Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * PPC Huge TLB Page Support for Kernel.
  3 *
  4 * Copyright (C) 2003 David Gibson, IBM Corporation.
  5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
  6 *
  7 * Based on the IA-32 version:
  8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  9 */
 10
 11#include <linux/mm.h>
 12#include <linux/io.h>
 13#include <linux/slab.h>
 14#include <linux/hugetlb.h>
 15#include <linux/export.h>
 16#include <linux/of_fdt.h>
 17#include <linux/memblock.h>
 
 18#include <linux/moduleparam.h>
 19#include <linux/swap.h>
 20#include <linux/swapops.h>
 21#include <linux/kmemleak.h>
 22#include <asm/pgtable.h>
 23#include <asm/pgalloc.h>
 24#include <asm/tlb.h>
 25#include <asm/setup.h>
 26#include <asm/hugetlb.h>
 27#include <asm/pte-walk.h>
 28
 29bool hugetlb_disabled = false;
 30
 31#define hugepd_none(hpd)	(hpd_val(hpd) == 0)
 
 
 
 
 
 
 32
 33#define PTE_T_ORDER	(__builtin_ffs(sizeof(pte_t)) - __builtin_ffs(sizeof(void *)))
 
 
 
 34
 35pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 36{
 37	/*
 38	 * Only called for hugetlbfs pages, hence can ignore THP and the
 39	 * irq disabled walk.
 40	 */
 41	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
 42}
 43
 44static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
 45			   unsigned long address, unsigned int pdshift,
 46			   unsigned int pshift, spinlock_t *ptl)
 47{
 48	struct kmem_cache *cachep;
 49	pte_t *new;
 50	int i;
 51	int num_hugepd;
 52
 53	if (pshift >= pdshift) {
 54		cachep = PGT_CACHE(PTE_T_ORDER);
 55		num_hugepd = 1 << (pshift - pdshift);
 56	} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
 57		cachep = PGT_CACHE(PTE_INDEX_SIZE);
 58		num_hugepd = 1;
 59	} else {
 60		cachep = PGT_CACHE(pdshift - pshift);
 61		num_hugepd = 1;
 62	}
 63
 64	if (!cachep) {
 65		WARN_ONCE(1, "No page table cache created for hugetlb tables");
 66		return -ENOMEM;
 67	}
 68
 69	new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
 70
 71	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
 72	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
 73
 74	if (!new)
 75		return -ENOMEM;
 76
 77	/*
 78	 * Make sure other cpus find the hugepd set only after a
 79	 * properly initialized page table is visible to them.
 80	 * For more details look for comment in __pte_alloc().
 81	 */
 82	smp_wmb();
 83
 84	spin_lock(ptl);
 
 85	/*
 86	 * We have multiple higher-level entries that point to the same
 87	 * actual pte location.  Fill in each as we go and backtrack on error.
 88	 * We need all of these so the DTLB pgtable walk code can find the
 89	 * right higher-level entry without knowing if it's a hugepage or not.
 90	 */
 91	for (i = 0; i < num_hugepd; i++, hpdp++) {
 92		if (unlikely(!hugepd_none(*hpdp)))
 93			break;
 94		hugepd_populate(hpdp, new, pshift);
 
 
 
 
 
 
 
 
 
 
 
 
 95	}
 96	/* If we bailed from the for loop early, an error occurred, clean up */
 97	if (i < num_hugepd) {
 98		for (i = i - 1 ; i >= 0; i--, hpdp--)
 99			*hpdp = __hugepd(0);
100		kmem_cache_free(cachep, new);
101	} else {
102		kmemleak_ignore(new);
103	}
104	spin_unlock(ptl);
105	return 0;
106}
107
108/*
 
 
 
 
 
 
 
 
 
