Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v5.4
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8
  9/*
 10 * Handle hardware traps and faults.
 11 */
 12
 13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 14
 15#include <linux/context_tracking.h>
 16#include <linux/interrupt.h>
 17#include <linux/kallsyms.h>
 18#include <linux/spinlock.h>
 19#include <linux/kprobes.h>
 20#include <linux/uaccess.h>
 21#include <linux/kdebug.h>
 22#include <linux/kgdb.h>
 23#include <linux/kernel.h>
 24#include <linux/export.h>
 25#include <linux/ptrace.h>
 26#include <linux/uprobes.h>
 27#include <linux/string.h>
 28#include <linux/delay.h>
 29#include <linux/errno.h>
 30#include <linux/kexec.h>
 31#include <linux/sched.h>
 32#include <linux/sched/task_stack.h>
 33#include <linux/timer.h>
 34#include <linux/init.h>
 35#include <linux/bug.h>
 36#include <linux/nmi.h>
 37#include <linux/mm.h>
 38#include <linux/smp.h>
 39#include <linux/io.h>
 40
 
 
 
 
 
 41#if defined(CONFIG_EDAC)
 42#include <linux/edac.h>
 43#endif
 44
 
 45#include <asm/stacktrace.h>
 46#include <asm/processor.h>
 47#include <asm/debugreg.h>
 48#include <linux/atomic.h>
 49#include <asm/text-patching.h>
 50#include <asm/ftrace.h>
 51#include <asm/traps.h>
 52#include <asm/desc.h>
 53#include <asm/fpu/internal.h>
 54#include <asm/cpu_entry_area.h>
 55#include <asm/mce.h>
 56#include <asm/fixmap.h>
 57#include <asm/mach_traps.h>
 58#include <asm/alternative.h>
 59#include <asm/fpu/xstate.h>
 60#include <asm/trace/mpx.h>
 61#include <asm/mpx.h>
 62#include <asm/vm86.h>
 63#include <asm/umip.h>
 64
 65#ifdef CONFIG_X86_64
 66#include <asm/x86_init.h>
 67#include <asm/pgalloc.h>
 68#include <asm/proto.h>
 
 
 
 69#else
 70#include <asm/processor-flags.h>
 71#include <asm/setup.h>
 72#include <asm/proto.h>
 73#endif
 74
 75DECLARE_BITMAP(system_vectors, NR_VECTORS);
 
 
 
 
 76
 77static inline void cond_local_irq_enable(struct pt_regs *regs)
 78{
 79	if (regs->flags & X86_EFLAGS_IF)
 80		local_irq_enable();
 81}
 82
 83static inline void cond_local_irq_disable(struct pt_regs *regs)
 84{
 85	if (regs->flags & X86_EFLAGS_IF)
 86		local_irq_disable();
 87}
 88
 89/*
 90 * In IST context, we explicitly disable preemption.  This serves two
 91 * purposes: it makes it much less likely that we would accidentally
 92 * schedule in IST context and it will force a warning if we somehow
 93 * manage to schedule by accident.
 94 */
 95void ist_enter(struct pt_regs *regs)
 96{
 97	if (user_mode(regs)) {
 98		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 99	} else {
100		/*
101		 * We might have interrupted pretty much anything.  In
102		 * fact, if we're a machine check, we can even interrupt
103		 * NMI processing.  We don't want in_nmi() to return true,
104		 * but we need to notify RCU.
105		 */
106		rcu_nmi_enter();
107	}
108
109	preempt_disable();
110
111	/* This code is a bit fragile.  Test it. */
112	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
113}
114NOKPROBE_SYMBOL(ist_enter);
115
116void ist_exit(struct pt_regs *regs)
117{
118	preempt_enable_no_resched();
119
120	if (!user_mode(regs))
121		rcu_nmi_exit();
122}
123
124/**
125 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
126 * @regs:	regs passed to the IST exception handler
127 *
128 * IST exception handlers normally cannot schedule.  As a special
129 * exception, if the exception interrupted userspace code (i.e.
130 * user_mode(regs) would return true) and the exception was not
131 * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
132 * begins a non-atomic section within an ist_enter()/ist_exit() region.
133 * Callers are responsible for enabling interrupts themselves inside
134 * the non-atomic section, and callers must call ist_end_non_atomic()
135 * before ist_exit().
136 */
137void ist_begin_non_atomic(struct pt_regs *regs)
138{
139	BUG_ON(!user_mode(regs));
140
141	/*
142	 * Sanity check: we need to be on the normal thread stack.  This
143	 * will catch asm bugs and any attempt to use ist_preempt_enable
144	 * from double_fault.
145	 */
146	BUG_ON(!on_thread_stack());
 
147
148	preempt_enable_no_resched();
149}
150
151/**
152 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
153 *
154 * Ends a non-atomic section started with ist_begin_non_atomic().
155 */
156void ist_end_non_atomic(void)
157{
158	preempt_disable();
159}
160
161int is_valid_bugaddr(unsigned long addr)
162{
163	unsigned short ud;
164
165	if (addr < TASK_SIZE_MAX)
166		return 0;
167
168	if (probe_kernel_address((unsigned short *)addr, ud))
169		return 0;
170
171	return ud == INSN_UD0 || ud == INSN_UD2;
172}
173
174int fixup_bug(struct pt_regs *regs, int trapnr)
175{
176	if (trapnr != X86_TRAP_UD)
177		return 0;
178
179	switch (report_bug(regs->ip, regs)) {
180	case BUG_TRAP_TYPE_NONE:
181	case BUG_TRAP_TYPE_BUG:
182		break;
183
184	case BUG_TRAP_TYPE_WARN:
185		regs->ip += LEN_UD2;
186		return 1;
187	}
188
189	return 0;
190}
191
192static nokprobe_inline int
193do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
194		  struct pt_regs *regs,	long error_code)
195{
196	if (v8086_mode(regs)) {
197		/*
198		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
199		 * On nmi (interrupt 2), do_trap should not be called.
200		 */
201		if (trapnr < X86_TRAP_UD) {
202			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
203						error_code, trapnr))
204				return 0;
205		}
206	} else if (!user_mode(regs)) {
207		if (fixup_exception(regs, trapnr, error_code, 0))
208			return 0;
209
210		tsk->thread.error_code = error_code;
211		tsk->thread.trap_nr = trapnr;
212		die(str, regs, error_code);
 
 
 
 
213	}
214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215	/*
216	 * We want error_code and trap_nr set for userspace faults and
217	 * kernelspace faults which result in die(), but not
218	 * kernelspace faults which are fixed up.  die() gives the
219	 * process no chance to handle the signal and notice the
220	 * kernel fault information, so that won't result in polluting
221	 * the information about previously queued, but not yet
222	 * delivered, faults.  See also do_general_protection below.
223	 */
224	tsk->thread.error_code = error_code;
225	tsk->thread.trap_nr = trapnr;
226
227	return -1;
228}
229
230static void show_signal(struct task_struct *tsk, int signr,
231			const char *type, const char *desc,
232			struct pt_regs *regs, long error_code)
233{
234	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
235	    printk_ratelimit()) {
236		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
237			tsk->comm, task_pid_nr(tsk), type, desc,
238			regs->ip, regs->sp, error_code);
239		print_vma_addr(KERN_CONT " in ", regs->ip);
240		pr_cont("\n");
241	}
242}
243
244static void
245do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
246	long error_code, int sicode, void __user *addr)
247{
248	struct task_struct *tsk = current;
249
250
251	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
252		return;
253
254	show_signal(tsk, signr, "trap ", str, regs, error_code);
255
256	if (!sicode)
257		force_sig(signr);
258	else
259		force_sig_fault(signr, sicode, addr);
260}
261NOKPROBE_SYMBOL(do_trap);
262
263static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
264	unsigned long trapnr, int signr, int sicode, void __user *addr)
265{
266	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
267
268	/*
269	 * WARN*()s end up here; fix them up before we call the
270	 * notifier chain.
271	 */
272	if (!user_mode(regs) && fixup_bug(regs, trapnr))
273		return;
274
275	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
276			NOTIFY_STOP) {
277		cond_local_irq_enable(regs);
278		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
 
