Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/init.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/user.h>
19#include <linux/sched/debug.h>
20#include <linux/sched/task.h>
21#include <linux/sched/task_stack.h>
22#include <linux/sched/cputime.h>
23#include <linux/file.h>
24#include <linux/fs.h>
25#include <linux/proc_fs.h>
26#include <linux/tty.h>
27#include <linux/binfmts.h>
28#include <linux/coredump.h>
29#include <linux/security.h>
30#include <linux/syscalls.h>
31#include <linux/ptrace.h>
32#include <linux/signal.h>
33#include <linux/signalfd.h>
34#include <linux/ratelimit.h>
35#include <linux/tracehook.h>
36#include <linux/capability.h>
37#include <linux/freezer.h>
38#include <linux/pid_namespace.h>
39#include <linux/nsproxy.h>
40#include <linux/user_namespace.h>
41#include <linux/uprobes.h>
42#include <linux/compat.h>
43#include <linux/cn_proc.h>
44#include <linux/compiler.h>
45#include <linux/posix-timers.h>
46#include <linux/livepatch.h>
47#include <linux/cgroup.h>
48#include <linux/audit.h>
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/signal.h>
52
53#include <asm/param.h>
54#include <linux/uaccess.h>
55#include <asm/unistd.h>
56#include <asm/siginfo.h>
57#include <asm/cacheflush.h>
58
59/*
60 * SLAB caches for signal bits.
61 */
62
63static struct kmem_cache *sigqueue_cachep;
64
65int print_fatal_signals __read_mostly;
66
67static void __user *sig_handler(struct task_struct *t, int sig)
68{
69 return t->sighand->action[sig - 1].sa.sa_handler;
70}
71
72static inline bool sig_handler_ignored(void __user *handler, int sig)
73{
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
77}
78
79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80{
81 void __user *handler;
82
83 handler = sig_handler(t, sig);
84
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 return true;
88
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 return true;
92
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
96 return true;
97
98 return sig_handler_ignored(handler, sig);
99}
100
101static bool sig_ignored(struct task_struct *t, int sig, bool force)
102{
103 /*
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
106 * unblocked.
107 */
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 return false;
110
111 /*
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
115 */
116 if (t->ptrace && sig != SIGKILL)
117 return false;
118
119 return sig_task_ignored(t, sig, force);
120}
121
122/*
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
125 */
126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127{
128 unsigned long ready;
129 long i;
130
131 switch (_NSIG_WORDS) {
132 default:
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
135 break;
136
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
141 break;
142
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
145 break;
146
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
148 }
149 return ready != 0;
150}
151
152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153
154static bool recalc_sigpending_tsk(struct task_struct *t)
155{
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
161 return true;
162 }
163
164 /*
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
168 */
169 return false;
170}
171
172/*
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
175 */
176void recalc_sigpending_and_wake(struct task_struct *t)
177{
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
180}
181
182void recalc_sigpending(void)
183{
184 if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185 !klp_patch_pending(current))
186 clear_thread_flag(TIF_SIGPENDING);
187
188}
189EXPORT_SYMBOL(recalc_sigpending);
190
191void calculate_sigpending(void)
192{
193 /* Have any signals or users of TIF_SIGPENDING been delayed
194 * until after fork?
195 */
196 spin_lock_irq(¤t->sighand->siglock);
197 set_tsk_thread_flag(current, TIF_SIGPENDING);
198 recalc_sigpending();
199 spin_unlock_irq(¤t->sighand->siglock);
200}
201
202/* Given the mask, find the first available signal that should be serviced. */
203
204#define SYNCHRONOUS_MASK \
205 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207
208int next_signal(struct sigpending *pending, sigset_t *mask)
209{
210 unsigned long i, *s, *m, x;
211 int sig = 0;
212
213 s = pending->signal.sig;
214 m = mask->sig;
215
216 /*
217 * Handle the first word specially: it contains the
218 * synchronous signals that need to be dequeued first.
219 */
220 x = *s &~ *m;
221 if (x) {
222 if (x & SYNCHRONOUS_MASK)
223 x &= SYNCHRONOUS_MASK;
224 sig = ffz(~x) + 1;
225 return sig;
226 }
227
228 switch (_NSIG_WORDS) {
229 default:
230 for (i = 1; i < _NSIG_WORDS; ++i) {
231 x = *++s &~ *++m;
232 if (!x)
233 continue;
234 sig = ffz(~x) + i*_NSIG_BPW + 1;
235 break;
236 }
237 break;
238
239 case 2:
240 x = s[1] &~ m[1];
241 if (!x)
242 break;
243 sig = ffz(~x) + _NSIG_BPW + 1;
244 break;
245
246 case 1:
247 /* Nothing to do */
248 break;
249 }
250
251 return sig;
252}
253
254static inline void print_dropped_signal(int sig)
255{
256 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257
258 if (!print_fatal_signals)
259 return;
260
261 if (!__ratelimit(&ratelimit_state))
262 return;
263
264 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 current->comm, current->pid, sig);
266}
267
268/**
269 * task_set_jobctl_pending - set jobctl pending bits
270 * @task: target task
271 * @mask: pending bits to set
272 *
273 * Clear @mask from @task->jobctl. @mask must be subset of
274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
276 * cleared. If @task is already being killed or exiting, this function
277 * becomes noop.
278 *
279 * CONTEXT:
280 * Must be called with @task->sighand->siglock held.
281 *
282 * RETURNS:
283 * %true if @mask is set, %false if made noop because @task was dying.
284 */
285bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286{
287 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290
291 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 return false;
293
294 if (mask & JOBCTL_STOP_SIGMASK)
295 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296
297 task->jobctl |= mask;
298 return true;
299}
300
301/**
302 * task_clear_jobctl_trapping - clear jobctl trapping bit
303 * @task: target task
304 *
305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306 * Clear it and wake up the ptracer. Note that we don't need any further
307 * locking. @task->siglock guarantees that @task->parent points to the
308 * ptracer.
309 *
310 * CONTEXT:
311 * Must be called with @task->sighand->siglock held.
312 */
313void task_clear_jobctl_trapping(struct task_struct *task)
314{
315 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316 task->jobctl &= ~JOBCTL_TRAPPING;
317 smp_mb(); /* advised by wake_up_bit() */
318 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319 }
320}
321
322/**
323 * task_clear_jobctl_pending - clear jobctl pending bits
324 * @task: target task
325 * @mask: pending bits to clear
326 *
327 * Clear @mask from @task->jobctl. @mask must be subset of
328 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
329 * STOP bits are cleared together.
330 *
331 * If clearing of @mask leaves no stop or trap pending, this function calls
332 * task_clear_jobctl_trapping().
333 *
334 * CONTEXT:
335 * Must be called with @task->sighand->siglock held.
336 */
337void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338{
339 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340
341 if (mask & JOBCTL_STOP_PENDING)
342 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343
344 task->jobctl &= ~mask;
345
346 if (!(task->jobctl & JOBCTL_PENDING_MASK))
347 task_clear_jobctl_trapping(task);
348}
349
350/**
351 * task_participate_group_stop - participate in a group stop
352 * @task: task participating in a group stop
353 *
354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355 * Group stop states are cleared and the group stop count is consumed if
356 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
357 * stop, the appropriate `SIGNAL_*` flags are set.
358 *
359 * CONTEXT:
360 * Must be called with @task->sighand->siglock held.
361 *
362 * RETURNS:
363 * %true if group stop completion should be notified to the parent, %false
364 * otherwise.
365 */
366static bool task_participate_group_stop(struct task_struct *task)
367{
368 struct signal_struct *sig = task->signal;
369 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370
371 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372
373 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374
375 if (!consume)
376 return false;
377
378 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379 sig->group_stop_count--;
380
381 /*
382 * Tell the caller to notify completion iff we are entering into a
383 * fresh group stop. Read comment in do_signal_stop() for details.
384 */
385 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387 return true;
388 }
389 return false;
390}
391
392void task_join_group_stop(struct task_struct *task)
393{
394 /* Have the new thread join an on-going signal group stop */
395 unsigned long jobctl = current->jobctl;
396 if (jobctl & JOBCTL_STOP_PENDING) {
397 struct signal_struct *sig = current->signal;
398 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
399 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
400 if (task_set_jobctl_pending(task, signr | gstop)) {
401 sig->group_stop_count++;
402 }
403 }
404}
405
406/*
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
410 */
411static struct sigqueue *
412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
413{
414 struct sigqueue *q = NULL;
415 struct user_struct *user;
416
417 /*
418 * Protect access to @t credentials. This can go away when all
419 * callers hold rcu read lock.
420 */
421 rcu_read_lock();
422 user = get_uid(__task_cred(t)->user);
423 atomic_inc(&user->sigpending);
424 rcu_read_unlock();
425
426 if (override_rlimit ||
427 atomic_read(&user->sigpending) <=
428 task_rlimit(t, RLIMIT_SIGPENDING)) {
429 q = kmem_cache_alloc(sigqueue_cachep, flags);
430 } else {
431 print_dropped_signal(sig);
432 }
433
434 if (unlikely(q == NULL)) {
435 atomic_dec(&user->sigpending);
436 free_uid(user);
437 } else {
438 INIT_LIST_HEAD(&q->list);
439 q->flags = 0;
440 q->user = user;
441 }
442
443 return q;
444}
445
446static void __sigqueue_free(struct sigqueue *q)
447{
448 if (q->flags & SIGQUEUE_PREALLOC)
449 return;
450 atomic_dec(&q->user->sigpending);
451 free_uid(q->user);
452 kmem_cache_free(sigqueue_cachep, q);
453}
454
455void flush_sigqueue(struct sigpending *queue)
456{
457 struct sigqueue *q;
458
459 sigemptyset(&queue->signal);
460 while (!list_empty(&queue->list)) {
461 q = list_entry(queue->list.next, struct sigqueue , list);
462 list_del_init(&q->list);
463 __sigqueue_free(q);
464 }
465}
466
467/*
468 * Flush all pending signals for this kthread.
469 */
470void flush_signals(struct task_struct *t)
471{
472 unsigned long flags;
473
474 spin_lock_irqsave(&t->sighand->siglock, flags);
475 clear_tsk_thread_flag(t, TIF_SIGPENDING);
476 flush_sigqueue(&t->pending);
477 flush_sigqueue(&t->signal->shared_pending);
478 spin_unlock_irqrestore(&t->sighand->siglock, flags);
479}
480EXPORT_SYMBOL(flush_signals);
481
482#ifdef CONFIG_POSIX_TIMERS
483static void __flush_itimer_signals(struct sigpending *pending)
484{
485 sigset_t signal, retain;
486 struct sigqueue *q, *n;
487
488 signal = pending->signal;
489 sigemptyset(&retain);
490
491 list_for_each_entry_safe(q, n, &pending->list, list) {
492 int sig = q->info.si_signo;
493
494 if (likely(q->info.si_code != SI_TIMER)) {
495 sigaddset(&retain, sig);
496 } else {
497 sigdelset(&signal, sig);
498 list_del_init(&q->list);
499 __sigqueue_free(q);
500 }
501 }
502
503 sigorsets(&pending->signal, &signal, &retain);
504}
505
506void flush_itimer_signals(void)
507{
508 struct task_struct *tsk = current;
509 unsigned long flags;
510
511 spin_lock_irqsave(&tsk->sighand->siglock, flags);
512 __flush_itimer_signals(&tsk->pending);
513 __flush_itimer_signals(&tsk->signal->shared_pending);
514 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
515}
516#endif
517
518void ignore_signals(struct task_struct *t)
519{
520 int i;
521
522 for (i = 0; i < _NSIG; ++i)
523 t->sighand->action[i].sa.sa_handler = SIG_IGN;
524
525 flush_signals(t);
526}
527
528/*
529 * Flush all handlers for a task.
530 */
531
532void
533flush_signal_handlers(struct task_struct *t, int force_default)
534{
535 int i;
536 struct k_sigaction *ka = &t->sighand->action[0];
537 for (i = _NSIG ; i != 0 ; i--) {
538 if (force_default || ka->sa.sa_handler != SIG_IGN)
539 ka->sa.sa_handler = SIG_DFL;
540 ka->sa.sa_flags = 0;
541#ifdef __ARCH_HAS_SA_RESTORER
542 ka->sa.sa_restorer = NULL;
543#endif
544 sigemptyset(&ka->sa.sa_mask);
545 ka++;
546 }
547}
548
549bool unhandled_signal(struct task_struct *tsk, int sig)
550{
551 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
552 if (is_global_init(tsk))
553 return true;
554
555 if (handler != SIG_IGN && handler != SIG_DFL)
556 return false;
557
558 /* if ptraced, let the tracer determine */
559 return !tsk->ptrace;
560}
561
562static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
563 bool *resched_timer)
564{
565 struct sigqueue *q, *first = NULL;
566
567 /*
568 * Collect the siginfo appropriate to this signal. Check if
569 * there is another siginfo for the same signal.
570 */
571 list_for_each_entry(q, &list->list, list) {
572 if (q->info.si_signo == sig) {
573 if (first)
574 goto still_pending;
575 first = q;
576 }
577 }
578
579 sigdelset(&list->signal, sig);
580
581 if (first) {
582still_pending:
583 list_del_init(&first->list);
584 copy_siginfo(info, &first->info);
585
586 *resched_timer =
587 (first->flags & SIGQUEUE_PREALLOC) &&
588 (info->si_code == SI_TIMER) &&
589 (info->si_sys_private);
590
591 __sigqueue_free(first);
592 } else {
593 /*
594 * Ok, it wasn't in the queue. This must be
595 * a fast-pathed signal or we must have been
596 * out of queue space. So zero out the info.
597 */
598 clear_siginfo(info);
599 info->si_signo = sig;
600 info->si_errno = 0;
601 info->si_code = SI_USER;
602 info->si_pid = 0;
603 info->si_uid = 0;
604 }
605}
606
607static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
608 kernel_siginfo_t *info, bool *resched_timer)
609{
610 int sig = next_signal(pending, mask);
611
612 if (sig)
613 collect_signal(sig, pending, info, resched_timer);
614 return sig;
615}
616
617/*
618 * Dequeue a signal and return the element to the caller, which is
619 * expected to free it.
620 *
621 * All callers have to hold the siglock.
622 */
623int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
624{
625 bool resched_timer = false;
626 int signr;
627
628 /* We only dequeue private signals from ourselves, we don't let
629 * signalfd steal them
630 */
631 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
632 if (!signr) {
633 signr = __dequeue_signal(&tsk->signal->shared_pending,
634 mask, info, &resched_timer);
635#ifdef CONFIG_POSIX_TIMERS
636 /*
637 * itimer signal ?
638 *
639 * itimers are process shared and we restart periodic
640 * itimers in the signal delivery path to prevent DoS
641 * attacks in the high resolution timer case. This is
642 * compliant with the old way of self-restarting
643 * itimers, as the SIGALRM is a legacy signal and only
644 * queued once. Changing the restart behaviour to
645 * restart the timer in the signal dequeue path is
646 * reducing the timer noise on heavy loaded !highres
647 * systems too.
648 */
649 if (unlikely(signr == SIGALRM)) {
650 struct hrtimer *tmr = &tsk->signal->real_timer;
651
652 if (!hrtimer_is_queued(tmr) &&
653 tsk->signal->it_real_incr != 0) {
654 hrtimer_forward(tmr, tmr->base->get_time(),
655 tsk->signal->it_real_incr);
656 hrtimer_restart(tmr);
657 }
658 }
659#endif
660 }
661
662 recalc_sigpending();
663 if (!signr)
664 return 0;
665
666 if (unlikely(sig_kernel_stop(signr))) {
667 /*
668 * Set a marker that we have dequeued a stop signal. Our
669 * caller might release the siglock and then the pending
670 * stop signal it is about to process is no longer in the
671 * pending bitmasks, but must still be cleared by a SIGCONT
672 * (and overruled by a SIGKILL). So those cases clear this
673 * shared flag after we've set it. Note that this flag may
674 * remain set after the signal we return is ignored or
675 * handled. That doesn't matter because its only purpose
676 * is to alert stop-signal processing code when another
677 * processor has come along and cleared the flag.
678 */
679 current->jobctl |= JOBCTL_STOP_DEQUEUED;
680 }
681#ifdef CONFIG_POSIX_TIMERS
682 if (resched_timer) {
683 /*
684 * Release the siglock to ensure proper locking order
685 * of timer locks outside of siglocks. Note, we leave
686 * irqs disabled here, since the posix-timers code is
687 * about to disable them again anyway.
688 */
689 spin_unlock(&tsk->sighand->siglock);
690 posixtimer_rearm(info);
691 spin_lock(&tsk->sighand->siglock);
692
693 /* Don't expose the si_sys_private value to userspace */
694 info->si_sys_private = 0;
695 }
696#endif
697 return signr;
698}
699EXPORT_SYMBOL_GPL(dequeue_signal);
700
701static int dequeue_synchronous_signal(kernel_siginfo_t *info)
702{
703 struct task_struct *tsk = current;
704 struct sigpending *pending = &tsk->pending;
705 struct sigqueue *q, *sync = NULL;
706
707 /*
708 * Might a synchronous signal be in the queue?
709 */
710 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
711 return 0;
712
713 /*
714 * Return the first synchronous signal in the queue.
715 */
716 list_for_each_entry(q, &pending->list, list) {
717 /* Synchronous signals have a postive si_code */
718 if ((q->info.si_code > SI_USER) &&
719 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
720 sync = q;
721 goto next;
722 }
723 }
724 return 0;
725next:
726 /*
727 * Check if there is another siginfo for the same signal.
728 */
729 list_for_each_entry_continue(q, &pending->list, list) {
730 if (q->info.si_signo == sync->info.si_signo)
731 goto still_pending;
732 }
733
734 sigdelset(&pending->signal, sync->info.si_signo);
735 recalc_sigpending();
736still_pending:
737 list_del_init(&sync->list);
738 copy_siginfo(info, &sync->info);
739 __sigqueue_free(sync);
740 return info->si_signo;
741}
742
743/*
744 * Tell a process that it has a new active signal..
745 *
746 * NOTE! we rely on the previous spin_lock to
747 * lock interrupts for us! We can only be called with
748 * "siglock" held, and the local interrupt must
749 * have been disabled when that got acquired!
750 *
751 * No need to set need_resched since signal event passing
752 * goes through ->blocked
753 */
754void signal_wake_up_state(struct task_struct *t, unsigned int state)
755{
756 set_tsk_thread_flag(t, TIF_SIGPENDING);
757 /*
758 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
759 * case. We don't check t->state here because there is a race with it
760 * executing another processor and just now entering stopped state.
761 * By using wake_up_state, we ensure the process will wake up and
762 * handle its death signal.
763 */
764 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
765 kick_process(t);
766}
767
768/*
769 * Remove signals in mask from the pending set and queue.
770 * Returns 1 if any signals were found.
771 *
772 * All callers must be holding the siglock.
773 */
774static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
775{
776 struct sigqueue *q, *n;
777 sigset_t m;
778
779 sigandsets(&m, mask, &s->signal);
780 if (sigisemptyset(&m))
781 return;
782
783 sigandnsets(&s->signal, &s->signal, mask);
784 list_for_each_entry_safe(q, n, &s->list, list) {
785 if (sigismember(mask, q->info.si_signo)) {
786 list_del_init(&q->list);
787 __sigqueue_free(q);
788 }
789 }
790}
791
792static inline int is_si_special(const struct kernel_siginfo *info)
793{
794 return info <= SEND_SIG_PRIV;
795}
796
797static inline bool si_fromuser(const struct kernel_siginfo *info)
798{
799 return info == SEND_SIG_NOINFO ||
800 (!is_si_special(info) && SI_FROMUSER(info));
801}
802
803/*
804 * called with RCU read lock from check_kill_permission()
805 */
806static bool kill_ok_by_cred(struct task_struct *t)
807{
808 const struct cred *cred = current_cred();
809 const struct cred *tcred = __task_cred(t);
810
811 return uid_eq(cred->euid, tcred->suid) ||
812 uid_eq(cred->euid, tcred->uid) ||
813 uid_eq(cred->uid, tcred->suid) ||
814 uid_eq(cred->uid, tcred->uid) ||
815 ns_capable(tcred->user_ns, CAP_KILL);
816}
817
818/*
819 * Bad permissions for sending the signal
820 * - the caller must hold the RCU read lock
821 */
822static int check_kill_permission(int sig, struct kernel_siginfo *info,
823 struct task_struct *t)
824{
825 struct pid *sid;
826 int error;
827
828 if (!valid_signal(sig))
829 return -EINVAL;
830
831 if (!si_fromuser(info))
832 return 0;
833
834 error = audit_signal_info(sig, t); /* Let audit system see the signal */
835 if (error)
836 return error;
837
838 if (!same_thread_group(current, t) &&
839 !kill_ok_by_cred(t)) {
840 switch (sig) {
841 case SIGCONT:
842 sid = task_session(t);
843 /*
844 * We don't return the error if sid == NULL. The
845 * task was unhashed, the caller must notice this.
846 */
847 if (!sid || sid == task_session(current))
848 break;
849 /* fall through */
850 default:
851 return -EPERM;
852 }
853 }
854
855 return security_task_kill(t, info, sig, NULL);
856}
857
858/**
859 * ptrace_trap_notify - schedule trap to notify ptracer
860 * @t: tracee wanting to notify tracer
861 *
862 * This function schedules sticky ptrace trap which is cleared on the next
863 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
864 * ptracer.
865 *
866 * If @t is running, STOP trap will be taken. If trapped for STOP and
867 * ptracer is listening for events, tracee is woken up so that it can
868 * re-trap for the new event. If trapped otherwise, STOP trap will be
869 * eventually taken without returning to userland after the existing traps
870 * are finished by PTRACE_CONT.
871 *
872 * CONTEXT:
873 * Must be called with @task->sighand->siglock held.
874 */
875static void ptrace_trap_notify(struct task_struct *t)
876{
877 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
878 assert_spin_locked(&t->sighand->siglock);
879
880 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
881 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
882}
883
884/*
885 * Handle magic process-wide effects of stop/continue signals. Unlike
886 * the signal actions, these happen immediately at signal-generation
887 * time regardless of blocking, ignoring, or handling. This does the
888 * actual continuing for SIGCONT, but not the actual stopping for stop
889 * signals. The process stop is done as a signal action for SIG_DFL.
890 *
891 * Returns true if the signal should be actually delivered, otherwise
892 * it should be dropped.
893 */
894static bool prepare_signal(int sig, struct task_struct *p, bool force)
895{
896 struct signal_struct *signal = p->signal;
897 struct task_struct *t;
898 sigset_t flush;
899
900 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
901 if (!(signal->flags & SIGNAL_GROUP_EXIT))
902 return sig == SIGKILL;
903 /*
904 * The process is in the middle of dying, nothing to do.
905 */
906 } else if (sig_kernel_stop(sig)) {
907 /*
908 * This is a stop signal. Remove SIGCONT from all queues.
909 */
910 siginitset(&flush, sigmask(SIGCONT));
911 flush_sigqueue_mask(&flush, &signal->shared_pending);
912 for_each_thread(p, t)
913 flush_sigqueue_mask(&flush, &t->pending);
914 } else if (sig == SIGCONT) {
915 unsigned int why;
916 /*
917 * Remove all stop signals from all queues, wake all threads.
918 */
919 siginitset(&flush, SIG_KERNEL_STOP_MASK);
920 flush_sigqueue_mask(&flush, &signal->shared_pending);
921 for_each_thread(p, t) {
922 flush_sigqueue_mask(&flush, &t->pending);
923 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
924 if (likely(!(t->ptrace & PT_SEIZED)))
925 wake_up_state(t, __TASK_STOPPED);
926 else
927 ptrace_trap_notify(t);
928 }
929
930 /*
931 * Notify the parent with CLD_CONTINUED if we were stopped.
932 *
933 * If we were in the middle of a group stop, we pretend it
934 * was already finished, and then continued. Since SIGCHLD
935 * doesn't queue we report only CLD_STOPPED, as if the next
936 * CLD_CONTINUED was dropped.
937 */
938 why = 0;
939 if (signal->flags & SIGNAL_STOP_STOPPED)
940 why |= SIGNAL_CLD_CONTINUED;
941 else if (signal->group_stop_count)
942 why |= SIGNAL_CLD_STOPPED;
943
944 if (why) {
945 /*
946 * The first thread which returns from do_signal_stop()
947 * will take ->siglock, notice SIGNAL_CLD_MASK, and
948 * notify its parent. See get_signal().
949 */
950 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
951 signal->group_stop_count = 0;
952 signal->group_exit_code = 0;
953 }
954 }
955
956 return !sig_ignored(p, sig, force);
957}
958
959/*
960 * Test if P wants to take SIG. After we've checked all threads with this,
961 * it's equivalent to finding no threads not blocking SIG. Any threads not
962 * blocking SIG were ruled out because they are not running and already
963 * have pending signals. Such threads will dequeue from the shared queue
964 * as soon as they're available, so putting the signal on the shared queue
965 * will be equivalent to sending it to one such thread.
966 */
967static inline bool wants_signal(int sig, struct task_struct *p)
968{
969 if (sigismember(&p->blocked, sig))
970 return false;
971
972 if (p->flags & PF_EXITING)
973 return false;
974
975 if (sig == SIGKILL)
976 return true;
977
978 if (task_is_stopped_or_traced(p))
979 return false;
980
981 return task_curr(p) || !signal_pending(p);
982}
983
984static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
985{
986 struct signal_struct *signal = p->signal;
987 struct task_struct *t;
988
989 /*
990 * Now find a thread we can wake up to take the signal off the queue.
991 *
992 * If the main thread wants the signal, it gets first crack.
993 * Probably the least surprising to the average bear.
994 */
995 if (wants_signal(sig, p))
996 t = p;
997 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
998 /*
999 * There is just one thread and it does not need to be woken.
1000 * It will dequeue unblocked signals before it runs again.
1001 */
1002 return;
1003 else {
1004 /*
1005 * Otherwise try to find a suitable thread.
1006 */
1007 t = signal->curr_target;
1008 while (!wants_signal(sig, t)) {
1009 t = next_thread(t);
1010 if (t == signal->curr_target)
1011 /*
1012 * No thread needs to be woken.
1013 * Any eligible threads will see
1014 * the signal in the queue soon.
1015 */
1016 return;
1017 }
1018 signal->curr_target = t;
1019 }
1020
1021 /*
1022 * Found a killable thread. If the signal will be fatal,
1023 * then start taking the whole group down immediately.
1024 */
1025 if (sig_fatal(p, sig) &&
1026 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1027 !sigismember(&t->real_blocked, sig) &&
1028 (sig == SIGKILL || !p->ptrace)) {
1029 /*
1030 * This signal will be fatal to the whole group.
1031 */
1032 if (!sig_kernel_coredump(sig)) {
1033 /*
1034 * Start a group exit and wake everybody up.
1035 * This way we don't have other threads
1036 * running and doing things after a slower
1037 * thread has the fatal signal pending.
1038 */
1039 signal->flags = SIGNAL_GROUP_EXIT;
1040 signal->group_exit_code = sig;
1041 signal->group_stop_count = 0;
1042 t = p;
1043 do {
1044 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1045 sigaddset(&t->pending.signal, SIGKILL);
1046 signal_wake_up(t, 1);
1047 } while_each_thread(p, t);
1048 return;
1049 }
1050 }
1051
1052 /*
1053 * The signal is already in the shared-pending queue.
1054 * Tell the chosen thread to wake up and dequeue it.
1055 */
1056 signal_wake_up(t, sig == SIGKILL);
1057 return;
1058}
1059
1060static inline bool legacy_queue(struct sigpending *signals, int sig)
1061{
1062 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1063}
1064
1065static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1066 enum pid_type type, bool force)
1067{
1068 struct sigpending *pending;
1069 struct sigqueue *q;
1070 int override_rlimit;
1071 int ret = 0, result;
1072
1073 assert_spin_locked(&t->sighand->siglock);
1074
1075 result = TRACE_SIGNAL_IGNORED;
1076 if (!prepare_signal(sig, t, force))
1077 goto ret;
1078
1079 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1080 /*
1081 * Short-circuit ignored signals and support queuing
1082 * exactly one non-rt signal, so that we can get more
1083 * detailed information about the cause of the signal.
