Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <asm/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/init.h>
111#include <linux/highmem.h>
112#include <linux/user_namespace.h>
113#include <linux/static_key.h>
114#include <linux/memcontrol.h>
115#include <linux/prefetch.h>
116#include <linux/compat.h>
117
118#include <linux/uaccess.h>
119
120#include <linux/netdevice.h>
121#include <net/protocol.h>
122#include <linux/skbuff.h>
123#include <net/net_namespace.h>
124#include <net/request_sock.h>
125#include <net/sock.h>
126#include <linux/net_tstamp.h>
127#include <net/xfrm.h>
128#include <linux/ipsec.h>
129#include <net/cls_cgroup.h>
130#include <net/netprio_cgroup.h>
131#include <linux/sock_diag.h>
132
133#include <linux/filter.h>
134#include <net/sock_reuseport.h>
135#include <net/bpf_sk_storage.h>
136
137#include <trace/events/sock.h>
138
139#include <net/tcp.h>
140#include <net/busy_poll.h>
141
142#include <linux/ethtool.h>
143
144static DEFINE_MUTEX(proto_list_mutex);
145static LIST_HEAD(proto_list);
146
147static void sock_inuse_add(struct net *net, int val);
148
149/**
150 * sk_ns_capable - General socket capability test
151 * @sk: Socket to use a capability on or through
152 * @user_ns: The user namespace of the capability to use
153 * @cap: The capability to use
154 *
155 * Test to see if the opener of the socket had when the socket was
156 * created and the current process has the capability @cap in the user
157 * namespace @user_ns.
158 */
159bool sk_ns_capable(const struct sock *sk,
160 struct user_namespace *user_ns, int cap)
161{
162 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
163 ns_capable(user_ns, cap);
164}
165EXPORT_SYMBOL(sk_ns_capable);
166
167/**
168 * sk_capable - Socket global capability test
169 * @sk: Socket to use a capability on or through
170 * @cap: The global capability to use
171 *
172 * Test to see if the opener of the socket had when the socket was
173 * created and the current process has the capability @cap in all user
174 * namespaces.
175 */
176bool sk_capable(const struct sock *sk, int cap)
177{
178 return sk_ns_capable(sk, &init_user_ns, cap);
179}
180EXPORT_SYMBOL(sk_capable);
181
182/**
183 * sk_net_capable - Network namespace socket capability test
184 * @sk: Socket to use a capability on or through
185 * @cap: The capability to use
186 *
187 * Test to see if the opener of the socket had when the socket was created
188 * and the current process has the capability @cap over the network namespace
189 * the socket is a member of.
190 */
191bool sk_net_capable(const struct sock *sk, int cap)
192{
193 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
194}
195EXPORT_SYMBOL(sk_net_capable);
196
197/*
198 * Each address family might have different locking rules, so we have
199 * one slock key per address family and separate keys for internal and
200 * userspace sockets.
201 */
202static struct lock_class_key af_family_keys[AF_MAX];
203static struct lock_class_key af_family_kern_keys[AF_MAX];
204static struct lock_class_key af_family_slock_keys[AF_MAX];
205static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
206
207/*
208 * Make lock validator output more readable. (we pre-construct these
209 * strings build-time, so that runtime initialization of socket
210 * locks is fast):
211 */
212
213#define _sock_locks(x) \
214 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
215 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
216 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
217 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
218 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
219 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
220 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
221 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
222 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
223 x "27" , x "28" , x "AF_CAN" , \
224 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
225 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
226 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
227 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
228 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
229 x "AF_MAX"
230
231static const char *const af_family_key_strings[AF_MAX+1] = {
232 _sock_locks("sk_lock-")
233};
234static const char *const af_family_slock_key_strings[AF_MAX+1] = {
235 _sock_locks("slock-")
236};
237static const char *const af_family_clock_key_strings[AF_MAX+1] = {
238 _sock_locks("clock-")
239};
240
241static const char *const af_family_kern_key_strings[AF_MAX+1] = {
242 _sock_locks("k-sk_lock-")
243};
244static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-slock-")
246};
247static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
248 _sock_locks("k-clock-")
249};
250static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
251 _sock_locks("rlock-")
252};
253static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
254 _sock_locks("wlock-")
255};
256static const char *const af_family_elock_key_strings[AF_MAX+1] = {
257 _sock_locks("elock-")
258};
259
260/*
261 * sk_callback_lock and sk queues locking rules are per-address-family,
262 * so split the lock classes by using a per-AF key:
263 */
264static struct lock_class_key af_callback_keys[AF_MAX];
265static struct lock_class_key af_rlock_keys[AF_MAX];
266static struct lock_class_key af_wlock_keys[AF_MAX];
267static struct lock_class_key af_elock_keys[AF_MAX];
268static struct lock_class_key af_kern_callback_keys[AF_MAX];
269
270/* Run time adjustable parameters. */
271__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
272EXPORT_SYMBOL(sysctl_wmem_max);
273__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
274EXPORT_SYMBOL(sysctl_rmem_max);
275__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
276__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
277
278/* Maximal space eaten by iovec or ancillary data plus some space */
279int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
280EXPORT_SYMBOL(sysctl_optmem_max);
281
282int sysctl_tstamp_allow_data __read_mostly = 1;
283
284DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
285EXPORT_SYMBOL_GPL(memalloc_socks_key);
286
287/**
288 * sk_set_memalloc - sets %SOCK_MEMALLOC
289 * @sk: socket to set it on
290 *
291 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
292 * It's the responsibility of the admin to adjust min_free_kbytes
293 * to meet the requirements
294 */
295void sk_set_memalloc(struct sock *sk)
296{
297 sock_set_flag(sk, SOCK_MEMALLOC);
298 sk->sk_allocation |= __GFP_MEMALLOC;
299 static_branch_inc(&memalloc_socks_key);
300}
301EXPORT_SYMBOL_GPL(sk_set_memalloc);
302
303void sk_clear_memalloc(struct sock *sk)
304{
305 sock_reset_flag(sk, SOCK_MEMALLOC);
306 sk->sk_allocation &= ~__GFP_MEMALLOC;
307 static_branch_dec(&memalloc_socks_key);
308
309 /*
310 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
311 * progress of swapping. SOCK_MEMALLOC may be cleared while
312 * it has rmem allocations due to the last swapfile being deactivated
313 * but there is a risk that the socket is unusable due to exceeding
314 * the rmem limits. Reclaim the reserves and obey rmem limits again.
315 */
316 sk_mem_reclaim(sk);
317}
318EXPORT_SYMBOL_GPL(sk_clear_memalloc);
319
320int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
321{
322 int ret;
323 unsigned int noreclaim_flag;
324
325 /* these should have been dropped before queueing */
326 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
327
328 noreclaim_flag = memalloc_noreclaim_save();
329 ret = sk->sk_backlog_rcv(sk, skb);
330 memalloc_noreclaim_restore(noreclaim_flag);
331
332 return ret;
333}
334EXPORT_SYMBOL(__sk_backlog_rcv);
335
336void sk_error_report(struct sock *sk)
337{
338 sk->sk_error_report(sk);
339
340 switch (sk->sk_family) {
341 case AF_INET:
342 fallthrough;
343 case AF_INET6:
344 trace_inet_sk_error_report(sk);
345 break;
346 default:
347 break;
348 }
349}
350EXPORT_SYMBOL(sk_error_report);
351
352static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
353{
354 struct __kernel_sock_timeval tv;
355
356 if (timeo == MAX_SCHEDULE_TIMEOUT) {
357 tv.tv_sec = 0;
358 tv.tv_usec = 0;
359 } else {
360 tv.tv_sec = timeo / HZ;
361 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
362 }
363
364 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
365 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
366 *(struct old_timeval32 *)optval = tv32;
367 return sizeof(tv32);
368 }
369
370 if (old_timeval) {
371 struct __kernel_old_timeval old_tv;
372 old_tv.tv_sec = tv.tv_sec;
373 old_tv.tv_usec = tv.tv_usec;
374 *(struct __kernel_old_timeval *)optval = old_tv;
375 return sizeof(old_tv);
376 }
377
378 *(struct __kernel_sock_timeval *)optval = tv;
379 return sizeof(tv);
380}
381
382static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
383 bool old_timeval)
384{
385 struct __kernel_sock_timeval tv;
386
387 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
388 struct old_timeval32 tv32;
389
390 if (optlen < sizeof(tv32))
391 return -EINVAL;
392
393 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
394 return -EFAULT;
395 tv.tv_sec = tv32.tv_sec;
396 tv.tv_usec = tv32.tv_usec;
397 } else if (old_timeval) {
398 struct __kernel_old_timeval old_tv;
399
400 if (optlen < sizeof(old_tv))
401 return -EINVAL;
402 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
403 return -EFAULT;
404 tv.tv_sec = old_tv.tv_sec;
405 tv.tv_usec = old_tv.tv_usec;
406 } else {
407 if (optlen < sizeof(tv))
408 return -EINVAL;
409 if (copy_from_sockptr(&tv, optval, sizeof(tv)))
410 return -EFAULT;
411 }
412 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
413 return -EDOM;
414
415 if (tv.tv_sec < 0) {
416 static int warned __read_mostly;
417
418 *timeo_p = 0;
419 if (warned < 10 && net_ratelimit()) {
420 warned++;
421 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
422 __func__, current->comm, task_pid_nr(current));
423 }
424 return 0;
425 }
426 *timeo_p = MAX_SCHEDULE_TIMEOUT;
427 if (tv.tv_sec == 0 && tv.tv_usec == 0)
428 return 0;
429 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
430 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
431 return 0;
432}
433
434static bool sock_needs_netstamp(const struct sock *sk)
435{
436 switch (sk->sk_family) {
437 case AF_UNSPEC:
438 case AF_UNIX:
439 return false;
440 default:
441 return true;
442 }
443}
444
445static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
446{
447 if (sk->sk_flags & flags) {
448 sk->sk_flags &= ~flags;
449 if (sock_needs_netstamp(sk) &&
450 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
451 net_disable_timestamp();
452 }
453}
454
455
456int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
457{
458 unsigned long flags;
459 struct sk_buff_head *list = &sk->sk_receive_queue;
460
461 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
462 atomic_inc(&sk->sk_drops);
463 trace_sock_rcvqueue_full(sk, skb);
464 return -ENOMEM;
465 }
466
467 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
468 atomic_inc(&sk->sk_drops);
469 return -ENOBUFS;
470 }
471
472 skb->dev = NULL;
473 skb_set_owner_r(skb, sk);
474
475 /* we escape from rcu protected region, make sure we dont leak
476 * a norefcounted dst
477 */
478 skb_dst_force(skb);
479
480 spin_lock_irqsave(&list->lock, flags);
481 sock_skb_set_dropcount(sk, skb);
482 __skb_queue_tail(list, skb);
483 spin_unlock_irqrestore(&list->lock, flags);
484
485 if (!sock_flag(sk, SOCK_DEAD))
486 sk->sk_data_ready(sk);
487 return 0;
488}
489EXPORT_SYMBOL(__sock_queue_rcv_skb);
490
491int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
492{
493 int err;
494
495 err = sk_filter(sk, skb);
496 if (err)
497 return err;
498
499 return __sock_queue_rcv_skb(sk, skb);
500}
501EXPORT_SYMBOL(sock_queue_rcv_skb);
502
503int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
504 const int nested, unsigned int trim_cap, bool refcounted)
505{
506 int rc = NET_RX_SUCCESS;
507
508 if (sk_filter_trim_cap(sk, skb, trim_cap))
509 goto discard_and_relse;
510
511 skb->dev = NULL;
512
513 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
514 atomic_inc(&sk->sk_drops);
515 goto discard_and_relse;
516 }
517 if (nested)
518 bh_lock_sock_nested(sk);
519 else
520 bh_lock_sock(sk);
521 if (!sock_owned_by_user(sk)) {
522 /*
523 * trylock + unlock semantics:
524 */
525 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
526
527 rc = sk_backlog_rcv(sk, skb);
528
529 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
530 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
531 bh_unlock_sock(sk);
532 atomic_inc(&sk->sk_drops);
533 goto discard_and_relse;
534 }
535
536 bh_unlock_sock(sk);
537out:
538 if (refcounted)
539 sock_put(sk);
540 return rc;
541discard_and_relse:
542 kfree_skb(skb);
543 goto out;
544}
545EXPORT_SYMBOL(__sk_receive_skb);
546
547INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
548 u32));
549INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
550 u32));
551struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
552{
553 struct dst_entry *dst = __sk_dst_get(sk);
554
555 if (dst && dst->obsolete &&
556 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
557 dst, cookie) == NULL) {
558 sk_tx_queue_clear(sk);
559 sk->sk_dst_pending_confirm = 0;
560 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
561 dst_release(dst);
562 return NULL;
563 }
564
565 return dst;
566}
567EXPORT_SYMBOL(__sk_dst_check);
568
569struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
570{
571 struct dst_entry *dst = sk_dst_get(sk);
572
573 if (dst && dst->obsolete &&
574 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
575 dst, cookie) == NULL) {
576 sk_dst_reset(sk);
577 dst_release(dst);
578 return NULL;
579 }
580
581 return dst;
582}
583EXPORT_SYMBOL(sk_dst_check);
584
585static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
586{
587 int ret = -ENOPROTOOPT;
588#ifdef CONFIG_NETDEVICES
589 struct net *net = sock_net(sk);
590
591 /* Sorry... */
592 ret = -EPERM;
593 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
594 goto out;
595
596 ret = -EINVAL;
597 if (ifindex < 0)
598 goto out;
599
600 sk->sk_bound_dev_if = ifindex;
601 if (sk->sk_prot->rehash)
602 sk->sk_prot->rehash(sk);
603 sk_dst_reset(sk);
604
605 ret = 0;
606
607out:
608#endif
609
610 return ret;
611}
612
613int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
614{
615 int ret;
616
617 if (lock_sk)
618 lock_sock(sk);
619 ret = sock_bindtoindex_locked(sk, ifindex);
620 if (lock_sk)
621 release_sock(sk);
622
623 return ret;
624}
625EXPORT_SYMBOL(sock_bindtoindex);
626
627static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
628{
629 int ret = -ENOPROTOOPT;
630#ifdef CONFIG_NETDEVICES
631 struct net *net = sock_net(sk);
632 char devname[IFNAMSIZ];
633 int index;
634
635 ret = -EINVAL;
636 if (optlen < 0)
637 goto out;
638
639 /* Bind this socket to a particular device like "eth0",
640 * as specified in the passed interface name. If the
641 * name is "" or the option length is zero the socket
642 * is not bound.
643 */
644 if (optlen > IFNAMSIZ - 1)
645 optlen = IFNAMSIZ - 1;
646 memset(devname, 0, sizeof(devname));
647
648 ret = -EFAULT;
649 if (copy_from_sockptr(devname, optval, optlen))
650 goto out;
651
652 index = 0;
653 if (devname[0] != '\0') {
654 struct net_device *dev;
655
656 rcu_read_lock();
657 dev = dev_get_by_name_rcu(net, devname);
658 if (dev)
659 index = dev->ifindex;
660 rcu_read_unlock();
661 ret = -ENODEV;
662 if (!dev)
663 goto out;
664 }
665
666 return sock_bindtoindex(sk, index, true);
667out:
668#endif
669
670 return ret;
671}
672
673static int sock_getbindtodevice(struct sock *sk, char __user *optval,
674 int __user *optlen, int len)
675{
676 int ret = -ENOPROTOOPT;
677#ifdef CONFIG_NETDEVICES
678 struct net *net = sock_net(sk);
679 char devname[IFNAMSIZ];
680
681 if (sk->sk_bound_dev_if == 0) {
682 len = 0;
683 goto zero;
684 }
685
686 ret = -EINVAL;
687 if (len < IFNAMSIZ)
688 goto out;
689
690 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
691 if (ret)
692 goto out;
693
694 len = strlen(devname) + 1;
695
696 ret = -EFAULT;
697 if (copy_to_user(optval, devname, len))
698 goto out;
699
700zero:
701 ret = -EFAULT;
702 if (put_user(len, optlen))
703 goto out;
704
705 ret = 0;
706
707out:
708#endif
709
710 return ret;
711}
712
713bool sk_mc_loop(struct sock *sk)
714{
715 if (dev_recursion_level())
716 return false;
717 if (!sk)
718 return true;
719 switch (sk->sk_family) {
720 case AF_INET:
721 return inet_sk(sk)->mc_loop;
722#if IS_ENABLED(CONFIG_IPV6)
723 case AF_INET6:
724 return inet6_sk(sk)->mc_loop;
725#endif
726 }
727 WARN_ON_ONCE(1);
728 return true;
729}
730EXPORT_SYMBOL(sk_mc_loop);
731
732void sock_set_reuseaddr(struct sock *sk)
733{
734 lock_sock(sk);
735 sk->sk_reuse = SK_CAN_REUSE;
736 release_sock(sk);
737}
738EXPORT_SYMBOL(sock_set_reuseaddr);
739
740void sock_set_reuseport(struct sock *sk)
741{
742 lock_sock(sk);
743 sk->sk_reuseport = true;
744 release_sock(sk);
745}
746EXPORT_SYMBOL(sock_set_reuseport);
747
748void sock_no_linger(struct sock *sk)
749{
750 lock_sock(sk);
751 sk->sk_lingertime = 0;
752 sock_set_flag(sk, SOCK_LINGER);
753 release_sock(sk);
754}
755EXPORT_SYMBOL(sock_no_linger);
756
757void sock_set_priority(struct sock *sk, u32 priority)
758{
759 lock_sock(sk);
760 sk->sk_priority = priority;
761 release_sock(sk);
762}
763EXPORT_SYMBOL(sock_set_priority);
764
765void sock_set_sndtimeo(struct sock *sk, s64 secs)
766{
767 lock_sock(sk);
768 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
769 sk->sk_sndtimeo = secs * HZ;
770 else
771 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
772 release_sock(sk);
773}
774EXPORT_SYMBOL(sock_set_sndtimeo);
775
776static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
777{
778 if (val) {
779 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
780 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
781 sock_set_flag(sk, SOCK_RCVTSTAMP);
782 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
783 } else {
784 sock_reset_flag(sk, SOCK_RCVTSTAMP);
785 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
786 }
787}
788
789void sock_enable_timestamps(struct sock *sk)
790{
791 lock_sock(sk);
792 __sock_set_timestamps(sk, true, false, true);
793 release_sock(sk);
794}
795EXPORT_SYMBOL(sock_enable_timestamps);
796
797void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
798{
799 switch (optname) {
800 case SO_TIMESTAMP_OLD:
801 __sock_set_timestamps(sk, valbool, false, false);
802 break;
803 case SO_TIMESTAMP_NEW:
804 __sock_set_timestamps(sk, valbool, true, false);
805 break;
806 case SO_TIMESTAMPNS_OLD:
807 __sock_set_timestamps(sk, valbool, false, true);
808 break;
809 case SO_TIMESTAMPNS_NEW:
810 __sock_set_timestamps(sk, valbool, true, true);
811 break;
812 }
813}
814
815static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
816{
817 struct net *net = sock_net(sk);
818 struct net_device *dev = NULL;
819 bool match = false;
820 int *vclock_index;
821 int i, num;
822
823 if (sk->sk_bound_dev_if)
824 dev = dev_get_by_index(net, sk->sk_bound_dev_if);
825
826 if (!dev) {
827 pr_err("%s: sock not bind to device\n", __func__);
828 return -EOPNOTSUPP;
829 }
830
831 num = ethtool_get_phc_vclocks(dev, &vclock_index);
832 for (i = 0; i < num; i++) {
833 if (*(vclock_index + i) == phc_index) {
834 match = true;
835 break;
836 }
837 }
838
839 if (num > 0)
840 kfree(vclock_index);
841
842 if (!match)
843 return -EINVAL;
844
845 sk->sk_bind_phc = phc_index;
846
847 return 0;
848}
849
850int sock_set_timestamping(struct sock *sk, int optname,
851 struct so_timestamping timestamping)
852{
853 int val = timestamping.flags;
854 int ret;
855
856 if (val & ~SOF_TIMESTAMPING_MASK)
857 return -EINVAL;
858
859 if (val & SOF_TIMESTAMPING_OPT_ID &&
860 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
861 if (sk->sk_protocol == IPPROTO_TCP &&
862 sk->sk_type == SOCK_STREAM) {
863 if ((1 << sk->sk_state) &
864 (TCPF_CLOSE | TCPF_LISTEN))
865 return -EINVAL;
866 sk->sk_tskey = tcp_sk(sk)->snd_una;
867 } else {
868 sk->sk_tskey = 0;
869 }
870 }
871
872 if (val & SOF_TIMESTAMPING_OPT_STATS &&
873 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
874 return -EINVAL;
875
876 if (val & SOF_TIMESTAMPING_BIND_PHC) {
877 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
878 if (ret)
879 return ret;
880 }
881
882 sk->sk_tsflags = val;
883 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
884
885 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
886 sock_enable_timestamp(sk,
887 SOCK_TIMESTAMPING_RX_SOFTWARE);
888 else
889 sock_disable_timestamp(sk,
890 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
891 return 0;
892}
893
894void sock_set_keepalive(struct sock *sk)
895{
896 lock_sock(sk);
897 if (sk->sk_prot->keepalive)
898 sk->sk_prot->keepalive(sk, true);
899 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
900 release_sock(sk);
901}
902EXPORT_SYMBOL(sock_set_keepalive);
903
904static void __sock_set_rcvbuf(struct sock *sk, int val)
905{
906 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
907 * as a negative value.
