Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8
  9/*
 10 * Handle hardware traps and faults.
 11 */
 12
 13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 14
 15#include <linux/context_tracking.h>
 16#include <linux/interrupt.h>
 17#include <linux/kallsyms.h>
 18#include <linux/spinlock.h>
 19#include <linux/kprobes.h>
 20#include <linux/uaccess.h>
 21#include <linux/kdebug.h>
 22#include <linux/kgdb.h>
 23#include <linux/kernel.h>
 24#include <linux/export.h>
 25#include <linux/ptrace.h>
 26#include <linux/uprobes.h>
 27#include <linux/string.h>
 28#include <linux/delay.h>
 29#include <linux/errno.h>
 30#include <linux/kexec.h>
 31#include <linux/sched.h>
 32#include <linux/sched/task_stack.h>
 33#include <linux/timer.h>
 34#include <linux/init.h>
 35#include <linux/bug.h>
 36#include <linux/nmi.h>
 37#include <linux/mm.h>
 38#include <linux/smp.h>
 39#include <linux/io.h>
 40
 41#if defined(CONFIG_EDAC)
 42#include <linux/edac.h>
 43#endif
 44
 45#include <asm/stacktrace.h>
 46#include <asm/processor.h>
 47#include <asm/debugreg.h>
 48#include <linux/atomic.h>
 49#include <asm/text-patching.h>
 50#include <asm/ftrace.h>
 51#include <asm/traps.h>
 52#include <asm/desc.h>
 53#include <asm/fpu/internal.h>
 
 54#include <asm/cpu_entry_area.h>
 55#include <asm/mce.h>
 56#include <asm/fixmap.h>
 57#include <asm/mach_traps.h>
 58#include <asm/alternative.h>
 59#include <asm/fpu/xstate.h>
 60#include <asm/trace/mpx.h>
 61#include <asm/mpx.h>
 62#include <asm/vm86.h>
 63#include <asm/umip.h>
 
 
 64
 65#ifdef CONFIG_X86_64
 66#include <asm/x86_init.h>
 67#include <asm/pgalloc.h>
 68#include <asm/proto.h>
 69#else
 70#include <asm/processor-flags.h>
 71#include <asm/setup.h>
 72#include <asm/proto.h>
 73#endif
 74
 75DECLARE_BITMAP(system_vectors, NR_VECTORS);
 76
 77static inline void cond_local_irq_enable(struct pt_regs *regs)
 78{
 79	if (regs->flags & X86_EFLAGS_IF)
 80		local_irq_enable();
 81}
 82
 83static inline void cond_local_irq_disable(struct pt_regs *regs)
 84{
 85	if (regs->flags & X86_EFLAGS_IF)
 86		local_irq_disable();
 87}
 88
 89/*
 90 * In IST context, we explicitly disable preemption.  This serves two
 91 * purposes: it makes it much less likely that we would accidentally
 92 * schedule in IST context and it will force a warning if we somehow
 93 * manage to schedule by accident.
 94 */
 95void ist_enter(struct pt_regs *regs)
 96{
 97	if (user_mode(regs)) {
 98		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 99	} else {
100		/*
101		 * We might have interrupted pretty much anything.  In
102		 * fact, if we're a machine check, we can even interrupt
103		 * NMI processing.  We don't want in_nmi() to return true,
104		 * but we need to notify RCU.
105		 */
106		rcu_nmi_enter();
107	}
108
109	preempt_disable();
110
111	/* This code is a bit fragile.  Test it. */
112	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
113}
114NOKPROBE_SYMBOL(ist_enter);
115
116void ist_exit(struct pt_regs *regs)
117{
118	preempt_enable_no_resched();
119
120	if (!user_mode(regs))
121		rcu_nmi_exit();
122}
123
124/**
125 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
126 * @regs:	regs passed to the IST exception handler
127 *
128 * IST exception handlers normally cannot schedule.  As a special
129 * exception, if the exception interrupted userspace code (i.e.
130 * user_mode(regs) would return true) and the exception was not
131 * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
132 * begins a non-atomic section within an ist_enter()/ist_exit() region.
133 * Callers are responsible for enabling interrupts themselves inside
134 * the non-atomic section, and callers must call ist_end_non_atomic()
135 * before ist_exit().
136 */
137void ist_begin_non_atomic(struct pt_regs *regs)
138{
139	BUG_ON(!user_mode(regs));
140
141	/*
142	 * Sanity check: we need to be on the normal thread stack.  This
143	 * will catch asm bugs and any attempt to use ist_preempt_enable
144	 * from double_fault.
145	 */
146	BUG_ON(!on_thread_stack());
147
148	preempt_enable_no_resched();
149}
150
151/**
152 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
153 *
154 * Ends a non-atomic section started with ist_begin_non_atomic().
155 */
156void ist_end_non_atomic(void)
157{
158	preempt_disable();
159}
160
161int is_valid_bugaddr(unsigned long addr)
162{
163	unsigned short ud;
164
165	if (addr < TASK_SIZE_MAX)
166		return 0;
167
168	if (probe_kernel_address((unsigned short *)addr, ud))
169		return 0;
170
171	return ud == INSN_UD0 || ud == INSN_UD2;
172}
173
174int fixup_bug(struct pt_regs *regs, int trapnr)
175{
176	if (trapnr != X86_TRAP_UD)
177		return 0;
178
179	switch (report_bug(regs->ip, regs)) {
180	case BUG_TRAP_TYPE_NONE:
181	case BUG_TRAP_TYPE_BUG:
182		break;
183
184	case BUG_TRAP_TYPE_WARN:
185		regs->ip += LEN_UD2;
186		return 1;
187	}
188
189	return 0;
190}
191
192static nokprobe_inline int
193do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
194		  struct pt_regs *regs,	long error_code)
195{
196	if (v8086_mode(regs)) {
197		/*
198		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
199		 * On nmi (interrupt 2), do_trap should not be called.
200		 */
201		if (trapnr < X86_TRAP_UD) {
202			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
203						error_code, trapnr))
204				return 0;
205		}
206	} else if (!user_mode(regs)) {
207		if (fixup_exception(regs, trapnr, error_code, 0))
208			return 0;
209
210		tsk->thread.error_code = error_code;
211		tsk->thread.trap_nr = trapnr;
212		die(str, regs, error_code);
213	}
214
215	/*
216	 * We want error_code and trap_nr set for userspace faults and
217	 * kernelspace faults which result in die(), but not
218	 * kernelspace faults which are fixed up.  die() gives the
219	 * process no chance to handle the signal and notice the
220	 * kernel fault information, so that won't result in polluting
221	 * the information about previously queued, but not yet
222	 * delivered, faults.  See also do_general_protection below.
223	 */
224	tsk->thread.error_code = error_code;
225	tsk->thread.trap_nr = trapnr;
226
227	return -1;
228}
229
230static void show_signal(struct task_struct *tsk, int signr,
231			const char *type, const char *desc,
232			struct pt_regs *regs, long error_code)
233{
234	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
235	    printk_ratelimit()) {
236		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
237			tsk->comm, task_pid_nr(tsk), type, desc,
238			regs->ip, regs->sp, error_code);
239		print_vma_addr(KERN_CONT " in ", regs->ip);
240		pr_cont("\n");
241	}
242}
243
244static void
245do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
246	long error_code, int sicode, void __user *addr)
247{
248	struct task_struct *tsk = current;
249
250
251	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
252		return;
253
254	show_signal(tsk, signr, "trap ", str, regs, error_code);
255
256	if (!sicode)
257		force_sig(signr);
258	else
259		force_sig_fault(signr, sicode, addr);
260}
261NOKPROBE_SYMBOL(do_trap);
262
263static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
264	unsigned long trapnr, int signr, int sicode, void __user *addr)
265{
266	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
267
268	/*
269	 * WARN*()s end up here; fix them up before we call the
270	 * notifier chain.
271	 */
272	if (!user_mode(regs) && fixup_bug(regs, trapnr))
273		return;
274
275	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
276			NOTIFY_STOP) {
277		cond_local_irq_enable(regs);
278		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280}
281
282#define IP ((void __user *)uprobe_get_trap_addr(regs))
283#define DO_ERROR(trapnr, signr, sicode, addr, str, name)		   \
284dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	   \
285{									   \
286	do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
287}
288
289DO_ERROR(X86_TRAP_DE,     SIGFPE,  FPE_INTDIV,   IP, "divide error",        divide_error)
290DO_ERROR(X86_TRAP_OF,     SIGSEGV,          0, NULL, "overflow",            overflow)
291DO_ERROR(X86_TRAP_UD,     SIGILL,  ILL_ILLOPN,   IP, "invalid opcode",      invalid_op)
292DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,           0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun)
293DO_ERROR(X86_TRAP_TS,     SIGSEGV,          0, NULL, "invalid TSS",         invalid_TSS)
294DO_ERROR(X86_TRAP_NP,     SIGBUS,           0, NULL, "segment not present", segment_not_present)
295DO_ERROR(X86_TRAP_SS,     SIGBUS,           0, NULL, "stack segment",       stack_segment)
296DO_ERROR(X86_TRAP_AC,     SIGBUS,  BUS_ADRALN, NULL, "alignment check",     alignment_check)
297#undef IP
 
