Loading...
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9/*
10 * Handle hardware traps and faults.
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/context_tracking.h>
16#include <linux/interrupt.h>
17#include <linux/kallsyms.h>
18#include <linux/spinlock.h>
19#include <linux/kprobes.h>
20#include <linux/uaccess.h>
21#include <linux/kdebug.h>
22#include <linux/kgdb.h>
23#include <linux/kernel.h>
24#include <linux/export.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
27#include <linux/string.h>
28#include <linux/delay.h>
29#include <linux/errno.h>
30#include <linux/kexec.h>
31#include <linux/sched.h>
32#include <linux/sched/task_stack.h>
33#include <linux/timer.h>
34#include <linux/init.h>
35#include <linux/bug.h>
36#include <linux/nmi.h>
37#include <linux/mm.h>
38#include <linux/smp.h>
39#include <linux/io.h>
40
41#if defined(CONFIG_EDAC)
42#include <linux/edac.h>
43#endif
44
45#include <asm/stacktrace.h>
46#include <asm/processor.h>
47#include <asm/debugreg.h>
48#include <linux/atomic.h>
49#include <asm/text-patching.h>
50#include <asm/ftrace.h>
51#include <asm/traps.h>
52#include <asm/desc.h>
53#include <asm/fpu/internal.h>
54#include <asm/cpu_entry_area.h>
55#include <asm/mce.h>
56#include <asm/fixmap.h>
57#include <asm/mach_traps.h>
58#include <asm/alternative.h>
59#include <asm/fpu/xstate.h>
60#include <asm/trace/mpx.h>
61#include <asm/mpx.h>
62#include <asm/vm86.h>
63#include <asm/umip.h>
64
65#ifdef CONFIG_X86_64
66#include <asm/x86_init.h>
67#include <asm/pgalloc.h>
68#include <asm/proto.h>
69#else
70#include <asm/processor-flags.h>
71#include <asm/setup.h>
72#include <asm/proto.h>
73#endif
74
75DECLARE_BITMAP(system_vectors, NR_VECTORS);
76
77static inline void cond_local_irq_enable(struct pt_regs *regs)
78{
79 if (regs->flags & X86_EFLAGS_IF)
80 local_irq_enable();
81}
82
83static inline void cond_local_irq_disable(struct pt_regs *regs)
84{
85 if (regs->flags & X86_EFLAGS_IF)
86 local_irq_disable();
87}
88
89/*
90 * In IST context, we explicitly disable preemption. This serves two
91 * purposes: it makes it much less likely that we would accidentally
92 * schedule in IST context and it will force a warning if we somehow
93 * manage to schedule by accident.
94 */
95void ist_enter(struct pt_regs *regs)
96{
97 if (user_mode(regs)) {
98 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
99 } else {
100 /*
101 * We might have interrupted pretty much anything. In
102 * fact, if we're a machine check, we can even interrupt
103 * NMI processing. We don't want in_nmi() to return true,
104 * but we need to notify RCU.
105 */
106 rcu_nmi_enter();
107 }
108
109 preempt_disable();
110
111 /* This code is a bit fragile. Test it. */
112 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
113}
114NOKPROBE_SYMBOL(ist_enter);
115
116void ist_exit(struct pt_regs *regs)
117{
118 preempt_enable_no_resched();
119
120 if (!user_mode(regs))
121 rcu_nmi_exit();
122}
123
124/**
125 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
126 * @regs: regs passed to the IST exception handler
127 *
128 * IST exception handlers normally cannot schedule. As a special
129 * exception, if the exception interrupted userspace code (i.e.
130 * user_mode(regs) would return true) and the exception was not
131 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
132 * begins a non-atomic section within an ist_enter()/ist_exit() region.
133 * Callers are responsible for enabling interrupts themselves inside
134 * the non-atomic section, and callers must call ist_end_non_atomic()
135 * before ist_exit().
136 */
137void ist_begin_non_atomic(struct pt_regs *regs)
138{
139 BUG_ON(!user_mode(regs));
140
141 /*
142 * Sanity check: we need to be on the normal thread stack. This
143 * will catch asm bugs and any attempt to use ist_preempt_enable
144 * from double_fault.
145 */
146 BUG_ON(!on_thread_stack());
147
148 preempt_enable_no_resched();
149}
150
151/**
152 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
153 *
154 * Ends a non-atomic section started with ist_begin_non_atomic().
155 */
156void ist_end_non_atomic(void)
157{
158 preempt_disable();
159}
160
161int is_valid_bugaddr(unsigned long addr)
162{
163 unsigned short ud;
164
165 if (addr < TASK_SIZE_MAX)
166 return 0;
167
168 if (probe_kernel_address((unsigned short *)addr, ud))
169 return 0;
170
171 return ud == INSN_UD0 || ud == INSN_UD2;
172}
173
174int fixup_bug(struct pt_regs *regs, int trapnr)
175{
176 if (trapnr != X86_TRAP_UD)
177 return 0;
178
179 switch (report_bug(regs->ip, regs)) {
180 case BUG_TRAP_TYPE_NONE:
181 case BUG_TRAP_TYPE_BUG:
182 break;
183
184 case BUG_TRAP_TYPE_WARN:
185 regs->ip += LEN_UD2;
186 return 1;
187 }
188
189 return 0;
190}
191
192static nokprobe_inline int
193do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
194 struct pt_regs *regs, long error_code)
195{
196 if (v8086_mode(regs)) {
197 /*
198 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
199 * On nmi (interrupt 2), do_trap should not be called.
200 */
201 if (trapnr < X86_TRAP_UD) {
202 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
203 error_code, trapnr))
204 return 0;
205 }
206 } else if (!user_mode(regs)) {
207 if (fixup_exception(regs, trapnr, error_code, 0))
208 return 0;
209
210 tsk->thread.error_code = error_code;
211 tsk->thread.trap_nr = trapnr;
212 die(str, regs, error_code);
213 }
214
215 /*
216 * We want error_code and trap_nr set for userspace faults and
217 * kernelspace faults which result in die(), but not
218 * kernelspace faults which are fixed up. die() gives the
219 * process no chance to handle the signal and notice the
220 * kernel fault information, so that won't result in polluting
221 * the information about previously queued, but not yet
222 * delivered, faults. See also do_general_protection below.
