Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8
  9/*
 10 * Handle hardware traps and faults.
 11 */
 12
 13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 14
 15#include <linux/context_tracking.h>
 16#include <linux/interrupt.h>
 17#include <linux/kallsyms.h>
 18#include <linux/spinlock.h>
 19#include <linux/kprobes.h>
 20#include <linux/uaccess.h>
 21#include <linux/kdebug.h>
 22#include <linux/kgdb.h>
 23#include <linux/kernel.h>
 24#include <linux/export.h>
 25#include <linux/ptrace.h>
 26#include <linux/uprobes.h>
 27#include <linux/string.h>
 28#include <linux/delay.h>
 29#include <linux/errno.h>
 30#include <linux/kexec.h>
 31#include <linux/sched.h>
 32#include <linux/sched/task_stack.h>
 33#include <linux/timer.h>
 34#include <linux/init.h>
 35#include <linux/bug.h>
 36#include <linux/nmi.h>
 37#include <linux/mm.h>
 38#include <linux/smp.h>
 39#include <linux/io.h>
 40
 41#if defined(CONFIG_EDAC)
 42#include <linux/edac.h>
 43#endif
 44
 45#include <asm/stacktrace.h>
 46#include <asm/processor.h>
 47#include <asm/debugreg.h>
 48#include <linux/atomic.h>
 49#include <asm/text-patching.h>
 50#include <asm/ftrace.h>
 51#include <asm/traps.h>
 52#include <asm/desc.h>
 53#include <asm/fpu/internal.h>
 54#include <asm/cpu_entry_area.h>
 55#include <asm/mce.h>
 56#include <asm/fixmap.h>
 57#include <asm/mach_traps.h>
 58#include <asm/alternative.h>
 59#include <asm/fpu/xstate.h>
 60#include <asm/trace/mpx.h>
 61#include <asm/mpx.h>
 62#include <asm/vm86.h>
 63#include <asm/umip.h>
 64
 65#ifdef CONFIG_X86_64
 66#include <asm/x86_init.h>
 67#include <asm/pgalloc.h>
 68#include <asm/proto.h>
 69#else
 70#include <asm/processor-flags.h>
 71#include <asm/setup.h>
 72#include <asm/proto.h>
 73#endif
 74
 75DECLARE_BITMAP(system_vectors, NR_VECTORS);
 76
 77static inline void cond_local_irq_enable(struct pt_regs *regs)
 78{
 79	if (regs->flags & X86_EFLAGS_IF)
 80		local_irq_enable();
 81}
 82
 83static inline void cond_local_irq_disable(struct pt_regs *regs)
 84{
 85	if (regs->flags & X86_EFLAGS_IF)
 86		local_irq_disable();
 87}
 88
 89/*
 90 * In IST context, we explicitly disable preemption.  This serves two
 91 * purposes: it makes it much less likely that we would accidentally
 92 * schedule in IST context and it will force a warning if we somehow
 93 * manage to schedule by accident.
 94 */
 95void ist_enter(struct pt_regs *regs)
 96{
 97	if (user_mode(regs)) {
 98		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 99	} else {
100		/*
101		 * We might have interrupted pretty much anything.  In
102		 * fact, if we're a machine check, we can even interrupt
103		 * NMI processing.  We don't want in_nmi() to return true,
104		 * but we need to notify RCU.
105		 */
106		rcu_nmi_enter();
107	}
108
109	preempt_disable();
110
111	/* This code is a bit fragile.  Test it. */
112	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
113}
114NOKPROBE_SYMBOL(ist_enter);
115
116void ist_exit(struct pt_regs *regs)
117{
118	preempt_enable_no_resched();
119
120	if (!user_mode(regs))
121		rcu_nmi_exit();
122}
123
124/**
125 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
126 * @regs:	regs passed to the IST exception handler
127 *
128 * IST exception handlers normally cannot schedule.  As a special
129 * exception, if the exception interrupted userspace code (i.e.
130 * user_mode(regs) would return true) and the exception was not
131 * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
132 * begins a non-atomic section within an ist_enter()/ist_exit() region.
133 * Callers are responsible for enabling interrupts themselves inside
134 * the non-atomic section, and callers must call ist_end_non_atomic()
135 * before ist_exit().
136 */
137void ist_begin_non_atomic(struct pt_regs *regs)
138{
139	BUG_ON(!user_mode(regs));
140
141	/*
142	 * Sanity check: we need to be on the normal thread stack.  This
143	 * will catch asm bugs and any attempt to use ist_preempt_enable
144	 * from double_fault.
145	 */
146	BUG_ON(!on_thread_stack());
147
148	preempt_enable_no_resched();
149}
150
151/**
152 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
153 *
154 * Ends a non-atomic section started with ist_begin_non_atomic().
155 */
156void ist_end_non_atomic(void)
157{
158	preempt_disable();
159}
160
161int is_valid_bugaddr(unsigned long addr)
162{
163	unsigned short ud;
164
165	if (addr < TASK_SIZE_MAX)
166		return 0;
167
168	if (probe_kernel_address((unsigned short *)addr, ud))
169		return 0;
170
171	return ud == INSN_UD0 || ud == INSN_UD2;
172}
173
174int fixup_bug(struct pt_regs *regs, int trapnr)
175{
176	if (trapnr != X86_TRAP_UD)
177		return 0;
178
179	switch (report_bug(regs->ip, regs)) {
180	case BUG_TRAP_TYPE_NONE:
181	case BUG_TRAP_TYPE_BUG:
182		break;
183
184	case BUG_TRAP_TYPE_WARN:
185		regs->ip += LEN_UD2;
186		return 1;
187	}
188
189	return 0;
190}
191
192static nokprobe_inline int
193do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
194		  struct pt_regs *regs,	long error_code)
195{
196	if (v8086_mode(regs)) {
197		/*
198		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
199		 * On nmi (interrupt 2), do_trap should not be called.
200		 */
201		if (trapnr < X86_TRAP_UD) {
202			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
203						error_code, trapnr))
204				return 0;
205		}
206	} else if (!user_mode(regs)) {
207		if (fixup_exception(regs, trapnr, error_code, 0))
 
 
 
208			return 0;
209
210		tsk->thread.error_code = error_code;
211		tsk->thread.trap_nr = trapnr;
212		die(str, regs, error_code);
213	}
214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215	/*
216	 * We want error_code and trap_nr set for userspace faults and
217	 * kernelspace faults which result in die(), but not
218	 * kernelspace faults which are fixed up.  die() gives the
219	 * process no chance to handle the signal and notice the
220	 * kernel fault information, so that won't result in polluting
221	 * the information about previously queued, but not yet
222	 * delivered, faults.  See also do_general_protection below.
223	 */
224	tsk->thread.error_code = error_code;
225	tsk->thread.trap_nr = trapnr;
226
227	return -1;
228}
229
230static void show_signal(struct task_struct *tsk, int signr,
231			const char *type, const char *desc,
232			struct pt_regs *regs, long error_code)
233{
234	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
235	    printk_ratelimit()) {
236		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
237			tsk->comm, task_pid_nr(tsk), type, desc,
238			regs->ip, regs->sp, error_code);
239		print_vma_addr(KERN_CONT " in ", regs->ip);
240		pr_cont("\n");
241	}
242}
243
244static void
245do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
246	long error_code, int sicode, void __user *addr)
247{
248	struct task_struct *tsk = current;
249
250
251	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
252		return;
253
254	show_signal(tsk, signr, "trap ", str, regs, error_code);
255
256	if (!sicode)
257		force_sig(signr);
258	else
259		force_sig_fault(signr, sicode, addr);
260}
261NOKPROBE_SYMBOL(do_trap);
262
263static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
264	unsigned long trapnr, int signr, int sicode, void __user *addr)
265{
 
