Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 
 110#include <linux/init.h>
 111#include <linux/highmem.h>
 112#include <linux/user_namespace.h>
 113#include <linux/static_key.h>
 114#include <linux/memcontrol.h>
 115#include <linux/prefetch.h>
 116#include <linux/compat.h>
 
 
 
 117
 118#include <linux/uaccess.h>
 119
 120#include <linux/netdevice.h>
 121#include <net/protocol.h>
 122#include <linux/skbuff.h>
 123#include <net/net_namespace.h>
 124#include <net/request_sock.h>
 125#include <net/sock.h>
 126#include <linux/net_tstamp.h>
 127#include <net/xfrm.h>
 128#include <linux/ipsec.h>
 129#include <net/cls_cgroup.h>
 130#include <net/netprio_cgroup.h>
 131#include <linux/sock_diag.h>
 132
 133#include <linux/filter.h>
 134#include <net/sock_reuseport.h>
 135#include <net/bpf_sk_storage.h>
 136
 137#include <trace/events/sock.h>
 138
 139#include <net/tcp.h>
 140#include <net/busy_poll.h>
 
 141
 142#include <linux/ethtool.h>
 143
 
 
 144static DEFINE_MUTEX(proto_list_mutex);
 145static LIST_HEAD(proto_list);
 146
 147static void sock_inuse_add(struct net *net, int val);
 
 148
 149/**
 150 * sk_ns_capable - General socket capability test
 151 * @sk: Socket to use a capability on or through
 152 * @user_ns: The user namespace of the capability to use
 153 * @cap: The capability to use
 154 *
 155 * Test to see if the opener of the socket had when the socket was
 156 * created and the current process has the capability @cap in the user
 157 * namespace @user_ns.
 158 */
 159bool sk_ns_capable(const struct sock *sk,
 160		   struct user_namespace *user_ns, int cap)
 161{
 162	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 163		ns_capable(user_ns, cap);
 164}
 165EXPORT_SYMBOL(sk_ns_capable);
 166
 167/**
 168 * sk_capable - Socket global capability test
 169 * @sk: Socket to use a capability on or through
 170 * @cap: The global capability to use
 171 *
 172 * Test to see if the opener of the socket had when the socket was
 173 * created and the current process has the capability @cap in all user
 174 * namespaces.
 175 */
 176bool sk_capable(const struct sock *sk, int cap)
 177{
 178	return sk_ns_capable(sk, &init_user_ns, cap);
 179}
 180EXPORT_SYMBOL(sk_capable);
 181
 182/**
 183 * sk_net_capable - Network namespace socket capability test
 184 * @sk: Socket to use a capability on or through
 185 * @cap: The capability to use
 186 *
 187 * Test to see if the opener of the socket had when the socket was created
 188 * and the current process has the capability @cap over the network namespace
 189 * the socket is a member of.
 190 */
 191bool sk_net_capable(const struct sock *sk, int cap)
 192{
 193	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 194}
 195EXPORT_SYMBOL(sk_net_capable);
 196
 197/*
 198 * Each address family might have different locking rules, so we have
 199 * one slock key per address family and separate keys for internal and
 200 * userspace sockets.
 201 */
 202static struct lock_class_key af_family_keys[AF_MAX];
 203static struct lock_class_key af_family_kern_keys[AF_MAX];
 204static struct lock_class_key af_family_slock_keys[AF_MAX];
 205static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 206
 207/*
 208 * Make lock validator output more readable. (we pre-construct these
 209 * strings build-time, so that runtime initialization of socket
 210 * locks is fast):
 211 */
 212
 213#define _sock_locks(x)						  \
 214  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 215  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 216  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 217  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 218  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 219  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 220  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 221  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 222  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 223  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 224  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 225  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 226  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 227  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 228  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 
 229  x "AF_MAX"
 230
 231static const char *const af_family_key_strings[AF_MAX+1] = {
 232	_sock_locks("sk_lock-")
 233};
 234static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 235	_sock_locks("slock-")
 236};
 237static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 238	_sock_locks("clock-")
 239};
 240
 241static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 242	_sock_locks("k-sk_lock-")
 243};
 244static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 245	_sock_locks("k-slock-")
 246};
 247static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 248	_sock_locks("k-clock-")
 249};
 250static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 251	_sock_locks("rlock-")
 252};
 253static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 254	_sock_locks("wlock-")
 255};
 256static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 257	_sock_locks("elock-")
 258};
 259
 260/*
 261 * sk_callback_lock and sk queues locking rules are per-address-family,
 262 * so split the lock classes by using a per-AF key:
 263 */
 264static struct lock_class_key af_callback_keys[AF_MAX];
 265static struct lock_class_key af_rlock_keys[AF_MAX];
 266static struct lock_class_key af_wlock_keys[AF_MAX];
 267static struct lock_class_key af_elock_keys[AF_MAX];
 268static struct lock_class_key af_kern_callback_keys[AF_MAX];
 269
 270/* Run time adjustable parameters. */
 271__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 272EXPORT_SYMBOL(sysctl_wmem_max);
 273__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 274EXPORT_SYMBOL(sysctl_rmem_max);
 275__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 276__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 277
 278/* Maximal space eaten by iovec or ancillary data plus some space */
 279int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 280EXPORT_SYMBOL(sysctl_optmem_max);
 281
 282int sysctl_tstamp_allow_data __read_mostly = 1;
 283
 284DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 285EXPORT_SYMBOL_GPL(memalloc_socks_key);
 286
 287/**
 288 * sk_set_memalloc - sets %SOCK_MEMALLOC
 289 * @sk: socket to set it on
 290 *
 291 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 292 * It's the responsibility of the admin to adjust min_free_kbytes
 293 * to meet the requirements
 294 */
 295void sk_set_memalloc(struct sock *sk)
 296{
 297	sock_set_flag(sk, SOCK_MEMALLOC);
 298	sk->sk_allocation |= __GFP_MEMALLOC;
 299	static_branch_inc(&memalloc_socks_key);
 300}
 301EXPORT_SYMBOL_GPL(sk_set_memalloc);
 302
 303void sk_clear_memalloc(struct sock *sk)
 304{
 305	sock_reset_flag(sk, SOCK_MEMALLOC);
 306	sk->sk_allocation &= ~__GFP_MEMALLOC;
 307	static_branch_dec(&memalloc_socks_key);
 308
 309	/*
 310	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 311	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 312	 * it has rmem allocations due to the last swapfile being deactivated
 313	 * but there is a risk that the socket is unusable due to exceeding
 314	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 315	 */
 316	sk_mem_reclaim(sk);
 317}
 318EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 319
 320int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 321{
 322	int ret;
 323	unsigned int noreclaim_flag;
 324
 325	/* these should have been dropped before queueing */
 326	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 327
 328	noreclaim_flag = memalloc_noreclaim_save();
 329	ret = sk->sk_backlog_rcv(sk, skb);
 
 
 
 330	memalloc_noreclaim_restore(noreclaim_flag);
 331
 332	return ret;
 333}
 334EXPORT_SYMBOL(__sk_backlog_rcv);
 335
 336void sk_error_report(struct sock *sk)
 337{
 338	sk->sk_error_report(sk);
 339
 340	switch (sk->sk_family) {
 341	case AF_INET:
 342		fallthrough;
 343	case AF_INET6:
 344		trace_inet_sk_error_report(sk);
 345		break;
 346	default:
 347		break;
 348	}
 349}
 350EXPORT_SYMBOL(sk_error_report);
 351
 352static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 353{
 354	struct __kernel_sock_timeval tv;
 355
 356	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 357		tv.tv_sec = 0;
 358		tv.tv_usec = 0;
 359	} else {
 360		tv.tv_sec = timeo / HZ;
 361		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 362	}
 363
 364	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 365		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 366		*(struct old_timeval32 *)optval = tv32;
 367		return sizeof(tv32);
 368	}
 369
 370	if (old_timeval) {
 371		struct __kernel_old_timeval old_tv;
 372		old_tv.tv_sec = tv.tv_sec;
 373		old_tv.tv_usec = tv.tv_usec;
 374		*(struct __kernel_old_timeval *)optval = old_tv;
 375		return sizeof(old_tv);
 376	}
 377
 378	*(struct __kernel_sock_timeval *)optval = tv;
 379	return sizeof(tv);
 380}
 
 381
 382static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 383			    bool old_timeval)
 384{
 385	struct __kernel_sock_timeval tv;
 386
 387	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 388		struct old_timeval32 tv32;
 389
 390		if (optlen < sizeof(tv32))
 391			return -EINVAL;
 392
 393		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 394			return -EFAULT;
 395		tv.tv_sec = tv32.tv_sec;
 396		tv.tv_usec = tv32.tv_usec;
 397	} else if (old_timeval) {
 398		struct __kernel_old_timeval old_tv;
 399
 400		if (optlen < sizeof(old_tv))
 401			return -EINVAL;
 402		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 403			return -EFAULT;
 404		tv.tv_sec = old_tv.tv_sec;
 405		tv.tv_usec = old_tv.tv_usec;
 406	} else {
 407		if (optlen < sizeof(tv))
 408			return -EINVAL;
 409		if (copy_from_sockptr(&tv, optval, sizeof(tv)))
 410			return -EFAULT;
 411	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 413		return -EDOM;
 414
 415	if (tv.tv_sec < 0) {
 416		static int warned __read_mostly;
 417
 418		*timeo_p = 0;
 419		if (warned < 10 && net_ratelimit()) {
 420			warned++;
 421			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 422				__func__, current->comm, task_pid_nr(current));
 423		}
 424		return 0;
 425	}
 426	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 427	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 428		return 0;
 429	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
 430		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
 
 431	return 0;
 432}
 433
 434static bool sock_needs_netstamp(const struct sock *sk)
 435{
 436	switch (sk->sk_family) {
 437	case AF_UNSPEC:
 438	case AF_UNIX:
 439		return false;
 440	default:
 441		return true;
 442	}
 443}
 444
 445static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 446{
 447	if (sk->sk_flags & flags) {
 448		sk->sk_flags &= ~flags;
 449		if (sock_needs_netstamp(sk) &&
 450		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 451			net_disable_timestamp();
 452	}
 453}
 454
 455
 456int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 457{
 458	unsigned long flags;
 459	struct sk_buff_head *list = &sk->sk_receive_queue;
 460
 461	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 462		atomic_inc(&sk->sk_drops);
 463		trace_sock_rcvqueue_full(sk, skb);
 464		return -ENOMEM;
 465	}
 466
 467	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 468		atomic_inc(&sk->sk_drops);
 469		return -ENOBUFS;
 470	}
 471
 472	skb->dev = NULL;
 473	skb_set_owner_r(skb, sk);
 474
 475	/* we escape from rcu protected region, make sure we dont leak
 476	 * a norefcounted dst
 477	 */
 478	skb_dst_force(skb);
 479
 480	spin_lock_irqsave(&list->lock, flags);
 481	sock_skb_set_dropcount(sk, skb);
 482	__skb_queue_tail(list, skb);
 483	spin_unlock_irqrestore(&list->lock, flags);
 484
 485	if (!sock_flag(sk, SOCK_DEAD))
 486		sk->sk_data_ready(sk);
 487	return 0;
 488}
 489EXPORT_SYMBOL(__sock_queue_rcv_skb);
 490
 491int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 
 492{
 
 493	int err;
 494
 495	err = sk_filter(sk, skb);
 496	if (err)
 497		return err;
 498
 499	return __sock_queue_rcv_skb(sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500}
 501EXPORT_SYMBOL(sock_queue_rcv_skb);
 502
 503int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 504		     const int nested, unsigned int trim_cap, bool refcounted)
 505{
 506	int rc = NET_RX_SUCCESS;
 507
 508	if (sk_filter_trim_cap(sk, skb, trim_cap))
 509		goto discard_and_relse;
 510
 511	skb->dev = NULL;
 512
 513	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 514		atomic_inc(&sk->sk_drops);
 515		goto discard_and_relse;
 516	}
 517	if (nested)
 518		bh_lock_sock_nested(sk);
 519	else
 520		bh_lock_sock(sk);
 521	if (!sock_owned_by_user(sk)) {
 522		/*
 523		 * trylock + unlock semantics:
 524		 */
 525		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 526
 527		rc = sk_backlog_rcv(sk, skb);
 528
 529		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 530	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 531		bh_unlock_sock(sk);
 532		atomic_inc(&sk->sk_drops);
 533		goto discard_and_relse;
 534	}
 535
 536	bh_unlock_sock(sk);
 537out:
 538	if (refcounted)
 539		sock_put(sk);
 540	return rc;
 541discard_and_relse:
 542	kfree_skb(skb);
 543	goto out;
 544}
 545EXPORT_SYMBOL(__sk_receive_skb);
 546
 547INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
 548							  u32));
 549INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
 550							   u32));
 551struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 552{
 553	struct dst_entry *dst = __sk_dst_get(sk);
 554
 555	if (dst && dst->obsolete &&
 556	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 557			       dst, cookie) == NULL) {
 558		sk_tx_queue_clear(sk);
 559		sk->sk_dst_pending_confirm = 0;
 560		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 561		dst_release(dst);
 562		return NULL;
 563	}
 564
 565	return dst;
 566}
 567EXPORT_SYMBOL(__sk_dst_check);
 568
 569struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 570{
 571	struct dst_entry *dst = sk_dst_get(sk);
 572
 573	if (dst && dst->obsolete &&
 574	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 575			       dst, cookie) == NULL) {
 576		sk_dst_reset(sk);
 577		dst_release(dst);
 578		return NULL;
 579	}
 580
 581	return dst;
 582}
 583EXPORT_SYMBOL(sk_dst_check);
 584
 585static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 586{
 587	int ret = -ENOPROTOOPT;
 588#ifdef CONFIG_NETDEVICES
 589	struct net *net = sock_net(sk);
 590
 591	/* Sorry... */
 592	ret = -EPERM;
 593	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 594		goto out;
 595
 596	ret = -EINVAL;
 597	if (ifindex < 0)
 598		goto out;
 599
 600	sk->sk_bound_dev_if = ifindex;
 
 
 601	if (sk->sk_prot->rehash)
 602		sk->sk_prot->rehash(sk);
 603	sk_dst_reset(sk);
 604
 605	ret = 0;
 606
 607out:
 608#endif
 609
 610	return ret;
 611}
 612
 613int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 614{
 615	int ret;
 616
 617	if (lock_sk)
 618		lock_sock(sk);
 619	ret = sock_bindtoindex_locked(sk, ifindex);
 620	if (lock_sk)
 621		release_sock(sk);
 622
 623	return ret;
 624}
 625EXPORT_SYMBOL(sock_bindtoindex);
 626
 627static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 628{
 629	int ret = -ENOPROTOOPT;
 630#ifdef CONFIG_NETDEVICES
 631	struct net *net = sock_net(sk);
 632	char devname[IFNAMSIZ];
 633	int index;
 634
 635	ret = -EINVAL;
 636	if (optlen < 0)
 637		goto out;
 638
 639	/* Bind this socket to a particular device like "eth0",
 640	 * as specified in the passed interface name. If the
 641	 * name is "" or the option length is zero the socket
 642	 * is not bound.
 643	 */
 644	if (optlen > IFNAMSIZ - 1)
 645		optlen = IFNAMSIZ - 1;
 646	memset(devname, 0, sizeof(devname));
 647
 648	ret = -EFAULT;
 649	if (copy_from_sockptr(devname, optval, optlen))
 650		goto out;
 651
 652	index = 0;
 653	if (devname[0] != '\0') {
 654		struct net_device *dev;
 655
 656		rcu_read_lock();
 657		dev = dev_get_by_name_rcu(net, devname);
 658		if (dev)
 659			index = dev->ifindex;
 660		rcu_read_unlock();
 661		ret = -ENODEV;
 662		if (!dev)
 663			goto out;
 664	}
 665
 666	return sock_bindtoindex(sk, index, true);
 
 
 667out:
 668#endif
 669
 670	return ret;
 671}
 672
 673static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 674				int __user *optlen, int len)
 675{
 676	int ret = -ENOPROTOOPT;
 677#ifdef CONFIG_NETDEVICES
 
 678	struct net *net = sock_net(sk);
 679	char devname[IFNAMSIZ];
 680
 681	if (sk->sk_bound_dev_if == 0) {
 682		len = 0;
 683		goto zero;
 684	}
 685
 686	ret = -EINVAL;
 687	if (len < IFNAMSIZ)
 688		goto out;
 689
 690	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 691	if (ret)
 692		goto out;
 693
 694	len = strlen(devname) + 1;
 695
 696	ret = -EFAULT;
 697	if (copy_to_user(optval, devname, len))
 698		goto out;
 699
 700zero:
 701	ret = -EFAULT;
 702	if (put_user(len, optlen))
 703		goto out;
 704
 705	ret = 0;
 706
 707out:
 708#endif
 709
 710	return ret;
 711}
 712
 713bool sk_mc_loop(struct sock *sk)
 714{
 715	if (dev_recursion_level())
 716		return false;
 717	if (!sk)
 718		return true;
 719	switch (sk->sk_family) {
 
 720	case AF_INET:
 721		return inet_sk(sk)->mc_loop;
 722#if IS_ENABLED(CONFIG_IPV6)
 723	case AF_INET6:
 724		return inet6_sk(sk)->mc_loop;
 725#endif
 726	}
 727	WARN_ON_ONCE(1);
 728	return true;
 729}
 730EXPORT_SYMBOL(sk_mc_loop);
 731
 732void sock_set_reuseaddr(struct sock *sk)
 733{
 734	lock_sock(sk);
 735	sk->sk_reuse = SK_CAN_REUSE;
 736	release_sock(sk);
 737}
 738EXPORT_SYMBOL(sock_set_reuseaddr);
 739
 740void sock_set_reuseport(struct sock *sk)
 741{
 742	lock_sock(sk);
 743	sk->sk_reuseport = true;
 744	release_sock(sk);
 745}
 746EXPORT_SYMBOL(sock_set_reuseport);
 747
 748void sock_no_linger(struct sock *sk)
 749{
 750	lock_sock(sk);
 751	sk->sk_lingertime = 0;
 752	sock_set_flag(sk, SOCK_LINGER);
 753	release_sock(sk);
 754}
 755EXPORT_SYMBOL(sock_no_linger);
 756
 757void sock_set_priority(struct sock *sk, u32 priority)
 758{
 759	lock_sock(sk);
 760	sk->sk_priority = priority;
 761	release_sock(sk);
 762}
 763EXPORT_SYMBOL(sock_set_priority);
 764
 765void sock_set_sndtimeo(struct sock *sk, s64 secs)
 766{
 767	lock_sock(sk);
 768	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 769		sk->sk_sndtimeo = secs * HZ;
 770	else
 771		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
 772	release_sock(sk);
 773}
 774EXPORT_SYMBOL(sock_set_sndtimeo);
 775
 776static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 777{
 778	if (val)  {
 779		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 780		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
 781		sock_set_flag(sk, SOCK_RCVTSTAMP);
 782		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 783	} else {
 784		sock_reset_flag(sk, SOCK_RCVTSTAMP);
 785		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 786	}
 787}
 788
 789void sock_enable_timestamps(struct sock *sk)
 790{
 791	lock_sock(sk);
 792	__sock_set_timestamps(sk, true, false, true);
 793	release_sock(sk);
 794}
 795EXPORT_SYMBOL(sock_enable_timestamps);
 796
 797void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
 798{
 799	switch (optname) {
 800	case SO_TIMESTAMP_OLD:
 801		__sock_set_timestamps(sk, valbool, false, false);
 802		break;
 803	case SO_TIMESTAMP_NEW:
 804		__sock_set_timestamps(sk, valbool, true, false);
 805		break;
 806	case SO_TIMESTAMPNS_OLD:
 807		__sock_set_timestamps(sk, valbool, false, true);
 808		break;
 809	case SO_TIMESTAMPNS_NEW:
 810		__sock_set_timestamps(sk, valbool, true, true);
 811		break;
 812	}
 813}
 814
 815static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
 816{
 817	struct net *net = sock_net(sk);
 818	struct net_device *dev = NULL;
 819	bool match = false;
 820	int *vclock_index;
 821	int i, num;
 822
 823	if (sk->sk_bound_dev_if)
 824		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
 825
 826	if (!dev) {
 827		pr_err("%s: sock not bind to device\n", __func__);
 828		return -EOPNOTSUPP;
 829	}
 830
 831	num = ethtool_get_phc_vclocks(dev, &vclock_index);
 
 
 832	for (i = 0; i < num; i++) {
 833		if (*(vclock_index + i) == phc_index) {
 834			match = true;
 835			break;
 836		}
 837	}
 838
 839	if (num > 0)
 840		kfree(vclock_index);
 841
 842	if (!match)
 843		return -EINVAL;
 844
 845	sk->sk_bind_phc = phc_index;
 846
 847	return 0;
 848}
 849
 850int sock_set_timestamping(struct sock *sk, int optname,
 851			  struct so_timestamping timestamping)
 852{
 853	int val = timestamping.flags;
 854	int ret;
 855
 856	if (val & ~SOF_TIMESTAMPING_MASK)
 857		return -EINVAL;
 858
 
 
 
 
 859	if (val & SOF_TIMESTAMPING_OPT_ID &&
 860	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 861		if (sk->sk_protocol == IPPROTO_TCP &&
 862		    sk->sk_type == SOCK_STREAM) {
 863			if ((1 << sk->sk_state) &
 864			    (TCPF_CLOSE | TCPF_LISTEN))
 865				return -EINVAL;
 866			sk->sk_tskey = tcp_sk(sk)->snd_una;
 
 
 
 867		} else {
 868			sk->sk_tskey = 0;
 869		}
 870	}
 871
 872	if (val & SOF_TIMESTAMPING_OPT_STATS &&
 873	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
 874		return -EINVAL;
 875
 876	if (val & SOF_TIMESTAMPING_BIND_PHC) {
 877		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
 878		if (ret)
 879			return ret;
 880	}
 881
 882	sk->sk_tsflags = val;
 883	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
 884
 885	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 886		sock_enable_timestamp(sk,
 887				      SOCK_TIMESTAMPING_RX_SOFTWARE);
 888	else
 889		sock_disable_timestamp(sk,
 890				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 891	return 0;
 892}
 893
 894void sock_set_keepalive(struct sock *sk)
 895{
 896	lock_sock(sk);
 897	if (sk->sk_prot->keepalive)
 898		sk->sk_prot->keepalive(sk, true);
 899	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 900	release_sock(sk);
 901}
 902EXPORT_SYMBOL(sock_set_keepalive);
 903
 904static void __sock_set_rcvbuf(struct sock *sk, int val)
 905{
 906	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 907	 * as a negative value.
 908	 */
 909	val = min_t(int, val, INT_MAX / 2);
 910	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 911
 912	/* We double it on the way in to account for "struct sk_buff" etc.
 913	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 914	 * will allow that much actual data to be received on that socket.
 915	 *
 916	 * Applications are unaware that "struct sk_buff" and other overheads
 917	 * allocate from the receive buffer during socket buffer allocation.
 918	 *
 919	 * And after considering the possible alternatives, returning the value
 920	 * we actually used in getsockopt is the most desirable behavior.
 921	 */
 922	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 923}
 924
 925void sock_set_rcvbuf(struct sock *sk, int val)
 926{
 927	lock_sock(sk);
 928	__sock_set_rcvbuf(sk, val);
 929	release_sock(sk);
 930}
 931EXPORT_SYMBOL(sock_set_rcvbuf);
 932
 933static void __sock_set_mark(struct sock *sk, u32 val)
 934{
 935	if (val != sk->sk_mark) {
 936		sk->sk_mark = val;
 937		sk_dst_reset(sk);
 938	}
 939}
 940
 941void sock_set_mark(struct sock *sk, u32 val)
 942{
 943	lock_sock(sk);
 944	__sock_set_mark(sk, val);
 945	release_sock(sk);
 946}
 947EXPORT_SYMBOL(sock_set_mark);
 948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949/*
 950 *	This is meant for all protocols to use and covers goings on
 951 *	at the socket level. Everything here is generic.
 952 */
 953
 954int sock_setsockopt(struct socket *sock, int level, int optname,
 955		    sockptr_t optval, unsigned int optlen)
 956{
 957	struct so_timestamping timestamping;
 
 958	struct sock_txtime sk_txtime;
 959	struct sock *sk = sock->sk;
 960	int val;
 961	int valbool;
 962	struct linger ling;
 963	int ret = 0;
 964
 965	/*
 966	 *	Options without arguments
 967	 */
 968
 969	if (optname == SO_BINDTODEVICE)
 970		return sock_setbindtodevice(sk, optval, optlen);
 971
 972	if (optlen < sizeof(int))
 973		return -EINVAL;
 974
 975	if (copy_from_sockptr(&val, optval, sizeof(val)))
 976		return -EFAULT;
 977
 978	valbool = val ? 1 : 0;
 979
 980	lock_sock(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 981
 982	switch (optname) {
 983	case SO_DEBUG:
 984		if (val && !capable(CAP_NET_ADMIN))
 985			ret = -EACCES;
 986		else
 987			sock_valbool_flag(sk, SOCK_DBG, valbool);
 988		break;
 989	case SO_REUSEADDR:
 990		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 991		break;
 992	case SO_REUSEPORT:
 993		sk->sk_reuseport = valbool;
 994		break;
 995	case SO_TYPE:
 996	case SO_PROTOCOL:
 997	case SO_DOMAIN:
 998	case SO_ERROR:
 999		ret = -ENOPROTOOPT;
1000		break;
1001	case SO_DONTROUTE:
1002		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1003		sk_dst_reset(sk);
1004		break;
1005	case SO_BROADCAST:
1006		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1007		break;
1008	case SO_SNDBUF:
1009		/* Don't error on this BSD doesn't and if you think
1010		 * about it this is right. Otherwise apps have to
1011		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1012		 * are treated in BSD as hints
1013		 */
1014		val = min_t(u32, val, sysctl_wmem_max);
1015set_sndbuf:
1016		/* Ensure val * 2 fits into an int, to prevent max_t()
1017		 * from treating it as a negative value.
1018		 */
1019		val = min_t(int, val, INT_MAX / 2);
1020		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1021		WRITE_ONCE(sk->sk_sndbuf,
1022			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1023		/* Wake up sending tasks if we upped the value. */
1024		sk->sk_write_space(sk);
1025		break;
1026
1027	case SO_SNDBUFFORCE:
1028		if (!capable(CAP_NET_ADMIN)) {
1029			ret = -EPERM;
1030			break;
1031		}
1032
1033		/* No negative values (to prevent underflow, as val will be
1034		 * multiplied by 2).
1035		 */
1036		if (val < 0)
1037			val = 0;
1038		goto set_sndbuf;
1039
1040	case SO_RCVBUF:
1041		/* Don't error on this BSD doesn't and if you think
1042		 * about it this is right. Otherwise apps have to
1043		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1044		 * are treated in BSD as hints
1045		 */
1046		__sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
1047		break;
1048
1049	case SO_RCVBUFFORCE:
1050		if (!capable(CAP_NET_ADMIN)) {
1051			ret = -EPERM;
1052			break;
1053		}
1054
1055		/* No negative values (to prevent underflow, as val will be
1056		 * multiplied by 2).
1057		 */
1058		__sock_set_rcvbuf(sk, max(val, 0));
1059		break;
1060
1061	case SO_KEEPALIVE:
1062		if (sk->sk_prot->keepalive)
1063			sk->sk_prot->keepalive(sk, valbool);
1064		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1065		break;
1066
1067	case SO_OOBINLINE:
1068		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1069		break;
1070
1071	case SO_NO_CHECK:
1072		sk->sk_no_check_tx = valbool;
1073		break;
1074
1075	case SO_PRIORITY:
1076		if ((val >= 0 && val <= 6) ||
1077		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1078			sk->sk_priority = val;
1079		else
1080			ret = -EPERM;
1081		break;
1082
1083	case SO_LINGER:
1084		if (optlen < sizeof(ling)) {
1085			ret = -EINVAL;	/* 1003.1g */
1086			break;
1087		}
1088		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1089			ret = -EFAULT;
1090			break;
1091		}
1092		if (!ling.l_onoff)
1093			sock_reset_flag(sk, SOCK_LINGER);
1094		else {
1095#if (BITS_PER_LONG == 32)
1096			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1097				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 
1098			else
1099#endif
1100				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1101			sock_set_flag(sk, SOCK_LINGER);
1102		}
1103		break;
1104
1105	case SO_BSDCOMPAT:
1106		break;
1107
1108	case SO_PASSCRED:
1109		if (valbool)
1110			set_bit(SOCK_PASSCRED, &sock->flags);
1111		else
1112			clear_bit(SOCK_PASSCRED, &sock->flags);
1113		break;
1114
1115	case SO_TIMESTAMP_OLD:
1116	case SO_TIMESTAMP_NEW:
1117	case SO_TIMESTAMPNS_OLD:
1118	case SO_TIMESTAMPNS_NEW:
1119		sock_set_timestamp(sk, optname, valbool);
1120		break;
1121
1122	case SO_TIMESTAMPING_NEW:
1123	case SO_TIMESTAMPING_OLD:
1124		if (optlen == sizeof(timestamping)) {
1125			if (copy_from_sockptr(&timestamping, optval,
1126					      sizeof(timestamping))) {
1127				ret = -EFAULT;
1128				break;
1129			}
1130		} else {
1131			memset(&timestamping, 0, sizeof(timestamping));
1132			timestamping.flags = val;
1133		}
1134		ret = sock_set_timestamping(sk, optname, timestamping);
1135		break;
1136
1137	case SO_RCVLOWAT:
 