279	}
280}
281
282#define IP ((void __user *)uprobe_get_trap_addr(regs))
283#define DO_ERROR(trapnr, signr, sicode, addr, str, name)		   \
284dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	   \
285{									   \
286	do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
287}
288
289DO_ERROR(X86_TRAP_DE,     SIGFPE,  FPE_INTDIV,   IP, "divide error",        divide_error)
290DO_ERROR(X86_TRAP_OF,     SIGSEGV,          0, NULL, "overflow",            overflow)
291DO_ERROR(X86_TRAP_UD,     SIGILL,  ILL_ILLOPN,   IP, "invalid opcode",      invalid_op)
292DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,           0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun)
293DO_ERROR(X86_TRAP_TS,     SIGSEGV,          0, NULL, "invalid TSS",         invalid_TSS)
294DO_ERROR(X86_TRAP_NP,     SIGBUS,           0, NULL, "segment not present", segment_not_present)
295DO_ERROR(X86_TRAP_SS,     SIGBUS,           0, NULL, "stack segment",       stack_segment)
296DO_ERROR(X86_TRAP_AC,     SIGBUS,  BUS_ADRALN, NULL, "alignment check",     alignment_check)
297#undef IP
298
299#ifdef CONFIG_VMAP_STACK
300__visible void __noreturn handle_stack_overflow(const char *message,
301						struct pt_regs *regs,
302						unsigned long fault_address)
303{
304	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
305		 (void *)fault_address, current->stack,
306		 (char *)current->stack + THREAD_SIZE - 1);
307	die(message, regs, 0);
308
309	/* Be absolutely certain we don't return. */
310	panic("%s", message);
311}
312#endif
313
314#ifdef CONFIG_X86_64
315/* Runs on IST stack */
316dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2)
317{
318	static const char str[] = "double fault";
319	struct task_struct *tsk = current;
 
 
 
320
321#ifdef CONFIG_X86_ESPFIX64
322	extern unsigned char native_irq_return_iret[];
323
324	/*
325	 * If IRET takes a non-IST fault on the espfix64 stack, then we
326	 * end up promoting it to a doublefault.  In that case, take
327	 * advantage of the fact that we're not using the normal (TSS.sp0)
328	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
329	 * and then modify our own IRET frame so that, when we return,
330	 * we land directly at the #GP(0) vector with the stack already
331	 * set up according to its expectations.
332	 *
333	 * The net result is that our #GP handler will think that we
334	 * entered from usermode with the bad user context.
335	 *
336	 * No need for ist_enter here because we don't use RCU.
337	 */
338	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
339		regs->cs == __KERNEL_CS &&
340		regs->ip == (unsigned long)native_irq_return_iret)
341	{
342		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
343
344		/*
345		 * regs->sp points to the failing IRET frame on the
346		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
347		 * in gpregs->ss through gpregs->ip.
348		 *
349		 */
350		memmove(&gpregs->ip, (void *)regs->sp, 5*8);
351		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
352
353		/*
354		 * Adjust our frame so that we return straight to the #GP
355		 * vector with the expected RSP value.  This is safe because
356		 * we won't enable interupts or schedule before we invoke
357		 * general_protection, so nothing will clobber the stack
358		 * frame we just set up.
359		 *
360		 * We will enter general_protection with kernel GSBASE,
361		 * which is what the stub expects, given that the faulting
362		 * RIP will be the IRET instruction.
363		 */
364		regs->ip = (unsigned long)general_protection;
365		regs->sp = (unsigned long)&gpregs->orig_ax;
366
367		return;
368	}
369#endif
370
371	ist_enter(regs);
372	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
373
374	tsk->thread.error_code = error_code;
375	tsk->thread.trap_nr = X86_TRAP_DF;
376
377#ifdef CONFIG_VMAP_STACK
378	/*
379	 * If we overflow the stack into a guard page, the CPU will fail
380	 * to deliver #PF and will send #DF instead.  Similarly, if we
381	 * take any non-IST exception while too close to the bottom of
382	 * the stack, the processor will get a page fault while
383	 * delivering the exception and will generate a double fault.
384	 *
385	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
386	 * Page-Fault Exception (#PF):
387	 *
388	 *   Processors update CR2 whenever a page fault is detected. If a
389	 *   second page fault occurs while an earlier page fault is being
390	 *   delivered, the faulting linear address of the second fault will
391	 *   overwrite the contents of CR2 (replacing the previous
392	 *   address). These updates to CR2 occur even if the page fault
393	 *   results in a double fault or occurs during the delivery of a
394	 *   double fault.
395	 *
396	 * The logic below has a small possibility of incorrectly diagnosing
397	 * some errors as stack overflows.  For example, if the IDT or GDT
398	 * gets corrupted such that #GP delivery fails due to a bad descriptor
399	 * causing #GP and we hit this condition while CR2 coincidentally
400	 * points to the stack guard page, we'll think we overflowed the
401	 * stack.  Given that we're going to panic one way or another
402	 * if this happens, this isn't necessarily worth fixing.
403	 *
404	 * If necessary, we could improve the test by only diagnosing
405	 * a stack overflow if the saved RSP points within 47 bytes of
406	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
407	 * take an exception, the stack is already aligned and there
408	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
409	 * possible error code, so a stack overflow would *not* double
410	 * fault.  With any less space left, exception delivery could
411	 * fail, and, as a practical matter, we've overflowed the
412	 * stack even if the actual trigger for the double fault was
413	 * something else.
414	 */
 
415	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
416		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
417#endif
418
419#ifdef CONFIG_DOUBLEFAULT
420	df_debug(regs, error_code);
421#endif
422	/*
423	 * This is always a kernel trap and never fixable (and thus must
424	 * never return).
425	 */
426	for (;;)
427		die(str, regs, error_code);
428}
429#endif
430
431dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
432{
433	const struct mpx_bndcsr *bndcsr;
 
