) {
4438		__set_current_state(TASK_INTERRUPTIBLE);
4439		schedule();
4440	}
4441	set_restore_sigmask();
4442	return -ERESTARTNOHAND;
4443}
4444
4445/**
4446 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4447 *	@unewset value until a signal is received
4448 *  @unewset: new signal mask value
4449 *  @sigsetsize: size of sigset_t type
4450 */
4451SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4452{
4453	sigset_t newset;
4454
4455	/* XXX: Don't preclude handling different sized sigset_t's.  */
4456	if (sigsetsize != sizeof(sigset_t))
4457		return -EINVAL;
4458
4459	if (copy_from_user(&newset, unewset, sizeof(newset)))
4460		return -EFAULT;
4461	return sigsuspend(&newset);
4462}
4463 
4464#ifdef CONFIG_COMPAT
4465COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4466{
4467	sigset_t newset;
4468
4469	/* XXX: Don't preclude handling different sized sigset_t's.  */
4470	if (sigsetsize != sizeof(sigset_t))
4471		return -EINVAL;
4472
4473	if (get_compat_sigset(&newset, unewset))
4474		return -EFAULT;
4475	return sigsuspend(&newset);
4476}
4477#endif
4478
4479#ifdef CONFIG_OLD_SIGSUSPEND
4480SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4481{
4482	sigset_t blocked;
4483	siginitset(&blocked, mask);
4484	return sigsuspend(&blocked);
4485}
4486#endif
4487#ifdef CONFIG_OLD_SIGSUSPEND3
4488SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4489{
4490	sigset_t blocked;
4491	siginitset(&blocked, mask);
4492	return sigsuspend(&blocked);
4493}
4494#endif
4495
4496__weak const char *arch_vma_name(struct vm_area_struct *vma)
4497{
4498	return NULL;
4499}
4500
4501static inline void siginfo_buildtime_checks(void)
4502{
4503	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4504
4505	/* Verify the offsets in the two siginfos match */
4506#define CHECK_OFFSET(field) \
4507	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4508
4509	/* kill */
4510	CHECK_OFFSET(si_pid);
4511	CHECK_OFFSET(si_uid);
4512
4513	/* timer */
4514	CHECK_OFFSET(si_tid);
4515	CHECK_OFFSET(si_overrun);
4516	CHECK_OFFSET(si_value);
4517
4518	/* rt */
4519	CHECK_OFFSET(si_pid);
4520	CHECK_OFFSET(si_uid);
4521	CHECK_OFFSET(si_value);
4522
4523	/* sigchld */
4524	CHECK_OFFSET(si_pid);
4525	CHECK_OFFSET(si_uid);
4526	CHECK_OFFSET(si_status);
4527	CHECK_OFFSET(si_utime);
4528	CHECK_OFFSET(si_stime);
4529
4530	/* sigfault */
4531	CHECK_OFFSET(si_addr);
4532	CHECK_OFFSET(si_addr_lsb);
4533	CHECK_OFFSET(si_lower);
4534	CHECK_OFFSET(si_upper);
4535	CHECK_OFFSET(si_pkey);
4536
4537	/* sigpoll */
4538	CHECK_OFFSET(si_band);
4539	CHECK_OFFSET(si_fd);
4540
4541	/* sigsys */
4542	CHECK_OFFSET(si_call_addr);
4543	CHECK_OFFSET(si_syscall);
4544	CHECK_OFFSET(si_arch);
4545#undef CHECK_OFFSET
4546
4547	/* usb asyncio */
4548	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4549		     offsetof(struct siginfo, si_addr));
4550	if (sizeof(int) == sizeof(void __user *)) {
4551		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4552			     sizeof(void __user *));
4553	} else {
4554		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4555			      sizeof_field(struct siginfo, si_uid)) !=
4556			     sizeof(void __user *));
4557		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4558			     offsetof(struct siginfo, si_uid));
4559	}
4560#ifdef CONFIG_COMPAT
4561	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4562		     offsetof(struct compat_siginfo, si_addr));
4563	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4564		     sizeof(compat_uptr_t));
4565	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4566		     sizeof_field(struct siginfo, si_pid));
4567#endif
4568}
4569
4570void __init signals_init(void)
4571{
4572	siginfo_buildtime_checks();
 
 
 
4573
4574	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4575}
4576
4577#ifdef CONFIG_KGDB_KDB
4578#include <linux/kdb.h>
4579/*
4580 * kdb_send_sig - Allows kdb to send signals without exposing
4581 * signal internals.  This function checks if the required locks are
4582 * available before calling the main signal code, to avoid kdb
4583 * deadlocks.
4584 */
4585void kdb_send_sig(struct task_struct *t, int sig)
4586{
4587	static struct task_struct *kdb_prev_t;
4588	int new_t, ret;
4589	if (!spin_trylock(&t->sighand->siglock)) {
4590		kdb_printf("Can't do kill command now.\n"
4591			   "The sigmask lock is held somewhere else in "
4592			   "kernel, try again later\n");
4593		return;
4594	}
4595	new_t = kdb_prev_t != t;
4596	kdb_prev_t = t;
4597	if (t->state != TASK_RUNNING && new_t) {
4598		spin_unlock(&t->sighand->siglock);
4599		kdb_printf("Process is not RUNNING, sending a signal from "
4600			   "kdb risks deadlock\n"
4601			   "on the run queue locks. "
4602			   "The signal has _not_ been sent.\n"
4603			   "Reissue the kill command if you want to risk "
4604			   "the deadlock.\n");
4605		return;
4606	}
4607	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4608	spin_unlock(&t->sighand->siglock);
4609	if (ret)
4610		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4611			   sig, t->pid);
4612	else
4613		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4614}
4615#endif	/* CONFIG_KGDB_KDB */
v4.17
 
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched/mm.h>
  17#include <linux/sched/user.h>
  18#include <linux/sched/debug.h>
  19#include <linux/sched/task.h>
  20#include <linux/sched/task_stack.h>
  21#include <linux/sched/cputime.h>
 
  22#include <linux/fs.h>
 
  23#include <linux/tty.h>
  24#include <linux/binfmts.h>
  25#include <linux/coredump.h>
  26#include <linux/security.h>
  27#include <linux/syscalls.h>
  28#include <linux/ptrace.h>
  29#include <linux/signal.h>
  30#include <linux/signalfd.h>
  31#include <linux/ratelimit.h>
  32#include <linux/tracehook.h>
  33#include <linux/capability.h>
  34#include <linux/freezer.h>
  35#include <linux/pid_namespace.h>
  36#include <linux/nsproxy.h>
  37#include <linux/user_namespace.h>
  38#include <linux/uprobes.h>
  39#include <linux/compat.h>
  40#include <linux/cn_proc.h>
  41#include <linux/compiler.h>
  42#include <linux/posix-timers.h>
  43#include <linux/livepatch.h>
 
 
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/signal.h>
  47
  48#include <asm/param.h>
  49#include <linux/uaccess.h>
  50#include <asm/unistd.h>
  51#include <asm/siginfo.h>
  52#include <asm/cacheflush.h>
  53#include "audit.h"	/* audit_signal_info() */
  54
  55/*
  56 * SLAB caches for signal bits.
  57 */
  58
  59static struct kmem_cache *sigqueue_cachep;
  60
  61int print_fatal_signals __read_mostly;
  62
  63static void __user *sig_handler(struct task_struct *t, int sig)
  64{
  65	return t->sighand->action[sig - 1].sa.sa_handler;
  66}
  67
  68static int sig_handler_ignored(void __user *handler, int sig)
  69{
  70	/* Is it explicitly or implicitly ignored? */
  71	return handler == SIG_IGN ||
  72		(handler == SIG_DFL && sig_kernel_ignore(sig));
  73}
  74
  75static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  76{
  77	void __user *handler;
  78
  79	handler = sig_handler(t, sig);
  80
 
 
 
 
  81	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  82	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  83		return 1;
 
 
 
 
 
  84
  85	return sig_handler_ignored(handler, sig);
  86}
  87
  88static int sig_ignored(struct task_struct *t, int sig, bool force)
  89{
  90	/*
  91	 * Blocked signals are never ignored, since the
  92	 * signal handler may change by the time it is
  93	 * unblocked.
  94	 */
  95	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  96		return 0;
  97
  98	/*
  99	 * Tracers may want to know about even ignored signal unless it
 100	 * is SIGKILL which can't be reported anyway but can be ignored
 101	 * by SIGNAL_UNKILLABLE task.
 102	 */
 103	if (t->ptrace && sig != SIGKILL)
 104		return 0;
 105
 106	return sig_task_ignored(t, sig, force);
 107}
 108
 109/*
 110 * Re-calculate pending state from the set of locally pending
 111 * signals, globally pending signals, and blocked signals.
 112 */
 113static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 114{
 115	unsigned long ready;
 116	long i;
 117
 118	switch (_NSIG_WORDS) {
 119	default:
 120		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 121			ready |= signal->sig[i] &~ blocked->sig[i];
 122		break;
 123
 124	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 125		ready |= signal->sig[2] &~ blocked->sig[2];
 126		ready |= signal->sig[1] &~ blocked->sig[1];
 127		ready |= signal->sig[0] &~ blocked->sig[0];
 128		break;
 129
 130	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 131		ready |= signal->sig[0] &~ blocked->sig[0];
 132		break;
 133
 134	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 135	}
 136	return ready !=	0;
 137}
 138
 139#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 140
 141static int recalc_sigpending_tsk(struct task_struct *t)
 142{
 143	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 144	    PENDING(&t->pending, &t->blocked) ||
 145	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 
 146		set_tsk_thread_flag(t, TIF_SIGPENDING);
 147		return 1;
 148	}
 
 149	/*
 150	 * We must never clear the flag in another thread, or in current
 151	 * when it's possible the current syscall is returning -ERESTART*.
 152	 * So we don't clear it here, and only callers who know they should do.
 153	 */
 154	return 0;
 155}
 156
 157/*
 158 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 159 * This is superfluous when called on current, the wakeup is a harmless no-op.
 160 */
 161void recalc_sigpending_and_wake(struct task_struct *t)
 162{
 163	if (recalc_sigpending_tsk(t))
 164		signal_wake_up(t, 0);
 165}
 166
 167void recalc_sigpending(void)
 168{
 169	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
 170	    !klp_patch_pending(current))
 171		clear_thread_flag(TIF_SIGPENDING);
 172
 173}
 
 
 
 
 
 
 
 
 
 
 
 
 174
 175/* Given the mask, find the first available signal that should be serviced. */
 176
 177#define SYNCHRONOUS_MASK \
 178	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 179	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 180
 181int next_signal(struct sigpending *pending, sigset_t *mask)
 182{
 183	unsigned long i, *s, *m, x;
 184	int sig = 0;
 185
 186	s = pending->signal.sig;
 187	m = mask->sig;
 188
 189	/*
 190	 * Handle the first word specially: it contains the
 191	 * synchronous signals that need to be dequeued first.
 192	 */
 193	x = *s &~ *m;
 194	if (x) {
 195		if (x & SYNCHRONOUS_MASK)
 196			x &= SYNCHRONOUS_MASK;
 197		sig = ffz(~x) + 1;
 198		return sig;
 199	}
 200
 201	switch (_NSIG_WORDS) {
 202	default:
 203		for (i = 1; i < _NSIG_WORDS; ++i) {
 204			x = *++s &~ *++m;
 205			if (!x)
 206				continue;
 207			sig = ffz(~x) + i*_NSIG_BPW + 1;
 208			break;
 209		}
 210		break;
 211
 212	case 2:
 213		x = s[1] &~ m[1];
 214		if (!x)
 215			break;
 216		sig = ffz(~x) + _NSIG_BPW + 1;
 217		break;
 218
 219	case 1:
 220		/* Nothing to do */
 221		break;
 222	}
 223
 224	return sig;
 225}
 226
 227static inline void print_dropped_signal(int sig)
 228{
 229	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 230
 231	if (!print_fatal_signals)
 232		return;
 233
 234	if (!__ratelimit(&ratelimit_state))
 235		return;
 236
 237	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 238				current->comm, current->pid, sig);
 239}
 240
 241/**
 242 * task_set_jobctl_pending - set jobctl pending bits
 243 * @task: target task
 244 * @mask: pending bits to set
 245 *
 246 * Clear @mask from @task->jobctl.  @mask must be subset of
 247 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 248 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 249 * cleared.  If @task is already being killed or exiting, this function
 250 * becomes noop.
 251 *
 252 * CONTEXT:
 253 * Must be called with @task->sighand->siglock held.
 254 *
 255 * RETURNS:
 256 * %true if @mask is set, %false if made noop because @task was dying.
 257 */
 258bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 259{
 260	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 261			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 262	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 263
 264	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 265		return false;
 266
 267	if (mask & JOBCTL_STOP_SIGMASK)
 268		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 269
 270	task->jobctl |= mask;
 271	return true;
 272}
 273
 274/**
 275 * task_clear_jobctl_trapping - clear jobctl trapping bit
 276 * @task: target task
 277 *
 278 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 279 * Clear it and wake up the ptracer.  Note that we don't need any further
 280 * locking.  @task->siglock guarantees that @task->parent points to the
 281 * ptracer.
 282 *
 283 * CONTEXT:
 284 * Must be called with @task->sighand->siglock held.
 285 */
 286void task_clear_jobctl_trapping(struct task_struct *task)
 287{
 288	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 289		task->jobctl &= ~JOBCTL_TRAPPING;
 290		smp_mb();	/* advised by wake_up_bit() */
 291		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 292	}
 293}
 294
 295/**
 296 * task_clear_jobctl_pending - clear jobctl pending bits
 297 * @task: target task
 298 * @mask: pending bits to clear
 299 *
 300 * Clear @mask from @task->jobctl.  @mask must be subset of
 301 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 302 * STOP bits are cleared together.
 303 *
 304 * If clearing of @mask leaves no stop or trap pending, this function calls
 305 * task_clear_jobctl_trapping().
 306 *
 307 * CONTEXT:
 308 * Must be called with @task->sighand->siglock held.
 309 */
 310void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 311{
 312	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 313
 314	if (mask & JOBCTL_STOP_PENDING)
 315		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 316
 317	task->jobctl &= ~mask;
 318
 319	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 320		task_clear_jobctl_trapping(task);
 321}
 322
 323/**
 324 * task_participate_group_stop - participate in a group stop
 325 * @task: task participating in a group stop
 326 *
 327 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 328 * Group stop states are cleared and the group stop count is consumed if
 329 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 330 * stop, the appropriate %SIGNAL_* flags are set.
 331 *
 332 * CONTEXT:
 333 * Must be called with @task->sighand->siglock held.
 334 *
 335 * RETURNS:
 336 * %true if group stop completion should be notified to the parent, %false
 337 * otherwise.
 338 */
 339static bool task_participate_group_stop(struct task_struct *task)
 340{
 341	struct signal_struct *sig = task->signal;
 342	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 343
 344	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 345
 346	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 347
 348	if (!consume)
 349		return false;
 350
 351	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 352		sig->group_stop_count--;
 353
 354	/*
 355	 * Tell the caller to notify completion iff we are entering into a
 356	 * fresh group stop.  Read comment in do_signal_stop() for details.
 357	 */
 358	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 359		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 360		return true;
 361	}
 362	return false;
 363}
 364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 365/*
 366 * allocate a new signal queue record
 367 * - this may be called without locks if and only if t == current, otherwise an
 368 *   appropriate lock must be held to stop the target task from exiting
 369 */
 370static struct sigqueue *
 371__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 372{
 373	struct sigqueue *q = NULL;
 374	struct user_struct *user;
 375
 376	/*
 377	 * Protect access to @t credentials. This can go away when all
 378	 * callers hold rcu read lock.
 379	 */
 380	rcu_read_lock();
 381	user = get_uid(__task_cred(t)->user);
 382	atomic_inc(&user->sigpending);
 383	rcu_read_unlock();
 384
 385	if (override_rlimit ||
 386	    atomic_read(&user->sigpending) <=
 387			task_rlimit(t, RLIMIT_SIGPENDING)) {
 388		q = kmem_cache_alloc(sigqueue_cachep, flags);
 389	} else {
 390		print_dropped_signal(sig);
 391	}
 392
 393	if (unlikely(q == NULL)) {
 394		atomic_dec(&user->sigpending);
 395		free_uid(user);
 396	} else {
 397		INIT_LIST_HEAD(&q->list);
 398		q->flags = 0;
 399		q->user = user;
 400	}
 401
 402	return q;
 403}
 404
 405static void __sigqueue_free(struct sigqueue *q)
 406{
 407	if (q->flags & SIGQUEUE_PREALLOC)
 408		return;
 409	atomic_dec(&q->user->sigpending);
 410	free_uid(q->user);
 411	kmem_cache_free(sigqueue_cachep, q);
 412}
 413
 414void flush_sigqueue(struct sigpending *queue)
 415{
 416	struct sigqueue *q;
 417
 418	sigemptyset(&queue->signal);
 419	while (!list_empty(&queue->list)) {
 420		q = list_entry(queue->list.next, struct sigqueue , list);
 421		list_del_init(&q->list);
 422		__sigqueue_free(q);
 423	}
 424}
 425
 426/*
 427 * Flush all pending signals for this kthread.
 428 */
 429void flush_signals(struct task_struct *t)
 430{
 431	unsigned long flags;
 432
 433	spin_lock_irqsave(&t->sighand->siglock, flags);
 434	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 435	flush_sigqueue(&t->pending);
 436	flush_sigqueue(&t->signal->shared_pending);
 437	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 438}
 
