Loading...
1/*
2 * PPC Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/io.h>
13#include <linux/slab.h>
14#include <linux/hugetlb.h>
15#include <linux/export.h>
16#include <linux/of_fdt.h>
17#include <linux/memblock.h>
18#include <linux/moduleparam.h>
19#include <linux/swap.h>
20#include <linux/swapops.h>
21#include <linux/kmemleak.h>
22#include <asm/pgtable.h>
23#include <asm/pgalloc.h>
24#include <asm/tlb.h>
25#include <asm/setup.h>
26#include <asm/hugetlb.h>
27#include <asm/pte-walk.h>
28
29bool hugetlb_disabled = false;
30
31#define hugepd_none(hpd) (hpd_val(hpd) == 0)
32
33#define PTE_T_ORDER (__builtin_ffs(sizeof(pte_t)) - __builtin_ffs(sizeof(void *)))
34
35pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
36{
37 /*
38 * Only called for hugetlbfs pages, hence can ignore THP and the
39 * irq disabled walk.
40 */
41 return __find_linux_pte(mm->pgd, addr, NULL, NULL);
42}
43
44static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
45 unsigned long address, unsigned int pdshift,
46 unsigned int pshift, spinlock_t *ptl)
47{
48 struct kmem_cache *cachep;
49 pte_t *new;
50 int i;
51 int num_hugepd;
52
53 if (pshift >= pdshift) {
54 cachep = PGT_CACHE(PTE_T_ORDER);
55 num_hugepd = 1 << (pshift - pdshift);
56 } else if (IS_ENABLED(CONFIG_PPC_8xx)) {
57 cachep = PGT_CACHE(PTE_INDEX_SIZE);
58 num_hugepd = 1;
59 } else {
60 cachep = PGT_CACHE(pdshift - pshift);
61 num_hugepd = 1;
62 }
63
64 if (!cachep) {
65 WARN_ONCE(1, "No page table cache created for hugetlb tables");
66 return -ENOMEM;
67 }
68
69 new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
70
71 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
72 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
73
74 if (!new)
75 return -ENOMEM;
76
77 /*
78 * Make sure other cpus find the hugepd set only after a
79 * properly initialized page table is visible to them.
80 * For more details look for comment in __pte_alloc().
81 */
82 smp_wmb();
83
84 spin_lock(ptl);
85 /*
86 * We have multiple higher-level entries that point to the same
87 * actual pte location. Fill in each as we go and backtrack on error.
88 * We need all of these so the DTLB pgtable walk code can find the
89 * right higher-level entry without knowing if it's a hugepage or not.
90 */
91 for (i = 0; i < num_hugepd; i++, hpdp++) {
92 if (unlikely(!hugepd_none(*hpdp)))
93 break;
94 hugepd_populate(hpdp, new, pshift);
95 }
96 /* If we bailed from the for loop early, an error occurred, clean up */
97 if (i < num_hugepd) {
98 for (i = i - 1 ; i >= 0; i--, hpdp--)
99 *hpdp = __hugepd(0);
100 kmem_cache_free(cachep, new);
101 } else {
102 kmemleak_ignore(new);
103 }
104 spin_unlock(ptl);
105 return 0;
106}
107
108/*
109 * At this point we do the placement change only for BOOK3S 64. This would
110 * possibly work on other subarchs.
111 */
112pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
113{
114 pgd_t *pg;
115 pud_t *pu;
116 pmd_t *pm;
117 hugepd_t *hpdp = NULL;
118 unsigned pshift = __ffs(sz);
119 unsigned pdshift = PGDIR_SHIFT;
120 spinlock_t *ptl;
121
122 addr &= ~(sz-1);
123 pg = pgd_offset(mm, addr);
124
125#ifdef CONFIG_PPC_BOOK3S_64
126 if (pshift == PGDIR_SHIFT)
127 /* 16GB huge page */
128 return (pte_t *) pg;
129 else if (pshift > PUD_SHIFT) {
130 /*
131 * We need to use hugepd table
132 */
133 ptl = &mm->page_table_lock;
134 hpdp = (hugepd_t *)pg;
135 } else {
136 pdshift = PUD_SHIFT;
137 pu = pud_alloc(mm, pg, addr);
138 if (!pu)
139 return NULL;
140 if (pshift == PUD_SHIFT)
141 return (pte_t *)pu;
142 else if (pshift > PMD_SHIFT) {
143 ptl = pud_lockptr(mm, pu);
144 hpdp = (hugepd_t *)pu;
145 } else {
146 pdshift = PMD_SHIFT;
147 pm = pmd_alloc(mm, pu, addr);
148 if (!pm)
149 return NULL;
150 if (pshift == PMD_SHIFT)
151 /* 16MB hugepage */
152 return (pte_t *)pm;
153 else {
154 ptl = pmd_lockptr(mm, pm);
155 hpdp = (hugepd_t *)pm;
156 }
157 }
158 }
159#else
160 if (pshift >= PGDIR_SHIFT) {
161 ptl = &mm->page_table_lock;
162 hpdp = (hugepd_t *)pg;
163 } else {
164 pdshift = PUD_SHIFT;
165 pu = pud_alloc(mm, pg, addr);
166 if (!pu)
167 return NULL;
168 if (pshift >= PUD_SHIFT) {
169 ptl = pud_lockptr(mm, pu);
170 hpdp = (hugepd_t *)pu;
171 } else {
172 pdshift = PMD_SHIFT;
173 pm = pmd_alloc(mm, pu, addr);
174 if (!pm)
175 return NULL;
176 ptl = pmd_lockptr(mm, pm);
177 hpdp = (hugepd_t *)pm;
178 }
179 }
180#endif
181 if (!hpdp)
182 return NULL;
183
184 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
185
186 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
187 pdshift, pshift, ptl))
188 return NULL;
189
190 return hugepte_offset(*hpdp, addr, pdshift);
191}
192
193#ifdef CONFIG_PPC_BOOK3S_64
194/*
195 * Tracks gpages after the device tree is scanned and before the
196 * huge_boot_pages list is ready on pseries.