109 * At this point we do the placement change only for BOOK3S 64. This would
110 * possibly work on other subarchs.
111 */
112pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
113{
114	pgd_t *pg;
115	pud_t *pu;
116	pmd_t *pm;
117	hugepd_t *hpdp = NULL;
118	unsigned pshift = __ffs(sz);
119	unsigned pdshift = PGDIR_SHIFT;
120	spinlock_t *ptl;
121
122	addr &= ~(sz-1);
123	pg = pgd_offset(mm, addr);
124
125#ifdef CONFIG_PPC_BOOK3S_64
126	if (pshift == PGDIR_SHIFT)
127		/* 16GB huge page */
128		return (pte_t *) pg;
129	else if (pshift > PUD_SHIFT) {
130		/*
131		 * We need to use hugepd table
132		 */
133		ptl = &mm->page_table_lock;
134		hpdp = (hugepd_t *)pg;
135	} else {
136		pdshift = PUD_SHIFT;
137		pu = pud_alloc(mm, pg, addr);
138		if (!pu)
139			return NULL;
140		if (pshift == PUD_SHIFT)
141			return (pte_t *)pu;
142		else if (pshift > PMD_SHIFT) {
143			ptl = pud_lockptr(mm, pu);
144			hpdp = (hugepd_t *)pu;
145		} else {
146			pdshift = PMD_SHIFT;
147			pm = pmd_alloc(mm, pu, addr);
148			if (!pm)
149				return NULL;
150			if (pshift == PMD_SHIFT)
151				/* 16MB hugepage */
152				return (pte_t *)pm;
153			else {
154				ptl = pmd_lockptr(mm, pm);
155				hpdp = (hugepd_t *)pm;
156			}
157		}
158	}
159#else
160	if (pshift >= PGDIR_SHIFT) {
161		ptl = &mm->page_table_lock;
162		hpdp = (hugepd_t *)pg;
163	} else {
164		pdshift = PUD_SHIFT;
165		pu = pud_alloc(mm, pg, addr);
166		if (!pu)
167			return NULL;
168		if (pshift >= PUD_SHIFT) {
169			ptl = pud_lockptr(mm, pu);
170			hpdp = (hugepd_t *)pu;
171		} else {
172			pdshift = PMD_SHIFT;
173			pm = pmd_alloc(mm, pu, addr);
174			if (!pm)
175				return NULL;
176			ptl = pmd_lockptr(mm, pm);
177			hpdp = (hugepd_t *)pm;
178		}
179	}
180#endif
181	if (!hpdp)
182		return NULL;
183
184	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
185
186	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
187						  pdshift, pshift, ptl))
188		return NULL;
189
190	return hugepte_offset(*hpdp, addr, pdshift);
191}
192
193#ifdef CONFIG_PPC_BOOK3S_64
194/*
195 * Tracks gpages after the device tree is scanned and before the
196 * huge_boot_pages list is ready on pseries.
197 */
198#define MAX_NUMBER_GPAGES	1024
199__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
200__initdata static unsigned nr_gpages;
201
202/*
203 * Build list of addresses of gigantic pages.  This function is used in early
204 * boot before the buddy allocator is setup.
205 */
206void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
207{
208	if (!addr)
209		return;
210	while (number_of_pages > 0) {
211		gpage_freearray[nr_gpages] = addr;
212		nr_gpages++;
213		number_of_pages--;
214		addr += page_size;
215	}
216}
217
218int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
219{
220	struct huge_bootmem_page *m;
221	if (nr_gpages == 0)
222		return 0;
223	m = phys_to_virt(gpage_freearray[--nr_gpages]);
224	gpage_freearray[nr_gpages] = 0;
225	list_add(&m->list, &huge_boot_pages);
226	m->hstate = hstate;
227	return 1;
228}
229#endif
230
231
232int __init alloc_bootmem_huge_page(struct hstate *h)
233{
234
235#ifdef CONFIG_PPC_BOOK3S_64
236	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
237		return pseries_alloc_bootmem_huge_page(h);
238#endif
239	return __alloc_bootmem_huge_page(h);
240}
241
242#ifndef CONFIG_PPC_BOOK3S_64
243#define HUGEPD_FREELIST_SIZE \
244	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
245
246struct hugepd_freelist {
247	struct rcu_head	rcu;
248	unsigned int index;
249	void *ptes[0];
250};
251
252static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
253
254static void hugepd_free_rcu_callback(struct rcu_head *head)
255{
256	struct hugepd_freelist *batch =
257		container_of(head, struct hugepd_freelist, rcu);
258	unsigned int i;
259
260	for (i = 0; i < batch->index; i++)
261		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
262
263	free_page((unsigned long)batch);
264}
265
266static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
267{
268	struct hugepd_freelist **batchp;
269
270	batchp = &get_cpu_var(hugepd_freelist_cur);
271
272	if (atomic_read(&tlb->mm->mm_users) < 2 ||
273	    mm_is_thread_local(tlb->mm)) {
274		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
275		put_cpu_var(hugepd_freelist_cur);
276		return;
277	}
278
279	if (*batchp == NULL) {
280		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
281		(*batchp)->index = 0;
282	}
283
284	(*batchp)->ptes[(*batchp)->index++] = hugepte;
285	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
286		call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
287		*batchp = NULL;
288	}
289	put_cpu_var(hugepd_freelist_cur);
290}
291#else
292static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
293#endif
294
295static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
296			      unsigned long start, unsigned long end,
297			      unsigned long floor, unsigned long ceiling)
298{
299	pte_t *hugepte = hugepd_page(*hpdp);
300	int i;
301
302	unsigned long pdmask = ~((1UL << pdshift) - 1);
303	unsigned int num_hugepd = 1;
304	unsigned int shift = hugepd_shift(*hpdp);
305
306	/* Note: On fsl the hpdp may be the first of several */
307	if (shift > pdshift)
308		num_hugepd = 1 << (shift - pdshift);
309
310	start &= pdmask;
311	if (start < floor)
312		return;
313	if (ceiling) {
314		ceiling &= pdmask;
315		if (! ceiling)
316			return;
317	}
318	if (end - 1 > ceiling - 1)
319		return;
320
321	for (i = 0; i < num_hugepd; i++, hpdp++)
322		*hpdp = __hugepd(0);
323
324	if (shift >= pdshift)
325		hugepd_free(tlb, hugepte);
326	else if (IS_ENABLED(CONFIG_PPC_8xx))
327		pgtable_free_tlb(tlb, hugepte,
328				 get_hugepd_cache_index(PTE_INDEX_SIZE));
329	else
330		pgtable_free_tlb(tlb, hugepte,
331				 get_hugepd_cache_index(pdshift - shift));
332}
333
334static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
335				   unsigned long addr, unsigned long end,
336				   unsigned long floor, unsigned long ceiling)
337{
338	pmd_t *pmd;
339	unsigned long next;
340	unsigned long start;
341
342	start = addr;
343	do {
344		unsigned long more;
345
346		pmd = pmd_offset(pud, addr);
347		next = pmd_addr_end(addr, end);
348		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
349			/*
350			 * if it is not hugepd pointer, we should already find
351			 * it cleared.
352			 */
353			WARN_ON(!pmd_none_or_clear_bad(pmd));
354			continue;
355		}
356		/*
357		 * Increment next by the size of the huge mapping since
358		 * there may be more than one entry at this level for a
359		 * single hugepage, but all of them point to
360		 * the same kmem cache that holds the hugepte.
361		 */
362		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
363		if (more > next)
364			next = more;
365
366		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
367				  addr, next, floor, ceiling);
368	} while (addr = next, addr != end);
369
370	start &= PUD_MASK;
371	if (start < floor)
372		return;
373	if (ceiling) {
374		ceiling &= PUD_MASK;
375		if (!ceiling)
376			return;
377	}
378	if (end - 1 > ceiling - 1)
379		return;
380
381	pmd = pmd_offset(pud, start);
382	pud_clear(pud);
383	pmd_free_tlb(tlb, pmd, start);
384	mm_dec_nr_pmds(tlb->mm);
385}
386
387static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
388				   unsigned long addr, unsigned long end,
389				   unsigned long floor, unsigned long ceiling)
390{
391	pud_t *pud;
392	unsigned long next;
393	unsigned long start;
394
395	start = addr;
396	do {
397		pud = pud_offset(pgd, addr);
398		next = pud_addr_end(addr, end);
399		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
400			if (pud_none_or_clear_bad(pud))
401				continue;
402			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
403					       ceiling);
404		} else {
405			unsigned long more;
406			/*
407			 * Increment next by the size of the huge mapping since
408			 * there may be more than one entry at this level for a
409			 * single hugepage, but all of them point to
410			 * the same kmem cache that holds the hugepte.
411			 */
412			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
413			if (more > next)
414				next = more;
415
416			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
417					  addr, next, floor, ceiling);
418		}
419	} while (addr = next, addr != end);
420
421	start &= PGDIR_MASK;
422	if (start < floor)
423		return;
424	if (ceiling) {
425		ceiling &= PGDIR_MASK;
426		if (!ceiling)
427			return;
428	}
429	if (end - 1 > ceiling - 1)
430		return;
431
432	pud = pud_offset(pgd, start);
433	pgd_clear(pgd);
434	pud_free_tlb(tlb, pud, start);
435	mm_dec_nr_puds(tlb->mm);
436}
437
438/*
439 * This function frees user-level page tables of a process.
440 */
441void hugetlb_free_pgd_range(struct mmu_gather *tlb,
442			    unsigned long addr, unsigned long end,
443			    unsigned long floor, unsigned long ceiling)
444{
445	pgd_t *pgd;
446	unsigned long next;
447
448	/*
449	 * Because there are a number of different possible pagetable
450	 * layouts for hugepage ranges, we limit knowledge of how
451	 * things should be laid out to the allocation path
452	 * (huge_pte_alloc(), above).  Everything else works out the
453	 * structure as it goes from information in the hugepd
454	 * pointers.  That means that we can't here use the
455	 * optimization used in the normal page free_pgd_range(), of
456	 * checking whether we're actually covering a large enough
457	 * range to have to do anything at the top level of the walk
458	 * instead of at the bottom.
459	 *
460	 * To make sense of this, you should probably go read the big
461	 * block comment at the top of the normal free_pgd_range(),
462	 * too.
463	 */
464
465	do {
466		next = pgd_addr_end(addr, end);
467		pgd = pgd_offset(tlb->mm, addr);
468		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
469			if (pgd_none_or_clear_bad(pgd))
470				continue;
471			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
472		} else {
473			unsigned long more;
474			/*
475			 * Increment next by the size of the huge mapping since
476			 * there may be more than one entry at the pgd level
477			 * for a single hugepage, but all of them point to the
478			 * same kmem cache that holds the hugepte.
479			 */
480			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
481			if (more > next)
482				next = more;
483
484			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
485					  addr, next, floor, ceiling);
486		}
487	} while (addr = next, addr != end);
488}
489
490struct page *follow_huge_pd(struct vm_area_struct *vma,
491			    unsigned long address, hugepd_t hpd,
492			    int flags, int pdshift)
493{
494	pte_t *ptep;
495	spinlock_t *ptl;
496	struct page *page = NULL;
497	unsigned long mask;
498	int shift = hugepd_shift(hpd);
499	struct mm_struct *mm = vma->vm_mm;
500
501retry:
502	/*
503	 * hugepage directory entries are protected by mm->page_table_lock
504	 * Use this instead of huge_pte_lockptr
505	 */
506	ptl = &mm->page_table_lock;
507	spin_lock(ptl);
508
509	ptep = hugepte_offset(hpd, address, pdshift);
510	if (pte_present(*ptep)) {
511		mask = (1UL << shift) - 1;
512		page = pte_page(*ptep);
513		page += ((address & mask) >> PAGE_SHIFT);
514		if (flags & FOLL_GET)
515			get_page(page);
516	} else {
517		if (is_hugetlb_entry_migration(*ptep)) {
518			spin_unlock(ptl);
519			__migration_entry_wait(mm, ptep, ptl);
520			goto retry;
521		}
522	}
523	spin_unlock(ptl);
524	return page;
525}
526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527#ifdef CONFIG_PPC_MM_SLICES
528unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
529					unsigned long len, unsigned long pgoff,
530					unsigned long flags)
531{
532	struct hstate *hstate = hstate_file(file);
533	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
534
535#ifdef CONFIG_PPC_RADIX_MMU
536	if (radix_enabled())
537		return radix__hugetlb_get_unmapped_area(file, addr, len,
538						       pgoff, flags);
539#endif
540	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
541}
542#endif
543
544unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
545{
 
