Linux Audio

Check our new training course

Loading...
v5.4
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8
  9/*
 10 * Handle hardware traps and faults.
 11 */
 12
 13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 14
 15#include <linux/context_tracking.h>
 16#include <linux/interrupt.h>
 17#include <linux/kallsyms.h>
 18#include <linux/spinlock.h>
 19#include <linux/kprobes.h>
 20#include <linux/uaccess.h>
 21#include <linux/kdebug.h>
 22#include <linux/kgdb.h>
 23#include <linux/kernel.h>
 24#include <linux/export.h>
 25#include <linux/ptrace.h>
 26#include <linux/uprobes.h>
 27#include <linux/string.h>
 28#include <linux/delay.h>
 29#include <linux/errno.h>
 30#include <linux/kexec.h>
 31#include <linux/sched.h>
 32#include <linux/sched/task_stack.h>
 33#include <linux/timer.h>
 34#include <linux/init.h>
 35#include <linux/bug.h>
 36#include <linux/nmi.h>
 37#include <linux/mm.h>
 38#include <linux/smp.h>
 39#include <linux/io.h>
 40
 
 
 
 
 
 41#if defined(CONFIG_EDAC)
 42#include <linux/edac.h>
 43#endif
 44
 
 45#include <asm/stacktrace.h>
 46#include <asm/processor.h>
 47#include <asm/debugreg.h>
 48#include <linux/atomic.h>
 49#include <asm/text-patching.h>
 50#include <asm/ftrace.h>
 51#include <asm/traps.h>
 52#include <asm/desc.h>
 53#include <asm/fpu/internal.h>
 54#include <asm/cpu_entry_area.h>
 55#include <asm/mce.h>
 56#include <asm/fixmap.h>
 57#include <asm/mach_traps.h>
 58#include <asm/alternative.h>
 59#include <asm/fpu/xstate.h>
 60#include <asm/trace/mpx.h>
 61#include <asm/mpx.h>
 62#include <asm/vm86.h>
 63#include <asm/umip.h>
 64
 65#ifdef CONFIG_X86_64
 66#include <asm/x86_init.h>
 67#include <asm/pgalloc.h>
 68#include <asm/proto.h>
 69#else
 70#include <asm/processor-flags.h>
 71#include <asm/setup.h>
 72#include <asm/proto.h>
 73#endif
 74
 75DECLARE_BITMAP(system_vectors, NR_VECTORS);
 76
 77static inline void cond_local_irq_enable(struct pt_regs *regs)
 78{
 79	if (regs->flags & X86_EFLAGS_IF)
 80		local_irq_enable();
 81}
 82
 83static inline void cond_local_irq_disable(struct pt_regs *regs)
 84{
 85	if (regs->flags & X86_EFLAGS_IF)
 86		local_irq_disable();
 87}
 88
 89/*
 90 * In IST context, we explicitly disable preemption.  This serves two
 91 * purposes: it makes it much less likely that we would accidentally
 92 * schedule in IST context and it will force a warning if we somehow
 93 * manage to schedule by accident.
 94 */
 95void ist_enter(struct pt_regs *regs)
 96{
 97	if (user_mode(regs)) {
 98		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 99	} else {
100		/*
101		 * We might have interrupted pretty much anything.  In
102		 * fact, if we're a machine check, we can even interrupt
103		 * NMI processing.  We don't want in_nmi() to return true,
104		 * but we need to notify RCU.
105		 */
106		rcu_nmi_enter();
107	}
108
109	preempt_disable();
110
111	/* This code is a bit fragile.  Test it. */
112	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
113}
114NOKPROBE_SYMBOL(ist_enter);
115
116void ist_exit(struct pt_regs *regs)
117{
118	preempt_enable_no_resched();
119
120	if (!user_mode(regs))
121		rcu_nmi_exit();
122}
123
124/**
125 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
126 * @regs:	regs passed to the IST exception handler
127 *
128 * IST exception handlers normally cannot schedule.  As a special
129 * exception, if the exception interrupted userspace code (i.e.
130 * user_mode(regs) would return true) and the exception was not
131 * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
132 * begins a non-atomic section within an ist_enter()/ist_exit() region.
133 * Callers are responsible for enabling interrupts themselves inside
134 * the non-atomic section, and callers must call ist_end_non_atomic()
135 * before ist_exit().
136 */
137void ist_begin_non_atomic(struct pt_regs *regs)
138{
139	BUG_ON(!user_mode(regs));
140
141	/*
142	 * Sanity check: we need to be on the normal thread stack.  This
143	 * will catch asm bugs and any attempt to use ist_preempt_enable
144	 * from double_fault.
145	 */
146	BUG_ON(!on_thread_stack());
147
148	preempt_enable_no_resched();
149}
150
151/**
152 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
153 *
154 * Ends a non-atomic section started with ist_begin_non_atomic().
155 */
156void ist_end_non_atomic(void)
157{
158	preempt_disable();
 
159}
160
161int is_valid_bugaddr(unsigned long addr)
162{
163	unsigned short ud;
164
165	if (addr < TASK_SIZE_MAX)
166		return 0;
167
168	if (probe_kernel_address((unsigned short *)addr, ud))
169		return 0;
170
171	return ud == INSN_UD0 || ud == INSN_UD2;
172}
173
174int fixup_bug(struct pt_regs *regs, int trapnr)
 
 
175{
176	if (trapnr != X86_TRAP_UD)
177		return 0;
178
179	switch (report_bug(regs->ip, regs)) {
180	case BUG_TRAP_TYPE_NONE:
181	case BUG_TRAP_TYPE_BUG:
182		break;
183
184	case BUG_TRAP_TYPE_WARN:
185		regs->ip += LEN_UD2;
186		return 1;
187	}
188
189	return 0;
190}
191
192static nokprobe_inline int
193do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
194		  struct pt_regs *regs,	long error_code)
195{
196	if (v8086_mode(regs)) {
197		/*
198		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
199		 * On nmi (interrupt 2), do_trap should not be called.
200		 */
201		if (trapnr < X86_TRAP_UD) {
202			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
203						error_code, trapnr))
204				return 0;
205		}
206	} else if (!user_mode(regs)) {
207		if (fixup_exception(regs, trapnr, error_code, 0))
208			return 0;
209
210		tsk->thread.error_code = error_code;
211		tsk->thread.trap_nr = trapnr;
212		die(str, regs, error_code);
213	}
 
 
 
 
214
 
 
 