197 */
198#define MAX_NUMBER_GPAGES 1024
199__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
200__initdata static unsigned nr_gpages;
201
202/*
203 * Build list of addresses of gigantic pages. This function is used in early
204 * boot before the buddy allocator is setup.
205 */
206void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
207{
208 if (!addr)
209 return;
210 while (number_of_pages > 0) {
211 gpage_freearray[nr_gpages] = addr;
212 nr_gpages++;
213 number_of_pages--;
214 addr += page_size;
215 }
216}
217
218int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
219{
220 struct huge_bootmem_page *m;
221 if (nr_gpages == 0)
222 return 0;
223 m = phys_to_virt(gpage_freearray[--nr_gpages]);
224 gpage_freearray[nr_gpages] = 0;
225 list_add(&m->list, &huge_boot_pages);
226 m->hstate = hstate;
227 return 1;
228}
229#endif
230
231
232int __init alloc_bootmem_huge_page(struct hstate *h)
233{
234
235#ifdef CONFIG_PPC_BOOK3S_64
236 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
237 return pseries_alloc_bootmem_huge_page(h);
238#endif
239 return __alloc_bootmem_huge_page(h);
240}
241
242#ifndef CONFIG_PPC_BOOK3S_64
243#define HUGEPD_FREELIST_SIZE \
244 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
245
246struct hugepd_freelist {
247 struct rcu_head rcu;
248 unsigned int index;
249 void *ptes[0];
250};
251
252static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
253
254static void hugepd_free_rcu_callback(struct rcu_head *head)
255{
256 struct hugepd_freelist *batch =
257 container_of(head, struct hugepd_freelist, rcu);
258 unsigned int i;
259
260 for (i = 0; i < batch->index; i++)
261 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
262
263 free_page((unsigned long)batch);
264}
265
266static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
267{
268 struct hugepd_freelist **batchp;
269
270 batchp = &get_cpu_var(hugepd_freelist_cur);
271
272 if (atomic_read(&tlb->mm->mm_users) < 2 ||
273 mm_is_thread_local(tlb->mm)) {
274 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
275 put_cpu_var(hugepd_freelist_cur);
276 return;
277 }
278
279 if (*batchp == NULL) {
280 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
281 (*batchp)->index = 0;
282 }
283
284 (*batchp)->ptes[(*batchp)->index++] = hugepte;
285 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
286 call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
287 *batchp = NULL;
288 }
289 put_cpu_var(hugepd_freelist_cur);
290}
291#else
292static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
293#endif
294
295static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
296 unsigned long start, unsigned long end,
297 unsigned long floor, unsigned long ceiling)
298{
299 pte_t *hugepte = hugepd_page(*hpdp);
300 int i;
301
302 unsigned long pdmask = ~((1UL << pdshift) - 1);
303 unsigned int num_hugepd = 1;
304 unsigned int shift = hugepd_shift(*hpdp);
305
306 /* Note: On fsl the hpdp may be the first of several */
307 if (shift > pdshift)
308 num_hugepd = 1 << (shift - pdshift);
309
310 start &= pdmask;
311 if (start < floor)
312 return;
313 if (ceiling) {
314 ceiling &= pdmask;
315 if (! ceiling)
316 return;
317 }
318 if (end - 1 > ceiling - 1)
319 return;
320
321 for (i = 0; i < num_hugepd; i++, hpdp++)
322 *hpdp = __hugepd(0);
323
324 if (shift >= pdshift)
325 hugepd_free(tlb, hugepte);
326 else if (IS_ENABLED(CONFIG_PPC_8xx))
327 pgtable_free_tlb(tlb, hugepte,
328 get_hugepd_cache_index(PTE_INDEX_SIZE));
329 else
330 pgtable_free_tlb(tlb, hugepte,
331 get_hugepd_cache_index(pdshift - shift));
332}
333
334static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
335 unsigned long addr, unsigned long end,
336 unsigned long floor, unsigned long ceiling)
337{
338 pmd_t *pmd;
339 unsigned long next;
340 unsigned long start;
341
342 start = addr;
343 do {
344 unsigned long more;
345
346 pmd = pmd_offset(pud, addr);
347 next = pmd_addr_end(addr, end);
348 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
349 /*
350 * if it is not hugepd pointer, we should already find
351 * it cleared.
352 */
353 WARN_ON(!pmd_none_or_clear_bad(pmd));
354 continue;
355 }
356 /*
357 * Increment next by the size of the huge mapping since
358 * there may be more than one entry at this level for a
359 * single hugepage, but all of them point to
360 * the same kmem cache that holds the hugepte.