 
 
 
 
 
 
 
 
 
298
299#ifdef CONFIG_VMAP_STACK
300__visible void __noreturn handle_stack_overflow(const char *message,
301						struct pt_regs *regs,
302						unsigned long fault_address)
303{
304	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
305		 (void *)fault_address, current->stack,
306		 (char *)current->stack + THREAD_SIZE - 1);
307	die(message, regs, 0);
308
309	/* Be absolutely certain we don't return. */
310	panic("%s", message);
311}
312#endif
313
314#ifdef CONFIG_X86_64
315/* Runs on IST stack */
316dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317{
318	static const char str[] = "double fault";
319	struct task_struct *tsk = current;
320
 
 
 
 
321#ifdef CONFIG_X86_ESPFIX64
322	extern unsigned char native_irq_return_iret[];
323
324	/*
325	 * If IRET takes a non-IST fault on the espfix64 stack, then we
326	 * end up promoting it to a doublefault.  In that case, take
327	 * advantage of the fact that we're not using the normal (TSS.sp0)
328	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
329	 * and then modify our own IRET frame so that, when we return,
330	 * we land directly at the #GP(0) vector with the stack already
331	 * set up according to its expectations.
332	 *
333	 * The net result is that our #GP handler will think that we
334	 * entered from usermode with the bad user context.
335	 *
336	 * No need for ist_enter here because we don't use RCU.
337	 */
338	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
339		regs->cs == __KERNEL_CS &&
340		regs->ip == (unsigned long)native_irq_return_iret)
341	{
342		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 
343
344		/*
345		 * regs->sp points to the failing IRET frame on the
346		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
347		 * in gpregs->ss through gpregs->ip.
348		 *
349		 */
350		memmove(&gpregs->ip, (void *)regs->sp, 5*8);
 
 
 
 
351		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
352
353		/*
354		 * Adjust our frame so that we return straight to the #GP
355		 * vector with the expected RSP value.  This is safe because
356		 * we won't enable interupts or schedule before we invoke
357		 * general_protection, so nothing will clobber the stack
358		 * frame we just set up.
359		 *
360		 * We will enter general_protection with kernel GSBASE,
361		 * which is what the stub expects, given that the faulting
362		 * RIP will be the IRET instruction.
363		 */
364		regs->ip = (unsigned long)general_protection;
365		regs->sp = (unsigned long)&gpregs->orig_ax;
366
367		return;
368	}
369#endif
370
371	ist_enter(regs);
 
372	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
373
374	tsk->thread.error_code = error_code;
375	tsk->thread.trap_nr = X86_TRAP_DF;
376
377#ifdef CONFIG_VMAP_STACK
378	/*
379	 * If we overflow the stack into a guard page, the CPU will fail
380	 * to deliver #PF and will send #DF instead.  Similarly, if we
381	 * take any non-IST exception while too close to the bottom of
382	 * the stack, the processor will get a page fault while
383	 * delivering the exception and will generate a double fault.
384	 *
385	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
386	 * Page-Fault Exception (#PF):
387	 *
388	 *   Processors update CR2 whenever a page fault is detected. If a
389	 *   second page fault occurs while an earlier page fault is being
390	 *   delivered, the faulting linear address of the second fault will
391	 *   overwrite the contents of CR2 (replacing the previous
392	 *   address). These updates to CR2 occur even if the page fault
393	 *   results in a double fault or occurs during the delivery of a
394	 *   double fault.
395	 *
396	 * The logic below has a small possibility of incorrectly diagnosing
397	 * some errors as stack overflows.  For example, if the IDT or GDT
398	 * gets corrupted such that #GP delivery fails due to a bad descriptor
399	 * causing #GP and we hit this condition while CR2 coincidentally
400	 * points to the stack guard page, we'll think we overflowed the
401	 * stack.  Given that we're going to panic one way or another
402	 * if this happens, this isn't necessarily worth fixing.
403	 *
404	 * If necessary, we could improve the test by only diagnosing
405	 * a stack overflow if the saved RSP points within 47 bytes of
406	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
407	 * take an exception, the stack is already aligned and there
408	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
409	 * possible error code, so a stack overflow would *not* double
410	 * fault.  With any less space left, exception delivery could
411	 * fail, and, as a practical matter, we've overflowed the
412	 * stack even if the actual trigger for the double fault was
413	 * something else.
414	 */
415	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
416		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
 
 
417#endif
418
419#ifdef CONFIG_DOUBLEFAULT
420	df_debug(regs, error_code);
421#endif
422	/*
423	 * This is always a kernel trap and never fixable (and thus must
424	 * never return).
425	 */
426	for (;;)
427		die(str, regs, error_code);
428}
429#endif
430
431dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
432{
433	const struct mpx_bndcsr *bndcsr;
434
435	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
436	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
437			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
438		return;
439	cond_local_irq_enable(regs);
440
441	if (!user_mode(regs))
442		die("bounds", regs, error_code);
443
444	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
445		/* The exception is not from Intel MPX */
446		goto exit_trap;
447	}
448
449	/*
450	 * We need to look at BNDSTATUS to resolve this exception.
451	 * A NULL here might mean that it is in its 'init state',
452	 * which is all zeros which indicates MPX was not
453	 * responsible for the exception.
454	 */
455	bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR);
456	if (!bndcsr)
457		goto exit_trap;
458
459	trace_bounds_exception_mpx(bndcsr);
460	/*
461	 * The error code field of the BNDSTATUS register communicates status
462	 * information of a bound range exception #BR or operation involving
463	 * bound directory.
464	 */
465	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
466	case 2:	/* Bound directory has invalid entry. */
467		if (mpx_handle_bd_fault())
468			goto exit_trap;
469		break; /* Success, it was handled */
470	case 1: /* Bound violation. */
471	{
472		struct task_struct *tsk = current;
473		struct mpx_fault_info mpx;
474
475		if (mpx_fault_info(&mpx, regs)) {
476			/*
477			 * We failed to decode the MPX instruction.  Act as if
478			 * the exception was not caused by MPX.
479			 */
480			goto exit_trap;
481		}
482		/*
483		 * Success, we decoded the instruction and retrieved
484		 * an 'mpx' containing the address being accessed
485		 * which caused the exception.  This information
486		 * allows and application to possibly handle the
487		 * #BR exception itself.
488		 */
489		if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs,
490				       error_code))
491			break;
492
493		show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code);
 
 
 
 
494
495		force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper);
496		break;
497	}
498	case 0: /* No exception caused by Intel MPX operations. */
499		goto exit_trap;
500	default:
501		die("bounds", regs, error_code);
502	}
 
 
503
504	return;
 
 
 
 
 
 
 
 
 
