Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * PPC Huge TLB Page Support for Kernel.
  3 *
  4 * Copyright (C) 2003 David Gibson, IBM Corporation.
  5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
  6 *
  7 * Based on the IA-32 version:
  8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  9 */
 10
 11#include <linux/mm.h>
 12#include <linux/io.h>
 13#include <linux/slab.h>
 14#include <linux/hugetlb.h>
 15#include <linux/export.h>
 16#include <linux/of_fdt.h>
 17#include <linux/memblock.h>
 
 18#include <linux/moduleparam.h>
 19#include <linux/swap.h>
 20#include <linux/swapops.h>
 21#include <linux/kmemleak.h>
 22#include <asm/pgtable.h>
 23#include <asm/pgalloc.h>
 24#include <asm/tlb.h>
 25#include <asm/setup.h>
 26#include <asm/hugetlb.h>
 27#include <asm/pte-walk.h>
 28
 29bool hugetlb_disabled = false;
 30
 31#define hugepd_none(hpd)	(hpd_val(hpd) == 0)
 
 
 32
 33#define PTE_T_ORDER	(__builtin_ffs(sizeof(pte_t)) - __builtin_ffs(sizeof(void *)))
 34
 35pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36{
 37	/*
 38	 * Only called for hugetlbfs pages, hence can ignore THP and the
 39	 * irq disabled walk.
 40	 */
 41	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
 42}
 43
 44static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
 45			   unsigned long address, unsigned int pdshift,
 46			   unsigned int pshift, spinlock_t *ptl)
 47{
 48	struct kmem_cache *cachep;
 49	pte_t *new;
 50	int i;
 51	int num_hugepd;
 52
 53	if (pshift >= pdshift) {
 54		cachep = PGT_CACHE(PTE_T_ORDER);
 55		num_hugepd = 1 << (pshift - pdshift);
 56	} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
 57		cachep = PGT_CACHE(PTE_INDEX_SIZE);
 58		num_hugepd = 1;
 59	} else {
 60		cachep = PGT_CACHE(pdshift - pshift);
 61		num_hugepd = 1;
 62	}
 63
 64	if (!cachep) {
 65		WARN_ONCE(1, "No page table cache created for hugetlb tables");
 66		return -ENOMEM;
 67	}
 68
 69	new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
 70
 71	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
 72	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
 73
 74	if (!new)
 75		return -ENOMEM;
 76
 77	/*
 78	 * Make sure other cpus find the hugepd set only after a
 79	 * properly initialized page table is visible to them.
 80	 * For more details look for comment in __pte_alloc().
 81	 */
 82	smp_wmb();
 83
 84	spin_lock(ptl);
 85	/*
 86	 * We have multiple higher-level entries that point to the same
 87	 * actual pte location.  Fill in each as we go and backtrack on error.
 88	 * We need all of these so the DTLB pgtable walk code can find the
 89	 * right higher-level entry without knowing if it's a hugepage or not.
 90	 */
 91	for (i = 0; i < num_hugepd; i++, hpdp++) {
 92		if (unlikely(!hugepd_none(*hpdp)))
 93			break;
 94		hugepd_populate(hpdp, new, pshift);
 
 
 95	}
 96	/* If we bailed from the for loop early, an error occurred, clean up */
 97	if (i < num_hugepd) {
 98		for (i = i - 1 ; i >= 0; i--, hpdp--)
 99			*hpdp = __hugepd(0);
100		kmem_cache_free(cachep, new);
101	} else {
102		kmemleak_ignore(new);
103	}
104	spin_unlock(ptl);
 
 
 
 
 
 
 
 
 
 
 
105	return 0;
106}
107
108/*
 
 
 
 
 
 
 
 
 
 
 
 
 
109 * At this point we do the placement change only for BOOK3S 64. This would
110 * possibly work on other subarchs.
111 */
112pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
113{
114	pgd_t *pg;
115	pud_t *pu;
116	pmd_t *pm;
117	hugepd_t *hpdp = NULL;
118	unsigned pshift = __ffs(sz);
119	unsigned pdshift = PGDIR_SHIFT;
120	spinlock_t *ptl;
121
122	addr &= ~(sz-1);
123	pg = pgd_offset(mm, addr);
124
125#ifdef CONFIG_PPC_BOOK3S_64
126	if (pshift == PGDIR_SHIFT)
127		/* 16GB huge page */
128		return (pte_t *) pg;
129	else if (pshift > PUD_SHIFT) {
130		/*
131		 * We need to use hugepd table
132		 */
133		ptl = &mm->page_table_lock;
134		hpdp = (hugepd_t *)pg;
135	} else {
136		pdshift = PUD_SHIFT;
137		pu = pud_alloc(mm, pg, addr);
138		if (!pu)
139			return NULL;
140		if (pshift == PUD_SHIFT)
141			return (pte_t *)pu;
142		else if (pshift > PMD_SHIFT) {
143			ptl = pud_lockptr(mm, pu);
144			hpdp = (hugepd_t *)pu;
145		} else {
146			pdshift = PMD_SHIFT;
147			pm = pmd_alloc(mm, pu, addr);
148			if (!pm)
149				return NULL;
150			if (pshift == PMD_SHIFT)
151				/* 16MB hugepage */
152				return (pte_t *)pm;
153			else {
154				ptl = pmd_lockptr(mm, pm);
155				hpdp = (hugepd_t *)pm;
156			}
157		}
158	}
 
 
 
 
 
 
 
 
 
 
 
159#else
160	if (pshift >= PGDIR_SHIFT) {
161		ptl = &mm->page_table_lock;
 
 
 
 
 
 
 
 
 
 
 
 
 
162		hpdp = (hugepd_t *)pg;
163	} else {
164		pdshift = PUD_SHIFT;
165		pu = pud_alloc(mm, pg, addr);
166		if (!pu)
167			return NULL;
168		if (pshift >= PUD_SHIFT) {
169			ptl = pud_lockptr(mm, pu);
170			hpdp = (hugepd_t *)pu;
171		} else {
172			pdshift = PMD_SHIFT;
173			pm = pmd_alloc(mm, pu, addr);
174			if (!pm)
175				return NULL;
176			ptl = pmd_lockptr(mm, pm);
177			hpdp = (hugepd_t *)pm;
178		}
179	}
180#endif
181	if (!hpdp)
182		return NULL;
183
184	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
185
186	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
187						  pdshift, pshift, ptl))
188		return NULL;
189
190	return hugepte_offset(*hpdp, addr, pdshift);
191}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192
193#ifdef CONFIG_PPC_BOOK3S_64
194/*
195 * Tracks gpages after the device tree is scanned and before the
196 * huge_boot_pages list is ready on pseries.
197 */
198#define MAX_NUMBER_GPAGES	1024
199__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
200__initdata static unsigned nr_gpages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
 
