Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 * PPC Huge TLB Page Support for Kernel.
  3 *
  4 * Copyright (C) 2003 David Gibson, IBM Corporation.
  5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
  6 *
  7 * Based on the IA-32 version:
  8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  9 */
 10
 11#include <linux/mm.h>
 12#include <linux/io.h>
 13#include <linux/slab.h>
 14#include <linux/hugetlb.h>
 15#include <linux/export.h>
 16#include <linux/of_fdt.h>
 17#include <linux/memblock.h>
 18#include <linux/moduleparam.h>
 19#include <linux/swap.h>
 20#include <linux/swapops.h>
 21#include <linux/kmemleak.h>
 22#include <asm/pgtable.h>
 23#include <asm/pgalloc.h>
 24#include <asm/tlb.h>
 25#include <asm/setup.h>
 26#include <asm/hugetlb.h>
 27#include <asm/pte-walk.h>
 28
 29bool hugetlb_disabled = false;
 
 
 30
 31#define hugepd_none(hpd)	(hpd_val(hpd) == 0)
 32
 33#define PTE_T_ORDER	(__builtin_ffs(sizeof(pte_t)) - __builtin_ffs(sizeof(void *)))
 
 
 
 
 
 
 
 34
 35pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 36{
 37	/*
 38	 * Only called for hugetlbfs pages, hence can ignore THP and the
 39	 * irq disabled walk.
 40	 */
 41	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
 
 42}
 43
 44static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
 45			   unsigned long address, unsigned int pdshift,
 46			   unsigned int pshift, spinlock_t *ptl)
 47{
 48	struct kmem_cache *cachep;
 49	pte_t *new;
 50	int i;
 51	int num_hugepd;
 52
 53	if (pshift >= pdshift) {
 54		cachep = PGT_CACHE(PTE_T_ORDER);
 55		num_hugepd = 1 << (pshift - pdshift);
 56	} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
 57		cachep = PGT_CACHE(PTE_INDEX_SIZE);
 58		num_hugepd = 1;
 59	} else {
 60		cachep = PGT_CACHE(pdshift - pshift);
 61		num_hugepd = 1;
 62	}
 63
 64	if (!cachep) {
 65		WARN_ONCE(1, "No page table cache created for hugetlb tables");
 66		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67	}
 68
 69	new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 70
 71	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
 72	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
 73
 74	if (!new)
 75		return -ENOMEM;
 76
 77	/*
 78	 * Make sure other cpus find the hugepd set only after a
 79	 * properly initialized page table is visible to them.
 80	 * For more details look for comment in __pte_alloc().
 81	 */
 82	smp_wmb();
 83
 84	spin_lock(ptl);
 85	/*
 86	 * We have multiple higher-level entries that point to the same
 87	 * actual pte location.  Fill in each as we go and backtrack on error.
 88	 * We need all of these so the DTLB pgtable walk code can find the
 89	 * right higher-level entry without knowing if it's a hugepage or not.
 90	 */
 91	for (i = 0; i < num_hugepd; i++, hpdp++) {
 92		if (unlikely(!hugepd_none(*hpdp)))
 93			break;
 94		hugepd_populate(hpdp, new, pshift);
 95	}
 96	/* If we bailed from the for loop early, an error occurred, clean up */
 97	if (i < num_hugepd) {
 98		for (i = i - 1 ; i >= 0; i--, hpdp--)
 99			*hpdp = __hugepd(0);
100		kmem_cache_free(cachep, new);
101	} else {
102		kmemleak_ignore(new);
103	}
104	spin_unlock(ptl);
105	return 0;
106}
107
108/*
109 * At this point we do the placement change only for BOOK3S 64. This would
110 * possibly work on other subarchs.
111 */
112pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
113{
114	pgd_t *pg;
115	pud_t *pu;
116	pmd_t *pm;
117	hugepd_t *hpdp = NULL;
118	unsigned pshift = __ffs(sz);
119	unsigned pdshift = PGDIR_SHIFT;
120	spinlock_t *ptl;
121
122	addr &= ~(sz-1);
123	pg = pgd_offset(mm, addr);
124
125#ifdef CONFIG_PPC_BOOK3S_64
126	if (pshift == PGDIR_SHIFT)
127		/* 16GB huge page */
128		return (pte_t *) pg;
129	else if (pshift > PUD_SHIFT) {
130		/*
131		 * We need to use hugepd table
132		 */
133		ptl = &mm->page_table_lock;
134		hpdp = (hugepd_t *)pg;
135	} else {
136		pdshift = PUD_SHIFT;
137		pu = pud_alloc(mm, pg, addr);
138		if (!pu)
139			return NULL;
140		if (pshift == PUD_SHIFT)
141			return (pte_t *)pu;
142		else if (pshift > PMD_SHIFT) {
143			ptl = pud_lockptr(mm, pu);
144			hpdp = (hugepd_t *)pu;
145		} else {
146			pdshift = PMD_SHIFT;
147			pm = pmd_alloc(mm, pu, addr);
148			if (!pm)
149				return NULL;
150			if (pshift == PMD_SHIFT)
151				/* 16MB hugepage */
152				return (pte_t *)pm;
153			else {
154				ptl = pmd_lockptr(mm, pm);
155				hpdp = (hugepd_t *)pm;
156			}
157		}
158	}
159#else
160	if (pshift >= PGDIR_SHIFT) {
161		ptl = &mm->page_table_lock;
162		hpdp = (hugepd_t *)pg;
163	} else {
164		pdshift = PUD_SHIFT;
165		pu = pud_alloc(mm, pg, addr);
166		if (!pu)
167			return NULL;
168		if (pshift >= PUD_SHIFT) {
169			ptl = pud_lockptr(mm, pu);
170			hpdp = (hugepd_t *)pu;
171		} else {
172			pdshift = PMD_SHIFT;
173			pm = pmd_alloc(mm, pu, addr);
174			if (!pm)
175				return NULL;
176			ptl = pmd_lockptr(mm, pm);
177			hpdp = (hugepd_t *)pm;
178		}
179	}
180#endif
181	if (!hpdp)
182		return NULL;
183
184	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
185
186	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
187						  pdshift, pshift, ptl))
188		return NULL;
189
190	return hugepte_offset(*hpdp, addr, pdshift);
191}
192
193#ifdef CONFIG_PPC_BOOK3S_64
194/*
195 * Tracks gpages after the device tree is scanned and before the
196 * huge_boot_pages list is ready on pseries.
197 */
198#define MAX_NUMBER_GPAGES	1024
199__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
200__initdata static unsigned nr_gpages;
201
202/*
203 * Build list of addresses of gigantic pages.  This function is used in early
204 * boot before the buddy allocator is setup.
205 */
206void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
207{
208	if (!addr)
209		return;
210	while (number_of_pages > 0) {
211		gpage_freearray[nr_gpages] = addr;
212		nr_gpages++;
213		number_of_pages--;
214		addr += page_size;
215	}
216}
217
218int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
 
