Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/init.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/user.h>
19#include <linux/sched/debug.h>
20#include <linux/sched/task.h>
21#include <linux/sched/task_stack.h>
22#include <linux/sched/cputime.h>
23#include <linux/file.h>
24#include <linux/fs.h>
25#include <linux/proc_fs.h>
26#include <linux/tty.h>
27#include <linux/binfmts.h>
28#include <linux/coredump.h>
29#include <linux/security.h>
30#include <linux/syscalls.h>
31#include <linux/ptrace.h>
32#include <linux/signal.h>
33#include <linux/signalfd.h>
34#include <linux/ratelimit.h>
35#include <linux/tracehook.h>
36#include <linux/capability.h>
37#include <linux/freezer.h>
38#include <linux/pid_namespace.h>
39#include <linux/nsproxy.h>
40#include <linux/user_namespace.h>
41#include <linux/uprobes.h>
42#include <linux/compat.h>
43#include <linux/cn_proc.h>
44#include <linux/compiler.h>
45#include <linux/posix-timers.h>
46#include <linux/livepatch.h>
47#include <linux/cgroup.h>
48#include <linux/audit.h>
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/signal.h>
52
53#include <asm/param.h>
54#include <linux/uaccess.h>
55#include <asm/unistd.h>
56#include <asm/siginfo.h>
57#include <asm/cacheflush.h>
58
59/*
60 * SLAB caches for signal bits.
61 */
62
63static struct kmem_cache *sigqueue_cachep;
64
65int print_fatal_signals __read_mostly;
66
67static void __user *sig_handler(struct task_struct *t, int sig)
68{
69 return t->sighand->action[sig - 1].sa.sa_handler;
70}
71
72static inline bool sig_handler_ignored(void __user *handler, int sig)
73{
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
77}
78
79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80{
81 void __user *handler;
82
83 handler = sig_handler(t, sig);
84
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 return true;
88
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 return true;
92
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
96 return true;
97
98 return sig_handler_ignored(handler, sig);
99}
100
101static bool sig_ignored(struct task_struct *t, int sig, bool force)
102{
103 /*
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
106 * unblocked.
107 */
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 return false;
110
111 /*
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
115 */
116 if (t->ptrace && sig != SIGKILL)
117 return false;
118
119 return sig_task_ignored(t, sig, force);
120}
121
122/*
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
125 */
126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127{
128 unsigned long ready;
129 long i;
130
131 switch (_NSIG_WORDS) {
132 default:
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
135 break;
136
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
141 break;
142
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
145 break;
146
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
148 }
149 return ready != 0;
150}
151
152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153
154static bool recalc_sigpending_tsk(struct task_struct *t)
155{
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
161 return true;
162 }
163
164 /*
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
168 */
169 return false;
170}
171
172/*
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
175 */
176void recalc_sigpending_and_wake(struct task_struct *t)
177{
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
180}
181
182void recalc_sigpending(void)
183{
184 if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185 !klp_patch_pending(current))
186 clear_thread_flag(TIF_SIGPENDING);
187
188}
189EXPORT_SYMBOL(recalc_sigpending);
190
191void calculate_sigpending(void)
192{
193 /* Have any signals or users of TIF_SIGPENDING been delayed
194 * until after fork?
195 */
196 spin_lock_irq(¤t->sighand->siglock);
197 set_tsk_thread_flag(current, TIF_SIGPENDING);
198 recalc_sigpending();
199 spin_unlock_irq(¤t->sighand->siglock);
200}
201
202/* Given the mask, find the first available signal that should be serviced. */
203
204#define SYNCHRONOUS_MASK \
205 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207
208int next_signal(struct sigpending *pending, sigset_t *mask)
209{
210 unsigned long i, *s, *m, x;
211 int sig = 0;
212
213 s = pending->signal.sig;
214 m = mask->sig;
215
216 /*
217 * Handle the first word specially: it contains the
218 * synchronous signals that need to be dequeued first.
219 */
220 x = *s &~ *m;
221 if (x) {
222 if (x & SYNCHRONOUS_MASK)
223 x &= SYNCHRONOUS_MASK;
224 sig = ffz(~x) + 1;
225 return sig;
226 }
227
228 switch (_NSIG_WORDS) {
229 default:
230 for (i = 1; i < _NSIG_WORDS; ++i) {
231 x = *++s &~ *++m;
232 if (!x)
233 continue;
234 sig = ffz(~x) + i*_NSIG_BPW + 1;
235 break;
236 }
237 break;
238
239 case 2:
240 x = s[1] &~ m[1];
241 if (!x)
242 break;
243 sig = ffz(~x) + _NSIG_BPW + 1;
244 break;
245
246 case 1:
247 /* Nothing to do */
248 break;
249 }
250
251 return sig;
252}
253
254static inline void print_dropped_signal(int sig)
255{
256 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257
258 if (!print_fatal_signals)
259 return;
260
261 if (!__ratelimit(&ratelimit_state))
262 return;
263
264 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 current->comm, current->pid, sig);
266}
267
268/**
269 * task_set_jobctl_pending - set jobctl pending bits
270 * @task: target task
271 * @mask: pending bits to set
272 *
273 * Clear @mask from @task->jobctl. @mask must be subset of
274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
276 * cleared. If @task is already being killed or exiting, this function
277 * becomes noop.
278 *
279 * CONTEXT:
280 * Must be called with @task->sighand->siglock held.
281 *
282 * RETURNS:
283 * %true if @mask is set, %false if made noop because @task was dying.
284 */
285bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286{
287 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290
291 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 return false;
293
294 if (mask & JOBCTL_STOP_SIGMASK)
295 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296
297 task->jobctl |= mask;
298 return true;
299}
300
301/**
302 * task_clear_jobctl_trapping - clear jobctl trapping bit
303 * @task: target task
304 *
305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306 * Clear it and wake up the ptracer. Note that we don't need any further
307 * locking. @task->siglock guarantees that @task->parent points to the
308 * ptracer.
309 *
310 * CONTEXT:
311 * Must be called with @task->sighand->siglock held.
312 */
313void task_clear_jobctl_trapping(struct task_struct *task)
314{
315 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316 task->jobctl &= ~JOBCTL_TRAPPING;
317 smp_mb(); /* advised by wake_up_bit() */
318 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319 }
320}
321
322/**
323 * task_clear_jobctl_pending - clear jobctl pending bits
324 * @task: target task
325 * @mask: pending bits to clear
326 *
327 * Clear @mask from @task->jobctl. @mask must be subset of
328 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
329 * STOP bits are cleared together.
330 *
331 * If clearing of @mask leaves no stop or trap pending, this function calls
332 * task_clear_jobctl_trapping().
333 *
334 * CONTEXT:
335 * Must be called with @task->sighand->siglock held.
336 */
337void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338{
339 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340
341 if (mask & JOBCTL_STOP_PENDING)
342 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343
344 task->jobctl &= ~mask;
345
346 if (!(task->jobctl & JOBCTL_PENDING_MASK))
347 task_clear_jobctl_trapping(task);
348}
349
350/**
351 * task_participate_group_stop - participate in a group stop
352 * @task: task participating in a group stop
353 *
354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355 * Group stop states are cleared and the group stop count is consumed if
356 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
357 * stop, the appropriate `SIGNAL_*` flags are set.
358 *
359 * CONTEXT:
360 * Must be called with @task->sighand->siglock held.
361 *
362 * RETURNS:
363 * %true if group stop completion should be notified to the parent, %false
364 * otherwise.
365 */
366static bool task_participate_group_stop(struct task_struct *task)
367{
368 struct signal_struct *sig = task->signal;
369 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370
371 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372
373 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374
375 if (!consume)
376 return false;
377
378 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379 sig->group_stop_count--;
380
381 /*
382 * Tell the caller to notify completion iff we are entering into a
383 * fresh group stop. Read comment in do_signal_stop() for details.
384 */
385 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387 return true;
388 }
389 return false;
390}
391
392void task_join_group_stop(struct task_struct *task)
393{
394 /* Have the new thread join an on-going signal group stop */
395 unsigned long jobctl = current->jobctl;
396 if (jobctl & JOBCTL_STOP_PENDING) {
397 struct signal_struct *sig = current->signal;
398 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
399 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
400 if (task_set_jobctl_pending(task, signr | gstop)) {
401 sig->group_stop_count++;
402 }
403 }
404}
405
406/*
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
410 */
411static struct sigqueue *
412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
413{
414 struct sigqueue *q = NULL;
415 struct user_struct *user;
416
417 /*
418 * Protect access to @t credentials. This can go away when all
419 * callers hold rcu read lock.
420 */
421 rcu_read_lock();
422 user = get_uid(__task_cred(t)->user);
423 atomic_inc(&user->sigpending);
424 rcu_read_unlock();
425
426 if (override_rlimit ||
427 atomic_read(&user->sigpending) <=
428 task_rlimit(t, RLIMIT_SIGPENDING)) {
429 q = kmem_cache_alloc(sigqueue_cachep, flags);
430 } else {
431 print_dropped_signal(sig);
432 }
433
434 if (unlikely(q == NULL)) {
435 atomic_dec(&user->sigpending);
436 free_uid(user);
437 } else {
438 INIT_LIST_HEAD(&q->list);
439 q->flags = 0;
440 q->user = user;
441 }
442
443 return q;
444}
445
446static void __sigqueue_free(struct sigqueue *q)
447{
448 if (q->flags & SIGQUEUE_PREALLOC)
449 return;
450 atomic_dec(&q->user->sigpending);
451 free_uid(q->user);
452 kmem_cache_free(sigqueue_cachep, q);
453}
454
455void flush_sigqueue(struct sigpending *queue)
456{
457 struct sigqueue *q;
458
459 sigemptyset(&queue->signal);
460 while (!list_empty(&queue->list)) {
461 q = list_entry(queue->list.next, struct sigqueue , list);
462 list_del_init(&q->list);
463 __sigqueue_free(q);
464 }
465}
466
467/*
468 * Flush all pending signals for this kthread.
469 */
470void flush_signals(struct task_struct *t)
471{
472 unsigned long flags;
473
474 spin_lock_irqsave(&t->sighand->siglock, flags);
475 clear_tsk_thread_flag(t, TIF_SIGPENDING);
476 flush_sigqueue(&t->pending);
477 flush_sigqueue(&t->signal->shared_pending);
478 spin_unlock_irqrestore(&t->sighand->siglock, flags);
479}
480EXPORT_SYMBOL(flush_signals);
481
482#ifdef CONFIG_POSIX_TIMERS
483static void __flush_itimer_signals(struct sigpending *pending)
484{
485 sigset_t signal, retain;
486 struct sigqueue *q, *n;
487
488 signal = pending->signal;
489 sigemptyset(&retain);
490
491 list_for_each_entry_safe(q, n, &pending->list, list) {
492 int sig = q->info.si_signo;
493
494 if (likely(q->info.si_code != SI_TIMER)) {
495 sigaddset(&retain, sig);
496 } else {
497 sigdelset(&signal, sig);
498 list_del_init(&q->list);
499 __sigqueue_free(q);
500 }
501 }
502
503 sigorsets(&pending->signal, &signal, &retain);
504}
505
506void flush_itimer_signals(void)
507{
508 struct task_struct *tsk = current;
509 unsigned long flags;
510
511 spin_lock_irqsave(&tsk->sighand->siglock, flags);
512 __flush_itimer_signals(&tsk->pending);
513 __flush_itimer_signals(&tsk->signal->shared_pending);
514 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
515}
516#endif
517
518void ignore_signals(struct task_struct *t)
519{
520 int i;
521
522 for (i = 0; i < _NSIG; ++i)
523 t->sighand->action[i].sa.sa_handler = SIG_IGN;
524
525 flush_signals(t);
526}
527
528/*
529 * Flush all handlers for a task.
530 */
531
532void
533flush_signal_handlers(struct task_struct *t, int force_default)
534{
535 int i;
536 struct k_sigaction *ka = &t->sighand->action[0];
537 for (i = _NSIG ; i != 0 ; i--) {
538 if (force_default || ka->sa.sa_handler != SIG_IGN)
539 ka->sa.sa_handler = SIG_DFL;
540 ka->sa.sa_flags = 0;
541#ifdef __ARCH_HAS_SA_RESTORER
542 ka->sa.sa_restorer = NULL;
543#endif
544 sigemptyset(&ka->sa.sa_mask);
545 ka++;
546 }
547}
548
549bool unhandled_signal(struct task_struct *tsk, int sig)
550{
551 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
552 if (is_global_init(tsk))
553 return true;
554
555 if (handler != SIG_IGN && handler != SIG_DFL)
556 return false;
557
558 /* if ptraced, let the tracer determine */
559 return !tsk->ptrace;
560}
561
562static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
563 bool *resched_timer)
564{
565 struct sigqueue *q, *first = NULL;
566
567 /*
568 * Collect the siginfo appropriate to this signal. Check if
569 * there is another siginfo for the same signal.
570 */
571 list_for_each_entry(q, &list->list, list) {
572 if (q->info.si_signo == sig) {
573 if (first)
574 goto still_pending;
575 first = q;
576 }
577 }
578
579 sigdelset(&list->signal, sig);
580
581 if (first) {
582still_pending:
583 list_del_init(&first->list);
584 copy_siginfo(info, &first->info);
585
586 *resched_timer =
587 (first->flags & SIGQUEUE_PREALLOC) &&
588 (info->si_code == SI_TIMER) &&
589 (info->si_sys_private);
590
591 __sigqueue_free(first);
592 } else {
593 /*
594 * Ok, it wasn't in the queue. This must be
595 * a fast-pathed signal or we must have been
596 * out of queue space. So zero out the info.
597 */
598 clear_siginfo(info);
599 info->si_signo = sig;
600 info->si_errno = 0;
601 info->si_code = SI_USER;
602 info->si_pid = 0;
603 info->si_uid = 0;
604 }
605}
606
607static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
608 kernel_siginfo_t *info, bool *resched_timer)
609{
610 int sig = next_signal(pending, mask);
611
612 if (sig)
613 collect_signal(sig, pending, info, resched_timer);
614 return sig;
615}
616
617/*
618 * Dequeue a signal and return the element to the caller, which is
619 * expected to free it.
620 *
621 * All callers have to hold the siglock.
622 */
623int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
624{
625 bool resched_timer = false;
626 int signr;
627
628 /* We only dequeue private signals from ourselves, we don't let
629 * signalfd steal them
630 */
631 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
632 if (!signr) {
633 signr = __dequeue_signal(&tsk->signal->shared_pending,
634 mask, info, &resched_timer);
635#ifdef CONFIG_POSIX_TIMERS
636 /*
637 * itimer signal ?
638 *
639 * itimers are process shared and we restart periodic
640 * itimers in the signal delivery path to prevent DoS
641 * attacks in the high resolution timer case. This is
642 * compliant with the old way of self-restarting
643 * itimers, as the SIGALRM is a legacy signal and only
644 * queued once. Changing the restart behaviour to
645 * restart the timer in the signal dequeue path is
646 * reducing the timer noise on heavy loaded !highres
647 * systems too.
648 */
649 if (unlikely(signr == SIGALRM)) {
650 struct hrtimer *tmr = &tsk->signal->real_timer;
651
652 if (!hrtimer_is_queued(tmr) &&
653 tsk->signal->it_real_incr != 0) {
654 hrtimer_forward(tmr, tmr->base->get_time(),
655 tsk->signal->it_real_incr);
656 hrtimer_restart(tmr);
657 }
658 }
659#endif
660 }
661
662 recalc_sigpending();
663 if (!signr)
664 return 0;
665
666 if (unlikely(sig_kernel_stop(signr))) {
667 /*
668 * Set a marker that we have dequeued a stop signal. Our
669 * caller might release the siglock and then the pending
670 * stop signal it is about to process is no longer in the
671 * pending bitmasks, but must still be cleared by a SIGCONT
672 * (and overruled by a SIGKILL). So those cases clear this
673 * shared flag after we've set it. Note that this flag may
674 * remain set after the signal we return is ignored or
675 * handled. That doesn't matter because its only purpose
676 * is to alert stop-signal processing code when another
677 * processor has come along and cleared the flag.
678 */
679 current->jobctl |= JOBCTL_STOP_DEQUEUED;
680 }
681#ifdef CONFIG_POSIX_TIMERS
682 if (resched_timer) {
683 /*
684 * Release the siglock to ensure proper locking order
685 * of timer locks outside of siglocks. Note, we leave
686 * irqs disabled here, since the posix-timers code is
687 * about to disable them again anyway.
688 */
689 spin_unlock(&tsk->sighand->siglock);
690 posixtimer_rearm(info);
691 spin_lock(&tsk->sighand->siglock);
692
693 /* Don't expose the si_sys_private value to userspace */
694 info->si_sys_private = 0;
695 }
696#endif
697 return signr;
698}
699EXPORT_SYMBOL_GPL(dequeue_signal);
700
701static int dequeue_synchronous_signal(kernel_siginfo_t *info)
702{
703 struct task_struct *tsk = current;
704 struct sigpending *pending = &tsk->pending;
705 struct sigqueue *q, *sync = NULL;
706
707 /*
708 * Might a synchronous signal be in the queue?
709 */
710 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
711 return 0;
712
713 /*
714 * Return the first synchronous signal in the queue.
715 */
716 list_for_each_entry(q, &pending->list, list) {
717 /* Synchronous signals have a postive si_code */
718 if ((q->info.si_code > SI_USER) &&
719 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
720 sync = q;
721 goto next;
722 }
723 }
724 return 0;
725next:
726 /*
727 * Check if there is another siginfo for the same signal.
728 */
729 list_for_each_entry_continue(q, &pending->list, list) {
730 if (q->info.si_signo == sync->info.si_signo)
731 goto still_pending;
732 }
733
734 sigdelset(&pending->signal, sync->info.si_signo);
735 recalc_sigpending();
736still_pending:
737 list_del_init(&sync->list);
738 copy_siginfo(info, &sync->info);
739 __sigqueue_free(sync);
740 return info->si_signo;
741}
742
743/*
744 * Tell a process that it has a new active signal..
745 *
746 * NOTE! we rely on the previous spin_lock to
747 * lock interrupts for us! We can only be called with
748 * "siglock" held, and the local interrupt must
749 * have been disabled when that got acquired!
750 *
751 * No need to set need_resched since signal event passing
752 * goes through ->blocked
753 */
754void signal_wake_up_state(struct task_struct *t, unsigned int state)
755{
756 set_tsk_thread_flag(t, TIF_SIGPENDING);
757 /*
758 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
759 * case. We don't check t->state here because there is a race with it
760 * executing another processor and just now entering stopped state.
761 * By using wake_up_state, we ensure the process will wake up and
762 * handle its death signal.
763 */
764 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
765 kick_process(t);
766}
767
768/*
769 * Remove signals in mask from the pending set and queue.
770 * Returns 1 if any signals were found.
771 *
772 * All callers must be holding the siglock.
773 */
774static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
775{
776 struct sigqueue *q, *n;
777 sigset_t m;
778
779 sigandsets(&m, mask, &s->signal);
780 if (sigisemptyset(&m))
781 return;
782
783 sigandnsets(&s->signal, &s->signal, mask);
784 list_for_each_entry_safe(q, n, &s->list, list) {
785 if (sigismember(mask, q->info.si_signo)) {
786 list_del_init(&q->list);
787 __sigqueue_free(q);
788 }
789 }
790}
791
792static inline int is_si_special(const struct kernel_siginfo *info)
793{
794 return info <= SEND_SIG_PRIV;
795}
796
797static inline bool si_fromuser(const struct kernel_siginfo *info)
798{
799 return info == SEND_SIG_NOINFO ||
800 (!is_si_special(info) && SI_FROMUSER(info));
801}
802
803/*
804 * called with RCU read lock from check_kill_permission()
805 */
806static bool kill_ok_by_cred(struct task_struct *t)
807{
808 const struct cred *cred = current_cred();
809 const struct cred *tcred = __task_cred(t);
810
811 return uid_eq(cred->euid, tcred->suid) ||
812 uid_eq(cred->euid, tcred->uid) ||
813 uid_eq(cred->uid, tcred->suid) ||
814 uid_eq(cred->uid, tcred->uid) ||
815 ns_capable(tcred->user_ns, CAP_KILL);
816}
817
818/*
819 * Bad permissions for sending the signal
820 * - the caller must hold the RCU read lock
821 */
822static int check_kill_permission(int sig, struct kernel_siginfo *info,
823 struct task_struct *t)
824{
825 struct pid *sid;
826 int error;
827
828 if (!valid_signal(sig))
829 return -EINVAL;
830
831 if (!si_fromuser(info))
832 return 0;
833
834 error = audit_signal_info(sig, t); /* Let audit system see the signal */
835 if (error)
836 return error;
837
838 if (!same_thread_group(current, t) &&
839 !kill_ok_by_cred(t)) {
840 switch (sig) {
841 case SIGCONT:
842 sid = task_session(t);
843 /*
844 * We don't return the error if sid == NULL. The
845 * task was unhashed, the caller must notice this.
846 */
847 if (!sid || sid == task_session(current))
848 break;
849 /* fall through */
850 default:
851 return -EPERM;
852 }
853 }
854
855 return security_task_kill(t, info, sig, NULL);
856}
857
858/**
859 * ptrace_trap_notify - schedule trap to notify ptracer
860 * @t: tracee wanting to notify tracer
861 *
862 * This function schedules sticky ptrace trap which is cleared on the next
863 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
864 * ptracer.
865 *
866 * If @t is running, STOP trap will be taken. If trapped for STOP and
867 * ptracer is listening for events, tracee is woken up so that it can
868 * re-trap for the new event. If trapped otherwise, STOP trap will be
869 * eventually taken without returning to userland after the existing traps
870 * are finished by PTRACE_CONT.
871 *
872 * CONTEXT:
873 * Must be called with @task->sighand->siglock held.
874 */
875static void ptrace_trap_notify(struct task_struct *t)
876{
877 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
878 assert_spin_locked(&t->sighand->siglock);
879
880 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
881 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
882}
883
884/*
885 * Handle magic process-wide effects of stop/continue signals. Unlike
886 * the signal actions, these happen immediately at signal-generation
887 * time regardless of blocking, ignoring, or handling. This does the
888 * actual continuing for SIGCONT, but not the actual stopping for stop
889 * signals. The process stop is done as a signal action for SIG_DFL.
890 *
891 * Returns true if the signal should be actually delivered, otherwise
892 * it should be dropped.
893 */
894static bool prepare_signal(int sig, struct task_struct *p, bool force)
895{
896 struct signal_struct *signal = p->signal;
897 struct task_struct *t;
898 sigset_t flush;
899
900 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
901 if (!(signal->flags & SIGNAL_GROUP_EXIT))
902 return sig == SIGKILL;
903 /*
904 * The process is in the middle of dying, nothing to do.
905 */
906 } else if (sig_kernel_stop(sig)) {
907 /*
908 * This is a stop signal. Remove SIGCONT from all queues.
909 */
910 siginitset(&flush, sigmask(SIGCONT));
911 flush_sigqueue_mask(&flush, &signal->shared_pending);
912 for_each_thread(p, t)
913 flush_sigqueue_mask(&flush, &t->pending);
914 } else if (sig == SIGCONT) {
915 unsigned int why;
916 /*
917 * Remove all stop signals from all queues, wake all threads.
918 */
919 siginitset(&flush, SIG_KERNEL_STOP_MASK);
920 flush_sigqueue_mask(&flush, &signal->shared_pending);
921 for_each_thread(p, t) {
922 flush_sigqueue_mask(&flush, &t->pending);
923 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
924 if (likely(!(t->ptrace & PT_SEIZED)))
925 wake_up_state(t, __TASK_STOPPED);
926 else
927 ptrace_trap_notify(t);
928 }
929
930 /*
931 * Notify the parent with CLD_CONTINUED if we were stopped.
932 *
933 * If we were in the middle of a group stop, we pretend it
934 * was already finished, and then continued. Since SIGCHLD
935 * doesn't queue we report only CLD_STOPPED, as if the next
936 * CLD_CONTINUED was dropped.
937 */
938 why = 0;
939 if (signal->flags & SIGNAL_STOP_STOPPED)
940 why |= SIGNAL_CLD_CONTINUED;
941 else if (signal->group_stop_count)
942 why |= SIGNAL_CLD_STOPPED;
943
944 if (why) {
945 /*
946 * The first thread which returns from do_signal_stop()
947 * will take ->siglock, notice SIGNAL_CLD_MASK, and
948 * notify its parent. See get_signal().
949 */
950 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
951 signal->group_stop_count = 0;
952 signal->group_exit_code = 0;
953 }
954 }
955
956 return !sig_ignored(p, sig, force);
957}
958
959/*
960 * Test if P wants to take SIG. After we've checked all threads with this,
961 * it's equivalent to finding no threads not blocking SIG. Any threads not
962 * blocking SIG were ruled out because they are not running and already
963 * have pending signals. Such threads will dequeue from the shared queue
964 * as soon as they're available, so putting the signal on the shared queue
965 * will be equivalent to sending it to one such thread.
966 */
967static inline bool wants_signal(int sig, struct task_struct *p)
968{
969 if (sigismember(&p->blocked, sig))
970 return false;
971
972 if (p->flags & PF_EXITING)
973 return false;
974
975 if (sig == SIGKILL)
976 return true;
977
978 if (task_is_stopped_or_traced(p))
979 return false;
980
981 return task_curr(p) || !signal_pending(p);
982}
983
984static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
985{
986 struct signal_struct *signal = p->signal;
987 struct task_struct *t;
988
989 /*
990 * Now find a thread we can wake up to take the signal off the queue.
991 *
992 * If the main thread wants the signal, it gets first crack.
993 * Probably the least surprising to the average bear.
994 */
995 if (wants_signal(sig, p))
996 t = p;
997 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
998 /*
999 * There is just one thread and it does not need to be woken.
1000 * It will dequeue unblocked signals before it runs again.
1001 */
1002 return;
1003 else {
1004 /*
1005 * Otherwise try to find a suitable thread.
1006 */
1007 t = signal->curr_target;
1008 while (!wants_signal(sig, t)) {
1009 t = next_thread(t);
1010 if (t == signal->curr_target)
1011 /*
1012 * No thread needs to be woken.
1013 * Any eligible threads will see
1014 * the signal in the queue soon.
1015 */
1016 return;
1017 }
1018 signal->curr_target = t;
1019 }
1020
1021 /*
1022 * Found a killable thread. If the signal will be fatal,
1023 * then start taking the whole group down immediately.
1024 */
1025 if (sig_fatal(p, sig) &&
1026 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1027 !sigismember(&t->real_blocked, sig) &&
1028 (sig == SIGKILL || !p->ptrace)) {
1029 /*
1030 * This signal will be fatal to the whole group.
1031 */
1032 if (!sig_kernel_coredump(sig)) {
1033 /*
1034 * Start a group exit and wake everybody up.
1035 * This way we don't have other threads
1036 * running and doing things after a slower
1037 * thread has the fatal signal pending.
1038 */
1039 signal->flags = SIGNAL_GROUP_EXIT;
1040 signal->group_exit_code = sig;
1041 signal->group_stop_count = 0;
1042 t = p;
1043 do {
1044 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1045 sigaddset(&t->pending.signal, SIGKILL);
1046 signal_wake_up(t, 1);
1047 } while_each_thread(p, t);
1048 return;
1049 }
1050 }
1051
1052 /*
1053 * The signal is already in the shared-pending queue.
1054 * Tell the chosen thread to wake up and dequeue it.
1055 */
1056 signal_wake_up(t, sig == SIGKILL);
1057 return;
1058}
1059
1060static inline bool legacy_queue(struct sigpending *signals, int sig)
1061{
1062 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1063}
1064
1065static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1066 enum pid_type type, bool force)
1067{
1068 struct sigpending *pending;
1069 struct sigqueue *q;
1070 int override_rlimit;
1071 int ret = 0, result;
1072
1073 assert_spin_locked(&t->sighand->siglock);
1074
1075 result = TRACE_SIGNAL_IGNORED;
1076 if (!prepare_signal(sig, t, force))
1077 goto ret;
1078
1079 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1080 /*
1081 * Short-circuit ignored signals and support queuing
1082 * exactly one non-rt signal, so that we can get more
1083 * detailed information about the cause of the signal.
1084 */
1085 result = TRACE_SIGNAL_ALREADY_PENDING;
1086 if (legacy_queue(pending, sig))
1087 goto ret;
1088
1089 result = TRACE_SIGNAL_DELIVERED;
1090 /*
1091 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1092 */
1093 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1094 goto out_set;
1095
1096 /*
1097 * Real-time signals must be queued if sent by sigqueue, or
1098 * some other real-time mechanism. It is implementation
1099 * defined whether kill() does so. We attempt to do so, on
1100 * the principle of least surprise, but since kill is not
1101 * allowed to fail with EAGAIN when low on memory we just
1102 * make sure at least one signal gets delivered and don't
1103 * pass on the info struct.
1104 */
1105 if (sig < SIGRTMIN)
1106 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1107 else
1108 override_rlimit = 0;
1109
1110 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1111 if (q) {
1112 list_add_tail(&q->list, &pending->list);
1113 switch ((unsigned long) info) {
1114 case (unsigned long) SEND_SIG_NOINFO:
1115 clear_siginfo(&q->info);
1116 q->info.si_signo = sig;
1117 q->info.si_errno = 0;
1118 q->info.si_code = SI_USER;
1119 q->info.si_pid = task_tgid_nr_ns(current,
1120 task_active_pid_ns(t));
1121 rcu_read_lock();
1122 q->info.si_uid =
1123 from_kuid_munged(task_cred_xxx(t, user_ns),
1124 current_uid());
1125 rcu_read_unlock();
1126 break;
1127 case (unsigned long) SEND_SIG_PRIV:
1128 clear_siginfo(&q->info);
1129 q->info.si_signo = sig;
1130 q->info.si_errno = 0;
1131 q->info.si_code = SI_KERNEL;
1132 q->info.si_pid = 0;
1133 q->info.si_uid = 0;
1134 break;
1135 default:
1136 copy_siginfo(&q->info, info);
1137 break;
1138 }
1139 } else if (!is_si_special(info) &&
1140 sig >= SIGRTMIN && info->si_code != SI_USER) {
1141 /*
1142 * Queue overflow, abort. We may abort if the
1143 * signal was rt and sent by user using something
1144 * other than kill().
1145 */
1146 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1147 ret = -EAGAIN;
1148 goto ret;
1149 } else {
1150 /*
1151 * This is a silent loss of information. We still
1152 * send the signal, but the *info bits are lost.
1153 */
1154 result = TRACE_SIGNAL_LOSE_INFO;
1155 }
1156
1157out_set:
1158 signalfd_notify(t, sig);
1159 sigaddset(&pending->signal, sig);
1160
1161 /* Let multiprocess signals appear after on-going forks */
1162 if (type > PIDTYPE_TGID) {
1163 struct multiprocess_signals *delayed;
1164 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1165 sigset_t *signal = &delayed->signal;
1166 /* Can't queue both a stop and a continue signal */
1167 if (sig == SIGCONT)
1168 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1169 else if (sig_kernel_stop(sig))
1170 sigdelset(signal, SIGCONT);
1171 sigaddset(signal, sig);
1172 }
1173 }
1174
1175 complete_signal(sig, t, type);
1176ret:
1177 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1178 return ret;
1179}
1180
1181static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1182{
1183 bool ret = false;
1184 switch (siginfo_layout(info->si_signo, info->si_code)) {
1185 case SIL_KILL:
1186 case SIL_CHLD:
1187 case SIL_RT:
1188 ret = true;
1189 break;
1190 case SIL_TIMER:
1191 case SIL_POLL:
1192 case SIL_FAULT:
1193 case SIL_FAULT_MCEERR:
1194 case SIL_FAULT_BNDERR:
1195 case SIL_FAULT_PKUERR:
1196 case SIL_SYS:
1197 ret = false;
1198 break;
1199 }
1200 return ret;
1201}
1202
1203static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1204 enum pid_type type)
1205{
1206 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1207 bool force = false;
1208
1209 if (info == SEND_SIG_NOINFO) {
1210 /* Force if sent from an ancestor pid namespace */
1211 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1212 } else if (info == SEND_SIG_PRIV) {
1213 /* Don't ignore kernel generated signals */
1214 force = true;
1215 } else if (has_si_pid_and_uid(info)) {
1216 /* SIGKILL and SIGSTOP is special or has ids */
1217 struct user_namespace *t_user_ns;
1218
1219 rcu_read_lock();
1220 t_user_ns = task_cred_xxx(t, user_ns);
1221 if (current_user_ns() != t_user_ns) {
1222 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1223 info->si_uid = from_kuid_munged(t_user_ns, uid);
1224 }
1225 rcu_read_unlock();
1226
1227 /* A kernel generated signal? */
1228 force = (info->si_code == SI_KERNEL);
1229
1230 /* From an ancestor pid namespace? */
1231 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1232 info->si_pid = 0;
1233 force = true;
1234 }
1235 }
1236 return __send_signal(sig, info, t, type, force);
1237}
1238
1239static void print_fatal_signal(int signr)
1240{
1241 struct pt_regs *regs = signal_pt_regs();
1242 pr_info("potentially unexpected fatal signal %d.\n", signr);
1243
1244#if defined(__i386__) && !defined(__arch_um__)
1245 pr_info("code at %08lx: ", regs->ip);
1246 {
1247 int i;
1248 for (i = 0; i < 16; i++) {
1249 unsigned char insn;
1250
1251 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1252 break;
1253 pr_cont("%02x ", insn);
1254 }
1255 }
1256 pr_cont("\n");
1257#endif
1258 preempt_disable();
1259 show_regs(regs);
1260 preempt_enable();
1261}
1262
1263static int __init setup_print_fatal_signals(char *str)
1264{
1265 get_option (&str, &print_fatal_signals);
1266
1267 return 1;
1268}
1269
1270__setup("print-fatal-signals=", setup_print_fatal_signals);
1271
1272int
1273__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1274{
1275 return send_signal(sig, info, p, PIDTYPE_TGID);
1276}
1277
1278int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1279 enum pid_type type)
1280{
1281 unsigned long flags;
1282 int ret = -ESRCH;
1283
1284 if (lock_task_sighand(p, &flags)) {
1285 ret = send_signal(sig, info, p, type);
1286 unlock_task_sighand(p, &flags);
1287 }
1288
1289 return ret;
1290}
1291
1292/*
1293 * Force a signal that the process can't ignore: if necessary
1294 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1295 *
1296 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1297 * since we do not want to have a signal handler that was blocked
1298 * be invoked when user space had explicitly blocked it.