215	/*
216	 * We want error_code and trap_nr set for userspace faults and
217	 * kernelspace faults which result in die(), but not
218	 * kernelspace faults which are fixed up.  die() gives the
219	 * process no chance to handle the signal and notice the
220	 * kernel fault information, so that won't result in polluting
221	 * the information about previously queued, but not yet
222	 * delivered, faults.  See also do_general_protection below.
223	 */
224	tsk->thread.error_code = error_code;
225	tsk->thread.trap_nr = trapnr;
226
227	return -1;
228}
229
230static void show_signal(struct task_struct *tsk, int signr,
231			const char *type, const char *desc,
232			struct pt_regs *regs, long error_code)
233{
234	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
235	    printk_ratelimit()) {
236		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
237			tsk->comm, task_pid_nr(tsk), type, desc,
238			regs->ip, regs->sp, error_code);
239		print_vma_addr(KERN_CONT " in ", regs->ip);
240		pr_cont("\n");
 
241	}
242}
243
244static void
245do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
246	long error_code, int sicode, void __user *addr)
247{
248	struct task_struct *tsk = current;
249
250
251	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
252		return;
253
254	show_signal(tsk, signr, "trap ", str, regs, error_code);
255
256	if (!sicode)
257		force_sig(signr);
258	else
259		force_sig_fault(signr, sicode, addr);
260}
261NOKPROBE_SYMBOL(do_trap);
262
263static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
264	unsigned long trapnr, int signr, int sicode, void __user *addr)
265{
266	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
267
268	/*
269	 * WARN*()s end up here; fix them up before we call the
270	 * notifier chain.
271	 */
272	if (!user_mode(regs) && fixup_bug(regs, trapnr))
273		return;
274
275	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
276			NOTIFY_STOP) {
277		cond_local_irq_enable(regs);
278		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
 
279	}
280}
281
282#define IP ((void __user *)uprobe_get_trap_addr(regs))
283#define DO_ERROR(trapnr, signr, sicode, addr, str, name)		   \
284dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	   \
285{									   \
286	do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
 
 
287}
288
289DO_ERROR(X86_TRAP_DE,     SIGFPE,  FPE_INTDIV,   IP, "divide error",        divide_error)
290DO_ERROR(X86_TRAP_OF,     SIGSEGV,          0, NULL, "overflow",            overflow)
291DO_ERROR(X86_TRAP_UD,     SIGILL,  ILL_ILLOPN,   IP, "invalid opcode",      invalid_op)
292DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,           0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun)
293DO_ERROR(X86_TRAP_TS,     SIGSEGV,          0, NULL, "invalid TSS",         invalid_TSS)
294DO_ERROR(X86_TRAP_NP,     SIGBUS,           0, NULL, "segment not present", segment_not_present)
295DO_ERROR(X86_TRAP_SS,     SIGBUS,           0, NULL, "stack segment",       stack_segment)
296DO_ERROR(X86_TRAP_AC,     SIGBUS,  BUS_ADRALN, NULL, "alignment check",     alignment_check)
297#undef IP
298
299#ifdef CONFIG_VMAP_STACK
300__visible void __noreturn handle_stack_overflow(const char *message,
301						struct pt_regs *regs,
302						unsigned long fault_address)
303{
304	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
305		 (void *)fault_address, current->stack,
306		 (char *)current->stack + THREAD_SIZE - 1);
307	die(message, regs, 0);
308
309	/* Be absolutely certain we don't return. */
310	panic("%s", message);
311}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312#endif
 
 
313
314#ifdef CONFIG_X86_64
315/* Runs on IST stack */
316dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2)
 
 
 
 
 
 
 
 
 
 
317{
318	static const char str[] = "double fault";
319	struct task_struct *tsk = current;
320
321#ifdef CONFIG_X86_ESPFIX64
322	extern unsigned char native_irq_return_iret[];
323
324	/*
325	 * If IRET takes a non-IST fault on the espfix64 stack, then we
326	 * end up promoting it to a doublefault.  In that case, take
327	 * advantage of the fact that we're not using the normal (TSS.sp0)
328	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
329	 * and then modify our own IRET frame so that, when we return,
330	 * we land directly at the #GP(0) vector with the stack already
331	 * set up according to its expectations.
332	 *
333	 * The net result is that our #GP handler will think that we
334	 * entered from usermode with the bad user context.
335	 *
336	 * No need for ist_enter here because we don't use RCU.
337	 */
338	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
339		regs->cs == __KERNEL_CS &&
340		regs->ip == (unsigned long)native_irq_return_iret)
341	{
342		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
343
344		/*
345		 * regs->sp points to the failing IRET frame on the
346		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
347		 * in gpregs->ss through gpregs->ip.
348		 *
349		 */
350		memmove(&gpregs->ip, (void *)regs->sp, 5*8);
351		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
352
353		/*
354		 * Adjust our frame so that we return straight to the #GP
355		 * vector with the expected RSP value.  This is safe because
356		 * we won't enable interupts or schedule before we invoke
357		 * general_protection, so nothing will clobber the stack
358		 * frame we just set up.
359		 *
360		 * We will enter general_protection with kernel GSBASE,
361		 * which is what the stub expects, given that the faulting
362		 * RIP will be the IRET instruction.
363		 */
364		regs->ip = (unsigned long)general_protection;
365		regs->sp = (unsigned long)&gpregs->orig_ax;
366
367		return;
368	}
369#endif
370
371	ist_enter(regs);
372	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
373
374	tsk->thread.error_code = error_code;
375	tsk->thread.trap_nr = X86_TRAP_DF;
376
377#ifdef CONFIG_VMAP_STACK
378	/*
379	 * If we overflow the stack into a guard page, the CPU will fail
380	 * to deliver #PF and will send #DF instead.  Similarly, if we
381	 * take any non-IST exception while too close to the bottom of
382	 * the stack, the processor will get a page fault while
383	 * delivering the exception and will generate a double fault.
384	 *
385	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
386	 * Page-Fault Exception (#PF):
387	 *
388	 *   Processors update CR2 whenever a page fault is detected. If a
389	 *   second page fault occurs while an earlier page fault is being
390	 *   delivered, the faulting linear address of the second fault will
391	 *   overwrite the contents of CR2 (replacing the previous
392	 *   address). These updates to CR2 occur even if the page fault
393	 *   results in a double fault or occurs during the delivery of a
394	 *   double fault.
395	 *
396	 * The logic below has a small possibility of incorrectly diagnosing
397	 * some errors as stack overflows.  For example, if the IDT or GDT
398	 * gets corrupted such that #GP delivery fails due to a bad descriptor
399	 * causing #GP and we hit this condition while CR2 coincidentally
400	 * points to the stack guard page, we'll think we overflowed the
401	 * stack.  Given that we're going to panic one way or another
402	 * if this happens, this isn't necessarily worth fixing.
403	 *
404	 * If necessary, we could improve the test by only diagnosing
405	 * a stack overflow if the saved RSP points within 47 bytes of
406	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
407	 * take an exception, the stack is already aligned and there
408	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
409	 * possible error code, so a stack overflow would *not* double
410	 * fault.  With any less space left, exception delivery could
411	 * fail, and, as a practical matter, we've overflowed the
412	 * stack even if the actual trigger for the double fault was
413	 * something else.
414	 */
415	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
416		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
417#endif
418
419#ifdef CONFIG_DOUBLEFAULT
420	df_debug(regs, error_code);
421#endif
422	/*
423	 * This is always a kernel trap and never fixable (and thus must
424	 * never return).
425	 */
426	for (;;)
427		die(str, regs, error_code);
428}
429#endif
430
431dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
 