 
 
219{
220	struct huge_bootmem_page *m;
221	if (nr_gpages == 0)
222		return 0;
223	m = phys_to_virt(gpage_freearray[--nr_gpages]);
224	gpage_freearray[nr_gpages] = 0;
225	list_add(&m->list, &huge_boot_pages);
226	m->hstate = hstate;
227	return 1;
228}
229#endif
230
231
232int __init alloc_bootmem_huge_page(struct hstate *h)
233{
234
235#ifdef CONFIG_PPC_BOOK3S_64
236	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
237		return pseries_alloc_bootmem_huge_page(h);
238#endif
239	return __alloc_bootmem_huge_page(h);
240}
241
242#ifndef CONFIG_PPC_BOOK3S_64
243#define HUGEPD_FREELIST_SIZE \
244	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
245
246struct hugepd_freelist {
247	struct rcu_head	rcu;
248	unsigned int index;
249	void *ptes[0];
250};
251
252static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
253
254static void hugepd_free_rcu_callback(struct rcu_head *head)
255{
256	struct hugepd_freelist *batch =
257		container_of(head, struct hugepd_freelist, rcu);
258	unsigned int i;
259
260	for (i = 0; i < batch->index; i++)
261		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
262
263	free_page((unsigned long)batch);
264}
265
266static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
267{
268	struct hugepd_freelist **batchp;
269
270	batchp = &get_cpu_var(hugepd_freelist_cur);
271
272	if (atomic_read(&tlb->mm->mm_users) < 2 ||
273	    mm_is_thread_local(tlb->mm)) {
274		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
275		put_cpu_var(hugepd_freelist_cur);
276		return;
277	}
278
279	if (*batchp == NULL) {
280		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
281		(*batchp)->index = 0;
282	}
283
284	(*batchp)->ptes[(*batchp)->index++] = hugepte;
285	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
286		call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
287		*batchp = NULL;
288	}
289	put_cpu_var(hugepd_freelist_cur);
290}
291#else
292static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
293#endif
294
295static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
296			      unsigned long start, unsigned long end,
297			      unsigned long floor, unsigned long ceiling)
298{
299	pte_t *hugepte = hugepd_page(*hpdp);
300	int i;
301
302	unsigned long pdmask = ~((1UL << pdshift) - 1);
303	unsigned int num_hugepd = 1;
304	unsigned int shift = hugepd_shift(*hpdp);
305
306	/* Note: On fsl the hpdp may be the first of several */
307	if (shift > pdshift)
308		num_hugepd = 1 << (shift - pdshift);
309
310	start &= pdmask;
311	if (start < floor)
312		return;
313	if (ceiling) {
314		ceiling &= pdmask;
315		if (! ceiling)
316			return;
317	}
318	if (end - 1 > ceiling - 1)
319		return;
320
321	for (i = 0; i < num_hugepd; i++, hpdp++)
322		*hpdp = __hugepd(0);
323
324	if (shift >= pdshift)
325		hugepd_free(tlb, hugepte);
326	else if (IS_ENABLED(CONFIG_PPC_8xx))
327		pgtable_free_tlb(tlb, hugepte,
328				 get_hugepd_cache_index(PTE_INDEX_SIZE));
329	else
330		pgtable_free_tlb(tlb, hugepte,
331				 get_hugepd_cache_index(pdshift - shift));
332}
333
334static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
335				   unsigned long addr, unsigned long end,
336				   unsigned long floor, unsigned long ceiling)
337{
338	pmd_t *pmd;
339	unsigned long next;
340	unsigned long start;
341
342	start = addr;
 
