Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * PPC Huge TLB Page Support for Kernel.
  3 *
  4 * Copyright (C) 2003 David Gibson, IBM Corporation.
  5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
  6 *
  7 * Based on the IA-32 version:
  8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  9 */
 10
 11#include <linux/mm.h>
 12#include <linux/io.h>
 13#include <linux/slab.h>
 14#include <linux/hugetlb.h>
 15#include <linux/export.h>
 16#include <linux/of_fdt.h>
 17#include <linux/memblock.h>
 
 18#include <linux/moduleparam.h>
 19#include <linux/swap.h>
 20#include <linux/swapops.h>
 21#include <linux/kmemleak.h>
 22#include <asm/pgtable.h>
 23#include <asm/pgalloc.h>
 24#include <asm/tlb.h>
 25#include <asm/setup.h>
 26#include <asm/hugetlb.h>
 27#include <asm/pte-walk.h>
 28
 29bool hugetlb_disabled = false;
 30
 31#define hugepd_none(hpd)	(hpd_val(hpd) == 0)
 
 
 32
 33#define PTE_T_ORDER	(__builtin_ffs(sizeof(pte_t)) - __builtin_ffs(sizeof(void *)))
 34
 35pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36{
 37	/*
 38	 * Only called for hugetlbfs pages, hence can ignore THP and the
 39	 * irq disabled walk.
 40	 */
 41	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 42}
 43
 44static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
 45			   unsigned long address, unsigned int pdshift,
 46			   unsigned int pshift, spinlock_t *ptl)
 47{
 48	struct kmem_cache *cachep;
 49	pte_t *new;
 50	int i;
 51	int num_hugepd;
 52
 53	if (pshift >= pdshift) {
 54		cachep = PGT_CACHE(PTE_T_ORDER);
 55		num_hugepd = 1 << (pshift - pdshift);
 56	} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
 57		cachep = PGT_CACHE(PTE_INDEX_SIZE);
 58		num_hugepd = 1;
 59	} else {
 60		cachep = PGT_CACHE(pdshift - pshift);
 61		num_hugepd = 1;
 62	}
 63
 64	if (!cachep) {
 65		WARN_ONCE(1, "No page table cache created for hugetlb tables");
 66		return -ENOMEM;
 67	}
 68
 69	new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
 70
 71	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
 72	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
 73
 74	if (!new)
 75		return -ENOMEM;
 76
 77	/*
 78	 * Make sure other cpus find the hugepd set only after a
 79	 * properly initialized page table is visible to them.
 80	 * For more details look for comment in __pte_alloc().
 81	 */
 82	smp_wmb();
 83
 84	spin_lock(ptl);
 85	/*
 86	 * We have multiple higher-level entries that point to the same
 87	 * actual pte location.  Fill in each as we go and backtrack on error.
 88	 * We need all of these so the DTLB pgtable walk code can find the
 89	 * right higher-level entry without knowing if it's a hugepage or not.
 90	 */
 91	for (i = 0; i < num_hugepd; i++, hpdp++) {
 92		if (unlikely(!hugepd_none(*hpdp)))
 93			break;
 94		hugepd_populate(hpdp, new, pshift);
 
 
 95	}
 96	/* If we bailed from the for loop early, an error occurred, clean up */
 97	if (i < num_hugepd) {
 98		for (i = i - 1 ; i >= 0; i--, hpdp--)
 99			*hpdp = __hugepd(0);
100		kmem_cache_free(cachep, new);
101	} else {
102		kmemleak_ignore(new);
103	}
104	spin_unlock(ptl);
 
 
 
 
 
 
 
 
 
 
 
 
105	return 0;
106}
107
108/*
 
 
 
 
 
 
 
 
 
 
 
 
 
109 * At this point we do the placement change only for BOOK3S 64. This would
110 * possibly work on other subarchs.
111 */
112pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
113{
114	pgd_t *pg;
115	pud_t *pu;
116	pmd_t *pm;
117	hugepd_t *hpdp = NULL;
118	unsigned pshift = __ffs(sz);
119	unsigned pdshift = PGDIR_SHIFT;
120	spinlock_t *ptl;
121
122	addr &= ~(sz-1);
123	pg = pgd_offset(mm, addr);
124
125#ifdef CONFIG_PPC_BOOK3S_64
126	if (pshift == PGDIR_SHIFT)
127		/* 16GB huge page */
128		return (pte_t *) pg;
129	else if (pshift > PUD_SHIFT) {
130		/*
131		 * We need to use hugepd table
132		 */
133		ptl = &mm->page_table_lock;
134		hpdp = (hugepd_t *)pg;
135	} else {
136		pdshift = PUD_SHIFT;
137		pu = pud_alloc(mm, pg, addr);
138		if (!pu)
139			return NULL;
140		if (pshift == PUD_SHIFT)
141			return (pte_t *)pu;
142		else if (pshift > PMD_SHIFT) {
143			ptl = pud_lockptr(mm, pu);
144			hpdp = (hugepd_t *)pu;
145		} else {
146			pdshift = PMD_SHIFT;
147			pm = pmd_alloc(mm, pu, addr);
148			if (!pm)
149				return NULL;
150			if (pshift == PMD_SHIFT)
151				/* 16MB hugepage */
152				return (pte_t *)pm;
153			else {
154				ptl = pmd_lockptr(mm, pm);
155				hpdp = (hugepd_t *)pm;
156			}
157		}
158	}
 
 
 
 
 
 
 
 
 
 
 
159#else
160	if (pshift >= PGDIR_SHIFT) {
161		ptl = &mm->page_table_lock;
 
 
 
 
 
 
 
 
 
 
 
 
 
162		hpdp = (hugepd_t *)pg;
163	} else {
164		pdshift = PUD_SHIFT;
165		pu = pud_alloc(mm, pg, addr);
166		if (!pu)
167			return NULL;
168		if (pshift >= PUD_SHIFT) {
169			ptl = pud_lockptr(mm, pu);
170			hpdp = (hugepd_t *)pu;
171		} else {
172			pdshift = PMD_SHIFT;
173			pm = pmd_alloc(mm, pu, addr);
174			if (!pm)
175				return NULL;
176			ptl = pmd_lockptr(mm, pm);
177			hpdp = (hugepd_t *)pm;
178		}
179	}
180#endif
181	if (!hpdp)
182		return NULL;
183
184	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
185
186	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
187						  pdshift, pshift, ptl))
188		return NULL;
189
190	return hugepte_offset(*hpdp, addr, pdshift);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191}
192
193#ifdef CONFIG_PPC_BOOK3S_64
194/*
195 * Tracks gpages after the device tree is scanned and before the
196 * huge_boot_pages list is ready on pseries.
197 */
198#define MAX_NUMBER_GPAGES	1024
199__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
200__initdata static unsigned nr_gpages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
202/*
203 * Build list of addresses of gigantic pages.  This function is used in early
204 * boot before the buddy allocator is setup.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205 */
206void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
207{
208	if (!addr)
209		return;
210	while (number_of_pages > 0) {
211		gpage_freearray[nr_gpages] = addr;
212		nr_gpages++;
213		number_of_pages--;
214		addr += page_size;
215	}
216}
217
218int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
 