434
435	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
436	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
437			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
438		return;
439	cond_local_irq_enable(regs);
440
441	if (!user_mode(regs))
442		die("bounds", regs, error_code);
443
444	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
445		/* The exception is not from Intel MPX */
446		goto exit_trap;
447	}
448
449	/*
450	 * We need to look at BNDSTATUS to resolve this exception.
451	 * A NULL here might mean that it is in its 'init state',
452	 * which is all zeros which indicates MPX was not
453	 * responsible for the exception.
454	 */
455	bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR);
456	if (!bndcsr)
457		goto exit_trap;
458
459	trace_bounds_exception_mpx(bndcsr);
460	/*
461	 * The error code field of the BNDSTATUS register communicates status
462	 * information of a bound range exception #BR or operation involving
463	 * bound directory.
464	 */
465	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
466	case 2:	/* Bound directory has invalid entry. */
467		if (mpx_handle_bd_fault())
468			goto exit_trap;
469		break; /* Success, it was handled */
470	case 1: /* Bound violation. */
471	{
472		struct task_struct *tsk = current;
473		struct mpx_fault_info mpx;
474
475		if (mpx_fault_info(&mpx, regs)) {
476			/*
477			 * We failed to decode the MPX instruction.  Act as if
478			 * the exception was not caused by MPX.
479			 */
480			goto exit_trap;
481		}
482		/*
483		 * Success, we decoded the instruction and retrieved
484		 * an 'mpx' containing the address being accessed
485		 * which caused the exception.  This information
486		 * allows and application to possibly handle the
487		 * #BR exception itself.
488		 */
489		if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs,
490				       error_code))
491			break;
492
493		show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code);
494
495		force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper);
496		break;
497	}
498	case 0: /* No exception caused by Intel MPX operations. */
499		goto exit_trap;
500	default:
501		die("bounds", regs, error_code);
502	}
503
504	return;
505
506exit_trap:
507	/*
508	 * This path out is for all the cases where we could not
509	 * handle the exception in some way (like allocating a
510	 * table or telling userspace about it.  We will also end
511	 * up here if the kernel has MPX turned off at compile
512	 * time..
513	 */
514	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL);
515}
516
517dotraplinkage void
518do_general_protection(struct pt_regs *regs, long error_code)
519{
520	const char *desc = "general protection fault";
521	struct task_struct *tsk;
522
523	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
524	cond_local_irq_enable(regs);
525
526	if (static_cpu_has(X86_FEATURE_UMIP)) {
527		if (user_mode(regs) && fixup_umip_exception(regs))
528			return;
529	}
530
531	if (v8086_mode(regs)) {
532		local_irq_enable();
533		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
534		return;
535	}
536
537	tsk = current;
538	if (!user_mode(regs)) {
539		if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
540			return;
541
542		tsk->thread.error_code = error_code;
543		tsk->thread.trap_nr = X86_TRAP_GP;
544
545		/*
546		 * To be potentially processing a kprobe fault and to
547		 * trust the result from kprobe_running(), we have to
548		 * be non-preemptible.
549		 */
550		if (!preemptible() && kprobe_running() &&
551		    kprobe_fault_handler(regs, X86_TRAP_GP))
552			return;
553
554		if (notify_die(DIE_GPF, desc, regs, error_code,
555			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
556			die(desc, regs, error_code);
557		return;
558	}
559
560	tsk->thread.error_code = error_code;
561	tsk->thread.trap_nr = X86_TRAP_GP;
562
563	show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
 
 
 
 
 
 
 
564
565	force_sig(SIGSEGV);
566}
567NOKPROBE_SYMBOL(do_general_protection);
568
 
569dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
570{
571#ifdef CONFIG_DYNAMIC_FTRACE
572	/*
573	 * ftrace must be first, everything else may cause a recursive crash.
574	 * See note by declaration of modifying_ftrace_code in ftrace.c
575	 */
576	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
577	    ftrace_int3_handler(regs))
578		return;
579#endif
580	if (poke_int3_handler(regs))
581		return;
582
583	/*
584	 * Use ist_enter despite the fact that we don't use an IST stack.
585	 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
586	 * mode or even during context tracking state changes.
587	 *
588	 * This means that we can't schedule.  That's okay.
589	 */
590	ist_enter(regs);
591	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
592#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
593	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
594				SIGTRAP) == NOTIFY_STOP)
595		goto exit;
596#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
597
598#ifdef CONFIG_KPROBES
599	if (kprobe_int3_handler(regs))
600		goto exit;
601#endif
602
603	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
604			SIGTRAP) == NOTIFY_STOP)
605		goto exit;
606
 
 
 
 
 
 
607	cond_local_irq_enable(regs);
608	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL);
609	cond_local_irq_disable(regs);
610
 
611exit:
612	ist_exit(regs);
613}
614NOKPROBE_SYMBOL(do_int3);
615
616#ifdef CONFIG_X86_64
617/*
618 * Help handler running on a per-cpu (IST or entry trampoline) stack
619 * to switch to the normal thread stack if the interrupted code was in
620 * user mode. The actual stack switch is done in entry_64.S
621 */
622asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
623{
624	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
625	if (regs != eregs)
626		*regs = *eregs;
627	return regs;
628}
629NOKPROBE_SYMBOL(sync_regs);
630
631struct bad_iret_stack {
632	void *error_entry_ret;
633	struct pt_regs regs;
634};
635
636asmlinkage __visible notrace
637struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
638{
639	/*
640	 * This is called from entry_64.S early in handling a fault
641	 * caused by a bad iret to user mode.  To handle the fault
642	 * correctly, we want to move our stack frame to where it would
643	 * be had we entered directly on the entry stack (rather than
644	 * just below the IRET frame) and we want to pretend that the
645	 * exception came from the IRET target.
646	 */
647	struct bad_iret_stack *new_stack =
648		(struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 
649
650	/* Copy the IRET target to the new stack. */
651	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
652
653	/* Copy the remainder of the stack from the current stack. */
654	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
655
656	BUG_ON(!user_mode(&new_stack->regs));
657	return new_stack;
658}
659NOKPROBE_SYMBOL(fixup_bad_iret);
660#endif
661
662static bool is_sysenter_singlestep(struct pt_regs *regs)
663{
664	/*
665	 * We don't try for precision here.  If we're anywhere in the region of
666	 * code that can be single-stepped in the SYSENTER entry path, then
667	 * assume that this is a useless single-step trap due to SYSENTER
668	 * being invoked with TF set.  (We don't know in advance exactly
669	 * which instructions will be hit because BTF could plausibly
670	 * be set.)
671	 */
672#ifdef CONFIG_X86_32
673	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
674		(unsigned long)__end_SYSENTER_singlestep_region -
675		(unsigned long)__begin_SYSENTER_singlestep_region;
676#elif defined(CONFIG_IA32_EMULATION)
677	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
678		(unsigned long)__end_entry_SYSENTER_compat -
679		(unsigned long)entry_SYSENTER_compat;
680#else
681	return false;
682#endif
683}
684
685/*
686 * Our handling of the processor debug registers is non-trivial.
687 * We do not clear them on entry and exit from the kernel. Therefore
688 * it is possible to get a watchpoint trap here from inside the kernel.
689 * However, the code in ./ptrace.c has ensured that the user can
690 * only set watchpoints on userspace addresses. Therefore the in-kernel
691 * watchpoint trap can only occur in code which is reading/writing
692 * from user space. Such code must not hold kernel locks (since it
693 * can equally take a page fault), therefore it is safe to call
694 * force_sig_info even though that claims and releases locks.
695 *
696 * Code in ./signal.c ensures that the debug control register
697 * is restored before we deliver any signal, and therefore that
698 * user code runs with the correct debug control register even though
699 * we clear it here.
700 *
701 * Being careful here means that we don't have to be as careful in a
702 * lot of more complicated places (task switching can be a bit lazy
703 * about restoring all the debug state, and ptrace doesn't have to
704 * find every occurrence of the TF bit that could be saved away even
705 * by user code)
706 *
707 * May run on IST stack.
708 */
709dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
710{
711	struct task_struct *tsk = current;
712	int user_icebp = 0;
713	unsigned long dr6;
714	int si_code;
715
716	ist_enter(regs);
717
718	get_debugreg(dr6, 6);
719	/*
720	 * The Intel SDM says:
721	 *
722	 *   Certain debug exceptions may clear bits 0-3. The remaining
723	 *   contents of the DR6 register are never cleared by the
724	 *   processor. To avoid confusion in identifying debug
725	 *   exceptions, debug handlers should clear the register before
726	 *   returning to the interrupted task.
727	 *
728	 * Keep it simple: clear DR6 immediately.
729	 */
730	set_debugreg(0, 6);
731
732	/* Filter out all the reserved bits which are preset to 1 */
733	dr6 &= ~DR6_RESERVED;
734
735	/*
736	 * The SDM says "The processor clears the BTF flag when it
737	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
738	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
739	 */
740	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
741
742	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
743		     is_sysenter_singlestep(regs))) {
744		dr6 &= ~DR_STEP;
745		if (!dr6)
746			goto exit;
747		/*
748		 * else we might have gotten a single-step trap and hit a
749		 * watchpoint at the same time, in which case we should fall
750		 * through and handle the watchpoint.
751		 */
752	}
753
754	/*
755	 * If dr6 has no reason to give us about the origin of this trap,
756	 * then it's very likely the result of an icebp/int01 trap.
757	 * User wants a sigtrap for that.
758	 */
759	if (!dr6 && user_mode(regs))
760		user_icebp = 1;
761
 