1299 *
1300 * We don't want to have recursive SIGSEGV's etc, for example,
1301 * that is why we also clear SIGNAL_UNKILLABLE.
1302 */
1303static int
1304force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1305{
1306 unsigned long int flags;
1307 int ret, blocked, ignored;
1308 struct k_sigaction *action;
1309 int sig = info->si_signo;
1310
1311 spin_lock_irqsave(&t->sighand->siglock, flags);
1312 action = &t->sighand->action[sig-1];
1313 ignored = action->sa.sa_handler == SIG_IGN;
1314 blocked = sigismember(&t->blocked, sig);
1315 if (blocked || ignored) {
1316 action->sa.sa_handler = SIG_DFL;
1317 if (blocked) {
1318 sigdelset(&t->blocked, sig);
1319 recalc_sigpending_and_wake(t);
1320 }
1321 }
1322 /*
1323 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1324 * debugging to leave init killable.
1325 */
1326 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1327 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1328 ret = send_signal(sig, info, t, PIDTYPE_PID);
1329 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1330
1331 return ret;
1332}
1333
1334int force_sig_info(struct kernel_siginfo *info)
1335{
1336 return force_sig_info_to_task(info, current);
1337}
1338
1339/*
1340 * Nuke all other threads in the group.
1341 */
1342int zap_other_threads(struct task_struct *p)
1343{
1344 struct task_struct *t = p;
1345 int count = 0;
1346
1347 p->signal->group_stop_count = 0;
1348
1349 while_each_thread(p, t) {
1350 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1351 count++;
1352
1353 /* Don't bother with already dead threads */
1354 if (t->exit_state)
1355 continue;
1356 sigaddset(&t->pending.signal, SIGKILL);
1357 signal_wake_up(t, 1);
1358 }
1359
1360 return count;
1361}
1362
1363struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1364 unsigned long *flags)
1365{
1366 struct sighand_struct *sighand;
1367
1368 rcu_read_lock();
1369 for (;;) {
1370 sighand = rcu_dereference(tsk->sighand);
1371 if (unlikely(sighand == NULL))
1372 break;
1373
1374 /*
1375 * This sighand can be already freed and even reused, but
1376 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1377 * initializes ->siglock: this slab can't go away, it has
1378 * the same object type, ->siglock can't be reinitialized.
1379 *
1380 * We need to ensure that tsk->sighand is still the same
1381 * after we take the lock, we can race with de_thread() or
1382 * __exit_signal(). In the latter case the next iteration
1383 * must see ->sighand == NULL.
1384 */
1385 spin_lock_irqsave(&sighand->siglock, *flags);
1386 if (likely(sighand == tsk->sighand))
1387 break;
1388 spin_unlock_irqrestore(&sighand->siglock, *flags);
1389 }
1390 rcu_read_unlock();
1391
1392 return sighand;
1393}
1394
1395/*
1396 * send signal info to all the members of a group
1397 */
1398int group_send_sig_info(int sig, struct kernel_siginfo *info,
1399 struct task_struct *p, enum pid_type type)
1400{
1401 int ret;
1402
1403 rcu_read_lock();
1404 ret = check_kill_permission(sig, info, p);
1405 rcu_read_unlock();
1406
1407 if (!ret && sig)
1408 ret = do_send_sig_info(sig, info, p, type);
1409
1410 return ret;
1411}
1412
1413/*
1414 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1415 * control characters do (^C, ^Z etc)
1416 * - the caller must hold at least a readlock on tasklist_lock
1417 */
1418int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1419{
1420 struct task_struct *p = NULL;
1421 int retval, success;
1422
1423 success = 0;
1424 retval = -ESRCH;
1425 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1426 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1427 success |= !err;
1428 retval = err;
1429 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1430 return success ? 0 : retval;
1431}
1432
1433int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1434{
1435 int error = -ESRCH;
1436 struct task_struct *p;
1437
1438 for (;;) {
1439 rcu_read_lock();
1440 p = pid_task(pid, PIDTYPE_PID);
1441 if (p)
1442 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1443 rcu_read_unlock();
1444 if (likely(!p || error != -ESRCH))
1445 return error;
1446
1447 /*
1448 * The task was unhashed in between, try again. If it
1449 * is dead, pid_task() will return NULL, if we race with
1450 * de_thread() it will find the new leader.
1451 */
1452 }
1453}
1454
1455static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1456{
1457 int error;
1458 rcu_read_lock();
1459 error = kill_pid_info(sig, info, find_vpid(pid));
1460 rcu_read_unlock();
1461 return error;
1462}
1463
1464static inline bool kill_as_cred_perm(const struct cred *cred,
1465 struct task_struct *target)
1466{
1467 const struct cred *pcred = __task_cred(target);
1468
1469 return uid_eq(cred->euid, pcred->suid) ||
1470 uid_eq(cred->euid, pcred->uid) ||
1471 uid_eq(cred->uid, pcred->suid) ||
1472 uid_eq(cred->uid, pcred->uid);
1473}
1474
1475/*
1476 * The usb asyncio usage of siginfo is wrong. The glibc support
1477 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1478 * AKA after the generic fields:
1479 * kernel_pid_t si_pid;
1480 * kernel_uid32_t si_uid;
1481 * sigval_t si_value;
1482 *
1483 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1484 * after the generic fields is:
1485 * void __user *si_addr;
1486 *
1487 * This is a practical problem when there is a 64bit big endian kernel
1488 * and a 32bit userspace. As the 32bit address will encoded in the low
1489 * 32bits of the pointer. Those low 32bits will be stored at higher
1490 * address than appear in a 32 bit pointer. So userspace will not
1491 * see the address it was expecting for it's completions.
1492 *
1493 * There is nothing in the encoding that can allow
1494 * copy_siginfo_to_user32 to detect this confusion of formats, so
1495 * handle this by requiring the caller of kill_pid_usb_asyncio to
1496 * notice when this situration takes place and to store the 32bit
1497 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1498 * parameter.
1499 */
1500int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1501 struct pid *pid, const struct cred *cred)
1502{
1503 struct kernel_siginfo info;
1504 struct task_struct *p;
1505 unsigned long flags;
1506 int ret = -EINVAL;
1507
1508 clear_siginfo(&info);
1509 info.si_signo = sig;
1510 info.si_errno = errno;
1511 info.si_code = SI_ASYNCIO;
1512 *((sigval_t *)&info.si_pid) = addr;
1513
1514 if (!valid_signal(sig))
1515 return ret;
1516
1517 rcu_read_lock();
1518 p = pid_task(pid, PIDTYPE_PID);
1519 if (!p) {
1520 ret = -ESRCH;
1521 goto out_unlock;
1522 }
1523 if (!kill_as_cred_perm(cred, p)) {
1524 ret = -EPERM;
1525 goto out_unlock;
1526 }
1527 ret = security_task_kill(p, &info, sig, cred);
1528 if (ret)
1529 goto out_unlock;
1530
1531 if (sig) {
1532 if (lock_task_sighand(p, &flags)) {
1533 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1534 unlock_task_sighand(p, &flags);
1535 } else
1536 ret = -ESRCH;
1537 }
1538out_unlock:
1539 rcu_read_unlock();
1540 return ret;
1541}
1542EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1543
1544/*
1545 * kill_something_info() interprets pid in interesting ways just like kill(2).
1546 *
1547 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1548 * is probably wrong. Should make it like BSD or SYSV.
1549 */
1550
1551static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1552{
1553 int ret;
1554
1555 if (pid > 0) {
1556 rcu_read_lock();
1557 ret = kill_pid_info(sig, info, find_vpid(pid));
1558 rcu_read_unlock();
1559 return ret;
1560 }
1561
1562 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1563 if (pid == INT_MIN)
1564 return -ESRCH;
1565
1566 read_lock(&tasklist_lock);
1567 if (pid != -1) {
1568 ret = __kill_pgrp_info(sig, info,
1569 pid ? find_vpid(-pid) : task_pgrp(current));
1570 } else {
1571 int retval = 0, count = 0;
1572 struct task_struct * p;
1573
1574 for_each_process(p) {
1575 if (task_pid_vnr(p) > 1 &&
1576 !same_thread_group(p, current)) {
1577 int err = group_send_sig_info(sig, info, p,
1578 PIDTYPE_MAX);
1579 ++count;
1580 if (err != -EPERM)
1581 retval = err;
1582 }
1583 }
1584 ret = count ? retval : -ESRCH;
1585 }
1586 read_unlock(&tasklist_lock);
1587
1588 return ret;
1589}
1590
1591/*
1592 * These are for backward compatibility with the rest of the kernel source.
1593 */
1594
1595int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1596{
1597 /*
1598 * Make sure legacy kernel users don't send in bad values
1599 * (normal paths check this in check_kill_permission).
1600 */
1601 if (!valid_signal(sig))
1602 return -EINVAL;
1603
1604 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1605}
1606EXPORT_SYMBOL(send_sig_info);
1607
1608#define __si_special(priv) \
1609 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1610
1611int
1612send_sig(int sig, struct task_struct *p, int priv)
1613{
1614 return send_sig_info(sig, __si_special(priv), p);
1615}
1616EXPORT_SYMBOL(send_sig);
1617
1618void force_sig(int sig)
1619{
1620 struct kernel_siginfo info;
1621
1622 clear_siginfo(&info);
1623 info.si_signo = sig;
1624 info.si_errno = 0;
1625 info.si_code = SI_KERNEL;
1626 info.si_pid = 0;
1627 info.si_uid = 0;
1628 force_sig_info(&info);
1629}
1630EXPORT_SYMBOL(force_sig);
1631
1632/*
1633 * When things go south during signal handling, we
1634 * will force a SIGSEGV. And if the signal that caused
1635 * the problem was already a SIGSEGV, we'll want to
1636 * make sure we don't even try to deliver the signal..
1637 */
1638void force_sigsegv(int sig)
1639{
1640 struct task_struct *p = current;
1641
1642 if (sig == SIGSEGV) {
1643 unsigned long flags;
1644 spin_lock_irqsave(&p->sighand->siglock, flags);
1645 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1646 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1647 }
1648 force_sig(SIGSEGV);
1649}
1650
1651int force_sig_fault_to_task(int sig, int code, void __user *addr
1652 ___ARCH_SI_TRAPNO(int trapno)
1653 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1654 , struct task_struct *t)
1655{
1656 struct kernel_siginfo info;
1657
1658 clear_siginfo(&info);
1659 info.si_signo = sig;
1660 info.si_errno = 0;
1661 info.si_code = code;
1662 info.si_addr = addr;
1663#ifdef __ARCH_SI_TRAPNO
1664 info.si_trapno = trapno;
1665#endif
1666#ifdef __ia64__
1667 info.si_imm = imm;
1668 info.si_flags = flags;
1669 info.si_isr = isr;
1670#endif
1671 return force_sig_info_to_task(&info, t);
1672}
1673
1674int force_sig_fault(int sig, int code, void __user *addr
1675 ___ARCH_SI_TRAPNO(int trapno)
1676 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1677{
1678 return force_sig_fault_to_task(sig, code, addr
1679 ___ARCH_SI_TRAPNO(trapno)
1680 ___ARCH_SI_IA64(imm, flags, isr), current);
1681}
1682
1683int send_sig_fault(int sig, int code, void __user *addr
1684 ___ARCH_SI_TRAPNO(int trapno)
1685 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1686 , struct task_struct *t)
1687{
1688 struct kernel_siginfo info;
1689
1690 clear_siginfo(&info);
1691 info.si_signo = sig;
1692 info.si_errno = 0;
1693 info.si_code = code;
1694 info.si_addr = addr;
1695#ifdef __ARCH_SI_TRAPNO
1696 info.si_trapno = trapno;
1697#endif
1698#ifdef __ia64__
1699 info.si_imm = imm;
1700 info.si_flags = flags;
1701 info.si_isr = isr;
1702#endif
1703 return send_sig_info(info.si_signo, &info, t);
1704}
1705
1706int force_sig_mceerr(int code, void __user *addr, short lsb)
1707{
1708 struct kernel_siginfo info;
1709
1710 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1711 clear_siginfo(&info);
1712 info.si_signo = SIGBUS;
1713 info.si_errno = 0;
1714 info.si_code = code;
1715 info.si_addr = addr;
1716 info.si_addr_lsb = lsb;
1717 return force_sig_info(&info);
1718}
1719
1720int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1721{
1722 struct kernel_siginfo info;
1723
1724 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1725 clear_siginfo(&info);
1726 info.si_signo = SIGBUS;
1727 info.si_errno = 0;
1728 info.si_code = code;
1729 info.si_addr = addr;
1730 info.si_addr_lsb = lsb;
1731 return send_sig_info(info.si_signo, &info, t);
1732}
1733EXPORT_SYMBOL(send_sig_mceerr);
1734
1735int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1736{
1737 struct kernel_siginfo info;
1738
1739 clear_siginfo(&info);
1740 info.si_signo = SIGSEGV;
1741 info.si_errno = 0;
1742 info.si_code = SEGV_BNDERR;
1743 info.si_addr = addr;
1744 info.si_lower = lower;
1745 info.si_upper = upper;
1746 return force_sig_info(&info);
1747}
1748
1749#ifdef SEGV_PKUERR
1750int force_sig_pkuerr(void __user *addr, u32 pkey)
1751{
1752 struct kernel_siginfo info;
1753
1754 clear_siginfo(&info);
1755 info.si_signo = SIGSEGV;
1756 info.si_errno = 0;
1757 info.si_code = SEGV_PKUERR;
1758 info.si_addr = addr;
1759 info.si_pkey = pkey;
1760 return force_sig_info(&info);
1761}
1762#endif
1763
1764/* For the crazy architectures that include trap information in
1765 * the errno field, instead of an actual errno value.
1766 */
1767int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1768{
1769 struct kernel_siginfo info;
1770
1771 clear_siginfo(&info);
1772 info.si_signo = SIGTRAP;
1773 info.si_errno = errno;
1774 info.si_code = TRAP_HWBKPT;
1775 info.si_addr = addr;
1776 return force_sig_info(&info);
1777}
1778
1779int kill_pgrp(struct pid *pid, int sig, int priv)
1780{
1781 int ret;
1782
1783 read_lock(&tasklist_lock);
1784 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1785 read_unlock(&tasklist_lock);
1786
1787 return ret;
1788}
1789EXPORT_SYMBOL(kill_pgrp);
1790
1791int kill_pid(struct pid *pid, int sig, int priv)
1792{
1793 return kill_pid_info(sig, __si_special(priv), pid);
1794}
1795EXPORT_SYMBOL(kill_pid);
1796
1797/*
1798 * These functions support sending signals using preallocated sigqueue
1799 * structures. This is needed "because realtime applications cannot
1800 * afford to lose notifications of asynchronous events, like timer
1801 * expirations or I/O completions". In the case of POSIX Timers
1802 * we allocate the sigqueue structure from the timer_create. If this
1803 * allocation fails we are able to report the failure to the application
1804 * with an EAGAIN error.
1805 */
1806struct sigqueue *sigqueue_alloc(void)
1807{
1808 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1809
1810 if (q)
1811 q->flags |= SIGQUEUE_PREALLOC;
1812
1813 return q;
1814}
1815
1816void sigqueue_free(struct sigqueue *q)
1817{
1818 unsigned long flags;
1819 spinlock_t *lock = ¤t->sighand->siglock;
1820
1821 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1822 /*
1823 * We must hold ->siglock while testing q->list
1824 * to serialize with collect_signal() or with
1825 * __exit_signal()->flush_sigqueue().
1826 */
1827 spin_lock_irqsave(lock, flags);
1828 q->flags &= ~SIGQUEUE_PREALLOC;
1829 /*
1830 * If it is queued it will be freed when dequeued,
1831 * like the "regular" sigqueue.
1832 */
1833 if (!list_empty(&q->list))
1834 q = NULL;
1835 spin_unlock_irqrestore(lock, flags);
1836
1837 if (q)
1838 __sigqueue_free(q);
1839}
1840
1841int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1842{
1843 int sig = q->info.si_signo;
1844 struct sigpending *pending;
1845 struct task_struct *t;
1846 unsigned long flags;
1847 int ret, result;
1848
1849 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1850
1851 ret = -1;
1852 rcu_read_lock();
1853 t = pid_task(pid, type);
1854 if (!t || !likely(lock_task_sighand(t, &flags)))
1855 goto ret;
1856
1857 ret = 1; /* the signal is ignored */
1858 result = TRACE_SIGNAL_IGNORED;
1859 if (!prepare_signal(sig, t, false))
1860 goto out;
1861
1862 ret = 0;
1863 if (unlikely(!list_empty(&q->list))) {
1864 /*
1865 * If an SI_TIMER entry is already queue just increment
1866 * the overrun count.
1867 */
1868 BUG_ON(q->info.si_code != SI_TIMER);
1869 q->info.si_overrun++;
1870 result = TRACE_SIGNAL_ALREADY_PENDING;
1871 goto out;
1872 }
1873 q->info.si_overrun = 0;
1874
1875 signalfd_notify(t, sig);
1876 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1877 list_add_tail(&q->list, &pending->list);
1878 sigaddset(&pending->signal, sig);
1879 complete_signal(sig, t, type);
1880 result = TRACE_SIGNAL_DELIVERED;
1881out:
1882 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1883 unlock_task_sighand(t, &flags);
1884ret:
1885 rcu_read_unlock();
1886 return ret;
1887}
1888
1889static void do_notify_pidfd(struct task_struct *task)
1890{
1891 struct pid *pid;
1892
1893 WARN_ON(task->exit_state == 0);
1894 pid = task_pid(task);
1895 wake_up_all(&pid->wait_pidfd);
1896}
1897
1898/*
1899 * Let a parent know about the death of a child.
1900 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1901 *
1902 * Returns true if our parent ignored us and so we've switched to
1903 * self-reaping.
1904 */
1905bool do_notify_parent(struct task_struct *tsk, int sig)
1906{
1907 struct kernel_siginfo info;
1908 unsigned long flags;
1909 struct sighand_struct *psig;
1910 bool autoreap = false;
1911 u64 utime, stime;
1912
1913 BUG_ON(sig == -1);
1914
1915 /* do_notify_parent_cldstop should have been called instead. */
1916 BUG_ON(task_is_stopped_or_traced(tsk));
1917
1918 BUG_ON(!tsk->ptrace &&
1919 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1920
1921 /* Wake up all pidfd waiters */
1922 do_notify_pidfd(tsk);
1923
1924 if (sig != SIGCHLD) {
1925 /*
1926 * This is only possible if parent == real_parent.
1927 * Check if it has changed security domain.
1928 */
1929 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1930 sig = SIGCHLD;
1931 }
1932
1933 clear_siginfo(&info);
1934 info.si_signo = sig;
1935 info.si_errno = 0;
1936 /*
1937 * We are under tasklist_lock here so our parent is tied to
1938 * us and cannot change.
1939 *
1940 * task_active_pid_ns will always return the same pid namespace
1941 * until a task passes through release_task.
1942 *
1943 * write_lock() currently calls preempt_disable() which is the
1944 * same as rcu_read_lock(), but according to Oleg, this is not
1945 * correct to rely on this
1946 */
1947 rcu_read_lock();
1948 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1949 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1950 task_uid(tsk));
1951 rcu_read_unlock();
1952
1953 task_cputime(tsk, &utime, &stime);
1954 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1955 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1956
1957 info.si_status = tsk->exit_code & 0x7f;
1958 if (tsk->exit_code & 0x80)
1959 info.si_code = CLD_DUMPED;
1960 else if (tsk->exit_code & 0x7f)
1961 info.si_code = CLD_KILLED;
1962 else {
1963 info.si_code = CLD_EXITED;
1964 info.si_status = tsk->exit_code >> 8;
1965 }
1966
1967 psig = tsk->parent->sighand;
1968 spin_lock_irqsave(&psig->siglock, flags);
1969 if (!tsk->ptrace && sig == SIGCHLD &&
1970 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1971 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1972 /*
1973 * We are exiting and our parent doesn't care. POSIX.1
1974 * defines special semantics for setting SIGCHLD to SIG_IGN
1975 * or setting the SA_NOCLDWAIT flag: we should be reaped
1976 * automatically and not left for our parent's wait4 call.
1977 * Rather than having the parent do it as a magic kind of
1978 * signal handler, we just set this to tell do_exit that we
1979 * can be cleaned up without becoming a zombie. Note that
1980 * we still call __wake_up_parent in this case, because a
1981 * blocked sys_wait4 might now return -ECHILD.
1982 *
1983 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1984 * is implementation-defined: we do (if you don't want
1985 * it, just use SIG_IGN instead).
1986 */
1987 autoreap = true;
1988 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1989 sig = 0;
1990 }
1991 if (valid_signal(sig) && sig)
1992 __group_send_sig_info(sig, &info, tsk->parent);
1993 __wake_up_parent(tsk, tsk->parent);
1994 spin_unlock_irqrestore(&psig->siglock, flags);
1995
1996 return autoreap;
1997}
1998
1999/**
2000 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2001 * @tsk: task reporting the state change
2002 * @for_ptracer: the notification is for ptracer
2003 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2004 *
2005 * Notify @tsk's parent that the stopped/continued state has changed. If
2006 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2007 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2008 *
2009 * CONTEXT:
2010 * Must be called with tasklist_lock at least read locked.
2011 */
2012static void do_notify_parent_cldstop(struct task_struct *tsk,
2013 bool for_ptracer, int why)
2014{
2015 struct kernel_siginfo info;
2016 unsigned long flags;
2017 struct task_struct *parent;
2018 struct sighand_struct *sighand;
2019 u64 utime, stime;
2020
2021 if (for_ptracer) {
2022 parent = tsk->parent;
2023 } else {
2024 tsk = tsk->group_leader;
2025 parent = tsk->real_parent;
2026 }
2027
2028 clear_siginfo(&info);
2029 info.si_signo = SIGCHLD;
2030 info.si_errno = 0;
2031 /*
2032 * see comment in do_notify_parent() about the following 4 lines
2033 */
2034 rcu_read_lock();
2035 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2036 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2037 rcu_read_unlock();
2038
2039 task_cputime(tsk, &utime, &stime);
2040 info.si_utime = nsec_to_clock_t(utime);
2041 info.si_stime = nsec_to_clock_t(stime);
2042
2043 info.si_code = why;
2044 switch (why) {
2045 case CLD_CONTINUED:
2046 info.si_status = SIGCONT;
2047 break;
2048 case CLD_STOPPED:
2049 info.si_status = tsk->signal->group_exit_code & 0x7f;
2050 break;
2051 case CLD_TRAPPED:
2052 info.si_status = tsk->exit_code & 0x7f;
2053 break;
2054 default:
2055 BUG();
2056 }
2057
2058 sighand = parent->sighand;
2059 spin_lock_irqsave(&sighand->siglock, flags);
2060 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2061 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2062 __group_send_sig_info(SIGCHLD, &info, parent);
2063 /*
2064 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2065 */
2066 __wake_up_parent(tsk, parent);
2067 spin_unlock_irqrestore(&sighand->siglock, flags);
2068}
2069
2070static inline bool may_ptrace_stop(void)
2071{
2072 if (!likely(current->ptrace))
2073 return false;
2074 /*
2075 * Are we in the middle of do_coredump?
2076 * If so and our tracer is also part of the coredump stopping
2077 * is a deadlock situation, and pointless because our tracer
2078 * is dead so don't allow us to stop.
2079 * If SIGKILL was already sent before the caller unlocked
2080 * ->siglock we must see ->core_state != NULL. Otherwise it
2081 * is safe to enter schedule().
2082 *
2083 * This is almost outdated, a task with the pending SIGKILL can't
2084 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2085 * after SIGKILL was already dequeued.
2086 */
2087 if (unlikely(current->mm->core_state) &&
2088 unlikely(current->mm == current->parent->mm))
2089 return false;
2090
2091 return true;
2092}
2093
2094/*
2095 * Return non-zero if there is a SIGKILL that should be waking us up.
2096 * Called with the siglock held.
2097 */
2098static bool sigkill_pending(struct task_struct *tsk)
2099{
2100 return sigismember(&tsk->pending.signal, SIGKILL) ||
2101 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2102}
2103
2104/*
2105 * This must be called with current->sighand->siglock held.
2106 *
2107 * This should be the path for all ptrace stops.
2108 * We always set current->last_siginfo while stopped here.
2109 * That makes it a way to test a stopped process for
2110 * being ptrace-stopped vs being job-control-stopped.
2111 *
2112 * If we actually decide not to stop at all because the tracer
2113 * is gone, we keep current->exit_code unless clear_code.
2114 */
2115static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2116 __releases(¤t->sighand->siglock)
2117 __acquires(¤t->sighand->siglock)
2118{
2119 bool gstop_done = false;
2120
2121 if (arch_ptrace_stop_needed(exit_code, info)) {
2122 /*
2123 * The arch code has something special to do before a
2124 * ptrace stop. This is allowed to block, e.g. for faults
2125 * on user stack pages. We can't keep the siglock while
2126 * calling arch_ptrace_stop, so we must release it now.
2127 * To preserve proper semantics, we must do this before
2128 * any signal bookkeeping like checking group_stop_count.
2129 * Meanwhile, a SIGKILL could come in before we retake the
2130 * siglock. That must prevent us from sleeping in TASK_TRACED.
2131 * So after regaining the lock, we must check for SIGKILL.
2132 */
2133 spin_unlock_irq(¤t->sighand->siglock);
2134 arch_ptrace_stop(exit_code, info);
2135 spin_lock_irq(¤t->sighand->siglock);
2136 if (sigkill_pending(current))
2137 return;
2138 }
2139
2140 set_special_state(TASK_TRACED);
2141
2142 /*
2143 * We're committing to trapping. TRACED should be visible before
2144 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2145 * Also, transition to TRACED and updates to ->jobctl should be
2146 * atomic with respect to siglock and should be done after the arch
2147 * hook as siglock is released and regrabbed across it.
2148 *
2149 * TRACER TRACEE
2150 *
2151 * ptrace_attach()
2152 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2153 * do_wait()
2154 * set_current_state() smp_wmb();
2155 * ptrace_do_wait()
2156 * wait_task_stopped()
2157 * task_stopped_code()
2158 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2159 */
2160 smp_wmb();
2161
2162 current->last_siginfo = info;
2163 current->exit_code = exit_code;
2164
2165 /*
2166 * If @why is CLD_STOPPED, we're trapping to participate in a group
2167 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2168 * across siglock relocks since INTERRUPT was scheduled, PENDING
2169 * could be clear now. We act as if SIGCONT is received after
2170 * TASK_TRACED is entered - ignore it.
2171 */
2172 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2173 gstop_done = task_participate_group_stop(current);
2174
2175 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2176 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2177 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2178 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2179
2180 /* entering a trap, clear TRAPPING */
2181 task_clear_jobctl_trapping(current);
2182
2183 spin_unlock_irq(¤t->sighand->siglock);
2184 read_lock(&tasklist_lock);
2185 if (may_ptrace_stop()) {
2186 /*
2187 * Notify parents of the stop.
2188 *
2189 * While ptraced, there are two parents - the ptracer and
2190 * the real_parent of the group_leader. The ptracer should
2191 * know about every stop while the real parent is only
2192 * interested in the completion of group stop. The states
2193 * for the two don't interact with each other. Notify
2194 * separately unless they're gonna be duplicates.
2195 */
2196 do_notify_parent_cldstop(current, true, why);
2197 if (gstop_done && ptrace_reparented(current))
2198 do_notify_parent_cldstop(current, false, why);
2199
2200 /*
2201 * Don't want to allow preemption here, because
2202 * sys_ptrace() needs this task to be inactive.
2203 *
2204 * XXX: implement read_unlock_no_resched().
2205 */
2206 preempt_disable();
2207 read_unlock(&tasklist_lock);
2208 cgroup_enter_frozen();
2209 preempt_enable_no_resched();
2210 freezable_schedule();
2211 cgroup_leave_frozen(true);
2212 } else {
2213 /*
2214 * By the time we got the lock, our tracer went away.
2215 * Don't drop the lock yet, another tracer may come.
2216 *
2217 * If @gstop_done, the ptracer went away between group stop
2218 * completion and here. During detach, it would have set
2219 * JOBCTL_STOP_PENDING on us and we'll re-enter
2220 * TASK_STOPPED in do_signal_stop() on return, so notifying
2221 * the real parent of the group stop completion is enough.
2222 */
2223 if (gstop_done)
2224 do_notify_parent_cldstop(current, false, why);
2225
2226 /* tasklist protects us from ptrace_freeze_traced() */
2227 __set_current_state(TASK_RUNNING);
2228 if (clear_code)
2229 current->exit_code = 0;
2230 read_unlock(&tasklist_lock);
2231 }
2232
2233 /*
2234 * We are back. Now reacquire the siglock before touching
2235 * last_siginfo, so that we are sure to have synchronized with
2236 * any signal-sending on another CPU that wants to examine it.
2237 */
2238 spin_lock_irq(¤t->sighand->siglock);
2239 current->last_siginfo = NULL;
2240
2241 /* LISTENING can be set only during STOP traps, clear it */
2242 current->jobctl &= ~JOBCTL_LISTENING;
2243
2244 /*
2245 * Queued signals ignored us while we were stopped for tracing.
2246 * So check for any that we should take before resuming user mode.
2247 * This sets TIF_SIGPENDING, but never clears it.
2248 */
2249 recalc_sigpending_tsk(current);
2250}
2251
2252static void ptrace_do_notify(int signr, int exit_code, int why)
2253{
2254 kernel_siginfo_t info;
2255
2256 clear_siginfo(&info);
2257 info.si_signo = signr;
2258 info.si_code = exit_code;
2259 info.si_pid = task_pid_vnr(current);
2260 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2261
2262 /* Let the debugger run. */
2263 ptrace_stop(exit_code, why, 1, &info);
2264}
2265
2266void ptrace_notify(int exit_code)
2267{
2268 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2269 if (unlikely(current->task_works))
2270 task_work_run();
2271
2272 spin_lock_irq(¤t->sighand->siglock);
2273 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2274 spin_unlock_irq(¤t->sighand->siglock);
2275}
2276
2277/**
2278 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2279 * @signr: signr causing group stop if initiating
2280 *
2281 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2282 * and participate in it. If already set, participate in the existing
2283 * group stop. If participated in a group stop (and thus slept), %true is
2284 * returned with siglock released.
2285 *
2286 * If ptraced, this function doesn't handle stop itself. Instead,
2287 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2288 * untouched. The caller must ensure that INTERRUPT trap handling takes
2289 * places afterwards.
2290 *
2291 * CONTEXT:
2292 * Must be called with @current->sighand->siglock held, which is released
2293 * on %true return.
2294 *
2295 * RETURNS:
2296 * %false if group stop is already cancelled or ptrace trap is scheduled.
2297 * %true if participated in group stop.
2298 */
2299static bool do_signal_stop(int signr)
2300 __releases(¤t->sighand->siglock)
2301{
2302 struct signal_struct *sig = current->signal;
2303
2304 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2305 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2306 struct task_struct *t;
2307
2308 /* signr will be recorded in task->jobctl for retries */
2309 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2310
2311 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2312 unlikely(signal_group_exit(sig)))
2313 return false;
2314 /*
2315 * There is no group stop already in progress. We must
2316 * initiate one now.
2317 *
2318 * While ptraced, a task may be resumed while group stop is
2319 * still in effect and then receive a stop signal and
2320 * initiate another group stop. This deviates from the
2321 * usual behavior as two consecutive stop signals can't
2322 * cause two group stops when !ptraced. That is why we
2323 * also check !task_is_stopped(t) below.
2324 *
2325 * The condition can be distinguished by testing whether
2326 * SIGNAL_STOP_STOPPED is already set. Don't generate
2327 * group_exit_code in such case.
2328 *
2329 * This is not necessary for SIGNAL_STOP_CONTINUED because
2330 * an intervening stop signal is required to cause two
2331 * continued events regardless of ptrace.
2332 */
2333 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2334 sig->group_exit_code = signr;
2335
2336 sig->group_stop_count = 0;
2337
2338 if (task_set_jobctl_pending(current, signr | gstop))
2339 sig->group_stop_count++;
2340
2341 t = current;
2342 while_each_thread(current, t) {
2343 /*
2344 * Setting state to TASK_STOPPED for a group
2345 * stop is always done with the siglock held,
2346 * so this check has no races.
2347 */
2348 if (!task_is_stopped(t) &&
2349 task_set_jobctl_pending(t, signr | gstop)) {
2350 sig->group_stop_count++;
2351 if (likely(!(t->ptrace & PT_SEIZED)))
2352 signal_wake_up(t, 0);
2353 else
2354 ptrace_trap_notify(t);
2355 }
2356 }
2357 }
2358
2359 if (likely(!current->ptrace)) {
2360 int notify = 0;
2361
2362 /*
2363 * If there are no other threads in the group, or if there
2364 * is a group stop in progress and we are the last to stop,
2365 * report to the parent.
2366 */
2367 if (task_participate_group_stop(current))
2368 notify = CLD_STOPPED;
2369
2370 set_special_state(TASK_STOPPED);
2371 spin_unlock_irq(¤t->sighand->siglock);
2372
2373 /*
2374 * Notify the parent of the group stop completion. Because
2375 * we're not holding either the siglock or tasklist_lock
2376 * here, ptracer may attach inbetween; however, this is for
2377 * group stop and should always be delivered to the real
2378 * parent of the group leader. The new ptracer will get
2379 * its notification when this task transitions into
2380 * TASK_TRACED.