343	do {
344		unsigned long more;
345
346		pmd = pmd_offset(pud, addr);
347		next = pmd_addr_end(addr, end);
348		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
349			/*
350			 * if it is not hugepd pointer, we should already find
351			 * it cleared.
352			 */
353			WARN_ON(!pmd_none_or_clear_bad(pmd));
354			continue;
355		}
356		/*
357		 * Increment next by the size of the huge mapping since
358		 * there may be more than one entry at this level for a
359		 * single hugepage, but all of them point to
360		 * the same kmem cache that holds the hugepte.
361		 */
362		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
363		if (more > next)
364			next = more;
365
366		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
367				  addr, next, floor, ceiling);
368	} while (addr = next, addr != end);
369
370	start &= PUD_MASK;
371	if (start < floor)
372		return;
373	if (ceiling) {
374		ceiling &= PUD_MASK;
375		if (!ceiling)
376			return;
377	}
378	if (end - 1 > ceiling - 1)
379		return;
380
381	pmd = pmd_offset(pud, start);
382	pud_clear(pud);
383	pmd_free_tlb(tlb, pmd, start);
384	mm_dec_nr_pmds(tlb->mm);
385}
386
387static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
388				   unsigned long addr, unsigned long end,
389				   unsigned long floor, unsigned long ceiling)
390{
391	pud_t *pud;
392	unsigned long next;
393	unsigned long start;
394
395	start = addr;
 
396	do {
397		pud = pud_offset(pgd, addr);
398		next = pud_addr_end(addr, end);
399		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
400			if (pud_none_or_clear_bad(pud))
401				continue;
402			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
403					       ceiling);
404		} else {
405			unsigned long more;
406			/*
407			 * Increment next by the size of the huge mapping since
408			 * there may be more than one entry at this level for a
409			 * single hugepage, but all of them point to
410			 * the same kmem cache that holds the hugepte.
411			 */
412			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
413			if (more > next)
414				next = more;
415
416			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
417					  addr, next, floor, ceiling);
418		}
419	} while (addr = next, addr != end);
420
421	start &= PGDIR_MASK;
422	if (start < floor)
423		return;
424	if (ceiling) {
425		ceiling &= PGDIR_MASK;
426		if (!ceiling)
427			return;
428	}
429	if (end - 1 > ceiling - 1)
430		return;
431
432	pud = pud_offset(pgd, start);
433	pgd_clear(pgd);
434	pud_free_tlb(tlb, pud, start);
435	mm_dec_nr_puds(tlb->mm);
436}
437
438/*
439 * This function frees user-level page tables of a process.
 
 
440 */
441void hugetlb_free_pgd_range(struct mmu_gather *tlb,
442			    unsigned long addr, unsigned long end,
443			    unsigned long floor, unsigned long ceiling)
444{
445	pgd_t *pgd;
446	unsigned long next;
447
448	/*
449	 * Because there are a number of different possible pagetable
450	 * layouts for hugepage ranges, we limit knowledge of how
451	 * things should be laid out to the allocation path
452	 * (huge_pte_alloc(), above).  Everything else works out the
453	 * structure as it goes from information in the hugepd
454	 * pointers.  That means that we can't here use the
455	 * optimization used in the normal page free_pgd_range(), of
456	 * checking whether we're actually covering a large enough
457	 * range to have to do anything at the top level of the walk
458	 * instead of at the bottom.
459	 *
460	 * To make sense of this, you should probably go read the big
461	 * block comment at the top of the normal free_pgd_range(),
462	 * too.
463	 */
464
 