 439
 440#ifdef CONFIG_POSIX_TIMERS
 441static void __flush_itimer_signals(struct sigpending *pending)
 442{
 443	sigset_t signal, retain;
 444	struct sigqueue *q, *n;
 445
 446	signal = pending->signal;
 447	sigemptyset(&retain);
 448
 449	list_for_each_entry_safe(q, n, &pending->list, list) {
 450		int sig = q->info.si_signo;
 451
 452		if (likely(q->info.si_code != SI_TIMER)) {
 453			sigaddset(&retain, sig);
 454		} else {
 455			sigdelset(&signal, sig);
 456			list_del_init(&q->list);
 457			__sigqueue_free(q);
 458		}
 459	}
 460
 461	sigorsets(&pending->signal, &signal, &retain);
 462}
 463
 464void flush_itimer_signals(void)
 465{
 466	struct task_struct *tsk = current;
 467	unsigned long flags;
 468
 469	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 470	__flush_itimer_signals(&tsk->pending);
 471	__flush_itimer_signals(&tsk->signal->shared_pending);
 472	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 473}
 474#endif
 475
 476void ignore_signals(struct task_struct *t)
 477{
 478	int i;
 479
 480	for (i = 0; i < _NSIG; ++i)
 481		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 482
 483	flush_signals(t);
 484}
 485
 486/*
 487 * Flush all handlers for a task.
 488 */
 489
 490void
 491flush_signal_handlers(struct task_struct *t, int force_default)
 492{
 493	int i;
 494	struct k_sigaction *ka = &t->sighand->action[0];
 495	for (i = _NSIG ; i != 0 ; i--) {
 496		if (force_default || ka->sa.sa_handler != SIG_IGN)
 497			ka->sa.sa_handler = SIG_DFL;
 498		ka->sa.sa_flags = 0;
 499#ifdef __ARCH_HAS_SA_RESTORER
 500		ka->sa.sa_restorer = NULL;
 501#endif
 502		sigemptyset(&ka->sa.sa_mask);
 503		ka++;
 504	}
 505}
 506
 507int unhandled_signal(struct task_struct *tsk, int sig)
 508{
 509	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 510	if (is_global_init(tsk))
 511		return 1;
 
 512	if (handler != SIG_IGN && handler != SIG_DFL)
 513		return 0;
 
 514	/* if ptraced, let the tracer determine */
 515	return !tsk->ptrace;
 516}
 517
 518static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
 519			   bool *resched_timer)
 520{
 521	struct sigqueue *q, *first = NULL;
 522
 523	/*
 524	 * Collect the siginfo appropriate to this signal.  Check if
 525	 * there is another siginfo for the same signal.
 526	*/
 527	list_for_each_entry(q, &list->list, list) {
 528		if (q->info.si_signo == sig) {
 529			if (first)
 530				goto still_pending;
 531			first = q;
 532		}
 533	}
 534
 535	sigdelset(&list->signal, sig);
 536
 537	if (first) {
 538still_pending:
 539		list_del_init(&first->list);
 540		copy_siginfo(info, &first->info);
 541
 542		*resched_timer =
 543			(first->flags & SIGQUEUE_PREALLOC) &&
 544			(info->si_code == SI_TIMER) &&
 545			(info->si_sys_private);
 546
 547		__sigqueue_free(first);
 548	} else {
 549		/*
 550		 * Ok, it wasn't in the queue.  This must be
 551		 * a fast-pathed signal or we must have been
 552		 * out of queue space.  So zero out the info.
 553		 */
 554		clear_siginfo(info);
 555		info->si_signo = sig;
 556		info->si_errno = 0;
 557		info->si_code = SI_USER;
 558		info->si_pid = 0;
 559		info->si_uid = 0;
 560	}
 561}
 562
 563static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 564			siginfo_t *info, bool *resched_timer)
 565{
 566	int sig = next_signal(pending, mask);
 567
 568	if (sig)
 569		collect_signal(sig, pending, info, resched_timer);
 570	return sig;
 571}
 572
 573/*
 574 * Dequeue a signal and return the element to the caller, which is
 575 * expected to free it.
 576 *
 577 * All callers have to hold the siglock.
 578 */
 579int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 580{
 581	bool resched_timer = false;
 582	int signr;
 583
 584	/* We only dequeue private signals from ourselves, we don't let
 585	 * signalfd steal them
 586	 */
 587	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 588	if (!signr) {
 589		signr = __dequeue_signal(&tsk->signal->shared_pending,
 590					 mask, info, &resched_timer);
 591#ifdef CONFIG_POSIX_TIMERS
 592		/*
 593		 * itimer signal ?
 594		 *
 595		 * itimers are process shared and we restart periodic
 596		 * itimers in the signal delivery path to prevent DoS
 597		 * attacks in the high resolution timer case. This is
 598		 * compliant with the old way of self-restarting
 599		 * itimers, as the SIGALRM is a legacy signal and only
 600		 * queued once. Changing the restart behaviour to
 601		 * restart the timer in the signal dequeue path is
 602		 * reducing the timer noise on heavy loaded !highres
 603		 * systems too.
 604		 */
 605		if (unlikely(signr == SIGALRM)) {
 606			struct hrtimer *tmr = &tsk->signal->real_timer;
 607
 608			if (!hrtimer_is_queued(tmr) &&
 609			    tsk->signal->it_real_incr != 0) {
 610				hrtimer_forward(tmr, tmr->base->get_time(),
 611						tsk->signal->it_real_incr);
 612				hrtimer_restart(tmr);
 613			}
 614		}
 615#endif
 616	}
 617
 618	recalc_sigpending();
 619	if (!signr)
 620		return 0;
 621
 622	if (unlikely(sig_kernel_stop(signr))) {
 623		/*
 624		 * Set a marker that we have dequeued a stop signal.  Our
 625		 * caller might release the siglock and then the pending
 626		 * stop signal it is about to process is no longer in the
 627		 * pending bitmasks, but must still be cleared by a SIGCONT
 628		 * (and overruled by a SIGKILL).  So those cases clear this
 629		 * shared flag after we've set it.  Note that this flag may
 630		 * remain set after the signal we return is ignored or
 631		 * handled.  That doesn't matter because its only purpose
 632		 * is to alert stop-signal processing code when another
 633		 * processor has come along and cleared the flag.
 634		 */
 635		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 636	}
 637#ifdef CONFIG_POSIX_TIMERS
 638	if (resched_timer) {
 639		/*
 640		 * Release the siglock to ensure proper locking order
 641		 * of timer locks outside of siglocks.  Note, we leave
 642		 * irqs disabled here, since the posix-timers code is
 643		 * about to disable them again anyway.
 644		 */
 645		spin_unlock(&tsk->sighand->siglock);
 646		posixtimer_rearm(info);
 647		spin_lock(&tsk->sighand->siglock);
 648
 649		/* Don't expose the si_sys_private value to userspace */
 650		info->si_sys_private = 0;
 651	}
 652#endif
 653	return signr;
 654}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 655
 656/*
 657 * Tell a process that it has a new active signal..
 658 *
 659 * NOTE! we rely on the previous spin_lock to
 660 * lock interrupts for us! We can only be called with
 661 * "siglock" held, and the local interrupt must
 662 * have been disabled when that got acquired!
 663 *
 664 * No need to set need_resched since signal event passing
 665 * goes through ->blocked
 666 */
 667void signal_wake_up_state(struct task_struct *t, unsigned int state)
 668{
 669	set_tsk_thread_flag(t, TIF_SIGPENDING);
 670	/*
 671	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 672	 * case. We don't check t->state here because there is a race with it
 673	 * executing another processor and just now entering stopped state.
 674	 * By using wake_up_state, we ensure the process will wake up and
 675	 * handle its death signal.
 676	 */
 677	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 678		kick_process(t);
 679}
 680
 681/*
 682 * Remove signals in mask from the pending set and queue.
 683 * Returns 1 if any signals were found.
 684 *
 685 * All callers must be holding the siglock.
 686 */
 687static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 688{
 689	struct sigqueue *q, *n;
 690	sigset_t m;
 691
 692	sigandsets(&m, mask, &s->signal);
 693	if (sigisemptyset(&m))
 694		return 0;
 695
 696	sigandnsets(&s->signal, &s->signal, mask);
 697	list_for_each_entry_safe(q, n, &s->list, list) {
 698		if (sigismember(mask, q->info.si_signo)) {
 699			list_del_init(&q->list);
 700			__sigqueue_free(q);
 701		}
 702	}
 703	return 1;
 704}
 705
 706static inline int is_si_special(const struct siginfo *info)
 707{
 708	return info <= SEND_SIG_FORCED;
 709}
 710
 711static inline bool si_fromuser(const struct siginfo *info)
 712{
 713	return info == SEND_SIG_NOINFO ||
 714		(!is_si_special(info) && SI_FROMUSER(info));
 715}
 716
 717/*
 718 * called with RCU read lock from check_kill_permission()
 719 */
 720static int kill_ok_by_cred(struct task_struct *t)
 721{
 722	const struct cred *cred = current_cred();
 723	const struct cred *tcred = __task_cred(t);
 724
 725	if (uid_eq(cred->euid, tcred->suid) ||
 726	    uid_eq(cred->euid, tcred->uid)  ||
 727	    uid_eq(cred->uid,  tcred->suid) ||
 728	    uid_eq(cred->uid,  tcred->uid))
 729		return 1;
 730
 731	if (ns_capable(tcred->user_ns, CAP_KILL))
 732		return 1;
 733
 734	return 0;
 735}
 736
 737/*
 738 * Bad permissions for sending the signal
 739 * - the caller must hold the RCU read lock
 740 */
 741static int check_kill_permission(int sig, struct siginfo *info,
 742				 struct task_struct *t)
 743{
 744	struct pid *sid;
 745	int error;
 746
 747	if (!valid_signal(sig))
 748		return -EINVAL;
 749
 750	if (!si_fromuser(info))
 751		return 0;
 752
 753	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 754	if (error)
 755		return error;
 756
 757	if (!same_thread_group(current, t) &&
 758	    !kill_ok_by_cred(t)) {
 759		switch (sig) {
 760		case SIGCONT:
 761			sid = task_session(t);
 762			/*
 763			 * We don't return the error if sid == NULL. The
 764			 * task was unhashed, the caller must notice this.
 765			 */
 766			if (!sid || sid == task_session(current))
 767				break;
 
 768		default:
 769			return -EPERM;
 770		}
 771	}
 772
 773	return security_task_kill(t, info, sig, NULL);
 774}
 775
 776/**
 777 * ptrace_trap_notify - schedule trap to notify ptracer
 778 * @t: tracee wanting to notify tracer
 779 *
 780 * This function schedules sticky ptrace trap which is cleared on the next
 781 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 782 * ptracer.
 783 *
 784 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 785 * ptracer is listening for events, tracee is woken up so that it can
 786 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 787 * eventually taken without returning to userland after the existing traps
 788 * are finished by PTRACE_CONT.
 789 *
 790 * CONTEXT:
 791 * Must be called with @task->sighand->siglock held.
 792 */
 793static void ptrace_trap_notify(struct task_struct *t)
 794{
 795	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 796	assert_spin_locked(&t->sighand->siglock);
 797
 798	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 799	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 800}
 801
 802/*
 803 * Handle magic process-wide effects of stop/continue signals. Unlike
 804 * the signal actions, these happen immediately at signal-generation
 805 * time regardless of blocking, ignoring, or handling.  This does the
 806 * actual continuing for SIGCONT, but not the actual stopping for stop
 807 * signals. The process stop is done as a signal action for SIG_DFL.
 808 *
 809 * Returns true if the signal should be actually delivered, otherwise
 810 * it should be dropped.
 811 */
 812static bool prepare_signal(int sig, struct task_struct *p, bool force)
 813{
 814	struct signal_struct *signal = p->signal;
 815	struct task_struct *t;
 816	sigset_t flush;
 817
 818	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 819		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 820			return sig == SIGKILL;
 821		/*
 822		 * The process is in the middle of dying, nothing to do.
 823		 */
 824	} else if (sig_kernel_stop(sig)) {
 825		/*
 826		 * This is a stop signal.  Remove SIGCONT from all queues.
 827		 */
 828		siginitset(&flush, sigmask(SIGCONT));
 829		flush_sigqueue_mask(&flush, &signal->shared_pending);
 830		for_each_thread(p, t)
 831			flush_sigqueue_mask(&flush, &t->pending);
 832	} else if (sig == SIGCONT) {
 833		unsigned int why;
 834		/*
 835		 * Remove all stop signals from all queues, wake all threads.
 836		 */
 837		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 838		flush_sigqueue_mask(&flush, &signal->shared_pending);
 839		for_each_thread(p, t) {
 840			flush_sigqueue_mask(&flush, &t->pending);
 841			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 842			if (likely(!(t->ptrace & PT_SEIZED)))
 843				wake_up_state(t, __TASK_STOPPED);
 844			else
 845				ptrace_trap_notify(t);
 846		}
 847
 848		/*
 849		 * Notify the parent with CLD_CONTINUED if we were stopped.
 850		 *
 851		 * If we were in the middle of a group stop, we pretend it
 852		 * was already finished, and then continued. Since SIGCHLD
 853		 * doesn't queue we report only CLD_STOPPED, as if the next
 854		 * CLD_CONTINUED was dropped.
 855		 */
 856		why = 0;
 857		if (signal->flags & SIGNAL_STOP_STOPPED)
 858			why |= SIGNAL_CLD_CONTINUED;
 859		else if (signal->group_stop_count)
 860			why |= SIGNAL_CLD_STOPPED;
 861
 862		if (why) {
 863			/*
 864			 * The first thread which returns from do_signal_stop()
 865			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 866			 * notify its parent. See get_signal_to_deliver().
 867			 */
 868			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 869			signal->group_stop_count = 0;
 870			signal->group_exit_code = 0;
 871		}
 872	}
 873
 874	return !sig_ignored(p, sig, force);
 875}
 876
 877/*
 878 * Test if P wants to take SIG.  After we've checked all threads with this,
 879 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 880 * blocking SIG were ruled out because they are not running and already
 881 * have pending signals.  Such threads will dequeue from the shared queue
 882 * as soon as they're available, so putting the signal on the shared queue
 883 * will be equivalent to sending it to one such thread.
 884 */
 885static inline int wants_signal(int sig, struct task_struct *p)
 886{
 887	if (sigismember(&p->blocked, sig))
 888		return 0;
 
 889	if (p->flags & PF_EXITING)
 890		return 0;
 
 891	if (sig == SIGKILL)
 892		return 1;
 
 893	if (task_is_stopped_or_traced(p))
 894		return 0;
 