 
505
506exit_trap:
507	/*
508	 * This path out is for all the cases where we could not
509	 * handle the exception in some way (like allocating a
510	 * table or telling userspace about it.  We will also end
511	 * up here if the kernel has MPX turned off at compile
512	 * time..
513	 */
514	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL);
 
 
 
 
 
515}
516
517dotraplinkage void
518do_general_protection(struct pt_regs *regs, long error_code)
 
519{
520	const char *desc = "general protection fault";
 
521	struct task_struct *tsk;
 
 
522
523	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
524	cond_local_irq_enable(regs);
525
526	if (static_cpu_has(X86_FEATURE_UMIP)) {
527		if (user_mode(regs) && fixup_umip_exception(regs))
528			return;
529	}
530
531	if (v8086_mode(regs)) {
532		local_irq_enable();
533		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 
534		return;
535	}
536
537	tsk = current;
538	if (!user_mode(regs)) {
539		if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
540			return;
541
 
542		tsk->thread.error_code = error_code;
543		tsk->thread.trap_nr = X86_TRAP_GP;
544
545		/*
546		 * To be potentially processing a kprobe fault and to
547		 * trust the result from kprobe_running(), we have to
548		 * be non-preemptible.
549		 */
550		if (!preemptible() && kprobe_running() &&
551		    kprobe_fault_handler(regs, X86_TRAP_GP))
552			return;
553
554		if (notify_die(DIE_GPF, desc, regs, error_code,
555			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
556			die(desc, regs, error_code);
557		return;
558	}
559
 
 
 
560	tsk->thread.error_code = error_code;
561	tsk->thread.trap_nr = X86_TRAP_GP;
562
563	show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
564
565	force_sig(SIGSEGV);
566}
567NOKPROBE_SYMBOL(do_general_protection);
568
569dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
570{
571#ifdef CONFIG_DYNAMIC_FTRACE
572	/*
573	 * ftrace must be first, everything else may cause a recursive crash.
574	 * See note by declaration of modifying_ftrace_code in ftrace.c
575	 */
576	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
577	    ftrace_int3_handler(regs))
578		return;
579#endif
580	if (poke_int3_handler(regs))
581		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
582
583	/*
584	 * Use ist_enter despite the fact that we don't use an IST stack.
585	 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
586	 * mode or even during context tracking state changes.
587	 *
588	 * This means that we can't schedule.  That's okay.
589	 */
590	ist_enter(regs);
591	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 
 
 
 
 
 
 
 
 
 
 
592#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
593	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
594				SIGTRAP) == NOTIFY_STOP)
595		goto exit;
596#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
597
598#ifdef CONFIG_KPROBES
599	if (kprobe_int3_handler(regs))
600		goto exit;
601#endif
 
602
603	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
604			SIGTRAP) == NOTIFY_STOP)
605		goto exit;
 
 
 
 
606
607	cond_local_irq_enable(regs);
608	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL);
609	cond_local_irq_disable(regs);
 
610
611exit:
612	ist_exit(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613}
614NOKPROBE_SYMBOL(do_int3);
615
616#ifdef CONFIG_X86_64
617/*
618 * Help handler running on a per-cpu (IST or entry trampoline) stack
619 * to switch to the normal thread stack if the interrupted code was in
620 * user mode. The actual stack switch is done in entry_64.S
621 */
622asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
623{
624	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
625	if (regs != eregs)
626		*regs = *eregs;
627	return regs;
628}
629NOKPROBE_SYMBOL(sync_regs);
630
631struct bad_iret_stack {
632	void *error_entry_ret;
633	struct pt_regs regs;
634};
635
636asmlinkage __visible notrace
637struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
638{
639	/*
640	 * This is called from entry_64.S early in handling a fault
641	 * caused by a bad iret to user mode.  To handle the fault
642	 * correctly, we want to move our stack frame to where it would
643	 * be had we entered directly on the entry stack (rather than
644	 * just below the IRET frame) and we want to pretend that the
645	 * exception came from the IRET target.
646	 */
647	struct bad_iret_stack *new_stack =
648		(struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
649
650	/* Copy the IRET target to the new stack. */
651	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
652
653	/* Copy the remainder of the stack from the current stack. */
654	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
 
 
 
655
656	BUG_ON(!user_mode(&new_stack->regs));
657	return new_stack;
658}
659NOKPROBE_SYMBOL(fixup_bad_iret);
660#endif
661
662static bool is_sysenter_singlestep(struct pt_regs *regs)
663{
664	/*
665	 * We don't try for precision here.  If we're anywhere in the region of
666	 * code that can be single-stepped in the SYSENTER entry path, then
667	 * assume that this is a useless single-step trap due to SYSENTER
668	 * being invoked with TF set.  (We don't know in advance exactly
669	 * which instructions will be hit because BTF could plausibly
670	 * be set.)
671	 */
672#ifdef CONFIG_X86_32
673	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
674		(unsigned long)__end_SYSENTER_singlestep_region -
675		(unsigned long)__begin_SYSENTER_singlestep_region;
676#elif defined(CONFIG_IA32_EMULATION)
677	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
678		(unsigned long)__end_entry_SYSENTER_compat -
679		(unsigned long)entry_SYSENTER_compat;
680#else
681	return false;
682#endif
683}
684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685/*
686 * Our handling of the processor debug registers is non-trivial.
687 * We do not clear them on entry and exit from the kernel. Therefore
688 * it is possible to get a watchpoint trap here from inside the kernel.
689 * However, the code in ./ptrace.c has ensured that the user can
690 * only set watchpoints on userspace addresses. Therefore the in-kernel
691 * watchpoint trap can only occur in code which is reading/writing
692 * from user space. Such code must not hold kernel locks (since it
693 * can equally take a page fault), therefore it is safe to call
694 * force_sig_info even though that claims and releases locks.
695 *
696 * Code in ./signal.c ensures that the debug control register
697 * is restored before we deliver any signal, and therefore that
698 * user code runs with the correct debug control register even though
699 * we clear it here.
700 *
701 * Being careful here means that we don't have to be as careful in a
702 * lot of more complicated places (task switching can be a bit lazy
703 * about restoring all the debug state, and ptrace doesn't have to
704 * find every occurrence of the TF bit that could be saved away even
705 * by user code)
706 *
707 * May run on IST stack.
708 */
709dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
710{
711	struct task_struct *tsk = current;
712	int user_icebp = 0;
713	unsigned long dr6;
714	int si_code;
715
716	ist_enter(regs);
717
718	get_debugreg(dr6, 6);
719	/*
720	 * The Intel SDM says:
721	 *
722	 *   Certain debug exceptions may clear bits 0-3. The remaining
723	 *   contents of the DR6 register are never cleared by the
724	 *   processor. To avoid confusion in identifying debug
725	 *   exceptions, debug handlers should clear the register before
726	 *   returning to the interrupted task.
727	 *
728	 * Keep it simple: clear DR6 immediately.
729	 */
730	set_debugreg(0, 6);
731
732	/* Filter out all the reserved bits which are preset to 1 */
733	dr6 &= ~DR6_RESERVED;
734
735	/*
736	 * The SDM says "The processor clears the BTF flag when it
737	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
738	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
739	 */
740	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
741
742	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
743		     is_sysenter_singlestep(regs))) {
744		dr6 &= ~DR_STEP;
745		if (!dr6)
746			goto exit;
747		/*
748		 * else we might have gotten a single-step trap and hit a
749		 * watchpoint at the same time, in which case we should fall
750		 * through and handle the watchpoint.
751		 */
752	}
753
754	/*
755	 * If dr6 has no reason to give us about the origin of this trap,
756	 * then it's very likely the result of an icebp/int01 trap.
757	 * User wants a sigtrap for that.
758	 */
759	if (!dr6 && user_mode(regs))
760		user_icebp = 1;
761
762	/* Store the virtualized DR6 value */
763	tsk->thread.debugreg6 = dr6;
764
765#ifdef CONFIG_KPROBES
766	if (kprobe_debug_handler(regs))
767		goto exit;
 