 
 
1138		if (val < 0)
1139			val = INT_MAX;
1140		if (sock->ops->set_rcvlowat)
1141			ret = sock->ops->set_rcvlowat(sk, val);
 
 
1142		else
1143			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1144		break;
1145
1146	case SO_RCVTIMEO_OLD:
1147	case SO_RCVTIMEO_NEW:
1148		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1149				       optlen, optname == SO_RCVTIMEO_OLD);
1150		break;
1151
1152	case SO_SNDTIMEO_OLD:
1153	case SO_SNDTIMEO_NEW:
1154		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1155				       optlen, optname == SO_SNDTIMEO_OLD);
1156		break;
1157
1158	case SO_ATTACH_FILTER: {
1159		struct sock_fprog fprog;
1160
1161		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1162		if (!ret)
1163			ret = sk_attach_filter(&fprog, sk);
1164		break;
1165	}
1166	case SO_ATTACH_BPF:
1167		ret = -EINVAL;
1168		if (optlen == sizeof(u32)) {
1169			u32 ufd;
1170
1171			ret = -EFAULT;
1172			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1173				break;
1174
1175			ret = sk_attach_bpf(ufd, sk);
1176		}
1177		break;
1178
1179	case SO_ATTACH_REUSEPORT_CBPF: {
1180		struct sock_fprog fprog;
1181
1182		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1183		if (!ret)
1184			ret = sk_reuseport_attach_filter(&fprog, sk);
1185		break;
1186	}
1187	case SO_ATTACH_REUSEPORT_EBPF:
1188		ret = -EINVAL;
1189		if (optlen == sizeof(u32)) {
1190			u32 ufd;
1191
1192			ret = -EFAULT;
1193			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1194				break;
1195
1196			ret = sk_reuseport_attach_bpf(ufd, sk);
1197		}
1198		break;
1199
1200	case SO_DETACH_REUSEPORT_BPF:
1201		ret = reuseport_detach_prog(sk);
1202		break;
1203
1204	case SO_DETACH_FILTER:
1205		ret = sk_detach_filter(sk);
1206		break;
1207
1208	case SO_LOCK_FILTER:
1209		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1210			ret = -EPERM;
1211		else
1212			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1213		break;
1214
1215	case SO_PASSSEC:
1216		if (valbool)
1217			set_bit(SOCK_PASSSEC, &sock->flags);
1218		else
1219			clear_bit(SOCK_PASSSEC, &sock->flags);
1220		break;
1221	case SO_MARK:
1222		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
 
1223			ret = -EPERM;
1224			break;
1225		}
1226
1227		__sock_set_mark(sk, val);
1228		break;
 
 
 
1229
1230	case SO_RXQ_OVFL:
1231		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1232		break;
1233
1234	case SO_WIFI_STATUS:
1235		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1236		break;
1237
1238	case SO_PEEK_OFF:
1239		if (sock->ops->set_peek_off)
1240			ret = sock->ops->set_peek_off(sk, val);
1241		else
1242			ret = -EOPNOTSUPP;
1243		break;
1244
1245	case SO_NOFCS:
1246		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1247		break;
1248
1249	case SO_SELECT_ERR_QUEUE:
1250		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1251		break;
1252
1253#ifdef CONFIG_NET_RX_BUSY_POLL
1254	case SO_BUSY_POLL:
1255		/* allow unprivileged users to decrease the value */
1256		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1257			ret = -EPERM;
1258		else {
1259			if (val < 0)
1260				ret = -EINVAL;
1261			else
1262				WRITE_ONCE(sk->sk_ll_usec, val);
1263		}
1264		break;
1265	case SO_PREFER_BUSY_POLL:
1266		if (valbool && !capable(CAP_NET_ADMIN))
1267			ret = -EPERM;
1268		else
1269			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1270		break;
1271	case SO_BUSY_POLL_BUDGET:
1272		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1273			ret = -EPERM;
1274		} else {
1275			if (val < 0 || val > U16_MAX)
1276				ret = -EINVAL;
1277			else
1278				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1279		}
1280		break;
1281#endif
1282
1283	case SO_MAX_PACING_RATE:
1284		{
1285		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1286
1287		if (sizeof(ulval) != sizeof(val) &&
1288		    optlen >= sizeof(ulval) &&
1289		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1290			ret = -EFAULT;
1291			break;
1292		}
1293		if (ulval != ~0UL)
1294			cmpxchg(&sk->sk_pacing_status,
1295				SK_PACING_NONE,
1296				SK_PACING_NEEDED);
1297		sk->sk_max_pacing_rate = ulval;
1298		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1299		break;
1300		}
1301	case SO_INCOMING_CPU:
1302		WRITE_ONCE(sk->sk_incoming_cpu, val);
1303		break;
1304
1305	case SO_CNX_ADVICE:
1306		if (val == 1)
1307			dst_negative_advice(sk);
1308		break;
1309
1310	case SO_ZEROCOPY:
1311		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1312			if (!((sk->sk_type == SOCK_STREAM &&
1313			       sk->sk_protocol == IPPROTO_TCP) ||
1314			      (sk->sk_type == SOCK_DGRAM &&
1315			       sk->sk_protocol == IPPROTO_UDP)))
1316				ret = -ENOTSUPP;
1317		} else if (sk->sk_family != PF_RDS) {
1318			ret = -ENOTSUPP;
1319		}
1320		if (!ret) {
1321			if (val < 0 || val > 1)
1322				ret = -EINVAL;
1323			else
1324				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1325		}
1326		break;
1327
1328	case SO_TXTIME:
1329		if (optlen != sizeof(struct sock_txtime)) {
1330			ret = -EINVAL;
1331			break;
1332		} else if (copy_from_sockptr(&sk_txtime, optval,
1333			   sizeof(struct sock_txtime))) {
1334			ret = -EFAULT;
1335			break;
1336		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1337			ret = -EINVAL;
1338			break;
1339		}
1340		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1341		 * scheduler has enough safe guards.
1342		 */
1343		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1344		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1345			ret = -EPERM;
1346			break;
1347		}
1348		sock_valbool_flag(sk, SOCK_TXTIME, true);
1349		sk->sk_clockid = sk_txtime.clockid;
1350		sk->sk_txtime_deadline_mode =
1351			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1352		sk->sk_txtime_report_errors =
1353			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1354		break;
1355
1356	case SO_BINDTOIFINDEX:
1357		ret = sock_bindtoindex_locked(sk, val);
1358		break;
1359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1360	default:
1361		ret = -ENOPROTOOPT;
1362		break;
1363	}
1364	release_sock(sk);
1365	return ret;
1366}
 
 
 
 
 
 
 
1367EXPORT_SYMBOL(sock_setsockopt);
1368
1369static const struct cred *sk_get_peer_cred(struct sock *sk)
1370{
1371	const struct cred *cred;
1372
1373	spin_lock(&sk->sk_peer_lock);
1374	cred = get_cred(sk->sk_peer_cred);
1375	spin_unlock(&sk->sk_peer_lock);
1376
1377	return cred;
1378}
1379
1380static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1381			  struct ucred *ucred)
1382{
1383	ucred->pid = pid_vnr(pid);
1384	ucred->uid = ucred->gid = -1;
1385	if (cred) {
1386		struct user_namespace *current_ns = current_user_ns();
1387
1388		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1389		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1390	}
1391}
1392
1393static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1394{
1395	struct user_namespace *user_ns = current_user_ns();
1396	int i;
1397
1398	for (i = 0; i < src->ngroups; i++)
1399		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
 
 
1400			return -EFAULT;
 
1401
1402	return 0;
1403}
1404
1405int sock_getsockopt(struct socket *sock, int level, int optname,
1406		    char __user *optval, int __user *optlen)
1407{
1408	struct sock *sk = sock->sk;
1409
1410	union {
1411		int val;
1412		u64 val64;
1413		unsigned long ulval;
1414		struct linger ling;
1415		struct old_timeval32 tm32;
1416		struct __kernel_old_timeval tm;
1417		struct  __kernel_sock_timeval stm;
1418		struct sock_txtime txtime;
1419		struct so_timestamping timestamping;
1420	} v;
1421
1422	int lv = sizeof(int);
1423	int len;
1424
1425	if (get_user(len, optlen))
1426		return -EFAULT;
1427	if (len < 0)
1428		return -EINVAL;
1429
1430	memset(&v, 0, sizeof(v));
1431
1432	switch (optname) {
1433	case SO_DEBUG:
1434		v.val = sock_flag(sk, SOCK_DBG);
1435		break;
1436
1437	case SO_DONTROUTE:
1438		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1439		break;
1440
1441	case SO_BROADCAST:
1442		v.val = sock_flag(sk, SOCK_BROADCAST);
1443		break;
1444
1445	case SO_SNDBUF:
1446		v.val = sk->sk_sndbuf;
1447		break;
1448
1449	case SO_RCVBUF:
1450		v.val = sk->sk_rcvbuf;
1451		break;
1452
1453	case SO_REUSEADDR:
1454		v.val = sk->sk_reuse;
1455		break;
1456
1457	case SO_REUSEPORT:
1458		v.val = sk->sk_reuseport;
1459		break;
1460
1461	case SO_KEEPALIVE:
1462		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1463		break;
1464
1465	case SO_TYPE:
1466		v.val = sk->sk_type;
1467		break;
1468
1469	case SO_PROTOCOL:
1470		v.val = sk->sk_protocol;
1471		break;
1472
1473	case SO_DOMAIN:
1474		v.val = sk->sk_family;
1475		break;
1476
1477	case SO_ERROR:
1478		v.val = -sock_error(sk);
1479		if (v.val == 0)
1480			v.val = xchg(&sk->sk_err_soft, 0);
1481		break;
1482
1483	case SO_OOBINLINE:
1484		v.val = sock_flag(sk, SOCK_URGINLINE);
1485		break;
1486
1487	case SO_NO_CHECK:
1488		v.val = sk->sk_no_check_tx;
1489		break;
1490
1491	case SO_PRIORITY:
1492		v.val = sk->sk_priority;
1493		break;
1494
1495	case SO_LINGER:
1496		lv		= sizeof(v.ling);
1497		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1498		v.ling.l_linger	= sk->sk_lingertime / HZ;
1499		break;
1500
1501	case SO_BSDCOMPAT:
1502		break;
1503
1504	case SO_TIMESTAMP_OLD:
1505		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1506				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1507				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1508		break;
1509
1510	case SO_TIMESTAMPNS_OLD:
1511		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1512		break;
1513
1514	case SO_TIMESTAMP_NEW:
1515		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1516		break;
1517
1518	case SO_TIMESTAMPNS_NEW:
1519		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1520		break;
1521
1522	case SO_TIMESTAMPING_OLD:
 
1523		lv = sizeof(v.timestamping);
1524		v.timestamping.flags = sk->sk_tsflags;
1525		v.timestamping.bind_phc = sk->sk_bind_phc;
 
 
 
 
 
 
1526		break;
1527
1528	case SO_RCVTIMEO_OLD:
1529	case SO_RCVTIMEO_NEW:
1530		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
 
1531		break;
1532
1533	case SO_SNDTIMEO_OLD:
1534	case SO_SNDTIMEO_NEW:
1535		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
 
1536		break;
1537
1538	case SO_RCVLOWAT:
1539		v.val = sk->sk_rcvlowat;
1540		break;
1541
1542	case SO_SNDLOWAT:
1543		v.val = 1;
1544		break;
1545
1546	case SO_PASSCRED:
1547		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1548		break;
1549
 
 
 
 
1550	case SO_PEERCRED:
1551	{
1552		struct ucred peercred;
1553		if (len > sizeof(peercred))
1554			len = sizeof(peercred);
1555
1556		spin_lock(&sk->sk_peer_lock);
1557		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1558		spin_unlock(&sk->sk_peer_lock);
1559
1560		if (copy_to_user(optval, &peercred, len))
1561			return -EFAULT;
1562		goto lenout;
1563	}
1564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565	case SO_PEERGROUPS:
1566	{
1567		const struct cred *cred;
1568		int ret, n;
1569
1570		cred = sk_get_peer_cred(sk);
1571		if (!cred)
1572			return -ENODATA;
1573
1574		n = cred->group_info->ngroups;
1575		if (len < n * sizeof(gid_t)) {
1576			len = n * sizeof(gid_t);
1577			put_cred(cred);
1578			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1579		}
1580		len = n * sizeof(gid_t);
1581
1582		ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1583		put_cred(cred);
1584		if (ret)
1585			return ret;
1586		goto lenout;
1587	}
1588
1589	case SO_PEERNAME:
1590	{
1591		char address[128];
1592
1593		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1594		if (lv < 0)
1595			return -ENOTCONN;
1596		if (lv < len)
1597			return -EINVAL;
1598		if (copy_to_user(optval, address, len))
1599			return -EFAULT;
1600		goto lenout;
1601	}
1602
1603	/* Dubious BSD thing... Probably nobody even uses it, but
1604	 * the UNIX standard wants it for whatever reason... -DaveM
1605	 */
1606	case SO_ACCEPTCONN:
1607		v.val = sk->sk_state == TCP_LISTEN;
1608		break;
1609
1610	case SO_PASSSEC:
1611		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1612		break;
1613
1614	case SO_PEERSEC:
1615		return security_socket_getpeersec_stream(sock, optval, optlen, len);
 
1616
1617	case SO_MARK:
1618		v.val = sk->sk_mark;
 
 
 
 
1619		break;
1620
1621	case SO_RXQ_OVFL:
1622		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1623		break;
1624
1625	case SO_WIFI_STATUS:
1626		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1627		break;
1628
1629	case SO_PEEK_OFF:
1630		if (!sock->ops->set_peek_off)
1631			return -EOPNOTSUPP;
1632
1633		v.val = sk->sk_peek_off;
1634		break;
1635	case SO_NOFCS:
1636		v.val = sock_flag(sk, SOCK_NOFCS);
1637		break;
1638
1639	case SO_BINDTODEVICE:
1640		return sock_getbindtodevice(sk, optval, optlen, len);
1641
1642	case SO_GET_FILTER:
1643		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1644		if (len < 0)
1645			return len;
1646
1647		goto lenout;
1648
1649	case SO_LOCK_FILTER:
1650		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1651		break;
1652
1653	case SO_BPF_EXTENSIONS:
1654		v.val = bpf_tell_extensions();
1655		break;
1656
1657	case SO_SELECT_ERR_QUEUE:
1658		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1659		break;
1660
1661#ifdef CONFIG_NET_RX_BUSY_POLL
1662	case SO_BUSY_POLL:
1663		v.val = sk->sk_ll_usec;
1664		break;
1665	case SO_PREFER_BUSY_POLL:
1666		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1667		break;
1668#endif
1669
1670	case SO_MAX_PACING_RATE:
 
1671		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1672			lv = sizeof(v.ulval);
1673			v.ulval = sk->sk_max_pacing_rate;
1674		} else {
1675			/* 32bit version */
1676			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
 
1677		}
1678		break;
1679
1680	case SO_INCOMING_CPU:
1681		v.val = READ_ONCE(sk->sk_incoming_cpu);
1682		break;
1683
1684	case SO_MEMINFO:
1685	{
1686		u32 meminfo[SK_MEMINFO_VARS];
1687
1688		sk_get_meminfo(sk, meminfo);
1689
1690		len = min_t(unsigned int, len, sizeof(meminfo));
1691		if (copy_to_user(optval, &meminfo, len))
1692			return -EFAULT;
1693
1694		goto lenout;
1695	}
1696
1697#ifdef CONFIG_NET_RX_BUSY_POLL
1698	case SO_INCOMING_NAPI_ID:
1699		v.val = READ_ONCE(sk->sk_napi_id);
1700
1701		/* aggregate non-NAPI IDs down to 0 */
1702		if (v.val < MIN_NAPI_ID)
1703			v.val = 0;
1704
1705		break;
1706#endif
1707
1708	case SO_COOKIE:
1709		lv = sizeof(u64);
1710		if (len < lv)
1711			return -EINVAL;
1712		v.val64 = sock_gen_cookie(sk);
1713		break;
1714
1715	case SO_ZEROCOPY:
1716		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1717		break;
1718
1719	case SO_TXTIME:
1720		lv = sizeof(v.txtime);
1721		v.txtime.clockid = sk->sk_clockid;
1722		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1723				  SOF_TXTIME_DEADLINE_MODE : 0;
1724		v.txtime.flags |= sk->sk_txtime_report_errors ?
1725				  SOF_TXTIME_REPORT_ERRORS : 0;
1726		break;
1727
1728	case SO_BINDTOIFINDEX:
1729		v.val = sk->sk_bound_dev_if;
1730		break;
1731
1732	case SO_NETNS_COOKIE:
1733		lv = sizeof(u64);
1734		if (len != lv)
1735			return -EINVAL;
1736		v.val64 = sock_net(sk)->net_cookie;
1737		break;
1738
 
 
 
 
 
 
 
 
 
 
 
 
 
1739	default:
1740		/* We implement the SO_SNDLOWAT etc to not be settable
1741		 * (1003.1g 7).
1742		 */
1743		return -ENOPROTOOPT;
1744	}
1745
1746	if (len > lv)
1747		len = lv;
1748	if (copy_to_user(optval, &v, len))
1749		return -EFAULT;
1750lenout:
1751	if (put_user(len, optlen))
1752		return -EFAULT;
1753	return 0;
1754}
1755
1756/*
1757 * Initialize an sk_lock.
1758 *
1759 * (We also register the sk_lock with the lock validator.)
1760 */
1761static inline void sock_lock_init(struct sock *sk)
1762{
1763	if (sk->sk_kern_sock)
1764		sock_lock_init_class_and_name(
1765			sk,
1766			af_family_kern_slock_key_strings[sk->sk_family],
1767			af_family_kern_slock_keys + sk->sk_family,
1768			af_family_kern_key_strings[sk->sk_family],
1769			af_family_kern_keys + sk->sk_family);
1770	else
1771		sock_lock_init_class_and_name(
1772			sk,
1773			af_family_slock_key_strings[sk->sk_family],
1774			af_family_slock_keys + sk->sk_family,
1775			af_family_key_strings[sk->sk_family],
1776			af_family_keys + sk->sk_family);
1777}
1778
1779/*
1780 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1781 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1782 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1783 */
1784static void sock_copy(struct sock *nsk, const struct sock *osk)
1785{
1786	const struct proto *prot = READ_ONCE(osk->sk_prot);
1787#ifdef CONFIG_SECURITY_NETWORK
1788	void *sptr = nsk->sk_security;
1789#endif
1790
1791	/* If we move sk_tx_queue_mapping out of the private section,
1792	 * we must check if sk_tx_queue_clear() is called after
1793	 * sock_copy() in sk_clone_lock().
1794	 */
1795	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1796		     offsetof(struct sock, sk_dontcopy_begin) ||
1797		     offsetof(struct sock, sk_tx_queue_mapping) >=
1798		     offsetof(struct sock, sk_dontcopy_end));
1799
1800	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1801
1802	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1803	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
 
1804
1805#ifdef CONFIG_SECURITY_NETWORK
1806	nsk->sk_security = sptr;
1807	security_sk_clone(osk, nsk);
1808#endif
1809}
1810
1811static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1812		int family)
1813{
1814	struct sock *sk;
1815	struct kmem_cache *slab;
1816
1817	slab = prot->slab;
1818	if (slab != NULL) {
1819		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1820		if (!sk)
1821			return sk;
1822		if (want_init_on_alloc(priority))
1823			sk_prot_clear_nulls(sk, prot->obj_size);
1824	} else
1825		sk = kmalloc(prot->obj_size, priority);
1826
1827	if (sk != NULL) {
1828		if (security_sk_alloc(sk, family, priority))
1829			goto out_free;
1830
1831		if (!try_module_get(prot->owner))
1832			goto out_free_sec;
1833	}
1834
1835	return sk;
1836
1837out_free_sec:
1838	security_sk_free(sk);
1839out_free:
1840	if (slab != NULL)
1841		kmem_cache_free(slab, sk);
1842	else
1843		kfree(sk);
1844	return NULL;
1845}
1846
1847static void sk_prot_free(struct proto *prot, struct sock *sk)
1848{
1849	struct kmem_cache *slab;
1850	struct module *owner;
1851
1852	owner = prot->owner;
1853	slab = prot->slab;
1854
1855	cgroup_sk_free(&sk->sk_cgrp_data);
1856	mem_cgroup_sk_free(sk);
1857	security_sk_free(sk);
1858	if (slab != NULL)
1859		kmem_cache_free(slab, sk);
1860	else
1861		kfree(sk);
1862	module_put(owner);
1863}
1864
1865/**
1866 *	sk_alloc - All socket objects are allocated here
1867 *	@net: the applicable net namespace
1868 *	@family: protocol family
1869 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1870 *	@prot: struct proto associated with this new sock instance
1871 *	@kern: is this to be a kernel socket?
1872 */
1873struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1874		      struct proto *prot, int kern)
1875{
1876	struct sock *sk;
1877
1878	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1879	if (sk) {
1880		sk->sk_family = family;
1881		/*
1882		 * See comment in struct sock definition to understand
1883		 * why we need sk_prot_creator -acme
1884		 */
1885		sk->sk_prot = sk->sk_prot_creator = prot;
1886		sk->sk_kern_sock = kern;
1887		sock_lock_init(sk);
1888		sk->sk_net_refcnt = kern ? 0 : 1;
1889		if (likely(sk->sk_net_refcnt)) {
1890			get_net(net);
1891			sock_inuse_add(net, 1);
 
 
 
1892		}
1893
1894		sock_net_set(sk, net);
1895		refcount_set(&sk->sk_wmem_alloc, 1);
1896
1897		mem_cgroup_sk_alloc(sk);
1898		cgroup_sk_alloc(&sk->sk_cgrp_data);
1899		sock_update_classid(&sk->sk_cgrp_data);
1900		sock_update_netprioidx(&sk->sk_cgrp_data);
1901		sk_tx_queue_clear(sk);
1902	}
1903
1904	return sk;
1905}
1906EXPORT_SYMBOL(sk_alloc);
1907
1908/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1909 * grace period. This is the case for UDP sockets and TCP listeners.
1910 */
1911static void __sk_destruct(struct rcu_head *head)
1912{
1913	struct sock *sk = container_of(head, struct sock, sk_rcu);
1914	struct sk_filter *filter;
1915
1916	if (sk->sk_destruct)
1917		sk->sk_destruct(sk);
1918
1919	filter = rcu_dereference_check(sk->sk_filter,
1920				       refcount_read(&sk->sk_wmem_alloc) == 0);
1921	if (filter) {
1922		sk_filter_uncharge(sk, filter);
1923		RCU_INIT_POINTER(sk->sk_filter, NULL);
1924	}
1925
1926	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1927
1928#ifdef CONFIG_BPF_SYSCALL
1929	bpf_sk_storage_free(sk);
1930#endif
1931
1932	if (atomic_read(&sk->sk_omem_alloc))
1933		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1934			 __func__, atomic_read(&sk->sk_omem_alloc));
1935
1936	if (sk->sk_frag.page) {
1937		put_page(sk->sk_frag.page);
1938		sk->sk_frag.page = NULL;
1939	}
1940
1941	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1942	put_cred(sk->sk_peer_cred);
1943	put_pid(sk->sk_peer_pid);
1944
1945	if (likely(sk->sk_net_refcnt))
1946		put_net(sock_net(sk));
 
 
 
1947	sk_prot_free(sk->sk_prot_creator, sk);
1948}
1949
1950void sk_destruct(struct sock *sk)
1951{
1952	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1953
1954	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1955		reuseport_detach_sock(sk);
1956		use_call_rcu = true;
1957	}
1958
1959	if (use_call_rcu)
1960		call_rcu(&sk->sk_rcu, __sk_destruct);
1961	else
1962		__sk_destruct(&sk->sk_rcu);
1963}
1964
1965static void __sk_free(struct sock *sk)
1966{
1967	if (likely(sk->sk_net_refcnt))
1968		sock_inuse_add(sock_net(sk), -1);
1969
1970	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1971		sock_diag_broadcast_destroy(sk);
1972	else
1973		sk_destruct(sk);
1974}
1975
1976void sk_free(struct sock *sk)
1977{
1978	/*
1979	 * We subtract one from sk_wmem_alloc and can know if
1980	 * some packets are still in some tx queue.
1981	 * If not null, sock_wfree() will call __sk_free(sk) later
1982	 */
1983	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1984		__sk_free(sk);
1985}
1986EXPORT_SYMBOL(sk_free);
1987
1988static void sk_init_common(struct sock *sk)
1989{
1990	skb_queue_head_init(&sk->sk_receive_queue);
1991	skb_queue_head_init(&sk->sk_write_queue);
1992	skb_queue_head_init(&sk->sk_error_queue);
1993
1994	rwlock_init(&sk->sk_callback_lock);
1995	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1996			af_rlock_keys + sk->sk_family,
1997			af_family_rlock_key_strings[sk->sk_family]);
1998	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1999			af_wlock_keys + sk->sk_family,
2000			af_family_wlock_key_strings[sk->sk_family]);
2001	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2002			af_elock_keys + sk->sk_family,
2003			af_family_elock_key_strings[sk->sk_family]);
2004	lockdep_set_class_and_name(&sk->sk_callback_lock,
2005			af_callback_keys + sk->sk_family,
2006			af_family_clock_key_strings[sk->sk_family]);
2007}
2008
2009/**
2010 *	sk_clone_lock - clone a socket, and lock its clone
2011 *	@sk: the socket to clone
2012 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2013 *
2014 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2015 */
2016struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2017{
2018	struct proto *prot = READ_ONCE(sk->sk_prot);
2019	struct sk_filter *filter;
2020	bool is_charged = true;
2021	struct sock *newsk;
2022
2023	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2024	if (!newsk)
2025		goto out;
2026
2027	sock_copy(newsk, sk);
2028
2029	newsk->sk_prot_creator = prot;
2030
2031	/* SANITY */
2032	if (likely(newsk->sk_net_refcnt))
2033		get_net(sock_net(newsk));
 
 
 
 
 
 
 
 
 
 
2034	sk_node_init(&newsk->sk_node);
2035	sock_lock_init(newsk);
2036	bh_lock_sock(newsk);
2037	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2038	newsk->sk_backlog.len = 0;
2039
2040	atomic_set(&newsk->sk_rmem_alloc, 0);
2041
2042	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2043	refcount_set(&newsk->sk_wmem_alloc, 1);
2044
2045	atomic_set(&newsk->sk_omem_alloc, 0);
2046	sk_init_common(newsk);
2047
2048	newsk->sk_dst_cache	= NULL;
2049	newsk->sk_dst_pending_confirm = 0;
2050	newsk->sk_wmem_queued	= 0;
2051	newsk->sk_forward_alloc = 0;
 
