Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/livepatch.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/signal.h>
  52
  53#include <asm/param.h>
  54#include <linux/uaccess.h>
  55#include <asm/unistd.h>
  56#include <asm/siginfo.h>
  57#include <asm/cacheflush.h>
 
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 
 
 
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
 185	    !klp_patch_pending(current))
 186		clear_thread_flag(TIF_SIGPENDING);
 187
 188}
 189EXPORT_SYMBOL(recalc_sigpending);
 190
 191void calculate_sigpending(void)
 192{
 193	/* Have any signals or users of TIF_SIGPENDING been delayed
 194	 * until after fork?
 195	 */
 196	spin_lock_irq(&current->sighand->siglock);
 197	set_tsk_thread_flag(current, TIF_SIGPENDING);
 198	recalc_sigpending();
 199	spin_unlock_irq(&current->sighand->siglock);
 200}
 201
 202/* Given the mask, find the first available signal that should be serviced. */
 203
 204#define SYNCHRONOUS_MASK \
 205	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 206	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 207
 208int next_signal(struct sigpending *pending, sigset_t *mask)
 209{
 210	unsigned long i, *s, *m, x;
 211	int sig = 0;
 212
 213	s = pending->signal.sig;
 214	m = mask->sig;
 215
 216	/*
 217	 * Handle the first word specially: it contains the
 218	 * synchronous signals that need to be dequeued first.
 219	 */
 220	x = *s &~ *m;
 221	if (x) {
 222		if (x & SYNCHRONOUS_MASK)
 223			x &= SYNCHRONOUS_MASK;
 224		sig = ffz(~x) + 1;
 225		return sig;
 226	}
 227
 228	switch (_NSIG_WORDS) {
 229	default:
 230		for (i = 1; i < _NSIG_WORDS; ++i) {
 231			x = *++s &~ *++m;
 232			if (!x)
 233				continue;
 234			sig = ffz(~x) + i*_NSIG_BPW + 1;
 235			break;
 236		}
 237		break;
 238
 239	case 2:
 240		x = s[1] &~ m[1];
 241		if (!x)
 242			break;
 243		sig = ffz(~x) + _NSIG_BPW + 1;
 244		break;
 245
 246	case 1:
 247		/* Nothing to do */
 248		break;
 249	}
 250
 251	return sig;
 252}
 253
 254static inline void print_dropped_signal(int sig)
 255{
 256	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 257
 258	if (!print_fatal_signals)
 259		return;
 260
 261	if (!__ratelimit(&ratelimit_state))
 262		return;
 263
 264	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 265				current->comm, current->pid, sig);
 266}
 267
 268/**
 269 * task_set_jobctl_pending - set jobctl pending bits
 270 * @task: target task
 271 * @mask: pending bits to set
 272 *
 273 * Clear @mask from @task->jobctl.  @mask must be subset of
 274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 275 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 276 * cleared.  If @task is already being killed or exiting, this function
 277 * becomes noop.
 278 *
 279 * CONTEXT:
 280 * Must be called with @task->sighand->siglock held.
 281 *
 282 * RETURNS:
 283 * %true if @mask is set, %false if made noop because @task was dying.
 284 */
 285bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 286{
 287	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 288			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 289	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 290
 291	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 292		return false;
 293
 294	if (mask & JOBCTL_STOP_SIGMASK)
 295		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 296
 297	task->jobctl |= mask;
 298	return true;
 299}
 300
 301/**
 302 * task_clear_jobctl_trapping - clear jobctl trapping bit
 303 * @task: target task
 304 *
 305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 306 * Clear it and wake up the ptracer.  Note that we don't need any further
 307 * locking.  @task->siglock guarantees that @task->parent points to the
 308 * ptracer.
 309 *
 310 * CONTEXT:
 311 * Must be called with @task->sighand->siglock held.
 312 */
 313void task_clear_jobctl_trapping(struct task_struct *task)
 314{
 315	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 316		task->jobctl &= ~JOBCTL_TRAPPING;
 317		smp_mb();	/* advised by wake_up_bit() */
 318		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 319	}
 320}
 321
 322/**
 323 * task_clear_jobctl_pending - clear jobctl pending bits
 324 * @task: target task
 325 * @mask: pending bits to clear
 326 *
 327 * Clear @mask from @task->jobctl.  @mask must be subset of
 328 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 329 * STOP bits are cleared together.
 330 *
 331 * If clearing of @mask leaves no stop or trap pending, this function calls
 332 * task_clear_jobctl_trapping().
 333 *
 334 * CONTEXT:
 335 * Must be called with @task->sighand->siglock held.
 336 */
 337void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 338{
 339	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 340
 341	if (mask & JOBCTL_STOP_PENDING)
 342		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 343
 344	task->jobctl &= ~mask;
 345
 346	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 347		task_clear_jobctl_trapping(task);
 348}
 349
 350/**
 351 * task_participate_group_stop - participate in a group stop
 352 * @task: task participating in a group stop
 353 *
 354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 355 * Group stop states are cleared and the group stop count is consumed if
 356 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 357 * stop, the appropriate `SIGNAL_*` flags are set.
 358 *
 359 * CONTEXT:
 360 * Must be called with @task->sighand->siglock held.
 361 *
 362 * RETURNS:
 363 * %true if group stop completion should be notified to the parent, %false
 364 * otherwise.
 365 */
 366static bool task_participate_group_stop(struct task_struct *task)
 367{
 368	struct signal_struct *sig = task->signal;
 369	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 370
 371	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 372
 373	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 374
 375	if (!consume)
 376		return false;
 377
 378	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 379		sig->group_stop_count--;
 380
 381	/*
 382	 * Tell the caller to notify completion iff we are entering into a
 383	 * fresh group stop.  Read comment in do_signal_stop() for details.
 384	 */
 385	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 386		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 387		return true;
 388	}
 389	return false;
 390}
 391
 392void task_join_group_stop(struct task_struct *task)
 393{
 394	/* Have the new thread join an on-going signal group stop */
 395	unsigned long jobctl = current->jobctl;
 396	if (jobctl & JOBCTL_STOP_PENDING) {
 397		struct signal_struct *sig = current->signal;
 398		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
 399		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
 400		if (task_set_jobctl_pending(task, signr | gstop)) {
 401			sig->group_stop_count++;
 402		}
 403	}
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 413{
 414	struct sigqueue *q = NULL;
 415	struct user_struct *user;
 416
 417	/*
 418	 * Protect access to @t credentials. This can go away when all
 419	 * callers hold rcu read lock.
 420	 */
 421	rcu_read_lock();
 422	user = get_uid(__task_cred(t)->user);
 423	atomic_inc(&user->sigpending);
 424	rcu_read_unlock();
 425
 426	if (override_rlimit ||
 427	    atomic_read(&user->sigpending) <=
 428			task_rlimit(t, RLIMIT_SIGPENDING)) {
 429		q = kmem_cache_alloc(sigqueue_cachep, flags);
 430	} else {
 431		print_dropped_signal(sig);
 432	}
 433
 434	if (unlikely(q == NULL)) {
 435		atomic_dec(&user->sigpending);
 436		free_uid(user);
 437	} else {
 438		INIT_LIST_HEAD(&q->list);
 439		q->flags = 0;
 440		q->user = user;
 441	}
 442
 443	return q;
 444}
 445
 446static void __sigqueue_free(struct sigqueue *q)
 447{
 448	if (q->flags & SIGQUEUE_PREALLOC)
 449		return;
 450	atomic_dec(&q->user->sigpending);
 451	free_uid(q->user);
 452	kmem_cache_free(sigqueue_cachep, q);
 453}
 454
 455void flush_sigqueue(struct sigpending *queue)
 456{
 457	struct sigqueue *q;
 458
 459	sigemptyset(&queue->signal);
 460	while (!list_empty(&queue->list)) {
 461		q = list_entry(queue->list.next, struct sigqueue , list);
 462		list_del_init(&q->list);
 463		__sigqueue_free(q);
 464	}
 465}
 466
 467/*
 468 * Flush all pending signals for this kthread.
 469 */
 
 
 
 
 
 
 
 470void flush_signals(struct task_struct *t)
 471{
 472	unsigned long flags;
 473
 474	spin_lock_irqsave(&t->sighand->siglock, flags);
 475	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 476	flush_sigqueue(&t->pending);
 477	flush_sigqueue(&t->signal->shared_pending);
 478	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 479}
 480EXPORT_SYMBOL(flush_signals);
 481
 482#ifdef CONFIG_POSIX_TIMERS
 483static void __flush_itimer_signals(struct sigpending *pending)
 484{
 485	sigset_t signal, retain;
 486	struct sigqueue *q, *n;
 487
 488	signal = pending->signal;
 489	sigemptyset(&retain);
 490
 491	list_for_each_entry_safe(q, n, &pending->list, list) {
 492		int sig = q->info.si_signo;
 493
 494		if (likely(q->info.si_code != SI_TIMER)) {
 495			sigaddset(&retain, sig);
 496		} else {
 497			sigdelset(&signal, sig);
 498			list_del_init(&q->list);
 499			__sigqueue_free(q);
 500		}
 501	}
 502
 503	sigorsets(&pending->signal, &signal, &retain);
 504}
 505
 506void flush_itimer_signals(void)
 507{
 508	struct task_struct *tsk = current;
 509	unsigned long flags;
 510
 511	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 512	__flush_itimer_signals(&tsk->pending);
 513	__flush_itimer_signals(&tsk->signal->shared_pending);
 514	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 515}
 516#endif
 517
 518void ignore_signals(struct task_struct *t)
 519{
 520	int i;
 521
 522	for (i = 0; i < _NSIG; ++i)
 523		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 524
 525	flush_signals(t);
 526}
 527
 528/*
 529 * Flush all handlers for a task.
 530 */
 531
 532void
 533flush_signal_handlers(struct task_struct *t, int force_default)
 534{
 535	int i;
 536	struct k_sigaction *ka = &t->sighand->action[0];
 537	for (i = _NSIG ; i != 0 ; i--) {
 538		if (force_default || ka->sa.sa_handler != SIG_IGN)
 539			ka->sa.sa_handler = SIG_DFL;
 540		ka->sa.sa_flags = 0;
 541#ifdef __ARCH_HAS_SA_RESTORER
 542		ka->sa.sa_restorer = NULL;
 543#endif
 544		sigemptyset(&ka->sa.sa_mask);
 545		ka++;
 546	}
 547}
 548
 549bool unhandled_signal(struct task_struct *tsk, int sig)
 550{
 551	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 552	if (is_global_init(tsk))
 553		return true;
 554
 555	if (handler != SIG_IGN && handler != SIG_DFL)
 556		return false;
 557
 558	/* if ptraced, let the tracer determine */
 559	return !tsk->ptrace;
 560}
 561
 562static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 563			   bool *resched_timer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564{
 565	struct sigqueue *q, *first = NULL;
 566
 567	/*
 568	 * Collect the siginfo appropriate to this signal.  Check if
 569	 * there is another siginfo for the same signal.
 570	*/
 571	list_for_each_entry(q, &list->list, list) {
 572		if (q->info.si_signo == sig) {
 573			if (first)
 574				goto still_pending;
 575			first = q;
 576		}
 577	}
 578
 579	sigdelset(&list->signal, sig);
 580
 581	if (first) {
 582still_pending:
 583		list_del_init(&first->list);
 584		copy_siginfo(info, &first->info);
 585
 586		*resched_timer =
 587			(first->flags & SIGQUEUE_PREALLOC) &&
 588			(info->si_code == SI_TIMER) &&
 589			(info->si_sys_private);
 590
 591		__sigqueue_free(first);
 592	} else {
 593		/*
 594		 * Ok, it wasn't in the queue.  This must be
 595		 * a fast-pathed signal or we must have been
 596		 * out of queue space.  So zero out the info.
 597		 */
 598		clear_siginfo(info);
 599		info->si_signo = sig;
 600		info->si_errno = 0;
 601		info->si_code = SI_USER;
 602		info->si_pid = 0;
 603		info->si_uid = 0;
 604	}
 605}
 606
 607static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 608			kernel_siginfo_t *info, bool *resched_timer)
 609{
 610	int sig = next_signal(pending, mask);
 611
 612	if (sig)
 613		collect_signal(sig, pending, info, resched_timer);
 
 
 
 
 
 
 
 
 
 
 
 614	return sig;
 615}
 616
 617/*
 618 * Dequeue a signal and return the element to the caller, which is
 619 * expected to free it.
 620 *
 621 * All callers have to hold the siglock.
 622 */
 623int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 624{
 625	bool resched_timer = false;
 626	int signr;
 627
 628	/* We only dequeue private signals from ourselves, we don't let
 629	 * signalfd steal them
 630	 */
 631	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 632	if (!signr) {
 633		signr = __dequeue_signal(&tsk->signal->shared_pending,
 634					 mask, info, &resched_timer);
 635#ifdef CONFIG_POSIX_TIMERS
 636		/*
 637		 * itimer signal ?
 638		 *
 639		 * itimers are process shared and we restart periodic
 640		 * itimers in the signal delivery path to prevent DoS
 641		 * attacks in the high resolution timer case. This is
 642		 * compliant with the old way of self-restarting
 643		 * itimers, as the SIGALRM is a legacy signal and only
 644		 * queued once. Changing the restart behaviour to
 645		 * restart the timer in the signal dequeue path is
 646		 * reducing the timer noise on heavy loaded !highres
 647		 * systems too.
 648		 */
 649		if (unlikely(signr == SIGALRM)) {
 650			struct hrtimer *tmr = &tsk->signal->real_timer;
 651
 652			if (!hrtimer_is_queued(tmr) &&
 653			    tsk->signal->it_real_incr != 0) {
 654				hrtimer_forward(tmr, tmr->base->get_time(),
 655						tsk->signal->it_real_incr);
 656				hrtimer_restart(tmr);
 657			}
 658		}
 659#endif
 660	}
 661
 662	recalc_sigpending();
 663	if (!signr)
 664		return 0;
 665
 666	if (unlikely(sig_kernel_stop(signr))) {
 667		/*
 668		 * Set a marker that we have dequeued a stop signal.  Our
 669		 * caller might release the siglock and then the pending
 670		 * stop signal it is about to process is no longer in the
 671		 * pending bitmasks, but must still be cleared by a SIGCONT
 672		 * (and overruled by a SIGKILL).  So those cases clear this
 673		 * shared flag after we've set it.  Note that this flag may
 674		 * remain set after the signal we return is ignored or
 675		 * handled.  That doesn't matter because its only purpose
 676		 * is to alert stop-signal processing code when another
 677		 * processor has come along and cleared the flag.
 678		 */
 679		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 680	}
 681#ifdef CONFIG_POSIX_TIMERS
 682	if (resched_timer) {
 683		/*
 684		 * Release the siglock to ensure proper locking order
 685		 * of timer locks outside of siglocks.  Note, we leave
 686		 * irqs disabled here, since the posix-timers code is
 687		 * about to disable them again anyway.
 688		 */
 689		spin_unlock(&tsk->sighand->siglock);
 690		posixtimer_rearm(info);
 691		spin_lock(&tsk->sighand->siglock);
 692
 693		/* Don't expose the si_sys_private value to userspace */
 694		info->si_sys_private = 0;
 695	}
 696#endif
 697	return signr;
 698}
 699EXPORT_SYMBOL_GPL(dequeue_signal);
 700
 701static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 702{
 703	struct task_struct *tsk = current;
 704	struct sigpending *pending = &tsk->pending;
 705	struct sigqueue *q, *sync = NULL;
 706
 707	/*
 708	 * Might a synchronous signal be in the queue?
 709	 */
 710	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 711		return 0;
 712
 713	/*
 714	 * Return the first synchronous signal in the queue.
 715	 */
 716	list_for_each_entry(q, &pending->list, list) {
 717		/* Synchronous signals have a postive si_code */
 718		if ((q->info.si_code > SI_USER) &&
 719		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 720			sync = q;
 721			goto next;
 722		}
 723	}
 724	return 0;
 725next:
 726	/*
 727	 * Check if there is another siginfo for the same signal.
 728	 */
 729	list_for_each_entry_continue(q, &pending->list, list) {
 730		if (q->info.si_signo == sync->info.si_signo)
 731			goto still_pending;
 732	}
 733
 734	sigdelset(&pending->signal, sync->info.si_signo);
 735	recalc_sigpending();
 736still_pending:
 737	list_del_init(&sync->list);
 738	copy_siginfo(info, &sync->info);
 739	__sigqueue_free(sync);
 740	return info->si_signo;
 741}
 742
 743/*
 744 * Tell a process that it has a new active signal..
 745 *
 746 * NOTE! we rely on the previous spin_lock to
 747 * lock interrupts for us! We can only be called with
 748 * "siglock" held, and the local interrupt must
 749 * have been disabled when that got acquired!
 750 *
 751 * No need to set need_resched since signal event passing
 752 * goes through ->blocked
 753 */
 754void signal_wake_up_state(struct task_struct *t, unsigned int state)
 755{
 756	set_tsk_thread_flag(t, TIF_SIGPENDING);
 757	/*
 758	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 759	 * case. We don't check t->state here because there is a race with it
 760	 * executing another processor and just now entering stopped state.
 761	 * By using wake_up_state, we ensure the process will wake up and
 762	 * handle its death signal.
 763	 */
 764	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 765		kick_process(t);
 766}
 767
 768/*
 769 * Remove signals in mask from the pending set and queue.
 770 * Returns 1 if any signals were found.
 771 *
 772 * All callers must be holding the siglock.
 
 
 
 773 */
 774static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 775{
 776	struct sigqueue *q, *n;
 777	sigset_t m;
 778
 779	sigandsets(&m, mask, &s->signal);
 780	if (sigisemptyset(&m))
 781		return;
 782
 783	sigandnsets(&s->signal, &s->signal, mask);
 784	list_for_each_entry_safe(q, n, &s->list, list) {
 785		if (sigismember(mask, q->info.si_signo)) {
 786			list_del_init(&q->list);
 787			__sigqueue_free(q);
 788		}
 789	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790}
 791
 792static inline int is_si_special(const struct kernel_siginfo *info)
 793{
 794	return info <= SEND_SIG_PRIV;
 795}
 796
 797static inline bool si_fromuser(const struct kernel_siginfo *info)
 798{
 799	return info == SEND_SIG_NOINFO ||
 800		(!is_si_special(info) && SI_FROMUSER(info));
 801}
 802
 803/*
 804 * called with RCU read lock from check_kill_permission()
 805 */
 806static bool kill_ok_by_cred(struct task_struct *t)
 807{
 808	const struct cred *cred = current_cred();
 809	const struct cred *tcred = __task_cred(t);
 810
 811	return uid_eq(cred->euid, tcred->suid) ||
 812	       uid_eq(cred->euid, tcred->uid) ||
 813	       uid_eq(cred->uid, tcred->suid) ||
 814	       uid_eq(cred->uid, tcred->uid) ||
 815	       ns_capable(tcred->user_ns, CAP_KILL);
 
 
 
 
 
 816}
 817
 818/*
 819 * Bad permissions for sending the signal
 820 * - the caller must hold the RCU read lock
 821 */
 822static int check_kill_permission(int sig, struct kernel_siginfo *info,
 823				 struct task_struct *t)
 824{
 825	struct pid *sid;
 826	int error;
 827
 828	if (!valid_signal(sig))
 829		return -EINVAL;
 830
 831	if (!si_fromuser(info))
 832		return 0;
 833
 834	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 835	if (error)
 836		return error;
 837
 838	if (!same_thread_group(current, t) &&
 839	    !kill_ok_by_cred(t)) {
 840		switch (sig) {
 841		case SIGCONT:
 842			sid = task_session(t);
 843			/*
 844			 * We don't return the error if sid == NULL. The
 845			 * task was unhashed, the caller must notice this.
 846			 */
 847			if (!sid || sid == task_session(current))
 848				break;
 849			/* fall through */
 850		default:
 851			return -EPERM;
 852		}
 853	}
 854
 855	return security_task_kill(t, info, sig, NULL);
 856}
 857
 858/**
 859 * ptrace_trap_notify - schedule trap to notify ptracer
 860 * @t: tracee wanting to notify tracer
 861 *
 862 * This function schedules sticky ptrace trap which is cleared on the next
 863 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 864 * ptracer.
 865 *
 866 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 867 * ptracer is listening for events, tracee is woken up so that it can
 868 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 869 * eventually taken without returning to userland after the existing traps
 870 * are finished by PTRACE_CONT.
 871 *
 872 * CONTEXT:
 873 * Must be called with @task->sighand->siglock held.
 874 */
 875static void ptrace_trap_notify(struct task_struct *t)
 876{
 877	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 878	assert_spin_locked(&t->sighand->siglock);
 879
 880	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 881	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 882}
 883
 884/*
 885 * Handle magic process-wide effects of stop/continue signals. Unlike
 886 * the signal actions, these happen immediately at signal-generation
 887 * time regardless of blocking, ignoring, or handling.  This does the
 888 * actual continuing for SIGCONT, but not the actual stopping for stop
 889 * signals. The process stop is done as a signal action for SIG_DFL.
 890 *
 891 * Returns true if the signal should be actually delivered, otherwise
 892 * it should be dropped.
 893 */
 894static bool prepare_signal(int sig, struct task_struct *p, bool force)
 895{
 896	struct signal_struct *signal = p->signal;
 897	struct task_struct *t;
 898	sigset_t flush;
 899
 900	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 901		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 902			return sig == SIGKILL;
 903		/*
 904		 * The process is in the middle of dying, nothing to do.
 905		 */
 906	} else if (sig_kernel_stop(sig)) {
 907		/*
 908		 * This is a stop signal.  Remove SIGCONT from all queues.
 909		 */
 910		siginitset(&flush, sigmask(SIGCONT));
 911		flush_sigqueue_mask(&flush, &signal->shared_pending);
 912		for_each_thread(p, t)
 913			flush_sigqueue_mask(&flush, &t->pending);
 
 914	} else if (sig == SIGCONT) {
 915		unsigned int why;
 916		/*
 917		 * Remove all stop signals from all queues, wake all threads.
 918		 */
 919		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 920		flush_sigqueue_mask(&flush, &signal->shared_pending);
 921		for_each_thread(p, t) {
 922			flush_sigqueue_mask(&flush, &t->pending);
 923			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 
 924			if (likely(!(t->ptrace & PT_SEIZED)))
 925				wake_up_state(t, __TASK_STOPPED);
 926			else
 927				ptrace_trap_notify(t);
 928		}
 929
 930		/*
 931		 * Notify the parent with CLD_CONTINUED if we were stopped.
 932		 *
 933		 * If we were in the middle of a group stop, we pretend it
 934		 * was already finished, and then continued. Since SIGCHLD
 935		 * doesn't queue we report only CLD_STOPPED, as if the next
 936		 * CLD_CONTINUED was dropped.
 937		 */
 938		why = 0;
 939		if (signal->flags & SIGNAL_STOP_STOPPED)
 940			why |= SIGNAL_CLD_CONTINUED;
 941		else if (signal->group_stop_count)
 942			why |= SIGNAL_CLD_STOPPED;
 943
 944		if (why) {
 945			/*
 946			 * The first thread which returns from do_signal_stop()
 947			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 948			 * notify its parent. See get_signal().
 949			 */
 950			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 951			signal->group_stop_count = 0;
 952			signal->group_exit_code = 0;
 953		}
 954	}
 955
 956	return !sig_ignored(p, sig, force);
 957}
 958
 959/*
 960 * Test if P wants to take SIG.  After we've checked all threads with this,
 961 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 962 * blocking SIG were ruled out because they are not running and already
 963 * have pending signals.  Such threads will dequeue from the shared queue
 964 * as soon as they're available, so putting the signal on the shared queue
 965 * will be equivalent to sending it to one such thread.
 966 */
 967static inline bool wants_signal(int sig, struct task_struct *p)
 968{
 969	if (sigismember(&p->blocked, sig))
 970		return false;
 971
 972	if (p->flags & PF_EXITING)
 973		return false;
 974
 975	if (sig == SIGKILL)
 976		return true;
 977
 978	if (task_is_stopped_or_traced(p))
 979		return false;
 980
 981	return task_curr(p) || !signal_pending(p);
 982}
 983
 984static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 985{
 986	struct signal_struct *signal = p->signal;
 987	struct task_struct *t;
 988
 989	/*
 990	 * Now find a thread we can wake up to take the signal off the queue.
 991	 *
 992	 * If the main thread wants the signal, it gets first crack.
 993	 * Probably the least surprising to the average bear.
 994	 */
 995	if (wants_signal(sig, p))
 996		t = p;
 997	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
 998		/*
 999		 * There is just one thread and it does not need to be woken.
1000		 * It will dequeue unblocked signals before it runs again.
1001		 */
1002		return;
1003	else {
1004		/*
1005		 * Otherwise try to find a suitable thread.
1006		 */
1007		t = signal->curr_target;
1008		while (!wants_signal(sig, t)) {
1009			t = next_thread(t);
1010			if (t == signal->curr_target)
1011				/*
1012				 * No thread needs to be woken.
1013				 * Any eligible threads will see
1014				 * the signal in the queue soon.
1015				 */
1016				return;
1017		}
1018		signal->curr_target = t;
1019	}
1020
1021	/*
1022	 * Found a killable thread.  If the signal will be fatal,
1023	 * then start taking the whole group down immediately.
1024	 */
1025	if (sig_fatal(p, sig) &&
1026	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1027	    !sigismember(&t->real_blocked, sig) &&
1028	    (sig == SIGKILL || !p->ptrace)) {
1029		/*
1030		 * This signal will be fatal to the whole group.
1031		 */
1032		if (!sig_kernel_coredump(sig)) {
1033			/*
1034			 * Start a group exit and wake everybody up.
1035			 * This way we don't have other threads
1036			 * running and doing things after a slower
1037			 * thread has the fatal signal pending.
1038			 */
1039			signal->flags = SIGNAL_GROUP_EXIT;
1040			signal->group_exit_code = sig;
1041			signal->group_stop_count = 0;
1042			t = p;
1043			do {
1044				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1045				sigaddset(&t->pending.signal, SIGKILL);
1046				signal_wake_up(t, 1);
1047			} while_each_thread(p, t);
1048			return;
1049		}
1050	}
1051
1052	/*
1053	 * The signal is already in the shared-pending queue.
1054	 * Tell the chosen thread to wake up and dequeue it.
1055	 */
1056	signal_wake_up(t, sig == SIGKILL);
1057	return;
1058}
1059
1060static inline bool legacy_queue(struct sigpending *signals, int sig)
1061{
1062	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1063}
1064
1065static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1066			enum pid_type type, bool force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067{
1068	struct sigpending *pending;
1069	struct sigqueue *q;
1070	int override_rlimit;
1071	int ret = 0, result;
1072
1073	assert_spin_locked(&t->sighand->siglock);
1074
1075	result = TRACE_SIGNAL_IGNORED;
1076	if (!prepare_signal(sig, t, force))
 
1077		goto ret;
1078
1079	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1080	/*
1081	 * Short-circuit ignored signals and support queuing
1082	 * exactly one non-rt signal, so that we can get more
1083	 * detailed information about the cause of the signal.
1084	 */
1085	result = TRACE_SIGNAL_ALREADY_PENDING;
1086	if (legacy_queue(pending, sig))
1087		goto ret;
1088
1089	result = TRACE_SIGNAL_DELIVERED;
1090	/*
1091	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
 
1092	 */
1093	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1094		goto out_set;
1095
1096	/*
1097	 * Real-time signals must be queued if sent by sigqueue, or
1098	 * some other real-time mechanism.  It is implementation
1099	 * defined whether kill() does so.  We attempt to do so, on
1100	 * the principle of least surprise, but since kill is not
1101	 * allowed to fail with EAGAIN when low on memory we just
1102	 * make sure at least one signal gets delivered and don't
1103	 * pass on the info struct.
1104	 */
1105	if (sig < SIGRTMIN)
1106		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1107	else
1108		override_rlimit = 0;
1109
1110	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
 
1111	if (q) {
1112		list_add_tail(&q->list, &pending->list);
1113		switch ((unsigned long) info) {
1114		case (unsigned long) SEND_SIG_NOINFO:
1115			clear_siginfo(&q->info);
1116			q->info.si_signo = sig;
1117			q->info.si_errno = 0;
1118			q->info.si_code = SI_USER;
1119			q->info.si_pid = task_tgid_nr_ns(current,
1120							task_active_pid_ns(t));
1121			rcu_read_lock();
1122			q->info.si_uid =
1123				from_kuid_munged(task_cred_xxx(t, user_ns),
1124						 current_uid());
1125			rcu_read_unlock();
1126			break;
1127		case (unsigned long) SEND_SIG_PRIV:
1128			clear_siginfo(&q->info);
1129			q->info.si_signo = sig;
1130			q->info.si_errno = 0;
1131			q->info.si_code = SI_KERNEL;
1132			q->info.si_pid = 0;
1133			q->info.si_uid = 0;
1134			break;
1135		default:
1136			copy_siginfo(&q->info, info);
 
 
1137			break;
1138		}
1139	} else if (!is_si_special(info) &&
1140		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1141		/*
1142		 * Queue overflow, abort.  We may abort if the
1143		 * signal was rt and sent by user using something
1144		 * other than kill().
1145		 */
1146		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1147		ret = -EAGAIN;
1148		goto ret;
1149	} else {
1150		/*
1151		 * This is a silent loss of information.  We still
1152		 * send the signal, but the *info bits are lost.
1153		 */
1154		result = TRACE_SIGNAL_LOSE_INFO;
1155	}
1156
1157out_set:
1158	signalfd_notify(t, sig);
1159	sigaddset(&pending->signal, sig);
1160
1161	/* Let multiprocess signals appear after on-going forks */
1162	if (type > PIDTYPE_TGID) {
1163		struct multiprocess_signals *delayed;
1164		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1165			sigset_t *signal = &delayed->signal;
1166			/* Can't queue both a stop and a continue signal */
1167			if (sig == SIGCONT)
1168				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1169			else if (sig_kernel_stop(sig))
1170				sigdelset(signal, SIGCONT);
1171			sigaddset(signal, sig);
 