 
266	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
267
268	/*
269	 * WARN*()s end up here; fix them up before we call the
270	 * notifier chain.
271	 */
272	if (!user_mode(regs) && fixup_bug(regs, trapnr))
273		return;
274
275	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
276			NOTIFY_STOP) {
277		cond_local_irq_enable(regs);
278		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
 
279	}
280}
281
282#define IP ((void __user *)uprobe_get_trap_addr(regs))
283#define DO_ERROR(trapnr, signr, sicode, addr, str, name)		   \
284dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	   \
285{									   \
286	do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
287}
288
289DO_ERROR(X86_TRAP_DE,     SIGFPE,  FPE_INTDIV,   IP, "divide error",        divide_error)
290DO_ERROR(X86_TRAP_OF,     SIGSEGV,          0, NULL, "overflow",            overflow)
291DO_ERROR(X86_TRAP_UD,     SIGILL,  ILL_ILLOPN,   IP, "invalid opcode",      invalid_op)
292DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,           0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun)
293DO_ERROR(X86_TRAP_TS,     SIGSEGV,          0, NULL, "invalid TSS",         invalid_TSS)
294DO_ERROR(X86_TRAP_NP,     SIGBUS,           0, NULL, "segment not present", segment_not_present)
295DO_ERROR(X86_TRAP_SS,     SIGBUS,           0, NULL, "stack segment",       stack_segment)
296DO_ERROR(X86_TRAP_AC,     SIGBUS,  BUS_ADRALN, NULL, "alignment check",     alignment_check)
297#undef IP
298
299#ifdef CONFIG_VMAP_STACK
300__visible void __noreturn handle_stack_overflow(const char *message,
301						struct pt_regs *regs,
302						unsigned long fault_address)
303{
304	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
305		 (void *)fault_address, current->stack,
306		 (char *)current->stack + THREAD_SIZE - 1);
307	die(message, regs, 0);
308
309	/* Be absolutely certain we don't return. */
310	panic("%s", message);
311}
312#endif
313
314#ifdef CONFIG_X86_64
315/* Runs on IST stack */
316dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2)
317{
318	static const char str[] = "double fault";
319	struct task_struct *tsk = current;
 
 
 
320
321#ifdef CONFIG_X86_ESPFIX64
322	extern unsigned char native_irq_return_iret[];
323
324	/*
325	 * If IRET takes a non-IST fault on the espfix64 stack, then we
326	 * end up promoting it to a doublefault.  In that case, take
327	 * advantage of the fact that we're not using the normal (TSS.sp0)
328	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
329	 * and then modify our own IRET frame so that, when we return,
330	 * we land directly at the #GP(0) vector with the stack already
331	 * set up according to its expectations.
332	 *
333	 * The net result is that our #GP handler will think that we
334	 * entered from usermode with the bad user context.
335	 *
336	 * No need for ist_enter here because we don't use RCU.
337	 */
338	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
339		regs->cs == __KERNEL_CS &&
340		regs->ip == (unsigned long)native_irq_return_iret)
341	{
342		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
343
344		/*
345		 * regs->sp points to the failing IRET frame on the
346		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
347		 * in gpregs->ss through gpregs->ip.
348		 *
349		 */
350		memmove(&gpregs->ip, (void *)regs->sp, 5*8);
351		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
352
353		/*
354		 * Adjust our frame so that we return straight to the #GP
355		 * vector with the expected RSP value.  This is safe because
356		 * we won't enable interupts or schedule before we invoke
357		 * general_protection, so nothing will clobber the stack
358		 * frame we just set up.
359		 *
360		 * We will enter general_protection with kernel GSBASE,
361		 * which is what the stub expects, given that the faulting
362		 * RIP will be the IRET instruction.
363		 */
364		regs->ip = (unsigned long)general_protection;
365		regs->sp = (unsigned long)&gpregs->orig_ax;
366
367		return;
368	}
369#endif
370
371	ist_enter(regs);
372	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
373
374	tsk->thread.error_code = error_code;
375	tsk->thread.trap_nr = X86_TRAP_DF;
376
377#ifdef CONFIG_VMAP_STACK
378	/*
379	 * If we overflow the stack into a guard page, the CPU will fail
380	 * to deliver #PF and will send #DF instead.  Similarly, if we
381	 * take any non-IST exception while too close to the bottom of
382	 * the stack, the processor will get a page fault while
383	 * delivering the exception and will generate a double fault.
384	 *
385	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
386	 * Page-Fault Exception (#PF):
387	 *
388	 *   Processors update CR2 whenever a page fault is detected. If a
389	 *   second page fault occurs while an earlier page fault is being
390	 *   delivered, the faulting linear address of the second fault will
391	 *   overwrite the contents of CR2 (replacing the previous
392	 *   address). These updates to CR2 occur even if the page fault
393	 *   results in a double fault or occurs during the delivery of a
394	 *   double fault.
395	 *
396	 * The logic below has a small possibility of incorrectly diagnosing
397	 * some errors as stack overflows.  For example, if the IDT or GDT
398	 * gets corrupted such that #GP delivery fails due to a bad descriptor
399	 * causing #GP and we hit this condition while CR2 coincidentally
400	 * points to the stack guard page, we'll think we overflowed the
401	 * stack.  Given that we're going to panic one way or another
402	 * if this happens, this isn't necessarily worth fixing.
403	 *
404	 * If necessary, we could improve the test by only diagnosing
405	 * a stack overflow if the saved RSP points within 47 bytes of
406	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
407	 * take an exception, the stack is already aligned and there
408	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
409	 * possible error code, so a stack overflow would *not* double
410	 * fault.  With any less space left, exception delivery could
411	 * fail, and, as a practical matter, we've overflowed the
412	 * stack even if the actual trigger for the double fault was
413	 * something else.
414	 */
 
415	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
416		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
417#endif
418
419#ifdef CONFIG_DOUBLEFAULT
420	df_debug(regs, error_code);
421#endif
422	/*
423	 * This is always a kernel trap and never fixable (and thus must
424	 * never return).
425	 */
426	for (;;)
427		die(str, regs, error_code);
428}
429#endif
430
431dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
432{
433	const struct mpx_bndcsr *bndcsr;
 