 
 
 
762	/* Store the virtualized DR6 value */
763	tsk->thread.debugreg6 = dr6;
764
765#ifdef CONFIG_KPROBES
766	if (kprobe_debug_handler(regs))
767		goto exit;
768#endif
769
770	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
771							SIGTRAP) == NOTIFY_STOP)
772		goto exit;
773
774	/*
775	 * Let others (NMI) know that the debug stack is in use
776	 * as we may switch to the interrupt stack.
777	 */
778	debug_stack_usage_inc();
779
780	/* It's safe to allow irq's after DR6 has been saved */
 
781	cond_local_irq_enable(regs);
782
783	if (v8086_mode(regs)) {
784		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
785					X86_TRAP_DB);
786		cond_local_irq_disable(regs);
 
787		debug_stack_usage_dec();
788		goto exit;
789	}
790
791	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
792		/*
793		 * Historical junk that used to handle SYSENTER single-stepping.
794		 * This should be unreachable now.  If we survive for a while
795		 * without anyone hitting this warning, we'll turn this into
796		 * an oops.
797		 */
798		tsk->thread.debugreg6 &= ~DR_STEP;
799		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
800		regs->flags &= ~X86_EFLAGS_TF;
801	}
802	si_code = get_si_code(tsk->thread.debugreg6);
803	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
804		send_sigtrap(regs, error_code, si_code);
805	cond_local_irq_disable(regs);
 
806	debug_stack_usage_dec();
807
808exit:
 
 
 
 
 
 
 
 
809	ist_exit(regs);
810}
811NOKPROBE_SYMBOL(do_debug);
812
813/*
814 * Note that we play around with the 'TS' bit in an attempt to get
815 * the correct behaviour even in the presence of the asynchronous
816 * IRQ13 behaviour
817 */
818static void math_error(struct pt_regs *regs, int error_code, int trapnr)
819{
820	struct task_struct *task = current;
821	struct fpu *fpu = &task->thread.fpu;
822	int si_code;
823	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
824						"simd exception";
825
 
 
826	cond_local_irq_enable(regs);
827
828	if (!user_mode(regs)) {
829		if (fixup_exception(regs, trapnr, error_code, 0))
830			return;
831
832		task->thread.error_code = error_code;
833		task->thread.trap_nr = trapnr;
834
835		if (notify_die(DIE_TRAP, str, regs, error_code,
836					trapnr, SIGFPE) != NOTIFY_STOP)
837			die(str, regs, error_code);
 
838		return;
839	}
840
841	/*
842	 * Save the info for the exception handler and clear the error.
843	 */
844	fpu__save(fpu);
845
846	task->thread.trap_nr	= trapnr;
847	task->thread.error_code = error_code;
 
 
 
 
 
848
849	si_code = fpu__exception_code(fpu, trapnr);
850	/* Retry when we get spurious exceptions: */
851	if (!si_code)
852		return;
853
854	force_sig_fault(SIGFPE, si_code,
855			(void __user *)uprobe_get_trap_addr(regs));
856}
857
858dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
859{
860	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
861	math_error(regs, error_code, X86_TRAP_MF);
862}
863
864dotraplinkage void
865do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
866{
867	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
868	math_error(regs, error_code, X86_TRAP_XF);
869}
870
871dotraplinkage void
872do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
873{
874	cond_local_irq_enable(regs);
875}
876
877dotraplinkage void
878do_device_not_available(struct pt_regs *regs, long error_code)
879{
880	unsigned long cr0 = read_cr0();
881
882	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
883
884#ifdef CONFIG_MATH_EMULATION
885	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
886		struct math_emu_info info = { };
887
888		cond_local_irq_enable(regs);
889
890		info.regs = regs;
891		math_emulate(&info);
892		return;
893	}
894#endif
895
896	/* This should not happen. */
 
897	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
898		/* Try to fix it up and carry on. */
899		write_cr0(cr0 & ~X86_CR0_TS);
900	} else {
901		/*
902		 * Something terrible happened, and we're better off trying
903		 * to kill the task than getting stuck in a never-ending
904		 * loop of #NM faults.
905		 */
906		die("unexpected #NM exception", regs, error_code);
907	}
908}
909NOKPROBE_SYMBOL(do_device_not_available);
910
911#ifdef CONFIG_X86_32
912dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
913{
 
 
914	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
915	local_irq_enable();
916
 
 
 
 
917	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
918			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
919		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
920			ILL_BADSTK, (void __user *)NULL);
921	}
922}
923#endif
924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925void __init trap_init(void)
926{
927	/* Init cpu_entry_area before IST entries are set up */
928	setup_cpu_entry_areas();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929
930	idt_setup_traps();
 
 
 
931
932	/*
933	 * Set the IDT descriptor to a fixed read-only location, so that the
934	 * "sidt" instruction will not leak the location of the kernel, and
935	 * to defend the IDT against arbitrary memory write vulnerabilities.
936	 * It will be reloaded in cpu_init() */
937	cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
938		    PAGE_KERNEL_RO);
939	idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
940
941	/*
942	 * Should be a barrier for any external CPU state:
943	 */
944	cpu_init();
945
946	idt_setup_ist_traps();
 
 
 
 
 
 
 
947
948	x86_init.irqs.trap_init();
949
950	idt_setup_debugidt_traps();
 
 
 
 
951}
v4.10.11
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *	Gareth Hughes <gareth@valinux.com>, May 2000
   7 */
   8
   9/*
  10 * Handle hardware traps and faults.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/context_tracking.h>
  16#include <linux/interrupt.h>
  17#include <linux/kallsyms.h>
  18#include <linux/spinlock.h>
  19#include <linux/kprobes.h>
  20#include <linux/uaccess.h>
  21#include <linux/kdebug.h>
  22#include <linux/kgdb.h>
  23#include <linux/kernel.h>
  24#include <linux/export.h>
  25#include <linux/ptrace.h>
  26#include <linux/uprobes.h>
  27#include <linux/string.h>
  28#include <linux/delay.h>
  29#include <linux/errno.h>
  30#include <linux/kexec.h>
  31#include <linux/sched.h>
 
  32#include <linux/timer.h>
  33#include <linux/init.h>
  34#include <linux/bug.h>
  35#include <linux/nmi.h>
  36#include <linux/mm.h>
  37#include <linux/smp.h>
  38#include <linux/io.h>
  39
  40#ifdef CONFIG_EISA
  41#include <linux/ioport.h>
  42#include <linux/eisa.h>
  43#endif
  44
  45#if defined(CONFIG_EDAC)
  46#include <linux/edac.h>
  47#endif
  48
  49#include <asm/kmemcheck.h>
  50#include <asm/stacktrace.h>
  51#include <asm/processor.h>
  52#include <asm/debugreg.h>
  53#include <linux/atomic.h>
  54#include <asm/text-patching.h>
  55#include <asm/ftrace.h>
  56#include <asm/traps.h>
  57#include <asm/desc.h>
  58#include <asm/fpu/internal.h>
 
  59#include <asm/mce.h>
  60#include <asm/fixmap.h>
  61#include <asm/mach_traps.h>
  62#include <asm/alternative.h>
  63#include <asm/fpu/xstate.h>
  64#include <asm/trace/mpx.h>
  65#include <asm/mpx.h>
  66#include <asm/vm86.h>
 