768#endif
769
770	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
771							SIGTRAP) == NOTIFY_STOP)
772		goto exit;
773
774	/*
775	 * Let others (NMI) know that the debug stack is in use
776	 * as we may switch to the interrupt stack.
777	 */
778	debug_stack_usage_inc();
779
780	/* It's safe to allow irq's after DR6 has been saved */
781	cond_local_irq_enable(regs);
782
783	if (v8086_mode(regs)) {
784		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
785					X86_TRAP_DB);
786		cond_local_irq_disable(regs);
787		debug_stack_usage_dec();
788		goto exit;
789	}
790
791	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
792		/*
793		 * Historical junk that used to handle SYSENTER single-stepping.
794		 * This should be unreachable now.  If we survive for a while
795		 * without anyone hitting this warning, we'll turn this into
796		 * an oops.
797		 */
798		tsk->thread.debugreg6 &= ~DR_STEP;
799		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
800		regs->flags &= ~X86_EFLAGS_TF;
801	}
 
802	si_code = get_si_code(tsk->thread.debugreg6);
803	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
804		send_sigtrap(regs, error_code, si_code);
 
 
805	cond_local_irq_disable(regs);
806	debug_stack_usage_dec();
807
808exit:
809	ist_exit(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810}
811NOKPROBE_SYMBOL(do_debug);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
812
813/*
814 * Note that we play around with the 'TS' bit in an attempt to get
815 * the correct behaviour even in the presence of the asynchronous
816 * IRQ13 behaviour
817 */
818static void math_error(struct pt_regs *regs, int error_code, int trapnr)
819{
820	struct task_struct *task = current;
821	struct fpu *fpu = &task->thread.fpu;
822	int si_code;
823	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
824						"simd exception";
825
826	cond_local_irq_enable(regs);
827
828	if (!user_mode(regs)) {
829		if (fixup_exception(regs, trapnr, error_code, 0))
830			return;
831
832		task->thread.error_code = error_code;
833		task->thread.trap_nr = trapnr;
834
835		if (notify_die(DIE_TRAP, str, regs, error_code,
836					trapnr, SIGFPE) != NOTIFY_STOP)
837			die(str, regs, error_code);
838		return;
839	}
840
841	/*
842	 * Save the info for the exception handler and clear the error.
843	 */
844	fpu__save(fpu);
845
846	task->thread.trap_nr	= trapnr;
847	task->thread.error_code = error_code;
848
849	si_code = fpu__exception_code(fpu, trapnr);
850	/* Retry when we get spurious exceptions: */
851	if (!si_code)
852		return;
853
854	force_sig_fault(SIGFPE, si_code,
855			(void __user *)uprobe_get_trap_addr(regs));
 
 
856}
857
858dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
859{
860	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
861	math_error(regs, error_code, X86_TRAP_MF);
862}
863
864dotraplinkage void
865do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
866{
867	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
868	math_error(regs, error_code, X86_TRAP_XF);
 
 
 
 
 
 
869}
870
871dotraplinkage void
872do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
873{
874	cond_local_irq_enable(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
875}
876
877dotraplinkage void
878do_device_not_available(struct pt_regs *regs, long error_code)
879{
880	unsigned long cr0 = read_cr0();
881
882	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
883
884#ifdef CONFIG_MATH_EMULATION
885	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
886		struct math_emu_info info = { };
887
888		cond_local_irq_enable(regs);
889
890		info.regs = regs;
891		math_emulate(&info);
 
 
892		return;
893	}
894#endif
895
896	/* This should not happen. */
897	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
898		/* Try to fix it up and carry on. */
899		write_cr0(cr0 & ~X86_CR0_TS);
900	} else {
901		/*
902		 * Something terrible happened, and we're better off trying
903		 * to kill the task than getting stuck in a never-ending
904		 * loop of #NM faults.
905		 */
906		die("unexpected #NM exception", regs, error_code);
907	}
908}
909NOKPROBE_SYMBOL(do_device_not_available);
910
911#ifdef CONFIG_X86_32
912dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
913{
914	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
915	local_irq_enable();
916
917	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
918			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
919		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
920			ILL_BADSTK, (void __user *)NULL);
921	}
 
922}
923#endif
924
925void __init trap_init(void)
926{
927	/* Init cpu_entry_area before IST entries are set up */
928	setup_cpu_entry_areas();
929
930	idt_setup_traps();
931
932	/*
933	 * Set the IDT descriptor to a fixed read-only location, so that the
934	 * "sidt" instruction will not leak the location of the kernel, and
935	 * to defend the IDT against arbitrary memory write vulnerabilities.
936	 * It will be reloaded in cpu_init() */
937	cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
938		    PAGE_KERNEL_RO);
939	idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
940
941	/*
942	 * Should be a barrier for any external CPU state:
943	 */
944	cpu_init();
945
946	idt_setup_ist_traps();
947
948	x86_init.irqs.trap_init();
949
950	idt_setup_debugidt_traps();
951}
v5.9
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *	Gareth Hughes <gareth@valinux.com>, May 2000
   7 */
   8
   9/*
  10 * Handle hardware traps and faults.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/context_tracking.h>
  16#include <linux/interrupt.h>
  17#include <linux/kallsyms.h>
  18#include <linux/spinlock.h>
  19#include <linux/kprobes.h>
  20#include <linux/uaccess.h>
  21#include <linux/kdebug.h>
  22#include <linux/kgdb.h>
  23#include <linux/kernel.h>
  24#include <linux/export.h>
  25#include <linux/ptrace.h>
  26#include <linux/uprobes.h>
  27#include <linux/string.h>
  28#include <linux/delay.h>
  29#include <linux/errno.h>
  30#include <linux/kexec.h>
  31#include <linux/sched.h>
  32#include <linux/sched/task_stack.h>
  33#include <linux/timer.h>
  34#include <linux/init.h>
  35#include <linux/bug.h>
  36#include <linux/nmi.h>
  37#include <linux/mm.h>
  38#include <linux/smp.h>
  39#include <linux/io.h>
  40#include <linux/hardirq.h>
  41#include <linux/atomic.h>
 
 
  42
  43#include <asm/stacktrace.h>
  44#include <asm/processor.h>
  45#include <asm/debugreg.h>
 
  46#include <asm/text-patching.h>
  47#include <asm/ftrace.h>
  48#include <asm/traps.h>
  49#include <asm/desc.h>
  50#include <asm/fpu/internal.h>
  51#include <asm/cpu.h>
  52#include <asm/cpu_entry_area.h>
  53#include <asm/mce.h>
  54#include <asm/fixmap.h>
  55#include <asm/mach_traps.h>
  56#include <asm/alternative.h>
  57#include <asm/fpu/xstate.h>
 
 
  58#include <asm/vm86.h>
  59#include <asm/umip.h>
  60#include <asm/insn.h>
  61#include <asm/insn-eval.h>
  62
  63#ifdef CONFIG_X86_64
  64#include <asm/x86_init.h>
 
  65#include <asm/proto.h>
  66#else
  67#include <asm/processor-flags.h>
  68#include <asm/setup.h>
  69#include <asm/proto.h>
  70#endif
  71
  72DECLARE_BITMAP(system_vectors, NR_VECTORS);
  73
  74static inline void cond_local_irq_enable(struct pt_regs *regs)
  75{
  76	if (regs->flags & X86_EFLAGS_IF)
  77		local_irq_enable();
  78}
  79
  80static inline void cond_local_irq_disable(struct pt_regs *regs)
  81{
  82	if (regs->flags & X86_EFLAGS_IF)
  83		local_irq_disable();
  84}
  85
  86__always_inline int is_valid_bugaddr(unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87{
 