908 */
909 val = min_t(int, val, INT_MAX / 2);
910 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
911
912 /* We double it on the way in to account for "struct sk_buff" etc.
913 * overhead. Applications assume that the SO_RCVBUF setting they make
914 * will allow that much actual data to be received on that socket.
915 *
916 * Applications are unaware that "struct sk_buff" and other overheads
917 * allocate from the receive buffer during socket buffer allocation.
918 *
919 * And after considering the possible alternatives, returning the value
920 * we actually used in getsockopt is the most desirable behavior.
921 */
922 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
923}
924
925void sock_set_rcvbuf(struct sock *sk, int val)
926{
927 lock_sock(sk);
928 __sock_set_rcvbuf(sk, val);
929 release_sock(sk);
930}
931EXPORT_SYMBOL(sock_set_rcvbuf);
932
933static void __sock_set_mark(struct sock *sk, u32 val)
934{
935 if (val != sk->sk_mark) {
936 sk->sk_mark = val;
937 sk_dst_reset(sk);
938 }
939}
940
941void sock_set_mark(struct sock *sk, u32 val)
942{
943 lock_sock(sk);
944 __sock_set_mark(sk, val);
945 release_sock(sk);
946}
947EXPORT_SYMBOL(sock_set_mark);
948
949/*
950 * This is meant for all protocols to use and covers goings on
951 * at the socket level. Everything here is generic.
952 */
953
954int sock_setsockopt(struct socket *sock, int level, int optname,
955 sockptr_t optval, unsigned int optlen)
956{
957 struct so_timestamping timestamping;
958 struct sock_txtime sk_txtime;
959 struct sock *sk = sock->sk;
960 int val;
961 int valbool;
962 struct linger ling;
963 int ret = 0;
964
965 /*
966 * Options without arguments
967 */
968
969 if (optname == SO_BINDTODEVICE)
970 return sock_setbindtodevice(sk, optval, optlen);
971
972 if (optlen < sizeof(int))
973 return -EINVAL;
974
975 if (copy_from_sockptr(&val, optval, sizeof(val)))
976 return -EFAULT;
977
978 valbool = val ? 1 : 0;
979
980 lock_sock(sk);
981
982 switch (optname) {
983 case SO_DEBUG:
984 if (val && !capable(CAP_NET_ADMIN))
985 ret = -EACCES;
986 else
987 sock_valbool_flag(sk, SOCK_DBG, valbool);
988 break;
989 case SO_REUSEADDR:
990 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
991 break;
992 case SO_REUSEPORT:
993 sk->sk_reuseport = valbool;
994 break;
995 case SO_TYPE:
996 case SO_PROTOCOL:
997 case SO_DOMAIN:
998 case SO_ERROR:
999 ret = -ENOPROTOOPT;
1000 break;
1001 case SO_DONTROUTE:
1002 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1003 sk_dst_reset(sk);
1004 break;
1005 case SO_BROADCAST:
1006 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1007 break;
1008 case SO_SNDBUF:
1009 /* Don't error on this BSD doesn't and if you think
1010 * about it this is right. Otherwise apps have to
1011 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1012 * are treated in BSD as hints
1013 */
1014 val = min_t(u32, val, sysctl_wmem_max);
1015set_sndbuf:
1016 /* Ensure val * 2 fits into an int, to prevent max_t()
1017 * from treating it as a negative value.
1018 */
1019 val = min_t(int, val, INT_MAX / 2);
1020 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1021 WRITE_ONCE(sk->sk_sndbuf,
1022 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1023 /* Wake up sending tasks if we upped the value. */
1024 sk->sk_write_space(sk);
1025 break;
1026
1027 case SO_SNDBUFFORCE:
1028 if (!capable(CAP_NET_ADMIN)) {
1029 ret = -EPERM;
1030 break;
1031 }
1032
1033 /* No negative values (to prevent underflow, as val will be
1034 * multiplied by 2).
1035 */
1036 if (val < 0)
1037 val = 0;
1038 goto set_sndbuf;
1039
1040 case SO_RCVBUF:
1041 /* Don't error on this BSD doesn't and if you think
1042 * about it this is right. Otherwise apps have to
1043 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1044 * are treated in BSD as hints
1045 */
1046 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
1047 break;
1048
1049 case SO_RCVBUFFORCE:
1050 if (!capable(CAP_NET_ADMIN)) {
1051 ret = -EPERM;
1052 break;
1053 }
1054
1055 /* No negative values (to prevent underflow, as val will be
1056 * multiplied by 2).
1057 */
1058 __sock_set_rcvbuf(sk, max(val, 0));
1059 break;
1060
1061 case SO_KEEPALIVE:
1062 if (sk->sk_prot->keepalive)
1063 sk->sk_prot->keepalive(sk, valbool);
1064 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1065 break;
1066
1067 case SO_OOBINLINE:
1068 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1069 break;
1070
1071 case SO_NO_CHECK:
1072 sk->sk_no_check_tx = valbool;
1073 break;
1074
1075 case SO_PRIORITY:
1076 if ((val >= 0 && val <= 6) ||
1077 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1078 sk->sk_priority = val;
1079 else
1080 ret = -EPERM;
1081 break;
1082
1083 case SO_LINGER:
1084 if (optlen < sizeof(ling)) {
1085 ret = -EINVAL; /* 1003.1g */
1086 break;
1087 }
1088 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1089 ret = -EFAULT;
1090 break;
1091 }
1092 if (!ling.l_onoff)
1093 sock_reset_flag(sk, SOCK_LINGER);
1094 else {
1095#if (BITS_PER_LONG == 32)
1096 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1097 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1098 else
1099#endif
1100 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1101 sock_set_flag(sk, SOCK_LINGER);
1102 }
1103 break;
1104
1105 case SO_BSDCOMPAT:
1106 break;
1107
1108 case SO_PASSCRED:
1109 if (valbool)
1110 set_bit(SOCK_PASSCRED, &sock->flags);
1111 else
1112 clear_bit(SOCK_PASSCRED, &sock->flags);
1113 break;
1114
1115 case SO_TIMESTAMP_OLD:
1116 case SO_TIMESTAMP_NEW:
1117 case SO_TIMESTAMPNS_OLD:
1118 case SO_TIMESTAMPNS_NEW:
1119 sock_set_timestamp(sk, optname, valbool);
1120 break;
1121
1122 case SO_TIMESTAMPING_NEW:
1123 case SO_TIMESTAMPING_OLD:
1124 if (optlen == sizeof(timestamping)) {
1125 if (copy_from_sockptr(×tamping, optval,
1126 sizeof(timestamping))) {
1127 ret = -EFAULT;
1128 break;
1129 }
1130 } else {
1131 memset(×tamping, 0, sizeof(timestamping));
1132 timestamping.flags = val;
1133 }
1134 ret = sock_set_timestamping(sk, optname, timestamping);
1135 break;
1136
1137 case SO_RCVLOWAT:
1138 if (val < 0)
1139 val = INT_MAX;
1140 if (sock->ops->set_rcvlowat)
1141 ret = sock->ops->set_rcvlowat(sk, val);
1142 else
1143 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1144 break;
1145
1146 case SO_RCVTIMEO_OLD:
1147 case SO_RCVTIMEO_NEW:
1148 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1149 optlen, optname == SO_RCVTIMEO_OLD);
1150 break;
1151
1152 case SO_SNDTIMEO_OLD:
1153 case SO_SNDTIMEO_NEW:
1154 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1155 optlen, optname == SO_SNDTIMEO_OLD);
1156 break;
1157
1158 case SO_ATTACH_FILTER: {
1159 struct sock_fprog fprog;
1160
1161 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1162 if (!ret)
1163 ret = sk_attach_filter(&fprog, sk);
1164 break;
1165 }
1166 case SO_ATTACH_BPF:
1167 ret = -EINVAL;
1168 if (optlen == sizeof(u32)) {
1169 u32 ufd;
1170
1171 ret = -EFAULT;
1172 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1173 break;
1174
1175 ret = sk_attach_bpf(ufd, sk);
1176 }
1177 break;
1178
1179 case SO_ATTACH_REUSEPORT_CBPF: {
1180 struct sock_fprog fprog;
1181
1182 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1183 if (!ret)
1184 ret = sk_reuseport_attach_filter(&fprog, sk);
1185 break;
1186 }
1187 case SO_ATTACH_REUSEPORT_EBPF:
1188 ret = -EINVAL;
1189 if (optlen == sizeof(u32)) {
1190 u32 ufd;
1191
1192 ret = -EFAULT;
1193 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1194 break;
1195
1196 ret = sk_reuseport_attach_bpf(ufd, sk);
1197 }
1198 break;
1199
1200 case SO_DETACH_REUSEPORT_BPF:
1201 ret = reuseport_detach_prog(sk);
1202 break;
1203
1204 case SO_DETACH_FILTER:
1205 ret = sk_detach_filter(sk);
1206 break;
1207
1208 case SO_LOCK_FILTER:
1209 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1210 ret = -EPERM;
1211 else
1212 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1213 break;
1214
1215 case SO_PASSSEC:
1216 if (valbool)
1217 set_bit(SOCK_PASSSEC, &sock->flags);
1218 else
1219 clear_bit(SOCK_PASSSEC, &sock->flags);
1220 break;
1221 case SO_MARK:
1222 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1223 ret = -EPERM;
1224 break;
1225 }
1226
1227 __sock_set_mark(sk, val);
1228 break;
1229
1230 case SO_RXQ_OVFL:
1231 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1232 break;
1233
1234 case SO_WIFI_STATUS:
1235 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1236 break;
1237
1238 case SO_PEEK_OFF:
1239 if (sock->ops->set_peek_off)
1240 ret = sock->ops->set_peek_off(sk, val);
1241 else
1242 ret = -EOPNOTSUPP;
1243 break;
1244
1245 case SO_NOFCS:
1246 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1247 break;
1248
1249 case SO_SELECT_ERR_QUEUE:
1250 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1251 break;
1252
1253#ifdef CONFIG_NET_RX_BUSY_POLL
1254 case SO_BUSY_POLL:
1255 /* allow unprivileged users to decrease the value */
1256 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1257 ret = -EPERM;
1258 else {
1259 if (val < 0)
1260 ret = -EINVAL;
1261 else
1262 WRITE_ONCE(sk->sk_ll_usec, val);
1263 }
1264 break;
1265 case SO_PREFER_BUSY_POLL:
1266 if (valbool && !capable(CAP_NET_ADMIN))
1267 ret = -EPERM;
1268 else
1269 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1270 break;
1271 case SO_BUSY_POLL_BUDGET:
1272 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1273 ret = -EPERM;
1274 } else {
1275 if (val < 0 || val > U16_MAX)
1276 ret = -EINVAL;
1277 else
1278 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1279 }
1280 break;
1281#endif
1282
1283 case SO_MAX_PACING_RATE:
1284 {
1285 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1286
1287 if (sizeof(ulval) != sizeof(val) &&
1288 optlen >= sizeof(ulval) &&
1289 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1290 ret = -EFAULT;
1291 break;
1292 }
1293 if (ulval != ~0UL)
1294 cmpxchg(&sk->sk_pacing_status,
1295 SK_PACING_NONE,
1296 SK_PACING_NEEDED);
1297 sk->sk_max_pacing_rate = ulval;
1298 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1299 break;
1300 }
1301 case SO_INCOMING_CPU:
1302 WRITE_ONCE(sk->sk_incoming_cpu, val);
1303 break;
1304
1305 case SO_CNX_ADVICE:
1306 if (val == 1)
1307 dst_negative_advice(sk);
1308 break;
1309
1310 case SO_ZEROCOPY:
1311 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1312 if (!((sk->sk_type == SOCK_STREAM &&
1313 sk->sk_protocol == IPPROTO_TCP) ||
1314 (sk->sk_type == SOCK_DGRAM &&
1315 sk->sk_protocol == IPPROTO_UDP)))
1316 ret = -ENOTSUPP;
1317 } else if (sk->sk_family != PF_RDS) {
1318 ret = -ENOTSUPP;
1319 }
1320 if (!ret) {
1321 if (val < 0 || val > 1)
1322 ret = -EINVAL;
1323 else
1324 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1325 }
1326 break;
1327
1328 case SO_TXTIME:
1329 if (optlen != sizeof(struct sock_txtime)) {
1330 ret = -EINVAL;
1331 break;
1332 } else if (copy_from_sockptr(&sk_txtime, optval,
1333 sizeof(struct sock_txtime))) {
1334 ret = -EFAULT;
1335 break;
1336 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1337 ret = -EINVAL;
1338 break;
1339 }
1340 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1341 * scheduler has enough safe guards.