 
 
 
 
 
 
202/*
203 * Build list of addresses of gigantic pages.  This function is used in early
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204 * boot before the buddy allocator is setup.
205 */
206void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
207{
208	if (!addr)
209		return;
210	while (number_of_pages > 0) {
211		gpage_freearray[nr_gpages] = addr;
212		nr_gpages++;
213		number_of_pages--;
214		addr += page_size;
215	}
216}
217
218int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
 
 
 
219{
220	struct huge_bootmem_page *m;
221	if (nr_gpages == 0)
222		return 0;
223	m = phys_to_virt(gpage_freearray[--nr_gpages]);
224	gpage_freearray[nr_gpages] = 0;
225	list_add(&m->list, &huge_boot_pages);
226	m->hstate = hstate;
227	return 1;
228}
229#endif
230
231
232int __init alloc_bootmem_huge_page(struct hstate *h)
233{
234
235#ifdef CONFIG_PPC_BOOK3S_64
236	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
237		return pseries_alloc_bootmem_huge_page(h);
238#endif
239	return __alloc_bootmem_huge_page(h);
240}
241
242#ifndef CONFIG_PPC_BOOK3S_64
243#define HUGEPD_FREELIST_SIZE \
244	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
245
246struct hugepd_freelist {
247	struct rcu_head	rcu;
248	unsigned int index;
249	void *ptes[0];
250};
251
252static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
253
254static void hugepd_free_rcu_callback(struct rcu_head *head)
255{
256	struct hugepd_freelist *batch =
257		container_of(head, struct hugepd_freelist, rcu);
258	unsigned int i;
259
260	for (i = 0; i < batch->index; i++)
261		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
262
263	free_page((unsigned long)batch);
264}
265
266static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
267{
268	struct hugepd_freelist **batchp;
269
270	batchp = &get_cpu_var(hugepd_freelist_cur);
271
272	if (atomic_read(&tlb->mm->mm_users) < 2 ||
273	    mm_is_thread_local(tlb->mm)) {
274		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
 
275		put_cpu_var(hugepd_freelist_cur);
276		return;
277	}
278
279	if (*batchp == NULL) {
280		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
281		(*batchp)->index = 0;
282	}
283
284	(*batchp)->ptes[(*batchp)->index++] = hugepte;
285	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
286		call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
287		*batchp = NULL;
288	}
289	put_cpu_var(hugepd_freelist_cur);
290}
291#else
292static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
293#endif
294
295static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
296			      unsigned long start, unsigned long end,
297			      unsigned long floor, unsigned long ceiling)
298{
299	pte_t *hugepte = hugepd_page(*hpdp);
300	int i;
301
302	unsigned long pdmask = ~((1UL << pdshift) - 1);
303	unsigned int num_hugepd = 1;
304	unsigned int shift = hugepd_shift(*hpdp);
305
 
306	/* Note: On fsl the hpdp may be the first of several */
307	if (shift > pdshift)
308		num_hugepd = 1 << (shift - pdshift);
 
 
309
310	start &= pdmask;
311	if (start < floor)
312		return;
313	if (ceiling) {
314		ceiling &= pdmask;
315		if (! ceiling)
316			return;
317	}
318	if (end - 1 > ceiling - 1)
319		return;
320
321	for (i = 0; i < num_hugepd; i++, hpdp++)
322		*hpdp = __hugepd(0);
323
324	if (shift >= pdshift)
325		hugepd_free(tlb, hugepte);
326	else if (IS_ENABLED(CONFIG_PPC_8xx))
327		pgtable_free_tlb(tlb, hugepte,
328				 get_hugepd_cache_index(PTE_INDEX_SIZE));
329	else
330		pgtable_free_tlb(tlb, hugepte,
331				 get_hugepd_cache_index(pdshift - shift));
332}
333
334static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
335				   unsigned long addr, unsigned long end,
336				   unsigned long floor, unsigned long ceiling)
337{
338	pmd_t *pmd;
339	unsigned long next;
340	unsigned long start;
341
342	start = addr;
343	do {
344		unsigned long more;
345
346		pmd = pmd_offset(pud, addr);
347		next = pmd_addr_end(addr, end);
348		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
349			/*
350			 * if it is not hugepd pointer, we should already find
351			 * it cleared.
352			 */
353			WARN_ON(!pmd_none_or_clear_bad(pmd));
354			continue;
355		}
 
356		/*
357		 * Increment next by the size of the huge mapping since
358		 * there may be more than one entry at this level for a
359		 * single hugepage, but all of them point to
360		 * the same kmem cache that holds the hugepte.
361		 */
362		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
363		if (more > next)
364			next = more;
365
366		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
367				  addr, next, floor, ceiling);
368	} while (addr = next, addr != end);
369
370	start &= PUD_MASK;
371	if (start < floor)
372		return;
373	if (ceiling) {
374		ceiling &= PUD_MASK;
375		if (!ceiling)
376			return;
377	}
378	if (end - 1 > ceiling - 1)
379		return;
380
381	pmd = pmd_offset(pud, start);
382	pud_clear(pud);
383	pmd_free_tlb(tlb, pmd, start);
384	mm_dec_nr_pmds(tlb->mm);
385}
386
387static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
388				   unsigned long addr, unsigned long end,
389				   unsigned long floor, unsigned long ceiling)
390{
391	pud_t *pud;
392	unsigned long next;
393	unsigned long start;
394
395	start = addr;
396	do {
397		pud = pud_offset(pgd, addr);
398		next = pud_addr_end(addr, end);
399		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
400			if (pud_none_or_clear_bad(pud))
401				continue;
402			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
403					       ceiling);
404		} else {
405			unsigned long more;
406			/*
407			 * Increment next by the size of the huge mapping since
408			 * there may be more than one entry at this level for a
409			 * single hugepage, but all of them point to
410			 * the same kmem cache that holds the hugepte.
411			 */
412			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
413			if (more > next)
414				next = more;
415
416			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
417					  addr, next, floor, ceiling);
418		}
419	} while (addr = next, addr != end);
420
421	start &= PGDIR_MASK;
422	if (start < floor)
423		return;
424	if (ceiling) {
425		ceiling &= PGDIR_MASK;
426		if (!ceiling)
427			return;
428	}
429	if (end - 1 > ceiling - 1)
430		return;
431
432	pud = pud_offset(pgd, start);
433	pgd_clear(pgd);
434	pud_free_tlb(tlb, pud, start);
435	mm_dec_nr_puds(tlb->mm);
436}
437
438/*
439 * This function frees user-level page tables of a process.
440 */
441void hugetlb_free_pgd_range(struct mmu_gather *tlb,
442			    unsigned long addr, unsigned long end,
443			    unsigned long floor, unsigned long ceiling)
444{
445	pgd_t *pgd;
446	unsigned long next;
447
448	/*
449	 * Because there are a number of different possible pagetable
450	 * layouts for hugepage ranges, we limit knowledge of how
451	 * things should be laid out to the allocation path
452	 * (huge_pte_alloc(), above).  Everything else works out the
453	 * structure as it goes from information in the hugepd
454	 * pointers.  That means that we can't here use the
455	 * optimization used in the normal page free_pgd_range(), of
456	 * checking whether we're actually covering a large enough
457	 * range to have to do anything at the top level of the walk
458	 * instead of at the bottom.
459	 *
460	 * To make sense of this, you should probably go read the big
461	 * block comment at the top of the normal free_pgd_range(),
462	 * too.
463	 */
464
465	do {
466		next = pgd_addr_end(addr, end);
467		pgd = pgd_offset(tlb->mm, addr);
468		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
469			if (pgd_none_or_clear_bad(pgd))
470				continue;
471			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
472		} else {
473			unsigned long more;
474			/*
475			 * Increment next by the size of the huge mapping since
476			 * there may be more than one entry at the pgd level
477			 * for a single hugepage, but all of them point to the
478			 * same kmem cache that holds the hugepte.
479			 */
480			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
481			if (more > next)
482				next = more;
483
484			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
485					  addr, next, floor, ceiling);
486		}
487	} while (addr = next, addr != end);
488}
489
490struct page *follow_huge_pd(struct vm_area_struct *vma,
491			    unsigned long address, hugepd_t hpd,
492			    int flags, int pdshift)
 