 
 
219{
220	struct huge_bootmem_page *m;
221	if (nr_gpages == 0)
222		return 0;
223	m = phys_to_virt(gpage_freearray[--nr_gpages]);
224	gpage_freearray[nr_gpages] = 0;
225	list_add(&m->list, &huge_boot_pages);
226	m->hstate = hstate;
227	return 1;
228}
229#endif
230
231
232int __init alloc_bootmem_huge_page(struct hstate *h)
233{
234
235#ifdef CONFIG_PPC_BOOK3S_64
236	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
237		return pseries_alloc_bootmem_huge_page(h);
238#endif
239	return __alloc_bootmem_huge_page(h);
240}
241
242#ifndef CONFIG_PPC_BOOK3S_64
243#define HUGEPD_FREELIST_SIZE \
244	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
245
246struct hugepd_freelist {
247	struct rcu_head	rcu;
248	unsigned int index;
249	void *ptes[0];
250};
251
252static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
253
254static void hugepd_free_rcu_callback(struct rcu_head *head)
255{
256	struct hugepd_freelist *batch =
257		container_of(head, struct hugepd_freelist, rcu);
258	unsigned int i;
259
260	for (i = 0; i < batch->index; i++)
261		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
262
263	free_page((unsigned long)batch);
264}
265
266static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
267{
268	struct hugepd_freelist **batchp;
269
270	batchp = &get_cpu_var(hugepd_freelist_cur);
271
272	if (atomic_read(&tlb->mm->mm_users) < 2 ||
273	    mm_is_thread_local(tlb->mm)) {
274		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
275		put_cpu_var(hugepd_freelist_cur);
 
276		return;
277	}
278
279	if (*batchp == NULL) {
280		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
281		(*batchp)->index = 0;
282	}
283
284	(*batchp)->ptes[(*batchp)->index++] = hugepte;
285	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
286		call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
287		*batchp = NULL;
288	}
289	put_cpu_var(hugepd_freelist_cur);
290}
291#else
292static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
293#endif
294
295static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
296			      unsigned long start, unsigned long end,
297			      unsigned long floor, unsigned long ceiling)
298{
299	pte_t *hugepte = hugepd_page(*hpdp);
300	int i;
301
302	unsigned long pdmask = ~((1UL << pdshift) - 1);
303	unsigned int num_hugepd = 1;
304	unsigned int shift = hugepd_shift(*hpdp);
305
 
306	/* Note: On fsl the hpdp may be the first of several */
307	if (shift > pdshift)
308		num_hugepd = 1 << (shift - pdshift);
 
 
309
310	start &= pdmask;
311	if (start < floor)
312		return;
313	if (ceiling) {
314		ceiling &= pdmask;
315		if (! ceiling)
316			return;
317	}
318	if (end - 1 > ceiling - 1)
319		return;
320
321	for (i = 0; i < num_hugepd; i++, hpdp++)
322		*hpdp = __hugepd(0);
323
324	if (shift >= pdshift)
325		hugepd_free(tlb, hugepte);
326	else if (IS_ENABLED(CONFIG_PPC_8xx))
327		pgtable_free_tlb(tlb, hugepte,
328				 get_hugepd_cache_index(PTE_INDEX_SIZE));
329	else
330		pgtable_free_tlb(tlb, hugepte,
331				 get_hugepd_cache_index(pdshift - shift));
332}
333
334static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
335				   unsigned long addr, unsigned long end,
336				   unsigned long floor, unsigned long ceiling)
337{
338	pmd_t *pmd;
339	unsigned long next;
340	unsigned long start;
341
342	start = addr;
343	do {
344		unsigned long more;
345
346		pmd = pmd_offset(pud, addr);
347		next = pmd_addr_end(addr, end);
348		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
349			/*
350			 * if it is not hugepd pointer, we should already find
351			 * it cleared.
352			 */
353			WARN_ON(!pmd_none_or_clear_bad(pmd));
354			continue;
355		}
 
