Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <asm/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/init.h>
111#include <linux/highmem.h>
112#include <linux/user_namespace.h>
113#include <linux/static_key.h>
114#include <linux/memcontrol.h>
115#include <linux/prefetch.h>
116#include <linux/compat.h>
117
118#include <linux/uaccess.h>
119
120#include <linux/netdevice.h>
121#include <net/protocol.h>
122#include <linux/skbuff.h>
123#include <net/net_namespace.h>
124#include <net/request_sock.h>
125#include <net/sock.h>
126#include <linux/net_tstamp.h>
127#include <net/xfrm.h>
128#include <linux/ipsec.h>
129#include <net/cls_cgroup.h>
130#include <net/netprio_cgroup.h>
131#include <linux/sock_diag.h>
132
133#include <linux/filter.h>
134#include <net/sock_reuseport.h>
135#include <net/bpf_sk_storage.h>
136
137#include <trace/events/sock.h>
138
139#include <net/tcp.h>
140#include <net/busy_poll.h>
141
142#include <linux/ethtool.h>
143
144static DEFINE_MUTEX(proto_list_mutex);
145static LIST_HEAD(proto_list);
146
147static void sock_inuse_add(struct net *net, int val);
148
149/**
150 * sk_ns_capable - General socket capability test
151 * @sk: Socket to use a capability on or through
152 * @user_ns: The user namespace of the capability to use
153 * @cap: The capability to use
154 *
155 * Test to see if the opener of the socket had when the socket was
156 * created and the current process has the capability @cap in the user
157 * namespace @user_ns.
158 */
159bool sk_ns_capable(const struct sock *sk,
160 struct user_namespace *user_ns, int cap)
161{
162 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
163 ns_capable(user_ns, cap);
164}
165EXPORT_SYMBOL(sk_ns_capable);
166
167/**
168 * sk_capable - Socket global capability test
169 * @sk: Socket to use a capability on or through
170 * @cap: The global capability to use
171 *
172 * Test to see if the opener of the socket had when the socket was
173 * created and the current process has the capability @cap in all user
174 * namespaces.
175 */
176bool sk_capable(const struct sock *sk, int cap)
177{
178 return sk_ns_capable(sk, &init_user_ns, cap);
179}
180EXPORT_SYMBOL(sk_capable);
181
182/**
183 * sk_net_capable - Network namespace socket capability test
184 * @sk: Socket to use a capability on or through
185 * @cap: The capability to use
186 *
187 * Test to see if the opener of the socket had when the socket was created
188 * and the current process has the capability @cap over the network namespace
189 * the socket is a member of.
190 */
191bool sk_net_capable(const struct sock *sk, int cap)
192{
193 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
194}
195EXPORT_SYMBOL(sk_net_capable);
196
197/*
198 * Each address family might have different locking rules, so we have
199 * one slock key per address family and separate keys for internal and
200 * userspace sockets.
201 */
202static struct lock_class_key af_family_keys[AF_MAX];
203static struct lock_class_key af_family_kern_keys[AF_MAX];
204static struct lock_class_key af_family_slock_keys[AF_MAX];
205static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
206
207/*
208 * Make lock validator output more readable. (we pre-construct these
209 * strings build-time, so that runtime initialization of socket
210 * locks is fast):
211 */
212
213#define _sock_locks(x) \
214 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
215 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
216 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
217 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
218 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
219 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
220 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
221 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
222 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
223 x "27" , x "28" , x "AF_CAN" , \
224 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
225 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
226 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
227 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
228 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
229 x "AF_MAX"
230
231static const char *const af_family_key_strings[AF_MAX+1] = {
232 _sock_locks("sk_lock-")
233};
234static const char *const af_family_slock_key_strings[AF_MAX+1] = {
235 _sock_locks("slock-")
236};
237static const char *const af_family_clock_key_strings[AF_MAX+1] = {
238 _sock_locks("clock-")
239};
240
241static const char *const af_family_kern_key_strings[AF_MAX+1] = {
242 _sock_locks("k-sk_lock-")
243};
244static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-slock-")
246};
247static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
248 _sock_locks("k-clock-")
249};
250static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
251 _sock_locks("rlock-")
252};
253static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
254 _sock_locks("wlock-")
255};
256static const char *const af_family_elock_key_strings[AF_MAX+1] = {
257 _sock_locks("elock-")
258};
259
260/*
261 * sk_callback_lock and sk queues locking rules are per-address-family,
262 * so split the lock classes by using a per-AF key:
263 */
264static struct lock_class_key af_callback_keys[AF_MAX];
265static struct lock_class_key af_rlock_keys[AF_MAX];
266static struct lock_class_key af_wlock_keys[AF_MAX];
267static struct lock_class_key af_elock_keys[AF_MAX];
268static struct lock_class_key af_kern_callback_keys[AF_MAX];
269
270/* Run time adjustable parameters. */
271__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
272EXPORT_SYMBOL(sysctl_wmem_max);
273__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
274EXPORT_SYMBOL(sysctl_rmem_max);
275__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
276__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
277
278/* Maximal space eaten by iovec or ancillary data plus some space */
279int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
280EXPORT_SYMBOL(sysctl_optmem_max);
281
282int sysctl_tstamp_allow_data __read_mostly = 1;
283
284DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
285EXPORT_SYMBOL_GPL(memalloc_socks_key);
286
287/**
288 * sk_set_memalloc - sets %SOCK_MEMALLOC
289 * @sk: socket to set it on
290 *
291 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
292 * It's the responsibility of the admin to adjust min_free_kbytes
293 * to meet the requirements
294 */
295void sk_set_memalloc(struct sock *sk)
296{
297 sock_set_flag(sk, SOCK_MEMALLOC);
298 sk->sk_allocation |= __GFP_MEMALLOC;
299 static_branch_inc(&memalloc_socks_key);
300}
301EXPORT_SYMBOL_GPL(sk_set_memalloc);
302
303void sk_clear_memalloc(struct sock *sk)
304{
305 sock_reset_flag(sk, SOCK_MEMALLOC);
306 sk->sk_allocation &= ~__GFP_MEMALLOC;
307 static_branch_dec(&memalloc_socks_key);
308
309 /*
310 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
311 * progress of swapping. SOCK_MEMALLOC may be cleared while
312 * it has rmem allocations due to the last swapfile being deactivated
313 * but there is a risk that the socket is unusable due to exceeding
314 * the rmem limits. Reclaim the reserves and obey rmem limits again.
315 */
316 sk_mem_reclaim(sk);
317}
318EXPORT_SYMBOL_GPL(sk_clear_memalloc);
319
320int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
321{
322 int ret;
323 unsigned int noreclaim_flag;
324
325 /* these should have been dropped before queueing */
326 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
327
328 noreclaim_flag = memalloc_noreclaim_save();
329 ret = sk->sk_backlog_rcv(sk, skb);
330 memalloc_noreclaim_restore(noreclaim_flag);
331
332 return ret;
333}
334EXPORT_SYMBOL(__sk_backlog_rcv);
335
336void sk_error_report(struct sock *sk)
337{
338 sk->sk_error_report(sk);
339
340 switch (sk->sk_family) {
341 case AF_INET:
342 fallthrough;
343 case AF_INET6:
344 trace_inet_sk_error_report(sk);
345 break;
346 default:
347 break;
348 }
349}
350EXPORT_SYMBOL(sk_error_report);
351
352static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
353{
354 struct __kernel_sock_timeval tv;
355
356 if (timeo == MAX_SCHEDULE_TIMEOUT) {
357 tv.tv_sec = 0;
358 tv.tv_usec = 0;
359 } else {
360 tv.tv_sec = timeo / HZ;
361 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
362 }
363
364 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
365 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
366 *(struct old_timeval32 *)optval = tv32;
367 return sizeof(tv32);
368 }
369
370 if (old_timeval) {
371 struct __kernel_old_timeval old_tv;
372 old_tv.tv_sec = tv.tv_sec;
373 old_tv.tv_usec = tv.tv_usec;
374 *(struct __kernel_old_timeval *)optval = old_tv;
375 return sizeof(old_tv);
376 }
377
378 *(struct __kernel_sock_timeval *)optval = tv;
379 return sizeof(tv);
380}
381
382static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
383 bool old_timeval)
384{
385 struct __kernel_sock_timeval tv;
386
387 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
388 struct old_timeval32 tv32;
389
390 if (optlen < sizeof(tv32))
391 return -EINVAL;
392
393 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
394 return -EFAULT;
395 tv.tv_sec = tv32.tv_sec;
396 tv.tv_usec = tv32.tv_usec;
397 } else if (old_timeval) {
398 struct __kernel_old_timeval old_tv;
399
400 if (optlen < sizeof(old_tv))
401 return -EINVAL;
402 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
403 return -EFAULT;
404 tv.tv_sec = old_tv.tv_sec;
405 tv.tv_usec = old_tv.tv_usec;
406 } else {
407 if (optlen < sizeof(tv))
408 return -EINVAL;
409 if (copy_from_sockptr(&tv, optval, sizeof(tv)))
410 return -EFAULT;
411 }
412 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
413 return -EDOM;
414
415 if (tv.tv_sec < 0) {
416 static int warned __read_mostly;
417
418 *timeo_p = 0;
419 if (warned < 10 && net_ratelimit()) {
420 warned++;
421 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
422 __func__, current->comm, task_pid_nr(current));
423 }
424 return 0;
425 }
426 *timeo_p = MAX_SCHEDULE_TIMEOUT;
427 if (tv.tv_sec == 0 && tv.tv_usec == 0)
428 return 0;
429 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
430 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
431 return 0;
432}
433
434static bool sock_needs_netstamp(const struct sock *sk)
435{
436 switch (sk->sk_family) {
437 case AF_UNSPEC:
438 case AF_UNIX:
439 return false;
440 default:
441 return true;
442 }
443}
444
445static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
446{
447 if (sk->sk_flags & flags) {
448 sk->sk_flags &= ~flags;
449 if (sock_needs_netstamp(sk) &&
450 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
451 net_disable_timestamp();
452 }
453}
454
455
456int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
457{
458 unsigned long flags;
459 struct sk_buff_head *list = &sk->sk_receive_queue;
460
461 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
462 atomic_inc(&sk->sk_drops);
463 trace_sock_rcvqueue_full(sk, skb);
464 return -ENOMEM;
465 }
466
467 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
468 atomic_inc(&sk->sk_drops);
469 return -ENOBUFS;
470 }
471
472 skb->dev = NULL;
473 skb_set_owner_r(skb, sk);
474
475 /* we escape from rcu protected region, make sure we dont leak
476 * a norefcounted dst
477 */
478 skb_dst_force(skb);
479
480 spin_lock_irqsave(&list->lock, flags);
481 sock_skb_set_dropcount(sk, skb);
482 __skb_queue_tail(list, skb);
483 spin_unlock_irqrestore(&list->lock, flags);
484
485 if (!sock_flag(sk, SOCK_DEAD))
486 sk->sk_data_ready(sk);
487 return 0;
488}
489EXPORT_SYMBOL(__sock_queue_rcv_skb);
490
491int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
492{
493 int err;
494
495 err = sk_filter(sk, skb);
496 if (err)
497 return err;
498
499 return __sock_queue_rcv_skb(sk, skb);
500}
501EXPORT_SYMBOL(sock_queue_rcv_skb);
502
503int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
504 const int nested, unsigned int trim_cap, bool refcounted)
505{
506 int rc = NET_RX_SUCCESS;
507
508 if (sk_filter_trim_cap(sk, skb, trim_cap))
509 goto discard_and_relse;
510
511 skb->dev = NULL;
512
513 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
514 atomic_inc(&sk->sk_drops);
515 goto discard_and_relse;
516 }
517 if (nested)
518 bh_lock_sock_nested(sk);
519 else
520 bh_lock_sock(sk);
521 if (!sock_owned_by_user(sk)) {
522 /*
523 * trylock + unlock semantics:
524 */
525 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
526
527 rc = sk_backlog_rcv(sk, skb);
528
529 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
530 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
531 bh_unlock_sock(sk);
532 atomic_inc(&sk->sk_drops);
533 goto discard_and_relse;
534 }
535
536 bh_unlock_sock(sk);
537out:
538 if (refcounted)
539 sock_put(sk);
540 return rc;
541discard_and_relse:
542 kfree_skb(skb);
543 goto out;
544}
545EXPORT_SYMBOL(__sk_receive_skb);
546
547INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
548 u32));
549INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
550 u32));
551struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
552{
553 struct dst_entry *dst = __sk_dst_get(sk);
554
555 if (dst && dst->obsolete &&
556 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
557 dst, cookie) == NULL) {
558 sk_tx_queue_clear(sk);
559 sk->sk_dst_pending_confirm = 0;
560 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
561 dst_release(dst);
562 return NULL;
563 }
564
565 return dst;
566}
567EXPORT_SYMBOL(__sk_dst_check);
568
569struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
570{
571 struct dst_entry *dst = sk_dst_get(sk);
572
573 if (dst && dst->obsolete &&
574 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
575 dst, cookie) == NULL) {
576 sk_dst_reset(sk);
577 dst_release(dst);
578 return NULL;
579 }
580
581 return dst;
582}
583EXPORT_SYMBOL(sk_dst_check);
584
585static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
586{
587 int ret = -ENOPROTOOPT;
588#ifdef CONFIG_NETDEVICES
589 struct net *net = sock_net(sk);
590
591 /* Sorry... */
592 ret = -EPERM;
593 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
594 goto out;
595
596 ret = -EINVAL;
597 if (ifindex < 0)
598 goto out;
599
600 sk->sk_bound_dev_if = ifindex;
601 if (sk->sk_prot->rehash)
602 sk->sk_prot->rehash(sk);
603 sk_dst_reset(sk);
604
605 ret = 0;
606
607out:
608#endif
609
610 return ret;
611}
612
613int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
614{
615 int ret;
616
617 if (lock_sk)
618 lock_sock(sk);
619 ret = sock_bindtoindex_locked(sk, ifindex);
620 if (lock_sk)
621 release_sock(sk);
622
623 return ret;
624}
625EXPORT_SYMBOL(sock_bindtoindex);
626
627static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
628{
629 int ret = -ENOPROTOOPT;
630#ifdef CONFIG_NETDEVICES
631 struct net *net = sock_net(sk);
632 char devname[IFNAMSIZ];
633 int index;
634
635 ret = -EINVAL;
636 if (optlen < 0)
637 goto out;
638
639 /* Bind this socket to a particular device like "eth0",
640 * as specified in the passed interface name. If the
641 * name is "" or the option length is zero the socket
642 * is not bound.
643 */
644 if (optlen > IFNAMSIZ - 1)
645 optlen = IFNAMSIZ - 1;
646 memset(devname, 0, sizeof(devname));
647
648 ret = -EFAULT;
649 if (copy_from_sockptr(devname, optval, optlen))
650 goto out;
651
652 index = 0;
653 if (devname[0] != '\0') {
654 struct net_device *dev;
655
656 rcu_read_lock();
657 dev = dev_get_by_name_rcu(net, devname);
658 if (dev)
659 index = dev->ifindex;
660 rcu_read_unlock();
661 ret = -ENODEV;
662 if (!dev)
663 goto out;
664 }
665
666 return sock_bindtoindex(sk, index, true);
667out:
668#endif
669
670 return ret;
671}
672
673static int sock_getbindtodevice(struct sock *sk, char __user *optval,
674 int __user *optlen, int len)
675{
676 int ret = -ENOPROTOOPT;
677#ifdef CONFIG_NETDEVICES
678 struct net *net = sock_net(sk);
679 char devname[IFNAMSIZ];
680
681 if (sk->sk_bound_dev_if == 0) {
682 len = 0;
683 goto zero;
684 }
685
686 ret = -EINVAL;
687 if (len < IFNAMSIZ)
688 goto out;
689
690 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
691 if (ret)
692 goto out;
693
694 len = strlen(devname) + 1;
695
696 ret = -EFAULT;
697 if (copy_to_user(optval, devname, len))
698 goto out;
699
700zero:
701 ret = -EFAULT;
702 if (put_user(len, optlen))
703 goto out;
704
705 ret = 0;
706
707out:
708#endif
709
710 return ret;
711}
712
713bool sk_mc_loop(struct sock *sk)
714{
715 if (dev_recursion_level())
716 return false;
717 if (!sk)
718 return true;
719 switch (sk->sk_family) {
720 case AF_INET:
721 return inet_sk(sk)->mc_loop;
722#if IS_ENABLED(CONFIG_IPV6)
723 case AF_INET6:
724 return inet6_sk(sk)->mc_loop;
725#endif
726 }
727 WARN_ON_ONCE(1);
728 return true;
729}
730EXPORT_SYMBOL(sk_mc_loop);
731
732void sock_set_reuseaddr(struct sock *sk)
733{
734 lock_sock(sk);
735 sk->sk_reuse = SK_CAN_REUSE;
736 release_sock(sk);
737}
738EXPORT_SYMBOL(sock_set_reuseaddr);
739
740void sock_set_reuseport(struct sock *sk)
741{
742 lock_sock(sk);
743 sk->sk_reuseport = true;
744 release_sock(sk);
745}
746EXPORT_SYMBOL(sock_set_reuseport);
747
748void sock_no_linger(struct sock *sk)
749{
750 lock_sock(sk);
751 sk->sk_lingertime = 0;
752 sock_set_flag(sk, SOCK_LINGER);
753 release_sock(sk);
754}
755EXPORT_SYMBOL(sock_no_linger);
756
757void sock_set_priority(struct sock *sk, u32 priority)
758{
759 lock_sock(sk);
760 sk->sk_priority = priority;
761 release_sock(sk);
762}
763EXPORT_SYMBOL(sock_set_priority);
764
765void sock_set_sndtimeo(struct sock *sk, s64 secs)
766{
767 lock_sock(sk);
768 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
769 sk->sk_sndtimeo = secs * HZ;
770 else
771 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
772 release_sock(sk);
773}
774EXPORT_SYMBOL(sock_set_sndtimeo);
775
776static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
777{
778 if (val) {
779 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
780 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
781 sock_set_flag(sk, SOCK_RCVTSTAMP);
782 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
783 } else {
784 sock_reset_flag(sk, SOCK_RCVTSTAMP);
785 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
786 }
787}
788
789void sock_enable_timestamps(struct sock *sk)
790{
791 lock_sock(sk);
792 __sock_set_timestamps(sk, true, false, true);
793 release_sock(sk);
794}
795EXPORT_SYMBOL(sock_enable_timestamps);
796
797void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
798{
799 switch (optname) {
800 case SO_TIMESTAMP_OLD:
801 __sock_set_timestamps(sk, valbool, false, false);
802 break;
803 case SO_TIMESTAMP_NEW:
804 __sock_set_timestamps(sk, valbool, true, false);
805 break;
806 case SO_TIMESTAMPNS_OLD:
807 __sock_set_timestamps(sk, valbool, false, true);
808 break;
809 case SO_TIMESTAMPNS_NEW:
810 __sock_set_timestamps(sk, valbool, true, true);
811 break;
812 }
813}
814
815static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
816{
817 struct net *net = sock_net(sk);
818 struct net_device *dev = NULL;
819 bool match = false;
820 int *vclock_index;
821 int i, num;
822
823 if (sk->sk_bound_dev_if)
824 dev = dev_get_by_index(net, sk->sk_bound_dev_if);
825
826 if (!dev) {
827 pr_err("%s: sock not bind to device\n", __func__);
828 return -EOPNOTSUPP;
829 }
830
831 num = ethtool_get_phc_vclocks(dev, &vclock_index);
832 for (i = 0; i < num; i++) {
833 if (*(vclock_index + i) == phc_index) {
834 match = true;
835 break;
836 }
837 }
838
839 if (num > 0)
840 kfree(vclock_index);
841
842 if (!match)
843 return -EINVAL;
844
845 sk->sk_bind_phc = phc_index;
846
847 return 0;
848}
849
850int sock_set_timestamping(struct sock *sk, int optname,
851 struct so_timestamping timestamping)
852{
853 int val = timestamping.flags;
854 int ret;
855
856 if (val & ~SOF_TIMESTAMPING_MASK)
857 return -EINVAL;
858
859 if (val & SOF_TIMESTAMPING_OPT_ID &&
860 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
861 if (sk->sk_protocol == IPPROTO_TCP &&
862 sk->sk_type == SOCK_STREAM) {
863 if ((1 << sk->sk_state) &
864 (TCPF_CLOSE | TCPF_LISTEN))
865 return -EINVAL;
866 sk->sk_tskey = tcp_sk(sk)->snd_una;
867 } else {
868 sk->sk_tskey = 0;
869 }
870 }
871
872 if (val & SOF_TIMESTAMPING_OPT_STATS &&
873 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
874 return -EINVAL;
875
876 if (val & SOF_TIMESTAMPING_BIND_PHC) {
877 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
878 if (ret)
879 return ret;
880 }
881
882 sk->sk_tsflags = val;
883 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
884
885 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
886 sock_enable_timestamp(sk,
887 SOCK_TIMESTAMPING_RX_SOFTWARE);
888 else
889 sock_disable_timestamp(sk,
890 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
891 return 0;
892}
893
894void sock_set_keepalive(struct sock *sk)
895{
896 lock_sock(sk);
897 if (sk->sk_prot->keepalive)
898 sk->sk_prot->keepalive(sk, true);
899 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
900 release_sock(sk);
901}
902EXPORT_SYMBOL(sock_set_keepalive);
903
904static void __sock_set_rcvbuf(struct sock *sk, int val)
905{
906 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
907 * as a negative value.
908 */
909 val = min_t(int, val, INT_MAX / 2);
910 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
911
912 /* We double it on the way in to account for "struct sk_buff" etc.
913 * overhead. Applications assume that the SO_RCVBUF setting they make
914 * will allow that much actual data to be received on that socket.
915 *
916 * Applications are unaware that "struct sk_buff" and other overheads
917 * allocate from the receive buffer during socket buffer allocation.
918 *
919 * And after considering the possible alternatives, returning the value
920 * we actually used in getsockopt is the most desirable behavior.
921 */
922 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
923}
924
925void sock_set_rcvbuf(struct sock *sk, int val)
926{
927 lock_sock(sk);
928 __sock_set_rcvbuf(sk, val);
929 release_sock(sk);
930}
931EXPORT_SYMBOL(sock_set_rcvbuf);
932
933static void __sock_set_mark(struct sock *sk, u32 val)
934{
935 if (val != sk->sk_mark) {
936 sk->sk_mark = val;
937 sk_dst_reset(sk);
938 }
939}
940
941void sock_set_mark(struct sock *sk, u32 val)
942{
943 lock_sock(sk);
944 __sock_set_mark(sk, val);
945 release_sock(sk);
946}
947EXPORT_SYMBOL(sock_set_mark);
948
949/*
950 * This is meant for all protocols to use and covers goings on
951 * at the socket level. Everything here is generic.
952 */
953
954int sock_setsockopt(struct socket *sock, int level, int optname,
955 sockptr_t optval, unsigned int optlen)
956{
957 struct so_timestamping timestamping;
958 struct sock_txtime sk_txtime;
959 struct sock *sk = sock->sk;
960 int val;
961 int valbool;
962 struct linger ling;
963 int ret = 0;
964
965 /*
966 * Options without arguments
967 */
968
969 if (optname == SO_BINDTODEVICE)
970 return sock_setbindtodevice(sk, optval, optlen);
971
972 if (optlen < sizeof(int))
973 return -EINVAL;
974
975 if (copy_from_sockptr(&val, optval, sizeof(val)))
976 return -EFAULT;
977
978 valbool = val ? 1 : 0;
979
980 lock_sock(sk);
981
982 switch (optname) {
983 case SO_DEBUG:
984 if (val && !capable(CAP_NET_ADMIN))
985 ret = -EACCES;
986 else
987 sock_valbool_flag(sk, SOCK_DBG, valbool);
988 break;
989 case SO_REUSEADDR:
990 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
991 break;
992 case SO_REUSEPORT:
993 sk->sk_reuseport = valbool;
994 break;
995 case SO_TYPE:
996 case SO_PROTOCOL:
997 case SO_DOMAIN:
998 case SO_ERROR:
999 ret = -ENOPROTOOPT;
1000 break;
1001 case SO_DONTROUTE:
1002 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1003 sk_dst_reset(sk);
1004 break;
1005 case SO_BROADCAST:
1006 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1007 break;
1008 case SO_SNDBUF:
1009 /* Don't error on this BSD doesn't and if you think
1010 * about it this is right. Otherwise apps have to
1011 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1012 * are treated in BSD as hints
1013 */
1014 val = min_t(u32, val, sysctl_wmem_max);
1015set_sndbuf:
1016 /* Ensure val * 2 fits into an int, to prevent max_t()
1017 * from treating it as a negative value.
1018 */
1019 val = min_t(int, val, INT_MAX / 2);
1020 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1021 WRITE_ONCE(sk->sk_sndbuf,
1022 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1023 /* Wake up sending tasks if we upped the value. */
1024 sk->sk_write_space(sk);
1025 break;
1026
1027 case SO_SNDBUFFORCE:
1028 if (!capable(CAP_NET_ADMIN)) {
1029 ret = -EPERM;
1030 break;
1031 }
1032
1033 /* No negative values (to prevent underflow, as val will be
1034 * multiplied by 2).
1035 */
1036 if (val < 0)
1037 val = 0;
1038 goto set_sndbuf;
1039
1040 case SO_RCVBUF:
1041 /* Don't error on this BSD doesn't and if you think
1042 * about it this is right. Otherwise apps have to
1043 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1044 * are treated in BSD as hints
1045 */
1046 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
1047 break;
1048
1049 case SO_RCVBUFFORCE:
1050 if (!capable(CAP_NET_ADMIN)) {
1051 ret = -EPERM;
1052 break;
1053 }
1054
1055 /* No negative values (to prevent underflow, as val will be
1056 * multiplied by 2).