1084 */
1085 result = TRACE_SIGNAL_ALREADY_PENDING;
1086 if (legacy_queue(pending, sig))
1087 goto ret;
1088
1089 result = TRACE_SIGNAL_DELIVERED;
1090 /*
1091 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1092 */
1093 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1094 goto out_set;
1095
1096 /*
1097 * Real-time signals must be queued if sent by sigqueue, or
1098 * some other real-time mechanism. It is implementation
1099 * defined whether kill() does so. We attempt to do so, on
1100 * the principle of least surprise, but since kill is not
1101 * allowed to fail with EAGAIN when low on memory we just
1102 * make sure at least one signal gets delivered and don't
1103 * pass on the info struct.
1104 */
1105 if (sig < SIGRTMIN)
1106 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1107 else
1108 override_rlimit = 0;
1109
1110 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1111 if (q) {
1112 list_add_tail(&q->list, &pending->list);
1113 switch ((unsigned long) info) {
1114 case (unsigned long) SEND_SIG_NOINFO:
1115 clear_siginfo(&q->info);
1116 q->info.si_signo = sig;
1117 q->info.si_errno = 0;
1118 q->info.si_code = SI_USER;
1119 q->info.si_pid = task_tgid_nr_ns(current,
1120 task_active_pid_ns(t));
1121 rcu_read_lock();
1122 q->info.si_uid =
1123 from_kuid_munged(task_cred_xxx(t, user_ns),
1124 current_uid());
1125 rcu_read_unlock();
1126 break;
1127 case (unsigned long) SEND_SIG_PRIV:
1128 clear_siginfo(&q->info);
1129 q->info.si_signo = sig;
1130 q->info.si_errno = 0;
1131 q->info.si_code = SI_KERNEL;
1132 q->info.si_pid = 0;
1133 q->info.si_uid = 0;
1134 break;
1135 default:
1136 copy_siginfo(&q->info, info);
1137 break;
1138 }
1139 } else if (!is_si_special(info) &&
1140 sig >= SIGRTMIN && info->si_code != SI_USER) {
1141 /*
1142 * Queue overflow, abort. We may abort if the
1143 * signal was rt and sent by user using something
1144 * other than kill().
1145 */
1146 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1147 ret = -EAGAIN;
1148 goto ret;
1149 } else {
1150 /*
1151 * This is a silent loss of information. We still
1152 * send the signal, but the *info bits are lost.
1153 */
1154 result = TRACE_SIGNAL_LOSE_INFO;
1155 }
1156
1157out_set:
1158 signalfd_notify(t, sig);
1159 sigaddset(&pending->signal, sig);
1160
1161 /* Let multiprocess signals appear after on-going forks */
1162 if (type > PIDTYPE_TGID) {
1163 struct multiprocess_signals *delayed;
1164 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1165 sigset_t *signal = &delayed->signal;
1166 /* Can't queue both a stop and a continue signal */
1167 if (sig == SIGCONT)
1168 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1169 else if (sig_kernel_stop(sig))
1170 sigdelset(signal, SIGCONT);
1171 sigaddset(signal, sig);
1172 }
1173 }
1174
1175 complete_signal(sig, t, type);
1176ret:
1177 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1178 return ret;
1179}
1180
1181static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1182{
1183 bool ret = false;
1184 switch (siginfo_layout(info->si_signo, info->si_code)) {
1185 case SIL_KILL:
1186 case SIL_CHLD:
1187 case SIL_RT:
1188 ret = true;
1189 break;
1190 case SIL_TIMER:
1191 case SIL_POLL:
1192 case SIL_FAULT:
1193 case SIL_FAULT_MCEERR:
1194 case SIL_FAULT_BNDERR:
1195 case SIL_FAULT_PKUERR:
1196 case SIL_SYS:
1197 ret = false;
1198 break;
1199 }
1200 return ret;
1201}
1202
1203static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1204 enum pid_type type)
1205{
1206 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1207 bool force = false;
1208
1209 if (info == SEND_SIG_NOINFO) {
1210 /* Force if sent from an ancestor pid namespace */
1211 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1212 } else if (info == SEND_SIG_PRIV) {
1213 /* Don't ignore kernel generated signals */
1214 force = true;
1215 } else if (has_si_pid_and_uid(info)) {
1216 /* SIGKILL and SIGSTOP is special or has ids */
1217 struct user_namespace *t_user_ns;
1218
1219 rcu_read_lock();
1220 t_user_ns = task_cred_xxx(t, user_ns);
1221 if (current_user_ns() != t_user_ns) {
1222 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1223 info->si_uid = from_kuid_munged(t_user_ns, uid);
1224 }
1225 rcu_read_unlock();
1226
1227 /* A kernel generated signal? */
1228 force = (info->si_code == SI_KERNEL);
1229
1230 /* From an ancestor pid namespace? */
1231 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1232 info->si_pid = 0;
1233 force = true;
1234 }
1235 }
1236 return __send_signal(sig, info, t, type, force);
1237}
1238
1239static void print_fatal_signal(int signr)
1240{
1241 struct pt_regs *regs = signal_pt_regs();
1242 pr_info("potentially unexpected fatal signal %d.\n", signr);
1243
1244#if defined(__i386__) && !defined(__arch_um__)
1245 pr_info("code at %08lx: ", regs->ip);
1246 {
1247 int i;
1248 for (i = 0; i < 16; i++) {
1249 unsigned char insn;
1250
1251 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1252 break;
1253 pr_cont("%02x ", insn);
1254 }
1255 }
1256 pr_cont("\n");
1257#endif
1258 preempt_disable();
1259 show_regs(regs);
1260 preempt_enable();
1261}
1262
1263static int __init setup_print_fatal_signals(char *str)
1264{
1265 get_option (&str, &print_fatal_signals);
1266
1267 return 1;
1268}
1269
1270__setup("print-fatal-signals=", setup_print_fatal_signals);
1271
1272int
1273__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1274{
1275 return send_signal(sig, info, p, PIDTYPE_TGID);
1276}
1277
1278int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1279 enum pid_type type)
1280{
1281 unsigned long flags;
1282 int ret = -ESRCH;
1283
1284 if (lock_task_sighand(p, &flags)) {
1285 ret = send_signal(sig, info, p, type);
1286 unlock_task_sighand(p, &flags);
1287 }
1288
1289 return ret;
1290}
1291
1292/*
1293 * Force a signal that the process can't ignore: if necessary
1294 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1295 *
1296 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1297 * since we do not want to have a signal handler that was blocked
1298 * be invoked when user space had explicitly blocked it.
1299 *
1300 * We don't want to have recursive SIGSEGV's etc, for example,
1301 * that is why we also clear SIGNAL_UNKILLABLE.
1302 */
1303static int
1304force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1305{
1306 unsigned long int flags;
1307 int ret, blocked, ignored;
1308 struct k_sigaction *action;
1309 int sig = info->si_signo;
1310
1311 spin_lock_irqsave(&t->sighand->siglock, flags);
1312 action = &t->sighand->action[sig-1];
1313 ignored = action->sa.sa_handler == SIG_IGN;
1314 blocked = sigismember(&t->blocked, sig);
1315 if (blocked || ignored) {
1316 action->sa.sa_handler = SIG_DFL;
1317 if (blocked) {
1318 sigdelset(&t->blocked, sig);
1319 recalc_sigpending_and_wake(t);
1320 }
1321 }
1322 /*
1323 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1324 * debugging to leave init killable.
1325 */
1326 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1327 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1328 ret = send_signal(sig, info, t, PIDTYPE_PID);
1329 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1330
1331 return ret;
1332}
1333
1334int force_sig_info(struct kernel_siginfo *info)
1335{
1336 return force_sig_info_to_task(info, current);
1337}
1338
1339/*
1340 * Nuke all other threads in the group.
1341 */
1342int zap_other_threads(struct task_struct *p)
1343{
1344 struct task_struct *t = p;
1345 int count = 0;
1346
1347 p->signal->group_stop_count = 0;
1348
1349 while_each_thread(p, t) {
1350 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1351 count++;
1352
1353 /* Don't bother with already dead threads */
1354 if (t->exit_state)
1355 continue;
1356 sigaddset(&t->pending.signal, SIGKILL);
1357 signal_wake_up(t, 1);
1358 }
1359
1360 return count;
1361}
1362
1363struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1364 unsigned long *flags)
1365{
1366 struct sighand_struct *sighand;
1367
1368 rcu_read_lock();
1369 for (;;) {
1370 sighand = rcu_dereference(tsk->sighand);
1371 if (unlikely(sighand == NULL))
1372 break;
1373
1374 /*
1375 * This sighand can be already freed and even reused, but
1376 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1377 * initializes ->siglock: this slab can't go away, it has
1378 * the same object type, ->siglock can't be reinitialized.
1379 *
1380 * We need to ensure that tsk->sighand is still the same
1381 * after we take the lock, we can race with de_thread() or
1382 * __exit_signal(). In the latter case the next iteration
1383 * must see ->sighand == NULL.
1384 */
1385 spin_lock_irqsave(&sighand->siglock, *flags);
1386 if (likely(sighand == tsk->sighand))
1387 break;
1388 spin_unlock_irqrestore(&sighand->siglock, *flags);
1389 }
1390 rcu_read_unlock();
1391
1392 return sighand;
1393}
1394
1395/*
1396 * send signal info to all the members of a group
1397 */
1398int group_send_sig_info(int sig, struct kernel_siginfo *info,
1399 struct task_struct *p, enum pid_type type)
1400{
1401 int ret;
1402
1403 rcu_read_lock();
1404 ret = check_kill_permission(sig, info, p);
1405 rcu_read_unlock();
1406
1407 if (!ret && sig)
1408 ret = do_send_sig_info(sig, info, p, type);
1409
1410 return ret;
1411}
1412
1413/*
1414 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1415 * control characters do (^C, ^Z etc)
1416 * - the caller must hold at least a readlock on tasklist_lock
1417 */
1418int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1419{
1420 struct task_struct *p = NULL;
1421 int retval, success;
1422
1423 success = 0;
1424 retval = -ESRCH;
1425 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1426 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1427 success |= !err;
1428 retval = err;
1429 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1430 return success ? 0 : retval;
1431}
1432
1433int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1434{
1435 int error = -ESRCH;
1436 struct task_struct *p;
1437
1438 for (;;) {
1439 rcu_read_lock();
1440 p = pid_task(pid, PIDTYPE_PID);
1441 if (p)
1442 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1443 rcu_read_unlock();
1444 if (likely(!p || error != -ESRCH))
1445 return error;
1446
1447 /*
1448 * The task was unhashed in between, try again. If it
1449 * is dead, pid_task() will return NULL, if we race with
1450 * de_thread() it will find the new leader.
1451 */
1452 }
1453}
1454
1455static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1456{
1457 int error;
1458 rcu_read_lock();
1459 error = kill_pid_info(sig, info, find_vpid(pid));
1460 rcu_read_unlock();
1461 return error;
1462}
1463
1464static inline bool kill_as_cred_perm(const struct cred *cred,
1465 struct task_struct *target)
1466{
1467 const struct cred *pcred = __task_cred(target);
1468
1469 return uid_eq(cred->euid, pcred->suid) ||
1470 uid_eq(cred->euid, pcred->uid) ||
1471 uid_eq(cred->uid, pcred->suid) ||
1472 uid_eq(cred->uid, pcred->uid);
1473}
1474
1475/*
1476 * The usb asyncio usage of siginfo is wrong. The glibc support
1477 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1478 * AKA after the generic fields:
1479 * kernel_pid_t si_pid;
1480 * kernel_uid32_t si_uid;
1481 * sigval_t si_value;
1482 *
1483 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1484 * after the generic fields is:
1485 * void __user *si_addr;
1486 *
1487 * This is a practical problem when there is a 64bit big endian kernel
1488 * and a 32bit userspace. As the 32bit address will encoded in the low
1489 * 32bits of the pointer. Those low 32bits will be stored at higher
1490 * address than appear in a 32 bit pointer. So userspace will not
1491 * see the address it was expecting for it's completions.
1492 *
1493 * There is nothing in the encoding that can allow
1494 * copy_siginfo_to_user32 to detect this confusion of formats, so
1495 * handle this by requiring the caller of kill_pid_usb_asyncio to
1496 * notice when this situration takes place and to store the 32bit
1497 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1498 * parameter.
1499 */
1500int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1501 struct pid *pid, const struct cred *cred)
1502{
1503 struct kernel_siginfo info;
1504 struct task_struct *p;
1505 unsigned long flags;
1506 int ret = -EINVAL;
1507
1508 clear_siginfo(&info);
1509 info.si_signo = sig;
1510 info.si_errno = errno;
1511 info.si_code = SI_ASYNCIO;
1512 *((sigval_t *)&info.si_pid) = addr;
1513
1514 if (!valid_signal(sig))
1515 return ret;
1516
1517 rcu_read_lock();
1518 p = pid_task(pid, PIDTYPE_PID);
1519 if (!p) {
1520 ret = -ESRCH;
1521 goto out_unlock;
1522 }
1523 if (!kill_as_cred_perm(cred, p)) {
1524 ret = -EPERM;
1525 goto out_unlock;
1526 }
1527 ret = security_task_kill(p, &info, sig, cred);
1528 if (ret)
1529 goto out_unlock;
1530
1531 if (sig) {
1532 if (lock_task_sighand(p, &flags)) {
1533 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1534 unlock_task_sighand(p, &flags);
1535 } else
1536 ret = -ESRCH;
1537 }
1538out_unlock:
1539 rcu_read_unlock();
1540 return ret;
1541}
1542EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1543
1544/*
1545 * kill_something_info() interprets pid in interesting ways just like kill(2).
1546 *
1547 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1548 * is probably wrong. Should make it like BSD or SYSV.
1549 */
1550
1551static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1552{
1553 int ret;
1554
1555 if (pid > 0) {
1556 rcu_read_lock();
1557 ret = kill_pid_info(sig, info, find_vpid(pid));
1558 rcu_read_unlock();
1559 return ret;
1560 }
1561
1562 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1563 if (pid == INT_MIN)
1564 return -ESRCH;
1565
1566 read_lock(&tasklist_lock);
1567 if (pid != -1) {
1568 ret = __kill_pgrp_info(sig, info,
1569 pid ? find_vpid(-pid) : task_pgrp(current));
1570 } else {
1571 int retval = 0, count = 0;
1572 struct task_struct * p;
1573
1574 for_each_process(p) {
1575 if (task_pid_vnr(p) > 1 &&
1576 !same_thread_group(p, current)) {
1577 int err = group_send_sig_info(sig, info, p,
1578 PIDTYPE_MAX);
1579 ++count;
1580 if (err != -EPERM)
1581 retval = err;
1582 }
1583 }
1584 ret = count ? retval : -ESRCH;
1585 }
1586 read_unlock(&tasklist_lock);
1587
1588 return ret;
1589}
1590
1591/*
1592 * These are for backward compatibility with the rest of the kernel source.
1593 */
1594
1595int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1596{
1597 /*
1598 * Make sure legacy kernel users don't send in bad values
1599 * (normal paths check this in check_kill_permission).
1600 */
1601 if (!valid_signal(sig))
1602 return -EINVAL;
1603
1604 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1605}
1606EXPORT_SYMBOL(send_sig_info);
1607
1608#define __si_special(priv) \
1609 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1610
1611int
1612send_sig(int sig, struct task_struct *p, int priv)
1613{
1614 return send_sig_info(sig, __si_special(priv), p);
1615}
1616EXPORT_SYMBOL(send_sig);
1617
1618void force_sig(int sig)
1619{
1620 struct kernel_siginfo info;
1621
1622 clear_siginfo(&info);
1623 info.si_signo = sig;
1624 info.si_errno = 0;
1625 info.si_code = SI_KERNEL;
1626 info.si_pid = 0;
1627 info.si_uid = 0;
1628 force_sig_info(&info);
1629}
1630EXPORT_SYMBOL(force_sig);
1631
1632/*
1633 * When things go south during signal handling, we
1634 * will force a SIGSEGV. And if the signal that caused
1635 * the problem was already a SIGSEGV, we'll want to
1636 * make sure we don't even try to deliver the signal..
1637 */
1638void force_sigsegv(int sig)
1639{
1640 struct task_struct *p = current;
1641
1642 if (sig == SIGSEGV) {
1643 unsigned long flags;
1644 spin_lock_irqsave(&p->sighand->siglock, flags);
1645 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1646 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1647 }
1648 force_sig(SIGSEGV);
1649}
1650
1651int force_sig_fault_to_task(int sig, int code, void __user *addr
1652 ___ARCH_SI_TRAPNO(int trapno)
1653 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1654 , struct task_struct *t)
1655{
1656 struct kernel_siginfo info;
1657
1658 clear_siginfo(&info);
1659 info.si_signo = sig;
1660 info.si_errno = 0;
1661 info.si_code = code;
1662 info.si_addr = addr;
1663#ifdef __ARCH_SI_TRAPNO
1664 info.si_trapno = trapno;
1665#endif
1666#ifdef __ia64__
1667 info.si_imm = imm;
1668 info.si_flags = flags;
1669 info.si_isr = isr;
1670#endif
1671 return force_sig_info_to_task(&info, t);
1672}
1673
1674int force_sig_fault(int sig, int code, void __user *addr
1675 ___ARCH_SI_TRAPNO(int trapno)
1676 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1677{
1678 return force_sig_fault_to_task(sig, code, addr
1679 ___ARCH_SI_TRAPNO(trapno)
1680 ___ARCH_SI_IA64(imm, flags, isr), current);
1681}
1682
1683int send_sig_fault(int sig, int code, void __user *addr
1684 ___ARCH_SI_TRAPNO(int trapno)
1685 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1686 , struct task_struct *t)
1687{
1688 struct kernel_siginfo info;
1689
1690 clear_siginfo(&info);
1691 info.si_signo = sig;
1692 info.si_errno = 0;
1693 info.si_code = code;
1694 info.si_addr = addr;
1695#ifdef __ARCH_SI_TRAPNO
1696 info.si_trapno = trapno;
1697#endif
1698#ifdef __ia64__
1699 info.si_imm = imm;
1700 info.si_flags = flags;
1701 info.si_isr = isr;
1702#endif
1703 return send_sig_info(info.si_signo, &info, t);
1704}
1705
1706int force_sig_mceerr(int code, void __user *addr, short lsb)
1707{
1708 struct kernel_siginfo info;
1709
1710 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1711 clear_siginfo(&info);
1712 info.si_signo = SIGBUS;
1713 info.si_errno = 0;
1714 info.si_code = code;
1715 info.si_addr = addr;
1716 info.si_addr_lsb = lsb;
1717 return force_sig_info(&info);
1718}
1719
1720int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1721{
1722 struct kernel_siginfo info;
1723
1724 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1725 clear_siginfo(&info);
1726 info.si_signo = SIGBUS;
1727 info.si_errno = 0;
1728 info.si_code = code;
1729 info.si_addr = addr;
1730 info.si_addr_lsb = lsb;
1731 return send_sig_info(info.si_signo, &info, t);
1732}
1733EXPORT_SYMBOL(send_sig_mceerr);
1734
1735int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1736{
1737 struct kernel_siginfo info;
1738
1739 clear_siginfo(&info);
1740 info.si_signo = SIGSEGV;
1741 info.si_errno = 0;
1742 info.si_code = SEGV_BNDERR;
1743 info.si_addr = addr;
1744 info.si_lower = lower;
1745 info.si_upper = upper;
1746 return force_sig_info(&info);
1747}
1748
1749#ifdef SEGV_PKUERR
1750int force_sig_pkuerr(void __user *addr, u32 pkey)
1751{
1752 struct kernel_siginfo info;
1753
1754 clear_siginfo(&info);
1755 info.si_signo = SIGSEGV;
1756 info.si_errno = 0;
1757 info.si_code = SEGV_PKUERR;
1758 info.si_addr = addr;
1759 info.si_pkey = pkey;
1760 return force_sig_info(&info);
1761}
1762#endif
1763
1764/* For the crazy architectures that include trap information in
1765 * the errno field, instead of an actual errno value.
1766 */
1767int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1768{
1769 struct kernel_siginfo info;
1770
1771 clear_siginfo(&info);
1772 info.si_signo = SIGTRAP;
1773 info.si_errno = errno;
1774 info.si_code = TRAP_HWBKPT;
1775 info.si_addr = addr;
1776 return force_sig_info(&info);
1777}
1778
1779int kill_pgrp(struct pid *pid, int sig, int priv)
1780{
1781 int ret;
1782
1783 read_lock(&tasklist_lock);
1784 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1785 read_unlock(&tasklist_lock);
1786
1787 return ret;
1788}
1789EXPORT_SYMBOL(kill_pgrp);
1790
1791int kill_pid(struct pid *pid, int sig, int priv)
1792{
1793 return kill_pid_info(sig, __si_special(priv), pid);
1794}
1795EXPORT_SYMBOL(kill_pid);
1796
1797/*
1798 * These functions support sending signals using preallocated sigqueue
1799 * structures. This is needed "because realtime applications cannot
1800 * afford to lose notifications of asynchronous events, like timer
1801 * expirations or I/O completions". In the case of POSIX Timers
1802 * we allocate the sigqueue structure from the timer_create. If this
1803 * allocation fails we are able to report the failure to the application
1804 * with an EAGAIN error.
1805 */
1806struct sigqueue *sigqueue_alloc(void)
1807{
1808 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1809
1810 if (q)
1811 q->flags |= SIGQUEUE_PREALLOC;
1812
1813 return q;
1814}
1815
1816void sigqueue_free(struct sigqueue *q)
1817{
1818 unsigned long flags;
1819 spinlock_t *lock = ¤t->sighand->siglock;
1820
1821 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1822 /*
1823 * We must hold ->siglock while testing q->list
1824 * to serialize with collect_signal() or with
1825 * __exit_signal()->flush_sigqueue().
1826 */
1827 spin_lock_irqsave(lock, flags);
1828 q->flags &= ~SIGQUEUE_PREALLOC;
1829 /*
1830 * If it is queued it will be freed when dequeued,
1831 * like the "regular" sigqueue.
1832 */
1833 if (!list_empty(&q->list))
1834 q = NULL;
1835 spin_unlock_irqrestore(lock, flags);
1836
1837 if (q)
1838 __sigqueue_free(q);
1839}
1840
1841int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1842{
1843 int sig = q->info.si_signo;
1844 struct sigpending *pending;
1845 struct task_struct *t;
1846 unsigned long flags;
1847 int ret, result;
1848
1849 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1850
1851 ret = -1;
1852 rcu_read_lock();
1853 t = pid_task(pid, type);
1854 if (!t || !likely(lock_task_sighand(t, &flags)))
1855 goto ret;
1856
1857 ret = 1; /* the signal is ignored */
1858 result = TRACE_SIGNAL_IGNORED;
1859 if (!prepare_signal(sig, t, false))
1860 goto out;
1861
1862 ret = 0;
1863 if (unlikely(!list_empty(&q->list))) {
1864 /*
1865 * If an SI_TIMER entry is already queue just increment
1866 * the overrun count.
1867 */
1868 BUG_ON(q->info.si_code != SI_TIMER);
1869 q->info.si_overrun++;
1870 result = TRACE_SIGNAL_ALREADY_PENDING;
1871 goto out;
1872 }
1873 q->info.si_overrun = 0;
1874
1875 signalfd_notify(t, sig);
1876 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1877 list_add_tail(&q->list, &pending->list);
1878 sigaddset(&pending->signal, sig);
1879 complete_signal(sig, t, type);
1880 result = TRACE_SIGNAL_DELIVERED;
1881out:
1882 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1883 unlock_task_sighand(t, &flags);
1884ret:
1885 rcu_read_unlock();
1886 return ret;
1887}
1888
1889static void do_notify_pidfd(struct task_struct *task)
1890{
1891 struct pid *pid;
1892
1893 WARN_ON(task->exit_state == 0);
1894 pid = task_pid(task);
1895 wake_up_all(&pid->wait_pidfd);
1896}
1897
1898/*
1899 * Let a parent know about the death of a child.
1900 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1901 *
1902 * Returns true if our parent ignored us and so we've switched to
1903 * self-reaping.
1904 */
1905bool do_notify_parent(struct task_struct *tsk, int sig)
1906{
1907 struct kernel_siginfo info;
1908 unsigned long flags;
1909 struct sighand_struct *psig;
1910 bool autoreap = false;
1911 u64 utime, stime;
1912
1913 BUG_ON(sig == -1);
1914
1915 /* do_notify_parent_cldstop should have been called instead. */
1916 BUG_ON(task_is_stopped_or_traced(tsk));
1917
1918 BUG_ON(!tsk->ptrace &&
1919 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1920
1921 /* Wake up all pidfd waiters */
1922 do_notify_pidfd(tsk);
1923
1924 if (sig != SIGCHLD) {
1925 /*
1926 * This is only possible if parent == real_parent.
1927 * Check if it has changed security domain.
1928 */
1929 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1930 sig = SIGCHLD;
1931 }
1932
1933 clear_siginfo(&info);
1934 info.si_signo = sig;
1935 info.si_errno = 0;
1936 /*
1937 * We are under tasklist_lock here so our parent is tied to
1938 * us and cannot change.
1939 *
1940 * task_active_pid_ns will always return the same pid namespace
1941 * until a task passes through release_task.
1942 *
1943 * write_lock() currently calls preempt_disable() which is the
1944 * same as rcu_read_lock(), but according to Oleg, this is not
1945 * correct to rely on this
1946 */
1947 rcu_read_lock();
1948 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1949 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1950 task_uid(tsk));
1951 rcu_read_unlock();
1952
1953 task_cputime(tsk, &utime, &stime);
1954 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1955 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1956
1957 info.si_status = tsk->exit_code & 0x7f;
1958 if (tsk->exit_code & 0x80)
1959 info.si_code = CLD_DUMPED;
1960 else if (tsk->exit_code & 0x7f)
1961 info.si_code = CLD_KILLED;
1962 else {
1963 info.si_code = CLD_EXITED;
1964 info.si_status = tsk->exit_code >> 8;
1965 }
1966
1967 psig = tsk->parent->sighand;
1968 spin_lock_irqsave(&psig->siglock, flags);
1969 if (!tsk->ptrace && sig == SIGCHLD &&
1970 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1971 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1972 /*
1973 * We are exiting and our parent doesn't care. POSIX.1
1974 * defines special semantics for setting SIGCHLD to SIG_IGN
1975 * or setting the SA_NOCLDWAIT flag: we should be reaped
1976 * automatically and not left for our parent's wait4 call.
1977 * Rather than having the parent do it as a magic kind of
1978 * signal handler, we just set this to tell do_exit that we
1979 * can be cleaned up without becoming a zombie. Note that
1980 * we still call __wake_up_parent in this case, because a
1981 * blocked sys_wait4 might now return -ECHILD.
1982 *
1983 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1984 * is implementation-defined: we do (if you don't want
1985 * it, just use SIG_IGN instead).
1986 */
1987 autoreap = true;
1988 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1989 sig = 0;
1990 }
1991 if (valid_signal(sig) && sig)
1992 __group_send_sig_info(sig, &info, tsk->parent);
1993 __wake_up_parent(tsk, tsk->parent);
1994 spin_unlock_irqrestore(&psig->siglock, flags);
1995
1996 return autoreap;
1997}
1998
1999/**
2000 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2001 * @tsk: task reporting the state change
2002 * @for_ptracer: the notification is for ptracer
2003 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2004 *
2005 * Notify @tsk's parent that the stopped/continued state has changed. If
2006 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2007 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2008 *
2009 * CONTEXT:
2010 * Must be called with tasklist_lock at least read locked.
2011 */
2012static void do_notify_parent_cldstop(struct task_struct *tsk,
2013 bool for_ptracer, int why)
2014{
2015 struct kernel_siginfo info;
2016 unsigned long flags;
2017 struct task_struct *parent;
2018 struct sighand_struct *sighand;
2019 u64 utime, stime;
2020
2021 if (for_ptracer) {
2022 parent = tsk->parent;
2023 } else {
2024 tsk = tsk->group_leader;
2025 parent = tsk->real_parent;
2026 }
2027
2028 clear_siginfo(&info);
2029 info.si_signo = SIGCHLD;
2030 info.si_errno = 0;
2031 /*
2032 * see comment in do_notify_parent() about the following 4 lines
2033 */
2034 rcu_read_lock();
2035 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2036 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2037 rcu_read_unlock();
2038
2039 task_cputime(tsk, &utime, &stime);
2040 info.si_utime = nsec_to_clock_t(utime);
2041 info.si_stime = nsec_to_clock_t(stime);
2042
2043 info.si_code = why;
2044 switch (why) {
2045 case CLD_CONTINUED:
2046 info.si_status = SIGCONT;
2047 break;
2048 case CLD_STOPPED:
2049 info.si_status = tsk->signal->group_exit_code & 0x7f;
2050 break;
2051 case CLD_TRAPPED:
2052 info.si_status = tsk->exit_code & 0x7f;
2053 break;
2054 default:
2055 BUG();
2056 }
2057
2058 sighand = parent->sighand;
2059 spin_lock_irqsave(&sighand->siglock, flags);
2060 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2061 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2062 __group_send_sig_info(SIGCHLD, &info, parent);
2063 /*
2064 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2065 */
2066 __wake_up_parent(tsk, parent);
2067 spin_unlock_irqrestore(&sighand->siglock, flags);
2068}
2069
2070static inline bool may_ptrace_stop(void)
2071{
2072 if (!likely(current->ptrace))
2073 return false;
2074 /*
2075 * Are we in the middle of do_coredump?