434
435	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
436	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
437			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
438		return;
439	cond_local_irq_enable(regs);
440
441	if (!user_mode(regs))
442		die("bounds", regs, error_code);
443
444	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
445		/* The exception is not from Intel MPX */
446		goto exit_trap;
447	}
448
449	/*
450	 * We need to look at BNDSTATUS to resolve this exception.
451	 * A NULL here might mean that it is in its 'init state',
452	 * which is all zeros which indicates MPX was not
453	 * responsible for the exception.
454	 */
455	bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR);
456	if (!bndcsr)
457		goto exit_trap;
458
459	trace_bounds_exception_mpx(bndcsr);
460	/*
461	 * The error code field of the BNDSTATUS register communicates status
462	 * information of a bound range exception #BR or operation involving
463	 * bound directory.
464	 */
465	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
466	case 2:	/* Bound directory has invalid entry. */
467		if (mpx_handle_bd_fault())
468			goto exit_trap;
469		break; /* Success, it was handled */
470	case 1: /* Bound violation. */
471	{
472		struct task_struct *tsk = current;
473		struct mpx_fault_info mpx;
474
475		if (mpx_fault_info(&mpx, regs)) {
476			/*
477			 * We failed to decode the MPX instruction.  Act as if
478			 * the exception was not caused by MPX.
479			 */
480			goto exit_trap;
481		}
482		/*
483		 * Success, we decoded the instruction and retrieved
484		 * an 'mpx' containing the address being accessed
485		 * which caused the exception.  This information
486		 * allows and application to possibly handle the
487		 * #BR exception itself.
488		 */
489		if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs,
490				       error_code))
491			break;
492
493		show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code);
494
495		force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper);
496		break;
497	}
498	case 0: /* No exception caused by Intel MPX operations. */
499		goto exit_trap;
500	default:
501		die("bounds", regs, error_code);
502	}
503
504	return;
505
506exit_trap:
507	/*
508	 * This path out is for all the cases where we could not
509	 * handle the exception in some way (like allocating a
510	 * table or telling userspace about it.  We will also end
511	 * up here if the kernel has MPX turned off at compile
512	 * time..
513	 */
514	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL);
515}
516
517dotraplinkage void
518do_general_protection(struct pt_regs *regs, long error_code)
519{
520	const char *desc = "general protection fault";
521	struct task_struct *tsk;
522
523	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
524	cond_local_irq_enable(regs);
525
526	if (static_cpu_has(X86_FEATURE_UMIP)) {
527		if (user_mode(regs) && fixup_umip_exception(regs))
528			return;
529	}
530
531	if (v8086_mode(regs)) {
532		local_irq_enable();
533		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
534		return;
535	}
536
537	tsk = current;
538	if (!user_mode(regs)) {
539		if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
540			return;
541
542		tsk->thread.error_code = error_code;
543		tsk->thread.trap_nr = X86_TRAP_GP;
544
545		/*
546		 * To be potentially processing a kprobe fault and to
547		 * trust the result from kprobe_running(), we have to
548		 * be non-preemptible.
549		 */
550		if (!preemptible() && kprobe_running() &&
551		    kprobe_fault_handler(regs, X86_TRAP_GP))
552			return;
553
554		if (notify_die(DIE_GPF, desc, regs, error_code,
555			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
556			die(desc, regs, error_code);
557		return;
558	}
559
560	tsk->thread.error_code = error_code;
561	tsk->thread.trap_nr = X86_TRAP_GP;
562
563	show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
 
 
 
 
 
 
 