361 */
362 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
363 if (more > next)
364 next = more;
365
366 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
367 addr, next, floor, ceiling);
368 } while (addr = next, addr != end);
369
370 start &= PUD_MASK;
371 if (start < floor)
372 return;
373 if (ceiling) {
374 ceiling &= PUD_MASK;
375 if (!ceiling)
376 return;
377 }
378 if (end - 1 > ceiling - 1)
379 return;
380
381 pmd = pmd_offset(pud, start);
382 pud_clear(pud);
383 pmd_free_tlb(tlb, pmd, start);
384 mm_dec_nr_pmds(tlb->mm);
385}
386
387static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
388 unsigned long addr, unsigned long end,
389 unsigned long floor, unsigned long ceiling)
390{
391 pud_t *pud;
392 unsigned long next;
393 unsigned long start;
394
395 start = addr;
396 do {
397 pud = pud_offset(pgd, addr);
398 next = pud_addr_end(addr, end);
399 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
400 if (pud_none_or_clear_bad(pud))
401 continue;
402 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
403 ceiling);
404 } else {
405 unsigned long more;
406 /*
407 * Increment next by the size of the huge mapping since
408 * there may be more than one entry at this level for a
409 * single hugepage, but all of them point to
410 * the same kmem cache that holds the hugepte.
411 */
412 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
413 if (more > next)
414 next = more;
415
416 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
417 addr, next, floor, ceiling);
418 }
419 } while (addr = next, addr != end);
420
421 start &= PGDIR_MASK;
422 if (start < floor)
423 return;
424 if (ceiling) {
425 ceiling &= PGDIR_MASK;
426 if (!ceiling)
427 return;
428 }
429 if (end - 1 > ceiling - 1)
430 return;
431
432 pud = pud_offset(pgd, start);
433 pgd_clear(pgd);
434 pud_free_tlb(tlb, pud, start);
435 mm_dec_nr_puds(tlb->mm);
436}
437
438/*
439 * This function frees user-level page tables of a process.
440 */
441void hugetlb_free_pgd_range(struct mmu_gather *tlb,
442 unsigned long addr, unsigned long end,
443 unsigned long floor, unsigned long ceiling)
444{
445 pgd_t *pgd;
446 unsigned long next;
447
448 /*
449 * Because there are a number of different possible pagetable
450 * layouts for hugepage ranges, we limit knowledge of how
451 * things should be laid out to the allocation path
452 * (huge_pte_alloc(), above). Everything else works out the
453 * structure as it goes from information in the hugepd
454 * pointers. That means that we can't here use the
455 * optimization used in the normal page free_pgd_range(), of
456 * checking whether we're actually covering a large enough
457 * range to have to do anything at the top level of the walk
458 * instead of at the bottom.
459 *
460 * To make sense of this, you should probably go read the big
461 * block comment at the top of the normal free_pgd_range(),
462 * too.
463 */
464
465 do {
466 next = pgd_addr_end(addr, end);
467 pgd = pgd_offset(tlb->mm, addr);
468 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
469 if (pgd_none_or_clear_bad(pgd))
470 continue;
471 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
472 } else {
473 unsigned long more;
474 /*
475 * Increment next by the size of the huge mapping since
476 * there may be more than one entry at the pgd level
477 * for a single hugepage, but all of them point to the
478 * same kmem cache that holds the hugepte.
479 */
480 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
481 if (more > next)
482 next = more;
483
484 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
485 addr, next, floor, ceiling);
486 }
487 } while (addr = next, addr != end);
488}
489
490struct page *follow_huge_pd(struct vm_area_struct *vma,
491 unsigned long address, hugepd_t hpd,
492 int flags, int pdshift)
493{
494 pte_t *ptep;
495 spinlock_t *ptl;
496 struct page *page = NULL;
497 unsigned long mask;
498 int shift = hugepd_shift(hpd);
499 struct mm_struct *mm = vma->vm_mm;
500
501retry:
502 /*
503 * hugepage directory entries are protected by mm->page_table_lock
504 * Use this instead of huge_pte_lockptr
505 */
506 ptl = &mm->page_table_lock;
507 spin_lock(ptl);
508
509 ptep = hugepte_offset(hpd, address, pdshift);
510 if (pte_present(*ptep)) {
511 mask = (1UL << shift) - 1;
512 page = pte_page(*ptep);
513 page += ((address & mask) >> PAGE_SHIFT);
514 if (flags & FOLL_GET)
515 get_page(page);
516 } else {
517 if (is_hugetlb_entry_migration(*ptep)) {
518 spin_unlock(ptl);
519 __migration_entry_wait(mm, ptep, ptl);
520 goto retry;
521 }
522 }
523 spin_unlock(ptl);
524 return page;
525}
526
527#ifdef CONFIG_PPC_MM_SLICES
528unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
529 unsigned long len, unsigned long pgoff,
530 unsigned long flags)
531{
532 struct hstate *hstate = hstate_file(file);
533 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
534
535#ifdef CONFIG_PPC_RADIX_MMU
536 if (radix_enabled())
537 return radix__hugetlb_get_unmapped_area(file, addr, len,
538 pgoff, flags);
539#endif
540 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
541}
542#endif
543
544unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
545{
546 /* With radix we don't use slice, so derive it from vma*/
547 if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
548 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
549
550 return 1UL << mmu_psize_to_shift(psize);
551 }
552 return vma_kernel_pagesize(vma);
553}
554
555static int __init add_huge_page_size(unsigned long long size)
556{
557 int shift = __ffs(size);
558 int mmu_psize;
559
560 /* Check that it is a page size supported by the hardware and
561 * that it fits within pagetable and slice limits. */
562 if (size <= PAGE_SIZE || !is_power_of_2(size))
563 return -EINVAL;
564
565 mmu_psize = check_and_get_huge_psize(shift);
566 if (mmu_psize < 0)
567 return -EINVAL;
568
569 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
570
571 /* Return if huge page size has already been setup */
572 if (size_to_hstate(size))
573 return 0;
574
575 hugetlb_add_hstate(shift - PAGE_SHIFT);
576
577 return 0;
578}
579
580static int __init hugepage_setup_sz(char *str)
581{
582 unsigned long long size;
583
584 size = memparse(str, &str);
585
586 if (add_huge_page_size(size) != 0) {
587 hugetlb_bad_size();
588 pr_err("Invalid huge page size specified(%llu)\n", size);
589 }
590
591 return 1;
592}
593__setup("hugepagesz=", hugepage_setup_sz);
594
595static int __init hugetlbpage_init(void)
596{
597 bool configured = false;
598 int psize;
599
600 if (hugetlb_disabled) {
601 pr_info("HugeTLB support is disabled!\n");
602 return 0;
603 }
604
605 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
606 !mmu_has_feature(MMU_FTR_16M_PAGE))
607 return -ENODEV;
608
609 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
610 unsigned shift;
611 unsigned pdshift;
612
613 if (!mmu_psize_defs[psize].shift)
614 continue;
615
616 shift = mmu_psize_to_shift(psize);
617
618#ifdef CONFIG_PPC_BOOK3S_64
619 if (shift > PGDIR_SHIFT)
620 continue;
621 else if (shift > PUD_SHIFT)
622 pdshift = PGDIR_SHIFT;
623 else if (shift > PMD_SHIFT)
624 pdshift = PUD_SHIFT;
625 else
626 pdshift = PMD_SHIFT;
627#else
628 if (shift < PUD_SHIFT)
629 pdshift = PMD_SHIFT;
630 else if (shift < PGDIR_SHIFT)
631 pdshift = PUD_SHIFT;
632 else
633 pdshift = PGDIR_SHIFT;
634#endif
635
636 if (add_huge_page_size(1ULL << shift) < 0)
637 continue;
638 /*
639 * if we have pdshift and shift value same, we don't
640 * use pgt cache for hugepd.