 895	return task_curr(p) || !signal_pending(p);
 896}
 897
 898static void complete_signal(int sig, struct task_struct *p, int group)
 899{
 900	struct signal_struct *signal = p->signal;
 901	struct task_struct *t;
 902
 903	/*
 904	 * Now find a thread we can wake up to take the signal off the queue.
 905	 *
 906	 * If the main thread wants the signal, it gets first crack.
 907	 * Probably the least surprising to the average bear.
 908	 */
 909	if (wants_signal(sig, p))
 910		t = p;
 911	else if (!group || thread_group_empty(p))
 912		/*
 913		 * There is just one thread and it does not need to be woken.
 914		 * It will dequeue unblocked signals before it runs again.
 915		 */
 916		return;
 917	else {
 918		/*
 919		 * Otherwise try to find a suitable thread.
 920		 */
 921		t = signal->curr_target;
 922		while (!wants_signal(sig, t)) {
 923			t = next_thread(t);
 924			if (t == signal->curr_target)
 925				/*
 926				 * No thread needs to be woken.
 927				 * Any eligible threads will see
 928				 * the signal in the queue soon.
 929				 */
 930				return;
 931		}
 932		signal->curr_target = t;
 933	}
 934
 935	/*
 936	 * Found a killable thread.  If the signal will be fatal,
 937	 * then start taking the whole group down immediately.
 938	 */
 939	if (sig_fatal(p, sig) &&
 940	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
 941	    !sigismember(&t->real_blocked, sig) &&
 942	    (sig == SIGKILL || !p->ptrace)) {
 943		/*
 944		 * This signal will be fatal to the whole group.
 945		 */
 946		if (!sig_kernel_coredump(sig)) {
 947			/*
 948			 * Start a group exit and wake everybody up.
 949			 * This way we don't have other threads
 950			 * running and doing things after a slower
 951			 * thread has the fatal signal pending.
 952			 */
 953			signal->flags = SIGNAL_GROUP_EXIT;
 954			signal->group_exit_code = sig;
 955			signal->group_stop_count = 0;
 956			t = p;
 957			do {
 958				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 959				sigaddset(&t->pending.signal, SIGKILL);
 960				signal_wake_up(t, 1);
 961			} while_each_thread(p, t);
 962			return;
 963		}
 964	}
 965
 966	/*
 967	 * The signal is already in the shared-pending queue.
 968	 * Tell the chosen thread to wake up and dequeue it.
 969	 */
 970	signal_wake_up(t, sig == SIGKILL);
 971	return;
 972}
 973
 974static inline int legacy_queue(struct sigpending *signals, int sig)
 975{
 976	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 977}
 978
 979#ifdef CONFIG_USER_NS
 980static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 981{
 982	if (current_user_ns() == task_cred_xxx(t, user_ns))
 983		return;
 984
 985	if (SI_FROMKERNEL(info))
 986		return;
 987
 988	rcu_read_lock();
 989	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 990					make_kuid(current_user_ns(), info->si_uid));
 991	rcu_read_unlock();
 992}
 993#else
 994static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 995{
 996	return;
 997}
 998#endif
 999
1000static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1001			int group, int from_ancestor_ns)
1002{
1003	struct sigpending *pending;
1004	struct sigqueue *q;
1005	int override_rlimit;
1006	int ret = 0, result;
1007
1008	assert_spin_locked(&t->sighand->siglock);
1009
1010	result = TRACE_SIGNAL_IGNORED;
1011	if (!prepare_signal(sig, t,
1012			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1013		goto ret;
1014
1015	pending = group ? &t->signal->shared_pending : &t->pending;
1016	/*
1017	 * Short-circuit ignored signals and support queuing
1018	 * exactly one non-rt signal, so that we can get more
1019	 * detailed information about the cause of the signal.
1020	 */
1021	result = TRACE_SIGNAL_ALREADY_PENDING;
1022	if (legacy_queue(pending, sig))
1023		goto ret;
1024
1025	result = TRACE_SIGNAL_DELIVERED;
1026	/*
1027	 * fast-pathed signals for kernel-internal things like SIGSTOP
1028	 * or SIGKILL.
1029	 */
1030	if (info == SEND_SIG_FORCED)
1031		goto out_set;
1032
1033	/*
1034	 * Real-time signals must be queued if sent by sigqueue, or
1035	 * some other real-time mechanism.  It is implementation
1036	 * defined whether kill() does so.  We attempt to do so, on
1037	 * the principle of least surprise, but since kill is not
1038	 * allowed to fail with EAGAIN when low on memory we just
1039	 * make sure at least one signal gets delivered and don't
1040	 * pass on the info struct.
1041	 */
1042	if (sig < SIGRTMIN)
1043		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1044	else
1045		override_rlimit = 0;
1046
1047	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1048	if (q) {
1049		list_add_tail(&q->list, &pending->list);
1050		switch ((unsigned long) info) {
1051		case (unsigned long) SEND_SIG_NOINFO:
1052			clear_siginfo(&q->info);
1053			q->info.si_signo = sig;
1054			q->info.si_errno = 0;
1055			q->info.si_code = SI_USER;
1056			q->info.si_pid = task_tgid_nr_ns(current,
1057							task_active_pid_ns(t));
1058			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
 
 
 
 
1059			break;
1060		case (unsigned long) SEND_SIG_PRIV:
1061			clear_siginfo(&q->info);
1062			q->info.si_signo = sig;
1063			q->info.si_errno = 0;
1064			q->info.si_code = SI_KERNEL;
1065			q->info.si_pid = 0;
1066			q->info.si_uid = 0;
1067			break;
1068		default:
1069			copy_siginfo(&q->info, info);
1070			if (from_ancestor_ns)
1071				q->info.si_pid = 0;
1072			break;
1073		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074
1075		userns_fixup_signal_uid(&q->info, t);
 
 
1076
1077	} else if (!is_si_special(info)) {
1078		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1079			/*
1080			 * Queue overflow, abort.  We may abort if the
1081			 * signal was rt and sent by user using something
1082			 * other than kill().
1083			 */
1084			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1085			ret = -EAGAIN;
1086			goto ret;
1087		} else {
1088			/*
1089			 * This is a silent loss of information.  We still
1090			 * send the signal, but the *info bits are lost.
1091			 */
1092			result = TRACE_SIGNAL_LOSE_INFO;
1093		}
1094	}
1095
1096out_set:
1097	signalfd_notify(t, sig);
1098	sigaddset(&pending->signal, sig);
1099	complete_signal(sig, t, group);
1100ret:
1101	trace_signal_generate(sig, info, t, group, result);
1102	return ret;
1103}
1104
1105static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1106			int group)
1107{
1108	int from_ancestor_ns = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109
1110#ifdef CONFIG_PID_NS
1111	from_ancestor_ns = si_fromuser(info) &&
1112			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1113#endif
 
 
 
 
 
 
1114
1115	return __send_signal(sig, info, t, group, from_ancestor_ns);
 
 
 
 
 
 
1116}
1117
1118static void print_fatal_signal(int signr)
1119{
1120	struct pt_regs *regs = signal_pt_regs();
1121	pr_info("potentially unexpected fatal signal %d.\n", signr);
1122
1123#if defined(__i386__) && !defined(__arch_um__)
1124	pr_info("code at %08lx: ", regs->ip);
1125	{
1126		int i;
1127		for (i = 0; i < 16; i++) {
1128			unsigned char insn;
1129
1130			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1131				break;
1132			pr_cont("%02x ", insn);
1133		}
1134	}
1135	pr_cont("\n");
1136#endif
1137	preempt_disable();
1138	show_regs(regs);
1139	preempt_enable();
1140}
1141
1142static int __init setup_print_fatal_signals(char *str)
1143{
1144	get_option (&str, &print_fatal_signals);
1145
1146	return 1;
1147}
1148
1149__setup("print-fatal-signals=", setup_print_fatal_signals);
1150
1151int
1152__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1153{
1154	return send_signal(sig, info, p, 1);
1155}
1156
1157static int
1158specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1159{
1160	return send_signal(sig, info, t, 0);
1161}
1162
1163int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1164			bool group)
1165{
1166	unsigned long flags;
1167	int ret = -ESRCH;
1168
1169	if (lock_task_sighand(p, &flags)) {
1170		ret = send_signal(sig, info, p, group);
1171		unlock_task_sighand(p, &flags);
1172	}
1173
1174	return ret;
1175}
1176
1177/*
1178 * Force a signal that the process can't ignore: if necessary
1179 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1180 *
1181 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1182 * since we do not want to have a signal handler that was blocked
1183 * be invoked when user space had explicitly blocked it.
1184 *
1185 * We don't want to have recursive SIGSEGV's etc, for example,
1186 * that is why we also clear SIGNAL_UNKILLABLE.
1187 */
1188int
1189force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1190{
1191	unsigned long int flags;
1192	int ret, blocked, ignored;
1193	struct k_sigaction *action;
 
1194
1195	spin_lock_irqsave(&t->sighand->siglock, flags);
1196	action = &t->sighand->action[sig-1];
1197	ignored = action->sa.sa_handler == SIG_IGN;
1198	blocked = sigismember(&t->blocked, sig);
1199	if (blocked || ignored) {
1200		action->sa.sa_handler = SIG_DFL;
1201		if (blocked) {
1202			sigdelset(&t->blocked, sig);
1203			recalc_sigpending_and_wake(t);
1204		}
1205	}
1206	/*
1207	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1208	 * debugging to leave init killable.
1209	 */
1210	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1211		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1212	ret = specific_send_sig_info(sig, info, t);
1213	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1214
1215	return ret;
1216}
1217
 
 
 
 
 
1218/*
1219 * Nuke all other threads in the group.
1220 */
1221int zap_other_threads(struct task_struct *p)
1222{
1223	struct task_struct *t = p;
1224	int count = 0;
1225
1226	p->signal->group_stop_count = 0;
1227
1228	while_each_thread(p, t) {
1229		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1230		count++;
1231
1232		/* Don't bother with already dead threads */
1233		if (t->exit_state)
1234			continue;
1235		sigaddset(&t->pending.signal, SIGKILL);
1236		signal_wake_up(t, 1);
1237	}
1238
1239	return count;
1240}
1241
1242struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1243					   unsigned long *flags)
1244{
1245	struct sighand_struct *sighand;
1246
 
1247	for (;;) {
1248		/*
1249		 * Disable interrupts early to avoid deadlocks.
1250		 * See rcu_read_unlock() comment header for details.
1251		 */
1252		local_irq_save(*flags);
1253		rcu_read_lock();
1254		sighand = rcu_dereference(tsk->sighand);
1255		if (unlikely(sighand == NULL)) {
1256			rcu_read_unlock();
1257			local_irq_restore(*flags);
1258			break;
1259		}
1260		/*
1261		 * This sighand can be already freed and even reused, but
1262		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1263		 * initializes ->siglock: this slab can't go away, it has
1264		 * the same object type, ->siglock can't be reinitialized.
1265		 *
1266		 * We need to ensure that tsk->sighand is still the same
1267		 * after we take the lock, we can race with de_thread() or
1268		 * __exit_signal(). In the latter case the next iteration
1269		 * must see ->sighand == NULL.
1270		 */
1271		spin_lock(&sighand->siglock);
1272		if (likely(sighand == tsk->sighand)) {
1273			rcu_read_unlock();
1274			break;
1275		}
1276		spin_unlock(&sighand->siglock);
1277		rcu_read_unlock();
1278		local_irq_restore(*flags);
1279	}
 
1280
1281	return sighand;
1282}
1283
1284/*
1285 * send signal info to all the members of a group
1286 */
1287int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 
1288{
1289	int ret;
1290
1291	rcu_read_lock();
1292	ret = check_kill_permission(sig, info, p);
1293	rcu_read_unlock();
1294
1295	if (!ret && sig)
1296		ret = do_send_sig_info(sig, info, p, true);
1297
1298	return ret;
1299}
1300
1301/*
1302 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1303 * control characters do (^C, ^Z etc)
1304 * - the caller must hold at least a readlock on tasklist_lock
1305 */
1306int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1307{
1308	struct task_struct *p = NULL;
1309	int retval, success;
1310
1311	success = 0;
1312	retval = -ESRCH;
1313	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1314		int err = group_send_sig_info(sig, info, p);
1315		success |= !err;
1316		retval = err;
1317	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1318	return success ? 0 : retval;
1319}
1320
1321int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1322{
1323	int error = -ESRCH;
1324	struct task_struct *p;
1325
1326	for (;;) {
1327		rcu_read_lock();
1328		p = pid_task(pid, PIDTYPE_PID);
1329		if (p)
1330			error = group_send_sig_info(sig, info, p);
1331		rcu_read_unlock();
1332		if (likely(!p || error != -ESRCH))
1333			return error;
1334
1335		/*
1336		 * The task was unhashed in between, try again.  If it
1337		 * is dead, pid_task() will return NULL, if we race with
1338		 * de_thread() it will find the new leader.
1339		 */
1340	}
1341}
1342
1343static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1344{
1345	int error;
1346	rcu_read_lock();
1347	error = kill_pid_info(sig, info, find_vpid(pid));
1348	rcu_read_unlock();
1349	return error;
1350}
1351
1352static int kill_as_cred_perm(const struct cred *cred,
1353			     struct task_struct *target)
1354{
1355	const struct cred *pcred = __task_cred(target);
1356	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1357	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1358		return 0;
1359	return 1;
 
1360}
1361
1362/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1363int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1364			 const struct cred *cred)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1365{
1366	int ret = -EINVAL;
1367	struct task_struct *p;
1368	unsigned long flags;
 
 
 
 
 
 
 
1369
1370	if (!valid_signal(sig))
1371		return ret;
1372
1373	rcu_read_lock();
1374	p = pid_task(pid, PIDTYPE_PID);
1375	if (!p) {
1376		ret = -ESRCH;
1377		goto out_unlock;
1378	}
1379	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1380		ret = -EPERM;
1381		goto out_unlock;
1382	}
1383	ret = security_task_kill(p, info, sig, cred);
1384	if (ret)
1385		goto out_unlock;
1386
1387	if (sig) {
1388		if (lock_task_sighand(p, &flags)) {
1389			ret = __send_signal(sig, info, p, 1, 0);
1390			unlock_task_sighand(p, &flags);
1391		} else
1392			ret = -ESRCH;
1393	}
1394out_unlock:
1395	rcu_read_unlock();
1396	return ret;
1397}
1398EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1399
1400/*
1401 * kill_something_info() interprets pid in interesting ways just like kill(2).
1402 *
1403 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1404 * is probably wrong.  Should make it like BSD or SYSV.
1405 */
1406
1407static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1408{
1409	int ret;
1410
1411	if (pid > 0) {
1412		rcu_read_lock();
1413		ret = kill_pid_info(sig, info, find_vpid(pid));
1414		rcu_read_unlock();
1415		return ret;
1416	}
1417
1418	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1419	if (pid == INT_MIN)
1420		return -ESRCH;
1421
1422	read_lock(&tasklist_lock);
1423	if (pid != -1) {
1424		ret = __kill_pgrp_info(sig, info,
1425				pid ? find_vpid(-pid) : task_pgrp(current));
1426	} else {
1427		int retval = 0, count = 0;
1428		struct task_struct * p;
1429
1430		for_each_process(p) {
1431			if (task_pid_vnr(p) > 1 &&
1432					!same_thread_group(p, current)) {
1433				int err = group_send_sig_info(sig, info, p);
 
1434				++count;
1435				if (err != -EPERM)
1436					retval = err;
1437			}
1438		}
1439		ret = count ? retval : -ESRCH;
1440	}
1441	read_unlock(&tasklist_lock);
1442
1443	return ret;
1444}
1445
1446/*
1447 * These are for backward compatibility with the rest of the kernel source.
1448 */
1449
1450int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1451{
1452	/*
1453	 * Make sure legacy kernel users don't send in bad values
1454	 * (normal paths check this in check_kill_permission).
1455	 */
1456	if (!valid_signal(sig))
1457		return -EINVAL;
1458
1459	return do_send_sig_info(sig, info, p, false);
1460}
 