2076 * If so and our tracer is also part of the coredump stopping
2077 * is a deadlock situation, and pointless because our tracer
2078 * is dead so don't allow us to stop.
2079 * If SIGKILL was already sent before the caller unlocked
2080 * ->siglock we must see ->core_state != NULL. Otherwise it
2081 * is safe to enter schedule().
2082 *
2083 * This is almost outdated, a task with the pending SIGKILL can't
2084 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2085 * after SIGKILL was already dequeued.
2086 */
2087 if (unlikely(current->mm->core_state) &&
2088 unlikely(current->mm == current->parent->mm))
2089 return false;
2090
2091 return true;
2092}
2093
2094/*
2095 * Return non-zero if there is a SIGKILL that should be waking us up.
2096 * Called with the siglock held.
2097 */
2098static bool sigkill_pending(struct task_struct *tsk)
2099{
2100 return sigismember(&tsk->pending.signal, SIGKILL) ||
2101 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2102}
2103
2104/*
2105 * This must be called with current->sighand->siglock held.
2106 *
2107 * This should be the path for all ptrace stops.
2108 * We always set current->last_siginfo while stopped here.
2109 * That makes it a way to test a stopped process for
2110 * being ptrace-stopped vs being job-control-stopped.
2111 *
2112 * If we actually decide not to stop at all because the tracer
2113 * is gone, we keep current->exit_code unless clear_code.
2114 */
2115static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2116 __releases(¤t->sighand->siglock)
2117 __acquires(¤t->sighand->siglock)
2118{
2119 bool gstop_done = false;
2120
2121 if (arch_ptrace_stop_needed(exit_code, info)) {
2122 /*
2123 * The arch code has something special to do before a
2124 * ptrace stop. This is allowed to block, e.g. for faults
2125 * on user stack pages. We can't keep the siglock while
2126 * calling arch_ptrace_stop, so we must release it now.
2127 * To preserve proper semantics, we must do this before
2128 * any signal bookkeeping like checking group_stop_count.
2129 * Meanwhile, a SIGKILL could come in before we retake the
2130 * siglock. That must prevent us from sleeping in TASK_TRACED.
2131 * So after regaining the lock, we must check for SIGKILL.
2132 */
2133 spin_unlock_irq(¤t->sighand->siglock);
2134 arch_ptrace_stop(exit_code, info);
2135 spin_lock_irq(¤t->sighand->siglock);
2136 if (sigkill_pending(current))
2137 return;
2138 }
2139
2140 set_special_state(TASK_TRACED);
2141
2142 /*
2143 * We're committing to trapping. TRACED should be visible before
2144 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2145 * Also, transition to TRACED and updates to ->jobctl should be
2146 * atomic with respect to siglock and should be done after the arch
2147 * hook as siglock is released and regrabbed across it.
2148 *
2149 * TRACER TRACEE
2150 *
2151 * ptrace_attach()
2152 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2153 * do_wait()
2154 * set_current_state() smp_wmb();
2155 * ptrace_do_wait()
2156 * wait_task_stopped()
2157 * task_stopped_code()
2158 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2159 */
2160 smp_wmb();
2161
2162 current->last_siginfo = info;
2163 current->exit_code = exit_code;
2164
2165 /*
2166 * If @why is CLD_STOPPED, we're trapping to participate in a group
2167 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2168 * across siglock relocks since INTERRUPT was scheduled, PENDING
2169 * could be clear now. We act as if SIGCONT is received after
2170 * TASK_TRACED is entered - ignore it.
2171 */
2172 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2173 gstop_done = task_participate_group_stop(current);
2174
2175 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2176 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2177 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2178 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2179
2180 /* entering a trap, clear TRAPPING */
2181 task_clear_jobctl_trapping(current);
2182
2183 spin_unlock_irq(¤t->sighand->siglock);
2184 read_lock(&tasklist_lock);
2185 if (may_ptrace_stop()) {
2186 /*
2187 * Notify parents of the stop.
2188 *
2189 * While ptraced, there are two parents - the ptracer and
2190 * the real_parent of the group_leader. The ptracer should
2191 * know about every stop while the real parent is only
2192 * interested in the completion of group stop. The states
2193 * for the two don't interact with each other. Notify
2194 * separately unless they're gonna be duplicates.
2195 */
2196 do_notify_parent_cldstop(current, true, why);
2197 if (gstop_done && ptrace_reparented(current))
2198 do_notify_parent_cldstop(current, false, why);
2199
2200 /*
2201 * Don't want to allow preemption here, because
2202 * sys_ptrace() needs this task to be inactive.
2203 *
2204 * XXX: implement read_unlock_no_resched().
2205 */
2206 preempt_disable();
2207 read_unlock(&tasklist_lock);
2208 cgroup_enter_frozen();
2209 preempt_enable_no_resched();
2210 freezable_schedule();
2211 cgroup_leave_frozen(true);
2212 } else {
2213 /*
2214 * By the time we got the lock, our tracer went away.
2215 * Don't drop the lock yet, another tracer may come.
2216 *
2217 * If @gstop_done, the ptracer went away between group stop
2218 * completion and here. During detach, it would have set
2219 * JOBCTL_STOP_PENDING on us and we'll re-enter
2220 * TASK_STOPPED in do_signal_stop() on return, so notifying
2221 * the real parent of the group stop completion is enough.
2222 */
2223 if (gstop_done)
2224 do_notify_parent_cldstop(current, false, why);
2225
2226 /* tasklist protects us from ptrace_freeze_traced() */
2227 __set_current_state(TASK_RUNNING);
2228 if (clear_code)
2229 current->exit_code = 0;
2230 read_unlock(&tasklist_lock);
2231 }
2232
2233 /*
2234 * We are back. Now reacquire the siglock before touching
2235 * last_siginfo, so that we are sure to have synchronized with
2236 * any signal-sending on another CPU that wants to examine it.
2237 */
2238 spin_lock_irq(¤t->sighand->siglock);
2239 current->last_siginfo = NULL;
2240
2241 /* LISTENING can be set only during STOP traps, clear it */
2242 current->jobctl &= ~JOBCTL_LISTENING;
2243
2244 /*
2245 * Queued signals ignored us while we were stopped for tracing.
2246 * So check for any that we should take before resuming user mode.
2247 * This sets TIF_SIGPENDING, but never clears it.
2248 */
2249 recalc_sigpending_tsk(current);
2250}
2251
2252static void ptrace_do_notify(int signr, int exit_code, int why)
2253{
2254 kernel_siginfo_t info;
2255
2256 clear_siginfo(&info);
2257 info.si_signo = signr;
2258 info.si_code = exit_code;
2259 info.si_pid = task_pid_vnr(current);
2260 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2261
2262 /* Let the debugger run. */
2263 ptrace_stop(exit_code, why, 1, &info);
2264}
2265
2266void ptrace_notify(int exit_code)
2267{
2268 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2269 if (unlikely(current->task_works))
2270 task_work_run();
2271
2272 spin_lock_irq(¤t->sighand->siglock);
2273 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2274 spin_unlock_irq(¤t->sighand->siglock);
2275}
2276
2277/**
2278 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2279 * @signr: signr causing group stop if initiating
2280 *
2281 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2282 * and participate in it. If already set, participate in the existing
2283 * group stop. If participated in a group stop (and thus slept), %true is
2284 * returned with siglock released.
2285 *
2286 * If ptraced, this function doesn't handle stop itself. Instead,
2287 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2288 * untouched. The caller must ensure that INTERRUPT trap handling takes
2289 * places afterwards.
2290 *
2291 * CONTEXT:
2292 * Must be called with @current->sighand->siglock held, which is released
2293 * on %true return.
2294 *
2295 * RETURNS:
2296 * %false if group stop is already cancelled or ptrace trap is scheduled.
2297 * %true if participated in group stop.
2298 */
2299static bool do_signal_stop(int signr)
2300 __releases(¤t->sighand->siglock)
2301{
2302 struct signal_struct *sig = current->signal;
2303
2304 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2305 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2306 struct task_struct *t;
2307
2308 /* signr will be recorded in task->jobctl for retries */
2309 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2310
2311 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2312 unlikely(signal_group_exit(sig)))
2313 return false;
2314 /*
2315 * There is no group stop already in progress. We must
2316 * initiate one now.
2317 *
2318 * While ptraced, a task may be resumed while group stop is
2319 * still in effect and then receive a stop signal and
2320 * initiate another group stop. This deviates from the
2321 * usual behavior as two consecutive stop signals can't
2322 * cause two group stops when !ptraced. That is why we
2323 * also check !task_is_stopped(t) below.
2324 *
2325 * The condition can be distinguished by testing whether
2326 * SIGNAL_STOP_STOPPED is already set. Don't generate
2327 * group_exit_code in such case.
2328 *
2329 * This is not necessary for SIGNAL_STOP_CONTINUED because
2330 * an intervening stop signal is required to cause two
2331 * continued events regardless of ptrace.
2332 */
2333 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2334 sig->group_exit_code = signr;
2335
2336 sig->group_stop_count = 0;
2337
2338 if (task_set_jobctl_pending(current, signr | gstop))
2339 sig->group_stop_count++;
2340
2341 t = current;
2342 while_each_thread(current, t) {
2343 /*
2344 * Setting state to TASK_STOPPED for a group
2345 * stop is always done with the siglock held,
2346 * so this check has no races.
2347 */
2348 if (!task_is_stopped(t) &&
2349 task_set_jobctl_pending(t, signr | gstop)) {
2350 sig->group_stop_count++;
2351 if (likely(!(t->ptrace & PT_SEIZED)))
2352 signal_wake_up(t, 0);
2353 else
2354 ptrace_trap_notify(t);
2355 }
2356 }
2357 }
2358
2359 if (likely(!current->ptrace)) {
2360 int notify = 0;
2361
2362 /*
2363 * If there are no other threads in the group, or if there
2364 * is a group stop in progress and we are the last to stop,
2365 * report to the parent.
2366 */
2367 if (task_participate_group_stop(current))
2368 notify = CLD_STOPPED;
2369
2370 set_special_state(TASK_STOPPED);
2371 spin_unlock_irq(¤t->sighand->siglock);
2372
2373 /*
2374 * Notify the parent of the group stop completion. Because
2375 * we're not holding either the siglock or tasklist_lock
2376 * here, ptracer may attach inbetween; however, this is for
2377 * group stop and should always be delivered to the real
2378 * parent of the group leader. The new ptracer will get
2379 * its notification when this task transitions into
2380 * TASK_TRACED.
2381 */
2382 if (notify) {
2383 read_lock(&tasklist_lock);
2384 do_notify_parent_cldstop(current, false, notify);
2385 read_unlock(&tasklist_lock);
2386 }
2387
2388 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2389 cgroup_enter_frozen();
2390 freezable_schedule();
2391 return true;
2392 } else {
2393 /*
2394 * While ptraced, group stop is handled by STOP trap.
2395 * Schedule it and let the caller deal with it.
2396 */
2397 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2398 return false;
2399 }
2400}
2401
2402/**
2403 * do_jobctl_trap - take care of ptrace jobctl traps
2404 *
2405 * When PT_SEIZED, it's used for both group stop and explicit
2406 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2407 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2408 * the stop signal; otherwise, %SIGTRAP.
2409 *
2410 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2411 * number as exit_code and no siginfo.
2412 *
2413 * CONTEXT:
2414 * Must be called with @current->sighand->siglock held, which may be
2415 * released and re-acquired before returning with intervening sleep.
2416 */
2417static void do_jobctl_trap(void)
2418{
2419 struct signal_struct *signal = current->signal;
2420 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2421
2422 if (current->ptrace & PT_SEIZED) {
2423 if (!signal->group_stop_count &&
2424 !(signal->flags & SIGNAL_STOP_STOPPED))
2425 signr = SIGTRAP;
2426 WARN_ON_ONCE(!signr);
2427 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2428 CLD_STOPPED);
2429 } else {
2430 WARN_ON_ONCE(!signr);
2431 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2432 current->exit_code = 0;
2433 }
2434}
2435
2436/**
2437 * do_freezer_trap - handle the freezer jobctl trap
2438 *
2439 * Puts the task into frozen state, if only the task is not about to quit.
2440 * In this case it drops JOBCTL_TRAP_FREEZE.
2441 *
2442 * CONTEXT:
2443 * Must be called with @current->sighand->siglock held,
2444 * which is always released before returning.
2445 */
2446static void do_freezer_trap(void)
2447 __releases(¤t->sighand->siglock)
2448{
2449 /*
2450 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2451 * let's make another loop to give it a chance to be handled.
2452 * In any case, we'll return back.
2453 */
2454 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2455 JOBCTL_TRAP_FREEZE) {
2456 spin_unlock_irq(¤t->sighand->siglock);
2457 return;
2458 }
2459
2460 /*
2461 * Now we're sure that there is no pending fatal signal and no
2462 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2463 * immediately (if there is a non-fatal signal pending), and
2464 * put the task into sleep.
2465 */
2466 __set_current_state(TASK_INTERRUPTIBLE);
2467 clear_thread_flag(TIF_SIGPENDING);
2468 spin_unlock_irq(¤t->sighand->siglock);
2469 cgroup_enter_frozen();
2470 freezable_schedule();
2471}
2472
2473static int ptrace_signal(int signr, kernel_siginfo_t *info)
2474{
2475 /*
2476 * We do not check sig_kernel_stop(signr) but set this marker
2477 * unconditionally because we do not know whether debugger will
2478 * change signr. This flag has no meaning unless we are going
2479 * to stop after return from ptrace_stop(). In this case it will
2480 * be checked in do_signal_stop(), we should only stop if it was
2481 * not cleared by SIGCONT while we were sleeping. See also the
2482 * comment in dequeue_signal().
2483 */
2484 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2485 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2486
2487 /* We're back. Did the debugger cancel the sig? */
2488 signr = current->exit_code;
2489 if (signr == 0)
2490 return signr;
2491
2492 current->exit_code = 0;
2493
2494 /*
2495 * Update the siginfo structure if the signal has
2496 * changed. If the debugger wanted something
2497 * specific in the siginfo structure then it should
2498 * have updated *info via PTRACE_SETSIGINFO.
2499 */
2500 if (signr != info->si_signo) {
2501 clear_siginfo(info);
2502 info->si_signo = signr;
2503 info->si_errno = 0;
2504 info->si_code = SI_USER;
2505 rcu_read_lock();
2506 info->si_pid = task_pid_vnr(current->parent);
2507 info->si_uid = from_kuid_munged(current_user_ns(),
2508 task_uid(current->parent));
2509 rcu_read_unlock();
2510 }
2511
2512 /* If the (new) signal is now blocked, requeue it. */
2513 if (sigismember(¤t->blocked, signr)) {
2514 send_signal(signr, info, current, PIDTYPE_PID);
2515 signr = 0;
2516 }
2517
2518 return signr;
2519}
2520
2521bool get_signal(struct ksignal *ksig)
2522{
2523 struct sighand_struct *sighand = current->sighand;
2524 struct signal_struct *signal = current->signal;
2525 int signr;
2526
2527 if (unlikely(current->task_works))
2528 task_work_run();
2529
2530 if (unlikely(uprobe_deny_signal()))
2531 return false;
2532
2533 /*
2534 * Do this once, we can't return to user-mode if freezing() == T.
2535 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2536 * thus do not need another check after return.
2537 */
2538 try_to_freeze();
2539
2540relock:
2541 spin_lock_irq(&sighand->siglock);
2542 /*
2543 * Every stopped thread goes here after wakeup. Check to see if
2544 * we should notify the parent, prepare_signal(SIGCONT) encodes
2545 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2546 */
2547 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2548 int why;
2549
2550 if (signal->flags & SIGNAL_CLD_CONTINUED)
2551 why = CLD_CONTINUED;
2552 else
2553 why = CLD_STOPPED;
2554
2555 signal->flags &= ~SIGNAL_CLD_MASK;
2556
2557 spin_unlock_irq(&sighand->siglock);
2558
2559 /*
2560 * Notify the parent that we're continuing. This event is
2561 * always per-process and doesn't make whole lot of sense
2562 * for ptracers, who shouldn't consume the state via
2563 * wait(2) either, but, for backward compatibility, notify
2564 * the ptracer of the group leader too unless it's gonna be
2565 * a duplicate.
2566 */
2567 read_lock(&tasklist_lock);
2568 do_notify_parent_cldstop(current, false, why);
2569
2570 if (ptrace_reparented(current->group_leader))
2571 do_notify_parent_cldstop(current->group_leader,
2572 true, why);
2573 read_unlock(&tasklist_lock);
2574
2575 goto relock;
2576 }
2577
2578 /* Has this task already been marked for death? */
2579 if (signal_group_exit(signal)) {
2580 ksig->info.si_signo = signr = SIGKILL;
2581 sigdelset(¤t->pending.signal, SIGKILL);
2582 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2583 &sighand->action[SIGKILL - 1]);
2584 recalc_sigpending();
2585 goto fatal;
2586 }
2587
2588 for (;;) {
2589 struct k_sigaction *ka;
2590
2591 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2592 do_signal_stop(0))
2593 goto relock;
2594
2595 if (unlikely(current->jobctl &
2596 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2597 if (current->jobctl & JOBCTL_TRAP_MASK) {
2598 do_jobctl_trap();
2599 spin_unlock_irq(&sighand->siglock);
2600 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2601 do_freezer_trap();
2602
2603 goto relock;
2604 }
2605
2606 /*
2607 * If the task is leaving the frozen state, let's update
2608 * cgroup counters and reset the frozen bit.
2609 */
2610 if (unlikely(cgroup_task_frozen(current))) {
2611 spin_unlock_irq(&sighand->siglock);
2612 cgroup_leave_frozen(false);
2613 goto relock;
2614 }
2615
2616 /*
2617 * Signals generated by the execution of an instruction
2618 * need to be delivered before any other pending signals
2619 * so that the instruction pointer in the signal stack
2620 * frame points to the faulting instruction.
2621 */
2622 signr = dequeue_synchronous_signal(&ksig->info);
2623 if (!signr)
2624 signr = dequeue_signal(current, ¤t->blocked, &ksig->info);
2625
2626 if (!signr)
2627 break; /* will return 0 */
2628
2629 if (unlikely(current->ptrace) && signr != SIGKILL) {
2630 signr = ptrace_signal(signr, &ksig->info);
2631 if (!signr)
2632 continue;
2633 }
2634
2635 ka = &sighand->action[signr-1];
2636
2637 /* Trace actually delivered signals. */
2638 trace_signal_deliver(signr, &ksig->info, ka);
2639
2640 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2641 continue;
2642 if (ka->sa.sa_handler != SIG_DFL) {
2643 /* Run the handler. */
2644 ksig->ka = *ka;
2645
2646 if (ka->sa.sa_flags & SA_ONESHOT)
2647 ka->sa.sa_handler = SIG_DFL;
2648
2649 break; /* will return non-zero "signr" value */
2650 }
2651
2652 /*
2653 * Now we are doing the default action for this signal.
2654 */
2655 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2656 continue;
2657
2658 /*
2659 * Global init gets no signals it doesn't want.
2660 * Container-init gets no signals it doesn't want from same
2661 * container.
2662 *
2663 * Note that if global/container-init sees a sig_kernel_only()
2664 * signal here, the signal must have been generated internally
2665 * or must have come from an ancestor namespace. In either
2666 * case, the signal cannot be dropped.
2667 */
2668 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2669 !sig_kernel_only(signr))
2670 continue;
2671
2672 if (sig_kernel_stop(signr)) {
2673 /*
2674 * The default action is to stop all threads in
2675 * the thread group. The job control signals
2676 * do nothing in an orphaned pgrp, but SIGSTOP
2677 * always works. Note that siglock needs to be
2678 * dropped during the call to is_orphaned_pgrp()
2679 * because of lock ordering with tasklist_lock.
2680 * This allows an intervening SIGCONT to be posted.
2681 * We need to check for that and bail out if necessary.
2682 */
2683 if (signr != SIGSTOP) {
2684 spin_unlock_irq(&sighand->siglock);
2685
2686 /* signals can be posted during this window */
2687
2688 if (is_current_pgrp_orphaned())
2689 goto relock;
2690
2691 spin_lock_irq(&sighand->siglock);
2692 }
2693
2694 if (likely(do_signal_stop(ksig->info.si_signo))) {
2695 /* It released the siglock. */
2696 goto relock;
2697 }
2698
2699 /*
2700 * We didn't actually stop, due to a race
2701 * with SIGCONT or something like that.
2702 */
2703 continue;
2704 }
2705
2706 fatal:
2707 spin_unlock_irq(&sighand->siglock);
2708 if (unlikely(cgroup_task_frozen(current)))
2709 cgroup_leave_frozen(true);
2710
2711 /*
2712 * Anything else is fatal, maybe with a core dump.
2713 */
2714 current->flags |= PF_SIGNALED;
2715
2716 if (sig_kernel_coredump(signr)) {
2717 if (print_fatal_signals)
2718 print_fatal_signal(ksig->info.si_signo);
2719 proc_coredump_connector(current);
2720 /*
2721 * If it was able to dump core, this kills all
2722 * other threads in the group and synchronizes with
2723 * their demise. If we lost the race with another
2724 * thread getting here, it set group_exit_code
2725 * first and our do_group_exit call below will use
2726 * that value and ignore the one we pass it.
2727 */
2728 do_coredump(&ksig->info);
2729 }
2730
2731 /*
2732 * Death signals, no core dump.
2733 */
2734 do_group_exit(ksig->info.si_signo);
2735 /* NOTREACHED */
2736 }
2737 spin_unlock_irq(&sighand->siglock);
2738
2739 ksig->sig = signr;
2740 return ksig->sig > 0;
2741}
2742
2743/**
2744 * signal_delivered -
2745 * @ksig: kernel signal struct
2746 * @stepping: nonzero if debugger single-step or block-step in use
2747 *
2748 * This function should be called when a signal has successfully been
2749 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2750 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2751 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2752 */
2753static void signal_delivered(struct ksignal *ksig, int stepping)
2754{
2755 sigset_t blocked;
2756
2757 /* A signal was successfully delivered, and the
2758 saved sigmask was stored on the signal frame,
2759 and will be restored by sigreturn. So we can
2760 simply clear the restore sigmask flag. */
2761 clear_restore_sigmask();
2762
2763 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2764 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2765 sigaddset(&blocked, ksig->sig);
2766 set_current_blocked(&blocked);
2767 tracehook_signal_handler(stepping);
2768}
2769
2770void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2771{
2772 if (failed)
2773 force_sigsegv(ksig->sig);
2774 else
2775 signal_delivered(ksig, stepping);
2776}
2777
2778/*
2779 * It could be that complete_signal() picked us to notify about the
2780 * group-wide signal. Other threads should be notified now to take
2781 * the shared signals in @which since we will not.
2782 */
2783static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2784{
2785 sigset_t retarget;
2786 struct task_struct *t;
2787
2788 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2789 if (sigisemptyset(&retarget))
2790 return;
2791
2792 t = tsk;
2793 while_each_thread(tsk, t) {
2794 if (t->flags & PF_EXITING)
2795 continue;
2796
2797 if (!has_pending_signals(&retarget, &t->blocked))
2798 continue;
2799 /* Remove the signals this thread can handle. */
2800 sigandsets(&retarget, &retarget, &t->blocked);
2801
2802 if (!signal_pending(t))
2803 signal_wake_up(t, 0);
2804
2805 if (sigisemptyset(&retarget))
2806 break;
2807 }
2808}
2809
2810void exit_signals(struct task_struct *tsk)
2811{
2812 int group_stop = 0;
2813 sigset_t unblocked;
2814
2815 /*
2816 * @tsk is about to have PF_EXITING set - lock out users which
2817 * expect stable threadgroup.
2818 */
2819 cgroup_threadgroup_change_begin(tsk);
2820
2821 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2822 tsk->flags |= PF_EXITING;
2823 cgroup_threadgroup_change_end(tsk);
2824 return;
2825 }
2826
2827 spin_lock_irq(&tsk->sighand->siglock);
2828 /*
2829 * From now this task is not visible for group-wide signals,
2830 * see wants_signal(), do_signal_stop().
2831 */
2832 tsk->flags |= PF_EXITING;
2833
2834 cgroup_threadgroup_change_end(tsk);
2835
2836 if (!signal_pending(tsk))
2837 goto out;
2838
2839 unblocked = tsk->blocked;
2840 signotset(&unblocked);
2841 retarget_shared_pending(tsk, &unblocked);
2842
2843 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2844 task_participate_group_stop(tsk))
2845 group_stop = CLD_STOPPED;
2846out:
2847 spin_unlock_irq(&tsk->sighand->siglock);
2848
2849 /*
2850 * If group stop has completed, deliver the notification. This
2851 * should always go to the real parent of the group leader.
2852 */
2853 if (unlikely(group_stop)) {
2854 read_lock(&tasklist_lock);
2855 do_notify_parent_cldstop(tsk, false, group_stop);
2856 read_unlock(&tasklist_lock);
2857 }
2858}
2859
2860/*
2861 * System call entry points.
2862 */
2863
2864/**
2865 * sys_restart_syscall - restart a system call
2866 */
2867SYSCALL_DEFINE0(restart_syscall)
2868{
2869 struct restart_block *restart = ¤t->restart_block;
2870 return restart->fn(restart);
2871}
2872
2873long do_no_restart_syscall(struct restart_block *param)
2874{
2875 return -EINTR;
2876}
2877
2878static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2879{
2880 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2881 sigset_t newblocked;
2882 /* A set of now blocked but previously unblocked signals. */
2883 sigandnsets(&newblocked, newset, ¤t->blocked);
2884 retarget_shared_pending(tsk, &newblocked);
2885 }
2886 tsk->blocked = *newset;
2887 recalc_sigpending();
2888}
2889
2890/**
2891 * set_current_blocked - change current->blocked mask
2892 * @newset: new mask
2893 *
2894 * It is wrong to change ->blocked directly, this helper should be used
2895 * to ensure the process can't miss a shared signal we are going to block.
2896 */
2897void set_current_blocked(sigset_t *newset)
2898{
2899 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2900 __set_current_blocked(newset);
2901}
2902
2903void __set_current_blocked(const sigset_t *newset)
2904{
2905 struct task_struct *tsk = current;
2906
2907 /*
2908 * In case the signal mask hasn't changed, there is nothing we need
2909 * to do. The current->blocked shouldn't be modified by other task.
2910 */
2911 if (sigequalsets(&tsk->blocked, newset))
2912 return;
2913
2914 spin_lock_irq(&tsk->sighand->siglock);
2915 __set_task_blocked(tsk, newset);
2916 spin_unlock_irq(&tsk->sighand->siglock);
2917}
2918
2919/*
2920 * This is also useful for kernel threads that want to temporarily
2921 * (or permanently) block certain signals.
2922 *
2923 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2924 * interface happily blocks "unblockable" signals like SIGKILL
2925 * and friends.
2926 */
2927int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2928{
2929 struct task_struct *tsk = current;
2930 sigset_t newset;
2931
2932 /* Lockless, only current can change ->blocked, never from irq */
2933 if (oldset)
2934 *oldset = tsk->blocked;
2935
2936 switch (how) {
2937 case SIG_BLOCK:
2938 sigorsets(&newset, &tsk->blocked, set);
2939 break;
2940 case SIG_UNBLOCK:
2941 sigandnsets(&newset, &tsk->blocked, set);
2942 break;
2943 case SIG_SETMASK:
2944 newset = *set;
2945 break;
2946 default:
2947 return -EINVAL;
2948 }
2949
2950 __set_current_blocked(&newset);
2951 return 0;
2952}
2953EXPORT_SYMBOL(sigprocmask);
2954
2955/*
2956 * The api helps set app-provided sigmasks.