465	do {
466		next = pgd_addr_end(addr, end);
467		pgd = pgd_offset(tlb->mm, addr);
468		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
469			if (pgd_none_or_clear_bad(pgd))
470				continue;
471			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
472		} else {
473			unsigned long more;
474			/*
475			 * Increment next by the size of the huge mapping since
476			 * there may be more than one entry at the pgd level
477			 * for a single hugepage, but all of them point to the
478			 * same kmem cache that holds the hugepte.
479			 */
480			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
481			if (more > next)
482				next = more;
483
484			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
485					  addr, next, floor, ceiling);
486		}
487	} while (addr = next, addr != end);
488}
489
490struct page *follow_huge_pd(struct vm_area_struct *vma,
491			    unsigned long address, hugepd_t hpd,
492			    int flags, int pdshift)
493{
494	pte_t *ptep;
495	spinlock_t *ptl;
496	struct page *page = NULL;
497	unsigned long mask;
498	int shift = hugepd_shift(hpd);
499	struct mm_struct *mm = vma->vm_mm;
500
501retry:
502	/*
503	 * hugepage directory entries are protected by mm->page_table_lock
504	 * Use this instead of huge_pte_lockptr
505	 */
506	ptl = &mm->page_table_lock;
507	spin_lock(ptl);
508
509	ptep = hugepte_offset(hpd, address, pdshift);
510	if (pte_present(*ptep)) {
511		mask = (1UL << shift) - 1;
512		page = pte_page(*ptep);
513		page += ((address & mask) >> PAGE_SHIFT);
514		if (flags & FOLL_GET)
515			get_page(page);
516	} else {
517		if (is_hugetlb_entry_migration(*ptep)) {
518			spin_unlock(ptl);
519			__migration_entry_wait(mm, ptep, ptl);
520			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
521		}
522	}
523	spin_unlock(ptl);
524	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
525}
526
527#ifdef CONFIG_PPC_MM_SLICES
528unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
529					unsigned long len, unsigned long pgoff,
530					unsigned long flags)
531{
532	struct hstate *hstate = hstate_file(file);
533	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
534
535#ifdef CONFIG_PPC_RADIX_MMU
536	if (radix_enabled())
537		return radix__hugetlb_get_unmapped_area(file, addr, len,
538						       pgoff, flags);
539#endif
540	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
541}
542#endif
543
544unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
545{
546	/* With radix we don't use slice, so derive it from vma*/
547	if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
548		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
549
550		return 1UL << mmu_psize_to_shift(psize);
551	}
552	return vma_kernel_pagesize(vma);
553}
554
555static int __init add_huge_page_size(unsigned long long size)
556{
557	int shift = __ffs(size);
558	int mmu_psize;
559
560	/* Check that it is a page size supported by the hardware and
561	 * that it fits within pagetable and slice limits. */
562	if (size <= PAGE_SIZE || !is_power_of_2(size))
 
 
 
 
563		return -EINVAL;
564
565	mmu_psize = check_and_get_huge_psize(shift);
566	if (mmu_psize < 0)
 
 
 
567		return -EINVAL;
 