223 */
224 tsk->thread.error_code = error_code;
225 tsk->thread.trap_nr = trapnr;
226
227 return -1;
228}
229
230static void show_signal(struct task_struct *tsk, int signr,
231 const char *type, const char *desc,
232 struct pt_regs *regs, long error_code)
233{
234 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
235 printk_ratelimit()) {
236 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
237 tsk->comm, task_pid_nr(tsk), type, desc,
238 regs->ip, regs->sp, error_code);
239 print_vma_addr(KERN_CONT " in ", regs->ip);
240 pr_cont("\n");
241 }
242}
243
244static void
245do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
246 long error_code, int sicode, void __user *addr)
247{
248 struct task_struct *tsk = current;
249
250
251 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
252 return;
253
254 show_signal(tsk, signr, "trap ", str, regs, error_code);
255
256 if (!sicode)
257 force_sig(signr);
258 else
259 force_sig_fault(signr, sicode, addr);
260}
261NOKPROBE_SYMBOL(do_trap);
262
263static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
264 unsigned long trapnr, int signr, int sicode, void __user *addr)
265{
266 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
267
268 /*
269 * WARN*()s end up here; fix them up before we call the
270 * notifier chain.
271 */
272 if (!user_mode(regs) && fixup_bug(regs, trapnr))
273 return;
274
275 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
276 NOTIFY_STOP) {
277 cond_local_irq_enable(regs);
278 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
279 }
280}
281
282#define IP ((void __user *)uprobe_get_trap_addr(regs))
283#define DO_ERROR(trapnr, signr, sicode, addr, str, name) \
284dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
285{ \
286 do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
287}
288
289DO_ERROR(X86_TRAP_DE, SIGFPE, FPE_INTDIV, IP, "divide error", divide_error)
290DO_ERROR(X86_TRAP_OF, SIGSEGV, 0, NULL, "overflow", overflow)
291DO_ERROR(X86_TRAP_UD, SIGILL, ILL_ILLOPN, IP, "invalid opcode", invalid_op)
292DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, 0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun)
293DO_ERROR(X86_TRAP_TS, SIGSEGV, 0, NULL, "invalid TSS", invalid_TSS)
294DO_ERROR(X86_TRAP_NP, SIGBUS, 0, NULL, "segment not present", segment_not_present)
295DO_ERROR(X86_TRAP_SS, SIGBUS, 0, NULL, "stack segment", stack_segment)
296DO_ERROR(X86_TRAP_AC, SIGBUS, BUS_ADRALN, NULL, "alignment check", alignment_check)
297#undef IP
298
299#ifdef CONFIG_VMAP_STACK
300__visible void __noreturn handle_stack_overflow(const char *message,
301 struct pt_regs *regs,
302 unsigned long fault_address)
303{
304 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
305 (void *)fault_address, current->stack,
306 (char *)current->stack + THREAD_SIZE - 1);
307 die(message, regs, 0);
308
309 /* Be absolutely certain we don't return. */
310 panic("%s", message);
311}
312#endif
313
314#ifdef CONFIG_X86_64
315/* Runs on IST stack */
316dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2)
317{
318 static const char str[] = "double fault";
319 struct task_struct *tsk = current;
320
321#ifdef CONFIG_X86_ESPFIX64
322 extern unsigned char native_irq_return_iret[];
323
324 /*
325 * If IRET takes a non-IST fault on the espfix64 stack, then we
326 * end up promoting it to a doublefault. In that case, take
327 * advantage of the fact that we're not using the normal (TSS.sp0)
328 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
329 * and then modify our own IRET frame so that, when we return,
330 * we land directly at the #GP(0) vector with the stack already
331 * set up according to its expectations.
332 *
333 * The net result is that our #GP handler will think that we
334 * entered from usermode with the bad user context.
335 *
336 * No need for ist_enter here because we don't use RCU.
337 */
338 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
339 regs->cs == __KERNEL_CS &&
340 regs->ip == (unsigned long)native_irq_return_iret)
341 {
342 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
343
344 /*
345 * regs->sp points to the failing IRET frame on the
346 * ESPFIX64 stack. Copy it to the entry stack. This fills
347 * in gpregs->ss through gpregs->ip.
348 *
349 */
350 memmove(&gpregs->ip, (void *)regs->sp, 5*8);
351 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
352
353 /*
354 * Adjust our frame so that we return straight to the #GP
355 * vector with the expected RSP value. This is safe because
356 * we won't enable interupts or schedule before we invoke
357 * general_protection, so nothing will clobber the stack
358 * frame we just set up.
359 *
360 * We will enter general_protection with kernel GSBASE,
361 * which is what the stub expects, given that the faulting
362 * RIP will be the IRET instruction.
363 */
364 regs->ip = (unsigned long)general_protection;
365 regs->sp = (unsigned long)&gpregs->orig_ax;
366
367 return;
368 }
369#endif
370
371 ist_enter(regs);
372 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
373
374 tsk->thread.error_code = error_code;
375 tsk->thread.trap_nr = X86_TRAP_DF;
376
377#ifdef CONFIG_VMAP_STACK
378 /*
379 * If we overflow the stack into a guard page, the CPU will fail
380 * to deliver #PF and will send #DF instead. Similarly, if we
381 * take any non-IST exception while too close to the bottom of
382 * the stack, the processor will get a page fault while
383 * delivering the exception and will generate a double fault.
384 *
385 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
386 * Page-Fault Exception (#PF):
387 *
388 * Processors update CR2 whenever a page fault is detected. If a
389 * second page fault occurs while an earlier page fault is being
390 * delivered, the faulting linear address of the second fault will
391 * overwrite the contents of CR2 (replacing the previous
392 * address). These updates to CR2 occur even if the page fault
393 * results in a double fault or occurs during the delivery of a
394 * double fault.
395 *
396 * The logic below has a small possibility of incorrectly diagnosing
397 * some errors as stack overflows. For example, if the IDT or GDT
398 * gets corrupted such that #GP delivery fails due to a bad descriptor
399 * causing #GP and we hit this condition while CR2 coincidentally
400 * points to the stack guard page, we'll think we overflowed the
401 * stack. Given that we're going to panic one way or another
402 * if this happens, this isn't necessarily worth fixing.
403 *
404 * If necessary, we could improve the test by only diagnosing
405 * a stack overflow if the saved RSP points within 47 bytes of
406 * the bottom of the stack: if RSP == tsk_stack + 48 and we
407 * take an exception, the stack is already aligned and there
408 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
409 * possible error code, so a stack overflow would *not* double
410 * fault. With any less space left, exception delivery could
411 * fail, and, as a practical matter, we've overflowed the
412 * stack even if the actual trigger for the double fault was
413 * something else.
414 */
415 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
416 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
417#endif
418
419#ifdef CONFIG_DOUBLEFAULT
420 df_debug(regs, error_code);
421#endif
422 /*
423 * This is always a kernel trap and never fixable (and thus must
424 * never return).