546	/* With radix we don't use slice, so derive it from vma*/
547	if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
548		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
549
550		return 1UL << mmu_psize_to_shift(psize);
551	}
 
552	return vma_kernel_pagesize(vma);
553}
554
 
 
 
 
 
 
 
555static int __init add_huge_page_size(unsigned long long size)
556{
557	int shift = __ffs(size);
558	int mmu_psize;
559
560	/* Check that it is a page size supported by the hardware and
561	 * that it fits within pagetable and slice limits. */
562	if (size <= PAGE_SIZE || !is_power_of_2(size))
 
 
 
 
 
 
563		return -EINVAL;
 
564
565	mmu_psize = check_and_get_huge_psize(shift);
566	if (mmu_psize < 0)
567		return -EINVAL;
568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
570
571	/* Return if huge page size has already been setup */
572	if (size_to_hstate(size))
573		return 0;
574
575	hugetlb_add_hstate(shift - PAGE_SHIFT);
576
577	return 0;
578}
579
580static int __init hugepage_setup_sz(char *str)
581{
582	unsigned long long size;
583
584	size = memparse(str, &str);
585
586	if (add_huge_page_size(size) != 0) {
587		hugetlb_bad_size();
588		pr_err("Invalid huge page size specified(%llu)\n", size);
589	}
590
591	return 1;
592}
593__setup("hugepagesz=", hugepage_setup_sz);
594
 
