Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/livepatch.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/signal.h>
  52
  53#include <asm/param.h>
  54#include <linux/uaccess.h>
  55#include <asm/unistd.h>
  56#include <asm/siginfo.h>
  57#include <asm/cacheflush.h>
 
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 
 
 
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
 185	    !klp_patch_pending(current))
 186		clear_thread_flag(TIF_SIGPENDING);
 187
 188}
 189EXPORT_SYMBOL(recalc_sigpending);
 190
 191void calculate_sigpending(void)
 192{
 193	/* Have any signals or users of TIF_SIGPENDING been delayed
 194	 * until after fork?
 195	 */
 196	spin_lock_irq(&current->sighand->siglock);
 197	set_tsk_thread_flag(current, TIF_SIGPENDING);
 198	recalc_sigpending();
 199	spin_unlock_irq(&current->sighand->siglock);
 200}
 201
 202/* Given the mask, find the first available signal that should be serviced. */
 203
 204#define SYNCHRONOUS_MASK \
 205	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 206	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 207
 208int next_signal(struct sigpending *pending, sigset_t *mask)
 209{
 210	unsigned long i, *s, *m, x;
 211	int sig = 0;
 212
 213	s = pending->signal.sig;
 214	m = mask->sig;
 215
 216	/*
 217	 * Handle the first word specially: it contains the
 218	 * synchronous signals that need to be dequeued first.
 219	 */
 220	x = *s &~ *m;
 221	if (x) {
 222		if (x & SYNCHRONOUS_MASK)
 223			x &= SYNCHRONOUS_MASK;
 224		sig = ffz(~x) + 1;
 225		return sig;
 226	}
 227
 228	switch (_NSIG_WORDS) {
 229	default:
 230		for (i = 1; i < _NSIG_WORDS; ++i) {
 231			x = *++s &~ *++m;
 232			if (!x)
 233				continue;
 234			sig = ffz(~x) + i*_NSIG_BPW + 1;
 235			break;
 236		}
 237		break;
 238
 239	case 2:
 240		x = s[1] &~ m[1];
 241		if (!x)
 242			break;
 243		sig = ffz(~x) + _NSIG_BPW + 1;
 244		break;
 245
 246	case 1:
 247		/* Nothing to do */
 248		break;
 249	}
 250
 251	return sig;
 252}
 253
 254static inline void print_dropped_signal(int sig)
 255{
 256	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 257
 258	if (!print_fatal_signals)
 259		return;
 260
 261	if (!__ratelimit(&ratelimit_state))
 262		return;
 263
 264	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 265				current->comm, current->pid, sig);
 266}
 267
 268/**
 269 * task_set_jobctl_pending - set jobctl pending bits
 270 * @task: target task
 271 * @mask: pending bits to set
 272 *
 273 * Clear @mask from @task->jobctl.  @mask must be subset of
 274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 275 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 276 * cleared.  If @task is already being killed or exiting, this function
 277 * becomes noop.
 278 *
 279 * CONTEXT:
 280 * Must be called with @task->sighand->siglock held.
 281 *
 282 * RETURNS:
 283 * %true if @mask is set, %false if made noop because @task was dying.
 284 */
 285bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 286{
 287	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 288			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 289	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 290
 291	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 292		return false;
 293
 294	if (mask & JOBCTL_STOP_SIGMASK)
 295		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 296
 297	task->jobctl |= mask;
 298	return true;
 299}
 300
 301/**
 302 * task_clear_jobctl_trapping - clear jobctl trapping bit
 303 * @task: target task
 304 *
 305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 306 * Clear it and wake up the ptracer.  Note that we don't need any further
 307 * locking.  @task->siglock guarantees that @task->parent points to the
 308 * ptracer.
 309 *
 310 * CONTEXT:
 311 * Must be called with @task->sighand->siglock held.
 312 */
 313void task_clear_jobctl_trapping(struct task_struct *task)
 314{
 315	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 316		task->jobctl &= ~JOBCTL_TRAPPING;
 317		smp_mb();	/* advised by wake_up_bit() */
 318		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 319	}
 320}
 321
 322/**
 323 * task_clear_jobctl_pending - clear jobctl pending bits
 324 * @task: target task
 325 * @mask: pending bits to clear
 326 *
 327 * Clear @mask from @task->jobctl.  @mask must be subset of
 328 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 329 * STOP bits are cleared together.
 330 *
 331 * If clearing of @mask leaves no stop or trap pending, this function calls
 332 * task_clear_jobctl_trapping().
 333 *
 334 * CONTEXT:
 335 * Must be called with @task->sighand->siglock held.
 336 */
 337void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 338{
 339	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 340
 341	if (mask & JOBCTL_STOP_PENDING)
 342		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 343
 344	task->jobctl &= ~mask;
 345
 346	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 347		task_clear_jobctl_trapping(task);
 348}
 349
 350/**
 351 * task_participate_group_stop - participate in a group stop
 352 * @task: task participating in a group stop
 353 *
 354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 355 * Group stop states are cleared and the group stop count is consumed if
 356 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 357 * stop, the appropriate `SIGNAL_*` flags are set.
 358 *
 359 * CONTEXT:
 360 * Must be called with @task->sighand->siglock held.
 361 *
 362 * RETURNS:
 363 * %true if group stop completion should be notified to the parent, %false
 364 * otherwise.
 365 */
 366static bool task_participate_group_stop(struct task_struct *task)
 367{
 368	struct signal_struct *sig = task->signal;
 369	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 370
 371	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 372
 373	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 374
 375	if (!consume)
 376		return false;
 377
 378	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 379		sig->group_stop_count--;
 380
 381	/*
 382	 * Tell the caller to notify completion iff we are entering into a
 383	 * fresh group stop.  Read comment in do_signal_stop() for details.
 384	 */
 385	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 386		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 387		return true;
 388	}
 389	return false;
 390}
 391
 392void task_join_group_stop(struct task_struct *task)
 393{
 394	/* Have the new thread join an on-going signal group stop */
 395	unsigned long jobctl = current->jobctl;
 396	if (jobctl & JOBCTL_STOP_PENDING) {
 397		struct signal_struct *sig = current->signal;
 398		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
 399		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
 400		if (task_set_jobctl_pending(task, signr | gstop)) {
 401			sig->group_stop_count++;
 402		}
 403	}
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 413{
 414	struct sigqueue *q = NULL;
 415	struct user_struct *user;
 416
 417	/*
 418	 * Protect access to @t credentials. This can go away when all
 419	 * callers hold rcu read lock.
 420	 */
 421	rcu_read_lock();
 422	user = get_uid(__task_cred(t)->user);
 423	atomic_inc(&user->sigpending);
 424	rcu_read_unlock();
 425
 426	if (override_rlimit ||
 427	    atomic_read(&user->sigpending) <=
 428			task_rlimit(t, RLIMIT_SIGPENDING)) {
 429		q = kmem_cache_alloc(sigqueue_cachep, flags);
 430	} else {
 431		print_dropped_signal(sig);
 432	}
 433
 434	if (unlikely(q == NULL)) {
 435		atomic_dec(&user->sigpending);
 436		free_uid(user);
 437	} else {
 438		INIT_LIST_HEAD(&q->list);
 439		q->flags = 0;
 440		q->user = user;
 441	}
 442
 443	return q;
 444}
 445
 446static void __sigqueue_free(struct sigqueue *q)
 447{
 448	if (q->flags & SIGQUEUE_PREALLOC)
 449		return;
 450	atomic_dec(&q->user->sigpending);
 451	free_uid(q->user);
 452	kmem_cache_free(sigqueue_cachep, q);
 453}
 454
 455void flush_sigqueue(struct sigpending *queue)
 456{
 457	struct sigqueue *q;
 458
 459	sigemptyset(&queue->signal);
 460	while (!list_empty(&queue->list)) {
 461		q = list_entry(queue->list.next, struct sigqueue , list);
 462		list_del_init(&q->list);
 463		__sigqueue_free(q);
 464	}
 465}
 466
 467/*
 468 * Flush all pending signals for this kthread.
 469 */
 470void flush_signals(struct task_struct *t)
 471{
 472	unsigned long flags;
 473
 474	spin_lock_irqsave(&t->sighand->siglock, flags);
 475	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 476	flush_sigqueue(&t->pending);
 477	flush_sigqueue(&t->signal->shared_pending);
 478	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 479}
 480EXPORT_SYMBOL(flush_signals);
 481
 482#ifdef CONFIG_POSIX_TIMERS
 483static void __flush_itimer_signals(struct sigpending *pending)
 484{
 485	sigset_t signal, retain;
 486	struct sigqueue *q, *n;
 487
 488	signal = pending->signal;
 489	sigemptyset(&retain);
 490
 491	list_for_each_entry_safe(q, n, &pending->list, list) {
 492		int sig = q->info.si_signo;
 493
 494		if (likely(q->info.si_code != SI_TIMER)) {
 495			sigaddset(&retain, sig);
 496		} else {
 497			sigdelset(&signal, sig);
 498			list_del_init(&q->list);
 499			__sigqueue_free(q);
 500		}
 501	}
 502
 503	sigorsets(&pending->signal, &signal, &retain);
 504}
 505
 506void flush_itimer_signals(void)
 507{
 508	struct task_struct *tsk = current;
 509	unsigned long flags;
 510
 511	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 512	__flush_itimer_signals(&tsk->pending);
 513	__flush_itimer_signals(&tsk->signal->shared_pending);
 514	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 515}
 516#endif
 517
 518void ignore_signals(struct task_struct *t)
 519{
 520	int i;
 521
 522	for (i = 0; i < _NSIG; ++i)
 523		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 524
 525	flush_signals(t);
 526}
 527
 528/*
 529 * Flush all handlers for a task.
 530 */
 531
 532void
 533flush_signal_handlers(struct task_struct *t, int force_default)
 534{
 535	int i;
 536	struct k_sigaction *ka = &t->sighand->action[0];
 537	for (i = _NSIG ; i != 0 ; i--) {
 538		if (force_default || ka->sa.sa_handler != SIG_IGN)
 539			ka->sa.sa_handler = SIG_DFL;
 540		ka->sa.sa_flags = 0;
 541#ifdef __ARCH_HAS_SA_RESTORER
 542		ka->sa.sa_restorer = NULL;
 543#endif
 544		sigemptyset(&ka->sa.sa_mask);
 545		ka++;
 546	}
 547}
 548
 549bool unhandled_signal(struct task_struct *tsk, int sig)
 550{
 551	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 552	if (is_global_init(tsk))
 553		return true;
 554
 555	if (handler != SIG_IGN && handler != SIG_DFL)
 556		return false;
 557
 558	/* if ptraced, let the tracer determine */
 559	return !tsk->ptrace;
 560}
 561
 562static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 563			   bool *resched_timer)
 564{
 565	struct sigqueue *q, *first = NULL;
 566
 567	/*
 568	 * Collect the siginfo appropriate to this signal.  Check if
 569	 * there is another siginfo for the same signal.
 570	*/
 571	list_for_each_entry(q, &list->list, list) {
 572		if (q->info.si_signo == sig) {
 573			if (first)
 574				goto still_pending;
 575			first = q;
 576		}
 577	}
 578
 579	sigdelset(&list->signal, sig);
 580
 581	if (first) {
 582still_pending:
 583		list_del_init(&first->list);
 584		copy_siginfo(info, &first->info);
 585
 586		*resched_timer =
 587			(first->flags & SIGQUEUE_PREALLOC) &&
 588			(info->si_code == SI_TIMER) &&
 589			(info->si_sys_private);
 590
 591		__sigqueue_free(first);
 592	} else {
 593		/*
 594		 * Ok, it wasn't in the queue.  This must be
 595		 * a fast-pathed signal or we must have been
 596		 * out of queue space.  So zero out the info.
 597		 */
 598		clear_siginfo(info);
 599		info->si_signo = sig;
 600		info->si_errno = 0;
 601		info->si_code = SI_USER;
 602		info->si_pid = 0;
 603		info->si_uid = 0;
 604	}
 605}
 606
 607static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 608			kernel_siginfo_t *info, bool *resched_timer)
 609{
 610	int sig = next_signal(pending, mask);
 611
 612	if (sig)
 613		collect_signal(sig, pending, info, resched_timer);
 614	return sig;
 615}
 616
 617/*
 618 * Dequeue a signal and return the element to the caller, which is
 619 * expected to free it.
 620 *
 621 * All callers have to hold the siglock.
 622 */
 623int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 624{
 625	bool resched_timer = false;
 626	int signr;
 627
 628	/* We only dequeue private signals from ourselves, we don't let
 629	 * signalfd steal them
 630	 */
 631	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 632	if (!signr) {
 633		signr = __dequeue_signal(&tsk->signal->shared_pending,
 634					 mask, info, &resched_timer);
 635#ifdef CONFIG_POSIX_TIMERS
 636		/*
 637		 * itimer signal ?
 638		 *
 639		 * itimers are process shared and we restart periodic
 640		 * itimers in the signal delivery path to prevent DoS
 641		 * attacks in the high resolution timer case. This is
 642		 * compliant with the old way of self-restarting
 643		 * itimers, as the SIGALRM is a legacy signal and only
 644		 * queued once. Changing the restart behaviour to
 645		 * restart the timer in the signal dequeue path is
 646		 * reducing the timer noise on heavy loaded !highres
 647		 * systems too.
 648		 */
 649		if (unlikely(signr == SIGALRM)) {
 650			struct hrtimer *tmr = &tsk->signal->real_timer;
 651
 652			if (!hrtimer_is_queued(tmr) &&
 653			    tsk->signal->it_real_incr != 0) {
 654				hrtimer_forward(tmr, tmr->base->get_time(),
 655						tsk->signal->it_real_incr);
 656				hrtimer_restart(tmr);
 657			}
 658		}
 659#endif
 660	}
 661
 662	recalc_sigpending();
 663	if (!signr)
 664		return 0;
 665
 666	if (unlikely(sig_kernel_stop(signr))) {
 667		/*
 668		 * Set a marker that we have dequeued a stop signal.  Our
 669		 * caller might release the siglock and then the pending
 670		 * stop signal it is about to process is no longer in the
 671		 * pending bitmasks, but must still be cleared by a SIGCONT
 672		 * (and overruled by a SIGKILL).  So those cases clear this
 673		 * shared flag after we've set it.  Note that this flag may
 674		 * remain set after the signal we return is ignored or
 675		 * handled.  That doesn't matter because its only purpose
 676		 * is to alert stop-signal processing code when another
 677		 * processor has come along and cleared the flag.
 678		 */
 679		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 680	}
 681#ifdef CONFIG_POSIX_TIMERS
 682	if (resched_timer) {
 683		/*
 684		 * Release the siglock to ensure proper locking order
 685		 * of timer locks outside of siglocks.  Note, we leave
 686		 * irqs disabled here, since the posix-timers code is
 687		 * about to disable them again anyway.
 688		 */
 689		spin_unlock(&tsk->sighand->siglock);
 690		posixtimer_rearm(info);
 691		spin_lock(&tsk->sighand->siglock);
 692
 693		/* Don't expose the si_sys_private value to userspace */
 694		info->si_sys_private = 0;
 695	}
 696#endif
 697	return signr;
 698}
 699EXPORT_SYMBOL_GPL(dequeue_signal);
 700
 701static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 702{
 703	struct task_struct *tsk = current;
 704	struct sigpending *pending = &tsk->pending;
 705	struct sigqueue *q, *sync = NULL;
 706
 707	/*
 708	 * Might a synchronous signal be in the queue?
 709	 */
 710	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 711		return 0;
 712
 713	/*
 714	 * Return the first synchronous signal in the queue.
 715	 */
 716	list_for_each_entry(q, &pending->list, list) {
 717		/* Synchronous signals have a postive si_code */
 718		if ((q->info.si_code > SI_USER) &&
 719		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 720			sync = q;
 721			goto next;
 722		}
 723	}
 724	return 0;
 725next:
 726	/*
 727	 * Check if there is another siginfo for the same signal.
 728	 */
 729	list_for_each_entry_continue(q, &pending->list, list) {
 730		if (q->info.si_signo == sync->info.si_signo)
 731			goto still_pending;
 732	}
 733
 734	sigdelset(&pending->signal, sync->info.si_signo);
 735	recalc_sigpending();
 736still_pending:
 737	list_del_init(&sync->list);
 738	copy_siginfo(info, &sync->info);
 739	__sigqueue_free(sync);
 740	return info->si_signo;
 741}
 742
 743/*
 744 * Tell a process that it has a new active signal..
 745 *
 746 * NOTE! we rely on the previous spin_lock to
 747 * lock interrupts for us! We can only be called with
 748 * "siglock" held, and the local interrupt must
 749 * have been disabled when that got acquired!
 750 *
 751 * No need to set need_resched since signal event passing
 752 * goes through ->blocked
 753 */
 754void signal_wake_up_state(struct task_struct *t, unsigned int state)
 755{
 756	set_tsk_thread_flag(t, TIF_SIGPENDING);
 757	/*
 758	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 759	 * case. We don't check t->state here because there is a race with it
 760	 * executing another processor and just now entering stopped state.
 761	 * By using wake_up_state, we ensure the process will wake up and
 762	 * handle its death signal.
 763	 */
 764	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 765		kick_process(t);
 766}
 767
 768/*
 769 * Remove signals in mask from the pending set and queue.
 770 * Returns 1 if any signals were found.
 771 *
 772 * All callers must be holding the siglock.
 773 */
 774static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 775{
 776	struct sigqueue *q, *n;
 777	sigset_t m;
 778
 779	sigandsets(&m, mask, &s->signal);
 780	if (sigisemptyset(&m))
 781		return;
 782
 783	sigandnsets(&s->signal, &s->signal, mask);
 784	list_for_each_entry_safe(q, n, &s->list, list) {
 785		if (sigismember(mask, q->info.si_signo)) {
 786			list_del_init(&q->list);
 787			__sigqueue_free(q);
 788		}
 789	}
 
 790}
 791
 792static inline int is_si_special(const struct kernel_siginfo *info)
 793{
 794	return info <= SEND_SIG_PRIV;
 795}
 796
 797static inline bool si_fromuser(const struct kernel_siginfo *info)
 798{
 799	return info == SEND_SIG_NOINFO ||
 800		(!is_si_special(info) && SI_FROMUSER(info));
 801}
 802
 803/*
 804 * called with RCU read lock from check_kill_permission()
 805 */
 806static bool kill_ok_by_cred(struct task_struct *t)
 807{
 808	const struct cred *cred = current_cred();
 809	const struct cred *tcred = __task_cred(t);
 810
 811	return uid_eq(cred->euid, tcred->suid) ||
 812	       uid_eq(cred->euid, tcred->uid) ||
 813	       uid_eq(cred->uid, tcred->suid) ||
 814	       uid_eq(cred->uid, tcred->uid) ||
 815	       ns_capable(tcred->user_ns, CAP_KILL);
 
 
 
 
 
 816}
 817
 818/*
 819 * Bad permissions for sending the signal
 820 * - the caller must hold the RCU read lock
 821 */
 822static int check_kill_permission(int sig, struct kernel_siginfo *info,
 823				 struct task_struct *t)
 824{
 825	struct pid *sid;
 826	int error;
 827
 828	if (!valid_signal(sig))
 829		return -EINVAL;
 830
 831	if (!si_fromuser(info))
 832		return 0;
 833
 834	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 835	if (error)
 836		return error;
 837
 838	if (!same_thread_group(current, t) &&
 839	    !kill_ok_by_cred(t)) {
 840		switch (sig) {
 841		case SIGCONT:
 842			sid = task_session(t);
 843			/*
 844			 * We don't return the error if sid == NULL. The
 845			 * task was unhashed, the caller must notice this.
 846			 */
 847			if (!sid || sid == task_session(current))
 848				break;
 849			/* fall through */
 850		default:
 851			return -EPERM;
 852		}
 853	}
 854
 855	return security_task_kill(t, info, sig, NULL);
 856}
 857
 858/**
 859 * ptrace_trap_notify - schedule trap to notify ptracer
 860 * @t: tracee wanting to notify tracer
 861 *
 862 * This function schedules sticky ptrace trap which is cleared on the next
 863 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 864 * ptracer.
 865 *
 866 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 867 * ptracer is listening for events, tracee is woken up so that it can
 868 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 869 * eventually taken without returning to userland after the existing traps
 870 * are finished by PTRACE_CONT.
 871 *
 872 * CONTEXT:
 873 * Must be called with @task->sighand->siglock held.
 874 */
 875static void ptrace_trap_notify(struct task_struct *t)
 876{
 877	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 878	assert_spin_locked(&t->sighand->siglock);
 879
 880	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 881	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 882}
 883
 884/*
 885 * Handle magic process-wide effects of stop/continue signals. Unlike
 886 * the signal actions, these happen immediately at signal-generation
 887 * time regardless of blocking, ignoring, or handling.  This does the
 888 * actual continuing for SIGCONT, but not the actual stopping for stop
 889 * signals. The process stop is done as a signal action for SIG_DFL.
 890 *
 891 * Returns true if the signal should be actually delivered, otherwise
 892 * it should be dropped.
 893 */
 894static bool prepare_signal(int sig, struct task_struct *p, bool force)
 895{
 896	struct signal_struct *signal = p->signal;
 897	struct task_struct *t;
 898	sigset_t flush;
 899
 900	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 901		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 902			return sig == SIGKILL;
 903		/*
 904		 * The process is in the middle of dying, nothing to do.
 905		 */
 906	} else if (sig_kernel_stop(sig)) {
 907		/*
 908		 * This is a stop signal.  Remove SIGCONT from all queues.
 909		 */
 910		siginitset(&flush, sigmask(SIGCONT));
 911		flush_sigqueue_mask(&flush, &signal->shared_pending);
 912		for_each_thread(p, t)
 913			flush_sigqueue_mask(&flush, &t->pending);
 914	} else if (sig == SIGCONT) {
 915		unsigned int why;
 916		/*
 917		 * Remove all stop signals from all queues, wake all threads.
 918		 */
 919		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 920		flush_sigqueue_mask(&flush, &signal->shared_pending);
 921		for_each_thread(p, t) {
 922			flush_sigqueue_mask(&flush, &t->pending);
 923			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 924			if (likely(!(t->ptrace & PT_SEIZED)))
 925				wake_up_state(t, __TASK_STOPPED);
 926			else
 927				ptrace_trap_notify(t);
 928		}
 929
 930		/*
 931		 * Notify the parent with CLD_CONTINUED if we were stopped.
 932		 *
 933		 * If we were in the middle of a group stop, we pretend it
 934		 * was already finished, and then continued. Since SIGCHLD
 935		 * doesn't queue we report only CLD_STOPPED, as if the next
 936		 * CLD_CONTINUED was dropped.
 937		 */
 938		why = 0;
 939		if (signal->flags & SIGNAL_STOP_STOPPED)
 940			why |= SIGNAL_CLD_CONTINUED;
 941		else if (signal->group_stop_count)
 942			why |= SIGNAL_CLD_STOPPED;
 943
 944		if (why) {
 945			/*
 946			 * The first thread which returns from do_signal_stop()
 947			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 948			 * notify its parent. See get_signal().
 949			 */
 950			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 951			signal->group_stop_count = 0;
 952			signal->group_exit_code = 0;
 953		}
 954	}
 955
 956	return !sig_ignored(p, sig, force);
 957}
 958
 959/*
 960 * Test if P wants to take SIG.  After we've checked all threads with this,
 961 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 962 * blocking SIG were ruled out because they are not running and already
 963 * have pending signals.  Such threads will dequeue from the shared queue
 964 * as soon as they're available, so putting the signal on the shared queue
 965 * will be equivalent to sending it to one such thread.
 966 */
 967static inline bool wants_signal(int sig, struct task_struct *p)
 968{
 969	if (sigismember(&p->blocked, sig))
 970		return false;
 971
 972	if (p->flags & PF_EXITING)
 973		return false;
 974
 975	if (sig == SIGKILL)
 976		return true;
 977
 978	if (task_is_stopped_or_traced(p))
 979		return false;
 980
 981	return task_curr(p) || !signal_pending(p);
 982}
 983
 984static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 985{
 986	struct signal_struct *signal = p->signal;
 987	struct task_struct *t;
 988
 989	/*
 990	 * Now find a thread we can wake up to take the signal off the queue.
 991	 *
 992	 * If the main thread wants the signal, it gets first crack.
 993	 * Probably the least surprising to the average bear.
 994	 */
 995	if (wants_signal(sig, p))
 996		t = p;
 997	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
 998		/*
 999		 * There is just one thread and it does not need to be woken.
1000		 * It will dequeue unblocked signals before it runs again.
1001		 */
1002		return;
1003	else {
1004		/*
1005		 * Otherwise try to find a suitable thread.
1006		 */
1007		t = signal->curr_target;
1008		while (!wants_signal(sig, t)) {
1009			t = next_thread(t);
1010			if (t == signal->curr_target)
1011				/*
1012				 * No thread needs to be woken.
1013				 * Any eligible threads will see
1014				 * the signal in the queue soon.
1015				 */
1016				return;
1017		}
1018		signal->curr_target = t;
1019	}
1020
1021	/*
1022	 * Found a killable thread.  If the signal will be fatal,
1023	 * then start taking the whole group down immediately.
1024	 */
1025	if (sig_fatal(p, sig) &&
1026	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1027	    !sigismember(&t->real_blocked, sig) &&
1028	    (sig == SIGKILL || !p->ptrace)) {
1029		/*
1030		 * This signal will be fatal to the whole group.
1031		 */
1032		if (!sig_kernel_coredump(sig)) {
1033			/*
1034			 * Start a group exit and wake everybody up.
1035			 * This way we don't have other threads
1036			 * running and doing things after a slower
1037			 * thread has the fatal signal pending.
1038			 */
1039			signal->flags = SIGNAL_GROUP_EXIT;
1040			signal->group_exit_code = sig;
1041			signal->group_stop_count = 0;
1042			t = p;
1043			do {
1044				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1045				sigaddset(&t->pending.signal, SIGKILL);
1046				signal_wake_up(t, 1);
1047			} while_each_thread(p, t);
1048			return;
1049		}
1050	}
1051
1052	/*
1053	 * The signal is already in the shared-pending queue.
1054	 * Tell the chosen thread to wake up and dequeue it.
1055	 */
1056	signal_wake_up(t, sig == SIGKILL);
1057	return;
1058}
1059
1060static inline bool legacy_queue(struct sigpending *signals, int sig)
1061{
1062	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1063}
1064
1065static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1066			enum pid_type type, bool force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067{
1068	struct sigpending *pending;
1069	struct sigqueue *q;
1070	int override_rlimit;
1071	int ret = 0, result;
1072
1073	assert_spin_locked(&t->sighand->siglock);
1074
1075	result = TRACE_SIGNAL_IGNORED;
1076	if (!prepare_signal(sig, t, force))
 
1077		goto ret;
1078
1079	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1080	/*
1081	 * Short-circuit ignored signals and support queuing
1082	 * exactly one non-rt signal, so that we can get more
1083	 * detailed information about the cause of the signal.
1084	 */
1085	result = TRACE_SIGNAL_ALREADY_PENDING;
1086	if (legacy_queue(pending, sig))
1087		goto ret;
1088
1089	result = TRACE_SIGNAL_DELIVERED;
1090	/*
1091	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
 
1092	 */
1093	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1094		goto out_set;
1095
1096	/*
1097	 * Real-time signals must be queued if sent by sigqueue, or
1098	 * some other real-time mechanism.  It is implementation
1099	 * defined whether kill() does so.  We attempt to do so, on
1100	 * the principle of least surprise, but since kill is not
1101	 * allowed to fail with EAGAIN when low on memory we just
1102	 * make sure at least one signal gets delivered and don't
1103	 * pass on the info struct.
1104	 */
1105	if (sig < SIGRTMIN)
1106		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1107	else
1108		override_rlimit = 0;
1109
1110	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
 
1111	if (q) {
1112		list_add_tail(&q->list, &pending->list);
1113		switch ((unsigned long) info) {
1114		case (unsigned long) SEND_SIG_NOINFO:
1115			clear_siginfo(&q->info);
1116			q->info.si_signo = sig;
1117			q->info.si_errno = 0;
1118			q->info.si_code = SI_USER;
1119			q->info.si_pid = task_tgid_nr_ns(current,
1120							task_active_pid_ns(t));
1121			rcu_read_lock();
1122			q->info.si_uid =
1123				from_kuid_munged(task_cred_xxx(t, user_ns),
1124						 current_uid());
1125			rcu_read_unlock();
1126			break;
1127		case (unsigned long) SEND_SIG_PRIV:
1128			clear_siginfo(&q->info);
1129			q->info.si_signo = sig;
1130			q->info.si_errno = 0;
1131			q->info.si_code = SI_KERNEL;
1132			q->info.si_pid = 0;
1133			q->info.si_uid = 0;
1134			break;
1135		default:
1136			copy_siginfo(&q->info, info);
 
 
1137			break;
1138		}
1139	} else if (!is_si_special(info) &&
1140		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1141		/*
1142		 * Queue overflow, abort.  We may abort if the
1143		 * signal was rt and sent by user using something
1144		 * other than kill().
1145		 */
1146		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1147		ret = -EAGAIN;
1148		goto ret;
1149	} else {
1150		/*
1151		 * This is a silent loss of information.  We still
1152		 * send the signal, but the *info bits are lost.
1153		 */
1154		result = TRACE_SIGNAL_LOSE_INFO;
1155	}
1156
1157out_set:
1158	signalfd_notify(t, sig);
1159	sigaddset(&pending->signal, sig);
1160
1161	/* Let multiprocess signals appear after on-going forks */
1162	if (type > PIDTYPE_TGID) {
1163		struct multiprocess_signals *delayed;
1164		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1165			sigset_t *signal = &delayed->signal;
1166			/* Can't queue both a stop and a continue signal */
1167			if (sig == SIGCONT)
1168				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1169			else if (sig_kernel_stop(sig))
1170				sigdelset(signal, SIGCONT);
1171			sigaddset(signal, sig);
 