641 */
642 if (pdshift > shift && IS_ENABLED(CONFIG_PPC_8xx))
643 pgtable_cache_add(PTE_INDEX_SIZE);
644 else if (pdshift > shift)
645 pgtable_cache_add(pdshift - shift);
646 else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) || IS_ENABLED(CONFIG_PPC_8xx))
647 pgtable_cache_add(PTE_T_ORDER);
648
649 configured = true;
650 }
651
652 if (configured) {
653 if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
654 hugetlbpage_init_default();
655 } else
656 pr_info("Failed to initialize. Disabling HugeTLB");
657
658 return 0;
659}
660
661arch_initcall(hugetlbpage_init);
662
663void flush_dcache_icache_hugepage(struct page *page)
664{
665 int i;
666 void *start;
667
668 BUG_ON(!PageCompound(page));
669
670 for (i = 0; i < compound_nr(page); i++) {
671 if (!PageHighMem(page)) {
672 __flush_dcache_icache(page_address(page+i));
673 } else {
674 start = kmap_atomic(page+i);
675 __flush_dcache_icache(start);
676 kunmap_atomic(start);
677 }
678 }
679}
1/*
2 * PPC Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/io.h>
13#include <linux/slab.h>
14#include <linux/hugetlb.h>
15#include <linux/export.h>
16#include <linux/of_fdt.h>
17#include <linux/memblock.h>
18#include <linux/bootmem.h>
19#include <linux/moduleparam.h>
20#include <asm/pgtable.h>
21#include <asm/pgalloc.h>
22#include <asm/tlb.h>
23#include <asm/setup.h>
24
25#define PAGE_SHIFT_64K 16
26#define PAGE_SHIFT_16M 24
27#define PAGE_SHIFT_16G 34
28
29unsigned int HPAGE_SHIFT;
30
31/*
32 * Tracks gpages after the device tree is scanned and before the
33 * huge_boot_pages list is ready. On non-Freescale implementations, this is
34 * just used to track 16G pages and so is a single array. FSL-based
35 * implementations may have more than one gpage size, so we need multiple
36 * arrays
37 */
38#ifdef CONFIG_PPC_FSL_BOOK3E
39#define MAX_NUMBER_GPAGES 128
40struct psize_gpages {
41 u64 gpage_list[MAX_NUMBER_GPAGES];
42 unsigned int nr_gpages;
43};
44static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
45#else
46#define MAX_NUMBER_GPAGES 1024
47static u64 gpage_freearray[MAX_NUMBER_GPAGES];
48static unsigned nr_gpages;
49#endif
50
51static inline int shift_to_mmu_psize(unsigned int shift)
52{
53 int psize;
54
55 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
56 if (mmu_psize_defs[psize].shift == shift)
57 return psize;
58 return -1;
59}
60
61static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
62{
63 if (mmu_psize_defs[mmu_psize].shift)
64 return mmu_psize_defs[mmu_psize].shift;
65 BUG();
66}
67
68#define hugepd_none(hpd) ((hpd).pd == 0)
69
70pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
71{
72 pgd_t *pg;
73 pud_t *pu;
74 pmd_t *pm;
75 hugepd_t *hpdp = NULL;
76 unsigned pdshift = PGDIR_SHIFT;
77
78 if (shift)
79 *shift = 0;
80
81 pg = pgdir + pgd_index(ea);
82 if (is_hugepd(pg)) {
83 hpdp = (hugepd_t *)pg;
84 } else if (!pgd_none(*pg)) {
85 pdshift = PUD_SHIFT;
86 pu = pud_offset(pg, ea);
87 if (is_hugepd(pu))
88 hpdp = (hugepd_t *)pu;
89 else if (!pud_none(*pu)) {
90 pdshift = PMD_SHIFT;
91 pm = pmd_offset(pu, ea);
92 if (is_hugepd(pm))
93 hpdp = (hugepd_t *)pm;
94 else if (!pmd_none(*pm)) {
95 return pte_offset_kernel(pm, ea);
96 }
97 }
98 }
99
100 if (!hpdp)
101 return NULL;
102
103 if (shift)
104 *shift = hugepd_shift(*hpdp);
105 return hugepte_offset(hpdp, ea, pdshift);
106}
107EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
108
109pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
110{
111 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
112}
113
114static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
115 unsigned long address, unsigned pdshift, unsigned pshift)
116{
117 struct kmem_cache *cachep;
118 pte_t *new;
119
120#ifdef CONFIG_PPC_FSL_BOOK3E
121 int i;
122 int num_hugepd = 1 << (pshift - pdshift);
123 cachep = hugepte_cache;
124#else
125 cachep = PGT_CACHE(pdshift - pshift);
126#endif
127
128 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
129
130 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
131 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
132
133 if (! new)
134 return -ENOMEM;
135
136 spin_lock(&mm->page_table_lock);
137#ifdef CONFIG_PPC_FSL_BOOK3E
138 /*
139 * We have multiple higher-level entries that point to the same
140 * actual pte location. Fill in each as we go and backtrack on error.