356		/*
357		 * Increment next by the size of the huge mapping since
358		 * there may be more than one entry at this level for a
359		 * single hugepage, but all of them point to
360		 * the same kmem cache that holds the hugepte.
361		 */
362		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
363		if (more > next)
364			next = more;
365
366		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
367				  addr, next, floor, ceiling);
368	} while (addr = next, addr != end);
369
370	start &= PUD_MASK;
371	if (start < floor)
372		return;
373	if (ceiling) {
374		ceiling &= PUD_MASK;
375		if (!ceiling)
376			return;
377	}
378	if (end - 1 > ceiling - 1)
379		return;
380
381	pmd = pmd_offset(pud, start);
382	pud_clear(pud);
383	pmd_free_tlb(tlb, pmd, start);
384	mm_dec_nr_pmds(tlb->mm);
385}
386
387static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
388				   unsigned long addr, unsigned long end,
389				   unsigned long floor, unsigned long ceiling)
390{
391	pud_t *pud;
392	unsigned long next;
393	unsigned long start;
394
395	start = addr;
396	do {
397		pud = pud_offset(pgd, addr);
398		next = pud_addr_end(addr, end);
399		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
400			if (pud_none_or_clear_bad(pud))
401				continue;
402			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
403					       ceiling);
404		} else {
405			unsigned long more;
406			/*
407			 * Increment next by the size of the huge mapping since
408			 * there may be more than one entry at this level for a
409			 * single hugepage, but all of them point to
410			 * the same kmem cache that holds the hugepte.
411			 */
412			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
413			if (more > next)
414				next = more;
415
416			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
417					  addr, next, floor, ceiling);
418		}
419	} while (addr = next, addr != end);
420
421	start &= PGDIR_MASK;
422	if (start < floor)
423		return;
424	if (ceiling) {
425		ceiling &= PGDIR_MASK;
426		if (!ceiling)
427			return;
428	}
429	if (end - 1 > ceiling - 1)
430		return;
431
432	pud = pud_offset(pgd, start);
433	pgd_clear(pgd);
434	pud_free_tlb(tlb, pud, start);
435	mm_dec_nr_puds(tlb->mm);
436}
437
438/*
439 * This function frees user-level page tables of a process.
440 */
441void hugetlb_free_pgd_range(struct mmu_gather *tlb,
442			    unsigned long addr, unsigned long end,
443			    unsigned long floor, unsigned long ceiling)
444{
445	pgd_t *pgd;
446	unsigned long next;
447
448	/*
449	 * Because there are a number of different possible pagetable
450	 * layouts for hugepage ranges, we limit knowledge of how
451	 * things should be laid out to the allocation path
452	 * (huge_pte_alloc(), above).  Everything else works out the
453	 * structure as it goes from information in the hugepd
454	 * pointers.  That means that we can't here use the
455	 * optimization used in the normal page free_pgd_range(), of
456	 * checking whether we're actually covering a large enough
457	 * range to have to do anything at the top level of the walk
458	 * instead of at the bottom.
459	 *
460	 * To make sense of this, you should probably go read the big
461	 * block comment at the top of the normal free_pgd_range(),
462	 * too.
463	 */
464
465	do {
466		next = pgd_addr_end(addr, end);
467		pgd = pgd_offset(tlb->mm, addr);
468		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
469			if (pgd_none_or_clear_bad(pgd))
470				continue;
471			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
472		} else {
473			unsigned long more;
474			/*
475			 * Increment next by the size of the huge mapping since
476			 * there may be more than one entry at the pgd level
477			 * for a single hugepage, but all of them point to the
478			 * same kmem cache that holds the hugepte.
479			 */
480			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
481			if (more > next)
482				next = more;
483
484			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
485					  addr, next, floor, ceiling);
486		}
487	} while (addr = next, addr != end);
488}
489
490struct page *follow_huge_pd(struct vm_area_struct *vma,
491			    unsigned long address, hugepd_t hpd,
492			    int flags, int pdshift)
493{
494	pte_t *ptep;
495	spinlock_t *ptl;
496	struct page *page = NULL;
497	unsigned long mask;
498	int shift = hugepd_shift(hpd);
499	struct mm_struct *mm = vma->vm_mm;
500
501retry:
502	/*
503	 * hugepage directory entries are protected by mm->page_table_lock
504	 * Use this instead of huge_pte_lockptr
505	 */
506	ptl = &mm->page_table_lock;
507	spin_lock(ptl);
508
509	ptep = hugepte_offset(hpd, address, pdshift);
510	if (pte_present(*ptep)) {
511		mask = (1UL << shift) - 1;
512		page = pte_page(*ptep);
513		page += ((address & mask) >> PAGE_SHIFT);
514		if (flags & FOLL_GET)
515			get_page(page);
516	} else {
517		if (is_hugetlb_entry_migration(*ptep)) {
518			spin_unlock(ptl);
519			__migration_entry_wait(mm, ptep, ptl);
520			goto retry;
521		}
522	}
523	spin_unlock(ptl);
524	return page;
525}
526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527#ifdef CONFIG_PPC_MM_SLICES
528unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
529					unsigned long len, unsigned long pgoff,
530					unsigned long flags)
531{
532	struct hstate *hstate = hstate_file(file);
533	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
534
535#ifdef CONFIG_PPC_RADIX_MMU
536	if (radix_enabled())
537		return radix__hugetlb_get_unmapped_area(file, addr, len,
538						       pgoff, flags);
539#endif
540	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
541}
542#endif
543
544unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
545{
546	/* With radix we don't use slice, so derive it from vma*/
547	if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
548		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
549
550		return 1UL << mmu_psize_to_shift(psize);
551	}
552	return vma_kernel_pagesize(vma);
 
 
 
 
 
 
 
 
 
 
 
553}
554
555static int __init add_huge_page_size(unsigned long long size)
556{
557	int shift = __ffs(size);
558	int mmu_psize;
559
560	/* Check that it is a page size supported by the hardware and
561	 * that it fits within pagetable and slice limits. */
562	if (size <= PAGE_SIZE || !is_power_of_2(size))
 
 
 
 
 
563		return -EINVAL;
 
564
565	mmu_psize = check_and_get_huge_psize(shift);
566	if (mmu_psize < 0)
 
 
 
 
 
 
567		return -EINVAL;
 
568
569	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
570
571	/* Return if huge page size has already been setup */
572	if (size_to_hstate(size))
573		return 0;
574
575	hugetlb_add_hstate(shift - PAGE_SHIFT);
576
577	return 0;
578}
579
580static int __init hugepage_setup_sz(char *str)
581{
582	unsigned long long size;
583
584	size = memparse(str, &str);
585
586	if (add_huge_page_size(size) != 0) {
587		hugetlb_bad_size();
588		pr_err("Invalid huge page size specified(%llu)\n", size);
589	}
590
591	return 1;
592}
593__setup("hugepagesz=", hugepage_setup_sz);
594
 
 
595static int __init hugetlbpage_init(void)
596{
597	bool configured = false;
598	int psize;
599
600	if (hugetlb_disabled) {
601		pr_info("HugeTLB support is disabled!\n");
602		return 0;
 
 
 
 
 
 
 
 
 
603	}
604
605	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
606	    !mmu_has_feature(MMU_FTR_16M_PAGE))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607		return -ENODEV;
608
609	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
610		unsigned shift;
611		unsigned pdshift;
612
613		if (!mmu_psize_defs[psize].shift)
614			continue;
615
616		shift = mmu_psize_to_shift(psize);
617
618#ifdef CONFIG_PPC_BOOK3S_64
619		if (shift > PGDIR_SHIFT)
620			continue;
621		else if (shift > PUD_SHIFT)
622			pdshift = PGDIR_SHIFT;
623		else if (shift > PMD_SHIFT)
624			pdshift = PUD_SHIFT;
625		else
626			pdshift = PMD_SHIFT;
627#else
628		if (shift < PUD_SHIFT)
629			pdshift = PMD_SHIFT;
630		else if (shift < PGDIR_SHIFT)
631			pdshift = PUD_SHIFT;
632		else
633			pdshift = PGDIR_SHIFT;
634#endif
635
636		if (add_huge_page_size(1ULL << shift) < 0)
637			continue;
638		/*
639		 * if we have pdshift and shift value same, we don't
640		 * use pgt cache for hugepd.
641		 */
642		if (pdshift > shift && IS_ENABLED(CONFIG_PPC_8xx))
643			pgtable_cache_add(PTE_INDEX_SIZE);
644		else if (pdshift > shift)
645			pgtable_cache_add(pdshift - shift);
646		else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) || IS_ENABLED(CONFIG_PPC_8xx))
647			pgtable_cache_add(PTE_T_ORDER);
648
649		configured = true;
650	}
651
652	if (configured) {
653		if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
654			hugetlbpage_init_default();
655	} else
656		pr_info("Failed to initialize. Disabling HugeTLB");
 