425 */
426 for (;;)
427 die(str, regs, error_code);
428}
429#endif
430
431dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
432{
433 const struct mpx_bndcsr *bndcsr;
434
435 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
436 if (notify_die(DIE_TRAP, "bounds", regs, error_code,
437 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
438 return;
439 cond_local_irq_enable(regs);
440
441 if (!user_mode(regs))
442 die("bounds", regs, error_code);
443
444 if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
445 /* The exception is not from Intel MPX */
446 goto exit_trap;
447 }
448
449 /*
450 * We need to look at BNDSTATUS to resolve this exception.
451 * A NULL here might mean that it is in its 'init state',
452 * which is all zeros which indicates MPX was not
453 * responsible for the exception.
454 */
455 bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR);
456 if (!bndcsr)
457 goto exit_trap;
458
459 trace_bounds_exception_mpx(bndcsr);
460 /*
461 * The error code field of the BNDSTATUS register communicates status
462 * information of a bound range exception #BR or operation involving
463 * bound directory.
464 */
465 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
466 case 2: /* Bound directory has invalid entry. */
467 if (mpx_handle_bd_fault())
468 goto exit_trap;
469 break; /* Success, it was handled */
470 case 1: /* Bound violation. */
471 {
472 struct task_struct *tsk = current;
473 struct mpx_fault_info mpx;
474
475 if (mpx_fault_info(&mpx, regs)) {
476 /*
477 * We failed to decode the MPX instruction. Act as if
478 * the exception was not caused by MPX.
479 */
480 goto exit_trap;
481 }
482 /*
483 * Success, we decoded the instruction and retrieved
484 * an 'mpx' containing the address being accessed
485 * which caused the exception. This information
486 * allows and application to possibly handle the
487 * #BR exception itself.
488 */
489 if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs,
490 error_code))
491 break;
492
493 show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code);
494
495 force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper);
496 break;
497 }
498 case 0: /* No exception caused by Intel MPX operations. */
499 goto exit_trap;
500 default:
501 die("bounds", regs, error_code);
502 }
503
504 return;
505
506exit_trap:
507 /*
508 * This path out is for all the cases where we could not
509 * handle the exception in some way (like allocating a
510 * table or telling userspace about it. We will also end
511 * up here if the kernel has MPX turned off at compile
512 * time..
513 */
514 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL);
515}
516
517dotraplinkage void
518do_general_protection(struct pt_regs *regs, long error_code)
519{
520 const char *desc = "general protection fault";
521 struct task_struct *tsk;
522
523 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
524 cond_local_irq_enable(regs);
525
526 if (static_cpu_has(X86_FEATURE_UMIP)) {
527 if (user_mode(regs) && fixup_umip_exception(regs))
528 return;
529 }
530
531 if (v8086_mode(regs)) {
532 local_irq_enable();
533 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
534 return;
535 }
536
537 tsk = current;
538 if (!user_mode(regs)) {
539 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
540 return;
541
542 tsk->thread.error_code = error_code;
543 tsk->thread.trap_nr = X86_TRAP_GP;
544
545 /*
546 * To be potentially processing a kprobe fault and to
547 * trust the result from kprobe_running(), we have to
548 * be non-preemptible.
549 */
550 if (!preemptible() && kprobe_running() &&
551 kprobe_fault_handler(regs, X86_TRAP_GP))
552 return;
553
554 if (notify_die(DIE_GPF, desc, regs, error_code,
555 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
556 die(desc, regs, error_code);
557 return;
558 }
559
560 tsk->thread.error_code = error_code;
561 tsk->thread.trap_nr = X86_TRAP_GP;
562
563 show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
564
565 force_sig(SIGSEGV);
566}
567NOKPROBE_SYMBOL(do_general_protection);
568
569dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
570{
571#ifdef CONFIG_DYNAMIC_FTRACE
572 /*
573 * ftrace must be first, everything else may cause a recursive crash.
574 * See note by declaration of modifying_ftrace_code in ftrace.c
575 */
576 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
577 ftrace_int3_handler(regs))
578 return;
579#endif
580 if (poke_int3_handler(regs))
581 return;
582
583 /*
584 * Use ist_enter despite the fact that we don't use an IST stack.
585 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
586 * mode or even during context tracking state changes.
587 *
588 * This means that we can't schedule. That's okay.
589 */
590 ist_enter(regs);
591 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
592#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
593 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
594 SIGTRAP) == NOTIFY_STOP)
595 goto exit;
596#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
597
598#ifdef CONFIG_KPROBES
599 if (kprobe_int3_handler(regs))
600 goto exit;
601#endif
602
603 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
604 SIGTRAP) == NOTIFY_STOP)
605 goto exit;
606
607 cond_local_irq_enable(regs);
608 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL);
609 cond_local_irq_disable(regs);
610
611exit:
612 ist_exit(regs);
613}
614NOKPROBE_SYMBOL(do_int3);
615
616#ifdef CONFIG_X86_64
617/*
618 * Help handler running on a per-cpu (IST or entry trampoline) stack
619 * to switch to the normal thread stack if the interrupted code was in
620 * user mode. The actual stack switch is done in entry_64.S
621 */
622asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
623{
624 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
625 if (regs != eregs)
626 *regs = *eregs;
627 return regs;
628}
629NOKPROBE_SYMBOL(sync_regs);
630
631struct bad_iret_stack {
632 void *error_entry_ret;
633 struct pt_regs regs;
634};
635
636asmlinkage __visible notrace
637struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
638{
639 /*
640 * This is called from entry_64.S early in handling a fault
641 * caused by a bad iret to user mode. To handle the fault
642 * correctly, we want to move our stack frame to where it would
643 * be had we entered directly on the entry stack (rather than
644 * just below the IRET frame) and we want to pretend that the
645 * exception came from the IRET target.
646 */
647 struct bad_iret_stack *new_stack =
648 (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
649
650 /* Copy the IRET target to the new stack. */
651 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
652
653 /* Copy the remainder of the stack from the current stack. */
654 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
655
656 BUG_ON(!user_mode(&new_stack->regs));
657 return new_stack;
658}
659NOKPROBE_SYMBOL(fixup_bad_iret);
660#endif
661
662static bool is_sysenter_singlestep(struct pt_regs *regs)
663{
664 /*
665 * We don't try for precision here. If we're anywhere in the region of
666 * code that can be single-stepped in the SYSENTER entry path, then
667 * assume that this is a useless single-step trap due to SYSENTER
668 * being invoked with TF set. (We don't know in advance exactly
669 * which instructions will be hit because BTF could plausibly
670 * be set.)