595static int __init hugetlbpage_init(void)
596{
597	bool configured = false;
598	int psize;
599
600	if (hugetlb_disabled) {
601		pr_info("HugeTLB support is disabled!\n");
602		return 0;
603	}
604
605	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
606	    !mmu_has_feature(MMU_FTR_16M_PAGE))
607		return -ENODEV;
608
609	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
610		unsigned shift;
611		unsigned pdshift;
612
613		if (!mmu_psize_defs[psize].shift)
614			continue;
615
616		shift = mmu_psize_to_shift(psize);
617
618#ifdef CONFIG_PPC_BOOK3S_64
619		if (shift > PGDIR_SHIFT)
620			continue;
621		else if (shift > PUD_SHIFT)
622			pdshift = PGDIR_SHIFT;
623		else if (shift > PMD_SHIFT)
624			pdshift = PUD_SHIFT;
625		else
626			pdshift = PMD_SHIFT;
627#else
628		if (shift < PUD_SHIFT)
629			pdshift = PMD_SHIFT;
630		else if (shift < PGDIR_SHIFT)
631			pdshift = PUD_SHIFT;
632		else
633			pdshift = PGDIR_SHIFT;
634#endif
635
636		if (add_huge_page_size(1ULL << shift) < 0)
637			continue;
638		/*
639		 * if we have pdshift and shift value same, we don't
640		 * use pgt cache for hugepd.
641		 */
642		if (pdshift > shift && IS_ENABLED(CONFIG_PPC_8xx))
643			pgtable_cache_add(PTE_INDEX_SIZE);
644		else if (pdshift > shift)
645			pgtable_cache_add(pdshift - shift);
646		else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) || IS_ENABLED(CONFIG_PPC_8xx))
647			pgtable_cache_add(PTE_T_ORDER);
648
649		configured = true;
650	}
 
 
 
 
 
 
 
651
652	if (configured) {
653		if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
654			hugetlbpage_init_default();
655	} else
656		pr_info("Failed to initialize. Disabling HugeTLB");
657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
658	return 0;
659}
660
661arch_initcall(hugetlbpage_init);
662
663void flush_dcache_icache_hugepage(struct page *page)
664{
665	int i;
666	void *start;
667
668	BUG_ON(!PageCompound(page));
669
670	for (i = 0; i < compound_nr(page); i++) {
671		if (!PageHighMem(page)) {
672			__flush_dcache_icache(page_address(page+i));
673		} else {
674			start = kmap_atomic(page+i);
675			__flush_dcache_icache(start);
676			kunmap_atomic(start);
677		}
678	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
679}
v4.17
  1/*
  2 * PPC Huge TLB Page Support for Kernel.
  3 *
  4 * Copyright (C) 2003 David Gibson, IBM Corporation.
  5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
  6 *
  7 * Based on the IA-32 version:
  8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  9 */
 10
 11#include <linux/mm.h>
 12#include <linux/io.h>
 13#include <linux/slab.h>
 14#include <linux/hugetlb.h>
 15#include <linux/export.h>
 16#include <linux/of_fdt.h>
 17#include <linux/memblock.h>
 18#include <linux/bootmem.h>
 19#include <linux/moduleparam.h>
 20#include <linux/swap.h>
 21#include <linux/swapops.h>
 
 22#include <asm/pgtable.h>
 23#include <asm/pgalloc.h>
 24#include <asm/tlb.h>
 25#include <asm/setup.h>
 26#include <asm/hugetlb.h>
 27#include <asm/pte-walk.h>
 28
 
 29
 30#ifdef CONFIG_HUGETLB_PAGE
 31
 32#define PAGE_SHIFT_64K	16
 33#define PAGE_SHIFT_512K	19
 34#define PAGE_SHIFT_8M	23
 35#define PAGE_SHIFT_16M	24
 36#define PAGE_SHIFT_16G	34
 37
 38unsigned int HPAGE_SHIFT;
 39EXPORT_SYMBOL(HPAGE_SHIFT);
 40
 41#define hugepd_none(hpd)	(hpd_val(hpd) == 0)
 42
 43pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 44{
 45	/*
 46	 * Only called for hugetlbfs pages, hence can ignore THP and the
 47	 * irq disabled walk.
 48	 */
 49	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
 50}
 51
 52static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
 53			   unsigned long address, unsigned pdshift, unsigned pshift)
 
 54{
 55	struct kmem_cache *cachep;
 56	pte_t *new;
 57	int i;
 58	int num_hugepd;
 59
 60	if (pshift >= pdshift) {
 61		cachep = hugepte_cache;
 62		num_hugepd = 1 << (pshift - pdshift);
 
 
 
 63	} else {
 64		cachep = PGT_CACHE(pdshift - pshift);
 65		num_hugepd = 1;
 66	}
 67
 68	new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
 
 
 
 
 
 69
 70	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
 71	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
 72
 73	if (! new)
 74		return -ENOMEM;
 75
 76	/*
 77	 * Make sure other cpus find the hugepd set only after a
 78	 * properly initialized page table is visible to them.
 79	 * For more details look for comment in __pte_alloc().
 80	 */
 81	smp_wmb();
 82
 83	spin_lock(&mm->page_table_lock);
 84
 85	/*
 86	 * We have multiple higher-level entries that point to the same
 87	 * actual pte location.  Fill in each as we go and backtrack on error.
 88	 * We need all of these so the DTLB pgtable walk code can find the
 89	 * right higher-level entry without knowing if it's a hugepage or not.
 90	 */
 91	for (i = 0; i < num_hugepd; i++, hpdp++) {
 92		if (unlikely(!hugepd_none(*hpdp)))
 93			break;
 94		else {
 95#ifdef CONFIG_PPC_BOOK3S_64
 96			*hpdp = __hugepd(__pa(new) |
 97					 (shift_to_mmu_psize(pshift) << 2));
 98#elif defined(CONFIG_PPC_8xx)
 99			*hpdp = __hugepd(__pa(new) | _PMD_USER |
100					 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
101					  _PMD_PAGE_512K) | _PMD_PRESENT);
102#else
103			/* We use the old format for PPC_FSL_BOOK3E */
104			*hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
105#endif
106		}
107	}
108	/* If we bailed from the for loop early, an error occurred, clean up */
109	if (i < num_hugepd) {
110		for (i = i - 1 ; i >= 0; i--, hpdp--)
111			*hpdp = __hugepd(0);
112		kmem_cache_free(cachep, new);
 