1342 */
1343 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1344 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1345 ret = -EPERM;
1346 break;
1347 }
1348 sock_valbool_flag(sk, SOCK_TXTIME, true);
1349 sk->sk_clockid = sk_txtime.clockid;
1350 sk->sk_txtime_deadline_mode =
1351 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1352 sk->sk_txtime_report_errors =
1353 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1354 break;
1355
1356 case SO_BINDTOIFINDEX:
1357 ret = sock_bindtoindex_locked(sk, val);
1358 break;
1359
1360 default:
1361 ret = -ENOPROTOOPT;
1362 break;
1363 }
1364 release_sock(sk);
1365 return ret;
1366}
1367EXPORT_SYMBOL(sock_setsockopt);
1368
1369static const struct cred *sk_get_peer_cred(struct sock *sk)
1370{
1371 const struct cred *cred;
1372
1373 spin_lock(&sk->sk_peer_lock);
1374 cred = get_cred(sk->sk_peer_cred);
1375 spin_unlock(&sk->sk_peer_lock);
1376
1377 return cred;
1378}
1379
1380static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1381 struct ucred *ucred)
1382{
1383 ucred->pid = pid_vnr(pid);
1384 ucred->uid = ucred->gid = -1;
1385 if (cred) {
1386 struct user_namespace *current_ns = current_user_ns();
1387
1388 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1389 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1390 }
1391}
1392
1393static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1394{
1395 struct user_namespace *user_ns = current_user_ns();
1396 int i;
1397
1398 for (i = 0; i < src->ngroups; i++)
1399 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1400 return -EFAULT;
1401
1402 return 0;
1403}
1404
1405int sock_getsockopt(struct socket *sock, int level, int optname,
1406 char __user *optval, int __user *optlen)
1407{
1408 struct sock *sk = sock->sk;
1409
1410 union {
1411 int val;
1412 u64 val64;
1413 unsigned long ulval;
1414 struct linger ling;
1415 struct old_timeval32 tm32;
1416 struct __kernel_old_timeval tm;
1417 struct __kernel_sock_timeval stm;
1418 struct sock_txtime txtime;
1419 struct so_timestamping timestamping;
1420 } v;
1421
1422 int lv = sizeof(int);
1423 int len;
1424
1425 if (get_user(len, optlen))
1426 return -EFAULT;
1427 if (len < 0)
1428 return -EINVAL;
1429
1430 memset(&v, 0, sizeof(v));
1431
1432 switch (optname) {
1433 case SO_DEBUG:
1434 v.val = sock_flag(sk, SOCK_DBG);
1435 break;
1436
1437 case SO_DONTROUTE:
1438 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1439 break;
1440
1441 case SO_BROADCAST:
1442 v.val = sock_flag(sk, SOCK_BROADCAST);
1443 break;
1444
1445 case SO_SNDBUF:
1446 v.val = sk->sk_sndbuf;
1447 break;
1448
1449 case SO_RCVBUF:
1450 v.val = sk->sk_rcvbuf;
1451 break;
1452
1453 case SO_REUSEADDR:
1454 v.val = sk->sk_reuse;
1455 break;
1456
1457 case SO_REUSEPORT:
1458 v.val = sk->sk_reuseport;
1459 break;
1460
1461 case SO_KEEPALIVE:
1462 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1463 break;
1464
1465 case SO_TYPE:
1466 v.val = sk->sk_type;
1467 break;
1468
1469 case SO_PROTOCOL:
1470 v.val = sk->sk_protocol;
1471 break;
1472
1473 case SO_DOMAIN:
1474 v.val = sk->sk_family;
1475 break;
1476
1477 case SO_ERROR:
1478 v.val = -sock_error(sk);
1479 if (v.val == 0)
1480 v.val = xchg(&sk->sk_err_soft, 0);
1481 break;
1482
1483 case SO_OOBINLINE:
1484 v.val = sock_flag(sk, SOCK_URGINLINE);
1485 break;
1486
1487 case SO_NO_CHECK:
1488 v.val = sk->sk_no_check_tx;
1489 break;
1490
1491 case SO_PRIORITY:
1492 v.val = sk->sk_priority;
1493 break;
1494
1495 case SO_LINGER:
1496 lv = sizeof(v.ling);
1497 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1498 v.ling.l_linger = sk->sk_lingertime / HZ;
1499 break;
1500
1501 case SO_BSDCOMPAT:
1502 break;
1503
1504 case SO_TIMESTAMP_OLD:
1505 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1506 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1507 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1508 break;
1509
1510 case SO_TIMESTAMPNS_OLD:
1511 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1512 break;
1513
1514 case SO_TIMESTAMP_NEW:
1515 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1516 break;
1517
1518 case SO_TIMESTAMPNS_NEW:
1519 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1520 break;
1521
1522 case SO_TIMESTAMPING_OLD:
1523 lv = sizeof(v.timestamping);
1524 v.timestamping.flags = sk->sk_tsflags;
1525 v.timestamping.bind_phc = sk->sk_bind_phc;
1526 break;
1527
1528 case SO_RCVTIMEO_OLD:
1529 case SO_RCVTIMEO_NEW:
1530 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1531 break;
1532
1533 case SO_SNDTIMEO_OLD:
1534 case SO_SNDTIMEO_NEW:
1535 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1536 break;
1537
1538 case SO_RCVLOWAT:
1539 v.val = sk->sk_rcvlowat;
1540 break;
1541
1542 case SO_SNDLOWAT:
1543 v.val = 1;
1544 break;
1545
1546 case SO_PASSCRED:
1547 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1548 break;
1549
1550 case SO_PEERCRED:
1551 {
1552 struct ucred peercred;
1553 if (len > sizeof(peercred))
1554 len = sizeof(peercred);
1555
1556 spin_lock(&sk->sk_peer_lock);
1557 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1558 spin_unlock(&sk->sk_peer_lock);
1559
1560 if (copy_to_user(optval, &peercred, len))
1561 return -EFAULT;
1562 goto lenout;
1563 }
1564
1565 case SO_PEERGROUPS:
1566 {
1567 const struct cred *cred;
1568 int ret, n;
1569
1570 cred = sk_get_peer_cred(sk);
1571 if (!cred)
1572 return -ENODATA;
1573
1574 n = cred->group_info->ngroups;
1575 if (len < n * sizeof(gid_t)) {
1576 len = n * sizeof(gid_t);
1577 put_cred(cred);
1578 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1579 }
1580 len = n * sizeof(gid_t);
1581
1582 ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1583 put_cred(cred);
1584 if (ret)
1585 return ret;
1586 goto lenout;
1587 }
1588
1589 case SO_PEERNAME:
1590 {
1591 char address[128];
1592
1593 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1594 if (lv < 0)
1595 return -ENOTCONN;
1596 if (lv < len)
1597 return -EINVAL;
1598 if (copy_to_user(optval, address, len))
1599 return -EFAULT;
1600 goto lenout;
1601 }
1602
1603 /* Dubious BSD thing... Probably nobody even uses it, but
1604 * the UNIX standard wants it for whatever reason... -DaveM
1605 */
1606 case SO_ACCEPTCONN:
1607 v.val = sk->sk_state == TCP_LISTEN;
1608 break;
1609
1610 case SO_PASSSEC:
1611 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1612 break;
1613
1614 case SO_PEERSEC:
1615 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1616
1617 case SO_MARK:
1618 v.val = sk->sk_mark;
1619 break;
1620
1621 case SO_RXQ_OVFL:
1622 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1623 break;
1624
1625 case SO_WIFI_STATUS:
1626 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1627 break;
1628
1629 case SO_PEEK_OFF:
1630 if (!sock->ops->set_peek_off)
1631 return -EOPNOTSUPP;
1632
1633 v.val = sk->sk_peek_off;
1634 break;
1635 case SO_NOFCS:
1636 v.val = sock_flag(sk, SOCK_NOFCS);
1637 break;
1638
1639 case SO_BINDTODEVICE:
1640 return sock_getbindtodevice(sk, optval, optlen, len);
1641
1642 case SO_GET_FILTER:
1643 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1644 if (len < 0)
1645 return len;
1646
1647 goto lenout;
1648
1649 case SO_LOCK_FILTER:
1650 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1651 break;
1652
1653 case SO_BPF_EXTENSIONS:
1654 v.val = bpf_tell_extensions();
1655 break;
1656
1657 case SO_SELECT_ERR_QUEUE:
1658 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1659 break;
1660
1661#ifdef CONFIG_NET_RX_BUSY_POLL
1662 case SO_BUSY_POLL:
1663 v.val = sk->sk_ll_usec;
1664 break;
1665 case SO_PREFER_BUSY_POLL:
1666 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1667 break;
1668#endif
1669
1670 case SO_MAX_PACING_RATE:
1671 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1672 lv = sizeof(v.ulval);
1673 v.ulval = sk->sk_max_pacing_rate;
1674 } else {
1675 /* 32bit version */
1676 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1677 }
1678 break;
1679
1680 case SO_INCOMING_CPU:
1681 v.val = READ_ONCE(sk->sk_incoming_cpu);
1682 break;
1683
1684 case SO_MEMINFO:
1685 {
1686 u32 meminfo[SK_MEMINFO_VARS];
1687
1688 sk_get_meminfo(sk, meminfo);
1689
1690 len = min_t(unsigned int, len, sizeof(meminfo));
1691 if (copy_to_user(optval, &meminfo, len))
1692 return -EFAULT;
1693
1694 goto lenout;
1695 }
1696
1697#ifdef CONFIG_NET_RX_BUSY_POLL
1698 case SO_INCOMING_NAPI_ID:
1699 v.val = READ_ONCE(sk->sk_napi_id);
1700
1701 /* aggregate non-NAPI IDs down to 0 */
1702 if (v.val < MIN_NAPI_ID)
1703 v.val = 0;
1704
1705 break;
1706#endif
1707
1708 case SO_COOKIE:
1709 lv = sizeof(u64);
1710 if (len < lv)
1711 return -EINVAL;
1712 v.val64 = sock_gen_cookie(sk);
1713 break;
1714
1715 case SO_ZEROCOPY:
1716 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1717 break;
1718
1719 case SO_TXTIME:
1720 lv = sizeof(v.txtime);
1721 v.txtime.clockid = sk->sk_clockid;
1722 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1723 SOF_TXTIME_DEADLINE_MODE : 0;
1724 v.txtime.flags |= sk->sk_txtime_report_errors ?
1725 SOF_TXTIME_REPORT_ERRORS : 0;
1726 break;
1727
1728 case SO_BINDTOIFINDEX:
1729 v.val = sk->sk_bound_dev_if;
1730 break;
1731
1732 case SO_NETNS_COOKIE:
1733 lv = sizeof(u64);
1734 if (len != lv)
1735 return -EINVAL;
1736 v.val64 = sock_net(sk)->net_cookie;
1737 break;
1738
1739 default:
1740 /* We implement the SO_SNDLOWAT etc to not be settable
1741 * (1003.1g 7).
1742 */
1743 return -ENOPROTOOPT;
1744 }
1745
1746 if (len > lv)
1747 len = lv;
1748 if (copy_to_user(optval, &v, len))
1749 return -EFAULT;
1750lenout:
1751 if (put_user(len, optlen))
1752 return -EFAULT;
1753 return 0;
1754}
1755
1756/*
1757 * Initialize an sk_lock.
1758 *
1759 * (We also register the sk_lock with the lock validator.)
1760 */
1761static inline void sock_lock_init(struct sock *sk)
1762{
1763 if (sk->sk_kern_sock)
1764 sock_lock_init_class_and_name(
1765 sk,
1766 af_family_kern_slock_key_strings[sk->sk_family],
1767 af_family_kern_slock_keys + sk->sk_family,
1768 af_family_kern_key_strings[sk->sk_family],
1769 af_family_kern_keys + sk->sk_family);
1770 else
1771 sock_lock_init_class_and_name(
1772 sk,
1773 af_family_slock_key_strings[sk->sk_family],
1774 af_family_slock_keys + sk->sk_family,
1775 af_family_key_strings[sk->sk_family],
1776 af_family_keys + sk->sk_family);
1777}
1778
1779/*
1780 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1781 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1782 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1783 */
1784static void sock_copy(struct sock *nsk, const struct sock *osk)
1785{
1786 const struct proto *prot = READ_ONCE(osk->sk_prot);
1787#ifdef CONFIG_SECURITY_NETWORK
1788 void *sptr = nsk->sk_security;
1789#endif
1790
1791 /* If we move sk_tx_queue_mapping out of the private section,
1792 * we must check if sk_tx_queue_clear() is called after
1793 * sock_copy() in sk_clone_lock().
1794 */
1795 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1796 offsetof(struct sock, sk_dontcopy_begin) ||
1797 offsetof(struct sock, sk_tx_queue_mapping) >=
1798 offsetof(struct sock, sk_dontcopy_end));
1799
1800 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1801
1802 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1803 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1804
1805#ifdef CONFIG_SECURITY_NETWORK
1806 nsk->sk_security = sptr;
1807 security_sk_clone(osk, nsk);
1808#endif
1809}
1810
1811static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1812 int family)
1813{
1814 struct sock *sk;
1815 struct kmem_cache *slab;
1816
1817 slab = prot->slab;
1818 if (slab != NULL) {
1819 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1820 if (!sk)
1821 return sk;
1822 if (want_init_on_alloc(priority))
1823 sk_prot_clear_nulls(sk, prot->obj_size);
1824 } else
1825 sk = kmalloc(prot->obj_size, priority);
1826
1827 if (sk != NULL) {
1828 if (security_sk_alloc(sk, family, priority))
1829 goto out_free;
1830
1831 if (!try_module_get(prot->owner))
1832 goto out_free_sec;
1833 }
1834
1835 return sk;
1836
1837out_free_sec:
1838 security_sk_free(sk);
1839out_free:
1840 if (slab != NULL)
1841 kmem_cache_free(slab, sk);
1842 else
1843 kfree(sk);
1844 return NULL;
1845}
1846
1847static void sk_prot_free(struct proto *prot, struct sock *sk)
1848{
1849 struct kmem_cache *slab;
1850 struct module *owner;
1851
1852 owner = prot->owner;
1853 slab = prot->slab;
1854
1855 cgroup_sk_free(&sk->sk_cgrp_data);
1856 mem_cgroup_sk_free(sk);
1857 security_sk_free(sk);
1858 if (slab != NULL)
1859 kmem_cache_free(slab, sk);
1860 else
1861 kfree(sk);
1862 module_put(owner);
1863}
1864
1865/**
1866 * sk_alloc - All socket objects are allocated here
1867 * @net: the applicable net namespace
1868 * @family: protocol family
1869 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1870 * @prot: struct proto associated with this new sock instance
1871 * @kern: is this to be a kernel socket?
1872 */
1873struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1874 struct proto *prot, int kern)
1875{
1876 struct sock *sk;
1877
1878 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1879 if (sk) {
1880 sk->sk_family = family;
1881 /*
1882 * See comment in struct sock definition to understand
1883 * why we need sk_prot_creator -acme
1884 */
1885 sk->sk_prot = sk->sk_prot_creator = prot;
1886 sk->sk_kern_sock = kern;
1887 sock_lock_init(sk);
1888 sk->sk_net_refcnt = kern ? 0 : 1;
1889 if (likely(sk->sk_net_refcnt)) {
1890 get_net(net);
1891 sock_inuse_add(net, 1);
1892 }
1893
1894 sock_net_set(sk, net);
1895 refcount_set(&sk->sk_wmem_alloc, 1);
1896
1897 mem_cgroup_sk_alloc(sk);
1898 cgroup_sk_alloc(&sk->sk_cgrp_data);
1899 sock_update_classid(&sk->sk_cgrp_data);
1900 sock_update_netprioidx(&sk->sk_cgrp_data);
1901 sk_tx_queue_clear(sk);
1902 }
1903
1904 return sk;
1905}
1906EXPORT_SYMBOL(sk_alloc);
1907
1908/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1909 * grace period. This is the case for UDP sockets and TCP listeners.
1910 */
1911static void __sk_destruct(struct rcu_head *head)
1912{
1913 struct sock *sk = container_of(head, struct sock, sk_rcu);
1914 struct sk_filter *filter;
1915
1916 if (sk->sk_destruct)
1917 sk->sk_destruct(sk);
1918
1919 filter = rcu_dereference_check(sk->sk_filter,
1920 refcount_read(&sk->sk_wmem_alloc) == 0);
1921 if (filter) {
1922 sk_filter_uncharge(sk, filter);
1923 RCU_INIT_POINTER(sk->sk_filter, NULL);
1924 }
1925
1926 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1927
1928#ifdef CONFIG_BPF_SYSCALL
1929 bpf_sk_storage_free(sk);
1930#endif
1931
1932 if (atomic_read(&sk->sk_omem_alloc))
1933 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1934 __func__, atomic_read(&sk->sk_omem_alloc));
1935
1936 if (sk->sk_frag.page) {
1937 put_page(sk->sk_frag.page);
1938 sk->sk_frag.page = NULL;
1939 }
1940
1941 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1942 put_cred(sk->sk_peer_cred);
1943 put_pid(sk->sk_peer_pid);
1944
1945 if (likely(sk->sk_net_refcnt))
1946 put_net(sock_net(sk));
1947 sk_prot_free(sk->sk_prot_creator, sk);
1948}
1949
1950void sk_destruct(struct sock *sk)
1951{
1952 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1953
1954 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1955 reuseport_detach_sock(sk);
1956 use_call_rcu = true;
1957 }
1958
1959 if (use_call_rcu)
1960 call_rcu(&sk->sk_rcu, __sk_destruct);
1961 else
1962 __sk_destruct(&sk->sk_rcu);
1963}
1964
1965static void __sk_free(struct sock *sk)
1966{
1967 if (likely(sk->sk_net_refcnt))
1968 sock_inuse_add(sock_net(sk), -1);
1969
1970 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1971 sock_diag_broadcast_destroy(sk);
1972 else
1973 sk_destruct(sk);
1974}
1975
1976void sk_free(struct sock *sk)
1977{
1978 /*
1979 * We subtract one from sk_wmem_alloc and can know if
1980 * some packets are still in some tx queue.
1981 * If not null, sock_wfree() will call __sk_free(sk) later
1982 */
1983 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1984 __sk_free(sk);
1985}
1986EXPORT_SYMBOL(sk_free);
1987
1988static void sk_init_common(struct sock *sk)
1989{
1990 skb_queue_head_init(&sk->sk_receive_queue);
1991 skb_queue_head_init(&sk->sk_write_queue);
1992 skb_queue_head_init(&sk->sk_error_queue);
1993
1994 rwlock_init(&sk->sk_callback_lock);
1995 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1996 af_rlock_keys + sk->sk_family,
1997 af_family_rlock_key_strings[sk->sk_family]);
1998 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1999 af_wlock_keys + sk->sk_family,
2000 af_family_wlock_key_strings[sk->sk_family]);
2001 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2002 af_elock_keys + sk->sk_family,
2003 af_family_elock_key_strings[sk->sk_family]);
2004 lockdep_set_class_and_name(&sk->sk_callback_lock,
2005 af_callback_keys + sk->sk_family,
2006 af_family_clock_key_strings[sk->sk_family]);
2007}
2008
2009/**
2010 * sk_clone_lock - clone a socket, and lock its clone
2011 * @sk: the socket to clone
2012 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2013 *
2014 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2015 */
2016struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2017{
2018 struct proto *prot = READ_ONCE(sk->sk_prot);
2019 struct sk_filter *filter;
2020 bool is_charged = true;
2021 struct sock *newsk;
2022
2023 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2024 if (!newsk)
2025 goto out;
2026
2027 sock_copy(newsk, sk);
2028
2029 newsk->sk_prot_creator = prot;
2030
2031 /* SANITY */
2032 if (likely(newsk->sk_net_refcnt))
2033 get_net(sock_net(newsk));
2034 sk_node_init(&newsk->sk_node);
2035 sock_lock_init(newsk);
2036 bh_lock_sock(newsk);
2037 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2038 newsk->sk_backlog.len = 0;
2039
2040 atomic_set(&newsk->sk_rmem_alloc, 0);
2041
2042 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2043 refcount_set(&newsk->sk_wmem_alloc, 1);
2044
2045 atomic_set(&newsk->sk_omem_alloc, 0);
2046 sk_init_common(newsk);
2047
2048 newsk->sk_dst_cache = NULL;
2049 newsk->sk_dst_pending_confirm = 0;
2050 newsk->sk_wmem_queued = 0;
2051 newsk->sk_forward_alloc = 0;
2052 atomic_set(&newsk->sk_drops, 0);
2053 newsk->sk_send_head = NULL;
2054 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2055 atomic_set(&newsk->sk_zckey, 0);
2056
2057 sock_reset_flag(newsk, SOCK_DONE);
2058
2059 /* sk->sk_memcg will be populated at accept() time */
2060 newsk->sk_memcg = NULL;
2061
2062 cgroup_sk_clone(&newsk->sk_cgrp_data);
2063
2064 rcu_read_lock();
2065 filter = rcu_dereference(sk->sk_filter);
2066 if (filter != NULL)
2067 /* though it's an empty new sock, the charging may fail
2068 * if sysctl_optmem_max was changed between creation of
2069 * original socket and cloning
2070 */
2071 is_charged = sk_filter_charge(newsk, filter);
2072 RCU_INIT_POINTER(newsk->sk_filter, filter);
2073 rcu_read_unlock();
2074
2075 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2076 /* We need to make sure that we don't uncharge the new
2077 * socket if we couldn't charge it in the first place
2078 * as otherwise we uncharge the parent's filter.
2079 */
2080 if (!is_charged)
2081 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2082 sk_free_unlock_clone(newsk);
2083 newsk = NULL;
2084 goto out;
2085 }
2086 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2087
2088 if (bpf_sk_storage_clone(sk, newsk)) {
2089 sk_free_unlock_clone(newsk);
2090 newsk = NULL;
2091 goto out;
2092 }
2093
2094 /* Clear sk_user_data if parent had the pointer tagged
2095 * as not suitable for copying when cloning.
2096 */
2097 if (sk_user_data_is_nocopy(newsk))
2098 newsk->sk_user_data = NULL;
2099
2100 newsk->sk_err = 0;
2101 newsk->sk_err_soft = 0;
2102 newsk->sk_priority = 0;
2103 newsk->sk_incoming_cpu = raw_smp_processor_id();
2104 if (likely(newsk->sk_net_refcnt))
2105 sock_inuse_add(sock_net(newsk), 1);
2106
2107 /* Before updating sk_refcnt, we must commit prior changes to memory
2108 * (Documentation/RCU/rculist_nulls.rst for details)
2109 */
2110 smp_wmb();
2111 refcount_set(&newsk->sk_refcnt, 2);
2112
2113 /* Increment the counter in the same struct proto as the master
2114 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2115 * is the same as sk->sk_prot->socks, as this field was copied
2116 * with memcpy).
2117 *
2118 * This _changes_ the previous behaviour, where
2119 * tcp_create_openreq_child always was incrementing the
2120 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2121 * to be taken into account in all callers. -acme
2122 */
2123 sk_refcnt_debug_inc(newsk);
2124 sk_set_socket(newsk, NULL);
2125 sk_tx_queue_clear(newsk);
2126 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2127
2128 if (newsk->sk_prot->sockets_allocated)
2129 sk_sockets_allocated_inc(newsk);
2130
2131 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2132 net_enable_timestamp();
2133out:
2134 return newsk;
2135}
2136EXPORT_SYMBOL_GPL(sk_clone_lock);
2137
2138void sk_free_unlock_clone(struct sock *sk)
2139{
2140 /* It is still raw copy of parent, so invalidate
2141 * destructor and make plain sk_free() */
2142 sk->sk_destruct = NULL;
2143 bh_unlock_sock(sk);
2144 sk_free(sk);
2145}
2146EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2147
2148void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2149{
2150 u32 max_segs = 1;
2151
2152 sk_dst_set(sk, dst);
2153 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2154 if (sk->sk_route_caps & NETIF_F_GSO)
2155 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2156 sk->sk_route_caps &= ~sk->sk_route_nocaps;
2157 if (sk_can_gso(sk)) {
2158 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2159 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2160 } else {
2161 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2162 sk->sk_gso_max_size = dst->dev->gso_max_size;
2163 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2164 }
2165 }
2166 sk->sk_gso_max_segs = max_segs;
2167}
2168EXPORT_SYMBOL_GPL(sk_setup_caps);
2169
2170/*
2171 * Simple resource managers for sockets.
2172 */
2173
2174
2175/*
2176 * Write buffer destructor automatically called from kfree_skb.