671 */
672#ifdef CONFIG_X86_32
673 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
674 (unsigned long)__end_SYSENTER_singlestep_region -
675 (unsigned long)__begin_SYSENTER_singlestep_region;
676#elif defined(CONFIG_IA32_EMULATION)
677 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
678 (unsigned long)__end_entry_SYSENTER_compat -
679 (unsigned long)entry_SYSENTER_compat;
680#else
681 return false;
682#endif
683}
684
685/*
686 * Our handling of the processor debug registers is non-trivial.
687 * We do not clear them on entry and exit from the kernel. Therefore
688 * it is possible to get a watchpoint trap here from inside the kernel.
689 * However, the code in ./ptrace.c has ensured that the user can
690 * only set watchpoints on userspace addresses. Therefore the in-kernel
691 * watchpoint trap can only occur in code which is reading/writing
692 * from user space. Such code must not hold kernel locks (since it
693 * can equally take a page fault), therefore it is safe to call
694 * force_sig_info even though that claims and releases locks.
695 *
696 * Code in ./signal.c ensures that the debug control register
697 * is restored before we deliver any signal, and therefore that
698 * user code runs with the correct debug control register even though
699 * we clear it here.
700 *
701 * Being careful here means that we don't have to be as careful in a
702 * lot of more complicated places (task switching can be a bit lazy
703 * about restoring all the debug state, and ptrace doesn't have to
704 * find every occurrence of the TF bit that could be saved away even
705 * by user code)
706 *
707 * May run on IST stack.
708 */
709dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
710{
711 struct task_struct *tsk = current;
712 int user_icebp = 0;
713 unsigned long dr6;
714 int si_code;
715
716 ist_enter(regs);
717
718 get_debugreg(dr6, 6);
719 /*
720 * The Intel SDM says:
721 *
722 * Certain debug exceptions may clear bits 0-3. The remaining
723 * contents of the DR6 register are never cleared by the
724 * processor. To avoid confusion in identifying debug
725 * exceptions, debug handlers should clear the register before
726 * returning to the interrupted task.
727 *
728 * Keep it simple: clear DR6 immediately.
729 */
730 set_debugreg(0, 6);
731
732 /* Filter out all the reserved bits which are preset to 1 */
733 dr6 &= ~DR6_RESERVED;
734
735 /*
736 * The SDM says "The processor clears the BTF flag when it
737 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
738 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
739 */
740 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
741
742 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
743 is_sysenter_singlestep(regs))) {
744 dr6 &= ~DR_STEP;
745 if (!dr6)
746 goto exit;
747 /*
748 * else we might have gotten a single-step trap and hit a
749 * watchpoint at the same time, in which case we should fall
750 * through and handle the watchpoint.
751 */
752 }
753
754 /*
755 * If dr6 has no reason to give us about the origin of this trap,
756 * then it's very likely the result of an icebp/int01 trap.
757 * User wants a sigtrap for that.
758 */
759 if (!dr6 && user_mode(regs))
760 user_icebp = 1;
761
762 /* Store the virtualized DR6 value */
763 tsk->thread.debugreg6 = dr6;
764
765#ifdef CONFIG_KPROBES
766 if (kprobe_debug_handler(regs))
767 goto exit;
768#endif
769
770 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
771 SIGTRAP) == NOTIFY_STOP)
772 goto exit;
773
774 /*
775 * Let others (NMI) know that the debug stack is in use
776 * as we may switch to the interrupt stack.
777 */
778 debug_stack_usage_inc();
779
780 /* It's safe to allow irq's after DR6 has been saved */
781 cond_local_irq_enable(regs);
782
783 if (v8086_mode(regs)) {
784 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
785 X86_TRAP_DB);
786 cond_local_irq_disable(regs);
787 debug_stack_usage_dec();
788 goto exit;
789 }
790
791 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
792 /*
793 * Historical junk that used to handle SYSENTER single-stepping.
794 * This should be unreachable now. If we survive for a while
795 * without anyone hitting this warning, we'll turn this into
796 * an oops.
797 */
798 tsk->thread.debugreg6 &= ~DR_STEP;
799 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
800 regs->flags &= ~X86_EFLAGS_TF;
801 }
802 si_code = get_si_code(tsk->thread.debugreg6);
803 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
804 send_sigtrap(regs, error_code, si_code);
805 cond_local_irq_disable(regs);
806 debug_stack_usage_dec();
807
808exit:
809 ist_exit(regs);
810}
811NOKPROBE_SYMBOL(do_debug);
812
813/*
814 * Note that we play around with the 'TS' bit in an attempt to get
815 * the correct behaviour even in the presence of the asynchronous
816 * IRQ13 behaviour
817 */
818static void math_error(struct pt_regs *regs, int error_code, int trapnr)
819{
820 struct task_struct *task = current;
821 struct fpu *fpu = &task->thread.fpu;
822 int si_code;
823 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
824 "simd exception";
825
826 cond_local_irq_enable(regs);
827
828 if (!user_mode(regs)) {
829 if (fixup_exception(regs, trapnr, error_code, 0))
830 return;
831
832 task->thread.error_code = error_code;
833 task->thread.trap_nr = trapnr;
834
835 if (notify_die(DIE_TRAP, str, regs, error_code,
836 trapnr, SIGFPE) != NOTIFY_STOP)
837 die(str, regs, error_code);
838 return;
839 }
840
841 /*
842 * Save the info for the exception handler and clear the error.
843 */
844 fpu__save(fpu);
845
846 task->thread.trap_nr = trapnr;
847 task->thread.error_code = error_code;
848
849 si_code = fpu__exception_code(fpu, trapnr);
850 /* Retry when we get spurious exceptions: */
851 if (!si_code)
852 return;
853
854 force_sig_fault(SIGFPE, si_code,
855 (void __user *)uprobe_get_trap_addr(regs));
856}
857
858dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
859{
860 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
861 math_error(regs, error_code, X86_TRAP_MF);
862}
863
864dotraplinkage void
865do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
866{
867 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
868 math_error(regs, error_code, X86_TRAP_XF);
869}
870
871dotraplinkage void
872do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
873{
874 cond_local_irq_enable(regs);
875}
876
877dotraplinkage void
878do_device_not_available(struct pt_regs *regs, long error_code)
879{
880 unsigned long cr0 = read_cr0();
881
882 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
883
884#ifdef CONFIG_MATH_EMULATION
885 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
886 struct math_emu_info info = { };
887
888 cond_local_irq_enable(regs);
889
890 info.regs = regs;
891 math_emulate(&info);
892 return;
893 }
894#endif
895
896 /* This should not happen. */
897 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
898 /* Try to fix it up and carry on. */
899 write_cr0(cr0 & ~X86_CR0_TS);
900 } else {
901 /*
902 * Something terrible happened, and we're better off trying
903 * to kill the task than getting stuck in a never-ending
904 * loop of #NM faults.