432{
433	const struct mpx_bndcsr *bndcsr;
434
435	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
436	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
437			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
438		return;
439	cond_local_irq_enable(regs);
440
441	if (!user_mode(regs))
442		die("bounds", regs, error_code);
443
444	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
445		/* The exception is not from Intel MPX */
446		goto exit_trap;
447	}
448
449	/*
450	 * We need to look at BNDSTATUS to resolve this exception.
451	 * A NULL here might mean that it is in its 'init state',
452	 * which is all zeros which indicates MPX was not
453	 * responsible for the exception.
454	 */
455	bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR);
456	if (!bndcsr)
457		goto exit_trap;
458
459	trace_bounds_exception_mpx(bndcsr);
460	/*
461	 * The error code field of the BNDSTATUS register communicates status
462	 * information of a bound range exception #BR or operation involving
463	 * bound directory.
464	 */
465	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
466	case 2:	/* Bound directory has invalid entry. */
467		if (mpx_handle_bd_fault())
468			goto exit_trap;
469		break; /* Success, it was handled */
470	case 1: /* Bound violation. */
471	{
472		struct task_struct *tsk = current;
473		struct mpx_fault_info mpx;
474
475		if (mpx_fault_info(&mpx, regs)) {
476			/*
477			 * We failed to decode the MPX instruction.  Act as if
478			 * the exception was not caused by MPX.
479			 */
480			goto exit_trap;
481		}
482		/*
483		 * Success, we decoded the instruction and retrieved
484		 * an 'mpx' containing the address being accessed
485		 * which caused the exception.  This information
486		 * allows and application to possibly handle the
487		 * #BR exception itself.
488		 */
489		if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs,
490				       error_code))
491			break;
492
493		show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code);
494
495		force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper);
496		break;
497	}
498	case 0: /* No exception caused by Intel MPX operations. */
499		goto exit_trap;
500	default:
501		die("bounds", regs, error_code);
502	}
503
 
504	return;
505
506exit_trap:
507	/*
508	 * This path out is for all the cases where we could not
509	 * handle the exception in some way (like allocating a
510	 * table or telling userspace about it.  We will also end
511	 * up here if the kernel has MPX turned off at compile
512	 * time..
513	 */
514	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL);
515}
516
517dotraplinkage void
518do_general_protection(struct pt_regs *regs, long error_code)
519{
520	const char *desc = "general protection fault";
521	struct task_struct *tsk;
522
523	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
524	cond_local_irq_enable(regs);
525
526	if (static_cpu_has(X86_FEATURE_UMIP)) {
527		if (user_mode(regs) && fixup_umip_exception(regs))
528			return;
529	}
530
531	if (v8086_mode(regs)) {
532		local_irq_enable();
533		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
534		return;
535	}
536
537	tsk = current;
538	if (!user_mode(regs)) {
539		if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
540			return;
541
542		tsk->thread.error_code = error_code;
543		tsk->thread.trap_nr = X86_TRAP_GP;
544
545		/*
546		 * To be potentially processing a kprobe fault and to
547		 * trust the result from kprobe_running(), we have to
548		 * be non-preemptible.
549		 */
550		if (!preemptible() && kprobe_running() &&
551		    kprobe_fault_handler(regs, X86_TRAP_GP))
552			return;
553
554		if (notify_die(DIE_GPF, desc, regs, error_code,
555			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
556			die(desc, regs, error_code);
557		return;
558	}
559
560	tsk->thread.error_code = error_code;
561	tsk->thread.trap_nr = X86_TRAP_GP;
562
563	show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
564
565	force_sig(SIGSEGV);
566}
567NOKPROBE_SYMBOL(do_general_protection);
568
569dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
 
570{
571#ifdef CONFIG_DYNAMIC_FTRACE
572	/*
573	 * ftrace must be first, everything else may cause a recursive crash.
574	 * See note by declaration of modifying_ftrace_code in ftrace.c
575	 */
576	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
577	    ftrace_int3_handler(regs))
578		return;
579#endif
580	if (poke_int3_handler(regs))
581		return;
582
583	/*
584	 * Use ist_enter despite the fact that we don't use an IST stack.
585	 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
586	 * mode or even during context tracking state changes.
587	 *
588	 * This means that we can't schedule.  That's okay.
589	 */
590	ist_enter(regs);
591	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
592#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
593	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
594				SIGTRAP) == NOTIFY_STOP)
595		goto exit;
596#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
597
598#ifdef CONFIG_KPROBES
599	if (kprobe_int3_handler(regs))
600		goto exit;
601#endif
602
603	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
604			SIGTRAP) == NOTIFY_STOP)
605		goto exit;
606
607	cond_local_irq_enable(regs);
608	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL);
609	cond_local_irq_disable(regs);
610
611exit:
612	ist_exit(regs);
 
 
 
 
 
 
 
613}
614NOKPROBE_SYMBOL(do_int3);
615
616#ifdef CONFIG_X86_64
617/*
618 * Help handler running on a per-cpu (IST or entry trampoline) stack
619 * to switch to the normal thread stack if the interrupted code was in
620 * user mode. The actual stack switch is done in entry_64.S
621 */
622asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
623{
624	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
625	if (regs != eregs)
 
 
 
 
 
 
 
 
 
 
 