2052	atomic_set(&newsk->sk_drops, 0);
2053	newsk->sk_send_head	= NULL;
2054	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2055	atomic_set(&newsk->sk_zckey, 0);
2056
2057	sock_reset_flag(newsk, SOCK_DONE);
2058
2059	/* sk->sk_memcg will be populated at accept() time */
2060	newsk->sk_memcg = NULL;
2061
2062	cgroup_sk_clone(&newsk->sk_cgrp_data);
2063
2064	rcu_read_lock();
2065	filter = rcu_dereference(sk->sk_filter);
2066	if (filter != NULL)
2067		/* though it's an empty new sock, the charging may fail
2068		 * if sysctl_optmem_max was changed between creation of
2069		 * original socket and cloning
2070		 */
2071		is_charged = sk_filter_charge(newsk, filter);
2072	RCU_INIT_POINTER(newsk->sk_filter, filter);
2073	rcu_read_unlock();
2074
2075	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2076		/* We need to make sure that we don't uncharge the new
2077		 * socket if we couldn't charge it in the first place
2078		 * as otherwise we uncharge the parent's filter.
2079		 */
2080		if (!is_charged)
2081			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2082		sk_free_unlock_clone(newsk);
2083		newsk = NULL;
2084		goto out;
2085	}
2086	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2087
2088	if (bpf_sk_storage_clone(sk, newsk)) {
2089		sk_free_unlock_clone(newsk);
2090		newsk = NULL;
2091		goto out;
2092	}
2093
2094	/* Clear sk_user_data if parent had the pointer tagged
2095	 * as not suitable for copying when cloning.
2096	 */
2097	if (sk_user_data_is_nocopy(newsk))
2098		newsk->sk_user_data = NULL;
2099
2100	newsk->sk_err	   = 0;
2101	newsk->sk_err_soft = 0;
2102	newsk->sk_priority = 0;
2103	newsk->sk_incoming_cpu = raw_smp_processor_id();
2104	if (likely(newsk->sk_net_refcnt))
2105		sock_inuse_add(sock_net(newsk), 1);
2106
2107	/* Before updating sk_refcnt, we must commit prior changes to memory
2108	 * (Documentation/RCU/rculist_nulls.rst for details)
2109	 */
2110	smp_wmb();
2111	refcount_set(&newsk->sk_refcnt, 2);
2112
2113	/* Increment the counter in the same struct proto as the master
2114	 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2115	 * is the same as sk->sk_prot->socks, as this field was copied
2116	 * with memcpy).
2117	 *
2118	 * This _changes_ the previous behaviour, where
2119	 * tcp_create_openreq_child always was incrementing the
2120	 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2121	 * to be taken into account in all callers. -acme
2122	 */
2123	sk_refcnt_debug_inc(newsk);
2124	sk_set_socket(newsk, NULL);
2125	sk_tx_queue_clear(newsk);
2126	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2127
2128	if (newsk->sk_prot->sockets_allocated)
2129		sk_sockets_allocated_inc(newsk);
2130
2131	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2132		net_enable_timestamp();
2133out:
2134	return newsk;
2135}
2136EXPORT_SYMBOL_GPL(sk_clone_lock);
2137
2138void sk_free_unlock_clone(struct sock *sk)
2139{
2140	/* It is still raw copy of parent, so invalidate
2141	 * destructor and make plain sk_free() */
2142	sk->sk_destruct = NULL;
2143	bh_unlock_sock(sk);
2144	sk_free(sk);
2145}
2146EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2148void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2149{
2150	u32 max_segs = 1;
2151
2152	sk_dst_set(sk, dst);
2153	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
 
2154	if (sk->sk_route_caps & NETIF_F_GSO)
2155		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2156	sk->sk_route_caps &= ~sk->sk_route_nocaps;
 
2157	if (sk_can_gso(sk)) {
2158		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2159			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2160		} else {
2161			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2162			sk->sk_gso_max_size = dst->dev->gso_max_size;
2163			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
 
2164		}
2165	}
2166	sk->sk_gso_max_segs = max_segs;
 
2167}
2168EXPORT_SYMBOL_GPL(sk_setup_caps);
2169
2170/*
2171 *	Simple resource managers for sockets.
2172 */
2173
2174
2175/*
2176 * Write buffer destructor automatically called from kfree_skb.
2177 */
2178void sock_wfree(struct sk_buff *skb)
2179{
2180	struct sock *sk = skb->sk;
2181	unsigned int len = skb->truesize;
 
2182
2183	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
 
 
 
 
 
 
 
 
 
 
 
2184		/*
2185		 * Keep a reference on sk_wmem_alloc, this will be released
2186		 * after sk_write_space() call
2187		 */
2188		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2189		sk->sk_write_space(sk);
2190		len = 1;
2191	}
2192	/*
2193	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2194	 * could not do because of in-flight packets
2195	 */
2196	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2197		__sk_free(sk);
2198}
2199EXPORT_SYMBOL(sock_wfree);
2200
2201/* This variant of sock_wfree() is used by TCP,
2202 * since it sets SOCK_USE_WRITE_QUEUE.
2203 */
2204void __sock_wfree(struct sk_buff *skb)
2205{
2206	struct sock *sk = skb->sk;
2207
2208	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2209		__sk_free(sk);
2210}
2211
2212void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2213{
2214	skb_orphan(skb);
2215	skb->sk = sk;
2216#ifdef CONFIG_INET
2217	if (unlikely(!sk_fullsock(sk))) {
2218		skb->destructor = sock_edemux;
2219		sock_hold(sk);
2220		return;
2221	}
2222#endif
2223	skb->destructor = sock_wfree;
2224	skb_set_hash_from_sk(skb, sk);
2225	/*
2226	 * We used to take a refcount on sk, but following operation
2227	 * is enough to guarantee sk_free() wont free this sock until
2228	 * all in-flight packets are completed
2229	 */
2230	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2231}
2232EXPORT_SYMBOL(skb_set_owner_w);
2233
2234static bool can_skb_orphan_partial(const struct sk_buff *skb)
2235{
2236#ifdef CONFIG_TLS_DEVICE
2237	/* Drivers depend on in-order delivery for crypto offload,
2238	 * partial orphan breaks out-of-order-OK logic.
2239	 */
2240	if (skb->decrypted)
2241		return false;
2242#endif
2243	return (skb->destructor == sock_wfree ||
2244		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2245}
2246
2247/* This helper is used by netem, as it can hold packets in its
2248 * delay queue. We want to allow the owner socket to send more
2249 * packets, as if they were already TX completed by a typical driver.
2250 * But we also want to keep skb->sk set because some packet schedulers
2251 * rely on it (sch_fq for example).
2252 */
2253void skb_orphan_partial(struct sk_buff *skb)
2254{
2255	if (skb_is_tcp_pure_ack(skb))
2256		return;
2257
2258	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2259		return;
2260
2261	skb_orphan(skb);
2262}
2263EXPORT_SYMBOL(skb_orphan_partial);
2264
2265/*
2266 * Read buffer destructor automatically called from kfree_skb.
2267 */
2268void sock_rfree(struct sk_buff *skb)
2269{
2270	struct sock *sk = skb->sk;
2271	unsigned int len = skb->truesize;
2272
2273	atomic_sub(len, &sk->sk_rmem_alloc);
2274	sk_mem_uncharge(sk, len);
2275}
2276EXPORT_SYMBOL(sock_rfree);
2277
2278/*
2279 * Buffer destructor for skbs that are not used directly in read or write
2280 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2281 */
2282void sock_efree(struct sk_buff *skb)
2283{
2284	sock_put(skb->sk);
2285}
2286EXPORT_SYMBOL(sock_efree);
2287
2288/* Buffer destructor for prefetch/receive path where reference count may
2289 * not be held, e.g. for listen sockets.
2290 */
2291#ifdef CONFIG_INET
2292void sock_pfree(struct sk_buff *skb)
2293{
2294	if (sk_is_refcounted(skb->sk))
2295		sock_gen_put(skb->sk);
 
 
 
 
 
 
 
 
 
 
2296}
2297EXPORT_SYMBOL(sock_pfree);
2298#endif /* CONFIG_INET */
2299
2300kuid_t sock_i_uid(struct sock *sk)
2301{
2302	kuid_t uid;
2303
2304	read_lock_bh(&sk->sk_callback_lock);
2305	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2306	read_unlock_bh(&sk->sk_callback_lock);
2307	return uid;
2308}
2309EXPORT_SYMBOL(sock_i_uid);
2310
2311unsigned long sock_i_ino(struct sock *sk)
2312{
2313	unsigned long ino;
2314
2315	read_lock_bh(&sk->sk_callback_lock);
2316	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2317	read_unlock_bh(&sk->sk_callback_lock);
 
 
 
 
 
 
 
 
 
 
 
2318	return ino;
2319}
2320EXPORT_SYMBOL(sock_i_ino);
2321
2322/*
2323 * Allocate a skb from the socket's send buffer.
2324 */
2325struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2326			     gfp_t priority)
2327{
2328	if (force ||
2329	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2330		struct sk_buff *skb = alloc_skb(size, priority);
2331
2332		if (skb) {
2333			skb_set_owner_w(skb, sk);
2334			return skb;
2335		}
2336	}
2337	return NULL;
2338}
2339EXPORT_SYMBOL(sock_wmalloc);
2340
2341static void sock_ofree(struct sk_buff *skb)
2342{
2343	struct sock *sk = skb->sk;
2344
2345	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2346}
2347
2348struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2349			     gfp_t priority)
2350{
2351	struct sk_buff *skb;
2352
2353	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2354	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2355	    sysctl_optmem_max)
2356		return NULL;
2357
2358	skb = alloc_skb(size, priority);
2359	if (!skb)
2360		return NULL;
2361
2362	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2363	skb->sk = sk;
2364	skb->destructor = sock_ofree;
2365	return skb;
2366}
2367
2368/*
2369 * Allocate a memory block from the socket's option memory buffer.
2370 */
2371void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2372{
2373	if ((unsigned int)size <= sysctl_optmem_max &&
2374	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
 
 
2375		void *mem;
2376		/* First do the add, to avoid the race if kmalloc
2377		 * might sleep.
2378		 */
2379		atomic_add(size, &sk->sk_omem_alloc);
2380		mem = kmalloc(size, priority);
2381		if (mem)
2382			return mem;
2383		atomic_sub(size, &sk->sk_omem_alloc);
2384	}
2385	return NULL;
2386}
2387EXPORT_SYMBOL(sock_kmalloc);
2388
2389/* Free an option memory block. Note, we actually want the inline
2390 * here as this allows gcc to detect the nullify and fold away the
2391 * condition entirely.
2392 */
2393static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2394				  const bool nullify)
2395{
2396	if (WARN_ON_ONCE(!mem))
2397		return;
2398	if (nullify)
2399		kfree_sensitive(mem);
2400	else
2401		kfree(mem);
2402	atomic_sub(size, &sk->sk_omem_alloc);
2403}
2404
2405void sock_kfree_s(struct sock *sk, void *mem, int size)
2406{
2407	__sock_kfree_s(sk, mem, size, false);
2408}
2409EXPORT_SYMBOL(sock_kfree_s);
2410
2411void sock_kzfree_s(struct sock *sk, void *mem, int size)
2412{
2413	__sock_kfree_s(sk, mem, size, true);
2414}
2415EXPORT_SYMBOL(sock_kzfree_s);
2416
2417/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2418   I think, these locks should be removed for datagram sockets.
2419 */
2420static long sock_wait_for_wmem(struct sock *sk, long timeo)
2421{
2422	DEFINE_WAIT(wait);
2423
2424	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2425	for (;;) {
2426		if (!timeo)
2427			break;
2428		if (signal_pending(current))
2429			break;
2430		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2431		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2432		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2433			break;
2434		if (sk->sk_shutdown & SEND_SHUTDOWN)
2435			break;
2436		if (sk->sk_err)
2437			break;
2438		timeo = schedule_timeout(timeo);
2439	}
2440	finish_wait(sk_sleep(sk), &wait);
2441	return timeo;
2442}
2443
2444
2445/*
2446 *	Generic send/receive buffer handlers
2447 */
2448
2449struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2450				     unsigned long data_len, int noblock,
2451				     int *errcode, int max_page_order)
2452{
2453	struct sk_buff *skb;
2454	long timeo;
2455	int err;
2456
2457	timeo = sock_sndtimeo(sk, noblock);
2458	for (;;) {
2459		err = sock_error(sk);
2460		if (err != 0)
2461			goto failure;
2462
2463		err = -EPIPE;
2464		if (sk->sk_shutdown & SEND_SHUTDOWN)
2465			goto failure;
2466
2467		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2468			break;
2469
2470		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2471		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2472		err = -EAGAIN;
2473		if (!timeo)
2474			goto failure;
2475		if (signal_pending(current))
2476			goto interrupted;
2477		timeo = sock_wait_for_wmem(sk, timeo);
2478	}
2479	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2480				   errcode, sk->sk_allocation);
2481	if (skb)
2482		skb_set_owner_w(skb, sk);
2483	return skb;
2484
2485interrupted:
2486	err = sock_intr_errno(timeo);
2487failure:
2488	*errcode = err;
2489	return NULL;
2490}
2491EXPORT_SYMBOL(sock_alloc_send_pskb);
2492
2493struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2494				    int noblock, int *errcode)
2495{
2496	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2497}
2498EXPORT_SYMBOL(sock_alloc_send_skb);
2499
2500int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2501		     struct sockcm_cookie *sockc)
2502{
2503	u32 tsflags;
2504
2505	switch (cmsg->cmsg_type) {
2506	case SO_MARK:
2507		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 
2508			return -EPERM;
2509		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2510			return -EINVAL;
2511		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2512		break;
2513	case SO_TIMESTAMPING_OLD:
 
2514		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2515			return -EINVAL;
2516
2517		tsflags = *(u32 *)CMSG_DATA(cmsg);
2518		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2519			return -EINVAL;
2520
2521		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2522		sockc->tsflags |= tsflags;
2523		break;
2524	case SCM_TXTIME:
2525		if (!sock_flag(sk, SOCK_TXTIME))
2526			return -EINVAL;
2527		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2528			return -EINVAL;
2529		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2530		break;
2531	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2532	case SCM_RIGHTS:
2533	case SCM_CREDENTIALS:
2534		break;
2535	default:
2536		return -EINVAL;
2537	}
2538	return 0;
2539}
2540EXPORT_SYMBOL(__sock_cmsg_send);
2541
2542int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2543		   struct sockcm_cookie *sockc)
2544{
2545	struct cmsghdr *cmsg;
2546	int ret;
2547
2548	for_each_cmsghdr(cmsg, msg) {
2549		if (!CMSG_OK(msg, cmsg))
2550			return -EINVAL;
2551		if (cmsg->cmsg_level != SOL_SOCKET)
2552			continue;
2553		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2554		if (ret)
2555			return ret;
2556	}
2557	return 0;
2558}
2559EXPORT_SYMBOL(sock_cmsg_send);
2560
2561static void sk_enter_memory_pressure(struct sock *sk)
2562{
2563	if (!sk->sk_prot->enter_memory_pressure)
2564		return;
2565
2566	sk->sk_prot->enter_memory_pressure(sk);
2567}
2568
2569static void sk_leave_memory_pressure(struct sock *sk)
2570{
2571	if (sk->sk_prot->leave_memory_pressure) {
2572		sk->sk_prot->leave_memory_pressure(sk);
 
2573	} else {
2574		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2575
2576		if (memory_pressure && READ_ONCE(*memory_pressure))
2577			WRITE_ONCE(*memory_pressure, 0);
2578	}
2579}
2580
2581#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2582DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2583
2584/**
2585 * skb_page_frag_refill - check that a page_frag contains enough room
2586 * @sz: minimum size of the fragment we want to get
2587 * @pfrag: pointer to page_frag
2588 * @gfp: priority for memory allocation
2589 *
2590 * Note: While this allocator tries to use high order pages, there is
2591 * no guarantee that allocations succeed. Therefore, @sz MUST be
2592 * less or equal than PAGE_SIZE.
2593 */
2594bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2595{
2596	if (pfrag->page) {
2597		if (page_ref_count(pfrag->page) == 1) {
2598			pfrag->offset = 0;
2599			return true;
2600		}
2601		if (pfrag->offset + sz <= pfrag->size)
2602			return true;
2603		put_page(pfrag->page);
2604	}
2605
2606	pfrag->offset = 0;
2607	if (SKB_FRAG_PAGE_ORDER &&
2608	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2609		/* Avoid direct reclaim but allow kswapd to wake */
2610		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2611					  __GFP_COMP | __GFP_NOWARN |
2612					  __GFP_NORETRY,
2613					  SKB_FRAG_PAGE_ORDER);
2614		if (likely(pfrag->page)) {
2615			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2616			return true;
2617		}
2618	}
2619	pfrag->page = alloc_page(gfp);
2620	if (likely(pfrag->page)) {
2621		pfrag->size = PAGE_SIZE;
2622		return true;
2623	}
2624	return false;
2625}
2626EXPORT_SYMBOL(skb_page_frag_refill);
2627
2628bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2629{
2630	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2631		return true;
2632
2633	sk_enter_memory_pressure(sk);
2634	sk_stream_moderate_sndbuf(sk);
2635	return false;
2636}
2637EXPORT_SYMBOL(sk_page_frag_refill);
2638
2639void __lock_sock(struct sock *sk)
2640	__releases(&sk->sk_lock.slock)
2641	__acquires(&sk->sk_lock.slock)
2642{
2643	DEFINE_WAIT(wait);
2644
2645	for (;;) {
2646		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2647					TASK_UNINTERRUPTIBLE);
2648		spin_unlock_bh(&sk->sk_lock.slock);
2649		schedule();
2650		spin_lock_bh(&sk->sk_lock.slock);
2651		if (!sock_owned_by_user(sk))
2652			break;
2653	}
2654	finish_wait(&sk->sk_lock.wq, &wait);
2655}
2656
2657void __release_sock(struct sock *sk)
2658	__releases(&sk->sk_lock.slock)
2659	__acquires(&sk->sk_lock.slock)
2660{
2661	struct sk_buff *skb, *next;
2662
2663	while ((skb = sk->sk_backlog.head) != NULL) {
2664		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2665
2666		spin_unlock_bh(&sk->sk_lock.slock);
2667
2668		do {
2669			next = skb->next;
2670			prefetch(next);
2671			WARN_ON_ONCE(skb_dst_is_noref(skb));
2672			skb_mark_not_on_list(skb);
2673			sk_backlog_rcv(sk, skb);
2674
2675			cond_resched();
2676
2677			skb = next;
2678		} while (skb != NULL);
2679
2680		spin_lock_bh(&sk->sk_lock.slock);
2681	}
2682
2683	/*
2684	 * Doing the zeroing here guarantee we can not loop forever
2685	 * while a wild producer attempts to flood us.
2686	 */
2687	sk->sk_backlog.len = 0;
2688}
2689
2690void __sk_flush_backlog(struct sock *sk)
2691{
2692	spin_lock_bh(&sk->sk_lock.slock);
2693	__release_sock(sk);
 
 
 
 
 
2694	spin_unlock_bh(&sk->sk_lock.slock);
2695}
 
2696
2697/**
2698 * sk_wait_data - wait for data to arrive at sk_receive_queue
2699 * @sk:    sock to wait on
2700 * @timeo: for how long
2701 * @skb:   last skb seen on sk_receive_queue
2702 *
2703 * Now socket state including sk->sk_err is changed only under lock,
2704 * hence we may omit checks after joining wait queue.
2705 * We check receive queue before schedule() only as optimization;
2706 * it is very likely that release_sock() added new data.
2707 */
2708int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2709{
2710	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2711	int rc;
2712
2713	add_wait_queue(sk_sleep(sk), &wait);
2714	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2715	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2716	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2717	remove_wait_queue(sk_sleep(sk), &wait);
2718	return rc;
2719}
2720EXPORT_SYMBOL(sk_wait_data);
2721
2722/**
2723 *	__sk_mem_raise_allocated - increase memory_allocated
2724 *	@sk: socket
2725 *	@size: memory size to allocate
2726 *	@amt: pages to allocate
2727 *	@kind: allocation type
2728 *
2729 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
 
 
 
 
 
 
2730 */
2731int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2732{
 
2733	struct proto *prot = sk->sk_prot;
2734	long allocated = sk_memory_allocated_add(sk, amt);
2735	bool charged = true;
2736
2737	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2738	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2739		goto suppress_allocation;
 
 
 
 
 
2740
2741	/* Under limit. */
2742	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2743		sk_leave_memory_pressure(sk);
2744		return 1;
2745	}
2746
2747	/* Under pressure. */
2748	if (allocated > sk_prot_mem_limits(sk, 1))
2749		sk_enter_memory_pressure(sk);
2750
2751	/* Over hard limit. */
2752	if (allocated > sk_prot_mem_limits(sk, 2))
2753		goto suppress_allocation;
2754
2755	/* guarantee minimum buffer size under pressure */
 
 
 
 
 
 
 
2756	if (kind == SK_MEM_RECV) {
2757		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2758			return 1;
2759
2760	} else { /* SK_MEM_SEND */
2761		int wmem0 = sk_get_wmem0(sk, prot);
2762
2763		if (sk->sk_type == SOCK_STREAM) {
2764			if (sk->sk_wmem_queued < wmem0)
2765				return 1;
2766		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2767				return 1;
2768		}
2769	}
2770
2771	if (sk_has_memory_pressure(sk)) {
2772		u64 alloc;
2773
2774		if (!sk_under_memory_pressure(sk))
 
 
 
 
2775			return 1;
 
 
 
 
 
2776		alloc = sk_sockets_allocated_read_positive(sk);
2777		if (sk_prot_mem_limits(sk, 2) > alloc *
2778		    sk_mem_pages(sk->sk_wmem_queued +
2779				 atomic_read(&sk->sk_rmem_alloc) +
2780				 sk->sk_forward_alloc))
2781			return 1;
2782	}
2783
2784suppress_allocation:
2785
2786	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2787		sk_stream_moderate_sndbuf(sk);
2788
2789		/* Fail only if socket is _under_ its sndbuf.
2790		 * In this case we cannot block, so that we have to fail.
2791		 */
2792		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
 
 
 
 
 
2793			return 1;
 
2794	}
2795
2796	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2797		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2798
2799	sk_memory_allocated_sub(sk, amt);
2800
2801	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2802		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2803
2804	return 0;
2805}
2806EXPORT_SYMBOL(__sk_mem_raise_allocated);
2807
2808/**
2809 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2810 *	@sk: socket
2811 *	@size: memory size to allocate
2812 *	@kind: allocation type
2813 *
2814 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2815 *	rmem allocation. This function assumes that protocols which have
2816 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2817 */
2818int __sk_mem_schedule(struct sock *sk, int size, int kind)
2819{
2820	int ret, amt = sk_mem_pages(size);
2821
2822	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2823	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2824	if (!ret)
2825		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2826	return ret;
2827}
2828EXPORT_SYMBOL(__sk_mem_schedule);
2829
2830/**
2831 *	__sk_mem_reduce_allocated - reclaim memory_allocated
2832 *	@sk: socket
2833 *	@amount: number of quanta
2834 *
2835 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2836 */
2837void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2838{
2839	sk_memory_allocated_sub(sk, amount);
2840
2841	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2842		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2843
2844	if (sk_under_memory_pressure(sk) &&
2845	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2846		sk_leave_memory_pressure(sk);
2847}
2848EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2849
2850/**
2851 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2852 *	@sk: socket
2853 *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2854 */
2855void __sk_mem_reclaim(struct sock *sk, int amount)
2856{
2857	amount >>= SK_MEM_QUANTUM_SHIFT;
2858	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2859	__sk_mem_reduce_allocated(sk, amount);
2860}
2861EXPORT_SYMBOL(__sk_mem_reclaim);
2862
2863int sk_set_peek_off(struct sock *sk, int val)
2864{
2865	sk->sk_peek_off = val;
2866	return 0;
2867}
2868EXPORT_SYMBOL_GPL(sk_set_peek_off);
2869
2870/*
2871 * Set of default routines for initialising struct proto_ops when
2872 * the protocol does not support a particular function. In certain
2873 * cases where it makes no sense for a protocol to have a "do nothing"
2874 * function, some default processing is provided.
2875 */
2876
2877int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2878{
2879	return -EOPNOTSUPP;
2880}
2881EXPORT_SYMBOL(sock_no_bind);
2882
2883int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2884		    int len, int flags)
2885{
2886	return -EOPNOTSUPP;
2887}
2888EXPORT_SYMBOL(sock_no_connect);
2889
2890int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2891{
2892	return -EOPNOTSUPP;
2893}
2894EXPORT_SYMBOL(sock_no_socketpair);
2895
2896int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2897		   bool kern)
2898{
2899	return -EOPNOTSUPP;
2900}
2901EXPORT_SYMBOL(sock_no_accept);
2902
2903int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2904		    int peer)
2905{
2906	return -EOPNOTSUPP;
2907}
2908EXPORT_SYMBOL(sock_no_getname);
2909
2910int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2911{
2912	return -EOPNOTSUPP;
2913}
2914EXPORT_SYMBOL(sock_no_ioctl);
2915
2916int sock_no_listen(struct socket *sock, int backlog)
2917{
2918	return -EOPNOTSUPP;
2919}
2920EXPORT_SYMBOL(sock_no_listen);
2921
2922int sock_no_shutdown(struct socket *sock, int how)
2923{
2924	return -EOPNOTSUPP;
2925}
2926EXPORT_SYMBOL(sock_no_shutdown);
2927
2928int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2929{
2930	return -EOPNOTSUPP;
2931}
2932EXPORT_SYMBOL(sock_no_sendmsg);
2933
2934int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2935{
2936	return -EOPNOTSUPP;
2937}
2938EXPORT_SYMBOL(sock_no_sendmsg_locked);
2939
2940int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2941		    int flags)
2942{
2943	return -EOPNOTSUPP;
2944}
2945EXPORT_SYMBOL(sock_no_recvmsg);
2946
2947int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2948{
2949	/* Mirror missing mmap method error code */
2950	return -ENODEV;
2951}
2952EXPORT_SYMBOL(sock_no_mmap);
2953
2954/*
2955 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2956 * various sock-based usage counts.
2957 */
2958void __receive_sock(struct file *file)
2959{
2960	struct socket *sock;
2961
2962	sock = sock_from_file(file);
2963	if (sock) {
2964		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2965		sock_update_classid(&sock->sk->sk_cgrp_data);
2966	}
2967}
2968
2969ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2970{
2971	ssize_t res;
2972	struct msghdr msg = {.msg_flags = flags};
2973	struct kvec iov;
2974	char *kaddr = kmap(page);
2975	iov.iov_base = kaddr + offset;
2976	iov.iov_len = size;
2977	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2978	kunmap(page);
2979	return res;
2980}
2981EXPORT_SYMBOL(sock_no_sendpage);
2982
2983ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2984				int offset, size_t size, int flags)
2985{
2986	ssize_t res;
2987	struct msghdr msg = {.msg_flags = flags};
2988	struct kvec iov;
2989	char *kaddr = kmap(page);
2990
2991	iov.iov_base = kaddr + offset;
2992	iov.iov_len = size;
2993	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2994	kunmap(page);
2995	return res;
2996}
2997EXPORT_SYMBOL(sock_no_sendpage_locked);
2998
2999/*
3000 *	Default Socket Callbacks
3001 */
3002
3003static void sock_def_wakeup(struct sock *sk)
3004{
3005	struct socket_wq *wq;
3006
3007	rcu_read_lock();
3008	wq = rcu_dereference(sk->sk_wq);
3009	if (skwq_has_sleeper(wq))
3010		wake_up_interruptible_all(&wq->wait);
3011	rcu_read_unlock();
3012}
3013
3014static void sock_def_error_report(struct sock *sk)
3015{
3016	struct socket_wq *wq;
3017
3018	rcu_read_lock();
3019	wq = rcu_dereference(sk->sk_wq);
3020	if (skwq_has_sleeper(wq))
3021		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3022	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3023	rcu_read_unlock();
3024}
3025
3026void sock_def_readable(struct sock *sk)
3027{
3028	struct socket_wq *wq;
3029
 
 
3030	rcu_read_lock();
3031	wq = rcu_dereference(sk->sk_wq);
3032	if (skwq_has_sleeper(wq))
3033		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3034						EPOLLRDNORM | EPOLLRDBAND);
3035	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3036	rcu_read_unlock();
3037}
3038
3039static void sock_def_write_space(struct sock *sk)
3040{
3041	struct socket_wq *wq;
3042
3043	rcu_read_lock();
3044
3045	/* Do not wake up a writer until he can make "significant"
3046	 * progress.  --DaveM
3047	 */
3048	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
3049		wq = rcu_dereference(sk->sk_wq);
3050		if (skwq_has_sleeper(wq))
3051			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3052						EPOLLWRNORM | EPOLLWRBAND);
3053
3054		/* Should agree with poll, otherwise some programs break */
3055		if (sock_writeable(sk))
3056			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3057	}
3058
3059	rcu_read_unlock();
3060}
3061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3062static void sock_def_destruct(struct sock *sk)
3063{
3064}
3065
3066void sk_send_sigurg(struct sock *sk)
3067{
3068	if (sk->sk_socket && sk->sk_socket->file)
3069		if (send_sigurg(&sk->sk_socket->file->f_owner))
3070			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3071}
3072EXPORT_SYMBOL(sk_send_sigurg);
3073
3074void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3075		    unsigned long expires)
3076{
3077	if (!mod_timer(timer, expires))
3078		sock_hold(sk);
3079}
3080EXPORT_SYMBOL(sk_reset_timer);
3081
3082void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3083{
3084	if (del_timer(timer))
3085		__sock_put(sk);
3086}
3087EXPORT_SYMBOL(sk_stop_timer);
3088
3089void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3090{
3091	if (del_timer_sync(timer))
3092		__sock_put(sk);
3093}
3094EXPORT_SYMBOL(sk_stop_timer_sync);
3095
3096void sock_init_data(struct socket *sock, struct sock *sk)
3097{
3098	sk_init_common(sk);
3099	sk->sk_send_head	=	NULL;
3100
3101	timer_setup(&sk->sk_timer, NULL, 0);
3102
3103	sk->sk_allocation	=	GFP_KERNEL;
3104	sk->sk_rcvbuf		=	sysctl_rmem_default;
3105	sk->sk_sndbuf		=	sysctl_wmem_default;
3106	sk->sk_state		=	TCP_CLOSE;
 