 
 
493{
494	pte_t *ptep;
495	spinlock_t *ptl;
496	struct page *page = NULL;
497	unsigned long mask;
498	int shift = hugepd_shift(hpd);
499	struct mm_struct *mm = vma->vm_mm;
500
501retry:
 
 
 
502	/*
503	 * hugepage directory entries are protected by mm->page_table_lock
504	 * Use this instead of huge_pte_lockptr
 
505	 */
506	ptl = &mm->page_table_lock;
507	spin_lock(ptl);
508
509	ptep = hugepte_offset(hpd, address, pdshift);
510	if (pte_present(*ptep)) {
511		mask = (1UL << shift) - 1;
512		page = pte_page(*ptep);
513		page += ((address & mask) >> PAGE_SHIFT);
514		if (flags & FOLL_GET)
515			get_page(page);
516	} else {
517		if (is_hugetlb_entry_migration(*ptep)) {
518			spin_unlock(ptl);
519			__migration_entry_wait(mm, ptep, ptl);
520			goto retry;
521		}
522	}
523	spin_unlock(ptl);
 
 
 
 
 
 
524	return page;
525}
526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527#ifdef CONFIG_PPC_MM_SLICES
528unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
529					unsigned long len, unsigned long pgoff,
530					unsigned long flags)
531{
532	struct hstate *hstate = hstate_file(file);
533	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
534
535#ifdef CONFIG_PPC_RADIX_MMU
536	if (radix_enabled())
537		return radix__hugetlb_get_unmapped_area(file, addr, len,
538						       pgoff, flags);
539#endif
540	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
541}
542#endif
543
544unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
545{
546	/* With radix we don't use slice, so derive it from vma*/
547	if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
548		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
549
550		return 1UL << mmu_psize_to_shift(psize);
551	}
552	return vma_kernel_pagesize(vma);
 
 
 
 
 
 
 
 
 
 
 
553}
554
555static int __init add_huge_page_size(unsigned long long size)
556{
557	int shift = __ffs(size);
558	int mmu_psize;
559
560	/* Check that it is a page size supported by the hardware and
561	 * that it fits within pagetable and slice limits. */
562	if (size <= PAGE_SIZE || !is_power_of_2(size))
 
563		return -EINVAL;
 
 
 
 
 
564
565	mmu_psize = check_and_get_huge_psize(shift);
566	if (mmu_psize < 0)
567		return -EINVAL;
568
569	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
570
571	/* Return if huge page size has already been setup */
572	if (size_to_hstate(size))
573		return 0;
574
575	hugetlb_add_hstate(shift - PAGE_SHIFT);
576
577	return 0;
578}
579
580static int __init hugepage_setup_sz(char *str)
581{
582	unsigned long long size;
583
584	size = memparse(str, &str);
585
586	if (add_huge_page_size(size) != 0) {
587		hugetlb_bad_size();
588		pr_err("Invalid huge page size specified(%llu)\n", size);
589	}
590
591	return 1;
592}
593__setup("hugepagesz=", hugepage_setup_sz);
594
 
 
595static int __init hugetlbpage_init(void)
596{
597	bool configured = false;
598	int psize;
599
600	if (hugetlb_disabled) {
601		pr_info("HugeTLB support is disabled!\n");
602		return 0;
 
 
 
 
 
 
 
 
 
603	}
604
605	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
606	    !mmu_has_feature(MMU_FTR_16M_PAGE))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607		return -ENODEV;
608
609	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
610		unsigned shift;
611		unsigned pdshift;
612
613		if (!mmu_psize_defs[psize].shift)
614			continue;
615
616		shift = mmu_psize_to_shift(psize);
617
618#ifdef CONFIG_PPC_BOOK3S_64
619		if (shift > PGDIR_SHIFT)
620			continue;
621		else if (shift > PUD_SHIFT)
622			pdshift = PGDIR_SHIFT;
623		else if (shift > PMD_SHIFT)
624			pdshift = PUD_SHIFT;
625		else
626			pdshift = PMD_SHIFT;
627#else
628		if (shift < PUD_SHIFT)
629			pdshift = PMD_SHIFT;
630		else if (shift < PGDIR_SHIFT)
631			pdshift = PUD_SHIFT;
632		else
633			pdshift = PGDIR_SHIFT;
634#endif
635
636		if (add_huge_page_size(1ULL << shift) < 0)
637			continue;
638		/*
639		 * if we have pdshift and shift value same, we don't
640		 * use pgt cache for hugepd.
641		 */
642		if (pdshift > shift && IS_ENABLED(CONFIG_PPC_8xx))
643			pgtable_cache_add(PTE_INDEX_SIZE);
644		else if (pdshift > shift)
645			pgtable_cache_add(pdshift - shift);
646		else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) || IS_ENABLED(CONFIG_PPC_8xx))
647			pgtable_cache_add(PTE_T_ORDER);
648
649		configured = true;
650	}
651
652	if (configured) {
653		if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
654			hugetlbpage_init_default();
655	} else
656		pr_info("Failed to initialize. Disabling HugeTLB");
 