 
626		*regs = *eregs;
627	return regs;
628}
629NOKPROBE_SYMBOL(sync_regs);
630
631struct bad_iret_stack {
632	void *error_entry_ret;
633	struct pt_regs regs;
634};
635
636asmlinkage __visible notrace
637struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
638{
639	/*
640	 * This is called from entry_64.S early in handling a fault
641	 * caused by a bad iret to user mode.  To handle the fault
642	 * correctly, we want to move our stack frame to where it would
643	 * be had we entered directly on the entry stack (rather than
644	 * just below the IRET frame) and we want to pretend that the
645	 * exception came from the IRET target.
646	 */
647	struct bad_iret_stack *new_stack =
648		(struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
649
650	/* Copy the IRET target to the new stack. */
651	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
652
653	/* Copy the remainder of the stack from the current stack. */
654	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
655
656	BUG_ON(!user_mode(&new_stack->regs));
657	return new_stack;
658}
659NOKPROBE_SYMBOL(fixup_bad_iret);
660#endif
661
662static bool is_sysenter_singlestep(struct pt_regs *regs)
663{
664	/*
665	 * We don't try for precision here.  If we're anywhere in the region of
666	 * code that can be single-stepped in the SYSENTER entry path, then
667	 * assume that this is a useless single-step trap due to SYSENTER
668	 * being invoked with TF set.  (We don't know in advance exactly
669	 * which instructions will be hit because BTF could plausibly
670	 * be set.)
671	 */
672#ifdef CONFIG_X86_32
673	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
674		(unsigned long)__end_SYSENTER_singlestep_region -
675		(unsigned long)__begin_SYSENTER_singlestep_region;
676#elif defined(CONFIG_IA32_EMULATION)
677	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
678		(unsigned long)__end_entry_SYSENTER_compat -
679		(unsigned long)entry_SYSENTER_compat;
680#else
681	return false;
682#endif
683}
684
685/*
686 * Our handling of the processor debug registers is non-trivial.
687 * We do not clear them on entry and exit from the kernel. Therefore
688 * it is possible to get a watchpoint trap here from inside the kernel.
689 * However, the code in ./ptrace.c has ensured that the user can
690 * only set watchpoints on userspace addresses. Therefore the in-kernel
691 * watchpoint trap can only occur in code which is reading/writing
692 * from user space. Such code must not hold kernel locks (since it
693 * can equally take a page fault), therefore it is safe to call
694 * force_sig_info even though that claims and releases locks.
695 *
696 * Code in ./signal.c ensures that the debug control register
697 * is restored before we deliver any signal, and therefore that
698 * user code runs with the correct debug control register even though
699 * we clear it here.
700 *
701 * Being careful here means that we don't have to be as careful in a
702 * lot of more complicated places (task switching can be a bit lazy
703 * about restoring all the debug state, and ptrace doesn't have to
704 * find every occurrence of the TF bit that could be saved away even
705 * by user code)
706 *
707 * May run on IST stack.
708 */
709dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
710{
711	struct task_struct *tsk = current;
712	int user_icebp = 0;
713	unsigned long dr6;
714	int si_code;
715
716	ist_enter(regs);
717
718	get_debugreg(dr6, 6);
719	/*
720	 * The Intel SDM says:
721	 *
722	 *   Certain debug exceptions may clear bits 0-3. The remaining
723	 *   contents of the DR6 register are never cleared by the
724	 *   processor. To avoid confusion in identifying debug
725	 *   exceptions, debug handlers should clear the register before
726	 *   returning to the interrupted task.
727	 *
728	 * Keep it simple: clear DR6 immediately.
729	 */
730	set_debugreg(0, 6);
731
732	/* Filter out all the reserved bits which are preset to 1 */
733	dr6 &= ~DR6_RESERVED;
734
735	/*
736	 * The SDM says "The processor clears the BTF flag when it
737	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
738	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
739	 */
740	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
741
742	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
743		     is_sysenter_singlestep(regs))) {
744		dr6 &= ~DR_STEP;
745		if (!dr6)
746			goto exit;
747		/*
748		 * else we might have gotten a single-step trap and hit a
749		 * watchpoint at the same time, in which case we should fall
750		 * through and handle the watchpoint.
751		 */
752	}
753
754	/*
755	 * If dr6 has no reason to give us about the origin of this trap,
756	 * then it's very likely the result of an icebp/int01 trap.
757	 * User wants a sigtrap for that.
758	 */
759	if (!dr6 && user_mode(regs))
760		user_icebp = 1;
761
 
 
 
 
 
 
 
 
 
 
 
 
762	/* Store the virtualized DR6 value */
763	tsk->thread.debugreg6 = dr6;
764
765#ifdef CONFIG_KPROBES
766	if (kprobe_debug_handler(regs))
767		goto exit;
768#endif
769
770	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
771							SIGTRAP) == NOTIFY_STOP)
772		goto exit;
773
774	/*
775	 * Let others (NMI) know that the debug stack is in use
776	 * as we may switch to the interrupt stack.
777	 */
778	debug_stack_usage_inc();
779
780	/* It's safe to allow irq's after DR6 has been saved */
781	cond_local_irq_enable(regs);
782
783	if (v8086_mode(regs)) {
784		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
785					X86_TRAP_DB);
786		cond_local_irq_disable(regs);
787		debug_stack_usage_dec();
788		goto exit;
789	}
790
791	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
792		/*
793		 * Historical junk that used to handle SYSENTER single-stepping.
794		 * This should be unreachable now.  If we survive for a while
795		 * without anyone hitting this warning, we'll turn this into
796		 * an oops.
797		 */
 
798		tsk->thread.debugreg6 &= ~DR_STEP;
799		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
800		regs->flags &= ~X86_EFLAGS_TF;
801	}
802	si_code = get_si_code(tsk->thread.debugreg6);
803	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
804		send_sigtrap(regs, error_code, si_code);
805	cond_local_irq_disable(regs);
806	debug_stack_usage_dec();
807
808exit:
809	ist_exit(regs);
810}
811NOKPROBE_SYMBOL(do_debug);
812
813/*
814 * Note that we play around with the 'TS' bit in an attempt to get
815 * the correct behaviour even in the presence of the asynchronous
816 * IRQ13 behaviour
817 */
818static void math_error(struct pt_regs *regs, int error_code, int trapnr)
819{
820	struct task_struct *task = current;
821	struct fpu *fpu = &task->thread.fpu;
822	int si_code;
823	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
824						"simd exception";
825
826	cond_local_irq_enable(regs);
827
828	if (!user_mode(regs)) {
829		if (fixup_exception(regs, trapnr, error_code, 0))
830			return;
831
832		task->thread.error_code = error_code;
833		task->thread.trap_nr = trapnr;
834
835		if (notify_die(DIE_TRAP, str, regs, error_code,
836					trapnr, SIGFPE) != NOTIFY_STOP)
 