 
 
 
 
1172		}
1173	}
1174
1175	complete_signal(sig, t, type);
 
 
 
1176ret:
1177	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1178	return ret;
1179}
1180
1181static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
 
1182{
1183	bool ret = false;
1184	switch (siginfo_layout(info->si_signo, info->si_code)) {
1185	case SIL_KILL:
1186	case SIL_CHLD:
1187	case SIL_RT:
1188		ret = true;
1189		break;
1190	case SIL_TIMER:
1191	case SIL_POLL:
1192	case SIL_FAULT:
1193	case SIL_FAULT_MCEERR:
1194	case SIL_FAULT_BNDERR:
1195	case SIL_FAULT_PKUERR:
1196	case SIL_SYS:
1197		ret = false;
1198		break;
1199	}
1200	return ret;
1201}
1202
1203static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1204			enum pid_type type)
1205{
1206	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1207	bool force = false;
1208
1209	if (info == SEND_SIG_NOINFO) {
1210		/* Force if sent from an ancestor pid namespace */
1211		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1212	} else if (info == SEND_SIG_PRIV) {
1213		/* Don't ignore kernel generated signals */
1214		force = true;
1215	} else if (has_si_pid_and_uid(info)) {
1216		/* SIGKILL and SIGSTOP is special or has ids */
1217		struct user_namespace *t_user_ns;
1218
1219		rcu_read_lock();
1220		t_user_ns = task_cred_xxx(t, user_ns);
1221		if (current_user_ns() != t_user_ns) {
1222			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1223			info->si_uid = from_kuid_munged(t_user_ns, uid);
1224		}
1225		rcu_read_unlock();
1226
1227		/* A kernel generated signal? */
1228		force = (info->si_code == SI_KERNEL);
 
 
1229
1230		/* From an ancestor pid namespace? */
1231		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1232			info->si_pid = 0;
1233			force = true;
1234		}
1235	}
1236	return __send_signal(sig, info, t, type, force);
1237}
1238
1239static void print_fatal_signal(int signr)
1240{
1241	struct pt_regs *regs = signal_pt_regs();
1242	pr_info("potentially unexpected fatal signal %d.\n", signr);
1243
1244#if defined(__i386__) && !defined(__arch_um__)
1245	pr_info("code at %08lx: ", regs->ip);
1246	{
1247		int i;
1248		for (i = 0; i < 16; i++) {
1249			unsigned char insn;
1250
1251			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1252				break;
1253			pr_cont("%02x ", insn);
1254		}
1255	}
1256	pr_cont("\n");
1257#endif
1258	preempt_disable();
1259	show_regs(regs);
1260	preempt_enable();
1261}
1262
1263static int __init setup_print_fatal_signals(char *str)
1264{
1265	get_option (&str, &print_fatal_signals);
1266
1267	return 1;
1268}
1269
1270__setup("print-fatal-signals=", setup_print_fatal_signals);
1271
1272int
1273__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1274{
1275	return send_signal(sig, info, p, PIDTYPE_TGID);
1276}
1277
1278int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1279			enum pid_type type)
 
 
 
 
 
 
1280{
1281	unsigned long flags;
1282	int ret = -ESRCH;
1283
1284	if (lock_task_sighand(p, &flags)) {
1285		ret = send_signal(sig, info, p, type);
1286		unlock_task_sighand(p, &flags);
1287	}
1288
1289	return ret;
1290}
1291
1292/*
1293 * Force a signal that the process can't ignore: if necessary
1294 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1295 *
1296 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1297 * since we do not want to have a signal handler that was blocked
1298 * be invoked when user space had explicitly blocked it.
1299 *
1300 * We don't want to have recursive SIGSEGV's etc, for example,
1301 * that is why we also clear SIGNAL_UNKILLABLE.
1302 */
1303static int
1304force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1305{
1306	unsigned long int flags;
1307	int ret, blocked, ignored;
1308	struct k_sigaction *action;
1309	int sig = info->si_signo;
1310
1311	spin_lock_irqsave(&t->sighand->siglock, flags);
1312	action = &t->sighand->action[sig-1];
1313	ignored = action->sa.sa_handler == SIG_IGN;
1314	blocked = sigismember(&t->blocked, sig);
1315	if (blocked || ignored) {
1316		action->sa.sa_handler = SIG_DFL;
1317		if (blocked) {
1318			sigdelset(&t->blocked, sig);
1319			recalc_sigpending_and_wake(t);
1320		}
1321	}
1322	/*
1323	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1324	 * debugging to leave init killable.
1325	 */
1326	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1327		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1328	ret = send_signal(sig, info, t, PIDTYPE_PID);
1329	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1330
1331	return ret;
1332}
1333
1334int force_sig_info(struct kernel_siginfo *info)
1335{
1336	return force_sig_info_to_task(info, current);
1337}
1338
1339/*
1340 * Nuke all other threads in the group.
1341 */
1342int zap_other_threads(struct task_struct *p)
1343{
1344	struct task_struct *t = p;
1345	int count = 0;
1346
1347	p->signal->group_stop_count = 0;
1348
1349	while_each_thread(p, t) {
1350		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1351		count++;
1352
1353		/* Don't bother with already dead threads */
1354		if (t->exit_state)
1355			continue;
1356		sigaddset(&t->pending.signal, SIGKILL);
1357		signal_wake_up(t, 1);
1358	}
1359
1360	return count;
1361}
1362
1363struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1364					   unsigned long *flags)
1365{
1366	struct sighand_struct *sighand;
1367
1368	rcu_read_lock();
1369	for (;;) {
 
 
1370		sighand = rcu_dereference(tsk->sighand);
1371		if (unlikely(sighand == NULL))
 
 
1372			break;
 
1373
1374		/*
1375		 * This sighand can be already freed and even reused, but
1376		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1377		 * initializes ->siglock: this slab can't go away, it has
1378		 * the same object type, ->siglock can't be reinitialized.
1379		 *
1380		 * We need to ensure that tsk->sighand is still the same
1381		 * after we take the lock, we can race with de_thread() or
1382		 * __exit_signal(). In the latter case the next iteration
1383		 * must see ->sighand == NULL.
1384		 */
1385		spin_lock_irqsave(&sighand->siglock, *flags);
1386		if (likely(sighand == tsk->sighand))
1387			break;
1388		spin_unlock_irqrestore(&sighand->siglock, *flags);
 
 
 
1389	}
1390	rcu_read_unlock();
1391
1392	return sighand;
1393}
1394
1395/*
1396 * send signal info to all the members of a group
1397 */
1398int group_send_sig_info(int sig, struct kernel_siginfo *info,
1399			struct task_struct *p, enum pid_type type)
1400{
1401	int ret;
1402
1403	rcu_read_lock();
1404	ret = check_kill_permission(sig, info, p);
1405	rcu_read_unlock();
1406
1407	if (!ret && sig)
1408		ret = do_send_sig_info(sig, info, p, type);
1409
1410	return ret;
1411}
1412
1413/*
1414 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1415 * control characters do (^C, ^Z etc)
1416 * - the caller must hold at least a readlock on tasklist_lock
1417 */
1418int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1419{
1420	struct task_struct *p = NULL;
1421	int retval, success;
1422
1423	success = 0;
1424	retval = -ESRCH;
1425	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1426		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1427		success |= !err;
1428		retval = err;
1429	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1430	return success ? 0 : retval;
1431}
1432
1433int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1434{
1435	int error = -ESRCH;
1436	struct task_struct *p;
1437
1438	for (;;) {
1439		rcu_read_lock();
1440		p = pid_task(pid, PIDTYPE_PID);
1441		if (p)
1442			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1443		rcu_read_unlock();
1444		if (likely(!p || error != -ESRCH))
1445			return error;
1446
1447		/*
1448		 * The task was unhashed in between, try again.  If it
1449		 * is dead, pid_task() will return NULL, if we race with
1450		 * de_thread() it will find the new leader.
1451		 */
1452	}
 
 
 
1453}
1454
1455static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1456{
1457	int error;
1458	rcu_read_lock();
1459	error = kill_pid_info(sig, info, find_vpid(pid));
1460	rcu_read_unlock();
1461	return error;
1462}
1463
1464static inline bool kill_as_cred_perm(const struct cred *cred,
1465				     struct task_struct *target)
1466{
1467	const struct cred *pcred = __task_cred(target);
1468
1469	return uid_eq(cred->euid, pcred->suid) ||
1470	       uid_eq(cred->euid, pcred->uid) ||
1471	       uid_eq(cred->uid, pcred->suid) ||
1472	       uid_eq(cred->uid, pcred->uid);
1473}
1474
1475/*
1476 * The usb asyncio usage of siginfo is wrong.  The glibc support
1477 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1478 * AKA after the generic fields:
1479 *	kernel_pid_t	si_pid;
1480 *	kernel_uid32_t	si_uid;
1481 *	sigval_t	si_value;
1482 *
1483 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1484 * after the generic fields is:
1485 *	void __user 	*si_addr;
1486 *
1487 * This is a practical problem when there is a 64bit big endian kernel
1488 * and a 32bit userspace.  As the 32bit address will encoded in the low
1489 * 32bits of the pointer.  Those low 32bits will be stored at higher
1490 * address than appear in a 32 bit pointer.  So userspace will not
1491 * see the address it was expecting for it's completions.
1492 *
1493 * There is nothing in the encoding that can allow
1494 * copy_siginfo_to_user32 to detect this confusion of formats, so
1495 * handle this by requiring the caller of kill_pid_usb_asyncio to
1496 * notice when this situration takes place and to store the 32bit
1497 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1498 * parameter.
1499 */
1500int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1501			 struct pid *pid, const struct cred *cred)
1502{
1503	struct kernel_siginfo info;
1504	struct task_struct *p;
1505	unsigned long flags;
1506	int ret = -EINVAL;
1507
1508	clear_siginfo(&info);
1509	info.si_signo = sig;
1510	info.si_errno = errno;
1511	info.si_code = SI_ASYNCIO;
1512	*((sigval_t *)&info.si_pid) = addr;
1513
1514	if (!valid_signal(sig))
1515		return ret;
1516
1517	rcu_read_lock();
1518	p = pid_task(pid, PIDTYPE_PID);
1519	if (!p) {
1520		ret = -ESRCH;
1521		goto out_unlock;
1522	}
1523	if (!kill_as_cred_perm(cred, p)) {
1524		ret = -EPERM;
1525		goto out_unlock;
1526	}
1527	ret = security_task_kill(p, &info, sig, cred);
1528	if (ret)
1529		goto out_unlock;
1530
1531	if (sig) {
1532		if (lock_task_sighand(p, &flags)) {
1533			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1534			unlock_task_sighand(p, &flags);
1535		} else
1536			ret = -ESRCH;
1537	}
1538out_unlock:
1539	rcu_read_unlock();
1540	return ret;
1541}
1542EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1543
1544/*
1545 * kill_something_info() interprets pid in interesting ways just like kill(2).
1546 *
1547 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1548 * is probably wrong.  Should make it like BSD or SYSV.
1549 */
1550
1551static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1552{
1553	int ret;
1554
1555	if (pid > 0) {
1556		rcu_read_lock();
1557		ret = kill_pid_info(sig, info, find_vpid(pid));
1558		rcu_read_unlock();
1559		return ret;
1560	}
1561
1562	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1563	if (pid == INT_MIN)
1564		return -ESRCH;
1565
1566	read_lock(&tasklist_lock);
1567	if (pid != -1) {
1568		ret = __kill_pgrp_info(sig, info,
1569				pid ? find_vpid(-pid) : task_pgrp(current));
1570	} else {
1571		int retval = 0, count = 0;
1572		struct task_struct * p;
1573
1574		for_each_process(p) {
1575			if (task_pid_vnr(p) > 1 &&
1576					!same_thread_group(p, current)) {
1577				int err = group_send_sig_info(sig, info, p,
1578							      PIDTYPE_MAX);
1579				++count;
1580				if (err != -EPERM)
1581					retval = err;
1582			}
1583		}
1584		ret = count ? retval : -ESRCH;
1585	}
1586	read_unlock(&tasklist_lock);
1587
1588	return ret;
1589}
1590
1591/*
1592 * These are for backward compatibility with the rest of the kernel source.
1593 */
1594
1595int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1596{
1597	/*
1598	 * Make sure legacy kernel users don't send in bad values
1599	 * (normal paths check this in check_kill_permission).
1600	 */
1601	if (!valid_signal(sig))
1602		return -EINVAL;
1603
1604	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1605}
1606EXPORT_SYMBOL(send_sig_info);
1607
1608#define __si_special(priv) \
1609	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1610
1611int
1612send_sig(int sig, struct task_struct *p, int priv)
1613{
1614	return send_sig_info(sig, __si_special(priv), p);
1615}
1616EXPORT_SYMBOL(send_sig);
1617
1618void force_sig(int sig)
 
1619{
1620	struct kernel_siginfo info;
1621
1622	clear_siginfo(&info);
1623	info.si_signo = sig;
1624	info.si_errno = 0;
1625	info.si_code = SI_KERNEL;
1626	info.si_pid = 0;
1627	info.si_uid = 0;
1628	force_sig_info(&info);
1629}
1630EXPORT_SYMBOL(force_sig);
1631
1632/*
1633 * When things go south during signal handling, we
1634 * will force a SIGSEGV. And if the signal that caused
1635 * the problem was already a SIGSEGV, we'll want to
1636 * make sure we don't even try to deliver the signal..
1637 */
1638void force_sigsegv(int sig)
 
1639{
1640	struct task_struct *p = current;
1641
1642	if (sig == SIGSEGV) {
1643		unsigned long flags;
1644		spin_lock_irqsave(&p->sighand->siglock, flags);
1645		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1646		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1647	}
1648	force_sig(SIGSEGV);
1649}
1650
1651int force_sig_fault_to_task(int sig, int code, void __user *addr
1652	___ARCH_SI_TRAPNO(int trapno)
1653	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1654	, struct task_struct *t)
1655{
1656	struct kernel_siginfo info;
1657
1658	clear_siginfo(&info);
1659	info.si_signo = sig;
1660	info.si_errno = 0;
1661	info.si_code  = code;
1662	info.si_addr  = addr;
1663#ifdef __ARCH_SI_TRAPNO
1664	info.si_trapno = trapno;
1665#endif
1666#ifdef __ia64__
1667	info.si_imm = imm;
1668	info.si_flags = flags;
1669	info.si_isr = isr;
1670#endif
1671	return force_sig_info_to_task(&info, t);
1672}
1673
1674int force_sig_fault(int sig, int code, void __user *addr
1675	___ARCH_SI_TRAPNO(int trapno)
1676	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1677{
1678	return force_sig_fault_to_task(sig, code, addr
1679				       ___ARCH_SI_TRAPNO(trapno)
1680				       ___ARCH_SI_IA64(imm, flags, isr), current);
1681}
1682
1683int send_sig_fault(int sig, int code, void __user *addr
1684	___ARCH_SI_TRAPNO(int trapno)
1685	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1686	, struct task_struct *t)
1687{
1688	struct kernel_siginfo info;
1689
1690	clear_siginfo(&info);
1691	info.si_signo = sig;
1692	info.si_errno = 0;
1693	info.si_code  = code;
1694	info.si_addr  = addr;
1695#ifdef __ARCH_SI_TRAPNO
1696	info.si_trapno = trapno;
1697#endif
1698#ifdef __ia64__
1699	info.si_imm = imm;
1700	info.si_flags = flags;
1701	info.si_isr = isr;
1702#endif
1703	return send_sig_info(info.si_signo, &info, t);
1704}
1705
1706int force_sig_mceerr(int code, void __user *addr, short lsb)
1707{
1708	struct kernel_siginfo info;
1709
1710	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1711	clear_siginfo(&info);
1712	info.si_signo = SIGBUS;
1713	info.si_errno = 0;
1714	info.si_code = code;
1715	info.si_addr = addr;
1716	info.si_addr_lsb = lsb;
1717	return force_sig_info(&info);
1718}
1719
1720int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1721{
1722	struct kernel_siginfo info;
1723
1724	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1725	clear_siginfo(&info);
1726	info.si_signo = SIGBUS;
1727	info.si_errno = 0;
1728	info.si_code = code;
1729	info.si_addr = addr;
1730	info.si_addr_lsb = lsb;
1731	return send_sig_info(info.si_signo, &info, t);
1732}
1733EXPORT_SYMBOL(send_sig_mceerr);
1734
1735int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1736{
1737	struct kernel_siginfo info;
1738
1739	clear_siginfo(&info);
1740	info.si_signo = SIGSEGV;
1741	info.si_errno = 0;
1742	info.si_code  = SEGV_BNDERR;
1743	info.si_addr  = addr;
1744	info.si_lower = lower;
1745	info.si_upper = upper;
1746	return force_sig_info(&info);
1747}
1748
1749#ifdef SEGV_PKUERR
1750int force_sig_pkuerr(void __user *addr, u32 pkey)
1751{
1752	struct kernel_siginfo info;
1753
1754	clear_siginfo(&info);
1755	info.si_signo = SIGSEGV;
1756	info.si_errno = 0;
1757	info.si_code  = SEGV_PKUERR;
1758	info.si_addr  = addr;
1759	info.si_pkey  = pkey;
1760	return force_sig_info(&info);
1761}
1762#endif
1763
1764/* For the crazy architectures that include trap information in
1765 * the errno field, instead of an actual errno value.
1766 */
1767int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1768{
1769	struct kernel_siginfo info;
1770
1771	clear_siginfo(&info);
1772	info.si_signo = SIGTRAP;
1773	info.si_errno = errno;
1774	info.si_code  = TRAP_HWBKPT;
1775	info.si_addr  = addr;
1776	return force_sig_info(&info);
1777}
1778
1779int kill_pgrp(struct pid *pid, int sig, int priv)
1780{
1781	int ret;
1782
1783	read_lock(&tasklist_lock);
1784	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1785	read_unlock(&tasklist_lock);
1786
1787	return ret;
1788}
1789EXPORT_SYMBOL(kill_pgrp);
1790
1791int kill_pid(struct pid *pid, int sig, int priv)
1792{
1793	return kill_pid_info(sig, __si_special(priv), pid);
1794}
1795EXPORT_SYMBOL(kill_pid);
1796
1797/*
1798 * These functions support sending signals using preallocated sigqueue
1799 * structures.  This is needed "because realtime applications cannot
1800 * afford to lose notifications of asynchronous events, like timer
1801 * expirations or I/O completions".  In the case of POSIX Timers
1802 * we allocate the sigqueue structure from the timer_create.  If this
1803 * allocation fails we are able to report the failure to the application
1804 * with an EAGAIN error.
1805 */
1806struct sigqueue *sigqueue_alloc(void)
1807{
1808	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1809
1810	if (q)
1811		q->flags |= SIGQUEUE_PREALLOC;
1812
1813	return q;
1814}
1815
1816void sigqueue_free(struct sigqueue *q)
1817{
1818	unsigned long flags;
1819	spinlock_t *lock = &current->sighand->siglock;
1820
1821	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1822	/*
1823	 * We must hold ->siglock while testing q->list
1824	 * to serialize with collect_signal() or with
1825	 * __exit_signal()->flush_sigqueue().
1826	 */
1827	spin_lock_irqsave(lock, flags);
1828	q->flags &= ~SIGQUEUE_PREALLOC;
1829	/*
1830	 * If it is queued it will be freed when dequeued,
1831	 * like the "regular" sigqueue.
1832	 */
1833	if (!list_empty(&q->list))
1834		q = NULL;
1835	spin_unlock_irqrestore(lock, flags);
1836
1837	if (q)
1838		__sigqueue_free(q);
1839}
1840
1841int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1842{
1843	int sig = q->info.si_signo;
1844	struct sigpending *pending;
1845	struct task_struct *t;
1846	unsigned long flags;
1847	int ret, result;
1848
1849	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1850
1851	ret = -1;
1852	rcu_read_lock();
1853	t = pid_task(pid, type);
1854	if (!t || !likely(lock_task_sighand(t, &flags)))
1855		goto ret;
1856
1857	ret = 1; /* the signal is ignored */
1858	result = TRACE_SIGNAL_IGNORED;
1859	if (!prepare_signal(sig, t, false))
1860		goto out;
1861
1862	ret = 0;
1863	if (unlikely(!list_empty(&q->list))) {
1864		/*
1865		 * If an SI_TIMER entry is already queue just increment
1866		 * the overrun count.
1867		 */
1868		BUG_ON(q->info.si_code != SI_TIMER);
1869		q->info.si_overrun++;
1870		result = TRACE_SIGNAL_ALREADY_PENDING;
1871		goto out;
1872	}
1873	q->info.si_overrun = 0;
1874
1875	signalfd_notify(t, sig);
1876	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1877	list_add_tail(&q->list, &pending->list);
1878	sigaddset(&pending->signal, sig);
1879	complete_signal(sig, t, type);
1880	result = TRACE_SIGNAL_DELIVERED;
1881out:
1882	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1883	unlock_task_sighand(t, &flags);
1884ret:
1885	rcu_read_unlock();
1886	return ret;
1887}
1888
1889static void do_notify_pidfd(struct task_struct *task)
1890{
1891	struct pid *pid;
1892
1893	WARN_ON(task->exit_state == 0);
1894	pid = task_pid(task);
1895	wake_up_all(&pid->wait_pidfd);
1896}
1897
1898/*
1899 * Let a parent know about the death of a child.
1900 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1901 *
1902 * Returns true if our parent ignored us and so we've switched to
1903 * self-reaping.
1904 */
1905bool do_notify_parent(struct task_struct *tsk, int sig)
1906{
1907	struct kernel_siginfo info;
1908	unsigned long flags;
1909	struct sighand_struct *psig;
1910	bool autoreap = false;
1911	u64 utime, stime;
1912
1913	BUG_ON(sig == -1);
1914
1915 	/* do_notify_parent_cldstop should have been called instead.  */
1916 	BUG_ON(task_is_stopped_or_traced(tsk));
1917
1918	BUG_ON(!tsk->ptrace &&
1919	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1920
1921	/* Wake up all pidfd waiters */
1922	do_notify_pidfd(tsk);
1923
1924	if (sig != SIGCHLD) {
1925		/*
1926		 * This is only possible if parent == real_parent.
1927		 * Check if it has changed security domain.
1928		 */
1929		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1930			sig = SIGCHLD;
1931	}
1932
1933	clear_siginfo(&info);
1934	info.si_signo = sig;
1935	info.si_errno = 0;
1936	/*
1937	 * We are under tasklist_lock here so our parent is tied to
1938	 * us and cannot change.
1939	 *
1940	 * task_active_pid_ns will always return the same pid namespace
1941	 * until a task passes through release_task.
1942	 *
1943	 * write_lock() currently calls preempt_disable() which is the
1944	 * same as rcu_read_lock(), but according to Oleg, this is not
1945	 * correct to rely on this
1946	 */
1947	rcu_read_lock();
1948	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1949	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1950				       task_uid(tsk));
1951	rcu_read_unlock();
1952
1953	task_cputime(tsk, &utime, &stime);
1954	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1955	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1956
1957	info.si_status = tsk->exit_code & 0x7f;
1958	if (tsk->exit_code & 0x80)
1959		info.si_code = CLD_DUMPED;
1960	else if (tsk->exit_code & 0x7f)
1961		info.si_code = CLD_KILLED;
1962	else {
1963		info.si_code = CLD_EXITED;
1964		info.si_status = tsk->exit_code >> 8;
1965	}
1966
1967	psig = tsk->parent->sighand;
1968	spin_lock_irqsave(&psig->siglock, flags);
1969	if (!tsk->ptrace && sig == SIGCHLD &&
1970	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1971	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1972		/*
1973		 * We are exiting and our parent doesn't care.  POSIX.1
1974		 * defines special semantics for setting SIGCHLD to SIG_IGN
1975		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1976		 * automatically and not left for our parent's wait4 call.
1977		 * Rather than having the parent do it as a magic kind of
1978		 * signal handler, we just set this to tell do_exit that we
1979		 * can be cleaned up without becoming a zombie.  Note that
1980		 * we still call __wake_up_parent in this case, because a
1981		 * blocked sys_wait4 might now return -ECHILD.
1982		 *
1983		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1984		 * is implementation-defined: we do (if you don't want
1985		 * it, just use SIG_IGN instead).
1986		 */
1987		autoreap = true;
1988		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1989			sig = 0;
1990	}
1991	if (valid_signal(sig) && sig)
1992		__group_send_sig_info(sig, &info, tsk->parent);
1993	__wake_up_parent(tsk, tsk->parent);
1994	spin_unlock_irqrestore(&psig->siglock, flags);
1995
1996	return autoreap;
1997}
1998
1999/**
2000 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2001 * @tsk: task reporting the state change
2002 * @for_ptracer: the notification is for ptracer
2003 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2004 *
2005 * Notify @tsk's parent that the stopped/continued state has changed.  If
2006 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2007 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2008 *
2009 * CONTEXT:
2010 * Must be called with tasklist_lock at least read locked.
2011 */
2012static void do_notify_parent_cldstop(struct task_struct *tsk,
2013				     bool for_ptracer, int why)
2014{
2015	struct kernel_siginfo info;
2016	unsigned long flags;
2017	struct task_struct *parent;
2018	struct sighand_struct *sighand;
2019	u64 utime, stime;
2020
2021	if (for_ptracer) {
2022		parent = tsk->parent;
2023	} else {
2024		tsk = tsk->group_leader;
2025		parent = tsk->real_parent;
2026	}
2027
2028	clear_siginfo(&info);
2029	info.si_signo = SIGCHLD;
2030	info.si_errno = 0;
2031	/*
2032	 * see comment in do_notify_parent() about the following 4 lines
2033	 */
2034	rcu_read_lock();
2035	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2036	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2037	rcu_read_unlock();
2038
2039	task_cputime(tsk, &utime, &stime);
2040	info.si_utime = nsec_to_clock_t(utime);
2041	info.si_stime = nsec_to_clock_t(stime);
2042
2043 	info.si_code = why;
2044 	switch (why) {
2045 	case CLD_CONTINUED:
2046 		info.si_status = SIGCONT;
2047 		break;
2048 	case CLD_STOPPED:
2049 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2050 		break;
2051 	case CLD_TRAPPED:
2052 		info.si_status = tsk->exit_code & 0x7f;
2053 		break;
2054 	default:
2055 		BUG();
2056 	}
2057
2058	sighand = parent->sighand;
2059	spin_lock_irqsave(&sighand->siglock, flags);
2060	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2061	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2062		__group_send_sig_info(SIGCHLD, &info, parent);
2063	/*
2064	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2065	 */
2066	__wake_up_parent(tsk, parent);
2067	spin_unlock_irqrestore(&sighand->siglock, flags);
2068}
2069
2070static inline bool may_ptrace_stop(void)
2071{
2072	if (!likely(current->ptrace))
2073		return false;
2074	/*
2075	 * Are we in the middle of do_coredump?
2076	 * If so and our tracer is also part of the coredump stopping
2077	 * is a deadlock situation, and pointless because our tracer
2078	 * is dead so don't allow us to stop.
2079	 * If SIGKILL was already sent before the caller unlocked
2080	 * ->siglock we must see ->core_state != NULL. Otherwise it
2081	 * is safe to enter schedule().
2082	 *
2083	 * This is almost outdated, a task with the pending SIGKILL can't
2084	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2085	 * after SIGKILL was already dequeued.
2086	 */
2087	if (unlikely(current->mm->core_state) &&
2088	    unlikely(current->mm == current->parent->mm))
2089		return false;
2090
2091	return true;
2092}
2093
2094/*
2095 * Return non-zero if there is a SIGKILL that should be waking us up.
2096 * Called with the siglock held.
2097 */
2098static bool sigkill_pending(struct task_struct *tsk)
2099{
2100	return sigismember(&tsk->pending.signal, SIGKILL) ||
2101	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2102}
2103
2104/*
2105 * This must be called with current->sighand->siglock held.
2106 *
2107 * This should be the path for all ptrace stops.
2108 * We always set current->last_siginfo while stopped here.
2109 * That makes it a way to test a stopped process for
2110 * being ptrace-stopped vs being job-control-stopped.
2111 *
2112 * If we actually decide not to stop at all because the tracer
2113 * is gone, we keep current->exit_code unless clear_code.
2114 */
2115static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2116	__releases(&current->sighand->siglock)
2117	__acquires(&current->sighand->siglock)
2118{
2119	bool gstop_done = false;
2120
2121	if (arch_ptrace_stop_needed(exit_code, info)) {
2122		/*
2123		 * The arch code has something special to do before a
2124		 * ptrace stop.  This is allowed to block, e.g. for faults
2125		 * on user stack pages.  We can't keep the siglock while
2126		 * calling arch_ptrace_stop, so we must release it now.
2127		 * To preserve proper semantics, we must do this before
2128		 * any signal bookkeeping like checking group_stop_count.
2129		 * Meanwhile, a SIGKILL could come in before we retake the
2130		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2131		 * So after regaining the lock, we must check for SIGKILL.
2132		 */
2133		spin_unlock_irq(&current->sighand->siglock);
2134		arch_ptrace_stop(exit_code, info);
2135		spin_lock_irq(&current->sighand->siglock);
2136		if (sigkill_pending(current))
2137			return;
2138	}
2139
2140	set_special_state(TASK_TRACED);
2141
2142	/*
2143	 * We're committing to trapping.  TRACED should be visible before
2144	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2145	 * Also, transition to TRACED and updates to ->jobctl should be
2146	 * atomic with respect to siglock and should be done after the arch
2147	 * hook as siglock is released and regrabbed across it.
2148	 *
2149	 *     TRACER				    TRACEE
2150	 *
2151	 *     ptrace_attach()
2152	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2153	 *     do_wait()
2154	 *       set_current_state()                smp_wmb();
2155	 *       ptrace_do_wait()
2156	 *         wait_task_stopped()
2157	 *           task_stopped_code()
2158	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2159	 */
2160	smp_wmb();
2161
2162	current->last_siginfo = info;
2163	current->exit_code = exit_code;
2164
2165	/*
2166	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2167	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2168	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2169	 * could be clear now.  We act as if SIGCONT is received after
2170	 * TASK_TRACED is entered - ignore it.
2171	 */
2172	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2173		gstop_done = task_participate_group_stop(current);
2174
2175	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2176	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2177	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2178		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2179
2180	/* entering a trap, clear TRAPPING */
2181	task_clear_jobctl_trapping(current);
2182
2183	spin_unlock_irq(&current->sighand->siglock);
2184	read_lock(&tasklist_lock);
2185	if (may_ptrace_stop()) {
2186		/*
2187		 * Notify parents of the stop.
2188		 *
2189		 * While ptraced, there are two parents - the ptracer and
2190		 * the real_parent of the group_leader.  The ptracer should
2191		 * know about every stop while the real parent is only
2192		 * interested in the completion of group stop.  The states
2193		 * for the two don't interact with each other.  Notify
2194		 * separately unless they're gonna be duplicates.
2195		 */
2196		do_notify_parent_cldstop(current, true, why);
2197		if (gstop_done && ptrace_reparented(current))
2198			do_notify_parent_cldstop(current, false, why);
2199
2200		/*
2201		 * Don't want to allow preemption here, because
2202		 * sys_ptrace() needs this task to be inactive.
2203		 *
2204		 * XXX: implement read_unlock_no_resched().
2205		 */
2206		preempt_disable();
2207		read_unlock(&tasklist_lock);
2208		cgroup_enter_frozen();
2209		preempt_enable_no_resched();
2210		freezable_schedule();
2211		cgroup_leave_frozen(true);
2212	} else {
2213		/*
2214		 * By the time we got the lock, our tracer went away.
2215		 * Don't drop the lock yet, another tracer may come.
2216		 *
2217		 * If @gstop_done, the ptracer went away between group stop
2218		 * completion and here.  During detach, it would have set
2219		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2220		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2221		 * the real parent of the group stop completion is enough.
2222		 */
2223		if (gstop_done)
2224			do_notify_parent_cldstop(current, false, why);
2225
2226		/* tasklist protects us from ptrace_freeze_traced() */
2227		__set_current_state(TASK_RUNNING);
2228		if (clear_code)
2229			current->exit_code = 0;
2230		read_unlock(&tasklist_lock);
2231	}
2232
2233	/*
2234	 * We are back.  Now reacquire the siglock before touching
2235	 * last_siginfo, so that we are sure to have synchronized with
2236	 * any signal-sending on another CPU that wants to examine it.
2237	 */
2238	spin_lock_irq(&current->sighand->siglock);
2239	current->last_siginfo = NULL;
2240
2241	/* LISTENING can be set only during STOP traps, clear it */
2242	current->jobctl &= ~JOBCTL_LISTENING;
2243
2244	/*
2245	 * Queued signals ignored us while we were stopped for tracing.
2246	 * So check for any that we should take before resuming user mode.
2247	 * This sets TIF_SIGPENDING, but never clears it.
2248	 */
2249	recalc_sigpending_tsk(current);
2250}
2251
2252static void ptrace_do_notify(int signr, int exit_code, int why)
2253{
2254	kernel_siginfo_t info;
2255
2256	clear_siginfo(&info);
2257	info.si_signo = signr;
2258	info.si_code = exit_code;
2259	info.si_pid = task_pid_vnr(current);
2260	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2261
2262	/* Let the debugger run.  */
2263	ptrace_stop(exit_code, why, 1, &info);
2264}
2265
2266void ptrace_notify(int exit_code)
2267{
2268	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2269	if (unlikely(current->task_works))
2270		task_work_run();
2271
2272	spin_lock_irq(&current->sighand->siglock);
2273	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2274	spin_unlock_irq(&current->sighand->siglock);
2275}
2276
2277/**
2278 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2279 * @signr: signr causing group stop if initiating
2280 *
2281 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2282 * and participate in it.  If already set, participate in the existing
2283 * group stop.  If participated in a group stop (and thus slept), %true is
2284 * returned with siglock released.
2285 *
2286 * If ptraced, this function doesn't handle stop itself.  Instead,
2287 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2288 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2289 * places afterwards.
2290 *
2291 * CONTEXT:
2292 * Must be called with @current->sighand->siglock held, which is released
2293 * on %true return.
2294 *
2295 * RETURNS:
2296 * %false if group stop is already cancelled or ptrace trap is scheduled.
2297 * %true if participated in group stop.
2298 */
2299static bool do_signal_stop(int signr)
2300	__releases(&current->sighand->siglock)
2301{
2302	struct signal_struct *sig = current->signal;
2303
2304	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2305		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2306		struct task_struct *t;
2307
2308		/* signr will be recorded in task->jobctl for retries */
2309		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2310
2311		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2312		    unlikely(signal_group_exit(sig)))
2313			return false;
2314		/*
2315		 * There is no group stop already in progress.  We must
2316		 * initiate one now.
2317		 *
2318		 * While ptraced, a task may be resumed while group stop is
2319		 * still in effect and then receive a stop signal and
2320		 * initiate another group stop.  This deviates from the
2321		 * usual behavior as two consecutive stop signals can't
2322		 * cause two group stops when !ptraced.  That is why we
2323		 * also check !task_is_stopped(t) below.
2324		 *
2325		 * The condition can be distinguished by testing whether
2326		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2327		 * group_exit_code in such case.
2328		 *
2329		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2330		 * an intervening stop signal is required to cause two
2331		 * continued events regardless of ptrace.
2332		 */
2333		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2334			sig->group_exit_code = signr;
2335
2336		sig->group_stop_count = 0;
2337
2338		if (task_set_jobctl_pending(current, signr | gstop))
2339			sig->group_stop_count++;
2340
2341		t = current;
2342		while_each_thread(current, t) {
2343			/*
2344			 * Setting state to TASK_STOPPED for a group
2345			 * stop is always done with the siglock held,
2346			 * so this check has no races.
2347			 */
2348			if (!task_is_stopped(t) &&
2349			    task_set_jobctl_pending(t, signr | gstop)) {
2350				sig->group_stop_count++;
2351				if (likely(!(t->ptrace & PT_SEIZED)))
2352					signal_wake_up(t, 0);
2353				else
2354					ptrace_trap_notify(t);
2355			}
2356		}
2357	}
2358
2359	if (likely(!current->ptrace)) {
2360		int notify = 0;
2361
2362		/*
2363		 * If there are no other threads in the group, or if there
2364		 * is a group stop in progress and we are the last to stop,
2365		 * report to the parent.
2366		 */
2367		if (task_participate_group_stop(current))
2368			notify = CLD_STOPPED;
2369
2370		set_special_state(TASK_STOPPED);
2371		spin_unlock_irq(&current->sighand->siglock);
2372
2373		/*
2374		 * Notify the parent of the group stop completion.  Because
2375		 * we're not holding either the siglock or tasklist_lock
2376		 * here, ptracer may attach inbetween; however, this is for
2377		 * group stop and should always be delivered to the real
2378		 * parent of the group leader.  The new ptracer will get
2379		 * its notification when this task transitions into
2380		 * TASK_TRACED.
2381		 */
2382		if (notify) {
2383			read_lock(&tasklist_lock);
2384			do_notify_parent_cldstop(current, false, notify);
2385			read_unlock(&tasklist_lock);
2386		}
2387
2388		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2389		cgroup_enter_frozen();
2390		freezable_schedule();
2391		return true;
2392	} else {
2393		/*
2394		 * While ptraced, group stop is handled by STOP trap.
2395		 * Schedule it and let the caller deal with it.
2396		 */
2397		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2398		return false;
2399	}
2400}
2401
2402/**
2403 * do_jobctl_trap - take care of ptrace jobctl traps
2404 *
2405 * When PT_SEIZED, it's used for both group stop and explicit
2406 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2407 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2408 * the stop signal; otherwise, %SIGTRAP.
2409 *
2410 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2411 * number as exit_code and no siginfo.
2412 *
2413 * CONTEXT:
2414 * Must be called with @current->sighand->siglock held, which may be
2415 * released and re-acquired before returning with intervening sleep.
2416 */
2417static void do_jobctl_trap(void)
2418{
2419	struct signal_struct *signal = current->signal;
2420	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2421
2422	if (current->ptrace & PT_SEIZED) {
2423		if (!signal->group_stop_count &&
2424		    !(signal->flags & SIGNAL_STOP_STOPPED))
2425			signr = SIGTRAP;
2426		WARN_ON_ONCE(!signr);
2427		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2428				 CLD_STOPPED);
2429	} else {
2430		WARN_ON_ONCE(!signr);
2431		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2432		current->exit_code = 0;
2433	}
2434}
2435
2436/**
2437 * do_freezer_trap - handle the freezer jobctl trap
2438 *
2439 * Puts the task into frozen state, if only the task is not about to quit.
2440 * In this case it drops JOBCTL_TRAP_FREEZE.
2441 *
2442 * CONTEXT:
2443 * Must be called with @current->sighand->siglock held,
2444 * which is always released before returning.
2445 */
2446static void do_freezer_trap(void)
2447	__releases(&current->sighand->siglock)
2448{
2449	/*
2450	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2451	 * let's make another loop to give it a chance to be handled.
2452	 * In any case, we'll return back.
2453	 */
2454	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2455	     JOBCTL_TRAP_FREEZE) {
2456		spin_unlock_irq(&current->sighand->siglock);
2457		return;
2458	}
2459
2460	/*
2461	 * Now we're sure that there is no pending fatal signal and no
2462	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2463	 * immediately (if there is a non-fatal signal pending), and
2464	 * put the task into sleep.
2465	 */
2466	__set_current_state(TASK_INTERRUPTIBLE);
2467	clear_thread_flag(TIF_SIGPENDING);
2468	spin_unlock_irq(&current->sighand->siglock);
2469	cgroup_enter_frozen();
2470	freezable_schedule();
2471}
2472
2473static int ptrace_signal(int signr, kernel_siginfo_t *info)
2474{
 