905 */
906 die("unexpected #NM exception", regs, error_code);
907 }
908}
909NOKPROBE_SYMBOL(do_device_not_available);
910
911#ifdef CONFIG_X86_32
912dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
913{
914 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
915 local_irq_enable();
916
917 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
918 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
919 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
920 ILL_BADSTK, (void __user *)NULL);
921 }
922}
923#endif
924
925void __init trap_init(void)
926{
927 /* Init cpu_entry_area before IST entries are set up */
928 setup_cpu_entry_areas();
929
930 idt_setup_traps();
931
932 /*
933 * Set the IDT descriptor to a fixed read-only location, so that the
934 * "sidt" instruction will not leak the location of the kernel, and
935 * to defend the IDT against arbitrary memory write vulnerabilities.
936 * It will be reloaded in cpu_init() */
937 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
938 PAGE_KERNEL_RO);
939 idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
940
941 /*
942 * Should be a barrier for any external CPU state:
943 */
944 cpu_init();
945
946 idt_setup_ist_traps();
947
948 x86_init.irqs.trap_init();
949
950 idt_setup_debugidt_traps();
951}
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9/*
10 * Handle hardware traps and faults.
11 */
12#include <linux/interrupt.h>
13#include <linux/kallsyms.h>
14#include <linux/spinlock.h>
15#include <linux/kprobes.h>
16#include <linux/uaccess.h>
17#include <linux/kdebug.h>
18#include <linux/kgdb.h>
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/ptrace.h>
22#include <linux/string.h>
23#include <linux/delay.h>
24#include <linux/errno.h>
25#include <linux/kexec.h>
26#include <linux/sched.h>
27#include <linux/timer.h>
28#include <linux/init.h>
29#include <linux/bug.h>
30#include <linux/nmi.h>
31#include <linux/mm.h>
32#include <linux/smp.h>
33#include <linux/io.h>
34
35#ifdef CONFIG_EISA
36#include <linux/ioport.h>
37#include <linux/eisa.h>
38#endif
39
40#ifdef CONFIG_MCA
41#include <linux/mca.h>
42#endif
43
44#if defined(CONFIG_EDAC)
45#include <linux/edac.h>
46#endif
47
48#include <asm/kmemcheck.h>
49#include <asm/stacktrace.h>
50#include <asm/processor.h>
51#include <asm/debugreg.h>
52#include <linux/atomic.h>
53#include <asm/system.h>
54#include <asm/traps.h>
55#include <asm/desc.h>
56#include <asm/i387.h>
57#include <asm/mce.h>
58
59#include <asm/mach_traps.h>
60
61#ifdef CONFIG_X86_64
62#include <asm/x86_init.h>
63#include <asm/pgalloc.h>
64#include <asm/proto.h>
65#else
66#include <asm/processor-flags.h>
67#include <asm/setup.h>
68
69asmlinkage int system_call(void);
70
71/* Do we ignore FPU interrupts ? */
72char ignore_fpu_irq;
73
74/*
75 * The IDT has to be page-aligned to simplify the Pentium
76 * F0 0F bug workaround.
77 */
78gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, };
79#endif
80
81DECLARE_BITMAP(used_vectors, NR_VECTORS);
82EXPORT_SYMBOL_GPL(used_vectors);
83
84static int ignore_nmis;
85
86int unknown_nmi_panic;
87/*
88 * Prevent NMI reason port (0x61) being accessed simultaneously, can
89 * only be used in NMI handler.
90 */
91static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
92
93static inline void conditional_sti(struct pt_regs *regs)
94{
95 if (regs->flags & X86_EFLAGS_IF)
96 local_irq_enable();
97}
98
99static inline void preempt_conditional_sti(struct pt_regs *regs)
100{
101 inc_preempt_count();
102 if (regs->flags & X86_EFLAGS_IF)
103 local_irq_enable();
104}
105
106static inline void conditional_cli(struct pt_regs *regs)
107{
108 if (regs->flags & X86_EFLAGS_IF)
109 local_irq_disable();
110}
111
112static inline void preempt_conditional_cli(struct pt_regs *regs)
113{
114 if (regs->flags & X86_EFLAGS_IF)
115 local_irq_disable();
116 dec_preempt_count();
117}
118
119static void __kprobes
120do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
121 long error_code, siginfo_t *info)
122{
123 struct task_struct *tsk = current;
124
125#ifdef CONFIG_X86_32
126 if (regs->flags & X86_VM_MASK) {
127 /*
128 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
129 * On nmi (interrupt 2), do_trap should not be called.
130 */
131 if (trapnr < 6)
132 goto vm86_trap;
133 goto trap_signal;
134 }
135#endif
136
137 if (!user_mode(regs))
138 goto kernel_trap;
139
140#ifdef CONFIG_X86_32
141trap_signal:
142#endif
143 /*
144 * We want error_code and trap_no set for userspace faults and
145 * kernelspace faults which result in die(), but not
146 * kernelspace faults which are fixed up. die() gives the
147 * process no chance to handle the signal and notice the
148 * kernel fault information, so that won't result in polluting
149 * the information about previously queued, but not yet
150 * delivered, faults. See also do_general_protection below.