 
657
658	return 0;
659}
660
661arch_initcall(hugetlbpage_init);
662
663void flush_dcache_icache_hugepage(struct page *page)
664{
665	int i;
666	void *start;
667
668	BUG_ON(!PageCompound(page));
669
670	for (i = 0; i < compound_nr(page); i++) {
671		if (!PageHighMem(page)) {
672			__flush_dcache_icache(page_address(page+i));
673		} else {
674			start = kmap_atomic(page+i);
675			__flush_dcache_icache(start);
676			kunmap_atomic(start);
677		}
678	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
679}
v4.6
   1/*
   2 * PPC Huge TLB Page Support for Kernel.
   3 *
   4 * Copyright (C) 2003 David Gibson, IBM Corporation.
   5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
   6 *
   7 * Based on the IA-32 version:
   8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
   9 */
  10
  11#include <linux/mm.h>
  12#include <linux/io.h>
  13#include <linux/slab.h>
  14#include <linux/hugetlb.h>
  15#include <linux/export.h>
  16#include <linux/of_fdt.h>
  17#include <linux/memblock.h>
  18#include <linux/bootmem.h>
  19#include <linux/moduleparam.h>
 
 
 
  20#include <asm/pgtable.h>
  21#include <asm/pgalloc.h>
  22#include <asm/tlb.h>
  23#include <asm/setup.h>
  24#include <asm/hugetlb.h>
 
  25
  26#ifdef CONFIG_HUGETLB_PAGE
  27
  28#define PAGE_SHIFT_64K	16
  29#define PAGE_SHIFT_16M	24
  30#define PAGE_SHIFT_16G	34
  31
  32unsigned int HPAGE_SHIFT;
  33
  34/*
  35 * Tracks gpages after the device tree is scanned and before the
  36 * huge_boot_pages list is ready.  On non-Freescale implementations, this is
  37 * just used to track 16G pages and so is a single array.  FSL-based
  38 * implementations may have more than one gpage size, so we need multiple
  39 * arrays
  40 */
  41#ifdef CONFIG_PPC_FSL_BOOK3E
  42#define MAX_NUMBER_GPAGES	128
  43struct psize_gpages {
  44	u64 gpage_list[MAX_NUMBER_GPAGES];
  45	unsigned int nr_gpages;
  46};
  47static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
  48#else
  49#define MAX_NUMBER_GPAGES	1024
  50static u64 gpage_freearray[MAX_NUMBER_GPAGES];
  51static unsigned nr_gpages;
  52#endif
  53
  54#define hugepd_none(hpd)	((hpd).pd == 0)
  55
  56pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  57{
  58	/* Only called for hugetlbfs pages, hence can ignore THP */
  59	return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
 
 
 
  60}
  61
  62static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
  63			   unsigned long address, unsigned pdshift, unsigned pshift)
 
  64{
  65	struct kmem_cache *cachep;
  66	pte_t *new;
 
 
  67
  68#ifdef CONFIG_PPC_FSL_BOOK3E
  69	int i;
  70	int num_hugepd = 1 << (pshift - pdshift);
  71	cachep = hugepte_cache;
  72#else
  73	cachep = PGT_CACHE(pdshift - pshift);
  74#endif
 
 
 
 
 
 
 
 
  75
  76	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
  77
  78	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
  79	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
  80
  81	if (! new)
  82		return -ENOMEM;
  83
  84	spin_lock(&mm->page_table_lock);
  85#ifdef CONFIG_PPC_FSL_BOOK3E
 
 
 
 
 
 
  86	/*
  87	 * We have multiple higher-level entries that point to the same
  88	 * actual pte location.  Fill in each as we go and backtrack on error.
  89	 * We need all of these so the DTLB pgtable walk code can find the
  90	 * right higher-level entry without knowing if it's a hugepage or not.
  91	 */
  92	for (i = 0; i < num_hugepd; i++, hpdp++) {
  93		if (unlikely(!hugepd_none(*hpdp)))
  94			break;
  95		else
  96			/* We use the old format for PPC_FSL_BOOK3E */
  97			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
  98	}
  99	/* If we bailed from the for loop early, an error occurred, clean up */
 100	if (i < num_hugepd) {
 101		for (i = i - 1 ; i >= 0; i--, hpdp--)
 102			hpdp->pd = 0;
 103		kmem_cache_free(cachep, new);
 
 
 104	}
 105#else
 106	if (!hugepd_none(*hpdp))
 107		kmem_cache_free(cachep, new);
 108	else {
 109#ifdef CONFIG_PPC_BOOK3S_64
 110		hpdp->pd = __pa(new) | (shift_to_mmu_psize(pshift) << 2);
 111#else
 112		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
 113#endif
 114	}
 115#endif
 116	spin_unlock(&mm->page_table_lock);
 117	return 0;
 118}
 119
 120/*
 121 * These macros define how to determine which level of the page table holds
 122 * the hpdp.
 123 */
 124#ifdef CONFIG_PPC_FSL_BOOK3E
 125#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
 126#define HUGEPD_PUD_SHIFT PUD_SHIFT
 127#else
 128#define HUGEPD_PGD_SHIFT PUD_SHIFT
 129#define HUGEPD_PUD_SHIFT PMD_SHIFT
 130#endif
 131
 132#ifdef CONFIG_PPC_BOOK3S_64
 133/*
 134 * At this point we do the placement change only for BOOK3S 64. This would
 135 * possibly work on other subarchs.
 136 */
 137pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 138{
 139	pgd_t *pg;
 140	pud_t *pu;
 141	pmd_t *pm;
 142	hugepd_t *hpdp = NULL;
 143	unsigned pshift = __ffs(sz);
 144	unsigned pdshift = PGDIR_SHIFT;
 
 145
 146	addr &= ~(sz-1);
 147	pg = pgd_offset(mm, addr);
 148
 
 149	if (pshift == PGDIR_SHIFT)
 150		/* 16GB huge page */
 151		return (pte_t *) pg;
 152	else if (pshift > PUD_SHIFT)
 153		/*
 154		 * We need to use hugepd table
 155		 */
 
 156		hpdp = (hugepd_t *)pg;
 157	else {
 158		pdshift = PUD_SHIFT;
 159		pu = pud_alloc(mm, pg, addr);
 
 
 160		if (pshift == PUD_SHIFT)
 161			return (pte_t *)pu;
 162		else if (pshift > PMD_SHIFT)
 
 163			hpdp = (hugepd_t *)pu;
 164		else {
 165			pdshift = PMD_SHIFT;
 166			pm = pmd_alloc(mm, pu, addr);
 
 
 167			if (pshift == PMD_SHIFT)
 168				/* 16MB hugepage */
 169				return (pte_t *)pm;
 170			else
 