 
 
 
 
1172		}
1173	}
1174
1175	complete_signal(sig, t, type);
 
 
 
1176ret:
1177	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1178	return ret;
1179}
1180
1181static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1182{
1183	bool ret = false;
1184	switch (siginfo_layout(info->si_signo, info->si_code)) {
1185	case SIL_KILL:
1186	case SIL_CHLD:
1187	case SIL_RT:
1188		ret = true;
1189		break;
1190	case SIL_TIMER:
1191	case SIL_POLL:
1192	case SIL_FAULT:
1193	case SIL_FAULT_MCEERR:
1194	case SIL_FAULT_BNDERR:
1195	case SIL_FAULT_PKUERR:
1196	case SIL_SYS:
1197		ret = false;
1198		break;
1199	}
1200	return ret;
1201}
1202
1203static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1204			enum pid_type type)
1205{
1206	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1207	bool force = false;
1208
1209	if (info == SEND_SIG_NOINFO) {
1210		/* Force if sent from an ancestor pid namespace */
1211		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1212	} else if (info == SEND_SIG_PRIV) {
1213		/* Don't ignore kernel generated signals */
1214		force = true;
1215	} else if (has_si_pid_and_uid(info)) {
1216		/* SIGKILL and SIGSTOP is special or has ids */
1217		struct user_namespace *t_user_ns;
1218
1219		rcu_read_lock();
1220		t_user_ns = task_cred_xxx(t, user_ns);
1221		if (current_user_ns() != t_user_ns) {
1222			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1223			info->si_uid = from_kuid_munged(t_user_ns, uid);
1224		}
1225		rcu_read_unlock();
1226
1227		/* A kernel generated signal? */
1228		force = (info->si_code == SI_KERNEL);
 
 
1229
1230		/* From an ancestor pid namespace? */
1231		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1232			info->si_pid = 0;
1233			force = true;
1234		}
1235	}
1236	return __send_signal(sig, info, t, type, force);
1237}
1238
1239static void print_fatal_signal(int signr)
1240{
1241	struct pt_regs *regs = signal_pt_regs();
1242	pr_info("potentially unexpected fatal signal %d.\n", signr);
1243
1244#if defined(__i386__) && !defined(__arch_um__)
1245	pr_info("code at %08lx: ", regs->ip);
1246	{
1247		int i;
1248		for (i = 0; i < 16; i++) {
1249			unsigned char insn;
1250
1251			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1252				break;
1253			pr_cont("%02x ", insn);
1254		}
1255	}
1256	pr_cont("\n");
1257#endif
1258	preempt_disable();
1259	show_regs(regs);
1260	preempt_enable();
1261}
1262
1263static int __init setup_print_fatal_signals(char *str)
1264{
1265	get_option (&str, &print_fatal_signals);
1266
1267	return 1;
1268}
1269
1270__setup("print-fatal-signals=", setup_print_fatal_signals);
1271
1272int
1273__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
 
 
 
 
 
 
1274{
1275	return send_signal(sig, info, p, PIDTYPE_TGID);
1276}
1277
1278int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1279			enum pid_type type)
1280{
1281	unsigned long flags;
1282	int ret = -ESRCH;
1283
1284	if (lock_task_sighand(p, &flags)) {
1285		ret = send_signal(sig, info, p, type);
1286		unlock_task_sighand(p, &flags);
1287	}
1288
1289	return ret;
1290}
1291
1292/*
1293 * Force a signal that the process can't ignore: if necessary
1294 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1295 *
1296 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1297 * since we do not want to have a signal handler that was blocked
1298 * be invoked when user space had explicitly blocked it.
1299 *
1300 * We don't want to have recursive SIGSEGV's etc, for example,
1301 * that is why we also clear SIGNAL_UNKILLABLE.
1302 */
1303static int
1304force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1305{
1306	unsigned long int flags;
1307	int ret, blocked, ignored;
1308	struct k_sigaction *action;
1309	int sig = info->si_signo;
1310
1311	spin_lock_irqsave(&t->sighand->siglock, flags);
1312	action = &t->sighand->action[sig-1];
1313	ignored = action->sa.sa_handler == SIG_IGN;
1314	blocked = sigismember(&t->blocked, sig);
1315	if (blocked || ignored) {
1316		action->sa.sa_handler = SIG_DFL;
1317		if (blocked) {
1318			sigdelset(&t->blocked, sig);
1319			recalc_sigpending_and_wake(t);
1320		}
1321	}
1322	/*
1323	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1324	 * debugging to leave init killable.
1325	 */
1326	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1327		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1328	ret = send_signal(sig, info, t, PIDTYPE_PID);
1329	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1330
1331	return ret;
1332}
1333
1334int force_sig_info(struct kernel_siginfo *info)
1335{
1336	return force_sig_info_to_task(info, current);
1337}
1338
1339/*
1340 * Nuke all other threads in the group.
1341 */
1342int zap_other_threads(struct task_struct *p)
1343{
1344	struct task_struct *t = p;
1345	int count = 0;
1346
1347	p->signal->group_stop_count = 0;
1348
1349	while_each_thread(p, t) {
1350		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1351		count++;
1352
1353		/* Don't bother with already dead threads */
1354		if (t->exit_state)
1355			continue;
1356		sigaddset(&t->pending.signal, SIGKILL);
1357		signal_wake_up(t, 1);
1358	}
1359
1360	return count;
1361}
1362
1363struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1364					   unsigned long *flags)
1365{
1366	struct sighand_struct *sighand;
1367
1368	rcu_read_lock();
1369	for (;;) {
 
 
 
 
 
 
1370		sighand = rcu_dereference(tsk->sighand);
1371		if (unlikely(sighand == NULL))
 
 
1372			break;
1373
1374		/*
1375		 * This sighand can be already freed and even reused, but
1376		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1377		 * initializes ->siglock: this slab can't go away, it has
1378		 * the same object type, ->siglock can't be reinitialized.
1379		 *
1380		 * We need to ensure that tsk->sighand is still the same
1381		 * after we take the lock, we can race with de_thread() or
1382		 * __exit_signal(). In the latter case the next iteration
1383		 * must see ->sighand == NULL.
1384		 */
1385		spin_lock_irqsave(&sighand->siglock, *flags);
1386		if (likely(sighand == tsk->sighand))
 
1387			break;
1388		spin_unlock_irqrestore(&sighand->siglock, *flags);
 
 
 
1389	}
1390	rcu_read_unlock();
1391
1392	return sighand;
1393}
1394
1395/*
1396 * send signal info to all the members of a group
1397 */
1398int group_send_sig_info(int sig, struct kernel_siginfo *info,
1399			struct task_struct *p, enum pid_type type)
1400{
1401	int ret;
1402
1403	rcu_read_lock();
1404	ret = check_kill_permission(sig, info, p);
1405	rcu_read_unlock();
1406
1407	if (!ret && sig)
1408		ret = do_send_sig_info(sig, info, p, type);
1409
1410	return ret;
1411}
1412
1413/*
1414 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1415 * control characters do (^C, ^Z etc)
1416 * - the caller must hold at least a readlock on tasklist_lock
1417 */
1418int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1419{
1420	struct task_struct *p = NULL;
1421	int retval, success;
1422
1423	success = 0;
1424	retval = -ESRCH;
1425	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1426		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1427		success |= !err;
1428		retval = err;
1429	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1430	return success ? 0 : retval;
1431}
1432
1433int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1434{
1435	int error = -ESRCH;
1436	struct task_struct *p;
1437
1438	for (;;) {
1439		rcu_read_lock();
1440		p = pid_task(pid, PIDTYPE_PID);
1441		if (p)
1442			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1443		rcu_read_unlock();
1444		if (likely(!p || error != -ESRCH))
1445			return error;
1446
1447		/*
1448		 * The task was unhashed in between, try again.  If it
1449		 * is dead, pid_task() will return NULL, if we race with
1450		 * de_thread() it will find the new leader.
1451		 */
1452	}
1453}
1454
1455static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1456{
1457	int error;
1458	rcu_read_lock();
1459	error = kill_pid_info(sig, info, find_vpid(pid));
1460	rcu_read_unlock();
1461	return error;
1462}
1463
1464static inline bool kill_as_cred_perm(const struct cred *cred,
1465				     struct task_struct *target)
1466{
1467	const struct cred *pcred = __task_cred(target);
1468
1469	return uid_eq(cred->euid, pcred->suid) ||
1470	       uid_eq(cred->euid, pcred->uid) ||
1471	       uid_eq(cred->uid, pcred->suid) ||
1472	       uid_eq(cred->uid, pcred->uid);
1473}
1474
1475/*
1476 * The usb asyncio usage of siginfo is wrong.  The glibc support
1477 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1478 * AKA after the generic fields:
1479 *	kernel_pid_t	si_pid;
1480 *	kernel_uid32_t	si_uid;
1481 *	sigval_t	si_value;
1482 *
1483 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1484 * after the generic fields is:
1485 *	void __user 	*si_addr;
1486 *
1487 * This is a practical problem when there is a 64bit big endian kernel
1488 * and a 32bit userspace.  As the 32bit address will encoded in the low
1489 * 32bits of the pointer.  Those low 32bits will be stored at higher
1490 * address than appear in a 32 bit pointer.  So userspace will not
1491 * see the address it was expecting for it's completions.
1492 *
1493 * There is nothing in the encoding that can allow
1494 * copy_siginfo_to_user32 to detect this confusion of formats, so
1495 * handle this by requiring the caller of kill_pid_usb_asyncio to
1496 * notice when this situration takes place and to store the 32bit
1497 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1498 * parameter.
1499 */
1500int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1501			 struct pid *pid, const struct cred *cred)
1502{
1503	struct kernel_siginfo info;
1504	struct task_struct *p;
1505	unsigned long flags;
1506	int ret = -EINVAL;
1507
1508	clear_siginfo(&info);
1509	info.si_signo = sig;
1510	info.si_errno = errno;
1511	info.si_code = SI_ASYNCIO;
1512	*((sigval_t *)&info.si_pid) = addr;
1513
1514	if (!valid_signal(sig))
1515		return ret;
1516
1517	rcu_read_lock();
1518	p = pid_task(pid, PIDTYPE_PID);
1519	if (!p) {
1520		ret = -ESRCH;
1521		goto out_unlock;
1522	}
1523	if (!kill_as_cred_perm(cred, p)) {
1524		ret = -EPERM;
1525		goto out_unlock;
1526	}
1527	ret = security_task_kill(p, &info, sig, cred);
1528	if (ret)
1529		goto out_unlock;
1530
1531	if (sig) {
1532		if (lock_task_sighand(p, &flags)) {
1533			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1534			unlock_task_sighand(p, &flags);
1535		} else
1536			ret = -ESRCH;
1537	}
1538out_unlock:
1539	rcu_read_unlock();
1540	return ret;
1541}
1542EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1543
1544/*
1545 * kill_something_info() interprets pid in interesting ways just like kill(2).
1546 *
1547 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1548 * is probably wrong.  Should make it like BSD or SYSV.
1549 */
1550
1551static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1552{
1553	int ret;
1554
1555	if (pid > 0) {
1556		rcu_read_lock();
1557		ret = kill_pid_info(sig, info, find_vpid(pid));
1558		rcu_read_unlock();
1559		return ret;
1560	}
1561
1562	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1563	if (pid == INT_MIN)
1564		return -ESRCH;
1565
1566	read_lock(&tasklist_lock);
1567	if (pid != -1) {
1568		ret = __kill_pgrp_info(sig, info,
1569				pid ? find_vpid(-pid) : task_pgrp(current));
1570	} else {
1571		int retval = 0, count = 0;
1572		struct task_struct * p;
1573
1574		for_each_process(p) {
1575			if (task_pid_vnr(p) > 1 &&
1576					!same_thread_group(p, current)) {
1577				int err = group_send_sig_info(sig, info, p,
1578							      PIDTYPE_MAX);
1579				++count;
1580				if (err != -EPERM)
1581					retval = err;
1582			}
1583		}
1584		ret = count ? retval : -ESRCH;
1585	}
1586	read_unlock(&tasklist_lock);
1587
1588	return ret;
1589}
1590
1591/*
1592 * These are for backward compatibility with the rest of the kernel source.
1593 */
1594
1595int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1596{
1597	/*
1598	 * Make sure legacy kernel users don't send in bad values
1599	 * (normal paths check this in check_kill_permission).
1600	 */
1601	if (!valid_signal(sig))
1602		return -EINVAL;
1603
1604	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1605}
1606EXPORT_SYMBOL(send_sig_info);
1607
1608#define __si_special(priv) \
1609	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1610
1611int
1612send_sig(int sig, struct task_struct *p, int priv)
1613{
1614	return send_sig_info(sig, __si_special(priv), p);
1615}
1616EXPORT_SYMBOL(send_sig);
1617
1618void force_sig(int sig)
 
1619{
1620	struct kernel_siginfo info;
1621
1622	clear_siginfo(&info);
1623	info.si_signo = sig;
1624	info.si_errno = 0;
1625	info.si_code = SI_KERNEL;
1626	info.si_pid = 0;
1627	info.si_uid = 0;
1628	force_sig_info(&info);
1629}
1630EXPORT_SYMBOL(force_sig);
1631
1632/*
1633 * When things go south during signal handling, we
1634 * will force a SIGSEGV. And if the signal that caused
1635 * the problem was already a SIGSEGV, we'll want to
1636 * make sure we don't even try to deliver the signal..
1637 */
1638void force_sigsegv(int sig)
 
1639{
1640	struct task_struct *p = current;
1641
1642	if (sig == SIGSEGV) {
1643		unsigned long flags;
1644		spin_lock_irqsave(&p->sighand->siglock, flags);
1645		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1646		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1647	}
1648	force_sig(SIGSEGV);
1649}
1650
1651int force_sig_fault_to_task(int sig, int code, void __user *addr
1652	___ARCH_SI_TRAPNO(int trapno)
1653	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1654	, struct task_struct *t)
1655{
1656	struct kernel_siginfo info;
1657
1658	clear_siginfo(&info);
1659	info.si_signo = sig;
1660	info.si_errno = 0;
1661	info.si_code  = code;
1662	info.si_addr  = addr;
1663#ifdef __ARCH_SI_TRAPNO
1664	info.si_trapno = trapno;
1665#endif
1666#ifdef __ia64__
1667	info.si_imm = imm;
1668	info.si_flags = flags;
1669	info.si_isr = isr;
1670#endif
1671	return force_sig_info_to_task(&info, t);
1672}
1673
1674int force_sig_fault(int sig, int code, void __user *addr
1675	___ARCH_SI_TRAPNO(int trapno)
1676	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1677{
1678	return force_sig_fault_to_task(sig, code, addr
1679				       ___ARCH_SI_TRAPNO(trapno)
1680				       ___ARCH_SI_IA64(imm, flags, isr), current);
1681}
1682
1683int send_sig_fault(int sig, int code, void __user *addr
1684	___ARCH_SI_TRAPNO(int trapno)
1685	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1686	, struct task_struct *t)
1687{
1688	struct kernel_siginfo info;
1689
1690	clear_siginfo(&info);
1691	info.si_signo = sig;
1692	info.si_errno = 0;
1693	info.si_code  = code;
1694	info.si_addr  = addr;
1695#ifdef __ARCH_SI_TRAPNO
1696	info.si_trapno = trapno;
1697#endif
1698#ifdef __ia64__
1699	info.si_imm = imm;
1700	info.si_flags = flags;
1701	info.si_isr = isr;
1702#endif
1703	return send_sig_info(info.si_signo, &info, t);
1704}
1705
1706int force_sig_mceerr(int code, void __user *addr, short lsb)
1707{
1708	struct kernel_siginfo info;
1709
1710	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1711	clear_siginfo(&info);
1712	info.si_signo = SIGBUS;
1713	info.si_errno = 0;
1714	info.si_code = code;
1715	info.si_addr = addr;
1716	info.si_addr_lsb = lsb;
1717	return force_sig_info(&info);
1718}
1719
1720int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1721{
1722	struct kernel_siginfo info;
1723
1724	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1725	clear_siginfo(&info);
1726	info.si_signo = SIGBUS;
1727	info.si_errno = 0;
1728	info.si_code = code;
1729	info.si_addr = addr;
1730	info.si_addr_lsb = lsb;
1731	return send_sig_info(info.si_signo, &info, t);
1732}
1733EXPORT_SYMBOL(send_sig_mceerr);
1734
1735int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1736{
1737	struct kernel_siginfo info;
1738
1739	clear_siginfo(&info);
1740	info.si_signo = SIGSEGV;
1741	info.si_errno = 0;
1742	info.si_code  = SEGV_BNDERR;
1743	info.si_addr  = addr;
1744	info.si_lower = lower;
1745	info.si_upper = upper;
1746	return force_sig_info(&info);
1747}
1748
1749#ifdef SEGV_PKUERR
1750int force_sig_pkuerr(void __user *addr, u32 pkey)
1751{
1752	struct kernel_siginfo info;
1753
1754	clear_siginfo(&info);
1755	info.si_signo = SIGSEGV;
1756	info.si_errno = 0;
1757	info.si_code  = SEGV_PKUERR;
1758	info.si_addr  = addr;
1759	info.si_pkey  = pkey;
1760	return force_sig_info(&info);
1761}
1762#endif
1763
1764/* For the crazy architectures that include trap information in
1765 * the errno field, instead of an actual errno value.
1766 */
1767int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1768{
1769	struct kernel_siginfo info;
1770
1771	clear_siginfo(&info);
1772	info.si_signo = SIGTRAP;
1773	info.si_errno = errno;
1774	info.si_code  = TRAP_HWBKPT;
1775	info.si_addr  = addr;
1776	return force_sig_info(&info);
1777}
1778
1779int kill_pgrp(struct pid *pid, int sig, int priv)
1780{
1781	int ret;
1782
1783	read_lock(&tasklist_lock);
1784	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1785	read_unlock(&tasklist_lock);
1786
1787	return ret;
1788}
1789EXPORT_SYMBOL(kill_pgrp);
1790
1791int kill_pid(struct pid *pid, int sig, int priv)
1792{
1793	return kill_pid_info(sig, __si_special(priv), pid);
1794}
1795EXPORT_SYMBOL(kill_pid);
1796
1797/*
1798 * These functions support sending signals using preallocated sigqueue
1799 * structures.  This is needed "because realtime applications cannot
1800 * afford to lose notifications of asynchronous events, like timer
1801 * expirations or I/O completions".  In the case of POSIX Timers
1802 * we allocate the sigqueue structure from the timer_create.  If this
1803 * allocation fails we are able to report the failure to the application
1804 * with an EAGAIN error.
1805 */
1806struct sigqueue *sigqueue_alloc(void)
1807{
1808	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1809
1810	if (q)
1811		q->flags |= SIGQUEUE_PREALLOC;
1812
1813	return q;
1814}
1815
1816void sigqueue_free(struct sigqueue *q)
1817{
1818	unsigned long flags;
1819	spinlock_t *lock = &current->sighand->siglock;
1820
1821	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1822	/*
1823	 * We must hold ->siglock while testing q->list
1824	 * to serialize with collect_signal() or with
1825	 * __exit_signal()->flush_sigqueue().
1826	 */
1827	spin_lock_irqsave(lock, flags);
1828	q->flags &= ~SIGQUEUE_PREALLOC;
1829	/*
1830	 * If it is queued it will be freed when dequeued,
1831	 * like the "regular" sigqueue.
1832	 */
1833	if (!list_empty(&q->list))
1834		q = NULL;
1835	spin_unlock_irqrestore(lock, flags);
1836
1837	if (q)
1838		__sigqueue_free(q);
1839}
1840
1841int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1842{
1843	int sig = q->info.si_signo;
1844	struct sigpending *pending;
1845	struct task_struct *t;
1846	unsigned long flags;
1847	int ret, result;
1848
1849	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1850
1851	ret = -1;
1852	rcu_read_lock();
1853	t = pid_task(pid, type);
1854	if (!t || !likely(lock_task_sighand(t, &flags)))
1855		goto ret;
1856
1857	ret = 1; /* the signal is ignored */
1858	result = TRACE_SIGNAL_IGNORED;
1859	if (!prepare_signal(sig, t, false))
1860		goto out;
1861
1862	ret = 0;
1863	if (unlikely(!list_empty(&q->list))) {
1864		/*
1865		 * If an SI_TIMER entry is already queue just increment
1866		 * the overrun count.
1867		 */
1868		BUG_ON(q->info.si_code != SI_TIMER);
1869		q->info.si_overrun++;
1870		result = TRACE_SIGNAL_ALREADY_PENDING;
1871		goto out;
1872	}
1873	q->info.si_overrun = 0;
1874
1875	signalfd_notify(t, sig);
1876	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1877	list_add_tail(&q->list, &pending->list);
1878	sigaddset(&pending->signal, sig);
1879	complete_signal(sig, t, type);
1880	result = TRACE_SIGNAL_DELIVERED;
1881out:
1882	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1883	unlock_task_sighand(t, &flags);
1884ret:
1885	rcu_read_unlock();
1886	return ret;
1887}
1888
1889static void do_notify_pidfd(struct task_struct *task)
1890{
1891	struct pid *pid;
1892
1893	WARN_ON(task->exit_state == 0);
1894	pid = task_pid(task);
1895	wake_up_all(&pid->wait_pidfd);
1896}
1897
1898/*
1899 * Let a parent know about the death of a child.
1900 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1901 *
1902 * Returns true if our parent ignored us and so we've switched to
1903 * self-reaping.
1904 */
1905bool do_notify_parent(struct task_struct *tsk, int sig)
1906{
1907	struct kernel_siginfo info;
1908	unsigned long flags;
1909	struct sighand_struct *psig;
1910	bool autoreap = false;
1911	u64 utime, stime;
1912
1913	BUG_ON(sig == -1);
1914
1915 	/* do_notify_parent_cldstop should have been called instead.  */
1916 	BUG_ON(task_is_stopped_or_traced(tsk));
1917
1918	BUG_ON(!tsk->ptrace &&
1919	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1920
1921	/* Wake up all pidfd waiters */
1922	do_notify_pidfd(tsk);
1923
1924	if (sig != SIGCHLD) {
1925		/*
1926		 * This is only possible if parent == real_parent.
1927		 * Check if it has changed security domain.
1928		 */
1929		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1930			sig = SIGCHLD;
1931	}
1932
1933	clear_siginfo(&info);
1934	info.si_signo = sig;
1935	info.si_errno = 0;
1936	/*
1937	 * We are under tasklist_lock here so our parent is tied to
1938	 * us and cannot change.
1939	 *
1940	 * task_active_pid_ns will always return the same pid namespace
1941	 * until a task passes through release_task.
1942	 *
1943	 * write_lock() currently calls preempt_disable() which is the
1944	 * same as rcu_read_lock(), but according to Oleg, this is not
1945	 * correct to rely on this
1946	 */
1947	rcu_read_lock();
1948	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1949	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1950				       task_uid(tsk));
1951	rcu_read_unlock();
1952
1953	task_cputime(tsk, &utime, &stime);
1954	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1955	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1956
1957	info.si_status = tsk->exit_code & 0x7f;
1958	if (tsk->exit_code & 0x80)
1959		info.si_code = CLD_DUMPED;
1960	else if (tsk->exit_code & 0x7f)
1961		info.si_code = CLD_KILLED;
1962	else {
1963		info.si_code = CLD_EXITED;
1964		info.si_status = tsk->exit_code >> 8;
1965	}
1966
1967	psig = tsk->parent->sighand;
1968	spin_lock_irqsave(&psig->siglock, flags);
1969	if (!tsk->ptrace && sig == SIGCHLD &&
1970	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1971	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1972		/*
1973		 * We are exiting and our parent doesn't care.  POSIX.1
1974		 * defines special semantics for setting SIGCHLD to SIG_IGN
1975		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1976		 * automatically and not left for our parent's wait4 call.
1977		 * Rather than having the parent do it as a magic kind of
1978		 * signal handler, we just set this to tell do_exit that we
1979		 * can be cleaned up without becoming a zombie.  Note that
1980		 * we still call __wake_up_parent in this case, because a
1981		 * blocked sys_wait4 might now return -ECHILD.
1982		 *
1983		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1984		 * is implementation-defined: we do (if you don't want
1985		 * it, just use SIG_IGN instead).
1986		 */
1987		autoreap = true;
1988		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1989			sig = 0;
1990	}
1991	if (valid_signal(sig) && sig)
1992		__group_send_sig_info(sig, &info, tsk->parent);
1993	__wake_up_parent(tsk, tsk->parent);
1994	spin_unlock_irqrestore(&psig->siglock, flags);
1995
1996	return autoreap;
1997}
1998
1999/**
2000 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2001 * @tsk: task reporting the state change
2002 * @for_ptracer: the notification is for ptracer
2003 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2004 *
2005 * Notify @tsk's parent that the stopped/continued state has changed.  If
2006 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2007 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2008 *
2009 * CONTEXT:
2010 * Must be called with tasklist_lock at least read locked.
2011 */
2012static void do_notify_parent_cldstop(struct task_struct *tsk,
2013				     bool for_ptracer, int why)
2014{
2015	struct kernel_siginfo info;
2016	unsigned long flags;
2017	struct task_struct *parent;
2018	struct sighand_struct *sighand;
2019	u64 utime, stime;
2020
2021	if (for_ptracer) {
2022		parent = tsk->parent;
2023	} else {
2024		tsk = tsk->group_leader;
2025		parent = tsk->real_parent;
2026	}
2027
2028	clear_siginfo(&info);
2029	info.si_signo = SIGCHLD;
2030	info.si_errno = 0;
2031	/*
2032	 * see comment in do_notify_parent() about the following 4 lines
2033	 */
2034	rcu_read_lock();
2035	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2036	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2037	rcu_read_unlock();
2038
2039	task_cputime(tsk, &utime, &stime);
2040	info.si_utime = nsec_to_clock_t(utime);
2041	info.si_stime = nsec_to_clock_t(stime);
2042
2043 	info.si_code = why;
2044 	switch (why) {
2045 	case CLD_CONTINUED:
2046 		info.si_status = SIGCONT;
2047 		break;
2048 	case CLD_STOPPED:
2049 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2050 		break;
2051 	case CLD_TRAPPED:
2052 		info.si_status = tsk->exit_code & 0x7f;
2053 		break;
2054 	default:
2055 		BUG();
2056 	}
2057
2058	sighand = parent->sighand;
2059	spin_lock_irqsave(&sighand->siglock, flags);
2060	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2061	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2062		__group_send_sig_info(SIGCHLD, &info, parent);
2063	/*
2064	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2065	 */
2066	__wake_up_parent(tsk, parent);
2067	spin_unlock_irqrestore(&sighand->siglock, flags);
2068}
2069
2070static inline bool may_ptrace_stop(void)
2071{
2072	if (!likely(current->ptrace))
2073		return false;
2074	/*
2075	 * Are we in the middle of do_coredump?
2076	 * If so and our tracer is also part of the coredump stopping
2077	 * is a deadlock situation, and pointless because our tracer
2078	 * is dead so don't allow us to stop.
2079	 * If SIGKILL was already sent before the caller unlocked
2080	 * ->siglock we must see ->core_state != NULL. Otherwise it
2081	 * is safe to enter schedule().
2082	 *
2083	 * This is almost outdated, a task with the pending SIGKILL can't
2084	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2085	 * after SIGKILL was already dequeued.
2086	 */
2087	if (unlikely(current->mm->core_state) &&
2088	    unlikely(current->mm == current->parent->mm))
2089		return false;
2090
2091	return true;
2092}
2093
2094/*
2095 * Return non-zero if there is a SIGKILL that should be waking us up.
2096 * Called with the siglock held.
2097 */
2098static bool sigkill_pending(struct task_struct *tsk)
2099{
2100	return sigismember(&tsk->pending.signal, SIGKILL) ||
2101	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2102}
2103
2104/*
2105 * This must be called with current->sighand->siglock held.
2106 *
2107 * This should be the path for all ptrace stops.
2108 * We always set current->last_siginfo while stopped here.
2109 * That makes it a way to test a stopped process for
2110 * being ptrace-stopped vs being job-control-stopped.
2111 *
2112 * If we actually decide not to stop at all because the tracer
2113 * is gone, we keep current->exit_code unless clear_code.
2114 */
2115static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2116	__releases(&current->sighand->siglock)
2117	__acquires(&current->sighand->siglock)
2118{
2119	bool gstop_done = false;
2120
2121	if (arch_ptrace_stop_needed(exit_code, info)) {
2122		/*
2123		 * The arch code has something special to do before a
2124		 * ptrace stop.  This is allowed to block, e.g. for faults
2125		 * on user stack pages.  We can't keep the siglock while
2126		 * calling arch_ptrace_stop, so we must release it now.
2127		 * To preserve proper semantics, we must do this before
2128		 * any signal bookkeeping like checking group_stop_count.
2129		 * Meanwhile, a SIGKILL could come in before we retake the
2130		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2131		 * So after regaining the lock, we must check for SIGKILL.
2132		 */
2133		spin_unlock_irq(&current->sighand->siglock);
2134		arch_ptrace_stop(exit_code, info);
2135		spin_lock_irq(&current->sighand->siglock);
2136		if (sigkill_pending(current))
2137			return;
2138	}
2139
2140	set_special_state(TASK_TRACED);
2141
2142	/*
2143	 * We're committing to trapping.  TRACED should be visible before
2144	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2145	 * Also, transition to TRACED and updates to ->jobctl should be
2146	 * atomic with respect to siglock and should be done after the arch
2147	 * hook as siglock is released and regrabbed across it.
2148	 *
2149	 *     TRACER				    TRACEE
2150	 *
2151	 *     ptrace_attach()
2152	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2153	 *     do_wait()
2154	 *       set_current_state()                smp_wmb();
2155	 *       ptrace_do_wait()
2156	 *         wait_task_stopped()
2157	 *           task_stopped_code()
2158	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2159	 */
2160	smp_wmb();
2161
2162	current->last_siginfo = info;
2163	current->exit_code = exit_code;
2164
2165	/*
2166	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2167	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2168	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2169	 * could be clear now.  We act as if SIGCONT is received after
2170	 * TASK_TRACED is entered - ignore it.
2171	 */
2172	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2173		gstop_done = task_participate_group_stop(current);
2174
2175	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2176	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2177	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2178		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2179
2180	/* entering a trap, clear TRAPPING */
2181	task_clear_jobctl_trapping(current);
2182
2183	spin_unlock_irq(&current->sighand->siglock);
2184	read_lock(&tasklist_lock);
2185	if (may_ptrace_stop()) {
2186		/*
2187		 * Notify parents of the stop.
2188		 *
2189		 * While ptraced, there are two parents - the ptracer and
2190		 * the real_parent of the group_leader.  The ptracer should
2191		 * know about every stop while the real parent is only
2192		 * interested in the completion of group stop.  The states
2193		 * for the two don't interact with each other.  Notify
2194		 * separately unless they're gonna be duplicates.
2195		 */
2196		do_notify_parent_cldstop(current, true, why);
2197		if (gstop_done && ptrace_reparented(current))
2198			do_notify_parent_cldstop(current, false, why);
2199
2200		/*
2201		 * Don't want to allow preemption here, because
2202		 * sys_ptrace() needs this task to be inactive.
2203		 *
2204		 * XXX: implement read_unlock_no_resched().
2205		 */
2206		preempt_disable();
2207		read_unlock(&tasklist_lock);
2208		cgroup_enter_frozen();
2209		preempt_enable_no_resched();
2210		freezable_schedule();
2211		cgroup_leave_frozen(true);
2212	} else {
2213		/*
2214		 * By the time we got the lock, our tracer went away.
2215		 * Don't drop the lock yet, another tracer may come.
2216		 *
2217		 * If @gstop_done, the ptracer went away between group stop
2218		 * completion and here.  During detach, it would have set
2219		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2220		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2221		 * the real parent of the group stop completion is enough.
2222		 */
2223		if (gstop_done)
2224			do_notify_parent_cldstop(current, false, why);
2225
2226		/* tasklist protects us from ptrace_freeze_traced() */
2227		__set_current_state(TASK_RUNNING);
2228		if (clear_code)
2229			current->exit_code = 0;
2230		read_unlock(&tasklist_lock);
2231	}
2232
2233	/*
2234	 * We are back.  Now reacquire the siglock before touching
2235	 * last_siginfo, so that we are sure to have synchronized with
2236	 * any signal-sending on another CPU that wants to examine it.
2237	 */
2238	spin_lock_irq(&current->sighand->siglock);
2239	current->last_siginfo = NULL;
2240
2241	/* LISTENING can be set only during STOP traps, clear it */
2242	current->jobctl &= ~JOBCTL_LISTENING;
2243
2244	/*
2245	 * Queued signals ignored us while we were stopped for tracing.
2246	 * So check for any that we should take before resuming user mode.
2247	 * This sets TIF_SIGPENDING, but never clears it.
2248	 */
2249	recalc_sigpending_tsk(current);
2250}
2251
2252static void ptrace_do_notify(int signr, int exit_code, int why)
2253{
2254	kernel_siginfo_t info;
2255
2256	clear_siginfo(&info);
2257	info.si_signo = signr;
2258	info.si_code = exit_code;
2259	info.si_pid = task_pid_vnr(current);
2260	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2261
2262	/* Let the debugger run.  */
2263	ptrace_stop(exit_code, why, 1, &info);
2264}
2265
2266void ptrace_notify(int exit_code)
2267{
2268	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2269	if (unlikely(current->task_works))
2270		task_work_run();
2271
2272	spin_lock_irq(&current->sighand->siglock);
2273	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2274	spin_unlock_irq(&current->sighand->siglock);
2275}
2276
2277/**
2278 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2279 * @signr: signr causing group stop if initiating
2280 *
2281 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2282 * and participate in it.  If already set, participate in the existing
2283 * group stop.  If participated in a group stop (and thus slept), %true is
2284 * returned with siglock released.
2285 *
2286 * If ptraced, this function doesn't handle stop itself.  Instead,
2287 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2288 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2289 * places afterwards.
2290 *
2291 * CONTEXT:
2292 * Must be called with @current->sighand->siglock held, which is released
2293 * on %true return.
2294 *
2295 * RETURNS:
2296 * %false if group stop is already cancelled or ptrace trap is scheduled.
2297 * %true if participated in group stop.
2298 */
2299static bool do_signal_stop(int signr)
2300	__releases(&current->sighand->siglock)
2301{
2302	struct signal_struct *sig = current->signal;
2303
2304	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2305		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2306		struct task_struct *t;
2307
2308		/* signr will be recorded in task->jobctl for retries */
2309		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2310
2311		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2312		    unlikely(signal_group_exit(sig)))
2313			return false;
2314		/*
2315		 * There is no group stop already in progress.  We must
2316		 * initiate one now.
2317		 *
2318		 * While ptraced, a task may be resumed while group stop is
2319		 * still in effect and then receive a stop signal and
2320		 * initiate another group stop.  This deviates from the
2321		 * usual behavior as two consecutive stop signals can't
2322		 * cause two group stops when !ptraced.  That is why we
2323		 * also check !task_is_stopped(t) below.
2324		 *
2325		 * The condition can be distinguished by testing whether
2326		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2327		 * group_exit_code in such case.
2328		 *
2329		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2330		 * an intervening stop signal is required to cause two
2331		 * continued events regardless of ptrace.
2332		 */
2333		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2334			sig->group_exit_code = signr;
2335
2336		sig->group_stop_count = 0;
2337
2338		if (task_set_jobctl_pending(current, signr | gstop))
2339			sig->group_stop_count++;
2340
2341		t = current;
2342		while_each_thread(current, t) {
2343			/*
2344			 * Setting state to TASK_STOPPED for a group
2345			 * stop is always done with the siglock held,
2346			 * so this check has no races.
2347			 */
2348			if (!task_is_stopped(t) &&
2349			    task_set_jobctl_pending(t, signr | gstop)) {
2350				sig->group_stop_count++;
2351				if (likely(!(t->ptrace & PT_SEIZED)))
2352					signal_wake_up(t, 0);
2353				else
2354					ptrace_trap_notify(t);
2355			}
2356		}
2357	}
2358
2359	if (likely(!current->ptrace)) {
2360		int notify = 0;
2361
2362		/*
2363		 * If there are no other threads in the group, or if there
2364		 * is a group stop in progress and we are the last to stop,
2365		 * report to the parent.
2366		 */
2367		if (task_participate_group_stop(current))
2368			notify = CLD_STOPPED;
2369
2370		set_special_state(TASK_STOPPED);
2371		spin_unlock_irq(&current->sighand->siglock);
2372
2373		/*
2374		 * Notify the parent of the group stop completion.  Because
2375		 * we're not holding either the siglock or tasklist_lock
2376		 * here, ptracer may attach inbetween; however, this is for
2377		 * group stop and should always be delivered to the real
2378		 * parent of the group leader.  The new ptracer will get
2379		 * its notification when this task transitions into
2380		 * TASK_TRACED.
2381		 */
2382		if (notify) {
2383			read_lock(&tasklist_lock);
2384			do_notify_parent_cldstop(current, false, notify);
2385			read_unlock(&tasklist_lock);
2386		}
2387
2388		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2389		cgroup_enter_frozen();
2390		freezable_schedule();
2391		return true;
2392	} else {
2393		/*
2394		 * While ptraced, group stop is handled by STOP trap.
2395		 * Schedule it and let the caller deal with it.
2396		 */
2397		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2398		return false;
2399	}
2400}
2401
2402/**
2403 * do_jobctl_trap - take care of ptrace jobctl traps
2404 *
2405 * When PT_SEIZED, it's used for both group stop and explicit
2406 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2407 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2408 * the stop signal; otherwise, %SIGTRAP.
2409 *
2410 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2411 * number as exit_code and no siginfo.
2412 *
2413 * CONTEXT:
2414 * Must be called with @current->sighand->siglock held, which may be
2415 * released and re-acquired before returning with intervening sleep.
2416 */
2417static void do_jobctl_trap(void)
2418{
2419	struct signal_struct *signal = current->signal;
2420	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2421
2422	if (current->ptrace & PT_SEIZED) {
2423		if (!signal->group_stop_count &&
2424		    !(signal->flags & SIGNAL_STOP_STOPPED))
2425			signr = SIGTRAP;
2426		WARN_ON_ONCE(!signr);
2427		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2428				 CLD_STOPPED);
2429	} else {
2430		WARN_ON_ONCE(!signr);
2431		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2432		current->exit_code = 0;
2433	}
2434}
2435
2436/**
2437 * do_freezer_trap - handle the freezer jobctl trap
2438 *
2439 * Puts the task into frozen state, if only the task is not about to quit.
2440 * In this case it drops JOBCTL_TRAP_FREEZE.
2441 *
2442 * CONTEXT:
2443 * Must be called with @current->sighand->siglock held,
2444 * which is always released before returning.
2445 */
2446static void do_freezer_trap(void)
2447	__releases(&current->sighand->siglock)
2448{
2449	/*
2450	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2451	 * let's make another loop to give it a chance to be handled.
2452	 * In any case, we'll return back.
2453	 */
2454	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2455	     JOBCTL_TRAP_FREEZE) {
2456		spin_unlock_irq(&current->sighand->siglock);
2457		return;
2458	}
2459
2460	/*
2461	 * Now we're sure that there is no pending fatal signal and no
2462	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2463	 * immediately (if there is a non-fatal signal pending), and
2464	 * put the task into sleep.
2465	 */
2466	__set_current_state(TASK_INTERRUPTIBLE);
2467	clear_thread_flag(TIF_SIGPENDING);
2468	spin_unlock_irq(&current->sighand->siglock);
2469	cgroup_enter_frozen();
2470	freezable_schedule();
2471}
2472
2473static int ptrace_signal(int signr, kernel_siginfo_t *info)
2474{
 