564
565	force_sig(SIGSEGV);
566}
567NOKPROBE_SYMBOL(do_general_protection);
568
569dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
570{
571#ifdef CONFIG_DYNAMIC_FTRACE
572	/*
573	 * ftrace must be first, everything else may cause a recursive crash.
574	 * See note by declaration of modifying_ftrace_code in ftrace.c
575	 */
576	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
577	    ftrace_int3_handler(regs))
578		return;
579#endif
580	if (poke_int3_handler(regs))
581		return;
582
583	/*
584	 * Use ist_enter despite the fact that we don't use an IST stack.
585	 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
586	 * mode or even during context tracking state changes.
587	 *
588	 * This means that we can't schedule.  That's okay.
589	 */
590	ist_enter(regs);
591	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
592#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
593	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
594				SIGTRAP) == NOTIFY_STOP)
595		goto exit;
596#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
597
598#ifdef CONFIG_KPROBES
599	if (kprobe_int3_handler(regs))
600		goto exit;
601#endif
602
603	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
604			SIGTRAP) == NOTIFY_STOP)
605		goto exit;
606
607	cond_local_irq_enable(regs);
608	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL);
609	cond_local_irq_disable(regs);
610
611exit:
612	ist_exit(regs);
613}
614NOKPROBE_SYMBOL(do_int3);
615
616#ifdef CONFIG_X86_64
617/*
618 * Help handler running on a per-cpu (IST or entry trampoline) stack
619 * to switch to the normal thread stack if the interrupted code was in
620 * user mode. The actual stack switch is done in entry_64.S
621 */
622asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
623{
624	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
625	if (regs != eregs)
626		*regs = *eregs;
627	return regs;
628}
629NOKPROBE_SYMBOL(sync_regs);
630
631struct bad_iret_stack {
632	void *error_entry_ret;
633	struct pt_regs regs;
634};
635
636asmlinkage __visible notrace
637struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
638{
639	/*
640	 * This is called from entry_64.S early in handling a fault
641	 * caused by a bad iret to user mode.  To handle the fault
642	 * correctly, we want to move our stack frame to where it would
643	 * be had we entered directly on the entry stack (rather than
644	 * just below the IRET frame) and we want to pretend that the
645	 * exception came from the IRET target.
646	 */
647	struct bad_iret_stack *new_stack =
648		(struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
649
650	/* Copy the IRET target to the new stack. */
651	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
652
653	/* Copy the remainder of the stack from the current stack. */
654	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
655
656	BUG_ON(!user_mode(&new_stack->regs));
657	return new_stack;
658}
659NOKPROBE_SYMBOL(fixup_bad_iret);
660#endif
661
662static bool is_sysenter_singlestep(struct pt_regs *regs)
663{
664	/*
665	 * We don't try for precision here.  If we're anywhere in the region of
666	 * code that can be single-stepped in the SYSENTER entry path, then
667	 * assume that this is a useless single-step trap due to SYSENTER
668	 * being invoked with TF set.  (We don't know in advance exactly
669	 * which instructions will be hit because BTF could plausibly
670	 * be set.)
671	 */
672#ifdef CONFIG_X86_32
673	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
674		(unsigned long)__end_SYSENTER_singlestep_region -
675		(unsigned long)__begin_SYSENTER_singlestep_region;
676#elif defined(CONFIG_IA32_EMULATION)
677	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
678		(unsigned long)__end_entry_SYSENTER_compat -
679		(unsigned long)entry_SYSENTER_compat;
680#else
681	return false;
682#endif
683}
684
685/*
686 * Our handling of the processor debug registers is non-trivial.
687 * We do not clear them on entry and exit from the kernel. Therefore
688 * it is possible to get a watchpoint trap here from inside the kernel.
689 * However, the code in ./ptrace.c has ensured that the user can
690 * only set watchpoints on userspace addresses. Therefore the in-kernel
691 * watchpoint trap can only occur in code which is reading/writing
692 * from user space. Such code must not hold kernel locks (since it
693 * can equally take a page fault), therefore it is safe to call
694 * force_sig_info even though that claims and releases locks.
695 *
696 * Code in ./signal.c ensures that the debug control register
697 * is restored before we deliver any signal, and therefore that
698 * user code runs with the correct debug control register even though
699 * we clear it here.
700 *
701 * Being careful here means that we don't have to be as careful in a
702 * lot of more complicated places (task switching can be a bit lazy
703 * about restoring all the debug state, and ptrace doesn't have to
704 * find every occurrence of the TF bit that could be saved away even
705 * by user code)
706 *
707 * May run on IST stack.
708 */
709dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
710{
711	struct task_struct *tsk = current;
712	int user_icebp = 0;
713	unsigned long dr6;
714	int si_code;
715
716	ist_enter(regs);
717
718	get_debugreg(dr6, 6);
719	/*
720	 * The Intel SDM says:
721	 *
722	 *   Certain debug exceptions may clear bits 0-3. The remaining
723	 *   contents of the DR6 register are never cleared by the
724	 *   processor. To avoid confusion in identifying debug
725	 *   exceptions, debug handlers should clear the register before
726	 *   returning to the interrupted task.
727	 *
728	 * Keep it simple: clear DR6 immediately.
729	 */
730	set_debugreg(0, 6);
731
732	/* Filter out all the reserved bits which are preset to 1 */
733	dr6 &= ~DR6_RESERVED;
734
735	/*
736	 * The SDM says "The processor clears the BTF flag when it
737	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
738	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
739	 */
740	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
741
742	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
743		     is_sysenter_singlestep(regs))) {
744		dr6 &= ~DR_STEP;
745		if (!dr6)
746			goto exit;
747		/*
748		 * else we might have gotten a single-step trap and hit a
749		 * watchpoint at the same time, in which case we should fall
750		 * through and handle the watchpoint.
751		 */
752	}
753
754	/*
755	 * If dr6 has no reason to give us about the origin of this trap,
756	 * then it's very likely the result of an icebp/int01 trap.
757	 * User wants a sigtrap for that.
758	 */
759	if (!dr6 && user_mode(regs))
760		user_icebp = 1;
761
762	/* Store the virtualized DR6 value */
763	tsk->thread.debugreg6 = dr6;
764
765#ifdef CONFIG_KPROBES
766	if (kprobe_debug_handler(regs))
767		goto exit;
768#endif
769
770	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
771							SIGTRAP) == NOTIFY_STOP)
772		goto exit;
773
774	/*
775	 * Let others (NMI) know that the debug stack is in use
776	 * as we may switch to the interrupt stack.
777	 */
778	debug_stack_usage_inc();
779
780	/* It's safe to allow irq's after DR6 has been saved */
781	cond_local_irq_enable(regs);
782
783	if (v8086_mode(regs)) {
784		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
785					X86_TRAP_DB);
786		cond_local_irq_disable(regs);
787		debug_stack_usage_dec();
788		goto exit;
789	}
790
791	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
792		/*
793		 * Historical junk that used to handle SYSENTER single-stepping.
794		 * This should be unreachable now.  If we survive for a while
795		 * without anyone hitting this warning, we'll turn this into
796		 * an oops.
797		 */
798		tsk->thread.debugreg6 &= ~DR_STEP;
799		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
800		regs->flags &= ~X86_EFLAGS_TF;
801	}
802	si_code = get_si_code(tsk->thread.debugreg6);
803	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
804		send_sigtrap(regs, error_code, si_code);
805	cond_local_irq_disable(regs);
806	debug_stack_usage_dec();
807
808exit:
809	ist_exit(regs);
810}
811NOKPROBE_SYMBOL(do_debug);
812
813/*
814 * Note that we play around with the 'TS' bit in an attempt to get
815 * the correct behaviour even in the presence of the asynchronous
816 * IRQ13 behaviour
817 */
818static void math_error(struct pt_regs *regs, int error_code, int trapnr)
819{
820	struct task_struct *task = current;
821	struct fpu *fpu = &task->thread.fpu;
822	int si_code;
823	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
824						"simd exception";
825
 
 
826	cond_local_irq_enable(regs);
827
828	if (!user_mode(regs)) {
829		if (fixup_exception(regs, trapnr, error_code, 0))
830			return;
831
832		task->thread.error_code = error_code;
833		task->thread.trap_nr = trapnr;
834
835		if (notify_die(DIE_TRAP, str, regs, error_code,
836					trapnr, SIGFPE) != NOTIFY_STOP)
837			die(str, regs, error_code);
 
838		return;
839	}
840
841	/*
842	 * Save the info for the exception handler and clear the error.
843	 */
844	fpu__save(fpu);
845
846	task->thread.trap_nr	= trapnr;
847	task->thread.error_code = error_code;
 
 
 
 
 
848
849	si_code = fpu__exception_code(fpu, trapnr);
850	/* Retry when we get spurious exceptions: */
851	if (!si_code)
852		return;
853
854	force_sig_fault(SIGFPE, si_code,
855			(void __user *)uprobe_get_trap_addr(regs));
856}
857
858dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
859{
860	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
861	math_error(regs, error_code, X86_TRAP_MF);
862}
863
864dotraplinkage void
865do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
866{
867	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
868	math_error(regs, error_code, X86_TRAP_XF);
869}
870
871dotraplinkage void
872do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
873{
874	cond_local_irq_enable(regs);
875}
876
877dotraplinkage void
878do_device_not_available(struct pt_regs *regs, long error_code)
879{
880	unsigned long cr0 = read_cr0();
881
882	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
883
884#ifdef CONFIG_MATH_EMULATION
885	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
886		struct math_emu_info info = { };
887
888		cond_local_irq_enable(regs);
889
890		info.regs = regs;
891		math_emulate(&info);
892		return;
893	}
894#endif
895
896	/* This should not happen. */
 
897	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
898		/* Try to fix it up and carry on. */
899		write_cr0(cr0 & ~X86_CR0_TS);
900	} else {
901		/*
902		 * Something terrible happened, and we're better off trying
903		 * to kill the task than getting stuck in a never-ending
904		 * loop of #NM faults.
905		 */
906		die("unexpected #NM exception", regs, error_code);
907	}
908}
909NOKPROBE_SYMBOL(do_device_not_available);
910
911#ifdef CONFIG_X86_32
912dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
913{
 
 
914	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
915	local_irq_enable();
916
 
 
 