 171				hpdp = (hugepd_t *)pm;
 
 172		}
 173	}
 174	if (!hpdp)
 175		return NULL;
 176
 177	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 178
 179	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
 180		return NULL;
 181
 182	return hugepte_offset(*hpdp, addr, pdshift);
 183}
 184
 185#else
 186
 187pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 188{
 189	pgd_t *pg;
 190	pud_t *pu;
 191	pmd_t *pm;
 192	hugepd_t *hpdp = NULL;
 193	unsigned pshift = __ffs(sz);
 194	unsigned pdshift = PGDIR_SHIFT;
 195
 196	addr &= ~(sz-1);
 197
 198	pg = pgd_offset(mm, addr);
 199
 200	if (pshift >= HUGEPD_PGD_SHIFT) {
 201		hpdp = (hugepd_t *)pg;
 202	} else {
 203		pdshift = PUD_SHIFT;
 204		pu = pud_alloc(mm, pg, addr);
 205		if (pshift >= HUGEPD_PUD_SHIFT) {
 
 
 
 206			hpdp = (hugepd_t *)pu;
 207		} else {
 208			pdshift = PMD_SHIFT;
 209			pm = pmd_alloc(mm, pu, addr);
 
 
 
 210			hpdp = (hugepd_t *)pm;
 211		}
 212	}
 213
 214	if (!hpdp)
 215		return NULL;
 216
 217	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 218
 219	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
 
 220		return NULL;
 221
 222	return hugepte_offset(*hpdp, addr, pdshift);
 223}
 224#endif
 225
 226#ifdef CONFIG_PPC_FSL_BOOK3E
 227/* Build list of addresses of gigantic pages.  This function is used in early
 228 * boot before the buddy allocator is setup.
 229 */
 230void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 231{
 232	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
 233	int i;
 234
 235	if (addr == 0)
 236		return;
 237
 238	gpage_freearray[idx].nr_gpages = number_of_pages;
 239
 240	for (i = 0; i < number_of_pages; i++) {
 241		gpage_freearray[idx].gpage_list[i] = addr;
 242		addr += page_size;
 243	}
 244}
 245
 
 246/*
 247 * Moves the gigantic page addresses from the temporary list to the
 248 * huge_boot_pages list.
 249 */
 250int alloc_bootmem_huge_page(struct hstate *hstate)
 251{
 252	struct huge_bootmem_page *m;
 253	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
 254	int nr_gpages = gpage_freearray[idx].nr_gpages;
 255
 256	if (nr_gpages == 0)
 257		return 0;
 258
 259#ifdef CONFIG_HIGHMEM
 260	/*
 261	 * If gpages can be in highmem we can't use the trick of storing the
 262	 * data structure in the page; allocate space for this
 263	 */
 264	m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
 265	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
 266#else
 267	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
 268#endif
 269
 270	list_add(&m->list, &huge_boot_pages);
 271	gpage_freearray[idx].nr_gpages = nr_gpages;
 272	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
 273	m->hstate = hstate;
 274
 275	return 1;
 276}
 277/*
 278 * Scan the command line hugepagesz= options for gigantic pages; store those in
 279 * a list that we use to allocate the memory once all options are parsed.
 280 */
 281
 282unsigned long gpage_npages[MMU_PAGE_COUNT];
 283
 284static int __init do_gpage_early_setup(char *param, char *val,
 285				       const char *unused, void *arg)
 286{
 287	static phys_addr_t size;
 288	unsigned long npages;
 289
 290	/*
 291	 * The hugepagesz and hugepages cmdline options are interleaved.  We
 292	 * use the size variable to keep track of whether or not this was done
 293	 * properly and skip over instances where it is incorrect.  Other
 294	 * command-line parsing code will issue warnings, so we don't need to.
 295	 *
 296	 */
 297	if ((strcmp(param, "default_hugepagesz") == 0) ||
 298	    (strcmp(param, "hugepagesz") == 0)) {
 299		size = memparse(val, NULL);
 300	} else if (strcmp(param, "hugepages") == 0) {
 301		if (size != 0) {
 302			if (sscanf(val, "%lu", &npages) <= 0)
 303				npages = 0;
 304			if (npages > MAX_NUMBER_GPAGES) {
 305				pr_warn("MMU: %lu pages requested for page "
 306					"size %llu KB, limiting to "
 307					__stringify(MAX_NUMBER_GPAGES) "\n",
 308					npages, size / 1024);
 309				npages = MAX_NUMBER_GPAGES;
 310			}
 311			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
 312			size = 0;
 313		}
 314	}
 315	return 0;
 316}
 317
 318
 319/*
 320 * This function allocates physical space for pages that are larger than the
 321 * buddy allocator can handle.  We want to allocate these in highmem because
 322 * the amount of lowmem is limited.  This means that this function MUST be
 323 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
 324 * allocate to grab highmem.
 325 */
 326void __init reserve_hugetlb_gpages(void)
 327{
 328	static __initdata char cmdline[COMMAND_LINE_SIZE];
 329	phys_addr_t size, base;
 330	int i;
 331
 332	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
 333	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
 334			NULL, &do_gpage_early_setup);
 335
 336	/*
 337	 * Walk gpage list in reverse, allocating larger page sizes first.
 338	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
 339	 * When we reach the point in the list where pages are no longer
 340	 * considered gpages, we're done.
 341	 */
 342	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
 343		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
 344			continue;
 345		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
 346			break;
 347
 348		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
 349		base = memblock_alloc_base(size * gpage_npages[i], size,
 350					   MEMBLOCK_ALLOC_ANYWHERE);
 351		add_gpage(base, size, gpage_npages[i]);
 352	}
 353}
 354
 355#else /* !PPC_FSL_BOOK3E */
 356
 357/* Build list of addresses of gigantic pages.  This function is used in early
 358 * boot before the buddy allocator is setup.
 359 */
 360void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 361{
 362	if (!addr)
 363		return;
 364	while (number_of_pages > 0) {
 365		gpage_freearray[nr_gpages] = addr;
 366		nr_gpages++;
 367		number_of_pages--;
 368		addr += page_size;
 369	}
 370}
 371
 372/* Moves the gigantic page addresses from the temporary list to the
 373 * huge_boot_pages list.
 374 */
 375int alloc_bootmem_huge_page(struct hstate *hstate)
 376{
 377	struct huge_bootmem_page *m;
 378	if (nr_gpages == 0)
 379		return 0;
 380	m = phys_to_virt(gpage_freearray[--nr_gpages]);
 381	gpage_freearray[nr_gpages] = 0;
 382	list_add(&m->list, &huge_boot_pages);
 383	m->hstate = hstate;
 384	return 1;
 385}
 386#endif
 387
 388#ifdef CONFIG_PPC_FSL_BOOK3E
 