2475	/*
2476	 * We do not check sig_kernel_stop(signr) but set this marker
2477	 * unconditionally because we do not know whether debugger will
2478	 * change signr. This flag has no meaning unless we are going
2479	 * to stop after return from ptrace_stop(). In this case it will
2480	 * be checked in do_signal_stop(), we should only stop if it was
2481	 * not cleared by SIGCONT while we were sleeping. See also the
2482	 * comment in dequeue_signal().
2483	 */
2484	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2485	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2486
2487	/* We're back.  Did the debugger cancel the sig?  */
2488	signr = current->exit_code;
2489	if (signr == 0)
2490		return signr;
2491
2492	current->exit_code = 0;
2493
2494	/*
2495	 * Update the siginfo structure if the signal has
2496	 * changed.  If the debugger wanted something
2497	 * specific in the siginfo structure then it should
2498	 * have updated *info via PTRACE_SETSIGINFO.
2499	 */
2500	if (signr != info->si_signo) {
2501		clear_siginfo(info);
2502		info->si_signo = signr;
2503		info->si_errno = 0;
2504		info->si_code = SI_USER;
2505		rcu_read_lock();
2506		info->si_pid = task_pid_vnr(current->parent);
2507		info->si_uid = from_kuid_munged(current_user_ns(),
2508						task_uid(current->parent));
2509		rcu_read_unlock();
2510	}
2511
2512	/* If the (new) signal is now blocked, requeue it.  */
2513	if (sigismember(&current->blocked, signr)) {
2514		send_signal(signr, info, current, PIDTYPE_PID);
2515		signr = 0;
2516	}
2517
2518	return signr;
2519}
2520
2521bool get_signal(struct ksignal *ksig)
2522{
2523	struct sighand_struct *sighand = current->sighand;
2524	struct signal_struct *signal = current->signal;
2525	int signr;
2526
2527	if (unlikely(current->task_works))
2528		task_work_run();
2529
2530	if (unlikely(uprobe_deny_signal()))
2531		return false;
2532
2533	/*
2534	 * Do this once, we can't return to user-mode if freezing() == T.
2535	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2536	 * thus do not need another check after return.
2537	 */
2538	try_to_freeze();
2539
2540relock:
2541	spin_lock_irq(&sighand->siglock);
2542	/*
2543	 * Every stopped thread goes here after wakeup. Check to see if
2544	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2545	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2546	 */
2547	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2548		int why;
2549
2550		if (signal->flags & SIGNAL_CLD_CONTINUED)
2551			why = CLD_CONTINUED;
2552		else
2553			why = CLD_STOPPED;
2554
2555		signal->flags &= ~SIGNAL_CLD_MASK;
2556
2557		spin_unlock_irq(&sighand->siglock);
2558
2559		/*
2560		 * Notify the parent that we're continuing.  This event is
2561		 * always per-process and doesn't make whole lot of sense
2562		 * for ptracers, who shouldn't consume the state via
2563		 * wait(2) either, but, for backward compatibility, notify
2564		 * the ptracer of the group leader too unless it's gonna be
2565		 * a duplicate.
2566		 */
2567		read_lock(&tasklist_lock);
2568		do_notify_parent_cldstop(current, false, why);
2569
2570		if (ptrace_reparented(current->group_leader))
2571			do_notify_parent_cldstop(current->group_leader,
2572						true, why);
2573		read_unlock(&tasklist_lock);
2574
2575		goto relock;
2576	}
2577
2578	/* Has this task already been marked for death? */
2579	if (signal_group_exit(signal)) {
2580		ksig->info.si_signo = signr = SIGKILL;
2581		sigdelset(&current->pending.signal, SIGKILL);
2582		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2583				&sighand->action[SIGKILL - 1]);
2584		recalc_sigpending();
2585		goto fatal;
2586	}
2587
2588	for (;;) {
2589		struct k_sigaction *ka;
2590
2591		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2592		    do_signal_stop(0))
2593			goto relock;
2594
2595		if (unlikely(current->jobctl &
2596			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2597			if (current->jobctl & JOBCTL_TRAP_MASK) {
2598				do_jobctl_trap();
2599				spin_unlock_irq(&sighand->siglock);
2600			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2601				do_freezer_trap();
2602
2603			goto relock;
2604		}
2605
2606		/*
2607		 * If the task is leaving the frozen state, let's update
2608		 * cgroup counters and reset the frozen bit.
2609		 */
2610		if (unlikely(cgroup_task_frozen(current))) {
2611			spin_unlock_irq(&sighand->siglock);
2612			cgroup_leave_frozen(false);
2613			goto relock;
2614		}
2615
2616		/*
2617		 * Signals generated by the execution of an instruction
2618		 * need to be delivered before any other pending signals
2619		 * so that the instruction pointer in the signal stack
2620		 * frame points to the faulting instruction.
2621		 */
2622		signr = dequeue_synchronous_signal(&ksig->info);
2623		if (!signr)
2624			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2625
2626		if (!signr)
2627			break; /* will return 0 */
2628
2629		if (unlikely(current->ptrace) && signr != SIGKILL) {
2630			signr = ptrace_signal(signr, &ksig->info);
2631			if (!signr)
2632				continue;
2633		}
2634
2635		ka = &sighand->action[signr-1];
2636
2637		/* Trace actually delivered signals. */
2638		trace_signal_deliver(signr, &ksig->info, ka);
2639
2640		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2641			continue;
2642		if (ka->sa.sa_handler != SIG_DFL) {
2643			/* Run the handler.  */
2644			ksig->ka = *ka;
2645
2646			if (ka->sa.sa_flags & SA_ONESHOT)
2647				ka->sa.sa_handler = SIG_DFL;
2648
2649			break; /* will return non-zero "signr" value */
2650		}
2651
2652		/*
2653		 * Now we are doing the default action for this signal.
2654		 */
2655		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2656			continue;
2657
2658		/*
2659		 * Global init gets no signals it doesn't want.
2660		 * Container-init gets no signals it doesn't want from same
2661		 * container.
2662		 *
2663		 * Note that if global/container-init sees a sig_kernel_only()
2664		 * signal here, the signal must have been generated internally
2665		 * or must have come from an ancestor namespace. In either
2666		 * case, the signal cannot be dropped.
2667		 */
2668		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2669				!sig_kernel_only(signr))
2670			continue;
2671
2672		if (sig_kernel_stop(signr)) {
2673			/*
2674			 * The default action is to stop all threads in
2675			 * the thread group.  The job control signals
2676			 * do nothing in an orphaned pgrp, but SIGSTOP
2677			 * always works.  Note that siglock needs to be
2678			 * dropped during the call to is_orphaned_pgrp()
2679			 * because of lock ordering with tasklist_lock.
2680			 * This allows an intervening SIGCONT to be posted.
2681			 * We need to check for that and bail out if necessary.
2682			 */
2683			if (signr != SIGSTOP) {
2684				spin_unlock_irq(&sighand->siglock);
2685
2686				/* signals can be posted during this window */
2687
2688				if (is_current_pgrp_orphaned())
2689					goto relock;
2690
2691				spin_lock_irq(&sighand->siglock);
2692			}
2693
2694			if (likely(do_signal_stop(ksig->info.si_signo))) {
2695				/* It released the siglock.  */
2696				goto relock;
2697			}
2698
2699			/*
2700			 * We didn't actually stop, due to a race
2701			 * with SIGCONT or something like that.
2702			 */
2703			continue;
2704		}
2705
2706	fatal:
2707		spin_unlock_irq(&sighand->siglock);
2708		if (unlikely(cgroup_task_frozen(current)))
2709			cgroup_leave_frozen(true);
2710
2711		/*
2712		 * Anything else is fatal, maybe with a core dump.
2713		 */
2714		current->flags |= PF_SIGNALED;
2715
2716		if (sig_kernel_coredump(signr)) {
2717			if (print_fatal_signals)
2718				print_fatal_signal(ksig->info.si_signo);
2719			proc_coredump_connector(current);
2720			/*
2721			 * If it was able to dump core, this kills all
2722			 * other threads in the group and synchronizes with
2723			 * their demise.  If we lost the race with another
2724			 * thread getting here, it set group_exit_code
2725			 * first and our do_group_exit call below will use
2726			 * that value and ignore the one we pass it.
2727			 */
2728			do_coredump(&ksig->info);
2729		}
2730
2731		/*
2732		 * Death signals, no core dump.
2733		 */
2734		do_group_exit(ksig->info.si_signo);
2735		/* NOTREACHED */
2736	}
2737	spin_unlock_irq(&sighand->siglock);
2738
2739	ksig->sig = signr;
2740	return ksig->sig > 0;
2741}
2742
2743/**
2744 * signal_delivered - 
2745 * @ksig:		kernel signal struct
2746 * @stepping:		nonzero if debugger single-step or block-step in use
2747 *
2748 * This function should be called when a signal has successfully been
2749 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2750 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2751 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2752 */
2753static void signal_delivered(struct ksignal *ksig, int stepping)
2754{
2755	sigset_t blocked;
2756
2757	/* A signal was successfully delivered, and the
2758	   saved sigmask was stored on the signal frame,
2759	   and will be restored by sigreturn.  So we can
2760	   simply clear the restore sigmask flag.  */
2761	clear_restore_sigmask();
2762
2763	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2764	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2765		sigaddset(&blocked, ksig->sig);
2766	set_current_blocked(&blocked);
2767	tracehook_signal_handler(stepping);
2768}
2769
2770void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2771{
2772	if (failed)
2773		force_sigsegv(ksig->sig);
2774	else
2775		signal_delivered(ksig, stepping);
2776}
2777
2778/*
2779 * It could be that complete_signal() picked us to notify about the
2780 * group-wide signal. Other threads should be notified now to take
2781 * the shared signals in @which since we will not.
2782 */
2783static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2784{
2785	sigset_t retarget;
2786	struct task_struct *t;
2787
2788	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2789	if (sigisemptyset(&retarget))
2790		return;
2791
2792	t = tsk;
2793	while_each_thread(tsk, t) {
2794		if (t->flags & PF_EXITING)
2795			continue;
2796
2797		if (!has_pending_signals(&retarget, &t->blocked))
2798			continue;
2799		/* Remove the signals this thread can handle. */
2800		sigandsets(&retarget, &retarget, &t->blocked);
2801
2802		if (!signal_pending(t))
2803			signal_wake_up(t, 0);
2804
2805		if (sigisemptyset(&retarget))
2806			break;
2807	}
2808}
2809
2810void exit_signals(struct task_struct *tsk)
2811{
2812	int group_stop = 0;
2813	sigset_t unblocked;
2814
2815	/*
2816	 * @tsk is about to have PF_EXITING set - lock out users which
2817	 * expect stable threadgroup.
2818	 */
2819	cgroup_threadgroup_change_begin(tsk);
2820
2821	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2822		tsk->flags |= PF_EXITING;
2823		cgroup_threadgroup_change_end(tsk);
2824		return;
2825	}
2826
2827	spin_lock_irq(&tsk->sighand->siglock);
2828	/*
2829	 * From now this task is not visible for group-wide signals,
2830	 * see wants_signal(), do_signal_stop().
2831	 */
2832	tsk->flags |= PF_EXITING;
2833
2834	cgroup_threadgroup_change_end(tsk);
2835
2836	if (!signal_pending(tsk))
2837		goto out;
2838
2839	unblocked = tsk->blocked;
2840	signotset(&unblocked);
2841	retarget_shared_pending(tsk, &unblocked);
2842
2843	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2844	    task_participate_group_stop(tsk))
2845		group_stop = CLD_STOPPED;
2846out:
2847	spin_unlock_irq(&tsk->sighand->siglock);
2848
2849	/*
2850	 * If group stop has completed, deliver the notification.  This
2851	 * should always go to the real parent of the group leader.
2852	 */
2853	if (unlikely(group_stop)) {
2854		read_lock(&tasklist_lock);
2855		do_notify_parent_cldstop(tsk, false, group_stop);
2856		read_unlock(&tasklist_lock);
2857	}
2858}
2859
 
 
 
 
 
 
 
 
2860/*
2861 * System call entry points.
2862 */
2863
2864/**
2865 *  sys_restart_syscall - restart a system call
2866 */
2867SYSCALL_DEFINE0(restart_syscall)
2868{
2869	struct restart_block *restart = &current->restart_block;
2870	return restart->fn(restart);
2871}
2872
2873long do_no_restart_syscall(struct restart_block *param)
2874{
2875	return -EINTR;
2876}
2877
2878static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2879{
2880	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2881		sigset_t newblocked;
2882		/* A set of now blocked but previously unblocked signals. */
2883		sigandnsets(&newblocked, newset, &current->blocked);
2884		retarget_shared_pending(tsk, &newblocked);
2885	}
2886	tsk->blocked = *newset;
2887	recalc_sigpending();
2888}
2889
2890/**
2891 * set_current_blocked - change current->blocked mask
2892 * @newset: new mask
2893 *
2894 * It is wrong to change ->blocked directly, this helper should be used
2895 * to ensure the process can't miss a shared signal we are going to block.
2896 */
2897void set_current_blocked(sigset_t *newset)
2898{
2899	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2900	__set_current_blocked(newset);
2901}
2902
2903void __set_current_blocked(const sigset_t *newset)
2904{
2905	struct task_struct *tsk = current;
2906
2907	/*
2908	 * In case the signal mask hasn't changed, there is nothing we need
2909	 * to do. The current->blocked shouldn't be modified by other task.
2910	 */
2911	if (sigequalsets(&tsk->blocked, newset))
2912		return;
2913
2914	spin_lock_irq(&tsk->sighand->siglock);
2915	__set_task_blocked(tsk, newset);
2916	spin_unlock_irq(&tsk->sighand->siglock);
2917}
2918
2919/*
2920 * This is also useful for kernel threads that want to temporarily
2921 * (or permanently) block certain signals.
2922 *
2923 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2924 * interface happily blocks "unblockable" signals like SIGKILL
2925 * and friends.
2926 */
2927int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2928{
2929	struct task_struct *tsk = current;
2930	sigset_t newset;
2931
2932	/* Lockless, only current can change ->blocked, never from irq */
2933	if (oldset)
2934		*oldset = tsk->blocked;
2935
2936	switch (how) {
2937	case SIG_BLOCK:
2938		sigorsets(&newset, &tsk->blocked, set);
2939		break;
2940	case SIG_UNBLOCK:
2941		sigandnsets(&newset, &tsk->blocked, set);
2942		break;
2943	case SIG_SETMASK:
2944		newset = *set;
2945		break;
2946	default:
2947		return -EINVAL;
2948	}
2949
2950	__set_current_blocked(&newset);
2951	return 0;
2952}
2953EXPORT_SYMBOL(sigprocmask);
2954
2955/*
2956 * The api helps set app-provided sigmasks.
2957 *
2958 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2959 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2960 *
2961 * Note that it does set_restore_sigmask() in advance, so it must be always
2962 * paired with restore_saved_sigmask_unless() before return from syscall.
2963 */
2964int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2965{
2966	sigset_t kmask;
2967
2968	if (!umask)
2969		return 0;
2970	if (sigsetsize != sizeof(sigset_t))
2971		return -EINVAL;
2972	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2973		return -EFAULT;
2974
2975	set_restore_sigmask();
2976	current->saved_sigmask = current->blocked;
2977	set_current_blocked(&kmask);
2978
2979	return 0;
2980}
2981
2982#ifdef CONFIG_COMPAT
2983int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2984			    size_t sigsetsize)
2985{
2986	sigset_t kmask;
2987
2988	if (!umask)
2989		return 0;
2990	if (sigsetsize != sizeof(compat_sigset_t))
2991		return -EINVAL;
2992	if (get_compat_sigset(&kmask, umask))
2993		return -EFAULT;
2994
2995	set_restore_sigmask();
2996	current->saved_sigmask = current->blocked;
2997	set_current_blocked(&kmask);
2998
2999	return 0;
3000}
3001#endif
3002
3003/**
3004 *  sys_rt_sigprocmask - change the list of currently blocked signals
3005 *  @how: whether to add, remove, or set signals
3006 *  @nset: stores pending signals
3007 *  @oset: previous value of signal mask if non-null
3008 *  @sigsetsize: size of sigset_t type
3009 */
3010SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3011		sigset_t __user *, oset, size_t, sigsetsize)
3012{
3013	sigset_t old_set, new_set;
3014	int error;
3015
3016	/* XXX: Don't preclude handling different sized sigset_t's.  */
3017	if (sigsetsize != sizeof(sigset_t))
3018		return -EINVAL;
3019
3020	old_set = current->blocked;
3021
3022	if (nset) {
3023		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3024			return -EFAULT;
3025		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3026
3027		error = sigprocmask(how, &new_set, NULL);
3028		if (error)
3029			return error;
3030	}
3031
3032	if (oset) {
3033		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3034			return -EFAULT;
3035	}
3036
3037	return 0;
3038}
3039
3040#ifdef CONFIG_COMPAT
3041COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3042		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3043{
 
3044	sigset_t old_set = current->blocked;
3045
3046	/* XXX: Don't preclude handling different sized sigset_t's.  */
3047	if (sigsetsize != sizeof(sigset_t))
3048		return -EINVAL;
3049
3050	if (nset) {
 
3051		sigset_t new_set;
3052		int error;
3053		if (get_compat_sigset(&new_set, nset))
3054			return -EFAULT;
 
 
3055		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3056
3057		error = sigprocmask(how, &new_set, NULL);
3058		if (error)
3059			return error;
3060	}
3061	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
 
 
 
 
 
 
 
 
 
 
3062}
3063#endif
3064
3065static void do_sigpending(sigset_t *set)
3066{
 
 
 
3067	spin_lock_irq(&current->sighand->siglock);
3068	sigorsets(set, &current->pending.signal,
3069		  &current->signal->shared_pending.signal);
3070	spin_unlock_irq(&current->sighand->siglock);
3071
3072	/* Outside the lock because only this thread touches it.  */
3073	sigandsets(set, &current->blocked, set);
 
3074}
3075
3076/**
3077 *  sys_rt_sigpending - examine a pending signal that has been raised
3078 *			while blocked
3079 *  @uset: stores pending signals
3080 *  @sigsetsize: size of sigset_t type or larger
3081 */
3082SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3083{
3084	sigset_t set;
3085
3086	if (sigsetsize > sizeof(*uset))
3087		return -EINVAL;
3088
3089	do_sigpending(&set);
3090
3091	if (copy_to_user(uset, &set, sigsetsize))
3092		return -EFAULT;
3093
3094	return 0;
3095}
3096
3097#ifdef CONFIG_COMPAT
3098COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3099		compat_size_t, sigsetsize)
3100{
 
3101	sigset_t set;
3102
3103	if (sigsetsize > sizeof(*uset))
3104		return -EINVAL;
3105
3106	do_sigpending(&set);
3107
3108	return put_compat_sigset(uset, &set, sigsetsize);
3109}
3110#endif
3111
3112static const struct {
3113	unsigned char limit, layout;
3114} sig_sicodes[] = {
3115	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3116	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3117	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3118	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3119	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3120#if defined(SIGEMT)
3121	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3122#endif
3123	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3124	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3125	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3126};
3127
3128static bool known_siginfo_layout(unsigned sig, int si_code)
3129{
3130	if (si_code == SI_KERNEL)
3131		return true;
3132	else if ((si_code > SI_USER)) {
3133		if (sig_specific_sicodes(sig)) {
3134			if (si_code <= sig_sicodes[sig].limit)
3135				return true;
3136		}
3137		else if (si_code <= NSIGPOLL)
3138			return true;
3139	}
3140	else if (si_code >= SI_DETHREAD)
3141		return true;
3142	else if (si_code == SI_ASYNCNL)
3143		return true;
3144	return false;
3145}
3146
3147enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3148{
3149	enum siginfo_layout layout = SIL_KILL;
3150	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3151		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3152		    (si_code <= sig_sicodes[sig].limit)) {
3153			layout = sig_sicodes[sig].layout;
3154			/* Handle the exceptions */
3155			if ((sig == SIGBUS) &&
3156			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3157				layout = SIL_FAULT_MCEERR;
3158			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3159				layout = SIL_FAULT_BNDERR;
3160#ifdef SEGV_PKUERR
3161			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3162				layout = SIL_FAULT_PKUERR;
3163#endif
3164		}
3165		else if (si_code <= NSIGPOLL)
3166			layout = SIL_POLL;
3167	} else {
3168		if (si_code == SI_TIMER)
3169			layout = SIL_TIMER;
3170		else if (si_code == SI_SIGIO)
3171			layout = SIL_POLL;
3172		else if (si_code < 0)
3173			layout = SIL_RT;
3174	}
3175	return layout;
3176}
3177
3178static inline char __user *si_expansion(const siginfo_t __user *info)
3179{
3180	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3181}
 