2381 */
2382 if (notify) {
2383 read_lock(&tasklist_lock);
2384 do_notify_parent_cldstop(current, false, notify);
2385 read_unlock(&tasklist_lock);
2386 }
2387
2388 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2389 cgroup_enter_frozen();
2390 freezable_schedule();
2391 return true;
2392 } else {
2393 /*
2394 * While ptraced, group stop is handled by STOP trap.
2395 * Schedule it and let the caller deal with it.
2396 */
2397 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2398 return false;
2399 }
2400}
2401
2402/**
2403 * do_jobctl_trap - take care of ptrace jobctl traps
2404 *
2405 * When PT_SEIZED, it's used for both group stop and explicit
2406 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2407 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2408 * the stop signal; otherwise, %SIGTRAP.
2409 *
2410 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2411 * number as exit_code and no siginfo.
2412 *
2413 * CONTEXT:
2414 * Must be called with @current->sighand->siglock held, which may be
2415 * released and re-acquired before returning with intervening sleep.
2416 */
2417static void do_jobctl_trap(void)
2418{
2419 struct signal_struct *signal = current->signal;
2420 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2421
2422 if (current->ptrace & PT_SEIZED) {
2423 if (!signal->group_stop_count &&
2424 !(signal->flags & SIGNAL_STOP_STOPPED))
2425 signr = SIGTRAP;
2426 WARN_ON_ONCE(!signr);
2427 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2428 CLD_STOPPED);
2429 } else {
2430 WARN_ON_ONCE(!signr);
2431 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2432 current->exit_code = 0;
2433 }
2434}
2435
2436/**
2437 * do_freezer_trap - handle the freezer jobctl trap
2438 *
2439 * Puts the task into frozen state, if only the task is not about to quit.
2440 * In this case it drops JOBCTL_TRAP_FREEZE.
2441 *
2442 * CONTEXT:
2443 * Must be called with @current->sighand->siglock held,
2444 * which is always released before returning.
2445 */
2446static void do_freezer_trap(void)
2447 __releases(¤t->sighand->siglock)
2448{
2449 /*
2450 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2451 * let's make another loop to give it a chance to be handled.
2452 * In any case, we'll return back.
2453 */
2454 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2455 JOBCTL_TRAP_FREEZE) {
2456 spin_unlock_irq(¤t->sighand->siglock);
2457 return;
2458 }
2459
2460 /*
2461 * Now we're sure that there is no pending fatal signal and no
2462 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2463 * immediately (if there is a non-fatal signal pending), and
2464 * put the task into sleep.
2465 */
2466 __set_current_state(TASK_INTERRUPTIBLE);
2467 clear_thread_flag(TIF_SIGPENDING);
2468 spin_unlock_irq(¤t->sighand->siglock);
2469 cgroup_enter_frozen();
2470 freezable_schedule();
2471}
2472
2473static int ptrace_signal(int signr, kernel_siginfo_t *info)
2474{
2475 /*
2476 * We do not check sig_kernel_stop(signr) but set this marker
2477 * unconditionally because we do not know whether debugger will
2478 * change signr. This flag has no meaning unless we are going
2479 * to stop after return from ptrace_stop(). In this case it will
2480 * be checked in do_signal_stop(), we should only stop if it was
2481 * not cleared by SIGCONT while we were sleeping. See also the
2482 * comment in dequeue_signal().
2483 */
2484 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2485 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2486
2487 /* We're back. Did the debugger cancel the sig? */
2488 signr = current->exit_code;
2489 if (signr == 0)
2490 return signr;
2491
2492 current->exit_code = 0;
2493
2494 /*
2495 * Update the siginfo structure if the signal has
2496 * changed. If the debugger wanted something
2497 * specific in the siginfo structure then it should
2498 * have updated *info via PTRACE_SETSIGINFO.
2499 */
2500 if (signr != info->si_signo) {
2501 clear_siginfo(info);
2502 info->si_signo = signr;
2503 info->si_errno = 0;
2504 info->si_code = SI_USER;
2505 rcu_read_lock();
2506 info->si_pid = task_pid_vnr(current->parent);
2507 info->si_uid = from_kuid_munged(current_user_ns(),
2508 task_uid(current->parent));
2509 rcu_read_unlock();
2510 }
2511
2512 /* If the (new) signal is now blocked, requeue it. */
2513 if (sigismember(¤t->blocked, signr)) {
2514 send_signal(signr, info, current, PIDTYPE_PID);
2515 signr = 0;
2516 }
2517
2518 return signr;
2519}
2520
2521bool get_signal(struct ksignal *ksig)
2522{
2523 struct sighand_struct *sighand = current->sighand;
2524 struct signal_struct *signal = current->signal;
2525 int signr;
2526
2527 if (unlikely(current->task_works))
2528 task_work_run();
2529
2530 if (unlikely(uprobe_deny_signal()))
2531 return false;
2532
2533 /*
2534 * Do this once, we can't return to user-mode if freezing() == T.
2535 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2536 * thus do not need another check after return.
2537 */
2538 try_to_freeze();
2539
2540relock:
2541 spin_lock_irq(&sighand->siglock);
2542 /*
2543 * Every stopped thread goes here after wakeup. Check to see if
2544 * we should notify the parent, prepare_signal(SIGCONT) encodes
2545 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2546 */
2547 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2548 int why;
2549
2550 if (signal->flags & SIGNAL_CLD_CONTINUED)
2551 why = CLD_CONTINUED;
2552 else
2553 why = CLD_STOPPED;
2554
2555 signal->flags &= ~SIGNAL_CLD_MASK;
2556
2557 spin_unlock_irq(&sighand->siglock);
2558
2559 /*
2560 * Notify the parent that we're continuing. This event is
2561 * always per-process and doesn't make whole lot of sense
2562 * for ptracers, who shouldn't consume the state via
2563 * wait(2) either, but, for backward compatibility, notify
2564 * the ptracer of the group leader too unless it's gonna be
2565 * a duplicate.
2566 */
2567 read_lock(&tasklist_lock);
2568 do_notify_parent_cldstop(current, false, why);
2569
2570 if (ptrace_reparented(current->group_leader))
2571 do_notify_parent_cldstop(current->group_leader,
2572 true, why);
2573 read_unlock(&tasklist_lock);
2574
2575 goto relock;
2576 }
2577
2578 /* Has this task already been marked for death? */
2579 if (signal_group_exit(signal)) {
2580 ksig->info.si_signo = signr = SIGKILL;
2581 sigdelset(¤t->pending.signal, SIGKILL);
2582 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2583 &sighand->action[SIGKILL - 1]);
2584 recalc_sigpending();
2585 goto fatal;
2586 }
2587
2588 for (;;) {
2589 struct k_sigaction *ka;
2590
2591 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2592 do_signal_stop(0))
2593 goto relock;
2594
2595 if (unlikely(current->jobctl &
2596 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2597 if (current->jobctl & JOBCTL_TRAP_MASK) {
2598 do_jobctl_trap();
2599 spin_unlock_irq(&sighand->siglock);
2600 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2601 do_freezer_trap();
2602
2603 goto relock;
2604 }
2605
2606 /*
2607 * If the task is leaving the frozen state, let's update
2608 * cgroup counters and reset the frozen bit.
2609 */
2610 if (unlikely(cgroup_task_frozen(current))) {
2611 spin_unlock_irq(&sighand->siglock);
2612 cgroup_leave_frozen(false);
2613 goto relock;
2614 }
2615
2616 /*
2617 * Signals generated by the execution of an instruction
2618 * need to be delivered before any other pending signals
2619 * so that the instruction pointer in the signal stack
2620 * frame points to the faulting instruction.
2621 */
2622 signr = dequeue_synchronous_signal(&ksig->info);
2623 if (!signr)
2624 signr = dequeue_signal(current, ¤t->blocked, &ksig->info);
2625
2626 if (!signr)
2627 break; /* will return 0 */
2628
2629 if (unlikely(current->ptrace) && signr != SIGKILL) {
2630 signr = ptrace_signal(signr, &ksig->info);
2631 if (!signr)
2632 continue;
2633 }
2634
2635 ka = &sighand->action[signr-1];
2636
2637 /* Trace actually delivered signals. */
2638 trace_signal_deliver(signr, &ksig->info, ka);
2639
2640 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2641 continue;
2642 if (ka->sa.sa_handler != SIG_DFL) {
2643 /* Run the handler. */
2644 ksig->ka = *ka;
2645
2646 if (ka->sa.sa_flags & SA_ONESHOT)
2647 ka->sa.sa_handler = SIG_DFL;
2648
2649 break; /* will return non-zero "signr" value */
2650 }
2651
2652 /*
2653 * Now we are doing the default action for this signal.
2654 */
2655 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2656 continue;
2657
2658 /*
2659 * Global init gets no signals it doesn't want.
2660 * Container-init gets no signals it doesn't want from same
2661 * container.
2662 *
2663 * Note that if global/container-init sees a sig_kernel_only()
2664 * signal here, the signal must have been generated internally
2665 * or must have come from an ancestor namespace. In either
2666 * case, the signal cannot be dropped.
2667 */
2668 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2669 !sig_kernel_only(signr))
2670 continue;
2671
2672 if (sig_kernel_stop(signr)) {
2673 /*
2674 * The default action is to stop all threads in
2675 * the thread group. The job control signals
2676 * do nothing in an orphaned pgrp, but SIGSTOP
2677 * always works. Note that siglock needs to be
2678 * dropped during the call to is_orphaned_pgrp()
2679 * because of lock ordering with tasklist_lock.
2680 * This allows an intervening SIGCONT to be posted.
2681 * We need to check for that and bail out if necessary.
2682 */
2683 if (signr != SIGSTOP) {
2684 spin_unlock_irq(&sighand->siglock);
2685
2686 /* signals can be posted during this window */
2687
2688 if (is_current_pgrp_orphaned())
2689 goto relock;
2690
2691 spin_lock_irq(&sighand->siglock);
2692 }
2693
2694 if (likely(do_signal_stop(ksig->info.si_signo))) {
2695 /* It released the siglock. */
2696 goto relock;
2697 }
2698
2699 /*
2700 * We didn't actually stop, due to a race
2701 * with SIGCONT or something like that.
2702 */
2703 continue;
2704 }
2705
2706 fatal:
2707 spin_unlock_irq(&sighand->siglock);
2708 if (unlikely(cgroup_task_frozen(current)))
2709 cgroup_leave_frozen(true);
2710
2711 /*
2712 * Anything else is fatal, maybe with a core dump.
2713 */
2714 current->flags |= PF_SIGNALED;
2715
2716 if (sig_kernel_coredump(signr)) {
2717 if (print_fatal_signals)
2718 print_fatal_signal(ksig->info.si_signo);
2719 proc_coredump_connector(current);
2720 /*
2721 * If it was able to dump core, this kills all
2722 * other threads in the group and synchronizes with
2723 * their demise. If we lost the race with another
2724 * thread getting here, it set group_exit_code
2725 * first and our do_group_exit call below will use
2726 * that value and ignore the one we pass it.
2727 */
2728 do_coredump(&ksig->info);
2729 }
2730
2731 /*
2732 * Death signals, no core dump.
2733 */
2734 do_group_exit(ksig->info.si_signo);
2735 /* NOTREACHED */
2736 }
2737 spin_unlock_irq(&sighand->siglock);
2738
2739 ksig->sig = signr;
2740 return ksig->sig > 0;
2741}
2742
2743/**
2744 * signal_delivered -
2745 * @ksig: kernel signal struct
2746 * @stepping: nonzero if debugger single-step or block-step in use
2747 *
2748 * This function should be called when a signal has successfully been
2749 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2750 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2751 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2752 */
2753static void signal_delivered(struct ksignal *ksig, int stepping)
2754{
2755 sigset_t blocked;
2756
2757 /* A signal was successfully delivered, and the
2758 saved sigmask was stored on the signal frame,
2759 and will be restored by sigreturn. So we can
2760 simply clear the restore sigmask flag. */
2761 clear_restore_sigmask();
2762
2763 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2764 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2765 sigaddset(&blocked, ksig->sig);
2766 set_current_blocked(&blocked);
2767 tracehook_signal_handler(stepping);
2768}
2769
2770void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2771{
2772 if (failed)
2773 force_sigsegv(ksig->sig);
2774 else
2775 signal_delivered(ksig, stepping);
2776}
2777
2778/*
2779 * It could be that complete_signal() picked us to notify about the
2780 * group-wide signal. Other threads should be notified now to take
2781 * the shared signals in @which since we will not.
2782 */
2783static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2784{
2785 sigset_t retarget;
2786 struct task_struct *t;
2787
2788 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2789 if (sigisemptyset(&retarget))
2790 return;
2791
2792 t = tsk;
2793 while_each_thread(tsk, t) {
2794 if (t->flags & PF_EXITING)
2795 continue;
2796
2797 if (!has_pending_signals(&retarget, &t->blocked))
2798 continue;
2799 /* Remove the signals this thread can handle. */
2800 sigandsets(&retarget, &retarget, &t->blocked);
2801
2802 if (!signal_pending(t))
2803 signal_wake_up(t, 0);
2804
2805 if (sigisemptyset(&retarget))
2806 break;
2807 }
2808}
2809
2810void exit_signals(struct task_struct *tsk)
2811{
2812 int group_stop = 0;
2813 sigset_t unblocked;
2814
2815 /*
2816 * @tsk is about to have PF_EXITING set - lock out users which
2817 * expect stable threadgroup.
2818 */
2819 cgroup_threadgroup_change_begin(tsk);
2820
2821 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2822 tsk->flags |= PF_EXITING;
2823 cgroup_threadgroup_change_end(tsk);
2824 return;
2825 }
2826
2827 spin_lock_irq(&tsk->sighand->siglock);
2828 /*
2829 * From now this task is not visible for group-wide signals,
2830 * see wants_signal(), do_signal_stop().
2831 */
2832 tsk->flags |= PF_EXITING;
2833
2834 cgroup_threadgroup_change_end(tsk);
2835
2836 if (!signal_pending(tsk))
2837 goto out;
2838
2839 unblocked = tsk->blocked;
2840 signotset(&unblocked);
2841 retarget_shared_pending(tsk, &unblocked);
2842
2843 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2844 task_participate_group_stop(tsk))
2845 group_stop = CLD_STOPPED;
2846out:
2847 spin_unlock_irq(&tsk->sighand->siglock);
2848
2849 /*
2850 * If group stop has completed, deliver the notification. This
2851 * should always go to the real parent of the group leader.
2852 */
2853 if (unlikely(group_stop)) {
2854 read_lock(&tasklist_lock);
2855 do_notify_parent_cldstop(tsk, false, group_stop);
2856 read_unlock(&tasklist_lock);
2857 }
2858}
2859
2860/*
2861 * System call entry points.
2862 */
2863
2864/**
2865 * sys_restart_syscall - restart a system call
2866 */
2867SYSCALL_DEFINE0(restart_syscall)
2868{
2869 struct restart_block *restart = ¤t->restart_block;
2870 return restart->fn(restart);
2871}
2872
2873long do_no_restart_syscall(struct restart_block *param)
2874{
2875 return -EINTR;
2876}
2877
2878static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2879{
2880 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2881 sigset_t newblocked;
2882 /* A set of now blocked but previously unblocked signals. */
2883 sigandnsets(&newblocked, newset, ¤t->blocked);
2884 retarget_shared_pending(tsk, &newblocked);
2885 }
2886 tsk->blocked = *newset;
2887 recalc_sigpending();
2888}
2889
2890/**
2891 * set_current_blocked - change current->blocked mask
2892 * @newset: new mask
2893 *
2894 * It is wrong to change ->blocked directly, this helper should be used
2895 * to ensure the process can't miss a shared signal we are going to block.
2896 */
2897void set_current_blocked(sigset_t *newset)
2898{
2899 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2900 __set_current_blocked(newset);
2901}
2902
2903void __set_current_blocked(const sigset_t *newset)
2904{
2905 struct task_struct *tsk = current;
2906
2907 /*
2908 * In case the signal mask hasn't changed, there is nothing we need
2909 * to do. The current->blocked shouldn't be modified by other task.
2910 */
2911 if (sigequalsets(&tsk->blocked, newset))
2912 return;
2913
2914 spin_lock_irq(&tsk->sighand->siglock);
2915 __set_task_blocked(tsk, newset);
2916 spin_unlock_irq(&tsk->sighand->siglock);
2917}
2918
2919/*
2920 * This is also useful for kernel threads that want to temporarily
2921 * (or permanently) block certain signals.
2922 *
2923 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2924 * interface happily blocks "unblockable" signals like SIGKILL
2925 * and friends.
2926 */
2927int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2928{
2929 struct task_struct *tsk = current;
2930 sigset_t newset;
2931
2932 /* Lockless, only current can change ->blocked, never from irq */
2933 if (oldset)
2934 *oldset = tsk->blocked;
2935
2936 switch (how) {
2937 case SIG_BLOCK:
2938 sigorsets(&newset, &tsk->blocked, set);
2939 break;
2940 case SIG_UNBLOCK:
2941 sigandnsets(&newset, &tsk->blocked, set);
2942 break;
2943 case SIG_SETMASK:
2944 newset = *set;
2945 break;
2946 default:
2947 return -EINVAL;
2948 }
2949
2950 __set_current_blocked(&newset);
2951 return 0;
2952}
2953EXPORT_SYMBOL(sigprocmask);
2954
2955/*
2956 * The api helps set app-provided sigmasks.
2957 *
2958 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2959 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2960 *
2961 * Note that it does set_restore_sigmask() in advance, so it must be always
2962 * paired with restore_saved_sigmask_unless() before return from syscall.
2963 */
2964int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2965{
2966 sigset_t kmask;
2967
2968 if (!umask)
2969 return 0;
2970 if (sigsetsize != sizeof(sigset_t))
2971 return -EINVAL;
2972 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2973 return -EFAULT;
2974
2975 set_restore_sigmask();
2976 current->saved_sigmask = current->blocked;
2977 set_current_blocked(&kmask);
2978
2979 return 0;
2980}
2981
2982#ifdef CONFIG_COMPAT
2983int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2984 size_t sigsetsize)
2985{
2986 sigset_t kmask;
2987
2988 if (!umask)
2989 return 0;
2990 if (sigsetsize != sizeof(compat_sigset_t))
2991 return -EINVAL;
2992 if (get_compat_sigset(&kmask, umask))
2993 return -EFAULT;
2994
2995 set_restore_sigmask();
2996 current->saved_sigmask = current->blocked;
2997 set_current_blocked(&kmask);
2998
2999 return 0;
3000}
3001#endif
3002
3003/**
3004 * sys_rt_sigprocmask - change the list of currently blocked signals
3005 * @how: whether to add, remove, or set signals
3006 * @nset: stores pending signals
3007 * @oset: previous value of signal mask if non-null
3008 * @sigsetsize: size of sigset_t type
3009 */
3010SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3011 sigset_t __user *, oset, size_t, sigsetsize)
3012{
3013 sigset_t old_set, new_set;
3014 int error;
3015
3016 /* XXX: Don't preclude handling different sized sigset_t's. */
3017 if (sigsetsize != sizeof(sigset_t))
3018 return -EINVAL;
3019
3020 old_set = current->blocked;
3021
3022 if (nset) {
3023 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3024 return -EFAULT;
3025 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3026
3027 error = sigprocmask(how, &new_set, NULL);
3028 if (error)
3029 return error;
3030 }
3031
3032 if (oset) {
3033 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3034 return -EFAULT;
3035 }
3036
3037 return 0;
3038}
3039
3040#ifdef CONFIG_COMPAT
3041COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3042 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3043{
3044 sigset_t old_set = current->blocked;
3045
3046 /* XXX: Don't preclude handling different sized sigset_t's. */
3047 if (sigsetsize != sizeof(sigset_t))
3048 return -EINVAL;
3049
3050 if (nset) {
3051 sigset_t new_set;
3052 int error;
3053 if (get_compat_sigset(&new_set, nset))
3054 return -EFAULT;
3055 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3056
3057 error = sigprocmask(how, &new_set, NULL);
3058 if (error)
3059 return error;
3060 }
3061 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3062}
3063#endif
3064
3065static void do_sigpending(sigset_t *set)
3066{
3067 spin_lock_irq(¤t->sighand->siglock);
3068 sigorsets(set, ¤t->pending.signal,
3069 ¤t->signal->shared_pending.signal);
3070 spin_unlock_irq(¤t->sighand->siglock);
3071
3072 /* Outside the lock because only this thread touches it. */
3073 sigandsets(set, ¤t->blocked, set);
3074}
3075
3076/**
3077 * sys_rt_sigpending - examine a pending signal that has been raised
3078 * while blocked
3079 * @uset: stores pending signals
3080 * @sigsetsize: size of sigset_t type or larger
3081 */
3082SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3083{
3084 sigset_t set;
3085
3086 if (sigsetsize > sizeof(*uset))
3087 return -EINVAL;
3088
3089 do_sigpending(&set);
3090
3091 if (copy_to_user(uset, &set, sigsetsize))
3092 return -EFAULT;
3093
3094 return 0;
3095}
3096
3097#ifdef CONFIG_COMPAT
3098COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3099 compat_size_t, sigsetsize)
3100{
3101 sigset_t set;
3102
3103 if (sigsetsize > sizeof(*uset))
3104 return -EINVAL;
3105
3106 do_sigpending(&set);
3107
3108 return put_compat_sigset(uset, &set, sigsetsize);
3109}
3110#endif
3111
3112static const struct {
3113 unsigned char limit, layout;
3114} sig_sicodes[] = {
3115 [SIGILL] = { NSIGILL, SIL_FAULT },
3116 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3117 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3118 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3119 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3120#if defined(SIGEMT)
3121 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3122#endif
3123 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3124 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3125 [SIGSYS] = { NSIGSYS, SIL_SYS },
3126};
3127
3128static bool known_siginfo_layout(unsigned sig, int si_code)
3129{
3130 if (si_code == SI_KERNEL)
3131 return true;
3132 else if ((si_code > SI_USER)) {
3133 if (sig_specific_sicodes(sig)) {
3134 if (si_code <= sig_sicodes[sig].limit)
3135 return true;
3136 }
3137 else if (si_code <= NSIGPOLL)
3138 return true;
3139 }
3140 else if (si_code >= SI_DETHREAD)
3141 return true;
3142 else if (si_code == SI_ASYNCNL)
3143 return true;
3144 return false;
3145}
3146
3147enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3148{
3149 enum siginfo_layout layout = SIL_KILL;
3150 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3151 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3152 (si_code <= sig_sicodes[sig].limit)) {
3153 layout = sig_sicodes[sig].layout;
3154 /* Handle the exceptions */
3155 if ((sig == SIGBUS) &&
3156 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3157 layout = SIL_FAULT_MCEERR;
3158 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3159 layout = SIL_FAULT_BNDERR;
3160#ifdef SEGV_PKUERR
3161 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3162 layout = SIL_FAULT_PKUERR;
3163#endif
3164 }
3165 else if (si_code <= NSIGPOLL)
3166 layout = SIL_POLL;
3167 } else {
3168 if (si_code == SI_TIMER)
3169 layout = SIL_TIMER;
3170 else if (si_code == SI_SIGIO)
3171 layout = SIL_POLL;
3172 else if (si_code < 0)
3173 layout = SIL_RT;
3174 }
3175 return layout;
3176}
3177
3178static inline char __user *si_expansion(const siginfo_t __user *info)
3179{
3180 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3181}
3182
3183int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3184{
3185 char __user *expansion = si_expansion(to);
3186 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3187 return -EFAULT;
3188 if (clear_user(expansion, SI_EXPANSION_SIZE))
3189 return -EFAULT;
3190 return 0;
3191}
3192
3193static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3194 const siginfo_t __user *from)
3195{
3196 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3197 char __user *expansion = si_expansion(from);
3198 char buf[SI_EXPANSION_SIZE];
3199 int i;
3200 /*
3201 * An unknown si_code might need more than
3202 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3203 * extra bytes are 0. This guarantees copy_siginfo_to_user
3204 * will return this data to userspace exactly.
3205 */
3206 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3207 return -EFAULT;
3208 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3209 if (buf[i] != 0)
3210 return -E2BIG;
3211 }
3212 }
3213 return 0;
3214}
3215
3216static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3217 const siginfo_t __user *from)
3218{
3219 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3220 return -EFAULT;
3221 to->si_signo = signo;
3222 return post_copy_siginfo_from_user(to, from);
3223}
3224
3225int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3226{
3227 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3228 return -EFAULT;
3229 return post_copy_siginfo_from_user(to, from);
3230}
3231
3232#ifdef CONFIG_COMPAT
3233int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3234 const struct kernel_siginfo *from)
3235#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3236{
3237 return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3238}
3239int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3240 const struct kernel_siginfo *from, bool x32_ABI)
3241#endif
3242{
3243 struct compat_siginfo new;
3244 memset(&new, 0, sizeof(new));
3245
3246 new.si_signo = from->si_signo;
3247 new.si_errno = from->si_errno;
3248 new.si_code = from->si_code;
3249 switch(siginfo_layout(from->si_signo, from->si_code)) {
3250 case SIL_KILL:
3251 new.si_pid = from->si_pid;
3252 new.si_uid = from->si_uid;
3253 break;
3254 case SIL_TIMER:
3255 new.si_tid = from->si_tid;
3256 new.si_overrun = from->si_overrun;
3257 new.si_int = from->si_int;
3258 break;
3259 case SIL_POLL:
3260 new.si_band = from->si_band;
3261 new.si_fd = from->si_fd;
3262 break;
3263 case SIL_FAULT:
3264 new.si_addr = ptr_to_compat(from->si_addr);
3265#ifdef __ARCH_SI_TRAPNO
3266 new.si_trapno = from->si_trapno;
3267#endif
3268 break;
3269 case SIL_FAULT_MCEERR:
3270 new.si_addr = ptr_to_compat(from->si_addr);
3271#ifdef __ARCH_SI_TRAPNO
3272 new.si_trapno = from->si_trapno;
3273#endif
3274 new.si_addr_lsb = from->si_addr_lsb;
3275 break;
3276 case SIL_FAULT_BNDERR:
3277 new.si_addr = ptr_to_compat(from->si_addr);
3278#ifdef __ARCH_SI_TRAPNO
3279 new.si_trapno = from->si_trapno;
3280#endif
3281 new.si_lower = ptr_to_compat(from->si_lower);
3282 new.si_upper = ptr_to_compat(from->si_upper);
3283 break;
3284 case SIL_FAULT_PKUERR:
3285 new.si_addr = ptr_to_compat(from->si_addr);
3286#ifdef __ARCH_SI_TRAPNO
3287 new.si_trapno = from->si_trapno;
3288#endif
3289 new.si_pkey = from->si_pkey;
3290 break;
3291 case SIL_CHLD:
3292 new.si_pid = from->si_pid;
3293 new.si_uid = from->si_uid;
3294 new.si_status = from->si_status;
3295#ifdef CONFIG_X86_X32_ABI
3296 if (x32_ABI) {
3297 new._sifields._sigchld_x32._utime = from->si_utime;
3298 new._sifields._sigchld_x32._stime = from->si_stime;
3299 } else
3300#endif
3301 {
3302 new.si_utime = from->si_utime;
3303 new.si_stime = from->si_stime;
3304 }
3305 break;
3306 case SIL_RT:
3307 new.si_pid = from->si_pid;
3308 new.si_uid = from->si_uid;
3309 new.si_int = from->si_int;
3310 break;
3311 case SIL_SYS:
3312 new.si_call_addr = ptr_to_compat(from->si_call_addr);
3313 new.si_syscall = from->si_syscall;
3314 new.si_arch = from->si_arch;
3315 break;
3316 }
3317
3318 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3319 return -EFAULT;
3320
3321 return 0;
3322}
3323
3324static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3325 const struct compat_siginfo *from)
3326{
3327 clear_siginfo(to);
3328 to->si_signo = from->si_signo;
3329 to->si_errno = from->si_errno;
3330 to->si_code = from->si_code;
3331 switch(siginfo_layout(from->si_signo, from->si_code)) {
3332 case SIL_KILL:
3333 to->si_pid = from->si_pid;
3334 to->si_uid = from->si_uid;
3335 break;
3336 case SIL_TIMER:
3337 to->si_tid = from->si_tid;
3338 to->si_overrun = from->si_overrun;
3339 to->si_int = from->si_int;
3340 break;
3341 case SIL_POLL:
3342 to->si_band = from->si_band;
3343 to->si_fd = from->si_fd;
3344 break;
3345 case SIL_FAULT:
3346 to->si_addr = compat_ptr(from->si_addr);
3347#ifdef __ARCH_SI_TRAPNO
3348 to->si_trapno = from->si_trapno;
3349#endif
3350 break;
3351 case SIL_FAULT_MCEERR:
3352 to->si_addr = compat_ptr(from->si_addr);
3353#ifdef __ARCH_SI_TRAPNO
3354 to->si_trapno = from->si_trapno;
3355#endif
3356 to->si_addr_lsb = from->si_addr_lsb;
3357 break;
3358 case SIL_FAULT_BNDERR:
3359 to->si_addr = compat_ptr(from->si_addr);
3360#ifdef __ARCH_SI_TRAPNO
3361 to->si_trapno = from->si_trapno;
3362#endif
3363 to->si_lower = compat_ptr(from->si_lower);
3364 to->si_upper = compat_ptr(from->si_upper);
3365 break;
3366 case SIL_FAULT_PKUERR:
3367 to->si_addr = compat_ptr(from->si_addr);
3368#ifdef __ARCH_SI_TRAPNO
3369 to->si_trapno = from->si_trapno;
3370#endif
3371 to->si_pkey = from->si_pkey;
3372 break;
3373 case SIL_CHLD:
3374 to->si_pid = from->si_pid;
3375 to->si_uid = from->si_uid;
3376 to->si_status = from->si_status;
3377#ifdef CONFIG_X86_X32_ABI
3378 if (in_x32_syscall()) {
3379 to->si_utime = from->_sifields._sigchld_x32._utime;
3380 to->si_stime = from->_sifields._sigchld_x32._stime;
3381 } else
3382#endif
3383 {
3384 to->si_utime = from->si_utime;
3385 to->si_stime = from->si_stime;
3386 }
3387 break;
3388 case SIL_RT:
3389 to->si_pid = from->si_pid;
3390 to->si_uid = from->si_uid;
3391 to->si_int = from->si_int;
3392 break;
3393 case SIL_SYS:
3394 to->si_call_addr = compat_ptr(from->si_call_addr);
3395 to->si_syscall = from->si_syscall;
3396 to->si_arch = from->si_arch;
3397 break;
3398 }
3399 return 0;
3400}
3401
3402static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3403 const struct compat_siginfo __user *ufrom)
3404{
3405 struct compat_siginfo from;
3406
3407 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3408 return -EFAULT;
3409
3410 from.si_signo = signo;
3411 return post_copy_siginfo_from_user32(to, &from);
3412}
3413
3414int copy_siginfo_from_user32(struct kernel_siginfo *to,
3415 const struct compat_siginfo __user *ufrom)
3416{
3417 struct compat_siginfo from;
3418
3419 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3420 return -EFAULT;
3421
3422 return post_copy_siginfo_from_user32(to, &from);
3423}
3424#endif /* CONFIG_COMPAT */
3425
3426/**
3427 * do_sigtimedwait - wait for queued signals specified in @which
3428 * @which: queued signals to wait for
3429 * @info: if non-null, the signal's siginfo is returned here
3430 * @ts: upper bound on process time suspension
3431 */
3432static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3433 const struct timespec64 *ts)
3434{
3435 ktime_t *to = NULL, timeout = KTIME_MAX;
3436 struct task_struct *tsk = current;
3437 sigset_t mask = *which;
3438 int sig, ret = 0;
3439
3440 if (ts) {
3441 if (!timespec64_valid(ts))
3442 return -EINVAL;
3443 timeout = timespec64_to_ktime(*ts);
3444 to = &timeout;
3445 }
3446
3447 /*
3448 * Invert the set of allowed signals to get those we want to block.
3449 */
3450 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3451 signotset(&mask);
3452
3453 spin_lock_irq(&tsk->sighand->siglock);
3454 sig = dequeue_signal(tsk, &mask, info);
3455 if (!sig && timeout) {
3456 /*
3457 * None ready, temporarily unblock those we're interested
3458 * while we are sleeping in so that we'll be awakened when
3459 * they arrive. Unblocking is always fine, we can avoid
3460 * set_current_blocked().