1461
1462#define __si_special(priv) \
1463	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1464
1465int
1466send_sig(int sig, struct task_struct *p, int priv)
1467{
1468	return send_sig_info(sig, __si_special(priv), p);
1469}
 
1470
1471void
1472force_sig(int sig, struct task_struct *p)
1473{
1474	force_sig_info(sig, SEND_SIG_PRIV, p);
 
 
 
 
 
 
 
 
1475}
 
1476
1477/*
1478 * When things go south during signal handling, we
1479 * will force a SIGSEGV. And if the signal that caused
1480 * the problem was already a SIGSEGV, we'll want to
1481 * make sure we don't even try to deliver the signal..
1482 */
1483int
1484force_sigsegv(int sig, struct task_struct *p)
1485{
 
 
1486	if (sig == SIGSEGV) {
1487		unsigned long flags;
1488		spin_lock_irqsave(&p->sighand->siglock, flags);
1489		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1490		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1491	}
1492	force_sig(SIGSEGV, p);
1493	return 0;
1494}
1495
1496int force_sig_fault(int sig, int code, void __user *addr
1497	___ARCH_SI_TRAPNO(int trapno)
1498	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1499	, struct task_struct *t)
1500{
1501	struct siginfo info;
1502
1503	clear_siginfo(&info);
1504	info.si_signo = sig;
1505	info.si_errno = 0;
1506	info.si_code  = code;
1507	info.si_addr  = addr;
1508#ifdef __ARCH_SI_TRAPNO
1509	info.si_trapno = trapno;
1510#endif
1511#ifdef __ia64__
1512	info.si_imm = imm;
1513	info.si_flags = flags;
1514	info.si_isr = isr;
1515#endif
1516	return force_sig_info(info.si_signo, &info, t);
 
 
 
 
 
 
 
 
 
1517}
1518
1519int send_sig_fault(int sig, int code, void __user *addr
1520	___ARCH_SI_TRAPNO(int trapno)
1521	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1522	, struct task_struct *t)
1523{
1524	struct siginfo info;
1525
1526	clear_siginfo(&info);
1527	info.si_signo = sig;
1528	info.si_errno = 0;
1529	info.si_code  = code;
1530	info.si_addr  = addr;
1531#ifdef __ARCH_SI_TRAPNO
1532	info.si_trapno = trapno;
1533#endif
1534#ifdef __ia64__
1535	info.si_imm = imm;
1536	info.si_flags = flags;
1537	info.si_isr = isr;
1538#endif
1539	return send_sig_info(info.si_signo, &info, t);
1540}
1541
1542#if defined(BUS_MCEERR_AO) && defined(BUS_MCEERR_AR)
1543int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1544{
1545	struct siginfo info;
1546
1547	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1548	clear_siginfo(&info);
1549	info.si_signo = SIGBUS;
1550	info.si_errno = 0;
1551	info.si_code = code;
1552	info.si_addr = addr;
1553	info.si_addr_lsb = lsb;
1554	return force_sig_info(info.si_signo, &info, t);
1555}
1556
1557int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1558{
1559	struct siginfo info;
1560
1561	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1562	clear_siginfo(&info);
1563	info.si_signo = SIGBUS;
1564	info.si_errno = 0;
1565	info.si_code = code;
1566	info.si_addr = addr;
1567	info.si_addr_lsb = lsb;
1568	return send_sig_info(info.si_signo, &info, t);
1569}
1570EXPORT_SYMBOL(send_sig_mceerr);
1571#endif
1572
1573#ifdef SEGV_BNDERR
1574int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1575{
1576	struct siginfo info;
1577
1578	clear_siginfo(&info);
1579	info.si_signo = SIGSEGV;
1580	info.si_errno = 0;
1581	info.si_code  = SEGV_BNDERR;
1582	info.si_addr  = addr;
1583	info.si_lower = lower;
1584	info.si_upper = upper;
1585	return force_sig_info(info.si_signo, &info, current);
1586}
1587#endif
1588
1589#ifdef SEGV_PKUERR
1590int force_sig_pkuerr(void __user *addr, u32 pkey)
1591{
1592	struct siginfo info;
1593
1594	clear_siginfo(&info);
1595	info.si_signo = SIGSEGV;
1596	info.si_errno = 0;
1597	info.si_code  = SEGV_PKUERR;
1598	info.si_addr  = addr;
1599	info.si_pkey  = pkey;
1600	return force_sig_info(info.si_signo, &info, current);
1601}
1602#endif
1603
1604/* For the crazy architectures that include trap information in
1605 * the errno field, instead of an actual errno value.
1606 */
1607int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1608{
1609	struct siginfo info;
1610
1611	clear_siginfo(&info);
1612	info.si_signo = SIGTRAP;
1613	info.si_errno = errno;
1614	info.si_code  = TRAP_HWBKPT;
1615	info.si_addr  = addr;
1616	return force_sig_info(info.si_signo, &info, current);
1617}
1618
1619int kill_pgrp(struct pid *pid, int sig, int priv)
1620{
1621	int ret;
1622
1623	read_lock(&tasklist_lock);
1624	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1625	read_unlock(&tasklist_lock);
1626
1627	return ret;
1628}
1629EXPORT_SYMBOL(kill_pgrp);
1630
1631int kill_pid(struct pid *pid, int sig, int priv)
1632{
1633	return kill_pid_info(sig, __si_special(priv), pid);
1634}
1635EXPORT_SYMBOL(kill_pid);
1636
1637/*
1638 * These functions support sending signals using preallocated sigqueue
1639 * structures.  This is needed "because realtime applications cannot
1640 * afford to lose notifications of asynchronous events, like timer
1641 * expirations or I/O completions".  In the case of POSIX Timers
1642 * we allocate the sigqueue structure from the timer_create.  If this
1643 * allocation fails we are able to report the failure to the application
1644 * with an EAGAIN error.
1645 */
1646struct sigqueue *sigqueue_alloc(void)
1647{
1648	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1649
1650	if (q)
1651		q->flags |= SIGQUEUE_PREALLOC;
1652
1653	return q;
1654}
1655
1656void sigqueue_free(struct sigqueue *q)
1657{
1658	unsigned long flags;
1659	spinlock_t *lock = &current->sighand->siglock;
1660
1661	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1662	/*
1663	 * We must hold ->siglock while testing q->list
1664	 * to serialize with collect_signal() or with
1665	 * __exit_signal()->flush_sigqueue().
1666	 */
1667	spin_lock_irqsave(lock, flags);
1668	q->flags &= ~SIGQUEUE_PREALLOC;
1669	/*
1670	 * If it is queued it will be freed when dequeued,
1671	 * like the "regular" sigqueue.
1672	 */
1673	if (!list_empty(&q->list))
1674		q = NULL;
1675	spin_unlock_irqrestore(lock, flags);
1676
1677	if (q)
1678		__sigqueue_free(q);
1679}
1680
1681int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1682{
1683	int sig = q->info.si_signo;
1684	struct sigpending *pending;
 
1685	unsigned long flags;
1686	int ret, result;
1687
1688	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1689
1690	ret = -1;
1691	if (!likely(lock_task_sighand(t, &flags)))
 
 
1692		goto ret;
1693
1694	ret = 1; /* the signal is ignored */
1695	result = TRACE_SIGNAL_IGNORED;
1696	if (!prepare_signal(sig, t, false))
1697		goto out;
1698
1699	ret = 0;
1700	if (unlikely(!list_empty(&q->list))) {
1701		/*
1702		 * If an SI_TIMER entry is already queue just increment
1703		 * the overrun count.
1704		 */
1705		BUG_ON(q->info.si_code != SI_TIMER);
1706		q->info.si_overrun++;
1707		result = TRACE_SIGNAL_ALREADY_PENDING;
1708		goto out;
1709	}
1710	q->info.si_overrun = 0;
1711
1712	signalfd_notify(t, sig);
1713	pending = group ? &t->signal->shared_pending : &t->pending;
1714	list_add_tail(&q->list, &pending->list);
1715	sigaddset(&pending->signal, sig);
1716	complete_signal(sig, t, group);
1717	result = TRACE_SIGNAL_DELIVERED;
1718out:
1719	trace_signal_generate(sig, &q->info, t, group, result);
1720	unlock_task_sighand(t, &flags);
1721ret:
 
1722	return ret;
1723}
1724
 
 
 
 
 
 
 
 
 
1725/*
1726 * Let a parent know about the death of a child.
1727 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1728 *
1729 * Returns true if our parent ignored us and so we've switched to
1730 * self-reaping.
1731 */
1732bool do_notify_parent(struct task_struct *tsk, int sig)
1733{
1734	struct siginfo info;
1735	unsigned long flags;
1736	struct sighand_struct *psig;
1737	bool autoreap = false;
1738	u64 utime, stime;
1739
1740	BUG_ON(sig == -1);
1741
1742 	/* do_notify_parent_cldstop should have been called instead.  */
1743 	BUG_ON(task_is_stopped_or_traced(tsk));
1744
1745	BUG_ON(!tsk->ptrace &&
1746	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1747
 
 
 
1748	if (sig != SIGCHLD) {
1749		/*
1750		 * This is only possible if parent == real_parent.
1751		 * Check if it has changed security domain.
1752		 */
1753		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1754			sig = SIGCHLD;
1755	}
1756
1757	clear_siginfo(&info);
1758	info.si_signo = sig;
1759	info.si_errno = 0;
1760	/*
1761	 * We are under tasklist_lock here so our parent is tied to
1762	 * us and cannot change.
1763	 *
1764	 * task_active_pid_ns will always return the same pid namespace
1765	 * until a task passes through release_task.
1766	 *
1767	 * write_lock() currently calls preempt_disable() which is the
1768	 * same as rcu_read_lock(), but according to Oleg, this is not
1769	 * correct to rely on this
1770	 */
1771	rcu_read_lock();
1772	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1773	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1774				       task_uid(tsk));
1775	rcu_read_unlock();
1776
1777	task_cputime(tsk, &utime, &stime);
1778	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1779	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1780
1781	info.si_status = tsk->exit_code & 0x7f;
1782	if (tsk->exit_code & 0x80)
1783		info.si_code = CLD_DUMPED;
1784	else if (tsk->exit_code & 0x7f)
1785		info.si_code = CLD_KILLED;
1786	else {
1787		info.si_code = CLD_EXITED;
1788		info.si_status = tsk->exit_code >> 8;
1789	}
1790
1791	psig = tsk->parent->sighand;
1792	spin_lock_irqsave(&psig->siglock, flags);
1793	if (!tsk->ptrace && sig == SIGCHLD &&
1794	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1795	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1796		/*
1797		 * We are exiting and our parent doesn't care.  POSIX.1
1798		 * defines special semantics for setting SIGCHLD to SIG_IGN
1799		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1800		 * automatically and not left for our parent's wait4 call.
1801		 * Rather than having the parent do it as a magic kind of
1802		 * signal handler, we just set this to tell do_exit that we
1803		 * can be cleaned up without becoming a zombie.  Note that
1804		 * we still call __wake_up_parent in this case, because a
1805		 * blocked sys_wait4 might now return -ECHILD.
1806		 *
1807		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1808		 * is implementation-defined: we do (if you don't want
1809		 * it, just use SIG_IGN instead).
1810		 */
1811		autoreap = true;
1812		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1813			sig = 0;
1814	}
1815	if (valid_signal(sig) && sig)
1816		__group_send_sig_info(sig, &info, tsk->parent);
1817	__wake_up_parent(tsk, tsk->parent);
1818	spin_unlock_irqrestore(&psig->siglock, flags);
1819
1820	return autoreap;
1821}
1822
1823/**
1824 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1825 * @tsk: task reporting the state change
1826 * @for_ptracer: the notification is for ptracer
1827 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1828 *
1829 * Notify @tsk's parent that the stopped/continued state has changed.  If
1830 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1831 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1832 *
1833 * CONTEXT:
1834 * Must be called with tasklist_lock at least read locked.
1835 */
1836static void do_notify_parent_cldstop(struct task_struct *tsk,
1837				     bool for_ptracer, int why)
1838{
1839	struct siginfo info;
1840	unsigned long flags;
1841	struct task_struct *parent;
1842	struct sighand_struct *sighand;
1843	u64 utime, stime;
1844
1845	if (for_ptracer) {
1846		parent = tsk->parent;
1847	} else {
1848		tsk = tsk->group_leader;
1849		parent = tsk->real_parent;
1850	}
1851
1852	clear_siginfo(&info);
1853	info.si_signo = SIGCHLD;
1854	info.si_errno = 0;
1855	/*
1856	 * see comment in do_notify_parent() about the following 4 lines
1857	 */
1858	rcu_read_lock();
1859	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1860	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1861	rcu_read_unlock();
1862
1863	task_cputime(tsk, &utime, &stime);
1864	info.si_utime = nsec_to_clock_t(utime);
1865	info.si_stime = nsec_to_clock_t(stime);
1866
1867 	info.si_code = why;
1868 	switch (why) {
1869 	case CLD_CONTINUED:
1870 		info.si_status = SIGCONT;
1871 		break;
1872 	case CLD_STOPPED:
1873 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1874 		break;
1875 	case CLD_TRAPPED:
1876 		info.si_status = tsk->exit_code & 0x7f;
1877 		break;
1878 	default:
1879 		BUG();
1880 	}
1881
1882	sighand = parent->sighand;
1883	spin_lock_irqsave(&sighand->siglock, flags);
1884	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1885	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1886		__group_send_sig_info(SIGCHLD, &info, parent);
1887	/*
1888	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1889	 */
1890	__wake_up_parent(tsk, parent);
1891	spin_unlock_irqrestore(&sighand->siglock, flags);
1892}
1893
1894static inline int may_ptrace_stop(void)
1895{
1896	if (!likely(current->ptrace))
1897		return 0;
1898	/*
1899	 * Are we in the middle of do_coredump?
1900	 * If so and our tracer is also part of the coredump stopping
1901	 * is a deadlock situation, and pointless because our tracer
1902	 * is dead so don't allow us to stop.
1903	 * If SIGKILL was already sent before the caller unlocked
1904	 * ->siglock we must see ->core_state != NULL. Otherwise it
1905	 * is safe to enter schedule().
1906	 *
1907	 * This is almost outdated, a task with the pending SIGKILL can't
1908	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1909	 * after SIGKILL was already dequeued.
1910	 */
1911	if (unlikely(current->mm->core_state) &&
1912	    unlikely(current->mm == current->parent->mm))
1913		return 0;
1914
1915	return 1;
1916}
1917
1918/*
1919 * Return non-zero if there is a SIGKILL that should be waking us up.
1920 * Called with the siglock held.
1921 */
1922static int sigkill_pending(struct task_struct *tsk)
1923{
1924	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1925		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1926}
1927
1928/*
1929 * This must be called with current->sighand->siglock held.
1930 *
1931 * This should be the path for all ptrace stops.
1932 * We always set current->last_siginfo while stopped here.
1933 * That makes it a way to test a stopped process for
1934 * being ptrace-stopped vs being job-control-stopped.
1935 *
1936 * If we actually decide not to stop at all because the tracer
1937 * is gone, we keep current->exit_code unless clear_code.
1938 */
1939static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1940	__releases(&current->sighand->siglock)
1941	__acquires(&current->sighand->siglock)
1942{
1943	bool gstop_done = false;
1944
1945	if (arch_ptrace_stop_needed(exit_code, info)) {
1946		/*
1947		 * The arch code has something special to do before a
1948		 * ptrace stop.  This is allowed to block, e.g. for faults
1949		 * on user stack pages.  We can't keep the siglock while
1950		 * calling arch_ptrace_stop, so we must release it now.
1951		 * To preserve proper semantics, we must do this before
1952		 * any signal bookkeeping like checking group_stop_count.
1953		 * Meanwhile, a SIGKILL could come in before we retake the
1954		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1955		 * So after regaining the lock, we must check for SIGKILL.
1956		 */
1957		spin_unlock_irq(&current->sighand->siglock);
1958		arch_ptrace_stop(exit_code, info);
1959		spin_lock_irq(&current->sighand->siglock);
1960		if (sigkill_pending(current))
1961			return;
1962	}
1963
1964	set_special_state(TASK_TRACED);
1965
1966	/*
1967	 * We're committing to trapping.  TRACED should be visible before
1968	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1969	 * Also, transition to TRACED and updates to ->jobctl should be
1970	 * atomic with respect to siglock and should be done after the arch
1971	 * hook as siglock is released and regrabbed across it.
1972	 *
1973	 *     TRACER				    TRACEE
1974	 *
1975	 *     ptrace_attach()
1976	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
1977	 *     do_wait()
1978	 *       set_current_state()                smp_wmb();
1979	 *       ptrace_do_wait()
1980	 *         wait_task_stopped()
1981	 *           task_stopped_code()
1982	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
1983	 */
1984	smp_wmb();
1985
1986	current->last_siginfo = info;
1987	current->exit_code = exit_code;
1988
1989	/*
1990	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1991	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1992	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1993	 * could be clear now.  We act as if SIGCONT is received after
1994	 * TASK_TRACED is entered - ignore it.
1995	 */
1996	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1997		gstop_done = task_participate_group_stop(current);
1998
1999	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2000	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2001	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2002		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2003
2004	/* entering a trap, clear TRAPPING */
2005	task_clear_jobctl_trapping(current);
2006
2007	spin_unlock_irq(&current->sighand->siglock);
2008	read_lock(&tasklist_lock);
2009	if (may_ptrace_stop()) {
2010		/*
2011		 * Notify parents of the stop.
2012		 *
2013		 * While ptraced, there are two parents - the ptracer and
2014		 * the real_parent of the group_leader.  The ptracer should
2015		 * know about every stop while the real parent is only
2016		 * interested in the completion of group stop.  The states
2017		 * for the two don't interact with each other.  Notify
2018		 * separately unless they're gonna be duplicates.
2019		 */
2020		do_notify_parent_cldstop(current, true, why);
2021		if (gstop_done && ptrace_reparented(current))
2022			do_notify_parent_cldstop(current, false, why);
2023
2024		/*
2025		 * Don't want to allow preemption here, because
2026		 * sys_ptrace() needs this task to be inactive.
2027		 *
2028		 * XXX: implement read_unlock_no_resched().
2029		 */
2030		preempt_disable();
2031		read_unlock(&tasklist_lock);
 