  67
  68#ifdef CONFIG_X86_64
  69#include <asm/x86_init.h>
  70#include <asm/pgalloc.h>
  71#include <asm/proto.h>
  72
  73/* No need to be aligned, but done to keep all IDTs defined the same way. */
  74gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
  75#else
  76#include <asm/processor-flags.h>
  77#include <asm/setup.h>
  78#include <asm/proto.h>
  79#endif
  80
  81/* Must be page-aligned because the real IDT is used in a fixmap. */
  82gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
  83
  84DECLARE_BITMAP(used_vectors, NR_VECTORS);
  85EXPORT_SYMBOL_GPL(used_vectors);
  86
  87static inline void cond_local_irq_enable(struct pt_regs *regs)
  88{
  89	if (regs->flags & X86_EFLAGS_IF)
  90		local_irq_enable();
  91}
  92
  93static inline void cond_local_irq_disable(struct pt_regs *regs)
  94{
  95	if (regs->flags & X86_EFLAGS_IF)
  96		local_irq_disable();
  97}
  98
  99/*
 100 * In IST context, we explicitly disable preemption.  This serves two
 101 * purposes: it makes it much less likely that we would accidentally
 102 * schedule in IST context and it will force a warning if we somehow
 103 * manage to schedule by accident.
 104 */
 105void ist_enter(struct pt_regs *regs)
 106{
 107	if (user_mode(regs)) {
 108		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 109	} else {
 110		/*
 111		 * We might have interrupted pretty much anything.  In
 112		 * fact, if we're a machine check, we can even interrupt
 113		 * NMI processing.  We don't want in_nmi() to return true,
 114		 * but we need to notify RCU.
 115		 */
 116		rcu_nmi_enter();
 117	}
 118
 119	preempt_disable();
 120
 121	/* This code is a bit fragile.  Test it. */
 122	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
 123}
 
 124
 125void ist_exit(struct pt_regs *regs)
 126{
 127	preempt_enable_no_resched();
 128
 129	if (!user_mode(regs))
 130		rcu_nmi_exit();
 131}
 132
 133/**
 134 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
 135 * @regs:	regs passed to the IST exception handler
 136 *
 137 * IST exception handlers normally cannot schedule.  As a special
 138 * exception, if the exception interrupted userspace code (i.e.
 139 * user_mode(regs) would return true) and the exception was not
 140 * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
 141 * begins a non-atomic section within an ist_enter()/ist_exit() region.
 142 * Callers are responsible for enabling interrupts themselves inside
 143 * the non-atomic section, and callers must call ist_end_non_atomic()
 144 * before ist_exit().
 145 */
 146void ist_begin_non_atomic(struct pt_regs *regs)
 147{
 148	BUG_ON(!user_mode(regs));
 149
 150	/*
 151	 * Sanity check: we need to be on the normal thread stack.  This
 152	 * will catch asm bugs and any attempt to use ist_preempt_enable
 153	 * from double_fault.
 154	 */
 155	BUG_ON((unsigned long)(current_top_of_stack() -
 156			       current_stack_pointer()) >= THREAD_SIZE);
 157
 158	preempt_enable_no_resched();
 159}
 160
 161/**
 162 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
 163 *
 164 * Ends a non-atomic section started with ist_begin_non_atomic().
 165 */
 166void ist_end_non_atomic(void)
 167{
 168	preempt_disable();
 169}
 170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171static nokprobe_inline int
 172do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
 173		  struct pt_regs *regs,	long error_code)
 174{
 175	if (v8086_mode(regs)) {
 176		/*
 177		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
 178		 * On nmi (interrupt 2), do_trap should not be called.
 179		 */
 180		if (trapnr < X86_TRAP_UD) {
 181			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
 182						error_code, trapnr))
 183				return 0;
 184		}
 185		return -1;
 186	}
 
 187
 188	if (!user_mode(regs)) {
 189		if (!fixup_exception(regs, trapnr)) {
 190			tsk->thread.error_code = error_code;
 191			tsk->thread.trap_nr = trapnr;
 192			die(str, regs, error_code);
 193		}
 194		return 0;
 195	}
 196
 197	return -1;
 198}
 199
 200static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
 201				siginfo_t *info)
 202{
 203	unsigned long siaddr;
 204	int sicode;
 205
 206	switch (trapnr) {
 207	default:
 208		return SEND_SIG_PRIV;
 209
 210	case X86_TRAP_DE:
 211		sicode = FPE_INTDIV;
 212		siaddr = uprobe_get_trap_addr(regs);
 213		break;
 214	case X86_TRAP_UD:
 215		sicode = ILL_ILLOPN;
 216		siaddr = uprobe_get_trap_addr(regs);
 217		break;
 218	case X86_TRAP_AC:
 219		sicode = BUS_ADRALN;
 220		siaddr = 0;
 221		break;
 222	}
 223
 224	info->si_signo = signr;
 225	info->si_errno = 0;
 226	info->si_code = sicode;
 227	info->si_addr = (void __user *)siaddr;
 228	return info;
 229}
 230
 231static void
 232do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
 233	long error_code, siginfo_t *info)
 234{
 235	struct task_struct *tsk = current;
 236
 237
 238	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
 239		return;
 240	/*
 241	 * We want error_code and trap_nr set for userspace faults and
 242	 * kernelspace faults which result in die(), but not
 243	 * kernelspace faults which are fixed up.  die() gives the
 244	 * process no chance to handle the signal and notice the
 245	 * kernel fault information, so that won't result in polluting
 246	 * the information about previously queued, but not yet
 247	 * delivered, faults.  See also do_general_protection below.
 248	 */
 249	tsk->thread.error_code = error_code;
 250	tsk->thread.trap_nr = trapnr;
 251
 
 
 
 
 
 
 
 252	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
 253	    printk_ratelimit()) {
 254		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
 255			tsk->comm, tsk->pid, str,
 256			regs->ip, regs->sp, error_code);
 257		print_vma_addr(" in ", regs->ip);
 258		pr_cont("\n");
 259	}
 
 260
 261	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262}
 263NOKPROBE_SYMBOL(do_trap);
 264
 265static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
 266			  unsigned long trapnr, int signr)
 267{
 268	siginfo_t info;
 269
 270	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 
 
 
 
 
 271
 272	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
 273			NOTIFY_STOP) {
 274		cond_local_irq_enable(regs);
 275		do_trap(trapnr, signr, str, regs, error_code,
 276			fill_trap_info(regs, signr, trapnr, &info));
 277	}
 278}
 279
 280#define DO_ERROR(trapnr, signr, str, name)				\
 281dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
 282{									\
 283	do_error_trap(regs, error_code, str, trapnr, signr);		\
 284}
 285
 286DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
 287DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
 288DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
 289DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
 290DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
 291DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
 292DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
 293DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
 
 
 294
 295#ifdef CONFIG_VMAP_STACK
 296__visible void __noreturn handle_stack_overflow(const char *message,
 297						struct pt_regs *regs,
 298						unsigned long fault_address)
 299{
 300	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
 301		 (void *)fault_address, current->stack,
 302		 (char *)current->stack + THREAD_SIZE - 1);
 303	die(message, regs, 0);
 304
 305	/* Be absolutely certain we don't return. */
 306	panic(message);
 307}
 308#endif
 309
 310#ifdef CONFIG_X86_64
 311/* Runs on IST stack */
 312dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
 313{
 314	static const char str[] = "double fault";
 315	struct task_struct *tsk = current;
 316#ifdef CONFIG_VMAP_STACK
 317	unsigned long cr2;
 318#endif
 319
 320#ifdef CONFIG_X86_ESPFIX64
 321	extern unsigned char native_irq_return_iret[];
 322
 323	/*
 324	 * If IRET takes a non-IST fault on the espfix64 stack, then we
 325	 * end up promoting it to a doublefault.  In that case, modify
 326	 * the stack to make it look like we just entered the #GP
 327	 * handler from user space, similar to bad_iret.
 