3461 */
3462 tsk->real_blocked = tsk->blocked;
3463 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3464 recalc_sigpending();
3465 spin_unlock_irq(&tsk->sighand->siglock);
3466
3467 __set_current_state(TASK_INTERRUPTIBLE);
3468 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3469 HRTIMER_MODE_REL);
3470 spin_lock_irq(&tsk->sighand->siglock);
3471 __set_task_blocked(tsk, &tsk->real_blocked);
3472 sigemptyset(&tsk->real_blocked);
3473 sig = dequeue_signal(tsk, &mask, info);
3474 }
3475 spin_unlock_irq(&tsk->sighand->siglock);
3476
3477 if (sig)
3478 return sig;
3479 return ret ? -EINTR : -EAGAIN;
3480}
3481
3482/**
3483 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3484 * in @uthese
3485 * @uthese: queued signals to wait for
3486 * @uinfo: if non-null, the signal's siginfo is returned here
3487 * @uts: upper bound on process time suspension
3488 * @sigsetsize: size of sigset_t type
3489 */
3490SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3491 siginfo_t __user *, uinfo,
3492 const struct __kernel_timespec __user *, uts,
3493 size_t, sigsetsize)
3494{
3495 sigset_t these;
3496 struct timespec64 ts;
3497 kernel_siginfo_t info;
3498 int ret;
3499
3500 /* XXX: Don't preclude handling different sized sigset_t's. */
3501 if (sigsetsize != sizeof(sigset_t))
3502 return -EINVAL;
3503
3504 if (copy_from_user(&these, uthese, sizeof(these)))
3505 return -EFAULT;
3506
3507 if (uts) {
3508 if (get_timespec64(&ts, uts))
3509 return -EFAULT;
3510 }
3511
3512 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3513
3514 if (ret > 0 && uinfo) {
3515 if (copy_siginfo_to_user(uinfo, &info))
3516 ret = -EFAULT;
3517 }
3518
3519 return ret;
3520}
3521
3522#ifdef CONFIG_COMPAT_32BIT_TIME
3523SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3524 siginfo_t __user *, uinfo,
3525 const struct old_timespec32 __user *, uts,
3526 size_t, sigsetsize)
3527{
3528 sigset_t these;
3529 struct timespec64 ts;
3530 kernel_siginfo_t info;
3531 int ret;
3532
3533 if (sigsetsize != sizeof(sigset_t))
3534 return -EINVAL;
3535
3536 if (copy_from_user(&these, uthese, sizeof(these)))
3537 return -EFAULT;
3538
3539 if (uts) {
3540 if (get_old_timespec32(&ts, uts))
3541 return -EFAULT;
3542 }
3543
3544 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3545
3546 if (ret > 0 && uinfo) {
3547 if (copy_siginfo_to_user(uinfo, &info))
3548 ret = -EFAULT;
3549 }
3550
3551 return ret;
3552}
3553#endif
3554
3555#ifdef CONFIG_COMPAT
3556COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3557 struct compat_siginfo __user *, uinfo,
3558 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3559{
3560 sigset_t s;
3561 struct timespec64 t;
3562 kernel_siginfo_t info;
3563 long ret;
3564
3565 if (sigsetsize != sizeof(sigset_t))
3566 return -EINVAL;
3567
3568 if (get_compat_sigset(&s, uthese))
3569 return -EFAULT;
3570
3571 if (uts) {
3572 if (get_timespec64(&t, uts))
3573 return -EFAULT;
3574 }
3575
3576 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3577
3578 if (ret > 0 && uinfo) {
3579 if (copy_siginfo_to_user32(uinfo, &info))
3580 ret = -EFAULT;
3581 }
3582
3583 return ret;
3584}
3585
3586#ifdef CONFIG_COMPAT_32BIT_TIME
3587COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3588 struct compat_siginfo __user *, uinfo,
3589 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3590{
3591 sigset_t s;
3592 struct timespec64 t;
3593 kernel_siginfo_t info;
3594 long ret;
3595
3596 if (sigsetsize != sizeof(sigset_t))
3597 return -EINVAL;
3598
3599 if (get_compat_sigset(&s, uthese))
3600 return -EFAULT;
3601
3602 if (uts) {
3603 if (get_old_timespec32(&t, uts))
3604 return -EFAULT;
3605 }
3606
3607 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3608
3609 if (ret > 0 && uinfo) {
3610 if (copy_siginfo_to_user32(uinfo, &info))
3611 ret = -EFAULT;
3612 }
3613
3614 return ret;
3615}
3616#endif
3617#endif
3618
3619static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3620{
3621 clear_siginfo(info);
3622 info->si_signo = sig;
3623 info->si_errno = 0;
3624 info->si_code = SI_USER;
3625 info->si_pid = task_tgid_vnr(current);
3626 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3627}
3628
3629/**
3630 * sys_kill - send a signal to a process
3631 * @pid: the PID of the process
3632 * @sig: signal to be sent
3633 */
3634SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3635{
3636 struct kernel_siginfo info;
3637
3638 prepare_kill_siginfo(sig, &info);
3639
3640 return kill_something_info(sig, &info, pid);
3641}
3642
3643/*
3644 * Verify that the signaler and signalee either are in the same pid namespace
3645 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3646 * namespace.
3647 */
3648static bool access_pidfd_pidns(struct pid *pid)
3649{
3650 struct pid_namespace *active = task_active_pid_ns(current);
3651 struct pid_namespace *p = ns_of_pid(pid);
3652
3653 for (;;) {
3654 if (!p)
3655 return false;
3656 if (p == active)
3657 break;
3658 p = p->parent;
3659 }
3660
3661 return true;
3662}
3663
3664static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3665{
3666#ifdef CONFIG_COMPAT
3667 /*
3668 * Avoid hooking up compat syscalls and instead handle necessary
3669 * conversions here. Note, this is a stop-gap measure and should not be
3670 * considered a generic solution.
3671 */
3672 if (in_compat_syscall())
3673 return copy_siginfo_from_user32(
3674 kinfo, (struct compat_siginfo __user *)info);
3675#endif
3676 return copy_siginfo_from_user(kinfo, info);
3677}
3678
3679static struct pid *pidfd_to_pid(const struct file *file)
3680{
3681 struct pid *pid;
3682
3683 pid = pidfd_pid(file);
3684 if (!IS_ERR(pid))
3685 return pid;
3686
3687 return tgid_pidfd_to_pid(file);
3688}
3689
3690/**
3691 * sys_pidfd_send_signal - Signal a process through a pidfd
3692 * @pidfd: file descriptor of the process
3693 * @sig: signal to send
3694 * @info: signal info
3695 * @flags: future flags
3696 *
3697 * The syscall currently only signals via PIDTYPE_PID which covers
3698 * kill(<positive-pid>, <signal>. It does not signal threads or process
3699 * groups.
3700 * In order to extend the syscall to threads and process groups the @flags
3701 * argument should be used. In essence, the @flags argument will determine
3702 * what is signaled and not the file descriptor itself. Put in other words,
3703 * grouping is a property of the flags argument not a property of the file
3704 * descriptor.
3705 *
3706 * Return: 0 on success, negative errno on failure
3707 */
3708SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3709 siginfo_t __user *, info, unsigned int, flags)
3710{
3711 int ret;
3712 struct fd f;
3713 struct pid *pid;
3714 kernel_siginfo_t kinfo;
3715
3716 /* Enforce flags be set to 0 until we add an extension. */
3717 if (flags)
3718 return -EINVAL;
3719
3720 f = fdget(pidfd);
3721 if (!f.file)
3722 return -EBADF;
3723
3724 /* Is this a pidfd? */
3725 pid = pidfd_to_pid(f.file);
3726 if (IS_ERR(pid)) {
3727 ret = PTR_ERR(pid);
3728 goto err;
3729 }
3730
3731 ret = -EINVAL;
3732 if (!access_pidfd_pidns(pid))
3733 goto err;
3734
3735 if (info) {
3736 ret = copy_siginfo_from_user_any(&kinfo, info);
3737 if (unlikely(ret))
3738 goto err;
3739
3740 ret = -EINVAL;
3741 if (unlikely(sig != kinfo.si_signo))
3742 goto err;
3743
3744 /* Only allow sending arbitrary signals to yourself. */
3745 ret = -EPERM;
3746 if ((task_pid(current) != pid) &&
3747 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3748 goto err;
3749 } else {
3750 prepare_kill_siginfo(sig, &kinfo);
3751 }
3752
3753 ret = kill_pid_info(sig, &kinfo, pid);
3754
3755err:
3756 fdput(f);
3757 return ret;
3758}
3759
3760static int
3761do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3762{
3763 struct task_struct *p;
3764 int error = -ESRCH;
3765
3766 rcu_read_lock();
3767 p = find_task_by_vpid(pid);
3768 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3769 error = check_kill_permission(sig, info, p);
3770 /*
3771 * The null signal is a permissions and process existence
3772 * probe. No signal is actually delivered.
3773 */
3774 if (!error && sig) {
3775 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3776 /*
3777 * If lock_task_sighand() failed we pretend the task
3778 * dies after receiving the signal. The window is tiny,
3779 * and the signal is private anyway.
3780 */
3781 if (unlikely(error == -ESRCH))
3782 error = 0;
3783 }
3784 }
3785 rcu_read_unlock();
3786
3787 return error;
3788}
3789
3790static int do_tkill(pid_t tgid, pid_t pid, int sig)
3791{
3792 struct kernel_siginfo info;
3793
3794 clear_siginfo(&info);
3795 info.si_signo = sig;
3796 info.si_errno = 0;
3797 info.si_code = SI_TKILL;
3798 info.si_pid = task_tgid_vnr(current);
3799 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800
3801 return do_send_specific(tgid, pid, sig, &info);
3802}
3803
3804/**
3805 * sys_tgkill - send signal to one specific thread
3806 * @tgid: the thread group ID of the thread
3807 * @pid: the PID of the thread
3808 * @sig: signal to be sent
3809 *
3810 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3811 * exists but it's not belonging to the target process anymore. This
3812 * method solves the problem of threads exiting and PIDs getting reused.
3813 */
3814SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3815{
3816 /* This is only valid for single tasks */
3817 if (pid <= 0 || tgid <= 0)
3818 return -EINVAL;
3819
3820 return do_tkill(tgid, pid, sig);
3821}
3822
3823/**
3824 * sys_tkill - send signal to one specific task
3825 * @pid: the PID of the task
3826 * @sig: signal to be sent
3827 *
3828 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3829 */
3830SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3831{
3832 /* This is only valid for single tasks */
3833 if (pid <= 0)
3834 return -EINVAL;
3835
3836 return do_tkill(0, pid, sig);
3837}
3838
3839static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3840{
3841 /* Not even root can pretend to send signals from the kernel.
3842 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3843 */
3844 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3845 (task_pid_vnr(current) != pid))
3846 return -EPERM;
3847
3848 /* POSIX.1b doesn't mention process groups. */
3849 return kill_proc_info(sig, info, pid);
3850}
3851
3852/**
3853 * sys_rt_sigqueueinfo - send signal information to a signal
3854 * @pid: the PID of the thread
3855 * @sig: signal to be sent
3856 * @uinfo: signal info to be sent
3857 */
3858SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3859 siginfo_t __user *, uinfo)
3860{
3861 kernel_siginfo_t info;
3862 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3863 if (unlikely(ret))
3864 return ret;
3865 return do_rt_sigqueueinfo(pid, sig, &info);
3866}
3867
3868#ifdef CONFIG_COMPAT
3869COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3870 compat_pid_t, pid,
3871 int, sig,
3872 struct compat_siginfo __user *, uinfo)
3873{
3874 kernel_siginfo_t info;
3875 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3876 if (unlikely(ret))
3877 return ret;
3878 return do_rt_sigqueueinfo(pid, sig, &info);
3879}
3880#endif
3881
3882static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3883{
3884 /* This is only valid for single tasks */
3885 if (pid <= 0 || tgid <= 0)
3886 return -EINVAL;
3887
3888 /* Not even root can pretend to send signals from the kernel.
3889 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3890 */
3891 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3892 (task_pid_vnr(current) != pid))
3893 return -EPERM;
3894
3895 return do_send_specific(tgid, pid, sig, info);
3896}
3897
3898SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3899 siginfo_t __user *, uinfo)
3900{
3901 kernel_siginfo_t info;
3902 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3903 if (unlikely(ret))
3904 return ret;
3905 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3906}
3907
3908#ifdef CONFIG_COMPAT
3909COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3910 compat_pid_t, tgid,
3911 compat_pid_t, pid,
3912 int, sig,
3913 struct compat_siginfo __user *, uinfo)
3914{
3915 kernel_siginfo_t info;
3916 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3917 if (unlikely(ret))
3918 return ret;
3919 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3920}
3921#endif
3922
3923/*
3924 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3925 */
3926void kernel_sigaction(int sig, __sighandler_t action)
3927{
3928 spin_lock_irq(¤t->sighand->siglock);
3929 current->sighand->action[sig - 1].sa.sa_handler = action;
3930 if (action == SIG_IGN) {
3931 sigset_t mask;
3932
3933 sigemptyset(&mask);
3934 sigaddset(&mask, sig);
3935
3936 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
3937 flush_sigqueue_mask(&mask, ¤t->pending);
3938 recalc_sigpending();
3939 }
3940 spin_unlock_irq(¤t->sighand->siglock);
3941}
3942EXPORT_SYMBOL(kernel_sigaction);
3943
3944void __weak sigaction_compat_abi(struct k_sigaction *act,
3945 struct k_sigaction *oact)
3946{
3947}
3948
3949int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3950{
3951 struct task_struct *p = current, *t;
3952 struct k_sigaction *k;
3953 sigset_t mask;
3954
3955 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3956 return -EINVAL;
3957
3958 k = &p->sighand->action[sig-1];
3959
3960 spin_lock_irq(&p->sighand->siglock);
3961 if (oact)
3962 *oact = *k;
3963
3964 sigaction_compat_abi(act, oact);
3965
3966 if (act) {
3967 sigdelsetmask(&act->sa.sa_mask,
3968 sigmask(SIGKILL) | sigmask(SIGSTOP));
3969 *k = *act;
3970 /*
3971 * POSIX 3.3.1.3:
3972 * "Setting a signal action to SIG_IGN for a signal that is
3973 * pending shall cause the pending signal to be discarded,
3974 * whether or not it is blocked."
3975 *
3976 * "Setting a signal action to SIG_DFL for a signal that is
3977 * pending and whose default action is to ignore the signal
3978 * (for example, SIGCHLD), shall cause the pending signal to
3979 * be discarded, whether or not it is blocked"
3980 */
3981 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3982 sigemptyset(&mask);
3983 sigaddset(&mask, sig);
3984 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3985 for_each_thread(p, t)
3986 flush_sigqueue_mask(&mask, &t->pending);
3987 }
3988 }
3989
3990 spin_unlock_irq(&p->sighand->siglock);
3991 return 0;
3992}
3993
3994static int
3995do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3996 size_t min_ss_size)
3997{
3998 struct task_struct *t = current;
3999
4000 if (oss) {
4001 memset(oss, 0, sizeof(stack_t));
4002 oss->ss_sp = (void __user *) t->sas_ss_sp;
4003 oss->ss_size = t->sas_ss_size;
4004 oss->ss_flags = sas_ss_flags(sp) |
4005 (current->sas_ss_flags & SS_FLAG_BITS);
4006 }
4007
4008 if (ss) {
4009 void __user *ss_sp = ss->ss_sp;
4010 size_t ss_size = ss->ss_size;
4011 unsigned ss_flags = ss->ss_flags;
4012 int ss_mode;
4013
4014 if (unlikely(on_sig_stack(sp)))
4015 return -EPERM;
4016
4017 ss_mode = ss_flags & ~SS_FLAG_BITS;
4018 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4019 ss_mode != 0))
4020 return -EINVAL;
4021
4022 if (ss_mode == SS_DISABLE) {
4023 ss_size = 0;
4024 ss_sp = NULL;
4025 } else {
4026 if (unlikely(ss_size < min_ss_size))
4027 return -ENOMEM;
4028 }
4029
4030 t->sas_ss_sp = (unsigned long) ss_sp;
4031 t->sas_ss_size = ss_size;
4032 t->sas_ss_flags = ss_flags;
4033 }
4034 return 0;
4035}
4036
4037SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4038{
4039 stack_t new, old;
4040 int err;
4041 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4042 return -EFAULT;
4043 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4044 current_user_stack_pointer(),
4045 MINSIGSTKSZ);
4046 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4047 err = -EFAULT;
4048 return err;
4049}
4050
4051int restore_altstack(const stack_t __user *uss)
4052{
4053 stack_t new;
4054 if (copy_from_user(&new, uss, sizeof(stack_t)))
4055 return -EFAULT;
4056 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4057 MINSIGSTKSZ);
4058 /* squash all but EFAULT for now */
4059 return 0;
4060}
4061
4062int __save_altstack(stack_t __user *uss, unsigned long sp)
4063{
4064 struct task_struct *t = current;
4065 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4066 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4067 __put_user(t->sas_ss_size, &uss->ss_size);
4068 if (err)
4069 return err;
4070 if (t->sas_ss_flags & SS_AUTODISARM)
4071 sas_ss_reset(t);
4072 return 0;
4073}
4074
4075#ifdef CONFIG_COMPAT
4076static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4077 compat_stack_t __user *uoss_ptr)
4078{
4079 stack_t uss, uoss;
4080 int ret;
4081
4082 if (uss_ptr) {
4083 compat_stack_t uss32;
4084 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4085 return -EFAULT;
4086 uss.ss_sp = compat_ptr(uss32.ss_sp);
4087 uss.ss_flags = uss32.ss_flags;
4088 uss.ss_size = uss32.ss_size;
4089 }
4090 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4091 compat_user_stack_pointer(),
4092 COMPAT_MINSIGSTKSZ);
4093 if (ret >= 0 && uoss_ptr) {
4094 compat_stack_t old;
4095 memset(&old, 0, sizeof(old));
4096 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4097 old.ss_flags = uoss.ss_flags;
4098 old.ss_size = uoss.ss_size;
4099 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4100 ret = -EFAULT;
4101 }
4102 return ret;
4103}
4104
4105COMPAT_SYSCALL_DEFINE2(sigaltstack,
4106 const compat_stack_t __user *, uss_ptr,
4107 compat_stack_t __user *, uoss_ptr)
4108{
4109 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4110}
4111
4112int compat_restore_altstack(const compat_stack_t __user *uss)
4113{
4114 int err = do_compat_sigaltstack(uss, NULL);
4115 /* squash all but -EFAULT for now */
4116 return err == -EFAULT ? err : 0;
4117}
4118
4119int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4120{
4121 int err;
4122 struct task_struct *t = current;
4123 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4124 &uss->ss_sp) |
4125 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4126 __put_user(t->sas_ss_size, &uss->ss_size);
4127 if (err)
4128 return err;
4129 if (t->sas_ss_flags & SS_AUTODISARM)
4130 sas_ss_reset(t);
4131 return 0;
4132}
4133#endif
4134
4135#ifdef __ARCH_WANT_SYS_SIGPENDING
4136
4137/**
4138 * sys_sigpending - examine pending signals
4139 * @uset: where mask of pending signal is returned
4140 */
4141SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4142{
4143 sigset_t set;
4144
4145 if (sizeof(old_sigset_t) > sizeof(*uset))
4146 return -EINVAL;
4147
4148 do_sigpending(&set);
4149
4150 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4151 return -EFAULT;
4152
4153 return 0;
4154}
4155
4156#ifdef CONFIG_COMPAT
4157COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4158{
4159 sigset_t set;
4160
4161 do_sigpending(&set);
4162
4163 return put_user(set.sig[0], set32);
4164}
4165#endif
4166
4167#endif
4168
4169#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4170/**
4171 * sys_sigprocmask - examine and change blocked signals
4172 * @how: whether to add, remove, or set signals
4173 * @nset: signals to add or remove (if non-null)
4174 * @oset: previous value of signal mask if non-null
4175 *
4176 * Some platforms have their own version with special arguments;
4177 * others support only sys_rt_sigprocmask.
4178 */
4179
4180SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4181 old_sigset_t __user *, oset)
4182{
4183 old_sigset_t old_set, new_set;
4184 sigset_t new_blocked;
4185
4186 old_set = current->blocked.sig[0];
4187
4188 if (nset) {
4189 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4190 return -EFAULT;
4191
4192 new_blocked = current->blocked;
4193
4194 switch (how) {
4195 case SIG_BLOCK:
4196 sigaddsetmask(&new_blocked, new_set);
4197 break;
4198 case SIG_UNBLOCK:
4199 sigdelsetmask(&new_blocked, new_set);
4200 break;
4201 case SIG_SETMASK:
4202 new_blocked.sig[0] = new_set;
4203 break;
4204 default:
4205 return -EINVAL;
4206 }
4207
4208 set_current_blocked(&new_blocked);
4209 }
4210
4211 if (oset) {
4212 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4213 return -EFAULT;
4214 }
4215
4216 return 0;
4217}
4218#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4219
4220#ifndef CONFIG_ODD_RT_SIGACTION
4221/**
4222 * sys_rt_sigaction - alter an action taken by a process
4223 * @sig: signal to be sent
4224 * @act: new sigaction
4225 * @oact: used to save the previous sigaction
4226 * @sigsetsize: size of sigset_t type
4227 */
4228SYSCALL_DEFINE4(rt_sigaction, int, sig,
4229 const struct sigaction __user *, act,
4230 struct sigaction __user *, oact,
4231 size_t, sigsetsize)
4232{
4233 struct k_sigaction new_sa, old_sa;
4234 int ret;
4235
4236 /* XXX: Don't preclude handling different sized sigset_t's. */
4237 if (sigsetsize != sizeof(sigset_t))
4238 return -EINVAL;
4239
4240 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4241 return -EFAULT;
4242
4243 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4244 if (ret)
4245 return ret;
4246
4247 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4248 return -EFAULT;
4249
4250 return 0;
4251}
4252#ifdef CONFIG_COMPAT
4253COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4254 const struct compat_sigaction __user *, act,
4255 struct compat_sigaction __user *, oact,
4256 compat_size_t, sigsetsize)
4257{
4258 struct k_sigaction new_ka, old_ka;
4259#ifdef __ARCH_HAS_SA_RESTORER
4260 compat_uptr_t restorer;
4261#endif
4262 int ret;
4263
4264 /* XXX: Don't preclude handling different sized sigset_t's. */
4265 if (sigsetsize != sizeof(compat_sigset_t))
4266 return -EINVAL;
4267
4268 if (act) {
4269 compat_uptr_t handler;
4270 ret = get_user(handler, &act->sa_handler);
4271 new_ka.sa.sa_handler = compat_ptr(handler);
4272#ifdef __ARCH_HAS_SA_RESTORER
4273 ret |= get_user(restorer, &act->sa_restorer);
4274 new_ka.sa.sa_restorer = compat_ptr(restorer);
4275#endif
4276 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4277 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4278 if (ret)
4279 return -EFAULT;
4280 }
4281
4282 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4283 if (!ret && oact) {
4284 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4285 &oact->sa_handler);
4286 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4287 sizeof(oact->sa_mask));
4288 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4289#ifdef __ARCH_HAS_SA_RESTORER
4290 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4291 &oact->sa_restorer);
4292#endif
4293 }
4294 return ret;
4295}
4296#endif
4297#endif /* !CONFIG_ODD_RT_SIGACTION */
4298
4299#ifdef CONFIG_OLD_SIGACTION
4300SYSCALL_DEFINE3(sigaction, int, sig,
4301 const struct old_sigaction __user *, act,
4302 struct old_sigaction __user *, oact)
4303{
4304 struct k_sigaction new_ka, old_ka;
4305 int ret;
4306
4307 if (act) {
4308 old_sigset_t mask;
4309 if (!access_ok(act, sizeof(*act)) ||
4310 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4311 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4312 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4313 __get_user(mask, &act->sa_mask))
4314 return -EFAULT;
4315#ifdef __ARCH_HAS_KA_RESTORER
4316 new_ka.ka_restorer = NULL;
4317#endif
4318 siginitset(&new_ka.sa.sa_mask, mask);
4319 }
4320
4321 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4322
4323 if (!ret && oact) {
4324 if (!access_ok(oact, sizeof(*oact)) ||
4325 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4326 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4327 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4328 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4329 return -EFAULT;
4330 }
4331
4332 return ret;
4333}
4334#endif
4335#ifdef CONFIG_COMPAT_OLD_SIGACTION
4336COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4337 const struct compat_old_sigaction __user *, act,
4338 struct compat_old_sigaction __user *, oact)
4339{
4340 struct k_sigaction new_ka, old_ka;
4341 int ret;
4342 compat_old_sigset_t mask;
4343 compat_uptr_t handler, restorer;
4344
4345 if (act) {
4346 if (!access_ok(act, sizeof(*act)) ||
4347 __get_user(handler, &act->sa_handler) ||
4348 __get_user(restorer, &act->sa_restorer) ||
4349 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4350 __get_user(mask, &act->sa_mask))
4351 return -EFAULT;
4352
4353#ifdef __ARCH_HAS_KA_RESTORER
4354 new_ka.ka_restorer = NULL;
4355#endif
4356 new_ka.sa.sa_handler = compat_ptr(handler);
4357 new_ka.sa.sa_restorer = compat_ptr(restorer);
4358 siginitset(&new_ka.sa.sa_mask, mask);
4359 }
4360
4361 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4362
4363 if (!ret && oact) {
4364 if (!access_ok(oact, sizeof(*oact)) ||
4365 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4366 &oact->sa_handler) ||
4367 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4368 &oact->sa_restorer) ||
4369 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4370 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4371 return -EFAULT;
4372 }
4373 return ret;
4374}
4375#endif
4376
4377#ifdef CONFIG_SGETMASK_SYSCALL
4378
4379/*
4380 * For backwards compatibility. Functionality superseded by sigprocmask.
4381 */
4382SYSCALL_DEFINE0(sgetmask)
4383{
4384 /* SMP safe */
4385 return current->blocked.sig[0];
4386}
4387
4388SYSCALL_DEFINE1(ssetmask, int, newmask)
4389{
4390 int old = current->blocked.sig[0];
4391 sigset_t newset;
4392
4393 siginitset(&newset, newmask);
4394 set_current_blocked(&newset);
4395
4396 return old;
4397}
4398#endif /* CONFIG_SGETMASK_SYSCALL */
4399
4400#ifdef __ARCH_WANT_SYS_SIGNAL
4401/*
4402 * For backwards compatibility. Functionality superseded by sigaction.
4403 */
4404SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4405{
4406 struct k_sigaction new_sa, old_sa;
4407 int ret;
4408
4409 new_sa.sa.sa_handler = handler;
4410 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4411 sigemptyset(&new_sa.sa.sa_mask);
4412
4413 ret = do_sigaction(sig, &new_sa, &old_sa);
4414
4415 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4416}
4417#endif /* __ARCH_WANT_SYS_SIGNAL */
4418
4419#ifdef __ARCH_WANT_SYS_PAUSE
4420
4421SYSCALL_DEFINE0(pause)
4422{
4423 while (!signal_pending(current)) {
4424 __set_current_state(TASK_INTERRUPTIBLE);
4425 schedule();
4426 }
4427 return -ERESTARTNOHAND;
4428}
4429
4430#endif
4431
4432static int sigsuspend(sigset_t *set)
4433{
4434 current->saved_sigmask = current->blocked;
4435 set_current_blocked(set);
4436
4437 while (!signal_pending(current)) {
4438 __set_current_state(TASK_INTERRUPTIBLE);
4439 schedule();
4440 }
4441 set_restore_sigmask();
4442 return -ERESTARTNOHAND;
4443}
4444
4445/**
4446 * sys_rt_sigsuspend - replace the signal mask for a value with the
4447 * @unewset value until a signal is received
4448 * @unewset: new signal mask value
4449 * @sigsetsize: size of sigset_t type
4450 */
4451SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4452{
4453 sigset_t newset;
4454
4455 /* XXX: Don't preclude handling different sized sigset_t's. */
4456 if (sigsetsize != sizeof(sigset_t))
4457 return -EINVAL;
4458
4459 if (copy_from_user(&newset, unewset, sizeof(newset)))
4460 return -EFAULT;
4461 return sigsuspend(&newset);
4462}
4463
4464#ifdef CONFIG_COMPAT
4465COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4466{
4467 sigset_t newset;
4468
4469 /* XXX: Don't preclude handling different sized sigset_t's. */
4470 if (sigsetsize != sizeof(sigset_t))
4471 return -EINVAL;
4472
4473 if (get_compat_sigset(&newset, unewset))
4474 return -EFAULT;
4475 return sigsuspend(&newset);
4476}
4477#endif
4478
4479#ifdef CONFIG_OLD_SIGSUSPEND
4480SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4481{
4482 sigset_t blocked;
4483 siginitset(&blocked, mask);
4484 return sigsuspend(&blocked);
4485}
4486#endif
4487#ifdef CONFIG_OLD_SIGSUSPEND3
4488SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4489{
4490 sigset_t blocked;
4491 siginitset(&blocked, mask);
4492 return sigsuspend(&blocked);
4493}
4494#endif
4495
4496__weak const char *arch_vma_name(struct vm_area_struct *vma)
4497{
4498 return NULL;
4499}
4500
4501static inline void siginfo_buildtime_checks(void)
4502{
4503 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4504
4505 /* Verify the offsets in the two siginfos match */
4506#define CHECK_OFFSET(field) \
4507 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4508
4509 /* kill */
4510 CHECK_OFFSET(si_pid);
4511 CHECK_OFFSET(si_uid);
4512
4513 /* timer */
4514 CHECK_OFFSET(si_tid);
4515 CHECK_OFFSET(si_overrun);
4516 CHECK_OFFSET(si_value);
4517
4518 /* rt */
4519 CHECK_OFFSET(si_pid);
4520 CHECK_OFFSET(si_uid);
4521 CHECK_OFFSET(si_value);
4522
4523 /* sigchld */
4524 CHECK_OFFSET(si_pid);
4525 CHECK_OFFSET(si_uid);
4526 CHECK_OFFSET(si_status);
4527 CHECK_OFFSET(si_utime);
4528 CHECK_OFFSET(si_stime);
4529
4530 /* sigfault */
4531 CHECK_OFFSET(si_addr);
4532 CHECK_OFFSET(si_addr_lsb);
4533 CHECK_OFFSET(si_lower);
4534 CHECK_OFFSET(si_upper);
4535 CHECK_OFFSET(si_pkey);
4536
4537 /* sigpoll */
4538 CHECK_OFFSET(si_band);
4539 CHECK_OFFSET(si_fd);
4540
4541 /* sigsys */
4542 CHECK_OFFSET(si_call_addr);
4543 CHECK_OFFSET(si_syscall);
4544 CHECK_OFFSET(si_arch);
4545#undef CHECK_OFFSET
4546
4547 /* usb asyncio */
4548 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4549 offsetof(struct siginfo, si_addr));
4550 if (sizeof(int) == sizeof(void __user *)) {
4551 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4552 sizeof(void __user *));
4553 } else {
4554 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4555 sizeof_field(struct siginfo, si_uid)) !=
4556 sizeof(void __user *));
4557 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4558 offsetof(struct siginfo, si_uid));
4559 }
4560#ifdef CONFIG_COMPAT
4561 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4562 offsetof(struct compat_siginfo, si_addr));
4563 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4564 sizeof(compat_uptr_t));
4565 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4566 sizeof_field(struct siginfo, si_pid));
4567#endif
4568}
4569
4570void __init signals_init(void)
4571{
4572 siginfo_buildtime_checks();
4573
4574 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4575}
4576
4577#ifdef CONFIG_KGDB_KDB
4578#include <linux/kdb.h>
4579/*
4580 * kdb_send_sig - Allows kdb to send signals without exposing
4581 * signal internals. This function checks if the required locks are
4582 * available before calling the main signal code, to avoid kdb
4583 * deadlocks.
4584 */
4585void kdb_send_sig(struct task_struct *t, int sig)
4586{
4587 static struct task_struct *kdb_prev_t;
4588 int new_t, ret;
4589 if (!spin_trylock(&t->sighand->siglock)) {
4590 kdb_printf("Can't do kill command now.\n"
4591 "The sigmask lock is held somewhere else in "
4592 "kernel, try again later\n");
4593 return;
4594 }
4595 new_t = kdb_prev_t != t;
4596 kdb_prev_t = t;
4597 if (t->state != TASK_RUNNING && new_t) {
4598 spin_unlock(&t->sighand->siglock);
4599 kdb_printf("Process is not RUNNING, sending a signal from "
4600 "kdb risks deadlock\n"
4601 "on the run queue locks. "
4602 "The signal has _not_ been sent.\n"
4603 "Reissue the kill command if you want to risk "
4604 "the deadlock.\n");
4605 return;
4606 }
4607 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4608 spin_unlock(&t->sighand->siglock);
4609 if (ret)
4610 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4611 sig, t->pid);
4612 else
4613 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4614}
4615#endif /* CONFIG_KGDB_KDB */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/init.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/user.h>
19#include <linux/sched/debug.h>
20#include <linux/sched/task.h>
21#include <linux/sched/task_stack.h>
22#include <linux/sched/cputime.h>
23#include <linux/file.h>
24#include <linux/fs.h>
25#include <linux/proc_fs.h>
26#include <linux/tty.h>
27#include <linux/binfmts.h>
28#include <linux/coredump.h>
29#include <linux/security.h>
30#include <linux/syscalls.h>
31#include <linux/ptrace.h>
32#include <linux/signal.h>
33#include <linux/signalfd.h>
34#include <linux/ratelimit.h>
35#include <linux/tracehook.h>
36#include <linux/capability.h>
37#include <linux/freezer.h>
38#include <linux/pid_namespace.h>
39#include <linux/nsproxy.h>
40#include <linux/user_namespace.h>
41#include <linux/uprobes.h>
42#include <linux/compat.h>
43#include <linux/cn_proc.h>
44#include <linux/compiler.h>
45#include <linux/posix-timers.h>
46#include <linux/cgroup.h>
47#include <linux/audit.h>
48
49#define CREATE_TRACE_POINTS
50#include <trace/events/signal.h>
51
52#include <asm/param.h>
53#include <linux/uaccess.h>
54#include <asm/unistd.h>
55#include <asm/siginfo.h>
56#include <asm/cacheflush.h>
57
58/*
59 * SLAB caches for signal bits.
60 */
61
62static struct kmem_cache *sigqueue_cachep;
63
64int print_fatal_signals __read_mostly;
65
66static void __user *sig_handler(struct task_struct *t, int sig)
67{
68 return t->sighand->action[sig - 1].sa.sa_handler;
69}
70
71static inline bool sig_handler_ignored(void __user *handler, int sig)
72{
73 /* Is it explicitly or implicitly ignored? */
74 return handler == SIG_IGN ||
75 (handler == SIG_DFL && sig_kernel_ignore(sig));
76}
77
78static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
79{
80 void __user *handler;
81
82 handler = sig_handler(t, sig);
83
84 /* SIGKILL and SIGSTOP may not be sent to the global init */
85 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
86 return true;
87
88 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
89 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
90 return true;
91
92 /* Only allow kernel generated signals to this kthread */
93 if (unlikely((t->flags & PF_KTHREAD) &&
94 (handler == SIG_KTHREAD_KERNEL) && !force))
95 return true;
96
97 return sig_handler_ignored(handler, sig);
98}
99
100static bool sig_ignored(struct task_struct *t, int sig, bool force)
101{
102 /*
103 * Blocked signals are never ignored, since the
104 * signal handler may change by the time it is
105 * unblocked.