1057 */
1058 __sock_set_rcvbuf(sk, max(val, 0));
1059 break;
1060
1061 case SO_KEEPALIVE:
1062 if (sk->sk_prot->keepalive)
1063 sk->sk_prot->keepalive(sk, valbool);
1064 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1065 break;
1066
1067 case SO_OOBINLINE:
1068 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1069 break;
1070
1071 case SO_NO_CHECK:
1072 sk->sk_no_check_tx = valbool;
1073 break;
1074
1075 case SO_PRIORITY:
1076 if ((val >= 0 && val <= 6) ||
1077 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1078 sk->sk_priority = val;
1079 else
1080 ret = -EPERM;
1081 break;
1082
1083 case SO_LINGER:
1084 if (optlen < sizeof(ling)) {
1085 ret = -EINVAL; /* 1003.1g */
1086 break;
1087 }
1088 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1089 ret = -EFAULT;
1090 break;
1091 }
1092 if (!ling.l_onoff)
1093 sock_reset_flag(sk, SOCK_LINGER);
1094 else {
1095#if (BITS_PER_LONG == 32)
1096 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1097 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1098 else
1099#endif
1100 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1101 sock_set_flag(sk, SOCK_LINGER);
1102 }
1103 break;
1104
1105 case SO_BSDCOMPAT:
1106 break;
1107
1108 case SO_PASSCRED:
1109 if (valbool)
1110 set_bit(SOCK_PASSCRED, &sock->flags);
1111 else
1112 clear_bit(SOCK_PASSCRED, &sock->flags);
1113 break;
1114
1115 case SO_TIMESTAMP_OLD:
1116 case SO_TIMESTAMP_NEW:
1117 case SO_TIMESTAMPNS_OLD:
1118 case SO_TIMESTAMPNS_NEW:
1119 sock_set_timestamp(sk, optname, valbool);
1120 break;
1121
1122 case SO_TIMESTAMPING_NEW:
1123 case SO_TIMESTAMPING_OLD:
1124 if (optlen == sizeof(timestamping)) {
1125 if (copy_from_sockptr(×tamping, optval,
1126 sizeof(timestamping))) {
1127 ret = -EFAULT;
1128 break;
1129 }
1130 } else {
1131 memset(×tamping, 0, sizeof(timestamping));
1132 timestamping.flags = val;
1133 }
1134 ret = sock_set_timestamping(sk, optname, timestamping);
1135 break;
1136
1137 case SO_RCVLOWAT:
1138 if (val < 0)
1139 val = INT_MAX;
1140 if (sock->ops->set_rcvlowat)
1141 ret = sock->ops->set_rcvlowat(sk, val);
1142 else
1143 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1144 break;
1145
1146 case SO_RCVTIMEO_OLD:
1147 case SO_RCVTIMEO_NEW:
1148 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1149 optlen, optname == SO_RCVTIMEO_OLD);
1150 break;
1151
1152 case SO_SNDTIMEO_OLD:
1153 case SO_SNDTIMEO_NEW:
1154 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1155 optlen, optname == SO_SNDTIMEO_OLD);
1156 break;
1157
1158 case SO_ATTACH_FILTER: {
1159 struct sock_fprog fprog;
1160
1161 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1162 if (!ret)
1163 ret = sk_attach_filter(&fprog, sk);
1164 break;
1165 }
1166 case SO_ATTACH_BPF:
1167 ret = -EINVAL;
1168 if (optlen == sizeof(u32)) {
1169 u32 ufd;
1170
1171 ret = -EFAULT;
1172 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1173 break;
1174
1175 ret = sk_attach_bpf(ufd, sk);
1176 }
1177 break;
1178
1179 case SO_ATTACH_REUSEPORT_CBPF: {
1180 struct sock_fprog fprog;
1181
1182 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1183 if (!ret)
1184 ret = sk_reuseport_attach_filter(&fprog, sk);
1185 break;
1186 }
1187 case SO_ATTACH_REUSEPORT_EBPF:
1188 ret = -EINVAL;
1189 if (optlen == sizeof(u32)) {
1190 u32 ufd;
1191
1192 ret = -EFAULT;
1193 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1194 break;
1195
1196 ret = sk_reuseport_attach_bpf(ufd, sk);
1197 }
1198 break;
1199
1200 case SO_DETACH_REUSEPORT_BPF:
1201 ret = reuseport_detach_prog(sk);
1202 break;
1203
1204 case SO_DETACH_FILTER:
1205 ret = sk_detach_filter(sk);
1206 break;
1207
1208 case SO_LOCK_FILTER:
1209 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1210 ret = -EPERM;
1211 else
1212 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1213 break;
1214
1215 case SO_PASSSEC:
1216 if (valbool)
1217 set_bit(SOCK_PASSSEC, &sock->flags);
1218 else
1219 clear_bit(SOCK_PASSSEC, &sock->flags);
1220 break;
1221 case SO_MARK:
1222 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1223 ret = -EPERM;
1224 break;
1225 }
1226
1227 __sock_set_mark(sk, val);
1228 break;
1229
1230 case SO_RXQ_OVFL:
1231 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1232 break;
1233
1234 case SO_WIFI_STATUS:
1235 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1236 break;
1237
1238 case SO_PEEK_OFF:
1239 if (sock->ops->set_peek_off)
1240 ret = sock->ops->set_peek_off(sk, val);
1241 else
1242 ret = -EOPNOTSUPP;
1243 break;
1244
1245 case SO_NOFCS:
1246 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1247 break;
1248
1249 case SO_SELECT_ERR_QUEUE:
1250 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1251 break;
1252
1253#ifdef CONFIG_NET_RX_BUSY_POLL
1254 case SO_BUSY_POLL:
1255 /* allow unprivileged users to decrease the value */
1256 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1257 ret = -EPERM;
1258 else {
1259 if (val < 0)
1260 ret = -EINVAL;
1261 else
1262 WRITE_ONCE(sk->sk_ll_usec, val);
1263 }
1264 break;
1265 case SO_PREFER_BUSY_POLL:
1266 if (valbool && !capable(CAP_NET_ADMIN))
1267 ret = -EPERM;
1268 else
1269 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1270 break;
1271 case SO_BUSY_POLL_BUDGET:
1272 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1273 ret = -EPERM;
1274 } else {
1275 if (val < 0 || val > U16_MAX)
1276 ret = -EINVAL;
1277 else
1278 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1279 }
1280 break;
1281#endif
1282
1283 case SO_MAX_PACING_RATE:
1284 {
1285 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1286
1287 if (sizeof(ulval) != sizeof(val) &&
1288 optlen >= sizeof(ulval) &&
1289 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1290 ret = -EFAULT;
1291 break;
1292 }
1293 if (ulval != ~0UL)
1294 cmpxchg(&sk->sk_pacing_status,
1295 SK_PACING_NONE,
1296 SK_PACING_NEEDED);
1297 sk->sk_max_pacing_rate = ulval;
1298 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1299 break;
1300 }
1301 case SO_INCOMING_CPU:
1302 WRITE_ONCE(sk->sk_incoming_cpu, val);
1303 break;
1304
1305 case SO_CNX_ADVICE:
1306 if (val == 1)
1307 dst_negative_advice(sk);
1308 break;
1309
1310 case SO_ZEROCOPY:
1311 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1312 if (!((sk->sk_type == SOCK_STREAM &&
1313 sk->sk_protocol == IPPROTO_TCP) ||
1314 (sk->sk_type == SOCK_DGRAM &&
1315 sk->sk_protocol == IPPROTO_UDP)))
1316 ret = -ENOTSUPP;
1317 } else if (sk->sk_family != PF_RDS) {
1318 ret = -ENOTSUPP;
1319 }
1320 if (!ret) {
1321 if (val < 0 || val > 1)
1322 ret = -EINVAL;
1323 else
1324 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1325 }
1326 break;
1327
1328 case SO_TXTIME:
1329 if (optlen != sizeof(struct sock_txtime)) {
1330 ret = -EINVAL;
1331 break;
1332 } else if (copy_from_sockptr(&sk_txtime, optval,
1333 sizeof(struct sock_txtime))) {
1334 ret = -EFAULT;
1335 break;
1336 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1337 ret = -EINVAL;
1338 break;
1339 }
1340 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1341 * scheduler has enough safe guards.
1342 */
1343 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1344 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1345 ret = -EPERM;
1346 break;
1347 }
1348 sock_valbool_flag(sk, SOCK_TXTIME, true);
1349 sk->sk_clockid = sk_txtime.clockid;
1350 sk->sk_txtime_deadline_mode =
1351 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1352 sk->sk_txtime_report_errors =
1353 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1354 break;
1355
1356 case SO_BINDTOIFINDEX:
1357 ret = sock_bindtoindex_locked(sk, val);
1358 break;
1359
1360 default:
1361 ret = -ENOPROTOOPT;
1362 break;
1363 }
1364 release_sock(sk);
1365 return ret;
1366}
1367EXPORT_SYMBOL(sock_setsockopt);
1368
1369static const struct cred *sk_get_peer_cred(struct sock *sk)
1370{
1371 const struct cred *cred;
1372
1373 spin_lock(&sk->sk_peer_lock);
1374 cred = get_cred(sk->sk_peer_cred);
1375 spin_unlock(&sk->sk_peer_lock);
1376
1377 return cred;
1378}
1379
1380static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1381 struct ucred *ucred)
1382{
1383 ucred->pid = pid_vnr(pid);
1384 ucred->uid = ucred->gid = -1;
1385 if (cred) {
1386 struct user_namespace *current_ns = current_user_ns();
1387
1388 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1389 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1390 }
1391}
1392
1393static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1394{
1395 struct user_namespace *user_ns = current_user_ns();
1396 int i;
1397
1398 for (i = 0; i < src->ngroups; i++)
1399 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1400 return -EFAULT;
1401
1402 return 0;
1403}
1404
1405int sock_getsockopt(struct socket *sock, int level, int optname,
1406 char __user *optval, int __user *optlen)
1407{
1408 struct sock *sk = sock->sk;
1409
1410 union {
1411 int val;
1412 u64 val64;
1413 unsigned long ulval;
1414 struct linger ling;
1415 struct old_timeval32 tm32;
1416 struct __kernel_old_timeval tm;
1417 struct __kernel_sock_timeval stm;
1418 struct sock_txtime txtime;
1419 struct so_timestamping timestamping;
1420 } v;
1421
1422 int lv = sizeof(int);
1423 int len;
1424
1425 if (get_user(len, optlen))
1426 return -EFAULT;
1427 if (len < 0)
1428 return -EINVAL;
1429
1430 memset(&v, 0, sizeof(v));
1431
1432 switch (optname) {
1433 case SO_DEBUG:
1434 v.val = sock_flag(sk, SOCK_DBG);
1435 break;
1436
1437 case SO_DONTROUTE:
1438 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1439 break;
1440
1441 case SO_BROADCAST:
1442 v.val = sock_flag(sk, SOCK_BROADCAST);
1443 break;
1444
1445 case SO_SNDBUF:
1446 v.val = sk->sk_sndbuf;
1447 break;
1448
1449 case SO_RCVBUF:
1450 v.val = sk->sk_rcvbuf;
1451 break;
1452
1453 case SO_REUSEADDR:
1454 v.val = sk->sk_reuse;
1455 break;
1456
1457 case SO_REUSEPORT:
1458 v.val = sk->sk_reuseport;
1459 break;
1460
1461 case SO_KEEPALIVE:
1462 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1463 break;
1464
1465 case SO_TYPE:
1466 v.val = sk->sk_type;
1467 break;
1468
1469 case SO_PROTOCOL:
1470 v.val = sk->sk_protocol;
1471 break;
1472
1473 case SO_DOMAIN:
1474 v.val = sk->sk_family;
1475 break;
1476
1477 case SO_ERROR:
1478 v.val = -sock_error(sk);
1479 if (v.val == 0)
1480 v.val = xchg(&sk->sk_err_soft, 0);
1481 break;
1482
1483 case SO_OOBINLINE:
1484 v.val = sock_flag(sk, SOCK_URGINLINE);
1485 break;
1486
1487 case SO_NO_CHECK:
1488 v.val = sk->sk_no_check_tx;
1489 break;
1490
1491 case SO_PRIORITY:
1492 v.val = sk->sk_priority;
1493 break;
1494
1495 case SO_LINGER:
1496 lv = sizeof(v.ling);
1497 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1498 v.ling.l_linger = sk->sk_lingertime / HZ;
1499 break;
1500
1501 case SO_BSDCOMPAT:
1502 break;
1503
1504 case SO_TIMESTAMP_OLD:
1505 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1506 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1507 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1508 break;
1509
1510 case SO_TIMESTAMPNS_OLD:
1511 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1512 break;
1513
1514 case SO_TIMESTAMP_NEW:
1515 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1516 break;
1517
1518 case SO_TIMESTAMPNS_NEW:
1519 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1520 break;
1521
1522 case SO_TIMESTAMPING_OLD:
1523 lv = sizeof(v.timestamping);
1524 v.timestamping.flags = sk->sk_tsflags;
1525 v.timestamping.bind_phc = sk->sk_bind_phc;
1526 break;
1527
1528 case SO_RCVTIMEO_OLD:
1529 case SO_RCVTIMEO_NEW:
1530 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1531 break;
1532
1533 case SO_SNDTIMEO_OLD:
1534 case SO_SNDTIMEO_NEW:
1535 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1536 break;
1537
1538 case SO_RCVLOWAT:
1539 v.val = sk->sk_rcvlowat;
1540 break;
1541
1542 case SO_SNDLOWAT:
1543 v.val = 1;
1544 break;
1545
1546 case SO_PASSCRED:
1547 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1548 break;
1549
1550 case SO_PEERCRED:
1551 {
1552 struct ucred peercred;
1553 if (len > sizeof(peercred))
1554 len = sizeof(peercred);
1555
1556 spin_lock(&sk->sk_peer_lock);
1557 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1558 spin_unlock(&sk->sk_peer_lock);
1559
1560 if (copy_to_user(optval, &peercred, len))
1561 return -EFAULT;
1562 goto lenout;
1563 }
1564
1565 case SO_PEERGROUPS:
1566 {
1567 const struct cred *cred;
1568 int ret, n;
1569
1570 cred = sk_get_peer_cred(sk);
1571 if (!cred)
1572 return -ENODATA;
1573
1574 n = cred->group_info->ngroups;
1575 if (len < n * sizeof(gid_t)) {
1576 len = n * sizeof(gid_t);
1577 put_cred(cred);
1578 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1579 }
1580 len = n * sizeof(gid_t);
1581
1582 ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1583 put_cred(cred);
1584 if (ret)
1585 return ret;
1586 goto lenout;
1587 }
1588
1589 case SO_PEERNAME:
1590 {
1591 char address[128];
1592
1593 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1594 if (lv < 0)
1595 return -ENOTCONN;
1596 if (lv < len)
1597 return -EINVAL;
1598 if (copy_to_user(optval, address, len))
1599 return -EFAULT;
1600 goto lenout;
1601 }
1602
1603 /* Dubious BSD thing... Probably nobody even uses it, but
1604 * the UNIX standard wants it for whatever reason... -DaveM
1605 */
1606 case SO_ACCEPTCONN:
1607 v.val = sk->sk_state == TCP_LISTEN;
1608 break;
1609
1610 case SO_PASSSEC:
1611 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1612 break;
1613
1614 case SO_PEERSEC:
1615 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1616
1617 case SO_MARK:
1618 v.val = sk->sk_mark;
1619 break;
1620
1621 case SO_RXQ_OVFL:
1622 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1623 break;
1624
1625 case SO_WIFI_STATUS:
1626 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1627 break;
1628
1629 case SO_PEEK_OFF:
1630 if (!sock->ops->set_peek_off)
1631 return -EOPNOTSUPP;
1632
1633 v.val = sk->sk_peek_off;
1634 break;
1635 case SO_NOFCS:
1636 v.val = sock_flag(sk, SOCK_NOFCS);
1637 break;
1638
1639 case SO_BINDTODEVICE:
1640 return sock_getbindtodevice(sk, optval, optlen, len);
1641
1642 case SO_GET_FILTER:
1643 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1644 if (len < 0)
1645 return len;
1646
1647 goto lenout;
1648
1649 case SO_LOCK_FILTER:
1650 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1651 break;
1652
1653 case SO_BPF_EXTENSIONS:
1654 v.val = bpf_tell_extensions();
1655 break;
1656
1657 case SO_SELECT_ERR_QUEUE:
1658 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1659 break;
1660
1661#ifdef CONFIG_NET_RX_BUSY_POLL
1662 case SO_BUSY_POLL:
1663 v.val = sk->sk_ll_usec;
1664 break;
1665 case SO_PREFER_BUSY_POLL:
1666 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1667 break;
1668#endif
1669
1670 case SO_MAX_PACING_RATE:
1671 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1672 lv = sizeof(v.ulval);
1673 v.ulval = sk->sk_max_pacing_rate;
1674 } else {
1675 /* 32bit version */
1676 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1677 }
1678 break;
1679
1680 case SO_INCOMING_CPU:
1681 v.val = READ_ONCE(sk->sk_incoming_cpu);
1682 break;
1683
1684 case SO_MEMINFO:
1685 {
1686 u32 meminfo[SK_MEMINFO_VARS];
1687
1688 sk_get_meminfo(sk, meminfo);
1689
1690 len = min_t(unsigned int, len, sizeof(meminfo));
1691 if (copy_to_user(optval, &meminfo, len))
1692 return -EFAULT;
1693
1694 goto lenout;
1695 }
1696
1697#ifdef CONFIG_NET_RX_BUSY_POLL
1698 case SO_INCOMING_NAPI_ID:
1699 v.val = READ_ONCE(sk->sk_napi_id);
1700
1701 /* aggregate non-NAPI IDs down to 0 */
1702 if (v.val < MIN_NAPI_ID)
1703 v.val = 0;
1704
1705 break;
1706#endif
1707
1708 case SO_COOKIE:
1709 lv = sizeof(u64);
1710 if (len < lv)
1711 return -EINVAL;
1712 v.val64 = sock_gen_cookie(sk);
1713 break;
1714
1715 case SO_ZEROCOPY:
1716 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1717 break;
1718
1719 case SO_TXTIME:
1720 lv = sizeof(v.txtime);
1721 v.txtime.clockid = sk->sk_clockid;
1722 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1723 SOF_TXTIME_DEADLINE_MODE : 0;
1724 v.txtime.flags |= sk->sk_txtime_report_errors ?
1725 SOF_TXTIME_REPORT_ERRORS : 0;
1726 break;
1727
1728 case SO_BINDTOIFINDEX:
1729 v.val = sk->sk_bound_dev_if;
1730 break;
1731
1732 case SO_NETNS_COOKIE:
1733 lv = sizeof(u64);
1734 if (len != lv)
1735 return -EINVAL;
1736 v.val64 = sock_net(sk)->net_cookie;
1737 break;
1738
1739 default:
1740 /* We implement the SO_SNDLOWAT etc to not be settable
1741 * (1003.1g 7).
1742 */
1743 return -ENOPROTOOPT;
1744 }
1745
1746 if (len > lv)
1747 len = lv;
1748 if (copy_to_user(optval, &v, len))
1749 return -EFAULT;
1750lenout:
1751 if (put_user(len, optlen))
1752 return -EFAULT;
1753 return 0;
1754}
1755
1756/*
1757 * Initialize an sk_lock.
1758 *
1759 * (We also register the sk_lock with the lock validator.)
1760 */
1761static inline void sock_lock_init(struct sock *sk)
1762{
1763 if (sk->sk_kern_sock)
1764 sock_lock_init_class_and_name(
1765 sk,
1766 af_family_kern_slock_key_strings[sk->sk_family],
1767 af_family_kern_slock_keys + sk->sk_family,
1768 af_family_kern_key_strings[sk->sk_family],
1769 af_family_kern_keys + sk->sk_family);
1770 else
1771 sock_lock_init_class_and_name(
1772 sk,
1773 af_family_slock_key_strings[sk->sk_family],
1774 af_family_slock_keys + sk->sk_family,
1775 af_family_key_strings[sk->sk_family],
1776 af_family_keys + sk->sk_family);
1777}
1778
1779/*
1780 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1781 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1782 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1783 */
1784static void sock_copy(struct sock *nsk, const struct sock *osk)
1785{
1786 const struct proto *prot = READ_ONCE(osk->sk_prot);
1787#ifdef CONFIG_SECURITY_NETWORK
1788 void *sptr = nsk->sk_security;
1789#endif
1790
1791 /* If we move sk_tx_queue_mapping out of the private section,
1792 * we must check if sk_tx_queue_clear() is called after
1793 * sock_copy() in sk_clone_lock().
1794 */
1795 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1796 offsetof(struct sock, sk_dontcopy_begin) ||
1797 offsetof(struct sock, sk_tx_queue_mapping) >=
1798 offsetof(struct sock, sk_dontcopy_end));
1799
1800 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1801
1802 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1803 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1804
1805#ifdef CONFIG_SECURITY_NETWORK
1806 nsk->sk_security = sptr;
1807 security_sk_clone(osk, nsk);
1808#endif
1809}
1810
1811static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1812 int family)
1813{
1814 struct sock *sk;
1815 struct kmem_cache *slab;
1816
1817 slab = prot->slab;
1818 if (slab != NULL) {
1819 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1820 if (!sk)
1821 return sk;
1822 if (want_init_on_alloc(priority))
1823 sk_prot_clear_nulls(sk, prot->obj_size);
1824 } else
1825 sk = kmalloc(prot->obj_size, priority);
1826
1827 if (sk != NULL) {
1828 if (security_sk_alloc(sk, family, priority))
1829 goto out_free;
1830
1831 if (!try_module_get(prot->owner))
1832 goto out_free_sec;
1833 }
1834
1835 return sk;
1836
1837out_free_sec:
1838 security_sk_free(sk);
1839out_free:
1840 if (slab != NULL)
1841 kmem_cache_free(slab, sk);
1842 else
1843 kfree(sk);
1844 return NULL;
1845}
1846
1847static void sk_prot_free(struct proto *prot, struct sock *sk)
1848{
1849 struct kmem_cache *slab;
1850 struct module *owner;
1851
1852 owner = prot->owner;
1853 slab = prot->slab;
1854
1855 cgroup_sk_free(&sk->sk_cgrp_data);
1856 mem_cgroup_sk_free(sk);
1857 security_sk_free(sk);
1858 if (slab != NULL)
1859 kmem_cache_free(slab, sk);
1860 else
1861 kfree(sk);
1862 module_put(owner);
1863}
1864
1865/**
1866 * sk_alloc - All socket objects are allocated here
1867 * @net: the applicable net namespace
1868 * @family: protocol family
1869 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1870 * @prot: struct proto associated with this new sock instance
1871 * @kern: is this to be a kernel socket?
1872 */
1873struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1874 struct proto *prot, int kern)
1875{
1876 struct sock *sk;
1877
1878 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1879 if (sk) {
1880 sk->sk_family = family;
1881 /*
1882 * See comment in struct sock definition to understand
1883 * why we need sk_prot_creator -acme
1884 */
1885 sk->sk_prot = sk->sk_prot_creator = prot;
1886 sk->sk_kern_sock = kern;
1887 sock_lock_init(sk);
1888 sk->sk_net_refcnt = kern ? 0 : 1;
1889 if (likely(sk->sk_net_refcnt)) {
1890 get_net(net);
1891 sock_inuse_add(net, 1);
1892 }
1893
1894 sock_net_set(sk, net);
1895 refcount_set(&sk->sk_wmem_alloc, 1);
1896
1897 mem_cgroup_sk_alloc(sk);
1898 cgroup_sk_alloc(&sk->sk_cgrp_data);
1899 sock_update_classid(&sk->sk_cgrp_data);
1900 sock_update_netprioidx(&sk->sk_cgrp_data);
1901 sk_tx_queue_clear(sk);
1902 }
1903
1904 return sk;
1905}
1906EXPORT_SYMBOL(sk_alloc);
1907
1908/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1909 * grace period. This is the case for UDP sockets and TCP listeners.
1910 */
1911static void __sk_destruct(struct rcu_head *head)
1912{
1913 struct sock *sk = container_of(head, struct sock, sk_rcu);
1914 struct sk_filter *filter;
1915
1916 if (sk->sk_destruct)
1917 sk->sk_destruct(sk);
1918
1919 filter = rcu_dereference_check(sk->sk_filter,
1920 refcount_read(&sk->sk_wmem_alloc) == 0);
1921 if (filter) {
1922 sk_filter_uncharge(sk, filter);
1923 RCU_INIT_POINTER(sk->sk_filter, NULL);
1924 }
1925
1926 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1927
1928#ifdef CONFIG_BPF_SYSCALL
1929 bpf_sk_storage_free(sk);
1930#endif
1931
1932 if (atomic_read(&sk->sk_omem_alloc))
1933 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1934 __func__, atomic_read(&sk->sk_omem_alloc));
1935
1936 if (sk->sk_frag.page) {
1937 put_page(sk->sk_frag.page);
1938 sk->sk_frag.page = NULL;
1939 }
1940
1941 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1942 put_cred(sk->sk_peer_cred);
1943 put_pid(sk->sk_peer_pid);
1944
1945 if (likely(sk->sk_net_refcnt))
1946 put_net(sock_net(sk));
1947 sk_prot_free(sk->sk_prot_creator, sk);
1948}
1949
1950void sk_destruct(struct sock *sk)
1951{
1952 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1953
1954 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1955 reuseport_detach_sock(sk);
1956 use_call_rcu = true;
1957 }
1958
1959 if (use_call_rcu)
1960 call_rcu(&sk->sk_rcu, __sk_destruct);
1961 else
1962 __sk_destruct(&sk->sk_rcu);
1963}
1964
1965static void __sk_free(struct sock *sk)
1966{
1967 if (likely(sk->sk_net_refcnt))
1968 sock_inuse_add(sock_net(sk), -1);
1969
1970 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1971 sock_diag_broadcast_destroy(sk);
1972 else
1973 sk_destruct(sk);
1974}
1975
1976void sk_free(struct sock *sk)
1977{
1978 /*
1979 * We subtract one from sk_wmem_alloc and can know if
1980 * some packets are still in some tx queue.
1981 * If not null, sock_wfree() will call __sk_free(sk) later
1982 */
1983 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1984 __sk_free(sk);
1985}
1986EXPORT_SYMBOL(sk_free);
1987
1988static void sk_init_common(struct sock *sk)
1989{
1990 skb_queue_head_init(&sk->sk_receive_queue);
1991 skb_queue_head_init(&sk->sk_write_queue);
1992 skb_queue_head_init(&sk->sk_error_queue);
1993
1994 rwlock_init(&sk->sk_callback_lock);
1995 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1996 af_rlock_keys + sk->sk_family,
1997 af_family_rlock_key_strings[sk->sk_family]);
1998 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1999 af_wlock_keys + sk->sk_family,
2000 af_family_wlock_key_strings[sk->sk_family]);
2001 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2002 af_elock_keys + sk->sk_family,
2003 af_family_elock_key_strings[sk->sk_family]);
2004 lockdep_set_class_and_name(&sk->sk_callback_lock,
2005 af_callback_keys + sk->sk_family,
2006 af_family_clock_key_strings[sk->sk_family]);
2007}
2008
2009/**
2010 * sk_clone_lock - clone a socket, and lock its clone
2011 * @sk: the socket to clone
2012 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2013 *
2014 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2015 */
2016struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2017{
2018 struct proto *prot = READ_ONCE(sk->sk_prot);
2019 struct sk_filter *filter;
2020 bool is_charged = true;
2021 struct sock *newsk;
2022
2023 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2024 if (!newsk)
2025 goto out;
2026
2027 sock_copy(newsk, sk);
2028
2029 newsk->sk_prot_creator = prot;
2030
2031 /* SANITY */
2032 if (likely(newsk->sk_net_refcnt))
2033 get_net(sock_net(newsk));
2034 sk_node_init(&newsk->sk_node);
2035 sock_lock_init(newsk);
2036 bh_lock_sock(newsk);
2037 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2038 newsk->sk_backlog.len = 0;
2039
2040 atomic_set(&newsk->sk_rmem_alloc, 0);
2041
2042 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2043 refcount_set(&newsk->sk_wmem_alloc, 1);
2044
2045 atomic_set(&newsk->sk_omem_alloc, 0);
2046 sk_init_common(newsk);
2047
2048 newsk->sk_dst_cache = NULL;
2049 newsk->sk_dst_pending_confirm = 0;
2050 newsk->sk_wmem_queued = 0;
2051 newsk->sk_forward_alloc = 0;
2052 atomic_set(&newsk->sk_drops, 0);
2053 newsk->sk_send_head = NULL;
2054 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2055 atomic_set(&newsk->sk_zckey, 0);
2056
2057 sock_reset_flag(newsk, SOCK_DONE);
2058
2059 /* sk->sk_memcg will be populated at accept() time */
2060 newsk->sk_memcg = NULL;
2061
2062 cgroup_sk_clone(&newsk->sk_cgrp_data);
2063
2064 rcu_read_lock();
2065 filter = rcu_dereference(sk->sk_filter);
2066 if (filter != NULL)
2067 /* though it's an empty new sock, the charging may fail
2068 * if sysctl_optmem_max was changed between creation of
2069 * original socket and cloning
2070 */
2071 is_charged = sk_filter_charge(newsk, filter);
2072 RCU_INIT_POINTER(newsk->sk_filter, filter);
2073 rcu_read_unlock();
2074
2075 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2076 /* We need to make sure that we don't uncharge the new
2077 * socket if we couldn't charge it in the first place
2078 * as otherwise we uncharge the parent's filter.