 
657
658	return 0;
659}
660
661arch_initcall(hugetlbpage_init);
662
663void flush_dcache_icache_hugepage(struct page *page)
664{
665	int i;
666	void *start;
667
668	BUG_ON(!PageCompound(page));
669
670	for (i = 0; i < compound_nr(page); i++) {
671		if (!PageHighMem(page)) {
672			__flush_dcache_icache(page_address(page+i));
673		} else {
674			start = kmap_atomic(page+i);
675			__flush_dcache_icache(start);
676			kunmap_atomic(start);
677		}
678	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
679}
v3.15
   1/*
   2 * PPC Huge TLB Page Support for Kernel.
   3 *
   4 * Copyright (C) 2003 David Gibson, IBM Corporation.
   5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
   6 *
   7 * Based on the IA-32 version:
   8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
   9 */
  10
  11#include <linux/mm.h>
  12#include <linux/io.h>
  13#include <linux/slab.h>
  14#include <linux/hugetlb.h>
  15#include <linux/export.h>
  16#include <linux/of_fdt.h>
  17#include <linux/memblock.h>
  18#include <linux/bootmem.h>
  19#include <linux/moduleparam.h>
 
 
 
  20#include <asm/pgtable.h>
  21#include <asm/pgalloc.h>
  22#include <asm/tlb.h>
  23#include <asm/setup.h>
  24#include <asm/hugetlb.h>
 
  25
  26#ifdef CONFIG_HUGETLB_PAGE
  27
  28#define PAGE_SHIFT_64K	16
  29#define PAGE_SHIFT_16M	24
  30#define PAGE_SHIFT_16G	34
  31
  32unsigned int HPAGE_SHIFT;
  33
  34/*
  35 * Tracks gpages after the device tree is scanned and before the
  36 * huge_boot_pages list is ready.  On non-Freescale implementations, this is
  37 * just used to track 16G pages and so is a single array.  FSL-based
  38 * implementations may have more than one gpage size, so we need multiple
  39 * arrays
  40 */
  41#ifdef CONFIG_PPC_FSL_BOOK3E
  42#define MAX_NUMBER_GPAGES	128
  43struct psize_gpages {
  44	u64 gpage_list[MAX_NUMBER_GPAGES];
  45	unsigned int nr_gpages;
  46};
  47static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
  48#else
  49#define MAX_NUMBER_GPAGES	1024
  50static u64 gpage_freearray[MAX_NUMBER_GPAGES];
  51static unsigned nr_gpages;
  52#endif
  53
  54#define hugepd_none(hpd)	((hpd).pd == 0)
  55
  56#ifdef CONFIG_PPC_BOOK3S_64
  57/*
  58 * At this point we do the placement change only for BOOK3S 64. This would
  59 * possibly work on other subarchs.
  60 */
  61
  62/*
  63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
  64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
  65 */
  66int pmd_huge(pmd_t pmd)
  67{
  68	/*
  69	 * leaf pte for huge page, bottom two bits != 00
 
  70	 */
  71	return ((pmd_val(pmd) & 0x3) != 0x0);
  72}
  73
  74int pud_huge(pud_t pud)
  75{
  76	/*
  77	 * leaf pte for huge page, bottom two bits != 00
  78	 */
  79	return ((pud_val(pud) & 0x3) != 0x0);
  80}
  81
  82int pgd_huge(pgd_t pgd)
  83{
  84	/*
  85	 * leaf pte for huge page, bottom two bits != 00
  86	 */
  87	return ((pgd_val(pgd) & 0x3) != 0x0);
  88}
  89
  90int pmd_huge_support(void)
  91{
  92	return 1;
  93}
  94#else
  95int pmd_huge(pmd_t pmd)
  96{
  97	return 0;
  98}
  99
 100int pud_huge(pud_t pud)
 101{
 102	return 0;
 103}
 104
 105int pgd_huge(pgd_t pgd)
 106{
 107	return 0;
 108}
 109
 110int pmd_huge_support(void)
 111{
 112	return 0;
 113}
 114#endif
 115
 116pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 117{
 118	/* Only called for hugetlbfs pages, hence can ignore THP */
 119	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
 120}
 121
 122static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
 123			   unsigned long address, unsigned pdshift, unsigned pshift)
 
 124{
 125	struct kmem_cache *cachep;
 126	pte_t *new;
 
 
 127
 128#ifdef CONFIG_PPC_FSL_BOOK3E
 129	int i;
 130	int num_hugepd = 1 << (pshift - pdshift);
 131	cachep = hugepte_cache;
 132#else
 133	cachep = PGT_CACHE(pdshift - pshift);
 134#endif
 
 
 
 
 
 
 
 
 135
 136	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
 137
 138	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
 139	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
 140
 141	if (! new)
 142		return -ENOMEM;
 143
 144	spin_lock(&mm->page_table_lock);
 145#ifdef CONFIG_PPC_FSL_BOOK3E
 
 
 
 
 
 
 146	/*
 147	 * We have multiple higher-level entries that point to the same
 148	 * actual pte location.  Fill in each as we go and backtrack on error.
 149	 * We need all of these so the DTLB pgtable walk code can find the
 150	 * right higher-level entry without knowing if it's a hugepage or not.
 151	 */
 152	for (i = 0; i < num_hugepd; i++, hpdp++) {
 153		if (unlikely(!hugepd_none(*hpdp)))
 154			break;
 155		else
 156			/* We use the old format for PPC_FSL_BOOK3E */
 157			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
 158	}
 159	/* If we bailed from the for loop early, an error occurred, clean up */
 160	if (i < num_hugepd) {
 161		for (i = i - 1 ; i >= 0; i--, hpdp--)
 162			hpdp->pd = 0;
 163		kmem_cache_free(cachep, new);
 
 
 164	}
 165#else
 166	if (!hugepd_none(*hpdp))
 167		kmem_cache_free(cachep, new);
 168	else {
 169#ifdef CONFIG_PPC_BOOK3S_64
 170		hpdp->pd = (unsigned long)new |
 171			    (shift_to_mmu_psize(pshift) << 2);
 172#else
 173		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
 174#endif
 175	}
 176#endif
 177	spin_unlock(&mm->page_table_lock);
 178	return 0;
 179}
 180
 181/*
 182 * These macros define how to determine which level of the page table holds
 183 * the hpdp.
 184 */
 185#ifdef CONFIG_PPC_FSL_BOOK3E
 186#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
 187#define HUGEPD_PUD_SHIFT PUD_SHIFT
 188#else
 189#define HUGEPD_PGD_SHIFT PUD_SHIFT
 190#define HUGEPD_PUD_SHIFT PMD_SHIFT
 191#endif
 192
 193#ifdef CONFIG_PPC_BOOK3S_64
 194/*
 195 * At this point we do the placement change only for BOOK3S 64. This would
 196 * possibly work on other subarchs.
 197 */
 198pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 199{
 200	pgd_t *pg;
 201	pud_t *pu;
 202	pmd_t *pm;
 203	hugepd_t *hpdp = NULL;
 204	unsigned pshift = __ffs(sz);
 205	unsigned pdshift = PGDIR_SHIFT;
 
 206
 207	addr &= ~(sz-1);
 208	pg = pgd_offset(mm, addr);
 209
 
 210	if (pshift == PGDIR_SHIFT)
 211		/* 16GB huge page */
 212		return (pte_t *) pg;
 213	else if (pshift > PUD_SHIFT)
 214		/*
 215		 * We need to use hugepd table
 216		 */
 