2177 */
2178void sock_wfree(struct sk_buff *skb)
2179{
2180 struct sock *sk = skb->sk;
2181 unsigned int len = skb->truesize;
2182
2183 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2184 /*
2185 * Keep a reference on sk_wmem_alloc, this will be released
2186 * after sk_write_space() call
2187 */
2188 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2189 sk->sk_write_space(sk);
2190 len = 1;
2191 }
2192 /*
2193 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2194 * could not do because of in-flight packets
2195 */
2196 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2197 __sk_free(sk);
2198}
2199EXPORT_SYMBOL(sock_wfree);
2200
2201/* This variant of sock_wfree() is used by TCP,
2202 * since it sets SOCK_USE_WRITE_QUEUE.
2203 */
2204void __sock_wfree(struct sk_buff *skb)
2205{
2206 struct sock *sk = skb->sk;
2207
2208 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2209 __sk_free(sk);
2210}
2211
2212void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2213{
2214 skb_orphan(skb);
2215 skb->sk = sk;
2216#ifdef CONFIG_INET
2217 if (unlikely(!sk_fullsock(sk))) {
2218 skb->destructor = sock_edemux;
2219 sock_hold(sk);
2220 return;
2221 }
2222#endif
2223 skb->destructor = sock_wfree;
2224 skb_set_hash_from_sk(skb, sk);
2225 /*
2226 * We used to take a refcount on sk, but following operation
2227 * is enough to guarantee sk_free() wont free this sock until
2228 * all in-flight packets are completed
2229 */
2230 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2231}
2232EXPORT_SYMBOL(skb_set_owner_w);
2233
2234static bool can_skb_orphan_partial(const struct sk_buff *skb)
2235{
2236#ifdef CONFIG_TLS_DEVICE
2237 /* Drivers depend on in-order delivery for crypto offload,
2238 * partial orphan breaks out-of-order-OK logic.
2239 */
2240 if (skb->decrypted)
2241 return false;
2242#endif
2243 return (skb->destructor == sock_wfree ||
2244 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2245}
2246
2247/* This helper is used by netem, as it can hold packets in its
2248 * delay queue. We want to allow the owner socket to send more
2249 * packets, as if they were already TX completed by a typical driver.
2250 * But we also want to keep skb->sk set because some packet schedulers
2251 * rely on it (sch_fq for example).
2252 */
2253void skb_orphan_partial(struct sk_buff *skb)
2254{
2255 if (skb_is_tcp_pure_ack(skb))
2256 return;
2257
2258 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2259 return;
2260
2261 skb_orphan(skb);
2262}
2263EXPORT_SYMBOL(skb_orphan_partial);
2264
2265/*
2266 * Read buffer destructor automatically called from kfree_skb.
2267 */
2268void sock_rfree(struct sk_buff *skb)
2269{
2270 struct sock *sk = skb->sk;
2271 unsigned int len = skb->truesize;
2272
2273 atomic_sub(len, &sk->sk_rmem_alloc);
2274 sk_mem_uncharge(sk, len);
2275}
2276EXPORT_SYMBOL(sock_rfree);
2277
2278/*
2279 * Buffer destructor for skbs that are not used directly in read or write
2280 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2281 */
2282void sock_efree(struct sk_buff *skb)
2283{
2284 sock_put(skb->sk);
2285}
2286EXPORT_SYMBOL(sock_efree);
2287
2288/* Buffer destructor for prefetch/receive path where reference count may
2289 * not be held, e.g. for listen sockets.
2290 */
2291#ifdef CONFIG_INET
2292void sock_pfree(struct sk_buff *skb)
2293{
2294 if (sk_is_refcounted(skb->sk))
2295 sock_gen_put(skb->sk);
2296}
2297EXPORT_SYMBOL(sock_pfree);
2298#endif /* CONFIG_INET */
2299
2300kuid_t sock_i_uid(struct sock *sk)
2301{
2302 kuid_t uid;
2303
2304 read_lock_bh(&sk->sk_callback_lock);
2305 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2306 read_unlock_bh(&sk->sk_callback_lock);
2307 return uid;
2308}
2309EXPORT_SYMBOL(sock_i_uid);
2310
2311unsigned long sock_i_ino(struct sock *sk)
2312{
2313 unsigned long ino;
2314
2315 read_lock_bh(&sk->sk_callback_lock);
2316 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2317 read_unlock_bh(&sk->sk_callback_lock);
2318 return ino;
2319}
2320EXPORT_SYMBOL(sock_i_ino);
2321
2322/*
2323 * Allocate a skb from the socket's send buffer.
2324 */
2325struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2326 gfp_t priority)
2327{
2328 if (force ||
2329 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2330 struct sk_buff *skb = alloc_skb(size, priority);
2331
2332 if (skb) {
2333 skb_set_owner_w(skb, sk);
2334 return skb;
2335 }
2336 }
2337 return NULL;
2338}
2339EXPORT_SYMBOL(sock_wmalloc);
2340
2341static void sock_ofree(struct sk_buff *skb)
2342{
2343 struct sock *sk = skb->sk;
2344
2345 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2346}
2347
2348struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2349 gfp_t priority)
2350{
2351 struct sk_buff *skb;
2352
2353 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2354 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2355 sysctl_optmem_max)
2356 return NULL;
2357
2358 skb = alloc_skb(size, priority);
2359 if (!skb)
2360 return NULL;
2361
2362 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2363 skb->sk = sk;
2364 skb->destructor = sock_ofree;
2365 return skb;
2366}
2367
2368/*
2369 * Allocate a memory block from the socket's option memory buffer.
2370 */
2371void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2372{
2373 if ((unsigned int)size <= sysctl_optmem_max &&
2374 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2375 void *mem;
2376 /* First do the add, to avoid the race if kmalloc
2377 * might sleep.
2378 */
2379 atomic_add(size, &sk->sk_omem_alloc);
2380 mem = kmalloc(size, priority);
2381 if (mem)
2382 return mem;
2383 atomic_sub(size, &sk->sk_omem_alloc);
2384 }
2385 return NULL;
2386}
2387EXPORT_SYMBOL(sock_kmalloc);
2388
2389/* Free an option memory block. Note, we actually want the inline
2390 * here as this allows gcc to detect the nullify and fold away the
2391 * condition entirely.
2392 */
2393static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2394 const bool nullify)
2395{
2396 if (WARN_ON_ONCE(!mem))
2397 return;
2398 if (nullify)
2399 kfree_sensitive(mem);
2400 else
2401 kfree(mem);
2402 atomic_sub(size, &sk->sk_omem_alloc);
2403}
2404
2405void sock_kfree_s(struct sock *sk, void *mem, int size)
2406{
2407 __sock_kfree_s(sk, mem, size, false);
2408}
2409EXPORT_SYMBOL(sock_kfree_s);
2410
2411void sock_kzfree_s(struct sock *sk, void *mem, int size)
2412{
2413 __sock_kfree_s(sk, mem, size, true);
2414}
2415EXPORT_SYMBOL(sock_kzfree_s);
2416
2417/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2418 I think, these locks should be removed for datagram sockets.
2419 */
2420static long sock_wait_for_wmem(struct sock *sk, long timeo)
2421{
2422 DEFINE_WAIT(wait);
2423
2424 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2425 for (;;) {
2426 if (!timeo)
2427 break;
2428 if (signal_pending(current))
2429 break;
2430 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2431 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2432 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2433 break;
2434 if (sk->sk_shutdown & SEND_SHUTDOWN)
2435 break;
2436 if (sk->sk_err)
2437 break;
2438 timeo = schedule_timeout(timeo);
2439 }
2440 finish_wait(sk_sleep(sk), &wait);
2441 return timeo;
2442}
2443
2444
2445/*
2446 * Generic send/receive buffer handlers
2447 */
2448
2449struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2450 unsigned long data_len, int noblock,
2451 int *errcode, int max_page_order)
2452{
2453 struct sk_buff *skb;
2454 long timeo;
2455 int err;
2456
2457 timeo = sock_sndtimeo(sk, noblock);
2458 for (;;) {
2459 err = sock_error(sk);
2460 if (err != 0)
2461 goto failure;
2462
2463 err = -EPIPE;
2464 if (sk->sk_shutdown & SEND_SHUTDOWN)
2465 goto failure;
2466
2467 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2468 break;
2469
2470 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2471 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2472 err = -EAGAIN;
2473 if (!timeo)
2474 goto failure;
2475 if (signal_pending(current))
2476 goto interrupted;
2477 timeo = sock_wait_for_wmem(sk, timeo);
2478 }
2479 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2480 errcode, sk->sk_allocation);
2481 if (skb)
2482 skb_set_owner_w(skb, sk);
2483 return skb;
2484
2485interrupted:
2486 err = sock_intr_errno(timeo);
2487failure:
2488 *errcode = err;
2489 return NULL;
2490}
2491EXPORT_SYMBOL(sock_alloc_send_pskb);
2492
2493struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2494 int noblock, int *errcode)
2495{
2496 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2497}
2498EXPORT_SYMBOL(sock_alloc_send_skb);
2499
2500int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2501 struct sockcm_cookie *sockc)
2502{
2503 u32 tsflags;
2504
2505 switch (cmsg->cmsg_type) {
2506 case SO_MARK:
2507 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2508 return -EPERM;
2509 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2510 return -EINVAL;
2511 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2512 break;
2513 case SO_TIMESTAMPING_OLD:
2514 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2515 return -EINVAL;
2516
2517 tsflags = *(u32 *)CMSG_DATA(cmsg);
2518 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2519 return -EINVAL;
2520
2521 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2522 sockc->tsflags |= tsflags;
2523 break;
2524 case SCM_TXTIME:
2525 if (!sock_flag(sk, SOCK_TXTIME))
2526 return -EINVAL;
2527 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2528 return -EINVAL;
2529 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2530 break;
2531 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2532 case SCM_RIGHTS:
2533 case SCM_CREDENTIALS:
2534 break;
2535 default:
2536 return -EINVAL;
2537 }
2538 return 0;
2539}
2540EXPORT_SYMBOL(__sock_cmsg_send);
2541
2542int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2543 struct sockcm_cookie *sockc)
2544{
2545 struct cmsghdr *cmsg;
2546 int ret;
2547
2548 for_each_cmsghdr(cmsg, msg) {
2549 if (!CMSG_OK(msg, cmsg))
2550 return -EINVAL;
2551 if (cmsg->cmsg_level != SOL_SOCKET)
2552 continue;
2553 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2554 if (ret)
2555 return ret;
2556 }
2557 return 0;
2558}
2559EXPORT_SYMBOL(sock_cmsg_send);
2560
2561static void sk_enter_memory_pressure(struct sock *sk)
2562{
2563 if (!sk->sk_prot->enter_memory_pressure)
2564 return;
2565
2566 sk->sk_prot->enter_memory_pressure(sk);
2567}
2568
2569static void sk_leave_memory_pressure(struct sock *sk)
2570{
2571 if (sk->sk_prot->leave_memory_pressure) {
2572 sk->sk_prot->leave_memory_pressure(sk);
2573 } else {
2574 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2575
2576 if (memory_pressure && READ_ONCE(*memory_pressure))
2577 WRITE_ONCE(*memory_pressure, 0);
2578 }
2579}
2580
2581#define SKB_FRAG_PAGE_ORDER get_order(32768)
2582DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2583
2584/**
2585 * skb_page_frag_refill - check that a page_frag contains enough room
2586 * @sz: minimum size of the fragment we want to get
2587 * @pfrag: pointer to page_frag
2588 * @gfp: priority for memory allocation
2589 *
2590 * Note: While this allocator tries to use high order pages, there is
2591 * no guarantee that allocations succeed. Therefore, @sz MUST be
2592 * less or equal than PAGE_SIZE.
2593 */
2594bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2595{
2596 if (pfrag->page) {
2597 if (page_ref_count(pfrag->page) == 1) {
2598 pfrag->offset = 0;
2599 return true;
2600 }
2601 if (pfrag->offset + sz <= pfrag->size)
2602 return true;
2603 put_page(pfrag->page);
2604 }
2605
2606 pfrag->offset = 0;
2607 if (SKB_FRAG_PAGE_ORDER &&
2608 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2609 /* Avoid direct reclaim but allow kswapd to wake */
2610 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2611 __GFP_COMP | __GFP_NOWARN |
2612 __GFP_NORETRY,
2613 SKB_FRAG_PAGE_ORDER);
2614 if (likely(pfrag->page)) {
2615 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2616 return true;
2617 }
2618 }
2619 pfrag->page = alloc_page(gfp);
2620 if (likely(pfrag->page)) {
2621 pfrag->size = PAGE_SIZE;
2622 return true;
2623 }
2624 return false;
2625}
2626EXPORT_SYMBOL(skb_page_frag_refill);
2627
2628bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2629{
2630 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2631 return true;
2632
2633 sk_enter_memory_pressure(sk);
2634 sk_stream_moderate_sndbuf(sk);
2635 return false;
2636}
2637EXPORT_SYMBOL(sk_page_frag_refill);
2638
2639void __lock_sock(struct sock *sk)
2640 __releases(&sk->sk_lock.slock)
2641 __acquires(&sk->sk_lock.slock)
2642{
2643 DEFINE_WAIT(wait);
2644
2645 for (;;) {
2646 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2647 TASK_UNINTERRUPTIBLE);
2648 spin_unlock_bh(&sk->sk_lock.slock);
2649 schedule();
2650 spin_lock_bh(&sk->sk_lock.slock);
2651 if (!sock_owned_by_user(sk))
2652 break;
2653 }
2654 finish_wait(&sk->sk_lock.wq, &wait);
2655}
2656
2657void __release_sock(struct sock *sk)
2658 __releases(&sk->sk_lock.slock)
2659 __acquires(&sk->sk_lock.slock)
2660{
2661 struct sk_buff *skb, *next;
2662
2663 while ((skb = sk->sk_backlog.head) != NULL) {
2664 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2665
2666 spin_unlock_bh(&sk->sk_lock.slock);
2667
2668 do {
2669 next = skb->next;
2670 prefetch(next);
2671 WARN_ON_ONCE(skb_dst_is_noref(skb));
2672 skb_mark_not_on_list(skb);
2673 sk_backlog_rcv(sk, skb);
2674
2675 cond_resched();
2676
2677 skb = next;
2678 } while (skb != NULL);
2679
2680 spin_lock_bh(&sk->sk_lock.slock);
2681 }
2682
2683 /*
2684 * Doing the zeroing here guarantee we can not loop forever
2685 * while a wild producer attempts to flood us.
2686 */
2687 sk->sk_backlog.len = 0;
2688}
2689
2690void __sk_flush_backlog(struct sock *sk)
2691{
2692 spin_lock_bh(&sk->sk_lock.slock);
2693 __release_sock(sk);
2694 spin_unlock_bh(&sk->sk_lock.slock);
2695}
2696
2697/**
2698 * sk_wait_data - wait for data to arrive at sk_receive_queue
2699 * @sk: sock to wait on
2700 * @timeo: for how long
2701 * @skb: last skb seen on sk_receive_queue
2702 *
2703 * Now socket state including sk->sk_err is changed only under lock,
2704 * hence we may omit checks after joining wait queue.
2705 * We check receive queue before schedule() only as optimization;
2706 * it is very likely that release_sock() added new data.
2707 */
2708int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2709{
2710 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2711 int rc;
2712
2713 add_wait_queue(sk_sleep(sk), &wait);
2714 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2715 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2716 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2717 remove_wait_queue(sk_sleep(sk), &wait);
2718 return rc;
2719}
2720EXPORT_SYMBOL(sk_wait_data);
2721
2722/**
2723 * __sk_mem_raise_allocated - increase memory_allocated
2724 * @sk: socket
2725 * @size: memory size to allocate
2726 * @amt: pages to allocate
2727 * @kind: allocation type
2728 *
2729 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2730 */
2731int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2732{
2733 struct proto *prot = sk->sk_prot;
2734 long allocated = sk_memory_allocated_add(sk, amt);
2735 bool charged = true;
2736
2737 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2738 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2739 goto suppress_allocation;
2740
2741 /* Under limit. */
2742 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2743 sk_leave_memory_pressure(sk);
2744 return 1;
2745 }
2746
2747 /* Under pressure. */
2748 if (allocated > sk_prot_mem_limits(sk, 1))
2749 sk_enter_memory_pressure(sk);
2750
2751 /* Over hard limit. */
2752 if (allocated > sk_prot_mem_limits(sk, 2))
2753 goto suppress_allocation;
2754
2755 /* guarantee minimum buffer size under pressure */
2756 if (kind == SK_MEM_RECV) {
2757 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2758 return 1;
2759
2760 } else { /* SK_MEM_SEND */
2761 int wmem0 = sk_get_wmem0(sk, prot);
2762
2763 if (sk->sk_type == SOCK_STREAM) {
2764 if (sk->sk_wmem_queued < wmem0)
2765 return 1;
2766 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2767 return 1;
2768 }
2769 }
2770
2771 if (sk_has_memory_pressure(sk)) {
2772 u64 alloc;
2773
2774 if (!sk_under_memory_pressure(sk))
2775 return 1;
2776 alloc = sk_sockets_allocated_read_positive(sk);
2777 if (sk_prot_mem_limits(sk, 2) > alloc *
2778 sk_mem_pages(sk->sk_wmem_queued +
2779 atomic_read(&sk->sk_rmem_alloc) +
2780 sk->sk_forward_alloc))
2781 return 1;
2782 }
2783
2784suppress_allocation:
2785
2786 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2787 sk_stream_moderate_sndbuf(sk);
2788
2789 /* Fail only if socket is _under_ its sndbuf.
2790 * In this case we cannot block, so that we have to fail.
2791 */
2792 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2793 return 1;
2794 }
2795
2796 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2797 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2798
2799 sk_memory_allocated_sub(sk, amt);
2800
2801 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2802 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2803
2804 return 0;
2805}
2806EXPORT_SYMBOL(__sk_mem_raise_allocated);
2807
2808/**
2809 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2810 * @sk: socket
2811 * @size: memory size to allocate
2812 * @kind: allocation type
2813 *
2814 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2815 * rmem allocation. This function assumes that protocols which have
2816 * memory_pressure use sk_wmem_queued as write buffer accounting.
2817 */
2818int __sk_mem_schedule(struct sock *sk, int size, int kind)
2819{
2820 int ret, amt = sk_mem_pages(size);
2821
2822 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2823 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2824 if (!ret)
2825 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2826 return ret;
2827}
2828EXPORT_SYMBOL(__sk_mem_schedule);
2829
2830/**
2831 * __sk_mem_reduce_allocated - reclaim memory_allocated
2832 * @sk: socket
2833 * @amount: number of quanta
2834 *
2835 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2836 */
2837void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2838{
2839 sk_memory_allocated_sub(sk, amount);
2840
2841 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2842 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2843
2844 if (sk_under_memory_pressure(sk) &&
2845 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2846 sk_leave_memory_pressure(sk);
2847}
2848EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2849
2850/**
2851 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2852 * @sk: socket
2853 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2854 */
2855void __sk_mem_reclaim(struct sock *sk, int amount)
2856{
2857 amount >>= SK_MEM_QUANTUM_SHIFT;
2858 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2859 __sk_mem_reduce_allocated(sk, amount);
2860}
2861EXPORT_SYMBOL(__sk_mem_reclaim);
2862
2863int sk_set_peek_off(struct sock *sk, int val)
2864{
2865 sk->sk_peek_off = val;
2866 return 0;
2867}
2868EXPORT_SYMBOL_GPL(sk_set_peek_off);
2869
2870/*
2871 * Set of default routines for initialising struct proto_ops when
2872 * the protocol does not support a particular function. In certain
2873 * cases where it makes no sense for a protocol to have a "do nothing"
2874 * function, some default processing is provided.