568
569	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
570
571	/* Return if huge page size has already been setup */
572	if (size_to_hstate(size))
573		return 0;
574
575	hugetlb_add_hstate(shift - PAGE_SHIFT);
576
577	return 0;
578}
579
580static int __init hugepage_setup_sz(char *str)
581{
582	unsigned long long size;
583
584	size = memparse(str, &str);
585
586	if (add_huge_page_size(size) != 0) {
587		hugetlb_bad_size();
588		pr_err("Invalid huge page size specified(%llu)\n", size);
589	}
590
591	return 1;
592}
593__setup("hugepagesz=", hugepage_setup_sz);
594
595static int __init hugetlbpage_init(void)
596{
597	bool configured = false;
598	int psize;
599
600	if (hugetlb_disabled) {
601		pr_info("HugeTLB support is disabled!\n");
602		return 0;
603	}
604
605	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
606	    !mmu_has_feature(MMU_FTR_16M_PAGE))
607		return -ENODEV;
608
609	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
610		unsigned shift;
611		unsigned pdshift;
612
613		if (!mmu_psize_defs[psize].shift)
614			continue;
615
616		shift = mmu_psize_to_shift(psize);
617
618#ifdef CONFIG_PPC_BOOK3S_64
619		if (shift > PGDIR_SHIFT)
620			continue;
621		else if (shift > PUD_SHIFT)
622			pdshift = PGDIR_SHIFT;
623		else if (shift > PMD_SHIFT)
624			pdshift = PUD_SHIFT;
625		else
626			pdshift = PMD_SHIFT;
627#else
628		if (shift < PUD_SHIFT)
629			pdshift = PMD_SHIFT;
630		else if (shift < PGDIR_SHIFT)
631			pdshift = PUD_SHIFT;
632		else
633			pdshift = PGDIR_SHIFT;
634#endif
635
636		if (add_huge_page_size(1ULL << shift) < 0)
637			continue;
638		/*
639		 * if we have pdshift and shift value same, we don't
640		 * use pgt cache for hugepd.
641		 */
642		if (pdshift > shift && IS_ENABLED(CONFIG_PPC_8xx))
643			pgtable_cache_add(PTE_INDEX_SIZE);
644		else if (pdshift > shift)
645			pgtable_cache_add(pdshift - shift);
646		else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) || IS_ENABLED(CONFIG_PPC_8xx))
647			pgtable_cache_add(PTE_T_ORDER);
648
649		configured = true;
650	}
651
652	if (configured) {
653		if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
654			hugetlbpage_init_default();
655	} else
656		pr_info("Failed to initialize. Disabling HugeTLB");
 
 
657
658	return 0;
659}
660
661arch_initcall(hugetlbpage_init);
662
663void flush_dcache_icache_hugepage(struct page *page)
664{
665	int i;
666	void *start;
667
668	BUG_ON(!PageCompound(page));
669
670	for (i = 0; i < compound_nr(page); i++) {
671		if (!PageHighMem(page)) {
672			__flush_dcache_icache(page_address(page+i));
673		} else {
674			start = kmap_atomic(page+i);
675			__flush_dcache_icache(start);
676			kunmap_atomic(start);
677		}
678	}
679}
v3.1
  1/*
  2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
  3 *
  4 * Copyright (C) 2003 David Gibson, IBM Corporation.
 
  5 *
  6 * Based on the IA-32 version:
  7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  8 */
  9
 10#include <linux/mm.h>
 11#include <linux/io.h>
 12#include <linux/slab.h>
 13#include <linux/hugetlb.h>
 
 
 
 
 
 
 
 14#include <asm/pgtable.h>
 15#include <asm/pgalloc.h>
 16#include <asm/tlb.h>
 
 
 
 17
 18#define PAGE_SHIFT_64K	16
 19#define PAGE_SHIFT_16M	24
 20#define PAGE_SHIFT_16G	34
 21
 22#define MAX_NUMBER_GPAGES	1024
 23
 24/* Tracks the 16G pages after the device tree is scanned and before the
 25 * huge_boot_pages list is ready.  */
 26static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
 27static unsigned nr_gpages;
 28
 29/* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad()
 30 * will choke on pointers to hugepte tables, which is handy for
 31 * catching screwups early. */
 32
 33static inline int shift_to_mmu_psize(unsigned int shift)
 34{
 35	int psize;
 36
 37	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
 38		if (mmu_psize_defs[psize].shift == shift)
 39			return psize;
 40	return -1;
 41}
 42
 43static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
 
 
 44{
 45	if (mmu_psize_defs[mmu_psize].shift)
 46		return mmu_psize_defs[mmu_psize].shift;
 47	BUG();
 48}
 49
 50#define hugepd_none(hpd)	((hpd).pd == 0)
 
 
 
 
 
 
 
 
 