 
  88	if (addr < TASK_SIZE_MAX)
  89		return 0;
  90
  91	/*
  92	 * We got #UD, if the text isn't readable we'd have gotten
  93	 * a different exception.
  94	 */
  95	return *(unsigned short *)addr == INSN_UD2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96}
  97
  98static nokprobe_inline int
  99do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
 100		  struct pt_regs *regs,	long error_code)
 101{
 102	if (v8086_mode(regs)) {
 103		/*
 104		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
 105		 * On nmi (interrupt 2), do_trap should not be called.
 106		 */
 107		if (trapnr < X86_TRAP_UD) {
 108			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
 109						error_code, trapnr))
 110				return 0;
 111		}
 112	} else if (!user_mode(regs)) {
 113		if (fixup_exception(regs, trapnr, error_code, 0))
 114			return 0;
 115
 116		tsk->thread.error_code = error_code;
 117		tsk->thread.trap_nr = trapnr;
 118		die(str, regs, error_code);
 119	}
 120
 121	/*
 122	 * We want error_code and trap_nr set for userspace faults and
 123	 * kernelspace faults which result in die(), but not
 124	 * kernelspace faults which are fixed up.  die() gives the
 125	 * process no chance to handle the signal and notice the
 126	 * kernel fault information, so that won't result in polluting
 127	 * the information about previously queued, but not yet
 128	 * delivered, faults.  See also exc_general_protection below.
 129	 */
 130	tsk->thread.error_code = error_code;
 131	tsk->thread.trap_nr = trapnr;
 132
 133	return -1;
 134}
 135
 136static void show_signal(struct task_struct *tsk, int signr,
 137			const char *type, const char *desc,
 138			struct pt_regs *regs, long error_code)
 139{
 140	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
 141	    printk_ratelimit()) {
 142		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
 143			tsk->comm, task_pid_nr(tsk), type, desc,
 144			regs->ip, regs->sp, error_code);
 145		print_vma_addr(KERN_CONT " in ", regs->ip);
 146		pr_cont("\n");
 147	}
 148}
 149
 150static void
 151do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
 152	long error_code, int sicode, void __user *addr)
 153{
 154	struct task_struct *tsk = current;
 155
 
 156	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
 157		return;
 158
 159	show_signal(tsk, signr, "trap ", str, regs, error_code);
 160
 161	if (!sicode)
 162		force_sig(signr);
 163	else
 164		force_sig_fault(signr, sicode, addr);
 165}
 166NOKPROBE_SYMBOL(do_trap);
 167
 168static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
 169	unsigned long trapnr, int signr, int sicode, void __user *addr)
 170{
 171	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 172
 
 
 
 
 
 
 
 173	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
 174			NOTIFY_STOP) {
 175		cond_local_irq_enable(regs);
 176		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
 177		cond_local_irq_disable(regs);
 178	}
 179}
 180
 181/*
 182 * Posix requires to provide the address of the faulting instruction for
 183 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
 184 *
 185 * This address is usually regs->ip, but when an uprobe moved the code out
 186 * of line then regs->ip points to the XOL code which would confuse
 187 * anything which analyzes the fault address vs. the unmodified binary. If
 188 * a trap happened in XOL code then uprobe maps regs->ip back to the
 189 * original instruction address.
 190 */
 191static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
 192{
 193	return (void __user *)uprobe_get_trap_addr(regs);
 194}
 195
 196DEFINE_IDTENTRY(exc_divide_error)
 197{
 198	do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE,
 199		      FPE_INTDIV, error_get_trap_addr(regs));
 200}
 201
 202DEFINE_IDTENTRY(exc_overflow)
 203{
 204	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
 205}
 206
 207#ifdef CONFIG_X86_F00F_BUG
 208void handle_invalid_op(struct pt_regs *regs)
 209#else
 210static inline void handle_invalid_op(struct pt_regs *regs)
 211#endif
 212{
 213	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
 214		      ILL_ILLOPN, error_get_trap_addr(regs));
 215}
 216
 217static noinstr bool handle_bug(struct pt_regs *regs)
 218{
 219	bool handled = false;
 220
 221	if (!is_valid_bugaddr(regs->ip))
 222		return handled;
 223
 224	/*
 225	 * All lies, just get the WARN/BUG out.
 226	 */
 227	instrumentation_begin();
 228	/*
 229	 * Since we're emulating a CALL with exceptions, restore the interrupt
 230	 * state to what it was at the exception site.
 231	 */
 232	if (regs->flags & X86_EFLAGS_IF)
 233		raw_local_irq_enable();
 234	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
 235		regs->ip += LEN_UD2;
 236		handled = true;
 237	}
 238	if (regs->flags & X86_EFLAGS_IF)
 239		raw_local_irq_disable();
 240	instrumentation_end();
 241
 242	return handled;
 243}
 244
 245DEFINE_IDTENTRY_RAW(exc_invalid_op)
 246{
 247	irqentry_state_t state;
 248
 249	/*
 250	 * We use UD2 as a short encoding for 'CALL __WARN', as such
 251	 * handle it before exception entry to avoid recursive WARN
 252	 * in case exception entry is the one triggering WARNs.
 253	 */
 254	if (!user_mode(regs) && handle_bug(regs))
 255		return;
 256
 257	state = irqentry_enter(regs);
 258	instrumentation_begin();
 259	handle_invalid_op(regs);
 260	instrumentation_end();
 261	irqentry_exit(regs, state);
 262}
 263
 264DEFINE_IDTENTRY(exc_coproc_segment_overrun)
 265{
 266	do_error_trap(regs, 0, "coprocessor segment overrun",
 267		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
 268}
 269
 270DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
 271{
 272	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
 273		      0, NULL);
 274}
 275
 276DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
 277{
 278	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
 279		      SIGBUS, 0, NULL);
 280}
 281
 282DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
 283{
 284	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
 285		      0, NULL);
 286}
 287
 288DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
 289{
 290	char *str = "alignment check";
 291
 292	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
 293		return;
 294
 295	if (!user_mode(regs))
 296		die("Split lock detected\n", regs, error_code);
 297
 298	local_irq_enable();
 299
 300	if (handle_user_split_lock(regs, error_code))
 301		return;
 302
 303	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
 304		error_code, BUS_ADRALN, NULL);
 305
 306	local_irq_disable();
 307}
 308
 309#ifdef CONFIG_VMAP_STACK
 310__visible void __noreturn handle_stack_overflow(const char *message,
 311						struct pt_regs *regs,
 312						unsigned long fault_address)
 313{
 314	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
 315		 (void *)fault_address, current->stack,
 316		 (char *)current->stack + THREAD_SIZE - 1);
 317	die(message, regs, 0);
 318
 319	/* Be absolutely certain we don't return. */
 320	panic("%s", message);
 321}
 322#endif
 323
 324/*
 325 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
 326 *
 327 * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
 328 * SDM's warnings about double faults being unrecoverable, returning works as
 329 * expected.  Presumably what the SDM actually means is that the CPU may get
 330 * the register state wrong on entry, so returning could be a bad idea.
 331 *
 332 * Various CPU engineers have promised that double faults due to an IRET fault
 333 * while the stack is read-only are, in fact, recoverable.
 334 *
 335 * On x86_32, this is entered through a task gate, and regs are synthesized
 336 * from the TSS.  Returning is, in principle, okay, but changes to regs will
 337 * be lost.  If, for some reason, we need to return to a context with modified
 338 * regs, the shim code could be adjusted to synchronize the registers.
 339 *
 340 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
 341 * to be read before doing anything else.
 342 */
 343DEFINE_IDTENTRY_DF(exc_double_fault)
 344{
 345	static const char str[] = "double fault";
 346	struct task_struct *tsk = current;
 347
 348#ifdef CONFIG_VMAP_STACK
 349	unsigned long address = read_cr2();
 350#endif
 351
 352#ifdef CONFIG_X86_ESPFIX64
 353	extern unsigned char native_irq_return_iret[];
 354
 355	/*
 356	 * If IRET takes a non-IST fault on the espfix64 stack, then we
 357	 * end up promoting it to a doublefault.  In that case, take
 358	 * advantage of the fact that we're not using the normal (TSS.sp0)
 359	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
 360	 * and then modify our own IRET frame so that, when we return,
 361	 * we land directly at the #GP(0) vector with the stack already
 362	 * set up according to its expectations.
 363	 *
 364	 * The net result is that our #GP handler will think that we
 365	 * entered from usermode with the bad user context.
 366	 *
 367	 * No need for nmi_enter() here because we don't use RCU.
 368	 */
 369	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
 370		regs->cs == __KERNEL_CS &&
 371		regs->ip == (unsigned long)native_irq_return_iret)
 372	{
 373		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 374		unsigned long *p = (unsigned long *)regs->sp;
 375
 376		/*
 377		 * regs->sp points to the failing IRET frame on the
 378		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
 379		 * in gpregs->ss through gpregs->ip.
 380		 *
 381		 */
 382		gpregs->ip	= p[0];
 383		gpregs->cs	= p[1];
 384		gpregs->flags	= p[2];
 385		gpregs->sp	= p[3];
 386		gpregs->ss	= p[4];
 387		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
 388
 389		/*
 390		 * Adjust our frame so that we return straight to the #GP
 391		 * vector with the expected RSP value.  This is safe because
 392		 * we won't enable interupts or schedule before we invoke
 393		 * general_protection, so nothing will clobber the stack
 394		 * frame we just set up.
 395		 *
 396		 * We will enter general_protection with kernel GSBASE,
 397		 * which is what the stub expects, given that the faulting
 398		 * RIP will be the IRET instruction.
 399		 */
 400		regs->ip = (unsigned long)asm_exc_general_protection;
 401		regs->sp = (unsigned long)&gpregs->orig_ax;
 402
 403		return;
 404	}
 405#endif
 406
 407	idtentry_enter_nmi(regs);
 408	instrumentation_begin();
 409	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
 410
 411	tsk->thread.error_code = error_code;
 412	tsk->thread.trap_nr = X86_TRAP_DF;
 413
 414#ifdef CONFIG_VMAP_STACK
 415	/*
 416	 * If we overflow the stack into a guard page, the CPU will fail
 417	 * to deliver #PF and will send #DF instead.  Similarly, if we
 418	 * take any non-IST exception while too close to the bottom of
 419	 * the stack, the processor will get a page fault while
 420	 * delivering the exception and will generate a double fault.
 421	 *
 422	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
 423	 * Page-Fault Exception (#PF):
 424	 *
 425	 *   Processors update CR2 whenever a page fault is detected. If a
 426	 *   second page fault occurs while an earlier page fault is being
 427	 *   delivered, the faulting linear address of the second fault will
 428	 *   overwrite the contents of CR2 (replacing the previous
 429	 *   address). These updates to CR2 occur even if the page fault
 430	 *   results in a double fault or occurs during the delivery of a
 431	 *   double fault.
 432	 *
 433	 * The logic below has a small possibility of incorrectly diagnosing
 434	 * some errors as stack overflows.  For example, if the IDT or GDT
 435	 * gets corrupted such that #GP delivery fails due to a bad descriptor
 436	 * causing #GP and we hit this condition while CR2 coincidentally
 437	 * points to the stack guard page, we'll think we overflowed the
 438	 * stack.  Given that we're going to panic one way or another
 439	 * if this happens, this isn't necessarily worth fixing.
 440	 *
 441	 * If necessary, we could improve the test by only diagnosing
 442	 * a stack overflow if the saved RSP points within 47 bytes of
 443	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
 444	 * take an exception, the stack is already aligned and there
 445	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
 446	 * possible error code, so a stack overflow would *not* double
 447	 * fault.  With any less space left, exception delivery could
 448	 * fail, and, as a practical matter, we've overflowed the
 449	 * stack even if the actual trigger for the double fault was
 450	 * something else.
 451	 */
 452	if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
 453		handle_stack_overflow("kernel stack overflow (double-fault)",
 454				      regs, address);
 455	}
 456#endif
 457
 458	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
 459	die("double fault", regs, error_code);
 460	panic("Machine halted.");
 461	instrumentation_end();
 