2957 *
2958 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2959 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2960 *
2961 * Note that it does set_restore_sigmask() in advance, so it must be always
2962 * paired with restore_saved_sigmask_unless() before return from syscall.
2963 */
2964int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2965{
2966 sigset_t kmask;
2967
2968 if (!umask)
2969 return 0;
2970 if (sigsetsize != sizeof(sigset_t))
2971 return -EINVAL;
2972 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2973 return -EFAULT;
2974
2975 set_restore_sigmask();
2976 current->saved_sigmask = current->blocked;
2977 set_current_blocked(&kmask);
2978
2979 return 0;
2980}
2981
2982#ifdef CONFIG_COMPAT
2983int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2984 size_t sigsetsize)
2985{
2986 sigset_t kmask;
2987
2988 if (!umask)
2989 return 0;
2990 if (sigsetsize != sizeof(compat_sigset_t))
2991 return -EINVAL;
2992 if (get_compat_sigset(&kmask, umask))
2993 return -EFAULT;
2994
2995 set_restore_sigmask();
2996 current->saved_sigmask = current->blocked;
2997 set_current_blocked(&kmask);
2998
2999 return 0;
3000}
3001#endif
3002
3003/**
3004 * sys_rt_sigprocmask - change the list of currently blocked signals
3005 * @how: whether to add, remove, or set signals
3006 * @nset: stores pending signals
3007 * @oset: previous value of signal mask if non-null
3008 * @sigsetsize: size of sigset_t type
3009 */
3010SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3011 sigset_t __user *, oset, size_t, sigsetsize)
3012{
3013 sigset_t old_set, new_set;
3014 int error;
3015
3016 /* XXX: Don't preclude handling different sized sigset_t's. */
3017 if (sigsetsize != sizeof(sigset_t))
3018 return -EINVAL;
3019
3020 old_set = current->blocked;
3021
3022 if (nset) {
3023 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3024 return -EFAULT;
3025 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3026
3027 error = sigprocmask(how, &new_set, NULL);
3028 if (error)
3029 return error;
3030 }
3031
3032 if (oset) {
3033 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3034 return -EFAULT;
3035 }
3036
3037 return 0;
3038}
3039
3040#ifdef CONFIG_COMPAT
3041COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3042 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3043{
3044 sigset_t old_set = current->blocked;
3045
3046 /* XXX: Don't preclude handling different sized sigset_t's. */
3047 if (sigsetsize != sizeof(sigset_t))
3048 return -EINVAL;
3049
3050 if (nset) {
3051 sigset_t new_set;
3052 int error;
3053 if (get_compat_sigset(&new_set, nset))
3054 return -EFAULT;
3055 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3056
3057 error = sigprocmask(how, &new_set, NULL);
3058 if (error)
3059 return error;
3060 }
3061 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3062}
3063#endif
3064
3065static void do_sigpending(sigset_t *set)
3066{
3067 spin_lock_irq(¤t->sighand->siglock);
3068 sigorsets(set, ¤t->pending.signal,
3069 ¤t->signal->shared_pending.signal);
3070 spin_unlock_irq(¤t->sighand->siglock);
3071
3072 /* Outside the lock because only this thread touches it. */
3073 sigandsets(set, ¤t->blocked, set);
3074}
3075
3076/**
3077 * sys_rt_sigpending - examine a pending signal that has been raised
3078 * while blocked
3079 * @uset: stores pending signals
3080 * @sigsetsize: size of sigset_t type or larger
3081 */
3082SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3083{
3084 sigset_t set;
3085
3086 if (sigsetsize > sizeof(*uset))
3087 return -EINVAL;
3088
3089 do_sigpending(&set);
3090
3091 if (copy_to_user(uset, &set, sigsetsize))
3092 return -EFAULT;
3093
3094 return 0;
3095}
3096
3097#ifdef CONFIG_COMPAT
3098COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3099 compat_size_t, sigsetsize)
3100{
3101 sigset_t set;
3102
3103 if (sigsetsize > sizeof(*uset))
3104 return -EINVAL;
3105
3106 do_sigpending(&set);
3107
3108 return put_compat_sigset(uset, &set, sigsetsize);
3109}
3110#endif
3111
3112static const struct {
3113 unsigned char limit, layout;
3114} sig_sicodes[] = {
3115 [SIGILL] = { NSIGILL, SIL_FAULT },
3116 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3117 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3118 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3119 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3120#if defined(SIGEMT)
3121 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3122#endif
3123 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3124 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3125 [SIGSYS] = { NSIGSYS, SIL_SYS },
3126};
3127
3128static bool known_siginfo_layout(unsigned sig, int si_code)
3129{
3130 if (si_code == SI_KERNEL)
3131 return true;
3132 else if ((si_code > SI_USER)) {
3133 if (sig_specific_sicodes(sig)) {
3134 if (si_code <= sig_sicodes[sig].limit)
3135 return true;
3136 }
3137 else if (si_code <= NSIGPOLL)
3138 return true;
3139 }
3140 else if (si_code >= SI_DETHREAD)
3141 return true;
3142 else if (si_code == SI_ASYNCNL)
3143 return true;
3144 return false;
3145}
3146
3147enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3148{
3149 enum siginfo_layout layout = SIL_KILL;
3150 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3151 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3152 (si_code <= sig_sicodes[sig].limit)) {
3153 layout = sig_sicodes[sig].layout;
3154 /* Handle the exceptions */
3155 if ((sig == SIGBUS) &&
3156 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3157 layout = SIL_FAULT_MCEERR;
3158 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3159 layout = SIL_FAULT_BNDERR;
3160#ifdef SEGV_PKUERR
3161 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3162 layout = SIL_FAULT_PKUERR;
3163#endif
3164 }
3165 else if (si_code <= NSIGPOLL)
3166 layout = SIL_POLL;
3167 } else {
3168 if (si_code == SI_TIMER)
3169 layout = SIL_TIMER;
3170 else if (si_code == SI_SIGIO)
3171 layout = SIL_POLL;
3172 else if (si_code < 0)
3173 layout = SIL_RT;
3174 }
3175 return layout;
3176}
3177
3178static inline char __user *si_expansion(const siginfo_t __user *info)
3179{
3180 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3181}
3182
3183int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3184{
3185 char __user *expansion = si_expansion(to);
3186 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3187 return -EFAULT;
3188 if (clear_user(expansion, SI_EXPANSION_SIZE))
3189 return -EFAULT;
3190 return 0;
3191}
3192
3193static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3194 const siginfo_t __user *from)
3195{
3196 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3197 char __user *expansion = si_expansion(from);
3198 char buf[SI_EXPANSION_SIZE];
3199 int i;
3200 /*
3201 * An unknown si_code might need more than
3202 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3203 * extra bytes are 0. This guarantees copy_siginfo_to_user
3204 * will return this data to userspace exactly.
3205 */
3206 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3207 return -EFAULT;
3208 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3209 if (buf[i] != 0)
3210 return -E2BIG;
3211 }
3212 }
3213 return 0;
3214}
3215
3216static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3217 const siginfo_t __user *from)
3218{
3219 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3220 return -EFAULT;
3221 to->si_signo = signo;
3222 return post_copy_siginfo_from_user(to, from);
3223}
3224
3225int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3226{
3227 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3228 return -EFAULT;
3229 return post_copy_siginfo_from_user(to, from);
3230}
3231
3232#ifdef CONFIG_COMPAT
3233int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3234 const struct kernel_siginfo *from)
3235#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3236{
3237 return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3238}
3239int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3240 const struct kernel_siginfo *from, bool x32_ABI)
3241#endif
3242{
3243 struct compat_siginfo new;
3244 memset(&new, 0, sizeof(new));
3245
3246 new.si_signo = from->si_signo;
3247 new.si_errno = from->si_errno;
3248 new.si_code = from->si_code;
3249 switch(siginfo_layout(from->si_signo, from->si_code)) {
3250 case SIL_KILL:
3251 new.si_pid = from->si_pid;
3252 new.si_uid = from->si_uid;
3253 break;
3254 case SIL_TIMER:
3255 new.si_tid = from->si_tid;
3256 new.si_overrun = from->si_overrun;
3257 new.si_int = from->si_int;
3258 break;
3259 case SIL_POLL:
3260 new.si_band = from->si_band;
3261 new.si_fd = from->si_fd;
3262 break;
3263 case SIL_FAULT:
3264 new.si_addr = ptr_to_compat(from->si_addr);
3265#ifdef __ARCH_SI_TRAPNO
3266 new.si_trapno = from->si_trapno;
3267#endif
3268 break;
3269 case SIL_FAULT_MCEERR:
3270 new.si_addr = ptr_to_compat(from->si_addr);
3271#ifdef __ARCH_SI_TRAPNO
3272 new.si_trapno = from->si_trapno;
3273#endif
3274 new.si_addr_lsb = from->si_addr_lsb;
3275 break;
3276 case SIL_FAULT_BNDERR:
3277 new.si_addr = ptr_to_compat(from->si_addr);
3278#ifdef __ARCH_SI_TRAPNO
3279 new.si_trapno = from->si_trapno;
3280#endif
3281 new.si_lower = ptr_to_compat(from->si_lower);
3282 new.si_upper = ptr_to_compat(from->si_upper);
3283 break;
3284 case SIL_FAULT_PKUERR:
3285 new.si_addr = ptr_to_compat(from->si_addr);
3286#ifdef __ARCH_SI_TRAPNO
3287 new.si_trapno = from->si_trapno;
3288#endif
3289 new.si_pkey = from->si_pkey;
3290 break;
3291 case SIL_CHLD:
3292 new.si_pid = from->si_pid;
3293 new.si_uid = from->si_uid;
3294 new.si_status = from->si_status;
3295#ifdef CONFIG_X86_X32_ABI
3296 if (x32_ABI) {
3297 new._sifields._sigchld_x32._utime = from->si_utime;
3298 new._sifields._sigchld_x32._stime = from->si_stime;
3299 } else
3300#endif
3301 {
3302 new.si_utime = from->si_utime;
3303 new.si_stime = from->si_stime;
3304 }
3305 break;
3306 case SIL_RT:
3307 new.si_pid = from->si_pid;
3308 new.si_uid = from->si_uid;
3309 new.si_int = from->si_int;
3310 break;
3311 case SIL_SYS:
3312 new.si_call_addr = ptr_to_compat(from->si_call_addr);
3313 new.si_syscall = from->si_syscall;
3314 new.si_arch = from->si_arch;
3315 break;
3316 }
3317
3318 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3319 return -EFAULT;
3320
3321 return 0;
3322}
3323
3324static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3325 const struct compat_siginfo *from)
3326{
3327 clear_siginfo(to);
3328 to->si_signo = from->si_signo;
3329 to->si_errno = from->si_errno;
3330 to->si_code = from->si_code;
3331 switch(siginfo_layout(from->si_signo, from->si_code)) {
3332 case SIL_KILL:
3333 to->si_pid = from->si_pid;
3334 to->si_uid = from->si_uid;
3335 break;
3336 case SIL_TIMER:
3337 to->si_tid = from->si_tid;
3338 to->si_overrun = from->si_overrun;
3339 to->si_int = from->si_int;
3340 break;
3341 case SIL_POLL:
3342 to->si_band = from->si_band;
3343 to->si_fd = from->si_fd;
3344 break;
3345 case SIL_FAULT:
3346 to->si_addr = compat_ptr(from->si_addr);
3347#ifdef __ARCH_SI_TRAPNO
3348 to->si_trapno = from->si_trapno;
3349#endif
3350 break;
3351 case SIL_FAULT_MCEERR:
3352 to->si_addr = compat_ptr(from->si_addr);
3353#ifdef __ARCH_SI_TRAPNO
3354 to->si_trapno = from->si_trapno;
3355#endif
3356 to->si_addr_lsb = from->si_addr_lsb;
3357 break;
3358 case SIL_FAULT_BNDERR:
3359 to->si_addr = compat_ptr(from->si_addr);
3360#ifdef __ARCH_SI_TRAPNO
3361 to->si_trapno = from->si_trapno;
3362#endif
3363 to->si_lower = compat_ptr(from->si_lower);
3364 to->si_upper = compat_ptr(from->si_upper);
3365 break;
3366 case SIL_FAULT_PKUERR:
3367 to->si_addr = compat_ptr(from->si_addr);
3368#ifdef __ARCH_SI_TRAPNO
3369 to->si_trapno = from->si_trapno;
3370#endif
3371 to->si_pkey = from->si_pkey;
3372 break;
3373 case SIL_CHLD:
3374 to->si_pid = from->si_pid;
3375 to->si_uid = from->si_uid;
3376 to->si_status = from->si_status;
3377#ifdef CONFIG_X86_X32_ABI
3378 if (in_x32_syscall()) {
3379 to->si_utime = from->_sifields._sigchld_x32._utime;
3380 to->si_stime = from->_sifields._sigchld_x32._stime;
3381 } else
3382#endif
3383 {
3384 to->si_utime = from->si_utime;
3385 to->si_stime = from->si_stime;
3386 }
3387 break;
3388 case SIL_RT:
3389 to->si_pid = from->si_pid;
3390 to->si_uid = from->si_uid;
3391 to->si_int = from->si_int;
3392 break;
3393 case SIL_SYS:
3394 to->si_call_addr = compat_ptr(from->si_call_addr);
3395 to->si_syscall = from->si_syscall;
3396 to->si_arch = from->si_arch;
3397 break;
3398 }
3399 return 0;
3400}
3401
3402static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3403 const struct compat_siginfo __user *ufrom)
3404{
3405 struct compat_siginfo from;
3406
3407 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3408 return -EFAULT;
3409
3410 from.si_signo = signo;
3411 return post_copy_siginfo_from_user32(to, &from);
3412}
3413
3414int copy_siginfo_from_user32(struct kernel_siginfo *to,
3415 const struct compat_siginfo __user *ufrom)
3416{
3417 struct compat_siginfo from;
3418
3419 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3420 return -EFAULT;
3421
3422 return post_copy_siginfo_from_user32(to, &from);
3423}
3424#endif /* CONFIG_COMPAT */
3425
3426/**
3427 * do_sigtimedwait - wait for queued signals specified in @which
3428 * @which: queued signals to wait for
3429 * @info: if non-null, the signal's siginfo is returned here
3430 * @ts: upper bound on process time suspension
3431 */
3432static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3433 const struct timespec64 *ts)
3434{
3435 ktime_t *to = NULL, timeout = KTIME_MAX;
3436 struct task_struct *tsk = current;
3437 sigset_t mask = *which;
3438 int sig, ret = 0;
3439
3440 if (ts) {
3441 if (!timespec64_valid(ts))
3442 return -EINVAL;
3443 timeout = timespec64_to_ktime(*ts);
3444 to = &timeout;
3445 }
3446
3447 /*
3448 * Invert the set of allowed signals to get those we want to block.
3449 */
3450 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3451 signotset(&mask);
3452
3453 spin_lock_irq(&tsk->sighand->siglock);
3454 sig = dequeue_signal(tsk, &mask, info);
3455 if (!sig && timeout) {
3456 /*
3457 * None ready, temporarily unblock those we're interested
3458 * while we are sleeping in so that we'll be awakened when
3459 * they arrive. Unblocking is always fine, we can avoid
3460 * set_current_blocked().
3461 */
3462 tsk->real_blocked = tsk->blocked;
3463 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3464 recalc_sigpending();
3465 spin_unlock_irq(&tsk->sighand->siglock);
3466
3467 __set_current_state(TASK_INTERRUPTIBLE);
3468 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3469 HRTIMER_MODE_REL);
3470 spin_lock_irq(&tsk->sighand->siglock);
3471 __set_task_blocked(tsk, &tsk->real_blocked);
3472 sigemptyset(&tsk->real_blocked);
3473 sig = dequeue_signal(tsk, &mask, info);
3474 }
3475 spin_unlock_irq(&tsk->sighand->siglock);
3476
3477 if (sig)
3478 return sig;
3479 return ret ? -EINTR : -EAGAIN;
3480}
3481
3482/**
3483 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3484 * in @uthese
3485 * @uthese: queued signals to wait for
3486 * @uinfo: if non-null, the signal's siginfo is returned here
3487 * @uts: upper bound on process time suspension
3488 * @sigsetsize: size of sigset_t type
3489 */
3490SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3491 siginfo_t __user *, uinfo,
3492 const struct __kernel_timespec __user *, uts,
3493 size_t, sigsetsize)
3494{
3495 sigset_t these;
3496 struct timespec64 ts;
3497 kernel_siginfo_t info;
3498 int ret;
3499
3500 /* XXX: Don't preclude handling different sized sigset_t's. */
3501 if (sigsetsize != sizeof(sigset_t))
3502 return -EINVAL;
3503
3504 if (copy_from_user(&these, uthese, sizeof(these)))
3505 return -EFAULT;
3506
3507 if (uts) {
3508 if (get_timespec64(&ts, uts))
3509 return -EFAULT;
3510 }
3511
3512 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3513
3514 if (ret > 0 && uinfo) {
3515 if (copy_siginfo_to_user(uinfo, &info))
3516 ret = -EFAULT;
3517 }
3518
3519 return ret;
3520}
3521
3522#ifdef CONFIG_COMPAT_32BIT_TIME
3523SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3524 siginfo_t __user *, uinfo,
3525 const struct old_timespec32 __user *, uts,
3526 size_t, sigsetsize)
3527{
3528 sigset_t these;
3529 struct timespec64 ts;
3530 kernel_siginfo_t info;
3531 int ret;
3532
3533 if (sigsetsize != sizeof(sigset_t))
3534 return -EINVAL;
3535
3536 if (copy_from_user(&these, uthese, sizeof(these)))
3537 return -EFAULT;
3538
3539 if (uts) {
3540 if (get_old_timespec32(&ts, uts))
3541 return -EFAULT;
3542 }
3543
3544 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3545
3546 if (ret > 0 && uinfo) {
3547 if (copy_siginfo_to_user(uinfo, &info))
3548 ret = -EFAULT;
3549 }
3550
3551 return ret;
3552}
3553#endif
3554
3555#ifdef CONFIG_COMPAT
3556COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3557 struct compat_siginfo __user *, uinfo,
3558 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3559{
3560 sigset_t s;
3561 struct timespec64 t;
3562 kernel_siginfo_t info;
3563 long ret;
3564
3565 if (sigsetsize != sizeof(sigset_t))
3566 return -EINVAL;
3567
3568 if (get_compat_sigset(&s, uthese))
3569 return -EFAULT;
3570
3571 if (uts) {
3572 if (get_timespec64(&t, uts))
3573 return -EFAULT;
3574 }
3575
3576 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3577
3578 if (ret > 0 && uinfo) {
3579 if (copy_siginfo_to_user32(uinfo, &info))
3580 ret = -EFAULT;
3581 }
3582
3583 return ret;
3584}
3585
3586#ifdef CONFIG_COMPAT_32BIT_TIME
3587COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3588 struct compat_siginfo __user *, uinfo,
3589 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3590{
3591 sigset_t s;
3592 struct timespec64 t;
3593 kernel_siginfo_t info;
3594 long ret;
3595
3596 if (sigsetsize != sizeof(sigset_t))
3597 return -EINVAL;
3598
3599 if (get_compat_sigset(&s, uthese))
3600 return -EFAULT;
3601
3602 if (uts) {
3603 if (get_old_timespec32(&t, uts))
3604 return -EFAULT;
3605 }
3606
3607 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3608
3609 if (ret > 0 && uinfo) {
3610 if (copy_siginfo_to_user32(uinfo, &info))
3611 ret = -EFAULT;
3612 }
3613
3614 return ret;
3615}
3616#endif
3617#endif
3618
3619static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3620{
3621 clear_siginfo(info);
3622 info->si_signo = sig;
3623 info->si_errno = 0;
3624 info->si_code = SI_USER;
3625 info->si_pid = task_tgid_vnr(current);
3626 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3627}
3628
3629/**
3630 * sys_kill - send a signal to a process
3631 * @pid: the PID of the process
3632 * @sig: signal to be sent
3633 */
3634SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3635{
3636 struct kernel_siginfo info;
3637
3638 prepare_kill_siginfo(sig, &info);
3639
3640 return kill_something_info(sig, &info, pid);
3641}
3642
3643/*
3644 * Verify that the signaler and signalee either are in the same pid namespace
3645 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3646 * namespace.
3647 */
3648static bool access_pidfd_pidns(struct pid *pid)
3649{
3650 struct pid_namespace *active = task_active_pid_ns(current);
3651 struct pid_namespace *p = ns_of_pid(pid);
3652
3653 for (;;) {
3654 if (!p)
3655 return false;
3656 if (p == active)
3657 break;
3658 p = p->parent;
3659 }
3660
3661 return true;
3662}
3663
3664static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3665{
3666#ifdef CONFIG_COMPAT
3667 /*
3668 * Avoid hooking up compat syscalls and instead handle necessary
3669 * conversions here. Note, this is a stop-gap measure and should not be
3670 * considered a generic solution.
3671 */
3672 if (in_compat_syscall())
3673 return copy_siginfo_from_user32(
3674 kinfo, (struct compat_siginfo __user *)info);
3675#endif
3676 return copy_siginfo_from_user(kinfo, info);
3677}
3678
3679static struct pid *pidfd_to_pid(const struct file *file)
3680{
3681 struct pid *pid;
3682
3683 pid = pidfd_pid(file);
3684 if (!IS_ERR(pid))
3685 return pid;
3686
3687 return tgid_pidfd_to_pid(file);
3688}
3689
3690/**
3691 * sys_pidfd_send_signal - Signal a process through a pidfd
3692 * @pidfd: file descriptor of the process
3693 * @sig: signal to send
3694 * @info: signal info
3695 * @flags: future flags
3696 *
3697 * The syscall currently only signals via PIDTYPE_PID which covers
3698 * kill(<positive-pid>, <signal>. It does not signal threads or process
3699 * groups.
3700 * In order to extend the syscall to threads and process groups the @flags
3701 * argument should be used. In essence, the @flags argument will determine
3702 * what is signaled and not the file descriptor itself. Put in other words,
3703 * grouping is a property of the flags argument not a property of the file
3704 * descriptor.
3705 *
3706 * Return: 0 on success, negative errno on failure
3707 */
3708SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3709 siginfo_t __user *, info, unsigned int, flags)
3710{
3711 int ret;
3712 struct fd f;
3713 struct pid *pid;
3714 kernel_siginfo_t kinfo;
3715
3716 /* Enforce flags be set to 0 until we add an extension. */
3717 if (flags)
3718 return -EINVAL;
3719
3720 f = fdget(pidfd);
3721 if (!f.file)
3722 return -EBADF;
3723
3724 /* Is this a pidfd? */
3725 pid = pidfd_to_pid(f.file);
3726 if (IS_ERR(pid)) {
3727 ret = PTR_ERR(pid);
3728 goto err;
3729 }
3730
3731 ret = -EINVAL;
3732 if (!access_pidfd_pidns(pid))
3733 goto err;
3734
3735 if (info) {
3736 ret = copy_siginfo_from_user_any(&kinfo, info);
3737 if (unlikely(ret))
3738 goto err;
3739
3740 ret = -EINVAL;
3741 if (unlikely(sig != kinfo.si_signo))
3742 goto err;
3743
3744 /* Only allow sending arbitrary signals to yourself. */
3745 ret = -EPERM;
3746 if ((task_pid(current) != pid) &&
3747 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3748 goto err;
3749 } else {
3750 prepare_kill_siginfo(sig, &kinfo);
3751 }
3752
3753 ret = kill_pid_info(sig, &kinfo, pid);
3754
3755err:
3756 fdput(f);
3757 return ret;
3758}
3759
3760static int
3761do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3762{
3763 struct task_struct *p;
3764 int error = -ESRCH;
3765
3766 rcu_read_lock();
3767 p = find_task_by_vpid(pid);
3768 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3769 error = check_kill_permission(sig, info, p);
3770 /*
3771 * The null signal is a permissions and process existence
3772 * probe. No signal is actually delivered.
3773 */
3774 if (!error && sig) {
3775 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3776 /*
3777 * If lock_task_sighand() failed we pretend the task
3778 * dies after receiving the signal. The window is tiny,
3779 * and the signal is private anyway.
3780 */
3781 if (unlikely(error == -ESRCH))
3782 error = 0;
3783 }
3784 }
3785 rcu_read_unlock();
3786
3787 return error;
3788}
3789
3790static int do_tkill(pid_t tgid, pid_t pid, int sig)
3791{
3792 struct kernel_siginfo info;
3793
3794 clear_siginfo(&info);
3795 info.si_signo = sig;
3796 info.si_errno = 0;
3797 info.si_code = SI_TKILL;
3798 info.si_pid = task_tgid_vnr(current);
3799 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800
3801 return do_send_specific(tgid, pid, sig, &info);
3802}
3803
3804/**
3805 * sys_tgkill - send signal to one specific thread
3806 * @tgid: the thread group ID of the thread
3807 * @pid: the PID of the thread
3808 * @sig: signal to be sent
3809 *
3810 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3811 * exists but it's not belonging to the target process anymore. This
3812 * method solves the problem of threads exiting and PIDs getting reused.
3813 */
3814SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3815{
3816 /* This is only valid for single tasks */
3817 if (pid <= 0 || tgid <= 0)
3818 return -EINVAL;
3819
3820 return do_tkill(tgid, pid, sig);
3821}
3822
3823/**
3824 * sys_tkill - send signal to one specific task
3825 * @pid: the PID of the task
3826 * @sig: signal to be sent
3827 *
3828 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3829 */
3830SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3831{
3832 /* This is only valid for single tasks */
3833 if (pid <= 0)
3834 return -EINVAL;
3835
3836 return do_tkill(0, pid, sig);
3837}
3838
3839static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3840{
3841 /* Not even root can pretend to send signals from the kernel.
3842 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3843 */
3844 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3845 (task_pid_vnr(current) != pid))
3846 return -EPERM;
3847
3848 /* POSIX.1b doesn't mention process groups. */
3849 return kill_proc_info(sig, info, pid);
3850}
3851
3852/**
3853 * sys_rt_sigqueueinfo - send signal information to a signal
3854 * @pid: the PID of the thread
3855 * @sig: signal to be sent
3856 * @uinfo: signal info to be sent
3857 */
3858SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3859 siginfo_t __user *, uinfo)
3860{
3861 kernel_siginfo_t info;
3862 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3863 if (unlikely(ret))
3864 return ret;
3865 return do_rt_sigqueueinfo(pid, sig, &info);
3866}
3867
3868#ifdef CONFIG_COMPAT
3869COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3870 compat_pid_t, pid,
3871 int, sig,
3872 struct compat_siginfo __user *, uinfo)
3873{
3874 kernel_siginfo_t info;
3875 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3876 if (unlikely(ret))
3877 return ret;
3878 return do_rt_sigqueueinfo(pid, sig, &info);
3879}
3880#endif
3881
3882static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3883{
3884 /* This is only valid for single tasks */
3885 if (pid <= 0 || tgid <= 0)
3886 return -EINVAL;
3887
3888 /* Not even root can pretend to send signals from the kernel.
3889 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3890 */
3891 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3892 (task_pid_vnr(current) != pid))
3893 return -EPERM;
3894
3895 return do_send_specific(tgid, pid, sig, info);
3896}
3897
3898SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3899 siginfo_t __user *, uinfo)
3900{
3901 kernel_siginfo_t info;
3902 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3903 if (unlikely(ret))
3904 return ret;
3905 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3906}
3907
3908#ifdef CONFIG_COMPAT
3909COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3910 compat_pid_t, tgid,
3911 compat_pid_t, pid,
3912 int, sig,
3913 struct compat_siginfo __user *, uinfo)
3914{
3915 kernel_siginfo_t info;
3916 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3917 if (unlikely(ret))
3918 return ret;
3919 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3920}
3921#endif
3922
3923/*
3924 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3925 */
3926void kernel_sigaction(int sig, __sighandler_t action)
3927{
3928 spin_lock_irq(¤t->sighand->siglock);
3929 current->sighand->action[sig - 1].sa.sa_handler = action;
3930 if (action == SIG_IGN) {
3931 sigset_t mask;
3932
3933 sigemptyset(&mask);
3934 sigaddset(&mask, sig);
3935
3936 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
3937 flush_sigqueue_mask(&mask, ¤t->pending);
3938 recalc_sigpending();
3939 }
3940 spin_unlock_irq(¤t->sighand->siglock);
3941}
3942EXPORT_SYMBOL(kernel_sigaction);
3943
3944void __weak sigaction_compat_abi(struct k_sigaction *act,
3945 struct k_sigaction *oact)
3946{
3947}
3948
3949int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3950{
3951 struct task_struct *p = current, *t;
3952 struct k_sigaction *k;
3953 sigset_t mask;
3954
3955 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3956 return -EINVAL;
3957
3958 k = &p->sighand->action[sig-1];
3959
3960 spin_lock_irq(&p->sighand->siglock);
3961 if (oact)
3962 *oact = *k;
3963
3964 sigaction_compat_abi(act, oact);
3965
3966 if (act) {
3967 sigdelsetmask(&act->sa.sa_mask,
3968 sigmask(SIGKILL) | sigmask(SIGSTOP));
3969 *k = *act;
3970 /*
3971 * POSIX 3.3.1.3:
3972 * "Setting a signal action to SIG_IGN for a signal that is
3973 * pending shall cause the pending signal to be discarded,
3974 * whether or not it is blocked."