 
 
 
 
 
 
 
 
 
 
 389#define HUGEPD_FREELIST_SIZE \
 390	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
 391
 392struct hugepd_freelist {
 393	struct rcu_head	rcu;
 394	unsigned int index;
 395	void *ptes[0];
 396};
 397
 398static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
 399
 400static void hugepd_free_rcu_callback(struct rcu_head *head)
 401{
 402	struct hugepd_freelist *batch =
 403		container_of(head, struct hugepd_freelist, rcu);
 404	unsigned int i;
 405
 406	for (i = 0; i < batch->index; i++)
 407		kmem_cache_free(hugepte_cache, batch->ptes[i]);
 408
 409	free_page((unsigned long)batch);
 410}
 411
 412static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
 413{
 414	struct hugepd_freelist **batchp;
 415
 416	batchp = &get_cpu_var(hugepd_freelist_cur);
 417
 418	if (atomic_read(&tlb->mm->mm_users) < 2 ||
 419	    cpumask_equal(mm_cpumask(tlb->mm),
 420			  cpumask_of(smp_processor_id()))) {
 421		kmem_cache_free(hugepte_cache, hugepte);
 422		put_cpu_var(hugepd_freelist_cur);
 423		return;
 424	}
 425
 426	if (*batchp == NULL) {
 427		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
 428		(*batchp)->index = 0;
 429	}
 430
 431	(*batchp)->ptes[(*batchp)->index++] = hugepte;
 432	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
 433		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
 434		*batchp = NULL;
 435	}
 436	put_cpu_var(hugepd_freelist_cur);
 437}
 
 
 438#endif
 439
 440static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
 441			      unsigned long start, unsigned long end,
 442			      unsigned long floor, unsigned long ceiling)
 443{
 444	pte_t *hugepte = hugepd_page(*hpdp);
 445	int i;
 446
 447	unsigned long pdmask = ~((1UL << pdshift) - 1);
 448	unsigned int num_hugepd = 1;
 
 449
 450#ifdef CONFIG_PPC_FSL_BOOK3E
 451	/* Note: On fsl the hpdp may be the first of several */
 452	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
 453#else
 454	unsigned int shift = hugepd_shift(*hpdp);
 455#endif
 456
 457	start &= pdmask;
 458	if (start < floor)
 459		return;
 460	if (ceiling) {
 461		ceiling &= pdmask;
 462		if (! ceiling)
 463			return;
 464	}
 465	if (end - 1 > ceiling - 1)
 466		return;
 467
 468	for (i = 0; i < num_hugepd; i++, hpdp++)
 469		hpdp->pd = 0;
 470
 471#ifdef CONFIG_PPC_FSL_BOOK3E
 472	hugepd_free(tlb, hugepte);
 473#else
 474	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
 475#endif
 
 
 
 476}
 477
 478static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 479				   unsigned long addr, unsigned long end,
 480				   unsigned long floor, unsigned long ceiling)
 481{
 482	pmd_t *pmd;
 483	unsigned long next;
 484	unsigned long start;
 485
 486	start = addr;
 487	do {
 
 
 488		pmd = pmd_offset(pud, addr);
 489		next = pmd_addr_end(addr, end);
 490		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
 491			/*
 492			 * if it is not hugepd pointer, we should already find
 493			 * it cleared.
 494			 */
 495			WARN_ON(!pmd_none_or_clear_bad(pmd));
 496			continue;
 497		}
 498#ifdef CONFIG_PPC_FSL_BOOK3E
 499		/*
 500		 * Increment next by the size of the huge mapping since
 501		 * there may be more than one entry at this level for a
 502		 * single hugepage, but all of them point to
 503		 * the same kmem cache that holds the hugepte.
 504		 */
 505		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
 506#endif
 
 
 507		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
 508				  addr, next, floor, ceiling);
 509	} while (addr = next, addr != end);
 510
 511	start &= PUD_MASK;
 512	if (start < floor)
 513		return;
 514	if (ceiling) {
 515		ceiling &= PUD_MASK;
 516		if (!ceiling)
 517			return;
 518	}
 519	if (end - 1 > ceiling - 1)
 520		return;
 521
 522	pmd = pmd_offset(pud, start);
 523	pud_clear(pud);
 524	pmd_free_tlb(tlb, pmd, start);
 525	mm_dec_nr_pmds(tlb->mm);
 526}
 527
 528static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 529				   unsigned long addr, unsigned long end,
 530				   unsigned long floor, unsigned long ceiling)
 531{
 532	pud_t *pud;
 533	unsigned long next;
 534	unsigned long start;
 535
 536	start = addr;
 537	do {
 538		pud = pud_offset(pgd, addr);
 539		next = pud_addr_end(addr, end);
 540		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
 541			if (pud_none_or_clear_bad(pud))
 542				continue;
 543			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
 544					       ceiling);
 545		} else {
 546#ifdef CONFIG_PPC_FSL_BOOK3E
 547			/*
 548			 * Increment next by the size of the huge mapping since
 549			 * there may be more than one entry at this level for a
 550			 * single hugepage, but all of them point to
 551			 * the same kmem cache that holds the hugepte.
 552			 */
 553			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
 554#endif
 
 
 555			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
 556					  addr, next, floor, ceiling);
 557		}
 558	} while (addr = next, addr != end);
 559
 560	start &= PGDIR_MASK;
 561	if (start < floor)
 562		return;
 563	if (ceiling) {
 564		ceiling &= PGDIR_MASK;
 565		if (!ceiling)
 566			return;
 567	}
 568	if (end - 1 > ceiling - 1)
 569		return;
 570
 571	pud = pud_offset(pgd, start);
 572	pgd_clear(pgd);
 573	pud_free_tlb(tlb, pud, start);
 