 
 
 
 
 
 328	 *
 329	 * No need for ist_enter here because we don't use RCU.
 330	 */
 331	if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
 332		regs->cs == __KERNEL_CS &&
 333		regs->ip == (unsigned long)native_irq_return_iret)
 334	{
 335		struct pt_regs *normal_regs = task_pt_regs(current);
 
 
 
 
 
 
 
 
 
 336
 337		/* Fake a #GP(0) from userspace. */
 338		memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
 339		normal_regs->orig_ax = 0;  /* Missing (lost) #GP error code */
 
 
 
 
 
 
 
 
 340		regs->ip = (unsigned long)general_protection;
 341		regs->sp = (unsigned long)&normal_regs->orig_ax;
 342
 343		return;
 344	}
 345#endif
 346
 347	ist_enter(regs);
 348	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
 349
 350	tsk->thread.error_code = error_code;
 351	tsk->thread.trap_nr = X86_TRAP_DF;
 352
 353#ifdef CONFIG_VMAP_STACK
 354	/*
 355	 * If we overflow the stack into a guard page, the CPU will fail
 356	 * to deliver #PF and will send #DF instead.  Similarly, if we
 357	 * take any non-IST exception while too close to the bottom of
 358	 * the stack, the processor will get a page fault while
 359	 * delivering the exception and will generate a double fault.
 360	 *
 361	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
 362	 * Page-Fault Exception (#PF):
 363	 *
 364	 *   Processors update CR2 whenever a page fault is detected. If a
 365	 *   second page fault occurs while an earlier page fault is being
 366	 *   deliv- ered, the faulting linear address of the second fault will
 367	 *   overwrite the contents of CR2 (replacing the previous
 368	 *   address). These updates to CR2 occur even if the page fault
 369	 *   results in a double fault or occurs during the delivery of a
 370	 *   double fault.
 371	 *
 372	 * The logic below has a small possibility of incorrectly diagnosing
 373	 * some errors as stack overflows.  For example, if the IDT or GDT
 374	 * gets corrupted such that #GP delivery fails due to a bad descriptor
 375	 * causing #GP and we hit this condition while CR2 coincidentally
 376	 * points to the stack guard page, we'll think we overflowed the
 377	 * stack.  Given that we're going to panic one way or another
 378	 * if this happens, this isn't necessarily worth fixing.
 379	 *
 380	 * If necessary, we could improve the test by only diagnosing
 381	 * a stack overflow if the saved RSP points within 47 bytes of
 382	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
 383	 * take an exception, the stack is already aligned and there
 384	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
 385	 * possible error code, so a stack overflow would *not* double
 386	 * fault.  With any less space left, exception delivery could
 387	 * fail, and, as a practical matter, we've overflowed the
 388	 * stack even if the actual trigger for the double fault was
 389	 * something else.
 390	 */
 391	cr2 = read_cr2();
 392	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
 393		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
 394#endif
 395
 396#ifdef CONFIG_DOUBLEFAULT
 397	df_debug(regs, error_code);
 398#endif
 399	/*
 400	 * This is always a kernel trap and never fixable (and thus must
 401	 * never return).
 402	 */
 403	for (;;)
 404		die(str, regs, error_code);
 405}
 406#endif
 407
 408dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
 409{
 410	const struct mpx_bndcsr *bndcsr;
 411	siginfo_t *info;
 412
 413	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 414	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
 415			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
 416		return;
 417	cond_local_irq_enable(regs);
 418
 419	if (!user_mode(regs))
 420		die("bounds", regs, error_code);
 421
 422	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
 423		/* The exception is not from Intel MPX */
 424		goto exit_trap;
 425	}
 426
 427	/*
 428	 * We need to look at BNDSTATUS to resolve this exception.
 429	 * A NULL here might mean that it is in its 'init state',
 430	 * which is all zeros which indicates MPX was not
 431	 * responsible for the exception.
 432	 */
 433	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
 434	if (!bndcsr)
 435		goto exit_trap;
 436
 437	trace_bounds_exception_mpx(bndcsr);
 438	/*
 439	 * The error code field of the BNDSTATUS register communicates status
 440	 * information of a bound range exception #BR or operation involving
 441	 * bound directory.
 442	 */
 443	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
 444	case 2:	/* Bound directory has invalid entry. */
 445		if (mpx_handle_bd_fault())
 446			goto exit_trap;
 447		break; /* Success, it was handled */
 448	case 1: /* Bound violation. */
 449		info = mpx_generate_siginfo(regs);
 450		if (IS_ERR(info)) {
 
 
 
 451			/*
 452			 * We failed to decode the MPX instruction.  Act as if
 453			 * the exception was not caused by MPX.
 454			 */
 455			goto exit_trap;
 456		}
 457		/*
 458		 * Success, we decoded the instruction and retrieved
 459		 * an 'info' containing the address being accessed
 460		 * which caused the exception.  This information
 461		 * allows and application to possibly handle the
 462		 * #BR exception itself.
 463		 */
 464		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
 465		kfree(info);
 
 
 
 
 
 466		break;
 
 467	case 0: /* No exception caused by Intel MPX operations. */
 468		goto exit_trap;
 469	default:
 470		die("bounds", regs, error_code);
 471	}
 472
 473	return;
 474
 475exit_trap:
 476	/*
 477	 * This path out is for all the cases where we could not
 478	 * handle the exception in some way (like allocating a
 479	 * table or telling userspace about it.  We will also end
 480	 * up here if the kernel has MPX turned off at compile
 481	 * time..
 482	 */
 483	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
 484}
 485
 486dotraplinkage void
 487do_general_protection(struct pt_regs *regs, long error_code)
 488{
 
 489	struct task_struct *tsk;
 490
 491	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 492	cond_local_irq_enable(regs);
 493
 
 
 
 
 
 494	if (v8086_mode(regs)) {
 495		local_irq_enable();
 496		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 497		return;
 498	}
 499
 500	tsk = current;
 501	if (!user_mode(regs)) {
 502		if (fixup_exception(regs, X86_TRAP_GP))
 503			return;
 504
 505		tsk->thread.error_code = error_code;
 506		tsk->thread.trap_nr = X86_TRAP_GP;
 507		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
 
 
 
 
 
 
 
 
 
 
 508			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
 509			die("general protection fault", regs, error_code);
 510		return;
 511	}
 512
 513	tsk->thread.error_code = error_code;
 514	tsk->thread.trap_nr = X86_TRAP_GP;
 515
 516	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
 517			printk_ratelimit()) {
 518		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
 519			tsk->comm, task_pid_nr(tsk),
 520			regs->ip, regs->sp, error_code);
 521		print_vma_addr(" in ", regs->ip);
 522		pr_cont("\n");
 523	}
 524
 525	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
 526}
 527NOKPROBE_SYMBOL(do_general_protection);
 528
 529/* May run on IST stack. */
 530dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
 531{
 532#ifdef CONFIG_DYNAMIC_FTRACE
 533	/*
 534	 * ftrace must be first, everything else may cause a recursive crash.
 535	 * See note by declaration of modifying_ftrace_code in ftrace.c
 536	 */
 537	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
 538	    ftrace_int3_handler(regs))
 539		return;
 540#endif
 541	if (poke_int3_handler(regs))
 542		return;
 543
 
 
 
 
 
 
 