3975 *
3976 * "Setting a signal action to SIG_DFL for a signal that is
3977 * pending and whose default action is to ignore the signal
3978 * (for example, SIGCHLD), shall cause the pending signal to
3979 * be discarded, whether or not it is blocked"
3980 */
3981 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3982 sigemptyset(&mask);
3983 sigaddset(&mask, sig);
3984 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3985 for_each_thread(p, t)
3986 flush_sigqueue_mask(&mask, &t->pending);
3987 }
3988 }
3989
3990 spin_unlock_irq(&p->sighand->siglock);
3991 return 0;
3992}
3993
3994static int
3995do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3996 size_t min_ss_size)
3997{
3998 struct task_struct *t = current;
3999
4000 if (oss) {
4001 memset(oss, 0, sizeof(stack_t));
4002 oss->ss_sp = (void __user *) t->sas_ss_sp;
4003 oss->ss_size = t->sas_ss_size;
4004 oss->ss_flags = sas_ss_flags(sp) |
4005 (current->sas_ss_flags & SS_FLAG_BITS);
4006 }
4007
4008 if (ss) {
4009 void __user *ss_sp = ss->ss_sp;
4010 size_t ss_size = ss->ss_size;
4011 unsigned ss_flags = ss->ss_flags;
4012 int ss_mode;
4013
4014 if (unlikely(on_sig_stack(sp)))
4015 return -EPERM;
4016
4017 ss_mode = ss_flags & ~SS_FLAG_BITS;
4018 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4019 ss_mode != 0))
4020 return -EINVAL;
4021
4022 if (ss_mode == SS_DISABLE) {
4023 ss_size = 0;
4024 ss_sp = NULL;
4025 } else {
4026 if (unlikely(ss_size < min_ss_size))
4027 return -ENOMEM;
4028 }
4029
4030 t->sas_ss_sp = (unsigned long) ss_sp;
4031 t->sas_ss_size = ss_size;
4032 t->sas_ss_flags = ss_flags;
4033 }
4034 return 0;
4035}
4036
4037SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4038{
4039 stack_t new, old;
4040 int err;
4041 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4042 return -EFAULT;
4043 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4044 current_user_stack_pointer(),
4045 MINSIGSTKSZ);
4046 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4047 err = -EFAULT;
4048 return err;
4049}
4050
4051int restore_altstack(const stack_t __user *uss)
4052{
4053 stack_t new;
4054 if (copy_from_user(&new, uss, sizeof(stack_t)))
4055 return -EFAULT;
4056 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4057 MINSIGSTKSZ);
4058 /* squash all but EFAULT for now */
4059 return 0;
4060}
4061
4062int __save_altstack(stack_t __user *uss, unsigned long sp)
4063{
4064 struct task_struct *t = current;
4065 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4066 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4067 __put_user(t->sas_ss_size, &uss->ss_size);
4068 if (err)
4069 return err;
4070 if (t->sas_ss_flags & SS_AUTODISARM)
4071 sas_ss_reset(t);
4072 return 0;
4073}
4074
4075#ifdef CONFIG_COMPAT
4076static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4077 compat_stack_t __user *uoss_ptr)
4078{
4079 stack_t uss, uoss;
4080 int ret;
4081
4082 if (uss_ptr) {
4083 compat_stack_t uss32;
4084 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4085 return -EFAULT;
4086 uss.ss_sp = compat_ptr(uss32.ss_sp);
4087 uss.ss_flags = uss32.ss_flags;
4088 uss.ss_size = uss32.ss_size;
4089 }
4090 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4091 compat_user_stack_pointer(),
4092 COMPAT_MINSIGSTKSZ);
4093 if (ret >= 0 && uoss_ptr) {
4094 compat_stack_t old;
4095 memset(&old, 0, sizeof(old));
4096 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4097 old.ss_flags = uoss.ss_flags;
4098 old.ss_size = uoss.ss_size;
4099 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4100 ret = -EFAULT;
4101 }
4102 return ret;
4103}
4104
4105COMPAT_SYSCALL_DEFINE2(sigaltstack,
4106 const compat_stack_t __user *, uss_ptr,
4107 compat_stack_t __user *, uoss_ptr)
4108{
4109 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4110}
4111
4112int compat_restore_altstack(const compat_stack_t __user *uss)
4113{
4114 int err = do_compat_sigaltstack(uss, NULL);
4115 /* squash all but -EFAULT for now */
4116 return err == -EFAULT ? err : 0;
4117}
4118
4119int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4120{
4121 int err;
4122 struct task_struct *t = current;
4123 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4124 &uss->ss_sp) |
4125 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4126 __put_user(t->sas_ss_size, &uss->ss_size);
4127 if (err)
4128 return err;
4129 if (t->sas_ss_flags & SS_AUTODISARM)
4130 sas_ss_reset(t);
4131 return 0;
4132}
4133#endif
4134
4135#ifdef __ARCH_WANT_SYS_SIGPENDING
4136
4137/**
4138 * sys_sigpending - examine pending signals
4139 * @uset: where mask of pending signal is returned
4140 */
4141SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4142{
4143 sigset_t set;
4144
4145 if (sizeof(old_sigset_t) > sizeof(*uset))
4146 return -EINVAL;
4147
4148 do_sigpending(&set);
4149
4150 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4151 return -EFAULT;
4152
4153 return 0;
4154}
4155
4156#ifdef CONFIG_COMPAT
4157COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4158{
4159 sigset_t set;
4160
4161 do_sigpending(&set);
4162
4163 return put_user(set.sig[0], set32);
4164}
4165#endif
4166
4167#endif
4168
4169#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4170/**
4171 * sys_sigprocmask - examine and change blocked signals
4172 * @how: whether to add, remove, or set signals
4173 * @nset: signals to add or remove (if non-null)
4174 * @oset: previous value of signal mask if non-null
4175 *
4176 * Some platforms have their own version with special arguments;
4177 * others support only sys_rt_sigprocmask.
4178 */
4179
4180SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4181 old_sigset_t __user *, oset)
4182{
4183 old_sigset_t old_set, new_set;
4184 sigset_t new_blocked;
4185
4186 old_set = current->blocked.sig[0];
4187
4188 if (nset) {
4189 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4190 return -EFAULT;
4191
4192 new_blocked = current->blocked;
4193
4194 switch (how) {
4195 case SIG_BLOCK:
4196 sigaddsetmask(&new_blocked, new_set);
4197 break;
4198 case SIG_UNBLOCK:
4199 sigdelsetmask(&new_blocked, new_set);
4200 break;
4201 case SIG_SETMASK:
4202 new_blocked.sig[0] = new_set;
4203 break;
4204 default:
4205 return -EINVAL;
4206 }
4207
4208 set_current_blocked(&new_blocked);
4209 }
4210
4211 if (oset) {
4212 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4213 return -EFAULT;
4214 }
4215
4216 return 0;
4217}
4218#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4219
4220#ifndef CONFIG_ODD_RT_SIGACTION
4221/**
4222 * sys_rt_sigaction - alter an action taken by a process
4223 * @sig: signal to be sent
4224 * @act: new sigaction
4225 * @oact: used to save the previous sigaction
4226 * @sigsetsize: size of sigset_t type
4227 */
4228SYSCALL_DEFINE4(rt_sigaction, int, sig,
4229 const struct sigaction __user *, act,
4230 struct sigaction __user *, oact,
4231 size_t, sigsetsize)
4232{
4233 struct k_sigaction new_sa, old_sa;
4234 int ret;
4235
4236 /* XXX: Don't preclude handling different sized sigset_t's. */
4237 if (sigsetsize != sizeof(sigset_t))
4238 return -EINVAL;
4239
4240 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4241 return -EFAULT;
4242
4243 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4244 if (ret)
4245 return ret;
4246
4247 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4248 return -EFAULT;
4249
4250 return 0;
4251}
4252#ifdef CONFIG_COMPAT
4253COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4254 const struct compat_sigaction __user *, act,
4255 struct compat_sigaction __user *, oact,
4256 compat_size_t, sigsetsize)
4257{
4258 struct k_sigaction new_ka, old_ka;
4259#ifdef __ARCH_HAS_SA_RESTORER
4260 compat_uptr_t restorer;
4261#endif
4262 int ret;
4263
4264 /* XXX: Don't preclude handling different sized sigset_t's. */
4265 if (sigsetsize != sizeof(compat_sigset_t))
4266 return -EINVAL;
4267
4268 if (act) {
4269 compat_uptr_t handler;
4270 ret = get_user(handler, &act->sa_handler);
4271 new_ka.sa.sa_handler = compat_ptr(handler);
4272#ifdef __ARCH_HAS_SA_RESTORER
4273 ret |= get_user(restorer, &act->sa_restorer);
4274 new_ka.sa.sa_restorer = compat_ptr(restorer);
4275#endif
4276 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4277 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4278 if (ret)
4279 return -EFAULT;
4280 }
4281
4282 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4283 if (!ret && oact) {
4284 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4285 &oact->sa_handler);
4286 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4287 sizeof(oact->sa_mask));
4288 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4289#ifdef __ARCH_HAS_SA_RESTORER
4290 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4291 &oact->sa_restorer);
4292#endif
4293 }
4294 return ret;
4295}
4296#endif
4297#endif /* !CONFIG_ODD_RT_SIGACTION */
4298
4299#ifdef CONFIG_OLD_SIGACTION
4300SYSCALL_DEFINE3(sigaction, int, sig,
4301 const struct old_sigaction __user *, act,
4302 struct old_sigaction __user *, oact)
4303{
4304 struct k_sigaction new_ka, old_ka;
4305 int ret;
4306
4307 if (act) {
4308 old_sigset_t mask;
4309 if (!access_ok(act, sizeof(*act)) ||
4310 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4311 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4312 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4313 __get_user(mask, &act->sa_mask))
4314 return -EFAULT;
4315#ifdef __ARCH_HAS_KA_RESTORER
4316 new_ka.ka_restorer = NULL;
4317#endif
4318 siginitset(&new_ka.sa.sa_mask, mask);
4319 }
4320
4321 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4322
4323 if (!ret && oact) {
4324 if (!access_ok(oact, sizeof(*oact)) ||
4325 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4326 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4327 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4328 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4329 return -EFAULT;
4330 }
4331
4332 return ret;
4333}
4334#endif
4335#ifdef CONFIG_COMPAT_OLD_SIGACTION
4336COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4337 const struct compat_old_sigaction __user *, act,
4338 struct compat_old_sigaction __user *, oact)
4339{
4340 struct k_sigaction new_ka, old_ka;
4341 int ret;
4342 compat_old_sigset_t mask;
4343 compat_uptr_t handler, restorer;
4344
4345 if (act) {
4346 if (!access_ok(act, sizeof(*act)) ||
4347 __get_user(handler, &act->sa_handler) ||
4348 __get_user(restorer, &act->sa_restorer) ||
4349 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4350 __get_user(mask, &act->sa_mask))
4351 return -EFAULT;
4352
4353#ifdef __ARCH_HAS_KA_RESTORER
4354 new_ka.ka_restorer = NULL;
4355#endif
4356 new_ka.sa.sa_handler = compat_ptr(handler);
4357 new_ka.sa.sa_restorer = compat_ptr(restorer);
4358 siginitset(&new_ka.sa.sa_mask, mask);
4359 }
4360
4361 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4362
4363 if (!ret && oact) {
4364 if (!access_ok(oact, sizeof(*oact)) ||
4365 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4366 &oact->sa_handler) ||
4367 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4368 &oact->sa_restorer) ||
4369 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4370 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4371 return -EFAULT;
4372 }
4373 return ret;
4374}
4375#endif
4376
4377#ifdef CONFIG_SGETMASK_SYSCALL
4378
4379/*
4380 * For backwards compatibility. Functionality superseded by sigprocmask.
4381 */
4382SYSCALL_DEFINE0(sgetmask)
4383{
4384 /* SMP safe */
4385 return current->blocked.sig[0];
4386}
4387
4388SYSCALL_DEFINE1(ssetmask, int, newmask)
4389{
4390 int old = current->blocked.sig[0];
4391 sigset_t newset;
4392
4393 siginitset(&newset, newmask);
4394 set_current_blocked(&newset);
4395
4396 return old;
4397}
4398#endif /* CONFIG_SGETMASK_SYSCALL */
4399
4400#ifdef __ARCH_WANT_SYS_SIGNAL
4401/*
4402 * For backwards compatibility. Functionality superseded by sigaction.
4403 */
4404SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4405{
4406 struct k_sigaction new_sa, old_sa;
4407 int ret;
4408
4409 new_sa.sa.sa_handler = handler;
4410 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4411 sigemptyset(&new_sa.sa.sa_mask);
4412
4413 ret = do_sigaction(sig, &new_sa, &old_sa);
4414
4415 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4416}
4417#endif /* __ARCH_WANT_SYS_SIGNAL */
4418
4419#ifdef __ARCH_WANT_SYS_PAUSE
4420
4421SYSCALL_DEFINE0(pause)
4422{
4423 while (!signal_pending(current)) {
4424 __set_current_state(TASK_INTERRUPTIBLE);
4425 schedule();
4426 }
4427 return -ERESTARTNOHAND;
4428}
4429
4430#endif
4431
4432static int sigsuspend(sigset_t *set)
4433{
4434 current->saved_sigmask = current->blocked;
4435 set_current_blocked(set);
4436
4437 while (!signal_pending(current)) {
4438 __set_current_state(TASK_INTERRUPTIBLE);
4439 schedule();
4440 }
4441 set_restore_sigmask();
4442 return -ERESTARTNOHAND;
4443}
4444
4445/**
4446 * sys_rt_sigsuspend - replace the signal mask for a value with the
4447 * @unewset value until a signal is received
4448 * @unewset: new signal mask value
4449 * @sigsetsize: size of sigset_t type
4450 */
4451SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4452{
4453 sigset_t newset;
4454
4455 /* XXX: Don't preclude handling different sized sigset_t's. */
4456 if (sigsetsize != sizeof(sigset_t))
4457 return -EINVAL;
4458
4459 if (copy_from_user(&newset, unewset, sizeof(newset)))
4460 return -EFAULT;
4461 return sigsuspend(&newset);
4462}
4463
4464#ifdef CONFIG_COMPAT
4465COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4466{
4467 sigset_t newset;
4468
4469 /* XXX: Don't preclude handling different sized sigset_t's. */
4470 if (sigsetsize != sizeof(sigset_t))
4471 return -EINVAL;
4472
4473 if (get_compat_sigset(&newset, unewset))
4474 return -EFAULT;
4475 return sigsuspend(&newset);
4476}
4477#endif
4478
4479#ifdef CONFIG_OLD_SIGSUSPEND
4480SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4481{
4482 sigset_t blocked;
4483 siginitset(&blocked, mask);
4484 return sigsuspend(&blocked);
4485}
4486#endif
4487#ifdef CONFIG_OLD_SIGSUSPEND3
4488SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4489{
4490 sigset_t blocked;
4491 siginitset(&blocked, mask);
4492 return sigsuspend(&blocked);
4493}
4494#endif
4495
4496__weak const char *arch_vma_name(struct vm_area_struct *vma)
4497{
4498 return NULL;
4499}
4500
4501static inline void siginfo_buildtime_checks(void)
4502{
4503 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4504
4505 /* Verify the offsets in the two siginfos match */
4506#define CHECK_OFFSET(field) \
4507 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4508
4509 /* kill */
4510 CHECK_OFFSET(si_pid);
4511 CHECK_OFFSET(si_uid);
4512
4513 /* timer */
4514 CHECK_OFFSET(si_tid);
4515 CHECK_OFFSET(si_overrun);
4516 CHECK_OFFSET(si_value);
4517
4518 /* rt */
4519 CHECK_OFFSET(si_pid);
4520 CHECK_OFFSET(si_uid);
4521 CHECK_OFFSET(si_value);
4522
4523 /* sigchld */
4524 CHECK_OFFSET(si_pid);
4525 CHECK_OFFSET(si_uid);
4526 CHECK_OFFSET(si_status);
4527 CHECK_OFFSET(si_utime);
4528 CHECK_OFFSET(si_stime);
4529
4530 /* sigfault */
4531 CHECK_OFFSET(si_addr);
4532 CHECK_OFFSET(si_addr_lsb);
4533 CHECK_OFFSET(si_lower);
4534 CHECK_OFFSET(si_upper);
4535 CHECK_OFFSET(si_pkey);
4536
4537 /* sigpoll */
4538 CHECK_OFFSET(si_band);
4539 CHECK_OFFSET(si_fd);
4540
4541 /* sigsys */
4542 CHECK_OFFSET(si_call_addr);
4543 CHECK_OFFSET(si_syscall);
4544 CHECK_OFFSET(si_arch);
4545#undef CHECK_OFFSET
4546
4547 /* usb asyncio */
4548 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4549 offsetof(struct siginfo, si_addr));
4550 if (sizeof(int) == sizeof(void __user *)) {
4551 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4552 sizeof(void __user *));
4553 } else {
4554 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4555 sizeof_field(struct siginfo, si_uid)) !=
4556 sizeof(void __user *));
4557 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4558 offsetof(struct siginfo, si_uid));
4559 }
4560#ifdef CONFIG_COMPAT
4561 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4562 offsetof(struct compat_siginfo, si_addr));
4563 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4564 sizeof(compat_uptr_t));
4565 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4566 sizeof_field(struct siginfo, si_pid));
4567#endif
4568}
4569
4570void __init signals_init(void)
4571{
4572 siginfo_buildtime_checks();
4573
4574 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4575}
4576
4577#ifdef CONFIG_KGDB_KDB
4578#include <linux/kdb.h>
4579/*
4580 * kdb_send_sig - Allows kdb to send signals without exposing
4581 * signal internals. This function checks if the required locks are
4582 * available before calling the main signal code, to avoid kdb
4583 * deadlocks.
4584 */
4585void kdb_send_sig(struct task_struct *t, int sig)
4586{
4587 static struct task_struct *kdb_prev_t;
4588 int new_t, ret;
4589 if (!spin_trylock(&t->sighand->siglock)) {
4590 kdb_printf("Can't do kill command now.\n"
4591 "The sigmask lock is held somewhere else in "
4592 "kernel, try again later\n");
4593 return;
4594 }
4595 new_t = kdb_prev_t != t;
4596 kdb_prev_t = t;
4597 if (t->state != TASK_RUNNING && new_t) {
4598 spin_unlock(&t->sighand->siglock);
4599 kdb_printf("Process is not RUNNING, sending a signal from "
4600 "kdb risks deadlock\n"
4601 "on the run queue locks. "
4602 "The signal has _not_ been sent.\n"
4603 "Reissue the kill command if you want to risk "
4604 "the deadlock.\n");
4605 return;
4606 }
4607 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4608 spin_unlock(&t->sighand->siglock);
4609 if (ret)
4610 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4611 sig, t->pid);
4612 else
4613 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4614}
4615#endif /* CONFIG_KGDB_KDB */
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/slab.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/tty.h>
19#include <linux/binfmts.h>
20#include <linux/security.h>
21#include <linux/syscalls.h>
22#include <linux/ptrace.h>
23#include <linux/signal.h>
24#include <linux/signalfd.h>
25#include <linux/ratelimit.h>
26#include <linux/tracehook.h>
27#include <linux/capability.h>
28#include <linux/freezer.h>
29#include <linux/pid_namespace.h>
30#include <linux/nsproxy.h>
31#define CREATE_TRACE_POINTS
32#include <trace/events/signal.h>
33
34#include <asm/param.h>
35#include <asm/uaccess.h>
36#include <asm/unistd.h>
37#include <asm/siginfo.h>
38#include "audit.h" /* audit_signal_info() */
39
40/*
41 * SLAB caches for signal bits.
42 */
43
44static struct kmem_cache *sigqueue_cachep;
45
46int print_fatal_signals __read_mostly;
47
48static void __user *sig_handler(struct task_struct *t, int sig)
49{
50 return t->sighand->action[sig - 1].sa.sa_handler;
51}
52
53static int sig_handler_ignored(void __user *handler, int sig)
54{
55 /* Is it explicitly or implicitly ignored? */
56 return handler == SIG_IGN ||
57 (handler == SIG_DFL && sig_kernel_ignore(sig));
58}
59
60static int sig_task_ignored(struct task_struct *t, int sig,
61 int from_ancestor_ns)
62{
63 void __user *handler;
64
65 handler = sig_handler(t, sig);
66
67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 handler == SIG_DFL && !from_ancestor_ns)
69 return 1;
70
71 return sig_handler_ignored(handler, sig);
72}
73
74static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
75{
76 /*
77 * Blocked signals are never ignored, since the
78 * signal handler may change by the time it is
79 * unblocked.
80 */
81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 return 0;
83
84 if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 return 0;
86
87 /*
88 * Tracers may want to know about even ignored signals.
89 */
90 return !t->ptrace;
91}
92
93/*
94 * Re-calculate pending state from the set of locally pending
95 * signals, globally pending signals, and blocked signals.
96 */
97static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
98{
99 unsigned long ready;
100 long i;
101
102 switch (_NSIG_WORDS) {
103 default:
104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 ready |= signal->sig[i] &~ blocked->sig[i];
106 break;
107
108 case 4: ready = signal->sig[3] &~ blocked->sig[3];
109 ready |= signal->sig[2] &~ blocked->sig[2];
110 ready |= signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
113
114 case 2: ready = signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
117
118 case 1: ready = signal->sig[0] &~ blocked->sig[0];
119 }
120 return ready != 0;
121}
122
123#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
124
125static int recalc_sigpending_tsk(struct task_struct *t)
126{
127 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
128 PENDING(&t->pending, &t->blocked) ||
129 PENDING(&t->signal->shared_pending, &t->blocked)) {
130 set_tsk_thread_flag(t, TIF_SIGPENDING);
131 return 1;
132 }
133 /*
134 * We must never clear the flag in another thread, or in current
135 * when it's possible the current syscall is returning -ERESTART*.
136 * So we don't clear it here, and only callers who know they should do.
137 */
138 return 0;
139}
140
141/*
142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143 * This is superfluous when called on current, the wakeup is a harmless no-op.
144 */
145void recalc_sigpending_and_wake(struct task_struct *t)
146{
147 if (recalc_sigpending_tsk(t))
148 signal_wake_up(t, 0);
149}
150
151void recalc_sigpending(void)
152{
153 if (!recalc_sigpending_tsk(current) && !freezing(current))
154 clear_thread_flag(TIF_SIGPENDING);
155
156}
157
158/* Given the mask, find the first available signal that should be serviced. */
159
160#define SYNCHRONOUS_MASK \
161 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
162 sigmask(SIGTRAP) | sigmask(SIGFPE))
163
164int next_signal(struct sigpending *pending, sigset_t *mask)
165{
166 unsigned long i, *s, *m, x;
167 int sig = 0;
168
169 s = pending->signal.sig;
170 m = mask->sig;
171
172 /*
173 * Handle the first word specially: it contains the
174 * synchronous signals that need to be dequeued first.
175 */
176 x = *s &~ *m;
177 if (x) {
178 if (x & SYNCHRONOUS_MASK)
179 x &= SYNCHRONOUS_MASK;
180 sig = ffz(~x) + 1;
181 return sig;
182 }
183
184 switch (_NSIG_WORDS) {
185 default:
186 for (i = 1; i < _NSIG_WORDS; ++i) {
187 x = *++s &~ *++m;
188 if (!x)
189 continue;
190 sig = ffz(~x) + i*_NSIG_BPW + 1;
191 break;
192 }
193 break;
194
195 case 2:
196 x = s[1] &~ m[1];
197 if (!x)
198 break;
199 sig = ffz(~x) + _NSIG_BPW + 1;
200 break;
201
202 case 1:
203 /* Nothing to do */
204 break;
205 }
206
207 return sig;
208}
209
210static inline void print_dropped_signal(int sig)
211{
212 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
213
214 if (!print_fatal_signals)
215 return;
216
217 if (!__ratelimit(&ratelimit_state))
218 return;
219
220 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
221 current->comm, current->pid, sig);
222}
223
224/**
225 * task_set_jobctl_pending - set jobctl pending bits
226 * @task: target task
227 * @mask: pending bits to set
228 *
229 * Clear @mask from @task->jobctl. @mask must be subset of
230 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
231 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
232 * cleared. If @task is already being killed or exiting, this function
233 * becomes noop.
234 *
235 * CONTEXT:
236 * Must be called with @task->sighand->siglock held.
237 *
238 * RETURNS:
239 * %true if @mask is set, %false if made noop because @task was dying.
240 */
241bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
242{
243 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
244 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
245 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
246
247 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
248 return false;
249
250 if (mask & JOBCTL_STOP_SIGMASK)
251 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
252
253 task->jobctl |= mask;
254 return true;
255}
256
257/**
258 * task_clear_jobctl_trapping - clear jobctl trapping bit
259 * @task: target task
260 *
261 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
262 * Clear it and wake up the ptracer. Note that we don't need any further
263 * locking. @task->siglock guarantees that @task->parent points to the
264 * ptracer.
265 *
266 * CONTEXT:
267 * Must be called with @task->sighand->siglock held.
268 */
269void task_clear_jobctl_trapping(struct task_struct *task)
270{
271 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
272 task->jobctl &= ~JOBCTL_TRAPPING;
273 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
274 }
275}
276
277/**
278 * task_clear_jobctl_pending - clear jobctl pending bits
279 * @task: target task
280 * @mask: pending bits to clear
281 *
282 * Clear @mask from @task->jobctl. @mask must be subset of
283 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
284 * STOP bits are cleared together.
285 *
286 * If clearing of @mask leaves no stop or trap pending, this function calls
287 * task_clear_jobctl_trapping().
288 *
289 * CONTEXT:
290 * Must be called with @task->sighand->siglock held.
291 */
292void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
293{
294 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
295
296 if (mask & JOBCTL_STOP_PENDING)
297 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
298
299 task->jobctl &= ~mask;
300
301 if (!(task->jobctl & JOBCTL_PENDING_MASK))
302 task_clear_jobctl_trapping(task);
303}
304
305/**
306 * task_participate_group_stop - participate in a group stop
307 * @task: task participating in a group stop
308 *
309 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
310 * Group stop states are cleared and the group stop count is consumed if
311 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
312 * stop, the appropriate %SIGNAL_* flags are set.
313 *
314 * CONTEXT:
315 * Must be called with @task->sighand->siglock held.
316 *
317 * RETURNS:
318 * %true if group stop completion should be notified to the parent, %false
319 * otherwise.
320 */
321static bool task_participate_group_stop(struct task_struct *task)
322{
323 struct signal_struct *sig = task->signal;
324 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
325
326 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
327
328 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
329
330 if (!consume)
331 return false;
332
333 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
334 sig->group_stop_count--;
335
336 /*
337 * Tell the caller to notify completion iff we are entering into a
338 * fresh group stop. Read comment in do_signal_stop() for details.
339 */
340 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
341 sig->flags = SIGNAL_STOP_STOPPED;
342 return true;
343 }
344 return false;
345}
346
347/*
348 * allocate a new signal queue record
349 * - this may be called without locks if and only if t == current, otherwise an
350 * appropriate lock must be held to stop the target task from exiting
351 */
352static struct sigqueue *
353__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
354{
355 struct sigqueue *q = NULL;
356 struct user_struct *user;
357
358 /*
359 * Protect access to @t credentials. This can go away when all
360 * callers hold rcu read lock.