151 */
152 tsk->thread.error_code = error_code;
153 tsk->thread.trap_no = trapnr;
154
155#ifdef CONFIG_X86_64
156 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
157 printk_ratelimit()) {
158 printk(KERN_INFO
159 "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
160 tsk->comm, tsk->pid, str,
161 regs->ip, regs->sp, error_code);
162 print_vma_addr(" in ", regs->ip);
163 printk("\n");
164 }
165#endif
166
167 if (info)
168 force_sig_info(signr, info, tsk);
169 else
170 force_sig(signr, tsk);
171 return;
172
173kernel_trap:
174 if (!fixup_exception(regs)) {
175 tsk->thread.error_code = error_code;
176 tsk->thread.trap_no = trapnr;
177 die(str, regs, error_code);
178 }
179 return;
180
181#ifdef CONFIG_X86_32
182vm86_trap:
183 if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
184 error_code, trapnr))
185 goto trap_signal;
186 return;
187#endif
188}
189
190#define DO_ERROR(trapnr, signr, str, name) \
191dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
192{ \
193 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
194 == NOTIFY_STOP) \
195 return; \
196 conditional_sti(regs); \
197 do_trap(trapnr, signr, str, regs, error_code, NULL); \
198}
199
200#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
201dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
202{ \
203 siginfo_t info; \
204 info.si_signo = signr; \
205 info.si_errno = 0; \
206 info.si_code = sicode; \
207 info.si_addr = (void __user *)siaddr; \
208 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
209 == NOTIFY_STOP) \
210 return; \
211 conditional_sti(regs); \
212 do_trap(trapnr, signr, str, regs, error_code, &info); \
213}
214
215DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
216DO_ERROR(4, SIGSEGV, "overflow", overflow)
217DO_ERROR(5, SIGSEGV, "bounds", bounds)
218DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip)
219DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
220DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
221DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
222#ifdef CONFIG_X86_32
223DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
224#endif
225DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
226
227#ifdef CONFIG_X86_64
228/* Runs on IST stack */
229dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
230{
231 if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
232 12, SIGBUS) == NOTIFY_STOP)
233 return;
234 preempt_conditional_sti(regs);
235 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
236 preempt_conditional_cli(regs);
237}
238
239dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
240{
241 static const char str[] = "double fault";
242 struct task_struct *tsk = current;
243
244 /* Return not checked because double check cannot be ignored */
245 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
246
247 tsk->thread.error_code = error_code;
248 tsk->thread.trap_no = 8;
249
250 /*
251 * This is always a kernel trap and never fixable (and thus must
252 * never return).
253 */
254 for (;;)
255 die(str, regs, error_code);
256}
257#endif
258
259dotraplinkage void __kprobes
260do_general_protection(struct pt_regs *regs, long error_code)
261{
262 struct task_struct *tsk;
263
264 conditional_sti(regs);
265
266#ifdef CONFIG_X86_32
267 if (regs->flags & X86_VM_MASK)
268 goto gp_in_vm86;
269#endif
270
271 tsk = current;
272 if (!user_mode(regs))
273 goto gp_in_kernel;
274
275 tsk->thread.error_code = error_code;
276 tsk->thread.trap_no = 13;
277
278 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
279 printk_ratelimit()) {
280 printk(KERN_INFO
281 "%s[%d] general protection ip:%lx sp:%lx error:%lx",
282 tsk->comm, task_pid_nr(tsk),
283 regs->ip, regs->sp, error_code);
284 print_vma_addr(" in ", regs->ip);
285 printk("\n");
286 }
287
288 force_sig(SIGSEGV, tsk);
289 return;
290
291#ifdef CONFIG_X86_32
292gp_in_vm86:
293 local_irq_enable();
294 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
295 return;
296#endif
297
298gp_in_kernel:
299 if (fixup_exception(regs))
300 return;
301
302 tsk->thread.error_code = error_code;
303 tsk->thread.trap_no = 13;
304 if (notify_die(DIE_GPF, "general protection fault", regs,
305 error_code, 13, SIGSEGV) == NOTIFY_STOP)
306 return;
307 die("general protection fault", regs, error_code);
308}
309
310static int __init setup_unknown_nmi_panic(char *str)
311{
312 unknown_nmi_panic = 1;
313 return 1;
314}
315__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
316
317static notrace __kprobes void
318pci_serr_error(unsigned char reason, struct pt_regs *regs)
319{
320 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
321 reason, smp_processor_id());
322
323 /*
324 * On some machines, PCI SERR line is used to report memory
325 * errors. EDAC makes use of it.
326 */
327#if defined(CONFIG_EDAC)
328 if (edac_handler_set()) {
329 edac_atomic_assert_error();
330 return;
331 }
332#endif
333
334 if (panic_on_unrecovered_nmi)
335 panic("NMI: Not continuing");
336
337 pr_emerg("Dazed and confused, but trying to continue\n");
338
339 /* Clear and disable the PCI SERR error line. */
340 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
341 outb(reason, NMI_REASON_PORT);
342}
343
344static notrace __kprobes void
345io_check_error(unsigned char reason, struct pt_regs *regs)
346{
347 unsigned long i;
348
349 pr_emerg(
350 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
351 reason, smp_processor_id());
352 show_registers(regs);
353
354 if (panic_on_io_nmi)
355 panic("NMI IOCK error: Not continuing");
356
357 /* Re-enable the IOCK line, wait for a few seconds */
358 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
359 outb(reason, NMI_REASON_PORT);
360
361 i = 20000;
362 while (--i) {
363 touch_nmi_watchdog();
364 udelay(100);
365 }
366
367 reason &= ~NMI_REASON_CLEAR_IOCHK;
368 outb(reason, NMI_REASON_PORT);
369}
370
371static notrace __kprobes void
372unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
373{
374 if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) ==
375 NOTIFY_STOP)
376 return;
377#ifdef CONFIG_MCA
378 /*
379 * Might actually be able to figure out what the guilty party
380 * is:
381 */
382 if (MCA_bus) {
383 mca_handle_nmi();
384 return;
385 }
386#endif
387 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
388 reason, smp_processor_id());
389
390 pr_emerg("Do you have a strange power saving mode enabled?\n");
391 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
392 panic("NMI: Not continuing");
393
394 pr_emerg("Dazed and confused, but trying to continue\n");
395}
396
397static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
398{
399 unsigned char reason = 0;
400
401 /*
402 * CPU-specific NMI must be processed before non-CPU-specific
403 * NMI, otherwise we may lose it, because the CPU-specific
404 * NMI can not be detected/processed on other CPUs.