 
917	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
918			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
919		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
920			ILL_BADSTK, (void __user *)NULL);
921	}
922}
923#endif
924
925void __init trap_init(void)
926{
927	/* Init cpu_entry_area before IST entries are set up */
928	setup_cpu_entry_areas();
929
930	idt_setup_traps();
931
932	/*
933	 * Set the IDT descriptor to a fixed read-only location, so that the
934	 * "sidt" instruction will not leak the location of the kernel, and
935	 * to defend the IDT against arbitrary memory write vulnerabilities.
936	 * It will be reloaded in cpu_init() */
937	cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
938		    PAGE_KERNEL_RO);
939	idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
940
941	/*
942	 * Should be a barrier for any external CPU state:
943	 */
944	cpu_init();
945
946	idt_setup_ist_traps();
947
948	x86_init.irqs.trap_init();
949
950	idt_setup_debugidt_traps();
951}
v4.17
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8
  9/*
 10 * Handle hardware traps and faults.
 11 */
 12
 13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 14
 15#include <linux/context_tracking.h>
 16#include <linux/interrupt.h>
 17#include <linux/kallsyms.h>
 18#include <linux/spinlock.h>
 19#include <linux/kprobes.h>
 20#include <linux/uaccess.h>
 21#include <linux/kdebug.h>
 22#include <linux/kgdb.h>
 23#include <linux/kernel.h>
 24#include <linux/export.h>
 25#include <linux/ptrace.h>
 26#include <linux/uprobes.h>
 27#include <linux/string.h>
 28#include <linux/delay.h>
 29#include <linux/errno.h>
 30#include <linux/kexec.h>
 31#include <linux/sched.h>
 32#include <linux/sched/task_stack.h>
 33#include <linux/timer.h>
 34#include <linux/init.h>
 35#include <linux/bug.h>
 36#include <linux/nmi.h>
 37#include <linux/mm.h>
 38#include <linux/smp.h>
 39#include <linux/io.h>
 40
 41#if defined(CONFIG_EDAC)
 42#include <linux/edac.h>
 43#endif
 44
 45#include <asm/stacktrace.h>
 46#include <asm/processor.h>
 47#include <asm/debugreg.h>
 48#include <linux/atomic.h>
 49#include <asm/text-patching.h>
 50#include <asm/ftrace.h>
 51#include <asm/traps.h>
 52#include <asm/desc.h>
 53#include <asm/fpu/internal.h>
 54#include <asm/cpu_entry_area.h>
 55#include <asm/mce.h>
 56#include <asm/fixmap.h>
 57#include <asm/mach_traps.h>
 58#include <asm/alternative.h>
 59#include <asm/fpu/xstate.h>
 60#include <asm/trace/mpx.h>
 61#include <asm/mpx.h>
 62#include <asm/vm86.h>
 63#include <asm/umip.h>
 64
 65#ifdef CONFIG_X86_64
 66#include <asm/x86_init.h>
 67#include <asm/pgalloc.h>
 68#include <asm/proto.h>
 69#else
 70#include <asm/processor-flags.h>
 71#include <asm/setup.h>
 72#include <asm/proto.h>
 73#endif
 74
 75DECLARE_BITMAP(system_vectors, NR_VECTORS);
 76
 77static inline void cond_local_irq_enable(struct pt_regs *regs)
 78{
 79	if (regs->flags & X86_EFLAGS_IF)
 80		local_irq_enable();
 81}
 82
 83static inline void cond_local_irq_disable(struct pt_regs *regs)
 84{
 85	if (regs->flags & X86_EFLAGS_IF)
 86		local_irq_disable();
 87}
 88
 89/*
 90 * In IST context, we explicitly disable preemption.  This serves two
 91 * purposes: it makes it much less likely that we would accidentally
 92 * schedule in IST context and it will force a warning if we somehow
 93 * manage to schedule by accident.
 94 */
 95void ist_enter(struct pt_regs *regs)
 96{
 97	if (user_mode(regs)) {
 98		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 99	} else {
100		/*
101		 * We might have interrupted pretty much anything.  In
102		 * fact, if we're a machine check, we can even interrupt
103		 * NMI processing.  We don't want in_nmi() to return true,
104		 * but we need to notify RCU.
105		 */
106		rcu_nmi_enter();
107	}
108
109	preempt_disable();
110
111	/* This code is a bit fragile.  Test it. */
112	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
113}
 
114
115void ist_exit(struct pt_regs *regs)
116{
117	preempt_enable_no_resched();
118
119	if (!user_mode(regs))
120		rcu_nmi_exit();
121}
122
123/**
124 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
125 * @regs:	regs passed to the IST exception handler
126 *
127 * IST exception handlers normally cannot schedule.  As a special
128 * exception, if the exception interrupted userspace code (i.e.
129 * user_mode(regs) would return true) and the exception was not
130 * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
131 * begins a non-atomic section within an ist_enter()/ist_exit() region.
132 * Callers are responsible for enabling interrupts themselves inside
133 * the non-atomic section, and callers must call ist_end_non_atomic()
134 * before ist_exit().
135 */
136void ist_begin_non_atomic(struct pt_regs *regs)
137{
138	BUG_ON(!user_mode(regs));
139
140	/*
141	 * Sanity check: we need to be on the normal thread stack.  This
142	 * will catch asm bugs and any attempt to use ist_preempt_enable
143	 * from double_fault.
144	 */
145	BUG_ON(!on_thread_stack());
146
147	preempt_enable_no_resched();
148}
149
150/**
151 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
152 *
153 * Ends a non-atomic section started with ist_begin_non_atomic().
154 */
155void ist_end_non_atomic(void)
156{
157	preempt_disable();
158}
159
160int is_valid_bugaddr(unsigned long addr)
161{
162	unsigned short ud;
163
164	if (addr < TASK_SIZE_MAX)
165		return 0;
166
167	if (probe_kernel_address((unsigned short *)addr, ud))
168		return 0;
169
170	return ud == INSN_UD0 || ud == INSN_UD2;
171}
172
173int fixup_bug(struct pt_regs *regs, int trapnr)
174{
175	if (trapnr != X86_TRAP_UD)
176		return 0;
177
178	switch (report_bug(regs->ip, regs)) {
179	case BUG_TRAP_TYPE_NONE:
180	case BUG_TRAP_TYPE_BUG:
181		break;
182
183	case BUG_TRAP_TYPE_WARN:
184		regs->ip += LEN_UD2;
185		return 1;
186	}
187
188	return 0;
189}
190
191static nokprobe_inline int
192do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
193		  struct pt_regs *regs,	long error_code)
194{
195	if (v8086_mode(regs)) {
196		/*
197		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
198		 * On nmi (interrupt 2), do_trap should not be called.
199		 */
200		if (trapnr < X86_TRAP_UD) {
201			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
202						error_code, trapnr))
203				return 0;
204		}
205		return -1;
206	}
207
208	if (!user_mode(regs)) {
209		if (fixup_exception(regs, trapnr))
210			return 0;
211
212		tsk->thread.error_code = error_code;
213		tsk->thread.trap_nr = trapnr;
214		die(str, regs, error_code);
215	}
216
217	return -1;
218}
219
220static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
221				siginfo_t *info)
222{
223	unsigned long siaddr;
224	int sicode;
225
226	switch (trapnr) {
227	default:
228		return SEND_SIG_PRIV;
229
230	case X86_TRAP_DE:
231		sicode = FPE_INTDIV;
232		siaddr = uprobe_get_trap_addr(regs);
233		break;
234	case X86_TRAP_UD:
235		sicode = ILL_ILLOPN;
236		siaddr = uprobe_get_trap_addr(regs);
237		break;
238	case X86_TRAP_AC:
239		sicode = BUS_ADRALN;
240		siaddr = 0;
241		break;
242	}
243
244	info->si_signo = signr;
245	info->si_errno = 0;
246	info->si_code = sicode;
247	info->si_addr = (void __user *)siaddr;
248	return info;
249}
250
251static void
252do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
253	long error_code, siginfo_t *info)
254{
255	struct task_struct *tsk = current;
256
257
258	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
259		return;
260	/*
261	 * We want error_code and trap_nr set for userspace faults and
262	 * kernelspace faults which result in die(), but not
263	 * kernelspace faults which are fixed up.  die() gives the
264	 * process no chance to handle the signal and notice the
265	 * kernel fault information, so that won't result in polluting
266	 * the information about previously queued, but not yet
267	 * delivered, faults.  See also do_general_protection below.
268	 */
269	tsk->thread.error_code = error_code;
270	tsk->thread.trap_nr = trapnr;
271
 