 544	ist_enter(regs);
 545	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 546#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 547	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
 548				SIGTRAP) == NOTIFY_STOP)
 549		goto exit;
 550#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 551
 552#ifdef CONFIG_KPROBES
 553	if (kprobe_int3_handler(regs))
 554		goto exit;
 555#endif
 556
 557	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
 558			SIGTRAP) == NOTIFY_STOP)
 559		goto exit;
 560
 561	/*
 562	 * Let others (NMI) know that the debug stack is in use
 563	 * as we may switch to the interrupt stack.
 564	 */
 565	debug_stack_usage_inc();
 566	preempt_disable();
 567	cond_local_irq_enable(regs);
 568	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
 569	cond_local_irq_disable(regs);
 570	preempt_enable_no_resched();
 571	debug_stack_usage_dec();
 572exit:
 573	ist_exit(regs);
 574}
 575NOKPROBE_SYMBOL(do_int3);
 576
 577#ifdef CONFIG_X86_64
 578/*
 579 * Help handler running on IST stack to switch off the IST stack if the
 580 * interrupted code was in user mode. The actual stack switch is done in
 581 * entry_64.S
 582 */
 583asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
 584{
 585	struct pt_regs *regs = task_pt_regs(current);
 586	*regs = *eregs;
 
 587	return regs;
 588}
 589NOKPROBE_SYMBOL(sync_regs);
 590
 591struct bad_iret_stack {
 592	void *error_entry_ret;
 593	struct pt_regs regs;
 594};
 595
 596asmlinkage __visible notrace
 597struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
 598{
 599	/*
 600	 * This is called from entry_64.S early in handling a fault
 601	 * caused by a bad iret to user mode.  To handle the fault
 602	 * correctly, we want move our stack frame to task_pt_regs
 603	 * and we want to pretend that the exception came from the
 604	 * iret target.
 
 605	 */
 606	struct bad_iret_stack *new_stack =
 607		container_of(task_pt_regs(current),
 608			     struct bad_iret_stack, regs);
 609
 610	/* Copy the IRET target to the new stack. */
 611	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
 612
 613	/* Copy the remainder of the stack from the current stack. */
 614	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
 615
 616	BUG_ON(!user_mode(&new_stack->regs));
 617	return new_stack;
 618}
 619NOKPROBE_SYMBOL(fixup_bad_iret);
 620#endif
 621
 622static bool is_sysenter_singlestep(struct pt_regs *regs)
 623{
 624	/*
 625	 * We don't try for precision here.  If we're anywhere in the region of
 626	 * code that can be single-stepped in the SYSENTER entry path, then
 627	 * assume that this is a useless single-step trap due to SYSENTER
 628	 * being invoked with TF set.  (We don't know in advance exactly
 629	 * which instructions will be hit because BTF could plausibly
 630	 * be set.)
 631	 */
 632#ifdef CONFIG_X86_32
 633	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
 634		(unsigned long)__end_SYSENTER_singlestep_region -
 635		(unsigned long)__begin_SYSENTER_singlestep_region;
 636#elif defined(CONFIG_IA32_EMULATION)
 637	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
 638		(unsigned long)__end_entry_SYSENTER_compat -
 639		(unsigned long)entry_SYSENTER_compat;
 640#else
 641	return false;
 642#endif
 643}
 644
 645/*
 646 * Our handling of the processor debug registers is non-trivial.
 647 * We do not clear them on entry and exit from the kernel. Therefore
 648 * it is possible to get a watchpoint trap here from inside the kernel.
 649 * However, the code in ./ptrace.c has ensured that the user can
 650 * only set watchpoints on userspace addresses. Therefore the in-kernel
 651 * watchpoint trap can only occur in code which is reading/writing
 652 * from user space. Such code must not hold kernel locks (since it
 653 * can equally take a page fault), therefore it is safe to call
 654 * force_sig_info even though that claims and releases locks.
 655 *
 656 * Code in ./signal.c ensures that the debug control register
 657 * is restored before we deliver any signal, and therefore that
 658 * user code runs with the correct debug control register even though
 659 * we clear it here.
 660 *
 661 * Being careful here means that we don't have to be as careful in a
 662 * lot of more complicated places (task switching can be a bit lazy
 663 * about restoring all the debug state, and ptrace doesn't have to
 664 * find every occurrence of the TF bit that could be saved away even
 665 * by user code)
 666 *
 667 * May run on IST stack.
 668 */
 669dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
 670{
 671	struct task_struct *tsk = current;
 672	int user_icebp = 0;
 673	unsigned long dr6;
 674	int si_code;
 675
 676	ist_enter(regs);
 677
 678	get_debugreg(dr6, 6);
 679	/*
 680	 * The Intel SDM says:
 681	 *
 682	 *   Certain debug exceptions may clear bits 0-3. The remaining
 683	 *   contents of the DR6 register are never cleared by the
 684	 *   processor. To avoid confusion in identifying debug
 685	 *   exceptions, debug handlers should clear the register before
 686	 *   returning to the interrupted task.
 687	 *
 688	 * Keep it simple: clear DR6 immediately.
 689	 */
 690	set_debugreg(0, 6);
 691
 692	/* Filter out all the reserved bits which are preset to 1 */
 693	dr6 &= ~DR6_RESERVED;
 694
 695	/*
 696	 * The SDM says "The processor clears the BTF flag when it
 697	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
 698	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
 699	 */
 700	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
 701
 702	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
 703		     is_sysenter_singlestep(regs))) {
 704		dr6 &= ~DR_STEP;
 705		if (!dr6)
 706			goto exit;
 707		/*
 708		 * else we might have gotten a single-step trap and hit a
 709		 * watchpoint at the same time, in which case we should fall
 710		 * through and handle the watchpoint.
 711		 */
 712	}
 713
 714	/*
 715	 * If dr6 has no reason to give us about the origin of this trap,
 716	 * then it's very likely the result of an icebp/int01 trap.
 717	 * User wants a sigtrap for that.
 718	 */
 719	if (!dr6 && user_mode(regs))
 720		user_icebp = 1;
 721
 722	/* Catch kmemcheck conditions! */
 723	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
 724		goto exit;
 725
 726	/* Store the virtualized DR6 value */
 727	tsk->thread.debugreg6 = dr6;
 728
 729#ifdef CONFIG_KPROBES
 730	if (kprobe_debug_handler(regs))
 731		goto exit;
 732#endif
 733
 734	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
 735							SIGTRAP) == NOTIFY_STOP)
 736		goto exit;
 737
 738	/*
 739	 * Let others (NMI) know that the debug stack is in use
 740	 * as we may switch to the interrupt stack.
 741	 */
 742	debug_stack_usage_inc();
 743
 744	/* It's safe to allow irq's after DR6 has been saved */
 745	preempt_disable();
 746	cond_local_irq_enable(regs);
 747
 748	if (v8086_mode(regs)) {
 749		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
 750					X86_TRAP_DB);
 751		cond_local_irq_disable(regs);
 752		preempt_enable_no_resched();
 753		debug_stack_usage_dec();
 754		goto exit;
 755	}
 756
 757	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
 758		/*
 759		 * Historical junk that used to handle SYSENTER single-stepping.
 760		 * This should be unreachable now.  If we survive for a while
 761		 * without anyone hitting this warning, we'll turn this into
 762		 * an oops.
 763		 */
 764		tsk->thread.debugreg6 &= ~DR_STEP;
 765		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
 766		regs->flags &= ~X86_EFLAGS_TF;
 767	}
 768	si_code = get_si_code(tsk->thread.debugreg6);
 769	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
 770		send_sigtrap(tsk, regs, error_code, si_code);
 771	cond_local_irq_disable(regs);
 772	preempt_enable_no_resched();
 773	debug_stack_usage_dec();
 774
 775exit:
 776#if defined(CONFIG_X86_32)
 777	/*
 778	 * This is the most likely code path that involves non-trivial use
 779	 * of the SYSENTER stack.  Check that we haven't overrun it.
 780	 */
 781	WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC,
 782	     "Overran or corrupted SYSENTER stack\n");
 783#endif
 784	ist_exit(regs);
 785}
 786NOKPROBE_SYMBOL(do_debug);
 787
 788/*
 789 * Note that we play around with the 'TS' bit in an attempt to get
 790 * the correct behaviour even in the presence of the asynchronous
 791 * IRQ13 behaviour
 792 */
 793static void math_error(struct pt_regs *regs, int error_code, int trapnr)
 794{
 795	struct task_struct *task = current;
 796	struct fpu *fpu = &task->thread.fpu;
 797	siginfo_t info;
 798	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
 799						"simd exception";
 800
 801	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
 802		return;
 803	cond_local_irq_enable(regs);
 804
 805	if (!user_mode(regs)) {
 806		if (!fixup_exception(regs, trapnr)) {
 807			task->thread.error_code = error_code;
 808			task->thread.trap_nr = trapnr;
 