3182
3183int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3184{
3185	char __user *expansion = si_expansion(to);
3186	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3187		return -EFAULT;
3188	if (clear_user(expansion, SI_EXPANSION_SIZE))
3189		return -EFAULT;
3190	return 0;
3191}
3192
3193static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3194				       const siginfo_t __user *from)
3195{
3196	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3197		char __user *expansion = si_expansion(from);
3198		char buf[SI_EXPANSION_SIZE];
3199		int i;
3200		/*
3201		 * An unknown si_code might need more than
3202		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3203		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3204		 * will return this data to userspace exactly.
3205		 */
3206		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3207			return -EFAULT;
3208		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3209			if (buf[i] != 0)
3210				return -E2BIG;
3211		}
3212	}
3213	return 0;
3214}
3215
3216static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3217				    const siginfo_t __user *from)
3218{
3219	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3220		return -EFAULT;
3221	to->si_signo = signo;
3222	return post_copy_siginfo_from_user(to, from);
3223}
3224
3225int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3226{
3227	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3228		return -EFAULT;
3229	return post_copy_siginfo_from_user(to, from);
3230}
3231
3232#ifdef CONFIG_COMPAT
3233int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3234			   const struct kernel_siginfo *from)
3235#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3236{
3237	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3238}
3239int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3240			     const struct kernel_siginfo *from, bool x32_ABI)
3241#endif
3242{
3243	struct compat_siginfo new;
3244	memset(&new, 0, sizeof(new));
3245
3246	new.si_signo = from->si_signo;
3247	new.si_errno = from->si_errno;
3248	new.si_code  = from->si_code;
3249	switch(siginfo_layout(from->si_signo, from->si_code)) {
3250	case SIL_KILL:
3251		new.si_pid = from->si_pid;
3252		new.si_uid = from->si_uid;
3253		break;
3254	case SIL_TIMER:
3255		new.si_tid     = from->si_tid;
3256		new.si_overrun = from->si_overrun;
3257		new.si_int     = from->si_int;
3258		break;
3259	case SIL_POLL:
3260		new.si_band = from->si_band;
3261		new.si_fd   = from->si_fd;
3262		break;
3263	case SIL_FAULT:
3264		new.si_addr = ptr_to_compat(from->si_addr);
3265#ifdef __ARCH_SI_TRAPNO
3266		new.si_trapno = from->si_trapno;
3267#endif
3268		break;
3269	case SIL_FAULT_MCEERR:
3270		new.si_addr = ptr_to_compat(from->si_addr);
3271#ifdef __ARCH_SI_TRAPNO
3272		new.si_trapno = from->si_trapno;
3273#endif
3274		new.si_addr_lsb = from->si_addr_lsb;
3275		break;
3276	case SIL_FAULT_BNDERR:
3277		new.si_addr = ptr_to_compat(from->si_addr);
3278#ifdef __ARCH_SI_TRAPNO
3279		new.si_trapno = from->si_trapno;
3280#endif
3281		new.si_lower = ptr_to_compat(from->si_lower);
3282		new.si_upper = ptr_to_compat(from->si_upper);
3283		break;
3284	case SIL_FAULT_PKUERR:
3285		new.si_addr = ptr_to_compat(from->si_addr);
3286#ifdef __ARCH_SI_TRAPNO
3287		new.si_trapno = from->si_trapno;
3288#endif
3289		new.si_pkey = from->si_pkey;
3290		break;
3291	case SIL_CHLD:
3292		new.si_pid    = from->si_pid;
3293		new.si_uid    = from->si_uid;
3294		new.si_status = from->si_status;
3295#ifdef CONFIG_X86_X32_ABI
3296		if (x32_ABI) {
3297			new._sifields._sigchld_x32._utime = from->si_utime;
3298			new._sifields._sigchld_x32._stime = from->si_stime;
3299		} else
3300#endif
3301		{
3302			new.si_utime = from->si_utime;
3303			new.si_stime = from->si_stime;
 
3304		}
3305		break;
3306	case SIL_RT:
3307		new.si_pid = from->si_pid;
3308		new.si_uid = from->si_uid;
3309		new.si_int = from->si_int;
3310		break;
3311	case SIL_SYS:
3312		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3313		new.si_syscall   = from->si_syscall;
3314		new.si_arch      = from->si_arch;
3315		break;
3316	}
3317
3318	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3319		return -EFAULT;
3320
3321	return 0;
3322}
3323
3324static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3325					 const struct compat_siginfo *from)
3326{
3327	clear_siginfo(to);
3328	to->si_signo = from->si_signo;
3329	to->si_errno = from->si_errno;
3330	to->si_code  = from->si_code;
3331	switch(siginfo_layout(from->si_signo, from->si_code)) {
3332	case SIL_KILL:
3333		to->si_pid = from->si_pid;
3334		to->si_uid = from->si_uid;
3335		break;
3336	case SIL_TIMER:
3337		to->si_tid     = from->si_tid;
3338		to->si_overrun = from->si_overrun;
3339		to->si_int     = from->si_int;
3340		break;
3341	case SIL_POLL:
3342		to->si_band = from->si_band;
3343		to->si_fd   = from->si_fd;
3344		break;
3345	case SIL_FAULT:
3346		to->si_addr = compat_ptr(from->si_addr);
3347#ifdef __ARCH_SI_TRAPNO
3348		to->si_trapno = from->si_trapno;
3349#endif
3350		break;
3351	case SIL_FAULT_MCEERR:
3352		to->si_addr = compat_ptr(from->si_addr);
3353#ifdef __ARCH_SI_TRAPNO
3354		to->si_trapno = from->si_trapno;
3355#endif
3356		to->si_addr_lsb = from->si_addr_lsb;
3357		break;
3358	case SIL_FAULT_BNDERR:
3359		to->si_addr = compat_ptr(from->si_addr);
3360#ifdef __ARCH_SI_TRAPNO
3361		to->si_trapno = from->si_trapno;
3362#endif
3363		to->si_lower = compat_ptr(from->si_lower);
3364		to->si_upper = compat_ptr(from->si_upper);
3365		break;
3366	case SIL_FAULT_PKUERR:
3367		to->si_addr = compat_ptr(from->si_addr);
3368#ifdef __ARCH_SI_TRAPNO
3369		to->si_trapno = from->si_trapno;
3370#endif
3371		to->si_pkey = from->si_pkey;
3372		break;
3373	case SIL_CHLD:
3374		to->si_pid    = from->si_pid;
3375		to->si_uid    = from->si_uid;
3376		to->si_status = from->si_status;
3377#ifdef CONFIG_X86_X32_ABI
3378		if (in_x32_syscall()) {
3379			to->si_utime = from->_sifields._sigchld_x32._utime;
3380			to->si_stime = from->_sifields._sigchld_x32._stime;
3381		} else
3382#endif
3383		{
3384			to->si_utime = from->si_utime;
3385			to->si_stime = from->si_stime;
3386		}
3387		break;
3388	case SIL_RT:
3389		to->si_pid = from->si_pid;
3390		to->si_uid = from->si_uid;
3391		to->si_int = from->si_int;
3392		break;
3393	case SIL_SYS:
3394		to->si_call_addr = compat_ptr(from->si_call_addr);
3395		to->si_syscall   = from->si_syscall;
3396		to->si_arch      = from->si_arch;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3397		break;
3398	}
3399	return 0;
3400}
3401
3402static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3403				      const struct compat_siginfo __user *ufrom)
3404{
3405	struct compat_siginfo from;
3406
3407	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3408		return -EFAULT;
3409
3410	from.si_signo = signo;
3411	return post_copy_siginfo_from_user32(to, &from);
3412}
3413
3414int copy_siginfo_from_user32(struct kernel_siginfo *to,
3415			     const struct compat_siginfo __user *ufrom)
3416{
3417	struct compat_siginfo from;
3418
3419	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3420		return -EFAULT;
3421
3422	return post_copy_siginfo_from_user32(to, &from);
3423}
3424#endif /* CONFIG_COMPAT */
3425
3426/**
3427 *  do_sigtimedwait - wait for queued signals specified in @which
3428 *  @which: queued signals to wait for
3429 *  @info: if non-null, the signal's siginfo is returned here
3430 *  @ts: upper bound on process time suspension
3431 */
3432static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3433		    const struct timespec64 *ts)
3434{
3435	ktime_t *to = NULL, timeout = KTIME_MAX;
3436	struct task_struct *tsk = current;
3437	sigset_t mask = *which;
3438	int sig, ret = 0;
3439
3440	if (ts) {
3441		if (!timespec64_valid(ts))
3442			return -EINVAL;
3443		timeout = timespec64_to_ktime(*ts);
3444		to = &timeout;
3445	}
3446
3447	/*
3448	 * Invert the set of allowed signals to get those we want to block.
3449	 */
3450	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3451	signotset(&mask);
3452
3453	spin_lock_irq(&tsk->sighand->siglock);
3454	sig = dequeue_signal(tsk, &mask, info);
3455	if (!sig && timeout) {
3456		/*
3457		 * None ready, temporarily unblock those we're interested
3458		 * while we are sleeping in so that we'll be awakened when
3459		 * they arrive. Unblocking is always fine, we can avoid
3460		 * set_current_blocked().
3461		 */
3462		tsk->real_blocked = tsk->blocked;
3463		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3464		recalc_sigpending();
3465		spin_unlock_irq(&tsk->sighand->siglock);
3466
3467		__set_current_state(TASK_INTERRUPTIBLE);
3468		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3469							 HRTIMER_MODE_REL);
3470		spin_lock_irq(&tsk->sighand->siglock);
3471		__set_task_blocked(tsk, &tsk->real_blocked);
3472		sigemptyset(&tsk->real_blocked);
3473		sig = dequeue_signal(tsk, &mask, info);
3474	}
3475	spin_unlock_irq(&tsk->sighand->siglock);
3476
3477	if (sig)
3478		return sig;
3479	return ret ? -EINTR : -EAGAIN;
3480}
3481
3482/**
3483 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3484 *			in @uthese
3485 *  @uthese: queued signals to wait for
3486 *  @uinfo: if non-null, the signal's siginfo is returned here
3487 *  @uts: upper bound on process time suspension
3488 *  @sigsetsize: size of sigset_t type
3489 */
3490SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3491		siginfo_t __user *, uinfo,
3492		const struct __kernel_timespec __user *, uts,
3493		size_t, sigsetsize)
3494{
3495	sigset_t these;
3496	struct timespec64 ts;
3497	kernel_siginfo_t info;
3498	int ret;
3499
3500	/* XXX: Don't preclude handling different sized sigset_t's.  */
3501	if (sigsetsize != sizeof(sigset_t))
3502		return -EINVAL;
3503
3504	if (copy_from_user(&these, uthese, sizeof(these)))
3505		return -EFAULT;
3506
3507	if (uts) {
3508		if (get_timespec64(&ts, uts))
3509			return -EFAULT;
3510	}
3511
3512	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3513
3514	if (ret > 0 && uinfo) {
3515		if (copy_siginfo_to_user(uinfo, &info))
3516			ret = -EFAULT;
3517	}
3518
3519	return ret;
3520}
3521
3522#ifdef CONFIG_COMPAT_32BIT_TIME
3523SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3524		siginfo_t __user *, uinfo,
3525		const struct old_timespec32 __user *, uts,
3526		size_t, sigsetsize)
3527{
3528	sigset_t these;
3529	struct timespec64 ts;
3530	kernel_siginfo_t info;
3531	int ret;
3532
3533	if (sigsetsize != sizeof(sigset_t))
3534		return -EINVAL;
3535
3536	if (copy_from_user(&these, uthese, sizeof(these)))
3537		return -EFAULT;
3538
3539	if (uts) {
3540		if (get_old_timespec32(&ts, uts))
3541			return -EFAULT;
3542	}
3543
3544	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3545
3546	if (ret > 0 && uinfo) {
3547		if (copy_siginfo_to_user(uinfo, &info))
3548			ret = -EFAULT;
3549	}
3550
3551	return ret;
3552}
3553#endif
3554
3555#ifdef CONFIG_COMPAT
3556COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3557		struct compat_siginfo __user *, uinfo,
3558		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3559{
3560	sigset_t s;
3561	struct timespec64 t;
3562	kernel_siginfo_t info;
3563	long ret;
3564
3565	if (sigsetsize != sizeof(sigset_t))
3566		return -EINVAL;
3567
3568	if (get_compat_sigset(&s, uthese))
3569		return -EFAULT;
3570
3571	if (uts) {
3572		if (get_timespec64(&t, uts))
3573			return -EFAULT;
3574	}
3575
3576	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3577
3578	if (ret > 0 && uinfo) {
3579		if (copy_siginfo_to_user32(uinfo, &info))
3580			ret = -EFAULT;
3581	}
3582
3583	return ret;
3584}
3585
3586#ifdef CONFIG_COMPAT_32BIT_TIME
3587COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3588		struct compat_siginfo __user *, uinfo,
3589		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3590{
3591	sigset_t s;
3592	struct timespec64 t;
3593	kernel_siginfo_t info;
3594	long ret;
3595
3596	if (sigsetsize != sizeof(sigset_t))
3597		return -EINVAL;
3598
3599	if (get_compat_sigset(&s, uthese))
3600		return -EFAULT;
3601
3602	if (uts) {
3603		if (get_old_timespec32(&t, uts))
3604			return -EFAULT;
3605	}
3606
3607	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3608
3609	if (ret > 0 && uinfo) {
3610		if (copy_siginfo_to_user32(uinfo, &info))
3611			ret = -EFAULT;
3612	}
3613
3614	return ret;
3615}
3616#endif
3617#endif
3618
3619static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3620{
3621	clear_siginfo(info);
3622	info->si_signo = sig;
3623	info->si_errno = 0;
3624	info->si_code = SI_USER;
3625	info->si_pid = task_tgid_vnr(current);
3626	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3627}
3628
3629/**
3630 *  sys_kill - send a signal to a process
3631 *  @pid: the PID of the process
3632 *  @sig: signal to be sent
3633 */
3634SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3635{
3636	struct kernel_siginfo info;
3637
3638	prepare_kill_siginfo(sig, &info);
 
 
 
 
3639
3640	return kill_something_info(sig, &info, pid);
3641}
3642
3643/*
3644 * Verify that the signaler and signalee either are in the same pid namespace
3645 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3646 * namespace.
3647 */
3648static bool access_pidfd_pidns(struct pid *pid)
3649{
3650	struct pid_namespace *active = task_active_pid_ns(current);
3651	struct pid_namespace *p = ns_of_pid(pid);
3652
3653	for (;;) {
3654		if (!p)
3655			return false;
3656		if (p == active)
3657			break;
3658		p = p->parent;
3659	}
3660
3661	return true;
3662}
3663
3664static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3665{
3666#ifdef CONFIG_COMPAT
3667	/*
3668	 * Avoid hooking up compat syscalls and instead handle necessary
3669	 * conversions here. Note, this is a stop-gap measure and should not be
3670	 * considered a generic solution.
3671	 */
3672	if (in_compat_syscall())
3673		return copy_siginfo_from_user32(
3674			kinfo, (struct compat_siginfo __user *)info);
3675#endif
3676	return copy_siginfo_from_user(kinfo, info);
3677}
3678
3679static struct pid *pidfd_to_pid(const struct file *file)
3680{
3681	struct pid *pid;
3682
3683	pid = pidfd_pid(file);
3684	if (!IS_ERR(pid))
3685		return pid;
3686
3687	return tgid_pidfd_to_pid(file);
3688}
3689
3690/**
3691 * sys_pidfd_send_signal - Signal a process through a pidfd
3692 * @pidfd:  file descriptor of the process
3693 * @sig:    signal to send
3694 * @info:   signal info
3695 * @flags:  future flags
3696 *
3697 * The syscall currently only signals via PIDTYPE_PID which covers
3698 * kill(<positive-pid>, <signal>. It does not signal threads or process
3699 * groups.
3700 * In order to extend the syscall to threads and process groups the @flags
3701 * argument should be used. In essence, the @flags argument will determine
3702 * what is signaled and not the file descriptor itself. Put in other words,
3703 * grouping is a property of the flags argument not a property of the file
3704 * descriptor.
3705 *
3706 * Return: 0 on success, negative errno on failure
3707 */
3708SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3709		siginfo_t __user *, info, unsigned int, flags)
3710{
3711	int ret;
3712	struct fd f;
3713	struct pid *pid;
3714	kernel_siginfo_t kinfo;
3715
3716	/* Enforce flags be set to 0 until we add an extension. */
3717	if (flags)
3718		return -EINVAL;
3719
3720	f = fdget(pidfd);
3721	if (!f.file)
3722		return -EBADF;
3723
3724	/* Is this a pidfd? */
3725	pid = pidfd_to_pid(f.file);
3726	if (IS_ERR(pid)) {
3727		ret = PTR_ERR(pid);
3728		goto err;
3729	}
3730
3731	ret = -EINVAL;
3732	if (!access_pidfd_pidns(pid))
3733		goto err;
3734
3735	if (info) {
3736		ret = copy_siginfo_from_user_any(&kinfo, info);
3737		if (unlikely(ret))
3738			goto err;
3739
3740		ret = -EINVAL;
3741		if (unlikely(sig != kinfo.si_signo))
3742			goto err;
3743
3744		/* Only allow sending arbitrary signals to yourself. */
3745		ret = -EPERM;
3746		if ((task_pid(current) != pid) &&
3747		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3748			goto err;
3749	} else {
3750		prepare_kill_siginfo(sig, &kinfo);
3751	}
3752
3753	ret = kill_pid_info(sig, &kinfo, pid);
3754
3755err:
3756	fdput(f);
3757	return ret;
3758}
3759
3760static int
3761do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3762{
3763	struct task_struct *p;
3764	int error = -ESRCH;
3765
3766	rcu_read_lock();
3767	p = find_task_by_vpid(pid);
3768	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3769		error = check_kill_permission(sig, info, p);
3770		/*
3771		 * The null signal is a permissions and process existence
3772		 * probe.  No signal is actually delivered.
3773		 */
3774		if (!error && sig) {
3775			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3776			/*
3777			 * If lock_task_sighand() failed we pretend the task
3778			 * dies after receiving the signal. The window is tiny,
3779			 * and the signal is private anyway.
3780			 */
3781			if (unlikely(error == -ESRCH))
3782				error = 0;
3783		}
3784	}
3785	rcu_read_unlock();
3786
3787	return error;
3788}
3789
3790static int do_tkill(pid_t tgid, pid_t pid, int sig)
3791{
3792	struct kernel_siginfo info;
3793
3794	clear_siginfo(&info);
3795	info.si_signo = sig;
3796	info.si_errno = 0;
3797	info.si_code = SI_TKILL;
3798	info.si_pid = task_tgid_vnr(current);
3799	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800
3801	return do_send_specific(tgid, pid, sig, &info);
3802}
3803
3804/**
3805 *  sys_tgkill - send signal to one specific thread
3806 *  @tgid: the thread group ID of the thread
3807 *  @pid: the PID of the thread
3808 *  @sig: signal to be sent
3809 *
3810 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3811 *  exists but it's not belonging to the target process anymore. This
3812 *  method solves the problem of threads exiting and PIDs getting reused.
3813 */
3814SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3815{
3816	/* This is only valid for single tasks */
3817	if (pid <= 0 || tgid <= 0)
3818		return -EINVAL;
3819
3820	return do_tkill(tgid, pid, sig);
3821}
3822
3823/**
3824 *  sys_tkill - send signal to one specific task
3825 *  @pid: the PID of the task
3826 *  @sig: signal to be sent
3827 *
3828 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3829 */
3830SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3831{
3832	/* This is only valid for single tasks */
3833	if (pid <= 0)
3834		return -EINVAL;
3835
3836	return do_tkill(0, pid, sig);
3837}
3838
3839static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3840{
3841	/* Not even root can pretend to send signals from the kernel.
3842	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3843	 */
3844	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3845	    (task_pid_vnr(current) != pid))
3846		return -EPERM;
3847
 
 
3848	/* POSIX.1b doesn't mention process groups.  */
3849	return kill_proc_info(sig, info, pid);
3850}
3851
3852/**
3853 *  sys_rt_sigqueueinfo - send signal information to a signal
3854 *  @pid: the PID of the thread
3855 *  @sig: signal to be sent
3856 *  @uinfo: signal info to be sent
3857 */
3858SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3859		siginfo_t __user *, uinfo)
3860{
3861	kernel_siginfo_t info;
3862	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3863	if (unlikely(ret))
3864		return ret;
3865	return do_rt_sigqueueinfo(pid, sig, &info);
3866}
3867
3868#ifdef CONFIG_COMPAT
3869COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3870			compat_pid_t, pid,
3871			int, sig,
3872			struct compat_siginfo __user *, uinfo)
3873{
3874	kernel_siginfo_t info;
3875	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3876	if (unlikely(ret))
3877		return ret;
3878	return do_rt_sigqueueinfo(pid, sig, &info);
3879}
3880#endif
3881
3882static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3883{
3884	/* This is only valid for single tasks */
3885	if (pid <= 0 || tgid <= 0)
3886		return -EINVAL;
3887
3888	/* Not even root can pretend to send signals from the kernel.
3889	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3890	 */
3891	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3892	    (task_pid_vnr(current) != pid))
3893		return -EPERM;
3894
 
 
3895	return do_send_specific(tgid, pid, sig, info);
3896}
3897
3898SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3899		siginfo_t __user *, uinfo)
3900{
3901	kernel_siginfo_t info;
3902	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3903	if (unlikely(ret))
3904		return ret;
 
3905	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3906}
3907
3908#ifdef CONFIG_COMPAT
3909COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3910			compat_pid_t, tgid,
3911			compat_pid_t, pid,
3912			int, sig,
3913			struct compat_siginfo __user *, uinfo)
3914{
3915	kernel_siginfo_t info;
3916	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3917	if (unlikely(ret))
3918		return ret;
3919	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3920}
3921#endif
3922
3923/*
3924 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3925 */
3926void kernel_sigaction(int sig, __sighandler_t action)
3927{
3928	spin_lock_irq(&current->sighand->siglock);
3929	current->sighand->action[sig - 1].sa.sa_handler = action;
3930	if (action == SIG_IGN) {
3931		sigset_t mask;
3932
3933		sigemptyset(&mask);
3934		sigaddset(&mask, sig);
3935
3936		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3937		flush_sigqueue_mask(&mask, &current->pending);
3938		recalc_sigpending();
3939	}
3940	spin_unlock_irq(&current->sighand->siglock);
3941}
3942EXPORT_SYMBOL(kernel_sigaction);
3943
3944void __weak sigaction_compat_abi(struct k_sigaction *act,
3945		struct k_sigaction *oact)
3946{
3947}
3948
3949int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3950{
3951	struct task_struct *p = current, *t;
3952	struct k_sigaction *k;
3953	sigset_t mask;
3954
3955	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3956		return -EINVAL;
3957
3958	k = &p->sighand->action[sig-1];
3959
3960	spin_lock_irq(&p->sighand->siglock);
3961	if (oact)
3962		*oact = *k;
3963
3964	sigaction_compat_abi(act, oact);
3965
3966	if (act) {
3967		sigdelsetmask(&act->sa.sa_mask,
3968			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3969		*k = *act;
3970		/*
3971		 * POSIX 3.3.1.3:
3972		 *  "Setting a signal action to SIG_IGN for a signal that is
3973		 *   pending shall cause the pending signal to be discarded,
3974		 *   whether or not it is blocked."
3975		 *
3976		 *  "Setting a signal action to SIG_DFL for a signal that is
3977		 *   pending and whose default action is to ignore the signal
3978		 *   (for example, SIGCHLD), shall cause the pending signal to
3979		 *   be discarded, whether or not it is blocked"
3980		 */
3981		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3982			sigemptyset(&mask);
3983			sigaddset(&mask, sig);
3984			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3985			for_each_thread(p, t)
3986				flush_sigqueue_mask(&mask, &t->pending);
3987		}
3988	}
3989
3990	spin_unlock_irq(&p->sighand->siglock);
3991	return 0;
3992}
3993
3994static int
3995do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3996		size_t min_ss_size)
3997{
3998	struct task_struct *t = current;
3999
4000	if (oss) {
4001		memset(oss, 0, sizeof(stack_t));
4002		oss->ss_sp = (void __user *) t->sas_ss_sp;
4003		oss->ss_size = t->sas_ss_size;
4004		oss->ss_flags = sas_ss_flags(sp) |
4005			(current->sas_ss_flags & SS_FLAG_BITS);
4006	}
4007
4008	if (ss) {
4009		void __user *ss_sp = ss->ss_sp;
4010		size_t ss_size = ss->ss_size;
4011		unsigned ss_flags = ss->ss_flags;
 
 
 
 
 
4012		int ss_mode;
4013
4014		if (unlikely(on_sig_stack(sp)))
4015			return -EPERM;
 
 
 
 
 
 
 
 
 
 
4016
4017		ss_mode = ss_flags & ~SS_FLAG_BITS;
4018		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4019				ss_mode != 0))
4020			return -EINVAL;
 
4021
4022		if (ss_mode == SS_DISABLE) {
4023			ss_size = 0;
4024			ss_sp = NULL;
4025		} else {
4026			if (unlikely(ss_size < min_ss_size))
4027				return -ENOMEM;
4028		}
4029
4030		t->sas_ss_sp = (unsigned long) ss_sp;
4031		t->sas_ss_size = ss_size;
4032		t->sas_ss_flags = ss_flags;
 
 
 
 
 
 
 
 
 
 
 
4033	}
4034	return 0;
4035}
4036
 
 
 
4037SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4038{
4039	stack_t new, old;
4040	int err;
4041	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4042		return -EFAULT;
4043	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4044			      current_user_stack_pointer(),
4045			      MINSIGSTKSZ);
4046	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4047		err = -EFAULT;
4048	return err;
4049}
4050
4051int restore_altstack(const stack_t __user *uss)
4052{
4053	stack_t new;
4054	if (copy_from_user(&new, uss, sizeof(stack_t)))
4055		return -EFAULT;
4056	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4057			     MINSIGSTKSZ);
4058	/* squash all but EFAULT for now */
4059	return 0;
4060}
4061
4062int __save_altstack(stack_t __user *uss, unsigned long sp)
4063{
4064	struct task_struct *t = current;
4065	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4066		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4067		__put_user(t->sas_ss_size, &uss->ss_size);
4068	if (err)
4069		return err;
4070	if (t->sas_ss_flags & SS_AUTODISARM)
4071		sas_ss_reset(t);
4072	return 0;
4073}
4074
4075#ifdef CONFIG_COMPAT
4076static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4077				 compat_stack_t __user *uoss_ptr)
 
4078{
4079	stack_t uss, uoss;
4080	int ret;
 
4081
4082	if (uss_ptr) {
4083		compat_stack_t uss32;
 
 
4084		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4085			return -EFAULT;
4086		uss.ss_sp = compat_ptr(uss32.ss_sp);
4087		uss.ss_flags = uss32.ss_flags;
4088		uss.ss_size = uss32.ss_size;
4089	}
4090	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4091			     compat_user_stack_pointer(),
4092			     COMPAT_MINSIGSTKSZ);
 
 
 