2475	/*
2476	 * We do not check sig_kernel_stop(signr) but set this marker
2477	 * unconditionally because we do not know whether debugger will
2478	 * change signr. This flag has no meaning unless we are going
2479	 * to stop after return from ptrace_stop(). In this case it will
2480	 * be checked in do_signal_stop(), we should only stop if it was
2481	 * not cleared by SIGCONT while we were sleeping. See also the
2482	 * comment in dequeue_signal().
2483	 */
2484	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2485	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2486
2487	/* We're back.  Did the debugger cancel the sig?  */
2488	signr = current->exit_code;
2489	if (signr == 0)
2490		return signr;
2491
2492	current->exit_code = 0;
2493
2494	/*
2495	 * Update the siginfo structure if the signal has
2496	 * changed.  If the debugger wanted something
2497	 * specific in the siginfo structure then it should
2498	 * have updated *info via PTRACE_SETSIGINFO.
2499	 */
2500	if (signr != info->si_signo) {
2501		clear_siginfo(info);
2502		info->si_signo = signr;
2503		info->si_errno = 0;
2504		info->si_code = SI_USER;
2505		rcu_read_lock();
2506		info->si_pid = task_pid_vnr(current->parent);
2507		info->si_uid = from_kuid_munged(current_user_ns(),
2508						task_uid(current->parent));
2509		rcu_read_unlock();
2510	}
2511
2512	/* If the (new) signal is now blocked, requeue it.  */
2513	if (sigismember(&current->blocked, signr)) {
2514		send_signal(signr, info, current, PIDTYPE_PID);
2515		signr = 0;
2516	}
2517
2518	return signr;
2519}
2520
2521bool get_signal(struct ksignal *ksig)
 
2522{
2523	struct sighand_struct *sighand = current->sighand;
2524	struct signal_struct *signal = current->signal;
2525	int signr;
2526
2527	if (unlikely(current->task_works))
2528		task_work_run();
2529
2530	if (unlikely(uprobe_deny_signal()))
2531		return false;
2532
2533	/*
2534	 * Do this once, we can't return to user-mode if freezing() == T.
2535	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2536	 * thus do not need another check after return.
2537	 */
2538	try_to_freeze();
2539
2540relock:
2541	spin_lock_irq(&sighand->siglock);
2542	/*
2543	 * Every stopped thread goes here after wakeup. Check to see if
2544	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2545	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2546	 */
2547	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2548		int why;
2549
2550		if (signal->flags & SIGNAL_CLD_CONTINUED)
2551			why = CLD_CONTINUED;
2552		else
2553			why = CLD_STOPPED;
2554
2555		signal->flags &= ~SIGNAL_CLD_MASK;
2556
2557		spin_unlock_irq(&sighand->siglock);
2558
2559		/*
2560		 * Notify the parent that we're continuing.  This event is
2561		 * always per-process and doesn't make whole lot of sense
2562		 * for ptracers, who shouldn't consume the state via
2563		 * wait(2) either, but, for backward compatibility, notify
2564		 * the ptracer of the group leader too unless it's gonna be
2565		 * a duplicate.
2566		 */
2567		read_lock(&tasklist_lock);
2568		do_notify_parent_cldstop(current, false, why);
2569
2570		if (ptrace_reparented(current->group_leader))
2571			do_notify_parent_cldstop(current->group_leader,
2572						true, why);
2573		read_unlock(&tasklist_lock);
2574
2575		goto relock;
2576	}
2577
2578	/* Has this task already been marked for death? */
2579	if (signal_group_exit(signal)) {
2580		ksig->info.si_signo = signr = SIGKILL;
2581		sigdelset(&current->pending.signal, SIGKILL);
2582		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2583				&sighand->action[SIGKILL - 1]);
2584		recalc_sigpending();
2585		goto fatal;
2586	}
2587
2588	for (;;) {
2589		struct k_sigaction *ka;
2590
2591		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2592		    do_signal_stop(0))
2593			goto relock;
2594
2595		if (unlikely(current->jobctl &
2596			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2597			if (current->jobctl & JOBCTL_TRAP_MASK) {
2598				do_jobctl_trap();
2599				spin_unlock_irq(&sighand->siglock);
2600			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2601				do_freezer_trap();
2602
2603			goto relock;
2604		}
2605
2606		/*
2607		 * If the task is leaving the frozen state, let's update
2608		 * cgroup counters and reset the frozen bit.
2609		 */
2610		if (unlikely(cgroup_task_frozen(current))) {
2611			spin_unlock_irq(&sighand->siglock);
2612			cgroup_leave_frozen(false);
2613			goto relock;
2614		}
2615
2616		/*
2617		 * Signals generated by the execution of an instruction
2618		 * need to be delivered before any other pending signals
2619		 * so that the instruction pointer in the signal stack
2620		 * frame points to the faulting instruction.
2621		 */
2622		signr = dequeue_synchronous_signal(&ksig->info);
2623		if (!signr)
2624			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2625
2626		if (!signr)
2627			break; /* will return 0 */
2628
2629		if (unlikely(current->ptrace) && signr != SIGKILL) {
2630			signr = ptrace_signal(signr, &ksig->info);
2631			if (!signr)
2632				continue;
2633		}
2634
2635		ka = &sighand->action[signr-1];
2636
2637		/* Trace actually delivered signals. */
2638		trace_signal_deliver(signr, &ksig->info, ka);
2639
2640		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2641			continue;
2642		if (ka->sa.sa_handler != SIG_DFL) {
2643			/* Run the handler.  */
2644			ksig->ka = *ka;
2645
2646			if (ka->sa.sa_flags & SA_ONESHOT)
2647				ka->sa.sa_handler = SIG_DFL;
2648
2649			break; /* will return non-zero "signr" value */
2650		}
2651
2652		/*
2653		 * Now we are doing the default action for this signal.
2654		 */
2655		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2656			continue;
2657
2658		/*
2659		 * Global init gets no signals it doesn't want.
2660		 * Container-init gets no signals it doesn't want from same
2661		 * container.
2662		 *
2663		 * Note that if global/container-init sees a sig_kernel_only()
2664		 * signal here, the signal must have been generated internally
2665		 * or must have come from an ancestor namespace. In either
2666		 * case, the signal cannot be dropped.
2667		 */
2668		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2669				!sig_kernel_only(signr))
2670			continue;
2671
2672		if (sig_kernel_stop(signr)) {
2673			/*
2674			 * The default action is to stop all threads in
2675			 * the thread group.  The job control signals
2676			 * do nothing in an orphaned pgrp, but SIGSTOP
2677			 * always works.  Note that siglock needs to be
2678			 * dropped during the call to is_orphaned_pgrp()
2679			 * because of lock ordering with tasklist_lock.
2680			 * This allows an intervening SIGCONT to be posted.
2681			 * We need to check for that and bail out if necessary.
2682			 */
2683			if (signr != SIGSTOP) {
2684				spin_unlock_irq(&sighand->siglock);
2685
2686				/* signals can be posted during this window */
2687
2688				if (is_current_pgrp_orphaned())
2689					goto relock;
2690
2691				spin_lock_irq(&sighand->siglock);
2692			}
2693
2694			if (likely(do_signal_stop(ksig->info.si_signo))) {
2695				/* It released the siglock.  */
2696				goto relock;
2697			}
2698
2699			/*
2700			 * We didn't actually stop, due to a race
2701			 * with SIGCONT or something like that.
2702			 */
2703			continue;
2704		}
2705
2706	fatal:
2707		spin_unlock_irq(&sighand->siglock);
2708		if (unlikely(cgroup_task_frozen(current)))
2709			cgroup_leave_frozen(true);
2710
2711		/*
2712		 * Anything else is fatal, maybe with a core dump.
2713		 */
2714		current->flags |= PF_SIGNALED;
2715
2716		if (sig_kernel_coredump(signr)) {
2717			if (print_fatal_signals)
2718				print_fatal_signal(ksig->info.si_signo);
2719			proc_coredump_connector(current);
2720			/*
2721			 * If it was able to dump core, this kills all
2722			 * other threads in the group and synchronizes with
2723			 * their demise.  If we lost the race with another
2724			 * thread getting here, it set group_exit_code
2725			 * first and our do_group_exit call below will use
2726			 * that value and ignore the one we pass it.
2727			 */
2728			do_coredump(&ksig->info);
2729		}
2730
2731		/*
2732		 * Death signals, no core dump.
2733		 */
2734		do_group_exit(ksig->info.si_signo);
2735		/* NOTREACHED */
2736	}
2737	spin_unlock_irq(&sighand->siglock);
2738
2739	ksig->sig = signr;
2740	return ksig->sig > 0;
2741}
2742
2743/**
2744 * signal_delivered - 
2745 * @ksig:		kernel signal struct
 
 
 
2746 * @stepping:		nonzero if debugger single-step or block-step in use
2747 *
2748 * This function should be called when a signal has successfully been
2749 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2750 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2751 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2752 */
2753static void signal_delivered(struct ksignal *ksig, int stepping)
 
2754{
2755	sigset_t blocked;
2756
2757	/* A signal was successfully delivered, and the
2758	   saved sigmask was stored on the signal frame,
2759	   and will be restored by sigreturn.  So we can
2760	   simply clear the restore sigmask flag.  */
2761	clear_restore_sigmask();
2762
2763	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2764	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2765		sigaddset(&blocked, ksig->sig);
2766	set_current_blocked(&blocked);
2767	tracehook_signal_handler(stepping);
2768}
2769
2770void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2771{
2772	if (failed)
2773		force_sigsegv(ksig->sig);
2774	else
2775		signal_delivered(ksig, stepping);
 
2776}
2777
2778/*
2779 * It could be that complete_signal() picked us to notify about the
2780 * group-wide signal. Other threads should be notified now to take
2781 * the shared signals in @which since we will not.
2782 */
2783static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2784{
2785	sigset_t retarget;
2786	struct task_struct *t;
2787
2788	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2789	if (sigisemptyset(&retarget))
2790		return;
2791
2792	t = tsk;
2793	while_each_thread(tsk, t) {
2794		if (t->flags & PF_EXITING)
2795			continue;
2796
2797		if (!has_pending_signals(&retarget, &t->blocked))
2798			continue;
2799		/* Remove the signals this thread can handle. */
2800		sigandsets(&retarget, &retarget, &t->blocked);
2801
2802		if (!signal_pending(t))
2803			signal_wake_up(t, 0);
2804
2805		if (sigisemptyset(&retarget))
2806			break;
2807	}
2808}
2809
2810void exit_signals(struct task_struct *tsk)
2811{
2812	int group_stop = 0;
2813	sigset_t unblocked;
2814
2815	/*
2816	 * @tsk is about to have PF_EXITING set - lock out users which
2817	 * expect stable threadgroup.
2818	 */
2819	cgroup_threadgroup_change_begin(tsk);
2820
2821	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2822		tsk->flags |= PF_EXITING;
2823		cgroup_threadgroup_change_end(tsk);
2824		return;
2825	}
2826
2827	spin_lock_irq(&tsk->sighand->siglock);
2828	/*
2829	 * From now this task is not visible for group-wide signals,
2830	 * see wants_signal(), do_signal_stop().
2831	 */
2832	tsk->flags |= PF_EXITING;
2833
2834	cgroup_threadgroup_change_end(tsk);
2835
2836	if (!signal_pending(tsk))
2837		goto out;
2838
2839	unblocked = tsk->blocked;
2840	signotset(&unblocked);
2841	retarget_shared_pending(tsk, &unblocked);
2842
2843	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2844	    task_participate_group_stop(tsk))
2845		group_stop = CLD_STOPPED;
2846out:
2847	spin_unlock_irq(&tsk->sighand->siglock);
2848
2849	/*
2850	 * If group stop has completed, deliver the notification.  This
2851	 * should always go to the real parent of the group leader.
2852	 */
2853	if (unlikely(group_stop)) {
2854		read_lock(&tasklist_lock);
2855		do_notify_parent_cldstop(tsk, false, group_stop);
2856		read_unlock(&tasklist_lock);
2857	}
2858}
2859
 
 
 
 
 
 
 
 
 
 
 
2860/*
2861 * System call entry points.
2862 */
2863
2864/**
2865 *  sys_restart_syscall - restart a system call
2866 */
2867SYSCALL_DEFINE0(restart_syscall)
2868{
2869	struct restart_block *restart = &current->restart_block;
2870	return restart->fn(restart);
2871}
2872
2873long do_no_restart_syscall(struct restart_block *param)
2874{
2875	return -EINTR;
2876}
2877
2878static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2879{
2880	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2881		sigset_t newblocked;
2882		/* A set of now blocked but previously unblocked signals. */
2883		sigandnsets(&newblocked, newset, &current->blocked);
2884		retarget_shared_pending(tsk, &newblocked);
2885	}
2886	tsk->blocked = *newset;
2887	recalc_sigpending();
2888}
2889
2890/**
2891 * set_current_blocked - change current->blocked mask
2892 * @newset: new mask
2893 *
2894 * It is wrong to change ->blocked directly, this helper should be used
2895 * to ensure the process can't miss a shared signal we are going to block.
2896 */
2897void set_current_blocked(sigset_t *newset)
2898{
2899	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2900	__set_current_blocked(newset);
2901}
2902
2903void __set_current_blocked(const sigset_t *newset)
2904{
2905	struct task_struct *tsk = current;
2906
2907	/*
2908	 * In case the signal mask hasn't changed, there is nothing we need
2909	 * to do. The current->blocked shouldn't be modified by other task.
2910	 */
2911	if (sigequalsets(&tsk->blocked, newset))
2912		return;
2913
2914	spin_lock_irq(&tsk->sighand->siglock);
2915	__set_task_blocked(tsk, newset);
2916	spin_unlock_irq(&tsk->sighand->siglock);
2917}
2918
2919/*
2920 * This is also useful for kernel threads that want to temporarily
2921 * (or permanently) block certain signals.
2922 *
2923 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2924 * interface happily blocks "unblockable" signals like SIGKILL
2925 * and friends.
2926 */
2927int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2928{
2929	struct task_struct *tsk = current;
2930	sigset_t newset;
2931
2932	/* Lockless, only current can change ->blocked, never from irq */
2933	if (oldset)
2934		*oldset = tsk->blocked;
2935
2936	switch (how) {
2937	case SIG_BLOCK:
2938		sigorsets(&newset, &tsk->blocked, set);
2939		break;
2940	case SIG_UNBLOCK:
2941		sigandnsets(&newset, &tsk->blocked, set);
2942		break;
2943	case SIG_SETMASK:
2944		newset = *set;
2945		break;
2946	default:
2947		return -EINVAL;
2948	}
2949
2950	__set_current_blocked(&newset);
2951	return 0;
2952}
2953EXPORT_SYMBOL(sigprocmask);
2954
2955/*
2956 * The api helps set app-provided sigmasks.
2957 *
2958 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2959 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2960 *
2961 * Note that it does set_restore_sigmask() in advance, so it must be always
2962 * paired with restore_saved_sigmask_unless() before return from syscall.
2963 */
2964int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2965{
2966	sigset_t kmask;
2967
2968	if (!umask)
2969		return 0;
2970	if (sigsetsize != sizeof(sigset_t))
2971		return -EINVAL;
2972	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2973		return -EFAULT;
2974
2975	set_restore_sigmask();
2976	current->saved_sigmask = current->blocked;
2977	set_current_blocked(&kmask);
2978
2979	return 0;
2980}
2981
2982#ifdef CONFIG_COMPAT
2983int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2984			    size_t sigsetsize)
2985{
2986	sigset_t kmask;
2987
2988	if (!umask)
2989		return 0;
2990	if (sigsetsize != sizeof(compat_sigset_t))
2991		return -EINVAL;
2992	if (get_compat_sigset(&kmask, umask))
2993		return -EFAULT;
2994
2995	set_restore_sigmask();
2996	current->saved_sigmask = current->blocked;
2997	set_current_blocked(&kmask);
2998
2999	return 0;
3000}
3001#endif
3002
3003/**
3004 *  sys_rt_sigprocmask - change the list of currently blocked signals
3005 *  @how: whether to add, remove, or set signals
3006 *  @nset: stores pending signals
3007 *  @oset: previous value of signal mask if non-null
3008 *  @sigsetsize: size of sigset_t type
3009 */
3010SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3011		sigset_t __user *, oset, size_t, sigsetsize)
3012{
3013	sigset_t old_set, new_set;
3014	int error;
3015
3016	/* XXX: Don't preclude handling different sized sigset_t's.  */
3017	if (sigsetsize != sizeof(sigset_t))
3018		return -EINVAL;
3019
3020	old_set = current->blocked;
3021
3022	if (nset) {
3023		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3024			return -EFAULT;
3025		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3026
3027		error = sigprocmask(how, &new_set, NULL);
3028		if (error)
3029			return error;
3030	}
3031
3032	if (oset) {
3033		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3034			return -EFAULT;
3035	}
3036
3037	return 0;
3038}
3039
3040#ifdef CONFIG_COMPAT
3041COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3042		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3043{
 
3044	sigset_t old_set = current->blocked;
3045
3046	/* XXX: Don't preclude handling different sized sigset_t's.  */
3047	if (sigsetsize != sizeof(sigset_t))
3048		return -EINVAL;
3049
3050	if (nset) {
 
3051		sigset_t new_set;
3052		int error;
3053		if (get_compat_sigset(&new_set, nset))
3054			return -EFAULT;
 
 
3055		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3056
3057		error = sigprocmask(how, &new_set, NULL);
3058		if (error)
3059			return error;
3060	}
3061	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
 
 
 
 
 
 
 
 
 
 
3062}
3063#endif
3064
3065static void do_sigpending(sigset_t *set)
3066{
 
 
 
3067	spin_lock_irq(&current->sighand->siglock);
3068	sigorsets(set, &current->pending.signal,
3069		  &current->signal->shared_pending.signal);
3070	spin_unlock_irq(&current->sighand->siglock);
3071
3072	/* Outside the lock because only this thread touches it.  */
3073	sigandsets(set, &current->blocked, set);
 
3074}
3075
3076/**
3077 *  sys_rt_sigpending - examine a pending signal that has been raised
3078 *			while blocked
3079 *  @uset: stores pending signals
3080 *  @sigsetsize: size of sigset_t type or larger
3081 */
3082SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3083{
3084	sigset_t set;
3085
3086	if (sigsetsize > sizeof(*uset))
3087		return -EINVAL;
3088
3089	do_sigpending(&set);
3090
3091	if (copy_to_user(uset, &set, sigsetsize))
3092		return -EFAULT;
3093
3094	return 0;
3095}
3096
3097#ifdef CONFIG_COMPAT
3098COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3099		compat_size_t, sigsetsize)
3100{
 
3101	sigset_t set;
3102
3103	if (sigsetsize > sizeof(*uset))
3104		return -EINVAL;
3105
3106	do_sigpending(&set);
3107
3108	return put_compat_sigset(uset, &set, sigsetsize);
3109}
3110#endif
3111
3112static const struct {
3113	unsigned char limit, layout;
3114} sig_sicodes[] = {
3115	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3116	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3117	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3118	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3119	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3120#if defined(SIGEMT)
3121	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3122#endif
3123	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3124	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3125	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3126};
3127
3128static bool known_siginfo_layout(unsigned sig, int si_code)
3129{
3130	if (si_code == SI_KERNEL)
3131		return true;
3132	else if ((si_code > SI_USER)) {
3133		if (sig_specific_sicodes(sig)) {
3134			if (si_code <= sig_sicodes[sig].limit)
3135				return true;
3136		}
3137		else if (si_code <= NSIGPOLL)
3138			return true;
3139	}
3140	else if (si_code >= SI_DETHREAD)
3141		return true;
3142	else if (si_code == SI_ASYNCNL)
3143		return true;
3144	return false;
3145}
3146
3147enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3148{
3149	enum siginfo_layout layout = SIL_KILL;
3150	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3151		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3152		    (si_code <= sig_sicodes[sig].limit)) {
3153			layout = sig_sicodes[sig].layout;
3154			/* Handle the exceptions */
3155			if ((sig == SIGBUS) &&
3156			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3157				layout = SIL_FAULT_MCEERR;
3158			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3159				layout = SIL_FAULT_BNDERR;
3160#ifdef SEGV_PKUERR
3161			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3162				layout = SIL_FAULT_PKUERR;
3163#endif
3164		}
3165		else if (si_code <= NSIGPOLL)
3166			layout = SIL_POLL;
3167	} else {
3168		if (si_code == SI_TIMER)
3169			layout = SIL_TIMER;
3170		else if (si_code == SI_SIGIO)
3171			layout = SIL_POLL;
3172		else if (si_code < 0)
3173			layout = SIL_RT;
3174	}
3175	return layout;
3176}
3177
3178static inline char __user *si_expansion(const siginfo_t __user *info)
3179{
3180	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3181}
3182
3183int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3184{
3185	char __user *expansion = si_expansion(to);
3186	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3187		return -EFAULT;
3188	if (clear_user(expansion, SI_EXPANSION_SIZE))
3189		return -EFAULT;
3190	return 0;
3191}
 