405 */
406 if (notify_die(DIE_NMI, "nmi", regs, 0, 2, SIGINT) == NOTIFY_STOP)
407 return;
408
409 /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
410 raw_spin_lock(&nmi_reason_lock);
411 reason = get_nmi_reason();
412
413 if (reason & NMI_REASON_MASK) {
414 if (reason & NMI_REASON_SERR)
415 pci_serr_error(reason, regs);
416 else if (reason & NMI_REASON_IOCHK)
417 io_check_error(reason, regs);
418#ifdef CONFIG_X86_32
419 /*
420 * Reassert NMI in case it became active
421 * meanwhile as it's edge-triggered:
422 */
423 reassert_nmi();
424#endif
425 raw_spin_unlock(&nmi_reason_lock);
426 return;
427 }
428 raw_spin_unlock(&nmi_reason_lock);
429
430 unknown_nmi_error(reason, regs);
431}
432
433dotraplinkage notrace __kprobes void
434do_nmi(struct pt_regs *regs, long error_code)
435{
436 nmi_enter();
437
438 inc_irq_stat(__nmi_count);
439
440 if (!ignore_nmis)
441 default_do_nmi(regs);
442
443 nmi_exit();
444}
445
446void stop_nmi(void)
447{
448 ignore_nmis++;
449}
450
451void restart_nmi(void)
452{
453 ignore_nmis--;
454}
455
456/* May run on IST stack. */
457dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code)
458{
459#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
460 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
461 == NOTIFY_STOP)
462 return;
463#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
464#ifdef CONFIG_KPROBES
465 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
466 == NOTIFY_STOP)
467 return;
468#else
469 if (notify_die(DIE_TRAP, "int3", regs, error_code, 3, SIGTRAP)
470 == NOTIFY_STOP)
471 return;
472#endif
473
474 preempt_conditional_sti(regs);
475 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
476 preempt_conditional_cli(regs);
477}
478
479#ifdef CONFIG_X86_64
480/*
481 * Help handler running on IST stack to switch back to user stack
482 * for scheduling or signal handling. The actual stack switch is done in
483 * entry.S
484 */
485asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
486{
487 struct pt_regs *regs = eregs;
488 /* Did already sync */
489 if (eregs == (struct pt_regs *)eregs->sp)
490 ;
491 /* Exception from user space */
492 else if (user_mode(eregs))
493 regs = task_pt_regs(current);
494 /*
495 * Exception from kernel and interrupts are enabled. Move to
496 * kernel process stack.
497 */
498 else if (eregs->flags & X86_EFLAGS_IF)
499 regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
500 if (eregs != regs)
501 *regs = *eregs;
502 return regs;
503}
504#endif
505
506/*
507 * Our handling of the processor debug registers is non-trivial.
508 * We do not clear them on entry and exit from the kernel. Therefore
509 * it is possible to get a watchpoint trap here from inside the kernel.
510 * However, the code in ./ptrace.c has ensured that the user can
511 * only set watchpoints on userspace addresses. Therefore the in-kernel
512 * watchpoint trap can only occur in code which is reading/writing
513 * from user space. Such code must not hold kernel locks (since it
514 * can equally take a page fault), therefore it is safe to call
515 * force_sig_info even though that claims and releases locks.
516 *
517 * Code in ./signal.c ensures that the debug control register
518 * is restored before we deliver any signal, and therefore that
519 * user code runs with the correct debug control register even though
520 * we clear it here.
521 *
522 * Being careful here means that we don't have to be as careful in a
523 * lot of more complicated places (task switching can be a bit lazy
524 * about restoring all the debug state, and ptrace doesn't have to
525 * find every occurrence of the TF bit that could be saved away even
526 * by user code)
527 *
528 * May run on IST stack.
529 */
530dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
531{
532 struct task_struct *tsk = current;
533 int user_icebp = 0;
534 unsigned long dr6;
535 int si_code;
536
537 get_debugreg(dr6, 6);
538
539 /* Filter out all the reserved bits which are preset to 1 */
540 dr6 &= ~DR6_RESERVED;
541
542 /*
543 * If dr6 has no reason to give us about the origin of this trap,
544 * then it's very likely the result of an icebp/int01 trap.
545 * User wants a sigtrap for that.
546 */
547 if (!dr6 && user_mode(regs))
548 user_icebp = 1;
549
550 /* Catch kmemcheck conditions first of all! */
551 if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
552 return;
553
554 /* DR6 may or may not be cleared by the CPU */
555 set_debugreg(0, 6);
556
557 /*
558 * The processor cleared BTF, so don't mark that we need it set.
559 */
560 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
561
562 /* Store the virtualized DR6 value */
563 tsk->thread.debugreg6 = dr6;
564
565 if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code,
566 SIGTRAP) == NOTIFY_STOP)
567 return;
568
569 /* It's safe to allow irq's after DR6 has been saved */
570 preempt_conditional_sti(regs);
571
572 if (regs->flags & X86_VM_MASK) {
573 handle_vm86_trap((struct kernel_vm86_regs *) regs,
574 error_code, 1);
575 preempt_conditional_cli(regs);
576 return;
577 }
578
579 /*
580 * Single-stepping through system calls: ignore any exceptions in
581 * kernel space, but re-enable TF when returning to user mode.
582 *
583 * We already checked v86 mode above, so we can check for kernel mode
584 * by just checking the CPL of CS.
585 */
586 if ((dr6 & DR_STEP) && !user_mode(regs)) {
587 tsk->thread.debugreg6 &= ~DR_STEP;
588 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
589 regs->flags &= ~X86_EFLAGS_TF;
590 }
591 si_code = get_si_code(tsk->thread.debugreg6);
592 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
593 send_sigtrap(tsk, regs, error_code, si_code);
594 preempt_conditional_cli(regs);
595
596 return;
597}
598
599/*
600 * Note that we play around with the 'TS' bit in an attempt to get
601 * the correct behaviour even in the presence of the asynchronous
602 * IRQ13 behaviour
603 */
604void math_error(struct pt_regs *regs, int error_code, int trapnr)
605{
606 struct task_struct *task = current;
607 siginfo_t info;
608 unsigned short err;
609 char *str = (trapnr == 16) ? "fpu exception" : "simd exception";
610
611 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
612 return;
613 conditional_sti(regs);
614
615 if (!user_mode_vm(regs))
616 {
617 if (!fixup_exception(regs)) {
618 task->thread.error_code = error_code;
619 task->thread.trap_no = trapnr;
620 die(str, regs, error_code);
621 }
622 return;
623 }
624
625 /*
626 * Save the info for the exception handler and clear the error.
627 */
628 save_init_fpu(task);
629 task->thread.trap_no = trapnr;
630 task->thread.error_code = error_code;
631 info.si_signo = SIGFPE;
632 info.si_errno = 0;
633 info.si_addr = (void __user *)regs->ip;
634 if (trapnr == 16) {
635 unsigned short cwd, swd;
636 /*
637 * (~cwd & swd) will mask out exceptions that are not set to unmasked
638 * status. 0x3f is the exception bits in these regs, 0x200 is the
639 * C1 reg you need in case of a stack fault, 0x040 is the stack
640 * fault bit. We should only be taking one exception at a time,
641 * so if this combination doesn't produce any single exception,
642 * then we have a bad program that isn't synchronizing its FPU usage
643 * and it will suffer the consequences since we won't be able to
644 * fully reproduce the context of the exception
645 */
646 cwd = get_fpu_cwd(task);
647 swd = get_fpu_swd(task);
648
649 err = swd & ~cwd;
650 } else {
651 /*
652 * The SIMD FPU exceptions are handled a little differently, as there
653 * is only a single status/control register. Thus, to determine which
654 * unmasked exception was caught we must mask the exception mask bits
655 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
656 */
657 unsigned short mxcsr = get_fpu_mxcsr(task);
658 err = ~(mxcsr >> 7) & mxcsr;
659 }
660
661 if (err & 0x001) { /* Invalid op */
662 /*
663 * swd & 0x240 == 0x040: Stack Underflow
664 * swd & 0x240 == 0x240: Stack Overflow
665 * User must clear the SF bit (0x40) if set
666 */
667 info.si_code = FPE_FLTINV;
668 } else if (err & 0x004) { /* Divide by Zero */
669 info.si_code = FPE_FLTDIV;
670 } else if (err & 0x008) { /* Overflow */
671 info.si_code = FPE_FLTOVF;
672 } else if (err & 0x012) { /* Denormal, Underflow */
673 info.si_code = FPE_FLTUND;
674 } else if (err & 0x020) { /* Precision */
675 info.si_code = FPE_FLTRES;
676 } else {
677 /*
678 * If we're using IRQ 13, or supposedly even some trap 16
679 * implementations, it's possible we get a spurious trap...