141 * We need all of these so the DTLB pgtable walk code can find the
142 * right higher-level entry without knowing if it's a hugepage or not.
143 */
144 for (i = 0; i < num_hugepd; i++, hpdp++) {
145 if (unlikely(!hugepd_none(*hpdp)))
146 break;
147 else
148 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
149 }
150 /* If we bailed from the for loop early, an error occurred, clean up */
151 if (i < num_hugepd) {
152 for (i = i - 1 ; i >= 0; i--, hpdp--)
153 hpdp->pd = 0;
154 kmem_cache_free(cachep, new);
155 }
156#else
157 if (!hugepd_none(*hpdp))
158 kmem_cache_free(cachep, new);
159 else
160 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
161#endif
162 spin_unlock(&mm->page_table_lock);
163 return 0;
164}
165
166/*
167 * These macros define how to determine which level of the page table holds
168 * the hpdp.
169 */
170#ifdef CONFIG_PPC_FSL_BOOK3E
171#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
172#define HUGEPD_PUD_SHIFT PUD_SHIFT
173#else
174#define HUGEPD_PGD_SHIFT PUD_SHIFT
175#define HUGEPD_PUD_SHIFT PMD_SHIFT
176#endif
177
178pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
179{
180 pgd_t *pg;
181 pud_t *pu;
182 pmd_t *pm;
183 hugepd_t *hpdp = NULL;
184 unsigned pshift = __ffs(sz);
185 unsigned pdshift = PGDIR_SHIFT;
186
187 addr &= ~(sz-1);
188
189 pg = pgd_offset(mm, addr);
190
191 if (pshift >= HUGEPD_PGD_SHIFT) {
192 hpdp = (hugepd_t *)pg;
193 } else {
194 pdshift = PUD_SHIFT;
195 pu = pud_alloc(mm, pg, addr);
196 if (pshift >= HUGEPD_PUD_SHIFT) {
197 hpdp = (hugepd_t *)pu;
198 } else {
199 pdshift = PMD_SHIFT;
200 pm = pmd_alloc(mm, pu, addr);
201 hpdp = (hugepd_t *)pm;
202 }
203 }
204
205 if (!hpdp)
206 return NULL;
207
208 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
209
210 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
211 return NULL;
212
213 return hugepte_offset(hpdp, addr, pdshift);
214}
215
216#ifdef CONFIG_PPC_FSL_BOOK3E
217/* Build list of addresses of gigantic pages. This function is used in early
218 * boot before the buddy or bootmem allocator is setup.
219 */
220void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
221{
222 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
223 int i;
224
225 if (addr == 0)
226 return;
227
228 gpage_freearray[idx].nr_gpages = number_of_pages;
229
230 for (i = 0; i < number_of_pages; i++) {
231 gpage_freearray[idx].gpage_list[i] = addr;
232 addr += page_size;
233 }
234}
235
236/*
237 * Moves the gigantic page addresses from the temporary list to the
238 * huge_boot_pages list.
239 */
240int alloc_bootmem_huge_page(struct hstate *hstate)
241{
242 struct huge_bootmem_page *m;
243 int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT);
244 int nr_gpages = gpage_freearray[idx].nr_gpages;
245
246 if (nr_gpages == 0)
247 return 0;
248
249#ifdef CONFIG_HIGHMEM
250 /*
251 * If gpages can be in highmem we can't use the trick of storing the
252 * data structure in the page; allocate space for this
253 */
254 m = alloc_bootmem(sizeof(struct huge_bootmem_page));
255 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
256#else
257 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
258#endif
259
260 list_add(&m->list, &huge_boot_pages);
261 gpage_freearray[idx].nr_gpages = nr_gpages;
262 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
263 m->hstate = hstate;
264
265 return 1;
266}
267/*
268 * Scan the command line hugepagesz= options for gigantic pages; store those in
269 * a list that we use to allocate the memory once all options are parsed.
270 */
271
272unsigned long gpage_npages[MMU_PAGE_COUNT];
273
274static int __init do_gpage_early_setup(char *param, char *val,
275 const char *unused)
276{
277 static phys_addr_t size;
278 unsigned long npages;
279
280 /*
281 * The hugepagesz and hugepages cmdline options are interleaved. We
282 * use the size variable to keep track of whether or not this was done
283 * properly and skip over instances where it is incorrect. Other
284 * command-line parsing code will issue warnings, so we don't need to.