2875 */
2876
2877int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2878{
2879 return -EOPNOTSUPP;
2880}
2881EXPORT_SYMBOL(sock_no_bind);
2882
2883int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2884 int len, int flags)
2885{
2886 return -EOPNOTSUPP;
2887}
2888EXPORT_SYMBOL(sock_no_connect);
2889
2890int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2891{
2892 return -EOPNOTSUPP;
2893}
2894EXPORT_SYMBOL(sock_no_socketpair);
2895
2896int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2897 bool kern)
2898{
2899 return -EOPNOTSUPP;
2900}
2901EXPORT_SYMBOL(sock_no_accept);
2902
2903int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2904 int peer)
2905{
2906 return -EOPNOTSUPP;
2907}
2908EXPORT_SYMBOL(sock_no_getname);
2909
2910int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2911{
2912 return -EOPNOTSUPP;
2913}
2914EXPORT_SYMBOL(sock_no_ioctl);
2915
2916int sock_no_listen(struct socket *sock, int backlog)
2917{
2918 return -EOPNOTSUPP;
2919}
2920EXPORT_SYMBOL(sock_no_listen);
2921
2922int sock_no_shutdown(struct socket *sock, int how)
2923{
2924 return -EOPNOTSUPP;
2925}
2926EXPORT_SYMBOL(sock_no_shutdown);
2927
2928int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2929{
2930 return -EOPNOTSUPP;
2931}
2932EXPORT_SYMBOL(sock_no_sendmsg);
2933
2934int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2935{
2936 return -EOPNOTSUPP;
2937}
2938EXPORT_SYMBOL(sock_no_sendmsg_locked);
2939
2940int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2941 int flags)
2942{
2943 return -EOPNOTSUPP;
2944}
2945EXPORT_SYMBOL(sock_no_recvmsg);
2946
2947int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2948{
2949 /* Mirror missing mmap method error code */
2950 return -ENODEV;
2951}
2952EXPORT_SYMBOL(sock_no_mmap);
2953
2954/*
2955 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2956 * various sock-based usage counts.
2957 */
2958void __receive_sock(struct file *file)
2959{
2960 struct socket *sock;
2961
2962 sock = sock_from_file(file);
2963 if (sock) {
2964 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2965 sock_update_classid(&sock->sk->sk_cgrp_data);
2966 }
2967}
2968
2969ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2970{
2971 ssize_t res;
2972 struct msghdr msg = {.msg_flags = flags};
2973 struct kvec iov;
2974 char *kaddr = kmap(page);
2975 iov.iov_base = kaddr + offset;
2976 iov.iov_len = size;
2977 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2978 kunmap(page);
2979 return res;
2980}
2981EXPORT_SYMBOL(sock_no_sendpage);
2982
2983ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2984 int offset, size_t size, int flags)
2985{
2986 ssize_t res;
2987 struct msghdr msg = {.msg_flags = flags};
2988 struct kvec iov;
2989 char *kaddr = kmap(page);
2990
2991 iov.iov_base = kaddr + offset;
2992 iov.iov_len = size;
2993 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2994 kunmap(page);
2995 return res;
2996}
2997EXPORT_SYMBOL(sock_no_sendpage_locked);
2998
2999/*
3000 * Default Socket Callbacks
3001 */
3002
3003static void sock_def_wakeup(struct sock *sk)
3004{
3005 struct socket_wq *wq;
3006
3007 rcu_read_lock();
3008 wq = rcu_dereference(sk->sk_wq);
3009 if (skwq_has_sleeper(wq))
3010 wake_up_interruptible_all(&wq->wait);
3011 rcu_read_unlock();
3012}
3013
3014static void sock_def_error_report(struct sock *sk)
3015{
3016 struct socket_wq *wq;
3017
3018 rcu_read_lock();
3019 wq = rcu_dereference(sk->sk_wq);
3020 if (skwq_has_sleeper(wq))
3021 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3022 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3023 rcu_read_unlock();
3024}
3025
3026void sock_def_readable(struct sock *sk)
3027{
3028 struct socket_wq *wq;
3029
3030 rcu_read_lock();
3031 wq = rcu_dereference(sk->sk_wq);
3032 if (skwq_has_sleeper(wq))
3033 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3034 EPOLLRDNORM | EPOLLRDBAND);
3035 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3036 rcu_read_unlock();
3037}
3038
3039static void sock_def_write_space(struct sock *sk)
3040{
3041 struct socket_wq *wq;
3042
3043 rcu_read_lock();
3044
3045 /* Do not wake up a writer until he can make "significant"
3046 * progress. --DaveM
3047 */
3048 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
3049 wq = rcu_dereference(sk->sk_wq);
3050 if (skwq_has_sleeper(wq))
3051 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3052 EPOLLWRNORM | EPOLLWRBAND);
3053
3054 /* Should agree with poll, otherwise some programs break */
3055 if (sock_writeable(sk))
3056 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3057 }
3058
3059 rcu_read_unlock();
3060}
3061
3062static void sock_def_destruct(struct sock *sk)
3063{
3064}
3065
3066void sk_send_sigurg(struct sock *sk)
3067{
3068 if (sk->sk_socket && sk->sk_socket->file)
3069 if (send_sigurg(&sk->sk_socket->file->f_owner))
3070 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3071}
3072EXPORT_SYMBOL(sk_send_sigurg);
3073
3074void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3075 unsigned long expires)
3076{
3077 if (!mod_timer(timer, expires))
3078 sock_hold(sk);
3079}
3080EXPORT_SYMBOL(sk_reset_timer);
3081
3082void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3083{
3084 if (del_timer(timer))
3085 __sock_put(sk);
3086}
3087EXPORT_SYMBOL(sk_stop_timer);
3088
3089void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3090{
3091 if (del_timer_sync(timer))
3092 __sock_put(sk);
3093}
3094EXPORT_SYMBOL(sk_stop_timer_sync);
3095
3096void sock_init_data(struct socket *sock, struct sock *sk)
3097{
3098 sk_init_common(sk);
3099 sk->sk_send_head = NULL;
3100
3101 timer_setup(&sk->sk_timer, NULL, 0);
3102
3103 sk->sk_allocation = GFP_KERNEL;
3104 sk->sk_rcvbuf = sysctl_rmem_default;
3105 sk->sk_sndbuf = sysctl_wmem_default;
3106 sk->sk_state = TCP_CLOSE;
3107 sk_set_socket(sk, sock);
3108
3109 sock_set_flag(sk, SOCK_ZAPPED);
3110
3111 if (sock) {
3112 sk->sk_type = sock->type;
3113 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3114 sock->sk = sk;
3115 sk->sk_uid = SOCK_INODE(sock)->i_uid;
3116 } else {
3117 RCU_INIT_POINTER(sk->sk_wq, NULL);
3118 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
3119 }
3120
3121 rwlock_init(&sk->sk_callback_lock);
3122 if (sk->sk_kern_sock)
3123 lockdep_set_class_and_name(
3124 &sk->sk_callback_lock,
3125 af_kern_callback_keys + sk->sk_family,
3126 af_family_kern_clock_key_strings[sk->sk_family]);
3127 else
3128 lockdep_set_class_and_name(
3129 &sk->sk_callback_lock,
3130 af_callback_keys + sk->sk_family,
3131 af_family_clock_key_strings[sk->sk_family]);
3132
3133 sk->sk_state_change = sock_def_wakeup;
3134 sk->sk_data_ready = sock_def_readable;
3135 sk->sk_write_space = sock_def_write_space;
3136 sk->sk_error_report = sock_def_error_report;
3137 sk->sk_destruct = sock_def_destruct;
3138
3139 sk->sk_frag.page = NULL;
3140 sk->sk_frag.offset = 0;
3141 sk->sk_peek_off = -1;
3142
3143 sk->sk_peer_pid = NULL;
3144 sk->sk_peer_cred = NULL;
3145 spin_lock_init(&sk->sk_peer_lock);
3146
3147 sk->sk_write_pending = 0;
3148 sk->sk_rcvlowat = 1;
3149 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3150 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3151
3152 sk->sk_stamp = SK_DEFAULT_STAMP;
3153#if BITS_PER_LONG==32
3154 seqlock_init(&sk->sk_stamp_seq);
3155#endif
3156 atomic_set(&sk->sk_zckey, 0);
3157
3158#ifdef CONFIG_NET_RX_BUSY_POLL
3159 sk->sk_napi_id = 0;
3160 sk->sk_ll_usec = sysctl_net_busy_read;
3161#endif
3162
3163 sk->sk_max_pacing_rate = ~0UL;
3164 sk->sk_pacing_rate = ~0UL;
3165 WRITE_ONCE(sk->sk_pacing_shift, 10);
3166 sk->sk_incoming_cpu = -1;
3167
3168 sk_rx_queue_clear(sk);
3169 /*
3170 * Before updating sk_refcnt, we must commit prior changes to memory
3171 * (Documentation/RCU/rculist_nulls.rst for details)
3172 */
3173 smp_wmb();
3174 refcount_set(&sk->sk_refcnt, 1);
3175 atomic_set(&sk->sk_drops, 0);
3176}
3177EXPORT_SYMBOL(sock_init_data);
3178
3179void lock_sock_nested(struct sock *sk, int subclass)
3180{
3181 might_sleep();
3182 spin_lock_bh(&sk->sk_lock.slock);
3183 if (sk->sk_lock.owned)
3184 __lock_sock(sk);
3185 sk->sk_lock.owned = 1;
3186 spin_unlock(&sk->sk_lock.slock);
3187 /*
3188 * The sk_lock has mutex_lock() semantics here:
3189 */
3190 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3191 local_bh_enable();
3192}
3193EXPORT_SYMBOL(lock_sock_nested);
3194
3195void release_sock(struct sock *sk)
3196{
3197 spin_lock_bh(&sk->sk_lock.slock);
3198 if (sk->sk_backlog.tail)
3199 __release_sock(sk);
3200
3201 /* Warning : release_cb() might need to release sk ownership,
3202 * ie call sock_release_ownership(sk) before us.
3203 */
3204 if (sk->sk_prot->release_cb)
3205 sk->sk_prot->release_cb(sk);
3206
3207 sock_release_ownership(sk);
3208 if (waitqueue_active(&sk->sk_lock.wq))
3209 wake_up(&sk->sk_lock.wq);
3210 spin_unlock_bh(&sk->sk_lock.slock);
3211}
3212EXPORT_SYMBOL(release_sock);
3213
3214/**
3215 * lock_sock_fast - fast version of lock_sock
3216 * @sk: socket
3217 *
3218 * This version should be used for very small section, where process wont block
3219 * return false if fast path is taken:
3220 *
3221 * sk_lock.slock locked, owned = 0, BH disabled
3222 *
3223 * return true if slow path is taken:
3224 *
3225 * sk_lock.slock unlocked, owned = 1, BH enabled
3226 */
3227bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3228{
3229 might_sleep();
3230 spin_lock_bh(&sk->sk_lock.slock);
3231
3232 if (!sk->sk_lock.owned)
3233 /*
3234 * Note : We must disable BH
3235 */
3236 return false;
3237
3238 __lock_sock(sk);
3239 sk->sk_lock.owned = 1;
3240 spin_unlock(&sk->sk_lock.slock);
3241 /*
3242 * The sk_lock has mutex_lock() semantics here:
3243 */
3244 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3245 __acquire(&sk->sk_lock.slock);
3246 local_bh_enable();
3247 return true;
3248}
3249EXPORT_SYMBOL(lock_sock_fast);
3250
3251int sock_gettstamp(struct socket *sock, void __user *userstamp,
3252 bool timeval, bool time32)
3253{
3254 struct sock *sk = sock->sk;
3255 struct timespec64 ts;
3256
3257 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3258 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3259 if (ts.tv_sec == -1)
3260 return -ENOENT;
3261 if (ts.tv_sec == 0) {
3262 ktime_t kt = ktime_get_real();
3263 sock_write_timestamp(sk, kt);
3264 ts = ktime_to_timespec64(kt);
3265 }
3266
3267 if (timeval)
3268 ts.tv_nsec /= 1000;
3269
3270#ifdef CONFIG_COMPAT_32BIT_TIME
3271 if (time32)
3272 return put_old_timespec32(&ts, userstamp);
3273#endif
3274#ifdef CONFIG_SPARC64
3275 /* beware of padding in sparc64 timeval */
3276 if (timeval && !in_compat_syscall()) {
3277 struct __kernel_old_timeval __user tv = {
3278 .tv_sec = ts.tv_sec,
3279 .tv_usec = ts.tv_nsec,
3280 };
3281 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3282 return -EFAULT;
3283 return 0;
3284 }
3285#endif
3286 return put_timespec64(&ts, userstamp);
3287}
3288EXPORT_SYMBOL(sock_gettstamp);
3289
3290void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3291{
3292 if (!sock_flag(sk, flag)) {
3293 unsigned long previous_flags = sk->sk_flags;
3294
3295 sock_set_flag(sk, flag);
3296 /*
3297 * we just set one of the two flags which require net
3298 * time stamping, but time stamping might have been on
3299 * already because of the other one
3300 */
3301 if (sock_needs_netstamp(sk) &&
3302 !(previous_flags & SK_FLAGS_TIMESTAMP))
3303 net_enable_timestamp();
3304 }
3305}
3306
3307int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3308 int level, int type)
3309{
3310 struct sock_exterr_skb *serr;
3311 struct sk_buff *skb;
3312 int copied, err;
3313
3314 err = -EAGAIN;
3315 skb = sock_dequeue_err_skb(sk);
3316 if (skb == NULL)
3317 goto out;
3318
3319 copied = skb->len;
3320 if (copied > len) {
3321 msg->msg_flags |= MSG_TRUNC;
3322 copied = len;
3323 }
3324 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3325 if (err)
3326 goto out_free_skb;
3327
3328 sock_recv_timestamp(msg, sk, skb);
3329
3330 serr = SKB_EXT_ERR(skb);
3331 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3332
3333 msg->msg_flags |= MSG_ERRQUEUE;
3334 err = copied;
3335
3336out_free_skb:
3337 kfree_skb(skb);
3338out:
3339 return err;
3340}
3341EXPORT_SYMBOL(sock_recv_errqueue);
3342
3343/*
3344 * Get a socket option on an socket.
3345 *
3346 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3347 * asynchronous errors should be reported by getsockopt. We assume
3348 * this means if you specify SO_ERROR (otherwise whats the point of it).
3349 */
3350int sock_common_getsockopt(struct socket *sock, int level, int optname,
3351 char __user *optval, int __user *optlen)
3352{
3353 struct sock *sk = sock->sk;
3354
3355 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3356}
3357EXPORT_SYMBOL(sock_common_getsockopt);
3358
3359int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3360 int flags)
3361{
3362 struct sock *sk = sock->sk;
3363 int addr_len = 0;
3364 int err;
3365
3366 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3367 flags & ~MSG_DONTWAIT, &addr_len);
3368 if (err >= 0)
3369 msg->msg_namelen = addr_len;
3370 return err;
3371}
3372EXPORT_SYMBOL(sock_common_recvmsg);
3373
3374/*
3375 * Set socket options on an inet socket.
3376 */
3377int sock_common_setsockopt(struct socket *sock, int level, int optname,
3378 sockptr_t optval, unsigned int optlen)
3379{
3380 struct sock *sk = sock->sk;
3381
3382 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3383}
3384EXPORT_SYMBOL(sock_common_setsockopt);
3385
3386void sk_common_release(struct sock *sk)
3387{
3388 if (sk->sk_prot->destroy)
3389 sk->sk_prot->destroy(sk);
3390
3391 /*
3392 * Observation: when sk_common_release is called, processes have
3393 * no access to socket. But net still has.
3394 * Step one, detach it from networking:
3395 *
3396 * A. Remove from hash tables.
3397 */
3398
3399 sk->sk_prot->unhash(sk);
3400
3401 /*
3402 * In this point socket cannot receive new packets, but it is possible
3403 * that some packets are in flight because some CPU runs receiver and
3404 * did hash table lookup before we unhashed socket. They will achieve
3405 * receive queue and will be purged by socket destructor.
3406 *
3407 * Also we still have packets pending on receive queue and probably,
3408 * our own packets waiting in device queues. sock_destroy will drain
3409 * receive queue, but transmitted packets will delay socket destruction
3410 * until the last reference will be released.