 217		hpdp = (hugepd_t *)pg;
 218	else {
 219		pdshift = PUD_SHIFT;
 220		pu = pud_alloc(mm, pg, addr);
 
 
 221		if (pshift == PUD_SHIFT)
 222			return (pte_t *)pu;
 223		else if (pshift > PMD_SHIFT)
 
 224			hpdp = (hugepd_t *)pu;
 225		else {
 226			pdshift = PMD_SHIFT;
 227			pm = pmd_alloc(mm, pu, addr);
 
 
 228			if (pshift == PMD_SHIFT)
 229				/* 16MB hugepage */
 230				return (pte_t *)pm;
 231			else
 
 232				hpdp = (hugepd_t *)pm;
 
 233		}
 234	}
 235	if (!hpdp)
 236		return NULL;
 237
 238	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 239
 240	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
 241		return NULL;
 242
 243	return hugepte_offset(hpdp, addr, pdshift);
 244}
 245
 246#else
 247
 248pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 249{
 250	pgd_t *pg;
 251	pud_t *pu;
 252	pmd_t *pm;
 253	hugepd_t *hpdp = NULL;
 254	unsigned pshift = __ffs(sz);
 255	unsigned pdshift = PGDIR_SHIFT;
 256
 257	addr &= ~(sz-1);
 258
 259	pg = pgd_offset(mm, addr);
 260
 261	if (pshift >= HUGEPD_PGD_SHIFT) {
 262		hpdp = (hugepd_t *)pg;
 263	} else {
 264		pdshift = PUD_SHIFT;
 265		pu = pud_alloc(mm, pg, addr);
 266		if (pshift >= HUGEPD_PUD_SHIFT) {
 
 
 
 267			hpdp = (hugepd_t *)pu;
 268		} else {
 269			pdshift = PMD_SHIFT;
 270			pm = pmd_alloc(mm, pu, addr);
 
 
 
 271			hpdp = (hugepd_t *)pm;
 272		}
 273	}
 274
 275	if (!hpdp)
 276		return NULL;
 277
 278	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 279
 280	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
 
 281		return NULL;
 282
 283	return hugepte_offset(hpdp, addr, pdshift);
 284}
 285#endif
 286
 287#ifdef CONFIG_PPC_FSL_BOOK3E
 288/* Build list of addresses of gigantic pages.  This function is used in early
 289 * boot before the buddy or bootmem allocator is setup.
 290 */
 291void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 292{
 293	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
 294	int i;
 295
 296	if (addr == 0)
 297		return;
 298
 299	gpage_freearray[idx].nr_gpages = number_of_pages;
 300
 301	for (i = 0; i < number_of_pages; i++) {
 302		gpage_freearray[idx].gpage_list[i] = addr;
 303		addr += page_size;
 304	}
 305}
 306
 
 307/*
 308 * Moves the gigantic page addresses from the temporary list to the
 309 * huge_boot_pages list.
 310 */
 311int alloc_bootmem_huge_page(struct hstate *hstate)
 312{
 313	struct huge_bootmem_page *m;
 314	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
 315	int nr_gpages = gpage_freearray[idx].nr_gpages;
 316
 317	if (nr_gpages == 0)
 318		return 0;
 319
 320#ifdef CONFIG_HIGHMEM
 321	/*
 322	 * If gpages can be in highmem we can't use the trick of storing the
 323	 * data structure in the page; allocate space for this
 324	 */
 325	m = alloc_bootmem(sizeof(struct huge_bootmem_page));
 326	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
 327#else
 328	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
 329#endif
 330
 331	list_add(&m->list, &huge_boot_pages);
 332	gpage_freearray[idx].nr_gpages = nr_gpages;
 333	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
 334	m->hstate = hstate;
 335
 336	return 1;
 337}
 338/*
 339 * Scan the command line hugepagesz= options for gigantic pages; store those in
 340 * a list that we use to allocate the memory once all options are parsed.
 341 */
 342
 343unsigned long gpage_npages[MMU_PAGE_COUNT];
 344
 345static int __init do_gpage_early_setup(char *param, char *val,
 346				       const char *unused)
 347{
 348	static phys_addr_t size;
 349	unsigned long npages;
 350
 351	/*
 352	 * The hugepagesz and hugepages cmdline options are interleaved.  We
 353	 * use the size variable to keep track of whether or not this was done
 354	 * properly and skip over instances where it is incorrect.  Other
 355	 * command-line parsing code will issue warnings, so we don't need to.
 356	 *
 357	 */
 358	if ((strcmp(param, "default_hugepagesz") == 0) ||
 359	    (strcmp(param, "hugepagesz") == 0)) {
 360		size = memparse(val, NULL);
 361	} else if (strcmp(param, "hugepages") == 0) {
 362		if (size != 0) {
 363			if (sscanf(val, "%lu", &npages) <= 0)
 364				npages = 0;
 365			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
 366			size = 0;
 367		}
 368	}
 369	return 0;
 370}
 371
 372
 373/*
 374 * This function allocates physical space for pages that are larger than the
 375 * buddy allocator can handle.  We want to allocate these in highmem because
 376 * the amount of lowmem is limited.  This means that this function MUST be
 377 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
 378 * allocate to grab highmem.
 379 */
 380void __init reserve_hugetlb_gpages(void)
 381{
 382	static __initdata char cmdline[COMMAND_LINE_SIZE];
 383	phys_addr_t size, base;
 384	int i;
 385
 386	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
 387	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
 388			&do_gpage_early_setup);
 389
 390	/*
 391	 * Walk gpage list in reverse, allocating larger page sizes first.
 392	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
 393	 * When we reach the point in the list where pages are no longer
 394	 * considered gpages, we're done.
 395	 */
 396	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
 397		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
 398			continue;
 399		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
 400			break;
 401
 402		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
 403		base = memblock_alloc_base(size * gpage_npages[i], size,
 404					   MEMBLOCK_ALLOC_ANYWHERE);
 405		add_gpage(base, size, gpage_npages[i]);
 406	}
 407}
 408
 409#else /* !PPC_FSL_BOOK3E */
 410
 411/* Build list of addresses of gigantic pages.  This function is used in early
 412 * boot before the buddy or bootmem allocator is setup.
 413 */
 414void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 415{
 416	if (!addr)
 417		return;
 418	while (number_of_pages > 0) {
 419		gpage_freearray[nr_gpages] = addr;
 420		nr_gpages++;
 421		number_of_pages--;
 422		addr += page_size;
 423	}
 424}
 425
 426/* Moves the gigantic page addresses from the temporary list to the
 427 * huge_boot_pages list.
 428 */
 429int alloc_bootmem_huge_page(struct hstate *hstate)
 430{
 431	struct huge_bootmem_page *m;
 432	if (nr_gpages == 0)
 433		return 0;
 434	m = phys_to_virt(gpage_freearray[--nr_gpages]);
 435	gpage_freearray[nr_gpages] = 0;
 436	list_add(&m->list, &huge_boot_pages);
 437	m->hstate = hstate;
 438	return 1;
 439}
 440#endif
 441
 442int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 
 443{
 444	return 0;
 