285 *
286 */
287 if ((strcmp(param, "default_hugepagesz") == 0) ||
288 (strcmp(param, "hugepagesz") == 0)) {
289 size = memparse(val, NULL);
290 } else if (strcmp(param, "hugepages") == 0) {
291 if (size != 0) {
292 if (sscanf(val, "%lu", &npages) <= 0)
293 npages = 0;
294 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
295 size = 0;
296 }
297 }
298 return 0;
299}
300
301
302/*
303 * This function allocates physical space for pages that are larger than the
304 * buddy allocator can handle. We want to allocate these in highmem because
305 * the amount of lowmem is limited. This means that this function MUST be
306 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
307 * allocate to grab highmem.
308 */
309void __init reserve_hugetlb_gpages(void)
310{
311 static __initdata char cmdline[COMMAND_LINE_SIZE];
312 phys_addr_t size, base;
313 int i;
314
315 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
316 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
317 &do_gpage_early_setup);
318
319 /*
320 * Walk gpage list in reverse, allocating larger page sizes first.
321 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
322 * When we reach the point in the list where pages are no longer
323 * considered gpages, we're done.
324 */
325 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
326 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
327 continue;
328 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
329 break;
330
331 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
332 base = memblock_alloc_base(size * gpage_npages[i], size,
333 MEMBLOCK_ALLOC_ANYWHERE);
334 add_gpage(base, size, gpage_npages[i]);
335 }
336}
337
338#else /* !PPC_FSL_BOOK3E */
339
340/* Build list of addresses of gigantic pages. This function is used in early
341 * boot before the buddy or bootmem allocator is setup.
342 */
343void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
344{
345 if (!addr)
346 return;
347 while (number_of_pages > 0) {
348 gpage_freearray[nr_gpages] = addr;
349 nr_gpages++;
350 number_of_pages--;
351 addr += page_size;
352 }
353}
354
355/* Moves the gigantic page addresses from the temporary list to the
356 * huge_boot_pages list.
357 */
358int alloc_bootmem_huge_page(struct hstate *hstate)
359{
360 struct huge_bootmem_page *m;
361 if (nr_gpages == 0)
362 return 0;
363 m = phys_to_virt(gpage_freearray[--nr_gpages]);
364 gpage_freearray[nr_gpages] = 0;
365 list_add(&m->list, &huge_boot_pages);
366 m->hstate = hstate;
367 return 1;
368}
369#endif
370
371int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
372{
373 return 0;
374}
375
376#ifdef CONFIG_PPC_FSL_BOOK3E
377#define HUGEPD_FREELIST_SIZE \
378 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
379
380struct hugepd_freelist {
381 struct rcu_head rcu;
382 unsigned int index;
383 void *ptes[0];
384};
385
386static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
387
388static void hugepd_free_rcu_callback(struct rcu_head *head)
389{
390 struct hugepd_freelist *batch =
391 container_of(head, struct hugepd_freelist, rcu);
392 unsigned int i;
393
394 for (i = 0; i < batch->index; i++)
395 kmem_cache_free(hugepte_cache, batch->ptes[i]);
396
397 free_page((unsigned long)batch);
398}
399
400static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
401{
402 struct hugepd_freelist **batchp;
403
404 batchp = &__get_cpu_var(hugepd_freelist_cur);
405
406 if (atomic_read(&tlb->mm->mm_users) < 2 ||
407 cpumask_equal(mm_cpumask(tlb->mm),
408 cpumask_of(smp_processor_id()))) {
409 kmem_cache_free(hugepte_cache, hugepte);
410 return;
411 }
412
413 if (*batchp == NULL) {
414 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
415 (*batchp)->index = 0;
416 }
417
418 (*batchp)->ptes[(*batchp)->index++] = hugepte;
419 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
420 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
421 *batchp = NULL;
422 }
423}
424#endif
425
426static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
427 unsigned long start, unsigned long end,
428 unsigned long floor, unsigned long ceiling)
429{
430 pte_t *hugepte = hugepd_page(*hpdp);
431 int i;
432
433 unsigned long pdmask = ~((1UL << pdshift) - 1);
434 unsigned int num_hugepd = 1;
435
436#ifdef CONFIG_PPC_FSL_BOOK3E
437 /* Note: On fsl the hpdp may be the first of several */
438 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
439#else
440 unsigned int shift = hugepd_shift(*hpdp);
441#endif
442
443 start &= pdmask;
444 if (start < floor)
445 return;
446 if (ceiling) {
447 ceiling &= pdmask;
448 if (! ceiling)
449 return;
450 }
451 if (end - 1 > ceiling - 1)
452 return;
453
454 for (i = 0; i < num_hugepd; i++, hpdp++)
455 hpdp->pd = 0;
456
457 tlb->need_flush = 1;
458
459#ifdef CONFIG_PPC_FSL_BOOK3E
460 hugepd_free(tlb, hugepte);
461#else
462 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
463#endif
464}
465
466static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
467 unsigned long addr, unsigned long end,
468 unsigned long floor, unsigned long ceiling)
469{
470 pmd_t *pmd;
471 unsigned long next;
472 unsigned long start;
473
474 start = addr;
475 do {
476 pmd = pmd_offset(pud, addr);
477 next = pmd_addr_end(addr, end);
478 if (pmd_none(*pmd))
479 continue;
480#ifdef CONFIG_PPC_FSL_BOOK3E
481 /*
482 * Increment next by the size of the huge mapping since
483 * there may be more than one entry at this level for a
484 * single hugepage, but all of them point to
485 * the same kmem cache that holds the hugepte.