3192
3193static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3194				       const siginfo_t __user *from)
3195{
3196	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3197		char __user *expansion = si_expansion(from);
3198		char buf[SI_EXPANSION_SIZE];
3199		int i;
3200		/*
3201		 * An unknown si_code might need more than
3202		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3203		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3204		 * will return this data to userspace exactly.
3205		 */
3206		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3207			return -EFAULT;
3208		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3209			if (buf[i] != 0)
3210				return -E2BIG;
3211		}
3212	}
3213	return 0;
3214}
3215
3216static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3217				    const siginfo_t __user *from)
3218{
3219	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3220		return -EFAULT;
3221	to->si_signo = signo;
3222	return post_copy_siginfo_from_user(to, from);
3223}
3224
3225int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3226{
3227	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3228		return -EFAULT;
3229	return post_copy_siginfo_from_user(to, from);
3230}
3231
3232#ifdef CONFIG_COMPAT
3233int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3234			   const struct kernel_siginfo *from)
3235#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3236{
3237	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3238}
3239int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3240			     const struct kernel_siginfo *from, bool x32_ABI)
3241#endif
3242{
3243	struct compat_siginfo new;
3244	memset(&new, 0, sizeof(new));
3245
3246	new.si_signo = from->si_signo;
3247	new.si_errno = from->si_errno;
3248	new.si_code  = from->si_code;
3249	switch(siginfo_layout(from->si_signo, from->si_code)) {
3250	case SIL_KILL:
3251		new.si_pid = from->si_pid;
3252		new.si_uid = from->si_uid;
 
 
 
 
3253		break;
3254	case SIL_TIMER:
3255		new.si_tid     = from->si_tid;
3256		new.si_overrun = from->si_overrun;
3257		new.si_int     = from->si_int;
3258		break;
3259	case SIL_POLL:
3260		new.si_band = from->si_band;
3261		new.si_fd   = from->si_fd;
3262		break;
3263	case SIL_FAULT:
3264		new.si_addr = ptr_to_compat(from->si_addr);
3265#ifdef __ARCH_SI_TRAPNO
3266		new.si_trapno = from->si_trapno;
3267#endif
3268		break;
3269	case SIL_FAULT_MCEERR:
3270		new.si_addr = ptr_to_compat(from->si_addr);
3271#ifdef __ARCH_SI_TRAPNO
3272		new.si_trapno = from->si_trapno;
3273#endif
3274		new.si_addr_lsb = from->si_addr_lsb;
3275		break;
3276	case SIL_FAULT_BNDERR:
3277		new.si_addr = ptr_to_compat(from->si_addr);
3278#ifdef __ARCH_SI_TRAPNO
3279		new.si_trapno = from->si_trapno;
3280#endif
3281		new.si_lower = ptr_to_compat(from->si_lower);
3282		new.si_upper = ptr_to_compat(from->si_upper);
3283		break;
3284	case SIL_FAULT_PKUERR:
3285		new.si_addr = ptr_to_compat(from->si_addr);
3286#ifdef __ARCH_SI_TRAPNO
3287		new.si_trapno = from->si_trapno;
3288#endif
3289		new.si_pkey = from->si_pkey;
3290		break;
3291	case SIL_CHLD:
3292		new.si_pid    = from->si_pid;
3293		new.si_uid    = from->si_uid;
3294		new.si_status = from->si_status;
3295#ifdef CONFIG_X86_X32_ABI
3296		if (x32_ABI) {
3297			new._sifields._sigchld_x32._utime = from->si_utime;
3298			new._sifields._sigchld_x32._stime = from->si_stime;
3299		} else
3300#endif
3301		{
3302			new.si_utime = from->si_utime;
3303			new.si_stime = from->si_stime;
3304		}
3305		break;
3306	case SIL_RT:
3307		new.si_pid = from->si_pid;
3308		new.si_uid = from->si_uid;
3309		new.si_int = from->si_int;
3310		break;
3311	case SIL_SYS:
3312		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3313		new.si_syscall   = from->si_syscall;
3314		new.si_arch      = from->si_arch;
3315		break;
3316	}
3317
3318	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3319		return -EFAULT;
3320
3321	return 0;
3322}
3323
3324static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3325					 const struct compat_siginfo *from)
3326{
3327	clear_siginfo(to);
3328	to->si_signo = from->si_signo;
3329	to->si_errno = from->si_errno;
3330	to->si_code  = from->si_code;
3331	switch(siginfo_layout(from->si_signo, from->si_code)) {
3332	case SIL_KILL:
3333		to->si_pid = from->si_pid;
3334		to->si_uid = from->si_uid;
3335		break;
3336	case SIL_TIMER:
3337		to->si_tid     = from->si_tid;
3338		to->si_overrun = from->si_overrun;
3339		to->si_int     = from->si_int;
3340		break;
3341	case SIL_POLL:
3342		to->si_band = from->si_band;
3343		to->si_fd   = from->si_fd;
3344		break;
3345	case SIL_FAULT:
3346		to->si_addr = compat_ptr(from->si_addr);
3347#ifdef __ARCH_SI_TRAPNO
3348		to->si_trapno = from->si_trapno;
3349#endif
3350		break;
3351	case SIL_FAULT_MCEERR:
3352		to->si_addr = compat_ptr(from->si_addr);
3353#ifdef __ARCH_SI_TRAPNO
3354		to->si_trapno = from->si_trapno;
3355#endif
3356		to->si_addr_lsb = from->si_addr_lsb;
3357		break;
3358	case SIL_FAULT_BNDERR:
3359		to->si_addr = compat_ptr(from->si_addr);
3360#ifdef __ARCH_SI_TRAPNO
3361		to->si_trapno = from->si_trapno;
3362#endif
3363		to->si_lower = compat_ptr(from->si_lower);
3364		to->si_upper = compat_ptr(from->si_upper);
3365		break;
3366	case SIL_FAULT_PKUERR:
3367		to->si_addr = compat_ptr(from->si_addr);
3368#ifdef __ARCH_SI_TRAPNO
3369		to->si_trapno = from->si_trapno;
3370#endif
3371		to->si_pkey = from->si_pkey;
3372		break;
3373	case SIL_CHLD:
3374		to->si_pid    = from->si_pid;
3375		to->si_uid    = from->si_uid;
3376		to->si_status = from->si_status;
3377#ifdef CONFIG_X86_X32_ABI
3378		if (in_x32_syscall()) {
3379			to->si_utime = from->_sifields._sigchld_x32._utime;
3380			to->si_stime = from->_sifields._sigchld_x32._stime;
3381		} else
3382#endif
3383		{
3384			to->si_utime = from->si_utime;
3385			to->si_stime = from->si_stime;
3386		}
3387		break;
3388	case SIL_RT:
3389		to->si_pid = from->si_pid;
3390		to->si_uid = from->si_uid;
3391		to->si_int = from->si_int;
3392		break;
3393	case SIL_SYS:
3394		to->si_call_addr = compat_ptr(from->si_call_addr);
3395		to->si_syscall   = from->si_syscall;
3396		to->si_arch      = from->si_arch;
3397		break;
3398	}
3399	return 0;
3400}
3401
3402static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3403				      const struct compat_siginfo __user *ufrom)
3404{
3405	struct compat_siginfo from;
3406
3407	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3408		return -EFAULT;
3409
3410	from.si_signo = signo;
3411	return post_copy_siginfo_from_user32(to, &from);
3412}
3413
3414int copy_siginfo_from_user32(struct kernel_siginfo *to,
3415			     const struct compat_siginfo __user *ufrom)
3416{
3417	struct compat_siginfo from;
3418
3419	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3420		return -EFAULT;
3421
3422	return post_copy_siginfo_from_user32(to, &from);
3423}
3424#endif /* CONFIG_COMPAT */
3425
3426/**
3427 *  do_sigtimedwait - wait for queued signals specified in @which
3428 *  @which: queued signals to wait for
3429 *  @info: if non-null, the signal's siginfo is returned here
3430 *  @ts: upper bound on process time suspension
3431 */
3432static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3433		    const struct timespec64 *ts)
3434{
3435	ktime_t *to = NULL, timeout = KTIME_MAX;
3436	struct task_struct *tsk = current;
 
3437	sigset_t mask = *which;
3438	int sig, ret = 0;
3439
3440	if (ts) {
3441		if (!timespec64_valid(ts))
3442			return -EINVAL;
3443		timeout = timespec64_to_ktime(*ts);
3444		to = &timeout;
 
 
 
 
 
3445	}
3446
3447	/*
3448	 * Invert the set of allowed signals to get those we want to block.
3449	 */
3450	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3451	signotset(&mask);
3452
3453	spin_lock_irq(&tsk->sighand->siglock);
3454	sig = dequeue_signal(tsk, &mask, info);
3455	if (!sig && timeout) {
3456		/*
3457		 * None ready, temporarily unblock those we're interested
3458		 * while we are sleeping in so that we'll be awakened when
3459		 * they arrive. Unblocking is always fine, we can avoid
3460		 * set_current_blocked().
3461		 */
3462		tsk->real_blocked = tsk->blocked;
3463		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3464		recalc_sigpending();
3465		spin_unlock_irq(&tsk->sighand->siglock);
3466
3467		__set_current_state(TASK_INTERRUPTIBLE);
3468		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3469							 HRTIMER_MODE_REL);
3470		spin_lock_irq(&tsk->sighand->siglock);
3471		__set_task_blocked(tsk, &tsk->real_blocked);
3472		sigemptyset(&tsk->real_blocked);
3473		sig = dequeue_signal(tsk, &mask, info);
3474	}
3475	spin_unlock_irq(&tsk->sighand->siglock);
3476
3477	if (sig)
3478		return sig;
3479	return ret ? -EINTR : -EAGAIN;
3480}
3481
3482/**
3483 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3484 *			in @uthese
3485 *  @uthese: queued signals to wait for
3486 *  @uinfo: if non-null, the signal's siginfo is returned here
3487 *  @uts: upper bound on process time suspension
3488 *  @sigsetsize: size of sigset_t type
3489 */
3490SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3491		siginfo_t __user *, uinfo,
3492		const struct __kernel_timespec __user *, uts,
3493		size_t, sigsetsize)
3494{
3495	sigset_t these;
3496	struct timespec64 ts;
3497	kernel_siginfo_t info;
3498	int ret;
3499
3500	/* XXX: Don't preclude handling different sized sigset_t's.  */
3501	if (sigsetsize != sizeof(sigset_t))
3502		return -EINVAL;
3503
3504	if (copy_from_user(&these, uthese, sizeof(these)))
3505		return -EFAULT;
3506
3507	if (uts) {
3508		if (get_timespec64(&ts, uts))
3509			return -EFAULT;
3510	}
3511
3512	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3513
3514	if (ret > 0 && uinfo) {
3515		if (copy_siginfo_to_user(uinfo, &info))
3516			ret = -EFAULT;
3517	}
3518
3519	return ret;
3520}
3521
3522#ifdef CONFIG_COMPAT_32BIT_TIME
3523SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3524		siginfo_t __user *, uinfo,
3525		const struct old_timespec32 __user *, uts,
3526		size_t, sigsetsize)
3527{
3528	sigset_t these;
3529	struct timespec64 ts;
3530	kernel_siginfo_t info;
3531	int ret;
3532
3533	if (sigsetsize != sizeof(sigset_t))
3534		return -EINVAL;
3535
3536	if (copy_from_user(&these, uthese, sizeof(these)))
3537		return -EFAULT;
3538
3539	if (uts) {
3540		if (get_old_timespec32(&ts, uts))
3541			return -EFAULT;
3542	}
3543
3544	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3545
3546	if (ret > 0 && uinfo) {
3547		if (copy_siginfo_to_user(uinfo, &info))
3548			ret = -EFAULT;
3549	}
3550
3551	return ret;
3552}
3553#endif
3554
3555#ifdef CONFIG_COMPAT
3556COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3557		struct compat_siginfo __user *, uinfo,
3558		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3559{
3560	sigset_t s;
3561	struct timespec64 t;
3562	kernel_siginfo_t info;
3563	long ret;
3564
3565	if (sigsetsize != sizeof(sigset_t))
3566		return -EINVAL;
3567
3568	if (get_compat_sigset(&s, uthese))
3569		return -EFAULT;
3570
3571	if (uts) {
3572		if (get_timespec64(&t, uts))
3573			return -EFAULT;
3574	}
3575
3576	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3577
3578	if (ret > 0 && uinfo) {
3579		if (copy_siginfo_to_user32(uinfo, &info))
3580			ret = -EFAULT;
3581	}
3582
3583	return ret;
3584}
3585
3586#ifdef CONFIG_COMPAT_32BIT_TIME
3587COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3588		struct compat_siginfo __user *, uinfo,
3589		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3590{
3591	sigset_t s;
3592	struct timespec64 t;
3593	kernel_siginfo_t info;
3594	long ret;
3595
3596	if (sigsetsize != sizeof(sigset_t))
3597		return -EINVAL;
3598
3599	if (get_compat_sigset(&s, uthese))
3600		return -EFAULT;
3601
3602	if (uts) {
3603		if (get_old_timespec32(&t, uts))
3604			return -EFAULT;
3605	}
3606
3607	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3608
3609	if (ret > 0 && uinfo) {
3610		if (copy_siginfo_to_user32(uinfo, &info))
3611			ret = -EFAULT;
3612	}
3613
3614	return ret;
3615}
3616#endif
3617#endif
3618
3619static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3620{
3621	clear_siginfo(info);
3622	info->si_signo = sig;
3623	info->si_errno = 0;
3624	info->si_code = SI_USER;
3625	info->si_pid = task_tgid_vnr(current);
3626	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3627}
3628
3629/**
3630 *  sys_kill - send a signal to a process
3631 *  @pid: the PID of the process
3632 *  @sig: signal to be sent
3633 */
3634SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3635{
3636	struct kernel_siginfo info;
3637
3638	prepare_kill_siginfo(sig, &info);
 
 
 
 
3639
3640	return kill_something_info(sig, &info, pid);
3641}
3642
3643/*
3644 * Verify that the signaler and signalee either are in the same pid namespace
3645 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3646 * namespace.
3647 */
3648static bool access_pidfd_pidns(struct pid *pid)
3649{
3650	struct pid_namespace *active = task_active_pid_ns(current);
3651	struct pid_namespace *p = ns_of_pid(pid);
3652
3653	for (;;) {
3654		if (!p)
3655			return false;
3656		if (p == active)
3657			break;
3658		p = p->parent;
3659	}
3660
3661	return true;
3662}
3663
3664static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3665{
3666#ifdef CONFIG_COMPAT
3667	/*
3668	 * Avoid hooking up compat syscalls and instead handle necessary
3669	 * conversions here. Note, this is a stop-gap measure and should not be
3670	 * considered a generic solution.
3671	 */
3672	if (in_compat_syscall())
3673		return copy_siginfo_from_user32(
3674			kinfo, (struct compat_siginfo __user *)info);
3675#endif
3676	return copy_siginfo_from_user(kinfo, info);
3677}
3678
3679static struct pid *pidfd_to_pid(const struct file *file)
3680{
3681	struct pid *pid;
3682
3683	pid = pidfd_pid(file);
3684	if (!IS_ERR(pid))
3685		return pid;
3686
3687	return tgid_pidfd_to_pid(file);
3688}
3689
3690/**
3691 * sys_pidfd_send_signal - Signal a process through a pidfd
3692 * @pidfd:  file descriptor of the process
3693 * @sig:    signal to send
3694 * @info:   signal info
3695 * @flags:  future flags
3696 *
3697 * The syscall currently only signals via PIDTYPE_PID which covers
3698 * kill(<positive-pid>, <signal>. It does not signal threads or process
3699 * groups.
3700 * In order to extend the syscall to threads and process groups the @flags
3701 * argument should be used. In essence, the @flags argument will determine
3702 * what is signaled and not the file descriptor itself. Put in other words,
3703 * grouping is a property of the flags argument not a property of the file
3704 * descriptor.
3705 *
3706 * Return: 0 on success, negative errno on failure
3707 */
3708SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3709		siginfo_t __user *, info, unsigned int, flags)
3710{
3711	int ret;
3712	struct fd f;
3713	struct pid *pid;
3714	kernel_siginfo_t kinfo;
3715
3716	/* Enforce flags be set to 0 until we add an extension. */
3717	if (flags)
3718		return -EINVAL;
3719
3720	f = fdget(pidfd);
3721	if (!f.file)
3722		return -EBADF;
3723
3724	/* Is this a pidfd? */
3725	pid = pidfd_to_pid(f.file);
3726	if (IS_ERR(pid)) {
3727		ret = PTR_ERR(pid);
3728		goto err;
3729	}
3730
3731	ret = -EINVAL;
3732	if (!access_pidfd_pidns(pid))
3733		goto err;
3734
3735	if (info) {
3736		ret = copy_siginfo_from_user_any(&kinfo, info);
3737		if (unlikely(ret))
3738			goto err;
3739
3740		ret = -EINVAL;
3741		if (unlikely(sig != kinfo.si_signo))
3742			goto err;
3743
3744		/* Only allow sending arbitrary signals to yourself. */
3745		ret = -EPERM;
3746		if ((task_pid(current) != pid) &&
3747		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3748			goto err;
3749	} else {
3750		prepare_kill_siginfo(sig, &kinfo);
3751	}
3752
3753	ret = kill_pid_info(sig, &kinfo, pid);
3754
3755err:
3756	fdput(f);
3757	return ret;
3758}
3759
3760static int
3761do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3762{
3763	struct task_struct *p;
3764	int error = -ESRCH;
3765
3766	rcu_read_lock();
3767	p = find_task_by_vpid(pid);
3768	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3769		error = check_kill_permission(sig, info, p);
3770		/*
3771		 * The null signal is a permissions and process existence
3772		 * probe.  No signal is actually delivered.
3773		 */
3774		if (!error && sig) {
3775			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3776			/*
3777			 * If lock_task_sighand() failed we pretend the task
3778			 * dies after receiving the signal. The window is tiny,
3779			 * and the signal is private anyway.
3780			 */
3781			if (unlikely(error == -ESRCH))
3782				error = 0;
3783		}
3784	}
3785	rcu_read_unlock();
3786
3787	return error;
3788}
3789
3790static int do_tkill(pid_t tgid, pid_t pid, int sig)
3791{
3792	struct kernel_siginfo info;
3793
3794	clear_siginfo(&info);
3795	info.si_signo = sig;
3796	info.si_errno = 0;
3797	info.si_code = SI_TKILL;
3798	info.si_pid = task_tgid_vnr(current);
3799	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800
3801	return do_send_specific(tgid, pid, sig, &info);
3802}
3803
3804/**
3805 *  sys_tgkill - send signal to one specific thread
3806 *  @tgid: the thread group ID of the thread
3807 *  @pid: the PID of the thread
3808 *  @sig: signal to be sent
3809 *
3810 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3811 *  exists but it's not belonging to the target process anymore. This
3812 *  method solves the problem of threads exiting and PIDs getting reused.
3813 */
3814SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3815{
3816	/* This is only valid for single tasks */
3817	if (pid <= 0 || tgid <= 0)
3818		return -EINVAL;
3819
3820	return do_tkill(tgid, pid, sig);
3821}
3822
3823/**
3824 *  sys_tkill - send signal to one specific task
3825 *  @pid: the PID of the task
3826 *  @sig: signal to be sent
3827 *
3828 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3829 */
3830SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3831{
3832	/* This is only valid for single tasks */
3833	if (pid <= 0)
3834		return -EINVAL;
3835
3836	return do_tkill(0, pid, sig);
3837}
3838
3839static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3840{
3841	/* Not even root can pretend to send signals from the kernel.
3842	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3843	 */
3844	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3845	    (task_pid_vnr(current) != pid))
 
 
3846		return -EPERM;
 
 
3847
3848	/* POSIX.1b doesn't mention process groups.  */
3849	return kill_proc_info(sig, info, pid);
3850}
3851
3852/**
3853 *  sys_rt_sigqueueinfo - send signal information to a signal
3854 *  @pid: the PID of the thread
3855 *  @sig: signal to be sent
3856 *  @uinfo: signal info to be sent
3857 */
3858SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3859		siginfo_t __user *, uinfo)
3860{
3861	kernel_siginfo_t info;
3862	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3863	if (unlikely(ret))
3864		return ret;
3865	return do_rt_sigqueueinfo(pid, sig, &info);
3866}
3867
3868#ifdef CONFIG_COMPAT
3869COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3870			compat_pid_t, pid,
3871			int, sig,
3872			struct compat_siginfo __user *, uinfo)
3873{
3874	kernel_siginfo_t info;
3875	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3876	if (unlikely(ret))
3877		return ret;
3878	return do_rt_sigqueueinfo(pid, sig, &info);
3879}
3880#endif
3881
3882static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3883{
3884	/* This is only valid for single tasks */
3885	if (pid <= 0 || tgid <= 0)
3886		return -EINVAL;
3887
3888	/* Not even root can pretend to send signals from the kernel.
3889	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3890	 */
3891	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3892	    (task_pid_vnr(current) != pid))
 
 
3893		return -EPERM;
 
 
3894
3895	return do_send_specific(tgid, pid, sig, info);
3896}
3897
3898SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3899		siginfo_t __user *, uinfo)
3900{
3901	kernel_siginfo_t info;
3902	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3903	if (unlikely(ret))
3904		return ret;
 
3905	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3906}
3907
3908#ifdef CONFIG_COMPAT
3909COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3910			compat_pid_t, tgid,
3911			compat_pid_t, pid,
3912			int, sig,
3913			struct compat_siginfo __user *, uinfo)
3914{
3915	kernel_siginfo_t info;
3916	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3917	if (unlikely(ret))
3918		return ret;
3919	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3920}
3921#endif
3922
3923/*
3924 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3925 */
3926void kernel_sigaction(int sig, __sighandler_t action)
3927{
3928	spin_lock_irq(&current->sighand->siglock);
3929	current->sighand->action[sig - 1].sa.sa_handler = action;
3930	if (action == SIG_IGN) {
3931		sigset_t mask;
3932
3933		sigemptyset(&mask);
3934		sigaddset(&mask, sig);
3935
3936		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3937		flush_sigqueue_mask(&mask, &current->pending);
3938		recalc_sigpending();
3939	}
3940	spin_unlock_irq(&current->sighand->siglock);
3941}
3942EXPORT_SYMBOL(kernel_sigaction);
3943
3944void __weak sigaction_compat_abi(struct k_sigaction *act,
3945		struct k_sigaction *oact)
3946{
3947}
3948
3949int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3950{
3951	struct task_struct *p = current, *t;
3952	struct k_sigaction *k;
3953	sigset_t mask;
3954
3955	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3956		return -EINVAL;
3957
3958	k = &p->sighand->action[sig-1];
3959
3960	spin_lock_irq(&p->sighand->siglock);
3961	if (oact)
3962		*oact = *k;
3963
3964	sigaction_compat_abi(act, oact);
3965
3966	if (act) {
3967		sigdelsetmask(&act->sa.sa_mask,
3968			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3969		*k = *act;
3970		/*
3971		 * POSIX 3.3.1.3:
3972		 *  "Setting a signal action to SIG_IGN for a signal that is
3973		 *   pending shall cause the pending signal to be discarded,
3974		 *   whether or not it is blocked."
3975		 *
3976		 *  "Setting a signal action to SIG_DFL for a signal that is
3977		 *   pending and whose default action is to ignore the signal
3978		 *   (for example, SIGCHLD), shall cause the pending signal to
3979		 *   be discarded, whether or not it is blocked"
3980		 */
3981		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3982			sigemptyset(&mask);
3983			sigaddset(&mask, sig);
3984			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3985			for_each_thread(p, t)
3986				flush_sigqueue_mask(&mask, &t->pending);
 
3987		}
3988	}
3989
3990	spin_unlock_irq(&p->sighand->siglock);
3991	return 0;
3992}
3993
3994static int
3995do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3996		size_t min_ss_size)
3997{
3998	struct task_struct *t = current;
3999
4000	if (oss) {
4001		memset(oss, 0, sizeof(stack_t));
4002		oss->ss_sp = (void __user *) t->sas_ss_sp;
4003		oss->ss_size = t->sas_ss_size;
4004		oss->ss_flags = sas_ss_flags(sp) |
4005			(current->sas_ss_flags & SS_FLAG_BITS);
4006	}
4007
4008	if (ss) {
4009		void __user *ss_sp = ss->ss_sp;
4010		size_t ss_size = ss->ss_size;
4011		unsigned ss_flags = ss->ss_flags;
4012		int ss_mode;
 
 
 
 
 
 
 
 
 
 
 
 
4013
4014		if (unlikely(on_sig_stack(sp)))
4015			return -EPERM;
 
4016
4017		ss_mode = ss_flags & ~SS_FLAG_BITS;
4018		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4019				ss_mode != 0))
4020			return -EINVAL;
 
 
 
 
 
 
4021
4022		if (ss_mode == SS_DISABLE) {
4023			ss_size = 0;
4024			ss_sp = NULL;
4025		} else {
4026			if (unlikely(ss_size < min_ss_size))
4027				return -ENOMEM;
4028		}
4029
4030		t->sas_ss_sp = (unsigned long) ss_sp;
4031		t->sas_ss_size = ss_size;
4032		t->sas_ss_flags = ss_flags;
 
 
 
 
 
 
 
 
 
 
4033	}
4034	return 0;
4035}
4036
 
 
 
4037SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4038{
4039	stack_t new, old;
4040	int err;
4041	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4042		return -EFAULT;
4043	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4044			      current_user_stack_pointer(),
4045			      MINSIGSTKSZ);
4046	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4047		err = -EFAULT;
4048	return err;
4049}
4050
4051int restore_altstack(const stack_t __user *uss)
4052{
4053	stack_t new;
4054	if (copy_from_user(&new, uss, sizeof(stack_t)))
4055		return -EFAULT;
4056	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4057			     MINSIGSTKSZ);
4058	/* squash all but EFAULT for now */
4059	return 0;
4060}
4061
4062int __save_altstack(stack_t __user *uss, unsigned long sp)
4063{
4064	struct task_struct *t = current;
4065	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4066		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4067		__put_user(t->sas_ss_size, &uss->ss_size);
4068	if (err)
4069		return err;
4070	if (t->sas_ss_flags & SS_AUTODISARM)
4071		sas_ss_reset(t);
4072	return 0;
4073}
4074
4075#ifdef CONFIG_COMPAT
4076static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4077				 compat_stack_t __user *uoss_ptr)
 
4078{
4079	stack_t uss, uoss;
4080	int ret;
 
4081
4082	if (uss_ptr) {
4083		compat_stack_t uss32;
 
 
4084		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4085			return -EFAULT;
4086		uss.ss_sp = compat_ptr(uss32.ss_sp);
4087		uss.ss_flags = uss32.ss_flags;
4088		uss.ss_size = uss32.ss_size;
4089	}
4090	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4091			     compat_user_stack_pointer(),
4092			     COMPAT_MINSIGSTKSZ);
 
 
 