 
113	}
114	spin_unlock(&mm->page_table_lock);
115	return 0;
116}
117
118/*
119 * These macros define how to determine which level of the page table holds
120 * the hpdp.
121 */
122#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
123#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
124#define HUGEPD_PUD_SHIFT PUD_SHIFT
125#endif
126
127/*
128 * At this point we do the placement change only for BOOK3S 64. This would
129 * possibly work on other subarchs.
130 */
131pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
132{
133	pgd_t *pg;
134	pud_t *pu;
135	pmd_t *pm;
136	hugepd_t *hpdp = NULL;
137	unsigned pshift = __ffs(sz);
138	unsigned pdshift = PGDIR_SHIFT;
 
139
140	addr &= ~(sz-1);
141	pg = pgd_offset(mm, addr);
142
143#ifdef CONFIG_PPC_BOOK3S_64
144	if (pshift == PGDIR_SHIFT)
145		/* 16GB huge page */
146		return (pte_t *) pg;
147	else if (pshift > PUD_SHIFT)
148		/*
149		 * We need to use hugepd table
150		 */
 
151		hpdp = (hugepd_t *)pg;
152	else {
153		pdshift = PUD_SHIFT;
154		pu = pud_alloc(mm, pg, addr);
 
 
155		if (pshift == PUD_SHIFT)
156			return (pte_t *)pu;
157		else if (pshift > PMD_SHIFT)
 
158			hpdp = (hugepd_t *)pu;
159		else {
160			pdshift = PMD_SHIFT;
161			pm = pmd_alloc(mm, pu, addr);
 
 
162			if (pshift == PMD_SHIFT)
163				/* 16MB hugepage */
164				return (pte_t *)pm;
165			else
 
166				hpdp = (hugepd_t *)pm;
 
167		}
168	}
169#else
170	if (pshift >= HUGEPD_PGD_SHIFT) {
 
171		hpdp = (hugepd_t *)pg;
172	} else {
173		pdshift = PUD_SHIFT;
174		pu = pud_alloc(mm, pg, addr);
175		if (pshift >= HUGEPD_PUD_SHIFT) {
 
 
 
176			hpdp = (hugepd_t *)pu;
177		} else {
178			pdshift = PMD_SHIFT;
179			pm = pmd_alloc(mm, pu, addr);
 
 
 
180			hpdp = (hugepd_t *)pm;
181		}
182	}
183#endif
184	if (!hpdp)
185		return NULL;
186
187	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
188
189	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
 
190		return NULL;
191
192	return hugepte_offset(*hpdp, addr, pdshift);
193}
194
195#ifdef CONFIG_PPC_BOOK3S_64
196/*
197 * Tracks gpages after the device tree is scanned and before the
198 * huge_boot_pages list is ready on pseries.
199 */
200#define MAX_NUMBER_GPAGES	1024
201__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
202__initdata static unsigned nr_gpages;
203
204/*
205 * Build list of addresses of gigantic pages.  This function is used in early
206 * boot before the buddy allocator is setup.
207 */
208void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
209{
210	if (!addr)
211		return;
212	while (number_of_pages > 0) {
213		gpage_freearray[nr_gpages] = addr;
214		nr_gpages++;
215		number_of_pages--;
216		addr += page_size;
217	}
218}
219
220int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
221{
222	struct huge_bootmem_page *m;
223	if (nr_gpages == 0)
224		return 0;
225	m = phys_to_virt(gpage_freearray[--nr_gpages]);
226	gpage_freearray[nr_gpages] = 0;
227	list_add(&m->list, &huge_boot_pages);
228	m->hstate = hstate;
229	return 1;
230}
231#endif
232
233
234int __init alloc_bootmem_huge_page(struct hstate *h)
235{
236
237#ifdef CONFIG_PPC_BOOK3S_64
238	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
239		return pseries_alloc_bootmem_huge_page(h);
240#endif
241	return __alloc_bootmem_huge_page(h);
242}
243
244#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
245#define HUGEPD_FREELIST_SIZE \
246	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
247
248struct hugepd_freelist {
249	struct rcu_head	rcu;
250	unsigned int index;
251	void *ptes[0];
252};
253
254static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
255
256static void hugepd_free_rcu_callback(struct rcu_head *head)
257{
258	struct hugepd_freelist *batch =
259		container_of(head, struct hugepd_freelist, rcu);
260	unsigned int i;
261
262	for (i = 0; i < batch->index; i++)
263		kmem_cache_free(hugepte_cache, batch->ptes[i]);
264
265	free_page((unsigned long)batch);
266}
267
268static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
269{
270	struct hugepd_freelist **batchp;
271
272	batchp = &get_cpu_var(hugepd_freelist_cur);
273
274	if (atomic_read(&tlb->mm->mm_users) < 2 ||
275	    mm_is_thread_local(tlb->mm)) {
276		kmem_cache_free(hugepte_cache, hugepte);
277		put_cpu_var(hugepd_freelist_cur);
278		return;
279	}
280
281	if (*batchp == NULL) {
282		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
283		(*batchp)->index = 0;
284	}
285
286	(*batchp)->ptes[(*batchp)->index++] = hugepte;
287	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
288		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
289		*batchp = NULL;
290	}
291	put_cpu_var(hugepd_freelist_cur);
292}
293#else
294static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
295#endif
296
297static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
298			      unsigned long start, unsigned long end,
299			      unsigned long floor, unsigned long ceiling)
300{
301	pte_t *hugepte = hugepd_page(*hpdp);
302	int i;
303
304	unsigned long pdmask = ~((1UL << pdshift) - 1);
305	unsigned int num_hugepd = 1;
306	unsigned int shift = hugepd_shift(*hpdp);
307
308	/* Note: On fsl the hpdp may be the first of several */
309	if (shift > pdshift)
310		num_hugepd = 1 << (shift - pdshift);
311
312	start &= pdmask;
313	if (start < floor)
314		return;
315	if (ceiling) {
316		ceiling &= pdmask;
317		if (! ceiling)
318			return;
319	}
320	if (end - 1 > ceiling - 1)
321		return;
322
323	for (i = 0; i < num_hugepd; i++, hpdp++)
324		*hpdp = __hugepd(0);
325
326	if (shift >= pdshift)
327		hugepd_free(tlb, hugepte);
 