3107	sk_set_socket(sk, sock);
3108
3109	sock_set_flag(sk, SOCK_ZAPPED);
3110
3111	if (sock) {
3112		sk->sk_type	=	sock->type;
3113		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3114		sock->sk	=	sk;
3115		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
3116	} else {
3117		RCU_INIT_POINTER(sk->sk_wq, NULL);
3118		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
3119	}
 
3120
3121	rwlock_init(&sk->sk_callback_lock);
3122	if (sk->sk_kern_sock)
3123		lockdep_set_class_and_name(
3124			&sk->sk_callback_lock,
3125			af_kern_callback_keys + sk->sk_family,
3126			af_family_kern_clock_key_strings[sk->sk_family]);
3127	else
3128		lockdep_set_class_and_name(
3129			&sk->sk_callback_lock,
3130			af_callback_keys + sk->sk_family,
3131			af_family_clock_key_strings[sk->sk_family]);
3132
3133	sk->sk_state_change	=	sock_def_wakeup;
3134	sk->sk_data_ready	=	sock_def_readable;
3135	sk->sk_write_space	=	sock_def_write_space;
3136	sk->sk_error_report	=	sock_def_error_report;
3137	sk->sk_destruct		=	sock_def_destruct;
3138
3139	sk->sk_frag.page	=	NULL;
3140	sk->sk_frag.offset	=	0;
3141	sk->sk_peek_off		=	-1;
3142
3143	sk->sk_peer_pid 	=	NULL;
3144	sk->sk_peer_cred	=	NULL;
3145	spin_lock_init(&sk->sk_peer_lock);
3146
3147	sk->sk_write_pending	=	0;
3148	sk->sk_rcvlowat		=	1;
3149	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3150	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3151
3152	sk->sk_stamp = SK_DEFAULT_STAMP;
3153#if BITS_PER_LONG==32
3154	seqlock_init(&sk->sk_stamp_seq);
3155#endif
3156	atomic_set(&sk->sk_zckey, 0);
3157
3158#ifdef CONFIG_NET_RX_BUSY_POLL
3159	sk->sk_napi_id		=	0;
3160	sk->sk_ll_usec		=	sysctl_net_busy_read;
3161#endif
3162
3163	sk->sk_max_pacing_rate = ~0UL;
3164	sk->sk_pacing_rate = ~0UL;
3165	WRITE_ONCE(sk->sk_pacing_shift, 10);
3166	sk->sk_incoming_cpu = -1;
3167
3168	sk_rx_queue_clear(sk);
3169	/*
3170	 * Before updating sk_refcnt, we must commit prior changes to memory
3171	 * (Documentation/RCU/rculist_nulls.rst for details)
3172	 */
3173	smp_wmb();
3174	refcount_set(&sk->sk_refcnt, 1);
3175	atomic_set(&sk->sk_drops, 0);
3176}
 
 
 
 
 
 
 
 
 
 
3177EXPORT_SYMBOL(sock_init_data);
3178
3179void lock_sock_nested(struct sock *sk, int subclass)
3180{
 
 
 
3181	might_sleep();
3182	spin_lock_bh(&sk->sk_lock.slock);
3183	if (sk->sk_lock.owned)
3184		__lock_sock(sk);
3185	sk->sk_lock.owned = 1;
3186	spin_unlock(&sk->sk_lock.slock);
3187	/*
3188	 * The sk_lock has mutex_lock() semantics here:
3189	 */
3190	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3191	local_bh_enable();
3192}
3193EXPORT_SYMBOL(lock_sock_nested);
3194
3195void release_sock(struct sock *sk)
3196{
3197	spin_lock_bh(&sk->sk_lock.slock);
3198	if (sk->sk_backlog.tail)
3199		__release_sock(sk);
3200
3201	/* Warning : release_cb() might need to release sk ownership,
3202	 * ie call sock_release_ownership(sk) before us.
3203	 */
3204	if (sk->sk_prot->release_cb)
3205		sk->sk_prot->release_cb(sk);
 
3206
3207	sock_release_ownership(sk);
3208	if (waitqueue_active(&sk->sk_lock.wq))
3209		wake_up(&sk->sk_lock.wq);
3210	spin_unlock_bh(&sk->sk_lock.slock);
3211}
3212EXPORT_SYMBOL(release_sock);
3213
3214/**
3215 * lock_sock_fast - fast version of lock_sock
3216 * @sk: socket
3217 *
3218 * This version should be used for very small section, where process wont block
3219 * return false if fast path is taken:
3220 *
3221 *   sk_lock.slock locked, owned = 0, BH disabled
3222 *
3223 * return true if slow path is taken:
3224 *
3225 *   sk_lock.slock unlocked, owned = 1, BH enabled
3226 */
3227bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3228{
3229	might_sleep();
3230	spin_lock_bh(&sk->sk_lock.slock);
3231
3232	if (!sk->sk_lock.owned)
3233		/*
3234		 * Note : We must disable BH
 
 
 
 
 
 
 
 
 
 
 
 
3235		 */
3236		return false;
 
3237
3238	__lock_sock(sk);
3239	sk->sk_lock.owned = 1;
3240	spin_unlock(&sk->sk_lock.slock);
3241	/*
3242	 * The sk_lock has mutex_lock() semantics here:
3243	 */
3244	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3245	__acquire(&sk->sk_lock.slock);
3246	local_bh_enable();
3247	return true;
3248}
3249EXPORT_SYMBOL(lock_sock_fast);
3250
3251int sock_gettstamp(struct socket *sock, void __user *userstamp,
3252		   bool timeval, bool time32)
3253{
3254	struct sock *sk = sock->sk;
3255	struct timespec64 ts;
3256
3257	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3258	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3259	if (ts.tv_sec == -1)
3260		return -ENOENT;
3261	if (ts.tv_sec == 0) {
3262		ktime_t kt = ktime_get_real();
3263		sock_write_timestamp(sk, kt);
3264		ts = ktime_to_timespec64(kt);
3265	}
3266
3267	if (timeval)
3268		ts.tv_nsec /= 1000;
3269
3270#ifdef CONFIG_COMPAT_32BIT_TIME
3271	if (time32)
3272		return put_old_timespec32(&ts, userstamp);
3273#endif
3274#ifdef CONFIG_SPARC64
3275	/* beware of padding in sparc64 timeval */
3276	if (timeval && !in_compat_syscall()) {
3277		struct __kernel_old_timeval __user tv = {
3278			.tv_sec = ts.tv_sec,
3279			.tv_usec = ts.tv_nsec,
3280		};
3281		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3282			return -EFAULT;
3283		return 0;
3284	}
3285#endif
3286	return put_timespec64(&ts, userstamp);
3287}
3288EXPORT_SYMBOL(sock_gettstamp);
3289
3290void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3291{
3292	if (!sock_flag(sk, flag)) {
3293		unsigned long previous_flags = sk->sk_flags;
3294
3295		sock_set_flag(sk, flag);
3296		/*
3297		 * we just set one of the two flags which require net
3298		 * time stamping, but time stamping might have been on
3299		 * already because of the other one
3300		 */
3301		if (sock_needs_netstamp(sk) &&
3302		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3303			net_enable_timestamp();
3304	}
3305}
3306
3307int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3308		       int level, int type)
3309{
3310	struct sock_exterr_skb *serr;
3311	struct sk_buff *skb;
3312	int copied, err;
3313
3314	err = -EAGAIN;
3315	skb = sock_dequeue_err_skb(sk);
3316	if (skb == NULL)
3317		goto out;
3318
3319	copied = skb->len;
3320	if (copied > len) {
3321		msg->msg_flags |= MSG_TRUNC;
3322		copied = len;
3323	}
3324	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3325	if (err)
3326		goto out_free_skb;
3327
3328	sock_recv_timestamp(msg, sk, skb);
3329
3330	serr = SKB_EXT_ERR(skb);
3331	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3332
3333	msg->msg_flags |= MSG_ERRQUEUE;
3334	err = copied;
3335
3336out_free_skb:
3337	kfree_skb(skb);
3338out:
3339	return err;
3340}
3341EXPORT_SYMBOL(sock_recv_errqueue);
3342
3343/*
3344 *	Get a socket option on an socket.
3345 *
3346 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3347 *	asynchronous errors should be reported by getsockopt. We assume
3348 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3349 */
3350int sock_common_getsockopt(struct socket *sock, int level, int optname,
3351			   char __user *optval, int __user *optlen)
3352{
3353	struct sock *sk = sock->sk;
3354
3355	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
 
3356}
3357EXPORT_SYMBOL(sock_common_getsockopt);
3358
3359int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3360			int flags)
3361{
3362	struct sock *sk = sock->sk;
3363	int addr_len = 0;
3364	int err;
3365
3366	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3367				   flags & ~MSG_DONTWAIT, &addr_len);
3368	if (err >= 0)
3369		msg->msg_namelen = addr_len;
3370	return err;
3371}
3372EXPORT_SYMBOL(sock_common_recvmsg);
3373
3374/*
3375 *	Set socket options on an inet socket.
3376 */
3377int sock_common_setsockopt(struct socket *sock, int level, int optname,
3378			   sockptr_t optval, unsigned int optlen)
3379{
3380	struct sock *sk = sock->sk;
3381
3382	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
 
3383}
3384EXPORT_SYMBOL(sock_common_setsockopt);
3385
3386void sk_common_release(struct sock *sk)
3387{
3388	if (sk->sk_prot->destroy)
3389		sk->sk_prot->destroy(sk);
3390
3391	/*
3392	 * Observation: when sk_common_release is called, processes have
3393	 * no access to socket. But net still has.
3394	 * Step one, detach it from networking:
3395	 *
3396	 * A. Remove from hash tables.
3397	 */
3398
3399	sk->sk_prot->unhash(sk);
3400
3401	/*
3402	 * In this point socket cannot receive new packets, but it is possible
3403	 * that some packets are in flight because some CPU runs receiver and
3404	 * did hash table lookup before we unhashed socket. They will achieve
3405	 * receive queue and will be purged by socket destructor.
3406	 *
3407	 * Also we still have packets pending on receive queue and probably,
3408	 * our own packets waiting in device queues. sock_destroy will drain
3409	 * receive queue, but transmitted packets will delay socket destruction
3410	 * until the last reference will be released.
3411	 */
3412
3413	sock_orphan(sk);
3414
3415	xfrm_sk_free_policy(sk);
3416
3417	sk_refcnt_debug_release(sk);
3418
3419	sock_put(sk);
3420}
3421EXPORT_SYMBOL(sk_common_release);
3422
3423void sk_get_meminfo(const struct sock *sk, u32 *mem)
3424{
3425	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3426
3427	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3428	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3429	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3430	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3431	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3432	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3433	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3434	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3435	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3436}
3437
3438#ifdef CONFIG_PROC_FS
3439#define PROTO_INUSE_NR	64	/* should be enough for the first time */
3440struct prot_inuse {
3441	int val[PROTO_INUSE_NR];
3442};
3443
3444static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3445
3446void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3447{
3448	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3449}
3450EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3451
3452int sock_prot_inuse_get(struct net *net, struct proto *prot)
3453{
3454	int cpu, idx = prot->inuse_idx;
3455	int res = 0;
3456
3457	for_each_possible_cpu(cpu)
3458		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3459
3460	return res >= 0 ? res : 0;
3461}
3462EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3463
3464static void sock_inuse_add(struct net *net, int val)
3465{
3466	this_cpu_add(*net->core.sock_inuse, val);
3467}
3468
3469int sock_inuse_get(struct net *net)
3470{
3471	int cpu, res = 0;
3472
3473	for_each_possible_cpu(cpu)
3474		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3475
3476	return res;
3477}
3478
3479EXPORT_SYMBOL_GPL(sock_inuse_get);
3480
3481static int __net_init sock_inuse_init_net(struct net *net)
3482{
3483	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3484	if (net->core.prot_inuse == NULL)
3485		return -ENOMEM;
3486
3487	net->core.sock_inuse = alloc_percpu(int);
3488	if (net->core.sock_inuse == NULL)
3489		goto out;
3490
3491	return 0;
3492
3493out:
3494	free_percpu(net->core.prot_inuse);
3495	return -ENOMEM;
3496}
3497
3498static void __net_exit sock_inuse_exit_net(struct net *net)
3499{
3500	free_percpu(net->core.prot_inuse);
3501	free_percpu(net->core.sock_inuse);
3502}
3503
3504static struct pernet_operations net_inuse_ops = {
3505	.init = sock_inuse_init_net,
3506	.exit = sock_inuse_exit_net,
3507};
3508
3509static __init int net_inuse_init(void)
3510{
3511	if (register_pernet_subsys(&net_inuse_ops))
3512		panic("Cannot initialize net inuse counters");
3513
3514	return 0;
3515}
3516
3517core_initcall(net_inuse_init);
3518
3519static int assign_proto_idx(struct proto *prot)
3520{
3521	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3522
3523	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3524		pr_err("PROTO_INUSE_NR exhausted\n");
3525		return -ENOSPC;
3526	}
3527
3528	set_bit(prot->inuse_idx, proto_inuse_idx);
3529	return 0;
3530}
3531
3532static void release_proto_idx(struct proto *prot)
3533{
3534	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3535		clear_bit(prot->inuse_idx, proto_inuse_idx);
3536}
3537#else
3538static inline int assign_proto_idx(struct proto *prot)
3539{
3540	return 0;
3541}
3542
3543static inline void release_proto_idx(struct proto *prot)
3544{
3545}
3546
3547static void sock_inuse_add(struct net *net, int val)
3548{
3549}
3550#endif
3551
3552static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3553{
3554	if (!twsk_prot)
3555		return;
3556	kfree(twsk_prot->twsk_slab_name);
3557	twsk_prot->twsk_slab_name = NULL;
3558	kmem_cache_destroy(twsk_prot->twsk_slab);
3559	twsk_prot->twsk_slab = NULL;
3560}
3561
3562static int tw_prot_init(const struct proto *prot)
3563{
3564	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3565
3566	if (!twsk_prot)
3567		return 0;
3568
3569	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3570					      prot->name);
3571	if (!twsk_prot->twsk_slab_name)
3572		return -ENOMEM;
3573
3574	twsk_prot->twsk_slab =
3575		kmem_cache_create(twsk_prot->twsk_slab_name,
3576				  twsk_prot->twsk_obj_size, 0,
3577				  SLAB_ACCOUNT | prot->slab_flags,
3578				  NULL);
3579	if (!twsk_prot->twsk_slab) {
3580		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3581			prot->name);
3582		return -ENOMEM;
3583	}
3584
3585	return 0;
3586}
3587
3588static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3589{
3590	if (!rsk_prot)
3591		return;
3592	kfree(rsk_prot->slab_name);
3593	rsk_prot->slab_name = NULL;
3594	kmem_cache_destroy(rsk_prot->slab);
3595	rsk_prot->slab = NULL;
3596}
3597
3598static int req_prot_init(const struct proto *prot)
3599{
3600	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3601
3602	if (!rsk_prot)
3603		return 0;
3604
3605	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3606					prot->name);
3607	if (!rsk_prot->slab_name)
3608		return -ENOMEM;
3609
3610	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3611					   rsk_prot->obj_size, 0,
3612					   SLAB_ACCOUNT | prot->slab_flags,
3613					   NULL);
3614
3615	if (!rsk_prot->slab) {
3616		pr_crit("%s: Can't create request sock SLAB cache!\n",
3617			prot->name);
3618		return -ENOMEM;
3619	}
3620	return 0;
3621}
3622
3623int proto_register(struct proto *prot, int alloc_slab)
3624{
3625	int ret = -ENOBUFS;
3626
 
 
 
 
 
 
 
 
3627	if (alloc_slab) {
3628		prot->slab = kmem_cache_create_usercopy(prot->name,
3629					prot->obj_size, 0,
3630					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3631					prot->slab_flags,
3632					prot->useroffset, prot->usersize,
3633					NULL);
3634
3635		if (prot->slab == NULL) {
3636			pr_crit("%s: Can't create sock SLAB cache!\n",
3637				prot->name);
3638			goto out;
3639		}
3640
3641		if (req_prot_init(prot))
3642			goto out_free_request_sock_slab;
3643
3644		if (tw_prot_init(prot))
3645			goto out_free_timewait_sock_slab;
3646	}
3647
3648	mutex_lock(&proto_list_mutex);
3649	ret = assign_proto_idx(prot);
3650	if (ret) {
3651		mutex_unlock(&proto_list_mutex);
3652		goto out_free_timewait_sock_slab;
3653	}
3654	list_add(&prot->node, &proto_list);
3655	mutex_unlock(&proto_list_mutex);
3656	return ret;
3657
3658out_free_timewait_sock_slab:
3659	if (alloc_slab)
3660		tw_prot_cleanup(prot->twsk_prot);
3661out_free_request_sock_slab:
3662	if (alloc_slab) {
3663		req_prot_cleanup(prot->rsk_prot);
3664
3665		kmem_cache_destroy(prot->slab);
3666		prot->slab = NULL;
3667	}
3668out:
3669	return ret;
3670}
3671EXPORT_SYMBOL(proto_register);
3672
3673void proto_unregister(struct proto *prot)
3674{
3675	mutex_lock(&proto_list_mutex);
3676	release_proto_idx(prot);
3677	list_del(&prot->node);
3678	mutex_unlock(&proto_list_mutex);
3679
3680	kmem_cache_destroy(prot->slab);
3681	prot->slab = NULL;
3682
3683	req_prot_cleanup(prot->rsk_prot);
3684	tw_prot_cleanup(prot->twsk_prot);
3685}
3686EXPORT_SYMBOL(proto_unregister);
3687
3688int sock_load_diag_module(int family, int protocol)
3689{
3690	if (!protocol) {
3691		if (!sock_is_registered(family))
3692			return -ENOENT;
3693
3694		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3695				      NETLINK_SOCK_DIAG, family);
3696	}
3697
3698#ifdef CONFIG_INET
3699	if (family == AF_INET &&
3700	    protocol != IPPROTO_RAW &&
3701	    protocol < MAX_INET_PROTOS &&
3702	    !rcu_access_pointer(inet_protos[protocol]))
3703		return -ENOENT;
3704#endif
3705
3706	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3707			      NETLINK_SOCK_DIAG, family, protocol);
3708}
3709EXPORT_SYMBOL(sock_load_diag_module);
3710
3711#ifdef CONFIG_PROC_FS
3712static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3713	__acquires(proto_list_mutex)
3714{
3715	mutex_lock(&proto_list_mutex);
3716	return seq_list_start_head(&proto_list, *pos);
3717}
3718
3719static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3720{
3721	return seq_list_next(v, &proto_list, pos);
3722}
3723
3724static void proto_seq_stop(struct seq_file *seq, void *v)
3725	__releases(proto_list_mutex)
3726{
3727	mutex_unlock(&proto_list_mutex);
3728}
3729
3730static char proto_method_implemented(const void *method)
3731{
3732	return method == NULL ? 'n' : 'y';
3733}
3734static long sock_prot_memory_allocated(struct proto *proto)
3735{
3736	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3737}
3738
3739static const char *sock_prot_memory_pressure(struct proto *proto)
3740{
3741	return proto->memory_pressure != NULL ?
3742	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3743}
3744
3745static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3746{
3747
3748	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3749			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3750		   proto->name,
3751		   proto->obj_size,
3752		   sock_prot_inuse_get(seq_file_net(seq), proto),
3753		   sock_prot_memory_allocated(proto),
3754		   sock_prot_memory_pressure(proto),
3755		   proto->max_header,
3756		   proto->slab == NULL ? "no" : "yes",
3757		   module_name(proto->owner),
3758		   proto_method_implemented(proto->close),
3759		   proto_method_implemented(proto->connect),
3760		   proto_method_implemented(proto->disconnect),
3761		   proto_method_implemented(proto->accept),
3762		   proto_method_implemented(proto->ioctl),
3763		   proto_method_implemented(proto->init),
3764		   proto_method_implemented(proto->destroy),
3765		   proto_method_implemented(proto->shutdown),
3766		   proto_method_implemented(proto->setsockopt),
3767		   proto_method_implemented(proto->getsockopt),
3768		   proto_method_implemented(proto->sendmsg),
3769		   proto_method_implemented(proto->recvmsg),
3770		   proto_method_implemented(proto->sendpage),
3771		   proto_method_implemented(proto->bind),
3772		   proto_method_implemented(proto->backlog_rcv),
3773		   proto_method_implemented(proto->hash),
3774		   proto_method_implemented(proto->unhash),
3775		   proto_method_implemented(proto->get_port),
3776		   proto_method_implemented(proto->enter_memory_pressure));
3777}
3778
3779static int proto_seq_show(struct seq_file *seq, void *v)
3780{
3781	if (v == &proto_list)
3782		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3783			   "protocol",
3784			   "size",
3785			   "sockets",
3786			   "memory",
3787			   "press",
3788			   "maxhdr",
3789			   "slab",
3790			   "module",
3791			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3792	else
3793		proto_seq_printf(seq, list_entry(v, struct proto, node));
3794	return 0;
3795}
3796
3797static const struct seq_operations proto_seq_ops = {
3798	.start  = proto_seq_start,
3799	.next   = proto_seq_next,
3800	.stop   = proto_seq_stop,
3801	.show   = proto_seq_show,
3802};
3803
3804static __net_init int proto_init_net(struct net *net)
3805{
3806	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3807			sizeof(struct seq_net_private)))
3808		return -ENOMEM;
3809
3810	return 0;
3811}
3812
3813static __net_exit void proto_exit_net(struct net *net)
3814{
3815	remove_proc_entry("protocols", net->proc_net);
3816}
3817
3818
3819static __net_initdata struct pernet_operations proto_net_ops = {
3820	.init = proto_init_net,
3821	.exit = proto_exit_net,
3822};
3823
3824static int __init proto_init(void)
3825{
3826	return register_pernet_subsys(&proto_net_ops);
3827}
3828
3829subsys_initcall(proto_init);
3830
3831#endif /* PROC_FS */
3832
3833#ifdef CONFIG_NET_RX_BUSY_POLL
3834bool sk_busy_loop_end(void *p, unsigned long start_time)
3835{
3836	struct sock *sk = p;
3837
3838	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3839	       sk_busy_loop_timeout(sk, start_time);
 
 
 
 
 
 
3840}
3841EXPORT_SYMBOL(sk_busy_loop_end);
3842#endif /* CONFIG_NET_RX_BUSY_POLL */
3843
3844int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3845{
3846	if (!sk->sk_prot->bind_add)
3847		return -EOPNOTSUPP;
3848	return sk->sk_prot->bind_add(sk, addr, addr_len);
3849}
3850EXPORT_SYMBOL(sock_bind_add);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/udp.h>
 111#include <linux/init.h>
 112#include <linux/highmem.h>
 113#include <linux/user_namespace.h>
 114#include <linux/static_key.h>
 115#include <linux/memcontrol.h>
 116#include <linux/prefetch.h>
 117#include <linux/compat.h>
 118#include <linux/mroute.h>
 119#include <linux/mroute6.h>
 120#include <linux/icmpv6.h>
 121
 122#include <linux/uaccess.h>
 123
 124#include <linux/netdevice.h>
 125#include <net/protocol.h>
 126#include <linux/skbuff.h>
 127#include <net/net_namespace.h>
 128#include <net/request_sock.h>
 129#include <net/sock.h>
 130#include <linux/net_tstamp.h>
 131#include <net/xfrm.h>
 132#include <linux/ipsec.h>
 133#include <net/cls_cgroup.h>
 134#include <net/netprio_cgroup.h>
 135#include <linux/sock_diag.h>
 136
 137#include <linux/filter.h>
 138#include <net/sock_reuseport.h>
 139#include <net/bpf_sk_storage.h>
 140
 141#include <trace/events/sock.h>
 142
 143#include <net/tcp.h>
 144#include <net/busy_poll.h>
 145#include <net/phonet/phonet.h>
 146
 147#include <linux/ethtool.h>
 148
 149#include "dev.h"
 150
 151static DEFINE_MUTEX(proto_list_mutex);
 152static LIST_HEAD(proto_list);
 153
 154static void sock_def_write_space_wfree(struct sock *sk);
 155static void sock_def_write_space(struct sock *sk);
 156
 157/**
 158 * sk_ns_capable - General socket capability test
 159 * @sk: Socket to use a capability on or through
 160 * @user_ns: The user namespace of the capability to use
 161 * @cap: The capability to use
 162 *
 163 * Test to see if the opener of the socket had when the socket was
 164 * created and the current process has the capability @cap in the user
 165 * namespace @user_ns.
 166 */
 167bool sk_ns_capable(const struct sock *sk,
 168		   struct user_namespace *user_ns, int cap)
 169{
 170	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 171		ns_capable(user_ns, cap);
 172}
 173EXPORT_SYMBOL(sk_ns_capable);
 174
 175/**
 176 * sk_capable - Socket global capability test
 177 * @sk: Socket to use a capability on or through
 178 * @cap: The global capability to use
 179 *
 180 * Test to see if the opener of the socket had when the socket was
 181 * created and the current process has the capability @cap in all user
 182 * namespaces.
 183 */
 184bool sk_capable(const struct sock *sk, int cap)
 185{
 186	return sk_ns_capable(sk, &init_user_ns, cap);
 187}
 188EXPORT_SYMBOL(sk_capable);
 189
 190/**
 191 * sk_net_capable - Network namespace socket capability test
 192 * @sk: Socket to use a capability on or through
 193 * @cap: The capability to use
 194 *
 195 * Test to see if the opener of the socket had when the socket was created
 196 * and the current process has the capability @cap over the network namespace
 197 * the socket is a member of.
 198 */
 199bool sk_net_capable(const struct sock *sk, int cap)
 200{
 201	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 202}
 203EXPORT_SYMBOL(sk_net_capable);
 204
 205/*
 206 * Each address family might have different locking rules, so we have
 207 * one slock key per address family and separate keys for internal and
 208 * userspace sockets.
 209 */
 210static struct lock_class_key af_family_keys[AF_MAX];
 211static struct lock_class_key af_family_kern_keys[AF_MAX];
 212static struct lock_class_key af_family_slock_keys[AF_MAX];
 213static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 214
 215/*
 216 * Make lock validator output more readable. (we pre-construct these
 217 * strings build-time, so that runtime initialization of socket
 218 * locks is fast):
 219 */
 220
 221#define _sock_locks(x)						  \
 222  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 223  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 224  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 225  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 226  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 227  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 228  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 229  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 230  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 231  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 232  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 233  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 234  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 235  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 236  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 237  x "AF_MCTP"  , \
 238  x "AF_MAX"
 239
 240static const char *const af_family_key_strings[AF_MAX+1] = {
 241	_sock_locks("sk_lock-")
 242};
 243static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 244	_sock_locks("slock-")
 245};
 246static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 247	_sock_locks("clock-")
 248};
 249
 250static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 251	_sock_locks("k-sk_lock-")
 252};
 253static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 254	_sock_locks("k-slock-")
 255};
 256static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 257	_sock_locks("k-clock-")
 258};
 259static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 260	_sock_locks("rlock-")
 261};
 262static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 263	_sock_locks("wlock-")
 264};
 265static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 266	_sock_locks("elock-")
 267};
 268
 269/*
 270 * sk_callback_lock and sk queues locking rules are per-address-family,
 271 * so split the lock classes by using a per-AF key:
 272 */
 273static struct lock_class_key af_callback_keys[AF_MAX];
 274static struct lock_class_key af_rlock_keys[AF_MAX];
 275static struct lock_class_key af_wlock_keys[AF_MAX];
 276static struct lock_class_key af_elock_keys[AF_MAX];
 277static struct lock_class_key af_kern_callback_keys[AF_MAX];
 278
 279/* Run time adjustable parameters. */
 280__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 281EXPORT_SYMBOL(sysctl_wmem_max);
 282__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 283EXPORT_SYMBOL(sysctl_rmem_max);
 284__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 285__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 286int sysctl_mem_pcpu_rsv __read_mostly = SK_MEMORY_PCPU_RESERVE;
 
 
 