4093	if (ret >= 0 && uoss_ptr)  {
4094		compat_stack_t old;
4095		memset(&old, 0, sizeof(old));
4096		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4097		old.ss_flags = uoss.ss_flags;
4098		old.ss_size = uoss.ss_size;
4099		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4100			ret = -EFAULT;
4101	}
4102	return ret;
4103}
4104
4105COMPAT_SYSCALL_DEFINE2(sigaltstack,
4106			const compat_stack_t __user *, uss_ptr,
4107			compat_stack_t __user *, uoss_ptr)
4108{
4109	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4110}
4111
4112int compat_restore_altstack(const compat_stack_t __user *uss)
4113{
4114	int err = do_compat_sigaltstack(uss, NULL);
4115	/* squash all but -EFAULT for now */
4116	return err == -EFAULT ? err : 0;
4117}
4118
4119int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4120{
4121	int err;
4122	struct task_struct *t = current;
4123	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4124			 &uss->ss_sp) |
4125		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4126		__put_user(t->sas_ss_size, &uss->ss_size);
4127	if (err)
4128		return err;
4129	if (t->sas_ss_flags & SS_AUTODISARM)
4130		sas_ss_reset(t);
4131	return 0;
4132}
4133#endif
4134
4135#ifdef __ARCH_WANT_SYS_SIGPENDING
4136
4137/**
4138 *  sys_sigpending - examine pending signals
4139 *  @uset: where mask of pending signal is returned
4140 */
4141SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4142{
4143	sigset_t set;
4144
4145	if (sizeof(old_sigset_t) > sizeof(*uset))
4146		return -EINVAL;
4147
4148	do_sigpending(&set);
4149
4150	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4151		return -EFAULT;
4152
4153	return 0;
4154}
4155
4156#ifdef CONFIG_COMPAT
4157COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4158{
4159	sigset_t set;
4160
4161	do_sigpending(&set);
4162
4163	return put_user(set.sig[0], set32);
4164}
4165#endif
4166
4167#endif
4168
4169#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4170/**
4171 *  sys_sigprocmask - examine and change blocked signals
4172 *  @how: whether to add, remove, or set signals
4173 *  @nset: signals to add or remove (if non-null)
4174 *  @oset: previous value of signal mask if non-null
4175 *
4176 * Some platforms have their own version with special arguments;
4177 * others support only sys_rt_sigprocmask.
4178 */
4179
4180SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4181		old_sigset_t __user *, oset)
4182{
4183	old_sigset_t old_set, new_set;
4184	sigset_t new_blocked;
4185
4186	old_set = current->blocked.sig[0];
4187
4188	if (nset) {
4189		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4190			return -EFAULT;
4191
4192		new_blocked = current->blocked;
4193
4194		switch (how) {
4195		case SIG_BLOCK:
4196			sigaddsetmask(&new_blocked, new_set);
4197			break;
4198		case SIG_UNBLOCK:
4199			sigdelsetmask(&new_blocked, new_set);
4200			break;
4201		case SIG_SETMASK:
4202			new_blocked.sig[0] = new_set;
4203			break;
4204		default:
4205			return -EINVAL;
4206		}
4207
4208		set_current_blocked(&new_blocked);
4209	}
4210
4211	if (oset) {
4212		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4213			return -EFAULT;
4214	}
4215
4216	return 0;
4217}
4218#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4219
4220#ifndef CONFIG_ODD_RT_SIGACTION
4221/**
4222 *  sys_rt_sigaction - alter an action taken by a process
4223 *  @sig: signal to be sent
4224 *  @act: new sigaction
4225 *  @oact: used to save the previous sigaction
4226 *  @sigsetsize: size of sigset_t type
4227 */
4228SYSCALL_DEFINE4(rt_sigaction, int, sig,
4229		const struct sigaction __user *, act,
4230		struct sigaction __user *, oact,
4231		size_t, sigsetsize)
4232{
4233	struct k_sigaction new_sa, old_sa;
4234	int ret;
4235
4236	/* XXX: Don't preclude handling different sized sigset_t's.  */
4237	if (sigsetsize != sizeof(sigset_t))
4238		return -EINVAL;
4239
4240	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4241		return -EFAULT;
 
 
4242
4243	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4244	if (ret)
4245		return ret;
4246
4247	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4248		return -EFAULT;
4249
4250	return 0;
 
 
 
 
 
4251}
4252#ifdef CONFIG_COMPAT
4253COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4254		const struct compat_sigaction __user *, act,
4255		struct compat_sigaction __user *, oact,
4256		compat_size_t, sigsetsize)
4257{
4258	struct k_sigaction new_ka, old_ka;
 
4259#ifdef __ARCH_HAS_SA_RESTORER
4260	compat_uptr_t restorer;
4261#endif
4262	int ret;
4263
4264	/* XXX: Don't preclude handling different sized sigset_t's.  */
4265	if (sigsetsize != sizeof(compat_sigset_t))
4266		return -EINVAL;
4267
4268	if (act) {
4269		compat_uptr_t handler;
4270		ret = get_user(handler, &act->sa_handler);
4271		new_ka.sa.sa_handler = compat_ptr(handler);
4272#ifdef __ARCH_HAS_SA_RESTORER
4273		ret |= get_user(restorer, &act->sa_restorer);
4274		new_ka.sa.sa_restorer = compat_ptr(restorer);
4275#endif
4276		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4277		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4278		if (ret)
4279			return -EFAULT;
 
4280	}
4281
4282	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4283	if (!ret && oact) {
 
4284		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4285			       &oact->sa_handler);
4286		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4287					 sizeof(oact->sa_mask));
4288		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4289#ifdef __ARCH_HAS_SA_RESTORER
4290		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4291				&oact->sa_restorer);
4292#endif
4293	}
4294	return ret;
4295}
4296#endif
4297#endif /* !CONFIG_ODD_RT_SIGACTION */
4298
4299#ifdef CONFIG_OLD_SIGACTION
4300SYSCALL_DEFINE3(sigaction, int, sig,
4301		const struct old_sigaction __user *, act,
4302	        struct old_sigaction __user *, oact)
4303{
4304	struct k_sigaction new_ka, old_ka;
4305	int ret;
4306
4307	if (act) {
4308		old_sigset_t mask;
4309		if (!access_ok(act, sizeof(*act)) ||
4310		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4311		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4312		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4313		    __get_user(mask, &act->sa_mask))
4314			return -EFAULT;
4315#ifdef __ARCH_HAS_KA_RESTORER
4316		new_ka.ka_restorer = NULL;
4317#endif
4318		siginitset(&new_ka.sa.sa_mask, mask);
4319	}
4320
4321	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4322
4323	if (!ret && oact) {
4324		if (!access_ok(oact, sizeof(*oact)) ||
4325		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4326		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4327		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4328		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4329			return -EFAULT;
4330	}
4331
4332	return ret;
4333}
4334#endif
4335#ifdef CONFIG_COMPAT_OLD_SIGACTION
4336COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4337		const struct compat_old_sigaction __user *, act,
4338	        struct compat_old_sigaction __user *, oact)
4339{
4340	struct k_sigaction new_ka, old_ka;
4341	int ret;
4342	compat_old_sigset_t mask;
4343	compat_uptr_t handler, restorer;
4344
4345	if (act) {
4346		if (!access_ok(act, sizeof(*act)) ||
4347		    __get_user(handler, &act->sa_handler) ||
4348		    __get_user(restorer, &act->sa_restorer) ||
4349		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4350		    __get_user(mask, &act->sa_mask))
4351			return -EFAULT;
4352
4353#ifdef __ARCH_HAS_KA_RESTORER
4354		new_ka.ka_restorer = NULL;
4355#endif
4356		new_ka.sa.sa_handler = compat_ptr(handler);
4357		new_ka.sa.sa_restorer = compat_ptr(restorer);
4358		siginitset(&new_ka.sa.sa_mask, mask);
4359	}
4360
4361	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4362
4363	if (!ret && oact) {
4364		if (!access_ok(oact, sizeof(*oact)) ||
4365		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4366			       &oact->sa_handler) ||
4367		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4368			       &oact->sa_restorer) ||
4369		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4370		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4371			return -EFAULT;
4372	}
4373	return ret;
4374}
4375#endif
4376
4377#ifdef CONFIG_SGETMASK_SYSCALL
4378
4379/*
4380 * For backwards compatibility.  Functionality superseded by sigprocmask.
4381 */
4382SYSCALL_DEFINE0(sgetmask)
4383{
4384	/* SMP safe */
4385	return current->blocked.sig[0];
4386}
4387
4388SYSCALL_DEFINE1(ssetmask, int, newmask)
4389{
4390	int old = current->blocked.sig[0];
4391	sigset_t newset;
4392
4393	siginitset(&newset, newmask);
4394	set_current_blocked(&newset);
4395
4396	return old;
4397}
4398#endif /* CONFIG_SGETMASK_SYSCALL */
4399
4400#ifdef __ARCH_WANT_SYS_SIGNAL
4401/*
4402 * For backwards compatibility.  Functionality superseded by sigaction.
4403 */
4404SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4405{
4406	struct k_sigaction new_sa, old_sa;
4407	int ret;
4408
4409	new_sa.sa.sa_handler = handler;
4410	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4411	sigemptyset(&new_sa.sa.sa_mask);
4412
4413	ret = do_sigaction(sig, &new_sa, &old_sa);
4414
4415	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4416}
4417#endif /* __ARCH_WANT_SYS_SIGNAL */
4418
4419#ifdef __ARCH_WANT_SYS_PAUSE
4420
4421SYSCALL_DEFINE0(pause)
4422{
4423	while (!signal_pending(current)) {
4424		__set_current_state(TASK_INTERRUPTIBLE);
4425		schedule();
4426	}
4427	return -ERESTARTNOHAND;
4428}
4429
4430#endif
4431
4432static int sigsuspend(sigset_t *set)
4433{
4434	current->saved_sigmask = current->blocked;
4435	set_current_blocked(set);
4436
4437	while (!signal_pending(current)) {
4438		__set_current_state(TASK_INTERRUPTIBLE);
4439		schedule();
4440	}
4441	set_restore_sigmask();
4442	return -ERESTARTNOHAND;
4443}
4444
4445/**
4446 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4447 *	@unewset value until a signal is received
4448 *  @unewset: new signal mask value
4449 *  @sigsetsize: size of sigset_t type
4450 */
4451SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4452{
4453	sigset_t newset;
4454
4455	/* XXX: Don't preclude handling different sized sigset_t's.  */
4456	if (sigsetsize != sizeof(sigset_t))
4457		return -EINVAL;
4458
4459	if (copy_from_user(&newset, unewset, sizeof(newset)))
4460		return -EFAULT;
4461	return sigsuspend(&newset);
4462}
4463 
4464#ifdef CONFIG_COMPAT
4465COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4466{
 
4467	sigset_t newset;
 
4468
4469	/* XXX: Don't preclude handling different sized sigset_t's.  */
4470	if (sigsetsize != sizeof(sigset_t))
4471		return -EINVAL;
4472
4473	if (get_compat_sigset(&newset, unewset))
4474		return -EFAULT;
 
4475	return sigsuspend(&newset);
 
 
 
 
4476}
4477#endif
4478
4479#ifdef CONFIG_OLD_SIGSUSPEND
4480SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4481{
4482	sigset_t blocked;
4483	siginitset(&blocked, mask);
4484	return sigsuspend(&blocked);
4485}
4486#endif
4487#ifdef CONFIG_OLD_SIGSUSPEND3
4488SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4489{
4490	sigset_t blocked;
4491	siginitset(&blocked, mask);
4492	return sigsuspend(&blocked);
4493}
4494#endif
4495
4496__weak const char *arch_vma_name(struct vm_area_struct *vma)
4497{
4498	return NULL;
4499}
4500
4501static inline void siginfo_buildtime_checks(void)
4502{
4503	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4504
4505	/* Verify the offsets in the two siginfos match */
4506#define CHECK_OFFSET(field) \
4507	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4508
4509	/* kill */
4510	CHECK_OFFSET(si_pid);
4511	CHECK_OFFSET(si_uid);
4512
4513	/* timer */
4514	CHECK_OFFSET(si_tid);
4515	CHECK_OFFSET(si_overrun);
4516	CHECK_OFFSET(si_value);
4517
4518	/* rt */
4519	CHECK_OFFSET(si_pid);
4520	CHECK_OFFSET(si_uid);
4521	CHECK_OFFSET(si_value);
4522
4523	/* sigchld */
4524	CHECK_OFFSET(si_pid);
4525	CHECK_OFFSET(si_uid);
4526	CHECK_OFFSET(si_status);
4527	CHECK_OFFSET(si_utime);
4528	CHECK_OFFSET(si_stime);
4529
4530	/* sigfault */
4531	CHECK_OFFSET(si_addr);
4532	CHECK_OFFSET(si_addr_lsb);
4533	CHECK_OFFSET(si_lower);
4534	CHECK_OFFSET(si_upper);
4535	CHECK_OFFSET(si_pkey);
4536
4537	/* sigpoll */
4538	CHECK_OFFSET(si_band);
4539	CHECK_OFFSET(si_fd);
4540
4541	/* sigsys */
4542	CHECK_OFFSET(si_call_addr);
4543	CHECK_OFFSET(si_syscall);
4544	CHECK_OFFSET(si_arch);
4545#undef CHECK_OFFSET
4546
4547	/* usb asyncio */
4548	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4549		     offsetof(struct siginfo, si_addr));
4550	if (sizeof(int) == sizeof(void __user *)) {
4551		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4552			     sizeof(void __user *));
4553	} else {
4554		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4555			      sizeof_field(struct siginfo, si_uid)) !=
4556			     sizeof(void __user *));
4557		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4558			     offsetof(struct siginfo, si_uid));
4559	}
4560#ifdef CONFIG_COMPAT
4561	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4562		     offsetof(struct compat_siginfo, si_addr));
4563	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4564		     sizeof(compat_uptr_t));
4565	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4566		     sizeof_field(struct siginfo, si_pid));
4567#endif
4568}
4569
4570void __init signals_init(void)
4571{
4572	siginfo_buildtime_checks();
 
 
4573
4574	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4575}
4576
4577#ifdef CONFIG_KGDB_KDB
4578#include <linux/kdb.h>
4579/*
4580 * kdb_send_sig - Allows kdb to send signals without exposing
4581 * signal internals.  This function checks if the required locks are
4582 * available before calling the main signal code, to avoid kdb
4583 * deadlocks.
4584 */
4585void kdb_send_sig(struct task_struct *t, int sig)
 
4586{
4587	static struct task_struct *kdb_prev_t;
4588	int new_t, ret;
4589	if (!spin_trylock(&t->sighand->siglock)) {
4590		kdb_printf("Can't do kill command now.\n"
4591			   "The sigmask lock is held somewhere else in "
4592			   "kernel, try again later\n");
4593		return;
4594	}
 
4595	new_t = kdb_prev_t != t;
4596	kdb_prev_t = t;
4597	if (t->state != TASK_RUNNING && new_t) {
4598		spin_unlock(&t->sighand->siglock);
4599		kdb_printf("Process is not RUNNING, sending a signal from "
4600			   "kdb risks deadlock\n"
4601			   "on the run queue locks. "
4602			   "The signal has _not_ been sent.\n"
4603			   "Reissue the kill command if you want to risk "
4604			   "the deadlock.\n");
4605		return;
4606	}
4607	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4608	spin_unlock(&t->sighand->siglock);
4609	if (ret)
4610		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4611			   sig, t->pid);
4612	else
4613		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4614}
4615#endif	/* CONFIG_KGDB_KDB */
v4.10.11
 
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
 
 
 
 
 
 
  17#include <linux/fs.h>
 
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
 
 
 
 
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <linux/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"	/* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58	return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63	/* Is it explicitly or implicitly ignored? */
  64	return handler == SIG_IGN ||
  65		(handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70	void __user *handler;
  71
  72	handler = sig_handler(t, sig);
  73
 
 
 
 
  74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75			handler == SIG_DFL && !force)
  76		return 1;
 
 
 
 
 
  77
  78	return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	/*
  84	 * Blocked signals are never ignored, since the
  85	 * signal handler may change by the time it is
  86	 * unblocked.
  87	 */
  88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89		return 0;
  90
  91	if (!sig_task_ignored(t, sig, force))
  92		return 0;
  93
  94	/*
  95	 * Tracers may want to know about even ignored signals.
 
 
  96	 */
  97	return !t->ptrace;
 
 
 
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106	unsigned long ready;
 107	long i;
 108
 109	switch (_NSIG_WORDS) {
 110	default:
 111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112			ready |= signal->sig[i] &~ blocked->sig[i];
 113		break;
 114
 115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116		ready |= signal->sig[2] &~ blocked->sig[2];
 117		ready |= signal->sig[1] &~ blocked->sig[1];
 118		ready |= signal->sig[0] &~ blocked->sig[0];
 119		break;
 120
 121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122		ready |= signal->sig[0] &~ blocked->sig[0];
 123		break;
 124
 125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126	}
 127	return ready !=	0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135	    PENDING(&t->pending, &t->blocked) ||
 136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 
 137		set_tsk_thread_flag(t, TIF_SIGPENDING);
 138		return 1;
 139	}
 
 140	/*
 141	 * We must never clear the flag in another thread, or in current
 142	 * when it's possible the current syscall is returning -ERESTART*.
 143	 * So we don't clear it here, and only callers who know they should do.
 144	 */
 145	return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154	if (recalc_sigpending_tsk(t))
 155		signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160	if (!recalc_sigpending_tsk(current) && !freezing(current))
 
 161		clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 
 
 
 
 
 
 
 
 
 
 
 
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173	unsigned long i, *s, *m, x;
 174	int sig = 0;
 175
 176	s = pending->signal.sig;
 177	m = mask->sig;
 178
 179	/*
 180	 * Handle the first word specially: it contains the
 181	 * synchronous signals that need to be dequeued first.
 182	 */
 183	x = *s &~ *m;
 184	if (x) {
 185		if (x & SYNCHRONOUS_MASK)
 186			x &= SYNCHRONOUS_MASK;
 187		sig = ffz(~x) + 1;
 188		return sig;
 189	}
 190
 191	switch (_NSIG_WORDS) {
 192	default:
 193		for (i = 1; i < _NSIG_WORDS; ++i) {
 194			x = *++s &~ *++m;
 195			if (!x)
 196				continue;
 197			sig = ffz(~x) + i*_NSIG_BPW + 1;
 198			break;
 199		}
 200		break;
 201
 202	case 2:
 203		x = s[1] &~ m[1];
 204		if (!x)
 205			break;
 206		sig = ffz(~x) + _NSIG_BPW + 1;
 207		break;
 208
 209	case 1:
 210		/* Nothing to do */
 211		break;
 212	}
 213
 214	return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221	if (!print_fatal_signals)
 222		return;
 223
 224	if (!__ratelimit(&ratelimit_state))
 225		return;
 226
 227	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228				current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 249{
 250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255		return false;
 256
 257	if (mask & JOBCTL_STOP_SIGMASK)
 258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260	task->jobctl |= mask;
 261	return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279		task->jobctl &= ~JOBCTL_TRAPPING;
 280		smp_mb();	/* advised by wake_up_bit() */
 281		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 282	}
 283}
 284
 285/**
 286 * task_clear_jobctl_pending - clear jobctl pending bits
 287 * @task: target task
 288 * @mask: pending bits to clear
 289 *
 290 * Clear @mask from @task->jobctl.  @mask must be subset of
 291 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 292 * STOP bits are cleared together.
 293 *
 294 * If clearing of @mask leaves no stop or trap pending, this function calls
 295 * task_clear_jobctl_trapping().
 296 *
 297 * CONTEXT:
 298 * Must be called with @task->sighand->siglock held.
 299 */
 300void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 301{
 302	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 303
 304	if (mask & JOBCTL_STOP_PENDING)
 305		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 306
 307	task->jobctl &= ~mask;
 308
 309	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 310		task_clear_jobctl_trapping(task);
 311}
 312
 313/**
 314 * task_participate_group_stop - participate in a group stop
 315 * @task: task participating in a group stop
 316 *
 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 318 * Group stop states are cleared and the group stop count is consumed if
 319 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 320 * stop, the appropriate %SIGNAL_* flags are set.
 321 *
 322 * CONTEXT:
 323 * Must be called with @task->sighand->siglock held.
 324 *
 325 * RETURNS:
 326 * %true if group stop completion should be notified to the parent, %false
 327 * otherwise.
 328 */
 329static bool task_participate_group_stop(struct task_struct *task)
 330{
 331	struct signal_struct *sig = task->signal;
 332	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 333
 334	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 335
 336	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 337
 338	if (!consume)
 339		return false;
 340
 341	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 342		sig->group_stop_count--;
 343
 344	/*
 345	 * Tell the caller to notify completion iff we are entering into a
 346	 * fresh group stop.  Read comment in do_signal_stop() for details.
 347	 */
 348	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 349		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 350		return true;
 351	}
 352	return false;
 353}
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355/*
 356 * allocate a new signal queue record
 357 * - this may be called without locks if and only if t == current, otherwise an
 358 *   appropriate lock must be held to stop the target task from exiting
 359 */
 360static struct sigqueue *
 361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 362{
 363	struct sigqueue *q = NULL;
 364	struct user_struct *user;
 365
 366	/*
 367	 * Protect access to @t credentials. This can go away when all
 368	 * callers hold rcu read lock.
 369	 */
 370	rcu_read_lock();
 371	user = get_uid(__task_cred(t)->user);
 372	atomic_inc(&user->sigpending);
 373	rcu_read_unlock();
 374
 375	if (override_rlimit ||
 376	    atomic_read(&user->sigpending) <=
 377			task_rlimit(t, RLIMIT_SIGPENDING)) {
 378		q = kmem_cache_alloc(sigqueue_cachep, flags);
 379	} else {
 380		print_dropped_signal(sig);
 381	}
 382
 383	if (unlikely(q == NULL)) {
 384		atomic_dec(&user->sigpending);
 385		free_uid(user);
 386	} else {
 387		INIT_LIST_HEAD(&q->list);
 388		q->flags = 0;
 389		q->user = user;
 390	}
 391
 392	return q;
 393}
 394
 395static void __sigqueue_free(struct sigqueue *q)
 396{
 397	if (q->flags & SIGQUEUE_PREALLOC)
 398		return;
 399	atomic_dec(&q->user->sigpending);
 400	free_uid(q->user);
 401	kmem_cache_free(sigqueue_cachep, q);
 402}
 403
 404void flush_sigqueue(struct sigpending *queue)
 405{
 406	struct sigqueue *q;
 407
 408	sigemptyset(&queue->signal);
 409	while (!list_empty(&queue->list)) {
 410		q = list_entry(queue->list.next, struct sigqueue , list);
 411		list_del_init(&q->list);
 412		__sigqueue_free(q);
 413	}
 414}
 415
 416/*
 417 * Flush all pending signals for this kthread.
 418 */
 419void flush_signals(struct task_struct *t)
 420{
 421	unsigned long flags;
 422
 423	spin_lock_irqsave(&t->sighand->siglock, flags);
 424	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 425	flush_sigqueue(&t->pending);
 426	flush_sigqueue(&t->signal->shared_pending);
 427	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 428}
 
 429
 430#ifdef CONFIG_POSIX_TIMERS
 431static void __flush_itimer_signals(struct sigpending *pending)
 432{
 433	sigset_t signal, retain;
 434	struct sigqueue *q, *n;
 435
 436	signal = pending->signal;
 437	sigemptyset(&retain);
 438
 439	list_for_each_entry_safe(q, n, &pending->list, list) {
 440		int sig = q->info.si_signo;
 441
 442		if (likely(q->info.si_code != SI_TIMER)) {
 443			sigaddset(&retain, sig);
 444		} else {
 445			sigdelset(&signal, sig);
 446			list_del_init(&q->list);
 447			__sigqueue_free(q);
 448		}
 449	}
 450
 451	sigorsets(&pending->signal, &signal, &retain);
 452}
 453
 454void flush_itimer_signals(void)
 455{
 456	struct task_struct *tsk = current;
 457	unsigned long flags;
 458
 459	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 460	__flush_itimer_signals(&tsk->pending);
 461	__flush_itimer_signals(&tsk->signal->shared_pending);
 462	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 463}
 464#endif
 465
 466void ignore_signals(struct task_struct *t)
 467{
 468	int i;
 469
 470	for (i = 0; i < _NSIG; ++i)
 471		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 472
 473	flush_signals(t);
 474}
 475
 476/*
 477 * Flush all handlers for a task.
 478 */
 479
 480void
 481flush_signal_handlers(struct task_struct *t, int force_default)
 482{
 483	int i;
 484	struct k_sigaction *ka = &t->sighand->action[0];
 485	for (i = _NSIG ; i != 0 ; i--) {
 486		if (force_default || ka->sa.sa_handler != SIG_IGN)
 487			ka->sa.sa_handler = SIG_DFL;
 488		ka->sa.sa_flags = 0;
 489#ifdef __ARCH_HAS_SA_RESTORER
 490		ka->sa.sa_restorer = NULL;
 491#endif
 492		sigemptyset(&ka->sa.sa_mask);
 493		ka++;
 494	}
 495}
 496
 497int unhandled_signal(struct task_struct *tsk, int sig)
 498{
 499	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 500	if (is_global_init(tsk))
 501		return 1;
 
 502	if (handler != SIG_IGN && handler != SIG_DFL)
 503		return 0;
 
 504	/* if ptraced, let the tracer determine */
 505	return !tsk->ptrace;
 506}
 507
 508static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 
 509{
 510	struct sigqueue *q, *first = NULL;
 511
 512	/*
 513	 * Collect the siginfo appropriate to this signal.  Check if
 514	 * there is another siginfo for the same signal.
 515	*/
 516	list_for_each_entry(q, &list->list, list) {
 517		if (q->info.si_signo == sig) {
 518			if (first)
 519				goto still_pending;
 520			first = q;
 521		}
 522	}
 523
 524	sigdelset(&list->signal, sig);
 525
 526	if (first) {
 527still_pending:
 528		list_del_init(&first->list);
 529		copy_siginfo(info, &first->info);
 
 
 
 
 
 
 530		__sigqueue_free(first);
 531	} else {
 532		/*
 533		 * Ok, it wasn't in the queue.  This must be
 534		 * a fast-pathed signal or we must have been
 535		 * out of queue space.  So zero out the info.
 536		 */
 
 537		info->si_signo = sig;
 538		info->si_errno = 0;
 539		info->si_code = SI_USER;
 540		info->si_pid = 0;
 541		info->si_uid = 0;
 542	}
 543}
 544
 545static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 546			siginfo_t *info)
 547{
 548	int sig = next_signal(pending, mask);
 549
 550	if (sig)
 551		collect_signal(sig, pending, info);
 552	return sig;
 553}
 554
 555/*
 556 * Dequeue a signal and return the element to the caller, which is
 557 * expected to free it.
 558 *
 559 * All callers have to hold the siglock.
 560 */
 561int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 562{
 
 563	int signr;
 564
 565	/* We only dequeue private signals from ourselves, we don't let
 566	 * signalfd steal them
 567	 */
 568	signr = __dequeue_signal(&tsk->pending, mask, info);
 569	if (!signr) {
 570		signr = __dequeue_signal(&tsk->signal->shared_pending,
 571					 mask, info);
 572#ifdef CONFIG_POSIX_TIMERS
 573		/*
 574		 * itimer signal ?
 575		 *
 576		 * itimers are process shared and we restart periodic
 577		 * itimers in the signal delivery path to prevent DoS
 578		 * attacks in the high resolution timer case. This is
 579		 * compliant with the old way of self-restarting
 580		 * itimers, as the SIGALRM is a legacy signal and only
 581		 * queued once. Changing the restart behaviour to
 582		 * restart the timer in the signal dequeue path is
 583		 * reducing the timer noise on heavy loaded !highres
 584		 * systems too.
 585		 */
 586		if (unlikely(signr == SIGALRM)) {
 587			struct hrtimer *tmr = &tsk->signal->real_timer;
 588
 589			if (!hrtimer_is_queued(tmr) &&
 590			    tsk->signal->it_real_incr != 0) {
 591				hrtimer_forward(tmr, tmr->base->get_time(),
 592						tsk->signal->it_real_incr);
 593				hrtimer_restart(tmr);
 594			}
 595		}
 596#endif
 597	}
 598
 599	recalc_sigpending();
 600	if (!signr)
 601		return 0;
 602
 603	if (unlikely(sig_kernel_stop(signr))) {
 604		/*
 605		 * Set a marker that we have dequeued a stop signal.  Our
 606		 * caller might release the siglock and then the pending
 607		 * stop signal it is about to process is no longer in the
 608		 * pending bitmasks, but must still be cleared by a SIGCONT
 609		 * (and overruled by a SIGKILL).  So those cases clear this
 610		 * shared flag after we've set it.  Note that this flag may
 611		 * remain set after the signal we return is ignored or
 612		 * handled.  That doesn't matter because its only purpose
 613		 * is to alert stop-signal processing code when another
 614		 * processor has come along and cleared the flag.
 615		 */
 616		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 617	}
 618#ifdef CONFIG_POSIX_TIMERS
 619	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 620		/*
 621		 * Release the siglock to ensure proper locking order
 622		 * of timer locks outside of siglocks.  Note, we leave
 623		 * irqs disabled here, since the posix-timers code is
 624		 * about to disable them again anyway.
 625		 */
 626		spin_unlock(&tsk->sighand->siglock);
 627		do_schedule_next_timer(info);
 628		spin_lock(&tsk->sighand->siglock);
 
 
 
 629	}
 630#endif
 631	return signr;
 632}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633
 634/*
 635 * Tell a process that it has a new active signal..
 636 *
 637 * NOTE! we rely on the previous spin_lock to
 638 * lock interrupts for us! We can only be called with
 639 * "siglock" held, and the local interrupt must
 640 * have been disabled when that got acquired!
 641 *
 642 * No need to set need_resched since signal event passing
 643 * goes through ->blocked
 644 */
 645void signal_wake_up_state(struct task_struct *t, unsigned int state)
 646{
 647	set_tsk_thread_flag(t, TIF_SIGPENDING);
 648	/*
 649	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 650	 * case. We don't check t->state here because there is a race with it
 651	 * executing another processor and just now entering stopped state.
 652	 * By using wake_up_state, we ensure the process will wake up and
 653	 * handle its death signal.
 654	 */
 655	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 656		kick_process(t);
 657}
 658
 659/*
 660 * Remove signals in mask from the pending set and queue.
 661 * Returns 1 if any signals were found.
 662 *
 663 * All callers must be holding the siglock.
 664 */
 665static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 666{
 667	struct sigqueue *q, *n;
 668	sigset_t m;
 669
 670	sigandsets(&m, mask, &s->signal);
 671	if (sigisemptyset(&m))
 672		return 0;
 673
 674	sigandnsets(&s->signal, &s->signal, mask);
 675	list_for_each_entry_safe(q, n, &s->list, list) {
 676		if (sigismember(mask, q->info.si_signo)) {
 677			list_del_init(&q->list);
 678			__sigqueue_free(q);
 679		}
 680	}
 681	return 1;
 682}
 683
 684static inline int is_si_special(const struct siginfo *info)
 685{
 686	return info <= SEND_SIG_FORCED;
 687}
 688
 689static inline bool si_fromuser(const struct siginfo *info)
 690{
 691	return info == SEND_SIG_NOINFO ||
 692		(!is_si_special(info) && SI_FROMUSER(info));
 693}
 694
 695/*
 696 * called with RCU read lock from check_kill_permission()
 697 */
 698static int kill_ok_by_cred(struct task_struct *t)
 699{
 700	const struct cred *cred = current_cred();
 701	const struct cred *tcred = __task_cred(t);
 702
 703	if (uid_eq(cred->euid, tcred->suid) ||
 704	    uid_eq(cred->euid, tcred->uid)  ||
 705	    uid_eq(cred->uid,  tcred->suid) ||
 706	    uid_eq(cred->uid,  tcred->uid))
 707		return 1;
 708
 709	if (ns_capable(tcred->user_ns, CAP_KILL))
 710		return 1;
 711
 712	return 0;
 713}
 714
 715/*
 716 * Bad permissions for sending the signal
 717 * - the caller must hold the RCU read lock
 718 */
 719static int check_kill_permission(int sig, struct siginfo *info,
 720				 struct task_struct *t)
 721{
 722	struct pid *sid;
 723	int error;
 724
 725	if (!valid_signal(sig))
 726		return -EINVAL;
 727
 728	if (!si_fromuser(info))
 729		return 0;
 730
 731	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 732	if (error)
 733		return error;
 734
 735	if (!same_thread_group(current, t) &&
 736	    !kill_ok_by_cred(t)) {
 737		switch (sig) {
 738		case SIGCONT:
 739			sid = task_session(t);
 740			/*
 741			 * We don't return the error if sid == NULL. The
 742			 * task was unhashed, the caller must notice this.
 743			 */
 744			if (!sid || sid == task_session(current))
 745				break;
 