 
 
328	else
329		pgtable_free_tlb(tlb, hugepte, pdshift - shift);
 
330}
331
332static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
333				   unsigned long addr, unsigned long end,
334				   unsigned long floor, unsigned long ceiling)
335{
336	pmd_t *pmd;
337	unsigned long next;
338	unsigned long start;
339
340	start = addr;
341	do {
342		unsigned long more;
343
344		pmd = pmd_offset(pud, addr);
345		next = pmd_addr_end(addr, end);
346		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
347			/*
348			 * if it is not hugepd pointer, we should already find
349			 * it cleared.
350			 */
351			WARN_ON(!pmd_none_or_clear_bad(pmd));
352			continue;
353		}
354		/*
355		 * Increment next by the size of the huge mapping since
356		 * there may be more than one entry at this level for a
357		 * single hugepage, but all of them point to
358		 * the same kmem cache that holds the hugepte.
359		 */
360		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
361		if (more > next)
362			next = more;
363
364		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
365				  addr, next, floor, ceiling);
366	} while (addr = next, addr != end);
367
368	start &= PUD_MASK;
369	if (start < floor)
370		return;
371	if (ceiling) {
372		ceiling &= PUD_MASK;
373		if (!ceiling)
374			return;
375	}
376	if (end - 1 > ceiling - 1)
377		return;
378
379	pmd = pmd_offset(pud, start);
380	pud_clear(pud);
381	pmd_free_tlb(tlb, pmd, start);
382	mm_dec_nr_pmds(tlb->mm);
383}
384
385static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
386				   unsigned long addr, unsigned long end,
387				   unsigned long floor, unsigned long ceiling)
388{
389	pud_t *pud;
390	unsigned long next;
391	unsigned long start;
392
393	start = addr;
394	do {
395		pud = pud_offset(pgd, addr);
396		next = pud_addr_end(addr, end);
397		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
398			if (pud_none_or_clear_bad(pud))
399				continue;
400			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
401					       ceiling);
402		} else {
403			unsigned long more;
404			/*
405			 * Increment next by the size of the huge mapping since
406			 * there may be more than one entry at this level for a
407			 * single hugepage, but all of them point to
408			 * the same kmem cache that holds the hugepte.
409			 */
410			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
411			if (more > next)
412				next = more;
413
414			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
415					  addr, next, floor, ceiling);
416		}
417	} while (addr = next, addr != end);
418
419	start &= PGDIR_MASK;
420	if (start < floor)
421		return;
422	if (ceiling) {
423		ceiling &= PGDIR_MASK;
424		if (!ceiling)
425			return;
426	}
427	if (end - 1 > ceiling - 1)
428		return;
429
430	pud = pud_offset(pgd, start);
431	pgd_clear(pgd);
432	pud_free_tlb(tlb, pud, start);
433	mm_dec_nr_puds(tlb->mm);
434}
435
436/*
437 * This function frees user-level page tables of a process.
438 */
439void hugetlb_free_pgd_range(struct mmu_gather *tlb,
440			    unsigned long addr, unsigned long end,
441			    unsigned long floor, unsigned long ceiling)
442{
443	pgd_t *pgd;
444	unsigned long next;
445
446	/*
447	 * Because there are a number of different possible pagetable
448	 * layouts for hugepage ranges, we limit knowledge of how
449	 * things should be laid out to the allocation path
450	 * (huge_pte_alloc(), above).  Everything else works out the
451	 * structure as it goes from information in the hugepd
452	 * pointers.  That means that we can't here use the
453	 * optimization used in the normal page free_pgd_range(), of
454	 * checking whether we're actually covering a large enough
455	 * range to have to do anything at the top level of the walk
456	 * instead of at the bottom.
457	 *
458	 * To make sense of this, you should probably go read the big
459	 * block comment at the top of the normal free_pgd_range(),
460	 * too.
461	 */
462
463	do {
464		next = pgd_addr_end(addr, end);
465		pgd = pgd_offset(tlb->mm, addr);
466		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
467			if (pgd_none_or_clear_bad(pgd))
468				continue;
469			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
470		} else {
471			unsigned long more;
472			/*
473			 * Increment next by the size of the huge mapping since
474			 * there may be more than one entry at the pgd level
475			 * for a single hugepage, but all of them point to the
476			 * same kmem cache that holds the hugepte.
477			 */
478			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
479			if (more > next)
480				next = more;
481
482			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
483					  addr, next, floor, ceiling);
484		}
485	} while (addr = next, addr != end);
486}
487
488struct page *follow_huge_pd(struct vm_area_struct *vma,
489			    unsigned long address, hugepd_t hpd,
490			    int flags, int pdshift)
491{
492	pte_t *ptep;
493	spinlock_t *ptl;
494	struct page *page = NULL;
495	unsigned long mask;
496	int shift = hugepd_shift(hpd);
497	struct mm_struct *mm = vma->vm_mm;
498
499retry:
 