2079 */
2080 if (!is_charged)
2081 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2082 sk_free_unlock_clone(newsk);
2083 newsk = NULL;
2084 goto out;
2085 }
2086 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2087
2088 if (bpf_sk_storage_clone(sk, newsk)) {
2089 sk_free_unlock_clone(newsk);
2090 newsk = NULL;
2091 goto out;
2092 }
2093
2094 /* Clear sk_user_data if parent had the pointer tagged
2095 * as not suitable for copying when cloning.
2096 */
2097 if (sk_user_data_is_nocopy(newsk))
2098 newsk->sk_user_data = NULL;
2099
2100 newsk->sk_err = 0;
2101 newsk->sk_err_soft = 0;
2102 newsk->sk_priority = 0;
2103 newsk->sk_incoming_cpu = raw_smp_processor_id();
2104 if (likely(newsk->sk_net_refcnt))
2105 sock_inuse_add(sock_net(newsk), 1);
2106
2107 /* Before updating sk_refcnt, we must commit prior changes to memory
2108 * (Documentation/RCU/rculist_nulls.rst for details)
2109 */
2110 smp_wmb();
2111 refcount_set(&newsk->sk_refcnt, 2);
2112
2113 /* Increment the counter in the same struct proto as the master
2114 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2115 * is the same as sk->sk_prot->socks, as this field was copied
2116 * with memcpy).
2117 *
2118 * This _changes_ the previous behaviour, where
2119 * tcp_create_openreq_child always was incrementing the
2120 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2121 * to be taken into account in all callers. -acme
2122 */
2123 sk_refcnt_debug_inc(newsk);
2124 sk_set_socket(newsk, NULL);
2125 sk_tx_queue_clear(newsk);
2126 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2127
2128 if (newsk->sk_prot->sockets_allocated)
2129 sk_sockets_allocated_inc(newsk);
2130
2131 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2132 net_enable_timestamp();
2133out:
2134 return newsk;
2135}
2136EXPORT_SYMBOL_GPL(sk_clone_lock);
2137
2138void sk_free_unlock_clone(struct sock *sk)
2139{
2140 /* It is still raw copy of parent, so invalidate
2141 * destructor and make plain sk_free() */
2142 sk->sk_destruct = NULL;
2143 bh_unlock_sock(sk);
2144 sk_free(sk);
2145}
2146EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2147
2148void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2149{
2150 u32 max_segs = 1;
2151
2152 sk_dst_set(sk, dst);
2153 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2154 if (sk->sk_route_caps & NETIF_F_GSO)
2155 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2156 sk->sk_route_caps &= ~sk->sk_route_nocaps;
2157 if (sk_can_gso(sk)) {
2158 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2159 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2160 } else {
2161 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2162 sk->sk_gso_max_size = dst->dev->gso_max_size;
2163 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2164 }
2165 }
2166 sk->sk_gso_max_segs = max_segs;
2167}
2168EXPORT_SYMBOL_GPL(sk_setup_caps);
2169
2170/*
2171 * Simple resource managers for sockets.
2172 */
2173
2174
2175/*
2176 * Write buffer destructor automatically called from kfree_skb.
2177 */
2178void sock_wfree(struct sk_buff *skb)
2179{
2180 struct sock *sk = skb->sk;
2181 unsigned int len = skb->truesize;
2182
2183 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2184 /*
2185 * Keep a reference on sk_wmem_alloc, this will be released
2186 * after sk_write_space() call
2187 */
2188 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2189 sk->sk_write_space(sk);
2190 len = 1;
2191 }
2192 /*
2193 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2194 * could not do because of in-flight packets
2195 */
2196 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2197 __sk_free(sk);
2198}
2199EXPORT_SYMBOL(sock_wfree);
2200
2201/* This variant of sock_wfree() is used by TCP,
2202 * since it sets SOCK_USE_WRITE_QUEUE.
2203 */
2204void __sock_wfree(struct sk_buff *skb)
2205{
2206 struct sock *sk = skb->sk;
2207
2208 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2209 __sk_free(sk);
2210}
2211
2212void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2213{
2214 skb_orphan(skb);
2215 skb->sk = sk;
2216#ifdef CONFIG_INET
2217 if (unlikely(!sk_fullsock(sk))) {
2218 skb->destructor = sock_edemux;
2219 sock_hold(sk);
2220 return;
2221 }
2222#endif
2223 skb->destructor = sock_wfree;
2224 skb_set_hash_from_sk(skb, sk);
2225 /*
2226 * We used to take a refcount on sk, but following operation
2227 * is enough to guarantee sk_free() wont free this sock until
2228 * all in-flight packets are completed
2229 */
2230 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2231}
2232EXPORT_SYMBOL(skb_set_owner_w);
2233
2234static bool can_skb_orphan_partial(const struct sk_buff *skb)
2235{
2236#ifdef CONFIG_TLS_DEVICE
2237 /* Drivers depend on in-order delivery for crypto offload,
2238 * partial orphan breaks out-of-order-OK logic.
2239 */
2240 if (skb->decrypted)
2241 return false;
2242#endif
2243 return (skb->destructor == sock_wfree ||
2244 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2245}
2246
2247/* This helper is used by netem, as it can hold packets in its
2248 * delay queue. We want to allow the owner socket to send more
2249 * packets, as if they were already TX completed by a typical driver.
2250 * But we also want to keep skb->sk set because some packet schedulers
2251 * rely on it (sch_fq for example).
2252 */
2253void skb_orphan_partial(struct sk_buff *skb)
2254{
2255 if (skb_is_tcp_pure_ack(skb))
2256 return;
2257
2258 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2259 return;
2260
2261 skb_orphan(skb);
2262}
2263EXPORT_SYMBOL(skb_orphan_partial);
2264
2265/*
2266 * Read buffer destructor automatically called from kfree_skb.
2267 */
2268void sock_rfree(struct sk_buff *skb)
2269{
2270 struct sock *sk = skb->sk;
2271 unsigned int len = skb->truesize;
2272
2273 atomic_sub(len, &sk->sk_rmem_alloc);
2274 sk_mem_uncharge(sk, len);
2275}
2276EXPORT_SYMBOL(sock_rfree);
2277
2278/*
2279 * Buffer destructor for skbs that are not used directly in read or write
2280 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2281 */
2282void sock_efree(struct sk_buff *skb)
2283{
2284 sock_put(skb->sk);
2285}
2286EXPORT_SYMBOL(sock_efree);
2287
2288/* Buffer destructor for prefetch/receive path where reference count may
2289 * not be held, e.g. for listen sockets.
2290 */
2291#ifdef CONFIG_INET
2292void sock_pfree(struct sk_buff *skb)
2293{
2294 if (sk_is_refcounted(skb->sk))
2295 sock_gen_put(skb->sk);
2296}
2297EXPORT_SYMBOL(sock_pfree);
2298#endif /* CONFIG_INET */
2299
2300kuid_t sock_i_uid(struct sock *sk)
2301{
2302 kuid_t uid;
2303
2304 read_lock_bh(&sk->sk_callback_lock);
2305 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2306 read_unlock_bh(&sk->sk_callback_lock);
2307 return uid;
2308}
2309EXPORT_SYMBOL(sock_i_uid);
2310
2311unsigned long sock_i_ino(struct sock *sk)
2312{
2313 unsigned long ino;
2314
2315 read_lock_bh(&sk->sk_callback_lock);
2316 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2317 read_unlock_bh(&sk->sk_callback_lock);
2318 return ino;
2319}
2320EXPORT_SYMBOL(sock_i_ino);
2321
2322/*
2323 * Allocate a skb from the socket's send buffer.
2324 */
2325struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2326 gfp_t priority)
2327{
2328 if (force ||
2329 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2330 struct sk_buff *skb = alloc_skb(size, priority);
2331
2332 if (skb) {
2333 skb_set_owner_w(skb, sk);
2334 return skb;
2335 }
2336 }
2337 return NULL;
2338}
2339EXPORT_SYMBOL(sock_wmalloc);
2340
2341static void sock_ofree(struct sk_buff *skb)
2342{
2343 struct sock *sk = skb->sk;
2344
2345 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2346}
2347
2348struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2349 gfp_t priority)
2350{
2351 struct sk_buff *skb;
2352
2353 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2354 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2355 sysctl_optmem_max)
2356 return NULL;
2357
2358 skb = alloc_skb(size, priority);
2359 if (!skb)
2360 return NULL;
2361
2362 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2363 skb->sk = sk;
2364 skb->destructor = sock_ofree;
2365 return skb;
2366}
2367
2368/*
2369 * Allocate a memory block from the socket's option memory buffer.
2370 */
2371void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2372{
2373 if ((unsigned int)size <= sysctl_optmem_max &&
2374 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2375 void *mem;
2376 /* First do the add, to avoid the race if kmalloc
2377 * might sleep.
2378 */
2379 atomic_add(size, &sk->sk_omem_alloc);
2380 mem = kmalloc(size, priority);
2381 if (mem)
2382 return mem;
2383 atomic_sub(size, &sk->sk_omem_alloc);
2384 }
2385 return NULL;
2386}
2387EXPORT_SYMBOL(sock_kmalloc);
2388
2389/* Free an option memory block. Note, we actually want the inline
2390 * here as this allows gcc to detect the nullify and fold away the
2391 * condition entirely.
2392 */
2393static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2394 const bool nullify)
2395{
2396 if (WARN_ON_ONCE(!mem))
2397 return;
2398 if (nullify)
2399 kfree_sensitive(mem);
2400 else
2401 kfree(mem);
2402 atomic_sub(size, &sk->sk_omem_alloc);
2403}
2404
2405void sock_kfree_s(struct sock *sk, void *mem, int size)
2406{
2407 __sock_kfree_s(sk, mem, size, false);
2408}
2409EXPORT_SYMBOL(sock_kfree_s);
2410
2411void sock_kzfree_s(struct sock *sk, void *mem, int size)
2412{
2413 __sock_kfree_s(sk, mem, size, true);
2414}
2415EXPORT_SYMBOL(sock_kzfree_s);
2416
2417/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2418 I think, these locks should be removed for datagram sockets.
2419 */
2420static long sock_wait_for_wmem(struct sock *sk, long timeo)
2421{
2422 DEFINE_WAIT(wait);
2423
2424 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2425 for (;;) {
2426 if (!timeo)
2427 break;
2428 if (signal_pending(current))
2429 break;
2430 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2431 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2432 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2433 break;
2434 if (sk->sk_shutdown & SEND_SHUTDOWN)
2435 break;
2436 if (sk->sk_err)
2437 break;
2438 timeo = schedule_timeout(timeo);
2439 }
2440 finish_wait(sk_sleep(sk), &wait);
2441 return timeo;
2442}
2443
2444
2445/*
2446 * Generic send/receive buffer handlers
2447 */
2448
2449struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2450 unsigned long data_len, int noblock,
2451 int *errcode, int max_page_order)
2452{
2453 struct sk_buff *skb;
2454 long timeo;
2455 int err;
2456
2457 timeo = sock_sndtimeo(sk, noblock);
2458 for (;;) {
2459 err = sock_error(sk);
2460 if (err != 0)
2461 goto failure;
2462
2463 err = -EPIPE;
2464 if (sk->sk_shutdown & SEND_SHUTDOWN)
2465 goto failure;
2466
2467 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2468 break;
2469
2470 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2471 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2472 err = -EAGAIN;
2473 if (!timeo)
2474 goto failure;
2475 if (signal_pending(current))
2476 goto interrupted;
2477 timeo = sock_wait_for_wmem(sk, timeo);
2478 }
2479 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2480 errcode, sk->sk_allocation);
2481 if (skb)
2482 skb_set_owner_w(skb, sk);
2483 return skb;
2484
2485interrupted:
2486 err = sock_intr_errno(timeo);
2487failure:
2488 *errcode = err;
2489 return NULL;
2490}
2491EXPORT_SYMBOL(sock_alloc_send_pskb);
2492
2493struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2494 int noblock, int *errcode)
2495{
2496 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2497}
2498EXPORT_SYMBOL(sock_alloc_send_skb);
2499
2500int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2501 struct sockcm_cookie *sockc)
2502{
2503 u32 tsflags;
2504
2505 switch (cmsg->cmsg_type) {
2506 case SO_MARK:
2507 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2508 return -EPERM;
2509 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2510 return -EINVAL;
2511 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2512 break;
2513 case SO_TIMESTAMPING_OLD:
2514 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2515 return -EINVAL;
2516
2517 tsflags = *(u32 *)CMSG_DATA(cmsg);
2518 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2519 return -EINVAL;
2520
2521 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2522 sockc->tsflags |= tsflags;
2523 break;
2524 case SCM_TXTIME:
2525 if (!sock_flag(sk, SOCK_TXTIME))
2526 return -EINVAL;
2527 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2528 return -EINVAL;
2529 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2530 break;
2531 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2532 case SCM_RIGHTS:
2533 case SCM_CREDENTIALS:
2534 break;
2535 default:
2536 return -EINVAL;
2537 }
2538 return 0;
2539}
2540EXPORT_SYMBOL(__sock_cmsg_send);
2541
2542int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2543 struct sockcm_cookie *sockc)
2544{
2545 struct cmsghdr *cmsg;
2546 int ret;
2547
2548 for_each_cmsghdr(cmsg, msg) {
2549 if (!CMSG_OK(msg, cmsg))
2550 return -EINVAL;
2551 if (cmsg->cmsg_level != SOL_SOCKET)
2552 continue;
2553 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2554 if (ret)
2555 return ret;
2556 }
2557 return 0;
2558}
2559EXPORT_SYMBOL(sock_cmsg_send);
2560
2561static void sk_enter_memory_pressure(struct sock *sk)
2562{
2563 if (!sk->sk_prot->enter_memory_pressure)
2564 return;
2565
2566 sk->sk_prot->enter_memory_pressure(sk);
2567}
2568
2569static void sk_leave_memory_pressure(struct sock *sk)
2570{
2571 if (sk->sk_prot->leave_memory_pressure) {
2572 sk->sk_prot->leave_memory_pressure(sk);
2573 } else {
2574 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2575
2576 if (memory_pressure && READ_ONCE(*memory_pressure))
2577 WRITE_ONCE(*memory_pressure, 0);
2578 }
2579}
2580
2581#define SKB_FRAG_PAGE_ORDER get_order(32768)
2582DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2583
2584/**
2585 * skb_page_frag_refill - check that a page_frag contains enough room
2586 * @sz: minimum size of the fragment we want to get
2587 * @pfrag: pointer to page_frag
2588 * @gfp: priority for memory allocation
2589 *
2590 * Note: While this allocator tries to use high order pages, there is
2591 * no guarantee that allocations succeed. Therefore, @sz MUST be
2592 * less or equal than PAGE_SIZE.
2593 */
2594bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2595{
2596 if (pfrag->page) {
2597 if (page_ref_count(pfrag->page) == 1) {
2598 pfrag->offset = 0;
2599 return true;
2600 }
2601 if (pfrag->offset + sz <= pfrag->size)
2602 return true;
2603 put_page(pfrag->page);
2604 }
2605
2606 pfrag->offset = 0;
2607 if (SKB_FRAG_PAGE_ORDER &&
2608 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2609 /* Avoid direct reclaim but allow kswapd to wake */
2610 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2611 __GFP_COMP | __GFP_NOWARN |
2612 __GFP_NORETRY,
2613 SKB_FRAG_PAGE_ORDER);
2614 if (likely(pfrag->page)) {
2615 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2616 return true;
2617 }
2618 }
2619 pfrag->page = alloc_page(gfp);
2620 if (likely(pfrag->page)) {
2621 pfrag->size = PAGE_SIZE;
2622 return true;
2623 }
2624 return false;
2625}
2626EXPORT_SYMBOL(skb_page_frag_refill);
2627
2628bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2629{
2630 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2631 return true;
2632
2633 sk_enter_memory_pressure(sk);
2634 sk_stream_moderate_sndbuf(sk);
2635 return false;
2636}
2637EXPORT_SYMBOL(sk_page_frag_refill);
2638
2639void __lock_sock(struct sock *sk)
2640 __releases(&sk->sk_lock.slock)
2641 __acquires(&sk->sk_lock.slock)
2642{
2643 DEFINE_WAIT(wait);
2644
2645 for (;;) {
2646 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2647 TASK_UNINTERRUPTIBLE);
2648 spin_unlock_bh(&sk->sk_lock.slock);
2649 schedule();
2650 spin_lock_bh(&sk->sk_lock.slock);
2651 if (!sock_owned_by_user(sk))
2652 break;
2653 }
2654 finish_wait(&sk->sk_lock.wq, &wait);
2655}
2656
2657void __release_sock(struct sock *sk)
2658 __releases(&sk->sk_lock.slock)
2659 __acquires(&sk->sk_lock.slock)
2660{
2661 struct sk_buff *skb, *next;
2662
2663 while ((skb = sk->sk_backlog.head) != NULL) {
2664 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2665
2666 spin_unlock_bh(&sk->sk_lock.slock);
2667
2668 do {
2669 next = skb->next;
2670 prefetch(next);
2671 WARN_ON_ONCE(skb_dst_is_noref(skb));
2672 skb_mark_not_on_list(skb);
2673 sk_backlog_rcv(sk, skb);
2674
2675 cond_resched();
2676
2677 skb = next;
2678 } while (skb != NULL);
2679
2680 spin_lock_bh(&sk->sk_lock.slock);
2681 }
2682
2683 /*
2684 * Doing the zeroing here guarantee we can not loop forever
2685 * while a wild producer attempts to flood us.
2686 */
2687 sk->sk_backlog.len = 0;
2688}
2689
2690void __sk_flush_backlog(struct sock *sk)
2691{
2692 spin_lock_bh(&sk->sk_lock.slock);
2693 __release_sock(sk);
2694 spin_unlock_bh(&sk->sk_lock.slock);
2695}
2696
2697/**
2698 * sk_wait_data - wait for data to arrive at sk_receive_queue
2699 * @sk: sock to wait on
2700 * @timeo: for how long
2701 * @skb: last skb seen on sk_receive_queue
2702 *
2703 * Now socket state including sk->sk_err is changed only under lock,
2704 * hence we may omit checks after joining wait queue.
2705 * We check receive queue before schedule() only as optimization;
2706 * it is very likely that release_sock() added new data.
2707 */
2708int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2709{
2710 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2711 int rc;
2712
2713 add_wait_queue(sk_sleep(sk), &wait);
2714 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2715 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2716 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2717 remove_wait_queue(sk_sleep(sk), &wait);
2718 return rc;
2719}
2720EXPORT_SYMBOL(sk_wait_data);
2721
2722/**
2723 * __sk_mem_raise_allocated - increase memory_allocated
2724 * @sk: socket
2725 * @size: memory size to allocate
2726 * @amt: pages to allocate
2727 * @kind: allocation type
2728 *
2729 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2730 */
2731int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2732{
2733 struct proto *prot = sk->sk_prot;
2734 long allocated = sk_memory_allocated_add(sk, amt);
2735 bool charged = true;
2736
2737 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2738 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2739 goto suppress_allocation;
2740
2741 /* Under limit. */
2742 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2743 sk_leave_memory_pressure(sk);
2744 return 1;
2745 }
2746
2747 /* Under pressure. */
2748 if (allocated > sk_prot_mem_limits(sk, 1))
2749 sk_enter_memory_pressure(sk);
2750
2751 /* Over hard limit. */
2752 if (allocated > sk_prot_mem_limits(sk, 2))
2753 goto suppress_allocation;
2754
2755 /* guarantee minimum buffer size under pressure */
2756 if (kind == SK_MEM_RECV) {
2757 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2758 return 1;
2759
2760 } else { /* SK_MEM_SEND */
2761 int wmem0 = sk_get_wmem0(sk, prot);
2762
2763 if (sk->sk_type == SOCK_STREAM) {
2764 if (sk->sk_wmem_queued < wmem0)
2765 return 1;
2766 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2767 return 1;
2768 }
2769 }
2770
2771 if (sk_has_memory_pressure(sk)) {
2772 u64 alloc;
2773
2774 if (!sk_under_memory_pressure(sk))
2775 return 1;
2776 alloc = sk_sockets_allocated_read_positive(sk);
2777 if (sk_prot_mem_limits(sk, 2) > alloc *
2778 sk_mem_pages(sk->sk_wmem_queued +
2779 atomic_read(&sk->sk_rmem_alloc) +
2780 sk->sk_forward_alloc))
2781 return 1;
2782 }
2783
2784suppress_allocation:
2785
2786 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2787 sk_stream_moderate_sndbuf(sk);
2788
2789 /* Fail only if socket is _under_ its sndbuf.
2790 * In this case we cannot block, so that we have to fail.
2791 */
2792 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2793 return 1;
2794 }
2795
2796 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2797 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2798
2799 sk_memory_allocated_sub(sk, amt);
2800
2801 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2802 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2803
2804 return 0;
2805}
2806EXPORT_SYMBOL(__sk_mem_raise_allocated);
2807
2808/**
2809 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2810 * @sk: socket
2811 * @size: memory size to allocate
2812 * @kind: allocation type
2813 *
2814 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2815 * rmem allocation. This function assumes that protocols which have
2816 * memory_pressure use sk_wmem_queued as write buffer accounting.
2817 */
2818int __sk_mem_schedule(struct sock *sk, int size, int kind)
2819{
2820 int ret, amt = sk_mem_pages(size);
2821
2822 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2823 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2824 if (!ret)
2825 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2826 return ret;
2827}
2828EXPORT_SYMBOL(__sk_mem_schedule);
2829
2830/**
2831 * __sk_mem_reduce_allocated - reclaim memory_allocated
2832 * @sk: socket
2833 * @amount: number of quanta
2834 *
2835 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2836 */
2837void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2838{
2839 sk_memory_allocated_sub(sk, amount);
2840
2841 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2842 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2843
2844 if (sk_under_memory_pressure(sk) &&
2845 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2846 sk_leave_memory_pressure(sk);
2847}
2848EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2849
2850/**
2851 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2852 * @sk: socket
2853 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2854 */
2855void __sk_mem_reclaim(struct sock *sk, int amount)
2856{
2857 amount >>= SK_MEM_QUANTUM_SHIFT;
2858 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2859 __sk_mem_reduce_allocated(sk, amount);
2860}
2861EXPORT_SYMBOL(__sk_mem_reclaim);
2862
2863int sk_set_peek_off(struct sock *sk, int val)
2864{
2865 sk->sk_peek_off = val;
2866 return 0;
2867}
2868EXPORT_SYMBOL_GPL(sk_set_peek_off);
2869
2870/*
2871 * Set of default routines for initialising struct proto_ops when
2872 * the protocol does not support a particular function. In certain
2873 * cases where it makes no sense for a protocol to have a "do nothing"
2874 * function, some default processing is provided.
2875 */
2876
2877int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2878{
2879 return -EOPNOTSUPP;
2880}
2881EXPORT_SYMBOL(sock_no_bind);
2882
2883int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2884 int len, int flags)
2885{
2886 return -EOPNOTSUPP;
2887}
2888EXPORT_SYMBOL(sock_no_connect);
2889
2890int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2891{
2892 return -EOPNOTSUPP;
2893}
2894EXPORT_SYMBOL(sock_no_socketpair);
2895
2896int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2897 bool kern)
2898{
2899 return -EOPNOTSUPP;
2900}
2901EXPORT_SYMBOL(sock_no_accept);
2902
2903int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2904 int peer)
2905{
2906 return -EOPNOTSUPP;
2907}
2908EXPORT_SYMBOL(sock_no_getname);
2909
2910int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2911{
2912 return -EOPNOTSUPP;
2913}
2914EXPORT_SYMBOL(sock_no_ioctl);
2915
2916int sock_no_listen(struct socket *sock, int backlog)
2917{
2918 return -EOPNOTSUPP;
2919}
2920EXPORT_SYMBOL(sock_no_listen);
2921
2922int sock_no_shutdown(struct socket *sock, int how)
2923{
2924 return -EOPNOTSUPP;
2925}
2926EXPORT_SYMBOL(sock_no_shutdown);
2927
2928int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2929{
2930 return -EOPNOTSUPP;
2931}
2932EXPORT_SYMBOL(sock_no_sendmsg);
2933
2934int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2935{
2936 return -EOPNOTSUPP;
2937}
2938EXPORT_SYMBOL(sock_no_sendmsg_locked);
2939
2940int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2941 int flags)
2942{
2943 return -EOPNOTSUPP;
2944}
2945EXPORT_SYMBOL(sock_no_recvmsg);
2946
2947int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2948{
2949 /* Mirror missing mmap method error code */
2950 return -ENODEV;
2951}
2952EXPORT_SYMBOL(sock_no_mmap);
2953
2954/*
2955 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2956 * various sock-based usage counts.