 51
 52static inline pte_t *hugepd_page(hugepd_t hpd)
 53{
 54	BUG_ON(!hugepd_ok(hpd));
 55	return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000);
 56}
 57
 58static inline unsigned int hugepd_shift(hugepd_t hpd)
 59{
 60	return hpd.pd & HUGEPD_SHIFT_MASK;
 61}
 62
 63static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift)
 64{
 65	unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp);
 66	pte_t *dir = hugepd_page(*hpdp);
 67
 68	return dir + idx;
 69}
 70
 71pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
 72{
 73	pgd_t *pg;
 74	pud_t *pu;
 75	pmd_t *pm;
 76	hugepd_t *hpdp = NULL;
 77	unsigned pdshift = PGDIR_SHIFT;
 78
 79	if (shift)
 80		*shift = 0;
 81
 82	pg = pgdir + pgd_index(ea);
 83	if (is_hugepd(pg)) {
 84		hpdp = (hugepd_t *)pg;
 85	} else if (!pgd_none(*pg)) {
 86		pdshift = PUD_SHIFT;
 87		pu = pud_offset(pg, ea);
 88		if (is_hugepd(pu))
 89			hpdp = (hugepd_t *)pu;
 90		else if (!pud_none(*pu)) {
 91			pdshift = PMD_SHIFT;
 92			pm = pmd_offset(pu, ea);
 93			if (is_hugepd(pm))
 94				hpdp = (hugepd_t *)pm;
 95			else if (!pmd_none(*pm)) {
 96				return pte_offset_map(pm, ea);
 97			}
 98		}
 99	}
100
101	if (!hpdp)
102		return NULL;
103
104	if (shift)
105		*shift = hugepd_shift(*hpdp);
106	return hugepte_offset(hpdp, ea, pdshift);
107}
108
109pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
110{
111	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
112}
113
114static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
115			   unsigned long address, unsigned pdshift, unsigned pshift)
116{
117	pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift),
118				       GFP_KERNEL|__GFP_REPEAT);
119
120	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
121	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
122
123	if (! new)
124		return -ENOMEM;
125
126	spin_lock(&mm->page_table_lock);
127	if (!hugepd_none(*hpdp))
128		kmem_cache_free(PGT_CACHE(pdshift - pshift), new);
129	else
130		hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift;
131	spin_unlock(&mm->page_table_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132	return 0;
133}
134
 
 
 
 
135pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
136{
137	pgd_t *pg;
138	pud_t *pu;
139	pmd_t *pm;
140	hugepd_t *hpdp = NULL;
141	unsigned pshift = __ffs(sz);
142	unsigned pdshift = PGDIR_SHIFT;
 
143
144	addr &= ~(sz-1);
 
145
146	pg = pgd_offset(mm, addr);
147	if (pshift >= PUD_SHIFT) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148		hpdp = (hugepd_t *)pg;
149	} else {
150		pdshift = PUD_SHIFT;
151		pu = pud_alloc(mm, pg, addr);
152		if (pshift >= PMD_SHIFT) {
 
 
 
153			hpdp = (hugepd_t *)pu;
154		} else {
155			pdshift = PMD_SHIFT;
156			pm = pmd_alloc(mm, pu, addr);
 
 
 
157			hpdp = (hugepd_t *)pm;
158		}
159	}
160
161	if (!hpdp)
162		return NULL;
163
164	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
165
166	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
 
167		return NULL;
168
169	return hugepte_offset(hpdp, addr, pdshift);
170}
171
172/* Build list of addresses of gigantic pages.  This function is used in early
173 * boot before the buddy or bootmem allocator is setup.
 
 
174 */
175void add_gpage(unsigned long addr, unsigned long page_size,
176	unsigned long number_of_pages)
 
 
 
 
 
 
 
177{
178	if (!addr)
179		return;
180	while (number_of_pages > 0) {
181		gpage_freearray[nr_gpages] = addr;
182		nr_gpages++;
183		number_of_pages--;
184		addr += page_size;
185	}
186}
187
188/* Moves the gigantic page addresses from the temporary list to the
189 * huge_boot_pages list.
190 */
191int alloc_bootmem_huge_page(struct hstate *hstate)
192{
193	struct huge_bootmem_page *m;
194	if (nr_gpages == 0)
195		return 0;
196	m = phys_to_virt(gpage_freearray[--nr_gpages]);
197	gpage_freearray[nr_gpages] = 0;
198	list_add(&m->list, &huge_boot_pages);
199	m->hstate = hstate;
200	return 1;
201}
 
202
203int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 
204{
205	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206}
 
 
 
207
208static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
209			      unsigned long start, unsigned long end,
210			      unsigned long floor, unsigned long ceiling)
211{
212	pte_t *hugepte = hugepd_page(*hpdp);
213	unsigned shift = hugepd_shift(*hpdp);
 
214	unsigned long pdmask = ~((1UL << pdshift) - 1);
 
 
 
 
 
 
215
216	start &= pdmask;
217	if (start < floor)
218		return;
219	if (ceiling) {
220		ceiling &= pdmask;
221		if (! ceiling)
222			return;
223	}
224	if (end - 1 > ceiling - 1)
225		return;
226
227	hpdp->pd = 0;
228	tlb->need_flush = 1;
229	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
 
 
 
 
 
 
 
 
230}
231
232static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
233				   unsigned long addr, unsigned long end,
234				   unsigned long floor, unsigned long ceiling)
235{
236	pmd_t *pmd;
237	unsigned long next;
238	unsigned long start;
239
240	start = addr;
241	pmd = pmd_offset(pud, addr);
242	do {
 
 
 
243		next = pmd_addr_end(addr, end);
244		if (pmd_none(*pmd))
 