 
 
 
 
 462}
 
 463
 464DEFINE_IDTENTRY(exc_bounds)
 465{
 466	if (notify_die(DIE_TRAP, "bounds", regs, 0,
 
 
 
 467			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
 468		return;
 469	cond_local_irq_enable(regs);
 470
 471	if (!user_mode(regs))
 472		die("bounds", regs, 0);
 
 
 
 
 
 473
 474	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475
 476	cond_local_irq_disable(regs);
 477}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478
 479enum kernel_gp_hint {
 480	GP_NO_HINT,
 481	GP_NON_CANONICAL,
 482	GP_CANONICAL
 483};
 484
 485/*
 486 * When an uncaught #GP occurs, try to determine the memory address accessed by
 487 * the instruction and return that address to the caller. Also, try to figure
 488 * out whether any part of the access to that address was non-canonical.
 489 */
 490static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
 491						 unsigned long *addr)
 492{
 493	u8 insn_buf[MAX_INSN_SIZE];
 494	struct insn insn;
 495
 496	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
 497			MAX_INSN_SIZE))
 498		return GP_NO_HINT;
 499
 500	kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
 501	insn_get_modrm(&insn);
 502	insn_get_sib(&insn);
 503
 504	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
 505	if (*addr == -1UL)
 506		return GP_NO_HINT;
 507
 508#ifdef CONFIG_X86_64
 509	/*
 510	 * Check that:
 511	 *  - the operand is not in the kernel half
 512	 *  - the last byte of the operand is not in the user canonical half
 
 
 513	 */
 514	if (*addr < ~__VIRTUAL_MASK &&
 515	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
 516		return GP_NON_CANONICAL;
 517#endif
 518
 519	return GP_CANONICAL;
 520}
 521
 522#define GPFSTR "general protection fault"
 523
 524DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
 525{
 526	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
 527	enum kernel_gp_hint hint = GP_NO_HINT;
 528	struct task_struct *tsk;
 529	unsigned long gp_addr;
 530	int ret;
 531
 
 532	cond_local_irq_enable(regs);
 533
 534	if (static_cpu_has(X86_FEATURE_UMIP)) {
 535		if (user_mode(regs) && fixup_umip_exception(regs))
 536			goto exit;
 537	}
 538
 539	if (v8086_mode(regs)) {
 540		local_irq_enable();
 541		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 542		local_irq_disable();
 543		return;
 544	}
 545
 546	tsk = current;
 
 
 
 547
 548	if (user_mode(regs)) {
 549		tsk->thread.error_code = error_code;
 550		tsk->thread.trap_nr = X86_TRAP_GP;
 551
 552		show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
 553		force_sig(SIGSEGV);
 554		goto exit;
 
 
 
 
 
 
 
 
 
 
 555	}
 556
 557	if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
 558		goto exit;
 559
 560	tsk->thread.error_code = error_code;
 561	tsk->thread.trap_nr = X86_TRAP_GP;
 562
 
 
 
 
 
 
 
 
 
 563	/*
 564	 * To be potentially processing a kprobe fault and to trust the result
 565	 * from kprobe_running(), we have to be non-preemptible.
 566	 */
 567	if (!preemptible() &&
 568	    kprobe_running() &&
 569	    kprobe_fault_handler(regs, X86_TRAP_GP))
 570		goto exit;
 571
 572	ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
 573	if (ret == NOTIFY_STOP)
 574		goto exit;
 575
 576	if (error_code)
 577		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
 578	else
 579		hint = get_kernel_gp_address(regs, &gp_addr);
 580
 581	if (hint != GP_NO_HINT)
 582		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
 583			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
 584						    : "maybe for address",
 585			 gp_addr);
 586
 587	/*
 588	 * KASAN is interested only in the non-canonical case, clear it
 589	 * otherwise.
 