2957 */
2958void __receive_sock(struct file *file)
2959{
2960 struct socket *sock;
2961
2962 sock = sock_from_file(file);
2963 if (sock) {
2964 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2965 sock_update_classid(&sock->sk->sk_cgrp_data);
2966 }
2967}
2968
2969ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2970{
2971 ssize_t res;
2972 struct msghdr msg = {.msg_flags = flags};
2973 struct kvec iov;
2974 char *kaddr = kmap(page);
2975 iov.iov_base = kaddr + offset;
2976 iov.iov_len = size;
2977 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2978 kunmap(page);
2979 return res;
2980}
2981EXPORT_SYMBOL(sock_no_sendpage);
2982
2983ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2984 int offset, size_t size, int flags)
2985{
2986 ssize_t res;
2987 struct msghdr msg = {.msg_flags = flags};
2988 struct kvec iov;
2989 char *kaddr = kmap(page);
2990
2991 iov.iov_base = kaddr + offset;
2992 iov.iov_len = size;
2993 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2994 kunmap(page);
2995 return res;
2996}
2997EXPORT_SYMBOL(sock_no_sendpage_locked);
2998
2999/*
3000 * Default Socket Callbacks
3001 */
3002
3003static void sock_def_wakeup(struct sock *sk)
3004{
3005 struct socket_wq *wq;
3006
3007 rcu_read_lock();
3008 wq = rcu_dereference(sk->sk_wq);
3009 if (skwq_has_sleeper(wq))
3010 wake_up_interruptible_all(&wq->wait);
3011 rcu_read_unlock();
3012}
3013
3014static void sock_def_error_report(struct sock *sk)
3015{
3016 struct socket_wq *wq;
3017
3018 rcu_read_lock();
3019 wq = rcu_dereference(sk->sk_wq);
3020 if (skwq_has_sleeper(wq))
3021 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3022 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3023 rcu_read_unlock();
3024}
3025
3026void sock_def_readable(struct sock *sk)
3027{
3028 struct socket_wq *wq;
3029
3030 rcu_read_lock();
3031 wq = rcu_dereference(sk->sk_wq);
3032 if (skwq_has_sleeper(wq))
3033 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3034 EPOLLRDNORM | EPOLLRDBAND);
3035 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3036 rcu_read_unlock();
3037}
3038
3039static void sock_def_write_space(struct sock *sk)
3040{
3041 struct socket_wq *wq;
3042
3043 rcu_read_lock();
3044
3045 /* Do not wake up a writer until he can make "significant"
3046 * progress. --DaveM
3047 */
3048 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
3049 wq = rcu_dereference(sk->sk_wq);
3050 if (skwq_has_sleeper(wq))
3051 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3052 EPOLLWRNORM | EPOLLWRBAND);
3053
3054 /* Should agree with poll, otherwise some programs break */
3055 if (sock_writeable(sk))
3056 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3057 }
3058
3059 rcu_read_unlock();
3060}
3061
3062static void sock_def_destruct(struct sock *sk)
3063{
3064}
3065
3066void sk_send_sigurg(struct sock *sk)
3067{
3068 if (sk->sk_socket && sk->sk_socket->file)
3069 if (send_sigurg(&sk->sk_socket->file->f_owner))
3070 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3071}
3072EXPORT_SYMBOL(sk_send_sigurg);
3073
3074void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3075 unsigned long expires)
3076{
3077 if (!mod_timer(timer, expires))
3078 sock_hold(sk);
3079}
3080EXPORT_SYMBOL(sk_reset_timer);
3081
3082void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3083{
3084 if (del_timer(timer))
3085 __sock_put(sk);
3086}
3087EXPORT_SYMBOL(sk_stop_timer);
3088
3089void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3090{
3091 if (del_timer_sync(timer))
3092 __sock_put(sk);
3093}
3094EXPORT_SYMBOL(sk_stop_timer_sync);
3095
3096void sock_init_data(struct socket *sock, struct sock *sk)
3097{
3098 sk_init_common(sk);
3099 sk->sk_send_head = NULL;
3100
3101 timer_setup(&sk->sk_timer, NULL, 0);
3102
3103 sk->sk_allocation = GFP_KERNEL;
3104 sk->sk_rcvbuf = sysctl_rmem_default;
3105 sk->sk_sndbuf = sysctl_wmem_default;
3106 sk->sk_state = TCP_CLOSE;
3107 sk_set_socket(sk, sock);
3108
3109 sock_set_flag(sk, SOCK_ZAPPED);
3110
3111 if (sock) {
3112 sk->sk_type = sock->type;
3113 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3114 sock->sk = sk;
3115 sk->sk_uid = SOCK_INODE(sock)->i_uid;
3116 } else {
3117 RCU_INIT_POINTER(sk->sk_wq, NULL);
3118 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
3119 }
3120
3121 rwlock_init(&sk->sk_callback_lock);
3122 if (sk->sk_kern_sock)
3123 lockdep_set_class_and_name(
3124 &sk->sk_callback_lock,
3125 af_kern_callback_keys + sk->sk_family,
3126 af_family_kern_clock_key_strings[sk->sk_family]);
3127 else
3128 lockdep_set_class_and_name(
3129 &sk->sk_callback_lock,
3130 af_callback_keys + sk->sk_family,
3131 af_family_clock_key_strings[sk->sk_family]);
3132
3133 sk->sk_state_change = sock_def_wakeup;
3134 sk->sk_data_ready = sock_def_readable;
3135 sk->sk_write_space = sock_def_write_space;
3136 sk->sk_error_report = sock_def_error_report;
3137 sk->sk_destruct = sock_def_destruct;
3138
3139 sk->sk_frag.page = NULL;
3140 sk->sk_frag.offset = 0;
3141 sk->sk_peek_off = -1;
3142
3143 sk->sk_peer_pid = NULL;
3144 sk->sk_peer_cred = NULL;
3145 spin_lock_init(&sk->sk_peer_lock);
3146
3147 sk->sk_write_pending = 0;
3148 sk->sk_rcvlowat = 1;
3149 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3150 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3151
3152 sk->sk_stamp = SK_DEFAULT_STAMP;
3153#if BITS_PER_LONG==32
3154 seqlock_init(&sk->sk_stamp_seq);
3155#endif
3156 atomic_set(&sk->sk_zckey, 0);
3157
3158#ifdef CONFIG_NET_RX_BUSY_POLL
3159 sk->sk_napi_id = 0;
3160 sk->sk_ll_usec = sysctl_net_busy_read;
3161#endif
3162
3163 sk->sk_max_pacing_rate = ~0UL;
3164 sk->sk_pacing_rate = ~0UL;
3165 WRITE_ONCE(sk->sk_pacing_shift, 10);
3166 sk->sk_incoming_cpu = -1;
3167
3168 sk_rx_queue_clear(sk);
3169 /*
3170 * Before updating sk_refcnt, we must commit prior changes to memory
3171 * (Documentation/RCU/rculist_nulls.rst for details)
3172 */
3173 smp_wmb();
3174 refcount_set(&sk->sk_refcnt, 1);
3175 atomic_set(&sk->sk_drops, 0);
3176}
3177EXPORT_SYMBOL(sock_init_data);
3178
3179void lock_sock_nested(struct sock *sk, int subclass)
3180{
3181 might_sleep();
3182 spin_lock_bh(&sk->sk_lock.slock);
3183 if (sk->sk_lock.owned)
3184 __lock_sock(sk);
3185 sk->sk_lock.owned = 1;
3186 spin_unlock(&sk->sk_lock.slock);
3187 /*
3188 * The sk_lock has mutex_lock() semantics here:
3189 */
3190 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3191 local_bh_enable();
3192}
3193EXPORT_SYMBOL(lock_sock_nested);
3194
3195void release_sock(struct sock *sk)
3196{
3197 spin_lock_bh(&sk->sk_lock.slock);
3198 if (sk->sk_backlog.tail)
3199 __release_sock(sk);
3200
3201 /* Warning : release_cb() might need to release sk ownership,
3202 * ie call sock_release_ownership(sk) before us.
3203 */
3204 if (sk->sk_prot->release_cb)
3205 sk->sk_prot->release_cb(sk);
3206
3207 sock_release_ownership(sk);
3208 if (waitqueue_active(&sk->sk_lock.wq))
3209 wake_up(&sk->sk_lock.wq);
3210 spin_unlock_bh(&sk->sk_lock.slock);
3211}
3212EXPORT_SYMBOL(release_sock);
3213
3214/**
3215 * lock_sock_fast - fast version of lock_sock
3216 * @sk: socket
3217 *
3218 * This version should be used for very small section, where process wont block
3219 * return false if fast path is taken:
3220 *
3221 * sk_lock.slock locked, owned = 0, BH disabled
3222 *
3223 * return true if slow path is taken:
3224 *
3225 * sk_lock.slock unlocked, owned = 1, BH enabled
3226 */
3227bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3228{
3229 might_sleep();
3230 spin_lock_bh(&sk->sk_lock.slock);
3231
3232 if (!sk->sk_lock.owned)
3233 /*
3234 * Note : We must disable BH
3235 */
3236 return false;
3237
3238 __lock_sock(sk);
3239 sk->sk_lock.owned = 1;
3240 spin_unlock(&sk->sk_lock.slock);
3241 /*
3242 * The sk_lock has mutex_lock() semantics here:
3243 */
3244 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3245 __acquire(&sk->sk_lock.slock);
3246 local_bh_enable();
3247 return true;
3248}
3249EXPORT_SYMBOL(lock_sock_fast);
3250
3251int sock_gettstamp(struct socket *sock, void __user *userstamp,
3252 bool timeval, bool time32)
3253{
3254 struct sock *sk = sock->sk;
3255 struct timespec64 ts;
3256
3257 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3258 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3259 if (ts.tv_sec == -1)
3260 return -ENOENT;
3261 if (ts.tv_sec == 0) {
3262 ktime_t kt = ktime_get_real();
3263 sock_write_timestamp(sk, kt);
3264 ts = ktime_to_timespec64(kt);
3265 }
3266
3267 if (timeval)
3268 ts.tv_nsec /= 1000;
3269
3270#ifdef CONFIG_COMPAT_32BIT_TIME
3271 if (time32)
3272 return put_old_timespec32(&ts, userstamp);
3273#endif
3274#ifdef CONFIG_SPARC64
3275 /* beware of padding in sparc64 timeval */
3276 if (timeval && !in_compat_syscall()) {
3277 struct __kernel_old_timeval __user tv = {
3278 .tv_sec = ts.tv_sec,
3279 .tv_usec = ts.tv_nsec,
3280 };
3281 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3282 return -EFAULT;
3283 return 0;
3284 }
3285#endif
3286 return put_timespec64(&ts, userstamp);
3287}
3288EXPORT_SYMBOL(sock_gettstamp);
3289
3290void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3291{
3292 if (!sock_flag(sk, flag)) {
3293 unsigned long previous_flags = sk->sk_flags;
3294
3295 sock_set_flag(sk, flag);
3296 /*
3297 * we just set one of the two flags which require net
3298 * time stamping, but time stamping might have been on
3299 * already because of the other one
3300 */
3301 if (sock_needs_netstamp(sk) &&
3302 !(previous_flags & SK_FLAGS_TIMESTAMP))
3303 net_enable_timestamp();
3304 }
3305}
3306
3307int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3308 int level, int type)
3309{
3310 struct sock_exterr_skb *serr;
3311 struct sk_buff *skb;
3312 int copied, err;
3313
3314 err = -EAGAIN;
3315 skb = sock_dequeue_err_skb(sk);
3316 if (skb == NULL)
3317 goto out;
3318
3319 copied = skb->len;
3320 if (copied > len) {
3321 msg->msg_flags |= MSG_TRUNC;
3322 copied = len;
3323 }
3324 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3325 if (err)
3326 goto out_free_skb;
3327
3328 sock_recv_timestamp(msg, sk, skb);
3329
3330 serr = SKB_EXT_ERR(skb);
3331 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3332
3333 msg->msg_flags |= MSG_ERRQUEUE;
3334 err = copied;
3335
3336out_free_skb:
3337 kfree_skb(skb);
3338out:
3339 return err;
3340}
3341EXPORT_SYMBOL(sock_recv_errqueue);
3342
3343/*
3344 * Get a socket option on an socket.
3345 *
3346 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3347 * asynchronous errors should be reported by getsockopt. We assume
3348 * this means if you specify SO_ERROR (otherwise whats the point of it).
3349 */
3350int sock_common_getsockopt(struct socket *sock, int level, int optname,
3351 char __user *optval, int __user *optlen)
3352{
3353 struct sock *sk = sock->sk;
3354
3355 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3356}
3357EXPORT_SYMBOL(sock_common_getsockopt);
3358
3359int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3360 int flags)
3361{
3362 struct sock *sk = sock->sk;
3363 int addr_len = 0;
3364 int err;
3365
3366 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3367 flags & ~MSG_DONTWAIT, &addr_len);
3368 if (err >= 0)
3369 msg->msg_namelen = addr_len;
3370 return err;
3371}
3372EXPORT_SYMBOL(sock_common_recvmsg);
3373
3374/*
3375 * Set socket options on an inet socket.
3376 */
3377int sock_common_setsockopt(struct socket *sock, int level, int optname,
3378 sockptr_t optval, unsigned int optlen)
3379{
3380 struct sock *sk = sock->sk;
3381
3382 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3383}
3384EXPORT_SYMBOL(sock_common_setsockopt);
3385
3386void sk_common_release(struct sock *sk)
3387{
3388 if (sk->sk_prot->destroy)
3389 sk->sk_prot->destroy(sk);
3390
3391 /*
3392 * Observation: when sk_common_release is called, processes have
3393 * no access to socket. But net still has.
3394 * Step one, detach it from networking:
3395 *
3396 * A. Remove from hash tables.
3397 */
3398
3399 sk->sk_prot->unhash(sk);
3400
3401 /*
3402 * In this point socket cannot receive new packets, but it is possible
3403 * that some packets are in flight because some CPU runs receiver and
3404 * did hash table lookup before we unhashed socket. They will achieve
3405 * receive queue and will be purged by socket destructor.
3406 *
3407 * Also we still have packets pending on receive queue and probably,
3408 * our own packets waiting in device queues. sock_destroy will drain
3409 * receive queue, but transmitted packets will delay socket destruction
3410 * until the last reference will be released.
3411 */
3412
3413 sock_orphan(sk);
3414
3415 xfrm_sk_free_policy(sk);
3416
3417 sk_refcnt_debug_release(sk);
3418
3419 sock_put(sk);
3420}
3421EXPORT_SYMBOL(sk_common_release);
3422
3423void sk_get_meminfo(const struct sock *sk, u32 *mem)
3424{
3425 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3426
3427 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3428 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3429 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3430 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3431 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3432 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3433 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3434 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3435 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3436}
3437
3438#ifdef CONFIG_PROC_FS
3439#define PROTO_INUSE_NR 64 /* should be enough for the first time */
3440struct prot_inuse {
3441 int val[PROTO_INUSE_NR];
3442};
3443
3444static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3445
3446void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3447{
3448 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3449}
3450EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3451
3452int sock_prot_inuse_get(struct net *net, struct proto *prot)
3453{
3454 int cpu, idx = prot->inuse_idx;
3455 int res = 0;
3456
3457 for_each_possible_cpu(cpu)
3458 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3459
3460 return res >= 0 ? res : 0;
3461}
3462EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3463
3464static void sock_inuse_add(struct net *net, int val)
3465{
3466 this_cpu_add(*net->core.sock_inuse, val);
3467}
3468
3469int sock_inuse_get(struct net *net)
3470{
3471 int cpu, res = 0;
3472
3473 for_each_possible_cpu(cpu)
3474 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3475
3476 return res;
3477}
3478
3479EXPORT_SYMBOL_GPL(sock_inuse_get);
3480
3481static int __net_init sock_inuse_init_net(struct net *net)
3482{
3483 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3484 if (net->core.prot_inuse == NULL)
3485 return -ENOMEM;
3486
3487 net->core.sock_inuse = alloc_percpu(int);
3488 if (net->core.sock_inuse == NULL)
3489 goto out;
3490
3491 return 0;
3492
3493out:
3494 free_percpu(net->core.prot_inuse);
3495 return -ENOMEM;
3496}
3497
3498static void __net_exit sock_inuse_exit_net(struct net *net)
3499{
3500 free_percpu(net->core.prot_inuse);
3501 free_percpu(net->core.sock_inuse);
3502}
3503
3504static struct pernet_operations net_inuse_ops = {
3505 .init = sock_inuse_init_net,
3506 .exit = sock_inuse_exit_net,
3507};
3508
3509static __init int net_inuse_init(void)
3510{
3511 if (register_pernet_subsys(&net_inuse_ops))
3512 panic("Cannot initialize net inuse counters");
3513
3514 return 0;
3515}
3516
3517core_initcall(net_inuse_init);
3518
3519static int assign_proto_idx(struct proto *prot)
3520{
3521 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3522
3523 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3524 pr_err("PROTO_INUSE_NR exhausted\n");
3525 return -ENOSPC;
3526 }
3527
3528 set_bit(prot->inuse_idx, proto_inuse_idx);
3529 return 0;
3530}
3531
3532static void release_proto_idx(struct proto *prot)
3533{
3534 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3535 clear_bit(prot->inuse_idx, proto_inuse_idx);
3536}
3537#else
3538static inline int assign_proto_idx(struct proto *prot)
3539{
3540 return 0;
3541}
3542
3543static inline void release_proto_idx(struct proto *prot)
3544{
3545}
3546
3547static void sock_inuse_add(struct net *net, int val)
3548{
3549}
3550#endif
3551
3552static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3553{
3554 if (!twsk_prot)
3555 return;
3556 kfree(twsk_prot->twsk_slab_name);
3557 twsk_prot->twsk_slab_name = NULL;
3558 kmem_cache_destroy(twsk_prot->twsk_slab);
3559 twsk_prot->twsk_slab = NULL;
3560}
3561
3562static int tw_prot_init(const struct proto *prot)
3563{
3564 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3565
3566 if (!twsk_prot)
3567 return 0;
3568
3569 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3570 prot->name);
3571 if (!twsk_prot->twsk_slab_name)
3572 return -ENOMEM;
3573
3574 twsk_prot->twsk_slab =
3575 kmem_cache_create(twsk_prot->twsk_slab_name,
3576 twsk_prot->twsk_obj_size, 0,
3577 SLAB_ACCOUNT | prot->slab_flags,
3578 NULL);
3579 if (!twsk_prot->twsk_slab) {
3580 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3581 prot->name);
3582 return -ENOMEM;
3583 }
3584
3585 return 0;
3586}
3587
3588static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3589{
3590 if (!rsk_prot)
3591 return;
3592 kfree(rsk_prot->slab_name);
3593 rsk_prot->slab_name = NULL;
3594 kmem_cache_destroy(rsk_prot->slab);
3595 rsk_prot->slab = NULL;
3596}
3597
3598static int req_prot_init(const struct proto *prot)
3599{
3600 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3601
3602 if (!rsk_prot)
3603 return 0;
3604
3605 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3606 prot->name);
3607 if (!rsk_prot->slab_name)
3608 return -ENOMEM;
3609
3610 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3611 rsk_prot->obj_size, 0,
3612 SLAB_ACCOUNT | prot->slab_flags,
3613 NULL);
3614
3615 if (!rsk_prot->slab) {
3616 pr_crit("%s: Can't create request sock SLAB cache!\n",
3617 prot->name);
3618 return -ENOMEM;
3619 }
3620 return 0;
3621}
3622
3623int proto_register(struct proto *prot, int alloc_slab)
3624{
3625 int ret = -ENOBUFS;
3626
3627 if (alloc_slab) {
3628 prot->slab = kmem_cache_create_usercopy(prot->name,
3629 prot->obj_size, 0,
3630 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3631 prot->slab_flags,
3632 prot->useroffset, prot->usersize,
3633 NULL);
3634
3635 if (prot->slab == NULL) {
3636 pr_crit("%s: Can't create sock SLAB cache!\n",
3637 prot->name);
3638 goto out;
3639 }
3640
3641 if (req_prot_init(prot))
3642 goto out_free_request_sock_slab;
3643
3644 if (tw_prot_init(prot))
3645 goto out_free_timewait_sock_slab;
3646 }
3647
3648 mutex_lock(&proto_list_mutex);
3649 ret = assign_proto_idx(prot);
3650 if (ret) {
3651 mutex_unlock(&proto_list_mutex);
3652 goto out_free_timewait_sock_slab;
3653 }
3654 list_add(&prot->node, &proto_list);
3655 mutex_unlock(&proto_list_mutex);
3656 return ret;
3657
3658out_free_timewait_sock_slab:
3659 if (alloc_slab)
3660 tw_prot_cleanup(prot->twsk_prot);
3661out_free_request_sock_slab:
3662 if (alloc_slab) {
3663 req_prot_cleanup(prot->rsk_prot);
3664
3665 kmem_cache_destroy(prot->slab);
3666 prot->slab = NULL;
3667 }
3668out:
3669 return ret;
3670}
3671EXPORT_SYMBOL(proto_register);
3672
3673void proto_unregister(struct proto *prot)
3674{
3675 mutex_lock(&proto_list_mutex);
3676 release_proto_idx(prot);
3677 list_del(&prot->node);
3678 mutex_unlock(&proto_list_mutex);
3679
3680 kmem_cache_destroy(prot->slab);
3681 prot->slab = NULL;
3682
3683 req_prot_cleanup(prot->rsk_prot);
3684 tw_prot_cleanup(prot->twsk_prot);
3685}
3686EXPORT_SYMBOL(proto_unregister);
3687
3688int sock_load_diag_module(int family, int protocol)
3689{
3690 if (!protocol) {
3691 if (!sock_is_registered(family))
3692 return -ENOENT;
3693
3694 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3695 NETLINK_SOCK_DIAG, family);
3696 }
3697
3698#ifdef CONFIG_INET
3699 if (family == AF_INET &&
3700 protocol != IPPROTO_RAW &&
3701 protocol < MAX_INET_PROTOS &&
3702 !rcu_access_pointer(inet_protos[protocol]))
3703 return -ENOENT;
3704#endif
3705
3706 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3707 NETLINK_SOCK_DIAG, family, protocol);
3708}
3709EXPORT_SYMBOL(sock_load_diag_module);
3710
3711#ifdef CONFIG_PROC_FS
3712static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3713 __acquires(proto_list_mutex)
3714{
3715 mutex_lock(&proto_list_mutex);
3716 return seq_list_start_head(&proto_list, *pos);
3717}
3718
3719static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3720{
3721 return seq_list_next(v, &proto_list, pos);
3722}
3723
3724static void proto_seq_stop(struct seq_file *seq, void *v)
3725 __releases(proto_list_mutex)
3726{
3727 mutex_unlock(&proto_list_mutex);
3728}
3729
3730static char proto_method_implemented(const void *method)
3731{
3732 return method == NULL ? 'n' : 'y';
3733}
3734static long sock_prot_memory_allocated(struct proto *proto)
3735{
3736 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3737}
3738
3739static const char *sock_prot_memory_pressure(struct proto *proto)
3740{
3741 return proto->memory_pressure != NULL ?
3742 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3743}
3744
3745static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3746{
3747
3748 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3749 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3750 proto->name,
3751 proto->obj_size,
3752 sock_prot_inuse_get(seq_file_net(seq), proto),
3753 sock_prot_memory_allocated(proto),
3754 sock_prot_memory_pressure(proto),
3755 proto->max_header,
3756 proto->slab == NULL ? "no" : "yes",
3757 module_name(proto->owner),
3758 proto_method_implemented(proto->close),
3759 proto_method_implemented(proto->connect),
3760 proto_method_implemented(proto->disconnect),
3761 proto_method_implemented(proto->accept),
3762 proto_method_implemented(proto->ioctl),
3763 proto_method_implemented(proto->init),
3764 proto_method_implemented(proto->destroy),
3765 proto_method_implemented(proto->shutdown),
3766 proto_method_implemented(proto->setsockopt),
3767 proto_method_implemented(proto->getsockopt),
3768 proto_method_implemented(proto->sendmsg),
3769 proto_method_implemented(proto->recvmsg),
3770 proto_method_implemented(proto->sendpage),
3771 proto_method_implemented(proto->bind),
3772 proto_method_implemented(proto->backlog_rcv),
3773 proto_method_implemented(proto->hash),
3774 proto_method_implemented(proto->unhash),
3775 proto_method_implemented(proto->get_port),
3776 proto_method_implemented(proto->enter_memory_pressure));
3777}
3778
3779static int proto_seq_show(struct seq_file *seq, void *v)
3780{
3781 if (v == &proto_list)
3782 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3783 "protocol",
3784 "size",
3785 "sockets",
3786 "memory",
3787 "press",
3788 "maxhdr",
3789 "slab",
3790 "module",
3791 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3792 else
3793 proto_seq_printf(seq, list_entry(v, struct proto, node));
3794 return 0;
3795}
3796
3797static const struct seq_operations proto_seq_ops = {
3798 .start = proto_seq_start,
3799 .next = proto_seq_next,
3800 .stop = proto_seq_stop,
3801 .show = proto_seq_show,
3802};
3803
3804static __net_init int proto_init_net(struct net *net)
3805{
3806 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3807 sizeof(struct seq_net_private)))
3808 return -ENOMEM;
3809
3810 return 0;
3811}
3812
3813static __net_exit void proto_exit_net(struct net *net)
3814{
3815 remove_proc_entry("protocols", net->proc_net);
3816}
3817
3818
3819static __net_initdata struct pernet_operations proto_net_ops = {
3820 .init = proto_init_net,
3821 .exit = proto_exit_net,
3822};
3823
3824static int __init proto_init(void)
3825{
3826 return register_pernet_subsys(&proto_net_ops);
3827}
3828
3829subsys_initcall(proto_init);
3830
3831#endif /* PROC_FS */
3832
3833#ifdef CONFIG_NET_RX_BUSY_POLL
3834bool sk_busy_loop_end(void *p, unsigned long start_time)
3835{
3836 struct sock *sk = p;
3837
3838 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3839 sk_busy_loop_timeout(sk, start_time);
3840}
3841EXPORT_SYMBOL(sk_busy_loop_end);
3842#endif /* CONFIG_NET_RX_BUSY_POLL */
3843
3844int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3845{
3846 if (!sk->sk_prot->bind_add)
3847 return -EOPNOTSUPP;
3848 return sk->sk_prot->bind_add(sk, addr, addr_len);
3849}
3850EXPORT_SYMBOL(sock_bind_add);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <asm/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/init.h>
111#include <linux/highmem.h>
112#include <linux/user_namespace.h>
113#include <linux/static_key.h>
114#include <linux/memcontrol.h>
115#include <linux/prefetch.h>
116#include <linux/compat.h>
117
118#include <linux/uaccess.h>
119
120#include <linux/netdevice.h>
121#include <net/protocol.h>
122#include <linux/skbuff.h>
123#include <net/net_namespace.h>
124#include <net/request_sock.h>
125#include <net/sock.h>
126#include <linux/net_tstamp.h>
127#include <net/xfrm.h>
128#include <linux/ipsec.h>
129#include <net/cls_cgroup.h>
130#include <net/netprio_cgroup.h>
131#include <linux/sock_diag.h>
132
133#include <linux/filter.h>
134#include <net/sock_reuseport.h>
135#include <net/bpf_sk_storage.h>
136
137#include <trace/events/sock.h>
138
139#include <net/tcp.h>
140#include <net/busy_poll.h>
141
142#include <linux/ethtool.h>
143
144#include "dev.h"
145
146static DEFINE_MUTEX(proto_list_mutex);
147static LIST_HEAD(proto_list);
148
149static void sock_def_write_space_wfree(struct sock *sk);
150static void sock_def_write_space(struct sock *sk);
151
152/**
153 * sk_ns_capable - General socket capability test
154 * @sk: Socket to use a capability on or through
155 * @user_ns: The user namespace of the capability to use
156 * @cap: The capability to use
157 *
158 * Test to see if the opener of the socket had when the socket was
159 * created and the current process has the capability @cap in the user
160 * namespace @user_ns.
161 */
162bool sk_ns_capable(const struct sock *sk,
163 struct user_namespace *user_ns, int cap)
164{
165 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
166 ns_capable(user_ns, cap);
167}
168EXPORT_SYMBOL(sk_ns_capable);
169
170/**
171 * sk_capable - Socket global capability test
172 * @sk: Socket to use a capability on or through
173 * @cap: The global capability to use
174 *
175 * Test to see if the opener of the socket had when the socket was
176 * created and the current process has the capability @cap in all user
177 * namespaces.
178 */
179bool sk_capable(const struct sock *sk, int cap)
180{
181 return sk_ns_capable(sk, &init_user_ns, cap);
182}
183EXPORT_SYMBOL(sk_capable);
184
185/**
186 * sk_net_capable - Network namespace socket capability test
187 * @sk: Socket to use a capability on or through
188 * @cap: The capability to use
189 *
190 * Test to see if the opener of the socket had when the socket was created
191 * and the current process has the capability @cap over the network namespace
192 * the socket is a member of.
193 */
194bool sk_net_capable(const struct sock *sk, int cap)
195{
196 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
197}
198EXPORT_SYMBOL(sk_net_capable);
199
200/*
201 * Each address family might have different locking rules, so we have
202 * one slock key per address family and separate keys for internal and
203 * userspace sockets.