 
 
837			die(str, regs, error_code);
 
838		return;
839	}
840
841	/*
842	 * Save the info for the exception handler and clear the error.
843	 */
844	fpu__save(fpu);
845
846	task->thread.trap_nr	= trapnr;
847	task->thread.error_code = error_code;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
848
849	si_code = fpu__exception_code(fpu, trapnr);
850	/* Retry when we get spurious exceptions: */
851	if (!si_code)
852		return;
 
 
 
 
 
 
 
853
854	force_sig_fault(SIGFPE, si_code,
855			(void __user *)uprobe_get_trap_addr(regs));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
856}
857
858dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
859{
860	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 
 
 
861	math_error(regs, error_code, X86_TRAP_MF);
862}
863
864dotraplinkage void
865do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
866{
867	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
868	math_error(regs, error_code, X86_TRAP_XF);
869}
870
871dotraplinkage void
872do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
873{
874	cond_local_irq_enable(regs);
 
 
 
 
875}
876
877dotraplinkage void
878do_device_not_available(struct pt_regs *regs, long error_code)
879{
880	unsigned long cr0 = read_cr0();
881
882	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
884#ifdef CONFIG_MATH_EMULATION
885	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
886		struct math_emu_info info = { };
887
888		cond_local_irq_enable(regs);
889
890		info.regs = regs;
891		math_emulate(&info);
892		return;
893	}
894#endif
895
896	/* This should not happen. */
897	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
898		/* Try to fix it up and carry on. */
899		write_cr0(cr0 & ~X86_CR0_TS);
900	} else {
901		/*
902		 * Something terrible happened, and we're better off trying
903		 * to kill the task than getting stuck in a never-ending
904		 * loop of #NM faults.
905		 */
906		die("unexpected #NM exception", regs, error_code);
907	}
908}
909NOKPROBE_SYMBOL(do_device_not_available);
910
911#ifdef CONFIG_X86_32
912dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
913{
914	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
915	local_irq_enable();
916
 
 
 
 
917	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
918			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
919		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
920			ILL_BADSTK, (void __user *)NULL);
921	}
922}
923#endif
924
 
 
 
 
 
 
 
 
 
 
925void __init trap_init(void)
926{
927	/* Init cpu_entry_area before IST entries are set up */
928	setup_cpu_entry_areas();
929
930	idt_setup_traps();
 
931
932	/*
933	 * Set the IDT descriptor to a fixed read-only location, so that the
934	 * "sidt" instruction will not leak the location of the kernel, and
935	 * to defend the IDT against arbitrary memory write vulnerabilities.
936	 * It will be reloaded in cpu_init() */
937	cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
938		    PAGE_KERNEL_RO);
939	idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
940
941	/*
942	 * Should be a barrier for any external CPU state:
943	 */
944	cpu_init();
945
946	idt_setup_ist_traps();
947
948	x86_init.irqs.trap_init();
949
950	idt_setup_debugidt_traps();
 
 
 
 
951}
v3.5.6
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8
  9/*
 10 * Handle hardware traps and faults.
 11 */
 
 
 
 
 12#include <linux/interrupt.h>
 13#include <linux/kallsyms.h>
 14#include <linux/spinlock.h>
 15#include <linux/kprobes.h>
 16#include <linux/uaccess.h>
 17#include <linux/kdebug.h>
 18#include <linux/kgdb.h>
 19#include <linux/kernel.h>
 20#include <linux/module.h>
 21#include <linux/ptrace.h>
 
 22#include <linux/string.h>
 23#include <linux/delay.h>
 24#include <linux/errno.h>
 25#include <linux/kexec.h>
 26#include <linux/sched.h>
 
 27#include <linux/timer.h>
 28#include <linux/init.h>
 29#include <linux/bug.h>
 30#include <linux/nmi.h>
 31#include <linux/mm.h>
 32#include <linux/smp.h>
 33#include <linux/io.h>
 34
 35#ifdef CONFIG_EISA
 36#include <linux/ioport.h>
 37#include <linux/eisa.h>
 38#endif
 39
 40#if defined(CONFIG_EDAC)
 41#include <linux/edac.h>
 42#endif
 43
 44#include <asm/kmemcheck.h>
 45#include <asm/stacktrace.h>
 46#include <asm/processor.h>
 47#include <asm/debugreg.h>
 48#include <linux/atomic.h>
 
 49#include <asm/ftrace.h>
 50#include <asm/traps.h>
 51#include <asm/desc.h>
 52#include <asm/i387.h>
 53#include <asm/fpu-internal.h>
 54#include <asm/mce.h>
 55
 56#include <asm/mach_traps.h>
 
 
 
 
 
 
 57
 58#ifdef CONFIG_X86_64
 59#include <asm/x86_init.h>
 60#include <asm/pgalloc.h>
 61#include <asm/proto.h>
 62#else
 63#include <asm/processor-flags.h>
 64#include <asm/setup.h>
 
 
 65
 66asmlinkage int system_call(void);
 67
 68/* Do we ignore FPU interrupts ? */
 69char ignore_fpu_irq;
 
 
 
 
 
 
 
 
 
 70
 71/*
 72 * The IDT has to be page-aligned to simplify the Pentium
 73 * F0 0F bug workaround.
 
 
 74 */
 75gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, };
 76#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 77
 78DECLARE_BITMAP(used_vectors, NR_VECTORS);
 79EXPORT_SYMBOL_GPL(used_vectors);
 
 
 80
 81static inline void conditional_sti(struct pt_regs *regs)
 82{
 83	if (regs->flags & X86_EFLAGS_IF)
 84		local_irq_enable();
 
 
 85}
 86
 87static inline void preempt_conditional_sti(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 88{
 89	inc_preempt_count();
 90	if (regs->flags & X86_EFLAGS_IF)
 91		local_irq_enable();
 
 
 
 
 
 
 
 92}
 93
 94static inline void conditional_cli(struct pt_regs *regs)
 
 
 
 
 
 95{
 96	if (regs->flags & X86_EFLAGS_IF)
 97		local_irq_disable();
 98}
 99
100static inline void preempt_conditional_cli(struct pt_regs *regs)
101{
102	if (regs->flags & X86_EFLAGS_IF)
103		local_irq_disable();
104	dec_preempt_count();
 
 
 
 
 
 
105}
106
107static void __kprobes
108do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
109	long error_code, siginfo_t *info)
110{
111	struct task_struct *tsk = current;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
113#ifdef CONFIG_X86_32
114	if (regs->flags & X86_VM_MASK) {
 