361 */
362 rcu_read_lock();
363 user = get_uid(__task_cred(t)->user);
364 atomic_inc(&user->sigpending);
365 rcu_read_unlock();
366
367 if (override_rlimit ||
368 atomic_read(&user->sigpending) <=
369 task_rlimit(t, RLIMIT_SIGPENDING)) {
370 q = kmem_cache_alloc(sigqueue_cachep, flags);
371 } else {
372 print_dropped_signal(sig);
373 }
374
375 if (unlikely(q == NULL)) {
376 atomic_dec(&user->sigpending);
377 free_uid(user);
378 } else {
379 INIT_LIST_HEAD(&q->list);
380 q->flags = 0;
381 q->user = user;
382 }
383
384 return q;
385}
386
387static void __sigqueue_free(struct sigqueue *q)
388{
389 if (q->flags & SIGQUEUE_PREALLOC)
390 return;
391 atomic_dec(&q->user->sigpending);
392 free_uid(q->user);
393 kmem_cache_free(sigqueue_cachep, q);
394}
395
396void flush_sigqueue(struct sigpending *queue)
397{
398 struct sigqueue *q;
399
400 sigemptyset(&queue->signal);
401 while (!list_empty(&queue->list)) {
402 q = list_entry(queue->list.next, struct sigqueue , list);
403 list_del_init(&q->list);
404 __sigqueue_free(q);
405 }
406}
407
408/*
409 * Flush all pending signals for a task.
410 */
411void __flush_signals(struct task_struct *t)
412{
413 clear_tsk_thread_flag(t, TIF_SIGPENDING);
414 flush_sigqueue(&t->pending);
415 flush_sigqueue(&t->signal->shared_pending);
416}
417
418void flush_signals(struct task_struct *t)
419{
420 unsigned long flags;
421
422 spin_lock_irqsave(&t->sighand->siglock, flags);
423 __flush_signals(t);
424 spin_unlock_irqrestore(&t->sighand->siglock, flags);
425}
426
427static void __flush_itimer_signals(struct sigpending *pending)
428{
429 sigset_t signal, retain;
430 struct sigqueue *q, *n;
431
432 signal = pending->signal;
433 sigemptyset(&retain);
434
435 list_for_each_entry_safe(q, n, &pending->list, list) {
436 int sig = q->info.si_signo;
437
438 if (likely(q->info.si_code != SI_TIMER)) {
439 sigaddset(&retain, sig);
440 } else {
441 sigdelset(&signal, sig);
442 list_del_init(&q->list);
443 __sigqueue_free(q);
444 }
445 }
446
447 sigorsets(&pending->signal, &signal, &retain);
448}
449
450void flush_itimer_signals(void)
451{
452 struct task_struct *tsk = current;
453 unsigned long flags;
454
455 spin_lock_irqsave(&tsk->sighand->siglock, flags);
456 __flush_itimer_signals(&tsk->pending);
457 __flush_itimer_signals(&tsk->signal->shared_pending);
458 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
459}
460
461void ignore_signals(struct task_struct *t)
462{
463 int i;
464
465 for (i = 0; i < _NSIG; ++i)
466 t->sighand->action[i].sa.sa_handler = SIG_IGN;
467
468 flush_signals(t);
469}
470
471/*
472 * Flush all handlers for a task.
473 */
474
475void
476flush_signal_handlers(struct task_struct *t, int force_default)
477{
478 int i;
479 struct k_sigaction *ka = &t->sighand->action[0];
480 for (i = _NSIG ; i != 0 ; i--) {
481 if (force_default || ka->sa.sa_handler != SIG_IGN)
482 ka->sa.sa_handler = SIG_DFL;
483 ka->sa.sa_flags = 0;
484 sigemptyset(&ka->sa.sa_mask);
485 ka++;
486 }
487}
488
489int unhandled_signal(struct task_struct *tsk, int sig)
490{
491 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
492 if (is_global_init(tsk))
493 return 1;
494 if (handler != SIG_IGN && handler != SIG_DFL)
495 return 0;
496 /* if ptraced, let the tracer determine */
497 return !tsk->ptrace;
498}
499
500/*
501 * Notify the system that a driver wants to block all signals for this
502 * process, and wants to be notified if any signals at all were to be
503 * sent/acted upon. If the notifier routine returns non-zero, then the
504 * signal will be acted upon after all. If the notifier routine returns 0,
505 * then then signal will be blocked. Only one block per process is
506 * allowed. priv is a pointer to private data that the notifier routine
507 * can use to determine if the signal should be blocked or not.
508 */
509void
510block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
511{
512 unsigned long flags;
513
514 spin_lock_irqsave(¤t->sighand->siglock, flags);
515 current->notifier_mask = mask;
516 current->notifier_data = priv;
517 current->notifier = notifier;
518 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
519}
520
521/* Notify the system that blocking has ended. */
522
523void
524unblock_all_signals(void)
525{
526 unsigned long flags;
527
528 spin_lock_irqsave(¤t->sighand->siglock, flags);
529 current->notifier = NULL;
530 current->notifier_data = NULL;
531 recalc_sigpending();
532 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
533}
534
535static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
536{
537 struct sigqueue *q, *first = NULL;
538
539 /*
540 * Collect the siginfo appropriate to this signal. Check if
541 * there is another siginfo for the same signal.
542 */
543 list_for_each_entry(q, &list->list, list) {
544 if (q->info.si_signo == sig) {
545 if (first)
546 goto still_pending;
547 first = q;
548 }
549 }
550
551 sigdelset(&list->signal, sig);
552
553 if (first) {
554still_pending:
555 list_del_init(&first->list);
556 copy_siginfo(info, &first->info);
557 __sigqueue_free(first);
558 } else {
559 /*
560 * Ok, it wasn't in the queue. This must be
561 * a fast-pathed signal or we must have been
562 * out of queue space. So zero out the info.
563 */
564 info->si_signo = sig;
565 info->si_errno = 0;
566 info->si_code = SI_USER;
567 info->si_pid = 0;
568 info->si_uid = 0;
569 }
570}
571
572static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
573 siginfo_t *info)
574{
575 int sig = next_signal(pending, mask);
576
577 if (sig) {
578 if (current->notifier) {
579 if (sigismember(current->notifier_mask, sig)) {
580 if (!(current->notifier)(current->notifier_data)) {
581 clear_thread_flag(TIF_SIGPENDING);
582 return 0;
583 }
584 }
585 }
586
587 collect_signal(sig, pending, info);
588 }
589
590 return sig;
591}
592
593/*
594 * Dequeue a signal and return the element to the caller, which is
595 * expected to free it.
596 *
597 * All callers have to hold the siglock.
598 */
599int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
600{
601 int signr;
602
603 /* We only dequeue private signals from ourselves, we don't let
604 * signalfd steal them
605 */
606 signr = __dequeue_signal(&tsk->pending, mask, info);
607 if (!signr) {
608 signr = __dequeue_signal(&tsk->signal->shared_pending,
609 mask, info);
610 /*
611 * itimer signal ?
612 *
613 * itimers are process shared and we restart periodic
614 * itimers in the signal delivery path to prevent DoS
615 * attacks in the high resolution timer case. This is
616 * compliant with the old way of self-restarting
617 * itimers, as the SIGALRM is a legacy signal and only
618 * queued once. Changing the restart behaviour to
619 * restart the timer in the signal dequeue path is
620 * reducing the timer noise on heavy loaded !highres
621 * systems too.
622 */
623 if (unlikely(signr == SIGALRM)) {
624 struct hrtimer *tmr = &tsk->signal->real_timer;
625
626 if (!hrtimer_is_queued(tmr) &&
627 tsk->signal->it_real_incr.tv64 != 0) {
628 hrtimer_forward(tmr, tmr->base->get_time(),
629 tsk->signal->it_real_incr);
630 hrtimer_restart(tmr);
631 }
632 }
633 }
634
635 recalc_sigpending();
636 if (!signr)
637 return 0;
638
639 if (unlikely(sig_kernel_stop(signr))) {
640 /*
641 * Set a marker that we have dequeued a stop signal. Our
642 * caller might release the siglock and then the pending
643 * stop signal it is about to process is no longer in the
644 * pending bitmasks, but must still be cleared by a SIGCONT
645 * (and overruled by a SIGKILL). So those cases clear this
646 * shared flag after we've set it. Note that this flag may
647 * remain set after the signal we return is ignored or
648 * handled. That doesn't matter because its only purpose
649 * is to alert stop-signal processing code when another
650 * processor has come along and cleared the flag.
651 */
652 current->jobctl |= JOBCTL_STOP_DEQUEUED;
653 }
654 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
655 /*
656 * Release the siglock to ensure proper locking order
657 * of timer locks outside of siglocks. Note, we leave
658 * irqs disabled here, since the posix-timers code is
659 * about to disable them again anyway.
660 */
661 spin_unlock(&tsk->sighand->siglock);
662 do_schedule_next_timer(info);
663 spin_lock(&tsk->sighand->siglock);
664 }
665 return signr;
666}
667
668/*
669 * Tell a process that it has a new active signal..
670 *
671 * NOTE! we rely on the previous spin_lock to
672 * lock interrupts for us! We can only be called with
673 * "siglock" held, and the local interrupt must
674 * have been disabled when that got acquired!
675 *
676 * No need to set need_resched since signal event passing
677 * goes through ->blocked
678 */
679void signal_wake_up(struct task_struct *t, int resume)
680{
681 unsigned int mask;
682
683 set_tsk_thread_flag(t, TIF_SIGPENDING);
684
685 /*
686 * For SIGKILL, we want to wake it up in the stopped/traced/killable
687 * case. We don't check t->state here because there is a race with it
688 * executing another processor and just now entering stopped state.
689 * By using wake_up_state, we ensure the process will wake up and
690 * handle its death signal.
691 */
692 mask = TASK_INTERRUPTIBLE;
693 if (resume)
694 mask |= TASK_WAKEKILL;
695 if (!wake_up_state(t, mask))
696 kick_process(t);
697}
698
699/*
700 * Remove signals in mask from the pending set and queue.
701 * Returns 1 if any signals were found.
702 *
703 * All callers must be holding the siglock.
704 *
705 * This version takes a sigset mask and looks at all signals,
706 * not just those in the first mask word.
707 */
708static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
709{
710 struct sigqueue *q, *n;
711 sigset_t m;
712
713 sigandsets(&m, mask, &s->signal);
714 if (sigisemptyset(&m))
715 return 0;
716
717 sigandnsets(&s->signal, &s->signal, mask);
718 list_for_each_entry_safe(q, n, &s->list, list) {
719 if (sigismember(mask, q->info.si_signo)) {
720 list_del_init(&q->list);
721 __sigqueue_free(q);
722 }
723 }
724 return 1;
725}
726/*
727 * Remove signals in mask from the pending set and queue.
728 * Returns 1 if any signals were found.
729 *
730 * All callers must be holding the siglock.
731 */
732static int rm_from_queue(unsigned long mask, struct sigpending *s)
733{
734 struct sigqueue *q, *n;
735
736 if (!sigtestsetmask(&s->signal, mask))
737 return 0;
738
739 sigdelsetmask(&s->signal, mask);
740 list_for_each_entry_safe(q, n, &s->list, list) {
741 if (q->info.si_signo < SIGRTMIN &&
742 (mask & sigmask(q->info.si_signo))) {
743 list_del_init(&q->list);
744 __sigqueue_free(q);
745 }
746 }
747 return 1;
748}
749
750static inline int is_si_special(const struct siginfo *info)
751{
752 return info <= SEND_SIG_FORCED;
753}
754
755static inline bool si_fromuser(const struct siginfo *info)
756{
757 return info == SEND_SIG_NOINFO ||
758 (!is_si_special(info) && SI_FROMUSER(info));
759}
760
761/*
762 * called with RCU read lock from check_kill_permission()
763 */
764static int kill_ok_by_cred(struct task_struct *t)
765{
766 const struct cred *cred = current_cred();
767 const struct cred *tcred = __task_cred(t);
768
769 if (cred->user->user_ns == tcred->user->user_ns &&
770 (cred->euid == tcred->suid ||
771 cred->euid == tcred->uid ||
772 cred->uid == tcred->suid ||
773 cred->uid == tcred->uid))
774 return 1;
775
776 if (ns_capable(tcred->user->user_ns, CAP_KILL))
777 return 1;
778
779 return 0;
780}
781
782/*
783 * Bad permissions for sending the signal
784 * - the caller must hold the RCU read lock
785 */
786static int check_kill_permission(int sig, struct siginfo *info,
787 struct task_struct *t)
788{
789 struct pid *sid;
790 int error;
791
792 if (!valid_signal(sig))
793 return -EINVAL;
794
795 if (!si_fromuser(info))
796 return 0;
797
798 error = audit_signal_info(sig, t); /* Let audit system see the signal */
799 if (error)
800 return error;
801
802 if (!same_thread_group(current, t) &&
803 !kill_ok_by_cred(t)) {
804 switch (sig) {
805 case SIGCONT:
806 sid = task_session(t);
807 /*
808 * We don't return the error if sid == NULL. The
809 * task was unhashed, the caller must notice this.
810 */
811 if (!sid || sid == task_session(current))
812 break;
813 default:
814 return -EPERM;
815 }
816 }
817
818 return security_task_kill(t, info, sig, 0);
819}
820
821/**
822 * ptrace_trap_notify - schedule trap to notify ptracer
823 * @t: tracee wanting to notify tracer
824 *
825 * This function schedules sticky ptrace trap which is cleared on the next
826 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
827 * ptracer.
828 *
829 * If @t is running, STOP trap will be taken. If trapped for STOP and
830 * ptracer is listening for events, tracee is woken up so that it can
831 * re-trap for the new event. If trapped otherwise, STOP trap will be
832 * eventually taken without returning to userland after the existing traps
833 * are finished by PTRACE_CONT.
834 *
835 * CONTEXT:
836 * Must be called with @task->sighand->siglock held.
837 */
838static void ptrace_trap_notify(struct task_struct *t)
839{
840 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
841 assert_spin_locked(&t->sighand->siglock);
842
843 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
844 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
845}
846
847/*
848 * Handle magic process-wide effects of stop/continue signals. Unlike
849 * the signal actions, these happen immediately at signal-generation
850 * time regardless of blocking, ignoring, or handling. This does the
851 * actual continuing for SIGCONT, but not the actual stopping for stop
852 * signals. The process stop is done as a signal action for SIG_DFL.
853 *
854 * Returns true if the signal should be actually delivered, otherwise
855 * it should be dropped.
856 */
857static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
858{
859 struct signal_struct *signal = p->signal;
860 struct task_struct *t;
861
862 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
863 /*
864 * The process is in the middle of dying, nothing to do.
865 */
866 } else if (sig_kernel_stop(sig)) {
867 /*
868 * This is a stop signal. Remove SIGCONT from all queues.
869 */
870 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
871 t = p;
872 do {
873 rm_from_queue(sigmask(SIGCONT), &t->pending);
874 } while_each_thread(p, t);
875 } else if (sig == SIGCONT) {
876 unsigned int why;
877 /*
878 * Remove all stop signals from all queues, wake all threads.
879 */
880 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
881 t = p;
882 do {
883 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
884 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
885 if (likely(!(t->ptrace & PT_SEIZED)))
886 wake_up_state(t, __TASK_STOPPED);
887 else
888 ptrace_trap_notify(t);
889 } while_each_thread(p, t);
890
891 /*
892 * Notify the parent with CLD_CONTINUED if we were stopped.
893 *
894 * If we were in the middle of a group stop, we pretend it
895 * was already finished, and then continued. Since SIGCHLD
896 * doesn't queue we report only CLD_STOPPED, as if the next
897 * CLD_CONTINUED was dropped.
898 */
899 why = 0;
900 if (signal->flags & SIGNAL_STOP_STOPPED)
901 why |= SIGNAL_CLD_CONTINUED;
902 else if (signal->group_stop_count)
903 why |= SIGNAL_CLD_STOPPED;
904
905 if (why) {
906 /*
907 * The first thread which returns from do_signal_stop()
908 * will take ->siglock, notice SIGNAL_CLD_MASK, and
909 * notify its parent. See get_signal_to_deliver().
910 */
911 signal->flags = why | SIGNAL_STOP_CONTINUED;
912 signal->group_stop_count = 0;
913 signal->group_exit_code = 0;
914 }
915 }
916
917 return !sig_ignored(p, sig, from_ancestor_ns);
918}
919
920/*
921 * Test if P wants to take SIG. After we've checked all threads with this,
922 * it's equivalent to finding no threads not blocking SIG. Any threads not
923 * blocking SIG were ruled out because they are not running and already
924 * have pending signals. Such threads will dequeue from the shared queue
925 * as soon as they're available, so putting the signal on the shared queue
926 * will be equivalent to sending it to one such thread.
927 */
928static inline int wants_signal(int sig, struct task_struct *p)
929{
930 if (sigismember(&p->blocked, sig))
931 return 0;
932 if (p->flags & PF_EXITING)
933 return 0;
934 if (sig == SIGKILL)
935 return 1;
936 if (task_is_stopped_or_traced(p))
937 return 0;
938 return task_curr(p) || !signal_pending(p);
939}
940
941static void complete_signal(int sig, struct task_struct *p, int group)
942{
943 struct signal_struct *signal = p->signal;
944 struct task_struct *t;
945
946 /*
947 * Now find a thread we can wake up to take the signal off the queue.
948 *
949 * If the main thread wants the signal, it gets first crack.
950 * Probably the least surprising to the average bear.
951 */
952 if (wants_signal(sig, p))
953 t = p;
954 else if (!group || thread_group_empty(p))
955 /*
956 * There is just one thread and it does not need to be woken.
957 * It will dequeue unblocked signals before it runs again.
958 */
959 return;
960 else {
961 /*
962 * Otherwise try to find a suitable thread.
963 */
964 t = signal->curr_target;
965 while (!wants_signal(sig, t)) {
966 t = next_thread(t);
967 if (t == signal->curr_target)
968 /*
969 * No thread needs to be woken.
970 * Any eligible threads will see
971 * the signal in the queue soon.
972 */
973 return;
974 }
975 signal->curr_target = t;
976 }
977
978 /*
979 * Found a killable thread. If the signal will be fatal,
980 * then start taking the whole group down immediately.
981 */
982 if (sig_fatal(p, sig) &&
983 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
984 !sigismember(&t->real_blocked, sig) &&
985 (sig == SIGKILL || !t->ptrace)) {
986 /*
987 * This signal will be fatal to the whole group.
988 */
989 if (!sig_kernel_coredump(sig)) {
990 /*
991 * Start a group exit and wake everybody up.
992 * This way we don't have other threads
993 * running and doing things after a slower
994 * thread has the fatal signal pending.
995 */
996 signal->flags = SIGNAL_GROUP_EXIT;
997 signal->group_exit_code = sig;
998 signal->group_stop_count = 0;
999 t = p;
1000 do {
1001 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1002 sigaddset(&t->pending.signal, SIGKILL);
1003 signal_wake_up(t, 1);
1004 } while_each_thread(p, t);
1005 return;
1006 }
1007 }
1008
1009 /*
1010 * The signal is already in the shared-pending queue.
1011 * Tell the chosen thread to wake up and dequeue it.
1012 */
1013 signal_wake_up(t, sig == SIGKILL);
1014 return;
1015}
1016
1017static inline int legacy_queue(struct sigpending *signals, int sig)
1018{
1019 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1020}
1021
1022static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1023 int group, int from_ancestor_ns)
1024{
1025 struct sigpending *pending;
1026 struct sigqueue *q;
1027 int override_rlimit;
1028
1029 trace_signal_generate(sig, info, t);
1030
1031 assert_spin_locked(&t->sighand->siglock);
1032
1033 if (!prepare_signal(sig, t, from_ancestor_ns))
1034 return 0;
1035
1036 pending = group ? &t->signal->shared_pending : &t->pending;
1037 /*
1038 * Short-circuit ignored signals and support queuing
1039 * exactly one non-rt signal, so that we can get more
1040 * detailed information about the cause of the signal.
1041 */
1042 if (legacy_queue(pending, sig))
1043 return 0;
1044 /*
1045 * fast-pathed signals for kernel-internal things like SIGSTOP
1046 * or SIGKILL.
1047 */
1048 if (info == SEND_SIG_FORCED)
1049 goto out_set;
1050
1051 /*
1052 * Real-time signals must be queued if sent by sigqueue, or
1053 * some other real-time mechanism. It is implementation
1054 * defined whether kill() does so. We attempt to do so, on
1055 * the principle of least surprise, but since kill is not
1056 * allowed to fail with EAGAIN when low on memory we just
1057 * make sure at least one signal gets delivered and don't
1058 * pass on the info struct.
1059 */
1060 if (sig < SIGRTMIN)
1061 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1062 else
1063 override_rlimit = 0;
1064
1065 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1066 override_rlimit);
1067 if (q) {
1068 list_add_tail(&q->list, &pending->list);
1069 switch ((unsigned long) info) {
1070 case (unsigned long) SEND_SIG_NOINFO:
1071 q->info.si_signo = sig;
1072 q->info.si_errno = 0;
1073 q->info.si_code = SI_USER;
1074 q->info.si_pid = task_tgid_nr_ns(current,
1075 task_active_pid_ns(t));
1076 q->info.si_uid = current_uid();
1077 break;
1078 case (unsigned long) SEND_SIG_PRIV:
1079 q->info.si_signo = sig;
1080 q->info.si_errno = 0;
1081 q->info.si_code = SI_KERNEL;
1082 q->info.si_pid = 0;
1083 q->info.si_uid = 0;
1084 break;
1085 default:
1086 copy_siginfo(&q->info, info);
1087 if (from_ancestor_ns)
1088 q->info.si_pid = 0;
1089 break;
1090 }
1091 } else if (!is_si_special(info)) {
1092 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1093 /*
1094 * Queue overflow, abort. We may abort if the
1095 * signal was rt and sent by user using something
1096 * other than kill().
1097 */
1098 trace_signal_overflow_fail(sig, group, info);
1099 return -EAGAIN;
1100 } else {
1101 /*
1102 * This is a silent loss of information. We still
1103 * send the signal, but the *info bits are lost.
1104 */
1105 trace_signal_lose_info(sig, group, info);
1106 }
1107 }
1108
1109out_set:
1110 signalfd_notify(t, sig);
1111 sigaddset(&pending->signal, sig);
1112 complete_signal(sig, t, group);
1113 return 0;
1114}
1115
1116static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1117 int group)
1118{
1119 int from_ancestor_ns = 0;
1120
1121#ifdef CONFIG_PID_NS
1122 from_ancestor_ns = si_fromuser(info) &&
1123 !task_pid_nr_ns(current, task_active_pid_ns(t));
1124#endif
1125
1126 return __send_signal(sig, info, t, group, from_ancestor_ns);
1127}
1128
1129static void print_fatal_signal(struct pt_regs *regs, int signr)
1130{
1131 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1132 current->comm, task_pid_nr(current), signr);
1133
1134#if defined(__i386__) && !defined(__arch_um__)
1135 printk("code at %08lx: ", regs->ip);
1136 {
1137 int i;
1138 for (i = 0; i < 16; i++) {
1139 unsigned char insn;
1140
1141 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1142 break;
1143 printk("%02x ", insn);
1144 }
1145 }
1146#endif
1147 printk("\n");
1148 preempt_disable();
1149 show_regs(regs);
1150 preempt_enable();
1151}
1152
1153static int __init setup_print_fatal_signals(char *str)
1154{
1155 get_option (&str, &print_fatal_signals);
1156
1157 return 1;
1158}
1159
1160__setup("print-fatal-signals=", setup_print_fatal_signals);
1161
1162int
1163__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1164{
1165 return send_signal(sig, info, p, 1);
1166}
1167
1168static int
1169specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1170{
1171 return send_signal(sig, info, t, 0);
1172}
1173
1174int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1175 bool group)
1176{
1177 unsigned long flags;
1178 int ret = -ESRCH;
1179
1180 if (lock_task_sighand(p, &flags)) {
1181 ret = send_signal(sig, info, p, group);
1182 unlock_task_sighand(p, &flags);
1183 }
1184
1185 return ret;
1186}
1187
1188/*
1189 * Force a signal that the process can't ignore: if necessary
1190 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1191 *
1192 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1193 * since we do not want to have a signal handler that was blocked
1194 * be invoked when user space had explicitly blocked it.
1195 *
1196 * We don't want to have recursive SIGSEGV's etc, for example,
1197 * that is why we also clear SIGNAL_UNKILLABLE.
1198 */
1199int
1200force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1201{
1202 unsigned long int flags;
1203 int ret, blocked, ignored;
1204 struct k_sigaction *action;
1205
1206 spin_lock_irqsave(&t->sighand->siglock, flags);
1207 action = &t->sighand->action[sig-1];
1208 ignored = action->sa.sa_handler == SIG_IGN;
1209 blocked = sigismember(&t->blocked, sig);
1210 if (blocked || ignored) {
1211 action->sa.sa_handler = SIG_DFL;
1212 if (blocked) {
1213 sigdelset(&t->blocked, sig);
1214 recalc_sigpending_and_wake(t);
1215 }
1216 }
1217 if (action->sa.sa_handler == SIG_DFL)
1218 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1219 ret = specific_send_sig_info(sig, info, t);
1220 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1221
1222 return ret;
1223}
1224
1225/*
1226 * Nuke all other threads in the group.
1227 */
1228int zap_other_threads(struct task_struct *p)
1229{
1230 struct task_struct *t = p;
1231 int count = 0;
1232
1233 p->signal->group_stop_count = 0;
1234
1235 while_each_thread(p, t) {
1236 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1237 count++;
1238
1239 /* Don't bother with already dead threads */
1240 if (t->exit_state)
1241 continue;
1242 sigaddset(&t->pending.signal, SIGKILL);
1243 signal_wake_up(t, 1);
1244 }
1245
1246 return count;
1247}
1248
1249struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1250 unsigned long *flags)
1251{
1252 struct sighand_struct *sighand;
1253
1254 for (;;) {
1255 local_irq_save(*flags);
1256 rcu_read_lock();
1257 sighand = rcu_dereference(tsk->sighand);
1258 if (unlikely(sighand == NULL)) {
1259 rcu_read_unlock();
1260 local_irq_restore(*flags);
1261 break;
1262 }
1263
1264 spin_lock(&sighand->siglock);
1265 if (likely(sighand == tsk->sighand)) {
1266 rcu_read_unlock();
1267 break;
1268 }
1269 spin_unlock(&sighand->siglock);
1270 rcu_read_unlock();
1271 local_irq_restore(*flags);
1272 }
1273
1274 return sighand;
1275}
1276
1277/*
1278 * send signal info to all the members of a group
1279 */
1280int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1281{
1282 int ret;
1283
1284 rcu_read_lock();
1285 ret = check_kill_permission(sig, info, p);
1286 rcu_read_unlock();
1287
1288 if (!ret && sig)
1289 ret = do_send_sig_info(sig, info, p, true);
1290
1291 return ret;
1292}
1293
1294/*
1295 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1296 * control characters do (^C, ^Z etc)
1297 * - the caller must hold at least a readlock on tasklist_lock
1298 */
1299int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1300{
1301 struct task_struct *p = NULL;
1302 int retval, success;
1303
1304 success = 0;
1305 retval = -ESRCH;
1306 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1307 int err = group_send_sig_info(sig, info, p);
1308 success |= !err;
1309 retval = err;
1310 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1311 return success ? 0 : retval;
1312}
1313
1314int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1315{
1316 int error = -ESRCH;
1317 struct task_struct *p;
1318
1319 rcu_read_lock();
1320retry:
1321 p = pid_task(pid, PIDTYPE_PID);
1322 if (p) {
1323 error = group_send_sig_info(sig, info, p);
1324 if (unlikely(error == -ESRCH))
1325 /*
1326 * The task was unhashed in between, try again.
1327 * If it is dead, pid_task() will return NULL,
1328 * if we race with de_thread() it will find the
1329 * new leader.