 
 
 
500	ptl = &mm->page_table_lock;
501	spin_lock(ptl);
502
503	ptep = hugepte_offset(hpd, address, pdshift);
504	if (pte_present(*ptep)) {
505		mask = (1UL << shift) - 1;
506		page = pte_page(*ptep);
507		page += ((address & mask) >> PAGE_SHIFT);
508		if (flags & FOLL_GET)
509			get_page(page);
510	} else {
511		if (is_hugetlb_entry_migration(*ptep)) {
512			spin_unlock(ptl);
513			__migration_entry_wait(mm, ptep, ptl);
514			goto retry;
515		}
516	}
517	spin_unlock(ptl);
518	return page;
519}
520
521static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
522				      unsigned long sz)
523{
524	unsigned long __boundary = (addr + sz) & ~(sz-1);
525	return (__boundary - 1 < end - 1) ? __boundary : end;
526}
527
528int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
529		unsigned long end, int write, struct page **pages, int *nr)
530{
531	pte_t *ptep;
532	unsigned long sz = 1UL << hugepd_shift(hugepd);
533	unsigned long next;
534
535	ptep = hugepte_offset(hugepd, addr, pdshift);
536	do {
537		next = hugepte_addr_end(addr, end, sz);
538		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
539			return 0;
540	} while (ptep++, addr = next, addr != end);
541
542	return 1;
543}
544
545#ifdef CONFIG_PPC_MM_SLICES
546unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
547					unsigned long len, unsigned long pgoff,
548					unsigned long flags)
549{
550	struct hstate *hstate = hstate_file(file);
551	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
552
553#ifdef CONFIG_PPC_RADIX_MMU
554	if (radix_enabled())
555		return radix__hugetlb_get_unmapped_area(file, addr, len,
556						       pgoff, flags);
557#endif
558	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
559}
560#endif
561
562unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
563{
564#ifdef CONFIG_PPC_MM_SLICES
565	/* With radix we don't use slice, so derive it from vma*/
566	if (!radix_enabled()) {
567		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
568
569		return 1UL << mmu_psize_to_shift(psize);
570	}
571#endif
572	return vma_kernel_pagesize(vma);
573}
574
575static inline bool is_power_of_4(unsigned long x)
576{
577	if (is_power_of_2(x))
578		return (__ilog2(x) % 2) ? false : true;
579	return false;
580}
581
582static int __init add_huge_page_size(unsigned long long size)
583{
584	int shift = __ffs(size);
585	int mmu_psize;
586
587	/* Check that it is a page size supported by the hardware and
588	 * that it fits within pagetable and slice limits. */
589	if (size <= PAGE_SIZE)
590		return -EINVAL;
591#if defined(CONFIG_PPC_FSL_BOOK3E)
592	if (!is_power_of_4(size))
593		return -EINVAL;
594#elif !defined(CONFIG_PPC_8xx)
595	if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
596		return -EINVAL;
597#endif
598
599	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
 
600		return -EINVAL;
601
602#ifdef CONFIG_PPC_BOOK3S_64
603	/*
604	 * We need to make sure that for different page sizes reported by
605	 * firmware we only add hugetlb support for page sizes that can be
606	 * supported by linux page table layout.
607	 * For now we have
608	 * Radix: 2M
609	 * Hash: 16M and 16G
610	 */
611	if (radix_enabled()) {
612		if (mmu_psize != MMU_PAGE_2M) {
613			if (cpu_has_feature(CPU_FTR_POWER9_DD1) ||
614			    (mmu_psize != MMU_PAGE_1G))
615				return -EINVAL;
616		}
617	} else {
618		if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
619			return -EINVAL;
620	}
621#endif
622
623	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
624
625	/* Return if huge page size has already been setup */
626	if (size_to_hstate(size))
627		return 0;
628
629	hugetlb_add_hstate(shift - PAGE_SHIFT);
630
631	return 0;
632}
633
634static int __init hugepage_setup_sz(char *str)
635{
636	unsigned long long size;
637
638	size = memparse(str, &str);
639
640	if (add_huge_page_size(size) != 0) {
641		hugetlb_bad_size();
642		pr_err("Invalid huge page size specified(%llu)\n", size);
643	}
644
645	return 1;
646}
647__setup("hugepagesz=", hugepage_setup_sz);
648
649struct kmem_cache *hugepte_cache;
650static int __init hugetlbpage_init(void)
651{
 
652	int psize;
653
654#if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
655	if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
 
 
 
 
 
656		return -ENODEV;
657#endif
658	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
659		unsigned shift;
660		unsigned pdshift;
661
662		if (!mmu_psize_defs[psize].shift)
663			continue;
664
665		shift = mmu_psize_to_shift(psize);
666
667#ifdef CONFIG_PPC_BOOK3S_64
668		if (shift > PGDIR_SHIFT)
669			continue;
670		else if (shift > PUD_SHIFT)
671			pdshift = PGDIR_SHIFT;
672		else if (shift > PMD_SHIFT)
673			pdshift = PUD_SHIFT;
674		else
675			pdshift = PMD_SHIFT;
676#else
677		if (shift < HUGEPD_PUD_SHIFT)
678			pdshift = PMD_SHIFT;
679		else if (shift < HUGEPD_PGD_SHIFT)
680			pdshift = PUD_SHIFT;
681		else
682			pdshift = PGDIR_SHIFT;
683#endif
684
685		if (add_huge_page_size(1ULL << shift) < 0)
686			continue;
687		/*
688		 * if we have pdshift and shift value same, we don't
689		 * use pgt cache for hugepd.
690		 */
691		if (pdshift > shift)
692			pgtable_cache_add(pdshift - shift, NULL);
693#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
694		else if (!hugepte_cache) {
695			/*
696			 * Create a kmem cache for hugeptes.  The bottom bits in
697			 * the pte have size information encoded in them, so
698			 * align them to allow this
699			 */
700			hugepte_cache = kmem_cache_create("hugepte-cache",
701							  sizeof(pte_t),
702							  HUGEPD_SHIFT_MASK + 1,
703							  0, NULL);
704			if (hugepte_cache == NULL)
705				panic("%s: Unable to create kmem cache "
706				      "for hugeptes\n", __func__);
707
708		}
709#endif
710	}
 