 
 
 
 
245			continue;
 
 
 
 
 
 
 
 
 
 
 
246		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
247				  addr, next, floor, ceiling);
248	} while (pmd++, addr = next, addr != end);
249
250	start &= PUD_MASK;
251	if (start < floor)
252		return;
253	if (ceiling) {
254		ceiling &= PUD_MASK;
255		if (!ceiling)
256			return;
257	}
258	if (end - 1 > ceiling - 1)
259		return;
260
261	pmd = pmd_offset(pud, start);
262	pud_clear(pud);
263	pmd_free_tlb(tlb, pmd, start);
 
264}
265
266static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267				   unsigned long addr, unsigned long end,
268				   unsigned long floor, unsigned long ceiling)
269{
270	pud_t *pud;
271	unsigned long next;
272	unsigned long start;
273
274	start = addr;
275	pud = pud_offset(pgd, addr);
276	do {
 
277		next = pud_addr_end(addr, end);
278		if (!is_hugepd(pud)) {
279			if (pud_none_or_clear_bad(pud))
280				continue;
281			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
282					       ceiling);
283		} else {
 
 
 
 
 
 
 
 
 
 
 
284			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
285					  addr, next, floor, ceiling);
286		}
287	} while (pud++, addr = next, addr != end);
288
289	start &= PGDIR_MASK;
290	if (start < floor)
291		return;
292	if (ceiling) {
293		ceiling &= PGDIR_MASK;
294		if (!ceiling)
295			return;
296	}
297	if (end - 1 > ceiling - 1)
298		return;
299
300	pud = pud_offset(pgd, start);
301	pgd_clear(pgd);
302	pud_free_tlb(tlb, pud, start);
 
303}
304
305/*
306 * This function frees user-level page tables of a process.
307 *
308 * Must be called with pagetable lock held.
309 */
310void hugetlb_free_pgd_range(struct mmu_gather *tlb,
311			    unsigned long addr, unsigned long end,
312			    unsigned long floor, unsigned long ceiling)
313{
314	pgd_t *pgd;
315	unsigned long next;
316
317	/*
318	 * Because there are a number of different possible pagetable
319	 * layouts for hugepage ranges, we limit knowledge of how
320	 * things should be laid out to the allocation path
321	 * (huge_pte_alloc(), above).  Everything else works out the
322	 * structure as it goes from information in the hugepd
323	 * pointers.  That means that we can't here use the
324	 * optimization used in the normal page free_pgd_range(), of
325	 * checking whether we're actually covering a large enough
326	 * range to have to do anything at the top level of the walk
327	 * instead of at the bottom.
328	 *
329	 * To make sense of this, you should probably go read the big
330	 * block comment at the top of the normal free_pgd_range(),
331	 * too.
332	 */
333
334	pgd = pgd_offset(tlb->mm, addr);
335	do {
336		next = pgd_addr_end(addr, end);
337		if (!is_hugepd(pgd)) {
 
338			if (pgd_none_or_clear_bad(pgd))
339				continue;
340			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
341		} else {
 
 
 
 
 
 
 
 
 
 
 
342			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
343					  addr, next, floor, ceiling);
344		}
345	} while (pgd++, addr = next, addr != end);
346}
347
348struct page *
349follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
 
350{
351	pte_t *ptep;
352	struct page *page;
353	unsigned shift;
354	unsigned long mask;
 
 
355
356	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
 
 
 
 
 