680 */
681 return; /* Spurious trap, no error */
682 }
683 force_sig_info(SIGFPE, &info, task);
684}
685
686dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
687{
688#ifdef CONFIG_X86_32
689 ignore_fpu_irq = 1;
690#endif
691
692 math_error(regs, error_code, 16);
693}
694
695dotraplinkage void
696do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
697{
698 math_error(regs, error_code, 19);
699}
700
701dotraplinkage void
702do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
703{
704 conditional_sti(regs);
705#if 0
706 /* No need to warn about this any longer. */
707 printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
708#endif
709}
710
711asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
712{
713}
714
715asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void)
716{
717}
718
719/*
720 * __math_state_restore assumes that cr0.TS is already clear and the
721 * fpu state is all ready for use. Used during context switch.
722 */
723void __math_state_restore(void)
724{
725 struct thread_info *thread = current_thread_info();
726 struct task_struct *tsk = thread->task;
727
728 /*
729 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
730 */
731 if (unlikely(restore_fpu_checking(tsk))) {
732 stts();
733 force_sig(SIGSEGV, tsk);
734 return;
735 }
736
737 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
738 tsk->fpu_counter++;
739}
740
741/*
742 * 'math_state_restore()' saves the current math information in the
743 * old math state array, and gets the new ones from the current task
744 *
745 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
746 * Don't touch unless you *really* know how it works.
747 *
748 * Must be called with kernel preemption disabled (in this case,
749 * local interrupts are disabled at the call-site in entry.S).
750 */
751asmlinkage void math_state_restore(void)
752{
753 struct thread_info *thread = current_thread_info();
754 struct task_struct *tsk = thread->task;
755
756 if (!tsk_used_math(tsk)) {
757 local_irq_enable();
758 /*
759 * does a slab alloc which can sleep
760 */
761 if (init_fpu(tsk)) {
762 /*
763 * ran out of memory!
764 */
765 do_group_exit(SIGKILL);
766 return;
767 }
768 local_irq_disable();
769 }
770
771 clts(); /* Allow maths ops (or we recurse) */
772
773 __math_state_restore();
774}
775EXPORT_SYMBOL_GPL(math_state_restore);
776
777dotraplinkage void __kprobes
778do_device_not_available(struct pt_regs *regs, long error_code)
779{
780#ifdef CONFIG_MATH_EMULATION
781 if (read_cr0() & X86_CR0_EM) {
782 struct math_emu_info info = { };
783
784 conditional_sti(regs);
785
786 info.regs = regs;
787 math_emulate(&info);
788 return;
789 }
790#endif
791 math_state_restore(); /* interrupts still off */
792#ifdef CONFIG_X86_32
793 conditional_sti(regs);
794#endif
795}
796
797#ifdef CONFIG_X86_32
798dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
799{
800 siginfo_t info;
801 local_irq_enable();
802
803 info.si_signo = SIGILL;
804 info.si_errno = 0;
805 info.si_code = ILL_BADSTK;
806 info.si_addr = NULL;
807 if (notify_die(DIE_TRAP, "iret exception",
808 regs, error_code, 32, SIGILL) == NOTIFY_STOP)
809 return;
810 do_trap(32, SIGILL, "iret exception", regs, error_code, &info);
811}
812#endif
813
814/* Set of traps needed for early debugging. */
815void __init early_trap_init(void)
816{
817 set_intr_gate_ist(1, &debug, DEBUG_STACK);
818 /* int3 can be called from all */
819 set_system_intr_gate_ist(3, &int3, DEBUG_STACK);
820 set_intr_gate(14, &page_fault);
821 load_idt(&idt_descr);
822}
823
824void __init trap_init(void)
825{
826 int i;
827
828#ifdef CONFIG_EISA
829 void __iomem *p = early_ioremap(0x0FFFD9, 4);
830
831 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
832 EISA_bus = 1;
833 early_iounmap(p, 4);
834#endif
835
836 set_intr_gate(0, ÷_error);
837 set_intr_gate_ist(2, &nmi, NMI_STACK);
838 /* int4 can be called from all */
839 set_system_intr_gate(4, &overflow);
840 set_intr_gate(5, &bounds);
841 set_intr_gate(6, &invalid_op);
842 set_intr_gate(7, &device_not_available);
843#ifdef CONFIG_X86_32
844 set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS);
845#else
846 set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK);
847#endif
848 set_intr_gate(9, &coprocessor_segment_overrun);
849 set_intr_gate(10, &invalid_TSS);
850 set_intr_gate(11, &segment_not_present);
851 set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK);
852 set_intr_gate(13, &general_protection);
853 set_intr_gate(15, &spurious_interrupt_bug);
854 set_intr_gate(16, &coprocessor_error);
855 set_intr_gate(17, &alignment_check);
856#ifdef CONFIG_X86_MCE
857 set_intr_gate_ist(18, &machine_check, MCE_STACK);
858#endif
859 set_intr_gate(19, &simd_coprocessor_error);
860
861 /* Reserve all the builtin and the syscall vector: */
862 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
863 set_bit(i, used_vectors);
864
865#ifdef CONFIG_IA32_EMULATION
866 set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
867 set_bit(IA32_SYSCALL_VECTOR, used_vectors);
868#endif
869
870#ifdef CONFIG_X86_32
871 set_system_trap_gate(SYSCALL_VECTOR, &system_call);
872 set_bit(SYSCALL_VECTOR, used_vectors);
873#endif
874
875 /*
876 * Should be a barrier for any external CPU state:
877 */
878 cpu_init();
879
880 x86_init.irqs.trap_init();
881}