 
 
 
 
 445}
 446
 447#ifdef CONFIG_PPC_FSL_BOOK3E
 448#define HUGEPD_FREELIST_SIZE \
 449	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
 450
 451struct hugepd_freelist {
 452	struct rcu_head	rcu;
 453	unsigned int index;
 454	void *ptes[0];
 455};
 456
 457static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
 458
 459static void hugepd_free_rcu_callback(struct rcu_head *head)
 460{
 461	struct hugepd_freelist *batch =
 462		container_of(head, struct hugepd_freelist, rcu);
 463	unsigned int i;
 464
 465	for (i = 0; i < batch->index; i++)
 466		kmem_cache_free(hugepte_cache, batch->ptes[i]);
 467
 468	free_page((unsigned long)batch);
 469}
 470
 471static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
 472{
 473	struct hugepd_freelist **batchp;
 474
 475	batchp = &get_cpu_var(hugepd_freelist_cur);
 476
 477	if (atomic_read(&tlb->mm->mm_users) < 2 ||
 478	    cpumask_equal(mm_cpumask(tlb->mm),
 479			  cpumask_of(smp_processor_id()))) {
 480		kmem_cache_free(hugepte_cache, hugepte);
 481        put_cpu_var(hugepd_freelist_cur);
 482		return;
 483	}
 484
 485	if (*batchp == NULL) {
 486		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
 487		(*batchp)->index = 0;
 488	}
 489
 490	(*batchp)->ptes[(*batchp)->index++] = hugepte;
 491	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
 492		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
 493		*batchp = NULL;
 494	}
 495	put_cpu_var(hugepd_freelist_cur);
 496}
 
 
 497#endif
 498
 499static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
 500			      unsigned long start, unsigned long end,
 501			      unsigned long floor, unsigned long ceiling)
 502{
 503	pte_t *hugepte = hugepd_page(*hpdp);
 504	int i;
 505
 506	unsigned long pdmask = ~((1UL << pdshift) - 1);
 507	unsigned int num_hugepd = 1;
 
 508
 509#ifdef CONFIG_PPC_FSL_BOOK3E
 510	/* Note: On fsl the hpdp may be the first of several */
 511	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
 512#else
 513	unsigned int shift = hugepd_shift(*hpdp);
 514#endif
 515
 516	start &= pdmask;
 517	if (start < floor)
 518		return;
 519	if (ceiling) {
 520		ceiling &= pdmask;
 521		if (! ceiling)
 522			return;
 523	}
 524	if (end - 1 > ceiling - 1)
 525		return;
 526
 527	for (i = 0; i < num_hugepd; i++, hpdp++)
 528		hpdp->pd = 0;
 529
 530	tlb->need_flush = 1;
 531
 532#ifdef CONFIG_PPC_FSL_BOOK3E
 533	hugepd_free(tlb, hugepte);
 534#else
 535	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
 536#endif
 
 537}
 538
 539static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 540				   unsigned long addr, unsigned long end,
 541				   unsigned long floor, unsigned long ceiling)
 542{
 543	pmd_t *pmd;
 544	unsigned long next;
 545	unsigned long start;
 546
 547	start = addr;
 548	do {
 
 
 549		pmd = pmd_offset(pud, addr);
 550		next = pmd_addr_end(addr, end);
 551		if (!is_hugepd(pmd)) {
 552			/*
 553			 * if it is not hugepd pointer, we should already find
 554			 * it cleared.
 555			 */
 556			WARN_ON(!pmd_none_or_clear_bad(pmd));
 557			continue;
 558		}
 559#ifdef CONFIG_PPC_FSL_BOOK3E
 560		/*
 561		 * Increment next by the size of the huge mapping since
 562		 * there may be more than one entry at this level for a
 563		 * single hugepage, but all of them point to
 564		 * the same kmem cache that holds the hugepte.
 565		 */
 566		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
 567#endif
 
 
 568		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
 569				  addr, next, floor, ceiling);
 570	} while (addr = next, addr != end);
 571
 572	start &= PUD_MASK;
 573	if (start < floor)
 574		return;
 575	if (ceiling) {
 576		ceiling &= PUD_MASK;
 577		if (!ceiling)
 578			return;
 579	}
 580	if (end - 1 > ceiling - 1)
 581		return;
 582
 583	pmd = pmd_offset(pud, start);
 584	pud_clear(pud);
 585	pmd_free_tlb(tlb, pmd, start);
 
 586}
 587
 588static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 589				   unsigned long addr, unsigned long end,
 590				   unsigned long floor, unsigned long ceiling)
 591{
 592	pud_t *pud;
 593	unsigned long next;
 594	unsigned long start;
 595
 596	start = addr;
 597	do {
 598		pud = pud_offset(pgd, addr);
 599		next = pud_addr_end(addr, end);
 600		if (!is_hugepd(pud)) {
 601			if (pud_none_or_clear_bad(pud))
 602				continue;
 603			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
 604					       ceiling);
 605		} else {
 606#ifdef CONFIG_PPC_FSL_BOOK3E
 607			/*
 608			 * Increment next by the size of the huge mapping since
 609			 * there may be more than one entry at this level for a
 610			 * single hugepage, but all of them point to
 611			 * the same kmem cache that holds the hugepte.
 612			 */
 613			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
 614#endif
 
 
 615			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
 616					  addr, next, floor, ceiling);
 617		}
 618	} while (addr = next, addr != end);
 619
 620	start &= PGDIR_MASK;
 621	if (start < floor)
 622		return;
 623	if (ceiling) {
 624		ceiling &= PGDIR_MASK;
 625		if (!ceiling)
 626			return;
 627	}
 628	if (end - 1 > ceiling - 1)
 629		return;
 630
 631	pud = pud_offset(pgd, start);
 632	pgd_clear(pgd);
 633	pud_free_tlb(tlb, pud, start);
 