 
 
 
 
 809			die(str, regs, error_code);
 810		}
 811		return;
 812	}
 813
 814	/*
 815	 * Save the info for the exception handler and clear the error.
 816	 */
 817	fpu__save(fpu);
 818
 819	task->thread.trap_nr	= trapnr;
 820	task->thread.error_code = error_code;
 821	info.si_signo		= SIGFPE;
 822	info.si_errno		= 0;
 823	info.si_addr		= (void __user *)uprobe_get_trap_addr(regs);
 824
 825	info.si_code = fpu__exception_code(fpu, trapnr);
 826
 
 827	/* Retry when we get spurious exceptions: */
 828	if (!info.si_code)
 829		return;
 830
 831	force_sig_info(SIGFPE, &info, task);
 
 832}
 833
 834dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
 835{
 836	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 837	math_error(regs, error_code, X86_TRAP_MF);
 838}
 839
 840dotraplinkage void
 841do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
 842{
 843	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 844	math_error(regs, error_code, X86_TRAP_XF);
 845}
 846
 847dotraplinkage void
 848do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
 849{
 850	cond_local_irq_enable(regs);
 851}
 852
 853dotraplinkage void
 854do_device_not_available(struct pt_regs *regs, long error_code)
 855{
 856	unsigned long cr0;
 857
 858	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 859
 860#ifdef CONFIG_MATH_EMULATION
 861	if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
 862		struct math_emu_info info = { };
 863
 864		cond_local_irq_enable(regs);
 865
 866		info.regs = regs;
 867		math_emulate(&info);
 868		return;
 869	}
 870#endif
 871
 872	/* This should not happen. */
 873	cr0 = read_cr0();
 874	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
 875		/* Try to fix it up and carry on. */
 876		write_cr0(cr0 & ~X86_CR0_TS);
 877	} else {
 878		/*
 879		 * Something terrible happened, and we're better off trying
 880		 * to kill the task than getting stuck in a never-ending
 881		 * loop of #NM faults.
 882		 */
 883		die("unexpected #NM exception", regs, error_code);
 884	}
 885}
 886NOKPROBE_SYMBOL(do_device_not_available);
 887
 888#ifdef CONFIG_X86_32
 889dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
 890{
 891	siginfo_t info;
 892
 893	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 894	local_irq_enable();
 895
 896	info.si_signo = SIGILL;
 897	info.si_errno = 0;
 898	info.si_code = ILL_BADSTK;
 899	info.si_addr = NULL;
 900	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
 901			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
 902		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
 903			&info);
 904	}
 905}
 906#endif
 907
 908/* Set of traps needed for early debugging. */
 909void __init early_trap_init(void)
 910{
 911	/*
 912	 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
 913	 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
 914	 * CPU runs at ring 0 so it is impossible to hit an invalid
 915	 * stack.  Using the original stack works well enough at this
 916	 * early stage. DEBUG_STACK will be equipped after cpu_init() in
 917	 * trap_init().
 918	 *
 919	 * We don't need to set trace_idt_table like set_intr_gate(),
 920	 * since we don't have trace_debug and it will be reset to
 921	 * 'debug' in trap_init() by set_intr_gate_ist().
 922	 */
 923	set_intr_gate_notrace(X86_TRAP_DB, debug);
 924	/* int3 can be called from all */
 925	set_system_intr_gate(X86_TRAP_BP, &int3);
 926#ifdef CONFIG_X86_32
 927	set_intr_gate(X86_TRAP_PF, page_fault);
 928#endif
 929	load_idt(&idt_descr);
 930}
 931
 932void __init early_trap_pf_init(void)
 933{
 934#ifdef CONFIG_X86_64
 935	set_intr_gate(X86_TRAP_PF, page_fault);
 936#endif
 937}
 938
 939void __init trap_init(void)
 940{
 941	int i;
 942
 943#ifdef CONFIG_EISA
 944	void __iomem *p = early_ioremap(0x0FFFD9, 4);
 945
 946	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
 947		EISA_bus = 1;
 948	early_iounmap(p, 4);
 949#endif
 950
 951	set_intr_gate(X86_TRAP_DE, divide_error);
 952	set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
 953	/* int4 can be called from all */
 954	set_system_intr_gate(X86_TRAP_OF, &overflow);
 955	set_intr_gate(X86_TRAP_BR, bounds);
 956	set_intr_gate(X86_TRAP_UD, invalid_op);
 957	set_intr_gate(X86_TRAP_NM, device_not_available);
 958#ifdef CONFIG_X86_32
 959	set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
 960#else
 961	set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
 962#endif
 963	set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
 964	set_intr_gate(X86_TRAP_TS, invalid_TSS);
 965	set_intr_gate(X86_TRAP_NP, segment_not_present);
 966	set_intr_gate(X86_TRAP_SS, stack_segment);
 967	set_intr_gate(X86_TRAP_GP, general_protection);
 968	set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
 969	set_intr_gate(X86_TRAP_MF, coprocessor_error);
 970	set_intr_gate(X86_TRAP_AC, alignment_check);
 971#ifdef CONFIG_X86_MCE
 972	set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
 973#endif
 974	set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
 975
 976	/* Reserve all the builtin and the syscall vector: */
 977	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
 978		set_bit(i, used_vectors);
 979
 980#ifdef CONFIG_IA32_EMULATION
 981	set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat);
 982	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
 983#endif
 984
 985#ifdef CONFIG_X86_32
 986	set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_32);
 987	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
 988#endif
 989
 990	/*
 991	 * Set the IDT descriptor to a fixed read-only location, so that the
 992	 * "sidt" instruction will not leak the location of the kernel, and
 993	 * to defend the IDT against arbitrary memory write vulnerabilities.
 994	 * It will be reloaded in cpu_init() */
 995	__set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
 996	idt_descr.address = fix_to_virt(FIX_RO_IDT);
 
 997
 998	/*
 999	 * Should be a barrier for any external CPU state:
1000	 */
1001	cpu_init();
1002
1003	/*
1004	 * X86_TRAP_DB and X86_TRAP_BP have been set
1005	 * in early_trap_init(). However, ITS works only after
1006	 * cpu_init() loads TSS. See comments in early_trap_init().
1007	 */
1008	set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
1009	/* int3 can be called from all */
1010	set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
1011
1012	x86_init.irqs.trap_init();
1013
1014#ifdef CONFIG_X86_64
1015	memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
1016	set_nmi_gate(X86_TRAP_DB, &debug);
1017	set_nmi_gate(X86_TRAP_BP, &int3);
1018#endif
1019}