4093	if (ret >= 0 && uoss_ptr)  {
4094		compat_stack_t old;
4095		memset(&old, 0, sizeof(old));
4096		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4097		old.ss_flags = uoss.ss_flags;
4098		old.ss_size = uoss.ss_size;
4099		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4100			ret = -EFAULT;
4101	}
4102	return ret;
4103}
4104
4105COMPAT_SYSCALL_DEFINE2(sigaltstack,
4106			const compat_stack_t __user *, uss_ptr,
4107			compat_stack_t __user *, uoss_ptr)
4108{
4109	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4110}
4111
4112int compat_restore_altstack(const compat_stack_t __user *uss)
4113{
4114	int err = do_compat_sigaltstack(uss, NULL);
4115	/* squash all but -EFAULT for now */
4116	return err == -EFAULT ? err : 0;
4117}
4118
4119int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4120{
4121	int err;
4122	struct task_struct *t = current;
4123	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4124			 &uss->ss_sp) |
4125		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4126		__put_user(t->sas_ss_size, &uss->ss_size);
4127	if (err)
4128		return err;
4129	if (t->sas_ss_flags & SS_AUTODISARM)
4130		sas_ss_reset(t);
4131	return 0;
4132}
4133#endif
4134
4135#ifdef __ARCH_WANT_SYS_SIGPENDING
4136
4137/**
4138 *  sys_sigpending - examine pending signals
4139 *  @uset: where mask of pending signal is returned
4140 */
4141SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4142{
4143	sigset_t set;
4144
4145	if (sizeof(old_sigset_t) > sizeof(*uset))
4146		return -EINVAL;
4147
4148	do_sigpending(&set);
4149
4150	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4151		return -EFAULT;
4152
4153	return 0;
4154}
4155
4156#ifdef CONFIG_COMPAT
4157COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4158{
4159	sigset_t set;
4160
4161	do_sigpending(&set);
4162
4163	return put_user(set.sig[0], set32);
4164}
4165#endif
4166
4167#endif
4168
4169#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4170/**
4171 *  sys_sigprocmask - examine and change blocked signals
4172 *  @how: whether to add, remove, or set signals
4173 *  @nset: signals to add or remove (if non-null)
4174 *  @oset: previous value of signal mask if non-null
4175 *
4176 * Some platforms have their own version with special arguments;
4177 * others support only sys_rt_sigprocmask.
4178 */
4179
4180SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4181		old_sigset_t __user *, oset)
4182{
4183	old_sigset_t old_set, new_set;
4184	sigset_t new_blocked;
4185
4186	old_set = current->blocked.sig[0];
4187
4188	if (nset) {
4189		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4190			return -EFAULT;
4191
4192		new_blocked = current->blocked;
4193
4194		switch (how) {
4195		case SIG_BLOCK:
4196			sigaddsetmask(&new_blocked, new_set);
4197			break;
4198		case SIG_UNBLOCK:
4199			sigdelsetmask(&new_blocked, new_set);
4200			break;
4201		case SIG_SETMASK:
4202			new_blocked.sig[0] = new_set;
4203			break;
4204		default:
4205			return -EINVAL;
4206		}
4207
4208		set_current_blocked(&new_blocked);
4209	}
4210
4211	if (oset) {
4212		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4213			return -EFAULT;
4214	}
4215
4216	return 0;
4217}
4218#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4219
4220#ifndef CONFIG_ODD_RT_SIGACTION
4221/**
4222 *  sys_rt_sigaction - alter an action taken by a process
4223 *  @sig: signal to be sent
4224 *  @act: new sigaction
4225 *  @oact: used to save the previous sigaction
4226 *  @sigsetsize: size of sigset_t type
4227 */
4228SYSCALL_DEFINE4(rt_sigaction, int, sig,
4229		const struct sigaction __user *, act,
4230		struct sigaction __user *, oact,
4231		size_t, sigsetsize)
4232{
4233	struct k_sigaction new_sa, old_sa;
4234	int ret;
4235
4236	/* XXX: Don't preclude handling different sized sigset_t's.  */
4237	if (sigsetsize != sizeof(sigset_t))
4238		return -EINVAL;
4239
4240	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4241		return -EFAULT;
 
 
4242
4243	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4244	if (ret)
4245		return ret;
4246
4247	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4248		return -EFAULT;
4249
4250	return 0;
 
 
 
 
 
4251}
4252#ifdef CONFIG_COMPAT
4253COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4254		const struct compat_sigaction __user *, act,
4255		struct compat_sigaction __user *, oact,
4256		compat_size_t, sigsetsize)
4257{
4258	struct k_sigaction new_ka, old_ka;
 
4259#ifdef __ARCH_HAS_SA_RESTORER
4260	compat_uptr_t restorer;
4261#endif
4262	int ret;
4263
4264	/* XXX: Don't preclude handling different sized sigset_t's.  */
4265	if (sigsetsize != sizeof(compat_sigset_t))
4266		return -EINVAL;
4267
4268	if (act) {
4269		compat_uptr_t handler;
4270		ret = get_user(handler, &act->sa_handler);
4271		new_ka.sa.sa_handler = compat_ptr(handler);
4272#ifdef __ARCH_HAS_SA_RESTORER
4273		ret |= get_user(restorer, &act->sa_restorer);
4274		new_ka.sa.sa_restorer = compat_ptr(restorer);
4275#endif
4276		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4277		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4278		if (ret)
4279			return -EFAULT;
 
4280	}
4281
4282	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4283	if (!ret && oact) {
 
4284		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4285			       &oact->sa_handler);
4286		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4287					 sizeof(oact->sa_mask));
4288		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4289#ifdef __ARCH_HAS_SA_RESTORER
4290		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4291				&oact->sa_restorer);
4292#endif
4293	}
4294	return ret;
4295}
4296#endif
4297#endif /* !CONFIG_ODD_RT_SIGACTION */
4298
4299#ifdef CONFIG_OLD_SIGACTION
4300SYSCALL_DEFINE3(sigaction, int, sig,
4301		const struct old_sigaction __user *, act,
4302	        struct old_sigaction __user *, oact)
4303{
4304	struct k_sigaction new_ka, old_ka;
4305	int ret;
4306
4307	if (act) {
4308		old_sigset_t mask;
4309		if (!access_ok(act, sizeof(*act)) ||
4310		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4311		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4312		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4313		    __get_user(mask, &act->sa_mask))
4314			return -EFAULT;
4315#ifdef __ARCH_HAS_KA_RESTORER
4316		new_ka.ka_restorer = NULL;
4317#endif
4318		siginitset(&new_ka.sa.sa_mask, mask);
4319	}
4320
4321	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4322
4323	if (!ret && oact) {
4324		if (!access_ok(oact, sizeof(*oact)) ||
4325		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4326		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4327		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4328		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4329			return -EFAULT;
4330	}
4331
4332	return ret;
4333}
4334#endif
4335#ifdef CONFIG_COMPAT_OLD_SIGACTION
4336COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4337		const struct compat_old_sigaction __user *, act,
4338	        struct compat_old_sigaction __user *, oact)
4339{
4340	struct k_sigaction new_ka, old_ka;
4341	int ret;
4342	compat_old_sigset_t mask;
4343	compat_uptr_t handler, restorer;
4344
4345	if (act) {
4346		if (!access_ok(act, sizeof(*act)) ||
4347		    __get_user(handler, &act->sa_handler) ||
4348		    __get_user(restorer, &act->sa_restorer) ||
4349		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4350		    __get_user(mask, &act->sa_mask))
4351			return -EFAULT;
4352
4353#ifdef __ARCH_HAS_KA_RESTORER
4354		new_ka.ka_restorer = NULL;
4355#endif
4356		new_ka.sa.sa_handler = compat_ptr(handler);
4357		new_ka.sa.sa_restorer = compat_ptr(restorer);
4358		siginitset(&new_ka.sa.sa_mask, mask);
4359	}
4360
4361	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4362
4363	if (!ret && oact) {
4364		if (!access_ok(oact, sizeof(*oact)) ||
4365		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4366			       &oact->sa_handler) ||
4367		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4368			       &oact->sa_restorer) ||
4369		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4370		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4371			return -EFAULT;
4372	}
4373	return ret;
4374}
4375#endif
4376
4377#ifdef CONFIG_SGETMASK_SYSCALL
4378
4379/*
4380 * For backwards compatibility.  Functionality superseded by sigprocmask.
4381 */
4382SYSCALL_DEFINE0(sgetmask)
4383{
4384	/* SMP safe */
4385	return current->blocked.sig[0];
4386}
4387
4388SYSCALL_DEFINE1(ssetmask, int, newmask)
4389{
4390	int old = current->blocked.sig[0];
4391	sigset_t newset;
4392
4393	siginitset(&newset, newmask);
4394	set_current_blocked(&newset);
4395
4396	return old;
4397}
4398#endif /* CONFIG_SGETMASK_SYSCALL */
4399
4400#ifdef __ARCH_WANT_SYS_SIGNAL
4401/*
4402 * For backwards compatibility.  Functionality superseded by sigaction.
4403 */
4404SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4405{
4406	struct k_sigaction new_sa, old_sa;
4407	int ret;
4408
4409	new_sa.sa.sa_handler = handler;
4410	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4411	sigemptyset(&new_sa.sa.sa_mask);
4412
4413	ret = do_sigaction(sig, &new_sa, &old_sa);
4414
4415	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4416}
4417#endif /* __ARCH_WANT_SYS_SIGNAL */
4418
4419#ifdef __ARCH_WANT_SYS_PAUSE
4420
4421SYSCALL_DEFINE0(pause)
4422{
4423	while (!signal_pending(current)) {
4424		__set_current_state(TASK_INTERRUPTIBLE);
4425		schedule();
4426	}
4427	return -ERESTARTNOHAND;
4428}
4429
4430#endif
4431
4432static int sigsuspend(sigset_t *set)
4433{
4434	current->saved_sigmask = current->blocked;
4435	set_current_blocked(set);
4436
4437	while (!signal_pending(current)) {
4438		__set_current_state(TASK_INTERRUPTIBLE);
4439		schedule();
4440	}
4441	set_restore_sigmask();
4442	return -ERESTARTNOHAND;
4443}
4444
4445/**
4446 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4447 *	@unewset value until a signal is received
4448 *  @unewset: new signal mask value
4449 *  @sigsetsize: size of sigset_t type
4450 */
4451SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4452{
4453	sigset_t newset;
4454
4455	/* XXX: Don't preclude handling different sized sigset_t's.  */
4456	if (sigsetsize != sizeof(sigset_t))
4457		return -EINVAL;
4458
4459	if (copy_from_user(&newset, unewset, sizeof(newset)))
4460		return -EFAULT;
4461	return sigsuspend(&newset);
4462}
4463 
4464#ifdef CONFIG_COMPAT
4465COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4466{
 
4467	sigset_t newset;
 
4468
4469	/* XXX: Don't preclude handling different sized sigset_t's.  */
4470	if (sigsetsize != sizeof(sigset_t))
4471		return -EINVAL;
4472
4473	if (get_compat_sigset(&newset, unewset))
4474		return -EFAULT;
 
4475	return sigsuspend(&newset);
 
 
 
 
4476}
4477#endif
4478
4479#ifdef CONFIG_OLD_SIGSUSPEND
4480SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4481{
4482	sigset_t blocked;
4483	siginitset(&blocked, mask);
4484	return sigsuspend(&blocked);
4485}
4486#endif
4487#ifdef CONFIG_OLD_SIGSUSPEND3
4488SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4489{
4490	sigset_t blocked;
4491	siginitset(&blocked, mask);
4492	return sigsuspend(&blocked);
4493}
4494#endif
4495
4496__weak const char *arch_vma_name(struct vm_area_struct *vma)
4497{
4498	return NULL;
4499}
4500
4501static inline void siginfo_buildtime_checks(void)
4502{
4503	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4504
4505	/* Verify the offsets in the two siginfos match */
4506#define CHECK_OFFSET(field) \
4507	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4508
4509	/* kill */
4510	CHECK_OFFSET(si_pid);
4511	CHECK_OFFSET(si_uid);
4512
4513	/* timer */
4514	CHECK_OFFSET(si_tid);
4515	CHECK_OFFSET(si_overrun);
4516	CHECK_OFFSET(si_value);
4517
4518	/* rt */
4519	CHECK_OFFSET(si_pid);
4520	CHECK_OFFSET(si_uid);
4521	CHECK_OFFSET(si_value);
4522
4523	/* sigchld */
4524	CHECK_OFFSET(si_pid);
4525	CHECK_OFFSET(si_uid);
4526	CHECK_OFFSET(si_status);
4527	CHECK_OFFSET(si_utime);
4528	CHECK_OFFSET(si_stime);
4529
4530	/* sigfault */
4531	CHECK_OFFSET(si_addr);
4532	CHECK_OFFSET(si_addr_lsb);
4533	CHECK_OFFSET(si_lower);
4534	CHECK_OFFSET(si_upper);
4535	CHECK_OFFSET(si_pkey);
4536
4537	/* sigpoll */
4538	CHECK_OFFSET(si_band);
4539	CHECK_OFFSET(si_fd);
4540
4541	/* sigsys */
4542	CHECK_OFFSET(si_call_addr);
4543	CHECK_OFFSET(si_syscall);
4544	CHECK_OFFSET(si_arch);
4545#undef CHECK_OFFSET
4546
4547	/* usb asyncio */
4548	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4549		     offsetof(struct siginfo, si_addr));
4550	if (sizeof(int) == sizeof(void __user *)) {
4551		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4552			     sizeof(void __user *));
4553	} else {
4554		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4555			      sizeof_field(struct siginfo, si_uid)) !=
4556			     sizeof(void __user *));
4557		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4558			     offsetof(struct siginfo, si_uid));
4559	}
4560#ifdef CONFIG_COMPAT
4561	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4562		     offsetof(struct compat_siginfo, si_addr));
4563	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4564		     sizeof(compat_uptr_t));
4565	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4566		     sizeof_field(struct siginfo, si_pid));
4567#endif
4568}
4569
4570void __init signals_init(void)
4571{
4572	siginfo_buildtime_checks();
4573
4574	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4575}
4576
4577#ifdef CONFIG_KGDB_KDB
4578#include <linux/kdb.h>
4579/*
4580 * kdb_send_sig - Allows kdb to send signals without exposing
4581 * signal internals.  This function checks if the required locks are
4582 * available before calling the main signal code, to avoid kdb
4583 * deadlocks.
4584 */
4585void kdb_send_sig(struct task_struct *t, int sig)
 
4586{
4587	static struct task_struct *kdb_prev_t;
4588	int new_t, ret;
4589	if (!spin_trylock(&t->sighand->siglock)) {
4590		kdb_printf("Can't do kill command now.\n"
4591			   "The sigmask lock is held somewhere else in "
4592			   "kernel, try again later\n");
4593		return;
4594	}
 
4595	new_t = kdb_prev_t != t;
4596	kdb_prev_t = t;
4597	if (t->state != TASK_RUNNING && new_t) {
4598		spin_unlock(&t->sighand->siglock);
4599		kdb_printf("Process is not RUNNING, sending a signal from "
4600			   "kdb risks deadlock\n"
4601			   "on the run queue locks. "
4602			   "The signal has _not_ been sent.\n"
4603			   "Reissue the kill command if you want to risk "
4604			   "the deadlock.\n");
4605		return;
4606	}
4607	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4608	spin_unlock(&t->sighand->siglock);
4609	if (ret)
4610		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4611			   sig, t->pid);
4612	else
4613		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4614}
4615#endif	/* CONFIG_KGDB_KDB */
v3.15
 
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
 
 
 
 
 
 
  17#include <linux/fs.h>
 
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
 
 
 
 
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <asm/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"	/* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58	return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63	/* Is it explicitly or implicitly ignored? */
  64	return handler == SIG_IGN ||
  65		(handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70	void __user *handler;
  71
  72	handler = sig_handler(t, sig);
  73
 
 
 
 
  74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75			handler == SIG_DFL && !force)
  76		return 1;
 
 
 
 
 
  77
  78	return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	/*
  84	 * Blocked signals are never ignored, since the
  85	 * signal handler may change by the time it is
  86	 * unblocked.
  87	 */
  88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89		return 0;
  90
  91	if (!sig_task_ignored(t, sig, force))
  92		return 0;
  93
  94	/*
  95	 * Tracers may want to know about even ignored signals.
 
 
  96	 */
  97	return !t->ptrace;
 
 
 
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106	unsigned long ready;
 107	long i;
 108
 109	switch (_NSIG_WORDS) {
 110	default:
 111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112			ready |= signal->sig[i] &~ blocked->sig[i];
 113		break;
 114
 115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116		ready |= signal->sig[2] &~ blocked->sig[2];
 117		ready |= signal->sig[1] &~ blocked->sig[1];
 118		ready |= signal->sig[0] &~ blocked->sig[0];
 119		break;
 120
 121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122		ready |= signal->sig[0] &~ blocked->sig[0];
 123		break;
 124
 125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126	}
 127	return ready !=	0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135	    PENDING(&t->pending, &t->blocked) ||
 136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 
 137		set_tsk_thread_flag(t, TIF_SIGPENDING);
 138		return 1;
 139	}
 
 140	/*
 141	 * We must never clear the flag in another thread, or in current
 142	 * when it's possible the current syscall is returning -ERESTART*.
 143	 * So we don't clear it here, and only callers who know they should do.
 144	 */
 145	return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154	if (recalc_sigpending_tsk(t))
 155		signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160	if (!recalc_sigpending_tsk(current) && !freezing(current))
 
 161		clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 
 
 
 
 
 
 
 
 
 
 
 
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173	unsigned long i, *s, *m, x;
 174	int sig = 0;
 175
 176	s = pending->signal.sig;
 177	m = mask->sig;
 178
 179	/*
 180	 * Handle the first word specially: it contains the
 181	 * synchronous signals that need to be dequeued first.
 182	 */
 183	x = *s &~ *m;
 184	if (x) {
 185		if (x & SYNCHRONOUS_MASK)
 186			x &= SYNCHRONOUS_MASK;
 187		sig = ffz(~x) + 1;
 188		return sig;
 189	}
 190
 191	switch (_NSIG_WORDS) {
 192	default:
 193		for (i = 1; i < _NSIG_WORDS; ++i) {
 194			x = *++s &~ *++m;
 195			if (!x)
 196				continue;
 197			sig = ffz(~x) + i*_NSIG_BPW + 1;
 198			break;
 199		}
 200		break;
 201
 202	case 2:
 203		x = s[1] &~ m[1];
 204		if (!x)
 205			break;
 206		sig = ffz(~x) + _NSIG_BPW + 1;
 207		break;
 208
 209	case 1:
 210		/* Nothing to do */
 211		break;
 212	}
 213
 214	return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221	if (!print_fatal_signals)
 222		return;
 223
 224	if (!__ratelimit(&ratelimit_state))
 225		return;
 226
 227	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228				current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 249{
 250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255		return false;
 256
 257	if (mask & JOBCTL_STOP_SIGMASK)
 258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260	task->jobctl |= mask;
 261	return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279		task->jobctl &= ~JOBCTL_TRAPPING;
 
 280		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 281	}
 282}
 283
 284/**
 285 * task_clear_jobctl_pending - clear jobctl pending bits
 286 * @task: target task
 287 * @mask: pending bits to clear
 288 *
 289 * Clear @mask from @task->jobctl.  @mask must be subset of
 290 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 291 * STOP bits are cleared together.
 292 *
 293 * If clearing of @mask leaves no stop or trap pending, this function calls
 294 * task_clear_jobctl_trapping().
 295 *
 296 * CONTEXT:
 297 * Must be called with @task->sighand->siglock held.
 298 */
 299void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 300{
 301	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 302
 303	if (mask & JOBCTL_STOP_PENDING)
 304		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 305
 306	task->jobctl &= ~mask;
 307
 308	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 309		task_clear_jobctl_trapping(task);
 310}
 311
 312/**
 313 * task_participate_group_stop - participate in a group stop
 314 * @task: task participating in a group stop
 315 *
 316 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 317 * Group stop states are cleared and the group stop count is consumed if
 318 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 319 * stop, the appropriate %SIGNAL_* flags are set.
 320 *
 321 * CONTEXT:
 322 * Must be called with @task->sighand->siglock held.
 323 *
 324 * RETURNS:
 325 * %true if group stop completion should be notified to the parent, %false
 326 * otherwise.
 327 */
 328static bool task_participate_group_stop(struct task_struct *task)
 329{
 330	struct signal_struct *sig = task->signal;
 331	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 332
 333	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 334
 335	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 336
 337	if (!consume)
 338		return false;
 339
 340	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 341		sig->group_stop_count--;
 342
 343	/*
 344	 * Tell the caller to notify completion iff we are entering into a
 345	 * fresh group stop.  Read comment in do_signal_stop() for details.
 346	 */
 347	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 348		sig->flags = SIGNAL_STOP_STOPPED;
 349		return true;
 350	}
 351	return false;
 352}
 353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 354/*
 355 * allocate a new signal queue record
 356 * - this may be called without locks if and only if t == current, otherwise an
 357 *   appropriate lock must be held to stop the target task from exiting
 358 */
 359static struct sigqueue *
 360__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 361{
 362	struct sigqueue *q = NULL;
 363	struct user_struct *user;
 364
 365	/*
 366	 * Protect access to @t credentials. This can go away when all
 367	 * callers hold rcu read lock.
 368	 */
 369	rcu_read_lock();
 370	user = get_uid(__task_cred(t)->user);
 371	atomic_inc(&user->sigpending);
 372	rcu_read_unlock();
 373
 374	if (override_rlimit ||
 375	    atomic_read(&user->sigpending) <=
 376			task_rlimit(t, RLIMIT_SIGPENDING)) {
 377		q = kmem_cache_alloc(sigqueue_cachep, flags);
 378	} else {
 379		print_dropped_signal(sig);
 380	}
 381
 382	if (unlikely(q == NULL)) {
 383		atomic_dec(&user->sigpending);
 384		free_uid(user);
 385	} else {
 386		INIT_LIST_HEAD(&q->list);
 387		q->flags = 0;
 388		q->user = user;
 389	}
 390
 391	return q;
 392}
 393
 394static void __sigqueue_free(struct sigqueue *q)
 395{
 396	if (q->flags & SIGQUEUE_PREALLOC)
 397		return;
 398	atomic_dec(&q->user->sigpending);
 399	free_uid(q->user);
 400	kmem_cache_free(sigqueue_cachep, q);
 401}
 402
 403void flush_sigqueue(struct sigpending *queue)
 404{
 405	struct sigqueue *q;
 406
 407	sigemptyset(&queue->signal);
 408	while (!list_empty(&queue->list)) {
 409		q = list_entry(queue->list.next, struct sigqueue , list);
 410		list_del_init(&q->list);
 411		__sigqueue_free(q);
 412	}
 413}
 414
 415/*
 416 * Flush all pending signals for a task.
 417 */
 418void __flush_signals(struct task_struct *t)
 419{
 420	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 421	flush_sigqueue(&t->pending);
 422	flush_sigqueue(&t->signal->shared_pending);
 423}
 424
 425void flush_signals(struct task_struct *t)
 426{
 427	unsigned long flags;
 428
 429	spin_lock_irqsave(&t->sighand->siglock, flags);
 430	__flush_signals(t);
 
 
 431	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 432}
 
 433
 
 434static void __flush_itimer_signals(struct sigpending *pending)
 435{
 436	sigset_t signal, retain;
 437	struct sigqueue *q, *n;
 438
 439	signal = pending->signal;
 440	sigemptyset(&retain);
 441
 442	list_for_each_entry_safe(q, n, &pending->list, list) {
 443		int sig = q->info.si_signo;
 444
 445		if (likely(q->info.si_code != SI_TIMER)) {
 446			sigaddset(&retain, sig);
 447		} else {
 448			sigdelset(&signal, sig);
 449			list_del_init(&q->list);
 450			__sigqueue_free(q);
 451		}
 452	}
 453
 454	sigorsets(&pending->signal, &signal, &retain);
 455}
 456
 457void flush_itimer_signals(void)
 458{
 459	struct task_struct *tsk = current;
 460	unsigned long flags;
 461
 462	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 463	__flush_itimer_signals(&tsk->pending);
 464	__flush_itimer_signals(&tsk->signal->shared_pending);
 465	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 466}
 
 467
 468void ignore_signals(struct task_struct *t)
 469{
 470	int i;
 471
 472	for (i = 0; i < _NSIG; ++i)
 473		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 474
 475	flush_signals(t);
 476}
 477
 478/*
 479 * Flush all handlers for a task.
 480 */
 481
 482void
 483flush_signal_handlers(struct task_struct *t, int force_default)
 484{
 485	int i;
 486	struct k_sigaction *ka = &t->sighand->action[0];
 487	for (i = _NSIG ; i != 0 ; i--) {
 488		if (force_default || ka->sa.sa_handler != SIG_IGN)
 489			ka->sa.sa_handler = SIG_DFL;
 490		ka->sa.sa_flags = 0;
 491#ifdef __ARCH_HAS_SA_RESTORER
 492		ka->sa.sa_restorer = NULL;
 493#endif
 494		sigemptyset(&ka->sa.sa_mask);
 495		ka++;
 496	}
 497}
 498
 499int unhandled_signal(struct task_struct *tsk, int sig)
 500{
 501	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 502	if (is_global_init(tsk))
 503		return 1;
 
 504	if (handler != SIG_IGN && handler != SIG_DFL)
 505		return 0;
 
 506	/* if ptraced, let the tracer determine */
 507	return !tsk->ptrace;
 508}
 509
 510/*
 511 * Notify the system that a driver wants to block all signals for this
 512 * process, and wants to be notified if any signals at all were to be
 513 * sent/acted upon.  If the notifier routine returns non-zero, then the
 514 * signal will be acted upon after all.  If the notifier routine returns 0,
 515 * then then signal will be blocked.  Only one block per process is
 516 * allowed.  priv is a pointer to private data that the notifier routine
 517 * can use to determine if the signal should be blocked or not.
 518 */
 519void
 520block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 521{
 522	unsigned long flags;
 523
 524	spin_lock_irqsave(&current->sighand->siglock, flags);
 525	current->notifier_mask = mask;
 526	current->notifier_data = priv;
 527	current->notifier = notifier;
 528	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 529}
 530
 531/* Notify the system that blocking has ended. */
 532
 533void
 534unblock_all_signals(void)
 535{
 536	unsigned long flags;
 537
 538	spin_lock_irqsave(&current->sighand->siglock, flags);
 539	current->notifier = NULL;
 540	current->notifier_data = NULL;
 541	recalc_sigpending();
 542	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 543}
 544
 545static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 546{
 547	struct sigqueue *q, *first = NULL;
 548
 549	/*
 550	 * Collect the siginfo appropriate to this signal.  Check if
 551	 * there is another siginfo for the same signal.
 552	*/
 553	list_for_each_entry(q, &list->list, list) {
 554		if (q->info.si_signo == sig) {
 555			if (first)
 556				goto still_pending;
 557			first = q;
 558		}
 559	}
 560
 561	sigdelset(&list->signal, sig);
 562
 563	if (first) {
 564still_pending:
 565		list_del_init(&first->list);
 566		copy_siginfo(info, &first->info);
 
 
 
 
 
 
 567		__sigqueue_free(first);
 568	} else {
 569		/*
 570		 * Ok, it wasn't in the queue.  This must be
 571		 * a fast-pathed signal or we must have been
 572		 * out of queue space.  So zero out the info.
 573		 */
 
 574		info->si_signo = sig;
 575		info->si_errno = 0;
 576		info->si_code = SI_USER;
 577		info->si_pid = 0;
 578		info->si_uid = 0;
 579	}
 580}
 581
 582static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 583			siginfo_t *info)
 584{
 585	int sig = next_signal(pending, mask);
 586
 587	if (sig) {
 588		if (current->notifier) {
 589			if (sigismember(current->notifier_mask, sig)) {
 590				if (!(current->notifier)(current->notifier_data)) {
 591					clear_thread_flag(TIF_SIGPENDING);
 592					return 0;
 593				}
 594			}
 595		}
 596
 597		collect_signal(sig, pending, info);
 598	}
 599
 600	return sig;
 601}
 602
 603/*
 604 * Dequeue a signal and return the element to the caller, which is
 605 * expected to free it.
 606 *
 607 * All callers have to hold the siglock.
 608 */
 609int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 610{
 
 611	int signr;
 612
 613	/* We only dequeue private signals from ourselves, we don't let
 614	 * signalfd steal them
 615	 */
 616	signr = __dequeue_signal(&tsk->pending, mask, info);
 617	if (!signr) {
 618		signr = __dequeue_signal(&tsk->signal->shared_pending,
 619					 mask, info);
 
 620		/*
 621		 * itimer signal ?
 622		 *
 623		 * itimers are process shared and we restart periodic
 624		 * itimers in the signal delivery path to prevent DoS
 625		 * attacks in the high resolution timer case. This is
 626		 * compliant with the old way of self-restarting
 627		 * itimers, as the SIGALRM is a legacy signal and only
 628		 * queued once. Changing the restart behaviour to
 629		 * restart the timer in the signal dequeue path is
 630		 * reducing the timer noise on heavy loaded !highres
 631		 * systems too.
 632		 */
 633		if (unlikely(signr == SIGALRM)) {
 634			struct hrtimer *tmr = &tsk->signal->real_timer;
 635
 636			if (!hrtimer_is_queued(tmr) &&
 637			    tsk->signal->it_real_incr.tv64 != 0) {
 638				hrtimer_forward(tmr, tmr->base->get_time(),
 639						tsk->signal->it_real_incr);
 640				hrtimer_restart(tmr);
 641			}
 642		}
 
 643	}
 644
 645	recalc_sigpending();
 646	if (!signr)
 647		return 0;
 648
 649	if (unlikely(sig_kernel_stop(signr))) {
 650		/*
 651		 * Set a marker that we have dequeued a stop signal.  Our
 652		 * caller might release the siglock and then the pending
 653		 * stop signal it is about to process is no longer in the
 654		 * pending bitmasks, but must still be cleared by a SIGCONT
 655		 * (and overruled by a SIGKILL).  So those cases clear this
 656		 * shared flag after we've set it.  Note that this flag may
 657		 * remain set after the signal we return is ignored or
 658		 * handled.  That doesn't matter because its only purpose
 659		 * is to alert stop-signal processing code when another
 660		 * processor has come along and cleared the flag.
 661		 */
 662		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 663	}
 664	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 
 665		/*
 666		 * Release the siglock to ensure proper locking order
 667		 * of timer locks outside of siglocks.  Note, we leave
 668		 * irqs disabled here, since the posix-timers code is
 669		 * about to disable them again anyway.
 670		 */
 671		spin_unlock(&tsk->sighand->siglock);
 672		do_schedule_next_timer(info);
 673		spin_lock(&tsk->sighand->siglock);
 
 
 