204 */
205static struct lock_class_key af_family_keys[AF_MAX];
206static struct lock_class_key af_family_kern_keys[AF_MAX];
207static struct lock_class_key af_family_slock_keys[AF_MAX];
208static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
209
210/*
211 * Make lock validator output more readable. (we pre-construct these
212 * strings build-time, so that runtime initialization of socket
213 * locks is fast):
214 */
215
216#define _sock_locks(x) \
217 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
218 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
219 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
220 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
221 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
222 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
223 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
224 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
225 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
226 x "27" , x "28" , x "AF_CAN" , \
227 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
228 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
229 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
230 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
231 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
232 x "AF_MCTP" , \
233 x "AF_MAX"
234
235static const char *const af_family_key_strings[AF_MAX+1] = {
236 _sock_locks("sk_lock-")
237};
238static const char *const af_family_slock_key_strings[AF_MAX+1] = {
239 _sock_locks("slock-")
240};
241static const char *const af_family_clock_key_strings[AF_MAX+1] = {
242 _sock_locks("clock-")
243};
244
245static const char *const af_family_kern_key_strings[AF_MAX+1] = {
246 _sock_locks("k-sk_lock-")
247};
248static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
249 _sock_locks("k-slock-")
250};
251static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
252 _sock_locks("k-clock-")
253};
254static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
255 _sock_locks("rlock-")
256};
257static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
258 _sock_locks("wlock-")
259};
260static const char *const af_family_elock_key_strings[AF_MAX+1] = {
261 _sock_locks("elock-")
262};
263
264/*
265 * sk_callback_lock and sk queues locking rules are per-address-family,
266 * so split the lock classes by using a per-AF key:
267 */
268static struct lock_class_key af_callback_keys[AF_MAX];
269static struct lock_class_key af_rlock_keys[AF_MAX];
270static struct lock_class_key af_wlock_keys[AF_MAX];
271static struct lock_class_key af_elock_keys[AF_MAX];
272static struct lock_class_key af_kern_callback_keys[AF_MAX];
273
274/* Run time adjustable parameters. */
275__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
276EXPORT_SYMBOL(sysctl_wmem_max);
277__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
278EXPORT_SYMBOL(sysctl_rmem_max);
279__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
280__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
281
282/* Maximal space eaten by iovec or ancillary data plus some space */
283int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
284EXPORT_SYMBOL(sysctl_optmem_max);
285
286int sysctl_tstamp_allow_data __read_mostly = 1;
287
288DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
289EXPORT_SYMBOL_GPL(memalloc_socks_key);
290
291/**
292 * sk_set_memalloc - sets %SOCK_MEMALLOC
293 * @sk: socket to set it on
294 *
295 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
296 * It's the responsibility of the admin to adjust min_free_kbytes
297 * to meet the requirements
298 */
299void sk_set_memalloc(struct sock *sk)
300{
301 sock_set_flag(sk, SOCK_MEMALLOC);
302 sk->sk_allocation |= __GFP_MEMALLOC;
303 static_branch_inc(&memalloc_socks_key);
304}
305EXPORT_SYMBOL_GPL(sk_set_memalloc);
306
307void sk_clear_memalloc(struct sock *sk)
308{
309 sock_reset_flag(sk, SOCK_MEMALLOC);
310 sk->sk_allocation &= ~__GFP_MEMALLOC;
311 static_branch_dec(&memalloc_socks_key);
312
313 /*
314 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
315 * progress of swapping. SOCK_MEMALLOC may be cleared while
316 * it has rmem allocations due to the last swapfile being deactivated
317 * but there is a risk that the socket is unusable due to exceeding
318 * the rmem limits. Reclaim the reserves and obey rmem limits again.
319 */
320 sk_mem_reclaim(sk);
321}
322EXPORT_SYMBOL_GPL(sk_clear_memalloc);
323
324int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
325{
326 int ret;
327 unsigned int noreclaim_flag;
328
329 /* these should have been dropped before queueing */
330 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
331
332 noreclaim_flag = memalloc_noreclaim_save();
333 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
334 tcp_v6_do_rcv,
335 tcp_v4_do_rcv,
336 sk, skb);
337 memalloc_noreclaim_restore(noreclaim_flag);
338
339 return ret;
340}
341EXPORT_SYMBOL(__sk_backlog_rcv);
342
343void sk_error_report(struct sock *sk)
344{
345 sk->sk_error_report(sk);
346
347 switch (sk->sk_family) {
348 case AF_INET:
349 fallthrough;
350 case AF_INET6:
351 trace_inet_sk_error_report(sk);
352 break;
353 default:
354 break;
355 }
356}
357EXPORT_SYMBOL(sk_error_report);
358
359int sock_get_timeout(long timeo, void *optval, bool old_timeval)
360{
361 struct __kernel_sock_timeval tv;
362
363 if (timeo == MAX_SCHEDULE_TIMEOUT) {
364 tv.tv_sec = 0;
365 tv.tv_usec = 0;
366 } else {
367 tv.tv_sec = timeo / HZ;
368 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
369 }
370
371 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
372 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
373 *(struct old_timeval32 *)optval = tv32;
374 return sizeof(tv32);
375 }
376
377 if (old_timeval) {
378 struct __kernel_old_timeval old_tv;
379 old_tv.tv_sec = tv.tv_sec;
380 old_tv.tv_usec = tv.tv_usec;
381 *(struct __kernel_old_timeval *)optval = old_tv;
382 return sizeof(old_tv);
383 }
384
385 *(struct __kernel_sock_timeval *)optval = tv;
386 return sizeof(tv);
387}
388EXPORT_SYMBOL(sock_get_timeout);
389
390int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
391 sockptr_t optval, int optlen, bool old_timeval)
392{
393 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
394 struct old_timeval32 tv32;
395
396 if (optlen < sizeof(tv32))
397 return -EINVAL;
398
399 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
400 return -EFAULT;
401 tv->tv_sec = tv32.tv_sec;
402 tv->tv_usec = tv32.tv_usec;
403 } else if (old_timeval) {
404 struct __kernel_old_timeval old_tv;
405
406 if (optlen < sizeof(old_tv))
407 return -EINVAL;
408 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
409 return -EFAULT;
410 tv->tv_sec = old_tv.tv_sec;
411 tv->tv_usec = old_tv.tv_usec;
412 } else {
413 if (optlen < sizeof(*tv))
414 return -EINVAL;
415 if (copy_from_sockptr(tv, optval, sizeof(*tv)))
416 return -EFAULT;
417 }
418
419 return 0;
420}
421EXPORT_SYMBOL(sock_copy_user_timeval);
422
423static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
424 bool old_timeval)
425{
426 struct __kernel_sock_timeval tv;
427 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
428
429 if (err)
430 return err;
431
432 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
433 return -EDOM;
434
435 if (tv.tv_sec < 0) {
436 static int warned __read_mostly;
437
438 *timeo_p = 0;
439 if (warned < 10 && net_ratelimit()) {
440 warned++;
441 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
442 __func__, current->comm, task_pid_nr(current));
443 }
444 return 0;
445 }
446 *timeo_p = MAX_SCHEDULE_TIMEOUT;
447 if (tv.tv_sec == 0 && tv.tv_usec == 0)
448 return 0;
449 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
450 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
451 return 0;
452}
453
454static bool sock_needs_netstamp(const struct sock *sk)
455{
456 switch (sk->sk_family) {
457 case AF_UNSPEC:
458 case AF_UNIX:
459 return false;
460 default:
461 return true;
462 }
463}
464
465static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
466{
467 if (sk->sk_flags & flags) {
468 sk->sk_flags &= ~flags;
469 if (sock_needs_netstamp(sk) &&
470 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
471 net_disable_timestamp();
472 }
473}
474
475
476int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
477{
478 unsigned long flags;
479 struct sk_buff_head *list = &sk->sk_receive_queue;
480
481 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
482 atomic_inc(&sk->sk_drops);
483 trace_sock_rcvqueue_full(sk, skb);
484 return -ENOMEM;
485 }
486
487 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
488 atomic_inc(&sk->sk_drops);
489 return -ENOBUFS;
490 }
491
492 skb->dev = NULL;
493 skb_set_owner_r(skb, sk);
494
495 /* we escape from rcu protected region, make sure we dont leak
496 * a norefcounted dst
497 */
498 skb_dst_force(skb);
499
500 spin_lock_irqsave(&list->lock, flags);
501 sock_skb_set_dropcount(sk, skb);
502 __skb_queue_tail(list, skb);
503 spin_unlock_irqrestore(&list->lock, flags);
504
505 if (!sock_flag(sk, SOCK_DEAD))
506 sk->sk_data_ready(sk);
507 return 0;
508}
509EXPORT_SYMBOL(__sock_queue_rcv_skb);
510
511int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
512 enum skb_drop_reason *reason)
513{
514 enum skb_drop_reason drop_reason;
515 int err;
516
517 err = sk_filter(sk, skb);
518 if (err) {
519 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
520 goto out;
521 }
522 err = __sock_queue_rcv_skb(sk, skb);
523 switch (err) {
524 case -ENOMEM:
525 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
526 break;
527 case -ENOBUFS:
528 drop_reason = SKB_DROP_REASON_PROTO_MEM;
529 break;
530 default:
531 drop_reason = SKB_NOT_DROPPED_YET;
532 break;
533 }
534out:
535 if (reason)
536 *reason = drop_reason;
537 return err;
538}
539EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
540
541int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
542 const int nested, unsigned int trim_cap, bool refcounted)
543{
544 int rc = NET_RX_SUCCESS;
545
546 if (sk_filter_trim_cap(sk, skb, trim_cap))
547 goto discard_and_relse;
548
549 skb->dev = NULL;
550
551 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
552 atomic_inc(&sk->sk_drops);
553 goto discard_and_relse;
554 }
555 if (nested)
556 bh_lock_sock_nested(sk);
557 else
558 bh_lock_sock(sk);
559 if (!sock_owned_by_user(sk)) {
560 /*
561 * trylock + unlock semantics:
562 */
563 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
564
565 rc = sk_backlog_rcv(sk, skb);
566
567 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
568 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
569 bh_unlock_sock(sk);
570 atomic_inc(&sk->sk_drops);
571 goto discard_and_relse;
572 }
573
574 bh_unlock_sock(sk);
575out:
576 if (refcounted)
577 sock_put(sk);
578 return rc;
579discard_and_relse:
580 kfree_skb(skb);
581 goto out;
582}
583EXPORT_SYMBOL(__sk_receive_skb);
584
585INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
586 u32));
587INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
588 u32));
589struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
590{
591 struct dst_entry *dst = __sk_dst_get(sk);
592
593 if (dst && dst->obsolete &&
594 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
595 dst, cookie) == NULL) {
596 sk_tx_queue_clear(sk);
597 sk->sk_dst_pending_confirm = 0;
598 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
599 dst_release(dst);
600 return NULL;
601 }
602
603 return dst;
604}
605EXPORT_SYMBOL(__sk_dst_check);
606
607struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
608{
609 struct dst_entry *dst = sk_dst_get(sk);
610
611 if (dst && dst->obsolete &&
612 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
613 dst, cookie) == NULL) {
614 sk_dst_reset(sk);
615 dst_release(dst);
616 return NULL;
617 }
618
619 return dst;
620}
621EXPORT_SYMBOL(sk_dst_check);
622
623static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
624{
625 int ret = -ENOPROTOOPT;
626#ifdef CONFIG_NETDEVICES
627 struct net *net = sock_net(sk);
628
629 /* Sorry... */
630 ret = -EPERM;
631 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
632 goto out;
633
634 ret = -EINVAL;
635 if (ifindex < 0)
636 goto out;
637
638 /* Paired with all READ_ONCE() done locklessly. */
639 WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
640
641 if (sk->sk_prot->rehash)
642 sk->sk_prot->rehash(sk);
643 sk_dst_reset(sk);
644
645 ret = 0;
646
647out:
648#endif
649
650 return ret;
651}
652
653int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
654{
655 int ret;
656
657 if (lock_sk)
658 lock_sock(sk);
659 ret = sock_bindtoindex_locked(sk, ifindex);
660 if (lock_sk)
661 release_sock(sk);
662
663 return ret;
664}
665EXPORT_SYMBOL(sock_bindtoindex);
666
667static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
668{
669 int ret = -ENOPROTOOPT;
670#ifdef CONFIG_NETDEVICES
671 struct net *net = sock_net(sk);
672 char devname[IFNAMSIZ];
673 int index;
674
675 ret = -EINVAL;
676 if (optlen < 0)
677 goto out;
678
679 /* Bind this socket to a particular device like "eth0",
680 * as specified in the passed interface name. If the
681 * name is "" or the option length is zero the socket
682 * is not bound.
683 */
684 if (optlen > IFNAMSIZ - 1)
685 optlen = IFNAMSIZ - 1;
686 memset(devname, 0, sizeof(devname));
687
688 ret = -EFAULT;
689 if (copy_from_sockptr(devname, optval, optlen))
690 goto out;
691
692 index = 0;
693 if (devname[0] != '\0') {
694 struct net_device *dev;
695
696 rcu_read_lock();
697 dev = dev_get_by_name_rcu(net, devname);
698 if (dev)
699 index = dev->ifindex;
700 rcu_read_unlock();
701 ret = -ENODEV;
702 if (!dev)
703 goto out;
704 }
705
706 sockopt_lock_sock(sk);
707 ret = sock_bindtoindex_locked(sk, index);
708 sockopt_release_sock(sk);
709out:
710#endif
711
712 return ret;
713}
714
715static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
716 sockptr_t optlen, int len)
717{
718 int ret = -ENOPROTOOPT;
719#ifdef CONFIG_NETDEVICES
720 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
721 struct net *net = sock_net(sk);
722 char devname[IFNAMSIZ];
723
724 if (bound_dev_if == 0) {
725 len = 0;
726 goto zero;
727 }
728
729 ret = -EINVAL;
730 if (len < IFNAMSIZ)
731 goto out;
732
733 ret = netdev_get_name(net, devname, bound_dev_if);
734 if (ret)
735 goto out;
736
737 len = strlen(devname) + 1;
738
739 ret = -EFAULT;
740 if (copy_to_sockptr(optval, devname, len))
741 goto out;
742
743zero:
744 ret = -EFAULT;
745 if (copy_to_sockptr(optlen, &len, sizeof(int)))
746 goto out;
747
748 ret = 0;
749
750out:
751#endif
752
753 return ret;
754}
755
756bool sk_mc_loop(struct sock *sk)
757{
758 if (dev_recursion_level())
759 return false;
760 if (!sk)
761 return true;
762 switch (sk->sk_family) {
763 case AF_INET:
764 return inet_sk(sk)->mc_loop;
765#if IS_ENABLED(CONFIG_IPV6)
766 case AF_INET6:
767 return inet6_sk(sk)->mc_loop;
768#endif
769 }
770 WARN_ON_ONCE(1);
771 return true;
772}
773EXPORT_SYMBOL(sk_mc_loop);
774
775void sock_set_reuseaddr(struct sock *sk)
776{
777 lock_sock(sk);
778 sk->sk_reuse = SK_CAN_REUSE;
779 release_sock(sk);
780}
781EXPORT_SYMBOL(sock_set_reuseaddr);
782
783void sock_set_reuseport(struct sock *sk)
784{
785 lock_sock(sk);
786 sk->sk_reuseport = true;
787 release_sock(sk);
788}
789EXPORT_SYMBOL(sock_set_reuseport);
790
791void sock_no_linger(struct sock *sk)
792{
793 lock_sock(sk);
794 sk->sk_lingertime = 0;
795 sock_set_flag(sk, SOCK_LINGER);
796 release_sock(sk);
797}
798EXPORT_SYMBOL(sock_no_linger);
799
800void sock_set_priority(struct sock *sk, u32 priority)
801{
802 lock_sock(sk);
803 sk->sk_priority = priority;
804 release_sock(sk);
805}
806EXPORT_SYMBOL(sock_set_priority);
807
808void sock_set_sndtimeo(struct sock *sk, s64 secs)
809{
810 lock_sock(sk);
811 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
812 sk->sk_sndtimeo = secs * HZ;
813 else
814 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
815 release_sock(sk);
816}
817EXPORT_SYMBOL(sock_set_sndtimeo);
818
819static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
820{
821 if (val) {
822 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
823 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
824 sock_set_flag(sk, SOCK_RCVTSTAMP);
825 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
826 } else {
827 sock_reset_flag(sk, SOCK_RCVTSTAMP);
828 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
829 }
830}
831
832void sock_enable_timestamps(struct sock *sk)
833{
834 lock_sock(sk);
835 __sock_set_timestamps(sk, true, false, true);
836 release_sock(sk);
837}
838EXPORT_SYMBOL(sock_enable_timestamps);
839
840void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
841{
842 switch (optname) {
843 case SO_TIMESTAMP_OLD:
844 __sock_set_timestamps(sk, valbool, false, false);
845 break;
846 case SO_TIMESTAMP_NEW:
847 __sock_set_timestamps(sk, valbool, true, false);
848 break;
849 case SO_TIMESTAMPNS_OLD:
850 __sock_set_timestamps(sk, valbool, false, true);
851 break;
852 case SO_TIMESTAMPNS_NEW:
853 __sock_set_timestamps(sk, valbool, true, true);
854 break;
855 }
856}
857
858static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
859{
860 struct net *net = sock_net(sk);
861 struct net_device *dev = NULL;
862 bool match = false;
863 int *vclock_index;
864 int i, num;
865
866 if (sk->sk_bound_dev_if)
867 dev = dev_get_by_index(net, sk->sk_bound_dev_if);
868
869 if (!dev) {
870 pr_err("%s: sock not bind to device\n", __func__);
871 return -EOPNOTSUPP;
872 }
873
874 num = ethtool_get_phc_vclocks(dev, &vclock_index);
875 dev_put(dev);
876
877 for (i = 0; i < num; i++) {
878 if (*(vclock_index + i) == phc_index) {
879 match = true;
880 break;
881 }
882 }
883
884 if (num > 0)
885 kfree(vclock_index);
886
887 if (!match)
888 return -EINVAL;
889
890 sk->sk_bind_phc = phc_index;
891
892 return 0;
893}
894
895int sock_set_timestamping(struct sock *sk, int optname,
896 struct so_timestamping timestamping)
897{
898 int val = timestamping.flags;
899 int ret;
900
901 if (val & ~SOF_TIMESTAMPING_MASK)
902 return -EINVAL;
903
904 if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
905 !(val & SOF_TIMESTAMPING_OPT_ID))
906 return -EINVAL;
907
908 if (val & SOF_TIMESTAMPING_OPT_ID &&
909 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
910 if (sk_is_tcp(sk)) {
911 if ((1 << sk->sk_state) &
912 (TCPF_CLOSE | TCPF_LISTEN))
913 return -EINVAL;
914 if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
915 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
916 else
917 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
918 } else {
919 atomic_set(&sk->sk_tskey, 0);
920 }
921 }
922
923 if (val & SOF_TIMESTAMPING_OPT_STATS &&
924 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
925 return -EINVAL;
926
927 if (val & SOF_TIMESTAMPING_BIND_PHC) {
928 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
929 if (ret)
930 return ret;
931 }
932
933 sk->sk_tsflags = val;
934 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
935
936 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
937 sock_enable_timestamp(sk,
938 SOCK_TIMESTAMPING_RX_SOFTWARE);
939 else
940 sock_disable_timestamp(sk,
941 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
942 return 0;
943}
944
945void sock_set_keepalive(struct sock *sk)
946{
947 lock_sock(sk);
948 if (sk->sk_prot->keepalive)
949 sk->sk_prot->keepalive(sk, true);
950 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
951 release_sock(sk);
952}
953EXPORT_SYMBOL(sock_set_keepalive);
954
955static void __sock_set_rcvbuf(struct sock *sk, int val)
956{
957 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
958 * as a negative value.
959 */
960 val = min_t(int, val, INT_MAX / 2);
961 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
962
963 /* We double it on the way in to account for "struct sk_buff" etc.
964 * overhead. Applications assume that the SO_RCVBUF setting they make
965 * will allow that much actual data to be received on that socket.
966 *
967 * Applications are unaware that "struct sk_buff" and other overheads
968 * allocate from the receive buffer during socket buffer allocation.
969 *
970 * And after considering the possible alternatives, returning the value
971 * we actually used in getsockopt is the most desirable behavior.
972 */
973 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
974}
975
976void sock_set_rcvbuf(struct sock *sk, int val)
977{
978 lock_sock(sk);
979 __sock_set_rcvbuf(sk, val);
980 release_sock(sk);
981}
982EXPORT_SYMBOL(sock_set_rcvbuf);
983
984static void __sock_set_mark(struct sock *sk, u32 val)
985{
986 if (val != sk->sk_mark) {
987 sk->sk_mark = val;
988 sk_dst_reset(sk);
989 }
990}
991
992void sock_set_mark(struct sock *sk, u32 val)
993{
994 lock_sock(sk);
995 __sock_set_mark(sk, val);
996 release_sock(sk);
997}
998EXPORT_SYMBOL(sock_set_mark);
999
1000static void sock_release_reserved_memory(struct sock *sk, int bytes)
1001{
1002 /* Round down bytes to multiple of pages */
1003 bytes = round_down(bytes, PAGE_SIZE);
1004
1005 WARN_ON(bytes > sk->sk_reserved_mem);
1006 sk->sk_reserved_mem -= bytes;
1007 sk_mem_reclaim(sk);
1008}
1009
1010static int sock_reserve_memory(struct sock *sk, int bytes)
1011{
1012 long allocated;
1013 bool charged;
1014 int pages;
1015
1016 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1017 return -EOPNOTSUPP;
1018
1019 if (!bytes)
1020 return 0;
1021
1022 pages = sk_mem_pages(bytes);
1023
1024 /* pre-charge to memcg */
1025 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1026 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1027 if (!charged)
1028 return -ENOMEM;
1029
1030 /* pre-charge to forward_alloc */
1031 sk_memory_allocated_add(sk, pages);
1032 allocated = sk_memory_allocated(sk);
1033 /* If the system goes into memory pressure with this
1034 * precharge, give up and return error.
1035 */
1036 if (allocated > sk_prot_mem_limits(sk, 1)) {
1037 sk_memory_allocated_sub(sk, pages);
1038 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1039 return -ENOMEM;
1040 }
1041 sk->sk_forward_alloc += pages << PAGE_SHIFT;
1042
1043 sk->sk_reserved_mem += pages << PAGE_SHIFT;
1044
1045 return 0;
1046}
1047
1048void sockopt_lock_sock(struct sock *sk)
1049{
1050 /* When current->bpf_ctx is set, the setsockopt is called from
1051 * a bpf prog. bpf has ensured the sk lock has been
1052 * acquired before calling setsockopt().
1053 */
1054 if (has_current_bpf_ctx())
1055 return;
1056
1057 lock_sock(sk);
1058}
1059EXPORT_SYMBOL(sockopt_lock_sock);
1060
1061void sockopt_release_sock(struct sock *sk)
1062{
1063 if (has_current_bpf_ctx())
1064 return;
1065
1066 release_sock(sk);
1067}
1068EXPORT_SYMBOL(sockopt_release_sock);
1069
1070bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1071{
1072 return has_current_bpf_ctx() || ns_capable(ns, cap);
1073}
1074EXPORT_SYMBOL(sockopt_ns_capable);
1075
1076bool sockopt_capable(int cap)
1077{
1078 return has_current_bpf_ctx() || capable(cap);
1079}
1080EXPORT_SYMBOL(sockopt_capable);
1081
1082/*
1083 * This is meant for all protocols to use and covers goings on
1084 * at the socket level. Everything here is generic.
1085 */
1086
1087int sk_setsockopt(struct sock *sk, int level, int optname,
1088 sockptr_t optval, unsigned int optlen)
1089{
1090 struct so_timestamping timestamping;
1091 struct socket *sock = sk->sk_socket;
1092 struct sock_txtime sk_txtime;
1093 int val;
1094 int valbool;
1095 struct linger ling;
1096 int ret = 0;
1097
1098 /*
1099 * Options without arguments
1100 */
1101
1102 if (optname == SO_BINDTODEVICE)
1103 return sock_setbindtodevice(sk, optval, optlen);
1104
1105 if (optlen < sizeof(int))
1106 return -EINVAL;
1107
1108 if (copy_from_sockptr(&val, optval, sizeof(val)))
1109 return -EFAULT;
1110
1111 valbool = val ? 1 : 0;
1112
1113 sockopt_lock_sock(sk);
1114
1115 switch (optname) {
1116 case SO_DEBUG:
1117 if (val && !sockopt_capable(CAP_NET_ADMIN))
1118 ret = -EACCES;
1119 else
1120 sock_valbool_flag(sk, SOCK_DBG, valbool);
1121 break;
1122 case SO_REUSEADDR:
1123 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1124 break;
1125 case SO_REUSEPORT:
1126 sk->sk_reuseport = valbool;
1127 break;
1128 case SO_TYPE:
1129 case SO_PROTOCOL:
1130 case SO_DOMAIN:
1131 case SO_ERROR:
1132 ret = -ENOPROTOOPT;
1133 break;
1134 case SO_DONTROUTE:
1135 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1136 sk_dst_reset(sk);
1137 break;
1138 case SO_BROADCAST:
1139 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1140 break;
1141 case SO_SNDBUF:
1142 /* Don't error on this BSD doesn't and if you think
1143 * about it this is right. Otherwise apps have to
1144 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1145 * are treated in BSD as hints
1146 */
1147 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1148set_sndbuf:
1149 /* Ensure val * 2 fits into an int, to prevent max_t()
1150 * from treating it as a negative value.
1151 */
1152 val = min_t(int, val, INT_MAX / 2);
1153 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1154 WRITE_ONCE(sk->sk_sndbuf,
1155 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1156 /* Wake up sending tasks if we upped the value. */
1157 sk->sk_write_space(sk);
1158 break;
1159
1160 case SO_SNDBUFFORCE:
1161 if (!sockopt_capable(CAP_NET_ADMIN)) {
1162 ret = -EPERM;
1163 break;
1164 }
1165
1166 /* No negative values (to prevent underflow, as val will be
1167 * multiplied by 2).
1168 */
1169 if (val < 0)
1170 val = 0;
1171 goto set_sndbuf;
1172
1173 case SO_RCVBUF:
1174 /* Don't error on this BSD doesn't and if you think
1175 * about it this is right. Otherwise apps have to
1176 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1177 * are treated in BSD as hints
1178 */
1179 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1180 break;
1181
1182 case SO_RCVBUFFORCE:
1183 if (!sockopt_capable(CAP_NET_ADMIN)) {
1184 ret = -EPERM;
1185 break;
1186 }
1187
1188 /* No negative values (to prevent underflow, as val will be
1189 * multiplied by 2).