2032		preempt_enable_no_resched();
2033		freezable_schedule();
 
2034	} else {
2035		/*
2036		 * By the time we got the lock, our tracer went away.
2037		 * Don't drop the lock yet, another tracer may come.
2038		 *
2039		 * If @gstop_done, the ptracer went away between group stop
2040		 * completion and here.  During detach, it would have set
2041		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2042		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2043		 * the real parent of the group stop completion is enough.
2044		 */
2045		if (gstop_done)
2046			do_notify_parent_cldstop(current, false, why);
2047
2048		/* tasklist protects us from ptrace_freeze_traced() */
2049		__set_current_state(TASK_RUNNING);
2050		if (clear_code)
2051			current->exit_code = 0;
2052		read_unlock(&tasklist_lock);
2053	}
2054
2055	/*
2056	 * We are back.  Now reacquire the siglock before touching
2057	 * last_siginfo, so that we are sure to have synchronized with
2058	 * any signal-sending on another CPU that wants to examine it.
2059	 */
2060	spin_lock_irq(&current->sighand->siglock);
2061	current->last_siginfo = NULL;
2062
2063	/* LISTENING can be set only during STOP traps, clear it */
2064	current->jobctl &= ~JOBCTL_LISTENING;
2065
2066	/*
2067	 * Queued signals ignored us while we were stopped for tracing.
2068	 * So check for any that we should take before resuming user mode.
2069	 * This sets TIF_SIGPENDING, but never clears it.
2070	 */
2071	recalc_sigpending_tsk(current);
2072}
2073
2074static void ptrace_do_notify(int signr, int exit_code, int why)
2075{
2076	siginfo_t info;
2077
2078	clear_siginfo(&info);
2079	info.si_signo = signr;
2080	info.si_code = exit_code;
2081	info.si_pid = task_pid_vnr(current);
2082	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2083
2084	/* Let the debugger run.  */
2085	ptrace_stop(exit_code, why, 1, &info);
2086}
2087
2088void ptrace_notify(int exit_code)
2089{
2090	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2091	if (unlikely(current->task_works))
2092		task_work_run();
2093
2094	spin_lock_irq(&current->sighand->siglock);
2095	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2096	spin_unlock_irq(&current->sighand->siglock);
2097}
2098
2099/**
2100 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2101 * @signr: signr causing group stop if initiating
2102 *
2103 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2104 * and participate in it.  If already set, participate in the existing
2105 * group stop.  If participated in a group stop (and thus slept), %true is
2106 * returned with siglock released.
2107 *
2108 * If ptraced, this function doesn't handle stop itself.  Instead,
2109 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2110 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2111 * places afterwards.
2112 *
2113 * CONTEXT:
2114 * Must be called with @current->sighand->siglock held, which is released
2115 * on %true return.
2116 *
2117 * RETURNS:
2118 * %false if group stop is already cancelled or ptrace trap is scheduled.
2119 * %true if participated in group stop.
2120 */
2121static bool do_signal_stop(int signr)
2122	__releases(&current->sighand->siglock)
2123{
2124	struct signal_struct *sig = current->signal;
2125
2126	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2127		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2128		struct task_struct *t;
2129
2130		/* signr will be recorded in task->jobctl for retries */
2131		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2132
2133		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2134		    unlikely(signal_group_exit(sig)))
2135			return false;
2136		/*
2137		 * There is no group stop already in progress.  We must
2138		 * initiate one now.
2139		 *
2140		 * While ptraced, a task may be resumed while group stop is
2141		 * still in effect and then receive a stop signal and
2142		 * initiate another group stop.  This deviates from the
2143		 * usual behavior as two consecutive stop signals can't
2144		 * cause two group stops when !ptraced.  That is why we
2145		 * also check !task_is_stopped(t) below.
2146		 *
2147		 * The condition can be distinguished by testing whether
2148		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2149		 * group_exit_code in such case.
2150		 *
2151		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2152		 * an intervening stop signal is required to cause two
2153		 * continued events regardless of ptrace.
2154		 */
2155		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2156			sig->group_exit_code = signr;
2157
2158		sig->group_stop_count = 0;
2159
2160		if (task_set_jobctl_pending(current, signr | gstop))
2161			sig->group_stop_count++;
2162
2163		t = current;
2164		while_each_thread(current, t) {
2165			/*
2166			 * Setting state to TASK_STOPPED for a group
2167			 * stop is always done with the siglock held,
2168			 * so this check has no races.
2169			 */
2170			if (!task_is_stopped(t) &&
2171			    task_set_jobctl_pending(t, signr | gstop)) {
2172				sig->group_stop_count++;
2173				if (likely(!(t->ptrace & PT_SEIZED)))
2174					signal_wake_up(t, 0);
2175				else
2176					ptrace_trap_notify(t);
2177			}
2178		}
2179	}
2180
2181	if (likely(!current->ptrace)) {
2182		int notify = 0;
2183
2184		/*
2185		 * If there are no other threads in the group, or if there
2186		 * is a group stop in progress and we are the last to stop,
2187		 * report to the parent.
2188		 */
2189		if (task_participate_group_stop(current))
2190			notify = CLD_STOPPED;
2191
2192		set_special_state(TASK_STOPPED);
2193		spin_unlock_irq(&current->sighand->siglock);
2194
2195		/*
2196		 * Notify the parent of the group stop completion.  Because
2197		 * we're not holding either the siglock or tasklist_lock
2198		 * here, ptracer may attach inbetween; however, this is for
2199		 * group stop and should always be delivered to the real
2200		 * parent of the group leader.  The new ptracer will get
2201		 * its notification when this task transitions into
2202		 * TASK_TRACED.
2203		 */
2204		if (notify) {
2205			read_lock(&tasklist_lock);
2206			do_notify_parent_cldstop(current, false, notify);
2207			read_unlock(&tasklist_lock);
2208		}
2209
2210		/* Now we don't run again until woken by SIGCONT or SIGKILL */
 
2211		freezable_schedule();
2212		return true;
2213	} else {
2214		/*
2215		 * While ptraced, group stop is handled by STOP trap.
2216		 * Schedule it and let the caller deal with it.
2217		 */
2218		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2219		return false;
2220	}
2221}
2222
2223/**
2224 * do_jobctl_trap - take care of ptrace jobctl traps
2225 *
2226 * When PT_SEIZED, it's used for both group stop and explicit
2227 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2228 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2229 * the stop signal; otherwise, %SIGTRAP.
2230 *
2231 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2232 * number as exit_code and no siginfo.
2233 *
2234 * CONTEXT:
2235 * Must be called with @current->sighand->siglock held, which may be
2236 * released and re-acquired before returning with intervening sleep.
2237 */
2238static void do_jobctl_trap(void)
2239{
2240	struct signal_struct *signal = current->signal;
2241	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2242
2243	if (current->ptrace & PT_SEIZED) {
2244		if (!signal->group_stop_count &&
2245		    !(signal->flags & SIGNAL_STOP_STOPPED))
2246			signr = SIGTRAP;
2247		WARN_ON_ONCE(!signr);
2248		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2249				 CLD_STOPPED);
2250	} else {
2251		WARN_ON_ONCE(!signr);
2252		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2253		current->exit_code = 0;
2254	}
2255}
2256
2257static int ptrace_signal(int signr, siginfo_t *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2258{
2259	/*
2260	 * We do not check sig_kernel_stop(signr) but set this marker
2261	 * unconditionally because we do not know whether debugger will
2262	 * change signr. This flag has no meaning unless we are going
2263	 * to stop after return from ptrace_stop(). In this case it will
2264	 * be checked in do_signal_stop(), we should only stop if it was
2265	 * not cleared by SIGCONT while we were sleeping. See also the
2266	 * comment in dequeue_signal().
2267	 */
2268	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2269	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2270
2271	/* We're back.  Did the debugger cancel the sig?  */
2272	signr = current->exit_code;
2273	if (signr == 0)
2274		return signr;
2275
2276	current->exit_code = 0;
2277
2278	/*
2279	 * Update the siginfo structure if the signal has
2280	 * changed.  If the debugger wanted something
2281	 * specific in the siginfo structure then it should
2282	 * have updated *info via PTRACE_SETSIGINFO.
2283	 */
2284	if (signr != info->si_signo) {
2285		clear_siginfo(info);
2286		info->si_signo = signr;
2287		info->si_errno = 0;
2288		info->si_code = SI_USER;
2289		rcu_read_lock();
2290		info->si_pid = task_pid_vnr(current->parent);
2291		info->si_uid = from_kuid_munged(current_user_ns(),
2292						task_uid(current->parent));
2293		rcu_read_unlock();
2294	}
2295
2296	/* If the (new) signal is now blocked, requeue it.  */
2297	if (sigismember(&current->blocked, signr)) {
2298		specific_send_sig_info(signr, info, current);
2299		signr = 0;
2300	}
2301
2302	return signr;
2303}
2304
2305int get_signal(struct ksignal *ksig)
2306{
2307	struct sighand_struct *sighand = current->sighand;
2308	struct signal_struct *signal = current->signal;
2309	int signr;
2310
2311	if (unlikely(current->task_works))
2312		task_work_run();
2313
2314	if (unlikely(uprobe_deny_signal()))
2315		return 0;
2316
2317	/*
2318	 * Do this once, we can't return to user-mode if freezing() == T.
2319	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2320	 * thus do not need another check after return.
2321	 */
2322	try_to_freeze();
2323
2324relock:
2325	spin_lock_irq(&sighand->siglock);
2326	/*
2327	 * Every stopped thread goes here after wakeup. Check to see if
2328	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2329	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2330	 */
2331	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2332		int why;
2333
2334		if (signal->flags & SIGNAL_CLD_CONTINUED)
2335			why = CLD_CONTINUED;
2336		else
2337			why = CLD_STOPPED;
2338
2339		signal->flags &= ~SIGNAL_CLD_MASK;
2340
2341		spin_unlock_irq(&sighand->siglock);
2342
2343		/*
2344		 * Notify the parent that we're continuing.  This event is
2345		 * always per-process and doesn't make whole lot of sense
2346		 * for ptracers, who shouldn't consume the state via
2347		 * wait(2) either, but, for backward compatibility, notify
2348		 * the ptracer of the group leader too unless it's gonna be
2349		 * a duplicate.
2350		 */
2351		read_lock(&tasklist_lock);
2352		do_notify_parent_cldstop(current, false, why);
2353
2354		if (ptrace_reparented(current->group_leader))
2355			do_notify_parent_cldstop(current->group_leader,
2356						true, why);
2357		read_unlock(&tasklist_lock);
2358
2359		goto relock;
2360	}
2361
 
 
 
 
 
 
 
 
 
 
2362	for (;;) {
2363		struct k_sigaction *ka;
2364
2365		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2366		    do_signal_stop(0))
2367			goto relock;
2368
2369		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2370			do_jobctl_trap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2371			spin_unlock_irq(&sighand->siglock);
 
2372			goto relock;
2373		}
2374
2375		signr = dequeue_signal(current, &current->blocked, &ksig->info);
 
 
 
 
 
 
 
 
2376
2377		if (!signr)
2378			break; /* will return 0 */
2379
2380		if (unlikely(current->ptrace) && signr != SIGKILL) {
2381			signr = ptrace_signal(signr, &ksig->info);
2382			if (!signr)
2383				continue;
2384		}
2385
2386		ka = &sighand->action[signr-1];
2387
2388		/* Trace actually delivered signals. */
2389		trace_signal_deliver(signr, &ksig->info, ka);
2390
2391		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2392			continue;
2393		if (ka->sa.sa_handler != SIG_DFL) {
2394			/* Run the handler.  */
2395			ksig->ka = *ka;
2396
2397			if (ka->sa.sa_flags & SA_ONESHOT)
2398				ka->sa.sa_handler = SIG_DFL;
2399
2400			break; /* will return non-zero "signr" value */
2401		}
2402
2403		/*
2404		 * Now we are doing the default action for this signal.
2405		 */
2406		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2407			continue;
2408
2409		/*
2410		 * Global init gets no signals it doesn't want.
2411		 * Container-init gets no signals it doesn't want from same
2412		 * container.
2413		 *
2414		 * Note that if global/container-init sees a sig_kernel_only()
2415		 * signal here, the signal must have been generated internally
2416		 * or must have come from an ancestor namespace. In either
2417		 * case, the signal cannot be dropped.
2418		 */
2419		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2420				!sig_kernel_only(signr))
2421			continue;
2422
2423		if (sig_kernel_stop(signr)) {
2424			/*
2425			 * The default action is to stop all threads in
2426			 * the thread group.  The job control signals
2427			 * do nothing in an orphaned pgrp, but SIGSTOP
2428			 * always works.  Note that siglock needs to be
2429			 * dropped during the call to is_orphaned_pgrp()
2430			 * because of lock ordering with tasklist_lock.
2431			 * This allows an intervening SIGCONT to be posted.
2432			 * We need to check for that and bail out if necessary.
2433			 */
2434			if (signr != SIGSTOP) {
2435				spin_unlock_irq(&sighand->siglock);
2436
2437				/* signals can be posted during this window */
2438
2439				if (is_current_pgrp_orphaned())
2440					goto relock;
2441
2442				spin_lock_irq(&sighand->siglock);
2443			}
2444
2445			if (likely(do_signal_stop(ksig->info.si_signo))) {
2446				/* It released the siglock.  */
2447				goto relock;
2448			}
2449
2450			/*
2451			 * We didn't actually stop, due to a race
2452			 * with SIGCONT or something like that.
2453			 */
2454			continue;
2455		}
2456
 
2457		spin_unlock_irq(&sighand->siglock);
 