 634}
 635
 636/*
 637 * This function frees user-level page tables of a process.
 638 */
 639void hugetlb_free_pgd_range(struct mmu_gather *tlb,
 640			    unsigned long addr, unsigned long end,
 641			    unsigned long floor, unsigned long ceiling)
 642{
 643	pgd_t *pgd;
 644	unsigned long next;
 645
 646	/*
 647	 * Because there are a number of different possible pagetable
 648	 * layouts for hugepage ranges, we limit knowledge of how
 649	 * things should be laid out to the allocation path
 650	 * (huge_pte_alloc(), above).  Everything else works out the
 651	 * structure as it goes from information in the hugepd
 652	 * pointers.  That means that we can't here use the
 653	 * optimization used in the normal page free_pgd_range(), of
 654	 * checking whether we're actually covering a large enough
 655	 * range to have to do anything at the top level of the walk
 656	 * instead of at the bottom.
 657	 *
 658	 * To make sense of this, you should probably go read the big
 659	 * block comment at the top of the normal free_pgd_range(),
 660	 * too.
 661	 */
 662
 663	do {
 664		next = pgd_addr_end(addr, end);
 665		pgd = pgd_offset(tlb->mm, addr);
 666		if (!is_hugepd(pgd)) {
 667			if (pgd_none_or_clear_bad(pgd))
 668				continue;
 669			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 670		} else {
 671#ifdef CONFIG_PPC_FSL_BOOK3E
 672			/*
 673			 * Increment next by the size of the huge mapping since
 674			 * there may be more than one entry at the pgd level
 675			 * for a single hugepage, but all of them point to the
 676			 * same kmem cache that holds the hugepte.
 677			 */
 678			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
 679#endif
 
 
 680			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
 681					  addr, next, floor, ceiling);
 682		}
 683	} while (addr = next, addr != end);
 684}
 685
 686struct page *
 687follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
 
 688{
 689	pte_t *ptep;
 690	struct page *page;
 691	unsigned shift;
 692	unsigned long mask;
 
 
 
 
 693	/*
 694	 * Transparent hugepages are handled by generic code. We can skip them
 695	 * here.
 696	 */
 697	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
 698
 699	/* Verify it is a huge page else bail. */
 700	if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep))
 701		return ERR_PTR(-EINVAL);
 702
 703	mask = (1UL << shift) - 1;
 704	page = pte_page(*ptep);
 705	if (page)
 706		page += (address & mask) / PAGE_SIZE;
 707
 
 
 
 
 
 
 
 708	return page;
 709}
 710
 711struct page *
 712follow_huge_pmd(struct mm_struct *mm, unsigned long address,
 713		pmd_t *pmd, int write)
 714{
 715	BUG();
 716	return NULL;
 717}
 718
 719static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
 720				      unsigned long sz)
 721{
 722	unsigned long __boundary = (addr + sz) & ~(sz-1);
 723	return (__boundary - 1 < end - 1) ? __boundary : end;
 724}
 725
 726int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
 727	       unsigned long addr, unsigned long end,
 728	       int write, struct page **pages, int *nr)
 729{
 730	pte_t *ptep;
 731	unsigned long sz = 1UL << hugepd_shift(*hugepd);
 732	unsigned long next;
 733
 734	ptep = hugepte_offset(hugepd, addr, pdshift);
 735	do {
 736		next = hugepte_addr_end(addr, end, sz);
 737		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
 738			return 0;
 739	} while (ptep++, addr = next, addr != end);
 740
 741	return 1;
 742}
 743
 744#ifdef CONFIG_PPC_MM_SLICES
 745unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 746					unsigned long len, unsigned long pgoff,
 747					unsigned long flags)
 748{
 749	struct hstate *hstate = hstate_file(file);
 750	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
 751
 
 
 
 
 
 752	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
 753}
 754#endif
 755
 756unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 757{
 758#ifdef CONFIG_PPC_MM_SLICES
 759	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
 
 760
 761	return 1UL << mmu_psize_to_shift(psize);
 762#else
 763	if (!is_vm_hugetlb_page(vma))
 764		return PAGE_SIZE;
 765
 766	return huge_page_size(hstate_vma(vma));
 767#endif
 768}
 769
 770static inline bool is_power_of_4(unsigned long x)
 771{
 772	if (is_power_of_2(x))
 773		return (__ilog2(x) % 2) ? false : true;
 774	return false;
 775}
 776
 777static int __init add_huge_page_size(unsigned long long size)
 778{
 779	int shift = __ffs(size);
 780	int mmu_psize;
 781
 782	/* Check that it is a page size supported by the hardware and
 783	 * that it fits within pagetable and slice limits. */
 784#ifdef CONFIG_PPC_FSL_BOOK3E
 785	if ((size < PAGE_SIZE) || !is_power_of_4(size))
 786		return -EINVAL;
 787#else
 788	if (!is_power_of_2(size)
 789	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
 790		return -EINVAL;
 791#endif
 792
 793	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
 794		return -EINVAL;
 795
 796#ifdef CONFIG_SPU_FS_64K_LS
 797	/* Disable support for 64K huge pages when 64K SPU local store
 798	 * support is enabled as the current implementation conflicts.
 799	 */
 800	if (shift == PAGE_SHIFT_64K)
 801		return -EINVAL;
 802#endif /* CONFIG_SPU_FS_64K_LS */
 803
 804	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
 805
 806	/* Return if huge page size has already been setup */
 807	if (size_to_hstate(size))
 808		return 0;
 809
 810	hugetlb_add_hstate(shift - PAGE_SHIFT);
 811
 812	return 0;
 813}
 814
 815static int __init hugepage_setup_sz(char *str)
 816{
 817	unsigned long long size;
 818
 819	size = memparse(str, &str);
 820
 821	if (add_huge_page_size(size) != 0)
 822		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
 
 
 823
 824	return 1;
 825}
 826__setup("hugepagesz=", hugepage_setup_sz);
 827
 828#ifdef CONFIG_PPC_FSL_BOOK3E
 829struct kmem_cache *hugepte_cache;
 830static int __init hugetlbpage_init(void)
 831{
 
 832	int psize;
 833
 834	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 835		unsigned shift;
 836
 837		if (!mmu_psize_defs[psize].shift)
 838			continue;
 839
 840		shift = mmu_psize_to_shift(psize);
 841
 842		/* Don't treat normal page sizes as huge... */
 843		if (shift != PAGE_SHIFT)
 844			if (add_huge_page_size(1ULL << shift) < 0)
 845				continue;
 846	}
 847
 848	/*
 849	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
 850	 * size information encoded in them, so align them to allow this
 851	 */
 852	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
 853					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
 854	if (hugepte_cache == NULL)
 855		panic("%s: Unable to create kmem cache for hugeptes\n",
 856		      __func__);
 857
 858	/* Default hpage size = 4M */
 859	if (mmu_psize_defs[MMU_PAGE_4M].shift)
 860		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
 861	else
 862		panic("%s: Unable to set default huge page size\n", __func__);
 863
 864
 865	return 0;
 866}
 867#else
 868static int __init hugetlbpage_init(void)
 869{
 870	int psize;
 871
 872	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
 873		return -ENODEV;
 874
 875	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 876		unsigned shift;
 877		unsigned pdshift;
 878
 879		if (!mmu_psize_defs[psize].shift)
 880			continue;
 881
 882		shift = mmu_psize_to_shift(psize);
 883
 884		if (add_huge_page_size(1ULL << shift) < 0)
 
 885			continue;
 886
 887		if (shift < PMD_SHIFT)
 
 
 