486 */
487 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
488#endif
489 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
490 addr, next, floor, ceiling);
491 } while (addr = next, addr != end);
492
493 start &= PUD_MASK;
494 if (start < floor)
495 return;
496 if (ceiling) {
497 ceiling &= PUD_MASK;
498 if (!ceiling)
499 return;
500 }
501 if (end - 1 > ceiling - 1)
502 return;
503
504 pmd = pmd_offset(pud, start);
505 pud_clear(pud);
506 pmd_free_tlb(tlb, pmd, start);
507}
508
509static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
510 unsigned long addr, unsigned long end,
511 unsigned long floor, unsigned long ceiling)
512{
513 pud_t *pud;
514 unsigned long next;
515 unsigned long start;
516
517 start = addr;
518 do {
519 pud = pud_offset(pgd, addr);
520 next = pud_addr_end(addr, end);
521 if (!is_hugepd(pud)) {
522 if (pud_none_or_clear_bad(pud))
523 continue;
524 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
525 ceiling);
526 } else {
527#ifdef CONFIG_PPC_FSL_BOOK3E
528 /*
529 * Increment next by the size of the huge mapping since
530 * there may be more than one entry at this level for a
531 * single hugepage, but all of them point to
532 * the same kmem cache that holds the hugepte.
533 */
534 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
535#endif
536 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
537 addr, next, floor, ceiling);
538 }
539 } while (addr = next, addr != end);
540
541 start &= PGDIR_MASK;
542 if (start < floor)
543 return;
544 if (ceiling) {
545 ceiling &= PGDIR_MASK;
546 if (!ceiling)
547 return;
548 }
549 if (end - 1 > ceiling - 1)
550 return;
551
552 pud = pud_offset(pgd, start);
553 pgd_clear(pgd);
554 pud_free_tlb(tlb, pud, start);
555}
556
557/*
558 * This function frees user-level page tables of a process.
559 *
560 * Must be called with pagetable lock held.
561 */
562void hugetlb_free_pgd_range(struct mmu_gather *tlb,
563 unsigned long addr, unsigned long end,
564 unsigned long floor, unsigned long ceiling)
565{
566 pgd_t *pgd;
567 unsigned long next;
568
569 /*
570 * Because there are a number of different possible pagetable
571 * layouts for hugepage ranges, we limit knowledge of how
572 * things should be laid out to the allocation path
573 * (huge_pte_alloc(), above). Everything else works out the
574 * structure as it goes from information in the hugepd
575 * pointers. That means that we can't here use the
576 * optimization used in the normal page free_pgd_range(), of
577 * checking whether we're actually covering a large enough
578 * range to have to do anything at the top level of the walk
579 * instead of at the bottom.
580 *
581 * To make sense of this, you should probably go read the big
582 * block comment at the top of the normal free_pgd_range(),
583 * too.
584 */
585
586 do {
587 next = pgd_addr_end(addr, end);
588 pgd = pgd_offset(tlb->mm, addr);
589 if (!is_hugepd(pgd)) {
590 if (pgd_none_or_clear_bad(pgd))
591 continue;
592 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
593 } else {
594#ifdef CONFIG_PPC_FSL_BOOK3E
595 /*
596 * Increment next by the size of the huge mapping since
597 * there may be more than one entry at the pgd level
598 * for a single hugepage, but all of them point to the
599 * same kmem cache that holds the hugepte.
600 */
601 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
602#endif
603 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
604 addr, next, floor, ceiling);
605 }
606 } while (addr = next, addr != end);
607}
608
609struct page *
610follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
611{
612 pte_t *ptep;
613 struct page *page;
614 unsigned shift;
615 unsigned long mask;
616
617 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
618
619 /* Verify it is a huge page else bail. */
620 if (!ptep || !shift)
621 return ERR_PTR(-EINVAL);
622
623 mask = (1UL << shift) - 1;
624 page = pte_page(*ptep);
625 if (page)
626 page += (address & mask) / PAGE_SIZE;
627
628 return page;
629}
630
631int pmd_huge(pmd_t pmd)
632{
633 return 0;
634}
635
636int pud_huge(pud_t pud)
637{
638 return 0;
639}
640
641struct page *
642follow_huge_pmd(struct mm_struct *mm, unsigned long address,
643 pmd_t *pmd, int write)
644{
645 BUG();
646 return NULL;
647}
648
649static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
650 unsigned long end, int write, struct page **pages, int *nr)
651{
652 unsigned long mask;
653 unsigned long pte_end;
654 struct page *head, *page, *tail;
655 pte_t pte;
656 int refs;
657
658 pte_end = (addr + sz) & ~(sz-1);
659 if (pte_end < end)
660 end = pte_end;
661
662 pte = *ptep;
663 mask = _PAGE_PRESENT | _PAGE_USER;
664 if (write)
665 mask |= _PAGE_RW;
666
667 if ((pte_val(pte) & mask) != mask)
668 return 0;
669
670 /* hugepages are never "special" */
671 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
672
673 refs = 0;
674 head = pte_page(pte);
675
676 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
677 tail = page;
678 do {
679 VM_BUG_ON(compound_head(page) != head);
680 pages[*nr] = page;
681 (*nr)++;
682 page++;
683 refs++;
684 } while (addr += PAGE_SIZE, addr != end);
685
686 if (!page_cache_add_speculative(head, refs)) {
687 *nr -= refs;
688 return 0;
689 }
690
691 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
692 /* Could be optimized better */
693 *nr -= refs;
694 while (refs--)
695 put_page(head);
696 return 0;
697 }
698
699 /*
700 * Any tail page need their mapcount reference taken before we
701 * return.