 
2458
2459		/*
2460		 * Anything else is fatal, maybe with a core dump.
2461		 */
2462		current->flags |= PF_SIGNALED;
2463
2464		if (sig_kernel_coredump(signr)) {
2465			if (print_fatal_signals)
2466				print_fatal_signal(ksig->info.si_signo);
2467			proc_coredump_connector(current);
2468			/*
2469			 * If it was able to dump core, this kills all
2470			 * other threads in the group and synchronizes with
2471			 * their demise.  If we lost the race with another
2472			 * thread getting here, it set group_exit_code
2473			 * first and our do_group_exit call below will use
2474			 * that value and ignore the one we pass it.
2475			 */
2476			do_coredump(&ksig->info);
2477		}
2478
2479		/*
2480		 * Death signals, no core dump.
2481		 */
2482		do_group_exit(ksig->info.si_signo);
2483		/* NOTREACHED */
2484	}
2485	spin_unlock_irq(&sighand->siglock);
2486
2487	ksig->sig = signr;
2488	return ksig->sig > 0;
2489}
2490
2491/**
2492 * signal_delivered - 
2493 * @ksig:		kernel signal struct
2494 * @stepping:		nonzero if debugger single-step or block-step in use
2495 *
2496 * This function should be called when a signal has successfully been
2497 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2498 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2499 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2500 */
2501static void signal_delivered(struct ksignal *ksig, int stepping)
2502{
2503	sigset_t blocked;
2504
2505	/* A signal was successfully delivered, and the
2506	   saved sigmask was stored on the signal frame,
2507	   and will be restored by sigreturn.  So we can
2508	   simply clear the restore sigmask flag.  */
2509	clear_restore_sigmask();
2510
2511	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2512	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2513		sigaddset(&blocked, ksig->sig);
2514	set_current_blocked(&blocked);
2515	tracehook_signal_handler(stepping);
2516}
2517
2518void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2519{
2520	if (failed)
2521		force_sigsegv(ksig->sig, current);
2522	else
2523		signal_delivered(ksig, stepping);
2524}
2525
2526/*
2527 * It could be that complete_signal() picked us to notify about the
2528 * group-wide signal. Other threads should be notified now to take
2529 * the shared signals in @which since we will not.
2530 */
2531static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2532{
2533	sigset_t retarget;
2534	struct task_struct *t;
2535
2536	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2537	if (sigisemptyset(&retarget))
2538		return;
2539
2540	t = tsk;
2541	while_each_thread(tsk, t) {
2542		if (t->flags & PF_EXITING)
2543			continue;
2544
2545		if (!has_pending_signals(&retarget, &t->blocked))
2546			continue;
2547		/* Remove the signals this thread can handle. */
2548		sigandsets(&retarget, &retarget, &t->blocked);
2549
2550		if (!signal_pending(t))
2551			signal_wake_up(t, 0);
2552
2553		if (sigisemptyset(&retarget))
2554			break;
2555	}
2556}
2557
2558void exit_signals(struct task_struct *tsk)
2559{
2560	int group_stop = 0;
2561	sigset_t unblocked;
2562
2563	/*
2564	 * @tsk is about to have PF_EXITING set - lock out users which
2565	 * expect stable threadgroup.
2566	 */
2567	cgroup_threadgroup_change_begin(tsk);
2568
2569	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2570		tsk->flags |= PF_EXITING;
2571		cgroup_threadgroup_change_end(tsk);
2572		return;
2573	}
2574
2575	spin_lock_irq(&tsk->sighand->siglock);
2576	/*
2577	 * From now this task is not visible for group-wide signals,
2578	 * see wants_signal(), do_signal_stop().
2579	 */
2580	tsk->flags |= PF_EXITING;
2581
2582	cgroup_threadgroup_change_end(tsk);
2583
2584	if (!signal_pending(tsk))
2585		goto out;
2586
2587	unblocked = tsk->blocked;
2588	signotset(&unblocked);
2589	retarget_shared_pending(tsk, &unblocked);
2590
2591	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2592	    task_participate_group_stop(tsk))
2593		group_stop = CLD_STOPPED;
2594out:
2595	spin_unlock_irq(&tsk->sighand->siglock);
2596
2597	/*
2598	 * If group stop has completed, deliver the notification.  This
2599	 * should always go to the real parent of the group leader.
2600	 */
2601	if (unlikely(group_stop)) {
2602		read_lock(&tasklist_lock);
2603		do_notify_parent_cldstop(tsk, false, group_stop);
2604		read_unlock(&tasklist_lock);
2605	}
2606}
2607
2608EXPORT_SYMBOL(recalc_sigpending);
2609EXPORT_SYMBOL_GPL(dequeue_signal);
2610EXPORT_SYMBOL(flush_signals);
2611EXPORT_SYMBOL(force_sig);
2612EXPORT_SYMBOL(send_sig);
2613EXPORT_SYMBOL(send_sig_info);
2614EXPORT_SYMBOL(sigprocmask);
2615
2616/*
2617 * System call entry points.
2618 */
2619
2620/**
2621 *  sys_restart_syscall - restart a system call
2622 */
2623SYSCALL_DEFINE0(restart_syscall)
2624{
2625	struct restart_block *restart = &current->restart_block;
2626	return restart->fn(restart);
2627}
2628
2629long do_no_restart_syscall(struct restart_block *param)
2630{
2631	return -EINTR;
2632}
2633
2634static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2635{
2636	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2637		sigset_t newblocked;
2638		/* A set of now blocked but previously unblocked signals. */
2639		sigandnsets(&newblocked, newset, &current->blocked);
2640		retarget_shared_pending(tsk, &newblocked);
2641	}
2642	tsk->blocked = *newset;
2643	recalc_sigpending();
2644}
2645
2646/**
2647 * set_current_blocked - change current->blocked mask
2648 * @newset: new mask
2649 *
2650 * It is wrong to change ->blocked directly, this helper should be used
2651 * to ensure the process can't miss a shared signal we are going to block.
2652 */
2653void set_current_blocked(sigset_t *newset)
2654{
2655	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2656	__set_current_blocked(newset);
2657}
2658
2659void __set_current_blocked(const sigset_t *newset)
2660{
2661	struct task_struct *tsk = current;
2662
2663	/*
2664	 * In case the signal mask hasn't changed, there is nothing we need
2665	 * to do. The current->blocked shouldn't be modified by other task.
2666	 */
2667	if (sigequalsets(&tsk->blocked, newset))
2668		return;
2669
2670	spin_lock_irq(&tsk->sighand->siglock);
2671	__set_task_blocked(tsk, newset);
2672	spin_unlock_irq(&tsk->sighand->siglock);
2673}
2674
2675/*
2676 * This is also useful for kernel threads that want to temporarily
2677 * (or permanently) block certain signals.
2678 *
2679 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2680 * interface happily blocks "unblockable" signals like SIGKILL
2681 * and friends.
2682 */
2683int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2684{
2685	struct task_struct *tsk = current;
2686	sigset_t newset;
2687
2688	/* Lockless, only current can change ->blocked, never from irq */
2689	if (oldset)
2690		*oldset = tsk->blocked;
2691
2692	switch (how) {
2693	case SIG_BLOCK:
2694		sigorsets(&newset, &tsk->blocked, set);
2695		break;
2696	case SIG_UNBLOCK:
2697		sigandnsets(&newset, &tsk->blocked, set);
2698		break;
2699	case SIG_SETMASK:
2700		newset = *set;
2701		break;
2702	default:
2703		return -EINVAL;
2704	}
2705
2706	__set_current_blocked(&newset);
2707	return 0;
2708}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2709
2710/**
2711 *  sys_rt_sigprocmask - change the list of currently blocked signals
2712 *  @how: whether to add, remove, or set signals
2713 *  @nset: stores pending signals
2714 *  @oset: previous value of signal mask if non-null
2715 *  @sigsetsize: size of sigset_t type
2716 */
2717SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2718		sigset_t __user *, oset, size_t, sigsetsize)
2719{
2720	sigset_t old_set, new_set;
2721	int error;
2722
2723	/* XXX: Don't preclude handling different sized sigset_t's.  */
2724	if (sigsetsize != sizeof(sigset_t))
2725		return -EINVAL;
2726
2727	old_set = current->blocked;
2728
2729	if (nset) {
2730		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2731			return -EFAULT;
2732		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2733
2734		error = sigprocmask(how, &new_set, NULL);
2735		if (error)
2736			return error;
2737	}
2738
2739	if (oset) {
2740		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2741			return -EFAULT;
2742	}
2743
2744	return 0;
2745}
2746
2747#ifdef CONFIG_COMPAT
2748COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2749		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2750{
2751	sigset_t old_set = current->blocked;
2752
2753	/* XXX: Don't preclude handling different sized sigset_t's.  */
2754	if (sigsetsize != sizeof(sigset_t))
2755		return -EINVAL;
2756
2757	if (nset) {
2758		sigset_t new_set;
2759		int error;
2760		if (get_compat_sigset(&new_set, nset))
2761			return -EFAULT;
2762		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2763
2764		error = sigprocmask(how, &new_set, NULL);
2765		if (error)
2766			return error;
2767	}
2768	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2769}
2770#endif
2771
2772static int do_sigpending(sigset_t *set)
2773{
2774	spin_lock_irq(&current->sighand->siglock);
2775	sigorsets(set, &current->pending.signal,
2776		  &current->signal->shared_pending.signal);
2777	spin_unlock_irq(&current->sighand->siglock);
2778
2779	/* Outside the lock because only this thread touches it.  */
2780	sigandsets(set, &current->blocked, set);
2781	return 0;
2782}
2783
2784/**
2785 *  sys_rt_sigpending - examine a pending signal that has been raised
2786 *			while blocked
2787 *  @uset: stores pending signals
2788 *  @sigsetsize: size of sigset_t type or larger
2789 */
2790SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2791{
2792	sigset_t set;
2793	int err;
2794
2795	if (sigsetsize > sizeof(*uset))
2796		return -EINVAL;
2797
2798	err = do_sigpending(&set);
2799	if (!err && copy_to_user(uset, &set, sigsetsize))
2800		err = -EFAULT;
2801	return err;
 
 
2802}
2803
2804#ifdef CONFIG_COMPAT
2805COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2806		compat_size_t, sigsetsize)
2807{
2808	sigset_t set;
2809	int err;
2810
2811	if (sigsetsize > sizeof(*uset))
2812		return -EINVAL;
2813
2814	err = do_sigpending(&set);
2815	if (!err)
2816		err = put_compat_sigset(uset, &set, sigsetsize);
2817	return err;
2818}
2819#endif
2820
2821enum siginfo_layout siginfo_layout(int sig, int si_code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2822{
2823	enum siginfo_layout layout = SIL_KILL;
2824	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2825		static const struct {
2826			unsigned char limit, layout;
2827		} filter[] = {
2828			[SIGILL]  = { NSIGILL,  SIL_FAULT },
2829			[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
2830			[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2831			[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
2832			[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2833#if defined(SIGEMT) && defined(NSIGEMT)
2834			[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
2835#endif
2836			[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2837			[SIGPOLL] = { NSIGPOLL, SIL_POLL },
2838			[SIGSYS]  = { NSIGSYS,  SIL_SYS },
2839		};
2840		if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit))
2841			layout = filter[sig].layout;
2842		else if (si_code <= NSIGPOLL)
2843			layout = SIL_POLL;
2844	} else {
2845		if (si_code == SI_TIMER)
2846			layout = SIL_TIMER;
2847		else if (si_code == SI_SIGIO)
2848			layout = SIL_POLL;
2849		else if (si_code < 0)
2850			layout = SIL_RT;
2851		/* Tests to support buggy kernel ABIs */
2852#ifdef TRAP_FIXME
2853		if ((sig == SIGTRAP) && (si_code == TRAP_FIXME))
2854			layout = SIL_FAULT;
2855#endif
2856#ifdef FPE_FIXME
2857		if ((sig == SIGFPE) && (si_code == FPE_FIXME))
2858			layout = SIL_FAULT;
2859#endif
2860	}
2861	return layout;
2862}
2863
2864int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2865{
2866	int err;
 
2867
2868	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
 
 
 
 
 
2869		return -EFAULT;
2870	if (from->si_code < 0)
2871		return __copy_to_user(to, from, sizeof(siginfo_t))
2872			? -EFAULT : 0;
2873	/*
2874	 * If you change siginfo_t structure, please be sure
2875	 * this code is fixed accordingly.
2876	 * Please remember to update the signalfd_copyinfo() function
2877	 * inside fs/signalfd.c too, in case siginfo_t changes.
2878	 * It should never copy any pad contained in the structure
2879	 * to avoid security leaks, but must copy the generic
2880	 * 3 ints plus the relevant union member.
2881	 */
2882	err = __put_user(from->si_signo, &to->si_signo);
2883	err |= __put_user(from->si_errno, &to->si_errno);
2884	err |= __put_user(from->si_code, &to->si_code);
2885	switch (siginfo_layout(from->si_signo, from->si_code)) {
2886	case SIL_KILL:
2887		err |= __put_user(from->si_pid, &to->si_pid);
2888		err |= __put_user(from->si_uid, &to->si_uid);
2889		break;
2890	case SIL_TIMER:
2891		/* Unreached SI_TIMER is negative */
2892		break;
2893	case SIL_POLL:
2894		err |= __put_user(from->si_band, &to->si_band);
2895		err |= __put_user(from->si_fd, &to->si_fd);
2896		break;
2897	case SIL_FAULT:
2898		err |= __put_user(from->si_addr, &to->si_addr);
2899#ifdef __ARCH_SI_TRAPNO
2900		err |= __put_user(from->si_trapno, &to->si_trapno);
2901#endif
2902#ifdef __ia64__
2903		err |= __put_user(from->si_imm, &to->si_imm);
2904		err |= __put_user(from->si_flags, &to->si_flags);
2905		err |= __put_user(from->si_isr, &to->si_isr);
2906#endif
2907		/*
2908		 * Other callers might not initialize the si_lsb field,
2909		 * so check explicitly for the right codes here.
2910		 */
2911#ifdef BUS_MCEERR_AR
2912		if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AR)
2913			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2914#endif
2915#ifdef BUS_MCEERR_AO
2916		if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AO)
2917			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2918#endif
2919#ifdef SEGV_BNDERR
2920		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2921			err |= __put_user(from->si_lower, &to->si_lower);
2922			err |= __put_user(from->si_upper, &to->si_upper);
2923		}
2924#endif
2925#ifdef SEGV_PKUERR
2926		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2927			err |= __put_user(from->si_pkey, &to->si_pkey);
2928#endif
2929		break;
2930	case SIL_CHLD:
2931		err |= __put_user(from->si_pid, &to->si_pid);
2932		err |= __put_user(from->si_uid, &to->si_uid);
2933		err |= __put_user(from->si_status, &to->si_status);
2934		err |= __put_user(from->si_utime, &to->si_utime);
2935		err |= __put_user(from->si_stime, &to->si_stime);
2936		break;
2937	case SIL_RT:
2938		err |= __put_user(from->si_pid, &to->si_pid);
2939		err |= __put_user(from->si_uid, &to->si_uid);
2940		err |= __put_user(from->si_ptr, &to->si_ptr);
2941		break;
2942	case SIL_SYS:
2943		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2944		err |= __put_user(from->si_syscall, &to->si_syscall);
2945		err |= __put_user(from->si_arch, &to->si_arch);
2946		break;
2947	}
2948	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2949}
2950
2951#ifdef CONFIG_COMPAT
2952int copy_siginfo_to_user32(struct compat_siginfo __user *to,
2953			   const struct siginfo *from)
2954#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
2955{
2956	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
2957}
2958int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
2959			     const struct siginfo *from, bool x32_ABI)
2960#endif
2961{
2962	struct compat_siginfo new;
2963	memset(&new, 0, sizeof(new));
2964
2965	new.si_signo = from->si_signo;
2966	new.si_errno = from->si_errno;
2967	new.si_code  = from->si_code;
2968	switch(siginfo_layout(from->si_signo, from->si_code)) {
2969	case SIL_KILL:
2970		new.si_pid = from->si_pid;
2971		new.si_uid = from->si_uid;
2972		break;
2973	case SIL_TIMER:
2974		new.si_tid     = from->si_tid;
2975		new.si_overrun = from->si_overrun;
2976		new.si_int     = from->si_int;
2977		break;
2978	case SIL_POLL:
2979		new.si_band = from->si_band;
2980		new.si_fd   = from->si_fd;
2981		break;
2982	case SIL_FAULT:
2983		new.si_addr = ptr_to_compat(from->si_addr);
2984#ifdef __ARCH_SI_TRAPNO
2985		new.si_trapno = from->si_trapno;
2986#endif
2987#ifdef BUS_MCEERR_AR
2988		if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AR))
2989			new.si_addr_lsb = from->si_addr_lsb;
2990#endif
2991#ifdef BUS_MCEERR_AO
2992		if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AO))
2993			new.si_addr_lsb = from->si_addr_lsb;
2994#endif
2995#ifdef SEGV_BNDERR
2996		if ((from->si_signo == SIGSEGV) &&
2997		    (from->si_code == SEGV_BNDERR)) {
2998			new.si_lower = ptr_to_compat(from->si_lower);
2999			new.si_upper = ptr_to_compat(from->si_upper);
3000		}
3001#endif
3002#ifdef SEGV_PKUERR
3003		if ((from->si_signo == SIGSEGV) &&
3004		    (from->si_code == SEGV_PKUERR))
3005			new.si_pkey = from->si_pkey;
 