 
 
 
 888			pdshift = PMD_SHIFT;
 889		else if (shift < PUD_SHIFT)
 890			pdshift = PUD_SHIFT;
 891		else
 892			pdshift = PGDIR_SHIFT;
 
 
 
 
 893		/*
 894		 * if we have pdshift and shift value same, we don't
 895		 * use pgt cache for hugepd.
 896		 */
 897		if (pdshift != shift) {
 898			pgtable_cache_add(pdshift - shift, NULL);
 899			if (!PGT_CACHE(pdshift - shift))
 900				panic("hugetlbpage_init(): could not create "
 901				      "pgtable cache for %d bit pagesize\n", shift);
 902		}
 
 
 903	}
 904
 905	/* Set default large page size. Currently, we pick 16M or 1M
 906	 * depending on what is available
 907	 */
 908	if (mmu_psize_defs[MMU_PAGE_16M].shift)
 909		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
 910	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 911		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
 912
 913	return 0;
 914}
 915#endif
 916module_init(hugetlbpage_init);
 917
 918void flush_dcache_icache_hugepage(struct page *page)
 919{
 920	int i;
 921	void *start;
 922
 923	BUG_ON(!PageCompound(page));
 924
 925	for (i = 0; i < (1UL << compound_order(page)); i++) {
 926		if (!PageHighMem(page)) {
 927			__flush_dcache_icache(page_address(page+i));
 928		} else {
 929			start = kmap_atomic(page+i);
 930			__flush_dcache_icache(start);
 931			kunmap_atomic(start);
 932		}
 933	}
 934}
 935
 936#endif /* CONFIG_HUGETLB_PAGE */
 937
 938/*
 939 * We have 4 cases for pgds and pmds:
 940 * (1) invalid (all zeroes)
 941 * (2) pointer to next table, as normal; bottom 6 bits == 0
 942 * (3) leaf pte for huge page, bottom two bits != 00
 943 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
 944 *
 945 * So long as we atomically load page table pointers we are safe against teardown,
 946 * we can follow the address down to the the page and take a ref on it.
 947 */
 948
 949pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
 950{
 951	pgd_t pgd, *pgdp;
 952	pud_t pud, *pudp;
 953	pmd_t pmd, *pmdp;
 954	pte_t *ret_pte;
 955	hugepd_t *hpdp = NULL;
 956	unsigned pdshift = PGDIR_SHIFT;
 957
 958	if (shift)
 959		*shift = 0;
 960
 961	pgdp = pgdir + pgd_index(ea);
 962	pgd  = ACCESS_ONCE(*pgdp);
 963	/*
 964	 * Always operate on the local stack value. This make sure the
 965	 * value don't get updated by a parallel THP split/collapse,
 966	 * page fault or a page unmap. The return pte_t * is still not
 967	 * stable. So should be checked there for above conditions.
 968	 */
 969	if (pgd_none(pgd))
 970		return NULL;
 971	else if (pgd_huge(pgd)) {
 972		ret_pte = (pte_t *) pgdp;
 973		goto out;
 974	} else if (is_hugepd(&pgd))
 975		hpdp = (hugepd_t *)&pgd;
 976	else {
 977		/*
 978		 * Even if we end up with an unmap, the pgtable will not
 979		 * be freed, because we do an rcu free and here we are
 980		 * irq disabled
 981		 */
 982		pdshift = PUD_SHIFT;
 983		pudp = pud_offset(&pgd, ea);
 984		pud  = ACCESS_ONCE(*pudp);
 985
 986		if (pud_none(pud))
 987			return NULL;
 988		else if (pud_huge(pud)) {
 989			ret_pte = (pte_t *) pudp;
 990			goto out;
 991		} else if (is_hugepd(&pud))
 992			hpdp = (hugepd_t *)&pud;
 993		else {
 994			pdshift = PMD_SHIFT;
 995			pmdp = pmd_offset(&pud, ea);
 996			pmd  = ACCESS_ONCE(*pmdp);
 997			/*
 998			 * A hugepage collapse is captured by pmd_none, because
 999			 * it mark the pmd none and do a hpte invalidate.
1000			 *
1001			 * A hugepage split is captured by pmd_trans_splitting
1002			 * because we mark the pmd trans splitting and do a
1003			 * hpte invalidate
1004			 *
1005			 */
1006			if (pmd_none(pmd) || pmd_trans_splitting(pmd))
1007				return NULL;
1008
1009			if (pmd_huge(pmd) || pmd_large(pmd)) {
1010				ret_pte = (pte_t *) pmdp;
1011				goto out;
1012			} else if (is_hugepd(&pmd))
1013				hpdp = (hugepd_t *)&pmd;
1014			else
1015				return pte_offset_kernel(&pmd, ea);
1016		}
1017	}
1018	if (!hpdp)
1019		return NULL;
1020
1021	ret_pte = hugepte_offset(hpdp, ea, pdshift);
1022	pdshift = hugepd_shift(*hpdp);
1023out:
1024	if (shift)
1025		*shift = pdshift;
1026	return ret_pte;
1027}
1028EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
1029
1030int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1031		unsigned long end, int write, struct page **pages, int *nr)
1032{
1033	unsigned long mask;
1034	unsigned long pte_end;
1035	struct page *head, *page, *tail;
1036	pte_t pte;
1037	int refs;
1038
1039	pte_end = (addr + sz) & ~(sz-1);
1040	if (pte_end < end)
1041		end = pte_end;
1042
1043	pte = ACCESS_ONCE(*ptep);
1044	mask = _PAGE_PRESENT | _PAGE_USER;
1045	if (write)
1046		mask |= _PAGE_RW;
1047
1048	if ((pte_val(pte) & mask) != mask)
1049		return 0;
1050
1051#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1052	/*
1053	 * check for splitting here
1054	 */
1055	if (pmd_trans_splitting(pte_pmd(pte)))
1056		return 0;
1057#endif
1058
1059	/* hugepages are never "special" */
1060	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1061
1062	refs = 0;
1063	head = pte_page(pte);
1064
1065	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1066	tail = page;
1067	do {
1068		VM_BUG_ON(compound_head(page) != head);
1069		pages[*nr] = page;
1070		(*nr)++;
1071		page++;
1072		refs++;
1073	} while (addr += PAGE_SIZE, addr != end);
1074
1075	if (!page_cache_add_speculative(head, refs)) {
1076		*nr -= refs;
1077		return 0;
1078	}
1079
1080	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1081		/* Could be optimized better */
1082		*nr -= refs;
1083		while (refs--)
1084			put_page(head);
1085		return 0;
1086	}
1087
1088	/*
1089	 * Any tail page need their mapcount reference taken before we
1090	 * return.
1091	 */
1092	while (refs--) {
1093		if (PageTail(tail))
1094			get_huge_page_tail(tail);
1095		tail++;
1096	}
1097
1098	return 1;
1099}