 287
 288int sysctl_tstamp_allow_data __read_mostly = 1;
 289
 290DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 291EXPORT_SYMBOL_GPL(memalloc_socks_key);
 292
 293/**
 294 * sk_set_memalloc - sets %SOCK_MEMALLOC
 295 * @sk: socket to set it on
 296 *
 297 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 298 * It's the responsibility of the admin to adjust min_free_kbytes
 299 * to meet the requirements
 300 */
 301void sk_set_memalloc(struct sock *sk)
 302{
 303	sock_set_flag(sk, SOCK_MEMALLOC);
 304	sk->sk_allocation |= __GFP_MEMALLOC;
 305	static_branch_inc(&memalloc_socks_key);
 306}
 307EXPORT_SYMBOL_GPL(sk_set_memalloc);
 308
 309void sk_clear_memalloc(struct sock *sk)
 310{
 311	sock_reset_flag(sk, SOCK_MEMALLOC);
 312	sk->sk_allocation &= ~__GFP_MEMALLOC;
 313	static_branch_dec(&memalloc_socks_key);
 314
 315	/*
 316	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 317	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 318	 * it has rmem allocations due to the last swapfile being deactivated
 319	 * but there is a risk that the socket is unusable due to exceeding
 320	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 321	 */
 322	sk_mem_reclaim(sk);
 323}
 324EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 325
 326int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 327{
 328	int ret;
 329	unsigned int noreclaim_flag;
 330
 331	/* these should have been dropped before queueing */
 332	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 333
 334	noreclaim_flag = memalloc_noreclaim_save();
 335	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
 336				 tcp_v6_do_rcv,
 337				 tcp_v4_do_rcv,
 338				 sk, skb);
 339	memalloc_noreclaim_restore(noreclaim_flag);
 340
 341	return ret;
 342}
 343EXPORT_SYMBOL(__sk_backlog_rcv);
 344
 345void sk_error_report(struct sock *sk)
 346{
 347	sk->sk_error_report(sk);
 348
 349	switch (sk->sk_family) {
 350	case AF_INET:
 351		fallthrough;
 352	case AF_INET6:
 353		trace_inet_sk_error_report(sk);
 354		break;
 355	default:
 356		break;
 357	}
 358}
 359EXPORT_SYMBOL(sk_error_report);
 360
 361int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 362{
 363	struct __kernel_sock_timeval tv;
 364
 365	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 366		tv.tv_sec = 0;
 367		tv.tv_usec = 0;
 368	} else {
 369		tv.tv_sec = timeo / HZ;
 370		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 371	}
 372
 373	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 374		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 375		*(struct old_timeval32 *)optval = tv32;
 376		return sizeof(tv32);
 377	}
 378
 379	if (old_timeval) {
 380		struct __kernel_old_timeval old_tv;
 381		old_tv.tv_sec = tv.tv_sec;
 382		old_tv.tv_usec = tv.tv_usec;
 383		*(struct __kernel_old_timeval *)optval = old_tv;
 384		return sizeof(old_tv);
 385	}
 386
 387	*(struct __kernel_sock_timeval *)optval = tv;
 388	return sizeof(tv);
 389}
 390EXPORT_SYMBOL(sock_get_timeout);
 391
 392int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
 393			   sockptr_t optval, int optlen, bool old_timeval)
 394{
 
 
 395	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 396		struct old_timeval32 tv32;
 397
 398		if (optlen < sizeof(tv32))
 399			return -EINVAL;
 400
 401		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 402			return -EFAULT;
 403		tv->tv_sec = tv32.tv_sec;
 404		tv->tv_usec = tv32.tv_usec;
 405	} else if (old_timeval) {
 406		struct __kernel_old_timeval old_tv;
 407
 408		if (optlen < sizeof(old_tv))
 409			return -EINVAL;
 410		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 411			return -EFAULT;
 412		tv->tv_sec = old_tv.tv_sec;
 413		tv->tv_usec = old_tv.tv_usec;
 414	} else {
 415		if (optlen < sizeof(*tv))
 416			return -EINVAL;
 417		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
 418			return -EFAULT;
 419	}
 420
 421	return 0;
 422}
 423EXPORT_SYMBOL(sock_copy_user_timeval);
 424
 425static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 426			    bool old_timeval)
 427{
 428	struct __kernel_sock_timeval tv;
 429	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
 430	long val;
 431
 432	if (err)
 433		return err;
 434
 435	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 436		return -EDOM;
 437
 438	if (tv.tv_sec < 0) {
 439		static int warned __read_mostly;
 440
 441		WRITE_ONCE(*timeo_p, 0);
 442		if (warned < 10 && net_ratelimit()) {
 443			warned++;
 444			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 445				__func__, current->comm, task_pid_nr(current));
 446		}
 447		return 0;
 448	}
 449	val = MAX_SCHEDULE_TIMEOUT;
 450	if ((tv.tv_sec || tv.tv_usec) &&
 451	    (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
 452		val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
 453						    USEC_PER_SEC / HZ);
 454	WRITE_ONCE(*timeo_p, val);
 455	return 0;
 456}
 457
 458static bool sock_needs_netstamp(const struct sock *sk)
 459{
 460	switch (sk->sk_family) {
 461	case AF_UNSPEC:
 462	case AF_UNIX:
 463		return false;
 464	default:
 465		return true;
 466	}
 467}
 468
 469static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 470{
 471	if (sk->sk_flags & flags) {
 472		sk->sk_flags &= ~flags;
 473		if (sock_needs_netstamp(sk) &&
 474		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 475			net_disable_timestamp();
 476	}
 477}
 478
 479
 480int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 481{
 482	unsigned long flags;
 483	struct sk_buff_head *list = &sk->sk_receive_queue;
 484
 485	if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) {
 486		atomic_inc(&sk->sk_drops);
 487		trace_sock_rcvqueue_full(sk, skb);
 488		return -ENOMEM;
 489	}
 490
 491	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 492		atomic_inc(&sk->sk_drops);
 493		return -ENOBUFS;
 494	}
 495
 496	skb->dev = NULL;
 497	skb_set_owner_r(skb, sk);
 498
 499	/* we escape from rcu protected region, make sure we dont leak
 500	 * a norefcounted dst
 501	 */
 502	skb_dst_force(skb);
 503
 504	spin_lock_irqsave(&list->lock, flags);
 505	sock_skb_set_dropcount(sk, skb);
 506	__skb_queue_tail(list, skb);
 507	spin_unlock_irqrestore(&list->lock, flags);
 508
 509	if (!sock_flag(sk, SOCK_DEAD))
 510		sk->sk_data_ready(sk);
 511	return 0;
 512}
 513EXPORT_SYMBOL(__sock_queue_rcv_skb);
 514
 515int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
 516			      enum skb_drop_reason *reason)
 517{
 518	enum skb_drop_reason drop_reason;
 519	int err;
 520
 521	err = sk_filter(sk, skb);
 522	if (err) {
 523		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
 524		goto out;
 525	}
 526	err = __sock_queue_rcv_skb(sk, skb);
 527	switch (err) {
 528	case -ENOMEM:
 529		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
 530		break;
 531	case -ENOBUFS:
 532		drop_reason = SKB_DROP_REASON_PROTO_MEM;
 533		break;
 534	default:
 535		drop_reason = SKB_NOT_DROPPED_YET;
 536		break;
 537	}
 538out:
 539	if (reason)
 540		*reason = drop_reason;
 541	return err;
 542}
 543EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
 544
 545int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 546		     const int nested, unsigned int trim_cap, bool refcounted)
 547{
 548	int rc = NET_RX_SUCCESS;
 549
 550	if (sk_filter_trim_cap(sk, skb, trim_cap))
 551		goto discard_and_relse;
 552
 553	skb->dev = NULL;
 554
 555	if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) {
 556		atomic_inc(&sk->sk_drops);
 557		goto discard_and_relse;
 558	}
 559	if (nested)
 560		bh_lock_sock_nested(sk);
 561	else
 562		bh_lock_sock(sk);
 563	if (!sock_owned_by_user(sk)) {
 564		/*
 565		 * trylock + unlock semantics:
 566		 */
 567		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 568
 569		rc = sk_backlog_rcv(sk, skb);
 570
 571		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 572	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 573		bh_unlock_sock(sk);
 574		atomic_inc(&sk->sk_drops);
 575		goto discard_and_relse;
 576	}
 577
 578	bh_unlock_sock(sk);
 579out:
 580	if (refcounted)
 581		sock_put(sk);
 582	return rc;
 583discard_and_relse:
 584	kfree_skb(skb);
 585	goto out;
 586}
 587EXPORT_SYMBOL(__sk_receive_skb);
 588
 589INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
 590							  u32));
 591INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
 592							   u32));
 593struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 594{
 595	struct dst_entry *dst = __sk_dst_get(sk);
 596
 597	if (dst && dst->obsolete &&
 598	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 599			       dst, cookie) == NULL) {
 600		sk_tx_queue_clear(sk);
 601		WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
 602		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 603		dst_release(dst);
 604		return NULL;
 605	}
 606
 607	return dst;
 608}
 609EXPORT_SYMBOL(__sk_dst_check);
 610
 611struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 612{
 613	struct dst_entry *dst = sk_dst_get(sk);
 614
 615	if (dst && dst->obsolete &&
 616	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 617			       dst, cookie) == NULL) {
 618		sk_dst_reset(sk);
 619		dst_release(dst);
 620		return NULL;
 621	}
 622
 623	return dst;
 624}
 625EXPORT_SYMBOL(sk_dst_check);
 626
 627static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 628{
 629	int ret = -ENOPROTOOPT;
 630#ifdef CONFIG_NETDEVICES
 631	struct net *net = sock_net(sk);
 632
 633	/* Sorry... */
 634	ret = -EPERM;
 635	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 636		goto out;
 637
 638	ret = -EINVAL;
 639	if (ifindex < 0)
 640		goto out;
 641
 642	/* Paired with all READ_ONCE() done locklessly. */
 643	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
 644
 645	if (sk->sk_prot->rehash)
 646		sk->sk_prot->rehash(sk);
 647	sk_dst_reset(sk);
 648
 649	ret = 0;
 650
 651out:
 652#endif
 653
 654	return ret;
 655}
 656
 657int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 658{
 659	int ret;
 660
 661	if (lock_sk)
 662		lock_sock(sk);
 663	ret = sock_bindtoindex_locked(sk, ifindex);
 664	if (lock_sk)
 665		release_sock(sk);
 666
 667	return ret;
 668}
 669EXPORT_SYMBOL(sock_bindtoindex);
 670
 671static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 672{
 673	int ret = -ENOPROTOOPT;
 674#ifdef CONFIG_NETDEVICES
 675	struct net *net = sock_net(sk);
 676	char devname[IFNAMSIZ];
 677	int index;
 678
 679	ret = -EINVAL;
 680	if (optlen < 0)
 681		goto out;
 682
 683	/* Bind this socket to a particular device like "eth0",
 684	 * as specified in the passed interface name. If the
 685	 * name is "" or the option length is zero the socket
 686	 * is not bound.
 687	 */
 688	if (optlen > IFNAMSIZ - 1)
 689		optlen = IFNAMSIZ - 1;
 690	memset(devname, 0, sizeof(devname));
 691
 692	ret = -EFAULT;
 693	if (copy_from_sockptr(devname, optval, optlen))
 694		goto out;
 695
 696	index = 0;
 697	if (devname[0] != '\0') {
 698		struct net_device *dev;
 699
 700		rcu_read_lock();
 701		dev = dev_get_by_name_rcu(net, devname);
 702		if (dev)
 703			index = dev->ifindex;
 704		rcu_read_unlock();
 705		ret = -ENODEV;
 706		if (!dev)
 707			goto out;
 708	}
 709
 710	sockopt_lock_sock(sk);
 711	ret = sock_bindtoindex_locked(sk, index);
 712	sockopt_release_sock(sk);
 713out:
 714#endif
 715
 716	return ret;
 717}
 718
 719static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
 720				sockptr_t optlen, int len)
 721{
 722	int ret = -ENOPROTOOPT;
 723#ifdef CONFIG_NETDEVICES
 724	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
 725	struct net *net = sock_net(sk);
 726	char devname[IFNAMSIZ];
 727
 728	if (bound_dev_if == 0) {
 729		len = 0;
 730		goto zero;
 731	}
 732
 733	ret = -EINVAL;
 734	if (len < IFNAMSIZ)
 735		goto out;
 736
 737	ret = netdev_get_name(net, devname, bound_dev_if);
 738	if (ret)
 739		goto out;
 740
 741	len = strlen(devname) + 1;
 742
 743	ret = -EFAULT;
 744	if (copy_to_sockptr(optval, devname, len))
 745		goto out;
 746
 747zero:
 748	ret = -EFAULT;
 749	if (copy_to_sockptr(optlen, &len, sizeof(int)))
 750		goto out;
 751
 752	ret = 0;
 753
 754out:
 755#endif
 756
 757	return ret;
 758}
 759
 760bool sk_mc_loop(const struct sock *sk)
 761{
 762	if (dev_recursion_level())
 763		return false;
 764	if (!sk)
 765		return true;
 766	/* IPV6_ADDRFORM can change sk->sk_family under us. */
 767	switch (READ_ONCE(sk->sk_family)) {
 768	case AF_INET:
 769		return inet_test_bit(MC_LOOP, sk);
 770#if IS_ENABLED(CONFIG_IPV6)
 771	case AF_INET6:
 772		return inet6_test_bit(MC6_LOOP, sk);
 773#endif
 774	}
 775	WARN_ON_ONCE(1);
 776	return true;
 777}
 778EXPORT_SYMBOL(sk_mc_loop);
 779
 780void sock_set_reuseaddr(struct sock *sk)
 781{
 782	lock_sock(sk);
 783	sk->sk_reuse = SK_CAN_REUSE;
 784	release_sock(sk);
 785}
 786EXPORT_SYMBOL(sock_set_reuseaddr);
 787
 788void sock_set_reuseport(struct sock *sk)
 789{
 790	lock_sock(sk);
 791	sk->sk_reuseport = true;
 792	release_sock(sk);
 793}
 794EXPORT_SYMBOL(sock_set_reuseport);
 795
 796void sock_no_linger(struct sock *sk)
 797{
 798	lock_sock(sk);
 799	WRITE_ONCE(sk->sk_lingertime, 0);
 800	sock_set_flag(sk, SOCK_LINGER);
 801	release_sock(sk);
 802}
 803EXPORT_SYMBOL(sock_no_linger);
 804
 805void sock_set_priority(struct sock *sk, u32 priority)
 806{
 807	WRITE_ONCE(sk->sk_priority, priority);
 
 
 808}
 809EXPORT_SYMBOL(sock_set_priority);
 810
 811void sock_set_sndtimeo(struct sock *sk, s64 secs)
 812{
 813	lock_sock(sk);
 814	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 815		WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
 816	else
 817		WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
 818	release_sock(sk);
 819}
 820EXPORT_SYMBOL(sock_set_sndtimeo);
 821
 822static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 823{
 824	if (val)  {
 825		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 826		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
 827		sock_set_flag(sk, SOCK_RCVTSTAMP);
 828		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 829	} else {
 830		sock_reset_flag(sk, SOCK_RCVTSTAMP);
 831		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 832	}
 833}
 834
 835void sock_enable_timestamps(struct sock *sk)
 836{
 837	lock_sock(sk);
 838	__sock_set_timestamps(sk, true, false, true);
 839	release_sock(sk);
 840}
 841EXPORT_SYMBOL(sock_enable_timestamps);
 842
 843void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
 844{
 845	switch (optname) {
 846	case SO_TIMESTAMP_OLD:
 847		__sock_set_timestamps(sk, valbool, false, false);
 848		break;
 849	case SO_TIMESTAMP_NEW:
 850		__sock_set_timestamps(sk, valbool, true, false);
 851		break;
 852	case SO_TIMESTAMPNS_OLD:
 853		__sock_set_timestamps(sk, valbool, false, true);
 854		break;
 855	case SO_TIMESTAMPNS_NEW:
 856		__sock_set_timestamps(sk, valbool, true, true);
 857		break;
 858	}
 859}
 860
 861static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
 862{
 863	struct net *net = sock_net(sk);
 864	struct net_device *dev = NULL;
 865	bool match = false;
 866	int *vclock_index;
 867	int i, num;
 868
 869	if (sk->sk_bound_dev_if)
 870		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
 871
 872	if (!dev) {
 873		pr_err("%s: sock not bind to device\n", __func__);
 874		return -EOPNOTSUPP;
 875	}
 876
 877	num = ethtool_get_phc_vclocks(dev, &vclock_index);
 878	dev_put(dev);
 879
 880	for (i = 0; i < num; i++) {
 881		if (*(vclock_index + i) == phc_index) {
 882			match = true;
 883			break;
 884		}
 885	}
 886
 887	if (num > 0)
 888		kfree(vclock_index);
 889
 890	if (!match)
 891		return -EINVAL;
 892
 893	WRITE_ONCE(sk->sk_bind_phc, phc_index);
 894
 895	return 0;
 896}
 897
 898int sock_set_timestamping(struct sock *sk, int optname,
 899			  struct so_timestamping timestamping)
 900{
 901	int val = timestamping.flags;
 902	int ret;
 903
 904	if (val & ~SOF_TIMESTAMPING_MASK)
 905		return -EINVAL;
 906
 907	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
 908	    !(val & SOF_TIMESTAMPING_OPT_ID))
 909		return -EINVAL;
 910
 911	if (val & SOF_TIMESTAMPING_OPT_ID &&
 912	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 913		if (sk_is_tcp(sk)) {
 
 914			if ((1 << sk->sk_state) &
 915			    (TCPF_CLOSE | TCPF_LISTEN))
 916				return -EINVAL;
 917			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
 918				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
 919			else
 920				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
 921		} else {
 922			atomic_set(&sk->sk_tskey, 0);
 923		}
 924	}
 925
 926	if (val & SOF_TIMESTAMPING_OPT_STATS &&
 927	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
 928		return -EINVAL;
 929
 930	if (val & SOF_TIMESTAMPING_BIND_PHC) {
 931		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
 932		if (ret)
 933			return ret;
 934	}
 935
 936	WRITE_ONCE(sk->sk_tsflags, val);
 937	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
 938
 939	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 940		sock_enable_timestamp(sk,
 941				      SOCK_TIMESTAMPING_RX_SOFTWARE);
 942	else
 943		sock_disable_timestamp(sk,
 944				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 945	return 0;
 946}
 947
 948void sock_set_keepalive(struct sock *sk)
 949{
 950	lock_sock(sk);
 951	if (sk->sk_prot->keepalive)
 952		sk->sk_prot->keepalive(sk, true);
 953	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 954	release_sock(sk);
 955}
 956EXPORT_SYMBOL(sock_set_keepalive);
 957
 958static void __sock_set_rcvbuf(struct sock *sk, int val)
 959{
 960	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 961	 * as a negative value.
 962	 */
 963	val = min_t(int, val, INT_MAX / 2);
 964	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 965
 966	/* We double it on the way in to account for "struct sk_buff" etc.
 967	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 968	 * will allow that much actual data to be received on that socket.
 969	 *
 970	 * Applications are unaware that "struct sk_buff" and other overheads
 971	 * allocate from the receive buffer during socket buffer allocation.
 972	 *
 973	 * And after considering the possible alternatives, returning the value
 974	 * we actually used in getsockopt is the most desirable behavior.
 975	 */
 976	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 977}
 978
 979void sock_set_rcvbuf(struct sock *sk, int val)
 980{
 981	lock_sock(sk);
 982	__sock_set_rcvbuf(sk, val);
 983	release_sock(sk);
 984}
 985EXPORT_SYMBOL(sock_set_rcvbuf);
 986
 987static void __sock_set_mark(struct sock *sk, u32 val)
 988{
 989	if (val != sk->sk_mark) {
 990		WRITE_ONCE(sk->sk_mark, val);
 991		sk_dst_reset(sk);
 992	}
 993}
 994
 995void sock_set_mark(struct sock *sk, u32 val)
 996{
 997	lock_sock(sk);
 998	__sock_set_mark(sk, val);
 999	release_sock(sk);
1000}
1001EXPORT_SYMBOL(sock_set_mark);
1002
1003static void sock_release_reserved_memory(struct sock *sk, int bytes)
1004{
1005	/* Round down bytes to multiple of pages */
1006	bytes = round_down(bytes, PAGE_SIZE);
1007
1008	WARN_ON(bytes > sk->sk_reserved_mem);
1009	WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1010	sk_mem_reclaim(sk);
1011}
1012
1013static int sock_reserve_memory(struct sock *sk, int bytes)
1014{
1015	long allocated;
1016	bool charged;
1017	int pages;
1018
1019	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1020		return -EOPNOTSUPP;
1021
1022	if (!bytes)
1023		return 0;
1024
1025	pages = sk_mem_pages(bytes);
1026
1027	/* pre-charge to memcg */
1028	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1029					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1030	if (!charged)
1031		return -ENOMEM;
1032
1033	/* pre-charge to forward_alloc */
1034	sk_memory_allocated_add(sk, pages);
1035	allocated = sk_memory_allocated(sk);
1036	/* If the system goes into memory pressure with this
1037	 * precharge, give up and return error.
1038	 */
1039	if (allocated > sk_prot_mem_limits(sk, 1)) {
1040		sk_memory_allocated_sub(sk, pages);
1041		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1042		return -ENOMEM;
1043	}
1044	sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
1045
1046	WRITE_ONCE(sk->sk_reserved_mem,
1047		   sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1048
1049	return 0;
1050}
1051
1052void sockopt_lock_sock(struct sock *sk)
1053{
1054	/* When current->bpf_ctx is set, the setsockopt is called from
1055	 * a bpf prog.  bpf has ensured the sk lock has been
1056	 * acquired before calling setsockopt().
1057	 */
1058	if (has_current_bpf_ctx())
1059		return;
1060
1061	lock_sock(sk);
1062}
1063EXPORT_SYMBOL(sockopt_lock_sock);
1064
1065void sockopt_release_sock(struct sock *sk)
1066{
1067	if (has_current_bpf_ctx())
1068		return;
1069
1070	release_sock(sk);
1071}
1072EXPORT_SYMBOL(sockopt_release_sock);
1073
1074bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1075{
1076	return has_current_bpf_ctx() || ns_capable(ns, cap);
1077}
1078EXPORT_SYMBOL(sockopt_ns_capable);
1079
1080bool sockopt_capable(int cap)
1081{
1082	return has_current_bpf_ctx() || capable(cap);
1083}
1084EXPORT_SYMBOL(sockopt_capable);
1085
1086/*
1087 *	This is meant for all protocols to use and covers goings on
1088 *	at the socket level. Everything here is generic.
1089 */
1090
1091int sk_setsockopt(struct sock *sk, int level, int optname,
1092		  sockptr_t optval, unsigned int optlen)
1093{
1094	struct so_timestamping timestamping;
1095	struct socket *sock = sk->sk_socket;
1096	struct sock_txtime sk_txtime;
 
1097	int val;
1098	int valbool;
1099	struct linger ling;
1100	int ret = 0;
1101
1102	/*
1103	 *	Options without arguments
1104	 */
1105
1106	if (optname == SO_BINDTODEVICE)
1107		return sock_setbindtodevice(sk, optval, optlen);
1108
1109	if (optlen < sizeof(int))
1110		return -EINVAL;
1111
1112	if (copy_from_sockptr(&val, optval, sizeof(val)))
1113		return -EFAULT;
1114
1115	valbool = val ? 1 : 0;
1116
1117	/* handle options which do not require locking the socket. */
1118	switch (optname) {
1119	case SO_PRIORITY:
1120		if ((val >= 0 && val <= 6) ||
1121		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1122		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1123			sock_set_priority(sk, val);
1124			return 0;
1125		}
1126		return -EPERM;
1127	case SO_PASSSEC:
1128		assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
1129		return 0;
1130	case SO_PASSCRED:
1131		assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
1132		return 0;
1133	case SO_PASSPIDFD:
1134		assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
1135		return 0;
1136	case SO_TYPE:
1137	case SO_PROTOCOL:
1138	case SO_DOMAIN:
1139	case SO_ERROR:
1140		return -ENOPROTOOPT;
1141#ifdef CONFIG_NET_RX_BUSY_POLL
1142	case SO_BUSY_POLL:
1143		if (val < 0)
1144			return -EINVAL;
1145		WRITE_ONCE(sk->sk_ll_usec, val);
1146		return 0;
1147	case SO_PREFER_BUSY_POLL:
1148		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1149			return -EPERM;
1150		WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1151		return 0;
1152	case SO_BUSY_POLL_BUDGET:
1153		if (val > READ_ONCE(sk->sk_busy_poll_budget) &&
1154		    !sockopt_capable(CAP_NET_ADMIN))
1155			return -EPERM;
1156		if (val < 0 || val > U16_MAX)
1157			return -EINVAL;
1158		WRITE_ONCE(sk->sk_busy_poll_budget, val);
1159		return 0;
1160#endif
1161	case SO_MAX_PACING_RATE:
1162		{
1163		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1164		unsigned long pacing_rate;
1165
1166		if (sizeof(ulval) != sizeof(val) &&
1167		    optlen >= sizeof(ulval) &&
1168		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1169			return -EFAULT;
1170		}
1171		if (ulval != ~0UL)
1172			cmpxchg(&sk->sk_pacing_status,
1173				SK_PACING_NONE,
1174				SK_PACING_NEEDED);
1175		/* Pairs with READ_ONCE() from sk_getsockopt() */
1176		WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1177		pacing_rate = READ_ONCE(sk->sk_pacing_rate);
1178		if (ulval < pacing_rate)
1179			WRITE_ONCE(sk->sk_pacing_rate, ulval);
1180		return 0;
1181		}
1182	case SO_TXREHASH:
1183		if (val < -1 || val > 1)
1184			return -EINVAL;
1185		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1186			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1187		/* Paired with READ_ONCE() in tcp_rtx_synack()
1188		 * and sk_getsockopt().
1189		 */
1190		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1191		return 0;
1192	case SO_PEEK_OFF:
1193		{
1194		int (*set_peek_off)(struct sock *sk, int val);
1195
1196		set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
1197		if (set_peek_off)
1198			ret = set_peek_off(sk, val);
1199		else
1200			ret = -EOPNOTSUPP;
1201		return ret;
1202		}
1203	}
1204
1205	sockopt_lock_sock(sk);
1206
1207	switch (optname) {
1208	case SO_DEBUG:
1209		if (val && !sockopt_capable(CAP_NET_ADMIN))
1210			ret = -EACCES;
1211		else
1212			sock_valbool_flag(sk, SOCK_DBG, valbool);
1213		break;
1214	case SO_REUSEADDR:
1215		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1216		break;
1217	case SO_REUSEPORT:
1218		sk->sk_reuseport = valbool;
1219		break;
 
 
 
 
 
 
1220	case SO_DONTROUTE:
1221		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1222		sk_dst_reset(sk);
1223		break;
1224	case SO_BROADCAST:
1225		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1226		break;
1227	case SO_SNDBUF:
1228		/* Don't error on this BSD doesn't and if you think
1229		 * about it this is right. Otherwise apps have to
1230		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1231		 * are treated in BSD as hints
1232		 */
1233		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1234set_sndbuf:
1235		/* Ensure val * 2 fits into an int, to prevent max_t()
1236		 * from treating it as a negative value.
1237		 */
1238		val = min_t(int, val, INT_MAX / 2);
1239		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1240		WRITE_ONCE(sk->sk_sndbuf,
1241			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1242		/* Wake up sending tasks if we upped the value. */
1243		sk->sk_write_space(sk);
1244		break;
1245
1246	case SO_SNDBUFFORCE:
1247		if (!sockopt_capable(CAP_NET_ADMIN)) {
1248			ret = -EPERM;
1249			break;
1250		}
1251
1252		/* No negative values (to prevent underflow, as val will be
1253		 * multiplied by 2).
1254		 */
1255		if (val < 0)
1256			val = 0;
1257		goto set_sndbuf;
1258
1259	case SO_RCVBUF:
1260		/* Don't error on this BSD doesn't and if you think
1261		 * about it this is right. Otherwise apps have to
1262		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1263		 * are treated in BSD as hints
1264		 */
1265		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1266		break;
1267
1268	case SO_RCVBUFFORCE:
1269		if (!sockopt_capable(CAP_NET_ADMIN)) {
1270			ret = -EPERM;
1271			break;
1272		}
1273
1274		/* No negative values (to prevent underflow, as val will be
1275		 * multiplied by 2).
1276		 */
1277		__sock_set_rcvbuf(sk, max(val, 0));
1278		break;
1279
1280	case SO_KEEPALIVE:
1281		if (sk->sk_prot->keepalive)
1282			sk->sk_prot->keepalive(sk, valbool);
1283		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1284		break;
1285
1286	case SO_OOBINLINE:
1287		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1288		break;
1289
1290	case SO_NO_CHECK:
1291		sk->sk_no_check_tx = valbool;
1292		break;
1293
 
 
 
 
 
 
 
 
1294	case SO_LINGER:
1295		if (optlen < sizeof(ling)) {
1296			ret = -EINVAL;	/* 1003.1g */
1297			break;
1298		}
1299		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1300			ret = -EFAULT;
1301			break;
1302		}
1303		if (!ling.l_onoff) {
1304			sock_reset_flag(sk, SOCK_LINGER);
1305		} else {
1306			unsigned long t_sec = ling.l_linger;
1307
1308			if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1309				WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1310			else
1311				WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
 
1312			sock_set_flag(sk, SOCK_LINGER);
1313		}
1314		break;
1315
1316	case SO_BSDCOMPAT:
1317		break;
1318
 
 
 
 
 
 
 