 
 
3006#endif
3007
3008		break;
3009	case SIL_CHLD:
3010		new.si_pid    = from->si_pid;
3011		new.si_uid    = from->si_uid;
3012		new.si_status = from->si_status;
3013#ifdef CONFIG_X86_X32_ABI
3014		if (x32_ABI) {
3015			new._sifields._sigchld_x32._utime = from->si_utime;
3016			new._sifields._sigchld_x32._stime = from->si_stime;
3017		} else
3018#endif
3019		{
3020			new.si_utime = from->si_utime;
3021			new.si_stime = from->si_stime;
3022		}
3023		break;
3024	case SIL_RT:
3025		new.si_pid = from->si_pid;
3026		new.si_uid = from->si_uid;
3027		new.si_int = from->si_int;
3028		break;
3029	case SIL_SYS:
3030		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3031		new.si_syscall   = from->si_syscall;
3032		new.si_arch      = from->si_arch;
3033		break;
3034	}
3035
3036	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3037		return -EFAULT;
3038
3039	return 0;
3040}
3041
3042int copy_siginfo_from_user32(struct siginfo *to,
3043			     const struct compat_siginfo __user *ufrom)
3044{
3045	struct compat_siginfo from;
3046
3047	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3048		return -EFAULT;
3049
3050	clear_siginfo(to);
3051	to->si_signo = from.si_signo;
3052	to->si_errno = from.si_errno;
3053	to->si_code  = from.si_code;
3054	switch(siginfo_layout(from.si_signo, from.si_code)) {
3055	case SIL_KILL:
3056		to->si_pid = from.si_pid;
3057		to->si_uid = from.si_uid;
3058		break;
3059	case SIL_TIMER:
3060		to->si_tid     = from.si_tid;
3061		to->si_overrun = from.si_overrun;
3062		to->si_int     = from.si_int;
3063		break;
3064	case SIL_POLL:
3065		to->si_band = from.si_band;
3066		to->si_fd   = from.si_fd;
3067		break;
3068	case SIL_FAULT:
3069		to->si_addr = compat_ptr(from.si_addr);
 
 
 
 
 
 
3070#ifdef __ARCH_SI_TRAPNO
3071		to->si_trapno = from.si_trapno;
3072#endif
3073#ifdef BUS_MCEERR_AR
3074		if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AR))
3075			to->si_addr_lsb = from.si_addr_lsb;
3076#endif
3077#ifdef BUS_MCEER_AO
3078		if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AO))
3079			to->si_addr_lsb = from.si_addr_lsb;
3080#endif
3081#ifdef SEGV_BNDERR
3082		if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_BNDERR)) {
3083			to->si_lower = compat_ptr(from.si_lower);
3084			to->si_upper = compat_ptr(from.si_upper);
3085		}
3086#endif
3087#ifdef SEGV_PKUERR
3088		if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_PKUERR))
3089			to->si_pkey = from.si_pkey;
 
 
 
 
3090#endif
 
3091		break;
3092	case SIL_CHLD:
3093		to->si_pid    = from.si_pid;
3094		to->si_uid    = from.si_uid;
3095		to->si_status = from.si_status;
3096#ifdef CONFIG_X86_X32_ABI
3097		if (in_x32_syscall()) {
3098			to->si_utime = from._sifields._sigchld_x32._utime;
3099			to->si_stime = from._sifields._sigchld_x32._stime;
3100		} else
3101#endif
3102		{
3103			to->si_utime = from.si_utime;
3104			to->si_stime = from.si_stime;
3105		}
3106		break;
3107	case SIL_RT:
3108		to->si_pid = from.si_pid;
3109		to->si_uid = from.si_uid;
3110		to->si_int = from.si_int;
3111		break;
3112	case SIL_SYS:
3113		to->si_call_addr = compat_ptr(from.si_call_addr);
3114		to->si_syscall   = from.si_syscall;
3115		to->si_arch      = from.si_arch;
3116		break;
3117	}
3118	return 0;
3119}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3120#endif /* CONFIG_COMPAT */
3121
3122/**
3123 *  do_sigtimedwait - wait for queued signals specified in @which
3124 *  @which: queued signals to wait for
3125 *  @info: if non-null, the signal's siginfo is returned here
3126 *  @ts: upper bound on process time suspension
3127 */
3128static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
3129		    const struct timespec *ts)
3130{
3131	ktime_t *to = NULL, timeout = KTIME_MAX;
3132	struct task_struct *tsk = current;
3133	sigset_t mask = *which;
3134	int sig, ret = 0;
3135
3136	if (ts) {
3137		if (!timespec_valid(ts))
3138			return -EINVAL;
3139		timeout = timespec_to_ktime(*ts);
3140		to = &timeout;
3141	}
3142
3143	/*
3144	 * Invert the set of allowed signals to get those we want to block.
3145	 */
3146	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3147	signotset(&mask);
3148
3149	spin_lock_irq(&tsk->sighand->siglock);
3150	sig = dequeue_signal(tsk, &mask, info);
3151	if (!sig && timeout) {
3152		/*
3153		 * None ready, temporarily unblock those we're interested
3154		 * while we are sleeping in so that we'll be awakened when
3155		 * they arrive. Unblocking is always fine, we can avoid
3156		 * set_current_blocked().
3157		 */
3158		tsk->real_blocked = tsk->blocked;
3159		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3160		recalc_sigpending();
3161		spin_unlock_irq(&tsk->sighand->siglock);
3162
3163		__set_current_state(TASK_INTERRUPTIBLE);
3164		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3165							 HRTIMER_MODE_REL);
3166		spin_lock_irq(&tsk->sighand->siglock);
3167		__set_task_blocked(tsk, &tsk->real_blocked);
3168		sigemptyset(&tsk->real_blocked);
3169		sig = dequeue_signal(tsk, &mask, info);
3170	}
3171	spin_unlock_irq(&tsk->sighand->siglock);
3172
3173	if (sig)
3174		return sig;
3175	return ret ? -EINTR : -EAGAIN;
3176}
3177
3178/**
3179 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3180 *			in @uthese
3181 *  @uthese: queued signals to wait for
3182 *  @uinfo: if non-null, the signal's siginfo is returned here
3183 *  @uts: upper bound on process time suspension
3184 *  @sigsetsize: size of sigset_t type
3185 */
3186SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3187		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
 
3188		size_t, sigsetsize)
3189{
3190	sigset_t these;
3191	struct timespec ts;
3192	siginfo_t info;
3193	int ret;
3194
3195	/* XXX: Don't preclude handling different sized sigset_t's.  */
3196	if (sigsetsize != sizeof(sigset_t))
3197		return -EINVAL;
3198
3199	if (copy_from_user(&these, uthese, sizeof(these)))
3200		return -EFAULT;
3201
3202	if (uts) {
3203		if (copy_from_user(&ts, uts, sizeof(ts)))
3204			return -EFAULT;
3205	}
3206
3207	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3208
3209	if (ret > 0 && uinfo) {
3210		if (copy_siginfo_to_user(uinfo, &info))
3211			ret = -EFAULT;
3212	}
3213
3214	return ret;
3215}
3216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3217#ifdef CONFIG_COMPAT
3218COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3219		struct compat_siginfo __user *, uinfo,
3220		struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
3221{
3222	sigset_t s;
3223	struct timespec t;
3224	siginfo_t info;
3225	long ret;
3226
3227	if (sigsetsize != sizeof(sigset_t))
3228		return -EINVAL;
3229
3230	if (get_compat_sigset(&s, uthese))
3231		return -EFAULT;
3232
3233	if (uts) {
3234		if (compat_get_timespec(&t, uts))
3235			return -EFAULT;
3236	}
3237
3238	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3239
3240	if (ret > 0 && uinfo) {
3241		if (copy_siginfo_to_user32(uinfo, &info))
3242			ret = -EFAULT;
3243	}
3244
3245	return ret;
3246}
3247#endif
 
 
 
 
 
 
 
 
 
 
 
3248
3249/**
3250 *  sys_kill - send a signal to a process
3251 *  @pid: the PID of the process
3252 *  @sig: signal to be sent
3253 */
3254SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3255{
3256	struct siginfo info;
3257
3258	clear_siginfo(&info);
3259	info.si_signo = sig;
3260	info.si_errno = 0;
3261	info.si_code = SI_USER;
3262	info.si_pid = task_tgid_vnr(current);
3263	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3264
3265	return kill_something_info(sig, &info, pid);
3266}
3267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3268static int
3269do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
3270{
3271	struct task_struct *p;
3272	int error = -ESRCH;
3273
3274	rcu_read_lock();
3275	p = find_task_by_vpid(pid);
3276	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3277		error = check_kill_permission(sig, info, p);
3278		/*
3279		 * The null signal is a permissions and process existence
3280		 * probe.  No signal is actually delivered.
3281		 */
3282		if (!error && sig) {
3283			error = do_send_sig_info(sig, info, p, false);
3284			/*
3285			 * If lock_task_sighand() failed we pretend the task
3286			 * dies after receiving the signal. The window is tiny,
3287			 * and the signal is private anyway.
3288			 */
3289			if (unlikely(error == -ESRCH))
3290				error = 0;
3291		}
3292	}
3293	rcu_read_unlock();
3294
3295	return error;
3296}
3297
3298static int do_tkill(pid_t tgid, pid_t pid, int sig)
3299{
3300	struct siginfo info;
3301
3302	clear_siginfo(&info);
3303	info.si_signo = sig;
3304	info.si_errno = 0;
3305	info.si_code = SI_TKILL;
3306	info.si_pid = task_tgid_vnr(current);
3307	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3308
3309	return do_send_specific(tgid, pid, sig, &info);
3310}
3311
3312/**
3313 *  sys_tgkill - send signal to one specific thread
3314 *  @tgid: the thread group ID of the thread
3315 *  @pid: the PID of the thread
3316 *  @sig: signal to be sent
3317 *
3318 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3319 *  exists but it's not belonging to the target process anymore. This
3320 *  method solves the problem of threads exiting and PIDs getting reused.
3321 */
3322SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3323{
3324	/* This is only valid for single tasks */
3325	if (pid <= 0 || tgid <= 0)
3326		return -EINVAL;
3327
3328	return do_tkill(tgid, pid, sig);
3329}
3330
3331/**
3332 *  sys_tkill - send signal to one specific task
3333 *  @pid: the PID of the task
3334 *  @sig: signal to be sent
3335 *
3336 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3337 */
3338SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3339{
3340	/* This is only valid for single tasks */
3341	if (pid <= 0)
3342		return -EINVAL;
3343
3344	return do_tkill(0, pid, sig);
3345}
3346
3347static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3348{
3349	/* Not even root can pretend to send signals from the kernel.
3350	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3351	 */
3352	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3353	    (task_pid_vnr(current) != pid))
3354		return -EPERM;
3355
3356	info->si_signo = sig;
3357
3358	/* POSIX.1b doesn't mention process groups.  */
3359	return kill_proc_info(sig, info, pid);
3360}
3361
3362/**
3363 *  sys_rt_sigqueueinfo - send signal information to a signal
3364 *  @pid: the PID of the thread
3365 *  @sig: signal to be sent
3366 *  @uinfo: signal info to be sent
3367 */
3368SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3369		siginfo_t __user *, uinfo)
3370{
3371	siginfo_t info;
3372	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3373		return -EFAULT;
 
3374	return do_rt_sigqueueinfo(pid, sig, &info);
3375}
3376
3377#ifdef CONFIG_COMPAT
3378COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3379			compat_pid_t, pid,
3380			int, sig,
3381			struct compat_siginfo __user *, uinfo)
3382{
3383	siginfo_t info;
3384	int ret = copy_siginfo_from_user32(&info, uinfo);
3385	if (unlikely(ret))
3386		return ret;
3387	return do_rt_sigqueueinfo(pid, sig, &info);
3388}
3389#endif
3390
3391static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3392{
3393	/* This is only valid for single tasks */
3394	if (pid <= 0 || tgid <= 0)
3395		return -EINVAL;
3396
3397	/* Not even root can pretend to send signals from the kernel.
3398	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3399	 */
3400	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3401	    (task_pid_vnr(current) != pid))
3402		return -EPERM;
3403
3404	info->si_signo = sig;
3405
3406	return do_send_specific(tgid, pid, sig, info);
3407}
3408
3409SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3410		siginfo_t __user *, uinfo)
3411{
3412	siginfo_t info;
3413
3414	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3415		return -EFAULT;
3416
3417	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3418}
3419
3420#ifdef CONFIG_COMPAT
3421COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3422			compat_pid_t, tgid,
3423			compat_pid_t, pid,
3424			int, sig,
3425			struct compat_siginfo __user *, uinfo)
3426{
3427	siginfo_t info;
3428
3429	if (copy_siginfo_from_user32(&info, uinfo))
3430		return -EFAULT;
3431	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3432}
3433#endif
3434
3435/*
3436 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3437 */
3438void kernel_sigaction(int sig, __sighandler_t action)
3439{
3440	spin_lock_irq(&current->sighand->siglock);
3441	current->sighand->action[sig - 1].sa.sa_handler = action;
3442	if (action == SIG_IGN) {
3443		sigset_t mask;
3444
3445		sigemptyset(&mask);
3446		sigaddset(&mask, sig);
3447
3448		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3449		flush_sigqueue_mask(&mask, &current->pending);
3450		recalc_sigpending();
3451	}
3452	spin_unlock_irq(&current->sighand->siglock);
3453}
3454EXPORT_SYMBOL(kernel_sigaction);
3455
3456void __weak sigaction_compat_abi(struct k_sigaction *act,
3457		struct k_sigaction *oact)
3458{
3459}
3460
3461int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3462{
3463	struct task_struct *p = current, *t;
3464	struct k_sigaction *k;
3465	sigset_t mask;
3466
3467	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3468		return -EINVAL;
3469
3470	k = &p->sighand->action[sig-1];
3471
3472	spin_lock_irq(&p->sighand->siglock);
3473	if (oact)
3474		*oact = *k;
3475
3476	sigaction_compat_abi(act, oact);
3477
3478	if (act) {
3479		sigdelsetmask(&act->sa.sa_mask,
3480			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3481		*k = *act;
3482		/*
3483		 * POSIX 3.3.1.3:
3484		 *  "Setting a signal action to SIG_IGN for a signal that is
3485		 *   pending shall cause the pending signal to be discarded,
3486		 *   whether or not it is blocked."
3487		 *
3488		 *  "Setting a signal action to SIG_DFL for a signal that is
3489		 *   pending and whose default action is to ignore the signal
3490		 *   (for example, SIGCHLD), shall cause the pending signal to
3491		 *   be discarded, whether or not it is blocked"
3492		 */
3493		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3494			sigemptyset(&mask);
3495			sigaddset(&mask, sig);
3496			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3497			for_each_thread(p, t)
3498				flush_sigqueue_mask(&mask, &t->pending);
3499		}
3500	}
3501
3502	spin_unlock_irq(&p->sighand->siglock);
3503	return 0;
3504}
3505
3506static int
3507do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
 