 674	}
 
 675	return signr;
 676}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677
 678/*
 679 * Tell a process that it has a new active signal..
 680 *
 681 * NOTE! we rely on the previous spin_lock to
 682 * lock interrupts for us! We can only be called with
 683 * "siglock" held, and the local interrupt must
 684 * have been disabled when that got acquired!
 685 *
 686 * No need to set need_resched since signal event passing
 687 * goes through ->blocked
 688 */
 689void signal_wake_up_state(struct task_struct *t, unsigned int state)
 690{
 691	set_tsk_thread_flag(t, TIF_SIGPENDING);
 692	/*
 693	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 694	 * case. We don't check t->state here because there is a race with it
 695	 * executing another processor and just now entering stopped state.
 696	 * By using wake_up_state, we ensure the process will wake up and
 697	 * handle its death signal.
 698	 */
 699	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 700		kick_process(t);
 701}
 702
 703/*
 704 * Remove signals in mask from the pending set and queue.
 705 * Returns 1 if any signals were found.
 706 *
 707 * All callers must be holding the siglock.
 708 *
 709 * This version takes a sigset mask and looks at all signals,
 710 * not just those in the first mask word.
 711 */
 712static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 713{
 714	struct sigqueue *q, *n;
 715	sigset_t m;
 716
 717	sigandsets(&m, mask, &s->signal);
 718	if (sigisemptyset(&m))
 719		return 0;
 720
 721	sigandnsets(&s->signal, &s->signal, mask);
 722	list_for_each_entry_safe(q, n, &s->list, list) {
 723		if (sigismember(mask, q->info.si_signo)) {
 724			list_del_init(&q->list);
 725			__sigqueue_free(q);
 726		}
 727	}
 728	return 1;
 729}
 730/*
 731 * Remove signals in mask from the pending set and queue.
 732 * Returns 1 if any signals were found.
 733 *
 734 * All callers must be holding the siglock.
 735 */
 736static int rm_from_queue(unsigned long mask, struct sigpending *s)
 737{
 738	struct sigqueue *q, *n;
 739
 740	if (!sigtestsetmask(&s->signal, mask))
 741		return 0;
 742
 743	sigdelsetmask(&s->signal, mask);
 744	list_for_each_entry_safe(q, n, &s->list, list) {
 745		if (q->info.si_signo < SIGRTMIN &&
 746		    (mask & sigmask(q->info.si_signo))) {
 747			list_del_init(&q->list);
 748			__sigqueue_free(q);
 749		}
 750	}
 751	return 1;
 752}
 753
 754static inline int is_si_special(const struct siginfo *info)
 755{
 756	return info <= SEND_SIG_FORCED;
 757}
 758
 759static inline bool si_fromuser(const struct siginfo *info)
 760{
 761	return info == SEND_SIG_NOINFO ||
 762		(!is_si_special(info) && SI_FROMUSER(info));
 763}
 764
 765/*
 766 * called with RCU read lock from check_kill_permission()
 767 */
 768static int kill_ok_by_cred(struct task_struct *t)
 769{
 770	const struct cred *cred = current_cred();
 771	const struct cred *tcred = __task_cred(t);
 772
 773	if (uid_eq(cred->euid, tcred->suid) ||
 774	    uid_eq(cred->euid, tcred->uid)  ||
 775	    uid_eq(cred->uid,  tcred->suid) ||
 776	    uid_eq(cred->uid,  tcred->uid))
 777		return 1;
 778
 779	if (ns_capable(tcred->user_ns, CAP_KILL))
 780		return 1;
 781
 782	return 0;
 783}
 784
 785/*
 786 * Bad permissions for sending the signal
 787 * - the caller must hold the RCU read lock
 788 */
 789static int check_kill_permission(int sig, struct siginfo *info,
 790				 struct task_struct *t)
 791{
 792	struct pid *sid;
 793	int error;
 794
 795	if (!valid_signal(sig))
 796		return -EINVAL;
 797
 798	if (!si_fromuser(info))
 799		return 0;
 800
 801	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 802	if (error)
 803		return error;
 804
 805	if (!same_thread_group(current, t) &&
 806	    !kill_ok_by_cred(t)) {
 807		switch (sig) {
 808		case SIGCONT:
 809			sid = task_session(t);
 810			/*
 811			 * We don't return the error if sid == NULL. The
 812			 * task was unhashed, the caller must notice this.
 813			 */
 814			if (!sid || sid == task_session(current))
 815				break;
 
 816		default:
 817			return -EPERM;
 818		}
 819	}
 820
 821	return security_task_kill(t, info, sig, 0);
 822}
 823
 824/**
 825 * ptrace_trap_notify - schedule trap to notify ptracer
 826 * @t: tracee wanting to notify tracer
 827 *
 828 * This function schedules sticky ptrace trap which is cleared on the next
 829 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 830 * ptracer.
 831 *
 832 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 833 * ptracer is listening for events, tracee is woken up so that it can
 834 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 835 * eventually taken without returning to userland after the existing traps
 836 * are finished by PTRACE_CONT.
 837 *
 838 * CONTEXT:
 839 * Must be called with @task->sighand->siglock held.
 840 */
 841static void ptrace_trap_notify(struct task_struct *t)
 842{
 843	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 844	assert_spin_locked(&t->sighand->siglock);
 845
 846	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 847	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 848}
 849
 850/*
 851 * Handle magic process-wide effects of stop/continue signals. Unlike
 852 * the signal actions, these happen immediately at signal-generation
 853 * time regardless of blocking, ignoring, or handling.  This does the
 854 * actual continuing for SIGCONT, but not the actual stopping for stop
 855 * signals. The process stop is done as a signal action for SIG_DFL.
 856 *
 857 * Returns true if the signal should be actually delivered, otherwise
 858 * it should be dropped.
 859 */
 860static bool prepare_signal(int sig, struct task_struct *p, bool force)
 861{
 862	struct signal_struct *signal = p->signal;
 863	struct task_struct *t;
 
 864
 865	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 866		if (signal->flags & SIGNAL_GROUP_COREDUMP)
 867			return sig == SIGKILL;
 868		/*
 869		 * The process is in the middle of dying, nothing to do.
 870		 */
 871	} else if (sig_kernel_stop(sig)) {
 872		/*
 873		 * This is a stop signal.  Remove SIGCONT from all queues.
 874		 */
 875		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 876		t = p;
 877		do {
 878			rm_from_queue(sigmask(SIGCONT), &t->pending);
 879		} while_each_thread(p, t);
 880	} else if (sig == SIGCONT) {
 881		unsigned int why;
 882		/*
 883		 * Remove all stop signals from all queues, wake all threads.
 884		 */
 885		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 886		t = p;
 887		do {
 
 888			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 889			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 890			if (likely(!(t->ptrace & PT_SEIZED)))
 891				wake_up_state(t, __TASK_STOPPED);
 892			else
 893				ptrace_trap_notify(t);
 894		} while_each_thread(p, t);
 895
 896		/*
 897		 * Notify the parent with CLD_CONTINUED if we were stopped.
 898		 *
 899		 * If we were in the middle of a group stop, we pretend it
 900		 * was already finished, and then continued. Since SIGCHLD
 901		 * doesn't queue we report only CLD_STOPPED, as if the next
 902		 * CLD_CONTINUED was dropped.
 903		 */
 904		why = 0;
 905		if (signal->flags & SIGNAL_STOP_STOPPED)
 906			why |= SIGNAL_CLD_CONTINUED;
 907		else if (signal->group_stop_count)
 908			why |= SIGNAL_CLD_STOPPED;
 909
 910		if (why) {
 911			/*
 912			 * The first thread which returns from do_signal_stop()
 913			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 914			 * notify its parent. See get_signal_to_deliver().
 915			 */
 916			signal->flags = why | SIGNAL_STOP_CONTINUED;
 917			signal->group_stop_count = 0;
 918			signal->group_exit_code = 0;
 919		}
 920	}
 921
 922	return !sig_ignored(p, sig, force);
 923}
 924
 925/*
 926 * Test if P wants to take SIG.  After we've checked all threads with this,
 927 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 928 * blocking SIG were ruled out because they are not running and already
 929 * have pending signals.  Such threads will dequeue from the shared queue
 930 * as soon as they're available, so putting the signal on the shared queue
 931 * will be equivalent to sending it to one such thread.
 932 */
 933static inline int wants_signal(int sig, struct task_struct *p)
 934{
 935	if (sigismember(&p->blocked, sig))
 936		return 0;
 
 937	if (p->flags & PF_EXITING)
 938		return 0;
 
 939	if (sig == SIGKILL)
 940		return 1;
 
 941	if (task_is_stopped_or_traced(p))
 942		return 0;
 
 943	return task_curr(p) || !signal_pending(p);
 944}
 945
 946static void complete_signal(int sig, struct task_struct *p, int group)
 947{
 948	struct signal_struct *signal = p->signal;
 949	struct task_struct *t;
 950
 951	/*
 952	 * Now find a thread we can wake up to take the signal off the queue.
 953	 *
 954	 * If the main thread wants the signal, it gets first crack.
 955	 * Probably the least surprising to the average bear.
 956	 */
 957	if (wants_signal(sig, p))
 958		t = p;
 959	else if (!group || thread_group_empty(p))
 960		/*
 961		 * There is just one thread and it does not need to be woken.
 962		 * It will dequeue unblocked signals before it runs again.
 963		 */
 964		return;
 965	else {
 966		/*
 967		 * Otherwise try to find a suitable thread.
 968		 */
 969		t = signal->curr_target;
 970		while (!wants_signal(sig, t)) {
 971			t = next_thread(t);
 972			if (t == signal->curr_target)
 973				/*
 974				 * No thread needs to be woken.
 975				 * Any eligible threads will see
 976				 * the signal in the queue soon.
 977				 */
 978				return;
 979		}
 980		signal->curr_target = t;
 981	}
 982
 983	/*
 984	 * Found a killable thread.  If the signal will be fatal,
 985	 * then start taking the whole group down immediately.
 986	 */
 987	if (sig_fatal(p, sig) &&
 988	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 989	    !sigismember(&t->real_blocked, sig) &&
 990	    (sig == SIGKILL || !t->ptrace)) {
 991		/*
 992		 * This signal will be fatal to the whole group.
 993		 */
 994		if (!sig_kernel_coredump(sig)) {
 995			/*
 996			 * Start a group exit and wake everybody up.
 997			 * This way we don't have other threads
 998			 * running and doing things after a slower
 999			 * thread has the fatal signal pending.
1000			 */
1001			signal->flags = SIGNAL_GROUP_EXIT;
1002			signal->group_exit_code = sig;
1003			signal->group_stop_count = 0;
1004			t = p;
1005			do {
1006				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1007				sigaddset(&t->pending.signal, SIGKILL);
1008				signal_wake_up(t, 1);
1009			} while_each_thread(p, t);
1010			return;
1011		}
1012	}
1013
1014	/*
1015	 * The signal is already in the shared-pending queue.
1016	 * Tell the chosen thread to wake up and dequeue it.
1017	 */
1018	signal_wake_up(t, sig == SIGKILL);
1019	return;
1020}
1021
1022static inline int legacy_queue(struct sigpending *signals, int sig)
1023{
1024	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1025}
1026
1027#ifdef CONFIG_USER_NS
1028static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1029{
1030	if (current_user_ns() == task_cred_xxx(t, user_ns))
1031		return;
1032
1033	if (SI_FROMKERNEL(info))
1034		return;
1035
1036	rcu_read_lock();
1037	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1038					make_kuid(current_user_ns(), info->si_uid));
1039	rcu_read_unlock();
1040}
1041#else
1042static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1043{
1044	return;
1045}
1046#endif
1047
1048static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1049			int group, int from_ancestor_ns)
1050{
1051	struct sigpending *pending;
1052	struct sigqueue *q;
1053	int override_rlimit;
1054	int ret = 0, result;
1055
1056	assert_spin_locked(&t->sighand->siglock);
1057
1058	result = TRACE_SIGNAL_IGNORED;
1059	if (!prepare_signal(sig, t,
1060			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1061		goto ret;
1062
1063	pending = group ? &t->signal->shared_pending : &t->pending;
1064	/*
1065	 * Short-circuit ignored signals and support queuing
1066	 * exactly one non-rt signal, so that we can get more
1067	 * detailed information about the cause of the signal.
1068	 */
1069	result = TRACE_SIGNAL_ALREADY_PENDING;
1070	if (legacy_queue(pending, sig))
1071		goto ret;
1072
1073	result = TRACE_SIGNAL_DELIVERED;
1074	/*
1075	 * fast-pathed signals for kernel-internal things like SIGSTOP
1076	 * or SIGKILL.
1077	 */
1078	if (info == SEND_SIG_FORCED)
1079		goto out_set;
1080
1081	/*
1082	 * Real-time signals must be queued if sent by sigqueue, or
1083	 * some other real-time mechanism.  It is implementation
1084	 * defined whether kill() does so.  We attempt to do so, on
1085	 * the principle of least surprise, but since kill is not
1086	 * allowed to fail with EAGAIN when low on memory we just
1087	 * make sure at least one signal gets delivered and don't
1088	 * pass on the info struct.
1089	 */
1090	if (sig < SIGRTMIN)
1091		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1092	else
1093		override_rlimit = 0;
1094
1095	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1096		override_rlimit);
1097	if (q) {
1098		list_add_tail(&q->list, &pending->list);
1099		switch ((unsigned long) info) {
1100		case (unsigned long) SEND_SIG_NOINFO:
 
1101			q->info.si_signo = sig;
1102			q->info.si_errno = 0;
1103			q->info.si_code = SI_USER;
1104			q->info.si_pid = task_tgid_nr_ns(current,
1105							task_active_pid_ns(t));
1106			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
 
 
 
 
1107			break;
1108		case (unsigned long) SEND_SIG_PRIV:
 
1109			q->info.si_signo = sig;
1110			q->info.si_errno = 0;
1111			q->info.si_code = SI_KERNEL;
1112			q->info.si_pid = 0;
1113			q->info.si_uid = 0;
1114			break;
1115		default:
1116			copy_siginfo(&q->info, info);
1117			if (from_ancestor_ns)
1118				q->info.si_pid = 0;
1119			break;
1120		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121
1122		userns_fixup_signal_uid(&q->info, t);
 
 
1123
1124	} else if (!is_si_special(info)) {
1125		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1126			/*
1127			 * Queue overflow, abort.  We may abort if the
1128			 * signal was rt and sent by user using something
1129			 * other than kill().
1130			 */
1131			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1132			ret = -EAGAIN;
1133			goto ret;
1134		} else {
1135			/*
1136			 * This is a silent loss of information.  We still
1137			 * send the signal, but the *info bits are lost.
1138			 */
1139			result = TRACE_SIGNAL_LOSE_INFO;
1140		}
1141	}
1142
1143out_set:
1144	signalfd_notify(t, sig);
1145	sigaddset(&pending->signal, sig);
1146	complete_signal(sig, t, group);
1147ret:
1148	trace_signal_generate(sig, info, t, group, result);
1149	return ret;
1150}
1151
1152static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1153			int group)
1154{
1155	int from_ancestor_ns = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156
1157#ifdef CONFIG_PID_NS
1158	from_ancestor_ns = si_fromuser(info) &&
1159			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1160#endif
1161
1162	return __send_signal(sig, info, t, group, from_ancestor_ns);
 
 
 
 
 
 
1163}
1164
1165static void print_fatal_signal(int signr)
1166{
1167	struct pt_regs *regs = signal_pt_regs();
1168	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1169
1170#if defined(__i386__) && !defined(__arch_um__)
1171	printk(KERN_INFO "code at %08lx: ", regs->ip);
1172	{
1173		int i;
1174		for (i = 0; i < 16; i++) {
1175			unsigned char insn;
1176
1177			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1178				break;
1179			printk(KERN_CONT "%02x ", insn);
1180		}
1181	}
1182	printk(KERN_CONT "\n");
1183#endif
1184	preempt_disable();
1185	show_regs(regs);
1186	preempt_enable();
1187}
1188
1189static int __init setup_print_fatal_signals(char *str)
1190{
1191	get_option (&str, &print_fatal_signals);
1192
1193	return 1;
1194}
1195
1196__setup("print-fatal-signals=", setup_print_fatal_signals);
1197
1198int
1199__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1200{
1201	return send_signal(sig, info, p, 1);
1202}
1203
1204static int
1205specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1206{
1207	return send_signal(sig, info, t, 0);
1208}
1209
1210int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1211			bool group)
1212{
1213	unsigned long flags;
1214	int ret = -ESRCH;
1215
1216	if (lock_task_sighand(p, &flags)) {
1217		ret = send_signal(sig, info, p, group);
1218		unlock_task_sighand(p, &flags);
1219	}
1220
1221	return ret;
1222}
1223
1224/*
1225 * Force a signal that the process can't ignore: if necessary
1226 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1227 *
1228 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1229 * since we do not want to have a signal handler that was blocked
1230 * be invoked when user space had explicitly blocked it.
1231 *
1232 * We don't want to have recursive SIGSEGV's etc, for example,
1233 * that is why we also clear SIGNAL_UNKILLABLE.
1234 */
1235int
1236force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1237{
1238	unsigned long int flags;
1239	int ret, blocked, ignored;
1240	struct k_sigaction *action;
 
1241
1242	spin_lock_irqsave(&t->sighand->siglock, flags);
1243	action = &t->sighand->action[sig-1];
1244	ignored = action->sa.sa_handler == SIG_IGN;
1245	blocked = sigismember(&t->blocked, sig);
1246	if (blocked || ignored) {
1247		action->sa.sa_handler = SIG_DFL;
1248		if (blocked) {
1249			sigdelset(&t->blocked, sig);
1250			recalc_sigpending_and_wake(t);
1251		}
1252	}
1253	if (action->sa.sa_handler == SIG_DFL)
 
 
 
 
1254		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1255	ret = specific_send_sig_info(sig, info, t);
1256	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1257
1258	return ret;
1259}
1260
 
 
 
 
 
1261/*
1262 * Nuke all other threads in the group.
1263 */
1264int zap_other_threads(struct task_struct *p)
1265{
1266	struct task_struct *t = p;
1267	int count = 0;
1268
1269	p->signal->group_stop_count = 0;
1270
1271	while_each_thread(p, t) {
1272		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1273		count++;
1274
1275		/* Don't bother with already dead threads */
1276		if (t->exit_state)
1277			continue;
1278		sigaddset(&t->pending.signal, SIGKILL);
1279		signal_wake_up(t, 1);
1280	}
1281
1282	return count;
1283}
1284
1285struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1286					   unsigned long *flags)
1287{
1288	struct sighand_struct *sighand;
1289
 
1290	for (;;) {
1291		local_irq_save(*flags);
1292		rcu_read_lock();
1293		sighand = rcu_dereference(tsk->sighand);
1294		if (unlikely(sighand == NULL)) {
1295			rcu_read_unlock();
1296			local_irq_restore(*flags);
1297			break;
1298		}
1299
1300		spin_lock(&sighand->siglock);
1301		if (likely(sighand == tsk->sighand)) {
1302			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
1303			break;
1304		}
1305		spin_unlock(&sighand->siglock);
1306		rcu_read_unlock();
1307		local_irq_restore(*flags);
1308	}
 
1309
1310	return sighand;
1311}
1312
1313/*
1314 * send signal info to all the members of a group
1315 */
1316int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 
1317{
1318	int ret;
1319
1320	rcu_read_lock();
1321	ret = check_kill_permission(sig, info, p);
1322	rcu_read_unlock();
1323
1324	if (!ret && sig)
1325		ret = do_send_sig_info(sig, info, p, true);
1326
1327	return ret;
1328}
1329
1330/*
1331 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1332 * control characters do (^C, ^Z etc)
1333 * - the caller must hold at least a readlock on tasklist_lock
1334 */
1335int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1336{
1337	struct task_struct *p = NULL;
1338	int retval, success;
1339
1340	success = 0;
1341	retval = -ESRCH;
1342	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1343		int err = group_send_sig_info(sig, info, p);
1344		success |= !err;
1345		retval = err;
1346	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1347	return success ? 0 : retval;
1348}
1349
1350int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1351{
1352	int error = -ESRCH;
1353	struct task_struct *p;
1354
1355	rcu_read_lock();
1356retry:
1357	p = pid_task(pid, PIDTYPE_PID);
1358	if (p) {
1359		error = group_send_sig_info(sig, info, p);
1360		if (unlikely(error == -ESRCH))
1361			/*
1362			 * The task was unhashed in between, try again.
1363			 * If it is dead, pid_task() will return NULL,
1364			 * if we race with de_thread() it will find the
1365			 * new leader.
1366			 */
1367			goto retry;
 
1368	}
1369	rcu_read_unlock();
1370
1371	return error;
1372}
1373
1374int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1375{
1376	int error;
1377	rcu_read_lock();
1378	error = kill_pid_info(sig, info, find_vpid(pid));
1379	rcu_read_unlock();
1380	return error;
1381}
1382
1383static int kill_as_cred_perm(const struct cred *cred,
1384			     struct task_struct *target)
1385{
1386	const struct cred *pcred = __task_cred(target);
1387	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1388	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1389		return 0;
1390	return 1;
 
1391}
1392
1393/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1394int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1395			 const struct cred *cred, u32 secid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1396{
1397	int ret = -EINVAL;
1398	struct task_struct *p;
1399	unsigned long flags;
 
 
 
 
 
 
 
1400
1401	if (!valid_signal(sig))
1402		return ret;
1403
1404	rcu_read_lock();
1405	p = pid_task(pid, PIDTYPE_PID);
1406	if (!p) {
1407		ret = -ESRCH;
1408		goto out_unlock;
1409	}
1410	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1411		ret = -EPERM;
1412		goto out_unlock;
1413	}
1414	ret = security_task_kill(p, info, sig, secid);
1415	if (ret)
1416		goto out_unlock;
1417
1418	if (sig) {
1419		if (lock_task_sighand(p, &flags)) {
1420			ret = __send_signal(sig, info, p, 1, 0);
1421			unlock_task_sighand(p, &flags);
1422		} else
1423			ret = -ESRCH;
1424	}
1425out_unlock:
1426	rcu_read_unlock();
1427	return ret;
1428}
1429EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1430
1431/*
1432 * kill_something_info() interprets pid in interesting ways just like kill(2).
1433 *
1434 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1435 * is probably wrong.  Should make it like BSD or SYSV.
1436 */
1437
1438static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1439{
1440	int ret;
1441
1442	if (pid > 0) {
1443		rcu_read_lock();
1444		ret = kill_pid_info(sig, info, find_vpid(pid));
1445		rcu_read_unlock();
1446		return ret;
1447	}
1448
 
 
 
 
1449	read_lock(&tasklist_lock);
1450	if (pid != -1) {
1451		ret = __kill_pgrp_info(sig, info,
1452				pid ? find_vpid(-pid) : task_pgrp(current));
1453	} else {
1454		int retval = 0, count = 0;
1455		struct task_struct * p;
1456
1457		for_each_process(p) {
1458			if (task_pid_vnr(p) > 1 &&
1459					!same_thread_group(p, current)) {
1460				int err = group_send_sig_info(sig, info, p);
 
1461				++count;
1462				if (err != -EPERM)
1463					retval = err;
1464			}
1465		}
1466		ret = count ? retval : -ESRCH;
1467	}
1468	read_unlock(&tasklist_lock);
1469
1470	return ret;
1471}
1472
1473/*
1474 * These are for backward compatibility with the rest of the kernel source.
1475 */
1476
1477int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1478{
1479	/*
1480	 * Make sure legacy kernel users don't send in bad values
1481	 * (normal paths check this in check_kill_permission).
1482	 */
1483	if (!valid_signal(sig))
1484		return -EINVAL;
1485
1486	return do_send_sig_info(sig, info, p, false);
1487}
 
1488
1489#define __si_special(priv) \
1490	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1491
1492int
1493send_sig(int sig, struct task_struct *p, int priv)
1494{
1495	return send_sig_info(sig, __si_special(priv), p);
1496}
 
1497
1498void
1499force_sig(int sig, struct task_struct *p)
1500{
1501	force_sig_info(sig, SEND_SIG_PRIV, p);
 
 
 
 
 
 
 
 
1502}
 
1503
1504/*
1505 * When things go south during signal handling, we
1506 * will force a SIGSEGV. And if the signal that caused
1507 * the problem was already a SIGSEGV, we'll want to
1508 * make sure we don't even try to deliver the signal..
1509 */
1510int
1511force_sigsegv(int sig, struct task_struct *p)
1512{
 
 
1513	if (sig == SIGSEGV) {
1514		unsigned long flags;
1515		spin_lock_irqsave(&p->sighand->siglock, flags);
1516		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1517		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1518	}
1519	force_sig(SIGSEGV, p);
1520	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521}
1522
1523int kill_pgrp(struct pid *pid, int sig, int priv)
1524{
1525	int ret;
1526
1527	read_lock(&tasklist_lock);
1528	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1529	read_unlock(&tasklist_lock);
1530
1531	return ret;
1532}
1533EXPORT_SYMBOL(kill_pgrp);
1534
1535int kill_pid(struct pid *pid, int sig, int priv)
1536{
1537	return kill_pid_info(sig, __si_special(priv), pid);
1538}
1539EXPORT_SYMBOL(kill_pid);
1540
1541/*
1542 * These functions support sending signals using preallocated sigqueue
1543 * structures.  This is needed "because realtime applications cannot
1544 * afford to lose notifications of asynchronous events, like timer
1545 * expirations or I/O completions".  In the case of POSIX Timers
1546 * we allocate the sigqueue structure from the timer_create.  If this
1547 * allocation fails we are able to report the failure to the application
1548 * with an EAGAIN error.
1549 */
1550struct sigqueue *sigqueue_alloc(void)
1551{
1552	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1553
1554	if (q)
1555		q->flags |= SIGQUEUE_PREALLOC;
1556
1557	return q;
1558}
1559
1560void sigqueue_free(struct sigqueue *q)
1561{
1562	unsigned long flags;
1563	spinlock_t *lock = &current->sighand->siglock;
1564
1565	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1566	/*
1567	 * We must hold ->siglock while testing q->list
1568	 * to serialize with collect_signal() or with
1569	 * __exit_signal()->flush_sigqueue().
1570	 */
1571	spin_lock_irqsave(lock, flags);
1572	q->flags &= ~SIGQUEUE_PREALLOC;
1573	/*
1574	 * If it is queued it will be freed when dequeued,
1575	 * like the "regular" sigqueue.
1576	 */
1577	if (!list_empty(&q->list))
1578		q = NULL;
1579	spin_unlock_irqrestore(lock, flags);
1580
1581	if (q)
1582		__sigqueue_free(q);
1583}
1584
1585int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1586{
1587	int sig = q->info.si_signo;
1588	struct sigpending *pending;
 
1589	unsigned long flags;
1590	int ret, result;
1591
1592	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1593
1594	ret = -1;
1595	if (!likely(lock_task_sighand(t, &flags)))
 
 
1596		goto ret;
1597
1598	ret = 1; /* the signal is ignored */
1599	result = TRACE_SIGNAL_IGNORED;
1600	if (!prepare_signal(sig, t, false))
1601		goto out;
1602
1603	ret = 0;
1604	if (unlikely(!list_empty(&q->list))) {
1605		/*
1606		 * If an SI_TIMER entry is already queue just increment
1607		 * the overrun count.
1608		 */
1609		BUG_ON(q->info.si_code != SI_TIMER);
1610		q->info.si_overrun++;
1611		result = TRACE_SIGNAL_ALREADY_PENDING;
1612		goto out;
1613	}
1614	q->info.si_overrun = 0;
1615
1616	signalfd_notify(t, sig);
1617	pending = group ? &t->signal->shared_pending : &t->pending;
1618	list_add_tail(&q->list, &pending->list);
1619	sigaddset(&pending->signal, sig);
1620	complete_signal(sig, t, group);
1621	result = TRACE_SIGNAL_DELIVERED;
1622out:
1623	trace_signal_generate(sig, &q->info, t, group, result);
1624	unlock_task_sighand(t, &flags);
1625ret:
 
1626	return ret;
1627}
1628
 
 
 
 
 
 
 
 
 
1629/*
1630 * Let a parent know about the death of a child.
1631 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1632 *
1633 * Returns true if our parent ignored us and so we've switched to
1634 * self-reaping.
1635 */
1636bool do_notify_parent(struct task_struct *tsk, int sig)
1637{
1638	struct siginfo info;
1639	unsigned long flags;
1640	struct sighand_struct *psig;
1641	bool autoreap = false;
1642	cputime_t utime, stime;
1643
1644	BUG_ON(sig == -1);
1645
1646 	/* do_notify_parent_cldstop should have been called instead.  */
1647 	BUG_ON(task_is_stopped_or_traced(tsk));
1648
1649	BUG_ON(!tsk->ptrace &&
1650	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1651
 
 
 
1652	if (sig != SIGCHLD) {
1653		/*
1654		 * This is only possible if parent == real_parent.
1655		 * Check if it has changed security domain.
1656		 */
1657		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1658			sig = SIGCHLD;
1659	}
1660
 
1661	info.si_signo = sig;
1662	info.si_errno = 0;
1663	/*
1664	 * We are under tasklist_lock here so our parent is tied to
1665	 * us and cannot change.
1666	 *
1667	 * task_active_pid_ns will always return the same pid namespace
1668	 * until a task passes through release_task.
1669	 *
1670	 * write_lock() currently calls preempt_disable() which is the
1671	 * same as rcu_read_lock(), but according to Oleg, this is not
1672	 * correct to rely on this
1673	 */
1674	rcu_read_lock();
1675	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1676	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1677				       task_uid(tsk));
1678	rcu_read_unlock();
1679
1680	task_cputime(tsk, &utime, &stime);
1681	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1682	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1683
1684	info.si_status = tsk->exit_code & 0x7f;
1685	if (tsk->exit_code & 0x80)
1686		info.si_code = CLD_DUMPED;
1687	else if (tsk->exit_code & 0x7f)
1688		info.si_code = CLD_KILLED;
1689	else {
1690		info.si_code = CLD_EXITED;
1691		info.si_status = tsk->exit_code >> 8;
1692	}
1693
1694	psig = tsk->parent->sighand;
1695	spin_lock_irqsave(&psig->siglock, flags);
1696	if (!tsk->ptrace && sig == SIGCHLD &&
1697	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1698	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1699		/*
1700		 * We are exiting and our parent doesn't care.  POSIX.1
1701		 * defines special semantics for setting SIGCHLD to SIG_IGN
1702		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1703		 * automatically and not left for our parent's wait4 call.
1704		 * Rather than having the parent do it as a magic kind of
1705		 * signal handler, we just set this to tell do_exit that we
1706		 * can be cleaned up without becoming a zombie.  Note that
1707		 * we still call __wake_up_parent in this case, because a
1708		 * blocked sys_wait4 might now return -ECHILD.
1709		 *
1710		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1711		 * is implementation-defined: we do (if you don't want
1712		 * it, just use SIG_IGN instead).
1713		 */
1714		autoreap = true;
1715		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1716			sig = 0;
1717	}
1718	if (valid_signal(sig) && sig)
1719		__group_send_sig_info(sig, &info, tsk->parent);
1720	__wake_up_parent(tsk, tsk->parent);
1721	spin_unlock_irqrestore(&psig->siglock, flags);
1722
1723	return autoreap;
1724}
1725
1726/**
1727 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1728 * @tsk: task reporting the state change
1729 * @for_ptracer: the notification is for ptracer
1730 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1731 *
1732 * Notify @tsk's parent that the stopped/continued state has changed.  If
1733 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1734 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1735 *
1736 * CONTEXT:
1737 * Must be called with tasklist_lock at least read locked.
1738 */
1739static void do_notify_parent_cldstop(struct task_struct *tsk,
1740				     bool for_ptracer, int why)
1741{
1742	struct siginfo info;
1743	unsigned long flags;
1744	struct task_struct *parent;
1745	struct sighand_struct *sighand;
1746	cputime_t utime, stime;
1747
1748	if (for_ptracer) {
1749		parent = tsk->parent;
1750	} else {
1751		tsk = tsk->group_leader;
1752		parent = tsk->real_parent;
1753	}
1754
 