 574}
 575
 576/*
 577 * This function frees user-level page tables of a process.
 578 */
 579void hugetlb_free_pgd_range(struct mmu_gather *tlb,
 580			    unsigned long addr, unsigned long end,
 581			    unsigned long floor, unsigned long ceiling)
 582{
 583	pgd_t *pgd;
 584	unsigned long next;
 585
 586	/*
 587	 * Because there are a number of different possible pagetable
 588	 * layouts for hugepage ranges, we limit knowledge of how
 589	 * things should be laid out to the allocation path
 590	 * (huge_pte_alloc(), above).  Everything else works out the
 591	 * structure as it goes from information in the hugepd
 592	 * pointers.  That means that we can't here use the
 593	 * optimization used in the normal page free_pgd_range(), of
 594	 * checking whether we're actually covering a large enough
 595	 * range to have to do anything at the top level of the walk
 596	 * instead of at the bottom.
 597	 *
 598	 * To make sense of this, you should probably go read the big
 599	 * block comment at the top of the normal free_pgd_range(),
 600	 * too.
 601	 */
 602
 603	do {
 604		next = pgd_addr_end(addr, end);
 605		pgd = pgd_offset(tlb->mm, addr);
 606		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
 607			if (pgd_none_or_clear_bad(pgd))
 608				continue;
 609			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 610		} else {
 611#ifdef CONFIG_PPC_FSL_BOOK3E
 612			/*
 613			 * Increment next by the size of the huge mapping since
 614			 * there may be more than one entry at the pgd level
 615			 * for a single hugepage, but all of them point to the
 616			 * same kmem cache that holds the hugepte.
 617			 */
 618			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
 619#endif
 
 
 620			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
 621					  addr, next, floor, ceiling);
 622		}
 623	} while (addr = next, addr != end);
 624}
 625
 626/*
 627 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
 628 * To prevent hugepage split, disable irq.
 629 */
 630struct page *
 631follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
 632{
 633	bool is_thp;
 634	pte_t *ptep, pte;
 635	unsigned shift;
 636	unsigned long mask, flags;
 637	struct page *page = ERR_PTR(-EINVAL);
 638
 639	local_irq_save(flags);
 640	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift);
 641	if (!ptep)
 642		goto no_page;
 643	pte = READ_ONCE(*ptep);
 644	/*
 645	 * Verify it is a huge page else bail.
 646	 * Transparent hugepages are handled by generic code. We can skip them
 647	 * here.
 648	 */
 649	if (!shift || is_thp)
 650		goto no_page;
 651
 652	if (!pte_present(pte)) {
 653		page = NULL;
 654		goto no_page;
 
 
 
 
 
 
 
 
 
 
 655	}
 656	mask = (1UL << shift) - 1;
 657	page = pte_page(pte);
 658	if (page)
 659		page += (address & mask) / PAGE_SIZE;
 660
 661no_page:
 662	local_irq_restore(flags);
 663	return page;
 664}
 665
 666struct page *
 667follow_huge_pmd(struct mm_struct *mm, unsigned long address,
 668		pmd_t *pmd, int write)
 669{
 670	BUG();
 671	return NULL;
 672}
 673
 674struct page *
 675follow_huge_pud(struct mm_struct *mm, unsigned long address,
 676		pud_t *pud, int write)
 677{
 678	BUG();
 679	return NULL;
 680}
 681
 682static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
 683				      unsigned long sz)
 684{
 685	unsigned long __boundary = (addr + sz) & ~(sz-1);
 686	return (__boundary - 1 < end - 1) ? __boundary : end;
 687}
 688
 689int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
 690		unsigned long end, int write, struct page **pages, int *nr)
 691{
 692	pte_t *ptep;
 693	unsigned long sz = 1UL << hugepd_shift(hugepd);
 694	unsigned long next;
 695
 696	ptep = hugepte_offset(hugepd, addr, pdshift);
 697	do {
 698		next = hugepte_addr_end(addr, end, sz);
 699		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
 700			return 0;
 701	} while (ptep++, addr = next, addr != end);
 702
 703	return 1;
 704}
 705
 706#ifdef CONFIG_PPC_MM_SLICES
 707unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 708					unsigned long len, unsigned long pgoff,
 709					unsigned long flags)
 710{
 711	struct hstate *hstate = hstate_file(file);
 712	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
 713
 
 
 
 
 
 714	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
 715}
 716#endif
 717
 718unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 719{
 720#ifdef CONFIG_PPC_MM_SLICES
 721	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
 
 722
 723	return 1UL << mmu_psize_to_shift(psize);
 724#else
 725	if (!is_vm_hugetlb_page(vma))
 726		return PAGE_SIZE;
 727
 728	return huge_page_size(hstate_vma(vma));
 729#endif
 730}
 731
 732static inline bool is_power_of_4(unsigned long x)
 733{
 734	if (is_power_of_2(x))
 735		return (__ilog2(x) % 2) ? false : true;
 736	return false;
 737}
 738
 739static int __init add_huge_page_size(unsigned long long size)
 740{
 741	int shift = __ffs(size);
 742	int mmu_psize;
 743
 744	/* Check that it is a page size supported by the hardware and
 745	 * that it fits within pagetable and slice limits. */
 746#ifdef CONFIG_PPC_FSL_BOOK3E
 747	if ((size < PAGE_SIZE) || !is_power_of_4(size))
 748		return -EINVAL;
 749#else
 750	if (!is_power_of_2(size)
 751	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
 752		return -EINVAL;
 753#endif
 754
 755	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
 
 756		return -EINVAL;
 757
 758	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
 759
 760	/* Return if huge page size has already been setup */
 761	if (size_to_hstate(size))
 762		return 0;
 763
 764	hugetlb_add_hstate(shift - PAGE_SHIFT);
 765
 766	return 0;
 767}
 768
 769static int __init hugepage_setup_sz(char *str)
 770{
 771	unsigned long long size;
 772
 773	size = memparse(str, &str);
 774
 775	if (add_huge_page_size(size) != 0)
 776		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
 
 
 777
 778	return 1;
 779}
 780__setup("hugepagesz=", hugepage_setup_sz);
 781
 782#ifdef CONFIG_PPC_FSL_BOOK3E
 783struct kmem_cache *hugepte_cache;
 784static int __init hugetlbpage_init(void)
 785{
 
 786	int psize;
 787
 788	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 789		unsigned shift;
 790
 791		if (!mmu_psize_defs[psize].shift)
 792			continue;
 793
 794		shift = mmu_psize_to_shift(psize);
 795
 796		/* Don't treat normal page sizes as huge... */
 797		if (shift != PAGE_SHIFT)
 798			if (add_huge_page_size(1ULL << shift) < 0)
 799				continue;
 800	}
 801
 802	/*
 803	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
 804	 * size information encoded in them, so align them to allow this
 805	 */
 806	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
 807					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
 808	if (hugepte_cache == NULL)
 809		panic("%s: Unable to create kmem cache for hugeptes\n",
 810		      __func__);
 811
 812	/* Default hpage size = 4M */
 813	if (mmu_psize_defs[MMU_PAGE_4M].shift)
 814		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
 815	else
 816		panic("%s: Unable to set default huge page size\n", __func__);
 817
 818
 819	return 0;
 820}
 821#else
 822static int __init hugetlbpage_init(void)
 823{
 824	int psize;
 825
 826	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
 827		return -ENODEV;
 828
 829	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 830		unsigned shift;
 831		unsigned pdshift;
 832
 833		if (!mmu_psize_defs[psize].shift)
 834			continue;
 835
 836		shift = mmu_psize_to_shift(psize);
 837
 838		if (add_huge_page_size(1ULL << shift) < 0)
 