3508{
3509	struct task_struct *t = current;
3510
3511	if (oss) {
3512		memset(oss, 0, sizeof(stack_t));
3513		oss->ss_sp = (void __user *) t->sas_ss_sp;
3514		oss->ss_size = t->sas_ss_size;
3515		oss->ss_flags = sas_ss_flags(sp) |
3516			(current->sas_ss_flags & SS_FLAG_BITS);
3517	}
3518
3519	if (ss) {
3520		void __user *ss_sp = ss->ss_sp;
3521		size_t ss_size = ss->ss_size;
3522		unsigned ss_flags = ss->ss_flags;
3523		int ss_mode;
3524
3525		if (unlikely(on_sig_stack(sp)))
3526			return -EPERM;
3527
3528		ss_mode = ss_flags & ~SS_FLAG_BITS;
3529		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3530				ss_mode != 0))
3531			return -EINVAL;
3532
3533		if (ss_mode == SS_DISABLE) {
3534			ss_size = 0;
3535			ss_sp = NULL;
3536		} else {
3537			if (unlikely(ss_size < MINSIGSTKSZ))
3538				return -ENOMEM;
3539		}
3540
3541		t->sas_ss_sp = (unsigned long) ss_sp;
3542		t->sas_ss_size = ss_size;
3543		t->sas_ss_flags = ss_flags;
3544	}
3545	return 0;
3546}
3547
3548SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3549{
3550	stack_t new, old;
3551	int err;
3552	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3553		return -EFAULT;
3554	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3555			      current_user_stack_pointer());
 
3556	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3557		err = -EFAULT;
3558	return err;
3559}
3560
3561int restore_altstack(const stack_t __user *uss)
3562{
3563	stack_t new;
3564	if (copy_from_user(&new, uss, sizeof(stack_t)))
3565		return -EFAULT;
3566	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
 
3567	/* squash all but EFAULT for now */
3568	return 0;
3569}
3570
3571int __save_altstack(stack_t __user *uss, unsigned long sp)
3572{
3573	struct task_struct *t = current;
3574	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3575		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3576		__put_user(t->sas_ss_size, &uss->ss_size);
3577	if (err)
3578		return err;
3579	if (t->sas_ss_flags & SS_AUTODISARM)
3580		sas_ss_reset(t);
3581	return 0;
3582}
3583
3584#ifdef CONFIG_COMPAT
3585static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3586				 compat_stack_t __user *uoss_ptr)
3587{
3588	stack_t uss, uoss;
3589	int ret;
3590
3591	if (uss_ptr) {
3592		compat_stack_t uss32;
3593		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3594			return -EFAULT;
3595		uss.ss_sp = compat_ptr(uss32.ss_sp);
3596		uss.ss_flags = uss32.ss_flags;
3597		uss.ss_size = uss32.ss_size;
3598	}
3599	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3600			     compat_user_stack_pointer());
 
3601	if (ret >= 0 && uoss_ptr)  {
3602		compat_stack_t old;
3603		memset(&old, 0, sizeof(old));
3604		old.ss_sp = ptr_to_compat(uoss.ss_sp);
3605		old.ss_flags = uoss.ss_flags;
3606		old.ss_size = uoss.ss_size;
3607		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3608			ret = -EFAULT;
3609	}
3610	return ret;
3611}
3612
3613COMPAT_SYSCALL_DEFINE2(sigaltstack,
3614			const compat_stack_t __user *, uss_ptr,
3615			compat_stack_t __user *, uoss_ptr)
3616{
3617	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3618}
3619
3620int compat_restore_altstack(const compat_stack_t __user *uss)
3621{
3622	int err = do_compat_sigaltstack(uss, NULL);
3623	/* squash all but -EFAULT for now */
3624	return err == -EFAULT ? err : 0;
3625}
3626
3627int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3628{
3629	int err;
3630	struct task_struct *t = current;
3631	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3632			 &uss->ss_sp) |
3633		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3634		__put_user(t->sas_ss_size, &uss->ss_size);
3635	if (err)
3636		return err;
3637	if (t->sas_ss_flags & SS_AUTODISARM)
3638		sas_ss_reset(t);
3639	return 0;
3640}
3641#endif
3642
3643#ifdef __ARCH_WANT_SYS_SIGPENDING
3644
3645/**
3646 *  sys_sigpending - examine pending signals
3647 *  @uset: where mask of pending signal is returned
3648 */
3649SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
3650{
3651	sigset_t set;
3652	int err;
3653
3654	if (sizeof(old_sigset_t) > sizeof(*uset))
3655		return -EINVAL;
3656
3657	err = do_sigpending(&set);
3658	if (!err && copy_to_user(uset, &set, sizeof(old_sigset_t)))
3659		err = -EFAULT;
3660	return err;
 
 
3661}
3662
3663#ifdef CONFIG_COMPAT
3664COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3665{
3666	sigset_t set;
3667	int err = do_sigpending(&set);
3668	if (!err)
3669		err = put_user(set.sig[0], set32);
3670	return err;
3671}
3672#endif
3673
3674#endif
3675
3676#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3677/**
3678 *  sys_sigprocmask - examine and change blocked signals
3679 *  @how: whether to add, remove, or set signals
3680 *  @nset: signals to add or remove (if non-null)
3681 *  @oset: previous value of signal mask if non-null
3682 *
3683 * Some platforms have their own version with special arguments;
3684 * others support only sys_rt_sigprocmask.
3685 */
3686
3687SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3688		old_sigset_t __user *, oset)
3689{
3690	old_sigset_t old_set, new_set;
3691	sigset_t new_blocked;
3692
3693	old_set = current->blocked.sig[0];
3694
3695	if (nset) {
3696		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3697			return -EFAULT;
3698
3699		new_blocked = current->blocked;
3700
3701		switch (how) {
3702		case SIG_BLOCK:
3703			sigaddsetmask(&new_blocked, new_set);
3704			break;
3705		case SIG_UNBLOCK:
3706			sigdelsetmask(&new_blocked, new_set);
3707			break;
3708		case SIG_SETMASK:
3709			new_blocked.sig[0] = new_set;
3710			break;
3711		default:
3712			return -EINVAL;
3713		}
3714
3715		set_current_blocked(&new_blocked);
3716	}
3717
3718	if (oset) {
3719		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3720			return -EFAULT;
3721	}
3722
3723	return 0;
3724}
3725#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3726
3727#ifndef CONFIG_ODD_RT_SIGACTION
3728/**
3729 *  sys_rt_sigaction - alter an action taken by a process
3730 *  @sig: signal to be sent
3731 *  @act: new sigaction
3732 *  @oact: used to save the previous sigaction
3733 *  @sigsetsize: size of sigset_t type
3734 */
3735SYSCALL_DEFINE4(rt_sigaction, int, sig,
3736		const struct sigaction __user *, act,
3737		struct sigaction __user *, oact,
3738		size_t, sigsetsize)
3739{
3740	struct k_sigaction new_sa, old_sa;
3741	int ret = -EINVAL;
3742
3743	/* XXX: Don't preclude handling different sized sigset_t's.  */
3744	if (sigsetsize != sizeof(sigset_t))
3745		goto out;
3746
3747	if (act) {
3748		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3749			return -EFAULT;
3750	}
3751
3752	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
 
 
 
 
 
3753
3754	if (!ret && oact) {
3755		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3756			return -EFAULT;
3757	}
3758out:
3759	return ret;
3760}
3761#ifdef CONFIG_COMPAT
3762COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3763		const struct compat_sigaction __user *, act,
3764		struct compat_sigaction __user *, oact,
3765		compat_size_t, sigsetsize)
3766{
3767	struct k_sigaction new_ka, old_ka;
3768#ifdef __ARCH_HAS_SA_RESTORER
3769	compat_uptr_t restorer;
3770#endif
3771	int ret;
3772
3773	/* XXX: Don't preclude handling different sized sigset_t's.  */
3774	if (sigsetsize != sizeof(compat_sigset_t))
3775		return -EINVAL;
3776
3777	if (act) {
3778		compat_uptr_t handler;
3779		ret = get_user(handler, &act->sa_handler);
3780		new_ka.sa.sa_handler = compat_ptr(handler);
3781#ifdef __ARCH_HAS_SA_RESTORER
3782		ret |= get_user(restorer, &act->sa_restorer);
3783		new_ka.sa.sa_restorer = compat_ptr(restorer);
3784#endif
3785		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3786		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3787		if (ret)
3788			return -EFAULT;
3789	}
3790
3791	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3792	if (!ret && oact) {
3793		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3794			       &oact->sa_handler);
3795		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3796					 sizeof(oact->sa_mask));
3797		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3798#ifdef __ARCH_HAS_SA_RESTORER
3799		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3800				&oact->sa_restorer);
3801#endif
3802	}
3803	return ret;
3804}
3805#endif
3806#endif /* !CONFIG_ODD_RT_SIGACTION */
3807
3808#ifdef CONFIG_OLD_SIGACTION
3809SYSCALL_DEFINE3(sigaction, int, sig,
3810		const struct old_sigaction __user *, act,
3811	        struct old_sigaction __user *, oact)
3812{
3813	struct k_sigaction new_ka, old_ka;
3814	int ret;
3815
3816	if (act) {
3817		old_sigset_t mask;
3818		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3819		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3820		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3821		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3822		    __get_user(mask, &act->sa_mask))
3823			return -EFAULT;
3824#ifdef __ARCH_HAS_KA_RESTORER
3825		new_ka.ka_restorer = NULL;
3826#endif
3827		siginitset(&new_ka.sa.sa_mask, mask);
3828	}
3829
3830	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3831
3832	if (!ret && oact) {
3833		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3834		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3835		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3836		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3837		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3838			return -EFAULT;
3839	}
3840
3841	return ret;
3842}
3843#endif
3844#ifdef CONFIG_COMPAT_OLD_SIGACTION
3845COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3846		const struct compat_old_sigaction __user *, act,
3847	        struct compat_old_sigaction __user *, oact)
3848{
3849	struct k_sigaction new_ka, old_ka;
3850	int ret;
3851	compat_old_sigset_t mask;
3852	compat_uptr_t handler, restorer;
3853
3854	if (act) {
3855		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3856		    __get_user(handler, &act->sa_handler) ||
3857		    __get_user(restorer, &act->sa_restorer) ||
3858		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3859		    __get_user(mask, &act->sa_mask))
3860			return -EFAULT;
3861
3862#ifdef __ARCH_HAS_KA_RESTORER
3863		new_ka.ka_restorer = NULL;
3864#endif
3865		new_ka.sa.sa_handler = compat_ptr(handler);
3866		new_ka.sa.sa_restorer = compat_ptr(restorer);
3867		siginitset(&new_ka.sa.sa_mask, mask);
3868	}
3869
3870	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3871
3872	if (!ret && oact) {
3873		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3874		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3875			       &oact->sa_handler) ||
3876		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3877			       &oact->sa_restorer) ||
3878		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3879		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3880			return -EFAULT;
3881	}
3882	return ret;
3883}
3884#endif
3885
3886#ifdef CONFIG_SGETMASK_SYSCALL
3887
3888/*
3889 * For backwards compatibility.  Functionality superseded by sigprocmask.
3890 */
3891SYSCALL_DEFINE0(sgetmask)
3892{
3893	/* SMP safe */
3894	return current->blocked.sig[0];
3895}
3896
3897SYSCALL_DEFINE1(ssetmask, int, newmask)
3898{
3899	int old = current->blocked.sig[0];
3900	sigset_t newset;
3901
3902	siginitset(&newset, newmask);
3903	set_current_blocked(&newset);
3904
3905	return old;
3906}
3907#endif /* CONFIG_SGETMASK_SYSCALL */
3908
3909#ifdef __ARCH_WANT_SYS_SIGNAL
3910/*
3911 * For backwards compatibility.  Functionality superseded by sigaction.
3912 */
3913SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3914{
3915	struct k_sigaction new_sa, old_sa;
3916	int ret;
3917
3918	new_sa.sa.sa_handler = handler;
3919	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3920	sigemptyset(&new_sa.sa.sa_mask);
3921
3922	ret = do_sigaction(sig, &new_sa, &old_sa);
3923
3924	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3925}
3926#endif /* __ARCH_WANT_SYS_SIGNAL */
3927
3928#ifdef __ARCH_WANT_SYS_PAUSE
3929
3930SYSCALL_DEFINE0(pause)
3931{
3932	while (!signal_pending(current)) {
3933		__set_current_state(TASK_INTERRUPTIBLE);
3934		schedule();
3935	}
3936	return -ERESTARTNOHAND;
3937}
3938
3939#endif
3940
3941static int sigsuspend(sigset_t *set)
3942{
3943	current->saved_sigmask = current->blocked;
3944	set_current_blocked(set);
3945
3946	while (!signal_pending(current)) {
3947		__set_current_state(TASK_INTERRUPTIBLE);
3948		schedule();
3949	}
3950	set_restore_sigmask();
3951	return -ERESTARTNOHAND;
3952}
3953
3954/**
3955 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3956 *	@unewset value until a signal is received
3957 *  @unewset: new signal mask value
3958 *  @sigsetsize: size of sigset_t type
3959 */
3960SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3961{
3962	sigset_t newset;
3963
3964	/* XXX: Don't preclude handling different sized sigset_t's.  */
3965	if (sigsetsize != sizeof(sigset_t))
3966		return -EINVAL;
3967
3968	if (copy_from_user(&newset, unewset, sizeof(newset)))
3969		return -EFAULT;
3970	return sigsuspend(&newset);
3971}
3972 
3973#ifdef CONFIG_COMPAT
3974COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3975{
3976	sigset_t newset;
3977
3978	/* XXX: Don't preclude handling different sized sigset_t's.  */
3979	if (sigsetsize != sizeof(sigset_t))
3980		return -EINVAL;
3981
3982	if (get_compat_sigset(&newset, unewset))
3983		return -EFAULT;
3984	return sigsuspend(&newset);
3985}
3986#endif
3987
3988#ifdef CONFIG_OLD_SIGSUSPEND
3989SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3990{
3991	sigset_t blocked;
3992	siginitset(&blocked, mask);
3993	return sigsuspend(&blocked);
3994}
3995#endif
3996#ifdef CONFIG_OLD_SIGSUSPEND3
3997SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3998{
3999	sigset_t blocked;
4000	siginitset(&blocked, mask);
4001	return sigsuspend(&blocked);
4002}
4003#endif
4004
4005__weak const char *arch_vma_name(struct vm_area_struct *vma)
4006{
4007	return NULL;
4008}
4009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4010void __init signals_init(void)
4011{
4012	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
4013	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
4014		!= offsetof(struct siginfo, _sifields._pad));
4015	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4016
4017	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4018}
4019
4020#ifdef CONFIG_KGDB_KDB
4021#include <linux/kdb.h>
4022/*
4023 * kdb_send_sig - Allows kdb to send signals without exposing
4024 * signal internals.  This function checks if the required locks are
4025 * available before calling the main signal code, to avoid kdb
4026 * deadlocks.
4027 */
4028void kdb_send_sig(struct task_struct *t, int sig)
4029{
4030	static struct task_struct *kdb_prev_t;
4031	int new_t, ret;
4032	if (!spin_trylock(&t->sighand->siglock)) {
4033		kdb_printf("Can't do kill command now.\n"
4034			   "The sigmask lock is held somewhere else in "
4035			   "kernel, try again later\n");
4036		return;
4037	}
4038	new_t = kdb_prev_t != t;
4039	kdb_prev_t = t;
4040	if (t->state != TASK_RUNNING && new_t) {
4041		spin_unlock(&t->sighand->siglock);
4042		kdb_printf("Process is not RUNNING, sending a signal from "
4043			   "kdb risks deadlock\n"
4044			   "on the run queue locks. "
4045			   "The signal has _not_ been sent.\n"
4046			   "Reissue the kill command if you want to risk "
4047			   "the deadlock.\n");
4048		return;
4049	}
4050	ret = send_signal(sig, SEND_SIG_PRIV, t, false);
4051	spin_unlock(&t->sighand->siglock);
4052	if (ret)
4053		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4054			   sig, t->pid);
4055	else
4056		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4057}
4058#endif	/* CONFIG_KGDB_KDB */