1190 */
1191 __sock_set_rcvbuf(sk, max(val, 0));
1192 break;
1193
1194 case SO_KEEPALIVE:
1195 if (sk->sk_prot->keepalive)
1196 sk->sk_prot->keepalive(sk, valbool);
1197 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1198 break;
1199
1200 case SO_OOBINLINE:
1201 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1202 break;
1203
1204 case SO_NO_CHECK:
1205 sk->sk_no_check_tx = valbool;
1206 break;
1207
1208 case SO_PRIORITY:
1209 if ((val >= 0 && val <= 6) ||
1210 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1211 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1212 sk->sk_priority = val;
1213 else
1214 ret = -EPERM;
1215 break;
1216
1217 case SO_LINGER:
1218 if (optlen < sizeof(ling)) {
1219 ret = -EINVAL; /* 1003.1g */
1220 break;
1221 }
1222 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1223 ret = -EFAULT;
1224 break;
1225 }
1226 if (!ling.l_onoff)
1227 sock_reset_flag(sk, SOCK_LINGER);
1228 else {
1229#if (BITS_PER_LONG == 32)
1230 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1231 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1232 else
1233#endif
1234 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1235 sock_set_flag(sk, SOCK_LINGER);
1236 }
1237 break;
1238
1239 case SO_BSDCOMPAT:
1240 break;
1241
1242 case SO_PASSCRED:
1243 if (valbool)
1244 set_bit(SOCK_PASSCRED, &sock->flags);
1245 else
1246 clear_bit(SOCK_PASSCRED, &sock->flags);
1247 break;
1248
1249 case SO_TIMESTAMP_OLD:
1250 case SO_TIMESTAMP_NEW:
1251 case SO_TIMESTAMPNS_OLD:
1252 case SO_TIMESTAMPNS_NEW:
1253 sock_set_timestamp(sk, optname, valbool);
1254 break;
1255
1256 case SO_TIMESTAMPING_NEW:
1257 case SO_TIMESTAMPING_OLD:
1258 if (optlen == sizeof(timestamping)) {
1259 if (copy_from_sockptr(×tamping, optval,
1260 sizeof(timestamping))) {
1261 ret = -EFAULT;
1262 break;
1263 }
1264 } else {
1265 memset(×tamping, 0, sizeof(timestamping));
1266 timestamping.flags = val;
1267 }
1268 ret = sock_set_timestamping(sk, optname, timestamping);
1269 break;
1270
1271 case SO_RCVLOWAT:
1272 if (val < 0)
1273 val = INT_MAX;
1274 if (sock && sock->ops->set_rcvlowat)
1275 ret = sock->ops->set_rcvlowat(sk, val);
1276 else
1277 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1278 break;
1279
1280 case SO_RCVTIMEO_OLD:
1281 case SO_RCVTIMEO_NEW:
1282 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1283 optlen, optname == SO_RCVTIMEO_OLD);
1284 break;
1285
1286 case SO_SNDTIMEO_OLD:
1287 case SO_SNDTIMEO_NEW:
1288 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1289 optlen, optname == SO_SNDTIMEO_OLD);
1290 break;
1291
1292 case SO_ATTACH_FILTER: {
1293 struct sock_fprog fprog;
1294
1295 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1296 if (!ret)
1297 ret = sk_attach_filter(&fprog, sk);
1298 break;
1299 }
1300 case SO_ATTACH_BPF:
1301 ret = -EINVAL;
1302 if (optlen == sizeof(u32)) {
1303 u32 ufd;
1304
1305 ret = -EFAULT;
1306 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1307 break;
1308
1309 ret = sk_attach_bpf(ufd, sk);
1310 }
1311 break;
1312
1313 case SO_ATTACH_REUSEPORT_CBPF: {
1314 struct sock_fprog fprog;
1315
1316 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1317 if (!ret)
1318 ret = sk_reuseport_attach_filter(&fprog, sk);
1319 break;
1320 }
1321 case SO_ATTACH_REUSEPORT_EBPF:
1322 ret = -EINVAL;
1323 if (optlen == sizeof(u32)) {
1324 u32 ufd;
1325
1326 ret = -EFAULT;
1327 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1328 break;
1329
1330 ret = sk_reuseport_attach_bpf(ufd, sk);
1331 }
1332 break;
1333
1334 case SO_DETACH_REUSEPORT_BPF:
1335 ret = reuseport_detach_prog(sk);
1336 break;
1337
1338 case SO_DETACH_FILTER:
1339 ret = sk_detach_filter(sk);
1340 break;
1341
1342 case SO_LOCK_FILTER:
1343 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1344 ret = -EPERM;
1345 else
1346 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1347 break;
1348
1349 case SO_PASSSEC:
1350 if (valbool)
1351 set_bit(SOCK_PASSSEC, &sock->flags);
1352 else
1353 clear_bit(SOCK_PASSSEC, &sock->flags);
1354 break;
1355 case SO_MARK:
1356 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1357 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1358 ret = -EPERM;
1359 break;
1360 }
1361
1362 __sock_set_mark(sk, val);
1363 break;
1364 case SO_RCVMARK:
1365 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1366 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1367 ret = -EPERM;
1368 break;
1369 }
1370
1371 sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1372 break;
1373
1374 case SO_RXQ_OVFL:
1375 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1376 break;
1377
1378 case SO_WIFI_STATUS:
1379 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1380 break;
1381
1382 case SO_PEEK_OFF:
1383 if (sock->ops->set_peek_off)
1384 ret = sock->ops->set_peek_off(sk, val);
1385 else
1386 ret = -EOPNOTSUPP;
1387 break;
1388
1389 case SO_NOFCS:
1390 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1391 break;
1392
1393 case SO_SELECT_ERR_QUEUE:
1394 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1395 break;
1396
1397#ifdef CONFIG_NET_RX_BUSY_POLL
1398 case SO_BUSY_POLL:
1399 /* allow unprivileged users to decrease the value */
1400 if ((val > sk->sk_ll_usec) && !sockopt_capable(CAP_NET_ADMIN))
1401 ret = -EPERM;
1402 else {
1403 if (val < 0)
1404 ret = -EINVAL;
1405 else
1406 WRITE_ONCE(sk->sk_ll_usec, val);
1407 }
1408 break;
1409 case SO_PREFER_BUSY_POLL:
1410 if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1411 ret = -EPERM;
1412 else
1413 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1414 break;
1415 case SO_BUSY_POLL_BUDGET:
1416 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) {
1417 ret = -EPERM;
1418 } else {
1419 if (val < 0 || val > U16_MAX)
1420 ret = -EINVAL;
1421 else
1422 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1423 }
1424 break;
1425#endif
1426
1427 case SO_MAX_PACING_RATE:
1428 {
1429 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1430
1431 if (sizeof(ulval) != sizeof(val) &&
1432 optlen >= sizeof(ulval) &&
1433 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1434 ret = -EFAULT;
1435 break;
1436 }
1437 if (ulval != ~0UL)
1438 cmpxchg(&sk->sk_pacing_status,
1439 SK_PACING_NONE,
1440 SK_PACING_NEEDED);
1441 sk->sk_max_pacing_rate = ulval;
1442 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1443 break;
1444 }
1445 case SO_INCOMING_CPU:
1446 reuseport_update_incoming_cpu(sk, val);
1447 break;
1448
1449 case SO_CNX_ADVICE:
1450 if (val == 1)
1451 dst_negative_advice(sk);
1452 break;
1453
1454 case SO_ZEROCOPY:
1455 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1456 if (!(sk_is_tcp(sk) ||
1457 (sk->sk_type == SOCK_DGRAM &&
1458 sk->sk_protocol == IPPROTO_UDP)))
1459 ret = -EOPNOTSUPP;
1460 } else if (sk->sk_family != PF_RDS) {
1461 ret = -EOPNOTSUPP;
1462 }
1463 if (!ret) {
1464 if (val < 0 || val > 1)
1465 ret = -EINVAL;
1466 else
1467 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1468 }
1469 break;
1470
1471 case SO_TXTIME:
1472 if (optlen != sizeof(struct sock_txtime)) {
1473 ret = -EINVAL;
1474 break;
1475 } else if (copy_from_sockptr(&sk_txtime, optval,
1476 sizeof(struct sock_txtime))) {
1477 ret = -EFAULT;
1478 break;
1479 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1480 ret = -EINVAL;
1481 break;
1482 }
1483 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1484 * scheduler has enough safe guards.
1485 */
1486 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1487 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1488 ret = -EPERM;
1489 break;
1490 }
1491 sock_valbool_flag(sk, SOCK_TXTIME, true);
1492 sk->sk_clockid = sk_txtime.clockid;
1493 sk->sk_txtime_deadline_mode =
1494 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1495 sk->sk_txtime_report_errors =
1496 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1497 break;
1498
1499 case SO_BINDTOIFINDEX:
1500 ret = sock_bindtoindex_locked(sk, val);
1501 break;
1502
1503 case SO_BUF_LOCK:
1504 if (val & ~SOCK_BUF_LOCK_MASK) {
1505 ret = -EINVAL;
1506 break;
1507 }
1508 sk->sk_userlocks = val | (sk->sk_userlocks &
1509 ~SOCK_BUF_LOCK_MASK);
1510 break;
1511
1512 case SO_RESERVE_MEM:
1513 {
1514 int delta;
1515
1516 if (val < 0) {
1517 ret = -EINVAL;
1518 break;
1519 }
1520
1521 delta = val - sk->sk_reserved_mem;
1522 if (delta < 0)
1523 sock_release_reserved_memory(sk, -delta);
1524 else
1525 ret = sock_reserve_memory(sk, delta);
1526 break;
1527 }
1528
1529 case SO_TXREHASH:
1530 if (val < -1 || val > 1) {
1531 ret = -EINVAL;
1532 break;
1533 }
1534 if ((u8)val == SOCK_TXREHASH_DEFAULT)
1535 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1536 /* Paired with READ_ONCE() in tcp_rtx_synack() */
1537 WRITE_ONCE(sk->sk_txrehash, (u8)val);
1538 break;
1539
1540 default:
1541 ret = -ENOPROTOOPT;
1542 break;
1543 }
1544 sockopt_release_sock(sk);
1545 return ret;
1546}
1547
1548int sock_setsockopt(struct socket *sock, int level, int optname,
1549 sockptr_t optval, unsigned int optlen)
1550{
1551 return sk_setsockopt(sock->sk, level, optname,
1552 optval, optlen);
1553}
1554EXPORT_SYMBOL(sock_setsockopt);
1555
1556static const struct cred *sk_get_peer_cred(struct sock *sk)
1557{
1558 const struct cred *cred;
1559
1560 spin_lock(&sk->sk_peer_lock);
1561 cred = get_cred(sk->sk_peer_cred);
1562 spin_unlock(&sk->sk_peer_lock);
1563
1564 return cred;
1565}
1566
1567static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1568 struct ucred *ucred)
1569{
1570 ucred->pid = pid_vnr(pid);
1571 ucred->uid = ucred->gid = -1;
1572 if (cred) {
1573 struct user_namespace *current_ns = current_user_ns();
1574
1575 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1576 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1577 }
1578}
1579
1580static int groups_to_user(sockptr_t dst, const struct group_info *src)
1581{
1582 struct user_namespace *user_ns = current_user_ns();
1583 int i;
1584
1585 for (i = 0; i < src->ngroups; i++) {
1586 gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1587
1588 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1589 return -EFAULT;
1590 }
1591
1592 return 0;
1593}
1594
1595int sk_getsockopt(struct sock *sk, int level, int optname,
1596 sockptr_t optval, sockptr_t optlen)
1597{
1598 struct socket *sock = sk->sk_socket;
1599
1600 union {
1601 int val;
1602 u64 val64;
1603 unsigned long ulval;
1604 struct linger ling;
1605 struct old_timeval32 tm32;
1606 struct __kernel_old_timeval tm;
1607 struct __kernel_sock_timeval stm;
1608 struct sock_txtime txtime;
1609 struct so_timestamping timestamping;
1610 } v;
1611
1612 int lv = sizeof(int);
1613 int len;
1614
1615 if (copy_from_sockptr(&len, optlen, sizeof(int)))
1616 return -EFAULT;
1617 if (len < 0)
1618 return -EINVAL;
1619
1620 memset(&v, 0, sizeof(v));
1621
1622 switch (optname) {
1623 case SO_DEBUG:
1624 v.val = sock_flag(sk, SOCK_DBG);
1625 break;
1626
1627 case SO_DONTROUTE:
1628 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1629 break;
1630
1631 case SO_BROADCAST:
1632 v.val = sock_flag(sk, SOCK_BROADCAST);
1633 break;
1634
1635 case SO_SNDBUF:
1636 v.val = sk->sk_sndbuf;
1637 break;
1638
1639 case SO_RCVBUF:
1640 v.val = sk->sk_rcvbuf;
1641 break;
1642
1643 case SO_REUSEADDR:
1644 v.val = sk->sk_reuse;
1645 break;
1646
1647 case SO_REUSEPORT:
1648 v.val = sk->sk_reuseport;
1649 break;
1650
1651 case SO_KEEPALIVE:
1652 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1653 break;
1654
1655 case SO_TYPE:
1656 v.val = sk->sk_type;
1657 break;
1658
1659 case SO_PROTOCOL:
1660 v.val = sk->sk_protocol;
1661 break;
1662
1663 case SO_DOMAIN:
1664 v.val = sk->sk_family;
1665 break;
1666
1667 case SO_ERROR:
1668 v.val = -sock_error(sk);
1669 if (v.val == 0)
1670 v.val = xchg(&sk->sk_err_soft, 0);
1671 break;
1672
1673 case SO_OOBINLINE:
1674 v.val = sock_flag(sk, SOCK_URGINLINE);
1675 break;
1676
1677 case SO_NO_CHECK:
1678 v.val = sk->sk_no_check_tx;
1679 break;
1680
1681 case SO_PRIORITY:
1682 v.val = sk->sk_priority;
1683 break;
1684
1685 case SO_LINGER:
1686 lv = sizeof(v.ling);
1687 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1688 v.ling.l_linger = sk->sk_lingertime / HZ;
1689 break;
1690
1691 case SO_BSDCOMPAT:
1692 break;
1693
1694 case SO_TIMESTAMP_OLD:
1695 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1696 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1697 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1698 break;
1699
1700 case SO_TIMESTAMPNS_OLD:
1701 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1702 break;
1703
1704 case SO_TIMESTAMP_NEW:
1705 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1706 break;
1707
1708 case SO_TIMESTAMPNS_NEW:
1709 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1710 break;
1711
1712 case SO_TIMESTAMPING_OLD:
1713 lv = sizeof(v.timestamping);
1714 v.timestamping.flags = sk->sk_tsflags;
1715 v.timestamping.bind_phc = sk->sk_bind_phc;
1716 break;
1717
1718 case SO_RCVTIMEO_OLD:
1719 case SO_RCVTIMEO_NEW:
1720 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1721 break;
1722
1723 case SO_SNDTIMEO_OLD:
1724 case SO_SNDTIMEO_NEW:
1725 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1726 break;
1727
1728 case SO_RCVLOWAT:
1729 v.val = sk->sk_rcvlowat;
1730 break;
1731
1732 case SO_SNDLOWAT:
1733 v.val = 1;
1734 break;
1735
1736 case SO_PASSCRED:
1737 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1738 break;
1739
1740 case SO_PEERCRED:
1741 {
1742 struct ucred peercred;
1743 if (len > sizeof(peercred))
1744 len = sizeof(peercred);
1745
1746 spin_lock(&sk->sk_peer_lock);
1747 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1748 spin_unlock(&sk->sk_peer_lock);
1749
1750 if (copy_to_sockptr(optval, &peercred, len))
1751 return -EFAULT;
1752 goto lenout;
1753 }
1754
1755 case SO_PEERGROUPS:
1756 {
1757 const struct cred *cred;
1758 int ret, n;
1759
1760 cred = sk_get_peer_cred(sk);
1761 if (!cred)
1762 return -ENODATA;
1763
1764 n = cred->group_info->ngroups;
1765 if (len < n * sizeof(gid_t)) {
1766 len = n * sizeof(gid_t);
1767 put_cred(cred);
1768 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1769 }
1770 len = n * sizeof(gid_t);
1771
1772 ret = groups_to_user(optval, cred->group_info);
1773 put_cred(cred);
1774 if (ret)
1775 return ret;
1776 goto lenout;
1777 }
1778
1779 case SO_PEERNAME:
1780 {
1781 char address[128];
1782
1783 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1784 if (lv < 0)
1785 return -ENOTCONN;
1786 if (lv < len)
1787 return -EINVAL;
1788 if (copy_to_sockptr(optval, address, len))
1789 return -EFAULT;
1790 goto lenout;
1791 }
1792
1793 /* Dubious BSD thing... Probably nobody even uses it, but
1794 * the UNIX standard wants it for whatever reason... -DaveM
1795 */
1796 case SO_ACCEPTCONN:
1797 v.val = sk->sk_state == TCP_LISTEN;
1798 break;
1799
1800 case SO_PASSSEC:
1801 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1802 break;
1803
1804 case SO_PEERSEC:
1805 return security_socket_getpeersec_stream(sock,
1806 optval, optlen, len);
1807
1808 case SO_MARK:
1809 v.val = sk->sk_mark;
1810 break;
1811
1812 case SO_RCVMARK:
1813 v.val = sock_flag(sk, SOCK_RCVMARK);
1814 break;
1815
1816 case SO_RXQ_OVFL:
1817 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1818 break;
1819
1820 case SO_WIFI_STATUS:
1821 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1822 break;
1823
1824 case SO_PEEK_OFF:
1825 if (!sock->ops->set_peek_off)
1826 return -EOPNOTSUPP;
1827
1828 v.val = sk->sk_peek_off;
1829 break;
1830 case SO_NOFCS:
1831 v.val = sock_flag(sk, SOCK_NOFCS);
1832 break;
1833
1834 case SO_BINDTODEVICE:
1835 return sock_getbindtodevice(sk, optval, optlen, len);
1836
1837 case SO_GET_FILTER:
1838 len = sk_get_filter(sk, optval, len);
1839 if (len < 0)
1840 return len;
1841
1842 goto lenout;
1843
1844 case SO_LOCK_FILTER:
1845 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1846 break;
1847
1848 case SO_BPF_EXTENSIONS:
1849 v.val = bpf_tell_extensions();
1850 break;
1851
1852 case SO_SELECT_ERR_QUEUE:
1853 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1854 break;
1855
1856#ifdef CONFIG_NET_RX_BUSY_POLL
1857 case SO_BUSY_POLL:
1858 v.val = sk->sk_ll_usec;
1859 break;
1860 case SO_PREFER_BUSY_POLL:
1861 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1862 break;
1863#endif
1864
1865 case SO_MAX_PACING_RATE:
1866 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1867 lv = sizeof(v.ulval);
1868 v.ulval = sk->sk_max_pacing_rate;
1869 } else {
1870 /* 32bit version */
1871 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1872 }
1873 break;
1874
1875 case SO_INCOMING_CPU:
1876 v.val = READ_ONCE(sk->sk_incoming_cpu);
1877 break;
1878
1879 case SO_MEMINFO:
1880 {
1881 u32 meminfo[SK_MEMINFO_VARS];
1882
1883 sk_get_meminfo(sk, meminfo);
1884
1885 len = min_t(unsigned int, len, sizeof(meminfo));
1886 if (copy_to_sockptr(optval, &meminfo, len))
1887 return -EFAULT;
1888
1889 goto lenout;
1890 }
1891
1892#ifdef CONFIG_NET_RX_BUSY_POLL
1893 case SO_INCOMING_NAPI_ID:
1894 v.val = READ_ONCE(sk->sk_napi_id);
1895
1896 /* aggregate non-NAPI IDs down to 0 */
1897 if (v.val < MIN_NAPI_ID)
1898 v.val = 0;
1899
1900 break;
1901#endif
1902
1903 case SO_COOKIE:
1904 lv = sizeof(u64);
1905 if (len < lv)
1906 return -EINVAL;
1907 v.val64 = sock_gen_cookie(sk);
1908 break;
1909
1910 case SO_ZEROCOPY:
1911 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1912 break;
1913
1914 case SO_TXTIME:
1915 lv = sizeof(v.txtime);
1916 v.txtime.clockid = sk->sk_clockid;
1917 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1918 SOF_TXTIME_DEADLINE_MODE : 0;
1919 v.txtime.flags |= sk->sk_txtime_report_errors ?
1920 SOF_TXTIME_REPORT_ERRORS : 0;
1921 break;
1922
1923 case SO_BINDTOIFINDEX:
1924 v.val = READ_ONCE(sk->sk_bound_dev_if);
1925 break;
1926
1927 case SO_NETNS_COOKIE:
1928 lv = sizeof(u64);
1929 if (len != lv)
1930 return -EINVAL;
1931 v.val64 = sock_net(sk)->net_cookie;
1932 break;
1933
1934 case SO_BUF_LOCK:
1935 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1936 break;
1937
1938 case SO_RESERVE_MEM:
1939 v.val = sk->sk_reserved_mem;
1940 break;
1941
1942 case SO_TXREHASH:
1943 v.val = sk->sk_txrehash;
1944 break;
1945
1946 default:
1947 /* We implement the SO_SNDLOWAT etc to not be settable
1948 * (1003.1g 7).
1949 */
1950 return -ENOPROTOOPT;
1951 }
1952
1953 if (len > lv)
1954 len = lv;
1955 if (copy_to_sockptr(optval, &v, len))
1956 return -EFAULT;
1957lenout:
1958 if (copy_to_sockptr(optlen, &len, sizeof(int)))
1959 return -EFAULT;
1960 return 0;
1961}
1962
1963int sock_getsockopt(struct socket *sock, int level, int optname,
1964 char __user *optval, int __user *optlen)
1965{
1966 return sk_getsockopt(sock->sk, level, optname,
1967 USER_SOCKPTR(optval),
1968 USER_SOCKPTR(optlen));
1969}
1970
1971/*
1972 * Initialize an sk_lock.
1973 *
1974 * (We also register the sk_lock with the lock validator.)
1975 */
1976static inline void sock_lock_init(struct sock *sk)
1977{
1978 if (sk->sk_kern_sock)
1979 sock_lock_init_class_and_name(
1980 sk,
1981 af_family_kern_slock_key_strings[sk->sk_family],
1982 af_family_kern_slock_keys + sk->sk_family,
1983 af_family_kern_key_strings[sk->sk_family],
1984 af_family_kern_keys + sk->sk_family);
1985 else
1986 sock_lock_init_class_and_name(
1987 sk,
1988 af_family_slock_key_strings[sk->sk_family],
1989 af_family_slock_keys + sk->sk_family,
1990 af_family_key_strings[sk->sk_family],
1991 af_family_keys + sk->sk_family);
1992}
1993
1994/*
1995 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1996 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1997 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1998 */
1999static void sock_copy(struct sock *nsk, const struct sock *osk)
2000{
2001 const struct proto *prot = READ_ONCE(osk->sk_prot);
2002#ifdef CONFIG_SECURITY_NETWORK
2003 void *sptr = nsk->sk_security;
2004#endif
2005
2006 /* If we move sk_tx_queue_mapping out of the private section,
2007 * we must check if sk_tx_queue_clear() is called after
2008 * sock_copy() in sk_clone_lock().
2009 */
2010 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2011 offsetof(struct sock, sk_dontcopy_begin) ||
2012 offsetof(struct sock, sk_tx_queue_mapping) >=
2013 offsetof(struct sock, sk_dontcopy_end));
2014
2015 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2016
2017 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2018 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
2019
2020#ifdef CONFIG_SECURITY_NETWORK
2021 nsk->sk_security = sptr;
2022 security_sk_clone(osk, nsk);
2023#endif
2024}
2025
2026static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2027 int family)
2028{
2029 struct sock *sk;
2030 struct kmem_cache *slab;
2031
2032 slab = prot->slab;
2033 if (slab != NULL) {
2034 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2035 if (!sk)
2036 return sk;
2037 if (want_init_on_alloc(priority))
2038 sk_prot_clear_nulls(sk, prot->obj_size);
2039 } else
2040 sk = kmalloc(prot->obj_size, priority);
2041
2042 if (sk != NULL) {
2043 if (security_sk_alloc(sk, family, priority))
2044 goto out_free;
2045
2046 if (!try_module_get(prot->owner))
2047 goto out_free_sec;
2048 }
2049
2050 return sk;
2051
2052out_free_sec:
2053 security_sk_free(sk);
2054out_free:
2055 if (slab != NULL)
2056 kmem_cache_free(slab, sk);
2057 else
2058 kfree(sk);
2059 return NULL;
2060}
2061
2062static void sk_prot_free(struct proto *prot, struct sock *sk)
2063{
2064 struct kmem_cache *slab;
2065 struct module *owner;
2066
2067 owner = prot->owner;
2068 slab = prot->slab;
2069
2070 cgroup_sk_free(&sk->sk_cgrp_data);
2071 mem_cgroup_sk_free(sk);
2072 security_sk_free(sk);
2073 if (slab != NULL)
2074 kmem_cache_free(slab, sk);
2075 else
2076 kfree(sk);
2077 module_put(owner);
2078}
2079
2080/**
2081 * sk_alloc - All socket objects are allocated here
2082 * @net: the applicable net namespace
2083 * @family: protocol family
2084 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2085 * @prot: struct proto associated with this new sock instance
2086 * @kern: is this to be a kernel socket?
2087 */
2088struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2089 struct proto *prot, int kern)
2090{
2091 struct sock *sk;
2092
2093 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2094 if (sk) {
2095 sk->sk_family = family;
2096 /*
2097 * See comment in struct sock definition to understand
2098 * why we need sk_prot_creator -acme
2099 */
2100 sk->sk_prot = sk->sk_prot_creator = prot;
2101 sk->sk_kern_sock = kern;
2102 sock_lock_init(sk);
2103 sk->sk_net_refcnt = kern ? 0 : 1;
2104 if (likely(sk->sk_net_refcnt)) {
2105 get_net_track(net, &sk->ns_tracker, priority);
2106 sock_inuse_add(net, 1);
2107 } else {
2108 __netns_tracker_alloc(net, &sk->ns_tracker,
2109 false, priority);
2110 }
2111
2112 sock_net_set(sk, net);
2113 refcount_set(&sk->sk_wmem_alloc, 1);
2114
2115 mem_cgroup_sk_alloc(sk);
2116 cgroup_sk_alloc(&sk->sk_cgrp_data);
2117 sock_update_classid(&sk->sk_cgrp_data);
2118 sock_update_netprioidx(&sk->sk_cgrp_data);
2119 sk_tx_queue_clear(sk);
2120 }
2121
2122 return sk;
2123}
2124EXPORT_SYMBOL(sk_alloc);
2125
2126/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2127 * grace period. This is the case for UDP sockets and TCP listeners.
2128 */
2129static void __sk_destruct(struct rcu_head *head)
2130{
2131 struct sock *sk = container_of(head, struct sock, sk_rcu);
2132 struct sk_filter *filter;
2133
2134 if (sk->sk_destruct)
2135 sk->sk_destruct(sk);
2136
2137 filter = rcu_dereference_check(sk->sk_filter,
2138 refcount_read(&sk->sk_wmem_alloc) == 0);
2139 if (filter) {
2140 sk_filter_uncharge(sk, filter);
2141 RCU_INIT_POINTER(sk->sk_filter, NULL);
2142 }
2143
2144 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2145
2146#ifdef CONFIG_BPF_SYSCALL
2147 bpf_sk_storage_free(sk);
2148#endif
2149
2150 if (atomic_read(&sk->sk_omem_alloc))
2151 pr_debug("%s: optmem leakage (%d bytes) detected\n",
2152 __func__, atomic_read(&sk->sk_omem_alloc));
2153
2154 if (sk->sk_frag.page) {
2155 put_page(sk->sk_frag.page);
2156 sk->sk_frag.page = NULL;
2157 }
2158
2159 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2160 put_cred(sk->sk_peer_cred);
2161 put_pid(sk->sk_peer_pid);
2162
2163 if (likely(sk->sk_net_refcnt))
2164 put_net_track(sock_net(sk), &sk->ns_tracker);
2165 else
2166 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2167
2168 sk_prot_free(sk->sk_prot_creator, sk);
2169}
2170
2171void sk_destruct(struct sock *sk)
2172{
2173 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2174
2175 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2176 reuseport_detach_sock(sk);
2177 use_call_rcu = true;
2178 }
2179
2180 if (use_call_rcu)
2181 call_rcu(&sk->sk_rcu, __sk_destruct);
2182 else
2183 __sk_destruct(&sk->sk_rcu);
2184}
2185
2186static void __sk_free(struct sock *sk)
2187{
2188 if (likely(sk->sk_net_refcnt))
2189 sock_inuse_add(sock_net(sk), -1);
2190
2191 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2192 sock_diag_broadcast_destroy(sk);
2193 else
2194 sk_destruct(sk);
2195}
2196
2197void sk_free(struct sock *sk)
2198{
2199 /*
2200 * We subtract one from sk_wmem_alloc and can know if
2201 * some packets are still in some tx queue.
2202 * If not null, sock_wfree() will call __sk_free(sk) later
2203 */
2204 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2205 __sk_free(sk);
2206}
2207EXPORT_SYMBOL(sk_free);
2208
2209static void sk_init_common(struct sock *sk)
2210{
2211 skb_queue_head_init(&sk->sk_receive_queue);
2212 skb_queue_head_init(&sk->sk_write_queue);
2213 skb_queue_head_init(&sk->sk_error_queue);
2214
2215 rwlock_init(&sk->sk_callback_lock);
2216 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2217 af_rlock_keys + sk->sk_family,
2218 af_family_rlock_key_strings[sk->sk_family]);
2219 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2220 af_wlock_keys + sk->sk_family,
2221 af_family_wlock_key_strings[sk->sk_family]);
2222 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2223 af_elock_keys + sk->sk_family,
2224 af_family_elock_key_strings[sk->sk_family]);
2225 lockdep_set_class_and_name(&sk->sk_callback_lock,
2226 af_callback_keys + sk->sk_family,
2227 af_family_clock_key_strings[sk->sk_family]);
2228}
2229
2230/**
2231 * sk_clone_lock - clone a socket, and lock its clone
2232 * @sk: the socket to clone
2233 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2234 *
2235 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2236 */
2237struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2238{
2239 struct proto *prot = READ_ONCE(sk->sk_prot);
2240 struct sk_filter *filter;
2241 bool is_charged = true;
2242 struct sock *newsk;
2243
2244 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2245 if (!newsk)
2246 goto out;
2247
2248 sock_copy(newsk, sk);
2249
2250 newsk->sk_prot_creator = prot;
2251
2252 /* SANITY */
2253 if (likely(newsk->sk_net_refcnt)) {
2254 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2255 sock_inuse_add(sock_net(newsk), 1);
2256 } else {
2257 /* Kernel sockets are not elevating the struct net refcount.