3411 */
3412
3413 sock_orphan(sk);
3414
3415 xfrm_sk_free_policy(sk);
3416
3417 sk_refcnt_debug_release(sk);
3418
3419 sock_put(sk);
3420}
3421EXPORT_SYMBOL(sk_common_release);
3422
3423void sk_get_meminfo(const struct sock *sk, u32 *mem)
3424{
3425 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3426
3427 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3428 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3429 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3430 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3431 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3432 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3433 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3434 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3435 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3436}
3437
3438#ifdef CONFIG_PROC_FS
3439#define PROTO_INUSE_NR 64 /* should be enough for the first time */
3440struct prot_inuse {
3441 int val[PROTO_INUSE_NR];
3442};
3443
3444static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3445
3446void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3447{
3448 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3449}
3450EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3451
3452int sock_prot_inuse_get(struct net *net, struct proto *prot)
3453{
3454 int cpu, idx = prot->inuse_idx;
3455 int res = 0;
3456
3457 for_each_possible_cpu(cpu)
3458 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3459
3460 return res >= 0 ? res : 0;
3461}
3462EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3463
3464static void sock_inuse_add(struct net *net, int val)
3465{
3466 this_cpu_add(*net->core.sock_inuse, val);
3467}
3468
3469int sock_inuse_get(struct net *net)
3470{
3471 int cpu, res = 0;
3472
3473 for_each_possible_cpu(cpu)
3474 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3475
3476 return res;
3477}
3478
3479EXPORT_SYMBOL_GPL(sock_inuse_get);
3480
3481static int __net_init sock_inuse_init_net(struct net *net)
3482{
3483 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3484 if (net->core.prot_inuse == NULL)
3485 return -ENOMEM;
3486
3487 net->core.sock_inuse = alloc_percpu(int);
3488 if (net->core.sock_inuse == NULL)
3489 goto out;
3490
3491 return 0;
3492
3493out:
3494 free_percpu(net->core.prot_inuse);
3495 return -ENOMEM;
3496}
3497
3498static void __net_exit sock_inuse_exit_net(struct net *net)
3499{
3500 free_percpu(net->core.prot_inuse);
3501 free_percpu(net->core.sock_inuse);
3502}
3503
3504static struct pernet_operations net_inuse_ops = {
3505 .init = sock_inuse_init_net,
3506 .exit = sock_inuse_exit_net,
3507};
3508
3509static __init int net_inuse_init(void)
3510{
3511 if (register_pernet_subsys(&net_inuse_ops))
3512 panic("Cannot initialize net inuse counters");
3513
3514 return 0;
3515}
3516
3517core_initcall(net_inuse_init);
3518
3519static int assign_proto_idx(struct proto *prot)
3520{
3521 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3522
3523 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3524 pr_err("PROTO_INUSE_NR exhausted\n");
3525 return -ENOSPC;
3526 }
3527
3528 set_bit(prot->inuse_idx, proto_inuse_idx);
3529 return 0;
3530}
3531
3532static void release_proto_idx(struct proto *prot)
3533{
3534 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3535 clear_bit(prot->inuse_idx, proto_inuse_idx);
3536}
3537#else
3538static inline int assign_proto_idx(struct proto *prot)
3539{
3540 return 0;
3541}
3542
3543static inline void release_proto_idx(struct proto *prot)
3544{
3545}
3546
3547static void sock_inuse_add(struct net *net, int val)
3548{
3549}
3550#endif
3551
3552static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3553{
3554 if (!twsk_prot)
3555 return;
3556 kfree(twsk_prot->twsk_slab_name);
3557 twsk_prot->twsk_slab_name = NULL;
3558 kmem_cache_destroy(twsk_prot->twsk_slab);
3559 twsk_prot->twsk_slab = NULL;
3560}
3561
3562static int tw_prot_init(const struct proto *prot)
3563{
3564 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3565
3566 if (!twsk_prot)
3567 return 0;
3568
3569 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3570 prot->name);
3571 if (!twsk_prot->twsk_slab_name)
3572 return -ENOMEM;
3573
3574 twsk_prot->twsk_slab =
3575 kmem_cache_create(twsk_prot->twsk_slab_name,
3576 twsk_prot->twsk_obj_size, 0,
3577 SLAB_ACCOUNT | prot->slab_flags,
3578 NULL);
3579 if (!twsk_prot->twsk_slab) {
3580 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3581 prot->name);
3582 return -ENOMEM;
3583 }
3584
3585 return 0;
3586}
3587
3588static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3589{
3590 if (!rsk_prot)
3591 return;
3592 kfree(rsk_prot->slab_name);
3593 rsk_prot->slab_name = NULL;
3594 kmem_cache_destroy(rsk_prot->slab);
3595 rsk_prot->slab = NULL;
3596}
3597
3598static int req_prot_init(const struct proto *prot)
3599{
3600 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3601
3602 if (!rsk_prot)
3603 return 0;
3604
3605 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3606 prot->name);
3607 if (!rsk_prot->slab_name)
3608 return -ENOMEM;
3609
3610 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3611 rsk_prot->obj_size, 0,
3612 SLAB_ACCOUNT | prot->slab_flags,
3613 NULL);
3614
3615 if (!rsk_prot->slab) {
3616 pr_crit("%s: Can't create request sock SLAB cache!\n",
3617 prot->name);
3618 return -ENOMEM;
3619 }
3620 return 0;
3621}
3622
3623int proto_register(struct proto *prot, int alloc_slab)
3624{
3625 int ret = -ENOBUFS;
3626
3627 if (alloc_slab) {
3628 prot->slab = kmem_cache_create_usercopy(prot->name,
3629 prot->obj_size, 0,
3630 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3631 prot->slab_flags,
3632 prot->useroffset, prot->usersize,
3633 NULL);
3634
3635 if (prot->slab == NULL) {
3636 pr_crit("%s: Can't create sock SLAB cache!\n",
3637 prot->name);
3638 goto out;
3639 }
3640
3641 if (req_prot_init(prot))
3642 goto out_free_request_sock_slab;
3643
3644 if (tw_prot_init(prot))
3645 goto out_free_timewait_sock_slab;
3646 }
3647
3648 mutex_lock(&proto_list_mutex);
3649 ret = assign_proto_idx(prot);
3650 if (ret) {
3651 mutex_unlock(&proto_list_mutex);
3652 goto out_free_timewait_sock_slab;
3653 }
3654 list_add(&prot->node, &proto_list);
3655 mutex_unlock(&proto_list_mutex);
3656 return ret;
3657
3658out_free_timewait_sock_slab:
3659 if (alloc_slab)
3660 tw_prot_cleanup(prot->twsk_prot);
3661out_free_request_sock_slab:
3662 if (alloc_slab) {
3663 req_prot_cleanup(prot->rsk_prot);
3664
3665 kmem_cache_destroy(prot->slab);
3666 prot->slab = NULL;
3667 }
3668out:
3669 return ret;
3670}
3671EXPORT_SYMBOL(proto_register);
3672
3673void proto_unregister(struct proto *prot)
3674{
3675 mutex_lock(&proto_list_mutex);
3676 release_proto_idx(prot);
3677 list_del(&prot->node);
3678 mutex_unlock(&proto_list_mutex);
3679
3680 kmem_cache_destroy(prot->slab);
3681 prot->slab = NULL;
3682
3683 req_prot_cleanup(prot->rsk_prot);
3684 tw_prot_cleanup(prot->twsk_prot);
3685}
3686EXPORT_SYMBOL(proto_unregister);
3687
3688int sock_load_diag_module(int family, int protocol)
3689{
3690 if (!protocol) {
3691 if (!sock_is_registered(family))
3692 return -ENOENT;
3693
3694 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3695 NETLINK_SOCK_DIAG, family);
3696 }
3697
3698#ifdef CONFIG_INET
3699 if (family == AF_INET &&
3700 protocol != IPPROTO_RAW &&
3701 protocol < MAX_INET_PROTOS &&
3702 !rcu_access_pointer(inet_protos[protocol]))
3703 return -ENOENT;
3704#endif
3705
3706 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3707 NETLINK_SOCK_DIAG, family, protocol);
3708}
3709EXPORT_SYMBOL(sock_load_diag_module);
3710
3711#ifdef CONFIG_PROC_FS
3712static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3713 __acquires(proto_list_mutex)
3714{
3715 mutex_lock(&proto_list_mutex);
3716 return seq_list_start_head(&proto_list, *pos);
3717}
3718
3719static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3720{
3721 return seq_list_next(v, &proto_list, pos);
3722}
3723
3724static void proto_seq_stop(struct seq_file *seq, void *v)
3725 __releases(proto_list_mutex)
3726{
3727 mutex_unlock(&proto_list_mutex);
3728}
3729
3730static char proto_method_implemented(const void *method)
3731{
3732 return method == NULL ? 'n' : 'y';
3733}
3734static long sock_prot_memory_allocated(struct proto *proto)
3735{
3736 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3737}
3738
3739static const char *sock_prot_memory_pressure(struct proto *proto)
3740{
3741 return proto->memory_pressure != NULL ?
3742 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3743}
3744
3745static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3746{
3747
3748 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3749 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3750 proto->name,
3751 proto->obj_size,
3752 sock_prot_inuse_get(seq_file_net(seq), proto),
3753 sock_prot_memory_allocated(proto),
3754 sock_prot_memory_pressure(proto),
3755 proto->max_header,
3756 proto->slab == NULL ? "no" : "yes",
3757 module_name(proto->owner),
3758 proto_method_implemented(proto->close),
3759 proto_method_implemented(proto->connect),
3760 proto_method_implemented(proto->disconnect),
3761 proto_method_implemented(proto->accept),
3762 proto_method_implemented(proto->ioctl),
3763 proto_method_implemented(proto->init),
3764 proto_method_implemented(proto->destroy),
3765 proto_method_implemented(proto->shutdown),
3766 proto_method_implemented(proto->setsockopt),
3767 proto_method_implemented(proto->getsockopt),
3768 proto_method_implemented(proto->sendmsg),
3769 proto_method_implemented(proto->recvmsg),
3770 proto_method_implemented(proto->sendpage),
3771 proto_method_implemented(proto->bind),
3772 proto_method_implemented(proto->backlog_rcv),
3773 proto_method_implemented(proto->hash),
3774 proto_method_implemented(proto->unhash),
3775 proto_method_implemented(proto->get_port),
3776 proto_method_implemented(proto->enter_memory_pressure));
3777}
3778
3779static int proto_seq_show(struct seq_file *seq, void *v)
3780{
3781 if (v == &proto_list)
3782 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3783 "protocol",
3784 "size",
3785 "sockets",
3786 "memory",
3787 "press",
3788 "maxhdr",
3789 "slab",
3790 "module",
3791 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3792 else
3793 proto_seq_printf(seq, list_entry(v, struct proto, node));
3794 return 0;
3795}
3796
3797static const struct seq_operations proto_seq_ops = {
3798 .start = proto_seq_start,
3799 .next = proto_seq_next,
3800 .stop = proto_seq_stop,
3801 .show = proto_seq_show,
3802};
3803
3804static __net_init int proto_init_net(struct net *net)
3805{
3806 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3807 sizeof(struct seq_net_private)))
3808 return -ENOMEM;
3809
3810 return 0;
3811}
3812
3813static __net_exit void proto_exit_net(struct net *net)
3814{
3815 remove_proc_entry("protocols", net->proc_net);
3816}
3817
3818
3819static __net_initdata struct pernet_operations proto_net_ops = {
3820 .init = proto_init_net,
3821 .exit = proto_exit_net,
3822};
3823
3824static int __init proto_init(void)
3825{
3826 return register_pernet_subsys(&proto_net_ops);
3827}
3828
3829subsys_initcall(proto_init);
3830
3831#endif /* PROC_FS */
3832
3833#ifdef CONFIG_NET_RX_BUSY_POLL
3834bool sk_busy_loop_end(void *p, unsigned long start_time)
3835{
3836 struct sock *sk = p;
3837
3838 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3839 sk_busy_loop_timeout(sk, start_time);
3840}
3841EXPORT_SYMBOL(sk_busy_loop_end);
3842#endif /* CONFIG_NET_RX_BUSY_POLL */
3843
3844int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3845{
3846 if (!sk->sk_prot->bind_add)
3847 return -EOPNOTSUPP;
3848 return sk->sk_prot->bind_add(sk, addr, addr_len);
3849}
3850EXPORT_SYMBOL(sock_bind_add);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <asm/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/udp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113#include <linux/user_namespace.h>
114#include <linux/static_key.h>
115#include <linux/memcontrol.h>
116#include <linux/prefetch.h>
117#include <linux/compat.h>
118#include <linux/mroute.h>
119#include <linux/mroute6.h>
120#include <linux/icmpv6.h>
121
122#include <linux/uaccess.h>
123
124#include <linux/netdevice.h>
125#include <net/protocol.h>
126#include <linux/skbuff.h>
127#include <net/net_namespace.h>
128#include <net/request_sock.h>
129#include <net/sock.h>
130#include <linux/net_tstamp.h>
131#include <net/xfrm.h>
132#include <linux/ipsec.h>
133#include <net/cls_cgroup.h>
134#include <net/netprio_cgroup.h>
135#include <linux/sock_diag.h>
136
137#include <linux/filter.h>
138#include <net/sock_reuseport.h>
139#include <net/bpf_sk_storage.h>
140
141#include <trace/events/sock.h>
142
143#include <net/tcp.h>
144#include <net/busy_poll.h>
145#include <net/phonet/phonet.h>
146
147#include <linux/ethtool.h>
148
149#include "dev.h"
150
151static DEFINE_MUTEX(proto_list_mutex);
152static LIST_HEAD(proto_list);
153
154static void sock_def_write_space_wfree(struct sock *sk);
155static void sock_def_write_space(struct sock *sk);
156
157/**
158 * sk_ns_capable - General socket capability test
159 * @sk: Socket to use a capability on or through
160 * @user_ns: The user namespace of the capability to use
161 * @cap: The capability to use
162 *
163 * Test to see if the opener of the socket had when the socket was
164 * created and the current process has the capability @cap in the user
165 * namespace @user_ns.
166 */
167bool sk_ns_capable(const struct sock *sk,
168 struct user_namespace *user_ns, int cap)
169{
170 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
171 ns_capable(user_ns, cap);
172}
173EXPORT_SYMBOL(sk_ns_capable);
174
175/**
176 * sk_capable - Socket global capability test
177 * @sk: Socket to use a capability on or through
178 * @cap: The global capability to use
179 *
180 * Test to see if the opener of the socket had when the socket was
181 * created and the current process has the capability @cap in all user
182 * namespaces.
183 */
184bool sk_capable(const struct sock *sk, int cap)
185{
186 return sk_ns_capable(sk, &init_user_ns, cap);
187}
188EXPORT_SYMBOL(sk_capable);
189
190/**
191 * sk_net_capable - Network namespace socket capability test
192 * @sk: Socket to use a capability on or through
193 * @cap: The capability to use
194 *
195 * Test to see if the opener of the socket had when the socket was created
196 * and the current process has the capability @cap over the network namespace
197 * the socket is a member of.
198 */
199bool sk_net_capable(const struct sock *sk, int cap)
200{
201 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
202}
203EXPORT_SYMBOL(sk_net_capable);
204
205/*
206 * Each address family might have different locking rules, so we have
207 * one slock key per address family and separate keys for internal and
208 * userspace sockets.
209 */
210static struct lock_class_key af_family_keys[AF_MAX];
211static struct lock_class_key af_family_kern_keys[AF_MAX];
212static struct lock_class_key af_family_slock_keys[AF_MAX];
213static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
214
215/*
216 * Make lock validator output more readable. (we pre-construct these
217 * strings build-time, so that runtime initialization of socket
218 * locks is fast):
219 */
220
221#define _sock_locks(x) \
222 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
223 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
224 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
225 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
226 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
227 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
228 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
229 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
230 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
231 x "27" , x "28" , x "AF_CAN" , \
232 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
233 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
234 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
235 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
236 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
237 x "AF_MCTP" , \
238 x "AF_MAX"
239
240static const char *const af_family_key_strings[AF_MAX+1] = {
241 _sock_locks("sk_lock-")
242};
243static const char *const af_family_slock_key_strings[AF_MAX+1] = {
244 _sock_locks("slock-")
245};
246static const char *const af_family_clock_key_strings[AF_MAX+1] = {
247 _sock_locks("clock-")
248};
249
250static const char *const af_family_kern_key_strings[AF_MAX+1] = {
251 _sock_locks("k-sk_lock-")
252};
253static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
254 _sock_locks("k-slock-")
255};
256static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
257 _sock_locks("k-clock-")
258};
259static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
260 _sock_locks("rlock-")
261};
262static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
263 _sock_locks("wlock-")
264};
265static const char *const af_family_elock_key_strings[AF_MAX+1] = {
266 _sock_locks("elock-")
267};
268
269/*
270 * sk_callback_lock and sk queues locking rules are per-address-family,
271 * so split the lock classes by using a per-AF key:
272 */
273static struct lock_class_key af_callback_keys[AF_MAX];
274static struct lock_class_key af_rlock_keys[AF_MAX];
275static struct lock_class_key af_wlock_keys[AF_MAX];
276static struct lock_class_key af_elock_keys[AF_MAX];
277static struct lock_class_key af_kern_callback_keys[AF_MAX];
278
279/* Run time adjustable parameters. */
280__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
281EXPORT_SYMBOL(sysctl_wmem_max);
282__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
283EXPORT_SYMBOL(sysctl_rmem_max);
284__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
285__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
286
287int sysctl_tstamp_allow_data __read_mostly = 1;
288
289DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
290EXPORT_SYMBOL_GPL(memalloc_socks_key);
291
292/**
293 * sk_set_memalloc - sets %SOCK_MEMALLOC
294 * @sk: socket to set it on
295 *
296 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
297 * It's the responsibility of the admin to adjust min_free_kbytes
298 * to meet the requirements
299 */
300void sk_set_memalloc(struct sock *sk)
301{
302 sock_set_flag(sk, SOCK_MEMALLOC);
303 sk->sk_allocation |= __GFP_MEMALLOC;
304 static_branch_inc(&memalloc_socks_key);
305}
306EXPORT_SYMBOL_GPL(sk_set_memalloc);
307
308void sk_clear_memalloc(struct sock *sk)
309{
310 sock_reset_flag(sk, SOCK_MEMALLOC);
311 sk->sk_allocation &= ~__GFP_MEMALLOC;
312 static_branch_dec(&memalloc_socks_key);
313
314 /*
315 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
316 * progress of swapping. SOCK_MEMALLOC may be cleared while
317 * it has rmem allocations due to the last swapfile being deactivated
318 * but there is a risk that the socket is unusable due to exceeding
319 * the rmem limits. Reclaim the reserves and obey rmem limits again.