 746		default:
 747			return -EPERM;
 748		}
 749	}
 750
 751	return security_task_kill(t, info, sig, 0);
 752}
 753
 754/**
 755 * ptrace_trap_notify - schedule trap to notify ptracer
 756 * @t: tracee wanting to notify tracer
 757 *
 758 * This function schedules sticky ptrace trap which is cleared on the next
 759 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 760 * ptracer.
 761 *
 762 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 763 * ptracer is listening for events, tracee is woken up so that it can
 764 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 765 * eventually taken without returning to userland after the existing traps
 766 * are finished by PTRACE_CONT.
 767 *
 768 * CONTEXT:
 769 * Must be called with @task->sighand->siglock held.
 770 */
 771static void ptrace_trap_notify(struct task_struct *t)
 772{
 773	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 774	assert_spin_locked(&t->sighand->siglock);
 775
 776	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 777	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 778}
 779
 780/*
 781 * Handle magic process-wide effects of stop/continue signals. Unlike
 782 * the signal actions, these happen immediately at signal-generation
 783 * time regardless of blocking, ignoring, or handling.  This does the
 784 * actual continuing for SIGCONT, but not the actual stopping for stop
 785 * signals. The process stop is done as a signal action for SIG_DFL.
 786 *
 787 * Returns true if the signal should be actually delivered, otherwise
 788 * it should be dropped.
 789 */
 790static bool prepare_signal(int sig, struct task_struct *p, bool force)
 791{
 792	struct signal_struct *signal = p->signal;
 793	struct task_struct *t;
 794	sigset_t flush;
 795
 796	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 797		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 798			return sig == SIGKILL;
 799		/*
 800		 * The process is in the middle of dying, nothing to do.
 801		 */
 802	} else if (sig_kernel_stop(sig)) {
 803		/*
 804		 * This is a stop signal.  Remove SIGCONT from all queues.
 805		 */
 806		siginitset(&flush, sigmask(SIGCONT));
 807		flush_sigqueue_mask(&flush, &signal->shared_pending);
 808		for_each_thread(p, t)
 809			flush_sigqueue_mask(&flush, &t->pending);
 810	} else if (sig == SIGCONT) {
 811		unsigned int why;
 812		/*
 813		 * Remove all stop signals from all queues, wake all threads.
 814		 */
 815		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 816		flush_sigqueue_mask(&flush, &signal->shared_pending);
 817		for_each_thread(p, t) {
 818			flush_sigqueue_mask(&flush, &t->pending);
 819			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 820			if (likely(!(t->ptrace & PT_SEIZED)))
 821				wake_up_state(t, __TASK_STOPPED);
 822			else
 823				ptrace_trap_notify(t);
 824		}
 825
 826		/*
 827		 * Notify the parent with CLD_CONTINUED if we were stopped.
 828		 *
 829		 * If we were in the middle of a group stop, we pretend it
 830		 * was already finished, and then continued. Since SIGCHLD
 831		 * doesn't queue we report only CLD_STOPPED, as if the next
 832		 * CLD_CONTINUED was dropped.
 833		 */
 834		why = 0;
 835		if (signal->flags & SIGNAL_STOP_STOPPED)
 836			why |= SIGNAL_CLD_CONTINUED;
 837		else if (signal->group_stop_count)
 838			why |= SIGNAL_CLD_STOPPED;
 839
 840		if (why) {
 841			/*
 842			 * The first thread which returns from do_signal_stop()
 843			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 844			 * notify its parent. See get_signal_to_deliver().
 845			 */
 846			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 847			signal->group_stop_count = 0;
 848			signal->group_exit_code = 0;
 849		}
 850	}
 851
 852	return !sig_ignored(p, sig, force);
 853}
 854
 855/*
 856 * Test if P wants to take SIG.  After we've checked all threads with this,
 857 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 858 * blocking SIG were ruled out because they are not running and already
 859 * have pending signals.  Such threads will dequeue from the shared queue
 860 * as soon as they're available, so putting the signal on the shared queue
 861 * will be equivalent to sending it to one such thread.
 862 */
 863static inline int wants_signal(int sig, struct task_struct *p)
 864{
 865	if (sigismember(&p->blocked, sig))
 866		return 0;
 
 867	if (p->flags & PF_EXITING)
 868		return 0;
 
 869	if (sig == SIGKILL)
 870		return 1;
 
 871	if (task_is_stopped_or_traced(p))
 872		return 0;
 
 873	return task_curr(p) || !signal_pending(p);
 874}
 875
 876static void complete_signal(int sig, struct task_struct *p, int group)
 877{
 878	struct signal_struct *signal = p->signal;
 879	struct task_struct *t;
 880
 881	/*
 882	 * Now find a thread we can wake up to take the signal off the queue.
 883	 *
 884	 * If the main thread wants the signal, it gets first crack.
 885	 * Probably the least surprising to the average bear.
 886	 */
 887	if (wants_signal(sig, p))
 888		t = p;
 889	else if (!group || thread_group_empty(p))
 890		/*
 891		 * There is just one thread and it does not need to be woken.
 892		 * It will dequeue unblocked signals before it runs again.
 893		 */
 894		return;
 895	else {
 896		/*
 897		 * Otherwise try to find a suitable thread.
 898		 */
 899		t = signal->curr_target;
 900		while (!wants_signal(sig, t)) {
 901			t = next_thread(t);
 902			if (t == signal->curr_target)
 903				/*
 904				 * No thread needs to be woken.
 905				 * Any eligible threads will see
 906				 * the signal in the queue soon.
 907				 */
 908				return;
 909		}
 910		signal->curr_target = t;
 911	}
 912
 913	/*
 914	 * Found a killable thread.  If the signal will be fatal,
 915	 * then start taking the whole group down immediately.
 916	 */
 917	if (sig_fatal(p, sig) &&
 918	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 919	    !sigismember(&t->real_blocked, sig) &&
 920	    (sig == SIGKILL || !t->ptrace)) {
 921		/*
 922		 * This signal will be fatal to the whole group.
 923		 */
 924		if (!sig_kernel_coredump(sig)) {
 925			/*
 926			 * Start a group exit and wake everybody up.
 927			 * This way we don't have other threads
 928			 * running and doing things after a slower
 929			 * thread has the fatal signal pending.
 930			 */
 931			signal->flags = SIGNAL_GROUP_EXIT;
 932			signal->group_exit_code = sig;
 933			signal->group_stop_count = 0;
 934			t = p;
 935			do {
 936				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 937				sigaddset(&t->pending.signal, SIGKILL);
 938				signal_wake_up(t, 1);
 939			} while_each_thread(p, t);
 940			return;
 941		}
 942	}
 943
 944	/*
 945	 * The signal is already in the shared-pending queue.
 946	 * Tell the chosen thread to wake up and dequeue it.
 947	 */
 948	signal_wake_up(t, sig == SIGKILL);
 949	return;
 950}
 951
 952static inline int legacy_queue(struct sigpending *signals, int sig)
 953{
 954	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 955}
 956
 957#ifdef CONFIG_USER_NS
 958static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 959{
 960	if (current_user_ns() == task_cred_xxx(t, user_ns))
 961		return;
 962
 963	if (SI_FROMKERNEL(info))
 964		return;
 965
 966	rcu_read_lock();
 967	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 968					make_kuid(current_user_ns(), info->si_uid));
 969	rcu_read_unlock();
 970}
 971#else
 972static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 973{
 974	return;
 975}
 976#endif
 977
 978static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
 979			int group, int from_ancestor_ns)
 980{
 981	struct sigpending *pending;
 982	struct sigqueue *q;
 983	int override_rlimit;
 984	int ret = 0, result;
 985
 986	assert_spin_locked(&t->sighand->siglock);
 987
 988	result = TRACE_SIGNAL_IGNORED;
 989	if (!prepare_signal(sig, t,
 990			from_ancestor_ns || (info == SEND_SIG_FORCED)))
 991		goto ret;
 992
 993	pending = group ? &t->signal->shared_pending : &t->pending;
 994	/*
 995	 * Short-circuit ignored signals and support queuing
 996	 * exactly one non-rt signal, so that we can get more
 997	 * detailed information about the cause of the signal.
 998	 */
 999	result = TRACE_SIGNAL_ALREADY_PENDING;
1000	if (legacy_queue(pending, sig))
1001		goto ret;
1002
1003	result = TRACE_SIGNAL_DELIVERED;
1004	/*
1005	 * fast-pathed signals for kernel-internal things like SIGSTOP
1006	 * or SIGKILL.
1007	 */
1008	if (info == SEND_SIG_FORCED)
1009		goto out_set;
1010
1011	/*
1012	 * Real-time signals must be queued if sent by sigqueue, or
1013	 * some other real-time mechanism.  It is implementation
1014	 * defined whether kill() does so.  We attempt to do so, on
1015	 * the principle of least surprise, but since kill is not
1016	 * allowed to fail with EAGAIN when low on memory we just
1017	 * make sure at least one signal gets delivered and don't
1018	 * pass on the info struct.
1019	 */
1020	if (sig < SIGRTMIN)
1021		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1022	else
1023		override_rlimit = 0;
1024
1025	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1026		override_rlimit);
1027	if (q) {
1028		list_add_tail(&q->list, &pending->list);
1029		switch ((unsigned long) info) {
1030		case (unsigned long) SEND_SIG_NOINFO:
 
1031			q->info.si_signo = sig;
1032			q->info.si_errno = 0;
1033			q->info.si_code = SI_USER;
1034			q->info.si_pid = task_tgid_nr_ns(current,
1035							task_active_pid_ns(t));
1036			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
 
 
 
 
1037			break;
1038		case (unsigned long) SEND_SIG_PRIV:
 
1039			q->info.si_signo = sig;
1040			q->info.si_errno = 0;
1041			q->info.si_code = SI_KERNEL;
1042			q->info.si_pid = 0;
1043			q->info.si_uid = 0;
1044			break;
1045		default:
1046			copy_siginfo(&q->info, info);
1047			if (from_ancestor_ns)
1048				q->info.si_pid = 0;
1049			break;
1050		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051
1052		userns_fixup_signal_uid(&q->info, t);
 
 
1053
1054	} else if (!is_si_special(info)) {
1055		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1056			/*
1057			 * Queue overflow, abort.  We may abort if the
1058			 * signal was rt and sent by user using something
1059			 * other than kill().
1060			 */
1061			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1062			ret = -EAGAIN;
1063			goto ret;
1064		} else {
1065			/*
1066			 * This is a silent loss of information.  We still
1067			 * send the signal, but the *info bits are lost.
1068			 */
1069			result = TRACE_SIGNAL_LOSE_INFO;
1070		}
1071	}
1072
1073out_set:
1074	signalfd_notify(t, sig);
1075	sigaddset(&pending->signal, sig);
1076	complete_signal(sig, t, group);
1077ret:
1078	trace_signal_generate(sig, info, t, group, result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1079	return ret;
1080}
1081
1082static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1083			int group)
1084{
1085	int from_ancestor_ns = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086
1087#ifdef CONFIG_PID_NS
1088	from_ancestor_ns = si_fromuser(info) &&
1089			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1090#endif
1091
1092	return __send_signal(sig, info, t, group, from_ancestor_ns);
 
 
 
 
 
 
1093}
1094
1095static void print_fatal_signal(int signr)
1096{
1097	struct pt_regs *regs = signal_pt_regs();
1098	pr_info("potentially unexpected fatal signal %d.\n", signr);
1099
1100#if defined(__i386__) && !defined(__arch_um__)
1101	pr_info("code at %08lx: ", regs->ip);
1102	{
1103		int i;
1104		for (i = 0; i < 16; i++) {
1105			unsigned char insn;
1106
1107			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1108				break;
1109			pr_cont("%02x ", insn);
1110		}
1111	}
1112	pr_cont("\n");
1113#endif
1114	preempt_disable();
1115	show_regs(regs);
1116	preempt_enable();
1117}
1118
1119static int __init setup_print_fatal_signals(char *str)
1120{
1121	get_option (&str, &print_fatal_signals);
1122
1123	return 1;
1124}
1125
1126__setup("print-fatal-signals=", setup_print_fatal_signals);
1127
1128int
1129__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1130{
1131	return send_signal(sig, info, p, 1);
1132}
1133
1134static int
1135specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1136{
1137	return send_signal(sig, info, t, 0);
1138}
1139
1140int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1141			bool group)
1142{
1143	unsigned long flags;
1144	int ret = -ESRCH;
1145
1146	if (lock_task_sighand(p, &flags)) {
1147		ret = send_signal(sig, info, p, group);
1148		unlock_task_sighand(p, &flags);
1149	}
1150
1151	return ret;
1152}
1153
1154/*
1155 * Force a signal that the process can't ignore: if necessary
1156 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1157 *
1158 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1159 * since we do not want to have a signal handler that was blocked
1160 * be invoked when user space had explicitly blocked it.
1161 *
1162 * We don't want to have recursive SIGSEGV's etc, for example,
1163 * that is why we also clear SIGNAL_UNKILLABLE.
1164 */
1165int
1166force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1167{
1168	unsigned long int flags;
1169	int ret, blocked, ignored;
1170	struct k_sigaction *action;
 
1171
1172	spin_lock_irqsave(&t->sighand->siglock, flags);
1173	action = &t->sighand->action[sig-1];
1174	ignored = action->sa.sa_handler == SIG_IGN;
1175	blocked = sigismember(&t->blocked, sig);
1176	if (blocked || ignored) {
1177		action->sa.sa_handler = SIG_DFL;
1178		if (blocked) {
1179			sigdelset(&t->blocked, sig);
1180			recalc_sigpending_and_wake(t);
1181		}
1182	}
1183	if (action->sa.sa_handler == SIG_DFL)
 
 
 
 
1184		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1185	ret = specific_send_sig_info(sig, info, t);
1186	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1187
1188	return ret;
1189}
1190
 
 
 
 
 
1191/*
1192 * Nuke all other threads in the group.
1193 */
1194int zap_other_threads(struct task_struct *p)
1195{
1196	struct task_struct *t = p;
1197	int count = 0;
1198
1199	p->signal->group_stop_count = 0;
1200
1201	while_each_thread(p, t) {
1202		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1203		count++;
1204
1205		/* Don't bother with already dead threads */
1206		if (t->exit_state)
1207			continue;
1208		sigaddset(&t->pending.signal, SIGKILL);
1209		signal_wake_up(t, 1);
1210	}
1211
1212	return count;
1213}
1214
1215struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1216					   unsigned long *flags)
1217{
1218	struct sighand_struct *sighand;
1219
 
1220	for (;;) {
1221		/*
1222		 * Disable interrupts early to avoid deadlocks.
1223		 * See rcu_read_unlock() comment header for details.
1224		 */
1225		local_irq_save(*flags);
1226		rcu_read_lock();
1227		sighand = rcu_dereference(tsk->sighand);
1228		if (unlikely(sighand == NULL)) {
1229			rcu_read_unlock();
1230			local_irq_restore(*flags);
1231			break;
1232		}
1233		/*
1234		 * This sighand can be already freed and even reused, but
1235		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1236		 * initializes ->siglock: this slab can't go away, it has
1237		 * the same object type, ->siglock can't be reinitialized.
1238		 *
1239		 * We need to ensure that tsk->sighand is still the same
1240		 * after we take the lock, we can race with de_thread() or
1241		 * __exit_signal(). In the latter case the next iteration
1242		 * must see ->sighand == NULL.
1243		 */
1244		spin_lock(&sighand->siglock);
1245		if (likely(sighand == tsk->sighand)) {
1246			rcu_read_unlock();
1247			break;
1248		}
1249		spin_unlock(&sighand->siglock);
1250		rcu_read_unlock();
1251		local_irq_restore(*flags);
1252	}
 
1253
1254	return sighand;
1255}
1256
1257/*
1258 * send signal info to all the members of a group
1259 */
1260int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 
1261{
1262	int ret;
1263
1264	rcu_read_lock();
1265	ret = check_kill_permission(sig, info, p);
1266	rcu_read_unlock();
1267
1268	if (!ret && sig)
1269		ret = do_send_sig_info(sig, info, p, true);
1270
1271	return ret;
1272}
1273
1274/*
1275 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1276 * control characters do (^C, ^Z etc)
1277 * - the caller must hold at least a readlock on tasklist_lock
1278 */
1279int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1280{
1281	struct task_struct *p = NULL;
1282	int retval, success;
1283
1284	success = 0;
1285	retval = -ESRCH;
1286	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1287		int err = group_send_sig_info(sig, info, p);
1288		success |= !err;
1289		retval = err;
1290	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1291	return success ? 0 : retval;
1292}
1293
1294int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1295{
1296	int error = -ESRCH;
1297	struct task_struct *p;
1298
1299	for (;;) {
1300		rcu_read_lock();
1301		p = pid_task(pid, PIDTYPE_PID);
1302		if (p)
1303			error = group_send_sig_info(sig, info, p);
1304		rcu_read_unlock();
1305		if (likely(!p || error != -ESRCH))
1306			return error;
1307
1308		/*
1309		 * The task was unhashed in between, try again.  If it
1310		 * is dead, pid_task() will return NULL, if we race with
1311		 * de_thread() it will find the new leader.
1312		 */
1313	}
1314}
1315
1316int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1317{
1318	int error;
1319	rcu_read_lock();
1320	error = kill_pid_info(sig, info, find_vpid(pid));
1321	rcu_read_unlock();
1322	return error;
1323}
1324
1325static int kill_as_cred_perm(const struct cred *cred,
1326			     struct task_struct *target)
1327{
1328	const struct cred *pcred = __task_cred(target);
1329	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1330	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1331		return 0;
1332	return 1;
 
1333}
1334
1335/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1336int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1337			 const struct cred *cred, u32 secid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338{
1339	int ret = -EINVAL;
1340	struct task_struct *p;
1341	unsigned long flags;
 
 
 
 
 
 
 
1342
1343	if (!valid_signal(sig))
1344		return ret;
1345
1346	rcu_read_lock();
1347	p = pid_task(pid, PIDTYPE_PID);
1348	if (!p) {
1349		ret = -ESRCH;
1350		goto out_unlock;
1351	}
1352	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1353		ret = -EPERM;
1354		goto out_unlock;
1355	}
1356	ret = security_task_kill(p, info, sig, secid);
1357	if (ret)
1358		goto out_unlock;
1359
1360	if (sig) {
1361		if (lock_task_sighand(p, &flags)) {
1362			ret = __send_signal(sig, info, p, 1, 0);
1363			unlock_task_sighand(p, &flags);
1364		} else
1365			ret = -ESRCH;
1366	}
1367out_unlock:
1368	rcu_read_unlock();
1369	return ret;
1370}
1371EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1372
1373/*
1374 * kill_something_info() interprets pid in interesting ways just like kill(2).
1375 *
1376 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1377 * is probably wrong.  Should make it like BSD or SYSV.
1378 */
1379
1380static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1381{
1382	int ret;
1383
1384	if (pid > 0) {
1385		rcu_read_lock();
1386		ret = kill_pid_info(sig, info, find_vpid(pid));
1387		rcu_read_unlock();
1388		return ret;
1389	}
1390
 
 
 
 
1391	read_lock(&tasklist_lock);
1392	if (pid != -1) {
1393		ret = __kill_pgrp_info(sig, info,
1394				pid ? find_vpid(-pid) : task_pgrp(current));
1395	} else {
1396		int retval = 0, count = 0;
1397		struct task_struct * p;
1398
1399		for_each_process(p) {
1400			if (task_pid_vnr(p) > 1 &&
1401					!same_thread_group(p, current)) {
1402				int err = group_send_sig_info(sig, info, p);
 
1403				++count;
1404				if (err != -EPERM)
1405					retval = err;
1406			}
1407		}
1408		ret = count ? retval : -ESRCH;
1409	}
1410	read_unlock(&tasklist_lock);
1411
1412	return ret;
1413}
1414
1415/*
1416 * These are for backward compatibility with the rest of the kernel source.
1417 */
1418
1419int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1420{
1421	/*
1422	 * Make sure legacy kernel users don't send in bad values
1423	 * (normal paths check this in check_kill_permission).
1424	 */
1425	if (!valid_signal(sig))
1426		return -EINVAL;
1427
1428	return do_send_sig_info(sig, info, p, false);
1429}
 
1430
1431#define __si_special(priv) \
1432	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1433
1434int
1435send_sig(int sig, struct task_struct *p, int priv)
1436{
1437	return send_sig_info(sig, __si_special(priv), p);
1438}
 
1439
1440void
1441force_sig(int sig, struct task_struct *p)
1442{
1443	force_sig_info(sig, SEND_SIG_PRIV, p);
 
 
 
 
 
 
 
 
1444}
 
1445
1446/*
1447 * When things go south during signal handling, we
1448 * will force a SIGSEGV. And if the signal that caused
1449 * the problem was already a SIGSEGV, we'll want to
1450 * make sure we don't even try to deliver the signal..
1451 */
1452int
1453force_sigsegv(int sig, struct task_struct *p)
1454{
 
 
1455	if (sig == SIGSEGV) {
1456		unsigned long flags;
1457		spin_lock_irqsave(&p->sighand->siglock, flags);
1458		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1459		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1460	}
1461	force_sig(SIGSEGV, p);
1462	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1463}
1464
1465int kill_pgrp(struct pid *pid, int sig, int priv)
1466{
1467	int ret;
1468
1469	read_lock(&tasklist_lock);
1470	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1471	read_unlock(&tasklist_lock);
1472
1473	return ret;
1474}
1475EXPORT_SYMBOL(kill_pgrp);
1476
1477int kill_pid(struct pid *pid, int sig, int priv)
1478{
1479	return kill_pid_info(sig, __si_special(priv), pid);
1480}
1481EXPORT_SYMBOL(kill_pid);
1482
1483/*
1484 * These functions support sending signals using preallocated sigqueue
1485 * structures.  This is needed "because realtime applications cannot
1486 * afford to lose notifications of asynchronous events, like timer
1487 * expirations or I/O completions".  In the case of POSIX Timers
1488 * we allocate the sigqueue structure from the timer_create.  If this
1489 * allocation fails we are able to report the failure to the application
1490 * with an EAGAIN error.
1491 */
1492struct sigqueue *sigqueue_alloc(void)
1493{
1494	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1495
1496	if (q)
1497		q->flags |= SIGQUEUE_PREALLOC;
1498
1499	return q;
1500}
1501
1502void sigqueue_free(struct sigqueue *q)
1503{
1504	unsigned long flags;
1505	spinlock_t *lock = &current->sighand->siglock;
1506
1507	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1508	/*
1509	 * We must hold ->siglock while testing q->list
1510	 * to serialize with collect_signal() or with
1511	 * __exit_signal()->flush_sigqueue().
1512	 */
1513	spin_lock_irqsave(lock, flags);
1514	q->flags &= ~SIGQUEUE_PREALLOC;
1515	/*
1516	 * If it is queued it will be freed when dequeued,
1517	 * like the "regular" sigqueue.
1518	 */
1519	if (!list_empty(&q->list))
1520		q = NULL;
1521	spin_unlock_irqrestore(lock, flags);
1522
1523	if (q)
1524		__sigqueue_free(q);
1525}
1526
1527int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1528{
1529	int sig = q->info.si_signo;
1530	struct sigpending *pending;
 
1531	unsigned long flags;
1532	int ret, result;
1533
1534	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1535
1536	ret = -1;
1537	if (!likely(lock_task_sighand(t, &flags)))
 
 
1538		goto ret;
1539
1540	ret = 1; /* the signal is ignored */
1541	result = TRACE_SIGNAL_IGNORED;
1542	if (!prepare_signal(sig, t, false))
1543		goto out;
1544
1545	ret = 0;
1546	if (unlikely(!list_empty(&q->list))) {
1547		/*
1548		 * If an SI_TIMER entry is already queue just increment
1549		 * the overrun count.
1550		 */
1551		BUG_ON(q->info.si_code != SI_TIMER);
1552		q->info.si_overrun++;
1553		result = TRACE_SIGNAL_ALREADY_PENDING;
1554		goto out;
1555	}
1556	q->info.si_overrun = 0;
1557
1558	signalfd_notify(t, sig);
1559	pending = group ? &t->signal->shared_pending : &t->pending;
1560	list_add_tail(&q->list, &pending->list);
1561	sigaddset(&pending->signal, sig);
1562	complete_signal(sig, t, group);
1563	result = TRACE_SIGNAL_DELIVERED;
1564out:
1565	trace_signal_generate(sig, &q->info, t, group, result);
1566	unlock_task_sighand(t, &flags);
1567ret:
 
1568	return ret;
1569}
1570
 
 
 
 
 
 
 
 
 
1571/*
1572 * Let a parent know about the death of a child.
1573 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1574 *
1575 * Returns true if our parent ignored us and so we've switched to
1576 * self-reaping.
1577 */
1578bool do_notify_parent(struct task_struct *tsk, int sig)
1579{
1580	struct siginfo info;
1581	unsigned long flags;
1582	struct sighand_struct *psig;
1583	bool autoreap = false;
1584	cputime_t utime, stime;
1585
1586	BUG_ON(sig == -1);
1587
1588 	/* do_notify_parent_cldstop should have been called instead.  */
1589 	BUG_ON(task_is_stopped_or_traced(tsk));
1590
1591	BUG_ON(!tsk->ptrace &&
1592	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1593
 
 
 
1594	if (sig != SIGCHLD) {
1595		/*
1596		 * This is only possible if parent == real_parent.
1597		 * Check if it has changed security domain.
1598		 */
1599		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1600			sig = SIGCHLD;
1601	}
1602
 
1603	info.si_signo = sig;
1604	info.si_errno = 0;
1605	/*
1606	 * We are under tasklist_lock here so our parent is tied to
1607	 * us and cannot change.
1608	 *
1609	 * task_active_pid_ns will always return the same pid namespace
1610	 * until a task passes through release_task.
1611	 *
1612	 * write_lock() currently calls preempt_disable() which is the
1613	 * same as rcu_read_lock(), but according to Oleg, this is not
1614	 * correct to rely on this
1615	 */
1616	rcu_read_lock();
1617	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1618	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1619				       task_uid(tsk));
1620	rcu_read_unlock();
1621
1622	task_cputime(tsk, &utime, &stime);
1623	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1624	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1625
1626	info.si_status = tsk->exit_code & 0x7f;
1627	if (tsk->exit_code & 0x80)
1628		info.si_code = CLD_DUMPED;
1629	else if (tsk->exit_code & 0x7f)
1630		info.si_code = CLD_KILLED;
1631	else {
1632		info.si_code = CLD_EXITED;
1633		info.si_status = tsk->exit_code >> 8;
1634	}
1635
1636	psig = tsk->parent->sighand;
1637	spin_lock_irqsave(&psig->siglock, flags);
1638	if (!tsk->ptrace && sig == SIGCHLD &&
1639	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1640	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1641		/*
1642		 * We are exiting and our parent doesn't care.  POSIX.1
1643		 * defines special semantics for setting SIGCHLD to SIG_IGN
1644		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1645		 * automatically and not left for our parent's wait4 call.
1646		 * Rather than having the parent do it as a magic kind of
1647		 * signal handler, we just set this to tell do_exit that we
1648		 * can be cleaned up without becoming a zombie.  Note that
1649		 * we still call __wake_up_parent in this case, because a
1650		 * blocked sys_wait4 might now return -ECHILD.
1651		 *
1652		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1653		 * is implementation-defined: we do (if you don't want
1654		 * it, just use SIG_IGN instead).
1655		 */
1656		autoreap = true;
1657		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1658			sig = 0;
1659	}
1660	if (valid_signal(sig) && sig)
1661		__group_send_sig_info(sig, &info, tsk->parent);
1662	__wake_up_parent(tsk, tsk->parent);
1663	spin_unlock_irqrestore(&psig->siglock, flags);
1664
1665	return autoreap;
1666}
1667
1668/**
1669 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1670 * @tsk: task reporting the state change
1671 * @for_ptracer: the notification is for ptracer
1672 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1673 *
1674 * Notify @tsk's parent that the stopped/continued state has changed.  If
1675 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1676 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1677 *
1678 * CONTEXT:
1679 * Must be called with tasklist_lock at least read locked.
1680 */
1681static void do_notify_parent_cldstop(struct task_struct *tsk,
1682				     bool for_ptracer, int why)
1683{
1684	struct siginfo info;
1685	unsigned long flags;
1686	struct task_struct *parent;
1687	struct sighand_struct *sighand;
1688	cputime_t utime, stime;
1689
1690	if (for_ptracer) {
1691		parent = tsk->parent;
1692	} else {
1693		tsk = tsk->group_leader;
1694		parent = tsk->real_parent;
1695	}
1696
 
1697	info.si_signo = SIGCHLD;
1698	info.si_errno = 0;
1699	/*
1700	 * see comment in do_notify_parent() about the following 4 lines
1701	 */
1702	rcu_read_lock();
1703	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1704	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1705	rcu_read_unlock();
1706
1707	task_cputime(tsk, &utime, &stime);
1708	info.si_utime = cputime_to_clock_t(utime);
1709	info.si_stime = cputime_to_clock_t(stime);
1710
1711 	info.si_code = why;
1712 	switch (why) {
1713 	case CLD_CONTINUED:
1714 		info.si_status = SIGCONT;
1715 		break;
1716 	case CLD_STOPPED:
1717 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1718 		break;
1719 	case CLD_TRAPPED:
1720 		info.si_status = tsk->exit_code & 0x7f;
1721 		break;
1722 	default:
1723 		BUG();
1724 	}
1725
1726	sighand = parent->sighand;
1727	spin_lock_irqsave(&sighand->siglock, flags);
1728	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1729	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1730		__group_send_sig_info(SIGCHLD, &info, parent);
1731	/*
1732	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1733	 */
1734	__wake_up_parent(tsk, parent);
1735	spin_unlock_irqrestore(&sighand->siglock, flags);
1736}
1737
1738static inline int may_ptrace_stop(void)
1739{
1740	if (!likely(current->ptrace))
1741		return 0;
1742	/*
1743	 * Are we in the middle of do_coredump?
1744	 * If so and our tracer is also part of the coredump stopping
1745	 * is a deadlock situation, and pointless because our tracer
1746	 * is dead so don't allow us to stop.
1747	 * If SIGKILL was already sent before the caller unlocked
1748	 * ->siglock we must see ->core_state != NULL. Otherwise it
1749	 * is safe to enter schedule().
1750	 *
1751	 * This is almost outdated, a task with the pending SIGKILL can't
1752	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1753	 * after SIGKILL was already dequeued.
1754	 */
1755	if (unlikely(current->mm->core_state) &&
1756	    unlikely(current->mm == current->parent->mm))
1757		return 0;
1758
1759	return 1;
1760}
1761
1762/*
1763 * Return non-zero if there is a SIGKILL that should be waking us up.
1764 * Called with the siglock held.
1765 */
1766static int sigkill_pending(struct task_struct *tsk)
1767{
1768	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1769		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1770}
1771
1772/*
1773 * This must be called with current->sighand->siglock held.
1774 *
1775 * This should be the path for all ptrace stops.
1776 * We always set current->last_siginfo while stopped here.
1777 * That makes it a way to test a stopped process for
1778 * being ptrace-stopped vs being job-control-stopped.
1779 *
1780 * If we actually decide not to stop at all because the tracer
1781 * is gone, we keep current->exit_code unless clear_code.
1782 */
1783static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1784	__releases(&current->sighand->siglock)
1785	__acquires(&current->sighand->siglock)
1786{
1787	bool gstop_done = false;
1788
1789	if (arch_ptrace_stop_needed(exit_code, info)) {
1790		/*
1791		 * The arch code has something special to do before a
1792		 * ptrace stop.  This is allowed to block, e.g. for faults
1793		 * on user stack pages.  We can't keep the siglock while
1794		 * calling arch_ptrace_stop, so we must release it now.
1795		 * To preserve proper semantics, we must do this before
1796		 * any signal bookkeeping like checking group_stop_count.
1797		 * Meanwhile, a SIGKILL could come in before we retake the
1798		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1799		 * So after regaining the lock, we must check for SIGKILL.
1800		 */
1801		spin_unlock_irq(&current->sighand->siglock);
1802		arch_ptrace_stop(exit_code, info);
1803		spin_lock_irq(&current->sighand->siglock);
1804		if (sigkill_pending(current))
1805			return;
1806	}
1807
 
 
1808	/*
1809	 * We're committing to trapping.  TRACED should be visible before
1810	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1811	 * Also, transition to TRACED and updates to ->jobctl should be
1812	 * atomic with respect to siglock and should be done after the arch
1813	 * hook as siglock is released and regrabbed across it.
 