106 */
107 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
108 return false;
109
110 /*
111 * Tracers may want to know about even ignored signal unless it
112 * is SIGKILL which can't be reported anyway but can be ignored
113 * by SIGNAL_UNKILLABLE task.
114 */
115 if (t->ptrace && sig != SIGKILL)
116 return false;
117
118 return sig_task_ignored(t, sig, force);
119}
120
121/*
122 * Re-calculate pending state from the set of locally pending
123 * signals, globally pending signals, and blocked signals.
124 */
125static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
126{
127 unsigned long ready;
128 long i;
129
130 switch (_NSIG_WORDS) {
131 default:
132 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
133 ready |= signal->sig[i] &~ blocked->sig[i];
134 break;
135
136 case 4: ready = signal->sig[3] &~ blocked->sig[3];
137 ready |= signal->sig[2] &~ blocked->sig[2];
138 ready |= signal->sig[1] &~ blocked->sig[1];
139 ready |= signal->sig[0] &~ blocked->sig[0];
140 break;
141
142 case 2: ready = signal->sig[1] &~ blocked->sig[1];
143 ready |= signal->sig[0] &~ blocked->sig[0];
144 break;
145
146 case 1: ready = signal->sig[0] &~ blocked->sig[0];
147 }
148 return ready != 0;
149}
150
151#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
152
153static bool recalc_sigpending_tsk(struct task_struct *t)
154{
155 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
156 PENDING(&t->pending, &t->blocked) ||
157 PENDING(&t->signal->shared_pending, &t->blocked) ||
158 cgroup_task_frozen(t)) {
159 set_tsk_thread_flag(t, TIF_SIGPENDING);
160 return true;
161 }
162
163 /*
164 * We must never clear the flag in another thread, or in current
165 * when it's possible the current syscall is returning -ERESTART*.
166 * So we don't clear it here, and only callers who know they should do.
167 */
168 return false;
169}
170
171/*
172 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
173 * This is superfluous when called on current, the wakeup is a harmless no-op.
174 */
175void recalc_sigpending_and_wake(struct task_struct *t)
176{
177 if (recalc_sigpending_tsk(t))
178 signal_wake_up(t, 0);
179}
180
181void recalc_sigpending(void)
182{
183 if (!recalc_sigpending_tsk(current) && !freezing(current))
184 clear_thread_flag(TIF_SIGPENDING);
185
186}
187EXPORT_SYMBOL(recalc_sigpending);
188
189void calculate_sigpending(void)
190{
191 /* Have any signals or users of TIF_SIGPENDING been delayed
192 * until after fork?
193 */
194 spin_lock_irq(¤t->sighand->siglock);
195 set_tsk_thread_flag(current, TIF_SIGPENDING);
196 recalc_sigpending();
197 spin_unlock_irq(¤t->sighand->siglock);
198}
199
200/* Given the mask, find the first available signal that should be serviced. */
201
202#define SYNCHRONOUS_MASK \
203 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
204 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
205
206int next_signal(struct sigpending *pending, sigset_t *mask)
207{
208 unsigned long i, *s, *m, x;
209 int sig = 0;
210
211 s = pending->signal.sig;
212 m = mask->sig;
213
214 /*
215 * Handle the first word specially: it contains the
216 * synchronous signals that need to be dequeued first.
217 */
218 x = *s &~ *m;
219 if (x) {
220 if (x & SYNCHRONOUS_MASK)
221 x &= SYNCHRONOUS_MASK;
222 sig = ffz(~x) + 1;
223 return sig;
224 }
225
226 switch (_NSIG_WORDS) {
227 default:
228 for (i = 1; i < _NSIG_WORDS; ++i) {
229 x = *++s &~ *++m;
230 if (!x)
231 continue;
232 sig = ffz(~x) + i*_NSIG_BPW + 1;
233 break;
234 }
235 break;
236
237 case 2:
238 x = s[1] &~ m[1];
239 if (!x)
240 break;
241 sig = ffz(~x) + _NSIG_BPW + 1;
242 break;
243
244 case 1:
245 /* Nothing to do */
246 break;
247 }
248
249 return sig;
250}
251
252static inline void print_dropped_signal(int sig)
253{
254 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
255
256 if (!print_fatal_signals)
257 return;
258
259 if (!__ratelimit(&ratelimit_state))
260 return;
261
262 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
263 current->comm, current->pid, sig);
264}
265
266/**
267 * task_set_jobctl_pending - set jobctl pending bits
268 * @task: target task
269 * @mask: pending bits to set
270 *
271 * Clear @mask from @task->jobctl. @mask must be subset of
272 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
273 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
274 * cleared. If @task is already being killed or exiting, this function
275 * becomes noop.
276 *
277 * CONTEXT:
278 * Must be called with @task->sighand->siglock held.
279 *
280 * RETURNS:
281 * %true if @mask is set, %false if made noop because @task was dying.
282 */
283bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
284{
285 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
286 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
287 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
288
289 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
290 return false;
291
292 if (mask & JOBCTL_STOP_SIGMASK)
293 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
294
295 task->jobctl |= mask;
296 return true;
297}
298
299/**
300 * task_clear_jobctl_trapping - clear jobctl trapping bit
301 * @task: target task
302 *
303 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
304 * Clear it and wake up the ptracer. Note that we don't need any further
305 * locking. @task->siglock guarantees that @task->parent points to the
306 * ptracer.
307 *
308 * CONTEXT:
309 * Must be called with @task->sighand->siglock held.
310 */
311void task_clear_jobctl_trapping(struct task_struct *task)
312{
313 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
314 task->jobctl &= ~JOBCTL_TRAPPING;
315 smp_mb(); /* advised by wake_up_bit() */
316 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
317 }
318}
319
320/**
321 * task_clear_jobctl_pending - clear jobctl pending bits
322 * @task: target task
323 * @mask: pending bits to clear
324 *
325 * Clear @mask from @task->jobctl. @mask must be subset of
326 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
327 * STOP bits are cleared together.
328 *
329 * If clearing of @mask leaves no stop or trap pending, this function calls
330 * task_clear_jobctl_trapping().
331 *
332 * CONTEXT:
333 * Must be called with @task->sighand->siglock held.
334 */
335void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
336{
337 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
338
339 if (mask & JOBCTL_STOP_PENDING)
340 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
341
342 task->jobctl &= ~mask;
343
344 if (!(task->jobctl & JOBCTL_PENDING_MASK))
345 task_clear_jobctl_trapping(task);
346}
347
348/**
349 * task_participate_group_stop - participate in a group stop
350 * @task: task participating in a group stop
351 *
352 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
353 * Group stop states are cleared and the group stop count is consumed if
354 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
355 * stop, the appropriate `SIGNAL_*` flags are set.
356 *
357 * CONTEXT:
358 * Must be called with @task->sighand->siglock held.
359 *
360 * RETURNS:
361 * %true if group stop completion should be notified to the parent, %false
362 * otherwise.
363 */
364static bool task_participate_group_stop(struct task_struct *task)
365{
366 struct signal_struct *sig = task->signal;
367 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
368
369 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
370
371 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
372
373 if (!consume)
374 return false;
375
376 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
377 sig->group_stop_count--;
378
379 /*
380 * Tell the caller to notify completion iff we are entering into a
381 * fresh group stop. Read comment in do_signal_stop() for details.
382 */
383 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
384 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
385 return true;
386 }
387 return false;
388}
389
390void task_join_group_stop(struct task_struct *task)
391{
392 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
393 struct signal_struct *sig = current->signal;
394
395 if (sig->group_stop_count) {
396 sig->group_stop_count++;
397 mask |= JOBCTL_STOP_CONSUME;
398 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
399 return;
400
401 /* Have the new thread join an on-going signal group stop */
402 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
403}
404
405/*
406 * allocate a new signal queue record
407 * - this may be called without locks if and only if t == current, otherwise an
408 * appropriate lock must be held to stop the target task from exiting
409 */
410static struct sigqueue *
411__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
412 int override_rlimit, const unsigned int sigqueue_flags)
413{
414 struct sigqueue *q = NULL;
415 struct ucounts *ucounts = NULL;
416 long sigpending;
417
418 /*
419 * Protect access to @t credentials. This can go away when all
420 * callers hold rcu read lock.
421 *
422 * NOTE! A pending signal will hold on to the user refcount,
423 * and we get/put the refcount only when the sigpending count
424 * changes from/to zero.
425 */
426 rcu_read_lock();
427 ucounts = task_ucounts(t);
428 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
429 rcu_read_unlock();
430 if (!sigpending)
431 return NULL;
432
433 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
434 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
435 } else {
436 print_dropped_signal(sig);
437 }
438
439 if (unlikely(q == NULL)) {
440 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
441 } else {
442 INIT_LIST_HEAD(&q->list);
443 q->flags = sigqueue_flags;
444 q->ucounts = ucounts;
445 }
446 return q;
447}
448
449static void __sigqueue_free(struct sigqueue *q)
450{
451 if (q->flags & SIGQUEUE_PREALLOC)
452 return;
453 if (q->ucounts) {
454 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
455 q->ucounts = NULL;
456 }
457 kmem_cache_free(sigqueue_cachep, q);
458}
459
460void flush_sigqueue(struct sigpending *queue)
461{
462 struct sigqueue *q;
463
464 sigemptyset(&queue->signal);
465 while (!list_empty(&queue->list)) {
466 q = list_entry(queue->list.next, struct sigqueue , list);
467 list_del_init(&q->list);
468 __sigqueue_free(q);
469 }
470}
471
472/*
473 * Flush all pending signals for this kthread.
474 */
475void flush_signals(struct task_struct *t)
476{
477 unsigned long flags;
478
479 spin_lock_irqsave(&t->sighand->siglock, flags);
480 clear_tsk_thread_flag(t, TIF_SIGPENDING);
481 flush_sigqueue(&t->pending);
482 flush_sigqueue(&t->signal->shared_pending);
483 spin_unlock_irqrestore(&t->sighand->siglock, flags);
484}
485EXPORT_SYMBOL(flush_signals);
486
487#ifdef CONFIG_POSIX_TIMERS
488static void __flush_itimer_signals(struct sigpending *pending)
489{
490 sigset_t signal, retain;
491 struct sigqueue *q, *n;
492
493 signal = pending->signal;
494 sigemptyset(&retain);
495
496 list_for_each_entry_safe(q, n, &pending->list, list) {
497 int sig = q->info.si_signo;
498
499 if (likely(q->info.si_code != SI_TIMER)) {
500 sigaddset(&retain, sig);
501 } else {
502 sigdelset(&signal, sig);
503 list_del_init(&q->list);
504 __sigqueue_free(q);
505 }
506 }
507
508 sigorsets(&pending->signal, &signal, &retain);
509}
510
511void flush_itimer_signals(void)
512{
513 struct task_struct *tsk = current;
514 unsigned long flags;
515
516 spin_lock_irqsave(&tsk->sighand->siglock, flags);
517 __flush_itimer_signals(&tsk->pending);
518 __flush_itimer_signals(&tsk->signal->shared_pending);
519 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
520}
521#endif
522
523void ignore_signals(struct task_struct *t)
524{
525 int i;
526
527 for (i = 0; i < _NSIG; ++i)
528 t->sighand->action[i].sa.sa_handler = SIG_IGN;
529
530 flush_signals(t);
531}
532
533/*
534 * Flush all handlers for a task.
535 */
536
537void
538flush_signal_handlers(struct task_struct *t, int force_default)
539{
540 int i;
541 struct k_sigaction *ka = &t->sighand->action[0];
542 for (i = _NSIG ; i != 0 ; i--) {
543 if (force_default || ka->sa.sa_handler != SIG_IGN)
544 ka->sa.sa_handler = SIG_DFL;
545 ka->sa.sa_flags = 0;
546#ifdef __ARCH_HAS_SA_RESTORER
547 ka->sa.sa_restorer = NULL;
548#endif
549 sigemptyset(&ka->sa.sa_mask);
550 ka++;
551 }
552}
553
554bool unhandled_signal(struct task_struct *tsk, int sig)
555{
556 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
557 if (is_global_init(tsk))
558 return true;
559
560 if (handler != SIG_IGN && handler != SIG_DFL)
561 return false;
562
563 /* if ptraced, let the tracer determine */
564 return !tsk->ptrace;
565}
566
567static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
568 bool *resched_timer)
569{
570 struct sigqueue *q, *first = NULL;
571
572 /*
573 * Collect the siginfo appropriate to this signal. Check if
574 * there is another siginfo for the same signal.
575 */
576 list_for_each_entry(q, &list->list, list) {
577 if (q->info.si_signo == sig) {
578 if (first)
579 goto still_pending;
580 first = q;
581 }
582 }
583
584 sigdelset(&list->signal, sig);
585
586 if (first) {
587still_pending:
588 list_del_init(&first->list);
589 copy_siginfo(info, &first->info);
590
591 *resched_timer =
592 (first->flags & SIGQUEUE_PREALLOC) &&
593 (info->si_code == SI_TIMER) &&
594 (info->si_sys_private);
595
596 __sigqueue_free(first);
597 } else {
598 /*
599 * Ok, it wasn't in the queue. This must be
600 * a fast-pathed signal or we must have been
601 * out of queue space. So zero out the info.
602 */
603 clear_siginfo(info);
604 info->si_signo = sig;
605 info->si_errno = 0;
606 info->si_code = SI_USER;
607 info->si_pid = 0;
608 info->si_uid = 0;
609 }
610}
611
612static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
613 kernel_siginfo_t *info, bool *resched_timer)
614{
615 int sig = next_signal(pending, mask);
616
617 if (sig)
618 collect_signal(sig, pending, info, resched_timer);
619 return sig;
620}
621
622/*
623 * Dequeue a signal and return the element to the caller, which is
624 * expected to free it.
625 *
626 * All callers have to hold the siglock.
627 */
628int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
629{
630 bool resched_timer = false;
631 int signr;
632
633 /* We only dequeue private signals from ourselves, we don't let
634 * signalfd steal them
635 */
636 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
637 if (!signr) {
638 signr = __dequeue_signal(&tsk->signal->shared_pending,
639 mask, info, &resched_timer);
640#ifdef CONFIG_POSIX_TIMERS
641 /*
642 * itimer signal ?
643 *
644 * itimers are process shared and we restart periodic
645 * itimers in the signal delivery path to prevent DoS
646 * attacks in the high resolution timer case. This is
647 * compliant with the old way of self-restarting
648 * itimers, as the SIGALRM is a legacy signal and only
649 * queued once. Changing the restart behaviour to
650 * restart the timer in the signal dequeue path is
651 * reducing the timer noise on heavy loaded !highres
652 * systems too.
653 */
654 if (unlikely(signr == SIGALRM)) {
655 struct hrtimer *tmr = &tsk->signal->real_timer;
656
657 if (!hrtimer_is_queued(tmr) &&
658 tsk->signal->it_real_incr != 0) {
659 hrtimer_forward(tmr, tmr->base->get_time(),
660 tsk->signal->it_real_incr);
661 hrtimer_restart(tmr);
662 }
663 }
664#endif
665 }
666
667 recalc_sigpending();
668 if (!signr)
669 return 0;
670
671 if (unlikely(sig_kernel_stop(signr))) {
672 /*
673 * Set a marker that we have dequeued a stop signal. Our
674 * caller might release the siglock and then the pending
675 * stop signal it is about to process is no longer in the
676 * pending bitmasks, but must still be cleared by a SIGCONT
677 * (and overruled by a SIGKILL). So those cases clear this
678 * shared flag after we've set it. Note that this flag may
679 * remain set after the signal we return is ignored or
680 * handled. That doesn't matter because its only purpose
681 * is to alert stop-signal processing code when another
682 * processor has come along and cleared the flag.
683 */
684 current->jobctl |= JOBCTL_STOP_DEQUEUED;
685 }
686#ifdef CONFIG_POSIX_TIMERS
687 if (resched_timer) {
688 /*
689 * Release the siglock to ensure proper locking order
690 * of timer locks outside of siglocks. Note, we leave
691 * irqs disabled here, since the posix-timers code is
692 * about to disable them again anyway.
693 */
694 spin_unlock(&tsk->sighand->siglock);
695 posixtimer_rearm(info);
696 spin_lock(&tsk->sighand->siglock);
697
698 /* Don't expose the si_sys_private value to userspace */
699 info->si_sys_private = 0;
700 }
701#endif
702 return signr;
703}
704EXPORT_SYMBOL_GPL(dequeue_signal);
705
706static int dequeue_synchronous_signal(kernel_siginfo_t *info)
707{
708 struct task_struct *tsk = current;
709 struct sigpending *pending = &tsk->pending;
710 struct sigqueue *q, *sync = NULL;
711
712 /*
713 * Might a synchronous signal be in the queue?
714 */
715 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
716 return 0;
717
718 /*
719 * Return the first synchronous signal in the queue.
720 */
721 list_for_each_entry(q, &pending->list, list) {
722 /* Synchronous signals have a positive si_code */
723 if ((q->info.si_code > SI_USER) &&
724 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
725 sync = q;
726 goto next;
727 }
728 }
729 return 0;
730next:
731 /*
732 * Check if there is another siginfo for the same signal.
733 */
734 list_for_each_entry_continue(q, &pending->list, list) {
735 if (q->info.si_signo == sync->info.si_signo)
736 goto still_pending;
737 }
738
739 sigdelset(&pending->signal, sync->info.si_signo);
740 recalc_sigpending();
741still_pending:
742 list_del_init(&sync->list);
743 copy_siginfo(info, &sync->info);
744 __sigqueue_free(sync);
745 return info->si_signo;
746}
747
748/*
749 * Tell a process that it has a new active signal..
750 *
751 * NOTE! we rely on the previous spin_lock to
752 * lock interrupts for us! We can only be called with
753 * "siglock" held, and the local interrupt must
754 * have been disabled when that got acquired!
755 *
756 * No need to set need_resched since signal event passing
757 * goes through ->blocked
758 */
759void signal_wake_up_state(struct task_struct *t, unsigned int state)
760{
761 set_tsk_thread_flag(t, TIF_SIGPENDING);
762 /*
763 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
764 * case. We don't check t->state here because there is a race with it
765 * executing another processor and just now entering stopped state.
766 * By using wake_up_state, we ensure the process will wake up and
767 * handle its death signal.
768 */
769 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
770 kick_process(t);
771}
772
773/*
774 * Remove signals in mask from the pending set and queue.
775 * Returns 1 if any signals were found.
776 *
777 * All callers must be holding the siglock.
778 */
779static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
780{
781 struct sigqueue *q, *n;
782 sigset_t m;
783
784 sigandsets(&m, mask, &s->signal);
785 if (sigisemptyset(&m))
786 return;
787
788 sigandnsets(&s->signal, &s->signal, mask);
789 list_for_each_entry_safe(q, n, &s->list, list) {
790 if (sigismember(mask, q->info.si_signo)) {
791 list_del_init(&q->list);
792 __sigqueue_free(q);
793 }
794 }
795}
796
797static inline int is_si_special(const struct kernel_siginfo *info)
798{
799 return info <= SEND_SIG_PRIV;
800}
801
802static inline bool si_fromuser(const struct kernel_siginfo *info)
803{
804 return info == SEND_SIG_NOINFO ||
805 (!is_si_special(info) && SI_FROMUSER(info));
806}
807
808/*
809 * called with RCU read lock from check_kill_permission()
810 */
811static bool kill_ok_by_cred(struct task_struct *t)
812{
813 const struct cred *cred = current_cred();
814 const struct cred *tcred = __task_cred(t);
815
816 return uid_eq(cred->euid, tcred->suid) ||
817 uid_eq(cred->euid, tcred->uid) ||
818 uid_eq(cred->uid, tcred->suid) ||
819 uid_eq(cred->uid, tcred->uid) ||
820 ns_capable(tcred->user_ns, CAP_KILL);
821}
822
823/*
824 * Bad permissions for sending the signal
825 * - the caller must hold the RCU read lock
826 */
827static int check_kill_permission(int sig, struct kernel_siginfo *info,
828 struct task_struct *t)
829{
830 struct pid *sid;
831 int error;
832
833 if (!valid_signal(sig))
834 return -EINVAL;
835
836 if (!si_fromuser(info))
837 return 0;
838
839 error = audit_signal_info(sig, t); /* Let audit system see the signal */
840 if (error)
841 return error;
842
843 if (!same_thread_group(current, t) &&
844 !kill_ok_by_cred(t)) {
845 switch (sig) {
846 case SIGCONT:
847 sid = task_session(t);
848 /*
849 * We don't return the error if sid == NULL. The
850 * task was unhashed, the caller must notice this.
851 */
852 if (!sid || sid == task_session(current))
853 break;
854 fallthrough;
855 default:
856 return -EPERM;
857 }
858 }
859
860 return security_task_kill(t, info, sig, NULL);
861}
862
863/**
864 * ptrace_trap_notify - schedule trap to notify ptracer
865 * @t: tracee wanting to notify tracer
866 *
867 * This function schedules sticky ptrace trap which is cleared on the next
868 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
869 * ptracer.
870 *
871 * If @t is running, STOP trap will be taken. If trapped for STOP and
872 * ptracer is listening for events, tracee is woken up so that it can
873 * re-trap for the new event. If trapped otherwise, STOP trap will be
874 * eventually taken without returning to userland after the existing traps
875 * are finished by PTRACE_CONT.
876 *
877 * CONTEXT:
878 * Must be called with @task->sighand->siglock held.
879 */
880static void ptrace_trap_notify(struct task_struct *t)
881{
882 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
883 assert_spin_locked(&t->sighand->siglock);
884
885 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
886 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
887}
888
889/*
890 * Handle magic process-wide effects of stop/continue signals. Unlike
891 * the signal actions, these happen immediately at signal-generation
892 * time regardless of blocking, ignoring, or handling. This does the
893 * actual continuing for SIGCONT, but not the actual stopping for stop
894 * signals. The process stop is done as a signal action for SIG_DFL.
895 *
896 * Returns true if the signal should be actually delivered, otherwise
897 * it should be dropped.
898 */
899static bool prepare_signal(int sig, struct task_struct *p, bool force)
900{
901 struct signal_struct *signal = p->signal;
902 struct task_struct *t;
903 sigset_t flush;
904
905 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
906 if (!(signal->flags & SIGNAL_GROUP_EXIT))
907 return sig == SIGKILL;
908 /*
909 * The process is in the middle of dying, nothing to do.
910 */
911 } else if (sig_kernel_stop(sig)) {
912 /*
913 * This is a stop signal. Remove SIGCONT from all queues.
914 */
915 siginitset(&flush, sigmask(SIGCONT));
916 flush_sigqueue_mask(&flush, &signal->shared_pending);
917 for_each_thread(p, t)
918 flush_sigqueue_mask(&flush, &t->pending);
919 } else if (sig == SIGCONT) {
920 unsigned int why;
921 /*
922 * Remove all stop signals from all queues, wake all threads.
923 */
924 siginitset(&flush, SIG_KERNEL_STOP_MASK);
925 flush_sigqueue_mask(&flush, &signal->shared_pending);
926 for_each_thread(p, t) {
927 flush_sigqueue_mask(&flush, &t->pending);
928 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
929 if (likely(!(t->ptrace & PT_SEIZED)))
930 wake_up_state(t, __TASK_STOPPED);
931 else
932 ptrace_trap_notify(t);
933 }
934
935 /*
936 * Notify the parent with CLD_CONTINUED if we were stopped.
937 *
938 * If we were in the middle of a group stop, we pretend it
939 * was already finished, and then continued. Since SIGCHLD
940 * doesn't queue we report only CLD_STOPPED, as if the next
941 * CLD_CONTINUED was dropped.
942 */
943 why = 0;
944 if (signal->flags & SIGNAL_STOP_STOPPED)
945 why |= SIGNAL_CLD_CONTINUED;
946 else if (signal->group_stop_count)
947 why |= SIGNAL_CLD_STOPPED;
948
949 if (why) {
950 /*
951 * The first thread which returns from do_signal_stop()
952 * will take ->siglock, notice SIGNAL_CLD_MASK, and
953 * notify its parent. See get_signal().
954 */
955 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
956 signal->group_stop_count = 0;
957 signal->group_exit_code = 0;
958 }
959 }
960
961 return !sig_ignored(p, sig, force);
962}
963
964/*
965 * Test if P wants to take SIG. After we've checked all threads with this,
966 * it's equivalent to finding no threads not blocking SIG. Any threads not
967 * blocking SIG were ruled out because they are not running and already
968 * have pending signals. Such threads will dequeue from the shared queue
969 * as soon as they're available, so putting the signal on the shared queue
970 * will be equivalent to sending it to one such thread.
971 */
972static inline bool wants_signal(int sig, struct task_struct *p)
973{
974 if (sigismember(&p->blocked, sig))
975 return false;
976
977 if (p->flags & PF_EXITING)
978 return false;
979
980 if (sig == SIGKILL)
981 return true;
982
983 if (task_is_stopped_or_traced(p))
984 return false;
985
986 return task_curr(p) || !task_sigpending(p);
987}
988
989static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
990{
991 struct signal_struct *signal = p->signal;
992 struct task_struct *t;
993
994 /*
995 * Now find a thread we can wake up to take the signal off the queue.
996 *
997 * If the main thread wants the signal, it gets first crack.
998 * Probably the least surprising to the average bear.
999 */
1000 if (wants_signal(sig, p))
1001 t = p;
1002 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003 /*
1004 * There is just one thread and it does not need to be woken.
1005 * It will dequeue unblocked signals before it runs again.
1006 */
1007 return;
1008 else {
1009 /*
1010 * Otherwise try to find a suitable thread.
1011 */
1012 t = signal->curr_target;
1013 while (!wants_signal(sig, t)) {
1014 t = next_thread(t);
1015 if (t == signal->curr_target)
1016 /*
1017 * No thread needs to be woken.
1018 * Any eligible threads will see
1019 * the signal in the queue soon.
1020 */
1021 return;
1022 }
1023 signal->curr_target = t;
1024 }
1025
1026 /*
1027 * Found a killable thread. If the signal will be fatal,
1028 * then start taking the whole group down immediately.
1029 */
1030 if (sig_fatal(p, sig) &&
1031 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032 !sigismember(&t->real_blocked, sig) &&
1033 (sig == SIGKILL || !p->ptrace)) {
1034 /*
1035 * This signal will be fatal to the whole group.
1036 */
1037 if (!sig_kernel_coredump(sig)) {
1038 /*
1039 * Start a group exit and wake everybody up.
1040 * This way we don't have other threads
1041 * running and doing things after a slower
1042 * thread has the fatal signal pending.
1043 */
1044 signal->flags = SIGNAL_GROUP_EXIT;
1045 signal->group_exit_code = sig;
1046 signal->group_stop_count = 0;
1047 t = p;
1048 do {
1049 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050 sigaddset(&t->pending.signal, SIGKILL);
1051 signal_wake_up(t, 1);
1052 } while_each_thread(p, t);
1053 return;
1054 }
1055 }
1056
1057 /*
1058 * The signal is already in the shared-pending queue.
1059 * Tell the chosen thread to wake up and dequeue it.
1060 */
1061 signal_wake_up(t, sig == SIGKILL);
1062 return;
1063}
1064
1065static inline bool legacy_queue(struct sigpending *signals, int sig)
1066{
1067 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068}
1069
1070static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071 enum pid_type type, bool force)
1072{
1073 struct sigpending *pending;
1074 struct sigqueue *q;
1075 int override_rlimit;
1076 int ret = 0, result;
1077
1078 assert_spin_locked(&t->sighand->siglock);
1079
1080 result = TRACE_SIGNAL_IGNORED;
1081 if (!prepare_signal(sig, t, force))
1082 goto ret;
1083
1084 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085 /*
1086 * Short-circuit ignored signals and support queuing
1087 * exactly one non-rt signal, so that we can get more
1088 * detailed information about the cause of the signal.
1089 */
1090 result = TRACE_SIGNAL_ALREADY_PENDING;
1091 if (legacy_queue(pending, sig))
1092 goto ret;
1093
1094 result = TRACE_SIGNAL_DELIVERED;
1095 /*
1096 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1097 */
1098 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099 goto out_set;
1100
1101 /*
1102 * Real-time signals must be queued if sent by sigqueue, or
1103 * some other real-time mechanism. It is implementation
1104 * defined whether kill() does so. We attempt to do so, on
1105 * the principle of least surprise, but since kill is not
1106 * allowed to fail with EAGAIN when low on memory we just
1107 * make sure at least one signal gets delivered and don't
1108 * pass on the info struct.
1109 */
1110 if (sig < SIGRTMIN)
1111 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112 else
1113 override_rlimit = 0;
1114
1115 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1116
1117 if (q) {
1118 list_add_tail(&q->list, &pending->list);
1119 switch ((unsigned long) info) {
1120 case (unsigned long) SEND_SIG_NOINFO:
1121 clear_siginfo(&q->info);
1122 q->info.si_signo = sig;
1123 q->info.si_errno = 0;
1124 q->info.si_code = SI_USER;
1125 q->info.si_pid = task_tgid_nr_ns(current,
1126 task_active_pid_ns(t));
1127 rcu_read_lock();
1128 q->info.si_uid =
1129 from_kuid_munged(task_cred_xxx(t, user_ns),
1130 current_uid());
1131 rcu_read_unlock();
1132 break;
1133 case (unsigned long) SEND_SIG_PRIV:
1134 clear_siginfo(&q->info);
1135 q->info.si_signo = sig;
1136 q->info.si_errno = 0;
1137 q->info.si_code = SI_KERNEL;
1138 q->info.si_pid = 0;
1139 q->info.si_uid = 0;
1140 break;
1141 default:
1142 copy_siginfo(&q->info, info);
1143 break;
1144 }
1145 } else if (!is_si_special(info) &&
1146 sig >= SIGRTMIN && info->si_code != SI_USER) {
1147 /*
1148 * Queue overflow, abort. We may abort if the
1149 * signal was rt and sent by user using something
1150 * other than kill().
1151 */
1152 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1153 ret = -EAGAIN;
1154 goto ret;
1155 } else {
1156 /*
1157 * This is a silent loss of information. We still
1158 * send the signal, but the *info bits are lost.
1159 */
1160 result = TRACE_SIGNAL_LOSE_INFO;
1161 }
1162
1163out_set:
1164 signalfd_notify(t, sig);
1165 sigaddset(&pending->signal, sig);
1166
1167 /* Let multiprocess signals appear after on-going forks */
1168 if (type > PIDTYPE_TGID) {
1169 struct multiprocess_signals *delayed;
1170 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1171 sigset_t *signal = &delayed->signal;
1172 /* Can't queue both a stop and a continue signal */
1173 if (sig == SIGCONT)
1174 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1175 else if (sig_kernel_stop(sig))
1176 sigdelset(signal, SIGCONT);
1177 sigaddset(signal, sig);
1178 }
1179 }
1180
1181 complete_signal(sig, t, type);
1182ret:
1183 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1184 return ret;
1185}
1186
1187static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1188{
1189 bool ret = false;
1190 switch (siginfo_layout(info->si_signo, info->si_code)) {
1191 case SIL_KILL:
1192 case SIL_CHLD:
1193 case SIL_RT:
1194 ret = true;
1195 break;
1196 case SIL_TIMER:
1197 case SIL_POLL:
1198 case SIL_FAULT:
1199 case SIL_FAULT_TRAPNO:
1200 case SIL_FAULT_MCEERR:
1201 case SIL_FAULT_BNDERR:
1202 case SIL_FAULT_PKUERR:
1203 case SIL_PERF_EVENT:
1204 case SIL_SYS:
1205 ret = false;
1206 break;
1207 }
1208 return ret;
1209}
1210
1211static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1212 enum pid_type type)
1213{
1214 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1215 bool force = false;
1216
1217 if (info == SEND_SIG_NOINFO) {
1218 /* Force if sent from an ancestor pid namespace */
1219 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1220 } else if (info == SEND_SIG_PRIV) {
1221 /* Don't ignore kernel generated signals */
1222 force = true;
1223 } else if (has_si_pid_and_uid(info)) {
1224 /* SIGKILL and SIGSTOP is special or has ids */
1225 struct user_namespace *t_user_ns;
1226
1227 rcu_read_lock();
1228 t_user_ns = task_cred_xxx(t, user_ns);
1229 if (current_user_ns() != t_user_ns) {
1230 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1231 info->si_uid = from_kuid_munged(t_user_ns, uid);
1232 }
1233 rcu_read_unlock();
1234
1235 /* A kernel generated signal? */
1236 force = (info->si_code == SI_KERNEL);
1237
1238 /* From an ancestor pid namespace? */
1239 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1240 info->si_pid = 0;
1241 force = true;
1242 }
1243 }
1244 return __send_signal(sig, info, t, type, force);
1245}
1246
1247static void print_fatal_signal(int signr)
1248{
1249 struct pt_regs *regs = signal_pt_regs();
1250 pr_info("potentially unexpected fatal signal %d.\n", signr);
1251
1252#if defined(__i386__) && !defined(__arch_um__)
1253 pr_info("code at %08lx: ", regs->ip);
1254 {
1255 int i;
1256 for (i = 0; i < 16; i++) {
1257 unsigned char insn;
1258
1259 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1260 break;
1261 pr_cont("%02x ", insn);
1262 }
1263 }
1264 pr_cont("\n");
1265#endif
1266 preempt_disable();
1267 show_regs(regs);
1268 preempt_enable();
1269}
1270
1271static int __init setup_print_fatal_signals(char *str)
1272{
1273 get_option (&str, &print_fatal_signals);
1274
1275 return 1;
1276}
1277
1278__setup("print-fatal-signals=", setup_print_fatal_signals);
1279
1280int
1281__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1282{
1283 return send_signal(sig, info, p, PIDTYPE_TGID);
1284}
1285
1286int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1287 enum pid_type type)
1288{
1289 unsigned long flags;
1290 int ret = -ESRCH;
1291
1292 if (lock_task_sighand(p, &flags)) {
1293 ret = send_signal(sig, info, p, type);
1294 unlock_task_sighand(p, &flags);
1295 }
1296
1297 return ret;
1298}
1299
1300/*
1301 * Force a signal that the process can't ignore: if necessary
1302 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1303 *
1304 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1305 * since we do not want to have a signal handler that was blocked
1306 * be invoked when user space had explicitly blocked it.