1319	case SO_TIMESTAMP_OLD:
1320	case SO_TIMESTAMP_NEW:
1321	case SO_TIMESTAMPNS_OLD:
1322	case SO_TIMESTAMPNS_NEW:
1323		sock_set_timestamp(sk, optname, valbool);
1324		break;
1325
1326	case SO_TIMESTAMPING_NEW:
1327	case SO_TIMESTAMPING_OLD:
1328		if (optlen == sizeof(timestamping)) {
1329			if (copy_from_sockptr(&timestamping, optval,
1330					      sizeof(timestamping))) {
1331				ret = -EFAULT;
1332				break;
1333			}
1334		} else {
1335			memset(&timestamping, 0, sizeof(timestamping));
1336			timestamping.flags = val;
1337		}
1338		ret = sock_set_timestamping(sk, optname, timestamping);
1339		break;
1340
1341	case SO_RCVLOWAT:
1342		{
1343		int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
1344
1345		if (val < 0)
1346			val = INT_MAX;
1347		if (sock)
1348			set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
1349		if (set_rcvlowat)
1350			ret = set_rcvlowat(sk, val);
1351		else
1352			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1353		break;
1354		}
1355	case SO_RCVTIMEO_OLD:
1356	case SO_RCVTIMEO_NEW:
1357		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1358				       optlen, optname == SO_RCVTIMEO_OLD);
1359		break;
1360
1361	case SO_SNDTIMEO_OLD:
1362	case SO_SNDTIMEO_NEW:
1363		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1364				       optlen, optname == SO_SNDTIMEO_OLD);
1365		break;
1366
1367	case SO_ATTACH_FILTER: {
1368		struct sock_fprog fprog;
1369
1370		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1371		if (!ret)
1372			ret = sk_attach_filter(&fprog, sk);
1373		break;
1374	}
1375	case SO_ATTACH_BPF:
1376		ret = -EINVAL;
1377		if (optlen == sizeof(u32)) {
1378			u32 ufd;
1379
1380			ret = -EFAULT;
1381			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1382				break;
1383
1384			ret = sk_attach_bpf(ufd, sk);
1385		}
1386		break;
1387
1388	case SO_ATTACH_REUSEPORT_CBPF: {
1389		struct sock_fprog fprog;
1390
1391		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1392		if (!ret)
1393			ret = sk_reuseport_attach_filter(&fprog, sk);
1394		break;
1395	}
1396	case SO_ATTACH_REUSEPORT_EBPF:
1397		ret = -EINVAL;
1398		if (optlen == sizeof(u32)) {
1399			u32 ufd;
1400
1401			ret = -EFAULT;
1402			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1403				break;
1404
1405			ret = sk_reuseport_attach_bpf(ufd, sk);
1406		}
1407		break;
1408
1409	case SO_DETACH_REUSEPORT_BPF:
1410		ret = reuseport_detach_prog(sk);
1411		break;
1412
1413	case SO_DETACH_FILTER:
1414		ret = sk_detach_filter(sk);
1415		break;
1416
1417	case SO_LOCK_FILTER:
1418		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1419			ret = -EPERM;
1420		else
1421			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1422		break;
1423
 
 
 
 
 
 
1424	case SO_MARK:
1425		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1426		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1427			ret = -EPERM;
1428			break;
1429		}
1430
1431		__sock_set_mark(sk, val);
1432		break;
1433	case SO_RCVMARK:
1434		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1435		break;
1436
1437	case SO_RXQ_OVFL:
1438		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1439		break;
1440
1441	case SO_WIFI_STATUS:
1442		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1443		break;
1444
 
 
 
 
 
 
 
1445	case SO_NOFCS:
1446		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1447		break;
1448
1449	case SO_SELECT_ERR_QUEUE:
1450		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1451		break;
1452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1454	case SO_INCOMING_CPU:
1455		reuseport_update_incoming_cpu(sk, val);
1456		break;
1457
1458	case SO_CNX_ADVICE:
1459		if (val == 1)
1460			dst_negative_advice(sk);
1461		break;
1462
1463	case SO_ZEROCOPY:
1464		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1465			if (!(sk_is_tcp(sk) ||
 
1466			      (sk->sk_type == SOCK_DGRAM &&
1467			       sk->sk_protocol == IPPROTO_UDP)))
1468				ret = -EOPNOTSUPP;
1469		} else if (sk->sk_family != PF_RDS) {
1470			ret = -EOPNOTSUPP;
1471		}
1472		if (!ret) {
1473			if (val < 0 || val > 1)
1474				ret = -EINVAL;
1475			else
1476				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1477		}
1478		break;
1479
1480	case SO_TXTIME:
1481		if (optlen != sizeof(struct sock_txtime)) {
1482			ret = -EINVAL;
1483			break;
1484		} else if (copy_from_sockptr(&sk_txtime, optval,
1485			   sizeof(struct sock_txtime))) {
1486			ret = -EFAULT;
1487			break;
1488		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1489			ret = -EINVAL;
1490			break;
1491		}
1492		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1493		 * scheduler has enough safe guards.
1494		 */
1495		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1496		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1497			ret = -EPERM;
1498			break;
1499		}
1500		sock_valbool_flag(sk, SOCK_TXTIME, true);
1501		sk->sk_clockid = sk_txtime.clockid;
1502		sk->sk_txtime_deadline_mode =
1503			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1504		sk->sk_txtime_report_errors =
1505			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1506		break;
1507
1508	case SO_BINDTOIFINDEX:
1509		ret = sock_bindtoindex_locked(sk, val);
1510		break;
1511
1512	case SO_BUF_LOCK:
1513		if (val & ~SOCK_BUF_LOCK_MASK) {
1514			ret = -EINVAL;
1515			break;
1516		}
1517		sk->sk_userlocks = val | (sk->sk_userlocks &
1518					  ~SOCK_BUF_LOCK_MASK);
1519		break;
1520
1521	case SO_RESERVE_MEM:
1522	{
1523		int delta;
1524
1525		if (val < 0) {
1526			ret = -EINVAL;
1527			break;
1528		}
1529
1530		delta = val - sk->sk_reserved_mem;
1531		if (delta < 0)
1532			sock_release_reserved_memory(sk, -delta);
1533		else
1534			ret = sock_reserve_memory(sk, delta);
1535		break;
1536	}
1537
1538	default:
1539		ret = -ENOPROTOOPT;
1540		break;
1541	}
1542	sockopt_release_sock(sk);
1543	return ret;
1544}
1545
1546int sock_setsockopt(struct socket *sock, int level, int optname,
1547		    sockptr_t optval, unsigned int optlen)
1548{
1549	return sk_setsockopt(sock->sk, level, optname,
1550			     optval, optlen);
1551}
1552EXPORT_SYMBOL(sock_setsockopt);
1553
1554static const struct cred *sk_get_peer_cred(struct sock *sk)
1555{
1556	const struct cred *cred;
1557
1558	spin_lock(&sk->sk_peer_lock);
1559	cred = get_cred(sk->sk_peer_cred);
1560	spin_unlock(&sk->sk_peer_lock);
1561
1562	return cred;
1563}
1564
1565static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1566			  struct ucred *ucred)
1567{
1568	ucred->pid = pid_vnr(pid);
1569	ucred->uid = ucred->gid = -1;
1570	if (cred) {
1571		struct user_namespace *current_ns = current_user_ns();
1572
1573		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1574		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1575	}
1576}
1577
1578static int groups_to_user(sockptr_t dst, const struct group_info *src)
1579{
1580	struct user_namespace *user_ns = current_user_ns();
1581	int i;
1582
1583	for (i = 0; i < src->ngroups; i++) {
1584		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1585
1586		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1587			return -EFAULT;
1588	}
1589
1590	return 0;
1591}
1592
1593int sk_getsockopt(struct sock *sk, int level, int optname,
1594		  sockptr_t optval, sockptr_t optlen)
1595{
1596	struct socket *sock = sk->sk_socket;
1597
1598	union {
1599		int val;
1600		u64 val64;
1601		unsigned long ulval;
1602		struct linger ling;
1603		struct old_timeval32 tm32;
1604		struct __kernel_old_timeval tm;
1605		struct  __kernel_sock_timeval stm;
1606		struct sock_txtime txtime;
1607		struct so_timestamping timestamping;
1608	} v;
1609
1610	int lv = sizeof(int);
1611	int len;
1612
1613	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1614		return -EFAULT;
1615	if (len < 0)
1616		return -EINVAL;
1617
1618	memset(&v, 0, sizeof(v));
1619
1620	switch (optname) {
1621	case SO_DEBUG:
1622		v.val = sock_flag(sk, SOCK_DBG);
1623		break;
1624
1625	case SO_DONTROUTE:
1626		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1627		break;
1628
1629	case SO_BROADCAST:
1630		v.val = sock_flag(sk, SOCK_BROADCAST);
1631		break;
1632
1633	case SO_SNDBUF:
1634		v.val = READ_ONCE(sk->sk_sndbuf);
1635		break;
1636
1637	case SO_RCVBUF:
1638		v.val = READ_ONCE(sk->sk_rcvbuf);
1639		break;
1640
1641	case SO_REUSEADDR:
1642		v.val = sk->sk_reuse;
1643		break;
1644
1645	case SO_REUSEPORT:
1646		v.val = sk->sk_reuseport;
1647		break;
1648
1649	case SO_KEEPALIVE:
1650		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1651		break;
1652
1653	case SO_TYPE:
1654		v.val = sk->sk_type;
1655		break;
1656
1657	case SO_PROTOCOL:
1658		v.val = sk->sk_protocol;
1659		break;
1660
1661	case SO_DOMAIN:
1662		v.val = sk->sk_family;
1663		break;
1664
1665	case SO_ERROR:
1666		v.val = -sock_error(sk);
1667		if (v.val == 0)
1668			v.val = xchg(&sk->sk_err_soft, 0);
1669		break;
1670
1671	case SO_OOBINLINE:
1672		v.val = sock_flag(sk, SOCK_URGINLINE);
1673		break;
1674
1675	case SO_NO_CHECK:
1676		v.val = sk->sk_no_check_tx;
1677		break;
1678
1679	case SO_PRIORITY:
1680		v.val = READ_ONCE(sk->sk_priority);
1681		break;
1682
1683	case SO_LINGER:
1684		lv		= sizeof(v.ling);
1685		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1686		v.ling.l_linger	= READ_ONCE(sk->sk_lingertime) / HZ;
1687		break;
1688
1689	case SO_BSDCOMPAT:
1690		break;
1691
1692	case SO_TIMESTAMP_OLD:
1693		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1694				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1695				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1696		break;
1697
1698	case SO_TIMESTAMPNS_OLD:
1699		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1700		break;
1701
1702	case SO_TIMESTAMP_NEW:
1703		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1704		break;
1705
1706	case SO_TIMESTAMPNS_NEW:
1707		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1708		break;
1709
1710	case SO_TIMESTAMPING_OLD:
1711	case SO_TIMESTAMPING_NEW:
1712		lv = sizeof(v.timestamping);
1713		/* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
1714		 * returning the flags when they were set through the same option.
1715		 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
1716		 */
1717		if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
1718			v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1719			v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
1720		}
1721		break;
1722
1723	case SO_RCVTIMEO_OLD:
1724	case SO_RCVTIMEO_NEW:
1725		lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1726				      SO_RCVTIMEO_OLD == optname);
1727		break;
1728
1729	case SO_SNDTIMEO_OLD:
1730	case SO_SNDTIMEO_NEW:
1731		lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1732				      SO_SNDTIMEO_OLD == optname);
1733		break;
1734
1735	case SO_RCVLOWAT:
1736		v.val = READ_ONCE(sk->sk_rcvlowat);
1737		break;
1738
1739	case SO_SNDLOWAT:
1740		v.val = 1;
1741		break;
1742
1743	case SO_PASSCRED:
1744		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1745		break;
1746
1747	case SO_PASSPIDFD:
1748		v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1749		break;
1750
1751	case SO_PEERCRED:
1752	{
1753		struct ucred peercred;
1754		if (len > sizeof(peercred))
1755			len = sizeof(peercred);
1756
1757		spin_lock(&sk->sk_peer_lock);
1758		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1759		spin_unlock(&sk->sk_peer_lock);
1760
1761		if (copy_to_sockptr(optval, &peercred, len))
1762			return -EFAULT;
1763		goto lenout;
1764	}
1765
1766	case SO_PEERPIDFD:
1767	{
1768		struct pid *peer_pid;
1769		struct file *pidfd_file = NULL;
1770		int pidfd;
1771
1772		if (len > sizeof(pidfd))
1773			len = sizeof(pidfd);
1774
1775		spin_lock(&sk->sk_peer_lock);
1776		peer_pid = get_pid(sk->sk_peer_pid);
1777		spin_unlock(&sk->sk_peer_lock);
1778
1779		if (!peer_pid)
1780			return -ENODATA;
1781
1782		pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1783		put_pid(peer_pid);
1784		if (pidfd < 0)
1785			return pidfd;
1786
1787		if (copy_to_sockptr(optval, &pidfd, len) ||
1788		    copy_to_sockptr(optlen, &len, sizeof(int))) {
1789			put_unused_fd(pidfd);
1790			fput(pidfd_file);
1791
1792			return -EFAULT;
1793		}
1794
1795		fd_install(pidfd, pidfd_file);
1796		return 0;
1797	}
1798
1799	case SO_PEERGROUPS:
1800	{
1801		const struct cred *cred;
1802		int ret, n;
1803
1804		cred = sk_get_peer_cred(sk);
1805		if (!cred)
1806			return -ENODATA;
1807
1808		n = cred->group_info->ngroups;
1809		if (len < n * sizeof(gid_t)) {
1810			len = n * sizeof(gid_t);
1811			put_cred(cred);
1812			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1813		}
1814		len = n * sizeof(gid_t);
1815
1816		ret = groups_to_user(optval, cred->group_info);
1817		put_cred(cred);
1818		if (ret)
1819			return ret;
1820		goto lenout;
1821	}
1822
1823	case SO_PEERNAME:
1824	{
1825		struct sockaddr_storage address;
1826
1827		lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
1828		if (lv < 0)
1829			return -ENOTCONN;
1830		if (lv < len)
1831			return -EINVAL;
1832		if (copy_to_sockptr(optval, &address, len))
1833			return -EFAULT;
1834		goto lenout;
1835	}
1836
1837	/* Dubious BSD thing... Probably nobody even uses it, but
1838	 * the UNIX standard wants it for whatever reason... -DaveM
1839	 */
1840	case SO_ACCEPTCONN:
1841		v.val = sk->sk_state == TCP_LISTEN;
1842		break;
1843
1844	case SO_PASSSEC:
1845		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1846		break;
1847
1848	case SO_PEERSEC:
1849		return security_socket_getpeersec_stream(sock,
1850							 optval, optlen, len);
1851
1852	case SO_MARK:
1853		v.val = READ_ONCE(sk->sk_mark);
1854		break;
1855
1856	case SO_RCVMARK:
1857		v.val = sock_flag(sk, SOCK_RCVMARK);
1858		break;
1859
1860	case SO_RXQ_OVFL:
1861		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1862		break;
1863
1864	case SO_WIFI_STATUS:
1865		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1866		break;
1867
1868	case SO_PEEK_OFF:
1869		if (!READ_ONCE(sock->ops)->set_peek_off)
1870			return -EOPNOTSUPP;
1871
1872		v.val = READ_ONCE(sk->sk_peek_off);
1873		break;
1874	case SO_NOFCS:
1875		v.val = sock_flag(sk, SOCK_NOFCS);
1876		break;
1877
1878	case SO_BINDTODEVICE:
1879		return sock_getbindtodevice(sk, optval, optlen, len);
1880
1881	case SO_GET_FILTER:
1882		len = sk_get_filter(sk, optval, len);
1883		if (len < 0)
1884			return len;
1885
1886		goto lenout;
1887
1888	case SO_LOCK_FILTER:
1889		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1890		break;
1891
1892	case SO_BPF_EXTENSIONS:
1893		v.val = bpf_tell_extensions();
1894		break;
1895
1896	case SO_SELECT_ERR_QUEUE:
1897		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1898		break;
1899
1900#ifdef CONFIG_NET_RX_BUSY_POLL
1901	case SO_BUSY_POLL:
1902		v.val = READ_ONCE(sk->sk_ll_usec);
1903		break;
1904	case SO_PREFER_BUSY_POLL:
1905		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1906		break;
1907#endif
1908
1909	case SO_MAX_PACING_RATE:
1910		/* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1911		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1912			lv = sizeof(v.ulval);
1913			v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
1914		} else {
1915			/* 32bit version */
1916			v.val = min_t(unsigned long, ~0U,
1917				      READ_ONCE(sk->sk_max_pacing_rate));
1918		}
1919		break;
1920
1921	case SO_INCOMING_CPU:
1922		v.val = READ_ONCE(sk->sk_incoming_cpu);
1923		break;
1924
1925	case SO_MEMINFO:
1926	{
1927		u32 meminfo[SK_MEMINFO_VARS];
1928
1929		sk_get_meminfo(sk, meminfo);
1930
1931		len = min_t(unsigned int, len, sizeof(meminfo));
1932		if (copy_to_sockptr(optval, &meminfo, len))
1933			return -EFAULT;
1934
1935		goto lenout;
1936	}
1937
1938#ifdef CONFIG_NET_RX_BUSY_POLL
1939	case SO_INCOMING_NAPI_ID:
1940		v.val = READ_ONCE(sk->sk_napi_id);
1941
1942		/* aggregate non-NAPI IDs down to 0 */
1943		if (v.val < MIN_NAPI_ID)
1944			v.val = 0;
1945
1946		break;
1947#endif
1948
1949	case SO_COOKIE:
1950		lv = sizeof(u64);
1951		if (len < lv)
1952			return -EINVAL;
1953		v.val64 = sock_gen_cookie(sk);
1954		break;
1955
1956	case SO_ZEROCOPY:
1957		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1958		break;
1959
1960	case SO_TXTIME:
1961		lv = sizeof(v.txtime);
1962		v.txtime.clockid = sk->sk_clockid;
1963		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1964				  SOF_TXTIME_DEADLINE_MODE : 0;
1965		v.txtime.flags |= sk->sk_txtime_report_errors ?
1966				  SOF_TXTIME_REPORT_ERRORS : 0;
1967		break;
1968
1969	case SO_BINDTOIFINDEX:
1970		v.val = READ_ONCE(sk->sk_bound_dev_if);
1971		break;
1972
1973	case SO_NETNS_COOKIE:
1974		lv = sizeof(u64);
1975		if (len != lv)
1976			return -EINVAL;
1977		v.val64 = sock_net(sk)->net_cookie;
1978		break;
1979
1980	case SO_BUF_LOCK:
1981		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1982		break;
1983
1984	case SO_RESERVE_MEM:
1985		v.val = READ_ONCE(sk->sk_reserved_mem);
1986		break;
1987
1988	case SO_TXREHASH:
1989		/* Paired with WRITE_ONCE() in sk_setsockopt() */
1990		v.val = READ_ONCE(sk->sk_txrehash);
1991		break;
1992
1993	default:
1994		/* We implement the SO_SNDLOWAT etc to not be settable
1995		 * (1003.1g 7).
1996		 */
1997		return -ENOPROTOOPT;
1998	}
1999
2000	if (len > lv)
2001		len = lv;
2002	if (copy_to_sockptr(optval, &v, len))
2003		return -EFAULT;
2004lenout:
2005	if (copy_to_sockptr(optlen, &len, sizeof(int)))
2006		return -EFAULT;
2007	return 0;
2008}
2009
2010/*
2011 * Initialize an sk_lock.
2012 *
2013 * (We also register the sk_lock with the lock validator.)
2014 */
2015static inline void sock_lock_init(struct sock *sk)
2016{
2017	if (sk->sk_kern_sock)
2018		sock_lock_init_class_and_name(
2019			sk,
2020			af_family_kern_slock_key_strings[sk->sk_family],
2021			af_family_kern_slock_keys + sk->sk_family,
2022			af_family_kern_key_strings[sk->sk_family],
2023			af_family_kern_keys + sk->sk_family);
2024	else
2025		sock_lock_init_class_and_name(
2026			sk,
2027			af_family_slock_key_strings[sk->sk_family],
2028			af_family_slock_keys + sk->sk_family,
2029			af_family_key_strings[sk->sk_family],
2030			af_family_keys + sk->sk_family);
2031}
2032
2033/*
2034 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2035 * even temporarly, because of RCU lookups. sk_node should also be left as is.
2036 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2037 */
2038static void sock_copy(struct sock *nsk, const struct sock *osk)
2039{
2040	const struct proto *prot = READ_ONCE(osk->sk_prot);
2041#ifdef CONFIG_SECURITY_NETWORK
2042	void *sptr = nsk->sk_security;
2043#endif
2044
2045	/* If we move sk_tx_queue_mapping out of the private section,
2046	 * we must check if sk_tx_queue_clear() is called after
2047	 * sock_copy() in sk_clone_lock().
2048	 */
2049	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2050		     offsetof(struct sock, sk_dontcopy_begin) ||
2051		     offsetof(struct sock, sk_tx_queue_mapping) >=
2052		     offsetof(struct sock, sk_dontcopy_end));
2053
2054	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2055
2056	unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2057		      prot->obj_size - offsetof(struct sock, sk_dontcopy_end),
2058		      /* alloc is larger than struct, see sk_prot_alloc() */);
2059
2060#ifdef CONFIG_SECURITY_NETWORK
2061	nsk->sk_security = sptr;
2062	security_sk_clone(osk, nsk);
2063#endif
2064}
2065
2066static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2067		int family)
2068{
2069	struct sock *sk;
2070	struct kmem_cache *slab;
2071
2072	slab = prot->slab;
2073	if (slab != NULL) {
2074		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2075		if (!sk)
2076			return sk;
2077		if (want_init_on_alloc(priority))
2078			sk_prot_clear_nulls(sk, prot->obj_size);
2079	} else
2080		sk = kmalloc(prot->obj_size, priority);
2081
2082	if (sk != NULL) {
2083		if (security_sk_alloc(sk, family, priority))
2084			goto out_free;
2085
2086		if (!try_module_get(prot->owner))
2087			goto out_free_sec;
2088	}
2089
2090	return sk;
2091
2092out_free_sec:
2093	security_sk_free(sk);
2094out_free:
2095	if (slab != NULL)
2096		kmem_cache_free(slab, sk);
2097	else
2098		kfree(sk);
2099	return NULL;
2100}
2101
2102static void sk_prot_free(struct proto *prot, struct sock *sk)
2103{
2104	struct kmem_cache *slab;
2105	struct module *owner;
2106
2107	owner = prot->owner;
2108	slab = prot->slab;
2109
2110	cgroup_sk_free(&sk->sk_cgrp_data);
2111	mem_cgroup_sk_free(sk);
2112	security_sk_free(sk);
2113	if (slab != NULL)
2114		kmem_cache_free(slab, sk);
2115	else
2116		kfree(sk);
2117	module_put(owner);
2118}
2119
2120/**
2121 *	sk_alloc - All socket objects are allocated here
2122 *	@net: the applicable net namespace
2123 *	@family: protocol family
2124 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2125 *	@prot: struct proto associated with this new sock instance
2126 *	@kern: is this to be a kernel socket?
2127 */
2128struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2129		      struct proto *prot, int kern)
2130{
2131	struct sock *sk;
2132
2133	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2134	if (sk) {
2135		sk->sk_family = family;
2136		/*
2137		 * See comment in struct sock definition to understand
2138		 * why we need sk_prot_creator -acme
2139		 */
2140		sk->sk_prot = sk->sk_prot_creator = prot;
2141		sk->sk_kern_sock = kern;
2142		sock_lock_init(sk);
2143		sk->sk_net_refcnt = kern ? 0 : 1;
2144		if (likely(sk->sk_net_refcnt)) {
2145			get_net_track(net, &sk->ns_tracker, priority);
2146			sock_inuse_add(net, 1);
2147		} else {
2148			__netns_tracker_alloc(net, &sk->ns_tracker,
2149					      false, priority);
2150		}
2151
2152		sock_net_set(sk, net);
2153		refcount_set(&sk->sk_wmem_alloc, 1);
2154
2155		mem_cgroup_sk_alloc(sk);
2156		cgroup_sk_alloc(&sk->sk_cgrp_data);
2157		sock_update_classid(&sk->sk_cgrp_data);
2158		sock_update_netprioidx(&sk->sk_cgrp_data);
2159		sk_tx_queue_clear(sk);
2160	}
2161
2162	return sk;
2163}
2164EXPORT_SYMBOL(sk_alloc);
2165
2166/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2167 * grace period. This is the case for UDP sockets and TCP listeners.
2168 */
2169static void __sk_destruct(struct rcu_head *head)
2170{
2171	struct sock *sk = container_of(head, struct sock, sk_rcu);
2172	struct sk_filter *filter;
2173
2174	if (sk->sk_destruct)
2175		sk->sk_destruct(sk);
2176
2177	filter = rcu_dereference_check(sk->sk_filter,
2178				       refcount_read(&sk->sk_wmem_alloc) == 0);
2179	if (filter) {
2180		sk_filter_uncharge(sk, filter);
2181		RCU_INIT_POINTER(sk->sk_filter, NULL);
2182	}
2183
2184	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2185
2186#ifdef CONFIG_BPF_SYSCALL
2187	bpf_sk_storage_free(sk);
2188#endif
2189
2190	if (atomic_read(&sk->sk_omem_alloc))
2191		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2192			 __func__, atomic_read(&sk->sk_omem_alloc));
2193
2194	if (sk->sk_frag.page) {
2195		put_page(sk->sk_frag.page);
2196		sk->sk_frag.page = NULL;
2197	}
2198
2199	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2200	put_cred(sk->sk_peer_cred);
2201	put_pid(sk->sk_peer_pid);
2202
2203	if (likely(sk->sk_net_refcnt))
2204		put_net_track(sock_net(sk), &sk->ns_tracker);
2205	else
2206		__netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2207
2208	sk_prot_free(sk->sk_prot_creator, sk);
2209}
2210
2211void sk_destruct(struct sock *sk)
2212{
2213	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2214
2215	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2216		reuseport_detach_sock(sk);
2217		use_call_rcu = true;
2218	}
2219
2220	if (use_call_rcu)
2221		call_rcu(&sk->sk_rcu, __sk_destruct);
2222	else
2223		__sk_destruct(&sk->sk_rcu);
2224}
2225
2226static void __sk_free(struct sock *sk)
2227{
2228	if (likely(sk->sk_net_refcnt))
2229		sock_inuse_add(sock_net(sk), -1);
2230
2231	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2232		sock_diag_broadcast_destroy(sk);
2233	else
2234		sk_destruct(sk);
2235}
2236
2237void sk_free(struct sock *sk)
2238{
2239	/*
2240	 * We subtract one from sk_wmem_alloc and can know if
2241	 * some packets are still in some tx queue.
2242	 * If not null, sock_wfree() will call __sk_free(sk) later
2243	 */
2244	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2245		__sk_free(sk);
2246}
2247EXPORT_SYMBOL(sk_free);
2248
2249static void sk_init_common(struct sock *sk)
2250{
2251	skb_queue_head_init(&sk->sk_receive_queue);
2252	skb_queue_head_init(&sk->sk_write_queue);
2253	skb_queue_head_init(&sk->sk_error_queue);
2254
2255	rwlock_init(&sk->sk_callback_lock);
2256	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2257			af_rlock_keys + sk->sk_family,
2258			af_family_rlock_key_strings[sk->sk_family]);
2259	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2260			af_wlock_keys + sk->sk_family,
2261			af_family_wlock_key_strings[sk->sk_family]);
2262	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2263			af_elock_keys + sk->sk_family,
2264			af_family_elock_key_strings[sk->sk_family]);
2265	lockdep_set_class_and_name(&sk->sk_callback_lock,
2266			af_callback_keys + sk->sk_family,
2267			af_family_clock_key_strings[sk->sk_family]);
2268}
2269
2270/**
2271 *	sk_clone_lock - clone a socket, and lock its clone
2272 *	@sk: the socket to clone
2273 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2274 *
2275 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2276 */
2277struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2278{
2279	struct proto *prot = READ_ONCE(sk->sk_prot);
2280	struct sk_filter *filter;
2281	bool is_charged = true;
2282	struct sock *newsk;
2283
2284	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2285	if (!newsk)
2286		goto out;
2287
2288	sock_copy(newsk, sk);
2289
2290	newsk->sk_prot_creator = prot;
2291
2292	/* SANITY */
2293	if (likely(newsk->sk_net_refcnt)) {
2294		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2295		sock_inuse_add(sock_net(newsk), 1);
2296	} else {
2297		/* Kernel sockets are not elevating the struct net refcount.
2298		 * Instead, use a tracker to more easily detect if a layer
2299		 * is not properly dismantling its kernel sockets at netns
2300		 * destroy time.
2301		 */
2302		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2303				      false, priority);
2304	}
2305	sk_node_init(&newsk->sk_node);
2306	sock_lock_init(newsk);
2307	bh_lock_sock(newsk);
2308	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2309	newsk->sk_backlog.len = 0;
2310
2311	atomic_set(&newsk->sk_rmem_alloc, 0);
2312
2313	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2314	refcount_set(&newsk->sk_wmem_alloc, 1);
2315
2316	atomic_set(&newsk->sk_omem_alloc, 0);
2317	sk_init_common(newsk);
2318
2319	newsk->sk_dst_cache	= NULL;
2320	newsk->sk_dst_pending_confirm = 0;
2321	newsk->sk_wmem_queued	= 0;
2322	newsk->sk_forward_alloc = 0;
2323	newsk->sk_reserved_mem  = 0;
2324	atomic_set(&newsk->sk_drops, 0);
2325	newsk->sk_send_head	= NULL;
2326	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2327	atomic_set(&newsk->sk_zckey, 0);
2328
2329	sock_reset_flag(newsk, SOCK_DONE);
2330
2331	/* sk->sk_memcg will be populated at accept() time */
2332	newsk->sk_memcg = NULL;
2333
2334	cgroup_sk_clone(&newsk->sk_cgrp_data);
2335
2336	rcu_read_lock();
2337	filter = rcu_dereference(sk->sk_filter);
2338	if (filter != NULL)
2339		/* though it's an empty new sock, the charging may fail
2340		 * if sysctl_optmem_max was changed between creation of
2341		 * original socket and cloning
2342		 */
2343		is_charged = sk_filter_charge(newsk, filter);
2344	RCU_INIT_POINTER(newsk->sk_filter, filter);
2345	rcu_read_unlock();
2346
2347	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2348		/* We need to make sure that we don't uncharge the new
2349		 * socket if we couldn't charge it in the first place
2350		 * as otherwise we uncharge the parent's filter.
2351		 */
2352		if (!is_charged)
2353			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2354		sk_free_unlock_clone(newsk);
2355		newsk = NULL;
2356		goto out;
2357	}
2358	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2359
2360	if (bpf_sk_storage_clone(sk, newsk)) {
2361		sk_free_unlock_clone(newsk);
2362		newsk = NULL;
2363		goto out;
2364	}
2365
2366	/* Clear sk_user_data if parent had the pointer tagged
2367	 * as not suitable for copying when cloning.
2368	 */
2369	if (sk_user_data_is_nocopy(newsk))
2370		newsk->sk_user_data = NULL;
2371
2372	newsk->sk_err	   = 0;
2373	newsk->sk_err_soft = 0;
2374	newsk->sk_priority = 0;
2375	newsk->sk_incoming_cpu = raw_smp_processor_id();
 