320 */
321 sk_mem_reclaim(sk);
322}
323EXPORT_SYMBOL_GPL(sk_clear_memalloc);
324
325int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
326{
327 int ret;
328 unsigned int noreclaim_flag;
329
330 /* these should have been dropped before queueing */
331 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
332
333 noreclaim_flag = memalloc_noreclaim_save();
334 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
335 tcp_v6_do_rcv,
336 tcp_v4_do_rcv,
337 sk, skb);
338 memalloc_noreclaim_restore(noreclaim_flag);
339
340 return ret;
341}
342EXPORT_SYMBOL(__sk_backlog_rcv);
343
344void sk_error_report(struct sock *sk)
345{
346 sk->sk_error_report(sk);
347
348 switch (sk->sk_family) {
349 case AF_INET:
350 fallthrough;
351 case AF_INET6:
352 trace_inet_sk_error_report(sk);
353 break;
354 default:
355 break;
356 }
357}
358EXPORT_SYMBOL(sk_error_report);
359
360int sock_get_timeout(long timeo, void *optval, bool old_timeval)
361{
362 struct __kernel_sock_timeval tv;
363
364 if (timeo == MAX_SCHEDULE_TIMEOUT) {
365 tv.tv_sec = 0;
366 tv.tv_usec = 0;
367 } else {
368 tv.tv_sec = timeo / HZ;
369 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
370 }
371
372 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
373 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
374 *(struct old_timeval32 *)optval = tv32;
375 return sizeof(tv32);
376 }
377
378 if (old_timeval) {
379 struct __kernel_old_timeval old_tv;
380 old_tv.tv_sec = tv.tv_sec;
381 old_tv.tv_usec = tv.tv_usec;
382 *(struct __kernel_old_timeval *)optval = old_tv;
383 return sizeof(old_tv);
384 }
385
386 *(struct __kernel_sock_timeval *)optval = tv;
387 return sizeof(tv);
388}
389EXPORT_SYMBOL(sock_get_timeout);
390
391int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
392 sockptr_t optval, int optlen, bool old_timeval)
393{
394 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
395 struct old_timeval32 tv32;
396
397 if (optlen < sizeof(tv32))
398 return -EINVAL;
399
400 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
401 return -EFAULT;
402 tv->tv_sec = tv32.tv_sec;
403 tv->tv_usec = tv32.tv_usec;
404 } else if (old_timeval) {
405 struct __kernel_old_timeval old_tv;
406
407 if (optlen < sizeof(old_tv))
408 return -EINVAL;
409 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
410 return -EFAULT;
411 tv->tv_sec = old_tv.tv_sec;
412 tv->tv_usec = old_tv.tv_usec;
413 } else {
414 if (optlen < sizeof(*tv))
415 return -EINVAL;
416 if (copy_from_sockptr(tv, optval, sizeof(*tv)))
417 return -EFAULT;
418 }
419
420 return 0;
421}
422EXPORT_SYMBOL(sock_copy_user_timeval);
423
424static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
425 bool old_timeval)
426{
427 struct __kernel_sock_timeval tv;
428 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
429 long val;
430
431 if (err)
432 return err;
433
434 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
435 return -EDOM;
436
437 if (tv.tv_sec < 0) {
438 static int warned __read_mostly;
439
440 WRITE_ONCE(*timeo_p, 0);
441 if (warned < 10 && net_ratelimit()) {
442 warned++;
443 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
444 __func__, current->comm, task_pid_nr(current));
445 }
446 return 0;
447 }
448 val = MAX_SCHEDULE_TIMEOUT;
449 if ((tv.tv_sec || tv.tv_usec) &&
450 (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
451 val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
452 USEC_PER_SEC / HZ);
453 WRITE_ONCE(*timeo_p, val);
454 return 0;
455}
456
457static bool sock_needs_netstamp(const struct sock *sk)
458{
459 switch (sk->sk_family) {
460 case AF_UNSPEC:
461 case AF_UNIX:
462 return false;
463 default:
464 return true;
465 }
466}
467
468static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
469{
470 if (sk->sk_flags & flags) {
471 sk->sk_flags &= ~flags;
472 if (sock_needs_netstamp(sk) &&
473 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
474 net_disable_timestamp();
475 }
476}
477
478
479int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
480{
481 unsigned long flags;
482 struct sk_buff_head *list = &sk->sk_receive_queue;
483
484 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
485 atomic_inc(&sk->sk_drops);
486 trace_sock_rcvqueue_full(sk, skb);
487 return -ENOMEM;
488 }
489
490 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
491 atomic_inc(&sk->sk_drops);
492 return -ENOBUFS;
493 }
494
495 skb->dev = NULL;
496 skb_set_owner_r(skb, sk);
497
498 /* we escape from rcu protected region, make sure we dont leak
499 * a norefcounted dst
500 */
501 skb_dst_force(skb);
502
503 spin_lock_irqsave(&list->lock, flags);
504 sock_skb_set_dropcount(sk, skb);
505 __skb_queue_tail(list, skb);
506 spin_unlock_irqrestore(&list->lock, flags);
507
508 if (!sock_flag(sk, SOCK_DEAD))
509 sk->sk_data_ready(sk);
510 return 0;
511}
512EXPORT_SYMBOL(__sock_queue_rcv_skb);
513
514int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
515 enum skb_drop_reason *reason)
516{
517 enum skb_drop_reason drop_reason;
518 int err;
519
520 err = sk_filter(sk, skb);
521 if (err) {
522 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
523 goto out;
524 }
525 err = __sock_queue_rcv_skb(sk, skb);
526 switch (err) {
527 case -ENOMEM:
528 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
529 break;
530 case -ENOBUFS:
531 drop_reason = SKB_DROP_REASON_PROTO_MEM;
532 break;
533 default:
534 drop_reason = SKB_NOT_DROPPED_YET;
535 break;
536 }
537out:
538 if (reason)
539 *reason = drop_reason;
540 return err;
541}
542EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
543
544int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
545 const int nested, unsigned int trim_cap, bool refcounted)
546{
547 int rc = NET_RX_SUCCESS;
548
549 if (sk_filter_trim_cap(sk, skb, trim_cap))
550 goto discard_and_relse;
551
552 skb->dev = NULL;
553
554 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
555 atomic_inc(&sk->sk_drops);
556 goto discard_and_relse;
557 }
558 if (nested)
559 bh_lock_sock_nested(sk);
560 else
561 bh_lock_sock(sk);
562 if (!sock_owned_by_user(sk)) {
563 /*
564 * trylock + unlock semantics:
565 */
566 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
567
568 rc = sk_backlog_rcv(sk, skb);
569
570 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
571 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
572 bh_unlock_sock(sk);
573 atomic_inc(&sk->sk_drops);
574 goto discard_and_relse;
575 }
576
577 bh_unlock_sock(sk);
578out:
579 if (refcounted)
580 sock_put(sk);
581 return rc;
582discard_and_relse:
583 kfree_skb(skb);
584 goto out;
585}
586EXPORT_SYMBOL(__sk_receive_skb);
587
588INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
589 u32));
590INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
591 u32));
592struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
593{
594 struct dst_entry *dst = __sk_dst_get(sk);
595
596 if (dst && dst->obsolete &&
597 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
598 dst, cookie) == NULL) {
599 sk_tx_queue_clear(sk);
600 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
601 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
602 dst_release(dst);
603 return NULL;
604 }
605
606 return dst;
607}
608EXPORT_SYMBOL(__sk_dst_check);
609
610struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
611{
612 struct dst_entry *dst = sk_dst_get(sk);
613
614 if (dst && dst->obsolete &&
615 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
616 dst, cookie) == NULL) {
617 sk_dst_reset(sk);
618 dst_release(dst);
619 return NULL;
620 }
621
622 return dst;
623}
624EXPORT_SYMBOL(sk_dst_check);
625
626static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
627{
628 int ret = -ENOPROTOOPT;
629#ifdef CONFIG_NETDEVICES
630 struct net *net = sock_net(sk);
631
632 /* Sorry... */
633 ret = -EPERM;
634 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
635 goto out;
636
637 ret = -EINVAL;
638 if (ifindex < 0)
639 goto out;
640
641 /* Paired with all READ_ONCE() done locklessly. */
642 WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
643
644 if (sk->sk_prot->rehash)
645 sk->sk_prot->rehash(sk);
646 sk_dst_reset(sk);
647
648 ret = 0;
649
650out:
651#endif
652
653 return ret;
654}
655
656int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
657{
658 int ret;
659
660 if (lock_sk)
661 lock_sock(sk);
662 ret = sock_bindtoindex_locked(sk, ifindex);
663 if (lock_sk)
664 release_sock(sk);
665
666 return ret;
667}
668EXPORT_SYMBOL(sock_bindtoindex);
669
670static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
671{
672 int ret = -ENOPROTOOPT;
673#ifdef CONFIG_NETDEVICES
674 struct net *net = sock_net(sk);
675 char devname[IFNAMSIZ];
676 int index;
677
678 ret = -EINVAL;
679 if (optlen < 0)
680 goto out;
681
682 /* Bind this socket to a particular device like "eth0",
683 * as specified in the passed interface name. If the
684 * name is "" or the option length is zero the socket
685 * is not bound.
686 */
687 if (optlen > IFNAMSIZ - 1)
688 optlen = IFNAMSIZ - 1;
689 memset(devname, 0, sizeof(devname));
690
691 ret = -EFAULT;
692 if (copy_from_sockptr(devname, optval, optlen))
693 goto out;
694
695 index = 0;
696 if (devname[0] != '\0') {
697 struct net_device *dev;
698
699 rcu_read_lock();
700 dev = dev_get_by_name_rcu(net, devname);
701 if (dev)
702 index = dev->ifindex;
703 rcu_read_unlock();
704 ret = -ENODEV;
705 if (!dev)
706 goto out;
707 }
708
709 sockopt_lock_sock(sk);
710 ret = sock_bindtoindex_locked(sk, index);
711 sockopt_release_sock(sk);
712out:
713#endif
714
715 return ret;
716}
717
718static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
719 sockptr_t optlen, int len)
720{
721 int ret = -ENOPROTOOPT;
722#ifdef CONFIG_NETDEVICES
723 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
724 struct net *net = sock_net(sk);
725 char devname[IFNAMSIZ];
726
727 if (bound_dev_if == 0) {
728 len = 0;
729 goto zero;
730 }
731
732 ret = -EINVAL;
733 if (len < IFNAMSIZ)
734 goto out;
735
736 ret = netdev_get_name(net, devname, bound_dev_if);
737 if (ret)
738 goto out;
739
740 len = strlen(devname) + 1;
741
742 ret = -EFAULT;
743 if (copy_to_sockptr(optval, devname, len))
744 goto out;
745
746zero:
747 ret = -EFAULT;
748 if (copy_to_sockptr(optlen, &len, sizeof(int)))
749 goto out;
750
751 ret = 0;
752
753out:
754#endif
755
756 return ret;
757}
758
759bool sk_mc_loop(const struct sock *sk)
760{
761 if (dev_recursion_level())
762 return false;
763 if (!sk)
764 return true;
765 /* IPV6_ADDRFORM can change sk->sk_family under us. */
766 switch (READ_ONCE(sk->sk_family)) {
767 case AF_INET:
768 return inet_test_bit(MC_LOOP, sk);
769#if IS_ENABLED(CONFIG_IPV6)
770 case AF_INET6:
771 return inet6_test_bit(MC6_LOOP, sk);
772#endif
773 }
774 WARN_ON_ONCE(1);
775 return true;
776}
777EXPORT_SYMBOL(sk_mc_loop);
778
779void sock_set_reuseaddr(struct sock *sk)
780{
781 lock_sock(sk);
782 sk->sk_reuse = SK_CAN_REUSE;
783 release_sock(sk);
784}
785EXPORT_SYMBOL(sock_set_reuseaddr);
786
787void sock_set_reuseport(struct sock *sk)
788{
789 lock_sock(sk);
790 sk->sk_reuseport = true;
791 release_sock(sk);
792}
793EXPORT_SYMBOL(sock_set_reuseport);
794
795void sock_no_linger(struct sock *sk)
796{
797 lock_sock(sk);
798 WRITE_ONCE(sk->sk_lingertime, 0);
799 sock_set_flag(sk, SOCK_LINGER);
800 release_sock(sk);
801}
802EXPORT_SYMBOL(sock_no_linger);
803
804void sock_set_priority(struct sock *sk, u32 priority)
805{
806 WRITE_ONCE(sk->sk_priority, priority);
807}
808EXPORT_SYMBOL(sock_set_priority);
809
810void sock_set_sndtimeo(struct sock *sk, s64 secs)
811{
812 lock_sock(sk);
813 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
814 WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
815 else
816 WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
817 release_sock(sk);
818}
819EXPORT_SYMBOL(sock_set_sndtimeo);
820
821static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
822{
823 if (val) {
824 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
825 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
826 sock_set_flag(sk, SOCK_RCVTSTAMP);
827 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
828 } else {
829 sock_reset_flag(sk, SOCK_RCVTSTAMP);
830 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
831 }
832}
833
834void sock_enable_timestamps(struct sock *sk)
835{
836 lock_sock(sk);
837 __sock_set_timestamps(sk, true, false, true);
838 release_sock(sk);
839}
840EXPORT_SYMBOL(sock_enable_timestamps);
841
842void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
843{
844 switch (optname) {
845 case SO_TIMESTAMP_OLD:
846 __sock_set_timestamps(sk, valbool, false, false);
847 break;
848 case SO_TIMESTAMP_NEW:
849 __sock_set_timestamps(sk, valbool, true, false);
850 break;
851 case SO_TIMESTAMPNS_OLD:
852 __sock_set_timestamps(sk, valbool, false, true);
853 break;
854 case SO_TIMESTAMPNS_NEW:
855 __sock_set_timestamps(sk, valbool, true, true);
856 break;
857 }
858}
859
860static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
861{
862 struct net *net = sock_net(sk);
863 struct net_device *dev = NULL;
864 bool match = false;
865 int *vclock_index;
866 int i, num;
867
868 if (sk->sk_bound_dev_if)
869 dev = dev_get_by_index(net, sk->sk_bound_dev_if);
870
871 if (!dev) {
872 pr_err("%s: sock not bind to device\n", __func__);
873 return -EOPNOTSUPP;
874 }
875
876 num = ethtool_get_phc_vclocks(dev, &vclock_index);
877 dev_put(dev);
878
879 for (i = 0; i < num; i++) {
880 if (*(vclock_index + i) == phc_index) {
881 match = true;
882 break;
883 }
884 }
885
886 if (num > 0)
887 kfree(vclock_index);
888
889 if (!match)
890 return -EINVAL;
891
892 WRITE_ONCE(sk->sk_bind_phc, phc_index);
893
894 return 0;
895}
896
897int sock_set_timestamping(struct sock *sk, int optname,
898 struct so_timestamping timestamping)
899{
900 int val = timestamping.flags;
901 int ret;
902
903 if (val & ~SOF_TIMESTAMPING_MASK)
904 return -EINVAL;
905
906 if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
907 !(val & SOF_TIMESTAMPING_OPT_ID))
908 return -EINVAL;
909
910 if (val & SOF_TIMESTAMPING_OPT_ID &&
911 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
912 if (sk_is_tcp(sk)) {
913 if ((1 << sk->sk_state) &
914 (TCPF_CLOSE | TCPF_LISTEN))
915 return -EINVAL;
916 if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
917 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
918 else
919 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
920 } else {
921 atomic_set(&sk->sk_tskey, 0);
922 }
923 }
924
925 if (val & SOF_TIMESTAMPING_OPT_STATS &&
926 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
927 return -EINVAL;
928
929 if (val & SOF_TIMESTAMPING_BIND_PHC) {
930 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
931 if (ret)
932 return ret;
933 }
934
935 WRITE_ONCE(sk->sk_tsflags, val);
936 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
937
938 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
939 sock_enable_timestamp(sk,
940 SOCK_TIMESTAMPING_RX_SOFTWARE);
941 else
942 sock_disable_timestamp(sk,
943 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
944 return 0;
945}
946
947void sock_set_keepalive(struct sock *sk)
948{
949 lock_sock(sk);
950 if (sk->sk_prot->keepalive)
951 sk->sk_prot->keepalive(sk, true);
952 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
953 release_sock(sk);
954}
955EXPORT_SYMBOL(sock_set_keepalive);
956
957static void __sock_set_rcvbuf(struct sock *sk, int val)
958{
959 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
960 * as a negative value.
961 */
962 val = min_t(int, val, INT_MAX / 2);
963 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
964
965 /* We double it on the way in to account for "struct sk_buff" etc.
966 * overhead. Applications assume that the SO_RCVBUF setting they make
967 * will allow that much actual data to be received on that socket.
968 *
969 * Applications are unaware that "struct sk_buff" and other overheads
970 * allocate from the receive buffer during socket buffer allocation.
971 *
972 * And after considering the possible alternatives, returning the value
973 * we actually used in getsockopt is the most desirable behavior.
974 */
975 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
976}
977
978void sock_set_rcvbuf(struct sock *sk, int val)
979{
980 lock_sock(sk);
981 __sock_set_rcvbuf(sk, val);
982 release_sock(sk);
983}
984EXPORT_SYMBOL(sock_set_rcvbuf);
985
986static void __sock_set_mark(struct sock *sk, u32 val)
987{
988 if (val != sk->sk_mark) {
989 WRITE_ONCE(sk->sk_mark, val);
990 sk_dst_reset(sk);
991 }
992}
993
994void sock_set_mark(struct sock *sk, u32 val)
995{
996 lock_sock(sk);
997 __sock_set_mark(sk, val);
998 release_sock(sk);
999}
1000EXPORT_SYMBOL(sock_set_mark);
1001
1002static void sock_release_reserved_memory(struct sock *sk, int bytes)
1003{
1004 /* Round down bytes to multiple of pages */
1005 bytes = round_down(bytes, PAGE_SIZE);
1006
1007 WARN_ON(bytes > sk->sk_reserved_mem);
1008 WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1009 sk_mem_reclaim(sk);
1010}
1011
1012static int sock_reserve_memory(struct sock *sk, int bytes)
1013{
1014 long allocated;
1015 bool charged;
1016 int pages;
1017
1018 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1019 return -EOPNOTSUPP;
1020
1021 if (!bytes)
1022 return 0;
1023
1024 pages = sk_mem_pages(bytes);
1025
1026 /* pre-charge to memcg */
1027 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1028 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1029 if (!charged)
1030 return -ENOMEM;
1031
1032 /* pre-charge to forward_alloc */
1033 sk_memory_allocated_add(sk, pages);
1034 allocated = sk_memory_allocated(sk);
1035 /* If the system goes into memory pressure with this
1036 * precharge, give up and return error.
1037 */
1038 if (allocated > sk_prot_mem_limits(sk, 1)) {
1039 sk_memory_allocated_sub(sk, pages);
1040 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1041 return -ENOMEM;
1042 }
1043 sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
1044
1045 WRITE_ONCE(sk->sk_reserved_mem,
1046 sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1047
1048 return 0;
1049}
1050
1051void sockopt_lock_sock(struct sock *sk)
1052{
1053 /* When current->bpf_ctx is set, the setsockopt is called from
1054 * a bpf prog. bpf has ensured the sk lock has been
1055 * acquired before calling setsockopt().
1056 */
1057 if (has_current_bpf_ctx())
1058 return;
1059
1060 lock_sock(sk);
1061}
1062EXPORT_SYMBOL(sockopt_lock_sock);
1063
1064void sockopt_release_sock(struct sock *sk)
1065{
1066 if (has_current_bpf_ctx())
1067 return;
1068
1069 release_sock(sk);
1070}
1071EXPORT_SYMBOL(sockopt_release_sock);
1072
1073bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1074{
1075 return has_current_bpf_ctx() || ns_capable(ns, cap);
1076}
1077EXPORT_SYMBOL(sockopt_ns_capable);
1078
1079bool sockopt_capable(int cap)
1080{
1081 return has_current_bpf_ctx() || capable(cap);
1082}
1083EXPORT_SYMBOL(sockopt_capable);
1084
1085/*
1086 * This is meant for all protocols to use and covers goings on
1087 * at the socket level. Everything here is generic.
1088 */
1089
1090int sk_setsockopt(struct sock *sk, int level, int optname,
1091 sockptr_t optval, unsigned int optlen)
1092{
1093 struct so_timestamping timestamping;
1094 struct socket *sock = sk->sk_socket;
1095 struct sock_txtime sk_txtime;
1096 int val;
1097 int valbool;
1098 struct linger ling;
1099 int ret = 0;
1100
1101 /*
1102 * Options without arguments
1103 */
1104
1105 if (optname == SO_BINDTODEVICE)
1106 return sock_setbindtodevice(sk, optval, optlen);
1107
1108 if (optlen < sizeof(int))
1109 return -EINVAL;
1110
1111 if (copy_from_sockptr(&val, optval, sizeof(val)))
1112 return -EFAULT;
1113
1114 valbool = val ? 1 : 0;
1115
1116 /* handle options which do not require locking the socket. */
1117 switch (optname) {
1118 case SO_PRIORITY:
1119 if ((val >= 0 && val <= 6) ||
1120 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1121 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1122 sock_set_priority(sk, val);
1123 return 0;
1124 }
1125 return -EPERM;
1126 case SO_PASSSEC:
1127 assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
1128 return 0;
1129 case SO_PASSCRED:
1130 assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
1131 return 0;
1132 case SO_PASSPIDFD:
1133 assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
1134 return 0;
1135 case SO_TYPE:
1136 case SO_PROTOCOL:
1137 case SO_DOMAIN:
1138 case SO_ERROR:
1139 return -ENOPROTOOPT;
1140#ifdef CONFIG_NET_RX_BUSY_POLL
1141 case SO_BUSY_POLL:
1142 if (val < 0)
1143 return -EINVAL;
1144 WRITE_ONCE(sk->sk_ll_usec, val);
1145 return 0;
1146 case SO_PREFER_BUSY_POLL:
1147 if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1148 return -EPERM;
1149 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1150 return 0;
1151 case SO_BUSY_POLL_BUDGET:
1152 if (val > READ_ONCE(sk->sk_busy_poll_budget) &&
1153 !sockopt_capable(CAP_NET_ADMIN))
1154 return -EPERM;
1155 if (val < 0 || val > U16_MAX)
1156 return -EINVAL;
1157 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1158 return 0;
1159#endif
1160 case SO_MAX_PACING_RATE:
1161 {
1162 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1163 unsigned long pacing_rate;
1164
1165 if (sizeof(ulval) != sizeof(val) &&
1166 optlen >= sizeof(ulval) &&
1167 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1168 return -EFAULT;
1169 }
1170 if (ulval != ~0UL)
1171 cmpxchg(&sk->sk_pacing_status,
1172 SK_PACING_NONE,
1173 SK_PACING_NEEDED);
1174 /* Pairs with READ_ONCE() from sk_getsockopt() */
1175 WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1176 pacing_rate = READ_ONCE(sk->sk_pacing_rate);
1177 if (ulval < pacing_rate)
1178 WRITE_ONCE(sk->sk_pacing_rate, ulval);
1179 return 0;
1180 }
1181 case SO_TXREHASH:
1182 if (val < -1 || val > 1)
1183 return -EINVAL;
1184 if ((u8)val == SOCK_TXREHASH_DEFAULT)
1185 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1186 /* Paired with READ_ONCE() in tcp_rtx_synack()
1187 * and sk_getsockopt().