 
 
 
 
 
 
272	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
273	    printk_ratelimit()) {
274		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
275			tsk->comm, tsk->pid, str,
276			regs->ip, regs->sp, error_code);
277		print_vma_addr(KERN_CONT " in ", regs->ip);
278		pr_cont("\n");
279	}
 
 
 
 
 
 
 
 
 
 
 
280
281	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
 
 
 
 
 
282}
283NOKPROBE_SYMBOL(do_trap);
284
285static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
286			  unsigned long trapnr, int signr)
287{
288	siginfo_t info;
289
290	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
291
292	/*
293	 * WARN*()s end up here; fix them up before we call the
294	 * notifier chain.
295	 */
296	if (!user_mode(regs) && fixup_bug(regs, trapnr))
297		return;
298
299	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
300			NOTIFY_STOP) {
301		cond_local_irq_enable(regs);
302		do_trap(trapnr, signr, str, regs, error_code,
303			fill_trap_info(regs, signr, trapnr, &info));
304	}
305}
306
307#define DO_ERROR(trapnr, signr, str, name)				\
308dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
309{									\
310	do_error_trap(regs, error_code, str, trapnr, signr);		\
311}
312
313DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
314DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
315DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
316DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
317DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
318DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
319DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
320DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
 
 
321
322#ifdef CONFIG_VMAP_STACK
323__visible void __noreturn handle_stack_overflow(const char *message,
324						struct pt_regs *regs,
325						unsigned long fault_address)
326{
327	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
328		 (void *)fault_address, current->stack,
329		 (char *)current->stack + THREAD_SIZE - 1);
330	die(message, regs, 0);
331
332	/* Be absolutely certain we don't return. */
333	panic(message);
334}
335#endif
336
337#ifdef CONFIG_X86_64
338/* Runs on IST stack */
339dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
340{
341	static const char str[] = "double fault";
342	struct task_struct *tsk = current;
343#ifdef CONFIG_VMAP_STACK
344	unsigned long cr2;
345#endif
346
347#ifdef CONFIG_X86_ESPFIX64
348	extern unsigned char native_irq_return_iret[];
349
350	/*
351	 * If IRET takes a non-IST fault on the espfix64 stack, then we
352	 * end up promoting it to a doublefault.  In that case, take
353	 * advantage of the fact that we're not using the normal (TSS.sp0)
354	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
355	 * and then modify our own IRET frame so that, when we return,
356	 * we land directly at the #GP(0) vector with the stack already
357	 * set up according to its expectations.
358	 *
359	 * The net result is that our #GP handler will think that we
360	 * entered from usermode with the bad user context.
361	 *
362	 * No need for ist_enter here because we don't use RCU.
363	 */
364	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
365		regs->cs == __KERNEL_CS &&
366		regs->ip == (unsigned long)native_irq_return_iret)
367	{
368		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
369
370		/*
371		 * regs->sp points to the failing IRET frame on the
372		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
373		 * in gpregs->ss through gpregs->ip.
374		 *
375		 */
376		memmove(&gpregs->ip, (void *)regs->sp, 5*8);
377		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
378
379		/*
380		 * Adjust our frame so that we return straight to the #GP
381		 * vector with the expected RSP value.  This is safe because
382		 * we won't enable interupts or schedule before we invoke
383		 * general_protection, so nothing will clobber the stack
384		 * frame we just set up.
 
 
 
 
385		 */
386		regs->ip = (unsigned long)general_protection;
387		regs->sp = (unsigned long)&gpregs->orig_ax;
388
389		return;
390	}
391#endif
392
393	ist_enter(regs);
394	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
395
396	tsk->thread.error_code = error_code;
397	tsk->thread.trap_nr = X86_TRAP_DF;
398
399#ifdef CONFIG_VMAP_STACK
400	/*
401	 * If we overflow the stack into a guard page, the CPU will fail
402	 * to deliver #PF and will send #DF instead.  Similarly, if we
403	 * take any non-IST exception while too close to the bottom of
404	 * the stack, the processor will get a page fault while
405	 * delivering the exception and will generate a double fault.
406	 *
407	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
408	 * Page-Fault Exception (#PF):
409	 *
410	 *   Processors update CR2 whenever a page fault is detected. If a
411	 *   second page fault occurs while an earlier page fault is being
412	 *   delivered, the faulting linear address of the second fault will
413	 *   overwrite the contents of CR2 (replacing the previous
414	 *   address). These updates to CR2 occur even if the page fault
415	 *   results in a double fault or occurs during the delivery of a
416	 *   double fault.
417	 *
418	 * The logic below has a small possibility of incorrectly diagnosing
419	 * some errors as stack overflows.  For example, if the IDT or GDT
420	 * gets corrupted such that #GP delivery fails due to a bad descriptor
421	 * causing #GP and we hit this condition while CR2 coincidentally
422	 * points to the stack guard page, we'll think we overflowed the
423	 * stack.  Given that we're going to panic one way or another
424	 * if this happens, this isn't necessarily worth fixing.
425	 *
426	 * If necessary, we could improve the test by only diagnosing
427	 * a stack overflow if the saved RSP points within 47 bytes of
428	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
429	 * take an exception, the stack is already aligned and there
430	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
431	 * possible error code, so a stack overflow would *not* double
432	 * fault.  With any less space left, exception delivery could
433	 * fail, and, as a practical matter, we've overflowed the
434	 * stack even if the actual trigger for the double fault was
435	 * something else.
436	 */
437	cr2 = read_cr2();
438	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
439		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
440#endif
441
442#ifdef CONFIG_DOUBLEFAULT
443	df_debug(regs, error_code);
444#endif
445	/*
446	 * This is always a kernel trap and never fixable (and thus must
447	 * never return).
448	 */
449	for (;;)
450		die(str, regs, error_code);
451}
452#endif
453
454dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
455{
456	const struct mpx_bndcsr *bndcsr;
457	siginfo_t *info;
458
459	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
460	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
461			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
462		return;
463	cond_local_irq_enable(regs);
464
465	if (!user_mode(regs))
466		die("bounds", regs, error_code);
467
468	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
469		/* The exception is not from Intel MPX */
470		goto exit_trap;
471	}
472
473	/*
474	 * We need to look at BNDSTATUS to resolve this exception.
475	 * A NULL here might mean that it is in its 'init state',
476	 * which is all zeros which indicates MPX was not
477	 * responsible for the exception.
478	 */
479	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
480	if (!bndcsr)
481		goto exit_trap;
482
483	trace_bounds_exception_mpx(bndcsr);
484	/*
485	 * The error code field of the BNDSTATUS register communicates status
486	 * information of a bound range exception #BR or operation involving
487	 * bound directory.
488	 */
489	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
490	case 2:	/* Bound directory has invalid entry. */
491		if (mpx_handle_bd_fault())
492			goto exit_trap;
493		break; /* Success, it was handled */
494	case 1: /* Bound violation. */
495		info = mpx_generate_siginfo(regs);
496		if (IS_ERR(info)) {
 