2258 * Instead, use a tracker to more easily detect if a layer
2259 * is not properly dismantling its kernel sockets at netns
2260 * destroy time.
2261 */
2262 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2263 false, priority);
2264 }
2265 sk_node_init(&newsk->sk_node);
2266 sock_lock_init(newsk);
2267 bh_lock_sock(newsk);
2268 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2269 newsk->sk_backlog.len = 0;
2270
2271 atomic_set(&newsk->sk_rmem_alloc, 0);
2272
2273 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2274 refcount_set(&newsk->sk_wmem_alloc, 1);
2275
2276 atomic_set(&newsk->sk_omem_alloc, 0);
2277 sk_init_common(newsk);
2278
2279 newsk->sk_dst_cache = NULL;
2280 newsk->sk_dst_pending_confirm = 0;
2281 newsk->sk_wmem_queued = 0;
2282 newsk->sk_forward_alloc = 0;
2283 newsk->sk_reserved_mem = 0;
2284 atomic_set(&newsk->sk_drops, 0);
2285 newsk->sk_send_head = NULL;
2286 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2287 atomic_set(&newsk->sk_zckey, 0);
2288
2289 sock_reset_flag(newsk, SOCK_DONE);
2290
2291 /* sk->sk_memcg will be populated at accept() time */
2292 newsk->sk_memcg = NULL;
2293
2294 cgroup_sk_clone(&newsk->sk_cgrp_data);
2295
2296 rcu_read_lock();
2297 filter = rcu_dereference(sk->sk_filter);
2298 if (filter != NULL)
2299 /* though it's an empty new sock, the charging may fail
2300 * if sysctl_optmem_max was changed between creation of
2301 * original socket and cloning
2302 */
2303 is_charged = sk_filter_charge(newsk, filter);
2304 RCU_INIT_POINTER(newsk->sk_filter, filter);
2305 rcu_read_unlock();
2306
2307 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2308 /* We need to make sure that we don't uncharge the new
2309 * socket if we couldn't charge it in the first place
2310 * as otherwise we uncharge the parent's filter.
2311 */
2312 if (!is_charged)
2313 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2314 sk_free_unlock_clone(newsk);
2315 newsk = NULL;
2316 goto out;
2317 }
2318 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2319
2320 if (bpf_sk_storage_clone(sk, newsk)) {
2321 sk_free_unlock_clone(newsk);
2322 newsk = NULL;
2323 goto out;
2324 }
2325
2326 /* Clear sk_user_data if parent had the pointer tagged
2327 * as not suitable for copying when cloning.
2328 */
2329 if (sk_user_data_is_nocopy(newsk))
2330 newsk->sk_user_data = NULL;
2331
2332 newsk->sk_err = 0;
2333 newsk->sk_err_soft = 0;
2334 newsk->sk_priority = 0;
2335 newsk->sk_incoming_cpu = raw_smp_processor_id();
2336
2337 /* Before updating sk_refcnt, we must commit prior changes to memory
2338 * (Documentation/RCU/rculist_nulls.rst for details)
2339 */
2340 smp_wmb();
2341 refcount_set(&newsk->sk_refcnt, 2);
2342
2343 /* Increment the counter in the same struct proto as the master
2344 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2345 * is the same as sk->sk_prot->socks, as this field was copied
2346 * with memcpy).
2347 *
2348 * This _changes_ the previous behaviour, where
2349 * tcp_create_openreq_child always was incrementing the
2350 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2351 * to be taken into account in all callers. -acme
2352 */
2353 sk_refcnt_debug_inc(newsk);
2354 sk_set_socket(newsk, NULL);
2355 sk_tx_queue_clear(newsk);
2356 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2357
2358 if (newsk->sk_prot->sockets_allocated)
2359 sk_sockets_allocated_inc(newsk);
2360
2361 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2362 net_enable_timestamp();
2363out:
2364 return newsk;
2365}
2366EXPORT_SYMBOL_GPL(sk_clone_lock);
2367
2368void sk_free_unlock_clone(struct sock *sk)
2369{
2370 /* It is still raw copy of parent, so invalidate
2371 * destructor and make plain sk_free() */
2372 sk->sk_destruct = NULL;
2373 bh_unlock_sock(sk);
2374 sk_free(sk);
2375}
2376EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2377
2378static void sk_trim_gso_size(struct sock *sk)
2379{
2380 if (sk->sk_gso_max_size <= GSO_LEGACY_MAX_SIZE)
2381 return;
2382#if IS_ENABLED(CONFIG_IPV6)
2383 if (sk->sk_family == AF_INET6 &&
2384 sk_is_tcp(sk) &&
2385 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
2386 return;
2387#endif
2388 sk->sk_gso_max_size = GSO_LEGACY_MAX_SIZE;
2389}
2390
2391void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2392{
2393 u32 max_segs = 1;
2394
2395 sk_dst_set(sk, dst);
2396 sk->sk_route_caps = dst->dev->features;
2397 if (sk_is_tcp(sk))
2398 sk->sk_route_caps |= NETIF_F_GSO;
2399 if (sk->sk_route_caps & NETIF_F_GSO)
2400 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2401 if (unlikely(sk->sk_gso_disabled))
2402 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2403 if (sk_can_gso(sk)) {
2404 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2405 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2406 } else {
2407 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2408 /* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */
2409 sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size);
2410 sk_trim_gso_size(sk);
2411 sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1);
2412 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2413 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2414 }
2415 }
2416 sk->sk_gso_max_segs = max_segs;
2417}
2418EXPORT_SYMBOL_GPL(sk_setup_caps);
2419
2420/*
2421 * Simple resource managers for sockets.
2422 */
2423
2424
2425/*
2426 * Write buffer destructor automatically called from kfree_skb.
2427 */
2428void sock_wfree(struct sk_buff *skb)
2429{
2430 struct sock *sk = skb->sk;
2431 unsigned int len = skb->truesize;
2432 bool free;
2433
2434 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2435 if (sock_flag(sk, SOCK_RCU_FREE) &&
2436 sk->sk_write_space == sock_def_write_space) {
2437 rcu_read_lock();
2438 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2439 sock_def_write_space_wfree(sk);
2440 rcu_read_unlock();
2441 if (unlikely(free))
2442 __sk_free(sk);
2443 return;
2444 }
2445
2446 /*
2447 * Keep a reference on sk_wmem_alloc, this will be released
2448 * after sk_write_space() call
2449 */
2450 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2451 sk->sk_write_space(sk);
2452 len = 1;
2453 }
2454 /*
2455 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2456 * could not do because of in-flight packets
2457 */
2458 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2459 __sk_free(sk);
2460}
2461EXPORT_SYMBOL(sock_wfree);
2462
2463/* This variant of sock_wfree() is used by TCP,
2464 * since it sets SOCK_USE_WRITE_QUEUE.
2465 */
2466void __sock_wfree(struct sk_buff *skb)
2467{
2468 struct sock *sk = skb->sk;
2469
2470 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2471 __sk_free(sk);
2472}
2473
2474void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2475{
2476 skb_orphan(skb);
2477 skb->sk = sk;
2478#ifdef CONFIG_INET
2479 if (unlikely(!sk_fullsock(sk))) {
2480 skb->destructor = sock_edemux;
2481 sock_hold(sk);
2482 return;
2483 }
2484#endif
2485 skb->destructor = sock_wfree;
2486 skb_set_hash_from_sk(skb, sk);
2487 /*
2488 * We used to take a refcount on sk, but following operation
2489 * is enough to guarantee sk_free() wont free this sock until
2490 * all in-flight packets are completed
2491 */
2492 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2493}
2494EXPORT_SYMBOL(skb_set_owner_w);
2495
2496static bool can_skb_orphan_partial(const struct sk_buff *skb)
2497{
2498#ifdef CONFIG_TLS_DEVICE
2499 /* Drivers depend on in-order delivery for crypto offload,
2500 * partial orphan breaks out-of-order-OK logic.
2501 */
2502 if (skb->decrypted)
2503 return false;
2504#endif
2505 return (skb->destructor == sock_wfree ||
2506 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2507}
2508
2509/* This helper is used by netem, as it can hold packets in its
2510 * delay queue. We want to allow the owner socket to send more
2511 * packets, as if they were already TX completed by a typical driver.
2512 * But we also want to keep skb->sk set because some packet schedulers
2513 * rely on it (sch_fq for example).
2514 */
2515void skb_orphan_partial(struct sk_buff *skb)
2516{
2517 if (skb_is_tcp_pure_ack(skb))
2518 return;
2519
2520 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2521 return;
2522
2523 skb_orphan(skb);
2524}
2525EXPORT_SYMBOL(skb_orphan_partial);
2526
2527/*
2528 * Read buffer destructor automatically called from kfree_skb.
2529 */
2530void sock_rfree(struct sk_buff *skb)
2531{
2532 struct sock *sk = skb->sk;
2533 unsigned int len = skb->truesize;
2534
2535 atomic_sub(len, &sk->sk_rmem_alloc);
2536 sk_mem_uncharge(sk, len);
2537}
2538EXPORT_SYMBOL(sock_rfree);
2539
2540/*
2541 * Buffer destructor for skbs that are not used directly in read or write
2542 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2543 */
2544void sock_efree(struct sk_buff *skb)
2545{
2546 sock_put(skb->sk);
2547}
2548EXPORT_SYMBOL(sock_efree);
2549
2550/* Buffer destructor for prefetch/receive path where reference count may
2551 * not be held, e.g. for listen sockets.
2552 */
2553#ifdef CONFIG_INET
2554void sock_pfree(struct sk_buff *skb)
2555{
2556 if (sk_is_refcounted(skb->sk))
2557 sock_gen_put(skb->sk);
2558}
2559EXPORT_SYMBOL(sock_pfree);
2560#endif /* CONFIG_INET */
2561
2562kuid_t sock_i_uid(struct sock *sk)
2563{
2564 kuid_t uid;
2565
2566 read_lock_bh(&sk->sk_callback_lock);
2567 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2568 read_unlock_bh(&sk->sk_callback_lock);
2569 return uid;
2570}
2571EXPORT_SYMBOL(sock_i_uid);
2572
2573unsigned long sock_i_ino(struct sock *sk)
2574{
2575 unsigned long ino;
2576
2577 read_lock_bh(&sk->sk_callback_lock);
2578 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2579 read_unlock_bh(&sk->sk_callback_lock);
2580 return ino;
2581}
2582EXPORT_SYMBOL(sock_i_ino);
2583
2584/*
2585 * Allocate a skb from the socket's send buffer.
2586 */
2587struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2588 gfp_t priority)
2589{
2590 if (force ||
2591 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2592 struct sk_buff *skb = alloc_skb(size, priority);
2593
2594 if (skb) {
2595 skb_set_owner_w(skb, sk);
2596 return skb;
2597 }
2598 }
2599 return NULL;
2600}
2601EXPORT_SYMBOL(sock_wmalloc);
2602
2603static void sock_ofree(struct sk_buff *skb)
2604{
2605 struct sock *sk = skb->sk;
2606
2607 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2608}
2609
2610struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2611 gfp_t priority)
2612{
2613 struct sk_buff *skb;
2614
2615 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2616 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2617 READ_ONCE(sysctl_optmem_max))
2618 return NULL;
2619
2620 skb = alloc_skb(size, priority);
2621 if (!skb)
2622 return NULL;
2623
2624 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2625 skb->sk = sk;
2626 skb->destructor = sock_ofree;
2627 return skb;
2628}
2629
2630/*
2631 * Allocate a memory block from the socket's option memory buffer.
2632 */
2633void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2634{
2635 int optmem_max = READ_ONCE(sysctl_optmem_max);
2636
2637 if ((unsigned int)size <= optmem_max &&
2638 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2639 void *mem;
2640 /* First do the add, to avoid the race if kmalloc
2641 * might sleep.
2642 */
2643 atomic_add(size, &sk->sk_omem_alloc);
2644 mem = kmalloc(size, priority);
2645 if (mem)
2646 return mem;
2647 atomic_sub(size, &sk->sk_omem_alloc);
2648 }
2649 return NULL;
2650}
2651EXPORT_SYMBOL(sock_kmalloc);
2652
2653/* Free an option memory block. Note, we actually want the inline
2654 * here as this allows gcc to detect the nullify and fold away the
2655 * condition entirely.
2656 */
2657static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2658 const bool nullify)
2659{
2660 if (WARN_ON_ONCE(!mem))
2661 return;
2662 if (nullify)
2663 kfree_sensitive(mem);
2664 else
2665 kfree(mem);
2666 atomic_sub(size, &sk->sk_omem_alloc);
2667}
2668
2669void sock_kfree_s(struct sock *sk, void *mem, int size)
2670{
2671 __sock_kfree_s(sk, mem, size, false);
2672}
2673EXPORT_SYMBOL(sock_kfree_s);
2674
2675void sock_kzfree_s(struct sock *sk, void *mem, int size)
2676{
2677 __sock_kfree_s(sk, mem, size, true);
2678}
2679EXPORT_SYMBOL(sock_kzfree_s);
2680
2681/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2682 I think, these locks should be removed for datagram sockets.
2683 */
2684static long sock_wait_for_wmem(struct sock *sk, long timeo)
2685{
2686 DEFINE_WAIT(wait);
2687
2688 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2689 for (;;) {
2690 if (!timeo)
2691 break;
2692 if (signal_pending(current))
2693 break;
2694 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2695 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2696 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2697 break;
2698 if (sk->sk_shutdown & SEND_SHUTDOWN)
2699 break;
2700 if (sk->sk_err)
2701 break;
2702 timeo = schedule_timeout(timeo);
2703 }
2704 finish_wait(sk_sleep(sk), &wait);
2705 return timeo;
2706}
2707
2708
2709/*
2710 * Generic send/receive buffer handlers
2711 */
2712
2713struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2714 unsigned long data_len, int noblock,
2715 int *errcode, int max_page_order)
2716{
2717 struct sk_buff *skb;
2718 long timeo;
2719 int err;
2720
2721 timeo = sock_sndtimeo(sk, noblock);
2722 for (;;) {
2723 err = sock_error(sk);
2724 if (err != 0)
2725 goto failure;
2726
2727 err = -EPIPE;
2728 if (sk->sk_shutdown & SEND_SHUTDOWN)
2729 goto failure;
2730
2731 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2732 break;
2733
2734 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2735 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2736 err = -EAGAIN;
2737 if (!timeo)
2738 goto failure;
2739 if (signal_pending(current))
2740 goto interrupted;
2741 timeo = sock_wait_for_wmem(sk, timeo);
2742 }
2743 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2744 errcode, sk->sk_allocation);
2745 if (skb)
2746 skb_set_owner_w(skb, sk);
2747 return skb;
2748
2749interrupted:
2750 err = sock_intr_errno(timeo);
2751failure:
2752 *errcode = err;
2753 return NULL;
2754}
2755EXPORT_SYMBOL(sock_alloc_send_pskb);
2756
2757int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2758 struct sockcm_cookie *sockc)
2759{
2760 u32 tsflags;
2761
2762 switch (cmsg->cmsg_type) {
2763 case SO_MARK:
2764 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2765 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2766 return -EPERM;
2767 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2768 return -EINVAL;
2769 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2770 break;
2771 case SO_TIMESTAMPING_OLD:
2772 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2773 return -EINVAL;
2774
2775 tsflags = *(u32 *)CMSG_DATA(cmsg);
2776 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2777 return -EINVAL;
2778
2779 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2780 sockc->tsflags |= tsflags;
2781 break;
2782 case SCM_TXTIME:
2783 if (!sock_flag(sk, SOCK_TXTIME))
2784 return -EINVAL;
2785 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2786 return -EINVAL;
2787 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2788 break;
2789 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2790 case SCM_RIGHTS:
2791 case SCM_CREDENTIALS:
2792 break;
2793 default:
2794 return -EINVAL;
2795 }
2796 return 0;
2797}
2798EXPORT_SYMBOL(__sock_cmsg_send);
2799
2800int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2801 struct sockcm_cookie *sockc)
2802{
2803 struct cmsghdr *cmsg;
2804 int ret;
2805
2806 for_each_cmsghdr(cmsg, msg) {
2807 if (!CMSG_OK(msg, cmsg))
2808 return -EINVAL;
2809 if (cmsg->cmsg_level != SOL_SOCKET)
2810 continue;
2811 ret = __sock_cmsg_send(sk, cmsg, sockc);
2812 if (ret)
2813 return ret;
2814 }
2815 return 0;
2816}
2817EXPORT_SYMBOL(sock_cmsg_send);
2818
2819static void sk_enter_memory_pressure(struct sock *sk)
2820{
2821 if (!sk->sk_prot->enter_memory_pressure)
2822 return;
2823
2824 sk->sk_prot->enter_memory_pressure(sk);
2825}
2826
2827static void sk_leave_memory_pressure(struct sock *sk)
2828{
2829 if (sk->sk_prot->leave_memory_pressure) {
2830 sk->sk_prot->leave_memory_pressure(sk);
2831 } else {
2832 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2833
2834 if (memory_pressure && READ_ONCE(*memory_pressure))
2835 WRITE_ONCE(*memory_pressure, 0);
2836 }
2837}
2838
2839DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2840
2841/**
2842 * skb_page_frag_refill - check that a page_frag contains enough room
2843 * @sz: minimum size of the fragment we want to get
2844 * @pfrag: pointer to page_frag
2845 * @gfp: priority for memory allocation
2846 *
2847 * Note: While this allocator tries to use high order pages, there is
2848 * no guarantee that allocations succeed. Therefore, @sz MUST be
2849 * less or equal than PAGE_SIZE.
2850 */
2851bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2852{
2853 if (pfrag->page) {
2854 if (page_ref_count(pfrag->page) == 1) {
2855 pfrag->offset = 0;
2856 return true;
2857 }
2858 if (pfrag->offset + sz <= pfrag->size)
2859 return true;
2860 put_page(pfrag->page);
2861 }
2862
2863 pfrag->offset = 0;
2864 if (SKB_FRAG_PAGE_ORDER &&
2865 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2866 /* Avoid direct reclaim but allow kswapd to wake */
2867 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2868 __GFP_COMP | __GFP_NOWARN |
2869 __GFP_NORETRY,
2870 SKB_FRAG_PAGE_ORDER);
2871 if (likely(pfrag->page)) {
2872 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2873 return true;
2874 }
2875 }
2876 pfrag->page = alloc_page(gfp);
2877 if (likely(pfrag->page)) {
2878 pfrag->size = PAGE_SIZE;
2879 return true;
2880 }
2881 return false;
2882}
2883EXPORT_SYMBOL(skb_page_frag_refill);
2884
2885bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2886{
2887 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2888 return true;
2889
2890 sk_enter_memory_pressure(sk);
2891 sk_stream_moderate_sndbuf(sk);
2892 return false;
2893}
2894EXPORT_SYMBOL(sk_page_frag_refill);
2895
2896void __lock_sock(struct sock *sk)
2897 __releases(&sk->sk_lock.slock)
2898 __acquires(&sk->sk_lock.slock)
2899{
2900 DEFINE_WAIT(wait);
2901
2902 for (;;) {
2903 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2904 TASK_UNINTERRUPTIBLE);
2905 spin_unlock_bh(&sk->sk_lock.slock);
2906 schedule();
2907 spin_lock_bh(&sk->sk_lock.slock);
2908 if (!sock_owned_by_user(sk))
2909 break;
2910 }
2911 finish_wait(&sk->sk_lock.wq, &wait);
2912}
2913
2914void __release_sock(struct sock *sk)
2915 __releases(&sk->sk_lock.slock)
2916 __acquires(&sk->sk_lock.slock)
2917{
2918 struct sk_buff *skb, *next;
2919
2920 while ((skb = sk->sk_backlog.head) != NULL) {
2921 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2922
2923 spin_unlock_bh(&sk->sk_lock.slock);
2924
2925 do {
2926 next = skb->next;
2927 prefetch(next);
2928 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2929 skb_mark_not_on_list(skb);
2930 sk_backlog_rcv(sk, skb);
2931
2932 cond_resched();
2933
2934 skb = next;
2935 } while (skb != NULL);
2936
2937 spin_lock_bh(&sk->sk_lock.slock);
2938 }
2939
2940 /*
2941 * Doing the zeroing here guarantee we can not loop forever
2942 * while a wild producer attempts to flood us.
2943 */
2944 sk->sk_backlog.len = 0;
2945}
2946
2947void __sk_flush_backlog(struct sock *sk)
2948{
2949 spin_lock_bh(&sk->sk_lock.slock);
2950 __release_sock(sk);
2951 spin_unlock_bh(&sk->sk_lock.slock);
2952}
2953EXPORT_SYMBOL_GPL(__sk_flush_backlog);
2954
2955/**
2956 * sk_wait_data - wait for data to arrive at sk_receive_queue
2957 * @sk: sock to wait on
2958 * @timeo: for how long
2959 * @skb: last skb seen on sk_receive_queue
2960 *
2961 * Now socket state including sk->sk_err is changed only under lock,
2962 * hence we may omit checks after joining wait queue.
2963 * We check receive queue before schedule() only as optimization;
2964 * it is very likely that release_sock() added new data.
2965 */
2966int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2967{
2968 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2969 int rc;
2970
2971 add_wait_queue(sk_sleep(sk), &wait);
2972 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2973 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2974 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2975 remove_wait_queue(sk_sleep(sk), &wait);
2976 return rc;
2977}
2978EXPORT_SYMBOL(sk_wait_data);
2979
2980/**
2981 * __sk_mem_raise_allocated - increase memory_allocated
2982 * @sk: socket
2983 * @size: memory size to allocate
2984 * @amt: pages to allocate
2985 * @kind: allocation type
2986 *
2987 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2988 */
2989int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2990{
2991 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
2992 struct proto *prot = sk->sk_prot;
2993 bool charged = true;
2994 long allocated;
2995
2996 sk_memory_allocated_add(sk, amt);
2997 allocated = sk_memory_allocated(sk);
2998 if (memcg_charge &&
2999 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3000 gfp_memcg_charge())))
3001 goto suppress_allocation;
3002
3003 /* Under limit. */
3004 if (allocated <= sk_prot_mem_limits(sk, 0)) {
3005 sk_leave_memory_pressure(sk);
3006 return 1;
3007 }
3008
3009 /* Under pressure. */
3010 if (allocated > sk_prot_mem_limits(sk, 1))
3011 sk_enter_memory_pressure(sk);
3012
3013 /* Over hard limit. */
3014 if (allocated > sk_prot_mem_limits(sk, 2))
3015 goto suppress_allocation;
3016
3017 /* guarantee minimum buffer size under pressure */
3018 if (kind == SK_MEM_RECV) {
3019 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3020 return 1;
3021
3022 } else { /* SK_MEM_SEND */
3023 int wmem0 = sk_get_wmem0(sk, prot);
3024
3025 if (sk->sk_type == SOCK_STREAM) {
3026 if (sk->sk_wmem_queued < wmem0)
3027 return 1;
3028 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3029 return 1;
3030 }
3031 }
3032
3033 if (sk_has_memory_pressure(sk)) {
3034 u64 alloc;
3035
3036 if (!sk_under_memory_pressure(sk))
3037 return 1;
3038 alloc = sk_sockets_allocated_read_positive(sk);
3039 if (sk_prot_mem_limits(sk, 2) > alloc *
3040 sk_mem_pages(sk->sk_wmem_queued +
3041 atomic_read(&sk->sk_rmem_alloc) +
3042 sk->sk_forward_alloc))
3043 return 1;
3044 }
3045
3046suppress_allocation:
3047
3048 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3049 sk_stream_moderate_sndbuf(sk);
3050
3051 /* Fail only if socket is _under_ its sndbuf.
3052 * In this case we cannot block, so that we have to fail.
3053 */
3054 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3055 /* Force charge with __GFP_NOFAIL */
3056 if (memcg_charge && !charged) {
3057 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3058 gfp_memcg_charge() | __GFP_NOFAIL);
3059 }
3060 return 1;
3061 }
3062 }
3063
3064 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3065 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3066
3067 sk_memory_allocated_sub(sk, amt);
3068
3069 if (memcg_charge && charged)
3070 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
3071
3072 return 0;
3073}
3074
3075/**
3076 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3077 * @sk: socket
3078 * @size: memory size to allocate
3079 * @kind: allocation type
3080 *
3081 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3082 * rmem allocation. This function assumes that protocols which have
3083 * memory_pressure use sk_wmem_queued as write buffer accounting.
3084 */
3085int __sk_mem_schedule(struct sock *sk, int size, int kind)
3086{
3087 int ret, amt = sk_mem_pages(size);
3088
3089 sk->sk_forward_alloc += amt << PAGE_SHIFT;
3090 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3091 if (!ret)
3092 sk->sk_forward_alloc -= amt << PAGE_SHIFT;
3093 return ret;
3094}
3095EXPORT_SYMBOL(__sk_mem_schedule);
3096
3097/**
3098 * __sk_mem_reduce_allocated - reclaim memory_allocated
3099 * @sk: socket
3100 * @amount: number of quanta
3101 *
3102 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3103 */
3104void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3105{
3106 sk_memory_allocated_sub(sk, amount);
3107
3108 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3109 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3110
3111 if (sk_under_memory_pressure(sk) &&
3112 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3113 sk_leave_memory_pressure(sk);
3114}
3115
3116/**
3117 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3118 * @sk: socket
3119 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3120 */
3121void __sk_mem_reclaim(struct sock *sk, int amount)
3122{
3123 amount >>= PAGE_SHIFT;
3124 sk->sk_forward_alloc -= amount << PAGE_SHIFT;
3125 __sk_mem_reduce_allocated(sk, amount);
3126}
3127EXPORT_SYMBOL(__sk_mem_reclaim);
3128
3129int sk_set_peek_off(struct sock *sk, int val)
3130{
3131 sk->sk_peek_off = val;
3132 return 0;
3133}
3134EXPORT_SYMBOL_GPL(sk_set_peek_off);
3135
3136/*
3137 * Set of default routines for initialising struct proto_ops when
3138 * the protocol does not support a particular function. In certain
3139 * cases where it makes no sense for a protocol to have a "do nothing"
3140 * function, some default processing is provided.