1330 */
1331 goto retry;
1332 }
1333 rcu_read_unlock();
1334
1335 return error;
1336}
1337
1338int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1339{
1340 int error;
1341 rcu_read_lock();
1342 error = kill_pid_info(sig, info, find_vpid(pid));
1343 rcu_read_unlock();
1344 return error;
1345}
1346
1347/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1348int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1349 uid_t uid, uid_t euid, u32 secid)
1350{
1351 int ret = -EINVAL;
1352 struct task_struct *p;
1353 const struct cred *pcred;
1354 unsigned long flags;
1355
1356 if (!valid_signal(sig))
1357 return ret;
1358
1359 rcu_read_lock();
1360 p = pid_task(pid, PIDTYPE_PID);
1361 if (!p) {
1362 ret = -ESRCH;
1363 goto out_unlock;
1364 }
1365 pcred = __task_cred(p);
1366 if (si_fromuser(info) &&
1367 euid != pcred->suid && euid != pcred->uid &&
1368 uid != pcred->suid && uid != pcred->uid) {
1369 ret = -EPERM;
1370 goto out_unlock;
1371 }
1372 ret = security_task_kill(p, info, sig, secid);
1373 if (ret)
1374 goto out_unlock;
1375
1376 if (sig) {
1377 if (lock_task_sighand(p, &flags)) {
1378 ret = __send_signal(sig, info, p, 1, 0);
1379 unlock_task_sighand(p, &flags);
1380 } else
1381 ret = -ESRCH;
1382 }
1383out_unlock:
1384 rcu_read_unlock();
1385 return ret;
1386}
1387EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1388
1389/*
1390 * kill_something_info() interprets pid in interesting ways just like kill(2).
1391 *
1392 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1393 * is probably wrong. Should make it like BSD or SYSV.
1394 */
1395
1396static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1397{
1398 int ret;
1399
1400 if (pid > 0) {
1401 rcu_read_lock();
1402 ret = kill_pid_info(sig, info, find_vpid(pid));
1403 rcu_read_unlock();
1404 return ret;
1405 }
1406
1407 read_lock(&tasklist_lock);
1408 if (pid != -1) {
1409 ret = __kill_pgrp_info(sig, info,
1410 pid ? find_vpid(-pid) : task_pgrp(current));
1411 } else {
1412 int retval = 0, count = 0;
1413 struct task_struct * p;
1414
1415 for_each_process(p) {
1416 if (task_pid_vnr(p) > 1 &&
1417 !same_thread_group(p, current)) {
1418 int err = group_send_sig_info(sig, info, p);
1419 ++count;
1420 if (err != -EPERM)
1421 retval = err;
1422 }
1423 }
1424 ret = count ? retval : -ESRCH;
1425 }
1426 read_unlock(&tasklist_lock);
1427
1428 return ret;
1429}
1430
1431/*
1432 * These are for backward compatibility with the rest of the kernel source.
1433 */
1434
1435int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1436{
1437 /*
1438 * Make sure legacy kernel users don't send in bad values
1439 * (normal paths check this in check_kill_permission).
1440 */
1441 if (!valid_signal(sig))
1442 return -EINVAL;
1443
1444 return do_send_sig_info(sig, info, p, false);
1445}
1446
1447#define __si_special(priv) \
1448 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1449
1450int
1451send_sig(int sig, struct task_struct *p, int priv)
1452{
1453 return send_sig_info(sig, __si_special(priv), p);
1454}
1455
1456void
1457force_sig(int sig, struct task_struct *p)
1458{
1459 force_sig_info(sig, SEND_SIG_PRIV, p);
1460}
1461
1462/*
1463 * When things go south during signal handling, we
1464 * will force a SIGSEGV. And if the signal that caused
1465 * the problem was already a SIGSEGV, we'll want to
1466 * make sure we don't even try to deliver the signal..
1467 */
1468int
1469force_sigsegv(int sig, struct task_struct *p)
1470{
1471 if (sig == SIGSEGV) {
1472 unsigned long flags;
1473 spin_lock_irqsave(&p->sighand->siglock, flags);
1474 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1475 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1476 }
1477 force_sig(SIGSEGV, p);
1478 return 0;
1479}
1480
1481int kill_pgrp(struct pid *pid, int sig, int priv)
1482{
1483 int ret;
1484
1485 read_lock(&tasklist_lock);
1486 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1487 read_unlock(&tasklist_lock);
1488
1489 return ret;
1490}
1491EXPORT_SYMBOL(kill_pgrp);
1492
1493int kill_pid(struct pid *pid, int sig, int priv)
1494{
1495 return kill_pid_info(sig, __si_special(priv), pid);
1496}
1497EXPORT_SYMBOL(kill_pid);
1498
1499/*
1500 * These functions support sending signals using preallocated sigqueue
1501 * structures. This is needed "because realtime applications cannot
1502 * afford to lose notifications of asynchronous events, like timer
1503 * expirations or I/O completions". In the case of POSIX Timers
1504 * we allocate the sigqueue structure from the timer_create. If this
1505 * allocation fails we are able to report the failure to the application
1506 * with an EAGAIN error.
1507 */
1508struct sigqueue *sigqueue_alloc(void)
1509{
1510 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1511
1512 if (q)
1513 q->flags |= SIGQUEUE_PREALLOC;
1514
1515 return q;
1516}
1517
1518void sigqueue_free(struct sigqueue *q)
1519{
1520 unsigned long flags;
1521 spinlock_t *lock = ¤t->sighand->siglock;
1522
1523 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1524 /*
1525 * We must hold ->siglock while testing q->list
1526 * to serialize with collect_signal() or with
1527 * __exit_signal()->flush_sigqueue().
1528 */
1529 spin_lock_irqsave(lock, flags);
1530 q->flags &= ~SIGQUEUE_PREALLOC;
1531 /*
1532 * If it is queued it will be freed when dequeued,
1533 * like the "regular" sigqueue.
1534 */
1535 if (!list_empty(&q->list))
1536 q = NULL;
1537 spin_unlock_irqrestore(lock, flags);
1538
1539 if (q)
1540 __sigqueue_free(q);
1541}
1542
1543int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1544{
1545 int sig = q->info.si_signo;
1546 struct sigpending *pending;
1547 unsigned long flags;
1548 int ret;
1549
1550 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1551
1552 ret = -1;
1553 if (!likely(lock_task_sighand(t, &flags)))
1554 goto ret;
1555
1556 ret = 1; /* the signal is ignored */
1557 if (!prepare_signal(sig, t, 0))
1558 goto out;
1559
1560 ret = 0;
1561 if (unlikely(!list_empty(&q->list))) {
1562 /*
1563 * If an SI_TIMER entry is already queue just increment
1564 * the overrun count.
1565 */
1566 BUG_ON(q->info.si_code != SI_TIMER);
1567 q->info.si_overrun++;
1568 goto out;
1569 }
1570 q->info.si_overrun = 0;
1571
1572 signalfd_notify(t, sig);
1573 pending = group ? &t->signal->shared_pending : &t->pending;
1574 list_add_tail(&q->list, &pending->list);
1575 sigaddset(&pending->signal, sig);
1576 complete_signal(sig, t, group);
1577out:
1578 unlock_task_sighand(t, &flags);
1579ret:
1580 return ret;
1581}
1582
1583/*
1584 * Let a parent know about the death of a child.
1585 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1586 *
1587 * Returns true if our parent ignored us and so we've switched to
1588 * self-reaping.
1589 */
1590bool do_notify_parent(struct task_struct *tsk, int sig)
1591{
1592 struct siginfo info;
1593 unsigned long flags;
1594 struct sighand_struct *psig;
1595 bool autoreap = false;
1596
1597 BUG_ON(sig == -1);
1598
1599 /* do_notify_parent_cldstop should have been called instead. */
1600 BUG_ON(task_is_stopped_or_traced(tsk));
1601
1602 BUG_ON(!tsk->ptrace &&
1603 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1604
1605 info.si_signo = sig;
1606 info.si_errno = 0;
1607 /*
1608 * we are under tasklist_lock here so our parent is tied to
1609 * us and cannot exit and release its namespace.
1610 *
1611 * the only it can is to switch its nsproxy with sys_unshare,
1612 * bu uncharing pid namespaces is not allowed, so we'll always
1613 * see relevant namespace
1614 *
1615 * write_lock() currently calls preempt_disable() which is the
1616 * same as rcu_read_lock(), but according to Oleg, this is not
1617 * correct to rely on this
1618 */
1619 rcu_read_lock();
1620 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1621 info.si_uid = __task_cred(tsk)->uid;
1622 rcu_read_unlock();
1623
1624 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1625 tsk->signal->utime));
1626 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1627 tsk->signal->stime));
1628
1629 info.si_status = tsk->exit_code & 0x7f;
1630 if (tsk->exit_code & 0x80)
1631 info.si_code = CLD_DUMPED;
1632 else if (tsk->exit_code & 0x7f)
1633 info.si_code = CLD_KILLED;
1634 else {
1635 info.si_code = CLD_EXITED;
1636 info.si_status = tsk->exit_code >> 8;
1637 }
1638
1639 psig = tsk->parent->sighand;
1640 spin_lock_irqsave(&psig->siglock, flags);
1641 if (!tsk->ptrace && sig == SIGCHLD &&
1642 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1643 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1644 /*
1645 * We are exiting and our parent doesn't care. POSIX.1
1646 * defines special semantics for setting SIGCHLD to SIG_IGN
1647 * or setting the SA_NOCLDWAIT flag: we should be reaped
1648 * automatically and not left for our parent's wait4 call.
1649 * Rather than having the parent do it as a magic kind of
1650 * signal handler, we just set this to tell do_exit that we
1651 * can be cleaned up without becoming a zombie. Note that
1652 * we still call __wake_up_parent in this case, because a
1653 * blocked sys_wait4 might now return -ECHILD.
1654 *
1655 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1656 * is implementation-defined: we do (if you don't want
1657 * it, just use SIG_IGN instead).
1658 */
1659 autoreap = true;
1660 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1661 sig = 0;
1662 }
1663 if (valid_signal(sig) && sig)
1664 __group_send_sig_info(sig, &info, tsk->parent);
1665 __wake_up_parent(tsk, tsk->parent);
1666 spin_unlock_irqrestore(&psig->siglock, flags);
1667
1668 return autoreap;
1669}
1670
1671/**
1672 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1673 * @tsk: task reporting the state change
1674 * @for_ptracer: the notification is for ptracer
1675 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1676 *
1677 * Notify @tsk's parent that the stopped/continued state has changed. If
1678 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1679 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1680 *
1681 * CONTEXT:
1682 * Must be called with tasklist_lock at least read locked.
1683 */
1684static void do_notify_parent_cldstop(struct task_struct *tsk,
1685 bool for_ptracer, int why)
1686{
1687 struct siginfo info;
1688 unsigned long flags;
1689 struct task_struct *parent;
1690 struct sighand_struct *sighand;
1691
1692 if (for_ptracer) {
1693 parent = tsk->parent;
1694 } else {
1695 tsk = tsk->group_leader;
1696 parent = tsk->real_parent;
1697 }
1698
1699 info.si_signo = SIGCHLD;
1700 info.si_errno = 0;
1701 /*
1702 * see comment in do_notify_parent() about the following 4 lines
1703 */
1704 rcu_read_lock();
1705 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1706 info.si_uid = __task_cred(tsk)->uid;
1707 rcu_read_unlock();
1708
1709 info.si_utime = cputime_to_clock_t(tsk->utime);
1710 info.si_stime = cputime_to_clock_t(tsk->stime);
1711
1712 info.si_code = why;
1713 switch (why) {
1714 case CLD_CONTINUED:
1715 info.si_status = SIGCONT;
1716 break;
1717 case CLD_STOPPED:
1718 info.si_status = tsk->signal->group_exit_code & 0x7f;
1719 break;
1720 case CLD_TRAPPED:
1721 info.si_status = tsk->exit_code & 0x7f;
1722 break;
1723 default:
1724 BUG();
1725 }
1726
1727 sighand = parent->sighand;
1728 spin_lock_irqsave(&sighand->siglock, flags);
1729 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1730 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1731 __group_send_sig_info(SIGCHLD, &info, parent);
1732 /*
1733 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1734 */
1735 __wake_up_parent(tsk, parent);
1736 spin_unlock_irqrestore(&sighand->siglock, flags);
1737}
1738
1739static inline int may_ptrace_stop(void)
1740{
1741 if (!likely(current->ptrace))
1742 return 0;
1743 /*
1744 * Are we in the middle of do_coredump?
1745 * If so and our tracer is also part of the coredump stopping
1746 * is a deadlock situation, and pointless because our tracer
1747 * is dead so don't allow us to stop.
1748 * If SIGKILL was already sent before the caller unlocked
1749 * ->siglock we must see ->core_state != NULL. Otherwise it
1750 * is safe to enter schedule().
1751 */
1752 if (unlikely(current->mm->core_state) &&
1753 unlikely(current->mm == current->parent->mm))
1754 return 0;
1755
1756 return 1;
1757}
1758
1759/*
1760 * Return non-zero if there is a SIGKILL that should be waking us up.
1761 * Called with the siglock held.
1762 */
1763static int sigkill_pending(struct task_struct *tsk)
1764{
1765 return sigismember(&tsk->pending.signal, SIGKILL) ||
1766 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1767}
1768
1769/*
1770 * This must be called with current->sighand->siglock held.
1771 *
1772 * This should be the path for all ptrace stops.
1773 * We always set current->last_siginfo while stopped here.
1774 * That makes it a way to test a stopped process for
1775 * being ptrace-stopped vs being job-control-stopped.
1776 *
1777 * If we actually decide not to stop at all because the tracer
1778 * is gone, we keep current->exit_code unless clear_code.
1779 */
1780static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1781 __releases(¤t->sighand->siglock)
1782 __acquires(¤t->sighand->siglock)
1783{
1784 bool gstop_done = false;
1785
1786 if (arch_ptrace_stop_needed(exit_code, info)) {
1787 /*
1788 * The arch code has something special to do before a
1789 * ptrace stop. This is allowed to block, e.g. for faults
1790 * on user stack pages. We can't keep the siglock while
1791 * calling arch_ptrace_stop, so we must release it now.
1792 * To preserve proper semantics, we must do this before
1793 * any signal bookkeeping like checking group_stop_count.
1794 * Meanwhile, a SIGKILL could come in before we retake the
1795 * siglock. That must prevent us from sleeping in TASK_TRACED.
1796 * So after regaining the lock, we must check for SIGKILL.
1797 */
1798 spin_unlock_irq(¤t->sighand->siglock);
1799 arch_ptrace_stop(exit_code, info);
1800 spin_lock_irq(¤t->sighand->siglock);
1801 if (sigkill_pending(current))
1802 return;
1803 }
1804
1805 /*
1806 * We're committing to trapping. TRACED should be visible before
1807 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1808 * Also, transition to TRACED and updates to ->jobctl should be
1809 * atomic with respect to siglock and should be done after the arch
1810 * hook as siglock is released and regrabbed across it.
1811 */
1812 set_current_state(TASK_TRACED);
1813
1814 current->last_siginfo = info;
1815 current->exit_code = exit_code;
1816
1817 /*
1818 * If @why is CLD_STOPPED, we're trapping to participate in a group
1819 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1820 * across siglock relocks since INTERRUPT was scheduled, PENDING
1821 * could be clear now. We act as if SIGCONT is received after
1822 * TASK_TRACED is entered - ignore it.
1823 */
1824 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1825 gstop_done = task_participate_group_stop(current);
1826
1827 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1828 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1829 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1830 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1831
1832 /* entering a trap, clear TRAPPING */
1833 task_clear_jobctl_trapping(current);
1834
1835 spin_unlock_irq(¤t->sighand->siglock);
1836 read_lock(&tasklist_lock);
1837 if (may_ptrace_stop()) {
1838 /*
1839 * Notify parents of the stop.
1840 *
1841 * While ptraced, there are two parents - the ptracer and
1842 * the real_parent of the group_leader. The ptracer should
1843 * know about every stop while the real parent is only
1844 * interested in the completion of group stop. The states
1845 * for the two don't interact with each other. Notify
1846 * separately unless they're gonna be duplicates.
1847 */
1848 do_notify_parent_cldstop(current, true, why);
1849 if (gstop_done && ptrace_reparented(current))
1850 do_notify_parent_cldstop(current, false, why);
1851
1852 /*
1853 * Don't want to allow preemption here, because
1854 * sys_ptrace() needs this task to be inactive.
1855 *
1856 * XXX: implement read_unlock_no_resched().
1857 */
1858 preempt_disable();
1859 read_unlock(&tasklist_lock);
1860 preempt_enable_no_resched();
1861 schedule();
1862 } else {
1863 /*
1864 * By the time we got the lock, our tracer went away.
1865 * Don't drop the lock yet, another tracer may come.
1866 *
1867 * If @gstop_done, the ptracer went away between group stop
1868 * completion and here. During detach, it would have set
1869 * JOBCTL_STOP_PENDING on us and we'll re-enter
1870 * TASK_STOPPED in do_signal_stop() on return, so notifying
1871 * the real parent of the group stop completion is enough.
1872 */
1873 if (gstop_done)
1874 do_notify_parent_cldstop(current, false, why);
1875
1876 __set_current_state(TASK_RUNNING);
1877 if (clear_code)
1878 current->exit_code = 0;
1879 read_unlock(&tasklist_lock);
1880 }
1881
1882 /*
1883 * While in TASK_TRACED, we were considered "frozen enough".
1884 * Now that we woke up, it's crucial if we're supposed to be
1885 * frozen that we freeze now before running anything substantial.
1886 */
1887 try_to_freeze();
1888
1889 /*
1890 * We are back. Now reacquire the siglock before touching
1891 * last_siginfo, so that we are sure to have synchronized with
1892 * any signal-sending on another CPU that wants to examine it.
1893 */
1894 spin_lock_irq(¤t->sighand->siglock);
1895 current->last_siginfo = NULL;
1896
1897 /* LISTENING can be set only during STOP traps, clear it */
1898 current->jobctl &= ~JOBCTL_LISTENING;
1899
1900 /*
1901 * Queued signals ignored us while we were stopped for tracing.
1902 * So check for any that we should take before resuming user mode.
1903 * This sets TIF_SIGPENDING, but never clears it.
1904 */
1905 recalc_sigpending_tsk(current);
1906}
1907
1908static void ptrace_do_notify(int signr, int exit_code, int why)
1909{
1910 siginfo_t info;
1911
1912 memset(&info, 0, sizeof info);
1913 info.si_signo = signr;
1914 info.si_code = exit_code;
1915 info.si_pid = task_pid_vnr(current);
1916 info.si_uid = current_uid();
1917
1918 /* Let the debugger run. */
1919 ptrace_stop(exit_code, why, 1, &info);
1920}
1921
1922void ptrace_notify(int exit_code)
1923{
1924 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1925
1926 spin_lock_irq(¤t->sighand->siglock);
1927 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1928 spin_unlock_irq(¤t->sighand->siglock);
1929}
1930
1931/**
1932 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1933 * @signr: signr causing group stop if initiating
1934 *
1935 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1936 * and participate in it. If already set, participate in the existing
1937 * group stop. If participated in a group stop (and thus slept), %true is
1938 * returned with siglock released.
1939 *
1940 * If ptraced, this function doesn't handle stop itself. Instead,
1941 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1942 * untouched. The caller must ensure that INTERRUPT trap handling takes
1943 * places afterwards.
1944 *
1945 * CONTEXT:
1946 * Must be called with @current->sighand->siglock held, which is released
1947 * on %true return.
1948 *
1949 * RETURNS:
1950 * %false if group stop is already cancelled or ptrace trap is scheduled.
1951 * %true if participated in group stop.
1952 */
1953static bool do_signal_stop(int signr)
1954 __releases(¤t->sighand->siglock)
1955{
1956 struct signal_struct *sig = current->signal;
1957
1958 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1959 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1960 struct task_struct *t;
1961
1962 /* signr will be recorded in task->jobctl for retries */
1963 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1964
1965 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1966 unlikely(signal_group_exit(sig)))
1967 return false;
1968 /*
1969 * There is no group stop already in progress. We must
1970 * initiate one now.
1971 *
1972 * While ptraced, a task may be resumed while group stop is
1973 * still in effect and then receive a stop signal and
1974 * initiate another group stop. This deviates from the
1975 * usual behavior as two consecutive stop signals can't
1976 * cause two group stops when !ptraced. That is why we
1977 * also check !task_is_stopped(t) below.
1978 *
1979 * The condition can be distinguished by testing whether
1980 * SIGNAL_STOP_STOPPED is already set. Don't generate
1981 * group_exit_code in such case.
1982 *
1983 * This is not necessary for SIGNAL_STOP_CONTINUED because
1984 * an intervening stop signal is required to cause two
1985 * continued events regardless of ptrace.
1986 */
1987 if (!(sig->flags & SIGNAL_STOP_STOPPED))
1988 sig->group_exit_code = signr;
1989 else
1990 WARN_ON_ONCE(!current->ptrace);
1991
1992 sig->group_stop_count = 0;
1993
1994 if (task_set_jobctl_pending(current, signr | gstop))
1995 sig->group_stop_count++;
1996
1997 for (t = next_thread(current); t != current;
1998 t = next_thread(t)) {
1999 /*
2000 * Setting state to TASK_STOPPED for a group
2001 * stop is always done with the siglock held,
2002 * so this check has no races.
2003 */
2004 if (!task_is_stopped(t) &&
2005 task_set_jobctl_pending(t, signr | gstop)) {
2006 sig->group_stop_count++;
2007 if (likely(!(t->ptrace & PT_SEIZED)))
2008 signal_wake_up(t, 0);
2009 else
2010 ptrace_trap_notify(t);
2011 }
2012 }
2013 }
2014
2015 if (likely(!current->ptrace)) {
2016 int notify = 0;
2017
2018 /*
2019 * If there are no other threads in the group, or if there
2020 * is a group stop in progress and we are the last to stop,
2021 * report to the parent.
2022 */
2023 if (task_participate_group_stop(current))
2024 notify = CLD_STOPPED;
2025
2026 __set_current_state(TASK_STOPPED);
2027 spin_unlock_irq(¤t->sighand->siglock);
2028
2029 /*
2030 * Notify the parent of the group stop completion. Because
2031 * we're not holding either the siglock or tasklist_lock
2032 * here, ptracer may attach inbetween; however, this is for
2033 * group stop and should always be delivered to the real
2034 * parent of the group leader. The new ptracer will get
2035 * its notification when this task transitions into
2036 * TASK_TRACED.
2037 */
2038 if (notify) {
2039 read_lock(&tasklist_lock);
2040 do_notify_parent_cldstop(current, false, notify);
2041 read_unlock(&tasklist_lock);
2042 }
2043
2044 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2045 schedule();
2046 return true;
2047 } else {
2048 /*
2049 * While ptraced, group stop is handled by STOP trap.
2050 * Schedule it and let the caller deal with it.
2051 */
2052 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2053 return false;
2054 }
2055}
2056
2057/**
2058 * do_jobctl_trap - take care of ptrace jobctl traps
2059 *
2060 * When PT_SEIZED, it's used for both group stop and explicit
2061 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2062 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2063 * the stop signal; otherwise, %SIGTRAP.
2064 *
2065 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2066 * number as exit_code and no siginfo.
2067 *
2068 * CONTEXT:
2069 * Must be called with @current->sighand->siglock held, which may be
2070 * released and re-acquired before returning with intervening sleep.
2071 */
2072static void do_jobctl_trap(void)
2073{
2074 struct signal_struct *signal = current->signal;
2075 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2076
2077 if (current->ptrace & PT_SEIZED) {
2078 if (!signal->group_stop_count &&
2079 !(signal->flags & SIGNAL_STOP_STOPPED))
2080 signr = SIGTRAP;
2081 WARN_ON_ONCE(!signr);
2082 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2083 CLD_STOPPED);
2084 } else {
2085 WARN_ON_ONCE(!signr);
2086 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2087 current->exit_code = 0;
2088 }
2089}
2090
2091static int ptrace_signal(int signr, siginfo_t *info,
2092 struct pt_regs *regs, void *cookie)
2093{
2094 ptrace_signal_deliver(regs, cookie);
2095 /*
2096 * We do not check sig_kernel_stop(signr) but set this marker
2097 * unconditionally because we do not know whether debugger will
2098 * change signr. This flag has no meaning unless we are going
2099 * to stop after return from ptrace_stop(). In this case it will
2100 * be checked in do_signal_stop(), we should only stop if it was
2101 * not cleared by SIGCONT while we were sleeping. See also the
2102 * comment in dequeue_signal().
2103 */
2104 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2105 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2106
2107 /* We're back. Did the debugger cancel the sig? */
2108 signr = current->exit_code;
2109 if (signr == 0)
2110 return signr;
2111
2112 current->exit_code = 0;
2113
2114 /*
2115 * Update the siginfo structure if the signal has
2116 * changed. If the debugger wanted something
2117 * specific in the siginfo structure then it should
2118 * have updated *info via PTRACE_SETSIGINFO.
2119 */
2120 if (signr != info->si_signo) {
2121 info->si_signo = signr;
2122 info->si_errno = 0;
2123 info->si_code = SI_USER;
2124 info->si_pid = task_pid_vnr(current->parent);
2125 info->si_uid = task_uid(current->parent);
2126 }
2127
2128 /* If the (new) signal is now blocked, requeue it. */
2129 if (sigismember(¤t->blocked, signr)) {
2130 specific_send_sig_info(signr, info, current);
2131 signr = 0;
2132 }
2133
2134 return signr;
2135}
2136
2137int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2138 struct pt_regs *regs, void *cookie)
2139{
2140 struct sighand_struct *sighand = current->sighand;
2141 struct signal_struct *signal = current->signal;
2142 int signr;
2143
2144relock:
2145 /*
2146 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2147 * While in TASK_STOPPED, we were considered "frozen enough".
2148 * Now that we woke up, it's crucial if we're supposed to be
2149 * frozen that we freeze now before running anything substantial.
2150 */
2151 try_to_freeze();
2152
2153 spin_lock_irq(&sighand->siglock);
2154 /*
2155 * Every stopped thread goes here after wakeup. Check to see if
2156 * we should notify the parent, prepare_signal(SIGCONT) encodes
2157 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2158 */
2159 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2160 int why;
2161
2162 if (signal->flags & SIGNAL_CLD_CONTINUED)
2163 why = CLD_CONTINUED;
2164 else
2165 why = CLD_STOPPED;
2166
2167 signal->flags &= ~SIGNAL_CLD_MASK;
2168
2169 spin_unlock_irq(&sighand->siglock);
2170
2171 /*
2172 * Notify the parent that we're continuing. This event is
2173 * always per-process and doesn't make whole lot of sense
2174 * for ptracers, who shouldn't consume the state via
2175 * wait(2) either, but, for backward compatibility, notify
2176 * the ptracer of the group leader too unless it's gonna be
2177 * a duplicate.
2178 */
2179 read_lock(&tasklist_lock);
2180 do_notify_parent_cldstop(current, false, why);
2181
2182 if (ptrace_reparented(current->group_leader))
2183 do_notify_parent_cldstop(current->group_leader,
2184 true, why);
2185 read_unlock(&tasklist_lock);
2186
2187 goto relock;
2188 }
2189
2190 for (;;) {
2191 struct k_sigaction *ka;
2192
2193 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2194 do_signal_stop(0))
2195 goto relock;
2196
2197 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2198 do_jobctl_trap();
2199 spin_unlock_irq(&sighand->siglock);
2200 goto relock;
2201 }
2202
2203 signr = dequeue_signal(current, ¤t->blocked, info);
2204
2205 if (!signr)
2206 break; /* will return 0 */
2207
2208 if (unlikely(current->ptrace) && signr != SIGKILL) {
2209 signr = ptrace_signal(signr, info,
2210 regs, cookie);
2211 if (!signr)
2212 continue;
2213 }
2214
2215 ka = &sighand->action[signr-1];
2216
2217 /* Trace actually delivered signals. */
2218 trace_signal_deliver(signr, info, ka);
2219
2220 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2221 continue;
2222 if (ka->sa.sa_handler != SIG_DFL) {
2223 /* Run the handler. */
2224 *return_ka = *ka;
2225
2226 if (ka->sa.sa_flags & SA_ONESHOT)
2227 ka->sa.sa_handler = SIG_DFL;
2228
2229 break; /* will return non-zero "signr" value */
2230 }
2231
2232 /*
2233 * Now we are doing the default action for this signal.
2234 */
2235 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2236 continue;
2237
2238 /*
2239 * Global init gets no signals it doesn't want.
2240 * Container-init gets no signals it doesn't want from same
2241 * container.
2242 *
2243 * Note that if global/container-init sees a sig_kernel_only()
2244 * signal here, the signal must have been generated internally
2245 * or must have come from an ancestor namespace. In either
2246 * case, the signal cannot be dropped.
2247 */
2248 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2249 !sig_kernel_only(signr))
2250 continue;
2251
2252 if (sig_kernel_stop(signr)) {
2253 /*
2254 * The default action is to stop all threads in
2255 * the thread group. The job control signals
2256 * do nothing in an orphaned pgrp, but SIGSTOP
2257 * always works. Note that siglock needs to be
2258 * dropped during the call to is_orphaned_pgrp()
2259 * because of lock ordering with tasklist_lock.