 
 
115		/*
116		 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
117		 * On nmi (interrupt 2), do_trap should not be called.
118		 */
119		if (trapnr < X86_TRAP_UD)
120			goto vm86_trap;
121		goto trap_signal;
 
 
 
 
 
 
 
 
 
122	}
123#endif
124
125	if (!user_mode(regs))
126		goto kernel_trap;
127
128#ifdef CONFIG_X86_32
129trap_signal:
130#endif
131	/*
132	 * We want error_code and trap_nr set for userspace faults and
133	 * kernelspace faults which result in die(), but not
134	 * kernelspace faults which are fixed up.  die() gives the
135	 * process no chance to handle the signal and notice the
136	 * kernel fault information, so that won't result in polluting
137	 * the information about previously queued, but not yet
138	 * delivered, faults.  See also do_general_protection below.
139	 */
140	tsk->thread.error_code = error_code;
141	tsk->thread.trap_nr = trapnr;
142
143#ifdef CONFIG_X86_64
 
 
 
 
 
 
144	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
145	    printk_ratelimit()) {
146		printk(KERN_INFO
147		       "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
148		       tsk->comm, tsk->pid, str,
149		       regs->ip, regs->sp, error_code);
150		print_vma_addr(" in ", regs->ip);
151		printk("\n");
152	}
153#endif
 
 
 
 
 
 
 
 
 
 
 
 
154
155	if (info)
156		force_sig_info(signr, info, tsk);
157	else
158		force_sig(signr, tsk);
159	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
160
161kernel_trap:
162	if (!fixup_exception(regs)) {
163		tsk->thread.error_code = error_code;
164		tsk->thread.trap_nr = trapnr;
165		die(str, regs, error_code);
166	}
167	return;
168
169#ifdef CONFIG_X86_32
170vm86_trap:
171	if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
172						error_code, trapnr))
173		goto trap_signal;
174	return;
175#endif
176}
177
178#define DO_ERROR(trapnr, signr, str, name)				\
179dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
180{									\
181	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
182							== NOTIFY_STOP)	\
183		return;							\
184	conditional_sti(regs);						\
185	do_trap(trapnr, signr, str, regs, error_code, NULL);		\
186}
187
188#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr)		\
189dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
190{									\
191	siginfo_t info;							\
192	info.si_signo = signr;						\
193	info.si_errno = 0;						\
194	info.si_code = sicode;						\
195	info.si_addr = (void __user *)siaddr;				\
196	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
197							== NOTIFY_STOP)	\
198		return;							\
199	conditional_sti(regs);						\
200	do_trap(trapnr, signr, str, regs, error_code, &info);		\
201}
202
203DO_ERROR_INFO(X86_TRAP_DE, SIGFPE, "divide error", divide_error, FPE_INTDIV,
204		regs->ip)
205DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
206DO_ERROR(X86_TRAP_BR, SIGSEGV, "bounds", bounds)
207DO_ERROR_INFO(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN,
208		regs->ip)
209DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",
210		coprocessor_segment_overrun)
211DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
212DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
213#ifdef CONFIG_X86_32
214DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
215#endif
216DO_ERROR_INFO(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check,
217		BUS_ADRALN, 0)
218
219#ifdef CONFIG_X86_64
220/* Runs on IST stack */
221dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
222{
223	if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
224			X86_TRAP_SS, SIGBUS) == NOTIFY_STOP)
225		return;
226	preempt_conditional_sti(regs);
227	do_trap(X86_TRAP_SS, SIGBUS, "stack segment", regs, error_code, NULL);
228	preempt_conditional_cli(regs);
229}
230
231dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
232{
233	static const char str[] = "double fault";
234	struct task_struct *tsk = current;
235
236	/* Return not checked because double check cannot be ignored */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
238
239	tsk->thread.error_code = error_code;
240	tsk->thread.trap_nr = X86_TRAP_DF;
241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242	/*
243	 * This is always a kernel trap and never fixable (and thus must
244	 * never return).
245	 */
246	for (;;)
247		die(str, regs, error_code);
248}
249#endif
250
251dotraplinkage void __kprobes
252do_general_protection(struct pt_regs *regs, long error_code)
253{
254	struct task_struct *tsk;
 
 
 
 
 
 
255
256	conditional_sti(regs);
 
257
258#ifdef CONFIG_X86_32
259	if (regs->flags & X86_VM_MASK)
260		goto gp_in_vm86;
261#endif
262
263	tsk = current;
264	if (!user_mode(regs))
265		goto gp_in_kernel;
 
 
 
 
 
 
266
267	tsk->thread.error_code = error_code;
268	tsk->thread.trap_nr = X86_TRAP_GP;
 
 
 
 
 
 
 
 
 
 
 
 
 
269
270	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
271			printk_ratelimit()) {
272		printk(KERN_INFO
273			"%s[%d] general protection ip:%lx sp:%lx error:%lx",
274			tsk->comm, task_pid_nr(tsk),
275			regs->ip, regs->sp, error_code);
276		print_vma_addr(" in ", regs->ip);
277		printk("\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278	}
279
280	force_sig(SIGSEGV, tsk);
281	return;
282
283#ifdef CONFIG_X86_32
284gp_in_vm86:
285	local_irq_enable();
286	handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
287	return;
288#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289
290gp_in_kernel:
291	if (fixup_exception(regs))
 
292		return;
 
293
294	tsk->thread.error_code = error_code;
295	tsk->thread.trap_nr = X86_TRAP_GP;
296	if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
297			X86_TRAP_GP, SIGSEGV) == NOTIFY_STOP)
298		return;
299	die("general protection fault", regs, error_code);
300}
 
301
302/* May run on IST stack. */
303dotraplinkage void __kprobes notrace do_int3(struct pt_regs *regs, long error_code)
304{
305#ifdef CONFIG_DYNAMIC_FTRACE
306	/*
307	 * ftrace must be first, everything else may cause a recursive crash.
308	 * See note by declaration of modifying_ftrace_code in ftrace.c
309	 */
310	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
311	    ftrace_int3_handler(regs))
312		return;
313#endif
 
 
 
 
 
 
 
 
 
 
 
 
314#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
315	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
316				SIGTRAP) == NOTIFY_STOP)
317		return;
318#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
319
 
 
 
 
 
320	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
321			SIGTRAP) == NOTIFY_STOP)
322		return;
 
 
 