 839			continue;
 840
 841		if (shift < PMD_SHIFT)
 
 
 
 
 
 
 842			pdshift = PMD_SHIFT;
 843		else if (shift < PUD_SHIFT)
 844			pdshift = PUD_SHIFT;
 845		else
 846			pdshift = PGDIR_SHIFT;
 
 
 
 
 847		/*
 848		 * if we have pdshift and shift value same, we don't
 849		 * use pgt cache for hugepd.
 850		 */
 851		if (pdshift != shift) {
 852			pgtable_cache_add(pdshift - shift, NULL);
 853			if (!PGT_CACHE(pdshift - shift))
 854				panic("hugetlbpage_init(): could not create "
 855				      "pgtable cache for %d bit pagesize\n", shift);
 856		}
 
 
 857	}
 858
 859	/* Set default large page size. Currently, we pick 16M or 1M
 860	 * depending on what is available
 861	 */
 862	if (mmu_psize_defs[MMU_PAGE_16M].shift)
 863		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
 864	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 865		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
 866
 867	return 0;
 868}
 869#endif
 870arch_initcall(hugetlbpage_init);
 871
 872void flush_dcache_icache_hugepage(struct page *page)
 873{
 874	int i;
 875	void *start;
 876
 877	BUG_ON(!PageCompound(page));
 878
 879	for (i = 0; i < (1UL << compound_order(page)); i++) {
 880		if (!PageHighMem(page)) {
 881			__flush_dcache_icache(page_address(page+i));
 882		} else {
 883			start = kmap_atomic(page+i);
 884			__flush_dcache_icache(start);
 885			kunmap_atomic(start);
 886		}
 887	}
 888}
 889
 890#endif /* CONFIG_HUGETLB_PAGE */
 891
 892/*
 893 * We have 4 cases for pgds and pmds:
 894 * (1) invalid (all zeroes)
 895 * (2) pointer to next table, as normal; bottom 6 bits == 0
 896 * (3) leaf pte for huge page _PAGE_PTE set
 897 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
 898 *
 899 * So long as we atomically load page table pointers we are safe against teardown,
 900 * we can follow the address down to the the page and take a ref on it.
 901 * This function need to be called with interrupts disabled. We use this variant
 902 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
 903 */
 904
 905pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
 906				   bool *is_thp, unsigned *shift)
 907{
 908	pgd_t pgd, *pgdp;
 909	pud_t pud, *pudp;
 910	pmd_t pmd, *pmdp;
 911	pte_t *ret_pte;
 912	hugepd_t *hpdp = NULL;
 913	unsigned pdshift = PGDIR_SHIFT;
 914
 915	if (shift)
 916		*shift = 0;
 917
 918	if (is_thp)
 919		*is_thp = false;
 920
 921	pgdp = pgdir + pgd_index(ea);
 922	pgd  = READ_ONCE(*pgdp);
 923	/*
 924	 * Always operate on the local stack value. This make sure the
 925	 * value don't get updated by a parallel THP split/collapse,
 926	 * page fault or a page unmap. The return pte_t * is still not
 927	 * stable. So should be checked there for above conditions.
 928	 */
 929	if (pgd_none(pgd))
 930		return NULL;
 931	else if (pgd_huge(pgd)) {
 932		ret_pte = (pte_t *) pgdp;
 933		goto out;
 934	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
 935		hpdp = (hugepd_t *)&pgd;
 936	else {
 937		/*
 938		 * Even if we end up with an unmap, the pgtable will not
 939		 * be freed, because we do an rcu free and here we are
 940		 * irq disabled
 941		 */
 942		pdshift = PUD_SHIFT;
 943		pudp = pud_offset(&pgd, ea);
 944		pud  = READ_ONCE(*pudp);
 945
 946		if (pud_none(pud))
 947			return NULL;
 948		else if (pud_huge(pud)) {
 949			ret_pte = (pte_t *) pudp;
 950			goto out;
 951		} else if (is_hugepd(__hugepd(pud_val(pud))))
 952			hpdp = (hugepd_t *)&pud;
 953		else {
 954			pdshift = PMD_SHIFT;
 955			pmdp = pmd_offset(&pud, ea);
 956			pmd  = READ_ONCE(*pmdp);
 957			/*
 958			 * A hugepage collapse is captured by pmd_none, because
 959			 * it mark the pmd none and do a hpte invalidate.
 960			 */
 961			if (pmd_none(pmd))
 962				return NULL;
 963
 964			if (pmd_trans_huge(pmd)) {
 965				if (is_thp)
 966					*is_thp = true;
 967				ret_pte = (pte_t *) pmdp;
 968				goto out;
 969			}
 970
 971			if (pmd_huge(pmd)) {
 972				ret_pte = (pte_t *) pmdp;
 973				goto out;
 974			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
 975				hpdp = (hugepd_t *)&pmd;
 976			else
 977				return pte_offset_kernel(&pmd, ea);
 978		}
 979	}
 980	if (!hpdp)
 981		return NULL;
 982
 983	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
 984	pdshift = hugepd_shift(*hpdp);
 985out:
 986	if (shift)
 987		*shift = pdshift;
 988	return ret_pte;
 989}
 990EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
 991
 992int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
 993		unsigned long end, int write, struct page **pages, int *nr)
 994{
 995	unsigned long mask;
 996	unsigned long pte_end;
 997	struct page *head, *page;
 998	pte_t pte;
 999	int refs;
1000
1001	pte_end = (addr + sz) & ~(sz-1);
1002	if (pte_end < end)
1003		end = pte_end;
1004
1005	pte = READ_ONCE(*ptep);
1006	mask = _PAGE_PRESENT | _PAGE_USER;
1007	if (write)
1008		mask |= _PAGE_RW;
1009
1010	if ((pte_val(pte) & mask) != mask)
1011		return 0;
1012
1013	/* hugepages are never "special" */
1014	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1015
1016	refs = 0;
1017	head = pte_page(pte);
1018
1019	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1020	do {
1021		VM_BUG_ON(compound_head(page) != head);
1022		pages[*nr] = page;
1023		(*nr)++;
1024		page++;
1025		refs++;
1026	} while (addr += PAGE_SIZE, addr != end);
1027
1028	if (!page_cache_add_speculative(head, refs)) {
1029		*nr -= refs;
1030		return 0;
1031	}
1032
1033	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1034		/* Could be optimized better */
1035		*nr -= refs;
1036		while (refs--)
1037			put_page(head);
1038		return 0;
1039	}
1040
1041	return 1;
1042}