3141 */
3142
3143int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3144{
3145 return -EOPNOTSUPP;
3146}
3147EXPORT_SYMBOL(sock_no_bind);
3148
3149int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3150 int len, int flags)
3151{
3152 return -EOPNOTSUPP;
3153}
3154EXPORT_SYMBOL(sock_no_connect);
3155
3156int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3157{
3158 return -EOPNOTSUPP;
3159}
3160EXPORT_SYMBOL(sock_no_socketpair);
3161
3162int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3163 bool kern)
3164{
3165 return -EOPNOTSUPP;
3166}
3167EXPORT_SYMBOL(sock_no_accept);
3168
3169int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3170 int peer)
3171{
3172 return -EOPNOTSUPP;
3173}
3174EXPORT_SYMBOL(sock_no_getname);
3175
3176int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3177{
3178 return -EOPNOTSUPP;
3179}
3180EXPORT_SYMBOL(sock_no_ioctl);
3181
3182int sock_no_listen(struct socket *sock, int backlog)
3183{
3184 return -EOPNOTSUPP;
3185}
3186EXPORT_SYMBOL(sock_no_listen);
3187
3188int sock_no_shutdown(struct socket *sock, int how)
3189{
3190 return -EOPNOTSUPP;
3191}
3192EXPORT_SYMBOL(sock_no_shutdown);
3193
3194int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3195{
3196 return -EOPNOTSUPP;
3197}
3198EXPORT_SYMBOL(sock_no_sendmsg);
3199
3200int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3201{
3202 return -EOPNOTSUPP;
3203}
3204EXPORT_SYMBOL(sock_no_sendmsg_locked);
3205
3206int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3207 int flags)
3208{
3209 return -EOPNOTSUPP;
3210}
3211EXPORT_SYMBOL(sock_no_recvmsg);
3212
3213int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3214{
3215 /* Mirror missing mmap method error code */
3216 return -ENODEV;
3217}
3218EXPORT_SYMBOL(sock_no_mmap);
3219
3220/*
3221 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3222 * various sock-based usage counts.
3223 */
3224void __receive_sock(struct file *file)
3225{
3226 struct socket *sock;
3227
3228 sock = sock_from_file(file);
3229 if (sock) {
3230 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3231 sock_update_classid(&sock->sk->sk_cgrp_data);
3232 }
3233}
3234
3235ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
3236{
3237 ssize_t res;
3238 struct msghdr msg = {.msg_flags = flags};
3239 struct kvec iov;
3240 char *kaddr = kmap(page);
3241 iov.iov_base = kaddr + offset;
3242 iov.iov_len = size;
3243 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
3244 kunmap(page);
3245 return res;
3246}
3247EXPORT_SYMBOL(sock_no_sendpage);
3248
3249ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
3250 int offset, size_t size, int flags)
3251{
3252 ssize_t res;
3253 struct msghdr msg = {.msg_flags = flags};
3254 struct kvec iov;
3255 char *kaddr = kmap(page);
3256
3257 iov.iov_base = kaddr + offset;
3258 iov.iov_len = size;
3259 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
3260 kunmap(page);
3261 return res;
3262}
3263EXPORT_SYMBOL(sock_no_sendpage_locked);
3264
3265/*
3266 * Default Socket Callbacks
3267 */
3268
3269static void sock_def_wakeup(struct sock *sk)
3270{
3271 struct socket_wq *wq;
3272
3273 rcu_read_lock();
3274 wq = rcu_dereference(sk->sk_wq);
3275 if (skwq_has_sleeper(wq))
3276 wake_up_interruptible_all(&wq->wait);
3277 rcu_read_unlock();
3278}
3279
3280static void sock_def_error_report(struct sock *sk)
3281{
3282 struct socket_wq *wq;
3283
3284 rcu_read_lock();
3285 wq = rcu_dereference(sk->sk_wq);
3286 if (skwq_has_sleeper(wq))
3287 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3288 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3289 rcu_read_unlock();
3290}
3291
3292void sock_def_readable(struct sock *sk)
3293{
3294 struct socket_wq *wq;
3295
3296 rcu_read_lock();
3297 wq = rcu_dereference(sk->sk_wq);
3298 if (skwq_has_sleeper(wq))
3299 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3300 EPOLLRDNORM | EPOLLRDBAND);
3301 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3302 rcu_read_unlock();
3303}
3304
3305static void sock_def_write_space(struct sock *sk)
3306{
3307 struct socket_wq *wq;
3308
3309 rcu_read_lock();
3310
3311 /* Do not wake up a writer until he can make "significant"
3312 * progress. --DaveM
3313 */
3314 if (sock_writeable(sk)) {
3315 wq = rcu_dereference(sk->sk_wq);
3316 if (skwq_has_sleeper(wq))
3317 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3318 EPOLLWRNORM | EPOLLWRBAND);
3319
3320 /* Should agree with poll, otherwise some programs break */
3321 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3322 }
3323
3324 rcu_read_unlock();
3325}
3326
3327/* An optimised version of sock_def_write_space(), should only be called
3328 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3329 * ->sk_wmem_alloc.
3330 */
3331static void sock_def_write_space_wfree(struct sock *sk)
3332{
3333 /* Do not wake up a writer until he can make "significant"
3334 * progress. --DaveM
3335 */
3336 if (sock_writeable(sk)) {
3337 struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3338
3339 /* rely on refcount_sub from sock_wfree() */
3340 smp_mb__after_atomic();
3341 if (wq && waitqueue_active(&wq->wait))
3342 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3343 EPOLLWRNORM | EPOLLWRBAND);
3344
3345 /* Should agree with poll, otherwise some programs break */
3346 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3347 }
3348}
3349
3350static void sock_def_destruct(struct sock *sk)
3351{
3352}
3353
3354void sk_send_sigurg(struct sock *sk)
3355{
3356 if (sk->sk_socket && sk->sk_socket->file)
3357 if (send_sigurg(&sk->sk_socket->file->f_owner))
3358 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3359}
3360EXPORT_SYMBOL(sk_send_sigurg);
3361
3362void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3363 unsigned long expires)
3364{
3365 if (!mod_timer(timer, expires))
3366 sock_hold(sk);
3367}
3368EXPORT_SYMBOL(sk_reset_timer);
3369
3370void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3371{
3372 if (del_timer(timer))
3373 __sock_put(sk);
3374}
3375EXPORT_SYMBOL(sk_stop_timer);
3376
3377void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3378{
3379 if (del_timer_sync(timer))
3380 __sock_put(sk);
3381}
3382EXPORT_SYMBOL(sk_stop_timer_sync);
3383
3384void sock_init_data(struct socket *sock, struct sock *sk)
3385{
3386 sk_init_common(sk);
3387 sk->sk_send_head = NULL;
3388
3389 timer_setup(&sk->sk_timer, NULL, 0);
3390
3391 sk->sk_allocation = GFP_KERNEL;
3392 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default);
3393 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
3394 sk->sk_state = TCP_CLOSE;
3395 sk->sk_use_task_frag = true;
3396 sk_set_socket(sk, sock);
3397
3398 sock_set_flag(sk, SOCK_ZAPPED);
3399
3400 if (sock) {
3401 sk->sk_type = sock->type;
3402 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3403 sock->sk = sk;
3404 sk->sk_uid = SOCK_INODE(sock)->i_uid;
3405 } else {
3406 RCU_INIT_POINTER(sk->sk_wq, NULL);
3407 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
3408 }
3409
3410 rwlock_init(&sk->sk_callback_lock);
3411 if (sk->sk_kern_sock)
3412 lockdep_set_class_and_name(
3413 &sk->sk_callback_lock,
3414 af_kern_callback_keys + sk->sk_family,
3415 af_family_kern_clock_key_strings[sk->sk_family]);
3416 else
3417 lockdep_set_class_and_name(
3418 &sk->sk_callback_lock,
3419 af_callback_keys + sk->sk_family,
3420 af_family_clock_key_strings[sk->sk_family]);
3421
3422 sk->sk_state_change = sock_def_wakeup;
3423 sk->sk_data_ready = sock_def_readable;
3424 sk->sk_write_space = sock_def_write_space;
3425 sk->sk_error_report = sock_def_error_report;
3426 sk->sk_destruct = sock_def_destruct;
3427
3428 sk->sk_frag.page = NULL;
3429 sk->sk_frag.offset = 0;
3430 sk->sk_peek_off = -1;
3431
3432 sk->sk_peer_pid = NULL;
3433 sk->sk_peer_cred = NULL;
3434 spin_lock_init(&sk->sk_peer_lock);
3435
3436 sk->sk_write_pending = 0;
3437 sk->sk_rcvlowat = 1;
3438 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3439 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3440
3441 sk->sk_stamp = SK_DEFAULT_STAMP;
3442#if BITS_PER_LONG==32
3443 seqlock_init(&sk->sk_stamp_seq);
3444#endif
3445 atomic_set(&sk->sk_zckey, 0);
3446
3447#ifdef CONFIG_NET_RX_BUSY_POLL
3448 sk->sk_napi_id = 0;
3449 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read);
3450#endif
3451
3452 sk->sk_max_pacing_rate = ~0UL;
3453 sk->sk_pacing_rate = ~0UL;
3454 WRITE_ONCE(sk->sk_pacing_shift, 10);
3455 sk->sk_incoming_cpu = -1;
3456
3457 sk_rx_queue_clear(sk);
3458 /*
3459 * Before updating sk_refcnt, we must commit prior changes to memory
3460 * (Documentation/RCU/rculist_nulls.rst for details)
3461 */
3462 smp_wmb();
3463 refcount_set(&sk->sk_refcnt, 1);
3464 atomic_set(&sk->sk_drops, 0);
3465}
3466EXPORT_SYMBOL(sock_init_data);
3467
3468void lock_sock_nested(struct sock *sk, int subclass)
3469{
3470 /* The sk_lock has mutex_lock() semantics here. */
3471 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3472
3473 might_sleep();
3474 spin_lock_bh(&sk->sk_lock.slock);
3475 if (sock_owned_by_user_nocheck(sk))
3476 __lock_sock(sk);
3477 sk->sk_lock.owned = 1;
3478 spin_unlock_bh(&sk->sk_lock.slock);
3479}
3480EXPORT_SYMBOL(lock_sock_nested);
3481
3482void release_sock(struct sock *sk)
3483{
3484 spin_lock_bh(&sk->sk_lock.slock);
3485 if (sk->sk_backlog.tail)
3486 __release_sock(sk);
3487
3488 /* Warning : release_cb() might need to release sk ownership,
3489 * ie call sock_release_ownership(sk) before us.
3490 */
3491 if (sk->sk_prot->release_cb)
3492 sk->sk_prot->release_cb(sk);
3493
3494 sock_release_ownership(sk);
3495 if (waitqueue_active(&sk->sk_lock.wq))
3496 wake_up(&sk->sk_lock.wq);
3497 spin_unlock_bh(&sk->sk_lock.slock);
3498}
3499EXPORT_SYMBOL(release_sock);
3500
3501bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3502{
3503 might_sleep();
3504 spin_lock_bh(&sk->sk_lock.slock);
3505
3506 if (!sock_owned_by_user_nocheck(sk)) {
3507 /*
3508 * Fast path return with bottom halves disabled and
3509 * sock::sk_lock.slock held.
3510 *
3511 * The 'mutex' is not contended and holding
3512 * sock::sk_lock.slock prevents all other lockers to
3513 * proceed so the corresponding unlock_sock_fast() can
3514 * avoid the slow path of release_sock() completely and
3515 * just release slock.
3516 *
3517 * From a semantical POV this is equivalent to 'acquiring'
3518 * the 'mutex', hence the corresponding lockdep
3519 * mutex_release() has to happen in the fast path of
3520 * unlock_sock_fast().
3521 */
3522 return false;
3523 }
3524
3525 __lock_sock(sk);
3526 sk->sk_lock.owned = 1;
3527 __acquire(&sk->sk_lock.slock);
3528 spin_unlock_bh(&sk->sk_lock.slock);
3529 return true;
3530}
3531EXPORT_SYMBOL(__lock_sock_fast);
3532
3533int sock_gettstamp(struct socket *sock, void __user *userstamp,
3534 bool timeval, bool time32)
3535{
3536 struct sock *sk = sock->sk;
3537 struct timespec64 ts;
3538
3539 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3540 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3541 if (ts.tv_sec == -1)
3542 return -ENOENT;
3543 if (ts.tv_sec == 0) {
3544 ktime_t kt = ktime_get_real();
3545 sock_write_timestamp(sk, kt);
3546 ts = ktime_to_timespec64(kt);
3547 }
3548
3549 if (timeval)
3550 ts.tv_nsec /= 1000;
3551
3552#ifdef CONFIG_COMPAT_32BIT_TIME
3553 if (time32)
3554 return put_old_timespec32(&ts, userstamp);
3555#endif
3556#ifdef CONFIG_SPARC64
3557 /* beware of padding in sparc64 timeval */
3558 if (timeval && !in_compat_syscall()) {
3559 struct __kernel_old_timeval __user tv = {
3560 .tv_sec = ts.tv_sec,
3561 .tv_usec = ts.tv_nsec,
3562 };
3563 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3564 return -EFAULT;
3565 return 0;
3566 }
3567#endif
3568 return put_timespec64(&ts, userstamp);
3569}
3570EXPORT_SYMBOL(sock_gettstamp);
3571
3572void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3573{
3574 if (!sock_flag(sk, flag)) {
3575 unsigned long previous_flags = sk->sk_flags;
3576
3577 sock_set_flag(sk, flag);
3578 /*
3579 * we just set one of the two flags which require net
3580 * time stamping, but time stamping might have been on
3581 * already because of the other one
3582 */
3583 if (sock_needs_netstamp(sk) &&
3584 !(previous_flags & SK_FLAGS_TIMESTAMP))
3585 net_enable_timestamp();
3586 }
3587}
3588
3589int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3590 int level, int type)
3591{
3592 struct sock_exterr_skb *serr;
3593 struct sk_buff *skb;
3594 int copied, err;
3595
3596 err = -EAGAIN;
3597 skb = sock_dequeue_err_skb(sk);
3598 if (skb == NULL)
3599 goto out;
3600
3601 copied = skb->len;
3602 if (copied > len) {
3603 msg->msg_flags |= MSG_TRUNC;
3604 copied = len;
3605 }
3606 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3607 if (err)
3608 goto out_free_skb;
3609
3610 sock_recv_timestamp(msg, sk, skb);
3611
3612 serr = SKB_EXT_ERR(skb);
3613 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3614
3615 msg->msg_flags |= MSG_ERRQUEUE;
3616 err = copied;
3617
3618out_free_skb:
3619 kfree_skb(skb);
3620out:
3621 return err;
3622}
3623EXPORT_SYMBOL(sock_recv_errqueue);
3624
3625/*
3626 * Get a socket option on an socket.
3627 *
3628 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3629 * asynchronous errors should be reported by getsockopt. We assume
3630 * this means if you specify SO_ERROR (otherwise whats the point of it).
3631 */
3632int sock_common_getsockopt(struct socket *sock, int level, int optname,
3633 char __user *optval, int __user *optlen)
3634{
3635 struct sock *sk = sock->sk;
3636
3637 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3638 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3639}
3640EXPORT_SYMBOL(sock_common_getsockopt);
3641
3642int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3643 int flags)
3644{
3645 struct sock *sk = sock->sk;
3646 int addr_len = 0;
3647 int err;
3648
3649 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3650 if (err >= 0)
3651 msg->msg_namelen = addr_len;
3652 return err;
3653}
3654EXPORT_SYMBOL(sock_common_recvmsg);
3655
3656/*
3657 * Set socket options on an inet socket.
3658 */
3659int sock_common_setsockopt(struct socket *sock, int level, int optname,
3660 sockptr_t optval, unsigned int optlen)
3661{
3662 struct sock *sk = sock->sk;
3663
3664 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3665 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3666}
3667EXPORT_SYMBOL(sock_common_setsockopt);
3668
3669void sk_common_release(struct sock *sk)
3670{
3671 if (sk->sk_prot->destroy)
3672 sk->sk_prot->destroy(sk);
3673
3674 /*
3675 * Observation: when sk_common_release is called, processes have
3676 * no access to socket. But net still has.
3677 * Step one, detach it from networking:
3678 *
3679 * A. Remove from hash tables.
3680 */
3681
3682 sk->sk_prot->unhash(sk);
3683
3684 /*
3685 * In this point socket cannot receive new packets, but it is possible
3686 * that some packets are in flight because some CPU runs receiver and
3687 * did hash table lookup before we unhashed socket. They will achieve
3688 * receive queue and will be purged by socket destructor.
3689 *
3690 * Also we still have packets pending on receive queue and probably,
3691 * our own packets waiting in device queues. sock_destroy will drain
3692 * receive queue, but transmitted packets will delay socket destruction
3693 * until the last reference will be released.
3694 */
3695
3696 sock_orphan(sk);
3697
3698 xfrm_sk_free_policy(sk);
3699
3700 sk_refcnt_debug_release(sk);
3701
3702 sock_put(sk);
3703}
3704EXPORT_SYMBOL(sk_common_release);
3705
3706void sk_get_meminfo(const struct sock *sk, u32 *mem)
3707{
3708 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3709
3710 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3711 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3712 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3713 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3714 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3715 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3716 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3717 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3718 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3719}
3720
3721#ifdef CONFIG_PROC_FS
3722static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3723
3724int sock_prot_inuse_get(struct net *net, struct proto *prot)
3725{
3726 int cpu, idx = prot->inuse_idx;
3727 int res = 0;
3728
3729 for_each_possible_cpu(cpu)
3730 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3731
3732 return res >= 0 ? res : 0;
3733}
3734EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3735
3736int sock_inuse_get(struct net *net)
3737{
3738 int cpu, res = 0;
3739
3740 for_each_possible_cpu(cpu)
3741 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3742
3743 return res;
3744}
3745
3746EXPORT_SYMBOL_GPL(sock_inuse_get);
3747
3748static int __net_init sock_inuse_init_net(struct net *net)
3749{
3750 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3751 if (net->core.prot_inuse == NULL)
3752 return -ENOMEM;
3753 return 0;
3754}
3755
3756static void __net_exit sock_inuse_exit_net(struct net *net)
3757{
3758 free_percpu(net->core.prot_inuse);
3759}
3760
3761static struct pernet_operations net_inuse_ops = {
3762 .init = sock_inuse_init_net,
3763 .exit = sock_inuse_exit_net,
3764};
3765
3766static __init int net_inuse_init(void)
3767{
3768 if (register_pernet_subsys(&net_inuse_ops))
3769 panic("Cannot initialize net inuse counters");
3770
3771 return 0;
3772}
3773
3774core_initcall(net_inuse_init);
3775
3776static int assign_proto_idx(struct proto *prot)
3777{
3778 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3779
3780 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3781 pr_err("PROTO_INUSE_NR exhausted\n");
3782 return -ENOSPC;
3783 }
3784
3785 set_bit(prot->inuse_idx, proto_inuse_idx);
3786 return 0;
3787}
3788
3789static void release_proto_idx(struct proto *prot)
3790{
3791 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3792 clear_bit(prot->inuse_idx, proto_inuse_idx);
3793}
3794#else
3795static inline int assign_proto_idx(struct proto *prot)
3796{
3797 return 0;
3798}
3799
3800static inline void release_proto_idx(struct proto *prot)
3801{
3802}
3803
3804#endif
3805
3806static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3807{
3808 if (!twsk_prot)
3809 return;
3810 kfree(twsk_prot->twsk_slab_name);
3811 twsk_prot->twsk_slab_name = NULL;
3812 kmem_cache_destroy(twsk_prot->twsk_slab);
3813 twsk_prot->twsk_slab = NULL;
3814}
3815
3816static int tw_prot_init(const struct proto *prot)
3817{
3818 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3819
3820 if (!twsk_prot)
3821 return 0;
3822
3823 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3824 prot->name);
3825 if (!twsk_prot->twsk_slab_name)
3826 return -ENOMEM;
3827
3828 twsk_prot->twsk_slab =
3829 kmem_cache_create(twsk_prot->twsk_slab_name,
3830 twsk_prot->twsk_obj_size, 0,
3831 SLAB_ACCOUNT | prot->slab_flags,
3832 NULL);
3833 if (!twsk_prot->twsk_slab) {
3834 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3835 prot->name);
3836 return -ENOMEM;
3837 }
3838
3839 return 0;
3840}
3841
3842static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3843{
3844 if (!rsk_prot)
3845 return;
3846 kfree(rsk_prot->slab_name);
3847 rsk_prot->slab_name = NULL;
3848 kmem_cache_destroy(rsk_prot->slab);
3849 rsk_prot->slab = NULL;
3850}
3851
3852static int req_prot_init(const struct proto *prot)
3853{
3854 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3855
3856 if (!rsk_prot)
3857 return 0;
3858
3859 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3860 prot->name);
3861 if (!rsk_prot->slab_name)
3862 return -ENOMEM;
3863
3864 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3865 rsk_prot->obj_size, 0,
3866 SLAB_ACCOUNT | prot->slab_flags,
3867 NULL);
3868
3869 if (!rsk_prot->slab) {
3870 pr_crit("%s: Can't create request sock SLAB cache!\n",
3871 prot->name);
3872 return -ENOMEM;
3873 }
3874 return 0;
3875}
3876
3877int proto_register(struct proto *prot, int alloc_slab)
3878{
3879 int ret = -ENOBUFS;
3880
3881 if (prot->memory_allocated && !prot->sysctl_mem) {
3882 pr_err("%s: missing sysctl_mem\n", prot->name);
3883 return -EINVAL;
3884 }
3885 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3886 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3887 return -EINVAL;
3888 }
3889 if (alloc_slab) {
3890 prot->slab = kmem_cache_create_usercopy(prot->name,
3891 prot->obj_size, 0,
3892 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3893 prot->slab_flags,
3894 prot->useroffset, prot->usersize,
3895 NULL);
3896
3897 if (prot->slab == NULL) {
3898 pr_crit("%s: Can't create sock SLAB cache!\n",
3899 prot->name);
3900 goto out;
3901 }
3902
3903 if (req_prot_init(prot))
3904 goto out_free_request_sock_slab;
3905
3906 if (tw_prot_init(prot))
3907 goto out_free_timewait_sock_slab;
3908 }
3909
3910 mutex_lock(&proto_list_mutex);
3911 ret = assign_proto_idx(prot);
3912 if (ret) {
3913 mutex_unlock(&proto_list_mutex);
3914 goto out_free_timewait_sock_slab;
3915 }
3916 list_add(&prot->node, &proto_list);
3917 mutex_unlock(&proto_list_mutex);
3918 return ret;
3919
3920out_free_timewait_sock_slab:
3921 if (alloc_slab)
3922 tw_prot_cleanup(prot->twsk_prot);
3923out_free_request_sock_slab:
3924 if (alloc_slab) {
3925 req_prot_cleanup(prot->rsk_prot);
3926
3927 kmem_cache_destroy(prot->slab);
3928 prot->slab = NULL;
3929 }
3930out:
3931 return ret;
3932}
3933EXPORT_SYMBOL(proto_register);
3934
3935void proto_unregister(struct proto *prot)
3936{
3937 mutex_lock(&proto_list_mutex);
3938 release_proto_idx(prot);
3939 list_del(&prot->node);
3940 mutex_unlock(&proto_list_mutex);
3941
3942 kmem_cache_destroy(prot->slab);
3943 prot->slab = NULL;
3944
3945 req_prot_cleanup(prot->rsk_prot);
3946 tw_prot_cleanup(prot->twsk_prot);
3947}
3948EXPORT_SYMBOL(proto_unregister);
3949
3950int sock_load_diag_module(int family, int protocol)
3951{
3952 if (!protocol) {
3953 if (!sock_is_registered(family))
3954 return -ENOENT;
3955
3956 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3957 NETLINK_SOCK_DIAG, family);
3958 }
3959
3960#ifdef CONFIG_INET
3961 if (family == AF_INET &&
3962 protocol != IPPROTO_RAW &&
3963 protocol < MAX_INET_PROTOS &&
3964 !rcu_access_pointer(inet_protos[protocol]))
3965 return -ENOENT;
3966#endif
3967
3968 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3969 NETLINK_SOCK_DIAG, family, protocol);
3970}
3971EXPORT_SYMBOL(sock_load_diag_module);
3972
3973#ifdef CONFIG_PROC_FS
3974static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3975 __acquires(proto_list_mutex)
3976{
3977 mutex_lock(&proto_list_mutex);
3978 return seq_list_start_head(&proto_list, *pos);
3979}
3980
3981static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3982{
3983 return seq_list_next(v, &proto_list, pos);
3984}
3985
3986static void proto_seq_stop(struct seq_file *seq, void *v)
3987 __releases(proto_list_mutex)
3988{
3989 mutex_unlock(&proto_list_mutex);
3990}
3991
3992static char proto_method_implemented(const void *method)
3993{
3994 return method == NULL ? 'n' : 'y';
3995}
3996static long sock_prot_memory_allocated(struct proto *proto)
3997{
3998 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3999}
4000
4001static const char *sock_prot_memory_pressure(struct proto *proto)
4002{
4003 return proto->memory_pressure != NULL ?
4004 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4005}
4006
4007static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4008{
4009
4010 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
4011 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4012 proto->name,
4013 proto->obj_size,
4014 sock_prot_inuse_get(seq_file_net(seq), proto),
4015 sock_prot_memory_allocated(proto),
4016 sock_prot_memory_pressure(proto),
4017 proto->max_header,
4018 proto->slab == NULL ? "no" : "yes",
4019 module_name(proto->owner),
4020 proto_method_implemented(proto->close),
4021 proto_method_implemented(proto->connect),
4022 proto_method_implemented(proto->disconnect),
4023 proto_method_implemented(proto->accept),
4024 proto_method_implemented(proto->ioctl),
4025 proto_method_implemented(proto->init),
4026 proto_method_implemented(proto->destroy),
4027 proto_method_implemented(proto->shutdown),
4028 proto_method_implemented(proto->setsockopt),
4029 proto_method_implemented(proto->getsockopt),
4030 proto_method_implemented(proto->sendmsg),
4031 proto_method_implemented(proto->recvmsg),
4032 proto_method_implemented(proto->sendpage),
4033 proto_method_implemented(proto->bind),
4034 proto_method_implemented(proto->backlog_rcv),
4035 proto_method_implemented(proto->hash),
4036 proto_method_implemented(proto->unhash),
4037 proto_method_implemented(proto->get_port),
4038 proto_method_implemented(proto->enter_memory_pressure));
4039}
4040
4041static int proto_seq_show(struct seq_file *seq, void *v)
4042{
4043 if (v == &proto_list)
4044 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4045 "protocol",
4046 "size",
4047 "sockets",
4048 "memory",
4049 "press",
4050 "maxhdr",
4051 "slab",
4052 "module",
4053 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
4054 else
4055 proto_seq_printf(seq, list_entry(v, struct proto, node));
4056 return 0;
4057}
4058
4059static const struct seq_operations proto_seq_ops = {
4060 .start = proto_seq_start,
4061 .next = proto_seq_next,
4062 .stop = proto_seq_stop,
4063 .show = proto_seq_show,
4064};
4065
4066static __net_init int proto_init_net(struct net *net)
4067{
4068 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4069 sizeof(struct seq_net_private)))
4070 return -ENOMEM;
4071
4072 return 0;
4073}
4074
4075static __net_exit void proto_exit_net(struct net *net)
4076{
4077 remove_proc_entry("protocols", net->proc_net);
4078}
4079
4080
4081static __net_initdata struct pernet_operations proto_net_ops = {
4082 .init = proto_init_net,
4083 .exit = proto_exit_net,
4084};
4085
4086static int __init proto_init(void)
4087{
4088 return register_pernet_subsys(&proto_net_ops);
4089}
4090
4091subsys_initcall(proto_init);
4092
4093#endif /* PROC_FS */
4094
4095#ifdef CONFIG_NET_RX_BUSY_POLL
4096bool sk_busy_loop_end(void *p, unsigned long start_time)
4097{
4098 struct sock *sk = p;
4099
4100 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
4101 sk_busy_loop_timeout(sk, start_time);
4102}
4103EXPORT_SYMBOL(sk_busy_loop_end);
4104#endif /* CONFIG_NET_RX_BUSY_POLL */
4105
4106int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4107{
4108 if (!sk->sk_prot->bind_add)
4109 return -EOPNOTSUPP;
4110 return sk->sk_prot->bind_add(sk, addr, addr_len);
4111}
4112EXPORT_SYMBOL(sock_bind_add);