1307 *
1308 * We don't want to have recursive SIGSEGV's etc, for example,
1309 * that is why we also clear SIGNAL_UNKILLABLE.
1310 */
1311static int
1312force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1313{
1314 unsigned long int flags;
1315 int ret, blocked, ignored;
1316 struct k_sigaction *action;
1317 int sig = info->si_signo;
1318
1319 spin_lock_irqsave(&t->sighand->siglock, flags);
1320 action = &t->sighand->action[sig-1];
1321 ignored = action->sa.sa_handler == SIG_IGN;
1322 blocked = sigismember(&t->blocked, sig);
1323 if (blocked || ignored) {
1324 action->sa.sa_handler = SIG_DFL;
1325 if (blocked) {
1326 sigdelset(&t->blocked, sig);
1327 recalc_sigpending_and_wake(t);
1328 }
1329 }
1330 /*
1331 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1332 * debugging to leave init killable.
1333 */
1334 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1335 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1336 ret = send_signal(sig, info, t, PIDTYPE_PID);
1337 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1338
1339 return ret;
1340}
1341
1342int force_sig_info(struct kernel_siginfo *info)
1343{
1344 return force_sig_info_to_task(info, current);
1345}
1346
1347/*
1348 * Nuke all other threads in the group.
1349 */
1350int zap_other_threads(struct task_struct *p)
1351{
1352 struct task_struct *t = p;
1353 int count = 0;
1354
1355 p->signal->group_stop_count = 0;
1356
1357 while_each_thread(p, t) {
1358 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1359 count++;
1360
1361 /* Don't bother with already dead threads */
1362 if (t->exit_state)
1363 continue;
1364 sigaddset(&t->pending.signal, SIGKILL);
1365 signal_wake_up(t, 1);
1366 }
1367
1368 return count;
1369}
1370
1371struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1372 unsigned long *flags)
1373{
1374 struct sighand_struct *sighand;
1375
1376 rcu_read_lock();
1377 for (;;) {
1378 sighand = rcu_dereference(tsk->sighand);
1379 if (unlikely(sighand == NULL))
1380 break;
1381
1382 /*
1383 * This sighand can be already freed and even reused, but
1384 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1385 * initializes ->siglock: this slab can't go away, it has
1386 * the same object type, ->siglock can't be reinitialized.
1387 *
1388 * We need to ensure that tsk->sighand is still the same
1389 * after we take the lock, we can race with de_thread() or
1390 * __exit_signal(). In the latter case the next iteration
1391 * must see ->sighand == NULL.
1392 */
1393 spin_lock_irqsave(&sighand->siglock, *flags);
1394 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1395 break;
1396 spin_unlock_irqrestore(&sighand->siglock, *flags);
1397 }
1398 rcu_read_unlock();
1399
1400 return sighand;
1401}
1402
1403/*
1404 * send signal info to all the members of a group
1405 */
1406int group_send_sig_info(int sig, struct kernel_siginfo *info,
1407 struct task_struct *p, enum pid_type type)
1408{
1409 int ret;
1410
1411 rcu_read_lock();
1412 ret = check_kill_permission(sig, info, p);
1413 rcu_read_unlock();
1414
1415 if (!ret && sig)
1416 ret = do_send_sig_info(sig, info, p, type);
1417
1418 return ret;
1419}
1420
1421/*
1422 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1423 * control characters do (^C, ^Z etc)
1424 * - the caller must hold at least a readlock on tasklist_lock
1425 */
1426int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1427{
1428 struct task_struct *p = NULL;
1429 int retval, success;
1430
1431 success = 0;
1432 retval = -ESRCH;
1433 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1434 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1435 success |= !err;
1436 retval = err;
1437 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1438 return success ? 0 : retval;
1439}
1440
1441int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1442{
1443 int error = -ESRCH;
1444 struct task_struct *p;
1445
1446 for (;;) {
1447 rcu_read_lock();
1448 p = pid_task(pid, PIDTYPE_PID);
1449 if (p)
1450 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1451 rcu_read_unlock();
1452 if (likely(!p || error != -ESRCH))
1453 return error;
1454
1455 /*
1456 * The task was unhashed in between, try again. If it
1457 * is dead, pid_task() will return NULL, if we race with
1458 * de_thread() it will find the new leader.
1459 */
1460 }
1461}
1462
1463static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1464{
1465 int error;
1466 rcu_read_lock();
1467 error = kill_pid_info(sig, info, find_vpid(pid));
1468 rcu_read_unlock();
1469 return error;
1470}
1471
1472static inline bool kill_as_cred_perm(const struct cred *cred,
1473 struct task_struct *target)
1474{
1475 const struct cred *pcred = __task_cred(target);
1476
1477 return uid_eq(cred->euid, pcred->suid) ||
1478 uid_eq(cred->euid, pcred->uid) ||
1479 uid_eq(cred->uid, pcred->suid) ||
1480 uid_eq(cred->uid, pcred->uid);
1481}
1482
1483/*
1484 * The usb asyncio usage of siginfo is wrong. The glibc support
1485 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1486 * AKA after the generic fields:
1487 * kernel_pid_t si_pid;
1488 * kernel_uid32_t si_uid;
1489 * sigval_t si_value;
1490 *
1491 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1492 * after the generic fields is:
1493 * void __user *si_addr;
1494 *
1495 * This is a practical problem when there is a 64bit big endian kernel
1496 * and a 32bit userspace. As the 32bit address will encoded in the low
1497 * 32bits of the pointer. Those low 32bits will be stored at higher
1498 * address than appear in a 32 bit pointer. So userspace will not
1499 * see the address it was expecting for it's completions.
1500 *
1501 * There is nothing in the encoding that can allow
1502 * copy_siginfo_to_user32 to detect this confusion of formats, so
1503 * handle this by requiring the caller of kill_pid_usb_asyncio to
1504 * notice when this situration takes place and to store the 32bit
1505 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1506 * parameter.
1507 */
1508int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1509 struct pid *pid, const struct cred *cred)
1510{
1511 struct kernel_siginfo info;
1512 struct task_struct *p;
1513 unsigned long flags;
1514 int ret = -EINVAL;
1515
1516 if (!valid_signal(sig))
1517 return ret;
1518
1519 clear_siginfo(&info);
1520 info.si_signo = sig;
1521 info.si_errno = errno;
1522 info.si_code = SI_ASYNCIO;
1523 *((sigval_t *)&info.si_pid) = addr;
1524
1525 rcu_read_lock();
1526 p = pid_task(pid, PIDTYPE_PID);
1527 if (!p) {
1528 ret = -ESRCH;
1529 goto out_unlock;
1530 }
1531 if (!kill_as_cred_perm(cred, p)) {
1532 ret = -EPERM;
1533 goto out_unlock;
1534 }
1535 ret = security_task_kill(p, &info, sig, cred);
1536 if (ret)
1537 goto out_unlock;
1538
1539 if (sig) {
1540 if (lock_task_sighand(p, &flags)) {
1541 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1542 unlock_task_sighand(p, &flags);
1543 } else
1544 ret = -ESRCH;
1545 }
1546out_unlock:
1547 rcu_read_unlock();
1548 return ret;
1549}
1550EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1551
1552/*
1553 * kill_something_info() interprets pid in interesting ways just like kill(2).
1554 *
1555 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1556 * is probably wrong. Should make it like BSD or SYSV.
1557 */
1558
1559static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1560{
1561 int ret;
1562
1563 if (pid > 0)
1564 return kill_proc_info(sig, info, pid);
1565
1566 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1567 if (pid == INT_MIN)
1568 return -ESRCH;
1569
1570 read_lock(&tasklist_lock);
1571 if (pid != -1) {
1572 ret = __kill_pgrp_info(sig, info,
1573 pid ? find_vpid(-pid) : task_pgrp(current));
1574 } else {
1575 int retval = 0, count = 0;
1576 struct task_struct * p;
1577
1578 for_each_process(p) {
1579 if (task_pid_vnr(p) > 1 &&
1580 !same_thread_group(p, current)) {
1581 int err = group_send_sig_info(sig, info, p,
1582 PIDTYPE_MAX);
1583 ++count;
1584 if (err != -EPERM)
1585 retval = err;
1586 }
1587 }
1588 ret = count ? retval : -ESRCH;
1589 }
1590 read_unlock(&tasklist_lock);
1591
1592 return ret;
1593}
1594
1595/*
1596 * These are for backward compatibility with the rest of the kernel source.
1597 */
1598
1599int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1600{
1601 /*
1602 * Make sure legacy kernel users don't send in bad values
1603 * (normal paths check this in check_kill_permission).
1604 */
1605 if (!valid_signal(sig))
1606 return -EINVAL;
1607
1608 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1609}
1610EXPORT_SYMBOL(send_sig_info);
1611
1612#define __si_special(priv) \
1613 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1614
1615int
1616send_sig(int sig, struct task_struct *p, int priv)
1617{
1618 return send_sig_info(sig, __si_special(priv), p);
1619}
1620EXPORT_SYMBOL(send_sig);
1621
1622void force_sig(int sig)
1623{
1624 struct kernel_siginfo info;
1625
1626 clear_siginfo(&info);
1627 info.si_signo = sig;
1628 info.si_errno = 0;
1629 info.si_code = SI_KERNEL;
1630 info.si_pid = 0;
1631 info.si_uid = 0;
1632 force_sig_info(&info);
1633}
1634EXPORT_SYMBOL(force_sig);
1635
1636/*
1637 * When things go south during signal handling, we
1638 * will force a SIGSEGV. And if the signal that caused
1639 * the problem was already a SIGSEGV, we'll want to
1640 * make sure we don't even try to deliver the signal..
1641 */
1642void force_sigsegv(int sig)
1643{
1644 struct task_struct *p = current;
1645
1646 if (sig == SIGSEGV) {
1647 unsigned long flags;
1648 spin_lock_irqsave(&p->sighand->siglock, flags);
1649 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1650 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1651 }
1652 force_sig(SIGSEGV);
1653}
1654
1655int force_sig_fault_to_task(int sig, int code, void __user *addr
1656 ___ARCH_SI_TRAPNO(int trapno)
1657 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1658 , struct task_struct *t)
1659{
1660 struct kernel_siginfo info;
1661
1662 clear_siginfo(&info);
1663 info.si_signo = sig;
1664 info.si_errno = 0;
1665 info.si_code = code;
1666 info.si_addr = addr;
1667#ifdef __ARCH_SI_TRAPNO
1668 info.si_trapno = trapno;
1669#endif
1670#ifdef __ia64__
1671 info.si_imm = imm;
1672 info.si_flags = flags;
1673 info.si_isr = isr;
1674#endif
1675 return force_sig_info_to_task(&info, t);
1676}
1677
1678int force_sig_fault(int sig, int code, void __user *addr
1679 ___ARCH_SI_TRAPNO(int trapno)
1680 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1681{
1682 return force_sig_fault_to_task(sig, code, addr
1683 ___ARCH_SI_TRAPNO(trapno)
1684 ___ARCH_SI_IA64(imm, flags, isr), current);
1685}
1686
1687int send_sig_fault(int sig, int code, void __user *addr
1688 ___ARCH_SI_TRAPNO(int trapno)
1689 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1690 , struct task_struct *t)
1691{
1692 struct kernel_siginfo info;
1693
1694 clear_siginfo(&info);
1695 info.si_signo = sig;
1696 info.si_errno = 0;
1697 info.si_code = code;
1698 info.si_addr = addr;
1699#ifdef __ARCH_SI_TRAPNO
1700 info.si_trapno = trapno;
1701#endif
1702#ifdef __ia64__
1703 info.si_imm = imm;
1704 info.si_flags = flags;
1705 info.si_isr = isr;
1706#endif
1707 return send_sig_info(info.si_signo, &info, t);
1708}
1709
1710int force_sig_mceerr(int code, void __user *addr, short lsb)
1711{
1712 struct kernel_siginfo info;
1713
1714 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1715 clear_siginfo(&info);
1716 info.si_signo = SIGBUS;
1717 info.si_errno = 0;
1718 info.si_code = code;
1719 info.si_addr = addr;
1720 info.si_addr_lsb = lsb;
1721 return force_sig_info(&info);
1722}
1723
1724int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1725{
1726 struct kernel_siginfo info;
1727
1728 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1729 clear_siginfo(&info);
1730 info.si_signo = SIGBUS;
1731 info.si_errno = 0;
1732 info.si_code = code;
1733 info.si_addr = addr;
1734 info.si_addr_lsb = lsb;
1735 return send_sig_info(info.si_signo, &info, t);
1736}
1737EXPORT_SYMBOL(send_sig_mceerr);
1738
1739int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1740{
1741 struct kernel_siginfo info;
1742
1743 clear_siginfo(&info);
1744 info.si_signo = SIGSEGV;
1745 info.si_errno = 0;
1746 info.si_code = SEGV_BNDERR;
1747 info.si_addr = addr;
1748 info.si_lower = lower;
1749 info.si_upper = upper;
1750 return force_sig_info(&info);
1751}
1752
1753#ifdef SEGV_PKUERR
1754int force_sig_pkuerr(void __user *addr, u32 pkey)
1755{
1756 struct kernel_siginfo info;
1757
1758 clear_siginfo(&info);
1759 info.si_signo = SIGSEGV;
1760 info.si_errno = 0;
1761 info.si_code = SEGV_PKUERR;
1762 info.si_addr = addr;
1763 info.si_pkey = pkey;
1764 return force_sig_info(&info);
1765}
1766#endif
1767
1768int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1769{
1770 struct kernel_siginfo info;
1771
1772 clear_siginfo(&info);
1773 info.si_signo = SIGTRAP;
1774 info.si_errno = 0;
1775 info.si_code = TRAP_PERF;
1776 info.si_addr = addr;
1777 info.si_perf_data = sig_data;
1778 info.si_perf_type = type;
1779
1780 return force_sig_info(&info);
1781}
1782
1783/* For the crazy architectures that include trap information in
1784 * the errno field, instead of an actual errno value.
1785 */
1786int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1787{
1788 struct kernel_siginfo info;
1789
1790 clear_siginfo(&info);
1791 info.si_signo = SIGTRAP;
1792 info.si_errno = errno;
1793 info.si_code = TRAP_HWBKPT;
1794 info.si_addr = addr;
1795 return force_sig_info(&info);
1796}
1797
1798int kill_pgrp(struct pid *pid, int sig, int priv)
1799{
1800 int ret;
1801
1802 read_lock(&tasklist_lock);
1803 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1804 read_unlock(&tasklist_lock);
1805
1806 return ret;
1807}
1808EXPORT_SYMBOL(kill_pgrp);
1809
1810int kill_pid(struct pid *pid, int sig, int priv)
1811{
1812 return kill_pid_info(sig, __si_special(priv), pid);
1813}
1814EXPORT_SYMBOL(kill_pid);
1815
1816/*
1817 * These functions support sending signals using preallocated sigqueue
1818 * structures. This is needed "because realtime applications cannot
1819 * afford to lose notifications of asynchronous events, like timer
1820 * expirations or I/O completions". In the case of POSIX Timers
1821 * we allocate the sigqueue structure from the timer_create. If this
1822 * allocation fails we are able to report the failure to the application
1823 * with an EAGAIN error.
1824 */
1825struct sigqueue *sigqueue_alloc(void)
1826{
1827 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1828}
1829
1830void sigqueue_free(struct sigqueue *q)
1831{
1832 unsigned long flags;
1833 spinlock_t *lock = ¤t->sighand->siglock;
1834
1835 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1836 /*
1837 * We must hold ->siglock while testing q->list
1838 * to serialize with collect_signal() or with
1839 * __exit_signal()->flush_sigqueue().
1840 */
1841 spin_lock_irqsave(lock, flags);
1842 q->flags &= ~SIGQUEUE_PREALLOC;
1843 /*
1844 * If it is queued it will be freed when dequeued,
1845 * like the "regular" sigqueue.
1846 */
1847 if (!list_empty(&q->list))
1848 q = NULL;
1849 spin_unlock_irqrestore(lock, flags);
1850
1851 if (q)
1852 __sigqueue_free(q);
1853}
1854
1855int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1856{
1857 int sig = q->info.si_signo;
1858 struct sigpending *pending;
1859 struct task_struct *t;
1860 unsigned long flags;
1861 int ret, result;
1862
1863 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1864
1865 ret = -1;
1866 rcu_read_lock();
1867 t = pid_task(pid, type);
1868 if (!t || !likely(lock_task_sighand(t, &flags)))
1869 goto ret;
1870
1871 ret = 1; /* the signal is ignored */
1872 result = TRACE_SIGNAL_IGNORED;
1873 if (!prepare_signal(sig, t, false))
1874 goto out;
1875
1876 ret = 0;
1877 if (unlikely(!list_empty(&q->list))) {
1878 /*
1879 * If an SI_TIMER entry is already queue just increment
1880 * the overrun count.
1881 */
1882 BUG_ON(q->info.si_code != SI_TIMER);
1883 q->info.si_overrun++;
1884 result = TRACE_SIGNAL_ALREADY_PENDING;
1885 goto out;
1886 }
1887 q->info.si_overrun = 0;
1888
1889 signalfd_notify(t, sig);
1890 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1891 list_add_tail(&q->list, &pending->list);
1892 sigaddset(&pending->signal, sig);
1893 complete_signal(sig, t, type);
1894 result = TRACE_SIGNAL_DELIVERED;
1895out:
1896 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1897 unlock_task_sighand(t, &flags);
1898ret:
1899 rcu_read_unlock();
1900 return ret;
1901}
1902
1903static void do_notify_pidfd(struct task_struct *task)
1904{
1905 struct pid *pid;
1906
1907 WARN_ON(task->exit_state == 0);
1908 pid = task_pid(task);
1909 wake_up_all(&pid->wait_pidfd);
1910}
1911
1912/*
1913 * Let a parent know about the death of a child.
1914 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1915 *
1916 * Returns true if our parent ignored us and so we've switched to
1917 * self-reaping.
1918 */
1919bool do_notify_parent(struct task_struct *tsk, int sig)
1920{
1921 struct kernel_siginfo info;
1922 unsigned long flags;
1923 struct sighand_struct *psig;
1924 bool autoreap = false;
1925 u64 utime, stime;
1926
1927 BUG_ON(sig == -1);
1928
1929 /* do_notify_parent_cldstop should have been called instead. */
1930 BUG_ON(task_is_stopped_or_traced(tsk));
1931
1932 BUG_ON(!tsk->ptrace &&
1933 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1934
1935 /* Wake up all pidfd waiters */
1936 do_notify_pidfd(tsk);
1937
1938 if (sig != SIGCHLD) {
1939 /*
1940 * This is only possible if parent == real_parent.
1941 * Check if it has changed security domain.
1942 */
1943 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1944 sig = SIGCHLD;
1945 }
1946
1947 clear_siginfo(&info);
1948 info.si_signo = sig;
1949 info.si_errno = 0;
1950 /*
1951 * We are under tasklist_lock here so our parent is tied to
1952 * us and cannot change.
1953 *
1954 * task_active_pid_ns will always return the same pid namespace
1955 * until a task passes through release_task.
1956 *
1957 * write_lock() currently calls preempt_disable() which is the
1958 * same as rcu_read_lock(), but according to Oleg, this is not
1959 * correct to rely on this
1960 */
1961 rcu_read_lock();
1962 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1963 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1964 task_uid(tsk));
1965 rcu_read_unlock();
1966
1967 task_cputime(tsk, &utime, &stime);
1968 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1969 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1970
1971 info.si_status = tsk->exit_code & 0x7f;
1972 if (tsk->exit_code & 0x80)
1973 info.si_code = CLD_DUMPED;
1974 else if (tsk->exit_code & 0x7f)
1975 info.si_code = CLD_KILLED;
1976 else {
1977 info.si_code = CLD_EXITED;
1978 info.si_status = tsk->exit_code >> 8;
1979 }
1980
1981 psig = tsk->parent->sighand;
1982 spin_lock_irqsave(&psig->siglock, flags);
1983 if (!tsk->ptrace && sig == SIGCHLD &&
1984 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1985 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1986 /*
1987 * We are exiting and our parent doesn't care. POSIX.1
1988 * defines special semantics for setting SIGCHLD to SIG_IGN
1989 * or setting the SA_NOCLDWAIT flag: we should be reaped
1990 * automatically and not left for our parent's wait4 call.
1991 * Rather than having the parent do it as a magic kind of
1992 * signal handler, we just set this to tell do_exit that we
1993 * can be cleaned up without becoming a zombie. Note that
1994 * we still call __wake_up_parent in this case, because a
1995 * blocked sys_wait4 might now return -ECHILD.
1996 *
1997 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1998 * is implementation-defined: we do (if you don't want
1999 * it, just use SIG_IGN instead).
2000 */
2001 autoreap = true;
2002 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2003 sig = 0;
2004 }
2005 /*
2006 * Send with __send_signal as si_pid and si_uid are in the
2007 * parent's namespaces.
2008 */
2009 if (valid_signal(sig) && sig)
2010 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2011 __wake_up_parent(tsk, tsk->parent);
2012 spin_unlock_irqrestore(&psig->siglock, flags);
2013
2014 return autoreap;
2015}
2016
2017/**
2018 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2019 * @tsk: task reporting the state change
2020 * @for_ptracer: the notification is for ptracer
2021 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2022 *
2023 * Notify @tsk's parent that the stopped/continued state has changed. If
2024 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2025 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2026 *
2027 * CONTEXT:
2028 * Must be called with tasklist_lock at least read locked.
2029 */
2030static void do_notify_parent_cldstop(struct task_struct *tsk,
2031 bool for_ptracer, int why)
2032{
2033 struct kernel_siginfo info;
2034 unsigned long flags;
2035 struct task_struct *parent;
2036 struct sighand_struct *sighand;
2037 u64 utime, stime;
2038
2039 if (for_ptracer) {
2040 parent = tsk->parent;
2041 } else {
2042 tsk = tsk->group_leader;
2043 parent = tsk->real_parent;
2044 }
2045
2046 clear_siginfo(&info);
2047 info.si_signo = SIGCHLD;
2048 info.si_errno = 0;
2049 /*
2050 * see comment in do_notify_parent() about the following 4 lines
2051 */
2052 rcu_read_lock();
2053 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2054 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2055 rcu_read_unlock();
2056
2057 task_cputime(tsk, &utime, &stime);
2058 info.si_utime = nsec_to_clock_t(utime);
2059 info.si_stime = nsec_to_clock_t(stime);
2060
2061 info.si_code = why;
2062 switch (why) {
2063 case CLD_CONTINUED:
2064 info.si_status = SIGCONT;
2065 break;
2066 case CLD_STOPPED:
2067 info.si_status = tsk->signal->group_exit_code & 0x7f;
2068 break;
2069 case CLD_TRAPPED:
2070 info.si_status = tsk->exit_code & 0x7f;
2071 break;
2072 default:
2073 BUG();
2074 }
2075
2076 sighand = parent->sighand;
2077 spin_lock_irqsave(&sighand->siglock, flags);
2078 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2079 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2080 __group_send_sig_info(SIGCHLD, &info, parent);
2081 /*
2082 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2083 */
2084 __wake_up_parent(tsk, parent);
2085 spin_unlock_irqrestore(&sighand->siglock, flags);
2086}
2087
2088static inline bool may_ptrace_stop(void)
2089{
2090 if (!likely(current->ptrace))
2091 return false;
2092 /*
2093 * Are we in the middle of do_coredump?
2094 * If so and our tracer is also part of the coredump stopping
2095 * is a deadlock situation, and pointless because our tracer
2096 * is dead so don't allow us to stop.
2097 * If SIGKILL was already sent before the caller unlocked
2098 * ->siglock we must see ->core_state != NULL. Otherwise it
2099 * is safe to enter schedule().
2100 *
2101 * This is almost outdated, a task with the pending SIGKILL can't
2102 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2103 * after SIGKILL was already dequeued.
2104 */
2105 if (unlikely(current->mm->core_state) &&
2106 unlikely(current->mm == current->parent->mm))
2107 return false;
2108
2109 return true;
2110}
2111
2112/*
2113 * Return non-zero if there is a SIGKILL that should be waking us up.
2114 * Called with the siglock held.
2115 */
2116static bool sigkill_pending(struct task_struct *tsk)
2117{
2118 return sigismember(&tsk->pending.signal, SIGKILL) ||
2119 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2120}
2121
2122/*
2123 * This must be called with current->sighand->siglock held.
2124 *
2125 * This should be the path for all ptrace stops.
2126 * We always set current->last_siginfo while stopped here.
2127 * That makes it a way to test a stopped process for
2128 * being ptrace-stopped vs being job-control-stopped.
2129 *
2130 * If we actually decide not to stop at all because the tracer
2131 * is gone, we keep current->exit_code unless clear_code.
2132 */
2133static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2134 __releases(¤t->sighand->siglock)
2135 __acquires(¤t->sighand->siglock)
2136{
2137 bool gstop_done = false;
2138
2139 if (arch_ptrace_stop_needed(exit_code, info)) {
2140 /*
2141 * The arch code has something special to do before a
2142 * ptrace stop. This is allowed to block, e.g. for faults
2143 * on user stack pages. We can't keep the siglock while
2144 * calling arch_ptrace_stop, so we must release it now.
2145 * To preserve proper semantics, we must do this before
2146 * any signal bookkeeping like checking group_stop_count.
2147 * Meanwhile, a SIGKILL could come in before we retake the
2148 * siglock. That must prevent us from sleeping in TASK_TRACED.
2149 * So after regaining the lock, we must check for SIGKILL.
2150 */
2151 spin_unlock_irq(¤t->sighand->siglock);
2152 arch_ptrace_stop(exit_code, info);
2153 spin_lock_irq(¤t->sighand->siglock);
2154 if (sigkill_pending(current))
2155 return;
2156 }
2157
2158 set_special_state(TASK_TRACED);
2159
2160 /*
2161 * We're committing to trapping. TRACED should be visible before
2162 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2163 * Also, transition to TRACED and updates to ->jobctl should be
2164 * atomic with respect to siglock and should be done after the arch
2165 * hook as siglock is released and regrabbed across it.
2166 *
2167 * TRACER TRACEE
2168 *
2169 * ptrace_attach()
2170 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2171 * do_wait()
2172 * set_current_state() smp_wmb();
2173 * ptrace_do_wait()
2174 * wait_task_stopped()
2175 * task_stopped_code()
2176 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2177 */
2178 smp_wmb();
2179
2180 current->last_siginfo = info;
2181 current->exit_code = exit_code;
2182
2183 /*
2184 * If @why is CLD_STOPPED, we're trapping to participate in a group
2185 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2186 * across siglock relocks since INTERRUPT was scheduled, PENDING
2187 * could be clear now. We act as if SIGCONT is received after
2188 * TASK_TRACED is entered - ignore it.
2189 */
2190 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2191 gstop_done = task_participate_group_stop(current);
2192
2193 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2194 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2195 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2196 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2197
2198 /* entering a trap, clear TRAPPING */
2199 task_clear_jobctl_trapping(current);
2200
2201 spin_unlock_irq(¤t->sighand->siglock);
2202 read_lock(&tasklist_lock);
2203 if (may_ptrace_stop()) {
2204 /*
2205 * Notify parents of the stop.
2206 *
2207 * While ptraced, there are two parents - the ptracer and
2208 * the real_parent of the group_leader. The ptracer should
2209 * know about every stop while the real parent is only
2210 * interested in the completion of group stop. The states
2211 * for the two don't interact with each other. Notify
2212 * separately unless they're gonna be duplicates.
2213 */
2214 do_notify_parent_cldstop(current, true, why);
2215 if (gstop_done && ptrace_reparented(current))
2216 do_notify_parent_cldstop(current, false, why);
2217
2218 /*
2219 * Don't want to allow preemption here, because
2220 * sys_ptrace() needs this task to be inactive.
2221 *
2222 * XXX: implement read_unlock_no_resched().
2223 */
2224 preempt_disable();
2225 read_unlock(&tasklist_lock);
2226 cgroup_enter_frozen();
2227 preempt_enable_no_resched();
2228 freezable_schedule();
2229 cgroup_leave_frozen(true);
2230 } else {
2231 /*
2232 * By the time we got the lock, our tracer went away.
2233 * Don't drop the lock yet, another tracer may come.
2234 *
2235 * If @gstop_done, the ptracer went away between group stop
2236 * completion and here. During detach, it would have set
2237 * JOBCTL_STOP_PENDING on us and we'll re-enter
2238 * TASK_STOPPED in do_signal_stop() on return, so notifying
2239 * the real parent of the group stop completion is enough.
2240 */
2241 if (gstop_done)
2242 do_notify_parent_cldstop(current, false, why);
2243
2244 /* tasklist protects us from ptrace_freeze_traced() */
2245 __set_current_state(TASK_RUNNING);
2246 if (clear_code)
2247 current->exit_code = 0;
2248 read_unlock(&tasklist_lock);
2249 }
2250
2251 /*
2252 * We are back. Now reacquire the siglock before touching
2253 * last_siginfo, so that we are sure to have synchronized with
2254 * any signal-sending on another CPU that wants to examine it.
2255 */
2256 spin_lock_irq(¤t->sighand->siglock);
2257 current->last_siginfo = NULL;
2258
2259 /* LISTENING can be set only during STOP traps, clear it */
2260 current->jobctl &= ~JOBCTL_LISTENING;
2261
2262 /*
2263 * Queued signals ignored us while we were stopped for tracing.
2264 * So check for any that we should take before resuming user mode.
2265 * This sets TIF_SIGPENDING, but never clears it.
2266 */
2267 recalc_sigpending_tsk(current);
2268}
2269
2270static void ptrace_do_notify(int signr, int exit_code, int why)
2271{
2272 kernel_siginfo_t info;
2273
2274 clear_siginfo(&info);
2275 info.si_signo = signr;
2276 info.si_code = exit_code;
2277 info.si_pid = task_pid_vnr(current);
2278 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2279
2280 /* Let the debugger run. */
2281 ptrace_stop(exit_code, why, 1, &info);
2282}
2283
2284void ptrace_notify(int exit_code)
2285{
2286 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2287 if (unlikely(current->task_works))
2288 task_work_run();
2289
2290 spin_lock_irq(¤t->sighand->siglock);
2291 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2292 spin_unlock_irq(¤t->sighand->siglock);
2293}
2294
2295/**
2296 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2297 * @signr: signr causing group stop if initiating
2298 *
2299 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2300 * and participate in it. If already set, participate in the existing
2301 * group stop. If participated in a group stop (and thus slept), %true is
2302 * returned with siglock released.
2303 *
2304 * If ptraced, this function doesn't handle stop itself. Instead,
2305 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2306 * untouched. The caller must ensure that INTERRUPT trap handling takes
2307 * places afterwards.
2308 *
2309 * CONTEXT:
2310 * Must be called with @current->sighand->siglock held, which is released
2311 * on %true return.
2312 *
2313 * RETURNS:
2314 * %false if group stop is already cancelled or ptrace trap is scheduled.
2315 * %true if participated in group stop.
2316 */
2317static bool do_signal_stop(int signr)
2318 __releases(¤t->sighand->siglock)
2319{
2320 struct signal_struct *sig = current->signal;
2321
2322 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2323 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2324 struct task_struct *t;
2325
2326 /* signr will be recorded in task->jobctl for retries */
2327 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2328
2329 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2330 unlikely(signal_group_exit(sig)))
2331 return false;
2332 /*
2333 * There is no group stop already in progress. We must
2334 * initiate one now.
2335 *
2336 * While ptraced, a task may be resumed while group stop is
2337 * still in effect and then receive a stop signal and
2338 * initiate another group stop. This deviates from the
2339 * usual behavior as two consecutive stop signals can't
2340 * cause two group stops when !ptraced. That is why we
2341 * also check !task_is_stopped(t) below.
2342 *
2343 * The condition can be distinguished by testing whether
2344 * SIGNAL_STOP_STOPPED is already set. Don't generate
2345 * group_exit_code in such case.
2346 *
2347 * This is not necessary for SIGNAL_STOP_CONTINUED because
2348 * an intervening stop signal is required to cause two
2349 * continued events regardless of ptrace.
2350 */
2351 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2352 sig->group_exit_code = signr;
2353
2354 sig->group_stop_count = 0;
2355
2356 if (task_set_jobctl_pending(current, signr | gstop))
2357 sig->group_stop_count++;
2358
2359 t = current;
2360 while_each_thread(current, t) {
2361 /*
2362 * Setting state to TASK_STOPPED for a group
2363 * stop is always done with the siglock held,
2364 * so this check has no races.
2365 */
2366 if (!task_is_stopped(t) &&
2367 task_set_jobctl_pending(t, signr | gstop)) {
2368 sig->group_stop_count++;
2369 if (likely(!(t->ptrace & PT_SEIZED)))
2370 signal_wake_up(t, 0);
2371 else
2372 ptrace_trap_notify(t);
2373 }
2374 }
2375 }
2376
2377 if (likely(!current->ptrace)) {
2378 int notify = 0;
2379
2380 /*
2381 * If there are no other threads in the group, or if there
2382 * is a group stop in progress and we are the last to stop,
2383 * report to the parent.