 
2376
2377	/* Before updating sk_refcnt, we must commit prior changes to memory
2378	 * (Documentation/RCU/rculist_nulls.rst for details)
2379	 */
2380	smp_wmb();
2381	refcount_set(&newsk->sk_refcnt, 2);
2382
 
 
 
 
 
 
 
 
 
 
 
2383	sk_set_socket(newsk, NULL);
2384	sk_tx_queue_clear(newsk);
2385	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2386
2387	if (newsk->sk_prot->sockets_allocated)
2388		sk_sockets_allocated_inc(newsk);
2389
2390	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2391		net_enable_timestamp();
2392out:
2393	return newsk;
2394}
2395EXPORT_SYMBOL_GPL(sk_clone_lock);
2396
2397void sk_free_unlock_clone(struct sock *sk)
2398{
2399	/* It is still raw copy of parent, so invalidate
2400	 * destructor and make plain sk_free() */
2401	sk->sk_destruct = NULL;
2402	bh_unlock_sock(sk);
2403	sk_free(sk);
2404}
2405EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2406
2407static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2408{
2409	bool is_ipv6 = false;
2410	u32 max_size;
2411
2412#if IS_ENABLED(CONFIG_IPV6)
2413	is_ipv6 = (sk->sk_family == AF_INET6 &&
2414		   !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2415#endif
2416	/* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2417	max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2418			READ_ONCE(dst->dev->gso_ipv4_max_size);
2419	if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2420		max_size = GSO_LEGACY_MAX_SIZE;
2421
2422	return max_size - (MAX_TCP_HEADER + 1);
2423}
2424
2425void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2426{
2427	u32 max_segs = 1;
2428
2429	sk->sk_route_caps = dst->dev->features;
2430	if (sk_is_tcp(sk))
2431		sk->sk_route_caps |= NETIF_F_GSO;
2432	if (sk->sk_route_caps & NETIF_F_GSO)
2433		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2434	if (unlikely(sk->sk_gso_disabled))
2435		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2436	if (sk_can_gso(sk)) {
2437		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2438			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2439		} else {
2440			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2441			sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2442			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2443			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2444		}
2445	}
2446	sk->sk_gso_max_segs = max_segs;
2447	sk_dst_set(sk, dst);
2448}
2449EXPORT_SYMBOL_GPL(sk_setup_caps);
2450
2451/*
2452 *	Simple resource managers for sockets.
2453 */
2454
2455
2456/*
2457 * Write buffer destructor automatically called from kfree_skb.
2458 */
2459void sock_wfree(struct sk_buff *skb)
2460{
2461	struct sock *sk = skb->sk;
2462	unsigned int len = skb->truesize;
2463	bool free;
2464
2465	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2466		if (sock_flag(sk, SOCK_RCU_FREE) &&
2467		    sk->sk_write_space == sock_def_write_space) {
2468			rcu_read_lock();
2469			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2470			sock_def_write_space_wfree(sk);
2471			rcu_read_unlock();
2472			if (unlikely(free))
2473				__sk_free(sk);
2474			return;
2475		}
2476
2477		/*
2478		 * Keep a reference on sk_wmem_alloc, this will be released
2479		 * after sk_write_space() call
2480		 */
2481		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2482		sk->sk_write_space(sk);
2483		len = 1;
2484	}
2485	/*
2486	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2487	 * could not do because of in-flight packets
2488	 */
2489	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2490		__sk_free(sk);
2491}
2492EXPORT_SYMBOL(sock_wfree);
2493
2494/* This variant of sock_wfree() is used by TCP,
2495 * since it sets SOCK_USE_WRITE_QUEUE.
2496 */
2497void __sock_wfree(struct sk_buff *skb)
2498{
2499	struct sock *sk = skb->sk;
2500
2501	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2502		__sk_free(sk);
2503}
2504
2505void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2506{
2507	skb_orphan(skb);
2508	skb->sk = sk;
2509#ifdef CONFIG_INET
2510	if (unlikely(!sk_fullsock(sk))) {
2511		skb->destructor = sock_edemux;
2512		sock_hold(sk);
2513		return;
2514	}
2515#endif
2516	skb->destructor = sock_wfree;
2517	skb_set_hash_from_sk(skb, sk);
2518	/*
2519	 * We used to take a refcount on sk, but following operation
2520	 * is enough to guarantee sk_free() wont free this sock until
2521	 * all in-flight packets are completed
2522	 */
2523	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2524}
2525EXPORT_SYMBOL(skb_set_owner_w);
2526
2527static bool can_skb_orphan_partial(const struct sk_buff *skb)
2528{
2529#ifdef CONFIG_TLS_DEVICE
2530	/* Drivers depend on in-order delivery for crypto offload,
2531	 * partial orphan breaks out-of-order-OK logic.
2532	 */
2533	if (skb->decrypted)
2534		return false;
2535#endif
2536	return (skb->destructor == sock_wfree ||
2537		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2538}
2539
2540/* This helper is used by netem, as it can hold packets in its
2541 * delay queue. We want to allow the owner socket to send more
2542 * packets, as if they were already TX completed by a typical driver.
2543 * But we also want to keep skb->sk set because some packet schedulers
2544 * rely on it (sch_fq for example).
2545 */
2546void skb_orphan_partial(struct sk_buff *skb)
2547{
2548	if (skb_is_tcp_pure_ack(skb))
2549		return;
2550
2551	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2552		return;
2553
2554	skb_orphan(skb);
2555}
2556EXPORT_SYMBOL(skb_orphan_partial);
2557
2558/*
2559 * Read buffer destructor automatically called from kfree_skb.
2560 */
2561void sock_rfree(struct sk_buff *skb)
2562{
2563	struct sock *sk = skb->sk;
2564	unsigned int len = skb->truesize;
2565
2566	atomic_sub(len, &sk->sk_rmem_alloc);
2567	sk_mem_uncharge(sk, len);
2568}
2569EXPORT_SYMBOL(sock_rfree);
2570
2571/*
2572 * Buffer destructor for skbs that are not used directly in read or write
2573 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2574 */
2575void sock_efree(struct sk_buff *skb)
2576{
2577	sock_put(skb->sk);
2578}
2579EXPORT_SYMBOL(sock_efree);
2580
2581/* Buffer destructor for prefetch/receive path where reference count may
2582 * not be held, e.g. for listen sockets.
2583 */
2584#ifdef CONFIG_INET
2585void sock_pfree(struct sk_buff *skb)
2586{
2587	struct sock *sk = skb->sk;
2588
2589	if (!sk_is_refcounted(sk))
2590		return;
2591
2592	if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) {
2593		inet_reqsk(sk)->rsk_listener = NULL;
2594		reqsk_free(inet_reqsk(sk));
2595		return;
2596	}
2597
2598	sock_gen_put(sk);
2599}
2600EXPORT_SYMBOL(sock_pfree);
2601#endif /* CONFIG_INET */
2602
2603kuid_t sock_i_uid(struct sock *sk)
2604{
2605	kuid_t uid;
2606
2607	read_lock_bh(&sk->sk_callback_lock);
2608	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2609	read_unlock_bh(&sk->sk_callback_lock);
2610	return uid;
2611}
2612EXPORT_SYMBOL(sock_i_uid);
2613
2614unsigned long __sock_i_ino(struct sock *sk)
2615{
2616	unsigned long ino;
2617
2618	read_lock(&sk->sk_callback_lock);
2619	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2620	read_unlock(&sk->sk_callback_lock);
2621	return ino;
2622}
2623EXPORT_SYMBOL(__sock_i_ino);
2624
2625unsigned long sock_i_ino(struct sock *sk)
2626{
2627	unsigned long ino;
2628
2629	local_bh_disable();
2630	ino = __sock_i_ino(sk);
2631	local_bh_enable();
2632	return ino;
2633}
2634EXPORT_SYMBOL(sock_i_ino);
2635
2636/*
2637 * Allocate a skb from the socket's send buffer.
2638 */
2639struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2640			     gfp_t priority)
2641{
2642	if (force ||
2643	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2644		struct sk_buff *skb = alloc_skb(size, priority);
2645
2646		if (skb) {
2647			skb_set_owner_w(skb, sk);
2648			return skb;
2649		}
2650	}
2651	return NULL;
2652}
2653EXPORT_SYMBOL(sock_wmalloc);
2654
2655static void sock_ofree(struct sk_buff *skb)
2656{
2657	struct sock *sk = skb->sk;
2658
2659	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2660}
2661
2662struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2663			     gfp_t priority)
2664{
2665	struct sk_buff *skb;
2666
2667	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2668	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2669	    READ_ONCE(sock_net(sk)->core.sysctl_optmem_max))
2670		return NULL;
2671
2672	skb = alloc_skb(size, priority);
2673	if (!skb)
2674		return NULL;
2675
2676	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2677	skb->sk = sk;
2678	skb->destructor = sock_ofree;
2679	return skb;
2680}
2681
2682/*
2683 * Allocate a memory block from the socket's option memory buffer.
2684 */
2685void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2686{
2687	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
2688
2689	if ((unsigned int)size <= optmem_max &&
2690	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2691		void *mem;
2692		/* First do the add, to avoid the race if kmalloc
2693		 * might sleep.
2694		 */
2695		atomic_add(size, &sk->sk_omem_alloc);
2696		mem = kmalloc(size, priority);
2697		if (mem)
2698			return mem;
2699		atomic_sub(size, &sk->sk_omem_alloc);
2700	}
2701	return NULL;
2702}
2703EXPORT_SYMBOL(sock_kmalloc);
2704
2705/* Free an option memory block. Note, we actually want the inline
2706 * here as this allows gcc to detect the nullify and fold away the
2707 * condition entirely.
2708 */
2709static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2710				  const bool nullify)
2711{
2712	if (WARN_ON_ONCE(!mem))
2713		return;
2714	if (nullify)
2715		kfree_sensitive(mem);
2716	else
2717		kfree(mem);
2718	atomic_sub(size, &sk->sk_omem_alloc);
2719}
2720
2721void sock_kfree_s(struct sock *sk, void *mem, int size)
2722{
2723	__sock_kfree_s(sk, mem, size, false);
2724}
2725EXPORT_SYMBOL(sock_kfree_s);
2726
2727void sock_kzfree_s(struct sock *sk, void *mem, int size)
2728{
2729	__sock_kfree_s(sk, mem, size, true);
2730}
2731EXPORT_SYMBOL(sock_kzfree_s);
2732
2733/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2734   I think, these locks should be removed for datagram sockets.
2735 */
2736static long sock_wait_for_wmem(struct sock *sk, long timeo)
2737{
2738	DEFINE_WAIT(wait);
2739
2740	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2741	for (;;) {
2742		if (!timeo)
2743			break;
2744		if (signal_pending(current))
2745			break;
2746		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2747		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2748		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2749			break;
2750		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2751			break;
2752		if (READ_ONCE(sk->sk_err))
2753			break;
2754		timeo = schedule_timeout(timeo);
2755	}
2756	finish_wait(sk_sleep(sk), &wait);
2757	return timeo;
2758}
2759
2760
2761/*
2762 *	Generic send/receive buffer handlers
2763 */
2764
2765struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2766				     unsigned long data_len, int noblock,
2767				     int *errcode, int max_page_order)
2768{
2769	struct sk_buff *skb;
2770	long timeo;
2771	int err;
2772
2773	timeo = sock_sndtimeo(sk, noblock);
2774	for (;;) {
2775		err = sock_error(sk);
2776		if (err != 0)
2777			goto failure;
2778
2779		err = -EPIPE;
2780		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2781			goto failure;
2782
2783		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2784			break;
2785
2786		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2787		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2788		err = -EAGAIN;
2789		if (!timeo)
2790			goto failure;
2791		if (signal_pending(current))
2792			goto interrupted;
2793		timeo = sock_wait_for_wmem(sk, timeo);
2794	}
2795	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2796				   errcode, sk->sk_allocation);
2797	if (skb)
2798		skb_set_owner_w(skb, sk);
2799	return skb;
2800
2801interrupted:
2802	err = sock_intr_errno(timeo);
2803failure:
2804	*errcode = err;
2805	return NULL;
2806}
2807EXPORT_SYMBOL(sock_alloc_send_pskb);
2808
2809int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
 
 
 
 
 
 
 
2810		     struct sockcm_cookie *sockc)
2811{
2812	u32 tsflags;
2813
2814	switch (cmsg->cmsg_type) {
2815	case SO_MARK:
2816		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2817		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2818			return -EPERM;
2819		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2820			return -EINVAL;
2821		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2822		break;
2823	case SO_TIMESTAMPING_OLD:
2824	case SO_TIMESTAMPING_NEW:
2825		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2826			return -EINVAL;
2827
2828		tsflags = *(u32 *)CMSG_DATA(cmsg);
2829		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2830			return -EINVAL;
2831
2832		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2833		sockc->tsflags |= tsflags;
2834		break;
2835	case SCM_TXTIME:
2836		if (!sock_flag(sk, SOCK_TXTIME))
2837			return -EINVAL;
2838		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2839			return -EINVAL;
2840		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2841		break;
2842	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2843	case SCM_RIGHTS:
2844	case SCM_CREDENTIALS:
2845		break;
2846	default:
2847		return -EINVAL;
2848	}
2849	return 0;
2850}
2851EXPORT_SYMBOL(__sock_cmsg_send);
2852
2853int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2854		   struct sockcm_cookie *sockc)
2855{
2856	struct cmsghdr *cmsg;
2857	int ret;
2858
2859	for_each_cmsghdr(cmsg, msg) {
2860		if (!CMSG_OK(msg, cmsg))
2861			return -EINVAL;
2862		if (cmsg->cmsg_level != SOL_SOCKET)
2863			continue;
2864		ret = __sock_cmsg_send(sk, cmsg, sockc);
2865		if (ret)
2866			return ret;
2867	}
2868	return 0;
2869}
2870EXPORT_SYMBOL(sock_cmsg_send);
2871
2872static void sk_enter_memory_pressure(struct sock *sk)
2873{
2874	if (!sk->sk_prot->enter_memory_pressure)
2875		return;
2876
2877	sk->sk_prot->enter_memory_pressure(sk);
2878}
2879
2880static void sk_leave_memory_pressure(struct sock *sk)
2881{
2882	if (sk->sk_prot->leave_memory_pressure) {
2883		INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
2884				     tcp_leave_memory_pressure, sk);
2885	} else {
2886		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2887
2888		if (memory_pressure && READ_ONCE(*memory_pressure))
2889			WRITE_ONCE(*memory_pressure, 0);
2890	}
2891}
2892
 
2893DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2894
2895/**
2896 * skb_page_frag_refill - check that a page_frag contains enough room
2897 * @sz: minimum size of the fragment we want to get
2898 * @pfrag: pointer to page_frag
2899 * @gfp: priority for memory allocation
2900 *
2901 * Note: While this allocator tries to use high order pages, there is
2902 * no guarantee that allocations succeed. Therefore, @sz MUST be
2903 * less or equal than PAGE_SIZE.
2904 */
2905bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2906{
2907	if (pfrag->page) {
2908		if (page_ref_count(pfrag->page) == 1) {
2909			pfrag->offset = 0;
2910			return true;
2911		}
2912		if (pfrag->offset + sz <= pfrag->size)
2913			return true;
2914		put_page(pfrag->page);
2915	}
2916
2917	pfrag->offset = 0;
2918	if (SKB_FRAG_PAGE_ORDER &&
2919	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2920		/* Avoid direct reclaim but allow kswapd to wake */
2921		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2922					  __GFP_COMP | __GFP_NOWARN |
2923					  __GFP_NORETRY,
2924					  SKB_FRAG_PAGE_ORDER);
2925		if (likely(pfrag->page)) {
2926			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2927			return true;
2928		}
2929	}
2930	pfrag->page = alloc_page(gfp);
2931	if (likely(pfrag->page)) {
2932		pfrag->size = PAGE_SIZE;
2933		return true;
2934	}
2935	return false;
2936}
2937EXPORT_SYMBOL(skb_page_frag_refill);
2938
2939bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2940{
2941	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2942		return true;
2943
2944	sk_enter_memory_pressure(sk);
2945	sk_stream_moderate_sndbuf(sk);
2946	return false;
2947}
2948EXPORT_SYMBOL(sk_page_frag_refill);
2949
2950void __lock_sock(struct sock *sk)
2951	__releases(&sk->sk_lock.slock)
2952	__acquires(&sk->sk_lock.slock)
2953{
2954	DEFINE_WAIT(wait);
2955
2956	for (;;) {
2957		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2958					TASK_UNINTERRUPTIBLE);
2959		spin_unlock_bh(&sk->sk_lock.slock);
2960		schedule();
2961		spin_lock_bh(&sk->sk_lock.slock);
2962		if (!sock_owned_by_user(sk))
2963			break;
2964	}
2965	finish_wait(&sk->sk_lock.wq, &wait);
2966}
2967
2968void __release_sock(struct sock *sk)
2969	__releases(&sk->sk_lock.slock)
2970	__acquires(&sk->sk_lock.slock)
2971{
2972	struct sk_buff *skb, *next;
2973
2974	while ((skb = sk->sk_backlog.head) != NULL) {
2975		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2976
2977		spin_unlock_bh(&sk->sk_lock.slock);
2978
2979		do {
2980			next = skb->next;
2981			prefetch(next);
2982			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2983			skb_mark_not_on_list(skb);
2984			sk_backlog_rcv(sk, skb);
2985
2986			cond_resched();
2987
2988			skb = next;
2989		} while (skb != NULL);
2990
2991		spin_lock_bh(&sk->sk_lock.slock);
2992	}
2993
2994	/*
2995	 * Doing the zeroing here guarantee we can not loop forever
2996	 * while a wild producer attempts to flood us.
2997	 */
2998	sk->sk_backlog.len = 0;
2999}
3000
3001void __sk_flush_backlog(struct sock *sk)
3002{
3003	spin_lock_bh(&sk->sk_lock.slock);
3004	__release_sock(sk);
3005
3006	if (sk->sk_prot->release_cb)
3007		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3008				     tcp_release_cb, sk);
3009
3010	spin_unlock_bh(&sk->sk_lock.slock);
3011}
3012EXPORT_SYMBOL_GPL(__sk_flush_backlog);
3013
3014/**
3015 * sk_wait_data - wait for data to arrive at sk_receive_queue
3016 * @sk:    sock to wait on
3017 * @timeo: for how long
3018 * @skb:   last skb seen on sk_receive_queue
3019 *
3020 * Now socket state including sk->sk_err is changed only under lock,
3021 * hence we may omit checks after joining wait queue.
3022 * We check receive queue before schedule() only as optimization;
3023 * it is very likely that release_sock() added new data.
3024 */
3025int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3026{
3027	DEFINE_WAIT_FUNC(wait, woken_wake_function);
3028	int rc;
3029
3030	add_wait_queue(sk_sleep(sk), &wait);
3031	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3032	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3033	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3034	remove_wait_queue(sk_sleep(sk), &wait);
3035	return rc;
3036}
3037EXPORT_SYMBOL(sk_wait_data);
3038
3039/**
3040 *	__sk_mem_raise_allocated - increase memory_allocated
3041 *	@sk: socket
3042 *	@size: memory size to allocate
3043 *	@amt: pages to allocate
3044 *	@kind: allocation type
3045 *
3046 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc.
3047 *
3048 *	Unlike the globally shared limits among the sockets under same protocol,
3049 *	consuming the budget of a memcg won't have direct effect on other ones.
3050 *	So be optimistic about memcg's tolerance, and leave the callers to decide
3051 *	whether or not to raise allocated through sk_under_memory_pressure() or
3052 *	its variants.
3053 */
3054int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3055{
3056	struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL;
3057	struct proto *prot = sk->sk_prot;
3058	bool charged = false;
3059	long allocated;
3060
3061	sk_memory_allocated_add(sk, amt);
3062	allocated = sk_memory_allocated(sk);
3063
3064	if (memcg) {
3065		if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge()))
3066			goto suppress_allocation;
3067		charged = true;
3068	}
3069
3070	/* Under limit. */
3071	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3072		sk_leave_memory_pressure(sk);
3073		return 1;
3074	}
3075
3076	/* Under pressure. */
3077	if (allocated > sk_prot_mem_limits(sk, 1))
3078		sk_enter_memory_pressure(sk);
3079
3080	/* Over hard limit. */
3081	if (allocated > sk_prot_mem_limits(sk, 2))
3082		goto suppress_allocation;
3083
3084	/* Guarantee minimum buffer size under pressure (either global
3085	 * or memcg) to make sure features described in RFC 7323 (TCP
3086	 * Extensions for High Performance) work properly.
3087	 *
3088	 * This rule does NOT stand when exceeds global or memcg's hard
3089	 * limit, or else a DoS attack can be taken place by spawning
3090	 * lots of sockets whose usage are under minimum buffer size.
3091	 */
3092	if (kind == SK_MEM_RECV) {
3093		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3094			return 1;
3095
3096	} else { /* SK_MEM_SEND */
3097		int wmem0 = sk_get_wmem0(sk, prot);
3098
3099		if (sk->sk_type == SOCK_STREAM) {
3100			if (sk->sk_wmem_queued < wmem0)
3101				return 1;
3102		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3103				return 1;
3104		}
3105	}
3106
3107	if (sk_has_memory_pressure(sk)) {
3108		u64 alloc;
3109
3110		/* The following 'average' heuristic is within the
3111		 * scope of global accounting, so it only makes
3112		 * sense for global memory pressure.
3113		 */
3114		if (!sk_under_global_memory_pressure(sk))
3115			return 1;
3116
3117		/* Try to be fair among all the sockets under global
3118		 * pressure by allowing the ones that below average
3119		 * usage to raise.
3120		 */
3121		alloc = sk_sockets_allocated_read_positive(sk);
3122		if (sk_prot_mem_limits(sk, 2) > alloc *
3123		    sk_mem_pages(sk->sk_wmem_queued +
3124				 atomic_read(&sk->sk_rmem_alloc) +
3125				 sk->sk_forward_alloc))
3126			return 1;
3127	}
3128
3129suppress_allocation:
3130
3131	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3132		sk_stream_moderate_sndbuf(sk);
3133
3134		/* Fail only if socket is _under_ its sndbuf.
3135		 * In this case we cannot block, so that we have to fail.
3136		 */
3137		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3138			/* Force charge with __GFP_NOFAIL */
3139			if (memcg && !charged) {
3140				mem_cgroup_charge_skmem(memcg, amt,
3141					gfp_memcg_charge() | __GFP_NOFAIL);
3142			}
3143			return 1;
3144		}
3145	}
3146
3147	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3148		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3149
3150	sk_memory_allocated_sub(sk, amt);
3151
3152	if (charged)
3153		mem_cgroup_uncharge_skmem(memcg, amt);
3154
3155	return 0;
3156}
 
3157
3158/**
3159 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3160 *	@sk: socket
3161 *	@size: memory size to allocate
3162 *	@kind: allocation type
3163 *
3164 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3165 *	rmem allocation. This function assumes that protocols which have
3166 *	memory_pressure use sk_wmem_queued as write buffer accounting.
3167 */
3168int __sk_mem_schedule(struct sock *sk, int size, int kind)
3169{
3170	int ret, amt = sk_mem_pages(size);
3171
3172	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3173	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3174	if (!ret)
3175		sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
3176	return ret;
3177}
3178EXPORT_SYMBOL(__sk_mem_schedule);
3179
3180/**
3181 *	__sk_mem_reduce_allocated - reclaim memory_allocated
3182 *	@sk: socket
3183 *	@amount: number of quanta
3184 *
3185 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3186 */
3187void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3188{
3189	sk_memory_allocated_sub(sk, amount);
3190
3191	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3192		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3193
3194	if (sk_under_global_memory_pressure(sk) &&
3195	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3196		sk_leave_memory_pressure(sk);
3197}
 
3198
3199/**
3200 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3201 *	@sk: socket
3202 *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3203 */
3204void __sk_mem_reclaim(struct sock *sk, int amount)
3205{
3206	amount >>= PAGE_SHIFT;
3207	sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
3208	__sk_mem_reduce_allocated(sk, amount);
3209}
3210EXPORT_SYMBOL(__sk_mem_reclaim);
3211
3212int sk_set_peek_off(struct sock *sk, int val)
3213{
3214	WRITE_ONCE(sk->sk_peek_off, val);
3215	return 0;
3216}
3217EXPORT_SYMBOL_GPL(sk_set_peek_off);
3218
3219/*
3220 * Set of default routines for initialising struct proto_ops when
3221 * the protocol does not support a particular function. In certain
3222 * cases where it makes no sense for a protocol to have a "do nothing"
3223 * function, some default processing is provided.
3224 */
3225
3226int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3227{
3228	return -EOPNOTSUPP;
3229}
3230EXPORT_SYMBOL(sock_no_bind);
3231
3232int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3233		    int len, int flags)
3234{
3235	return -EOPNOTSUPP;
3236}
3237EXPORT_SYMBOL(sock_no_connect);
3238
3239int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3240{
3241	return -EOPNOTSUPP;
3242}
3243EXPORT_SYMBOL(sock_no_socketpair);
3244
3245int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3246		   bool kern)
3247{
3248	return -EOPNOTSUPP;
3249}
3250EXPORT_SYMBOL(sock_no_accept);
3251
3252int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3253		    int peer)
3254{
3255	return -EOPNOTSUPP;
3256}
3257EXPORT_SYMBOL(sock_no_getname);
3258
3259int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3260{
3261	return -EOPNOTSUPP;
3262}
3263EXPORT_SYMBOL(sock_no_ioctl);
3264
3265int sock_no_listen(struct socket *sock, int backlog)
3266{
3267	return -EOPNOTSUPP;
3268}
3269EXPORT_SYMBOL(sock_no_listen);
3270
3271int sock_no_shutdown(struct socket *sock, int how)
3272{
3273	return -EOPNOTSUPP;
3274}
3275EXPORT_SYMBOL(sock_no_shutdown);
3276
3277int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3278{
3279	return -EOPNOTSUPP;
3280}
3281EXPORT_SYMBOL(sock_no_sendmsg);
3282
3283int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3284{
3285	return -EOPNOTSUPP;
3286}
3287EXPORT_SYMBOL(sock_no_sendmsg_locked);
3288
3289int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3290		    int flags)
3291{
3292	return -EOPNOTSUPP;
3293}
3294EXPORT_SYMBOL(sock_no_recvmsg);
3295
3296int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3297{
3298	/* Mirror missing mmap method error code */
3299	return -ENODEV;
3300}
3301EXPORT_SYMBOL(sock_no_mmap);
3302
3303/*
3304 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3305 * various sock-based usage counts.
3306 */
3307void __receive_sock(struct file *file)
3308{
3309	struct socket *sock;
3310
3311	sock = sock_from_file(file);
3312	if (sock) {
3313		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3314		sock_update_classid(&sock->sk->sk_cgrp_data);
3315	}
3316}
3317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3318/*
3319 *	Default Socket Callbacks
3320 */
3321
3322static void sock_def_wakeup(struct sock *sk)
3323{
3324	struct socket_wq *wq;
3325
3326	rcu_read_lock();
3327	wq = rcu_dereference(sk->sk_wq);
3328	if (skwq_has_sleeper(wq))
3329		wake_up_interruptible_all(&wq->wait);
3330	rcu_read_unlock();
3331}
3332
3333static void sock_def_error_report(struct sock *sk)
3334{
3335	struct socket_wq *wq;
3336
3337	rcu_read_lock();
3338	wq = rcu_dereference(sk->sk_wq);
3339	if (skwq_has_sleeper(wq))
3340		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3341	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3342	rcu_read_unlock();
3343}
3344
3345void sock_def_readable(struct sock *sk)
3346{
3347	struct socket_wq *wq;
3348
3349	trace_sk_data_ready(sk);
3350
3351	rcu_read_lock();
3352	wq = rcu_dereference(sk->sk_wq);
3353	if (skwq_has_sleeper(wq))
3354		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3355						EPOLLRDNORM | EPOLLRDBAND);
3356	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3357	rcu_read_unlock();
3358}
3359
3360static void sock_def_write_space(struct sock *sk)
3361{
3362	struct socket_wq *wq;
3363
3364	rcu_read_lock();
3365
3366	/* Do not wake up a writer until he can make "significant"
3367	 * progress.  --DaveM
3368	 */
3369	if (sock_writeable(sk)) {
3370		wq = rcu_dereference(sk->sk_wq);
3371		if (skwq_has_sleeper(wq))
3372			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3373						EPOLLWRNORM | EPOLLWRBAND);
3374
3375		/* Should agree with poll, otherwise some programs break */
3376		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
 