 
 
497			/*
498			 * We failed to decode the MPX instruction.  Act as if
499			 * the exception was not caused by MPX.
500			 */
501			goto exit_trap;
502		}
503		/*
504		 * Success, we decoded the instruction and retrieved
505		 * an 'info' containing the address being accessed
506		 * which caused the exception.  This information
507		 * allows and application to possibly handle the
508		 * #BR exception itself.
509		 */
510		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
511		kfree(info);
 
 
 
 
 
512		break;
 
513	case 0: /* No exception caused by Intel MPX operations. */
514		goto exit_trap;
515	default:
516		die("bounds", regs, error_code);
517	}
518
519	return;
520
521exit_trap:
522	/*
523	 * This path out is for all the cases where we could not
524	 * handle the exception in some way (like allocating a
525	 * table or telling userspace about it.  We will also end
526	 * up here if the kernel has MPX turned off at compile
527	 * time..
528	 */
529	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
530}
531
532dotraplinkage void
533do_general_protection(struct pt_regs *regs, long error_code)
534{
 
535	struct task_struct *tsk;
536
537	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
538	cond_local_irq_enable(regs);
539
540	if (static_cpu_has(X86_FEATURE_UMIP)) {
541		if (user_mode(regs) && fixup_umip_exception(regs))
542			return;
543	}
544
545	if (v8086_mode(regs)) {
546		local_irq_enable();
547		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
548		return;
549	}
550
551	tsk = current;
552	if (!user_mode(regs)) {
553		if (fixup_exception(regs, X86_TRAP_GP))
554			return;
555
556		tsk->thread.error_code = error_code;
557		tsk->thread.trap_nr = X86_TRAP_GP;
558		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
 
 
 
 
 
 
 
 
 
 
559			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
560			die("general protection fault", regs, error_code);
561		return;
562	}
563
564	tsk->thread.error_code = error_code;
565	tsk->thread.trap_nr = X86_TRAP_GP;
566
567	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
568			printk_ratelimit()) {
569		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
570			tsk->comm, task_pid_nr(tsk),
571			regs->ip, regs->sp, error_code);
572		print_vma_addr(KERN_CONT " in ", regs->ip);
573		pr_cont("\n");
574	}
575
576	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
577}
578NOKPROBE_SYMBOL(do_general_protection);
579
580dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
581{
582#ifdef CONFIG_DYNAMIC_FTRACE
583	/*
584	 * ftrace must be first, everything else may cause a recursive crash.
585	 * See note by declaration of modifying_ftrace_code in ftrace.c
586	 */
587	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
588	    ftrace_int3_handler(regs))
589		return;
590#endif
591	if (poke_int3_handler(regs))
592		return;
593
594	/*
595	 * Use ist_enter despite the fact that we don't use an IST stack.
596	 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
597	 * mode or even during context tracking state changes.
598	 *
599	 * This means that we can't schedule.  That's okay.
600	 */
601	ist_enter(regs);
602	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
603#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
604	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
605				SIGTRAP) == NOTIFY_STOP)
606		goto exit;
607#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
608
609#ifdef CONFIG_KPROBES
610	if (kprobe_int3_handler(regs))
611		goto exit;
612#endif
613
614	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
615			SIGTRAP) == NOTIFY_STOP)
616		goto exit;
617
618	cond_local_irq_enable(regs);
619	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
620	cond_local_irq_disable(regs);
621
622exit:
623	ist_exit(regs);
624}
625NOKPROBE_SYMBOL(do_int3);
626
627#ifdef CONFIG_X86_64
628/*
629 * Help handler running on a per-cpu (IST or entry trampoline) stack
630 * to switch to the normal thread stack if the interrupted code was in
631 * user mode. The actual stack switch is done in entry_64.S
632 */
633asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
634{
635	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
636	if (regs != eregs)
637		*regs = *eregs;
638	return regs;
639}
640NOKPROBE_SYMBOL(sync_regs);
641
642struct bad_iret_stack {
643	void *error_entry_ret;
644	struct pt_regs regs;
645};
646
647asmlinkage __visible notrace
648struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
649{
650	/*
651	 * This is called from entry_64.S early in handling a fault
652	 * caused by a bad iret to user mode.  To handle the fault
653	 * correctly, we want to move our stack frame to where it would
654	 * be had we entered directly on the entry stack (rather than
655	 * just below the IRET frame) and we want to pretend that the
656	 * exception came from the IRET target.
657	 */
658	struct bad_iret_stack *new_stack =
659		(struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
660
661	/* Copy the IRET target to the new stack. */
662	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
663
664	/* Copy the remainder of the stack from the current stack. */
665	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
666
667	BUG_ON(!user_mode(&new_stack->regs));
668	return new_stack;
669}
670NOKPROBE_SYMBOL(fixup_bad_iret);
671#endif
672
673static bool is_sysenter_singlestep(struct pt_regs *regs)
674{
675	/*
676	 * We don't try for precision here.  If we're anywhere in the region of
677	 * code that can be single-stepped in the SYSENTER entry path, then
678	 * assume that this is a useless single-step trap due to SYSENTER
679	 * being invoked with TF set.  (We don't know in advance exactly
680	 * which instructions will be hit because BTF could plausibly
681	 * be set.)
682	 */
683#ifdef CONFIG_X86_32
684	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
685		(unsigned long)__end_SYSENTER_singlestep_region -
686		(unsigned long)__begin_SYSENTER_singlestep_region;
687#elif defined(CONFIG_IA32_EMULATION)
688	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
689		(unsigned long)__end_entry_SYSENTER_compat -
690		(unsigned long)entry_SYSENTER_compat;
691#else
692	return false;
693#endif
694}
695
696/*
697 * Our handling of the processor debug registers is non-trivial.
698 * We do not clear them on entry and exit from the kernel. Therefore
699 * it is possible to get a watchpoint trap here from inside the kernel.
700 * However, the code in ./ptrace.c has ensured that the user can
701 * only set watchpoints on userspace addresses. Therefore the in-kernel
702 * watchpoint trap can only occur in code which is reading/writing
703 * from user space. Such code must not hold kernel locks (since it
704 * can equally take a page fault), therefore it is safe to call
705 * force_sig_info even though that claims and releases locks.
706 *
707 * Code in ./signal.c ensures that the debug control register
708 * is restored before we deliver any signal, and therefore that
709 * user code runs with the correct debug control register even though
710 * we clear it here.
711 *
712 * Being careful here means that we don't have to be as careful in a
713 * lot of more complicated places (task switching can be a bit lazy
714 * about restoring all the debug state, and ptrace doesn't have to
715 * find every occurrence of the TF bit that could be saved away even
716 * by user code)
717 *
718 * May run on IST stack.
719 */
720dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
721{
722	struct task_struct *tsk = current;
723	int user_icebp = 0;
724	unsigned long dr6;
725	int si_code;
726
727	ist_enter(regs);
728
729	get_debugreg(dr6, 6);
730	/*
731	 * The Intel SDM says:
732	 *
733	 *   Certain debug exceptions may clear bits 0-3. The remaining
734	 *   contents of the DR6 register are never cleared by the
735	 *   processor. To avoid confusion in identifying debug
736	 *   exceptions, debug handlers should clear the register before
737	 *   returning to the interrupted task.
738	 *
739	 * Keep it simple: clear DR6 immediately.
740	 */
741	set_debugreg(0, 6);
742
743	/* Filter out all the reserved bits which are preset to 1 */
744	dr6 &= ~DR6_RESERVED;
745
746	/*
747	 * The SDM says "The processor clears the BTF flag when it
748	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
749	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
750	 */
751	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
752
753	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
754		     is_sysenter_singlestep(regs))) {
755		dr6 &= ~DR_STEP;
756		if (!dr6)
757			goto exit;
758		/*
759		 * else we might have gotten a single-step trap and hit a
760		 * watchpoint at the same time, in which case we should fall
761		 * through and handle the watchpoint.
762		 */
763	}
764
765	/*
766	 * If dr6 has no reason to give us about the origin of this trap,
767	 * then it's very likely the result of an icebp/int01 trap.
768	 * User wants a sigtrap for that.
769	 */
770	if (!dr6 && user_mode(regs))
771		user_icebp = 1;
772
773	/* Store the virtualized DR6 value */
774	tsk->thread.debugreg6 = dr6;
775
776#ifdef CONFIG_KPROBES
777	if (kprobe_debug_handler(regs))
778		goto exit;
779#endif
780
781	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
782							SIGTRAP) == NOTIFY_STOP)
783		goto exit;
784
785	/*
786	 * Let others (NMI) know that the debug stack is in use
787	 * as we may switch to the interrupt stack.
788	 */
789	debug_stack_usage_inc();
790
791	/* It's safe to allow irq's after DR6 has been saved */
792	cond_local_irq_enable(regs);
793
794	if (v8086_mode(regs)) {
795		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
796					X86_TRAP_DB);
797		cond_local_irq_disable(regs);
798		debug_stack_usage_dec();
799		goto exit;
800	}
801
802	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
803		/*
804		 * Historical junk that used to handle SYSENTER single-stepping.
805		 * This should be unreachable now.  If we survive for a while
806		 * without anyone hitting this warning, we'll turn this into
807		 * an oops.
808		 */
809		tsk->thread.debugreg6 &= ~DR_STEP;
810		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
811		regs->flags &= ~X86_EFLAGS_TF;
812	}
813	si_code = get_si_code(tsk->thread.debugreg6);
814	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
815		send_sigtrap(tsk, regs, error_code, si_code);
816	cond_local_irq_disable(regs);
817	debug_stack_usage_dec();
818
819exit:
820	ist_exit(regs);
821}
822NOKPROBE_SYMBOL(do_debug);
823
824/*
825 * Note that we play around with the 'TS' bit in an attempt to get
826 * the correct behaviour even in the presence of the asynchronous
827 * IRQ13 behaviour
828 */
829static void math_error(struct pt_regs *regs, int error_code, int trapnr)
830{
831	struct task_struct *task = current;
832	struct fpu *fpu = &task->thread.fpu;
833	siginfo_t info;
834	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
835						"simd exception";
836
837	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
838		return;
839	cond_local_irq_enable(regs);
840
841	if (!user_mode(regs)) {
842		if (!fixup_exception(regs, trapnr)) {
843			task->thread.error_code = error_code;
844			task->thread.trap_nr = trapnr;
 