 
323
324	/*
325	 * Let others (NMI) know that the debug stack is in use
326	 * as we may switch to the interrupt stack.
327	 */
328	debug_stack_usage_inc();
329	preempt_conditional_sti(regs);
330	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
331	preempt_conditional_cli(regs);
332	debug_stack_usage_dec();
333}
 
334
335#ifdef CONFIG_X86_64
336/*
337 * Help handler running on IST stack to switch back to user stack
338 * for scheduling or signal handling. The actual stack switch is done in
339 * entry.S
340 */
341asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
342{
343	struct pt_regs *regs = eregs;
344	/* Did already sync */
345	if (eregs == (struct pt_regs *)eregs->sp)
346		;
347	/* Exception from user space */
348	else if (user_mode(eregs))
349		regs = task_pt_regs(current);
350	/*
351	 * Exception from kernel and interrupts are enabled. Move to
352	 * kernel process stack.
353	 */
354	else if (eregs->flags & X86_EFLAGS_IF)
355		regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
356	if (eregs != regs)
357		*regs = *eregs;
358	return regs;
359}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360#endif
361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362/*
363 * Our handling of the processor debug registers is non-trivial.
364 * We do not clear them on entry and exit from the kernel. Therefore
365 * it is possible to get a watchpoint trap here from inside the kernel.
366 * However, the code in ./ptrace.c has ensured that the user can
367 * only set watchpoints on userspace addresses. Therefore the in-kernel
368 * watchpoint trap can only occur in code which is reading/writing
369 * from user space. Such code must not hold kernel locks (since it
370 * can equally take a page fault), therefore it is safe to call
371 * force_sig_info even though that claims and releases locks.
372 *
373 * Code in ./signal.c ensures that the debug control register
374 * is restored before we deliver any signal, and therefore that
375 * user code runs with the correct debug control register even though
376 * we clear it here.
377 *
378 * Being careful here means that we don't have to be as careful in a
379 * lot of more complicated places (task switching can be a bit lazy
380 * about restoring all the debug state, and ptrace doesn't have to
381 * find every occurrence of the TF bit that could be saved away even
382 * by user code)
383 *
384 * May run on IST stack.
385 */
386dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
387{
388	struct task_struct *tsk = current;
389	int user_icebp = 0;
390	unsigned long dr6;
391	int si_code;
392
 
 
393	get_debugreg(dr6, 6);
 
 
 
 
 
 
 
 
 
 
 
 
394
395	/* Filter out all the reserved bits which are preset to 1 */
396	dr6 &= ~DR6_RESERVED;
397
398	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399	 * If dr6 has no reason to give us about the origin of this trap,
400	 * then it's very likely the result of an icebp/int01 trap.
401	 * User wants a sigtrap for that.
402	 */
403	if (!dr6 && user_mode(regs))
404		user_icebp = 1;
405
406	/* Catch kmemcheck conditions first of all! */
407	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
408		return;
409
410	/* DR6 may or may not be cleared by the CPU */
411	set_debugreg(0, 6);
412
413	/*
414	 * The processor cleared BTF, so don't mark that we need it set.
415	 */
416	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
417
418	/* Store the virtualized DR6 value */
419	tsk->thread.debugreg6 = dr6;
420
421	if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code,
 
 
 
 
 
422							SIGTRAP) == NOTIFY_STOP)
423		return;
424
425	/*
426	 * Let others (NMI) know that the debug stack is in use
427	 * as we may switch to the interrupt stack.
428	 */
429	debug_stack_usage_inc();
430
431	/* It's safe to allow irq's after DR6 has been saved */
432	preempt_conditional_sti(regs);
433
434	if (regs->flags & X86_VM_MASK) {
435		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
436					X86_TRAP_DB);
437		preempt_conditional_cli(regs);
438		debug_stack_usage_dec();
439		return;
440	}
441
442	/*
443	 * Single-stepping through system calls: ignore any exceptions in
444	 * kernel space, but re-enable TF when returning to user mode.
445	 *
446	 * We already checked v86 mode above, so we can check for kernel mode
447	 * by just checking the CPL of CS.
448	 */
449	if ((dr6 & DR_STEP) && !user_mode(regs)) {
450		tsk->thread.debugreg6 &= ~DR_STEP;
451		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
452		regs->flags &= ~X86_EFLAGS_TF;
453	}
454	si_code = get_si_code(tsk->thread.debugreg6);
455	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
456		send_sigtrap(tsk, regs, error_code, si_code);
457	preempt_conditional_cli(regs);
458	debug_stack_usage_dec();
459
460	return;
 
461}
 
462
463/*
464 * Note that we play around with the 'TS' bit in an attempt to get
465 * the correct behaviour even in the presence of the asynchronous
466 * IRQ13 behaviour
467 */
468void math_error(struct pt_regs *regs, int error_code, int trapnr)
469{
470	struct task_struct *task = current;
471	siginfo_t info;
472	unsigned short err;
473	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
474						"simd exception";
475
476	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
477		return;
478	conditional_sti(regs);
 
 
 
 
 
479
480	if (!user_mode_vm(regs))
481	{
482		if (!fixup_exception(regs)) {
483			task->thread.error_code = error_code;
484			task->thread.trap_nr = trapnr;
485			die(str, regs, error_code);
486		}
487		return;
488	}
489
490	/*
491	 * Save the info for the exception handler and clear the error.
492	 */
493	save_init_fpu(task);
494	task->thread.trap_nr = trapnr;
 