3377	}
3378
3379	rcu_read_unlock();
3380}
3381
3382/* An optimised version of sock_def_write_space(), should only be called
3383 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3384 * ->sk_wmem_alloc.
3385 */
3386static void sock_def_write_space_wfree(struct sock *sk)
3387{
3388	/* Do not wake up a writer until he can make "significant"
3389	 * progress.  --DaveM
3390	 */
3391	if (sock_writeable(sk)) {
3392		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3393
3394		/* rely on refcount_sub from sock_wfree() */
3395		smp_mb__after_atomic();
3396		if (wq && waitqueue_active(&wq->wait))
3397			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3398						EPOLLWRNORM | EPOLLWRBAND);
3399
3400		/* Should agree with poll, otherwise some programs break */
3401		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3402	}
3403}
3404
3405static void sock_def_destruct(struct sock *sk)
3406{
3407}
3408
3409void sk_send_sigurg(struct sock *sk)
3410{
3411	if (sk->sk_socket && sk->sk_socket->file)
3412		if (send_sigurg(&sk->sk_socket->file->f_owner))
3413			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3414}
3415EXPORT_SYMBOL(sk_send_sigurg);
3416
3417void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3418		    unsigned long expires)
3419{
3420	if (!mod_timer(timer, expires))
3421		sock_hold(sk);
3422}
3423EXPORT_SYMBOL(sk_reset_timer);
3424
3425void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3426{
3427	if (del_timer(timer))
3428		__sock_put(sk);
3429}
3430EXPORT_SYMBOL(sk_stop_timer);
3431
3432void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3433{
3434	if (del_timer_sync(timer))
3435		__sock_put(sk);
3436}
3437EXPORT_SYMBOL(sk_stop_timer_sync);
3438
3439void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3440{
3441	sk_init_common(sk);
3442	sk->sk_send_head	=	NULL;
3443
3444	timer_setup(&sk->sk_timer, NULL, 0);
3445
3446	sk->sk_allocation	=	GFP_KERNEL;
3447	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3448	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3449	sk->sk_state		=	TCP_CLOSE;
3450	sk->sk_use_task_frag	=	true;
3451	sk_set_socket(sk, sock);
3452
3453	sock_set_flag(sk, SOCK_ZAPPED);
3454
3455	if (sock) {
3456		sk->sk_type	=	sock->type;
3457		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3458		sock->sk	=	sk;
 
3459	} else {
3460		RCU_INIT_POINTER(sk->sk_wq, NULL);
 
3461	}
3462	sk->sk_uid	=	uid;
3463
3464	rwlock_init(&sk->sk_callback_lock);
3465	if (sk->sk_kern_sock)
3466		lockdep_set_class_and_name(
3467			&sk->sk_callback_lock,
3468			af_kern_callback_keys + sk->sk_family,
3469			af_family_kern_clock_key_strings[sk->sk_family]);
3470	else
3471		lockdep_set_class_and_name(
3472			&sk->sk_callback_lock,
3473			af_callback_keys + sk->sk_family,
3474			af_family_clock_key_strings[sk->sk_family]);
3475
3476	sk->sk_state_change	=	sock_def_wakeup;
3477	sk->sk_data_ready	=	sock_def_readable;
3478	sk->sk_write_space	=	sock_def_write_space;
3479	sk->sk_error_report	=	sock_def_error_report;
3480	sk->sk_destruct		=	sock_def_destruct;
3481
3482	sk->sk_frag.page	=	NULL;
3483	sk->sk_frag.offset	=	0;
3484	sk->sk_peek_off		=	-1;
3485
3486	sk->sk_peer_pid 	=	NULL;
3487	sk->sk_peer_cred	=	NULL;
3488	spin_lock_init(&sk->sk_peer_lock);
3489
3490	sk->sk_write_pending	=	0;
3491	sk->sk_rcvlowat		=	1;
3492	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3493	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3494
3495	sk->sk_stamp = SK_DEFAULT_STAMP;
3496#if BITS_PER_LONG==32
3497	seqlock_init(&sk->sk_stamp_seq);
3498#endif
3499	atomic_set(&sk->sk_zckey, 0);
3500
3501#ifdef CONFIG_NET_RX_BUSY_POLL
3502	sk->sk_napi_id		=	0;
3503	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3504#endif
3505
3506	sk->sk_max_pacing_rate = ~0UL;
3507	sk->sk_pacing_rate = ~0UL;
3508	WRITE_ONCE(sk->sk_pacing_shift, 10);
3509	sk->sk_incoming_cpu = -1;
3510
3511	sk_rx_queue_clear(sk);
3512	/*
3513	 * Before updating sk_refcnt, we must commit prior changes to memory
3514	 * (Documentation/RCU/rculist_nulls.rst for details)
3515	 */
3516	smp_wmb();
3517	refcount_set(&sk->sk_refcnt, 1);
3518	atomic_set(&sk->sk_drops, 0);
3519}
3520EXPORT_SYMBOL(sock_init_data_uid);
3521
3522void sock_init_data(struct socket *sock, struct sock *sk)
3523{
3524	kuid_t uid = sock ?
3525		SOCK_INODE(sock)->i_uid :
3526		make_kuid(sock_net(sk)->user_ns, 0);
3527
3528	sock_init_data_uid(sock, sk, uid);
3529}
3530EXPORT_SYMBOL(sock_init_data);
3531
3532void lock_sock_nested(struct sock *sk, int subclass)
3533{
3534	/* The sk_lock has mutex_lock() semantics here. */
3535	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3536
3537	might_sleep();
3538	spin_lock_bh(&sk->sk_lock.slock);
3539	if (sock_owned_by_user_nocheck(sk))
3540		__lock_sock(sk);
3541	sk->sk_lock.owned = 1;
3542	spin_unlock_bh(&sk->sk_lock.slock);
 
 
 
 
 
3543}
3544EXPORT_SYMBOL(lock_sock_nested);
3545
3546void release_sock(struct sock *sk)
3547{
3548	spin_lock_bh(&sk->sk_lock.slock);
3549	if (sk->sk_backlog.tail)
3550		__release_sock(sk);
3551
 
 
 
3552	if (sk->sk_prot->release_cb)
3553		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3554				     tcp_release_cb, sk);
3555
3556	sock_release_ownership(sk);
3557	if (waitqueue_active(&sk->sk_lock.wq))
3558		wake_up(&sk->sk_lock.wq);
3559	spin_unlock_bh(&sk->sk_lock.slock);
3560}
3561EXPORT_SYMBOL(release_sock);
3562
3563bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
 
 
 
 
 
 
 
 
 
 
 
 
 
3564{
3565	might_sleep();
3566	spin_lock_bh(&sk->sk_lock.slock);
3567
3568	if (!sock_owned_by_user_nocheck(sk)) {
3569		/*
3570		 * Fast path return with bottom halves disabled and
3571		 * sock::sk_lock.slock held.
3572		 *
3573		 * The 'mutex' is not contended and holding
3574		 * sock::sk_lock.slock prevents all other lockers to
3575		 * proceed so the corresponding unlock_sock_fast() can
3576		 * avoid the slow path of release_sock() completely and
3577		 * just release slock.
3578		 *
3579		 * From a semantical POV this is equivalent to 'acquiring'
3580		 * the 'mutex', hence the corresponding lockdep
3581		 * mutex_release() has to happen in the fast path of
3582		 * unlock_sock_fast().
3583		 */
3584		return false;
3585	}
3586
3587	__lock_sock(sk);
3588	sk->sk_lock.owned = 1;
 
 
 
 
 
3589	__acquire(&sk->sk_lock.slock);
3590	spin_unlock_bh(&sk->sk_lock.slock);
3591	return true;
3592}
3593EXPORT_SYMBOL(__lock_sock_fast);
3594
3595int sock_gettstamp(struct socket *sock, void __user *userstamp,
3596		   bool timeval, bool time32)
3597{
3598	struct sock *sk = sock->sk;
3599	struct timespec64 ts;
3600
3601	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3602	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3603	if (ts.tv_sec == -1)
3604		return -ENOENT;
3605	if (ts.tv_sec == 0) {
3606		ktime_t kt = ktime_get_real();
3607		sock_write_timestamp(sk, kt);
3608		ts = ktime_to_timespec64(kt);
3609	}
3610
3611	if (timeval)
3612		ts.tv_nsec /= 1000;
3613
3614#ifdef CONFIG_COMPAT_32BIT_TIME
3615	if (time32)
3616		return put_old_timespec32(&ts, userstamp);
3617#endif
3618#ifdef CONFIG_SPARC64
3619	/* beware of padding in sparc64 timeval */
3620	if (timeval && !in_compat_syscall()) {
3621		struct __kernel_old_timeval __user tv = {
3622			.tv_sec = ts.tv_sec,
3623			.tv_usec = ts.tv_nsec,
3624		};
3625		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3626			return -EFAULT;
3627		return 0;
3628	}
3629#endif
3630	return put_timespec64(&ts, userstamp);
3631}
3632EXPORT_SYMBOL(sock_gettstamp);
3633
3634void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3635{
3636	if (!sock_flag(sk, flag)) {
3637		unsigned long previous_flags = sk->sk_flags;
3638
3639		sock_set_flag(sk, flag);
3640		/*
3641		 * we just set one of the two flags which require net
3642		 * time stamping, but time stamping might have been on
3643		 * already because of the other one
3644		 */
3645		if (sock_needs_netstamp(sk) &&
3646		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3647			net_enable_timestamp();
3648	}
3649}
3650
3651int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3652		       int level, int type)
3653{
3654	struct sock_exterr_skb *serr;
3655	struct sk_buff *skb;
3656	int copied, err;
3657
3658	err = -EAGAIN;
3659	skb = sock_dequeue_err_skb(sk);
3660	if (skb == NULL)
3661		goto out;
3662
3663	copied = skb->len;
3664	if (copied > len) {
3665		msg->msg_flags |= MSG_TRUNC;
3666		copied = len;
3667	}
3668	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3669	if (err)
3670		goto out_free_skb;
3671
3672	sock_recv_timestamp(msg, sk, skb);
3673
3674	serr = SKB_EXT_ERR(skb);
3675	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3676
3677	msg->msg_flags |= MSG_ERRQUEUE;
3678	err = copied;
3679
3680out_free_skb:
3681	kfree_skb(skb);
3682out:
3683	return err;
3684}
3685EXPORT_SYMBOL(sock_recv_errqueue);
3686
3687/*
3688 *	Get a socket option on an socket.
3689 *
3690 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3691 *	asynchronous errors should be reported by getsockopt. We assume
3692 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3693 */
3694int sock_common_getsockopt(struct socket *sock, int level, int optname,
3695			   char __user *optval, int __user *optlen)
3696{
3697	struct sock *sk = sock->sk;
3698
3699	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3700	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3701}
3702EXPORT_SYMBOL(sock_common_getsockopt);
3703
3704int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3705			int flags)
3706{
3707	struct sock *sk = sock->sk;
3708	int addr_len = 0;
3709	int err;
3710
3711	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
 
3712	if (err >= 0)
3713		msg->msg_namelen = addr_len;
3714	return err;
3715}
3716EXPORT_SYMBOL(sock_common_recvmsg);
3717
3718/*
3719 *	Set socket options on an inet socket.
3720 */
3721int sock_common_setsockopt(struct socket *sock, int level, int optname,
3722			   sockptr_t optval, unsigned int optlen)
3723{
3724	struct sock *sk = sock->sk;
3725
3726	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3727	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3728}
3729EXPORT_SYMBOL(sock_common_setsockopt);
3730
3731void sk_common_release(struct sock *sk)
3732{
3733	if (sk->sk_prot->destroy)
3734		sk->sk_prot->destroy(sk);
3735
3736	/*
3737	 * Observation: when sk_common_release is called, processes have
3738	 * no access to socket. But net still has.
3739	 * Step one, detach it from networking:
3740	 *
3741	 * A. Remove from hash tables.
3742	 */
3743
3744	sk->sk_prot->unhash(sk);
3745
3746	/*
3747	 * In this point socket cannot receive new packets, but it is possible
3748	 * that some packets are in flight because some CPU runs receiver and
3749	 * did hash table lookup before we unhashed socket. They will achieve
3750	 * receive queue and will be purged by socket destructor.
3751	 *
3752	 * Also we still have packets pending on receive queue and probably,
3753	 * our own packets waiting in device queues. sock_destroy will drain
3754	 * receive queue, but transmitted packets will delay socket destruction
3755	 * until the last reference will be released.
3756	 */
3757
3758	sock_orphan(sk);
3759
3760	xfrm_sk_free_policy(sk);
3761
 
 
3762	sock_put(sk);
3763}
3764EXPORT_SYMBOL(sk_common_release);
3765
3766void sk_get_meminfo(const struct sock *sk, u32 *mem)
3767{
3768	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3769
3770	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3771	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3772	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3773	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3774	mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3775	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3776	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3777	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3778	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3779}
3780
3781#ifdef CONFIG_PROC_FS
 
 
 
 
 
3782static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3783
 
 
 
 
 
 
3784int sock_prot_inuse_get(struct net *net, struct proto *prot)
3785{
3786	int cpu, idx = prot->inuse_idx;
3787	int res = 0;
3788
3789	for_each_possible_cpu(cpu)
3790		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3791
3792	return res >= 0 ? res : 0;
3793}
3794EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3795
 
 
 
 
 
3796int sock_inuse_get(struct net *net)
3797{
3798	int cpu, res = 0;
3799
3800	for_each_possible_cpu(cpu)
3801		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3802
3803	return res;
3804}
3805
3806EXPORT_SYMBOL_GPL(sock_inuse_get);
3807
3808static int __net_init sock_inuse_init_net(struct net *net)
3809{
3810	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3811	if (net->core.prot_inuse == NULL)
3812		return -ENOMEM;
 
 
 
 
 
3813	return 0;
 
 
 
 
3814}
3815
3816static void __net_exit sock_inuse_exit_net(struct net *net)
3817{
3818	free_percpu(net->core.prot_inuse);
 
3819}
3820
3821static struct pernet_operations net_inuse_ops = {
3822	.init = sock_inuse_init_net,
3823	.exit = sock_inuse_exit_net,
3824};
3825
3826static __init int net_inuse_init(void)
3827{
3828	if (register_pernet_subsys(&net_inuse_ops))
3829		panic("Cannot initialize net inuse counters");
3830
3831	return 0;
3832}
3833
3834core_initcall(net_inuse_init);
3835
3836static int assign_proto_idx(struct proto *prot)
3837{
3838	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3839
3840	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3841		pr_err("PROTO_INUSE_NR exhausted\n");
3842		return -ENOSPC;
3843	}
3844
3845	set_bit(prot->inuse_idx, proto_inuse_idx);
3846	return 0;
3847}
3848
3849static void release_proto_idx(struct proto *prot)
3850{
3851	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3852		clear_bit(prot->inuse_idx, proto_inuse_idx);
3853}
3854#else
3855static inline int assign_proto_idx(struct proto *prot)
3856{
3857	return 0;
3858}
3859
3860static inline void release_proto_idx(struct proto *prot)
3861{
3862}
3863
 
 
 
3864#endif
3865
3866static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3867{
3868	if (!twsk_prot)
3869		return;
3870	kfree(twsk_prot->twsk_slab_name);
3871	twsk_prot->twsk_slab_name = NULL;
3872	kmem_cache_destroy(twsk_prot->twsk_slab);
3873	twsk_prot->twsk_slab = NULL;
3874}
3875
3876static int tw_prot_init(const struct proto *prot)
3877{
3878	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3879
3880	if (!twsk_prot)
3881		return 0;
3882
3883	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3884					      prot->name);
3885	if (!twsk_prot->twsk_slab_name)
3886		return -ENOMEM;
3887
3888	twsk_prot->twsk_slab =
3889		kmem_cache_create(twsk_prot->twsk_slab_name,
3890				  twsk_prot->twsk_obj_size, 0,
3891				  SLAB_ACCOUNT | prot->slab_flags,
3892				  NULL);
3893	if (!twsk_prot->twsk_slab) {
3894		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3895			prot->name);
3896		return -ENOMEM;
3897	}
3898
3899	return 0;
3900}
3901
3902static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3903{
3904	if (!rsk_prot)
3905		return;
3906	kfree(rsk_prot->slab_name);
3907	rsk_prot->slab_name = NULL;
3908	kmem_cache_destroy(rsk_prot->slab);
3909	rsk_prot->slab = NULL;
3910}
3911
3912static int req_prot_init(const struct proto *prot)
3913{
3914	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3915
3916	if (!rsk_prot)
3917		return 0;
3918
3919	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3920					prot->name);
3921	if (!rsk_prot->slab_name)
3922		return -ENOMEM;
3923
3924	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3925					   rsk_prot->obj_size, 0,
3926					   SLAB_ACCOUNT | prot->slab_flags,
3927					   NULL);
3928
3929	if (!rsk_prot->slab) {
3930		pr_crit("%s: Can't create request sock SLAB cache!\n",
3931			prot->name);
3932		return -ENOMEM;
3933	}
3934	return 0;
3935}
3936
3937int proto_register(struct proto *prot, int alloc_slab)
3938{
3939	int ret = -ENOBUFS;
3940
3941	if (prot->memory_allocated && !prot->sysctl_mem) {
3942		pr_err("%s: missing sysctl_mem\n", prot->name);
3943		return -EINVAL;
3944	}
3945	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3946		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3947		return -EINVAL;
3948	}
3949	if (alloc_slab) {
3950		prot->slab = kmem_cache_create_usercopy(prot->name,
3951					prot->obj_size, 0,
3952					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3953					prot->slab_flags,
3954					prot->useroffset, prot->usersize,
3955					NULL);
3956
3957		if (prot->slab == NULL) {
3958			pr_crit("%s: Can't create sock SLAB cache!\n",
3959				prot->name);
3960			goto out;
3961		}
3962
3963		if (req_prot_init(prot))
3964			goto out_free_request_sock_slab;
3965
3966		if (tw_prot_init(prot))
3967			goto out_free_timewait_sock_slab;
3968	}
3969
3970	mutex_lock(&proto_list_mutex);
3971	ret = assign_proto_idx(prot);
3972	if (ret) {
3973		mutex_unlock(&proto_list_mutex);
3974		goto out_free_timewait_sock_slab;
3975	}
3976	list_add(&prot->node, &proto_list);
3977	mutex_unlock(&proto_list_mutex);
3978	return ret;
3979
3980out_free_timewait_sock_slab:
3981	if (alloc_slab)
3982		tw_prot_cleanup(prot->twsk_prot);
3983out_free_request_sock_slab:
3984	if (alloc_slab) {
3985		req_prot_cleanup(prot->rsk_prot);
3986
3987		kmem_cache_destroy(prot->slab);
3988		prot->slab = NULL;
3989	}
3990out:
3991	return ret;
3992}
3993EXPORT_SYMBOL(proto_register);
3994
3995void proto_unregister(struct proto *prot)
3996{
3997	mutex_lock(&proto_list_mutex);
3998	release_proto_idx(prot);
3999	list_del(&prot->node);
4000	mutex_unlock(&proto_list_mutex);
4001
4002	kmem_cache_destroy(prot->slab);
4003	prot->slab = NULL;
4004
4005	req_prot_cleanup(prot->rsk_prot);
4006	tw_prot_cleanup(prot->twsk_prot);
4007}
4008EXPORT_SYMBOL(proto_unregister);
4009
4010int sock_load_diag_module(int family, int protocol)
4011{
4012	if (!protocol) {
4013		if (!sock_is_registered(family))
4014			return -ENOENT;
4015
4016		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
4017				      NETLINK_SOCK_DIAG, family);
4018	}
4019
4020#ifdef CONFIG_INET
4021	if (family == AF_INET &&
4022	    protocol != IPPROTO_RAW &&
4023	    protocol < MAX_INET_PROTOS &&
4024	    !rcu_access_pointer(inet_protos[protocol]))
4025		return -ENOENT;
4026#endif
4027
4028	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4029			      NETLINK_SOCK_DIAG, family, protocol);
4030}
4031EXPORT_SYMBOL(sock_load_diag_module);
4032
4033#ifdef CONFIG_PROC_FS
4034static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4035	__acquires(proto_list_mutex)
4036{
4037	mutex_lock(&proto_list_mutex);
4038	return seq_list_start_head(&proto_list, *pos);
4039}
4040
4041static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4042{
4043	return seq_list_next(v, &proto_list, pos);
4044}
4045
4046static void proto_seq_stop(struct seq_file *seq, void *v)
4047	__releases(proto_list_mutex)
4048{
4049	mutex_unlock(&proto_list_mutex);
4050}
4051
4052static char proto_method_implemented(const void *method)
4053{
4054	return method == NULL ? 'n' : 'y';
4055}
4056static long sock_prot_memory_allocated(struct proto *proto)
4057{
4058	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4059}
4060
4061static const char *sock_prot_memory_pressure(struct proto *proto)
4062{
4063	return proto->memory_pressure != NULL ?
4064	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4065}
4066
4067static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4068{
4069
4070	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4071			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4072		   proto->name,
4073		   proto->obj_size,
4074		   sock_prot_inuse_get(seq_file_net(seq), proto),
4075		   sock_prot_memory_allocated(proto),
4076		   sock_prot_memory_pressure(proto),
4077		   proto->max_header,
4078		   proto->slab == NULL ? "no" : "yes",
4079		   module_name(proto->owner),
4080		   proto_method_implemented(proto->close),
4081		   proto_method_implemented(proto->connect),
4082		   proto_method_implemented(proto->disconnect),
4083		   proto_method_implemented(proto->accept),
4084		   proto_method_implemented(proto->ioctl),
4085		   proto_method_implemented(proto->init),
4086		   proto_method_implemented(proto->destroy),
4087		   proto_method_implemented(proto->shutdown),
4088		   proto_method_implemented(proto->setsockopt),
4089		   proto_method_implemented(proto->getsockopt),
4090		   proto_method_implemented(proto->sendmsg),
4091		   proto_method_implemented(proto->recvmsg),
 
4092		   proto_method_implemented(proto->bind),
4093		   proto_method_implemented(proto->backlog_rcv),
4094		   proto_method_implemented(proto->hash),
4095		   proto_method_implemented(proto->unhash),
4096		   proto_method_implemented(proto->get_port),
4097		   proto_method_implemented(proto->enter_memory_pressure));
4098}
4099
4100static int proto_seq_show(struct seq_file *seq, void *v)
4101{
4102	if (v == &proto_list)
4103		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4104			   "protocol",
4105			   "size",
4106			   "sockets",
4107			   "memory",
4108			   "press",
4109			   "maxhdr",
4110			   "slab",
4111			   "module",
4112			   "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4113	else
4114		proto_seq_printf(seq, list_entry(v, struct proto, node));
4115	return 0;
4116}
4117
4118static const struct seq_operations proto_seq_ops = {
4119	.start  = proto_seq_start,
4120	.next   = proto_seq_next,
4121	.stop   = proto_seq_stop,
4122	.show   = proto_seq_show,
4123};
4124
4125static __net_init int proto_init_net(struct net *net)
4126{
4127	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4128			sizeof(struct seq_net_private)))
4129		return -ENOMEM;
4130
4131	return 0;
4132}
4133
4134static __net_exit void proto_exit_net(struct net *net)
4135{
4136	remove_proc_entry("protocols", net->proc_net);
4137}
4138
4139
4140static __net_initdata struct pernet_operations proto_net_ops = {
4141	.init = proto_init_net,
4142	.exit = proto_exit_net,
4143};
4144
4145static int __init proto_init(void)
4146{
4147	return register_pernet_subsys(&proto_net_ops);
4148}
4149
4150subsys_initcall(proto_init);
4151
4152#endif /* PROC_FS */
4153
4154#ifdef CONFIG_NET_RX_BUSY_POLL
4155bool sk_busy_loop_end(void *p, unsigned long start_time)
4156{
4157	struct sock *sk = p;
4158
4159	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
4160		return true;
4161
4162	if (sk_is_udp(sk) &&
4163	    !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
4164		return true;
4165
4166	return sk_busy_loop_timeout(sk, start_time);
4167}
4168EXPORT_SYMBOL(sk_busy_loop_end);
4169#endif /* CONFIG_NET_RX_BUSY_POLL */
4170
4171int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4172{
4173	if (!sk->sk_prot->bind_add)
4174		return -EOPNOTSUPP;
4175	return sk->sk_prot->bind_add(sk, addr, addr_len);
4176}
4177EXPORT_SYMBOL(sock_bind_add);
4178
4179/* Copy 'size' bytes from userspace and return `size` back to userspace */
4180int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4181		     void __user *arg, void *karg, size_t size)
4182{
4183	int ret;
4184
4185	if (copy_from_user(karg, arg, size))
4186		return -EFAULT;
4187
4188	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4189	if (ret)
4190		return ret;
4191
4192	if (copy_to_user(arg, karg, size))
4193		return -EFAULT;
4194
4195	return 0;
4196}
4197EXPORT_SYMBOL(sock_ioctl_inout);
4198
4199/* This is the most common ioctl prep function, where the result (4 bytes) is
4200 * copied back to userspace if the ioctl() returns successfully. No input is
4201 * copied from userspace as input argument.
4202 */
4203static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4204{
4205	int ret, karg = 0;
4206
4207	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4208	if (ret)
4209		return ret;
4210
4211	return put_user(karg, (int __user *)arg);
4212}
4213
4214/* A wrapper around sock ioctls, which copies the data from userspace
4215 * (depending on the protocol/ioctl), and copies back the result to userspace.
4216 * The main motivation for this function is to pass kernel memory to the
4217 * protocol ioctl callbacks, instead of userspace memory.
4218 */
4219int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4220{
4221	int rc = 1;
4222
4223	if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4224		rc = ipmr_sk_ioctl(sk, cmd, arg);
4225	else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4226		rc = ip6mr_sk_ioctl(sk, cmd, arg);
4227	else if (sk_is_phonet(sk))
4228		rc = phonet_sk_ioctl(sk, cmd, arg);
4229
4230	/* If ioctl was processed, returns its value */
4231	if (rc <= 0)
4232		return rc;
4233
4234	/* Otherwise call the default handler */
4235	return sock_ioctl_out(sk, cmd, arg);
4236}
4237EXPORT_SYMBOL(sk_ioctl);
4238
4239static int __init sock_struct_check(void)
4240{
4241	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops);
4242	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off);
4243	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue);
4244	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue);
4245	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog);
4246
4247	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst);
4248	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex);
4249	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie);
4250	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf);
4251	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter);
4252	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq);
4253	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready);
4254	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo);
4255	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat);
4256
4257	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err);
4258	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket);
4259	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg);
4260
4261	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock);
4262	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem);
4263	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc);
4264	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags);
4265
4266	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4267	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4268	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf);
4269	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued);
4270	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc);
4271	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags);
4272	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head);
4273	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue);
4274	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending);
4275	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm);
4276	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status);
4277	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag);
4278	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer);
4279	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate);
4280	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey);
4281	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey);
4282
4283	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate);
4284	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo);
4285	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority);
4286	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark);
4287	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache);
4288	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps);
4289	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type);
4290	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size);
4291	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation);
4292	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash);
4293	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs);
4294	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift);
4295	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag);
4296	return 0;
4297}
4298
4299core_initcall(sock_struct_check);