2384 */
2385 if (task_participate_group_stop(current))
2386 notify = CLD_STOPPED;
2387
2388 set_special_state(TASK_STOPPED);
2389 spin_unlock_irq(¤t->sighand->siglock);
2390
2391 /*
2392 * Notify the parent of the group stop completion. Because
2393 * we're not holding either the siglock or tasklist_lock
2394 * here, ptracer may attach inbetween; however, this is for
2395 * group stop and should always be delivered to the real
2396 * parent of the group leader. The new ptracer will get
2397 * its notification when this task transitions into
2398 * TASK_TRACED.
2399 */
2400 if (notify) {
2401 read_lock(&tasklist_lock);
2402 do_notify_parent_cldstop(current, false, notify);
2403 read_unlock(&tasklist_lock);
2404 }
2405
2406 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2407 cgroup_enter_frozen();
2408 freezable_schedule();
2409 return true;
2410 } else {
2411 /*
2412 * While ptraced, group stop is handled by STOP trap.
2413 * Schedule it and let the caller deal with it.
2414 */
2415 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2416 return false;
2417 }
2418}
2419
2420/**
2421 * do_jobctl_trap - take care of ptrace jobctl traps
2422 *
2423 * When PT_SEIZED, it's used for both group stop and explicit
2424 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2425 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2426 * the stop signal; otherwise, %SIGTRAP.
2427 *
2428 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2429 * number as exit_code and no siginfo.
2430 *
2431 * CONTEXT:
2432 * Must be called with @current->sighand->siglock held, which may be
2433 * released and re-acquired before returning with intervening sleep.
2434 */
2435static void do_jobctl_trap(void)
2436{
2437 struct signal_struct *signal = current->signal;
2438 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2439
2440 if (current->ptrace & PT_SEIZED) {
2441 if (!signal->group_stop_count &&
2442 !(signal->flags & SIGNAL_STOP_STOPPED))
2443 signr = SIGTRAP;
2444 WARN_ON_ONCE(!signr);
2445 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2446 CLD_STOPPED);
2447 } else {
2448 WARN_ON_ONCE(!signr);
2449 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2450 current->exit_code = 0;
2451 }
2452}
2453
2454/**
2455 * do_freezer_trap - handle the freezer jobctl trap
2456 *
2457 * Puts the task into frozen state, if only the task is not about to quit.
2458 * In this case it drops JOBCTL_TRAP_FREEZE.
2459 *
2460 * CONTEXT:
2461 * Must be called with @current->sighand->siglock held,
2462 * which is always released before returning.
2463 */
2464static void do_freezer_trap(void)
2465 __releases(¤t->sighand->siglock)
2466{
2467 /*
2468 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2469 * let's make another loop to give it a chance to be handled.
2470 * In any case, we'll return back.
2471 */
2472 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2473 JOBCTL_TRAP_FREEZE) {
2474 spin_unlock_irq(¤t->sighand->siglock);
2475 return;
2476 }
2477
2478 /*
2479 * Now we're sure that there is no pending fatal signal and no
2480 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2481 * immediately (if there is a non-fatal signal pending), and
2482 * put the task into sleep.
2483 */
2484 __set_current_state(TASK_INTERRUPTIBLE);
2485 clear_thread_flag(TIF_SIGPENDING);
2486 spin_unlock_irq(¤t->sighand->siglock);
2487 cgroup_enter_frozen();
2488 freezable_schedule();
2489}
2490
2491static int ptrace_signal(int signr, kernel_siginfo_t *info)
2492{
2493 /*
2494 * We do not check sig_kernel_stop(signr) but set this marker
2495 * unconditionally because we do not know whether debugger will
2496 * change signr. This flag has no meaning unless we are going
2497 * to stop after return from ptrace_stop(). In this case it will
2498 * be checked in do_signal_stop(), we should only stop if it was
2499 * not cleared by SIGCONT while we were sleeping. See also the
2500 * comment in dequeue_signal().
2501 */
2502 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2503 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2504
2505 /* We're back. Did the debugger cancel the sig? */
2506 signr = current->exit_code;
2507 if (signr == 0)
2508 return signr;
2509
2510 current->exit_code = 0;
2511
2512 /*
2513 * Update the siginfo structure if the signal has
2514 * changed. If the debugger wanted something
2515 * specific in the siginfo structure then it should
2516 * have updated *info via PTRACE_SETSIGINFO.
2517 */
2518 if (signr != info->si_signo) {
2519 clear_siginfo(info);
2520 info->si_signo = signr;
2521 info->si_errno = 0;
2522 info->si_code = SI_USER;
2523 rcu_read_lock();
2524 info->si_pid = task_pid_vnr(current->parent);
2525 info->si_uid = from_kuid_munged(current_user_ns(),
2526 task_uid(current->parent));
2527 rcu_read_unlock();
2528 }
2529
2530 /* If the (new) signal is now blocked, requeue it. */
2531 if (sigismember(¤t->blocked, signr)) {
2532 send_signal(signr, info, current, PIDTYPE_PID);
2533 signr = 0;
2534 }
2535
2536 return signr;
2537}
2538
2539static void hide_si_addr_tag_bits(struct ksignal *ksig)
2540{
2541 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2542 case SIL_FAULT:
2543 case SIL_FAULT_TRAPNO:
2544 case SIL_FAULT_MCEERR:
2545 case SIL_FAULT_BNDERR:
2546 case SIL_FAULT_PKUERR:
2547 case SIL_PERF_EVENT:
2548 ksig->info.si_addr = arch_untagged_si_addr(
2549 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2550 break;
2551 case SIL_KILL:
2552 case SIL_TIMER:
2553 case SIL_POLL:
2554 case SIL_CHLD:
2555 case SIL_RT:
2556 case SIL_SYS:
2557 break;
2558 }
2559}
2560
2561bool get_signal(struct ksignal *ksig)
2562{
2563 struct sighand_struct *sighand = current->sighand;
2564 struct signal_struct *signal = current->signal;
2565 int signr;
2566
2567 if (unlikely(current->task_works))
2568 task_work_run();
2569
2570 /*
2571 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2572 * that the arch handlers don't all have to do it. If we get here
2573 * without TIF_SIGPENDING, just exit after running signal work.
2574 */
2575 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2576 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2577 tracehook_notify_signal();
2578 if (!task_sigpending(current))
2579 return false;
2580 }
2581
2582 if (unlikely(uprobe_deny_signal()))
2583 return false;
2584
2585 /*
2586 * Do this once, we can't return to user-mode if freezing() == T.
2587 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2588 * thus do not need another check after return.
2589 */
2590 try_to_freeze();
2591
2592relock:
2593 spin_lock_irq(&sighand->siglock);
2594
2595 /*
2596 * Every stopped thread goes here after wakeup. Check to see if
2597 * we should notify the parent, prepare_signal(SIGCONT) encodes
2598 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2599 */
2600 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2601 int why;
2602
2603 if (signal->flags & SIGNAL_CLD_CONTINUED)
2604 why = CLD_CONTINUED;
2605 else
2606 why = CLD_STOPPED;
2607
2608 signal->flags &= ~SIGNAL_CLD_MASK;
2609
2610 spin_unlock_irq(&sighand->siglock);
2611
2612 /*
2613 * Notify the parent that we're continuing. This event is
2614 * always per-process and doesn't make whole lot of sense
2615 * for ptracers, who shouldn't consume the state via
2616 * wait(2) either, but, for backward compatibility, notify
2617 * the ptracer of the group leader too unless it's gonna be
2618 * a duplicate.
2619 */
2620 read_lock(&tasklist_lock);
2621 do_notify_parent_cldstop(current, false, why);
2622
2623 if (ptrace_reparented(current->group_leader))
2624 do_notify_parent_cldstop(current->group_leader,
2625 true, why);
2626 read_unlock(&tasklist_lock);
2627
2628 goto relock;
2629 }
2630
2631 /* Has this task already been marked for death? */
2632 if (signal_group_exit(signal)) {
2633 ksig->info.si_signo = signr = SIGKILL;
2634 sigdelset(¤t->pending.signal, SIGKILL);
2635 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2636 &sighand->action[SIGKILL - 1]);
2637 recalc_sigpending();
2638 goto fatal;
2639 }
2640
2641 for (;;) {
2642 struct k_sigaction *ka;
2643
2644 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2645 do_signal_stop(0))
2646 goto relock;
2647
2648 if (unlikely(current->jobctl &
2649 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2650 if (current->jobctl & JOBCTL_TRAP_MASK) {
2651 do_jobctl_trap();
2652 spin_unlock_irq(&sighand->siglock);
2653 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2654 do_freezer_trap();
2655
2656 goto relock;
2657 }
2658
2659 /*
2660 * If the task is leaving the frozen state, let's update
2661 * cgroup counters and reset the frozen bit.
2662 */
2663 if (unlikely(cgroup_task_frozen(current))) {
2664 spin_unlock_irq(&sighand->siglock);
2665 cgroup_leave_frozen(false);
2666 goto relock;
2667 }
2668
2669 /*
2670 * Signals generated by the execution of an instruction
2671 * need to be delivered before any other pending signals
2672 * so that the instruction pointer in the signal stack
2673 * frame points to the faulting instruction.
2674 */
2675 signr = dequeue_synchronous_signal(&ksig->info);
2676 if (!signr)
2677 signr = dequeue_signal(current, ¤t->blocked, &ksig->info);
2678
2679 if (!signr)
2680 break; /* will return 0 */
2681
2682 if (unlikely(current->ptrace) && signr != SIGKILL) {
2683 signr = ptrace_signal(signr, &ksig->info);
2684 if (!signr)
2685 continue;
2686 }
2687
2688 ka = &sighand->action[signr-1];
2689
2690 /* Trace actually delivered signals. */
2691 trace_signal_deliver(signr, &ksig->info, ka);
2692
2693 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2694 continue;
2695 if (ka->sa.sa_handler != SIG_DFL) {
2696 /* Run the handler. */
2697 ksig->ka = *ka;
2698
2699 if (ka->sa.sa_flags & SA_ONESHOT)
2700 ka->sa.sa_handler = SIG_DFL;
2701
2702 break; /* will return non-zero "signr" value */
2703 }
2704
2705 /*
2706 * Now we are doing the default action for this signal.
2707 */
2708 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2709 continue;
2710
2711 /*
2712 * Global init gets no signals it doesn't want.
2713 * Container-init gets no signals it doesn't want from same
2714 * container.
2715 *
2716 * Note that if global/container-init sees a sig_kernel_only()
2717 * signal here, the signal must have been generated internally
2718 * or must have come from an ancestor namespace. In either
2719 * case, the signal cannot be dropped.
2720 */
2721 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2722 !sig_kernel_only(signr))
2723 continue;
2724
2725 if (sig_kernel_stop(signr)) {
2726 /*
2727 * The default action is to stop all threads in
2728 * the thread group. The job control signals
2729 * do nothing in an orphaned pgrp, but SIGSTOP
2730 * always works. Note that siglock needs to be
2731 * dropped during the call to is_orphaned_pgrp()
2732 * because of lock ordering with tasklist_lock.
2733 * This allows an intervening SIGCONT to be posted.
2734 * We need to check for that and bail out if necessary.
2735 */
2736 if (signr != SIGSTOP) {
2737 spin_unlock_irq(&sighand->siglock);
2738
2739 /* signals can be posted during this window */
2740
2741 if (is_current_pgrp_orphaned())
2742 goto relock;
2743
2744 spin_lock_irq(&sighand->siglock);
2745 }
2746
2747 if (likely(do_signal_stop(ksig->info.si_signo))) {
2748 /* It released the siglock. */
2749 goto relock;
2750 }
2751
2752 /*
2753 * We didn't actually stop, due to a race
2754 * with SIGCONT or something like that.
2755 */
2756 continue;
2757 }
2758
2759 fatal:
2760 spin_unlock_irq(&sighand->siglock);
2761 if (unlikely(cgroup_task_frozen(current)))
2762 cgroup_leave_frozen(true);
2763
2764 /*
2765 * Anything else is fatal, maybe with a core dump.
2766 */
2767 current->flags |= PF_SIGNALED;
2768
2769 if (sig_kernel_coredump(signr)) {
2770 if (print_fatal_signals)
2771 print_fatal_signal(ksig->info.si_signo);
2772 proc_coredump_connector(current);
2773 /*
2774 * If it was able to dump core, this kills all
2775 * other threads in the group and synchronizes with
2776 * their demise. If we lost the race with another
2777 * thread getting here, it set group_exit_code
2778 * first and our do_group_exit call below will use
2779 * that value and ignore the one we pass it.
2780 */
2781 do_coredump(&ksig->info);
2782 }
2783
2784 /*
2785 * PF_IO_WORKER threads will catch and exit on fatal signals
2786 * themselves. They have cleanup that must be performed, so
2787 * we cannot call do_exit() on their behalf.
2788 */
2789 if (current->flags & PF_IO_WORKER)
2790 goto out;
2791
2792 /*
2793 * Death signals, no core dump.
2794 */
2795 do_group_exit(ksig->info.si_signo);
2796 /* NOTREACHED */
2797 }
2798 spin_unlock_irq(&sighand->siglock);
2799out:
2800 ksig->sig = signr;
2801
2802 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2803 hide_si_addr_tag_bits(ksig);
2804
2805 return ksig->sig > 0;
2806}
2807
2808/**
2809 * signal_delivered -
2810 * @ksig: kernel signal struct
2811 * @stepping: nonzero if debugger single-step or block-step in use
2812 *
2813 * This function should be called when a signal has successfully been
2814 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2815 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2816 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2817 */
2818static void signal_delivered(struct ksignal *ksig, int stepping)
2819{
2820 sigset_t blocked;
2821
2822 /* A signal was successfully delivered, and the
2823 saved sigmask was stored on the signal frame,
2824 and will be restored by sigreturn. So we can
2825 simply clear the restore sigmask flag. */
2826 clear_restore_sigmask();
2827
2828 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2829 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2830 sigaddset(&blocked, ksig->sig);
2831 set_current_blocked(&blocked);
2832 if (current->sas_ss_flags & SS_AUTODISARM)
2833 sas_ss_reset(current);
2834 tracehook_signal_handler(stepping);
2835}
2836
2837void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2838{
2839 if (failed)
2840 force_sigsegv(ksig->sig);
2841 else
2842 signal_delivered(ksig, stepping);
2843}
2844
2845/*
2846 * It could be that complete_signal() picked us to notify about the
2847 * group-wide signal. Other threads should be notified now to take
2848 * the shared signals in @which since we will not.
2849 */
2850static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2851{
2852 sigset_t retarget;
2853 struct task_struct *t;
2854
2855 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2856 if (sigisemptyset(&retarget))
2857 return;
2858
2859 t = tsk;
2860 while_each_thread(tsk, t) {
2861 if (t->flags & PF_EXITING)
2862 continue;
2863
2864 if (!has_pending_signals(&retarget, &t->blocked))
2865 continue;
2866 /* Remove the signals this thread can handle. */
2867 sigandsets(&retarget, &retarget, &t->blocked);
2868
2869 if (!task_sigpending(t))
2870 signal_wake_up(t, 0);
2871
2872 if (sigisemptyset(&retarget))
2873 break;
2874 }
2875}
2876
2877void exit_signals(struct task_struct *tsk)
2878{
2879 int group_stop = 0;
2880 sigset_t unblocked;
2881
2882 /*
2883 * @tsk is about to have PF_EXITING set - lock out users which
2884 * expect stable threadgroup.
2885 */
2886 cgroup_threadgroup_change_begin(tsk);
2887
2888 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2889 tsk->flags |= PF_EXITING;
2890 cgroup_threadgroup_change_end(tsk);
2891 return;
2892 }
2893
2894 spin_lock_irq(&tsk->sighand->siglock);
2895 /*
2896 * From now this task is not visible for group-wide signals,
2897 * see wants_signal(), do_signal_stop().
2898 */
2899 tsk->flags |= PF_EXITING;
2900
2901 cgroup_threadgroup_change_end(tsk);
2902
2903 if (!task_sigpending(tsk))
2904 goto out;
2905
2906 unblocked = tsk->blocked;
2907 signotset(&unblocked);
2908 retarget_shared_pending(tsk, &unblocked);
2909
2910 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2911 task_participate_group_stop(tsk))
2912 group_stop = CLD_STOPPED;
2913out:
2914 spin_unlock_irq(&tsk->sighand->siglock);
2915
2916 /*
2917 * If group stop has completed, deliver the notification. This
2918 * should always go to the real parent of the group leader.
2919 */
2920 if (unlikely(group_stop)) {
2921 read_lock(&tasklist_lock);
2922 do_notify_parent_cldstop(tsk, false, group_stop);
2923 read_unlock(&tasklist_lock);
2924 }
2925}
2926
2927/*
2928 * System call entry points.
2929 */
2930
2931/**
2932 * sys_restart_syscall - restart a system call
2933 */
2934SYSCALL_DEFINE0(restart_syscall)
2935{
2936 struct restart_block *restart = ¤t->restart_block;
2937 return restart->fn(restart);
2938}
2939
2940long do_no_restart_syscall(struct restart_block *param)
2941{
2942 return -EINTR;
2943}
2944
2945static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2946{
2947 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2948 sigset_t newblocked;
2949 /* A set of now blocked but previously unblocked signals. */
2950 sigandnsets(&newblocked, newset, ¤t->blocked);
2951 retarget_shared_pending(tsk, &newblocked);
2952 }
2953 tsk->blocked = *newset;
2954 recalc_sigpending();
2955}
2956
2957/**
2958 * set_current_blocked - change current->blocked mask
2959 * @newset: new mask
2960 *
2961 * It is wrong to change ->blocked directly, this helper should be used
2962 * to ensure the process can't miss a shared signal we are going to block.
2963 */
2964void set_current_blocked(sigset_t *newset)
2965{
2966 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2967 __set_current_blocked(newset);
2968}
2969
2970void __set_current_blocked(const sigset_t *newset)
2971{
2972 struct task_struct *tsk = current;
2973
2974 /*
2975 * In case the signal mask hasn't changed, there is nothing we need
2976 * to do. The current->blocked shouldn't be modified by other task.
2977 */
2978 if (sigequalsets(&tsk->blocked, newset))
2979 return;
2980
2981 spin_lock_irq(&tsk->sighand->siglock);
2982 __set_task_blocked(tsk, newset);
2983 spin_unlock_irq(&tsk->sighand->siglock);
2984}
2985
2986/*
2987 * This is also useful for kernel threads that want to temporarily
2988 * (or permanently) block certain signals.
2989 *
2990 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2991 * interface happily blocks "unblockable" signals like SIGKILL
2992 * and friends.
2993 */
2994int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2995{
2996 struct task_struct *tsk = current;
2997 sigset_t newset;
2998
2999 /* Lockless, only current can change ->blocked, never from irq */
3000 if (oldset)
3001 *oldset = tsk->blocked;
3002
3003 switch (how) {
3004 case SIG_BLOCK:
3005 sigorsets(&newset, &tsk->blocked, set);
3006 break;
3007 case SIG_UNBLOCK:
3008 sigandnsets(&newset, &tsk->blocked, set);
3009 break;
3010 case SIG_SETMASK:
3011 newset = *set;
3012 break;
3013 default:
3014 return -EINVAL;
3015 }
3016
3017 __set_current_blocked(&newset);
3018 return 0;
3019}
3020EXPORT_SYMBOL(sigprocmask);
3021
3022/*
3023 * The api helps set app-provided sigmasks.
3024 *
3025 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3026 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3027 *
3028 * Note that it does set_restore_sigmask() in advance, so it must be always
3029 * paired with restore_saved_sigmask_unless() before return from syscall.
3030 */
3031int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3032{
3033 sigset_t kmask;
3034
3035 if (!umask)
3036 return 0;
3037 if (sigsetsize != sizeof(sigset_t))
3038 return -EINVAL;
3039 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3040 return -EFAULT;
3041
3042 set_restore_sigmask();
3043 current->saved_sigmask = current->blocked;
3044 set_current_blocked(&kmask);
3045
3046 return 0;
3047}
3048
3049#ifdef CONFIG_COMPAT
3050int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3051 size_t sigsetsize)
3052{
3053 sigset_t kmask;
3054
3055 if (!umask)
3056 return 0;
3057 if (sigsetsize != sizeof(compat_sigset_t))
3058 return -EINVAL;
3059 if (get_compat_sigset(&kmask, umask))
3060 return -EFAULT;
3061
3062 set_restore_sigmask();
3063 current->saved_sigmask = current->blocked;
3064 set_current_blocked(&kmask);
3065
3066 return 0;
3067}
3068#endif
3069
3070/**
3071 * sys_rt_sigprocmask - change the list of currently blocked signals
3072 * @how: whether to add, remove, or set signals
3073 * @nset: stores pending signals
3074 * @oset: previous value of signal mask if non-null
3075 * @sigsetsize: size of sigset_t type
3076 */
3077SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3078 sigset_t __user *, oset, size_t, sigsetsize)
3079{
3080 sigset_t old_set, new_set;
3081 int error;
3082
3083 /* XXX: Don't preclude handling different sized sigset_t's. */
3084 if (sigsetsize != sizeof(sigset_t))
3085 return -EINVAL;
3086
3087 old_set = current->blocked;
3088
3089 if (nset) {
3090 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3091 return -EFAULT;
3092 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3093
3094 error = sigprocmask(how, &new_set, NULL);
3095 if (error)
3096 return error;
3097 }
3098
3099 if (oset) {
3100 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3101 return -EFAULT;
3102 }
3103
3104 return 0;
3105}
3106
3107#ifdef CONFIG_COMPAT
3108COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3109 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3110{
3111 sigset_t old_set = current->blocked;
3112
3113 /* XXX: Don't preclude handling different sized sigset_t's. */
3114 if (sigsetsize != sizeof(sigset_t))
3115 return -EINVAL;
3116
3117 if (nset) {
3118 sigset_t new_set;
3119 int error;
3120 if (get_compat_sigset(&new_set, nset))
3121 return -EFAULT;
3122 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3123
3124 error = sigprocmask(how, &new_set, NULL);
3125 if (error)
3126 return error;
3127 }
3128 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3129}
3130#endif
3131
3132static void do_sigpending(sigset_t *set)
3133{
3134 spin_lock_irq(¤t->sighand->siglock);
3135 sigorsets(set, ¤t->pending.signal,
3136 ¤t->signal->shared_pending.signal);
3137 spin_unlock_irq(¤t->sighand->siglock);
3138
3139 /* Outside the lock because only this thread touches it. */
3140 sigandsets(set, ¤t->blocked, set);
3141}
3142
3143/**
3144 * sys_rt_sigpending - examine a pending signal that has been raised
3145 * while blocked
3146 * @uset: stores pending signals
3147 * @sigsetsize: size of sigset_t type or larger
3148 */
3149SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3150{
3151 sigset_t set;
3152
3153 if (sigsetsize > sizeof(*uset))
3154 return -EINVAL;
3155
3156 do_sigpending(&set);
3157
3158 if (copy_to_user(uset, &set, sigsetsize))
3159 return -EFAULT;
3160
3161 return 0;
3162}
3163
3164#ifdef CONFIG_COMPAT
3165COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3166 compat_size_t, sigsetsize)
3167{
3168 sigset_t set;
3169
3170 if (sigsetsize > sizeof(*uset))
3171 return -EINVAL;
3172
3173 do_sigpending(&set);
3174
3175 return put_compat_sigset(uset, &set, sigsetsize);
3176}
3177#endif
3178
3179static const struct {
3180 unsigned char limit, layout;
3181} sig_sicodes[] = {
3182 [SIGILL] = { NSIGILL, SIL_FAULT },
3183 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3184 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3185 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3186 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3187#if defined(SIGEMT)
3188 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3189#endif
3190 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3191 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3192 [SIGSYS] = { NSIGSYS, SIL_SYS },
3193};
3194
3195static bool known_siginfo_layout(unsigned sig, int si_code)
3196{
3197 if (si_code == SI_KERNEL)
3198 return true;
3199 else if ((si_code > SI_USER)) {
3200 if (sig_specific_sicodes(sig)) {
3201 if (si_code <= sig_sicodes[sig].limit)
3202 return true;
3203 }
3204 else if (si_code <= NSIGPOLL)
3205 return true;
3206 }
3207 else if (si_code >= SI_DETHREAD)
3208 return true;
3209 else if (si_code == SI_ASYNCNL)
3210 return true;
3211 return false;
3212}
3213
3214enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3215{
3216 enum siginfo_layout layout = SIL_KILL;
3217 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3218 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3219 (si_code <= sig_sicodes[sig].limit)) {
3220 layout = sig_sicodes[sig].layout;
3221 /* Handle the exceptions */
3222 if ((sig == SIGBUS) &&
3223 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3224 layout = SIL_FAULT_MCEERR;
3225 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3226 layout = SIL_FAULT_BNDERR;
3227#ifdef SEGV_PKUERR
3228 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3229 layout = SIL_FAULT_PKUERR;
3230#endif
3231 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3232 layout = SIL_PERF_EVENT;
3233#ifdef __ARCH_SI_TRAPNO
3234 else if (layout == SIL_FAULT)
3235 layout = SIL_FAULT_TRAPNO;
3236#endif
3237 }
3238 else if (si_code <= NSIGPOLL)
3239 layout = SIL_POLL;
3240 } else {
3241 if (si_code == SI_TIMER)
3242 layout = SIL_TIMER;
3243 else if (si_code == SI_SIGIO)
3244 layout = SIL_POLL;
3245 else if (si_code < 0)
3246 layout = SIL_RT;
3247 }
3248 return layout;
3249}
3250
3251static inline char __user *si_expansion(const siginfo_t __user *info)
3252{
3253 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3254}
3255
3256int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3257{
3258 char __user *expansion = si_expansion(to);
3259 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3260 return -EFAULT;
3261 if (clear_user(expansion, SI_EXPANSION_SIZE))
3262 return -EFAULT;
3263 return 0;
3264}
3265
3266static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3267 const siginfo_t __user *from)
3268{
3269 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3270 char __user *expansion = si_expansion(from);
3271 char buf[SI_EXPANSION_SIZE];
3272 int i;
3273 /*
3274 * An unknown si_code might need more than
3275 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3276 * extra bytes are 0. This guarantees copy_siginfo_to_user
3277 * will return this data to userspace exactly.
3278 */
3279 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3280 return -EFAULT;
3281 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3282 if (buf[i] != 0)
3283 return -E2BIG;
3284 }
3285 }
3286 return 0;
3287}
3288
3289static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3290 const siginfo_t __user *from)
3291{
3292 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3293 return -EFAULT;
3294 to->si_signo = signo;
3295 return post_copy_siginfo_from_user(to, from);
3296}
3297
3298int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3299{
3300 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3301 return -EFAULT;
3302 return post_copy_siginfo_from_user(to, from);
3303}
3304
3305#ifdef CONFIG_COMPAT
3306/**
3307 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3308 * @to: compat siginfo destination
3309 * @from: kernel siginfo source
3310 *
3311 * Note: This function does not work properly for the SIGCHLD on x32, but
3312 * fortunately it doesn't have to. The only valid callers for this function are
3313 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3314 * The latter does not care because SIGCHLD will never cause a coredump.
3315 */
3316void copy_siginfo_to_external32(struct compat_siginfo *to,
3317 const struct kernel_siginfo *from)
3318{
3319 memset(to, 0, sizeof(*to));
3320
3321 to->si_signo = from->si_signo;
3322 to->si_errno = from->si_errno;
3323 to->si_code = from->si_code;
3324 switch(siginfo_layout(from->si_signo, from->si_code)) {
3325 case SIL_KILL:
3326 to->si_pid = from->si_pid;
3327 to->si_uid = from->si_uid;
3328 break;
3329 case SIL_TIMER:
3330 to->si_tid = from->si_tid;
3331 to->si_overrun = from->si_overrun;
3332 to->si_int = from->si_int;
3333 break;
3334 case SIL_POLL:
3335 to->si_band = from->si_band;
3336 to->si_fd = from->si_fd;
3337 break;
3338 case SIL_FAULT:
3339 to->si_addr = ptr_to_compat(from->si_addr);
3340 break;
3341 case SIL_FAULT_TRAPNO:
3342 to->si_addr = ptr_to_compat(from->si_addr);
3343 to->si_trapno = from->si_trapno;
3344 break;
3345 case SIL_FAULT_MCEERR:
3346 to->si_addr = ptr_to_compat(from->si_addr);
3347 to->si_addr_lsb = from->si_addr_lsb;
3348 break;
3349 case SIL_FAULT_BNDERR:
3350 to->si_addr = ptr_to_compat(from->si_addr);
3351 to->si_lower = ptr_to_compat(from->si_lower);
3352 to->si_upper = ptr_to_compat(from->si_upper);
3353 break;
3354 case SIL_FAULT_PKUERR:
3355 to->si_addr = ptr_to_compat(from->si_addr);
3356 to->si_pkey = from->si_pkey;
3357 break;
3358 case SIL_PERF_EVENT:
3359 to->si_addr = ptr_to_compat(from->si_addr);
3360 to->si_perf_data = from->si_perf_data;
3361 to->si_perf_type = from->si_perf_type;
3362 break;
3363 case SIL_CHLD:
3364 to->si_pid = from->si_pid;
3365 to->si_uid = from->si_uid;
3366 to->si_status = from->si_status;
3367 to->si_utime = from->si_utime;
3368 to->si_stime = from->si_stime;
3369 break;
3370 case SIL_RT:
3371 to->si_pid = from->si_pid;
3372 to->si_uid = from->si_uid;
3373 to->si_int = from->si_int;
3374 break;
3375 case SIL_SYS:
3376 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3377 to->si_syscall = from->si_syscall;
3378 to->si_arch = from->si_arch;
3379 break;
3380 }
3381}
3382
3383int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3384 const struct kernel_siginfo *from)
3385{
3386 struct compat_siginfo new;
3387
3388 copy_siginfo_to_external32(&new, from);
3389 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3390 return -EFAULT;
3391 return 0;
3392}
3393
3394static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3395 const struct compat_siginfo *from)
3396{
3397 clear_siginfo(to);
3398 to->si_signo = from->si_signo;
3399 to->si_errno = from->si_errno;
3400 to->si_code = from->si_code;
3401 switch(siginfo_layout(from->si_signo, from->si_code)) {
3402 case SIL_KILL:
3403 to->si_pid = from->si_pid;
3404 to->si_uid = from->si_uid;
3405 break;
3406 case SIL_TIMER:
3407 to->si_tid = from->si_tid;
3408 to->si_overrun = from->si_overrun;
3409 to->si_int = from->si_int;
3410 break;
3411 case SIL_POLL:
3412 to->si_band = from->si_band;
3413 to->si_fd = from->si_fd;
3414 break;
3415 case SIL_FAULT:
3416 to->si_addr = compat_ptr(from->si_addr);
3417 break;
3418 case SIL_FAULT_TRAPNO:
3419 to->si_addr = compat_ptr(from->si_addr);
3420 to->si_trapno = from->si_trapno;
3421 break;
3422 case SIL_FAULT_MCEERR:
3423 to->si_addr = compat_ptr(from->si_addr);
3424 to->si_addr_lsb = from->si_addr_lsb;
3425 break;
3426 case SIL_FAULT_BNDERR:
3427 to->si_addr = compat_ptr(from->si_addr);
3428 to->si_lower = compat_ptr(from->si_lower);
3429 to->si_upper = compat_ptr(from->si_upper);
3430 break;
3431 case SIL_FAULT_PKUERR:
3432 to->si_addr = compat_ptr(from->si_addr);
3433 to->si_pkey = from->si_pkey;
3434 break;
3435 case SIL_PERF_EVENT:
3436 to->si_addr = compat_ptr(from->si_addr);
3437 to->si_perf_data = from->si_perf_data;
3438 to->si_perf_type = from->si_perf_type;
3439 break;
3440 case SIL_CHLD:
3441 to->si_pid = from->si_pid;
3442 to->si_uid = from->si_uid;
3443 to->si_status = from->si_status;
3444#ifdef CONFIG_X86_X32_ABI
3445 if (in_x32_syscall()) {
3446 to->si_utime = from->_sifields._sigchld_x32._utime;
3447 to->si_stime = from->_sifields._sigchld_x32._stime;
3448 } else
3449#endif
3450 {
3451 to->si_utime = from->si_utime;
3452 to->si_stime = from->si_stime;
3453 }
3454 break;
3455 case SIL_RT:
3456 to->si_pid = from->si_pid;
3457 to->si_uid = from->si_uid;
3458 to->si_int = from->si_int;
3459 break;
3460 case SIL_SYS:
3461 to->si_call_addr = compat_ptr(from->si_call_addr);
3462 to->si_syscall = from->si_syscall;
3463 to->si_arch = from->si_arch;
3464 break;
3465 }
3466 return 0;
3467}
3468
3469static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3470 const struct compat_siginfo __user *ufrom)
3471{
3472 struct compat_siginfo from;
3473
3474 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3475 return -EFAULT;
3476
3477 from.si_signo = signo;
3478 return post_copy_siginfo_from_user32(to, &from);
3479}
3480
3481int copy_siginfo_from_user32(struct kernel_siginfo *to,
3482 const struct compat_siginfo __user *ufrom)
3483{
3484 struct compat_siginfo from;
3485
3486 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3487 return -EFAULT;
3488
3489 return post_copy_siginfo_from_user32(to, &from);
3490}
3491#endif /* CONFIG_COMPAT */
3492
3493/**
3494 * do_sigtimedwait - wait for queued signals specified in @which
3495 * @which: queued signals to wait for
3496 * @info: if non-null, the signal's siginfo is returned here
3497 * @ts: upper bound on process time suspension
3498 */
3499static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3500 const struct timespec64 *ts)
3501{
3502 ktime_t *to = NULL, timeout = KTIME_MAX;
3503 struct task_struct *tsk = current;
3504 sigset_t mask = *which;
3505 int sig, ret = 0;
3506
3507 if (ts) {
3508 if (!timespec64_valid(ts))
3509 return -EINVAL;
3510 timeout = timespec64_to_ktime(*ts);
3511 to = &timeout;
3512 }
3513
3514 /*
3515 * Invert the set of allowed signals to get those we want to block.