 
 
 
 
845			die(str, regs, error_code);
846		}
847		return;
848	}
849
850	/*
851	 * Save the info for the exception handler and clear the error.
852	 */
853	fpu__save(fpu);
854
855	task->thread.trap_nr	= trapnr;
856	task->thread.error_code = error_code;
857	info.si_signo		= SIGFPE;
858	info.si_errno		= 0;
859	info.si_addr		= (void __user *)uprobe_get_trap_addr(regs);
860
861	info.si_code = fpu__exception_code(fpu, trapnr);
862
 
863	/* Retry when we get spurious exceptions: */
864	if (!info.si_code)
865		return;
866
867	force_sig_info(SIGFPE, &info, task);
 
868}
869
870dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
871{
872	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
873	math_error(regs, error_code, X86_TRAP_MF);
874}
875
876dotraplinkage void
877do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
878{
879	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
880	math_error(regs, error_code, X86_TRAP_XF);
881}
882
883dotraplinkage void
884do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
885{
886	cond_local_irq_enable(regs);
887}
888
889dotraplinkage void
890do_device_not_available(struct pt_regs *regs, long error_code)
891{
892	unsigned long cr0;
893
894	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
895
896#ifdef CONFIG_MATH_EMULATION
897	if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
898		struct math_emu_info info = { };
899
900		cond_local_irq_enable(regs);
901
902		info.regs = regs;
903		math_emulate(&info);
904		return;
905	}
906#endif
907
908	/* This should not happen. */
909	cr0 = read_cr0();
910	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
911		/* Try to fix it up and carry on. */
912		write_cr0(cr0 & ~X86_CR0_TS);
913	} else {
914		/*
915		 * Something terrible happened, and we're better off trying
916		 * to kill the task than getting stuck in a never-ending
917		 * loop of #NM faults.
918		 */
919		die("unexpected #NM exception", regs, error_code);
920	}
921}
922NOKPROBE_SYMBOL(do_device_not_available);
923
924#ifdef CONFIG_X86_32
925dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
926{
927	siginfo_t info;
928
929	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
930	local_irq_enable();
931
932	info.si_signo = SIGILL;
933	info.si_errno = 0;
934	info.si_code = ILL_BADSTK;
935	info.si_addr = NULL;
936	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
937			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
938		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
939			&info);
940	}
941}
942#endif
943
944void __init trap_init(void)
945{
946	/* Init cpu_entry_area before IST entries are set up */
947	setup_cpu_entry_areas();
948
949	idt_setup_traps();
950
951	/*
952	 * Set the IDT descriptor to a fixed read-only location, so that the
953	 * "sidt" instruction will not leak the location of the kernel, and
954	 * to defend the IDT against arbitrary memory write vulnerabilities.
955	 * It will be reloaded in cpu_init() */
956	cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
957		    PAGE_KERNEL_RO);
958	idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
959
960	/*
961	 * Should be a barrier for any external CPU state:
962	 */
963	cpu_init();
964
965	idt_setup_ist_traps();
966
967	x86_init.irqs.trap_init();
968
969	idt_setup_debugidt_traps();
970}