495	task->thread.error_code = error_code;
496	info.si_signo = SIGFPE;
497	info.si_errno = 0;
498	info.si_addr = (void __user *)regs->ip;
499	if (trapnr == X86_TRAP_MF) {
500		unsigned short cwd, swd;
501		/*
502		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
503		 * status.  0x3f is the exception bits in these regs, 0x200 is the
504		 * C1 reg you need in case of a stack fault, 0x040 is the stack
505		 * fault bit.  We should only be taking one exception at a time,
506		 * so if this combination doesn't produce any single exception,
507		 * then we have a bad program that isn't synchronizing its FPU usage
508		 * and it will suffer the consequences since we won't be able to
509		 * fully reproduce the context of the exception
510		 */
511		cwd = get_fpu_cwd(task);
512		swd = get_fpu_swd(task);
513
514		err = swd & ~cwd;
515	} else {
516		/*
517		 * The SIMD FPU exceptions are handled a little differently, as there
518		 * is only a single status/control register.  Thus, to determine which
519		 * unmasked exception was caught we must mask the exception mask bits
520		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
521		 */
522		unsigned short mxcsr = get_fpu_mxcsr(task);
523		err = ~(mxcsr >> 7) & mxcsr;
524	}
525
526	if (err & 0x001) {	/* Invalid op */
527		/*
528		 * swd & 0x240 == 0x040: Stack Underflow
529		 * swd & 0x240 == 0x240: Stack Overflow
530		 * User must clear the SF bit (0x40) if set
531		 */
532		info.si_code = FPE_FLTINV;
533	} else if (err & 0x004) { /* Divide by Zero */
534		info.si_code = FPE_FLTDIV;
535	} else if (err & 0x008) { /* Overflow */
536		info.si_code = FPE_FLTOVF;
537	} else if (err & 0x012) { /* Denormal, Underflow */
538		info.si_code = FPE_FLTUND;
539	} else if (err & 0x020) { /* Precision */
540		info.si_code = FPE_FLTRES;
541	} else {
542		/*
543		 * If we're using IRQ 13, or supposedly even some trap
544		 * X86_TRAP_MF implementations, it's possible
545		 * we get a spurious trap, which is not an error.
546		 */
547		return;
548	}
549	force_sig_info(SIGFPE, &info, task);
550}
551
552dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
553{
554#ifdef CONFIG_X86_32
555	ignore_fpu_irq = 1;
556#endif
557
558	math_error(regs, error_code, X86_TRAP_MF);
559}
560
561dotraplinkage void
562do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
563{
 
564	math_error(regs, error_code, X86_TRAP_XF);
565}
566
567dotraplinkage void
568do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
569{
570	conditional_sti(regs);
571#if 0
572	/* No need to warn about this any longer. */
573	printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
574#endif
575}
576
577asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
 
578{
579}
580
581asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void)
582{
583}
584
585/*
586 * 'math_state_restore()' saves the current math information in the
587 * old math state array, and gets the new ones from the current task
588 *
589 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
590 * Don't touch unless you *really* know how it works.
591 *
592 * Must be called with kernel preemption disabled (eg with local
593 * local interrupts as in the case of do_device_not_available).
594 */
595void math_state_restore(void)
596{
597	struct task_struct *tsk = current;
598
599	if (!tsk_used_math(tsk)) {
600		local_irq_enable();
601		/*
602		 * does a slab alloc which can sleep
603		 */
604		if (init_fpu(tsk)) {
605			/*
606			 * ran out of memory!
607			 */
608			do_group_exit(SIGKILL);
609			return;
610		}
611		local_irq_disable();
612	}
613
614	__thread_fpu_begin(tsk);
615	/*
616	 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
617	 */
618	if (unlikely(restore_fpu_checking(tsk))) {
619		__thread_fpu_end(tsk);
620		force_sig(SIGSEGV, tsk);
621		return;
622	}
623
624	tsk->fpu_counter++;
625}
626EXPORT_SYMBOL_GPL(math_state_restore);
627
628dotraplinkage void __kprobes
629do_device_not_available(struct pt_regs *regs, long error_code)
630{
631#ifdef CONFIG_MATH_EMULATION
632	if (read_cr0() & X86_CR0_EM) {
633		struct math_emu_info info = { };
634
635		conditional_sti(regs);
636
637		info.regs = regs;
638		math_emulate(&info);
639		return;
640	}
641#endif
642	math_state_restore(); /* interrupts still off */
643#ifdef CONFIG_X86_32
644	conditional_sti(regs);
645#endif
 
 
 
 
 
 
 
 
 
646}
 
647
648#ifdef CONFIG_X86_32
649dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
650{
651	siginfo_t info;
652	local_irq_enable();
653
654	info.si_signo = SIGILL;
655	info.si_errno = 0;
656	info.si_code = ILL_BADSTK;
657	info.si_addr = NULL;
658	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
659			X86_TRAP_IRET, SIGILL) == NOTIFY_STOP)
660		return;
661	do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
662		&info);
663}
664#endif
665
666/* Set of traps needed for early debugging. */
667void __init early_trap_init(void)
668{
669	set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
670	/* int3 can be called from all */
671	set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
672	set_intr_gate(X86_TRAP_PF, &page_fault);
673	load_idt(&idt_descr);
674}
675
676void __init trap_init(void)
677{
678	int i;
 
679
680#ifdef CONFIG_EISA
681	void __iomem *p = early_ioremap(0x0FFFD9, 4);
682
683	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
684		EISA_bus = 1;
685	early_iounmap(p, 4);
686#endif
687
688	set_intr_gate(X86_TRAP_DE, &divide_error);
689	set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
690	/* int4 can be called from all */
691	set_system_intr_gate(X86_TRAP_OF, &overflow);
692	set_intr_gate(X86_TRAP_BR, &bounds);
693	set_intr_gate(X86_TRAP_UD, &invalid_op);
694	set_intr_gate(X86_TRAP_NM, &device_not_available);
695#ifdef CONFIG_X86_32
696	set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
697#else
698	set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
699#endif
700	set_intr_gate(X86_TRAP_OLD_MF, &coprocessor_segment_overrun);
701	set_intr_gate(X86_TRAP_TS, &invalid_TSS);
702	set_intr_gate(X86_TRAP_NP, &segment_not_present);
703	set_intr_gate_ist(X86_TRAP_SS, &stack_segment, STACKFAULT_STACK);
704	set_intr_gate(X86_TRAP_GP, &general_protection);
705	set_intr_gate(X86_TRAP_SPURIOUS, &spurious_interrupt_bug);
706	set_intr_gate(X86_TRAP_MF, &coprocessor_error);
707	set_intr_gate(X86_TRAP_AC, &alignment_check);
708#ifdef CONFIG_X86_MCE
709	set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
710#endif
711	set_intr_gate(X86_TRAP_XF, &simd_coprocessor_error);
712
713	/* Reserve all the builtin and the syscall vector: */
714	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
715		set_bit(i, used_vectors);
716
717#ifdef CONFIG_IA32_EMULATION
718	set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
719	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
720#endif
721
722#ifdef CONFIG_X86_32
723	set_system_trap_gate(SYSCALL_VECTOR, &system_call);
724	set_bit(SYSCALL_VECTOR, used_vectors);
725#endif
726
727	/*
728	 * Should be a barrier for any external CPU state:
729	 */
730	cpu_init();
731
 
 
732	x86_init.irqs.trap_init();
733
734#ifdef CONFIG_X86_64
735	memcpy(&nmi_idt_table, &idt_table, IDT_ENTRIES * 16);
736	set_nmi_gate(X86_TRAP_DB, &debug);
737	set_nmi_gate(X86_TRAP_BP, &int3);
738#endif
739}