1755	info.si_signo = SIGCHLD;
1756	info.si_errno = 0;
1757	/*
1758	 * see comment in do_notify_parent() about the following 4 lines
1759	 */
1760	rcu_read_lock();
1761	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1762	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1763	rcu_read_unlock();
1764
1765	task_cputime(tsk, &utime, &stime);
1766	info.si_utime = cputime_to_clock_t(utime);
1767	info.si_stime = cputime_to_clock_t(stime);
1768
1769 	info.si_code = why;
1770 	switch (why) {
1771 	case CLD_CONTINUED:
1772 		info.si_status = SIGCONT;
1773 		break;
1774 	case CLD_STOPPED:
1775 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1776 		break;
1777 	case CLD_TRAPPED:
1778 		info.si_status = tsk->exit_code & 0x7f;
1779 		break;
1780 	default:
1781 		BUG();
1782 	}
1783
1784	sighand = parent->sighand;
1785	spin_lock_irqsave(&sighand->siglock, flags);
1786	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1787	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1788		__group_send_sig_info(SIGCHLD, &info, parent);
1789	/*
1790	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1791	 */
1792	__wake_up_parent(tsk, parent);
1793	spin_unlock_irqrestore(&sighand->siglock, flags);
1794}
1795
1796static inline int may_ptrace_stop(void)
1797{
1798	if (!likely(current->ptrace))
1799		return 0;
1800	/*
1801	 * Are we in the middle of do_coredump?
1802	 * If so and our tracer is also part of the coredump stopping
1803	 * is a deadlock situation, and pointless because our tracer
1804	 * is dead so don't allow us to stop.
1805	 * If SIGKILL was already sent before the caller unlocked
1806	 * ->siglock we must see ->core_state != NULL. Otherwise it
1807	 * is safe to enter schedule().
1808	 *
1809	 * This is almost outdated, a task with the pending SIGKILL can't
1810	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1811	 * after SIGKILL was already dequeued.
1812	 */
1813	if (unlikely(current->mm->core_state) &&
1814	    unlikely(current->mm == current->parent->mm))
1815		return 0;
1816
1817	return 1;
1818}
1819
1820/*
1821 * Return non-zero if there is a SIGKILL that should be waking us up.
1822 * Called with the siglock held.
1823 */
1824static int sigkill_pending(struct task_struct *tsk)
1825{
1826	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1827		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1828}
1829
1830/*
1831 * This must be called with current->sighand->siglock held.
1832 *
1833 * This should be the path for all ptrace stops.
1834 * We always set current->last_siginfo while stopped here.
1835 * That makes it a way to test a stopped process for
1836 * being ptrace-stopped vs being job-control-stopped.
1837 *
1838 * If we actually decide not to stop at all because the tracer
1839 * is gone, we keep current->exit_code unless clear_code.
1840 */
1841static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1842	__releases(&current->sighand->siglock)
1843	__acquires(&current->sighand->siglock)
1844{
1845	bool gstop_done = false;
1846
1847	if (arch_ptrace_stop_needed(exit_code, info)) {
1848		/*
1849		 * The arch code has something special to do before a
1850		 * ptrace stop.  This is allowed to block, e.g. for faults
1851		 * on user stack pages.  We can't keep the siglock while
1852		 * calling arch_ptrace_stop, so we must release it now.
1853		 * To preserve proper semantics, we must do this before
1854		 * any signal bookkeeping like checking group_stop_count.
1855		 * Meanwhile, a SIGKILL could come in before we retake the
1856		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1857		 * So after regaining the lock, we must check for SIGKILL.
1858		 */
1859		spin_unlock_irq(&current->sighand->siglock);
1860		arch_ptrace_stop(exit_code, info);
1861		spin_lock_irq(&current->sighand->siglock);
1862		if (sigkill_pending(current))
1863			return;
1864	}
1865
 
 
1866	/*
1867	 * We're committing to trapping.  TRACED should be visible before
1868	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1869	 * Also, transition to TRACED and updates to ->jobctl should be
1870	 * atomic with respect to siglock and should be done after the arch
1871	 * hook as siglock is released and regrabbed across it.
 
 
 
 
 
 
 
 
 
 
 
1872	 */
1873	set_current_state(TASK_TRACED);
1874
1875	current->last_siginfo = info;
1876	current->exit_code = exit_code;
1877
1878	/*
1879	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1880	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1881	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1882	 * could be clear now.  We act as if SIGCONT is received after
1883	 * TASK_TRACED is entered - ignore it.
1884	 */
1885	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1886		gstop_done = task_participate_group_stop(current);
1887
1888	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1889	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1890	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1891		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1892
1893	/* entering a trap, clear TRAPPING */
1894	task_clear_jobctl_trapping(current);
1895
1896	spin_unlock_irq(&current->sighand->siglock);
1897	read_lock(&tasklist_lock);
1898	if (may_ptrace_stop()) {
1899		/*
1900		 * Notify parents of the stop.
1901		 *
1902		 * While ptraced, there are two parents - the ptracer and
1903		 * the real_parent of the group_leader.  The ptracer should
1904		 * know about every stop while the real parent is only
1905		 * interested in the completion of group stop.  The states
1906		 * for the two don't interact with each other.  Notify
1907		 * separately unless they're gonna be duplicates.
1908		 */
1909		do_notify_parent_cldstop(current, true, why);
1910		if (gstop_done && ptrace_reparented(current))
1911			do_notify_parent_cldstop(current, false, why);
1912
1913		/*
1914		 * Don't want to allow preemption here, because
1915		 * sys_ptrace() needs this task to be inactive.
1916		 *
1917		 * XXX: implement read_unlock_no_resched().
1918		 */
1919		preempt_disable();
1920		read_unlock(&tasklist_lock);
 
1921		preempt_enable_no_resched();
1922		freezable_schedule();
 
1923	} else {
1924		/*
1925		 * By the time we got the lock, our tracer went away.
1926		 * Don't drop the lock yet, another tracer may come.
1927		 *
1928		 * If @gstop_done, the ptracer went away between group stop
1929		 * completion and here.  During detach, it would have set
1930		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1931		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1932		 * the real parent of the group stop completion is enough.
1933		 */
1934		if (gstop_done)
1935			do_notify_parent_cldstop(current, false, why);
1936
1937		/* tasklist protects us from ptrace_freeze_traced() */
1938		__set_current_state(TASK_RUNNING);
1939		if (clear_code)
1940			current->exit_code = 0;
1941		read_unlock(&tasklist_lock);
1942	}
1943
1944	/*
1945	 * We are back.  Now reacquire the siglock before touching
1946	 * last_siginfo, so that we are sure to have synchronized with
1947	 * any signal-sending on another CPU that wants to examine it.
1948	 */
1949	spin_lock_irq(&current->sighand->siglock);
1950	current->last_siginfo = NULL;
1951
1952	/* LISTENING can be set only during STOP traps, clear it */
1953	current->jobctl &= ~JOBCTL_LISTENING;
1954
1955	/*
1956	 * Queued signals ignored us while we were stopped for tracing.
1957	 * So check for any that we should take before resuming user mode.
1958	 * This sets TIF_SIGPENDING, but never clears it.
1959	 */
1960	recalc_sigpending_tsk(current);
1961}
1962
1963static void ptrace_do_notify(int signr, int exit_code, int why)
1964{
1965	siginfo_t info;
1966
1967	memset(&info, 0, sizeof info);
1968	info.si_signo = signr;
1969	info.si_code = exit_code;
1970	info.si_pid = task_pid_vnr(current);
1971	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1972
1973	/* Let the debugger run.  */
1974	ptrace_stop(exit_code, why, 1, &info);
1975}
1976
1977void ptrace_notify(int exit_code)
1978{
1979	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1980	if (unlikely(current->task_works))
1981		task_work_run();
1982
1983	spin_lock_irq(&current->sighand->siglock);
1984	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1985	spin_unlock_irq(&current->sighand->siglock);
1986}
1987
1988/**
1989 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1990 * @signr: signr causing group stop if initiating
1991 *
1992 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1993 * and participate in it.  If already set, participate in the existing
1994 * group stop.  If participated in a group stop (and thus slept), %true is
1995 * returned with siglock released.
1996 *
1997 * If ptraced, this function doesn't handle stop itself.  Instead,
1998 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1999 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2000 * places afterwards.
2001 *
2002 * CONTEXT:
2003 * Must be called with @current->sighand->siglock held, which is released
2004 * on %true return.
2005 *
2006 * RETURNS:
2007 * %false if group stop is already cancelled or ptrace trap is scheduled.
2008 * %true if participated in group stop.
2009 */
2010static bool do_signal_stop(int signr)
2011	__releases(&current->sighand->siglock)
2012{
2013	struct signal_struct *sig = current->signal;
2014
2015	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2016		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2017		struct task_struct *t;
2018
2019		/* signr will be recorded in task->jobctl for retries */
2020		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2021
2022		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2023		    unlikely(signal_group_exit(sig)))
2024			return false;
2025		/*
2026		 * There is no group stop already in progress.  We must
2027		 * initiate one now.
2028		 *
2029		 * While ptraced, a task may be resumed while group stop is
2030		 * still in effect and then receive a stop signal and
2031		 * initiate another group stop.  This deviates from the
2032		 * usual behavior as two consecutive stop signals can't
2033		 * cause two group stops when !ptraced.  That is why we
2034		 * also check !task_is_stopped(t) below.
2035		 *
2036		 * The condition can be distinguished by testing whether
2037		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2038		 * group_exit_code in such case.
2039		 *
2040		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2041		 * an intervening stop signal is required to cause two
2042		 * continued events regardless of ptrace.
2043		 */
2044		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2045			sig->group_exit_code = signr;
2046
2047		sig->group_stop_count = 0;
2048
2049		if (task_set_jobctl_pending(current, signr | gstop))
2050			sig->group_stop_count++;
2051
2052		t = current;
2053		while_each_thread(current, t) {
2054			/*
2055			 * Setting state to TASK_STOPPED for a group
2056			 * stop is always done with the siglock held,
2057			 * so this check has no races.
2058			 */
2059			if (!task_is_stopped(t) &&
2060			    task_set_jobctl_pending(t, signr | gstop)) {
2061				sig->group_stop_count++;
2062				if (likely(!(t->ptrace & PT_SEIZED)))
2063					signal_wake_up(t, 0);
2064				else
2065					ptrace_trap_notify(t);
2066			}
2067		}
2068	}
2069
2070	if (likely(!current->ptrace)) {
2071		int notify = 0;
2072
2073		/*
2074		 * If there are no other threads in the group, or if there
2075		 * is a group stop in progress and we are the last to stop,
2076		 * report to the parent.
2077		 */
2078		if (task_participate_group_stop(current))
2079			notify = CLD_STOPPED;
2080
2081		__set_current_state(TASK_STOPPED);
2082		spin_unlock_irq(&current->sighand->siglock);
2083
2084		/*
2085		 * Notify the parent of the group stop completion.  Because
2086		 * we're not holding either the siglock or tasklist_lock
2087		 * here, ptracer may attach inbetween; however, this is for
2088		 * group stop and should always be delivered to the real
2089		 * parent of the group leader.  The new ptracer will get
2090		 * its notification when this task transitions into
2091		 * TASK_TRACED.
2092		 */
2093		if (notify) {
2094			read_lock(&tasklist_lock);
2095			do_notify_parent_cldstop(current, false, notify);
2096			read_unlock(&tasklist_lock);
2097		}
2098
2099		/* Now we don't run again until woken by SIGCONT or SIGKILL */
 
2100		freezable_schedule();
2101		return true;
2102	} else {
2103		/*
2104		 * While ptraced, group stop is handled by STOP trap.
2105		 * Schedule it and let the caller deal with it.
2106		 */
2107		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2108		return false;
2109	}
2110}
2111
2112/**
2113 * do_jobctl_trap - take care of ptrace jobctl traps
2114 *
2115 * When PT_SEIZED, it's used for both group stop and explicit
2116 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2117 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2118 * the stop signal; otherwise, %SIGTRAP.
2119 *
2120 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2121 * number as exit_code and no siginfo.
2122 *
2123 * CONTEXT:
2124 * Must be called with @current->sighand->siglock held, which may be
2125 * released and re-acquired before returning with intervening sleep.
2126 */
2127static void do_jobctl_trap(void)
2128{
2129	struct signal_struct *signal = current->signal;
2130	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2131
2132	if (current->ptrace & PT_SEIZED) {
2133		if (!signal->group_stop_count &&
2134		    !(signal->flags & SIGNAL_STOP_STOPPED))
2135			signr = SIGTRAP;
2136		WARN_ON_ONCE(!signr);
2137		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2138				 CLD_STOPPED);
2139	} else {
2140		WARN_ON_ONCE(!signr);
2141		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2142		current->exit_code = 0;
2143	}
2144}
2145
2146static int ptrace_signal(int signr, siginfo_t *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147{
2148	ptrace_signal_deliver();
2149	/*
2150	 * We do not check sig_kernel_stop(signr) but set this marker
2151	 * unconditionally because we do not know whether debugger will
2152	 * change signr. This flag has no meaning unless we are going
2153	 * to stop after return from ptrace_stop(). In this case it will
2154	 * be checked in do_signal_stop(), we should only stop if it was
2155	 * not cleared by SIGCONT while we were sleeping. See also the
2156	 * comment in dequeue_signal().
2157	 */
2158	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2159	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2160
2161	/* We're back.  Did the debugger cancel the sig?  */
2162	signr = current->exit_code;
2163	if (signr == 0)
2164		return signr;
2165
2166	current->exit_code = 0;
2167
2168	/*
2169	 * Update the siginfo structure if the signal has
2170	 * changed.  If the debugger wanted something
2171	 * specific in the siginfo structure then it should
2172	 * have updated *info via PTRACE_SETSIGINFO.
2173	 */
2174	if (signr != info->si_signo) {
 
2175		info->si_signo = signr;
2176		info->si_errno = 0;
2177		info->si_code = SI_USER;
2178		rcu_read_lock();
2179		info->si_pid = task_pid_vnr(current->parent);
2180		info->si_uid = from_kuid_munged(current_user_ns(),
2181						task_uid(current->parent));
2182		rcu_read_unlock();
2183	}
2184
2185	/* If the (new) signal is now blocked, requeue it.  */
2186	if (sigismember(&current->blocked, signr)) {
2187		specific_send_sig_info(signr, info, current);
2188		signr = 0;
2189	}
2190
2191	return signr;
2192}
2193
2194int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2195			  struct pt_regs *regs, void *cookie)
2196{
2197	struct sighand_struct *sighand = current->sighand;
2198	struct signal_struct *signal = current->signal;
2199	int signr;
2200
2201	if (unlikely(current->task_works))
2202		task_work_run();
2203
2204	if (unlikely(uprobe_deny_signal()))
2205		return 0;
2206
2207	/*
2208	 * Do this once, we can't return to user-mode if freezing() == T.
2209	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2210	 * thus do not need another check after return.
2211	 */
2212	try_to_freeze();
2213
2214relock:
2215	spin_lock_irq(&sighand->siglock);
2216	/*
2217	 * Every stopped thread goes here after wakeup. Check to see if
2218	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2219	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2220	 */
2221	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2222		int why;
2223
2224		if (signal->flags & SIGNAL_CLD_CONTINUED)
2225			why = CLD_CONTINUED;
2226		else
2227			why = CLD_STOPPED;
2228
2229		signal->flags &= ~SIGNAL_CLD_MASK;
2230
2231		spin_unlock_irq(&sighand->siglock);
2232
2233		/*
2234		 * Notify the parent that we're continuing.  This event is
2235		 * always per-process and doesn't make whole lot of sense
2236		 * for ptracers, who shouldn't consume the state via
2237		 * wait(2) either, but, for backward compatibility, notify
2238		 * the ptracer of the group leader too unless it's gonna be
2239		 * a duplicate.
2240		 */
2241		read_lock(&tasklist_lock);
2242		do_notify_parent_cldstop(current, false, why);
2243
2244		if (ptrace_reparented(current->group_leader))
2245			do_notify_parent_cldstop(current->group_leader,
2246						true, why);
2247		read_unlock(&tasklist_lock);
2248
2249		goto relock;
2250	}
2251
 
 
 
 
 
 
 
 
 
 
2252	for (;;) {
2253		struct k_sigaction *ka;
2254
2255		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2256		    do_signal_stop(0))
2257			goto relock;
2258
2259		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2260			do_jobctl_trap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261			spin_unlock_irq(&sighand->siglock);
 
2262			goto relock;
2263		}
2264
2265		signr = dequeue_signal(current, &current->blocked, info);
 
 
 
 
 
 
 
 
2266
2267		if (!signr)
2268			break; /* will return 0 */
2269
2270		if (unlikely(current->ptrace) && signr != SIGKILL) {
2271			signr = ptrace_signal(signr, info);
2272			if (!signr)
2273				continue;
2274		}
2275
2276		ka = &sighand->action[signr-1];
2277
2278		/* Trace actually delivered signals. */
2279		trace_signal_deliver(signr, info, ka);
2280
2281		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2282			continue;
2283		if (ka->sa.sa_handler != SIG_DFL) {
2284			/* Run the handler.  */
2285			*return_ka = *ka;
2286
2287			if (ka->sa.sa_flags & SA_ONESHOT)
2288				ka->sa.sa_handler = SIG_DFL;
2289
2290			break; /* will return non-zero "signr" value */
2291		}
2292
2293		/*
2294		 * Now we are doing the default action for this signal.
2295		 */
2296		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2297			continue;
2298
2299		/*
2300		 * Global init gets no signals it doesn't want.
2301		 * Container-init gets no signals it doesn't want from same
2302		 * container.
2303		 *
2304		 * Note that if global/container-init sees a sig_kernel_only()
2305		 * signal here, the signal must have been generated internally
2306		 * or must have come from an ancestor namespace. In either
2307		 * case, the signal cannot be dropped.
2308		 */
2309		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2310				!sig_kernel_only(signr))
2311			continue;
2312
2313		if (sig_kernel_stop(signr)) {
2314			/*
2315			 * The default action is to stop all threads in
2316			 * the thread group.  The job control signals
2317			 * do nothing in an orphaned pgrp, but SIGSTOP
2318			 * always works.  Note that siglock needs to be
2319			 * dropped during the call to is_orphaned_pgrp()
2320			 * because of lock ordering with tasklist_lock.
2321			 * This allows an intervening SIGCONT to be posted.
2322			 * We need to check for that and bail out if necessary.
2323			 */
2324			if (signr != SIGSTOP) {
2325				spin_unlock_irq(&sighand->siglock);
2326
2327				/* signals can be posted during this window */
2328
2329				if (is_current_pgrp_orphaned())
2330					goto relock;
2331
2332				spin_lock_irq(&sighand->siglock);
2333			}
2334
2335			if (likely(do_signal_stop(info->si_signo))) {
2336				/* It released the siglock.  */
2337				goto relock;
2338			}
2339
2340			/*
2341			 * We didn't actually stop, due to a race
2342			 * with SIGCONT or something like that.
2343			 */
2344			continue;
2345		}
2346
 
2347		spin_unlock_irq(&sighand->siglock);
 
 
2348
2349		/*
2350		 * Anything else is fatal, maybe with a core dump.
2351		 */
2352		current->flags |= PF_SIGNALED;
2353
2354		if (sig_kernel_coredump(signr)) {
2355			if (print_fatal_signals)
2356				print_fatal_signal(info->si_signo);
2357			proc_coredump_connector(current);
2358			/*
2359			 * If it was able to dump core, this kills all
2360			 * other threads in the group and synchronizes with
2361			 * their demise.  If we lost the race with another
2362			 * thread getting here, it set group_exit_code
2363			 * first and our do_group_exit call below will use
2364			 * that value and ignore the one we pass it.
2365			 */
2366			do_coredump(info);
2367		}
2368
2369		/*
2370		 * Death signals, no core dump.
2371		 */
2372		do_group_exit(info->si_signo);
2373		/* NOTREACHED */
2374	}
2375	spin_unlock_irq(&sighand->siglock);
2376	return signr;
 
 
2377}
2378
2379/**
2380 * signal_delivered - 
2381 * @sig:		number of signal being delivered
2382 * @info:		siginfo_t of signal being delivered
2383 * @ka:			sigaction setting that chose the handler
2384 * @regs:		user register state
2385 * @stepping:		nonzero if debugger single-step or block-step in use
2386 *
2387 * This function should be called when a signal has successfully been
2388 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2389 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2390 * is set in @ka->sa.sa_flags.  Tracing is notified.
2391 */
2392void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2393			struct pt_regs *regs, int stepping)
2394{
2395	sigset_t blocked;
2396
2397	/* A signal was successfully delivered, and the
2398	   saved sigmask was stored on the signal frame,
2399	   and will be restored by sigreturn.  So we can
2400	   simply clear the restore sigmask flag.  */
2401	clear_restore_sigmask();
2402
2403	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2404	if (!(ka->sa.sa_flags & SA_NODEFER))
2405		sigaddset(&blocked, sig);
2406	set_current_blocked(&blocked);
2407	tracehook_signal_handler(sig, info, ka, regs, stepping);
2408}
2409
2410void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2411{
2412	if (failed)
2413		force_sigsegv(ksig->sig, current);
2414	else
2415		signal_delivered(ksig->sig, &ksig->info, &ksig->ka,
2416			signal_pt_regs(), stepping);
2417}
2418
2419/*
2420 * It could be that complete_signal() picked us to notify about the
2421 * group-wide signal. Other threads should be notified now to take
2422 * the shared signals in @which since we will not.
2423 */
2424static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2425{
2426	sigset_t retarget;
2427	struct task_struct *t;
2428
2429	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2430	if (sigisemptyset(&retarget))
2431		return;
2432
2433	t = tsk;
2434	while_each_thread(tsk, t) {
2435		if (t->flags & PF_EXITING)
2436			continue;
2437
2438		if (!has_pending_signals(&retarget, &t->blocked))
2439			continue;
2440		/* Remove the signals this thread can handle. */
2441		sigandsets(&retarget, &retarget, &t->blocked);
2442
2443		if (!signal_pending(t))
2444			signal_wake_up(t, 0);
2445
2446		if (sigisemptyset(&retarget))
2447			break;
2448	}
2449}
2450
2451void exit_signals(struct task_struct *tsk)
2452{
2453	int group_stop = 0;
2454	sigset_t unblocked;
2455
2456	/*
2457	 * @tsk is about to have PF_EXITING set - lock out users which
2458	 * expect stable threadgroup.
2459	 */
2460	threadgroup_change_begin(tsk);
2461
2462	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2463		tsk->flags |= PF_EXITING;
2464		threadgroup_change_end(tsk);
2465		return;
2466	}
2467
2468	spin_lock_irq(&tsk->sighand->siglock);
2469	/*
2470	 * From now this task is not visible for group-wide signals,
2471	 * see wants_signal(), do_signal_stop().
2472	 */
2473	tsk->flags |= PF_EXITING;
2474
2475	threadgroup_change_end(tsk);
2476
2477	if (!signal_pending(tsk))
2478		goto out;
2479
2480	unblocked = tsk->blocked;
2481	signotset(&unblocked);
2482	retarget_shared_pending(tsk, &unblocked);
2483
2484	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2485	    task_participate_group_stop(tsk))
2486		group_stop = CLD_STOPPED;
2487out:
2488	spin_unlock_irq(&tsk->sighand->siglock);
2489
2490	/*
2491	 * If group stop has completed, deliver the notification.  This
2492	 * should always go to the real parent of the group leader.
2493	 */
2494	if (unlikely(group_stop)) {
2495		read_lock(&tasklist_lock);
2496		do_notify_parent_cldstop(tsk, false, group_stop);
2497		read_unlock(&tasklist_lock);
2498	}
2499}
2500
2501EXPORT_SYMBOL(recalc_sigpending);
2502EXPORT_SYMBOL_GPL(dequeue_signal);
2503EXPORT_SYMBOL(flush_signals);
2504EXPORT_SYMBOL(force_sig);
2505EXPORT_SYMBOL(send_sig);
2506EXPORT_SYMBOL(send_sig_info);
2507EXPORT_SYMBOL(sigprocmask);
2508EXPORT_SYMBOL(block_all_signals);
2509EXPORT_SYMBOL(unblock_all_signals);
2510
2511
2512/*
2513 * System call entry points.
2514 */
2515
2516/**
2517 *  sys_restart_syscall - restart a system call
2518 */
2519SYSCALL_DEFINE0(restart_syscall)
2520{
2521	struct restart_block *restart = &current_thread_info()->restart_block;
2522	return restart->fn(restart);
2523}
2524
2525long do_no_restart_syscall(struct restart_block *param)
2526{
2527	return -EINTR;
2528}
2529
2530static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2531{
2532	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2533		sigset_t newblocked;
2534		/* A set of now blocked but previously unblocked signals. */
2535		sigandnsets(&newblocked, newset, &current->blocked);
2536		retarget_shared_pending(tsk, &newblocked);
2537	}
2538	tsk->blocked = *newset;
2539	recalc_sigpending();
2540}
2541
2542/**
2543 * set_current_blocked - change current->blocked mask
2544 * @newset: new mask
2545 *
2546 * It is wrong to change ->blocked directly, this helper should be used
2547 * to ensure the process can't miss a shared signal we are going to block.
2548 */
2549void set_current_blocked(sigset_t *newset)
2550{
2551	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2552	__set_current_blocked(newset);
2553}
2554
2555void __set_current_blocked(const sigset_t *newset)
2556{
2557	struct task_struct *tsk = current;
2558
 
 
 
 
 
 
 
2559	spin_lock_irq(&tsk->sighand->siglock);
2560	__set_task_blocked(tsk, newset);
2561	spin_unlock_irq(&tsk->sighand->siglock);
2562}
2563
2564/*
2565 * This is also useful for kernel threads that want to temporarily
2566 * (or permanently) block certain signals.
2567 *
2568 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2569 * interface happily blocks "unblockable" signals like SIGKILL
2570 * and friends.
2571 */
2572int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2573{
2574	struct task_struct *tsk = current;
2575	sigset_t newset;
2576
2577	/* Lockless, only current can change ->blocked, never from irq */
2578	if (oldset)
2579		*oldset = tsk->blocked;
2580
2581	switch (how) {
2582	case SIG_BLOCK:
2583		sigorsets(&newset, &tsk->blocked, set);
2584		break;
2585	case SIG_UNBLOCK:
2586		sigandnsets(&newset, &tsk->blocked, set);
2587		break;
2588	case SIG_SETMASK:
2589		newset = *set;
2590		break;
2591	default:
2592		return -EINVAL;
2593	}
2594
2595	__set_current_blocked(&newset);
2596	return 0;
2597}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2598
2599/**
2600 *  sys_rt_sigprocmask - change the list of currently blocked signals
2601 *  @how: whether to add, remove, or set signals
2602 *  @nset: stores pending signals
2603 *  @oset: previous value of signal mask if non-null
2604 *  @sigsetsize: size of sigset_t type
2605 */
2606SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2607		sigset_t __user *, oset, size_t, sigsetsize)
2608{
2609	sigset_t old_set, new_set;
2610	int error;
2611
2612	/* XXX: Don't preclude handling different sized sigset_t's.  */
2613	if (sigsetsize != sizeof(sigset_t))
2614		return -EINVAL;
2615
2616	old_set = current->blocked;
2617
2618	if (nset) {
2619		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2620			return -EFAULT;
2621		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2622
2623		error = sigprocmask(how, &new_set, NULL);
2624		if (error)
2625			return error;
2626	}
2627
2628	if (oset) {
2629		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2630			return -EFAULT;
2631	}
2632
2633	return 0;
2634}
2635
2636#ifdef CONFIG_COMPAT
2637COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2638		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2639{
2640#ifdef __BIG_ENDIAN
2641	sigset_t old_set = current->blocked;
2642
2643	/* XXX: Don't preclude handling different sized sigset_t's.  */
2644	if (sigsetsize != sizeof(sigset_t))
2645		return -EINVAL;
2646
2647	if (nset) {
2648		compat_sigset_t new32;
2649		sigset_t new_set;
2650		int error;
2651		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2652			return -EFAULT;
2653
2654		sigset_from_compat(&new_set, &new32);
2655		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2656
2657		error = sigprocmask(how, &new_set, NULL);
2658		if (error)
2659			return error;
2660	}
2661	if (oset) {
2662		compat_sigset_t old32;
2663		sigset_to_compat(&old32, &old_set);
2664		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2665			return -EFAULT;
2666	}
2667	return 0;
2668#else
2669	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2670				  (sigset_t __user *)oset, sigsetsize);
2671#endif
2672}
2673#endif
2674
2675static int do_sigpending(void *set, unsigned long sigsetsize)
2676{
2677	if (sigsetsize > sizeof(sigset_t))
2678		return -EINVAL;
2679
2680	spin_lock_irq(&current->sighand->siglock);
2681	sigorsets(set, &current->pending.signal,
2682		  &current->signal->shared_pending.signal);
2683	spin_unlock_irq(&current->sighand->siglock);
2684
2685	/* Outside the lock because only this thread touches it.  */
2686	sigandsets(set, &current->blocked, set);
2687	return 0;
2688}
2689
2690/**
2691 *  sys_rt_sigpending - examine a pending signal that has been raised
2692 *			while blocked
2693 *  @uset: stores pending signals
2694 *  @sigsetsize: size of sigset_t type or larger
2695 */
2696SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2697{
2698	sigset_t set;
2699	int err = do_sigpending(&set, sigsetsize);
2700	if (!err && copy_to_user(uset, &set, sigsetsize))
2701		err = -EFAULT;
2702	return err;
 