 
 
 
 
 
 
 
 
 
 
1814	 */
1815	set_current_state(TASK_TRACED);
1816
1817	current->last_siginfo = info;
1818	current->exit_code = exit_code;
1819
1820	/*
1821	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1822	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1823	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1824	 * could be clear now.  We act as if SIGCONT is received after
1825	 * TASK_TRACED is entered - ignore it.
1826	 */
1827	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1828		gstop_done = task_participate_group_stop(current);
1829
1830	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1831	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1832	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1833		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1834
1835	/* entering a trap, clear TRAPPING */
1836	task_clear_jobctl_trapping(current);
1837
1838	spin_unlock_irq(&current->sighand->siglock);
1839	read_lock(&tasklist_lock);
1840	if (may_ptrace_stop()) {
1841		/*
1842		 * Notify parents of the stop.
1843		 *
1844		 * While ptraced, there are two parents - the ptracer and
1845		 * the real_parent of the group_leader.  The ptracer should
1846		 * know about every stop while the real parent is only
1847		 * interested in the completion of group stop.  The states
1848		 * for the two don't interact with each other.  Notify
1849		 * separately unless they're gonna be duplicates.
1850		 */
1851		do_notify_parent_cldstop(current, true, why);
1852		if (gstop_done && ptrace_reparented(current))
1853			do_notify_parent_cldstop(current, false, why);
1854
1855		/*
1856		 * Don't want to allow preemption here, because
1857		 * sys_ptrace() needs this task to be inactive.
1858		 *
1859		 * XXX: implement read_unlock_no_resched().
1860		 */
1861		preempt_disable();
1862		read_unlock(&tasklist_lock);
 
1863		preempt_enable_no_resched();
1864		freezable_schedule();
 
1865	} else {
1866		/*
1867		 * By the time we got the lock, our tracer went away.
1868		 * Don't drop the lock yet, another tracer may come.
1869		 *
1870		 * If @gstop_done, the ptracer went away between group stop
1871		 * completion and here.  During detach, it would have set
1872		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1873		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1874		 * the real parent of the group stop completion is enough.
1875		 */
1876		if (gstop_done)
1877			do_notify_parent_cldstop(current, false, why);
1878
1879		/* tasklist protects us from ptrace_freeze_traced() */
1880		__set_current_state(TASK_RUNNING);
1881		if (clear_code)
1882			current->exit_code = 0;
1883		read_unlock(&tasklist_lock);
1884	}
1885
1886	/*
1887	 * We are back.  Now reacquire the siglock before touching
1888	 * last_siginfo, so that we are sure to have synchronized with
1889	 * any signal-sending on another CPU that wants to examine it.
1890	 */
1891	spin_lock_irq(&current->sighand->siglock);
1892	current->last_siginfo = NULL;
1893
1894	/* LISTENING can be set only during STOP traps, clear it */
1895	current->jobctl &= ~JOBCTL_LISTENING;
1896
1897	/*
1898	 * Queued signals ignored us while we were stopped for tracing.
1899	 * So check for any that we should take before resuming user mode.
1900	 * This sets TIF_SIGPENDING, but never clears it.
1901	 */
1902	recalc_sigpending_tsk(current);
1903}
1904
1905static void ptrace_do_notify(int signr, int exit_code, int why)
1906{
1907	siginfo_t info;
1908
1909	memset(&info, 0, sizeof info);
1910	info.si_signo = signr;
1911	info.si_code = exit_code;
1912	info.si_pid = task_pid_vnr(current);
1913	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1914
1915	/* Let the debugger run.  */
1916	ptrace_stop(exit_code, why, 1, &info);
1917}
1918
1919void ptrace_notify(int exit_code)
1920{
1921	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1922	if (unlikely(current->task_works))
1923		task_work_run();
1924
1925	spin_lock_irq(&current->sighand->siglock);
1926	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1927	spin_unlock_irq(&current->sighand->siglock);
1928}
1929
1930/**
1931 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1932 * @signr: signr causing group stop if initiating
1933 *
1934 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1935 * and participate in it.  If already set, participate in the existing
1936 * group stop.  If participated in a group stop (and thus slept), %true is
1937 * returned with siglock released.
1938 *
1939 * If ptraced, this function doesn't handle stop itself.  Instead,
1940 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1941 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1942 * places afterwards.
1943 *
1944 * CONTEXT:
1945 * Must be called with @current->sighand->siglock held, which is released
1946 * on %true return.
1947 *
1948 * RETURNS:
1949 * %false if group stop is already cancelled or ptrace trap is scheduled.
1950 * %true if participated in group stop.
1951 */
1952static bool do_signal_stop(int signr)
1953	__releases(&current->sighand->siglock)
1954{
1955	struct signal_struct *sig = current->signal;
1956
1957	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1958		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1959		struct task_struct *t;
1960
1961		/* signr will be recorded in task->jobctl for retries */
1962		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1963
1964		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1965		    unlikely(signal_group_exit(sig)))
1966			return false;
1967		/*
1968		 * There is no group stop already in progress.  We must
1969		 * initiate one now.
1970		 *
1971		 * While ptraced, a task may be resumed while group stop is
1972		 * still in effect and then receive a stop signal and
1973		 * initiate another group stop.  This deviates from the
1974		 * usual behavior as two consecutive stop signals can't
1975		 * cause two group stops when !ptraced.  That is why we
1976		 * also check !task_is_stopped(t) below.
1977		 *
1978		 * The condition can be distinguished by testing whether
1979		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1980		 * group_exit_code in such case.
1981		 *
1982		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1983		 * an intervening stop signal is required to cause two
1984		 * continued events regardless of ptrace.
1985		 */
1986		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1987			sig->group_exit_code = signr;
1988
1989		sig->group_stop_count = 0;
1990
1991		if (task_set_jobctl_pending(current, signr | gstop))
1992			sig->group_stop_count++;
1993
1994		t = current;
1995		while_each_thread(current, t) {
1996			/*
1997			 * Setting state to TASK_STOPPED for a group
1998			 * stop is always done with the siglock held,
1999			 * so this check has no races.
2000			 */
2001			if (!task_is_stopped(t) &&
2002			    task_set_jobctl_pending(t, signr | gstop)) {
2003				sig->group_stop_count++;
2004				if (likely(!(t->ptrace & PT_SEIZED)))
2005					signal_wake_up(t, 0);
2006				else
2007					ptrace_trap_notify(t);
2008			}
2009		}
2010	}
2011
2012	if (likely(!current->ptrace)) {
2013		int notify = 0;
2014
2015		/*
2016		 * If there are no other threads in the group, or if there
2017		 * is a group stop in progress and we are the last to stop,
2018		 * report to the parent.
2019		 */
2020		if (task_participate_group_stop(current))
2021			notify = CLD_STOPPED;
2022
2023		__set_current_state(TASK_STOPPED);
2024		spin_unlock_irq(&current->sighand->siglock);
2025
2026		/*
2027		 * Notify the parent of the group stop completion.  Because
2028		 * we're not holding either the siglock or tasklist_lock
2029		 * here, ptracer may attach inbetween; however, this is for
2030		 * group stop and should always be delivered to the real
2031		 * parent of the group leader.  The new ptracer will get
2032		 * its notification when this task transitions into
2033		 * TASK_TRACED.
2034		 */
2035		if (notify) {
2036			read_lock(&tasklist_lock);
2037			do_notify_parent_cldstop(current, false, notify);
2038			read_unlock(&tasklist_lock);
2039		}
2040
2041		/* Now we don't run again until woken by SIGCONT or SIGKILL */
 
2042		freezable_schedule();
2043		return true;
2044	} else {
2045		/*
2046		 * While ptraced, group stop is handled by STOP trap.
2047		 * Schedule it and let the caller deal with it.
2048		 */
2049		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2050		return false;
2051	}
2052}
2053
2054/**
2055 * do_jobctl_trap - take care of ptrace jobctl traps
2056 *
2057 * When PT_SEIZED, it's used for both group stop and explicit
2058 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2059 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2060 * the stop signal; otherwise, %SIGTRAP.
2061 *
2062 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2063 * number as exit_code and no siginfo.
2064 *
2065 * CONTEXT:
2066 * Must be called with @current->sighand->siglock held, which may be
2067 * released and re-acquired before returning with intervening sleep.
2068 */
2069static void do_jobctl_trap(void)
2070{
2071	struct signal_struct *signal = current->signal;
2072	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2073
2074	if (current->ptrace & PT_SEIZED) {
2075		if (!signal->group_stop_count &&
2076		    !(signal->flags & SIGNAL_STOP_STOPPED))
2077			signr = SIGTRAP;
2078		WARN_ON_ONCE(!signr);
2079		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2080				 CLD_STOPPED);
2081	} else {
2082		WARN_ON_ONCE(!signr);
2083		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2084		current->exit_code = 0;
2085	}
2086}
2087
2088static int ptrace_signal(int signr, siginfo_t *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089{
2090	ptrace_signal_deliver();
2091	/*
2092	 * We do not check sig_kernel_stop(signr) but set this marker
2093	 * unconditionally because we do not know whether debugger will
2094	 * change signr. This flag has no meaning unless we are going
2095	 * to stop after return from ptrace_stop(). In this case it will
2096	 * be checked in do_signal_stop(), we should only stop if it was
2097	 * not cleared by SIGCONT while we were sleeping. See also the
2098	 * comment in dequeue_signal().
2099	 */
2100	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2101	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2102
2103	/* We're back.  Did the debugger cancel the sig?  */
2104	signr = current->exit_code;
2105	if (signr == 0)
2106		return signr;
2107
2108	current->exit_code = 0;
2109
2110	/*
2111	 * Update the siginfo structure if the signal has
2112	 * changed.  If the debugger wanted something
2113	 * specific in the siginfo structure then it should
2114	 * have updated *info via PTRACE_SETSIGINFO.
2115	 */
2116	if (signr != info->si_signo) {
 
2117		info->si_signo = signr;
2118		info->si_errno = 0;
2119		info->si_code = SI_USER;
2120		rcu_read_lock();
2121		info->si_pid = task_pid_vnr(current->parent);
2122		info->si_uid = from_kuid_munged(current_user_ns(),
2123						task_uid(current->parent));
2124		rcu_read_unlock();
2125	}
2126
2127	/* If the (new) signal is now blocked, requeue it.  */
2128	if (sigismember(&current->blocked, signr)) {
2129		specific_send_sig_info(signr, info, current);
2130		signr = 0;
2131	}
2132
2133	return signr;
2134}
2135
2136int get_signal(struct ksignal *ksig)
2137{
2138	struct sighand_struct *sighand = current->sighand;
2139	struct signal_struct *signal = current->signal;
2140	int signr;
2141
2142	if (unlikely(current->task_works))
2143		task_work_run();
2144
2145	if (unlikely(uprobe_deny_signal()))
2146		return 0;
2147
2148	/*
2149	 * Do this once, we can't return to user-mode if freezing() == T.
2150	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2151	 * thus do not need another check after return.
2152	 */
2153	try_to_freeze();
2154
2155relock:
2156	spin_lock_irq(&sighand->siglock);
2157	/*
2158	 * Every stopped thread goes here after wakeup. Check to see if
2159	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2160	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2161	 */
2162	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2163		int why;
2164
2165		if (signal->flags & SIGNAL_CLD_CONTINUED)
2166			why = CLD_CONTINUED;
2167		else
2168			why = CLD_STOPPED;
2169
2170		signal->flags &= ~SIGNAL_CLD_MASK;
2171
2172		spin_unlock_irq(&sighand->siglock);
2173
2174		/*
2175		 * Notify the parent that we're continuing.  This event is
2176		 * always per-process and doesn't make whole lot of sense
2177		 * for ptracers, who shouldn't consume the state via
2178		 * wait(2) either, but, for backward compatibility, notify
2179		 * the ptracer of the group leader too unless it's gonna be
2180		 * a duplicate.
2181		 */
2182		read_lock(&tasklist_lock);
2183		do_notify_parent_cldstop(current, false, why);
2184
2185		if (ptrace_reparented(current->group_leader))
2186			do_notify_parent_cldstop(current->group_leader,
2187						true, why);
2188		read_unlock(&tasklist_lock);
2189
2190		goto relock;
2191	}
2192
 
 
 
 
 
 
 
 
 
 
2193	for (;;) {
2194		struct k_sigaction *ka;
2195
2196		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2197		    do_signal_stop(0))
2198			goto relock;
2199
2200		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2201			do_jobctl_trap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202			spin_unlock_irq(&sighand->siglock);
 
2203			goto relock;
2204		}
2205
2206		signr = dequeue_signal(current, &current->blocked, &ksig->info);
 
 
 
 
 
 
 
 
2207
2208		if (!signr)
2209			break; /* will return 0 */
2210
2211		if (unlikely(current->ptrace) && signr != SIGKILL) {
2212			signr = ptrace_signal(signr, &ksig->info);
2213			if (!signr)
2214				continue;
2215		}
2216
2217		ka = &sighand->action[signr-1];
2218
2219		/* Trace actually delivered signals. */
2220		trace_signal_deliver(signr, &ksig->info, ka);
2221
2222		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2223			continue;
2224		if (ka->sa.sa_handler != SIG_DFL) {
2225			/* Run the handler.  */
2226			ksig->ka = *ka;
2227
2228			if (ka->sa.sa_flags & SA_ONESHOT)
2229				ka->sa.sa_handler = SIG_DFL;
2230
2231			break; /* will return non-zero "signr" value */
2232		}
2233
2234		/*
2235		 * Now we are doing the default action for this signal.
2236		 */
2237		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2238			continue;
2239
2240		/*
2241		 * Global init gets no signals it doesn't want.
2242		 * Container-init gets no signals it doesn't want from same
2243		 * container.
2244		 *
2245		 * Note that if global/container-init sees a sig_kernel_only()
2246		 * signal here, the signal must have been generated internally
2247		 * or must have come from an ancestor namespace. In either
2248		 * case, the signal cannot be dropped.
2249		 */
2250		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2251				!sig_kernel_only(signr))
2252			continue;
2253
2254		if (sig_kernel_stop(signr)) {
2255			/*
2256			 * The default action is to stop all threads in
2257			 * the thread group.  The job control signals
2258			 * do nothing in an orphaned pgrp, but SIGSTOP
2259			 * always works.  Note that siglock needs to be
2260			 * dropped during the call to is_orphaned_pgrp()
2261			 * because of lock ordering with tasklist_lock.
2262			 * This allows an intervening SIGCONT to be posted.
2263			 * We need to check for that and bail out if necessary.
2264			 */
2265			if (signr != SIGSTOP) {
2266				spin_unlock_irq(&sighand->siglock);
2267
2268				/* signals can be posted during this window */
2269
2270				if (is_current_pgrp_orphaned())
2271					goto relock;
2272
2273				spin_lock_irq(&sighand->siglock);
2274			}
2275
2276			if (likely(do_signal_stop(ksig->info.si_signo))) {
2277				/* It released the siglock.  */
2278				goto relock;
2279			}
2280
2281			/*
2282			 * We didn't actually stop, due to a race
2283			 * with SIGCONT or something like that.
2284			 */
2285			continue;
2286		}
2287
 
2288		spin_unlock_irq(&sighand->siglock);
 
 
2289
2290		/*
2291		 * Anything else is fatal, maybe with a core dump.
2292		 */
2293		current->flags |= PF_SIGNALED;
2294
2295		if (sig_kernel_coredump(signr)) {
2296			if (print_fatal_signals)
2297				print_fatal_signal(ksig->info.si_signo);
2298			proc_coredump_connector(current);
2299			/*
2300			 * If it was able to dump core, this kills all
2301			 * other threads in the group and synchronizes with
2302			 * their demise.  If we lost the race with another
2303			 * thread getting here, it set group_exit_code
2304			 * first and our do_group_exit call below will use
2305			 * that value and ignore the one we pass it.
2306			 */
2307			do_coredump(&ksig->info);
2308		}
2309
2310		/*
2311		 * Death signals, no core dump.
2312		 */
2313		do_group_exit(ksig->info.si_signo);
2314		/* NOTREACHED */
2315	}
2316	spin_unlock_irq(&sighand->siglock);
2317
2318	ksig->sig = signr;
2319	return ksig->sig > 0;
2320}
2321
2322/**
2323 * signal_delivered - 
2324 * @ksig:		kernel signal struct
2325 * @stepping:		nonzero if debugger single-step or block-step in use
2326 *
2327 * This function should be called when a signal has successfully been
2328 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2329 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2330 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2331 */
2332static void signal_delivered(struct ksignal *ksig, int stepping)
2333{
2334	sigset_t blocked;
2335
2336	/* A signal was successfully delivered, and the
2337	   saved sigmask was stored on the signal frame,
2338	   and will be restored by sigreturn.  So we can
2339	   simply clear the restore sigmask flag.  */
2340	clear_restore_sigmask();
2341
2342	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2343	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2344		sigaddset(&blocked, ksig->sig);
2345	set_current_blocked(&blocked);
2346	tracehook_signal_handler(stepping);
2347}
2348
2349void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2350{
2351	if (failed)
2352		force_sigsegv(ksig->sig, current);
2353	else
2354		signal_delivered(ksig, stepping);
2355}
2356
2357/*
2358 * It could be that complete_signal() picked us to notify about the
2359 * group-wide signal. Other threads should be notified now to take
2360 * the shared signals in @which since we will not.
2361 */
2362static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2363{
2364	sigset_t retarget;
2365	struct task_struct *t;
2366
2367	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2368	if (sigisemptyset(&retarget))
2369		return;
2370
2371	t = tsk;
2372	while_each_thread(tsk, t) {
2373		if (t->flags & PF_EXITING)
2374			continue;
2375
2376		if (!has_pending_signals(&retarget, &t->blocked))
2377			continue;
2378		/* Remove the signals this thread can handle. */
2379		sigandsets(&retarget, &retarget, &t->blocked);
2380
2381		if (!signal_pending(t))
2382			signal_wake_up(t, 0);
2383
2384		if (sigisemptyset(&retarget))
2385			break;
2386	}
2387}
2388
2389void exit_signals(struct task_struct *tsk)
2390{
2391	int group_stop = 0;
2392	sigset_t unblocked;
2393
2394	/*
2395	 * @tsk is about to have PF_EXITING set - lock out users which
2396	 * expect stable threadgroup.
2397	 */
2398	threadgroup_change_begin(tsk);
2399
2400	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2401		tsk->flags |= PF_EXITING;
2402		threadgroup_change_end(tsk);
2403		return;
2404	}
2405
2406	spin_lock_irq(&tsk->sighand->siglock);
2407	/*
2408	 * From now this task is not visible for group-wide signals,
2409	 * see wants_signal(), do_signal_stop().
2410	 */
2411	tsk->flags |= PF_EXITING;
2412
2413	threadgroup_change_end(tsk);
2414
2415	if (!signal_pending(tsk))
2416		goto out;
2417
2418	unblocked = tsk->blocked;
2419	signotset(&unblocked);
2420	retarget_shared_pending(tsk, &unblocked);
2421
2422	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2423	    task_participate_group_stop(tsk))
2424		group_stop = CLD_STOPPED;
2425out:
2426	spin_unlock_irq(&tsk->sighand->siglock);
2427
2428	/*
2429	 * If group stop has completed, deliver the notification.  This
2430	 * should always go to the real parent of the group leader.
2431	 */
2432	if (unlikely(group_stop)) {
2433		read_lock(&tasklist_lock);
2434		do_notify_parent_cldstop(tsk, false, group_stop);
2435		read_unlock(&tasklist_lock);
2436	}
2437}
2438
2439EXPORT_SYMBOL(recalc_sigpending);
2440EXPORT_SYMBOL_GPL(dequeue_signal);
2441EXPORT_SYMBOL(flush_signals);
2442EXPORT_SYMBOL(force_sig);
2443EXPORT_SYMBOL(send_sig);
2444EXPORT_SYMBOL(send_sig_info);
2445EXPORT_SYMBOL(sigprocmask);
2446
2447/*
2448 * System call entry points.
2449 */
2450
2451/**
2452 *  sys_restart_syscall - restart a system call
2453 */
2454SYSCALL_DEFINE0(restart_syscall)
2455{
2456	struct restart_block *restart = &current->restart_block;
2457	return restart->fn(restart);
2458}
2459
2460long do_no_restart_syscall(struct restart_block *param)
2461{
2462	return -EINTR;
2463}
2464
2465static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2466{
2467	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2468		sigset_t newblocked;
2469		/* A set of now blocked but previously unblocked signals. */
2470		sigandnsets(&newblocked, newset, &current->blocked);
2471		retarget_shared_pending(tsk, &newblocked);
2472	}
2473	tsk->blocked = *newset;
2474	recalc_sigpending();
2475}
2476
2477/**
2478 * set_current_blocked - change current->blocked mask
2479 * @newset: new mask
2480 *
2481 * It is wrong to change ->blocked directly, this helper should be used
2482 * to ensure the process can't miss a shared signal we are going to block.
2483 */
2484void set_current_blocked(sigset_t *newset)
2485{
2486	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2487	__set_current_blocked(newset);
2488}
2489
2490void __set_current_blocked(const sigset_t *newset)
2491{
2492	struct task_struct *tsk = current;
2493
2494	/*
2495	 * In case the signal mask hasn't changed, there is nothing we need
2496	 * to do. The current->blocked shouldn't be modified by other task.
2497	 */
2498	if (sigequalsets(&tsk->blocked, newset))
2499		return;
2500
2501	spin_lock_irq(&tsk->sighand->siglock);
2502	__set_task_blocked(tsk, newset);
2503	spin_unlock_irq(&tsk->sighand->siglock);
2504}
2505
2506/*
2507 * This is also useful for kernel threads that want to temporarily
2508 * (or permanently) block certain signals.
2509 *
2510 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2511 * interface happily blocks "unblockable" signals like SIGKILL
2512 * and friends.
2513 */
2514int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2515{
2516	struct task_struct *tsk = current;
2517	sigset_t newset;
2518
2519	/* Lockless, only current can change ->blocked, never from irq */
2520	if (oldset)
2521		*oldset = tsk->blocked;
2522
2523	switch (how) {
2524	case SIG_BLOCK:
2525		sigorsets(&newset, &tsk->blocked, set);
2526		break;
2527	case SIG_UNBLOCK:
2528		sigandnsets(&newset, &tsk->blocked, set);
2529		break;
2530	case SIG_SETMASK:
2531		newset = *set;
2532		break;
2533	default:
2534		return -EINVAL;
2535	}
2536
2537	__set_current_blocked(&newset);
2538	return 0;
2539}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2540
2541/**
2542 *  sys_rt_sigprocmask - change the list of currently blocked signals
2543 *  @how: whether to add, remove, or set signals
2544 *  @nset: stores pending signals
2545 *  @oset: previous value of signal mask if non-null
2546 *  @sigsetsize: size of sigset_t type
2547 */
2548SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2549		sigset_t __user *, oset, size_t, sigsetsize)
2550{
2551	sigset_t old_set, new_set;
2552	int error;
2553
2554	/* XXX: Don't preclude handling different sized sigset_t's.  */
2555	if (sigsetsize != sizeof(sigset_t))
2556		return -EINVAL;
2557
2558	old_set = current->blocked;
2559
2560	if (nset) {
2561		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2562			return -EFAULT;
2563		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2564
2565		error = sigprocmask(how, &new_set, NULL);
2566		if (error)
2567			return error;
2568	}
2569
2570	if (oset) {
2571		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2572			return -EFAULT;
2573	}
2574
2575	return 0;
2576}
2577
2578#ifdef CONFIG_COMPAT
2579COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2580		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2581{
2582#ifdef __BIG_ENDIAN
2583	sigset_t old_set = current->blocked;
2584
2585	/* XXX: Don't preclude handling different sized sigset_t's.  */
2586	if (sigsetsize != sizeof(sigset_t))
2587		return -EINVAL;
2588
2589	if (nset) {
2590		compat_sigset_t new32;
2591		sigset_t new_set;
2592		int error;
2593		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2594			return -EFAULT;
2595
2596		sigset_from_compat(&new_set, &new32);
2597		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2598
2599		error = sigprocmask(how, &new_set, NULL);
2600		if (error)
2601			return error;
2602	}
2603	if (oset) {
2604		compat_sigset_t old32;
2605		sigset_to_compat(&old32, &old_set);
2606		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2607			return -EFAULT;
2608	}
2609	return 0;
2610#else
2611	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2612				  (sigset_t __user *)oset, sigsetsize);
2613#endif
2614}
2615#endif
2616
2617static int do_sigpending(void *set, unsigned long sigsetsize)
2618{
2619	if (sigsetsize > sizeof(sigset_t))
2620		return -EINVAL;
2621
2622	spin_lock_irq(&current->sighand->siglock);
2623	sigorsets(set, &current->pending.signal,
2624		  &current->signal->shared_pending.signal);
2625	spin_unlock_irq(&current->sighand->siglock);
2626
2627	/* Outside the lock because only this thread touches it.  */
2628	sigandsets(set, &current->blocked, set);
2629	return 0;
2630}
2631
2632/**
2633 *  sys_rt_sigpending - examine a pending signal that has been raised
2634 *			while blocked
2635 *  @uset: stores pending signals
2636 *  @sigsetsize: size of sigset_t type or larger
2637 */
2638SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2639{
2640	sigset_t set;
2641	int err = do_sigpending(&set, sigsetsize);
2642	if (!err && copy_to_user(uset, &set, sigsetsize))
2643		err = -EFAULT;
2644	return err;
 
 
 
 
 
 
2645}
2646
2647#ifdef CONFIG_COMPAT
2648COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2649		compat_size_t, sigsetsize)
2650{
2651#ifdef __BIG_ENDIAN
2652	sigset_t set;
2653	int err = do_sigpending(&set, sigsetsize);
2654	if (!err) {
2655		compat_sigset_t set32;
2656		sigset_to_compat(&set32, &set);
2657		/* we can get here only if sigsetsize <= sizeof(set) */
2658		if (copy_to_user(uset, &set32, sigsetsize))
2659			err = -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2660	}
2661	return err;
2662#else
2663	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2664#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2665}
2666#endif
2667
2668#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
 