702 */
703 while (refs--) {
704 if (PageTail(tail))
705 get_huge_page_tail(tail);
706 tail++;
707 }
708
709 return 1;
710}
711
712static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
713 unsigned long sz)
714{
715 unsigned long __boundary = (addr + sz) & ~(sz-1);
716 return (__boundary - 1 < end - 1) ? __boundary : end;
717}
718
719int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
720 unsigned long addr, unsigned long end,
721 int write, struct page **pages, int *nr)
722{
723 pte_t *ptep;
724 unsigned long sz = 1UL << hugepd_shift(*hugepd);
725 unsigned long next;
726
727 ptep = hugepte_offset(hugepd, addr, pdshift);
728 do {
729 next = hugepte_addr_end(addr, end, sz);
730 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
731 return 0;
732 } while (ptep++, addr = next, addr != end);
733
734 return 1;
735}
736
737#ifdef CONFIG_PPC_MM_SLICES
738unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
739 unsigned long len, unsigned long pgoff,
740 unsigned long flags)
741{
742 struct hstate *hstate = hstate_file(file);
743 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
744
745 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
746}
747#endif
748
749unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
750{
751#ifdef CONFIG_PPC_MM_SLICES
752 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
753
754 return 1UL << mmu_psize_to_shift(psize);
755#else
756 if (!is_vm_hugetlb_page(vma))
757 return PAGE_SIZE;
758
759 return huge_page_size(hstate_vma(vma));
760#endif
761}
762
763static inline bool is_power_of_4(unsigned long x)
764{
765 if (is_power_of_2(x))
766 return (__ilog2(x) % 2) ? false : true;
767 return false;
768}
769
770static int __init add_huge_page_size(unsigned long long size)
771{
772 int shift = __ffs(size);
773 int mmu_psize;
774
775 /* Check that it is a page size supported by the hardware and
776 * that it fits within pagetable and slice limits. */
777#ifdef CONFIG_PPC_FSL_BOOK3E
778 if ((size < PAGE_SIZE) || !is_power_of_4(size))
779 return -EINVAL;
780#else
781 if (!is_power_of_2(size)
782 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
783 return -EINVAL;
784#endif
785
786 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
787 return -EINVAL;
788
789#ifdef CONFIG_SPU_FS_64K_LS
790 /* Disable support for 64K huge pages when 64K SPU local store
791 * support is enabled as the current implementation conflicts.
792 */
793 if (shift == PAGE_SHIFT_64K)
794 return -EINVAL;
795#endif /* CONFIG_SPU_FS_64K_LS */
796
797 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
798
799 /* Return if huge page size has already been setup */
800 if (size_to_hstate(size))
801 return 0;
802
803 hugetlb_add_hstate(shift - PAGE_SHIFT);
804
805 return 0;
806}
807
808static int __init hugepage_setup_sz(char *str)
809{
810 unsigned long long size;
811
812 size = memparse(str, &str);
813
814 if (add_huge_page_size(size) != 0)
815 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
816
817 return 1;
818}
819__setup("hugepagesz=", hugepage_setup_sz);
820
821#ifdef CONFIG_PPC_FSL_BOOK3E
822struct kmem_cache *hugepte_cache;
823static int __init hugetlbpage_init(void)
824{
825 int psize;
826
827 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
828 unsigned shift;
829
830 if (!mmu_psize_defs[psize].shift)
831 continue;
832
833 shift = mmu_psize_to_shift(psize);
834
835 /* Don't treat normal page sizes as huge... */
836 if (shift != PAGE_SHIFT)
837 if (add_huge_page_size(1ULL << shift) < 0)
838 continue;
839 }
840
841 /*
842 * Create a kmem cache for hugeptes. The bottom bits in the pte have
843 * size information encoded in them, so align them to allow this
844 */
845 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
846 HUGEPD_SHIFT_MASK + 1, 0, NULL);
847 if (hugepte_cache == NULL)
848 panic("%s: Unable to create kmem cache for hugeptes\n",
849 __func__);
850
851 /* Default hpage size = 4M */
852 if (mmu_psize_defs[MMU_PAGE_4M].shift)
853 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
854 else
855 panic("%s: Unable to set default huge page size\n", __func__);
856
857
858 return 0;
859}
860#else
861static int __init hugetlbpage_init(void)
862{
863 int psize;
864
865 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
866 return -ENODEV;
867
868 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
869 unsigned shift;
870 unsigned pdshift;
871
872 if (!mmu_psize_defs[psize].shift)
873 continue;
874
875 shift = mmu_psize_to_shift(psize);
876
877 if (add_huge_page_size(1ULL << shift) < 0)
878 continue;
879
880 if (shift < PMD_SHIFT)
881 pdshift = PMD_SHIFT;
882 else if (shift < PUD_SHIFT)
883 pdshift = PUD_SHIFT;
884 else
885 pdshift = PGDIR_SHIFT;
886
887 pgtable_cache_add(pdshift - shift, NULL);
888 if (!PGT_CACHE(pdshift - shift))
889 panic("hugetlbpage_init(): could not create "
890 "pgtable cache for %d bit pagesize\n", shift);
891 }
892
893 /* Set default large page size. Currently, we pick 16M or 1M
894 * depending on what is available
895 */
896 if (mmu_psize_defs[MMU_PAGE_16M].shift)
897 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
898 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
899 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
900
901 return 0;
902}
903#endif
904module_init(hugetlbpage_init);
905
906void flush_dcache_icache_hugepage(struct page *page)
907{
908 int i;
909 void *start;
910
911 BUG_ON(!PageCompound(page));
912
913 for (i = 0; i < (1UL << compound_order(page)); i++) {
914 if (!PageHighMem(page)) {
915 __flush_dcache_icache(page_address(page+i));
916 } else {
917 start = kmap_atomic(page+i);
918 __flush_dcache_icache(start);
919 kunmap_atomic(start);
920 }
921 }
922}