 
711
712#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
713	/* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
714	if (mmu_psize_defs[MMU_PAGE_4M].shift)
715		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
716	else if (mmu_psize_defs[MMU_PAGE_512K].shift)
717		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
718#else
719	/* Set default large page size. Currently, we pick 16M or 1M
720	 * depending on what is available
721	 */
722	if (mmu_psize_defs[MMU_PAGE_16M].shift)
723		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
724	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
725		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
726	else if (mmu_psize_defs[MMU_PAGE_2M].shift)
727		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
728#endif
729	return 0;
730}
731
732arch_initcall(hugetlbpage_init);
733
734void flush_dcache_icache_hugepage(struct page *page)
735{
736	int i;
737	void *start;
738
739	BUG_ON(!PageCompound(page));
740
741	for (i = 0; i < (1UL << compound_order(page)); i++) {
742		if (!PageHighMem(page)) {
743			__flush_dcache_icache(page_address(page+i));
744		} else {
745			start = kmap_atomic(page+i);
746			__flush_dcache_icache(start);
747			kunmap_atomic(start);
748		}
749	}
750}
751
752#endif /* CONFIG_HUGETLB_PAGE */
753
754/*
755 * We have 4 cases for pgds and pmds:
756 * (1) invalid (all zeroes)
757 * (2) pointer to next table, as normal; bottom 6 bits == 0
758 * (3) leaf pte for huge page _PAGE_PTE set
759 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
760 *
761 * So long as we atomically load page table pointers we are safe against teardown,
762 * we can follow the address down to the the page and take a ref on it.
763 * This function need to be called with interrupts disabled. We use this variant
764 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
765 */
766pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
767			bool *is_thp, unsigned *hpage_shift)
768{
769	pgd_t pgd, *pgdp;
770	pud_t pud, *pudp;
771	pmd_t pmd, *pmdp;
772	pte_t *ret_pte;
773	hugepd_t *hpdp = NULL;
774	unsigned pdshift = PGDIR_SHIFT;
775
776	if (hpage_shift)
777		*hpage_shift = 0;
778
779	if (is_thp)
780		*is_thp = false;
781
782	pgdp = pgdir + pgd_index(ea);
783	pgd  = READ_ONCE(*pgdp);
784	/*
785	 * Always operate on the local stack value. This make sure the
786	 * value don't get updated by a parallel THP split/collapse,
787	 * page fault or a page unmap. The return pte_t * is still not
788	 * stable. So should be checked there for above conditions.
789	 */
790	if (pgd_none(pgd))
791		return NULL;
792	else if (pgd_huge(pgd)) {
793		ret_pte = (pte_t *) pgdp;
794		goto out;
795	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
796		hpdp = (hugepd_t *)&pgd;
797	else {
798		/*
799		 * Even if we end up with an unmap, the pgtable will not
800		 * be freed, because we do an rcu free and here we are
801		 * irq disabled
802		 */
803		pdshift = PUD_SHIFT;
804		pudp = pud_offset(&pgd, ea);
805		pud  = READ_ONCE(*pudp);
806
807		if (pud_none(pud))
808			return NULL;
809		else if (pud_huge(pud)) {
810			ret_pte = (pte_t *) pudp;
811			goto out;
812		} else if (is_hugepd(__hugepd(pud_val(pud))))
813			hpdp = (hugepd_t *)&pud;
814		else {
815			pdshift = PMD_SHIFT;
816			pmdp = pmd_offset(&pud, ea);
817			pmd  = READ_ONCE(*pmdp);
818			/*
819			 * A hugepage collapse is captured by pmd_none, because
820			 * it mark the pmd none and do a hpte invalidate.
821			 */
822			if (pmd_none(pmd))
823				return NULL;
824
825			if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
826				if (is_thp)
827					*is_thp = true;
828				ret_pte = (pte_t *) pmdp;
829				goto out;
830			}
831
832			if (pmd_huge(pmd)) {
833				ret_pte = (pte_t *) pmdp;
834				goto out;
835			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
836				hpdp = (hugepd_t *)&pmd;
837			else
838				return pte_offset_kernel(&pmd, ea);
839		}
840	}
841	if (!hpdp)
842		return NULL;
843
844	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
845	pdshift = hugepd_shift(*hpdp);
846out:
847	if (hpage_shift)
848		*hpage_shift = pdshift;
849	return ret_pte;
850}
851EXPORT_SYMBOL_GPL(__find_linux_pte);
852
853int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
854		unsigned long end, int write, struct page **pages, int *nr)
855{
856	unsigned long pte_end;
857	struct page *head, *page;
858	pte_t pte;
859	int refs;
860
861	pte_end = (addr + sz) & ~(sz-1);
862	if (pte_end < end)
863		end = pte_end;
864
865	pte = READ_ONCE(*ptep);
866
867	if (!pte_access_permitted(pte, write))
868		return 0;
869
870	/* hugepages are never "special" */
871	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
872
873	refs = 0;
874	head = pte_page(pte);
875
876	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
877	do {
878		VM_BUG_ON(compound_head(page) != head);
879		pages[*nr] = page;
880		(*nr)++;
881		page++;
882		refs++;
883	} while (addr += PAGE_SIZE, addr != end);
884
885	if (!page_cache_add_speculative(head, refs)) {
886		*nr -= refs;
887		return 0;
888	}
889
890	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
891		/* Could be optimized better */
892		*nr -= refs;
893		while (refs--)
894			put_page(head);
895		return 0;
896	}
897
898	return 1;
899}