 
 
 590	 */
 591	if (hint != GP_NON_CANONICAL)
 592		gp_addr = 0;
 593
 594	die_addr(desc, regs, error_code, gp_addr);
 595
 596exit:
 597	cond_local_irq_disable(regs);
 598}
 599
 600static bool do_int3(struct pt_regs *regs)
 601{
 602	int res;
 603
 604#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 605	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
 606			 SIGTRAP) == NOTIFY_STOP)
 607		return true;
 608#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 609
 610#ifdef CONFIG_KPROBES
 611	if (kprobe_int3_handler(regs))
 612		return true;
 613#endif
 614	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
 615
 616	return res == NOTIFY_STOP;
 617}
 618
 619static void do_int3_user(struct pt_regs *regs)
 620{
 621	if (do_int3(regs))
 622		return;
 623
 624	cond_local_irq_enable(regs);
 625	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
 626	cond_local_irq_disable(regs);
 627}
 628
 629DEFINE_IDTENTRY_RAW(exc_int3)
 630{
 631	/*
 632	 * poke_int3_handler() is completely self contained code; it does (and
 633	 * must) *NOT* call out to anything, lest it hits upon yet another
 634	 * INT3.
 635	 */
 636	if (poke_int3_handler(regs))
 637		return;
 638
 639	/*
 640	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
 641	 * and therefore can trigger INT3, hence poke_int3_handler() must
 642	 * be done before. If the entry came from kernel mode, then use
 643	 * nmi_enter() because the INT3 could have been hit in any context
 644	 * including NMI.
 645	 */
 646	if (user_mode(regs)) {
 647		irqentry_enter_from_user_mode(regs);
 648		instrumentation_begin();
 649		do_int3_user(regs);
 650		instrumentation_end();
 651		irqentry_exit_to_user_mode(regs);
 652	} else {
 653		bool irq_state = idtentry_enter_nmi(regs);
 654		instrumentation_begin();
 655		if (!do_int3(regs))
 656			die("int3", regs, 0);
 657		instrumentation_end();
 658		idtentry_exit_nmi(regs, irq_state);
 659	}
 660}
 
 661
 662#ifdef CONFIG_X86_64
 663/*
 664 * Help handler running on a per-cpu (IST or entry trampoline) stack
 665 * to switch to the normal thread stack if the interrupted code was in
 666 * user mode. The actual stack switch is done in entry_64.S
 667 */
 668asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
 669{
 670	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
 671	if (regs != eregs)
 672		*regs = *eregs;
 673	return regs;
 674}
 
 675
 676struct bad_iret_stack {
 677	void *error_entry_ret;
 678	struct pt_regs regs;
 679};
 680
 681asmlinkage __visible noinstr
 682struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
 683{
 684	/*
 685	 * This is called from entry_64.S early in handling a fault
 686	 * caused by a bad iret to user mode.  To handle the fault
 687	 * correctly, we want to move our stack frame to where it would
 688	 * be had we entered directly on the entry stack (rather than
 689	 * just below the IRET frame) and we want to pretend that the
 690	 * exception came from the IRET target.
 691	 */
 692	struct bad_iret_stack tmp, *new_stack =
 693		(struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 694
 695	/* Copy the IRET target to the temporary storage. */
 696	__memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
 697
 698	/* Copy the remainder of the stack from the current stack. */
 699	__memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
 700
 701	/* Update the entry stack */
 702	__memcpy(new_stack, &tmp, sizeof(tmp));
 703
 704	BUG_ON(!user_mode(&new_stack->regs));
 705	return new_stack;
 706}
 
 707#endif
 708
 709static bool is_sysenter_singlestep(struct pt_regs *regs)
 710{
 711	/*
 712	 * We don't try for precision here.  If we're anywhere in the region of
 713	 * code that can be single-stepped in the SYSENTER entry path, then
 714	 * assume that this is a useless single-step trap due to SYSENTER
 715	 * being invoked with TF set.  (We don't know in advance exactly
 716	 * which instructions will be hit because BTF could plausibly
 717	 * be set.)
 718	 */
 719#ifdef CONFIG_X86_32
 720	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
 721		(unsigned long)__end_SYSENTER_singlestep_region -
 722		(unsigned long)__begin_SYSENTER_singlestep_region;
 723#elif defined(CONFIG_IA32_EMULATION)
 724	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
 725		(unsigned long)__end_entry_SYSENTER_compat -
 726		(unsigned long)entry_SYSENTER_compat;
 727#else
 728	return false;
 729#endif
 730}
 731
 732static __always_inline unsigned long debug_read_clear_dr6(void)
 733{
 734	unsigned long dr6;
 735
 736	/*
 737	 * The Intel SDM says:
 738	 *
 739	 *   Certain debug exceptions may clear bits 0-3. The remaining
 740	 *   contents of the DR6 register are never cleared by the
 741	 *   processor. To avoid confusion in identifying debug
 742	 *   exceptions, debug handlers should clear the register before
 743	 *   returning to the interrupted task.
 744	 *
 745	 * Keep it simple: clear DR6 immediately.
 746	 */
 747	get_debugreg(dr6, 6);
 748	set_debugreg(0, 6);
 749	/* Filter out all the reserved bits which are preset to 1 */
 750	dr6 &= ~DR6_RESERVED;
 751
 752	return dr6;
 753}
 754
 755/*
 756 * Our handling of the processor debug registers is non-trivial.
 757 * We do not clear them on entry and exit from the kernel. Therefore
 758 * it is possible to get a watchpoint trap here from inside the kernel.
 759 * However, the code in ./ptrace.c has ensured that the user can
 760 * only set watchpoints on userspace addresses. Therefore the in-kernel
 761 * watchpoint trap can only occur in code which is reading/writing
 762 * from user space. Such code must not hold kernel locks (since it
 763 * can equally take a page fault), therefore it is safe to call
 764 * force_sig_info even though that claims and releases locks.
 765 *
 766 * Code in ./signal.c ensures that the debug control register
 767 * is restored before we deliver any signal, and therefore that
 768 * user code runs with the correct debug control register even though
 769 * we clear it here.
 770 *
 771 * Being careful here means that we don't have to be as careful in a
 772 * lot of more complicated places (task switching can be a bit lazy
 773 * about restoring all the debug state, and ptrace doesn't have to
 774 * find every occurrence of the TF bit that could be saved away even
 775 * by user code)
 776 *
 777 * May run on IST stack.
 778 */
 779static void handle_debug(struct pt_regs *regs, unsigned long dr6, bool user)
 780{
 781	struct task_struct *tsk = current;
 782	bool user_icebp;
 
 783	int si_code;
 784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785	/*
 786	 * The SDM says "The processor clears the BTF flag when it
 787	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
 788	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
 789	 */
 790	clear_thread_flag(TIF_BLOCKSTEP);
 791
 792	/*
 793	 * If DR6 is zero, no point in trying to handle it. The kernel is
 794	 * not using INT1.
 795	 */
 796	if (!user && !dr6)
 797		return;
 
 
 
 
 
 798
 799	/*
 800	 * If dr6 has no reason to give us about the origin of this trap,
 801	 * then it's very likely the result of an icebp/int01 trap.
 802	 * User wants a sigtrap for that.
 803	 */
 804	user_icebp = user && !dr6;
 
 805
 806	/* Store the virtualized DR6 value */
 807	tsk->thread.debugreg6 = dr6;
 808
 809#ifdef CONFIG_KPROBES
 810	if (kprobe_debug_handler(regs)) {
 811		return;
 812	}
 813#endif
 814
 815	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0,
 816		       SIGTRAP) == NOTIFY_STOP) {
 817		return;
 818	}
 
 
 
 
 
 819
 820	/* It's safe to allow irq's after DR6 has been saved */
 821	cond_local_irq_enable(regs);
 822
 823	if (v8086_mode(regs)) {
 824		handle_vm86_trap((struct kernel_vm86_regs *) regs, 0,
 825				 X86_TRAP_DB);
 826		goto out;
 