2260 * This allows an intervening SIGCONT to be posted.
2261 * We need to check for that and bail out if necessary.
2262 */
2263 if (signr != SIGSTOP) {
2264 spin_unlock_irq(&sighand->siglock);
2265
2266 /* signals can be posted during this window */
2267
2268 if (is_current_pgrp_orphaned())
2269 goto relock;
2270
2271 spin_lock_irq(&sighand->siglock);
2272 }
2273
2274 if (likely(do_signal_stop(info->si_signo))) {
2275 /* It released the siglock. */
2276 goto relock;
2277 }
2278
2279 /*
2280 * We didn't actually stop, due to a race
2281 * with SIGCONT or something like that.
2282 */
2283 continue;
2284 }
2285
2286 spin_unlock_irq(&sighand->siglock);
2287
2288 /*
2289 * Anything else is fatal, maybe with a core dump.
2290 */
2291 current->flags |= PF_SIGNALED;
2292
2293 if (sig_kernel_coredump(signr)) {
2294 if (print_fatal_signals)
2295 print_fatal_signal(regs, info->si_signo);
2296 /*
2297 * If it was able to dump core, this kills all
2298 * other threads in the group and synchronizes with
2299 * their demise. If we lost the race with another
2300 * thread getting here, it set group_exit_code
2301 * first and our do_group_exit call below will use
2302 * that value and ignore the one we pass it.
2303 */
2304 do_coredump(info->si_signo, info->si_signo, regs);
2305 }
2306
2307 /*
2308 * Death signals, no core dump.
2309 */
2310 do_group_exit(info->si_signo);
2311 /* NOTREACHED */
2312 }
2313 spin_unlock_irq(&sighand->siglock);
2314 return signr;
2315}
2316
2317/*
2318 * It could be that complete_signal() picked us to notify about the
2319 * group-wide signal. Other threads should be notified now to take
2320 * the shared signals in @which since we will not.
2321 */
2322static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2323{
2324 sigset_t retarget;
2325 struct task_struct *t;
2326
2327 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2328 if (sigisemptyset(&retarget))
2329 return;
2330
2331 t = tsk;
2332 while_each_thread(tsk, t) {
2333 if (t->flags & PF_EXITING)
2334 continue;
2335
2336 if (!has_pending_signals(&retarget, &t->blocked))
2337 continue;
2338 /* Remove the signals this thread can handle. */
2339 sigandsets(&retarget, &retarget, &t->blocked);
2340
2341 if (!signal_pending(t))
2342 signal_wake_up(t, 0);
2343
2344 if (sigisemptyset(&retarget))
2345 break;
2346 }
2347}
2348
2349void exit_signals(struct task_struct *tsk)
2350{
2351 int group_stop = 0;
2352 sigset_t unblocked;
2353
2354 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2355 tsk->flags |= PF_EXITING;
2356 return;
2357 }
2358
2359 spin_lock_irq(&tsk->sighand->siglock);
2360 /*
2361 * From now this task is not visible for group-wide signals,
2362 * see wants_signal(), do_signal_stop().
2363 */
2364 tsk->flags |= PF_EXITING;
2365 if (!signal_pending(tsk))
2366 goto out;
2367
2368 unblocked = tsk->blocked;
2369 signotset(&unblocked);
2370 retarget_shared_pending(tsk, &unblocked);
2371
2372 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2373 task_participate_group_stop(tsk))
2374 group_stop = CLD_STOPPED;
2375out:
2376 spin_unlock_irq(&tsk->sighand->siglock);
2377
2378 /*
2379 * If group stop has completed, deliver the notification. This
2380 * should always go to the real parent of the group leader.
2381 */
2382 if (unlikely(group_stop)) {
2383 read_lock(&tasklist_lock);
2384 do_notify_parent_cldstop(tsk, false, group_stop);
2385 read_unlock(&tasklist_lock);
2386 }
2387}
2388
2389EXPORT_SYMBOL(recalc_sigpending);
2390EXPORT_SYMBOL_GPL(dequeue_signal);
2391EXPORT_SYMBOL(flush_signals);
2392EXPORT_SYMBOL(force_sig);
2393EXPORT_SYMBOL(send_sig);
2394EXPORT_SYMBOL(send_sig_info);
2395EXPORT_SYMBOL(sigprocmask);
2396EXPORT_SYMBOL(block_all_signals);
2397EXPORT_SYMBOL(unblock_all_signals);
2398
2399
2400/*
2401 * System call entry points.
2402 */
2403
2404/**
2405 * sys_restart_syscall - restart a system call
2406 */
2407SYSCALL_DEFINE0(restart_syscall)
2408{
2409 struct restart_block *restart = ¤t_thread_info()->restart_block;
2410 return restart->fn(restart);
2411}
2412
2413long do_no_restart_syscall(struct restart_block *param)
2414{
2415 return -EINTR;
2416}
2417
2418static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2419{
2420 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2421 sigset_t newblocked;
2422 /* A set of now blocked but previously unblocked signals. */
2423 sigandnsets(&newblocked, newset, ¤t->blocked);
2424 retarget_shared_pending(tsk, &newblocked);
2425 }
2426 tsk->blocked = *newset;
2427 recalc_sigpending();
2428}
2429
2430/**
2431 * set_current_blocked - change current->blocked mask
2432 * @newset: new mask
2433 *
2434 * It is wrong to change ->blocked directly, this helper should be used
2435 * to ensure the process can't miss a shared signal we are going to block.
2436 */
2437void set_current_blocked(const sigset_t *newset)
2438{
2439 struct task_struct *tsk = current;
2440
2441 spin_lock_irq(&tsk->sighand->siglock);
2442 __set_task_blocked(tsk, newset);
2443 spin_unlock_irq(&tsk->sighand->siglock);
2444}
2445
2446/*
2447 * This is also useful for kernel threads that want to temporarily
2448 * (or permanently) block certain signals.
2449 *
2450 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2451 * interface happily blocks "unblockable" signals like SIGKILL
2452 * and friends.
2453 */
2454int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2455{
2456 struct task_struct *tsk = current;
2457 sigset_t newset;
2458
2459 /* Lockless, only current can change ->blocked, never from irq */
2460 if (oldset)
2461 *oldset = tsk->blocked;
2462
2463 switch (how) {
2464 case SIG_BLOCK:
2465 sigorsets(&newset, &tsk->blocked, set);
2466 break;
2467 case SIG_UNBLOCK:
2468 sigandnsets(&newset, &tsk->blocked, set);
2469 break;
2470 case SIG_SETMASK:
2471 newset = *set;
2472 break;
2473 default:
2474 return -EINVAL;
2475 }
2476
2477 set_current_blocked(&newset);
2478 return 0;
2479}
2480
2481/**
2482 * sys_rt_sigprocmask - change the list of currently blocked signals
2483 * @how: whether to add, remove, or set signals
2484 * @nset: stores pending signals
2485 * @oset: previous value of signal mask if non-null
2486 * @sigsetsize: size of sigset_t type
2487 */
2488SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2489 sigset_t __user *, oset, size_t, sigsetsize)
2490{
2491 sigset_t old_set, new_set;
2492 int error;
2493
2494 /* XXX: Don't preclude handling different sized sigset_t's. */
2495 if (sigsetsize != sizeof(sigset_t))
2496 return -EINVAL;
2497
2498 old_set = current->blocked;
2499
2500 if (nset) {
2501 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2502 return -EFAULT;
2503 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2504
2505 error = sigprocmask(how, &new_set, NULL);
2506 if (error)
2507 return error;
2508 }
2509
2510 if (oset) {
2511 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2512 return -EFAULT;
2513 }
2514
2515 return 0;
2516}
2517
2518long do_sigpending(void __user *set, unsigned long sigsetsize)
2519{
2520 long error = -EINVAL;
2521 sigset_t pending;
2522
2523 if (sigsetsize > sizeof(sigset_t))
2524 goto out;
2525
2526 spin_lock_irq(¤t->sighand->siglock);
2527 sigorsets(&pending, ¤t->pending.signal,
2528 ¤t->signal->shared_pending.signal);
2529 spin_unlock_irq(¤t->sighand->siglock);
2530
2531 /* Outside the lock because only this thread touches it. */
2532 sigandsets(&pending, ¤t->blocked, &pending);
2533
2534 error = -EFAULT;
2535 if (!copy_to_user(set, &pending, sigsetsize))
2536 error = 0;
2537
2538out:
2539 return error;
2540}
2541
2542/**
2543 * sys_rt_sigpending - examine a pending signal that has been raised
2544 * while blocked
2545 * @set: stores pending signals
2546 * @sigsetsize: size of sigset_t type or larger
2547 */
2548SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2549{
2550 return do_sigpending(set, sigsetsize);
2551}
2552
2553#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2554
2555int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2556{
2557 int err;
2558
2559 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2560 return -EFAULT;
2561 if (from->si_code < 0)
2562 return __copy_to_user(to, from, sizeof(siginfo_t))
2563 ? -EFAULT : 0;
2564 /*
2565 * If you change siginfo_t structure, please be sure
2566 * this code is fixed accordingly.
2567 * Please remember to update the signalfd_copyinfo() function
2568 * inside fs/signalfd.c too, in case siginfo_t changes.
2569 * It should never copy any pad contained in the structure
2570 * to avoid security leaks, but must copy the generic
2571 * 3 ints plus the relevant union member.
2572 */
2573 err = __put_user(from->si_signo, &to->si_signo);
2574 err |= __put_user(from->si_errno, &to->si_errno);
2575 err |= __put_user((short)from->si_code, &to->si_code);
2576 switch (from->si_code & __SI_MASK) {
2577 case __SI_KILL:
2578 err |= __put_user(from->si_pid, &to->si_pid);
2579 err |= __put_user(from->si_uid, &to->si_uid);
2580 break;
2581 case __SI_TIMER:
2582 err |= __put_user(from->si_tid, &to->si_tid);
2583 err |= __put_user(from->si_overrun, &to->si_overrun);
2584 err |= __put_user(from->si_ptr, &to->si_ptr);
2585 break;
2586 case __SI_POLL:
2587 err |= __put_user(from->si_band, &to->si_band);
2588 err |= __put_user(from->si_fd, &to->si_fd);
2589 break;
2590 case __SI_FAULT:
2591 err |= __put_user(from->si_addr, &to->si_addr);
2592#ifdef __ARCH_SI_TRAPNO
2593 err |= __put_user(from->si_trapno, &to->si_trapno);
2594#endif
2595#ifdef BUS_MCEERR_AO
2596 /*
2597 * Other callers might not initialize the si_lsb field,
2598 * so check explicitly for the right codes here.
2599 */
2600 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2601 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2602#endif
2603 break;
2604 case __SI_CHLD:
2605 err |= __put_user(from->si_pid, &to->si_pid);
2606 err |= __put_user(from->si_uid, &to->si_uid);
2607 err |= __put_user(from->si_status, &to->si_status);
2608 err |= __put_user(from->si_utime, &to->si_utime);
2609 err |= __put_user(from->si_stime, &to->si_stime);
2610 break;
2611 case __SI_RT: /* This is not generated by the kernel as of now. */
2612 case __SI_MESGQ: /* But this is */
2613 err |= __put_user(from->si_pid, &to->si_pid);
2614 err |= __put_user(from->si_uid, &to->si_uid);
2615 err |= __put_user(from->si_ptr, &to->si_ptr);
2616 break;
2617 default: /* this is just in case for now ... */
2618 err |= __put_user(from->si_pid, &to->si_pid);
2619 err |= __put_user(from->si_uid, &to->si_uid);
2620 break;
2621 }
2622 return err;
2623}
2624
2625#endif
2626
2627/**
2628 * do_sigtimedwait - wait for queued signals specified in @which
2629 * @which: queued signals to wait for
2630 * @info: if non-null, the signal's siginfo is returned here
2631 * @ts: upper bound on process time suspension
2632 */
2633int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2634 const struct timespec *ts)
2635{
2636 struct task_struct *tsk = current;
2637 long timeout = MAX_SCHEDULE_TIMEOUT;
2638 sigset_t mask = *which;
2639 int sig;
2640
2641 if (ts) {
2642 if (!timespec_valid(ts))
2643 return -EINVAL;
2644 timeout = timespec_to_jiffies(ts);
2645 /*
2646 * We can be close to the next tick, add another one
2647 * to ensure we will wait at least the time asked for.
2648 */
2649 if (ts->tv_sec || ts->tv_nsec)
2650 timeout++;
2651 }
2652
2653 /*
2654 * Invert the set of allowed signals to get those we want to block.
2655 */
2656 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2657 signotset(&mask);
2658
2659 spin_lock_irq(&tsk->sighand->siglock);
2660 sig = dequeue_signal(tsk, &mask, info);
2661 if (!sig && timeout) {
2662 /*
2663 * None ready, temporarily unblock those we're interested
2664 * while we are sleeping in so that we'll be awakened when
2665 * they arrive. Unblocking is always fine, we can avoid
2666 * set_current_blocked().
2667 */
2668 tsk->real_blocked = tsk->blocked;
2669 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2670 recalc_sigpending();
2671 spin_unlock_irq(&tsk->sighand->siglock);
2672
2673 timeout = schedule_timeout_interruptible(timeout);
2674
2675 spin_lock_irq(&tsk->sighand->siglock);
2676 __set_task_blocked(tsk, &tsk->real_blocked);
2677 siginitset(&tsk->real_blocked, 0);
2678 sig = dequeue_signal(tsk, &mask, info);
2679 }
2680 spin_unlock_irq(&tsk->sighand->siglock);
2681
2682 if (sig)
2683 return sig;
2684 return timeout ? -EINTR : -EAGAIN;
2685}
2686
2687/**
2688 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2689 * in @uthese
2690 * @uthese: queued signals to wait for
2691 * @uinfo: if non-null, the signal's siginfo is returned here
2692 * @uts: upper bound on process time suspension
2693 * @sigsetsize: size of sigset_t type
2694 */
2695SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2696 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2697 size_t, sigsetsize)
2698{
2699 sigset_t these;
2700 struct timespec ts;
2701 siginfo_t info;
2702 int ret;
2703
2704 /* XXX: Don't preclude handling different sized sigset_t's. */
2705 if (sigsetsize != sizeof(sigset_t))
2706 return -EINVAL;
2707
2708 if (copy_from_user(&these, uthese, sizeof(these)))
2709 return -EFAULT;
2710
2711 if (uts) {
2712 if (copy_from_user(&ts, uts, sizeof(ts)))
2713 return -EFAULT;
2714 }
2715
2716 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2717
2718 if (ret > 0 && uinfo) {
2719 if (copy_siginfo_to_user(uinfo, &info))
2720 ret = -EFAULT;
2721 }
2722
2723 return ret;
2724}
2725
2726/**
2727 * sys_kill - send a signal to a process
2728 * @pid: the PID of the process
2729 * @sig: signal to be sent
2730 */
2731SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2732{
2733 struct siginfo info;
2734
2735 info.si_signo = sig;
2736 info.si_errno = 0;
2737 info.si_code = SI_USER;
2738 info.si_pid = task_tgid_vnr(current);
2739 info.si_uid = current_uid();
2740
2741 return kill_something_info(sig, &info, pid);
2742}
2743
2744static int
2745do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2746{
2747 struct task_struct *p;
2748 int error = -ESRCH;
2749
2750 rcu_read_lock();
2751 p = find_task_by_vpid(pid);
2752 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2753 error = check_kill_permission(sig, info, p);
2754 /*
2755 * The null signal is a permissions and process existence
2756 * probe. No signal is actually delivered.
2757 */
2758 if (!error && sig) {
2759 error = do_send_sig_info(sig, info, p, false);
2760 /*
2761 * If lock_task_sighand() failed we pretend the task
2762 * dies after receiving the signal. The window is tiny,
2763 * and the signal is private anyway.
2764 */
2765 if (unlikely(error == -ESRCH))
2766 error = 0;
2767 }
2768 }
2769 rcu_read_unlock();
2770
2771 return error;
2772}
2773
2774static int do_tkill(pid_t tgid, pid_t pid, int sig)
2775{
2776 struct siginfo info;
2777
2778 info.si_signo = sig;
2779 info.si_errno = 0;
2780 info.si_code = SI_TKILL;
2781 info.si_pid = task_tgid_vnr(current);
2782 info.si_uid = current_uid();
2783
2784 return do_send_specific(tgid, pid, sig, &info);
2785}
2786
2787/**
2788 * sys_tgkill - send signal to one specific thread
2789 * @tgid: the thread group ID of the thread
2790 * @pid: the PID of the thread
2791 * @sig: signal to be sent
2792 *
2793 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2794 * exists but it's not belonging to the target process anymore. This
2795 * method solves the problem of threads exiting and PIDs getting reused.
2796 */
2797SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2798{
2799 /* This is only valid for single tasks */
2800 if (pid <= 0 || tgid <= 0)
2801 return -EINVAL;
2802
2803 return do_tkill(tgid, pid, sig);
2804}
2805
2806/**
2807 * sys_tkill - send signal to one specific task
2808 * @pid: the PID of the task
2809 * @sig: signal to be sent
2810 *
2811 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2812 */
2813SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2814{
2815 /* This is only valid for single tasks */
2816 if (pid <= 0)
2817 return -EINVAL;
2818
2819 return do_tkill(0, pid, sig);
2820}
2821
2822/**
2823 * sys_rt_sigqueueinfo - send signal information to a signal
2824 * @pid: the PID of the thread
2825 * @sig: signal to be sent
2826 * @uinfo: signal info to be sent
2827 */
2828SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2829 siginfo_t __user *, uinfo)
2830{
2831 siginfo_t info;
2832
2833 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2834 return -EFAULT;
2835
2836 /* Not even root can pretend to send signals from the kernel.
2837 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2838 */
2839 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2840 /* We used to allow any < 0 si_code */
2841 WARN_ON_ONCE(info.si_code < 0);
2842 return -EPERM;
2843 }
2844 info.si_signo = sig;
2845
2846 /* POSIX.1b doesn't mention process groups. */
2847 return kill_proc_info(sig, &info, pid);
2848}
2849
2850long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2851{
2852 /* This is only valid for single tasks */
2853 if (pid <= 0 || tgid <= 0)
2854 return -EINVAL;
2855
2856 /* Not even root can pretend to send signals from the kernel.
2857 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2858 */
2859 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2860 /* We used to allow any < 0 si_code */
2861 WARN_ON_ONCE(info->si_code < 0);
2862 return -EPERM;
2863 }
2864 info->si_signo = sig;
2865
2866 return do_send_specific(tgid, pid, sig, info);
2867}
2868
2869SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2870 siginfo_t __user *, uinfo)
2871{
2872 siginfo_t info;
2873
2874 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2875 return -EFAULT;
2876
2877 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2878}
2879
2880int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2881{
2882 struct task_struct *t = current;
2883 struct k_sigaction *k;
2884 sigset_t mask;
2885
2886 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2887 return -EINVAL;
2888
2889 k = &t->sighand->action[sig-1];
2890
2891 spin_lock_irq(¤t->sighand->siglock);
2892 if (oact)
2893 *oact = *k;
2894
2895 if (act) {
2896 sigdelsetmask(&act->sa.sa_mask,
2897 sigmask(SIGKILL) | sigmask(SIGSTOP));
2898 *k = *act;
2899 /*
2900 * POSIX 3.3.1.3:
2901 * "Setting a signal action to SIG_IGN for a signal that is
2902 * pending shall cause the pending signal to be discarded,
2903 * whether or not it is blocked."
2904 *
2905 * "Setting a signal action to SIG_DFL for a signal that is
2906 * pending and whose default action is to ignore the signal
2907 * (for example, SIGCHLD), shall cause the pending signal to
2908 * be discarded, whether or not it is blocked"
2909 */
2910 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2911 sigemptyset(&mask);
2912 sigaddset(&mask, sig);
2913 rm_from_queue_full(&mask, &t->signal->shared_pending);
2914 do {
2915 rm_from_queue_full(&mask, &t->pending);
2916 t = next_thread(t);
2917 } while (t != current);
2918 }
2919 }
2920
2921 spin_unlock_irq(¤t->sighand->siglock);
2922 return 0;
2923}
2924
2925int
2926do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2927{
2928 stack_t oss;
2929 int error;
2930
2931 oss.ss_sp = (void __user *) current->sas_ss_sp;
2932 oss.ss_size = current->sas_ss_size;
2933 oss.ss_flags = sas_ss_flags(sp);
2934
2935 if (uss) {
2936 void __user *ss_sp;
2937 size_t ss_size;
2938 int ss_flags;
2939
2940 error = -EFAULT;
2941 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2942 goto out;
2943 error = __get_user(ss_sp, &uss->ss_sp) |
2944 __get_user(ss_flags, &uss->ss_flags) |
2945 __get_user(ss_size, &uss->ss_size);
2946 if (error)
2947 goto out;
2948
2949 error = -EPERM;
2950 if (on_sig_stack(sp))
2951 goto out;
2952
2953 error = -EINVAL;
2954 /*
2955 * Note - this code used to test ss_flags incorrectly:
2956 * old code may have been written using ss_flags==0
2957 * to mean ss_flags==SS_ONSTACK (as this was the only
2958 * way that worked) - this fix preserves that older
2959 * mechanism.
2960 */
2961 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2962 goto out;
2963
2964 if (ss_flags == SS_DISABLE) {
2965 ss_size = 0;
2966 ss_sp = NULL;
2967 } else {
2968 error = -ENOMEM;
2969 if (ss_size < MINSIGSTKSZ)
2970 goto out;
2971 }
2972
2973 current->sas_ss_sp = (unsigned long) ss_sp;
2974 current->sas_ss_size = ss_size;
2975 }
2976
2977 error = 0;
2978 if (uoss) {
2979 error = -EFAULT;
2980 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2981 goto out;
2982 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2983 __put_user(oss.ss_size, &uoss->ss_size) |
2984 __put_user(oss.ss_flags, &uoss->ss_flags);
2985 }
2986
2987out:
2988 return error;
2989}
2990
2991#ifdef __ARCH_WANT_SYS_SIGPENDING
2992
2993/**
2994 * sys_sigpending - examine pending signals
2995 * @set: where mask of pending signal is returned
2996 */
2997SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2998{
2999 return do_sigpending(set, sizeof(*set));
3000}
3001
3002#endif
3003
3004#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3005/**
3006 * sys_sigprocmask - examine and change blocked signals
3007 * @how: whether to add, remove, or set signals
3008 * @nset: signals to add or remove (if non-null)
3009 * @oset: previous value of signal mask if non-null
3010 *
3011 * Some platforms have their own version with special arguments;
3012 * others support only sys_rt_sigprocmask.
3013 */
3014
3015SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3016 old_sigset_t __user *, oset)
3017{
3018 old_sigset_t old_set, new_set;
3019 sigset_t new_blocked;
3020
3021 old_set = current->blocked.sig[0];
3022
3023 if (nset) {
3024 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3025 return -EFAULT;
3026 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3027
3028 new_blocked = current->blocked;
3029
3030 switch (how) {
3031 case SIG_BLOCK:
3032 sigaddsetmask(&new_blocked, new_set);
3033 break;
3034 case SIG_UNBLOCK:
3035 sigdelsetmask(&new_blocked, new_set);
3036 break;
3037 case SIG_SETMASK:
3038 new_blocked.sig[0] = new_set;
3039 break;
3040 default:
3041 return -EINVAL;
3042 }
3043
3044 set_current_blocked(&new_blocked);
3045 }
3046
3047 if (oset) {
3048 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3049 return -EFAULT;
3050 }
3051
3052 return 0;
3053}
3054#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3055
3056#ifdef __ARCH_WANT_SYS_RT_SIGACTION
3057/**
3058 * sys_rt_sigaction - alter an action taken by a process
3059 * @sig: signal to be sent
3060 * @act: new sigaction
3061 * @oact: used to save the previous sigaction
3062 * @sigsetsize: size of sigset_t type
3063 */
3064SYSCALL_DEFINE4(rt_sigaction, int, sig,
3065 const struct sigaction __user *, act,
3066 struct sigaction __user *, oact,
3067 size_t, sigsetsize)
3068{
3069 struct k_sigaction new_sa, old_sa;
3070 int ret = -EINVAL;
3071
3072 /* XXX: Don't preclude handling different sized sigset_t's. */
3073 if (sigsetsize != sizeof(sigset_t))
3074 goto out;
3075
3076 if (act) {
3077 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3078 return -EFAULT;
3079 }
3080
3081 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3082
3083 if (!ret && oact) {
3084 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3085 return -EFAULT;
3086 }
3087out:
3088 return ret;
3089}
3090#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3091
3092#ifdef __ARCH_WANT_SYS_SGETMASK
3093
3094/*
3095 * For backwards compatibility. Functionality superseded by sigprocmask.
3096 */
3097SYSCALL_DEFINE0(sgetmask)
3098{
3099 /* SMP safe */
3100 return current->blocked.sig[0];
3101}
3102
3103SYSCALL_DEFINE1(ssetmask, int, newmask)
3104{
3105 int old = current->blocked.sig[0];
3106 sigset_t newset;
3107
3108 siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3109 set_current_blocked(&newset);
3110
3111 return old;
3112}
3113#endif /* __ARCH_WANT_SGETMASK */
3114
3115#ifdef __ARCH_WANT_SYS_SIGNAL
3116/*
3117 * For backwards compatibility. Functionality superseded by sigaction.
3118 */
3119SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3120{
3121 struct k_sigaction new_sa, old_sa;
3122 int ret;
3123
3124 new_sa.sa.sa_handler = handler;
3125 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3126 sigemptyset(&new_sa.sa.sa_mask);
3127
3128 ret = do_sigaction(sig, &new_sa, &old_sa);
3129
3130 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3131}
3132#endif /* __ARCH_WANT_SYS_SIGNAL */
3133
3134#ifdef __ARCH_WANT_SYS_PAUSE
3135
3136SYSCALL_DEFINE0(pause)
3137{
3138 while (!signal_pending(current)) {
3139 current->state = TASK_INTERRUPTIBLE;
3140 schedule();
3141 }
3142 return -ERESTARTNOHAND;
3143}
3144
3145#endif
3146
3147#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3148/**
3149 * sys_rt_sigsuspend - replace the signal mask for a value with the
3150 * @unewset value until a signal is received
3151 * @unewset: new signal mask value
3152 * @sigsetsize: size of sigset_t type
3153 */
3154SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3155{
3156 sigset_t newset;
3157
3158 /* XXX: Don't preclude handling different sized sigset_t's. */
3159 if (sigsetsize != sizeof(sigset_t))
3160 return -EINVAL;
3161
3162 if (copy_from_user(&newset, unewset, sizeof(newset)))
3163 return -EFAULT;
3164 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3165
3166 current->saved_sigmask = current->blocked;
3167 set_current_blocked(&newset);
3168
3169 current->state = TASK_INTERRUPTIBLE;
3170 schedule();
3171 set_restore_sigmask();
3172 return -ERESTARTNOHAND;
3173}
3174#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3175
3176__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3177{
3178 return NULL;
3179}
3180
3181void __init signals_init(void)
3182{
3183 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3184}
3185
3186#ifdef CONFIG_KGDB_KDB
3187#include <linux/kdb.h>
3188/*
3189 * kdb_send_sig_info - Allows kdb to send signals without exposing
3190 * signal internals. This function checks if the required locks are
3191 * available before calling the main signal code, to avoid kdb
3192 * deadlocks.
3193 */
3194void
3195kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3196{
3197 static struct task_struct *kdb_prev_t;
3198 int sig, new_t;
3199 if (!spin_trylock(&t->sighand->siglock)) {
3200 kdb_printf("Can't do kill command now.\n"
3201 "The sigmask lock is held somewhere else in "
3202 "kernel, try again later\n");
3203 return;
3204 }
3205 spin_unlock(&t->sighand->siglock);
3206 new_t = kdb_prev_t != t;
3207 kdb_prev_t = t;
3208 if (t->state != TASK_RUNNING && new_t) {
3209 kdb_printf("Process is not RUNNING, sending a signal from "
3210 "kdb risks deadlock\n"
3211 "on the run queue locks. "
3212 "The signal has _not_ been sent.\n"
3213 "Reissue the kill command if you want to risk "
3214 "the deadlock.\n");
3215 return;
3216 }
3217 sig = info->si_signo;
3218 if (send_sig_info(sig, info, t))
3219 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3220 sig, t->pid);
3221 else
3222 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3223}
3224#endif /* CONFIG_KGDB_KDB */