 
 
 
 
 
2703}
2704
2705#ifdef CONFIG_COMPAT
2706COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2707		compat_size_t, sigsetsize)
2708{
2709#ifdef __BIG_ENDIAN
2710	sigset_t set;
2711	int err = do_sigpending(&set, sigsetsize);
2712	if (!err) {
2713		compat_sigset_t set32;
2714		sigset_to_compat(&set32, &set);
2715		/* we can get here only if sigsetsize <= sizeof(set) */
2716		if (copy_to_user(uset, &set32, sigsetsize))
2717			err = -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2718	}
2719	return err;
2720#else
2721	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2722#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2723}
2724#endif
2725
2726#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2727
2728int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
 
2729{
2730	int err;
 
 
 
 
2731
2732	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
 
 
2733		return -EFAULT;
2734	if (from->si_code < 0)
2735		return __copy_to_user(to, from, sizeof(siginfo_t))
2736			? -EFAULT : 0;
2737	/*
2738	 * If you change siginfo_t structure, please be sure
2739	 * this code is fixed accordingly.
2740	 * Please remember to update the signalfd_copyinfo() function
2741	 * inside fs/signalfd.c too, in case siginfo_t changes.
2742	 * It should never copy any pad contained in the structure
2743	 * to avoid security leaks, but must copy the generic
2744	 * 3 ints plus the relevant union member.
2745	 */
2746	err = __put_user(from->si_signo, &to->si_signo);
2747	err |= __put_user(from->si_errno, &to->si_errno);
2748	err |= __put_user((short)from->si_code, &to->si_code);
2749	switch (from->si_code & __SI_MASK) {
2750	case __SI_KILL:
2751		err |= __put_user(from->si_pid, &to->si_pid);
2752		err |= __put_user(from->si_uid, &to->si_uid);
2753		break;
2754	case __SI_TIMER:
2755		 err |= __put_user(from->si_tid, &to->si_tid);
2756		 err |= __put_user(from->si_overrun, &to->si_overrun);
2757		 err |= __put_user(from->si_ptr, &to->si_ptr);
2758		break;
2759	case __SI_POLL:
2760		err |= __put_user(from->si_band, &to->si_band);
2761		err |= __put_user(from->si_fd, &to->si_fd);
2762		break;
2763	case __SI_FAULT:
2764		err |= __put_user(from->si_addr, &to->si_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2765#ifdef __ARCH_SI_TRAPNO
2766		err |= __put_user(from->si_trapno, &to->si_trapno);
2767#endif
2768#ifdef BUS_MCEERR_AO
2769		/*
2770		 * Other callers might not initialize the si_lsb field,
2771		 * so check explicitly for the right codes here.
2772		 */
2773		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2774			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2775#endif
2776		break;
2777	case __SI_CHLD:
2778		err |= __put_user(from->si_pid, &to->si_pid);
2779		err |= __put_user(from->si_uid, &to->si_uid);
2780		err |= __put_user(from->si_status, &to->si_status);
2781		err |= __put_user(from->si_utime, &to->si_utime);
2782		err |= __put_user(from->si_stime, &to->si_stime);
2783		break;
2784	case __SI_RT: /* This is not generated by the kernel as of now. */
2785	case __SI_MESGQ: /* But this is */
2786		err |= __put_user(from->si_pid, &to->si_pid);
2787		err |= __put_user(from->si_uid, &to->si_uid);
2788		err |= __put_user(from->si_ptr, &to->si_ptr);
 
 
2789		break;
2790#ifdef __ARCH_SIGSYS
2791	case __SI_SYS:
2792		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2793		err |= __put_user(from->si_syscall, &to->si_syscall);
2794		err |= __put_user(from->si_arch, &to->si_arch);
 
2795		break;
 
 
 
 
 
 
 
 
 
2796#endif
2797	default: /* this is just in case for now ... */
2798		err |= __put_user(from->si_pid, &to->si_pid);
2799		err |= __put_user(from->si_uid, &to->si_uid);
 
 
 
 
 
 
 
 
 
 
 
2800		break;
2801	}
2802	return err;
 
 
 
 
 
 
 
 
 
 
 
 
2803}
2804
2805#endif
 
 
 
 
 
 
 
 
 
 
2806
2807/**
2808 *  do_sigtimedwait - wait for queued signals specified in @which
2809 *  @which: queued signals to wait for
2810 *  @info: if non-null, the signal's siginfo is returned here
2811 *  @ts: upper bound on process time suspension
2812 */
2813int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2814			const struct timespec *ts)
2815{
 
2816	struct task_struct *tsk = current;
2817	long timeout = MAX_SCHEDULE_TIMEOUT;
2818	sigset_t mask = *which;
2819	int sig;
2820
2821	if (ts) {
2822		if (!timespec_valid(ts))
2823			return -EINVAL;
2824		timeout = timespec_to_jiffies(ts);
2825		/*
2826		 * We can be close to the next tick, add another one
2827		 * to ensure we will wait at least the time asked for.
2828		 */
2829		if (ts->tv_sec || ts->tv_nsec)
2830			timeout++;
2831	}
2832
2833	/*
2834	 * Invert the set of allowed signals to get those we want to block.
2835	 */
2836	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2837	signotset(&mask);
2838
2839	spin_lock_irq(&tsk->sighand->siglock);
2840	sig = dequeue_signal(tsk, &mask, info);
2841	if (!sig && timeout) {
2842		/*
2843		 * None ready, temporarily unblock those we're interested
2844		 * while we are sleeping in so that we'll be awakened when
2845		 * they arrive. Unblocking is always fine, we can avoid
2846		 * set_current_blocked().
2847		 */
2848		tsk->real_blocked = tsk->blocked;
2849		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2850		recalc_sigpending();
2851		spin_unlock_irq(&tsk->sighand->siglock);
2852
2853		timeout = freezable_schedule_timeout_interruptible(timeout);
2854
 
2855		spin_lock_irq(&tsk->sighand->siglock);
2856		__set_task_blocked(tsk, &tsk->real_blocked);
2857		siginitset(&tsk->real_blocked, 0);
2858		sig = dequeue_signal(tsk, &mask, info);
2859	}
2860	spin_unlock_irq(&tsk->sighand->siglock);
2861
2862	if (sig)
2863		return sig;
2864	return timeout ? -EINTR : -EAGAIN;
2865}
2866
2867/**
2868 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2869 *			in @uthese
2870 *  @uthese: queued signals to wait for
2871 *  @uinfo: if non-null, the signal's siginfo is returned here
2872 *  @uts: upper bound on process time suspension
2873 *  @sigsetsize: size of sigset_t type
2874 */
2875SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2876		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
 
2877		size_t, sigsetsize)
2878{
2879	sigset_t these;
2880	struct timespec ts;
2881	siginfo_t info;
2882	int ret;
2883
2884	/* XXX: Don't preclude handling different sized sigset_t's.  */
2885	if (sigsetsize != sizeof(sigset_t))
2886		return -EINVAL;
2887
2888	if (copy_from_user(&these, uthese, sizeof(these)))
2889		return -EFAULT;
2890
2891	if (uts) {
2892		if (copy_from_user(&ts, uts, sizeof(ts)))
2893			return -EFAULT;
2894	}
2895
2896	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2897
2898	if (ret > 0 && uinfo) {
2899		if (copy_siginfo_to_user(uinfo, &info))
2900			ret = -EFAULT;
2901	}
2902
2903	return ret;
2904}
2905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2906/**
2907 *  sys_kill - send a signal to a process
2908 *  @pid: the PID of the process
2909 *  @sig: signal to be sent
2910 */
2911SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2912{
2913	struct siginfo info;
2914
2915	info.si_signo = sig;
2916	info.si_errno = 0;
2917	info.si_code = SI_USER;
2918	info.si_pid = task_tgid_vnr(current);
2919	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2920
2921	return kill_something_info(sig, &info, pid);
2922}
2923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2924static int
2925do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2926{
2927	struct task_struct *p;
2928	int error = -ESRCH;
2929
2930	rcu_read_lock();
2931	p = find_task_by_vpid(pid);
2932	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2933		error = check_kill_permission(sig, info, p);
2934		/*
2935		 * The null signal is a permissions and process existence
2936		 * probe.  No signal is actually delivered.
2937		 */
2938		if (!error && sig) {
2939			error = do_send_sig_info(sig, info, p, false);
2940			/*
2941			 * If lock_task_sighand() failed we pretend the task
2942			 * dies after receiving the signal. The window is tiny,
2943			 * and the signal is private anyway.
2944			 */
2945			if (unlikely(error == -ESRCH))
2946				error = 0;
2947		}
2948	}
2949	rcu_read_unlock();
2950
2951	return error;
2952}
2953
2954static int do_tkill(pid_t tgid, pid_t pid, int sig)
2955{
2956	struct siginfo info = {};
2957
 
2958	info.si_signo = sig;
2959	info.si_errno = 0;
2960	info.si_code = SI_TKILL;
2961	info.si_pid = task_tgid_vnr(current);
2962	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2963
2964	return do_send_specific(tgid, pid, sig, &info);
2965}
2966
2967/**
2968 *  sys_tgkill - send signal to one specific thread
2969 *  @tgid: the thread group ID of the thread
2970 *  @pid: the PID of the thread
2971 *  @sig: signal to be sent
2972 *
2973 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2974 *  exists but it's not belonging to the target process anymore. This
2975 *  method solves the problem of threads exiting and PIDs getting reused.
2976 */
2977SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2978{
2979	/* This is only valid for single tasks */
2980	if (pid <= 0 || tgid <= 0)
2981		return -EINVAL;
2982
2983	return do_tkill(tgid, pid, sig);
2984}
2985
2986/**
2987 *  sys_tkill - send signal to one specific task
2988 *  @pid: the PID of the task
2989 *  @sig: signal to be sent
2990 *
2991 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2992 */
2993SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2994{
2995	/* This is only valid for single tasks */
2996	if (pid <= 0)
2997		return -EINVAL;
2998
2999	return do_tkill(0, pid, sig);
3000}
3001
3002static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3003{
3004	/* Not even root can pretend to send signals from the kernel.
3005	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3006	 */
3007	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3008	    (task_pid_vnr(current) != pid)) {
3009		/* We used to allow any < 0 si_code */
3010		WARN_ON_ONCE(info->si_code < 0);
3011		return -EPERM;
3012	}
3013	info->si_signo = sig;
3014
3015	/* POSIX.1b doesn't mention process groups.  */
3016	return kill_proc_info(sig, info, pid);
3017}
3018
3019/**
3020 *  sys_rt_sigqueueinfo - send signal information to a signal
3021 *  @pid: the PID of the thread
3022 *  @sig: signal to be sent
3023 *  @uinfo: signal info to be sent
3024 */
3025SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3026		siginfo_t __user *, uinfo)
3027{
3028	siginfo_t info;
3029	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3030		return -EFAULT;
 
3031	return do_rt_sigqueueinfo(pid, sig, &info);
3032}
3033
3034#ifdef CONFIG_COMPAT
3035COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3036			compat_pid_t, pid,
3037			int, sig,
3038			struct compat_siginfo __user *, uinfo)
3039{
3040	siginfo_t info;
3041	int ret = copy_siginfo_from_user32(&info, uinfo);
3042	if (unlikely(ret))
3043		return ret;
3044	return do_rt_sigqueueinfo(pid, sig, &info);
3045}
3046#endif
3047
3048static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3049{
3050	/* This is only valid for single tasks */
3051	if (pid <= 0 || tgid <= 0)
3052		return -EINVAL;
3053
3054	/* Not even root can pretend to send signals from the kernel.
3055	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3056	 */
3057	if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3058	    (task_pid_vnr(current) != pid)) {
3059		/* We used to allow any < 0 si_code */
3060		WARN_ON_ONCE(info->si_code < 0);
3061		return -EPERM;
3062	}
3063	info->si_signo = sig;
3064
3065	return do_send_specific(tgid, pid, sig, info);
3066}
3067
3068SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3069		siginfo_t __user *, uinfo)
3070{
3071	siginfo_t info;
3072
3073	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3074		return -EFAULT;
3075
3076	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3077}
3078
3079#ifdef CONFIG_COMPAT
3080COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3081			compat_pid_t, tgid,
3082			compat_pid_t, pid,
3083			int, sig,
3084			struct compat_siginfo __user *, uinfo)
3085{
3086	siginfo_t info;
3087
3088	if (copy_siginfo_from_user32(&info, uinfo))
3089		return -EFAULT;
3090	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3091}
3092#endif
3093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3094int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3095{
3096	struct task_struct *t = current;
3097	struct k_sigaction *k;
3098	sigset_t mask;
3099
3100	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3101		return -EINVAL;
3102
3103	k = &t->sighand->action[sig-1];
3104
3105	spin_lock_irq(&current->sighand->siglock);
3106	if (oact)
3107		*oact = *k;
3108
 
 
3109	if (act) {
3110		sigdelsetmask(&act->sa.sa_mask,
3111			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3112		*k = *act;
3113		/*
3114		 * POSIX 3.3.1.3:
3115		 *  "Setting a signal action to SIG_IGN for a signal that is
3116		 *   pending shall cause the pending signal to be discarded,
3117		 *   whether or not it is blocked."
3118		 *
3119		 *  "Setting a signal action to SIG_DFL for a signal that is
3120		 *   pending and whose default action is to ignore the signal
3121		 *   (for example, SIGCHLD), shall cause the pending signal to
3122		 *   be discarded, whether or not it is blocked"
3123		 */
3124		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3125			sigemptyset(&mask);
3126			sigaddset(&mask, sig);
3127			rm_from_queue_full(&mask, &t->signal->shared_pending);
3128			do {
3129				rm_from_queue_full(&mask, &t->pending);
3130			} while_each_thread(current, t);
3131		}
3132	}
3133
3134	spin_unlock_irq(&current->sighand->siglock);
3135	return 0;
3136}
3137
3138static int 
3139do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
 
3140{
3141	stack_t oss;
3142	int error;
 
 
 
 
 
 
 
3143
3144	oss.ss_sp = (void __user *) current->sas_ss_sp;
3145	oss.ss_size = current->sas_ss_size;
3146	oss.ss_flags = sas_ss_flags(sp);
3147
3148	if (uss) {
3149		void __user *ss_sp;
3150		size_t ss_size;
3151		int ss_flags;
3152
3153		error = -EFAULT;
3154		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3155			goto out;
3156		error = __get_user(ss_sp, &uss->ss_sp) |
3157			__get_user(ss_flags, &uss->ss_flags) |
3158			__get_user(ss_size, &uss->ss_size);
3159		if (error)
3160			goto out;
3161
3162		error = -EPERM;
3163		if (on_sig_stack(sp))
3164			goto out;
3165
3166		error = -EINVAL;
3167		/*
3168		 * Note - this code used to test ss_flags incorrectly:
3169		 *  	  old code may have been written using ss_flags==0
3170		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3171		 *	  way that worked) - this fix preserves that older
3172		 *	  mechanism.
3173		 */
3174		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3175			goto out;
3176
3177		if (ss_flags == SS_DISABLE) {
3178			ss_size = 0;
3179			ss_sp = NULL;
3180		} else {
3181			error = -ENOMEM;
3182			if (ss_size < MINSIGSTKSZ)
3183				goto out;
3184		}
3185
3186		current->sas_ss_sp = (unsigned long) ss_sp;
3187		current->sas_ss_size = ss_size;
3188	}
3189
3190	error = 0;
3191	if (uoss) {
3192		error = -EFAULT;
3193		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3194			goto out;
3195		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3196			__put_user(oss.ss_size, &uoss->ss_size) |
3197			__put_user(oss.ss_flags, &uoss->ss_flags);
3198	}
 
 
3199
3200out:
3201	return error;
3202}
3203SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3204{
3205	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
 
 
 
 
 
 
 
 
 
3206}
3207
3208int restore_altstack(const stack_t __user *uss)
3209{
3210	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
 
 
 
 
3211	/* squash all but EFAULT for now */
3212	return err == -EFAULT ? err : 0;
3213}
3214
3215int __save_altstack(stack_t __user *uss, unsigned long sp)
3216{
3217	struct task_struct *t = current;
3218	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3219		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3220		__put_user(t->sas_ss_size, &uss->ss_size);
 
 
 
 
 
3221}
3222
3223#ifdef CONFIG_COMPAT
3224COMPAT_SYSCALL_DEFINE2(sigaltstack,
3225			const compat_stack_t __user *, uss_ptr,
3226			compat_stack_t __user *, uoss_ptr)
3227{
3228	stack_t uss, uoss;
3229	int ret;
3230	mm_segment_t seg;
3231
3232	if (uss_ptr) {
3233		compat_stack_t uss32;
3234
3235		memset(&uss, 0, sizeof(stack_t));
3236		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3237			return -EFAULT;
3238		uss.ss_sp = compat_ptr(uss32.ss_sp);
3239		uss.ss_flags = uss32.ss_flags;
3240		uss.ss_size = uss32.ss_size;
3241	}
3242	seg = get_fs();
3243	set_fs(KERNEL_DS);
3244	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3245			     (stack_t __force __user *) &uoss,
3246			     compat_user_stack_pointer());
3247	set_fs(seg);
3248	if (ret >= 0 && uoss_ptr)  {
3249		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3250		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3251		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3252		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
 
 
3253			ret = -EFAULT;
3254	}
3255	return ret;
3256}
3257
 
 
 
 
 
 
 
3258int compat_restore_altstack(const compat_stack_t __user *uss)
3259{
3260	int err = compat_sys_sigaltstack(uss, NULL);
3261	/* squash all but -EFAULT for now */
3262	return err == -EFAULT ? err : 0;
3263}
3264
3265int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3266{
 
3267	struct task_struct *t = current;
3268	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3269		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
 
3270		__put_user(t->sas_ss_size, &uss->ss_size);
 
 
 
 
 
3271}
3272#endif
3273
3274#ifdef __ARCH_WANT_SYS_SIGPENDING
3275
3276/**
3277 *  sys_sigpending - examine pending signals
3278 *  @set: where mask of pending signal is returned
3279 */
3280SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3281{
3282	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3283}
 
3284
3285#endif
3286
3287#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3288/**
3289 *  sys_sigprocmask - examine and change blocked signals
3290 *  @how: whether to add, remove, or set signals
3291 *  @nset: signals to add or remove (if non-null)
3292 *  @oset: previous value of signal mask if non-null
3293 *
3294 * Some platforms have their own version with special arguments;
3295 * others support only sys_rt_sigprocmask.
3296 */
3297
3298SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3299		old_sigset_t __user *, oset)
3300{
3301	old_sigset_t old_set, new_set;
3302	sigset_t new_blocked;
3303
3304	old_set = current->blocked.sig[0];
3305
3306	if (nset) {
3307		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3308			return -EFAULT;
3309
3310		new_blocked = current->blocked;
3311
3312		switch (how) {
3313		case SIG_BLOCK:
3314			sigaddsetmask(&new_blocked, new_set);
3315			break;
3316		case SIG_UNBLOCK:
3317			sigdelsetmask(&new_blocked, new_set);
3318			break;
3319		case SIG_SETMASK:
3320			new_blocked.sig[0] = new_set;
3321			break;
3322		default:
3323			return -EINVAL;
3324		}
3325
3326		set_current_blocked(&new_blocked);
3327	}
3328
3329	if (oset) {
3330		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3331			return -EFAULT;
3332	}
3333
3334	return 0;
3335}
3336#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3337
3338#ifndef CONFIG_ODD_RT_SIGACTION
3339/**
3340 *  sys_rt_sigaction - alter an action taken by a process
3341 *  @sig: signal to be sent
3342 *  @act: new sigaction
3343 *  @oact: used to save the previous sigaction
3344 *  @sigsetsize: size of sigset_t type
3345 */
3346SYSCALL_DEFINE4(rt_sigaction, int, sig,
3347		const struct sigaction __user *, act,
3348		struct sigaction __user *, oact,
3349		size_t, sigsetsize)
3350{
3351	struct k_sigaction new_sa, old_sa;
3352	int ret = -EINVAL;
3353
3354	/* XXX: Don't preclude handling different sized sigset_t's.  */
3355	if (sigsetsize != sizeof(sigset_t))
3356		goto out;
3357
3358	if (act) {
3359		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3360			return -EFAULT;
3361	}
3362
3363	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
 
 
 
 
 
3364
3365	if (!ret && oact) {
3366		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3367			return -EFAULT;
3368	}
3369out:
3370	return ret;
3371}
3372#ifdef CONFIG_COMPAT
3373COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3374		const struct compat_sigaction __user *, act,
3375		struct compat_sigaction __user *, oact,
3376		compat_size_t, sigsetsize)
3377{
3378	struct k_sigaction new_ka, old_ka;
3379	compat_sigset_t mask;
3380#ifdef __ARCH_HAS_SA_RESTORER
3381	compat_uptr_t restorer;
3382#endif
3383	int ret;
3384
3385	/* XXX: Don't preclude handling different sized sigset_t's.  */
3386	if (sigsetsize != sizeof(compat_sigset_t))
3387		return -EINVAL;
3388
3389	if (act) {
3390		compat_uptr_t handler;
3391		ret = get_user(handler, &act->sa_handler);
3392		new_ka.sa.sa_handler = compat_ptr(handler);
3393#ifdef __ARCH_HAS_SA_RESTORER
3394		ret |= get_user(restorer, &act->sa_restorer);
3395		new_ka.sa.sa_restorer = compat_ptr(restorer);
3396#endif
3397		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3398		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3399		if (ret)
3400			return -EFAULT;
3401		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3402	}
3403
3404	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3405	if (!ret && oact) {
3406		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3407		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3408			       &oact->sa_handler);
3409		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
 
3410		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3411#ifdef __ARCH_HAS_SA_RESTORER
3412		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3413				&oact->sa_restorer);
3414#endif
3415	}
3416	return ret;
3417}
3418#endif
3419#endif /* !CONFIG_ODD_RT_SIGACTION */
3420
3421#ifdef CONFIG_OLD_SIGACTION
3422SYSCALL_DEFINE3(sigaction, int, sig,
3423		const struct old_sigaction __user *, act,
3424	        struct old_sigaction __user *, oact)
3425{
3426	struct k_sigaction new_ka, old_ka;
3427	int ret;
3428
3429	if (act) {
3430		old_sigset_t mask;
3431		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3432		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3433		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3434		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3435		    __get_user(mask, &act->sa_mask))
3436			return -EFAULT;
3437#ifdef __ARCH_HAS_KA_RESTORER
3438		new_ka.ka_restorer = NULL;
3439#endif
3440		siginitset(&new_ka.sa.sa_mask, mask);
3441	}
3442
3443	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3444
3445	if (!ret && oact) {
3446		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3447		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3448		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3449		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3450		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3451			return -EFAULT;
3452	}
3453
3454	return ret;
3455}
3456#endif
3457#ifdef CONFIG_COMPAT_OLD_SIGACTION
3458COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3459		const struct compat_old_sigaction __user *, act,
3460	        struct compat_old_sigaction __user *, oact)
3461{
3462	struct k_sigaction new_ka, old_ka;
3463	int ret;
3464	compat_old_sigset_t mask;
3465	compat_uptr_t handler, restorer;
3466
3467	if (act) {
3468		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3469		    __get_user(handler, &act->sa_handler) ||
3470		    __get_user(restorer, &act->sa_restorer) ||
3471		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3472		    __get_user(mask, &act->sa_mask))
3473			return -EFAULT;
3474
3475#ifdef __ARCH_HAS_KA_RESTORER
3476		new_ka.ka_restorer = NULL;
3477#endif
3478		new_ka.sa.sa_handler = compat_ptr(handler);
3479		new_ka.sa.sa_restorer = compat_ptr(restorer);
3480		siginitset(&new_ka.sa.sa_mask, mask);
3481	}
3482
3483	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3484
3485	if (!ret && oact) {
3486		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3487		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3488			       &oact->sa_handler) ||
3489		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3490			       &oact->sa_restorer) ||
3491		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3492		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3493			return -EFAULT;
3494	}
3495	return ret;
3496}
3497#endif
3498
3499#ifdef __ARCH_WANT_SYS_SGETMASK
3500
3501/*
3502 * For backwards compatibility.  Functionality superseded by sigprocmask.
3503 */
3504SYSCALL_DEFINE0(sgetmask)
3505{
3506	/* SMP safe */
3507	return current->blocked.sig[0];
3508}
3509
3510SYSCALL_DEFINE1(ssetmask, int, newmask)
3511{
3512	int old = current->blocked.sig[0];
3513	sigset_t newset;
3514
3515	siginitset(&newset, newmask);
3516	set_current_blocked(&newset);
3517
3518	return old;
3519}
3520#endif /* __ARCH_WANT_SGETMASK */
3521
3522#ifdef __ARCH_WANT_SYS_SIGNAL
3523/*
3524 * For backwards compatibility.  Functionality superseded by sigaction.
3525 */
3526SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3527{
3528	struct k_sigaction new_sa, old_sa;
3529	int ret;
3530
3531	new_sa.sa.sa_handler = handler;
3532	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3533	sigemptyset(&new_sa.sa.sa_mask);
3534
3535	ret = do_sigaction(sig, &new_sa, &old_sa);
3536
3537	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3538}
3539#endif /* __ARCH_WANT_SYS_SIGNAL */
3540
3541#ifdef __ARCH_WANT_SYS_PAUSE
3542
3543SYSCALL_DEFINE0(pause)
3544{
3545	while (!signal_pending(current)) {
3546		current->state = TASK_INTERRUPTIBLE;
3547		schedule();
3548	}
3549	return -ERESTARTNOHAND;
3550}
3551
3552#endif
3553
3554int sigsuspend(sigset_t *set)
3555{
3556	current->saved_sigmask = current->blocked;
3557	set_current_blocked(set);
3558
3559	current->state = TASK_INTERRUPTIBLE;
3560	schedule();
 
 
3561	set_restore_sigmask();
3562	return -ERESTARTNOHAND;
3563}
3564
3565/**
3566 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3567 *	@unewset value until a signal is received
3568 *  @unewset: new signal mask value
3569 *  @sigsetsize: size of sigset_t type
3570 */
3571SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3572{
3573	sigset_t newset;
3574
3575	/* XXX: Don't preclude handling different sized sigset_t's.  */
3576	if (sigsetsize != sizeof(sigset_t))
3577		return -EINVAL;
3578
3579	if (copy_from_user(&newset, unewset, sizeof(newset)))
3580		return -EFAULT;
3581	return sigsuspend(&newset);
3582}
3583 
3584#ifdef CONFIG_COMPAT
3585COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3586{
3587#ifdef __BIG_ENDIAN
3588	sigset_t newset;
3589	compat_sigset_t newset32;
3590
3591	/* XXX: Don't preclude handling different sized sigset_t's.  */
3592	if (sigsetsize != sizeof(sigset_t))
3593		return -EINVAL;
3594
3595	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3596		return -EFAULT;
3597	sigset_from_compat(&newset, &newset32);
3598	return sigsuspend(&newset);
3599#else
3600	/* on little-endian bitmaps don't care about granularity */
3601	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3602#endif
3603}
3604#endif
3605
3606#ifdef CONFIG_OLD_SIGSUSPEND
3607SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3608{
3609	sigset_t blocked;
3610	siginitset(&blocked, mask);
3611	return sigsuspend(&blocked);
3612}
3613#endif
3614#ifdef CONFIG_OLD_SIGSUSPEND3
3615SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3616{
3617	sigset_t blocked;
3618	siginitset(&blocked, mask);
3619	return sigsuspend(&blocked);
3620}
3621#endif
3622
3623__weak const char *arch_vma_name(struct vm_area_struct *vma)
3624{
3625	return NULL;
3626}
3627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3628void __init signals_init(void)
3629{
 
 
3630	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3631}
3632
3633#ifdef CONFIG_KGDB_KDB
3634#include <linux/kdb.h>
3635/*
3636 * kdb_send_sig_info - Allows kdb to send signals without exposing
3637 * signal internals.  This function checks if the required locks are
3638 * available before calling the main signal code, to avoid kdb
3639 * deadlocks.
3640 */
3641void
3642kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3643{
3644	static struct task_struct *kdb_prev_t;
3645	int sig, new_t;
3646	if (!spin_trylock(&t->sighand->siglock)) {
3647		kdb_printf("Can't do kill command now.\n"
3648			   "The sigmask lock is held somewhere else in "
3649			   "kernel, try again later\n");
3650		return;
3651	}
3652	spin_unlock(&t->sighand->siglock);
3653	new_t = kdb_prev_t != t;
3654	kdb_prev_t = t;
3655	if (t->state != TASK_RUNNING && new_t) {
 
3656		kdb_printf("Process is not RUNNING, sending a signal from "
3657			   "kdb risks deadlock\n"
3658			   "on the run queue locks. "
3659			   "The signal has _not_ been sent.\n"
3660			   "Reissue the kill command if you want to risk "
3661			   "the deadlock.\n");
3662		return;
3663	}
3664	sig = info->si_signo;
3665	if (send_sig_info(sig, info, t))
 
3666		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3667			   sig, t->pid);
3668	else
3669		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3670}
3671#endif	/* CONFIG_KGDB_KDB */