 
357
358	/* Verify it is a huge page else bail. */
359	if (!ptep || !shift)
360		return ERR_PTR(-EINVAL);
361
362	mask = (1UL << shift) - 1;
363	page = pte_page(*ptep);
364	if (page)
365		page += (address & mask) / PAGE_SIZE;
366
367	return page;
368}
369
370int pmd_huge(pmd_t pmd)
371{
372	return 0;
373}
374
375int pud_huge(pud_t pud)
376{
377	return 0;
378}
379
380struct page *
381follow_huge_pmd(struct mm_struct *mm, unsigned long address,
382		pmd_t *pmd, int write)
383{
384	BUG();
385	return NULL;
386}
387
388static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
389		       unsigned long end, int write, struct page **pages, int *nr)
390{
391	unsigned long mask;
392	unsigned long pte_end;
393	struct page *head, *page;
394	pte_t pte;
395	int refs;
396
397	pte_end = (addr + sz) & ~(sz-1);
398	if (pte_end < end)
399		end = pte_end;
400
401	pte = *ptep;
402	mask = _PAGE_PRESENT | _PAGE_USER;
403	if (write)
404		mask |= _PAGE_RW;
405
406	if ((pte_val(pte) & mask) != mask)
407		return 0;
408
409	/* hugepages are never "special" */
410	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
411
412	refs = 0;
413	head = pte_page(pte);
414
415	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
416	do {
417		VM_BUG_ON(compound_head(page) != head);
418		pages[*nr] = page;
419		(*nr)++;
420		page++;
421		refs++;
422	} while (addr += PAGE_SIZE, addr != end);
423
424	if (!page_cache_add_speculative(head, refs)) {
425		*nr -= refs;
426		return 0;
427	}
428
429	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
430		/* Could be optimized better */
431		while (*nr) {
432			put_page(page);
433			(*nr)--;
434		}
435	}
436
437	return 1;
438}
439
440static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
441				      unsigned long sz)
442{
443	unsigned long __boundary = (addr + sz) & ~(sz-1);
444	return (__boundary - 1 < end - 1) ? __boundary : end;
445}
446
447int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
448	       unsigned long addr, unsigned long end,
449	       int write, struct page **pages, int *nr)
450{
451	pte_t *ptep;
452	unsigned long sz = 1UL << hugepd_shift(*hugepd);
453	unsigned long next;
454
455	ptep = hugepte_offset(hugepd, addr, pdshift);
456	do {
457		next = hugepte_addr_end(addr, end, sz);
458		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
459			return 0;
460	} while (ptep++, addr = next, addr != end);
461
462	return 1;
463}
464
 
465unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
466					unsigned long len, unsigned long pgoff,
467					unsigned long flags)
468{
469	struct hstate *hstate = hstate_file(file);
470	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
471
472	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
 
 
 
 
 
473}
 
474
475unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
476{
477	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
 
 
478
479	return 1UL << mmu_psize_to_shift(psize);
 
 
480}
481
482static int __init add_huge_page_size(unsigned long long size)
483{
484	int shift = __ffs(size);
485	int mmu_psize;
486
487	/* Check that it is a page size supported by the hardware and
488	 * that it fits within pagetable and slice limits. */
489	if (!is_power_of_2(size)
490	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
491		return -EINVAL;
492
493	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
494		return -EINVAL;
495
496#ifdef CONFIG_SPU_FS_64K_LS
497	/* Disable support for 64K huge pages when 64K SPU local store
498	 * support is enabled as the current implementation conflicts.
499	 */
500	if (shift == PAGE_SHIFT_64K)
501		return -EINVAL;
502#endif /* CONFIG_SPU_FS_64K_LS */
503
504	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
505
506	/* Return if huge page size has already been setup */
507	if (size_to_hstate(size))
508		return 0;
509
510	hugetlb_add_hstate(shift - PAGE_SHIFT);
511
512	return 0;
513}
514
515static int __init hugepage_setup_sz(char *str)
516{
517	unsigned long long size;
518
519	size = memparse(str, &str);
520
521	if (add_huge_page_size(size) != 0)
522		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
 
 
523
524	return 1;
525}
526__setup("hugepagesz=", hugepage_setup_sz);
527
528static int __init hugetlbpage_init(void)
529{
 
530	int psize;
531
532	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
 
 
 
 
 
 
533		return -ENODEV;
534
535	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
536		unsigned shift;
537		unsigned pdshift;
538
539		if (!mmu_psize_defs[psize].shift)
540			continue;
541
542		shift = mmu_psize_to_shift(psize);
543
544		if (add_huge_page_size(1ULL << shift) < 0)
 
545			continue;
546
547		if (shift < PMD_SHIFT)
 
 
 
 
 
 
548			pdshift = PMD_SHIFT;
549		else if (shift < PUD_SHIFT)
550			pdshift = PUD_SHIFT;
551		else
552			pdshift = PGDIR_SHIFT;
 
553
554		pgtable_cache_add(pdshift - shift, NULL);
555		if (!PGT_CACHE(pdshift - shift))
556			panic("hugetlbpage_init(): could not create "
557			      "pgtable cache for %d bit pagesize\n", shift);
 
 
 
 
 
 
 
 
 
 
558	}
559
560	/* Set default large page size. Currently, we pick 16M or 1M
561	 * depending on what is available
562	 */
563	if (mmu_psize_defs[MMU_PAGE_16M].shift)
564		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
565	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
566		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
567
568	return 0;
569}
570
571module_init(hugetlbpage_init);
572
573void flush_dcache_icache_hugepage(struct page *page)
574{
575	int i;
 
576
577	BUG_ON(!PageCompound(page));
578
579	for (i = 0; i < (1UL << compound_order(page)); i++)
580		__flush_dcache_icache(page_address(page+i));
 
 
 
 
 
 
 
581}