3516 */
3517 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3518 signotset(&mask);
3519
3520 spin_lock_irq(&tsk->sighand->siglock);
3521 sig = dequeue_signal(tsk, &mask, info);
3522 if (!sig && timeout) {
3523 /*
3524 * None ready, temporarily unblock those we're interested
3525 * while we are sleeping in so that we'll be awakened when
3526 * they arrive. Unblocking is always fine, we can avoid
3527 * set_current_blocked().
3528 */
3529 tsk->real_blocked = tsk->blocked;
3530 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3531 recalc_sigpending();
3532 spin_unlock_irq(&tsk->sighand->siglock);
3533
3534 __set_current_state(TASK_INTERRUPTIBLE);
3535 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3536 HRTIMER_MODE_REL);
3537 spin_lock_irq(&tsk->sighand->siglock);
3538 __set_task_blocked(tsk, &tsk->real_blocked);
3539 sigemptyset(&tsk->real_blocked);
3540 sig = dequeue_signal(tsk, &mask, info);
3541 }
3542 spin_unlock_irq(&tsk->sighand->siglock);
3543
3544 if (sig)
3545 return sig;
3546 return ret ? -EINTR : -EAGAIN;
3547}
3548
3549/**
3550 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3551 * in @uthese
3552 * @uthese: queued signals to wait for
3553 * @uinfo: if non-null, the signal's siginfo is returned here
3554 * @uts: upper bound on process time suspension
3555 * @sigsetsize: size of sigset_t type
3556 */
3557SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3558 siginfo_t __user *, uinfo,
3559 const struct __kernel_timespec __user *, uts,
3560 size_t, sigsetsize)
3561{
3562 sigset_t these;
3563 struct timespec64 ts;
3564 kernel_siginfo_t info;
3565 int ret;
3566
3567 /* XXX: Don't preclude handling different sized sigset_t's. */
3568 if (sigsetsize != sizeof(sigset_t))
3569 return -EINVAL;
3570
3571 if (copy_from_user(&these, uthese, sizeof(these)))
3572 return -EFAULT;
3573
3574 if (uts) {
3575 if (get_timespec64(&ts, uts))
3576 return -EFAULT;
3577 }
3578
3579 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3580
3581 if (ret > 0 && uinfo) {
3582 if (copy_siginfo_to_user(uinfo, &info))
3583 ret = -EFAULT;
3584 }
3585
3586 return ret;
3587}
3588
3589#ifdef CONFIG_COMPAT_32BIT_TIME
3590SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3591 siginfo_t __user *, uinfo,
3592 const struct old_timespec32 __user *, uts,
3593 size_t, sigsetsize)
3594{
3595 sigset_t these;
3596 struct timespec64 ts;
3597 kernel_siginfo_t info;
3598 int ret;
3599
3600 if (sigsetsize != sizeof(sigset_t))
3601 return -EINVAL;
3602
3603 if (copy_from_user(&these, uthese, sizeof(these)))
3604 return -EFAULT;
3605
3606 if (uts) {
3607 if (get_old_timespec32(&ts, uts))
3608 return -EFAULT;
3609 }
3610
3611 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3612
3613 if (ret > 0 && uinfo) {
3614 if (copy_siginfo_to_user(uinfo, &info))
3615 ret = -EFAULT;
3616 }
3617
3618 return ret;
3619}
3620#endif
3621
3622#ifdef CONFIG_COMPAT
3623COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3624 struct compat_siginfo __user *, uinfo,
3625 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3626{
3627 sigset_t s;
3628 struct timespec64 t;
3629 kernel_siginfo_t info;
3630 long ret;
3631
3632 if (sigsetsize != sizeof(sigset_t))
3633 return -EINVAL;
3634
3635 if (get_compat_sigset(&s, uthese))
3636 return -EFAULT;
3637
3638 if (uts) {
3639 if (get_timespec64(&t, uts))
3640 return -EFAULT;
3641 }
3642
3643 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3644
3645 if (ret > 0 && uinfo) {
3646 if (copy_siginfo_to_user32(uinfo, &info))
3647 ret = -EFAULT;
3648 }
3649
3650 return ret;
3651}
3652
3653#ifdef CONFIG_COMPAT_32BIT_TIME
3654COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3655 struct compat_siginfo __user *, uinfo,
3656 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3657{
3658 sigset_t s;
3659 struct timespec64 t;
3660 kernel_siginfo_t info;
3661 long ret;
3662
3663 if (sigsetsize != sizeof(sigset_t))
3664 return -EINVAL;
3665
3666 if (get_compat_sigset(&s, uthese))
3667 return -EFAULT;
3668
3669 if (uts) {
3670 if (get_old_timespec32(&t, uts))
3671 return -EFAULT;
3672 }
3673
3674 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3675
3676 if (ret > 0 && uinfo) {
3677 if (copy_siginfo_to_user32(uinfo, &info))
3678 ret = -EFAULT;
3679 }
3680
3681 return ret;
3682}
3683#endif
3684#endif
3685
3686static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3687{
3688 clear_siginfo(info);
3689 info->si_signo = sig;
3690 info->si_errno = 0;
3691 info->si_code = SI_USER;
3692 info->si_pid = task_tgid_vnr(current);
3693 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3694}
3695
3696/**
3697 * sys_kill - send a signal to a process
3698 * @pid: the PID of the process
3699 * @sig: signal to be sent
3700 */
3701SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3702{
3703 struct kernel_siginfo info;
3704
3705 prepare_kill_siginfo(sig, &info);
3706
3707 return kill_something_info(sig, &info, pid);
3708}
3709
3710/*
3711 * Verify that the signaler and signalee either are in the same pid namespace
3712 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3713 * namespace.
3714 */
3715static bool access_pidfd_pidns(struct pid *pid)
3716{
3717 struct pid_namespace *active = task_active_pid_ns(current);
3718 struct pid_namespace *p = ns_of_pid(pid);
3719
3720 for (;;) {
3721 if (!p)
3722 return false;
3723 if (p == active)
3724 break;
3725 p = p->parent;
3726 }
3727
3728 return true;
3729}
3730
3731static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3732 siginfo_t __user *info)
3733{
3734#ifdef CONFIG_COMPAT
3735 /*
3736 * Avoid hooking up compat syscalls and instead handle necessary
3737 * conversions here. Note, this is a stop-gap measure and should not be
3738 * considered a generic solution.
3739 */
3740 if (in_compat_syscall())
3741 return copy_siginfo_from_user32(
3742 kinfo, (struct compat_siginfo __user *)info);
3743#endif
3744 return copy_siginfo_from_user(kinfo, info);
3745}
3746
3747static struct pid *pidfd_to_pid(const struct file *file)
3748{
3749 struct pid *pid;
3750
3751 pid = pidfd_pid(file);
3752 if (!IS_ERR(pid))
3753 return pid;
3754
3755 return tgid_pidfd_to_pid(file);
3756}
3757
3758/**
3759 * sys_pidfd_send_signal - Signal a process through a pidfd
3760 * @pidfd: file descriptor of the process
3761 * @sig: signal to send
3762 * @info: signal info
3763 * @flags: future flags
3764 *
3765 * The syscall currently only signals via PIDTYPE_PID which covers
3766 * kill(<positive-pid>, <signal>. It does not signal threads or process
3767 * groups.
3768 * In order to extend the syscall to threads and process groups the @flags
3769 * argument should be used. In essence, the @flags argument will determine
3770 * what is signaled and not the file descriptor itself. Put in other words,
3771 * grouping is a property of the flags argument not a property of the file
3772 * descriptor.
3773 *
3774 * Return: 0 on success, negative errno on failure
3775 */
3776SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3777 siginfo_t __user *, info, unsigned int, flags)
3778{
3779 int ret;
3780 struct fd f;
3781 struct pid *pid;
3782 kernel_siginfo_t kinfo;
3783
3784 /* Enforce flags be set to 0 until we add an extension. */
3785 if (flags)
3786 return -EINVAL;
3787
3788 f = fdget(pidfd);
3789 if (!f.file)
3790 return -EBADF;
3791
3792 /* Is this a pidfd? */
3793 pid = pidfd_to_pid(f.file);
3794 if (IS_ERR(pid)) {
3795 ret = PTR_ERR(pid);
3796 goto err;
3797 }
3798
3799 ret = -EINVAL;
3800 if (!access_pidfd_pidns(pid))
3801 goto err;
3802
3803 if (info) {
3804 ret = copy_siginfo_from_user_any(&kinfo, info);
3805 if (unlikely(ret))
3806 goto err;
3807
3808 ret = -EINVAL;
3809 if (unlikely(sig != kinfo.si_signo))
3810 goto err;
3811
3812 /* Only allow sending arbitrary signals to yourself. */
3813 ret = -EPERM;
3814 if ((task_pid(current) != pid) &&
3815 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3816 goto err;
3817 } else {
3818 prepare_kill_siginfo(sig, &kinfo);
3819 }
3820
3821 ret = kill_pid_info(sig, &kinfo, pid);
3822
3823err:
3824 fdput(f);
3825 return ret;
3826}
3827
3828static int
3829do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3830{
3831 struct task_struct *p;
3832 int error = -ESRCH;
3833
3834 rcu_read_lock();
3835 p = find_task_by_vpid(pid);
3836 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3837 error = check_kill_permission(sig, info, p);
3838 /*
3839 * The null signal is a permissions and process existence
3840 * probe. No signal is actually delivered.
3841 */
3842 if (!error && sig) {
3843 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3844 /*
3845 * If lock_task_sighand() failed we pretend the task
3846 * dies after receiving the signal. The window is tiny,
3847 * and the signal is private anyway.
3848 */
3849 if (unlikely(error == -ESRCH))
3850 error = 0;
3851 }
3852 }
3853 rcu_read_unlock();
3854
3855 return error;
3856}
3857
3858static int do_tkill(pid_t tgid, pid_t pid, int sig)
3859{
3860 struct kernel_siginfo info;
3861
3862 clear_siginfo(&info);
3863 info.si_signo = sig;
3864 info.si_errno = 0;
3865 info.si_code = SI_TKILL;
3866 info.si_pid = task_tgid_vnr(current);
3867 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3868
3869 return do_send_specific(tgid, pid, sig, &info);
3870}
3871
3872/**
3873 * sys_tgkill - send signal to one specific thread
3874 * @tgid: the thread group ID of the thread
3875 * @pid: the PID of the thread
3876 * @sig: signal to be sent
3877 *
3878 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3879 * exists but it's not belonging to the target process anymore. This
3880 * method solves the problem of threads exiting and PIDs getting reused.
3881 */
3882SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3883{
3884 /* This is only valid for single tasks */
3885 if (pid <= 0 || tgid <= 0)
3886 return -EINVAL;
3887
3888 return do_tkill(tgid, pid, sig);
3889}
3890
3891/**
3892 * sys_tkill - send signal to one specific task
3893 * @pid: the PID of the task
3894 * @sig: signal to be sent
3895 *
3896 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3897 */
3898SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3899{
3900 /* This is only valid for single tasks */
3901 if (pid <= 0)
3902 return -EINVAL;
3903
3904 return do_tkill(0, pid, sig);
3905}
3906
3907static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3908{
3909 /* Not even root can pretend to send signals from the kernel.
3910 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3911 */
3912 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3913 (task_pid_vnr(current) != pid))
3914 return -EPERM;
3915
3916 /* POSIX.1b doesn't mention process groups. */
3917 return kill_proc_info(sig, info, pid);
3918}
3919
3920/**
3921 * sys_rt_sigqueueinfo - send signal information to a signal
3922 * @pid: the PID of the thread
3923 * @sig: signal to be sent
3924 * @uinfo: signal info to be sent
3925 */
3926SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3927 siginfo_t __user *, uinfo)
3928{
3929 kernel_siginfo_t info;
3930 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3931 if (unlikely(ret))
3932 return ret;
3933 return do_rt_sigqueueinfo(pid, sig, &info);
3934}
3935
3936#ifdef CONFIG_COMPAT
3937COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3938 compat_pid_t, pid,
3939 int, sig,
3940 struct compat_siginfo __user *, uinfo)
3941{
3942 kernel_siginfo_t info;
3943 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3944 if (unlikely(ret))
3945 return ret;
3946 return do_rt_sigqueueinfo(pid, sig, &info);
3947}
3948#endif
3949
3950static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3951{
3952 /* This is only valid for single tasks */
3953 if (pid <= 0 || tgid <= 0)
3954 return -EINVAL;
3955
3956 /* Not even root can pretend to send signals from the kernel.
3957 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3958 */
3959 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3960 (task_pid_vnr(current) != pid))
3961 return -EPERM;
3962
3963 return do_send_specific(tgid, pid, sig, info);
3964}
3965
3966SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3967 siginfo_t __user *, uinfo)
3968{
3969 kernel_siginfo_t info;
3970 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3971 if (unlikely(ret))
3972 return ret;
3973 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3974}
3975
3976#ifdef CONFIG_COMPAT
3977COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3978 compat_pid_t, tgid,
3979 compat_pid_t, pid,
3980 int, sig,
3981 struct compat_siginfo __user *, uinfo)
3982{
3983 kernel_siginfo_t info;
3984 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3985 if (unlikely(ret))
3986 return ret;
3987 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3988}
3989#endif
3990
3991/*
3992 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3993 */
3994void kernel_sigaction(int sig, __sighandler_t action)
3995{
3996 spin_lock_irq(¤t->sighand->siglock);
3997 current->sighand->action[sig - 1].sa.sa_handler = action;
3998 if (action == SIG_IGN) {
3999 sigset_t mask;
4000
4001 sigemptyset(&mask);
4002 sigaddset(&mask, sig);
4003
4004 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4005 flush_sigqueue_mask(&mask, ¤t->pending);
4006 recalc_sigpending();
4007 }
4008 spin_unlock_irq(¤t->sighand->siglock);
4009}
4010EXPORT_SYMBOL(kernel_sigaction);
4011
4012void __weak sigaction_compat_abi(struct k_sigaction *act,
4013 struct k_sigaction *oact)
4014{
4015}
4016
4017int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4018{
4019 struct task_struct *p = current, *t;
4020 struct k_sigaction *k;
4021 sigset_t mask;
4022
4023 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4024 return -EINVAL;
4025
4026 k = &p->sighand->action[sig-1];
4027
4028 spin_lock_irq(&p->sighand->siglock);
4029 if (oact)
4030 *oact = *k;
4031
4032 /*
4033 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4034 * e.g. by having an architecture use the bit in their uapi.
4035 */
4036 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4037
4038 /*
4039 * Clear unknown flag bits in order to allow userspace to detect missing
4040 * support for flag bits and to allow the kernel to use non-uapi bits
4041 * internally.
4042 */
4043 if (act)
4044 act->sa.sa_flags &= UAPI_SA_FLAGS;
4045 if (oact)
4046 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4047
4048 sigaction_compat_abi(act, oact);
4049
4050 if (act) {
4051 sigdelsetmask(&act->sa.sa_mask,
4052 sigmask(SIGKILL) | sigmask(SIGSTOP));
4053 *k = *act;
4054 /*
4055 * POSIX 3.3.1.3:
4056 * "Setting a signal action to SIG_IGN for a signal that is
4057 * pending shall cause the pending signal to be discarded,
4058 * whether or not it is blocked."
4059 *
4060 * "Setting a signal action to SIG_DFL for a signal that is
4061 * pending and whose default action is to ignore the signal
4062 * (for example, SIGCHLD), shall cause the pending signal to
4063 * be discarded, whether or not it is blocked"
4064 */
4065 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4066 sigemptyset(&mask);
4067 sigaddset(&mask, sig);
4068 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4069 for_each_thread(p, t)
4070 flush_sigqueue_mask(&mask, &t->pending);
4071 }
4072 }
4073
4074 spin_unlock_irq(&p->sighand->siglock);
4075 return 0;
4076}
4077
4078static int
4079do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4080 size_t min_ss_size)
4081{
4082 struct task_struct *t = current;
4083
4084 if (oss) {
4085 memset(oss, 0, sizeof(stack_t));
4086 oss->ss_sp = (void __user *) t->sas_ss_sp;
4087 oss->ss_size = t->sas_ss_size;
4088 oss->ss_flags = sas_ss_flags(sp) |
4089 (current->sas_ss_flags & SS_FLAG_BITS);
4090 }
4091
4092 if (ss) {
4093 void __user *ss_sp = ss->ss_sp;
4094 size_t ss_size = ss->ss_size;
4095 unsigned ss_flags = ss->ss_flags;
4096 int ss_mode;
4097
4098 if (unlikely(on_sig_stack(sp)))
4099 return -EPERM;
4100
4101 ss_mode = ss_flags & ~SS_FLAG_BITS;
4102 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4103 ss_mode != 0))
4104 return -EINVAL;
4105
4106 if (ss_mode == SS_DISABLE) {
4107 ss_size = 0;
4108 ss_sp = NULL;
4109 } else {
4110 if (unlikely(ss_size < min_ss_size))
4111 return -ENOMEM;
4112 }
4113
4114 t->sas_ss_sp = (unsigned long) ss_sp;
4115 t->sas_ss_size = ss_size;
4116 t->sas_ss_flags = ss_flags;
4117 }
4118 return 0;
4119}
4120
4121SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4122{
4123 stack_t new, old;
4124 int err;
4125 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4126 return -EFAULT;
4127 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4128 current_user_stack_pointer(),
4129 MINSIGSTKSZ);
4130 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4131 err = -EFAULT;
4132 return err;
4133}
4134
4135int restore_altstack(const stack_t __user *uss)
4136{
4137 stack_t new;
4138 if (copy_from_user(&new, uss, sizeof(stack_t)))
4139 return -EFAULT;
4140 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4141 MINSIGSTKSZ);
4142 /* squash all but EFAULT for now */
4143 return 0;
4144}
4145
4146int __save_altstack(stack_t __user *uss, unsigned long sp)
4147{
4148 struct task_struct *t = current;
4149 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4150 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4151 __put_user(t->sas_ss_size, &uss->ss_size);
4152 return err;
4153}
4154
4155#ifdef CONFIG_COMPAT
4156static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4157 compat_stack_t __user *uoss_ptr)
4158{
4159 stack_t uss, uoss;
4160 int ret;
4161
4162 if (uss_ptr) {
4163 compat_stack_t uss32;
4164 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4165 return -EFAULT;
4166 uss.ss_sp = compat_ptr(uss32.ss_sp);
4167 uss.ss_flags = uss32.ss_flags;
4168 uss.ss_size = uss32.ss_size;
4169 }
4170 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4171 compat_user_stack_pointer(),
4172 COMPAT_MINSIGSTKSZ);
4173 if (ret >= 0 && uoss_ptr) {
4174 compat_stack_t old;
4175 memset(&old, 0, sizeof(old));
4176 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4177 old.ss_flags = uoss.ss_flags;
4178 old.ss_size = uoss.ss_size;
4179 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4180 ret = -EFAULT;
4181 }
4182 return ret;
4183}
4184
4185COMPAT_SYSCALL_DEFINE2(sigaltstack,
4186 const compat_stack_t __user *, uss_ptr,
4187 compat_stack_t __user *, uoss_ptr)
4188{
4189 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4190}
4191
4192int compat_restore_altstack(const compat_stack_t __user *uss)
4193{
4194 int err = do_compat_sigaltstack(uss, NULL);
4195 /* squash all but -EFAULT for now */
4196 return err == -EFAULT ? err : 0;
4197}
4198
4199int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4200{
4201 int err;
4202 struct task_struct *t = current;
4203 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4204 &uss->ss_sp) |
4205 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4206 __put_user(t->sas_ss_size, &uss->ss_size);
4207 return err;
4208}
4209#endif
4210
4211#ifdef __ARCH_WANT_SYS_SIGPENDING
4212
4213/**
4214 * sys_sigpending - examine pending signals
4215 * @uset: where mask of pending signal is returned
4216 */
4217SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4218{
4219 sigset_t set;
4220
4221 if (sizeof(old_sigset_t) > sizeof(*uset))
4222 return -EINVAL;
4223
4224 do_sigpending(&set);
4225
4226 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4227 return -EFAULT;
4228
4229 return 0;
4230}
4231
4232#ifdef CONFIG_COMPAT
4233COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4234{
4235 sigset_t set;
4236
4237 do_sigpending(&set);
4238
4239 return put_user(set.sig[0], set32);
4240}
4241#endif
4242
4243#endif
4244
4245#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4246/**
4247 * sys_sigprocmask - examine and change blocked signals
4248 * @how: whether to add, remove, or set signals
4249 * @nset: signals to add or remove (if non-null)
4250 * @oset: previous value of signal mask if non-null
4251 *
4252 * Some platforms have their own version with special arguments;
4253 * others support only sys_rt_sigprocmask.
4254 */
4255
4256SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4257 old_sigset_t __user *, oset)
4258{
4259 old_sigset_t old_set, new_set;
4260 sigset_t new_blocked;
4261
4262 old_set = current->blocked.sig[0];
4263
4264 if (nset) {
4265 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4266 return -EFAULT;
4267
4268 new_blocked = current->blocked;
4269
4270 switch (how) {
4271 case SIG_BLOCK:
4272 sigaddsetmask(&new_blocked, new_set);
4273 break;
4274 case SIG_UNBLOCK:
4275 sigdelsetmask(&new_blocked, new_set);
4276 break;
4277 case SIG_SETMASK:
4278 new_blocked.sig[0] = new_set;
4279 break;
4280 default:
4281 return -EINVAL;
4282 }
4283
4284 set_current_blocked(&new_blocked);
4285 }
4286
4287 if (oset) {
4288 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4289 return -EFAULT;
4290 }
4291
4292 return 0;
4293}
4294#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4295
4296#ifndef CONFIG_ODD_RT_SIGACTION
4297/**
4298 * sys_rt_sigaction - alter an action taken by a process
4299 * @sig: signal to be sent
4300 * @act: new sigaction
4301 * @oact: used to save the previous sigaction
4302 * @sigsetsize: size of sigset_t type
4303 */
4304SYSCALL_DEFINE4(rt_sigaction, int, sig,
4305 const struct sigaction __user *, act,
4306 struct sigaction __user *, oact,
4307 size_t, sigsetsize)
4308{
4309 struct k_sigaction new_sa, old_sa;
4310 int ret;
4311
4312 /* XXX: Don't preclude handling different sized sigset_t's. */
4313 if (sigsetsize != sizeof(sigset_t))
4314 return -EINVAL;
4315
4316 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4317 return -EFAULT;
4318
4319 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4320 if (ret)
4321 return ret;
4322
4323 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4324 return -EFAULT;
4325
4326 return 0;
4327}
4328#ifdef CONFIG_COMPAT
4329COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4330 const struct compat_sigaction __user *, act,
4331 struct compat_sigaction __user *, oact,
4332 compat_size_t, sigsetsize)
4333{
4334 struct k_sigaction new_ka, old_ka;
4335#ifdef __ARCH_HAS_SA_RESTORER
4336 compat_uptr_t restorer;
4337#endif
4338 int ret;
4339
4340 /* XXX: Don't preclude handling different sized sigset_t's. */
4341 if (sigsetsize != sizeof(compat_sigset_t))
4342 return -EINVAL;
4343
4344 if (act) {
4345 compat_uptr_t handler;
4346 ret = get_user(handler, &act->sa_handler);
4347 new_ka.sa.sa_handler = compat_ptr(handler);
4348#ifdef __ARCH_HAS_SA_RESTORER
4349 ret |= get_user(restorer, &act->sa_restorer);
4350 new_ka.sa.sa_restorer = compat_ptr(restorer);
4351#endif
4352 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4353 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4354 if (ret)
4355 return -EFAULT;
4356 }
4357
4358 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4359 if (!ret && oact) {
4360 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4361 &oact->sa_handler);
4362 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4363 sizeof(oact->sa_mask));
4364 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4365#ifdef __ARCH_HAS_SA_RESTORER
4366 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4367 &oact->sa_restorer);
4368#endif
4369 }
4370 return ret;
4371}
4372#endif
4373#endif /* !CONFIG_ODD_RT_SIGACTION */
4374
4375#ifdef CONFIG_OLD_SIGACTION
4376SYSCALL_DEFINE3(sigaction, int, sig,
4377 const struct old_sigaction __user *, act,
4378 struct old_sigaction __user *, oact)
4379{
4380 struct k_sigaction new_ka, old_ka;
4381 int ret;
4382
4383 if (act) {
4384 old_sigset_t mask;
4385 if (!access_ok(act, sizeof(*act)) ||
4386 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4387 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4388 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4389 __get_user(mask, &act->sa_mask))
4390 return -EFAULT;
4391#ifdef __ARCH_HAS_KA_RESTORER
4392 new_ka.ka_restorer = NULL;
4393#endif
4394 siginitset(&new_ka.sa.sa_mask, mask);
4395 }
4396
4397 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4398
4399 if (!ret && oact) {
4400 if (!access_ok(oact, sizeof(*oact)) ||
4401 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4402 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4403 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4404 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4405 return -EFAULT;
4406 }
4407
4408 return ret;
4409}
4410#endif
4411#ifdef CONFIG_COMPAT_OLD_SIGACTION
4412COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4413 const struct compat_old_sigaction __user *, act,
4414 struct compat_old_sigaction __user *, oact)
4415{
4416 struct k_sigaction new_ka, old_ka;
4417 int ret;
4418 compat_old_sigset_t mask;
4419 compat_uptr_t handler, restorer;
4420
4421 if (act) {
4422 if (!access_ok(act, sizeof(*act)) ||
4423 __get_user(handler, &act->sa_handler) ||
4424 __get_user(restorer, &act->sa_restorer) ||
4425 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4426 __get_user(mask, &act->sa_mask))
4427 return -EFAULT;
4428
4429#ifdef __ARCH_HAS_KA_RESTORER
4430 new_ka.ka_restorer = NULL;
4431#endif
4432 new_ka.sa.sa_handler = compat_ptr(handler);
4433 new_ka.sa.sa_restorer = compat_ptr(restorer);
4434 siginitset(&new_ka.sa.sa_mask, mask);
4435 }
4436
4437 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4438
4439 if (!ret && oact) {
4440 if (!access_ok(oact, sizeof(*oact)) ||
4441 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4442 &oact->sa_handler) ||
4443 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4444 &oact->sa_restorer) ||
4445 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4446 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4447 return -EFAULT;
4448 }
4449 return ret;
4450}
4451#endif
4452
4453#ifdef CONFIG_SGETMASK_SYSCALL
4454
4455/*
4456 * For backwards compatibility. Functionality superseded by sigprocmask.
4457 */
4458SYSCALL_DEFINE0(sgetmask)
4459{
4460 /* SMP safe */
4461 return current->blocked.sig[0];
4462}
4463
4464SYSCALL_DEFINE1(ssetmask, int, newmask)
4465{
4466 int old = current->blocked.sig[0];
4467 sigset_t newset;
4468
4469 siginitset(&newset, newmask);
4470 set_current_blocked(&newset);
4471
4472 return old;
4473}
4474#endif /* CONFIG_SGETMASK_SYSCALL */
4475
4476#ifdef __ARCH_WANT_SYS_SIGNAL
4477/*
4478 * For backwards compatibility. Functionality superseded by sigaction.
4479 */
4480SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4481{
4482 struct k_sigaction new_sa, old_sa;
4483 int ret;
4484
4485 new_sa.sa.sa_handler = handler;
4486 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4487 sigemptyset(&new_sa.sa.sa_mask);
4488
4489 ret = do_sigaction(sig, &new_sa, &old_sa);
4490
4491 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4492}
4493#endif /* __ARCH_WANT_SYS_SIGNAL */
4494
4495#ifdef __ARCH_WANT_SYS_PAUSE
4496
4497SYSCALL_DEFINE0(pause)
4498{
4499 while (!signal_pending(current)) {
4500 __set_current_state(TASK_INTERRUPTIBLE);
4501 schedule();
4502 }
4503 return -ERESTARTNOHAND;
4504}
4505
4506#endif
4507
4508static int sigsuspend(sigset_t *set)
4509{
4510 current->saved_sigmask = current->blocked;
4511 set_current_blocked(set);
4512
4513 while (!signal_pending(current)) {
4514 __set_current_state(TASK_INTERRUPTIBLE);
4515 schedule();
4516 }
4517 set_restore_sigmask();
4518 return -ERESTARTNOHAND;
4519}
4520
4521/**
4522 * sys_rt_sigsuspend - replace the signal mask for a value with the
4523 * @unewset value until a signal is received
4524 * @unewset: new signal mask value
4525 * @sigsetsize: size of sigset_t type
4526 */
4527SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4528{
4529 sigset_t newset;
4530
4531 /* XXX: Don't preclude handling different sized sigset_t's. */
4532 if (sigsetsize != sizeof(sigset_t))
4533 return -EINVAL;
4534
4535 if (copy_from_user(&newset, unewset, sizeof(newset)))
4536 return -EFAULT;
4537 return sigsuspend(&newset);
4538}
4539
4540#ifdef CONFIG_COMPAT
4541COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4542{
4543 sigset_t newset;
4544
4545 /* XXX: Don't preclude handling different sized sigset_t's. */
4546 if (sigsetsize != sizeof(sigset_t))
4547 return -EINVAL;
4548
4549 if (get_compat_sigset(&newset, unewset))
4550 return -EFAULT;
4551 return sigsuspend(&newset);
4552}
4553#endif
4554
4555#ifdef CONFIG_OLD_SIGSUSPEND
4556SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4557{
4558 sigset_t blocked;
4559 siginitset(&blocked, mask);
4560 return sigsuspend(&blocked);
4561}
4562#endif
4563#ifdef CONFIG_OLD_SIGSUSPEND3
4564SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4565{
4566 sigset_t blocked;
4567 siginitset(&blocked, mask);
4568 return sigsuspend(&blocked);
4569}
4570#endif
4571
4572__weak const char *arch_vma_name(struct vm_area_struct *vma)
4573{
4574 return NULL;
4575}
4576
4577static inline void siginfo_buildtime_checks(void)
4578{
4579 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4580
4581 /* Verify the offsets in the two siginfos match */
4582#define CHECK_OFFSET(field) \
4583 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4584
4585 /* kill */
4586 CHECK_OFFSET(si_pid);
4587 CHECK_OFFSET(si_uid);
4588
4589 /* timer */
4590 CHECK_OFFSET(si_tid);
4591 CHECK_OFFSET(si_overrun);
4592 CHECK_OFFSET(si_value);
4593
4594 /* rt */
4595 CHECK_OFFSET(si_pid);
4596 CHECK_OFFSET(si_uid);
4597 CHECK_OFFSET(si_value);
4598
4599 /* sigchld */
4600 CHECK_OFFSET(si_pid);
4601 CHECK_OFFSET(si_uid);
4602 CHECK_OFFSET(si_status);
4603 CHECK_OFFSET(si_utime);
4604 CHECK_OFFSET(si_stime);
4605
4606 /* sigfault */
4607 CHECK_OFFSET(si_addr);
4608 CHECK_OFFSET(si_trapno);
4609 CHECK_OFFSET(si_addr_lsb);
4610 CHECK_OFFSET(si_lower);
4611 CHECK_OFFSET(si_upper);
4612 CHECK_OFFSET(si_pkey);
4613 CHECK_OFFSET(si_perf_data);
4614 CHECK_OFFSET(si_perf_type);
4615
4616 /* sigpoll */
4617 CHECK_OFFSET(si_band);
4618 CHECK_OFFSET(si_fd);
4619
4620 /* sigsys */
4621 CHECK_OFFSET(si_call_addr);
4622 CHECK_OFFSET(si_syscall);
4623 CHECK_OFFSET(si_arch);
4624#undef CHECK_OFFSET
4625
4626 /* usb asyncio */
4627 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4628 offsetof(struct siginfo, si_addr));
4629 if (sizeof(int) == sizeof(void __user *)) {
4630 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4631 sizeof(void __user *));
4632 } else {
4633 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4634 sizeof_field(struct siginfo, si_uid)) !=
4635 sizeof(void __user *));
4636 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4637 offsetof(struct siginfo, si_uid));
4638 }
4639#ifdef CONFIG_COMPAT
4640 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4641 offsetof(struct compat_siginfo, si_addr));
4642 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4643 sizeof(compat_uptr_t));
4644 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4645 sizeof_field(struct siginfo, si_pid));
4646#endif
4647}
4648
4649void __init signals_init(void)
4650{
4651 siginfo_buildtime_checks();
4652
4653 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4654}
4655
4656#ifdef CONFIG_KGDB_KDB
4657#include <linux/kdb.h>
4658/*
4659 * kdb_send_sig - Allows kdb to send signals without exposing
4660 * signal internals. This function checks if the required locks are
4661 * available before calling the main signal code, to avoid kdb
4662 * deadlocks.
4663 */
4664void kdb_send_sig(struct task_struct *t, int sig)
4665{
4666 static struct task_struct *kdb_prev_t;
4667 int new_t, ret;
4668 if (!spin_trylock(&t->sighand->siglock)) {
4669 kdb_printf("Can't do kill command now.\n"
4670 "The sigmask lock is held somewhere else in "
4671 "kernel, try again later\n");
4672 return;
4673 }
4674 new_t = kdb_prev_t != t;
4675 kdb_prev_t = t;
4676 if (!task_is_running(t) && new_t) {
4677 spin_unlock(&t->sighand->siglock);
4678 kdb_printf("Process is not RUNNING, sending a signal from "
4679 "kdb risks deadlock\n"
4680 "on the run queue locks. "
4681 "The signal has _not_ been sent.\n"
4682 "Reissue the kill command if you want to risk "
4683 "the deadlock.\n");
4684 return;
4685 }
4686 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4687 spin_unlock(&t->sighand->siglock);
4688 if (ret)
4689 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4690 sig, t->pid);
4691 else
4692 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4693}
4694#endif /* CONFIG_KGDB_KDB */