 
 827	}
 828
 829	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
 830		/*
 831		 * Historical junk that used to handle SYSENTER single-stepping.
 832		 * This should be unreachable now.  If we survive for a while
 833		 * without anyone hitting this warning, we'll turn this into
 834		 * an oops.
 835		 */
 836		tsk->thread.debugreg6 &= ~DR_STEP;
 837		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
 838		regs->flags &= ~X86_EFLAGS_TF;
 839	}
 840
 841	si_code = get_si_code(tsk->thread.debugreg6);
 842	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
 843		send_sigtrap(regs, 0, si_code);
 844
 845out:
 846	cond_local_irq_disable(regs);
 847}
 848
 849static __always_inline void exc_debug_kernel(struct pt_regs *regs,
 850					     unsigned long dr6)
 851{
 852	/*
 853	 * Disable breakpoints during exception handling; recursive exceptions
 854	 * are exceedingly 'fun'.
 855	 *
 856	 * Since this function is NOKPROBE, and that also applies to
 857	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
 858	 * HW_BREAKPOINT_W on our stack)
 859	 *
 860	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
 861	 * includes the entry stack is excluded for everything.
 862	 */
 863	unsigned long dr7 = local_db_save();
 864	bool irq_state = idtentry_enter_nmi(regs);
 865	instrumentation_begin();
 866
 867	/*
 868	 * If something gets miswired and we end up here for a user mode
 869	 * #DB, we will malfunction.
 870	 */
 871	WARN_ON_ONCE(user_mode(regs));
 872
 873	/*
 874	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
 875	 * watchpoint at the same time then that will still be handled.
 876	 */
 877	if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
 878		dr6 &= ~DR_STEP;
 879
 880	handle_debug(regs, dr6, false);
 881
 882	instrumentation_end();
 883	idtentry_exit_nmi(regs, irq_state);
 884
 885	local_db_restore(dr7);
 886}
 887
 888static __always_inline void exc_debug_user(struct pt_regs *regs,
 889					   unsigned long dr6)
 890{
 891	/*
 892	 * If something gets miswired and we end up here for a kernel mode
 893	 * #DB, we will malfunction.
 894	 */
 895	WARN_ON_ONCE(!user_mode(regs));
 896
 897	/*
 898	 * NB: We can't easily clear DR7 here because
 899	 * idtentry_exit_to_usermode() can invoke ptrace, schedule, access
 900	 * user memory, etc.  This means that a recursive #DB is possible.  If
 901	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
 902	 * Since we're not on the IST stack right now, everything will be
 903	 * fine.
 904	 */
 905
 906	irqentry_enter_from_user_mode(regs);
 907	instrumentation_begin();
 908
 909	handle_debug(regs, dr6, true);
 910
 911	instrumentation_end();
 912	irqentry_exit_to_user_mode(regs);
 913}
 914
 915#ifdef CONFIG_X86_64
 916/* IST stack entry */
 917DEFINE_IDTENTRY_DEBUG(exc_debug)
 918{
 919	exc_debug_kernel(regs, debug_read_clear_dr6());
 920}
 921
 922/* User entry, runs on regular task stack */
 923DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
 924{
 925	exc_debug_user(regs, debug_read_clear_dr6());
 926}
 927#else
 928/* 32 bit does not have separate entry points. */
 929DEFINE_IDTENTRY_RAW(exc_debug)
 930{
 931	unsigned long dr6 = debug_read_clear_dr6();
 932
 933	if (user_mode(regs))
 934		exc_debug_user(regs, dr6);
 935	else
 936		exc_debug_kernel(regs, dr6);
 937}
 938#endif
 939
 940/*
 941 * Note that we play around with the 'TS' bit in an attempt to get
 942 * the correct behaviour even in the presence of the asynchronous
 943 * IRQ13 behaviour
 944 */
 945static void math_error(struct pt_regs *regs, int trapnr)
 946{
 947	struct task_struct *task = current;
 948	struct fpu *fpu = &task->thread.fpu;
 949	int si_code;
 950	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
 951						"simd exception";
 952
 953	cond_local_irq_enable(regs);
 954
 955	if (!user_mode(regs)) {
 956		if (fixup_exception(regs, trapnr, 0, 0))
 957			goto exit;
 958
 959		task->thread.error_code = 0;
 960		task->thread.trap_nr = trapnr;
 961
 962		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
 963			       SIGFPE) != NOTIFY_STOP)
 964			die(str, regs, 0);
 965		goto exit;
 966	}
 967
 968	/*
 969	 * Save the info for the exception handler and clear the error.
 970	 */
 971	fpu__save(fpu);
 972
 973	task->thread.trap_nr	= trapnr;
 974	task->thread.error_code = 0;
 975
 976	si_code = fpu__exception_code(fpu, trapnr);
 977	/* Retry when we get spurious exceptions: */
 978	if (!si_code)
 979		goto exit;
 980
 981	force_sig_fault(SIGFPE, si_code,
 982			(void __user *)uprobe_get_trap_addr(regs));
 983exit:
 984	cond_local_irq_disable(regs);
 985}
 986
 987DEFINE_IDTENTRY(exc_coprocessor_error)
 988{
 989	math_error(regs, X86_TRAP_MF);
 
 990}
 991
 992DEFINE_IDTENTRY(exc_simd_coprocessor_error)
 
 993{
 994	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
 995		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
 996		if (!static_cpu_has(X86_FEATURE_XMM)) {
 997			__exc_general_protection(regs, 0);
 998			return;
 999		}
1000	}
1001	math_error(regs, X86_TRAP_XF);
1002}
1003
1004DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
 
1005{
1006	/*
1007	 * This addresses a Pentium Pro Erratum:
1008	 *
1009	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1010	 * Virtual Wire mode implemented through the local APIC, an
1011	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1012	 * generated by the local APIC (Int 15).  This vector may be
1013	 * generated upon receipt of a spurious interrupt (an interrupt
1014	 * which is removed before the system receives the INTA sequence)
1015	 * instead of the programmed 8259 spurious interrupt vector.
1016	 *
1017	 * IMPLICATION: The spurious interrupt vector programmed in the
1018	 * 8259 is normally handled by an operating system's spurious
1019	 * interrupt handler. However, a vector of 0Fh is unknown to some
1020	 * operating systems, which would crash if this erratum occurred.
1021	 *
1022	 * In theory this could be limited to 32bit, but the handler is not
1023	 * hurting and who knows which other CPUs suffer from this.
1024	 */
1025}
1026
1027DEFINE_IDTENTRY(exc_device_not_available)
 
1028{
1029	unsigned long cr0 = read_cr0();
1030
 
 
1031#ifdef CONFIG_MATH_EMULATION
1032	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1033		struct math_emu_info info = { };
1034
1035		cond_local_irq_enable(regs);
1036
1037		info.regs = regs;
1038		math_emulate(&info);
1039
1040		cond_local_irq_disable(regs);
1041		return;
1042	}
1043#endif
1044
1045	/* This should not happen. */
1046	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1047		/* Try to fix it up and carry on. */
1048		write_cr0(cr0 & ~X86_CR0_TS);
1049	} else {
1050		/*
1051		 * Something terrible happened, and we're better off trying
1052		 * to kill the task than getting stuck in a never-ending
1053		 * loop of #NM faults.
1054		 */
1055		die("unexpected #NM exception", regs, 0);
1056	}
1057}
 
1058
1059#ifdef CONFIG_X86_32
1060DEFINE_IDTENTRY_SW(iret_error)
1061{
 
1062	local_irq_enable();
1063	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
 
1064			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1065		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1066			ILL_BADSTK, (void __user *)NULL);
1067	}
1068	local_irq_disable();
1069}
1070#endif
1071
1072void __init trap_init(void)
1073{
1074	/* Init cpu_entry_area before IST entries are set up */
1075	setup_cpu_entry_areas();
1076
1077	idt_setup_traps();
1078
1079	/*
 
 
 
 
 
 
 
 
 
1080	 * Should be a barrier for any external CPU state:
1081	 */
1082	cpu_init();
1083
1084	idt_setup_ist_traps();
 
 
 
 
1085}