 
 
 
 
 
 
 
2669
2670int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
 
2671{
2672	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2673
2674	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
 
 
2675		return -EFAULT;
2676	if (from->si_code < 0)
2677		return __copy_to_user(to, from, sizeof(siginfo_t))
2678			? -EFAULT : 0;
2679	/*
2680	 * If you change siginfo_t structure, please be sure
2681	 * this code is fixed accordingly.
2682	 * Please remember to update the signalfd_copyinfo() function
2683	 * inside fs/signalfd.c too, in case siginfo_t changes.
2684	 * It should never copy any pad contained in the structure
2685	 * to avoid security leaks, but must copy the generic
2686	 * 3 ints plus the relevant union member.
2687	 */
2688	err = __put_user(from->si_signo, &to->si_signo);
2689	err |= __put_user(from->si_errno, &to->si_errno);
2690	err |= __put_user((short)from->si_code, &to->si_code);
2691	switch (from->si_code & __SI_MASK) {
2692	case __SI_KILL:
2693		err |= __put_user(from->si_pid, &to->si_pid);
2694		err |= __put_user(from->si_uid, &to->si_uid);
2695		break;
2696	case __SI_TIMER:
2697		 err |= __put_user(from->si_tid, &to->si_tid);
2698		 err |= __put_user(from->si_overrun, &to->si_overrun);
2699		 err |= __put_user(from->si_ptr, &to->si_ptr);
2700		break;
2701	case __SI_POLL:
2702		err |= __put_user(from->si_band, &to->si_band);
2703		err |= __put_user(from->si_fd, &to->si_fd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2704		break;
2705	case __SI_FAULT:
2706		err |= __put_user(from->si_addr, &to->si_addr);
2707#ifdef __ARCH_SI_TRAPNO
2708		err |= __put_user(from->si_trapno, &to->si_trapno);
2709#endif
2710#ifdef BUS_MCEERR_AO
2711		/*
2712		 * Other callers might not initialize the si_lsb field,
2713		 * so check explicitly for the right codes here.
2714		 */
2715		if (from->si_signo == SIGBUS &&
2716		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2717			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
 
 
 
2718#endif
2719#ifdef SEGV_BNDERR
2720		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2721			err |= __put_user(from->si_lower, &to->si_lower);
2722			err |= __put_user(from->si_upper, &to->si_upper);
2723		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2724#endif
2725#ifdef SEGV_PKUERR
2726		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2727			err |= __put_user(from->si_pkey, &to->si_pkey);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2728#endif
 
 
 
 
 
 
 
 
 
2729		break;
2730	case __SI_CHLD:
2731		err |= __put_user(from->si_pid, &to->si_pid);
2732		err |= __put_user(from->si_uid, &to->si_uid);
2733		err |= __put_user(from->si_status, &to->si_status);
2734		err |= __put_user(from->si_utime, &to->si_utime);
2735		err |= __put_user(from->si_stime, &to->si_stime);
2736		break;
2737	case __SI_RT: /* This is not generated by the kernel as of now. */
2738	case __SI_MESGQ: /* But this is */
2739		err |= __put_user(from->si_pid, &to->si_pid);
2740		err |= __put_user(from->si_uid, &to->si_uid);
2741		err |= __put_user(from->si_ptr, &to->si_ptr);
2742		break;
2743#ifdef __ARCH_SIGSYS
2744	case __SI_SYS:
2745		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2746		err |= __put_user(from->si_syscall, &to->si_syscall);
2747		err |= __put_user(from->si_arch, &to->si_arch);
2748		break;
2749#endif
2750	default: /* this is just in case for now ... */
2751		err |= __put_user(from->si_pid, &to->si_pid);
2752		err |= __put_user(from->si_uid, &to->si_uid);
2753		break;
2754	}
2755	return err;
 
 
 
 
 
 
 
 
 
 
 
 
2756}
2757
2758#endif
 
 
 
 
 
 
 
 
 
 
2759
2760/**
2761 *  do_sigtimedwait - wait for queued signals specified in @which
2762 *  @which: queued signals to wait for
2763 *  @info: if non-null, the signal's siginfo is returned here
2764 *  @ts: upper bound on process time suspension
2765 */
2766int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2767		    const struct timespec *ts)
2768{
2769	ktime_t *to = NULL, timeout = KTIME_MAX;
2770	struct task_struct *tsk = current;
2771	sigset_t mask = *which;
2772	int sig, ret = 0;
2773
2774	if (ts) {
2775		if (!timespec_valid(ts))
2776			return -EINVAL;
2777		timeout = timespec_to_ktime(*ts);
2778		to = &timeout;
2779	}
2780
2781	/*
2782	 * Invert the set of allowed signals to get those we want to block.
2783	 */
2784	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2785	signotset(&mask);
2786
2787	spin_lock_irq(&tsk->sighand->siglock);
2788	sig = dequeue_signal(tsk, &mask, info);
2789	if (!sig && timeout) {
2790		/*
2791		 * None ready, temporarily unblock those we're interested
2792		 * while we are sleeping in so that we'll be awakened when
2793		 * they arrive. Unblocking is always fine, we can avoid
2794		 * set_current_blocked().
2795		 */
2796		tsk->real_blocked = tsk->blocked;
2797		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2798		recalc_sigpending();
2799		spin_unlock_irq(&tsk->sighand->siglock);
2800
2801		__set_current_state(TASK_INTERRUPTIBLE);
2802		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2803							 HRTIMER_MODE_REL);
2804		spin_lock_irq(&tsk->sighand->siglock);
2805		__set_task_blocked(tsk, &tsk->real_blocked);
2806		sigemptyset(&tsk->real_blocked);
2807		sig = dequeue_signal(tsk, &mask, info);
2808	}
2809	spin_unlock_irq(&tsk->sighand->siglock);
2810
2811	if (sig)
2812		return sig;
2813	return ret ? -EINTR : -EAGAIN;
2814}
2815
2816/**
2817 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2818 *			in @uthese
2819 *  @uthese: queued signals to wait for
2820 *  @uinfo: if non-null, the signal's siginfo is returned here
2821 *  @uts: upper bound on process time suspension
2822 *  @sigsetsize: size of sigset_t type
2823 */
2824SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2825		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
 
2826		size_t, sigsetsize)
2827{
2828	sigset_t these;
2829	struct timespec ts;
2830	siginfo_t info;
2831	int ret;
2832
2833	/* XXX: Don't preclude handling different sized sigset_t's.  */
2834	if (sigsetsize != sizeof(sigset_t))
2835		return -EINVAL;
2836
2837	if (copy_from_user(&these, uthese, sizeof(these)))
2838		return -EFAULT;
2839
2840	if (uts) {
2841		if (copy_from_user(&ts, uts, sizeof(ts)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2842			return -EFAULT;
2843	}
2844
2845	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2846
2847	if (ret > 0 && uinfo) {
2848		if (copy_siginfo_to_user(uinfo, &info))
2849			ret = -EFAULT;
2850	}
2851
2852	return ret;
2853}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2854
2855/**
2856 *  sys_kill - send a signal to a process
2857 *  @pid: the PID of the process
2858 *  @sig: signal to be sent
2859 */
2860SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2861{
2862	struct siginfo info;
2863
2864	info.si_signo = sig;
2865	info.si_errno = 0;
2866	info.si_code = SI_USER;
2867	info.si_pid = task_tgid_vnr(current);
2868	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2869
2870	return kill_something_info(sig, &info, pid);
2871}
2872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2873static int
2874do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2875{
2876	struct task_struct *p;
2877	int error = -ESRCH;
2878
2879	rcu_read_lock();
2880	p = find_task_by_vpid(pid);
2881	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2882		error = check_kill_permission(sig, info, p);
2883		/*
2884		 * The null signal is a permissions and process existence
2885		 * probe.  No signal is actually delivered.
2886		 */
2887		if (!error && sig) {
2888			error = do_send_sig_info(sig, info, p, false);
2889			/*
2890			 * If lock_task_sighand() failed we pretend the task
2891			 * dies after receiving the signal. The window is tiny,
2892			 * and the signal is private anyway.
2893			 */
2894			if (unlikely(error == -ESRCH))
2895				error = 0;
2896		}
2897	}
2898	rcu_read_unlock();
2899
2900	return error;
2901}
2902
2903static int do_tkill(pid_t tgid, pid_t pid, int sig)
2904{
2905	struct siginfo info = {};
2906
 
2907	info.si_signo = sig;
2908	info.si_errno = 0;
2909	info.si_code = SI_TKILL;
2910	info.si_pid = task_tgid_vnr(current);
2911	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2912
2913	return do_send_specific(tgid, pid, sig, &info);
2914}
2915
2916/**
2917 *  sys_tgkill - send signal to one specific thread
2918 *  @tgid: the thread group ID of the thread
2919 *  @pid: the PID of the thread
2920 *  @sig: signal to be sent
2921 *
2922 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2923 *  exists but it's not belonging to the target process anymore. This
2924 *  method solves the problem of threads exiting and PIDs getting reused.
2925 */
2926SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2927{
2928	/* This is only valid for single tasks */
2929	if (pid <= 0 || tgid <= 0)
2930		return -EINVAL;
2931
2932	return do_tkill(tgid, pid, sig);
2933}
2934
2935/**
2936 *  sys_tkill - send signal to one specific task
2937 *  @pid: the PID of the task
2938 *  @sig: signal to be sent
2939 *
2940 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2941 */
2942SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2943{
2944	/* This is only valid for single tasks */
2945	if (pid <= 0)
2946		return -EINVAL;
2947
2948	return do_tkill(0, pid, sig);
2949}
2950
2951static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2952{
2953	/* Not even root can pretend to send signals from the kernel.
2954	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2955	 */
2956	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2957	    (task_pid_vnr(current) != pid))
2958		return -EPERM;
2959
2960	info->si_signo = sig;
2961
2962	/* POSIX.1b doesn't mention process groups.  */
2963	return kill_proc_info(sig, info, pid);
2964}
2965
2966/**
2967 *  sys_rt_sigqueueinfo - send signal information to a signal
2968 *  @pid: the PID of the thread
2969 *  @sig: signal to be sent
2970 *  @uinfo: signal info to be sent
2971 */
2972SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2973		siginfo_t __user *, uinfo)
2974{
2975	siginfo_t info;
2976	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2977		return -EFAULT;
 
2978	return do_rt_sigqueueinfo(pid, sig, &info);
2979}
2980
2981#ifdef CONFIG_COMPAT
2982COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2983			compat_pid_t, pid,
2984			int, sig,
2985			struct compat_siginfo __user *, uinfo)
2986{
2987	siginfo_t info = {};
2988	int ret = copy_siginfo_from_user32(&info, uinfo);
2989	if (unlikely(ret))
2990		return ret;
2991	return do_rt_sigqueueinfo(pid, sig, &info);
2992}
2993#endif
2994
2995static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2996{
2997	/* This is only valid for single tasks */
2998	if (pid <= 0 || tgid <= 0)
2999		return -EINVAL;
3000
3001	/* Not even root can pretend to send signals from the kernel.
3002	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3003	 */
3004	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3005	    (task_pid_vnr(current) != pid))
3006		return -EPERM;
3007
3008	info->si_signo = sig;
3009
3010	return do_send_specific(tgid, pid, sig, info);
3011}
3012
3013SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3014		siginfo_t __user *, uinfo)
3015{
3016	siginfo_t info;
3017
3018	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3019		return -EFAULT;
3020
3021	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3022}
3023
3024#ifdef CONFIG_COMPAT
3025COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3026			compat_pid_t, tgid,
3027			compat_pid_t, pid,
3028			int, sig,
3029			struct compat_siginfo __user *, uinfo)
3030{
3031	siginfo_t info = {};
3032
3033	if (copy_siginfo_from_user32(&info, uinfo))
3034		return -EFAULT;
3035	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3036}
3037#endif
3038
3039/*
3040 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3041 */
3042void kernel_sigaction(int sig, __sighandler_t action)
3043{
3044	spin_lock_irq(&current->sighand->siglock);
3045	current->sighand->action[sig - 1].sa.sa_handler = action;
3046	if (action == SIG_IGN) {
3047		sigset_t mask;
3048
3049		sigemptyset(&mask);
3050		sigaddset(&mask, sig);
3051
3052		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3053		flush_sigqueue_mask(&mask, &current->pending);
3054		recalc_sigpending();
3055	}
3056	spin_unlock_irq(&current->sighand->siglock);
3057}
3058EXPORT_SYMBOL(kernel_sigaction);
3059
3060void __weak sigaction_compat_abi(struct k_sigaction *act,
3061		struct k_sigaction *oact)
3062{
3063}
3064
3065int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3066{
3067	struct task_struct *p = current, *t;
3068	struct k_sigaction *k;
3069	sigset_t mask;
3070
3071	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3072		return -EINVAL;
3073
3074	k = &p->sighand->action[sig-1];
3075
3076	spin_lock_irq(&p->sighand->siglock);
3077	if (oact)
3078		*oact = *k;
3079
3080	sigaction_compat_abi(act, oact);
3081
3082	if (act) {
3083		sigdelsetmask(&act->sa.sa_mask,
3084			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3085		*k = *act;
3086		/*
3087		 * POSIX 3.3.1.3:
3088		 *  "Setting a signal action to SIG_IGN for a signal that is
3089		 *   pending shall cause the pending signal to be discarded,
3090		 *   whether or not it is blocked."
3091		 *
3092		 *  "Setting a signal action to SIG_DFL for a signal that is
3093		 *   pending and whose default action is to ignore the signal
3094		 *   (for example, SIGCHLD), shall cause the pending signal to
3095		 *   be discarded, whether or not it is blocked"
3096		 */
3097		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3098			sigemptyset(&mask);
3099			sigaddset(&mask, sig);
3100			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3101			for_each_thread(p, t)
3102				flush_sigqueue_mask(&mask, &t->pending);
3103		}
3104	}
3105
3106	spin_unlock_irq(&p->sighand->siglock);
3107	return 0;
3108}
3109
3110static int
3111do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
 
3112{
3113	stack_t oss;
3114	int error;
 
 
 
 
 
 
 
3115
3116	oss.ss_sp = (void __user *) current->sas_ss_sp;
3117	oss.ss_size = current->sas_ss_size;
3118	oss.ss_flags = sas_ss_flags(sp) |
3119		(current->sas_ss_flags & SS_FLAG_BITS);
3120
3121	if (uss) {
3122		void __user *ss_sp;
3123		size_t ss_size;
3124		unsigned ss_flags;
3125		int ss_mode;
3126
3127		error = -EFAULT;
3128		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3129			goto out;
3130		error = __get_user(ss_sp, &uss->ss_sp) |
3131			__get_user(ss_flags, &uss->ss_flags) |
3132			__get_user(ss_size, &uss->ss_size);
3133		if (error)
3134			goto out;
3135
3136		error = -EPERM;
3137		if (on_sig_stack(sp))
3138			goto out;
3139
3140		ss_mode = ss_flags & ~SS_FLAG_BITS;
3141		error = -EINVAL;
3142		if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3143				ss_mode != 0)
3144			goto out;
3145
3146		if (ss_mode == SS_DISABLE) {
3147			ss_size = 0;
3148			ss_sp = NULL;
3149		} else {
3150			error = -ENOMEM;
3151			if (ss_size < MINSIGSTKSZ)
3152				goto out;
3153		}
3154
3155		current->sas_ss_sp = (unsigned long) ss_sp;
3156		current->sas_ss_size = ss_size;
3157		current->sas_ss_flags = ss_flags;
3158	}
3159
3160	error = 0;
3161	if (uoss) {
3162		error = -EFAULT;
3163		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3164			goto out;
3165		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3166			__put_user(oss.ss_size, &uoss->ss_size) |
3167			__put_user(oss.ss_flags, &uoss->ss_flags);
3168	}
 
 
3169
3170out:
3171	return error;
3172}
3173SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3174{
3175	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
 
 
 
 
 
 
 
 
 
3176}
3177
3178int restore_altstack(const stack_t __user *uss)
3179{
3180	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
 
 
 
 
3181	/* squash all but EFAULT for now */
3182	return err == -EFAULT ? err : 0;
3183}
3184
3185int __save_altstack(stack_t __user *uss, unsigned long sp)
3186{
3187	struct task_struct *t = current;
3188	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3189		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3190		__put_user(t->sas_ss_size, &uss->ss_size);
3191	if (err)
3192		return err;
3193	if (t->sas_ss_flags & SS_AUTODISARM)
3194		sas_ss_reset(t);
3195	return 0;
3196}
3197
3198#ifdef CONFIG_COMPAT
3199COMPAT_SYSCALL_DEFINE2(sigaltstack,
3200			const compat_stack_t __user *, uss_ptr,
3201			compat_stack_t __user *, uoss_ptr)
3202{
3203	stack_t uss, uoss;
3204	int ret;
3205	mm_segment_t seg;
3206
3207	if (uss_ptr) {
3208		compat_stack_t uss32;
3209
3210		memset(&uss, 0, sizeof(stack_t));
3211		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3212			return -EFAULT;
3213		uss.ss_sp = compat_ptr(uss32.ss_sp);
3214		uss.ss_flags = uss32.ss_flags;
3215		uss.ss_size = uss32.ss_size;
3216	}
3217	seg = get_fs();
3218	set_fs(KERNEL_DS);
3219	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3220			     (stack_t __force __user *) &uoss,
3221			     compat_user_stack_pointer());
3222	set_fs(seg);
3223	if (ret >= 0 && uoss_ptr)  {
3224		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3225		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3226		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3227		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
 
 
3228			ret = -EFAULT;
3229	}
3230	return ret;
3231}
3232
 
 
 
 
 
 
 
3233int compat_restore_altstack(const compat_stack_t __user *uss)
3234{
3235	int err = compat_sys_sigaltstack(uss, NULL);
3236	/* squash all but -EFAULT for now */
3237	return err == -EFAULT ? err : 0;
3238}
3239
3240int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3241{
3242	int err;
3243	struct task_struct *t = current;
3244	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3245			 &uss->ss_sp) |
3246		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3247		__put_user(t->sas_ss_size, &uss->ss_size);
3248	if (err)
3249		return err;
3250	if (t->sas_ss_flags & SS_AUTODISARM)
3251		sas_ss_reset(t);
3252	return 0;
3253}
3254#endif
3255
3256#ifdef __ARCH_WANT_SYS_SIGPENDING
3257
3258/**
3259 *  sys_sigpending - examine pending signals
3260 *  @set: where mask of pending signal is returned
3261 */
3262SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3263{
3264	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
 
 
 
 
3265}
 
3266
3267#endif
3268
3269#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3270/**
3271 *  sys_sigprocmask - examine and change blocked signals
3272 *  @how: whether to add, remove, or set signals
3273 *  @nset: signals to add or remove (if non-null)
3274 *  @oset: previous value of signal mask if non-null
3275 *
3276 * Some platforms have their own version with special arguments;
3277 * others support only sys_rt_sigprocmask.
3278 */
3279
3280SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3281		old_sigset_t __user *, oset)
3282{
3283	old_sigset_t old_set, new_set;
3284	sigset_t new_blocked;
3285
3286	old_set = current->blocked.sig[0];
3287
3288	if (nset) {
3289		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3290			return -EFAULT;
3291
3292		new_blocked = current->blocked;
3293
3294		switch (how) {
3295		case SIG_BLOCK:
3296			sigaddsetmask(&new_blocked, new_set);
3297			break;
3298		case SIG_UNBLOCK:
3299			sigdelsetmask(&new_blocked, new_set);
3300			break;
3301		case SIG_SETMASK:
3302			new_blocked.sig[0] = new_set;
3303			break;
3304		default:
3305			return -EINVAL;
3306		}
3307
3308		set_current_blocked(&new_blocked);
3309	}
3310
3311	if (oset) {
3312		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3313			return -EFAULT;
3314	}
3315
3316	return 0;
3317}
3318#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3319
3320#ifndef CONFIG_ODD_RT_SIGACTION
3321/**
3322 *  sys_rt_sigaction - alter an action taken by a process
3323 *  @sig: signal to be sent
3324 *  @act: new sigaction
3325 *  @oact: used to save the previous sigaction
3326 *  @sigsetsize: size of sigset_t type
3327 */
3328SYSCALL_DEFINE4(rt_sigaction, int, sig,
3329		const struct sigaction __user *, act,
3330		struct sigaction __user *, oact,
3331		size_t, sigsetsize)
3332{
3333	struct k_sigaction new_sa, old_sa;
3334	int ret = -EINVAL;
3335
3336	/* XXX: Don't preclude handling different sized sigset_t's.  */
3337	if (sigsetsize != sizeof(sigset_t))
3338		goto out;
3339
3340	if (act) {
3341		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3342			return -EFAULT;
3343	}
3344
3345	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
 
 
 
 
 
3346
3347	if (!ret && oact) {
3348		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3349			return -EFAULT;
3350	}
3351out:
3352	return ret;
3353}
3354#ifdef CONFIG_COMPAT
3355COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3356		const struct compat_sigaction __user *, act,
3357		struct compat_sigaction __user *, oact,
3358		compat_size_t, sigsetsize)
3359{
3360	struct k_sigaction new_ka, old_ka;
3361	compat_sigset_t mask;
3362#ifdef __ARCH_HAS_SA_RESTORER
3363	compat_uptr_t restorer;
3364#endif
3365	int ret;
3366
3367	/* XXX: Don't preclude handling different sized sigset_t's.  */
3368	if (sigsetsize != sizeof(compat_sigset_t))
3369		return -EINVAL;
3370
3371	if (act) {
3372		compat_uptr_t handler;
3373		ret = get_user(handler, &act->sa_handler);
3374		new_ka.sa.sa_handler = compat_ptr(handler);
3375#ifdef __ARCH_HAS_SA_RESTORER
3376		ret |= get_user(restorer, &act->sa_restorer);
3377		new_ka.sa.sa_restorer = compat_ptr(restorer);
3378#endif
3379		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3380		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3381		if (ret)
3382			return -EFAULT;
3383		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3384	}
3385
3386	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3387	if (!ret && oact) {
3388		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3389		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3390			       &oact->sa_handler);
3391		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
 
3392		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3393#ifdef __ARCH_HAS_SA_RESTORER
3394		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3395				&oact->sa_restorer);
3396#endif
3397	}
3398	return ret;
3399}
3400#endif
3401#endif /* !CONFIG_ODD_RT_SIGACTION */
3402
3403#ifdef CONFIG_OLD_SIGACTION
3404SYSCALL_DEFINE3(sigaction, int, sig,
3405		const struct old_sigaction __user *, act,
3406	        struct old_sigaction __user *, oact)
3407{
3408	struct k_sigaction new_ka, old_ka;
3409	int ret;
3410
3411	if (act) {
3412		old_sigset_t mask;
3413		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3414		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3415		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3416		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3417		    __get_user(mask, &act->sa_mask))
3418			return -EFAULT;
3419#ifdef __ARCH_HAS_KA_RESTORER
3420		new_ka.ka_restorer = NULL;
3421#endif
3422		siginitset(&new_ka.sa.sa_mask, mask);
3423	}
3424
3425	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3426
3427	if (!ret && oact) {
3428		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3429		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3430		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3431		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3432		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3433			return -EFAULT;
3434	}
3435
3436	return ret;
3437}
3438#endif
3439#ifdef CONFIG_COMPAT_OLD_SIGACTION
3440COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3441		const struct compat_old_sigaction __user *, act,
3442	        struct compat_old_sigaction __user *, oact)
3443{
3444	struct k_sigaction new_ka, old_ka;
3445	int ret;
3446	compat_old_sigset_t mask;
3447	compat_uptr_t handler, restorer;
3448
3449	if (act) {
3450		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3451		    __get_user(handler, &act->sa_handler) ||
3452		    __get_user(restorer, &act->sa_restorer) ||
3453		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3454		    __get_user(mask, &act->sa_mask))
3455			return -EFAULT;
3456
3457#ifdef __ARCH_HAS_KA_RESTORER
3458		new_ka.ka_restorer = NULL;
3459#endif
3460		new_ka.sa.sa_handler = compat_ptr(handler);
3461		new_ka.sa.sa_restorer = compat_ptr(restorer);
3462		siginitset(&new_ka.sa.sa_mask, mask);
3463	}
3464
3465	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3466
3467	if (!ret && oact) {
3468		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3469		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3470			       &oact->sa_handler) ||
3471		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3472			       &oact->sa_restorer) ||
3473		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3474		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3475			return -EFAULT;
3476	}
3477	return ret;
3478}
3479#endif
3480
3481#ifdef CONFIG_SGETMASK_SYSCALL
3482
3483/*
3484 * For backwards compatibility.  Functionality superseded by sigprocmask.
3485 */
3486SYSCALL_DEFINE0(sgetmask)
3487{
3488	/* SMP safe */
3489	return current->blocked.sig[0];
3490}
3491
3492SYSCALL_DEFINE1(ssetmask, int, newmask)
3493{
3494	int old = current->blocked.sig[0];
3495	sigset_t newset;
3496
3497	siginitset(&newset, newmask);
3498	set_current_blocked(&newset);
3499
3500	return old;
3501}
3502#endif /* CONFIG_SGETMASK_SYSCALL */
3503
3504#ifdef __ARCH_WANT_SYS_SIGNAL
3505/*
3506 * For backwards compatibility.  Functionality superseded by sigaction.
3507 */
3508SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3509{
3510	struct k_sigaction new_sa, old_sa;
3511	int ret;
3512
3513	new_sa.sa.sa_handler = handler;
3514	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3515	sigemptyset(&new_sa.sa.sa_mask);
3516
3517	ret = do_sigaction(sig, &new_sa, &old_sa);
3518
3519	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3520}
3521#endif /* __ARCH_WANT_SYS_SIGNAL */
3522
3523#ifdef __ARCH_WANT_SYS_PAUSE
3524
3525SYSCALL_DEFINE0(pause)
3526{
3527	while (!signal_pending(current)) {
3528		__set_current_state(TASK_INTERRUPTIBLE);
3529		schedule();
3530	}
3531	return -ERESTARTNOHAND;
3532}
3533
3534#endif
3535
3536static int sigsuspend(sigset_t *set)
3537{
3538	current->saved_sigmask = current->blocked;
3539	set_current_blocked(set);
3540
3541	while (!signal_pending(current)) {
3542		__set_current_state(TASK_INTERRUPTIBLE);
3543		schedule();
3544	}
3545	set_restore_sigmask();
3546	return -ERESTARTNOHAND;
3547}
3548
3549/**
3550 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3551 *	@unewset value until a signal is received
3552 *  @unewset: new signal mask value
3553 *  @sigsetsize: size of sigset_t type
3554 */
3555SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3556{
3557	sigset_t newset;
3558
3559	/* XXX: Don't preclude handling different sized sigset_t's.  */
3560	if (sigsetsize != sizeof(sigset_t))
3561		return -EINVAL;
3562
3563	if (copy_from_user(&newset, unewset, sizeof(newset)))
3564		return -EFAULT;
3565	return sigsuspend(&newset);
3566}
3567 
3568#ifdef CONFIG_COMPAT
3569COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3570{
3571#ifdef __BIG_ENDIAN
3572	sigset_t newset;
3573	compat_sigset_t newset32;
3574
3575	/* XXX: Don't preclude handling different sized sigset_t's.  */
3576	if (sigsetsize != sizeof(sigset_t))
3577		return -EINVAL;
3578
3579	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3580		return -EFAULT;
3581	sigset_from_compat(&newset, &newset32);
3582	return sigsuspend(&newset);
3583#else
3584	/* on little-endian bitmaps don't care about granularity */
3585	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3586#endif
3587}
3588#endif
3589
3590#ifdef CONFIG_OLD_SIGSUSPEND
3591SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3592{
3593	sigset_t blocked;
3594	siginitset(&blocked, mask);
3595	return sigsuspend(&blocked);
3596}
3597#endif
3598#ifdef CONFIG_OLD_SIGSUSPEND3
3599SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3600{
3601	sigset_t blocked;
3602	siginitset(&blocked, mask);
3603	return sigsuspend(&blocked);
3604}
3605#endif
3606
3607__weak const char *arch_vma_name(struct vm_area_struct *vma)
3608{
3609	return NULL;
3610}
3611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3612void __init signals_init(void)
3613{
3614	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3615	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3616		!= offsetof(struct siginfo, _sifields._pad));
3617
3618	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3619}
3620
3621#ifdef CONFIG_KGDB_KDB
3622#include <linux/kdb.h>
3623/*
3624 * kdb_send_sig_info - Allows kdb to send signals without exposing
3625 * signal internals.  This function checks if the required locks are
3626 * available before calling the main signal code, to avoid kdb
3627 * deadlocks.
3628 */
3629void
3630kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3631{
3632	static struct task_struct *kdb_prev_t;
3633	int sig, new_t;
3634	if (!spin_trylock(&t->sighand->siglock)) {
3635		kdb_printf("Can't do kill command now.\n"
3636			   "The sigmask lock is held somewhere else in "
3637			   "kernel, try again later\n");
3638		return;
3639	}
3640	spin_unlock(&t->sighand->siglock);
3641	new_t = kdb_prev_t != t;
3642	kdb_prev_t = t;
3643	if (t->state != TASK_RUNNING && new_t) {
 
3644		kdb_printf("Process is not RUNNING, sending a signal from "
3645			   "kdb risks deadlock\n"
3646			   "on the run queue locks. "
3647			   "The signal has _not_ been sent.\n"
3648			   "Reissue the kill command if you want to risk "
3649			   "the deadlock.\n");
3650		return;
3651	}
3652	sig = info->si_signo;
3653	if (send_sig_info(sig, info, t))
 
3654		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3655			   sig, t->pid);
3656	else
3657		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3658}
3659#endif	/* CONFIG_KGDB_KDB */