1188 */
1189 WRITE_ONCE(sk->sk_txrehash, (u8)val);
1190 return 0;
1191 case SO_PEEK_OFF:
1192 {
1193 int (*set_peek_off)(struct sock *sk, int val);
1194
1195 set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
1196 if (set_peek_off)
1197 ret = set_peek_off(sk, val);
1198 else
1199 ret = -EOPNOTSUPP;
1200 return ret;
1201 }
1202 }
1203
1204 sockopt_lock_sock(sk);
1205
1206 switch (optname) {
1207 case SO_DEBUG:
1208 if (val && !sockopt_capable(CAP_NET_ADMIN))
1209 ret = -EACCES;
1210 else
1211 sock_valbool_flag(sk, SOCK_DBG, valbool);
1212 break;
1213 case SO_REUSEADDR:
1214 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1215 break;
1216 case SO_REUSEPORT:
1217 sk->sk_reuseport = valbool;
1218 break;
1219 case SO_DONTROUTE:
1220 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1221 sk_dst_reset(sk);
1222 break;
1223 case SO_BROADCAST:
1224 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1225 break;
1226 case SO_SNDBUF:
1227 /* Don't error on this BSD doesn't and if you think
1228 * about it this is right. Otherwise apps have to
1229 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1230 * are treated in BSD as hints
1231 */
1232 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1233set_sndbuf:
1234 /* Ensure val * 2 fits into an int, to prevent max_t()
1235 * from treating it as a negative value.
1236 */
1237 val = min_t(int, val, INT_MAX / 2);
1238 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1239 WRITE_ONCE(sk->sk_sndbuf,
1240 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1241 /* Wake up sending tasks if we upped the value. */
1242 sk->sk_write_space(sk);
1243 break;
1244
1245 case SO_SNDBUFFORCE:
1246 if (!sockopt_capable(CAP_NET_ADMIN)) {
1247 ret = -EPERM;
1248 break;
1249 }
1250
1251 /* No negative values (to prevent underflow, as val will be
1252 * multiplied by 2).
1253 */
1254 if (val < 0)
1255 val = 0;
1256 goto set_sndbuf;
1257
1258 case SO_RCVBUF:
1259 /* Don't error on this BSD doesn't and if you think
1260 * about it this is right. Otherwise apps have to
1261 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1262 * are treated in BSD as hints
1263 */
1264 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1265 break;
1266
1267 case SO_RCVBUFFORCE:
1268 if (!sockopt_capable(CAP_NET_ADMIN)) {
1269 ret = -EPERM;
1270 break;
1271 }
1272
1273 /* No negative values (to prevent underflow, as val will be
1274 * multiplied by 2).
1275 */
1276 __sock_set_rcvbuf(sk, max(val, 0));
1277 break;
1278
1279 case SO_KEEPALIVE:
1280 if (sk->sk_prot->keepalive)
1281 sk->sk_prot->keepalive(sk, valbool);
1282 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1283 break;
1284
1285 case SO_OOBINLINE:
1286 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1287 break;
1288
1289 case SO_NO_CHECK:
1290 sk->sk_no_check_tx = valbool;
1291 break;
1292
1293 case SO_LINGER:
1294 if (optlen < sizeof(ling)) {
1295 ret = -EINVAL; /* 1003.1g */
1296 break;
1297 }
1298 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1299 ret = -EFAULT;
1300 break;
1301 }
1302 if (!ling.l_onoff) {
1303 sock_reset_flag(sk, SOCK_LINGER);
1304 } else {
1305 unsigned long t_sec = ling.l_linger;
1306
1307 if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1308 WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1309 else
1310 WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
1311 sock_set_flag(sk, SOCK_LINGER);
1312 }
1313 break;
1314
1315 case SO_BSDCOMPAT:
1316 break;
1317
1318 case SO_TIMESTAMP_OLD:
1319 case SO_TIMESTAMP_NEW:
1320 case SO_TIMESTAMPNS_OLD:
1321 case SO_TIMESTAMPNS_NEW:
1322 sock_set_timestamp(sk, optname, valbool);
1323 break;
1324
1325 case SO_TIMESTAMPING_NEW:
1326 case SO_TIMESTAMPING_OLD:
1327 if (optlen == sizeof(timestamping)) {
1328 if (copy_from_sockptr(×tamping, optval,
1329 sizeof(timestamping))) {
1330 ret = -EFAULT;
1331 break;
1332 }
1333 } else {
1334 memset(×tamping, 0, sizeof(timestamping));
1335 timestamping.flags = val;
1336 }
1337 ret = sock_set_timestamping(sk, optname, timestamping);
1338 break;
1339
1340 case SO_RCVLOWAT:
1341 {
1342 int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
1343
1344 if (val < 0)
1345 val = INT_MAX;
1346 if (sock)
1347 set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
1348 if (set_rcvlowat)
1349 ret = set_rcvlowat(sk, val);
1350 else
1351 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1352 break;
1353 }
1354 case SO_RCVTIMEO_OLD:
1355 case SO_RCVTIMEO_NEW:
1356 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1357 optlen, optname == SO_RCVTIMEO_OLD);
1358 break;
1359
1360 case SO_SNDTIMEO_OLD:
1361 case SO_SNDTIMEO_NEW:
1362 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1363 optlen, optname == SO_SNDTIMEO_OLD);
1364 break;
1365
1366 case SO_ATTACH_FILTER: {
1367 struct sock_fprog fprog;
1368
1369 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1370 if (!ret)
1371 ret = sk_attach_filter(&fprog, sk);
1372 break;
1373 }
1374 case SO_ATTACH_BPF:
1375 ret = -EINVAL;
1376 if (optlen == sizeof(u32)) {
1377 u32 ufd;
1378
1379 ret = -EFAULT;
1380 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1381 break;
1382
1383 ret = sk_attach_bpf(ufd, sk);
1384 }
1385 break;
1386
1387 case SO_ATTACH_REUSEPORT_CBPF: {
1388 struct sock_fprog fprog;
1389
1390 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1391 if (!ret)
1392 ret = sk_reuseport_attach_filter(&fprog, sk);
1393 break;
1394 }
1395 case SO_ATTACH_REUSEPORT_EBPF:
1396 ret = -EINVAL;
1397 if (optlen == sizeof(u32)) {
1398 u32 ufd;
1399
1400 ret = -EFAULT;
1401 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1402 break;
1403
1404 ret = sk_reuseport_attach_bpf(ufd, sk);
1405 }
1406 break;
1407
1408 case SO_DETACH_REUSEPORT_BPF:
1409 ret = reuseport_detach_prog(sk);
1410 break;
1411
1412 case SO_DETACH_FILTER:
1413 ret = sk_detach_filter(sk);
1414 break;
1415
1416 case SO_LOCK_FILTER:
1417 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1418 ret = -EPERM;
1419 else
1420 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1421 break;
1422
1423 case SO_MARK:
1424 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1425 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1426 ret = -EPERM;
1427 break;
1428 }
1429
1430 __sock_set_mark(sk, val);
1431 break;
1432 case SO_RCVMARK:
1433 sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1434 break;
1435
1436 case SO_RXQ_OVFL:
1437 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1438 break;
1439
1440 case SO_WIFI_STATUS:
1441 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1442 break;
1443
1444 case SO_NOFCS:
1445 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1446 break;
1447
1448 case SO_SELECT_ERR_QUEUE:
1449 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1450 break;
1451
1452
1453 case SO_INCOMING_CPU:
1454 reuseport_update_incoming_cpu(sk, val);
1455 break;
1456
1457 case SO_CNX_ADVICE:
1458 if (val == 1)
1459 dst_negative_advice(sk);
1460 break;
1461
1462 case SO_ZEROCOPY:
1463 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1464 if (!(sk_is_tcp(sk) ||
1465 (sk->sk_type == SOCK_DGRAM &&
1466 sk->sk_protocol == IPPROTO_UDP)))
1467 ret = -EOPNOTSUPP;
1468 } else if (sk->sk_family != PF_RDS) {
1469 ret = -EOPNOTSUPP;
1470 }
1471 if (!ret) {
1472 if (val < 0 || val > 1)
1473 ret = -EINVAL;
1474 else
1475 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1476 }
1477 break;
1478
1479 case SO_TXTIME:
1480 if (optlen != sizeof(struct sock_txtime)) {
1481 ret = -EINVAL;
1482 break;
1483 } else if (copy_from_sockptr(&sk_txtime, optval,
1484 sizeof(struct sock_txtime))) {
1485 ret = -EFAULT;
1486 break;
1487 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1488 ret = -EINVAL;
1489 break;
1490 }
1491 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1492 * scheduler has enough safe guards.
1493 */
1494 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1495 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1496 ret = -EPERM;
1497 break;
1498 }
1499 sock_valbool_flag(sk, SOCK_TXTIME, true);
1500 sk->sk_clockid = sk_txtime.clockid;
1501 sk->sk_txtime_deadline_mode =
1502 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1503 sk->sk_txtime_report_errors =
1504 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1505 break;
1506
1507 case SO_BINDTOIFINDEX:
1508 ret = sock_bindtoindex_locked(sk, val);
1509 break;
1510
1511 case SO_BUF_LOCK:
1512 if (val & ~SOCK_BUF_LOCK_MASK) {
1513 ret = -EINVAL;
1514 break;
1515 }
1516 sk->sk_userlocks = val | (sk->sk_userlocks &
1517 ~SOCK_BUF_LOCK_MASK);
1518 break;
1519
1520 case SO_RESERVE_MEM:
1521 {
1522 int delta;
1523
1524 if (val < 0) {
1525 ret = -EINVAL;
1526 break;
1527 }
1528
1529 delta = val - sk->sk_reserved_mem;
1530 if (delta < 0)
1531 sock_release_reserved_memory(sk, -delta);
1532 else
1533 ret = sock_reserve_memory(sk, delta);
1534 break;
1535 }
1536
1537 default:
1538 ret = -ENOPROTOOPT;
1539 break;
1540 }
1541 sockopt_release_sock(sk);
1542 return ret;
1543}
1544
1545int sock_setsockopt(struct socket *sock, int level, int optname,
1546 sockptr_t optval, unsigned int optlen)
1547{
1548 return sk_setsockopt(sock->sk, level, optname,
1549 optval, optlen);
1550}
1551EXPORT_SYMBOL(sock_setsockopt);
1552
1553static const struct cred *sk_get_peer_cred(struct sock *sk)
1554{
1555 const struct cred *cred;
1556
1557 spin_lock(&sk->sk_peer_lock);
1558 cred = get_cred(sk->sk_peer_cred);
1559 spin_unlock(&sk->sk_peer_lock);
1560
1561 return cred;
1562}
1563
1564static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1565 struct ucred *ucred)
1566{
1567 ucred->pid = pid_vnr(pid);
1568 ucred->uid = ucred->gid = -1;
1569 if (cred) {
1570 struct user_namespace *current_ns = current_user_ns();
1571
1572 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1573 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1574 }
1575}
1576
1577static int groups_to_user(sockptr_t dst, const struct group_info *src)
1578{
1579 struct user_namespace *user_ns = current_user_ns();
1580 int i;
1581
1582 for (i = 0; i < src->ngroups; i++) {
1583 gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1584
1585 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1586 return -EFAULT;
1587 }
1588
1589 return 0;
1590}
1591
1592int sk_getsockopt(struct sock *sk, int level, int optname,
1593 sockptr_t optval, sockptr_t optlen)
1594{
1595 struct socket *sock = sk->sk_socket;
1596
1597 union {
1598 int val;
1599 u64 val64;
1600 unsigned long ulval;
1601 struct linger ling;
1602 struct old_timeval32 tm32;
1603 struct __kernel_old_timeval tm;
1604 struct __kernel_sock_timeval stm;
1605 struct sock_txtime txtime;
1606 struct so_timestamping timestamping;
1607 } v;
1608
1609 int lv = sizeof(int);
1610 int len;
1611
1612 if (copy_from_sockptr(&len, optlen, sizeof(int)))
1613 return -EFAULT;
1614 if (len < 0)
1615 return -EINVAL;
1616
1617 memset(&v, 0, sizeof(v));
1618
1619 switch (optname) {
1620 case SO_DEBUG:
1621 v.val = sock_flag(sk, SOCK_DBG);
1622 break;
1623
1624 case SO_DONTROUTE:
1625 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1626 break;
1627
1628 case SO_BROADCAST:
1629 v.val = sock_flag(sk, SOCK_BROADCAST);
1630 break;
1631
1632 case SO_SNDBUF:
1633 v.val = READ_ONCE(sk->sk_sndbuf);
1634 break;
1635
1636 case SO_RCVBUF:
1637 v.val = READ_ONCE(sk->sk_rcvbuf);
1638 break;
1639
1640 case SO_REUSEADDR:
1641 v.val = sk->sk_reuse;
1642 break;
1643
1644 case SO_REUSEPORT:
1645 v.val = sk->sk_reuseport;
1646 break;
1647
1648 case SO_KEEPALIVE:
1649 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1650 break;
1651
1652 case SO_TYPE:
1653 v.val = sk->sk_type;
1654 break;
1655
1656 case SO_PROTOCOL:
1657 v.val = sk->sk_protocol;
1658 break;
1659
1660 case SO_DOMAIN:
1661 v.val = sk->sk_family;
1662 break;
1663
1664 case SO_ERROR:
1665 v.val = -sock_error(sk);
1666 if (v.val == 0)
1667 v.val = xchg(&sk->sk_err_soft, 0);
1668 break;
1669
1670 case SO_OOBINLINE:
1671 v.val = sock_flag(sk, SOCK_URGINLINE);
1672 break;
1673
1674 case SO_NO_CHECK:
1675 v.val = sk->sk_no_check_tx;
1676 break;
1677
1678 case SO_PRIORITY:
1679 v.val = READ_ONCE(sk->sk_priority);
1680 break;
1681
1682 case SO_LINGER:
1683 lv = sizeof(v.ling);
1684 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1685 v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ;
1686 break;
1687
1688 case SO_BSDCOMPAT:
1689 break;
1690
1691 case SO_TIMESTAMP_OLD:
1692 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1693 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1694 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1695 break;
1696
1697 case SO_TIMESTAMPNS_OLD:
1698 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1699 break;
1700
1701 case SO_TIMESTAMP_NEW:
1702 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1703 break;
1704
1705 case SO_TIMESTAMPNS_NEW:
1706 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1707 break;
1708
1709 case SO_TIMESTAMPING_OLD:
1710 case SO_TIMESTAMPING_NEW:
1711 lv = sizeof(v.timestamping);
1712 /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
1713 * returning the flags when they were set through the same option.
1714 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
1715 */
1716 if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
1717 v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1718 v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
1719 }
1720 break;
1721
1722 case SO_RCVTIMEO_OLD:
1723 case SO_RCVTIMEO_NEW:
1724 lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1725 SO_RCVTIMEO_OLD == optname);
1726 break;
1727
1728 case SO_SNDTIMEO_OLD:
1729 case SO_SNDTIMEO_NEW:
1730 lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1731 SO_SNDTIMEO_OLD == optname);
1732 break;
1733
1734 case SO_RCVLOWAT:
1735 v.val = READ_ONCE(sk->sk_rcvlowat);
1736 break;
1737
1738 case SO_SNDLOWAT:
1739 v.val = 1;
1740 break;
1741
1742 case SO_PASSCRED:
1743 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1744 break;
1745
1746 case SO_PASSPIDFD:
1747 v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1748 break;
1749
1750 case SO_PEERCRED:
1751 {
1752 struct ucred peercred;
1753 if (len > sizeof(peercred))
1754 len = sizeof(peercred);
1755
1756 spin_lock(&sk->sk_peer_lock);
1757 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1758 spin_unlock(&sk->sk_peer_lock);
1759
1760 if (copy_to_sockptr(optval, &peercred, len))
1761 return -EFAULT;
1762 goto lenout;
1763 }
1764
1765 case SO_PEERPIDFD:
1766 {
1767 struct pid *peer_pid;
1768 struct file *pidfd_file = NULL;
1769 int pidfd;
1770
1771 if (len > sizeof(pidfd))
1772 len = sizeof(pidfd);
1773
1774 spin_lock(&sk->sk_peer_lock);
1775 peer_pid = get_pid(sk->sk_peer_pid);
1776 spin_unlock(&sk->sk_peer_lock);
1777
1778 if (!peer_pid)
1779 return -ENODATA;
1780
1781 pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1782 put_pid(peer_pid);
1783 if (pidfd < 0)
1784 return pidfd;
1785
1786 if (copy_to_sockptr(optval, &pidfd, len) ||
1787 copy_to_sockptr(optlen, &len, sizeof(int))) {
1788 put_unused_fd(pidfd);
1789 fput(pidfd_file);
1790
1791 return -EFAULT;
1792 }
1793
1794 fd_install(pidfd, pidfd_file);
1795 return 0;
1796 }
1797
1798 case SO_PEERGROUPS:
1799 {
1800 const struct cred *cred;
1801 int ret, n;
1802
1803 cred = sk_get_peer_cred(sk);
1804 if (!cred)
1805 return -ENODATA;
1806
1807 n = cred->group_info->ngroups;
1808 if (len < n * sizeof(gid_t)) {
1809 len = n * sizeof(gid_t);
1810 put_cred(cred);
1811 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1812 }
1813 len = n * sizeof(gid_t);
1814
1815 ret = groups_to_user(optval, cred->group_info);
1816 put_cred(cred);
1817 if (ret)
1818 return ret;
1819 goto lenout;
1820 }
1821
1822 case SO_PEERNAME:
1823 {
1824 struct sockaddr_storage address;
1825
1826 lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
1827 if (lv < 0)
1828 return -ENOTCONN;
1829 if (lv < len)
1830 return -EINVAL;
1831 if (copy_to_sockptr(optval, &address, len))
1832 return -EFAULT;
1833 goto lenout;
1834 }
1835
1836 /* Dubious BSD thing... Probably nobody even uses it, but
1837 * the UNIX standard wants it for whatever reason... -DaveM
1838 */
1839 case SO_ACCEPTCONN:
1840 v.val = sk->sk_state == TCP_LISTEN;
1841 break;
1842
1843 case SO_PASSSEC:
1844 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1845 break;
1846
1847 case SO_PEERSEC:
1848 return security_socket_getpeersec_stream(sock,
1849 optval, optlen, len);
1850
1851 case SO_MARK:
1852 v.val = READ_ONCE(sk->sk_mark);
1853 break;
1854
1855 case SO_RCVMARK:
1856 v.val = sock_flag(sk, SOCK_RCVMARK);
1857 break;
1858
1859 case SO_RXQ_OVFL:
1860 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1861 break;
1862
1863 case SO_WIFI_STATUS:
1864 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1865 break;
1866
1867 case SO_PEEK_OFF:
1868 if (!READ_ONCE(sock->ops)->set_peek_off)
1869 return -EOPNOTSUPP;
1870
1871 v.val = READ_ONCE(sk->sk_peek_off);
1872 break;
1873 case SO_NOFCS:
1874 v.val = sock_flag(sk, SOCK_NOFCS);
1875 break;
1876
1877 case SO_BINDTODEVICE:
1878 return sock_getbindtodevice(sk, optval, optlen, len);
1879
1880 case SO_GET_FILTER:
1881 len = sk_get_filter(sk, optval, len);
1882 if (len < 0)
1883 return len;
1884
1885 goto lenout;
1886
1887 case SO_LOCK_FILTER:
1888 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1889 break;
1890
1891 case SO_BPF_EXTENSIONS:
1892 v.val = bpf_tell_extensions();
1893 break;
1894
1895 case SO_SELECT_ERR_QUEUE:
1896 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1897 break;
1898
1899#ifdef CONFIG_NET_RX_BUSY_POLL
1900 case SO_BUSY_POLL:
1901 v.val = READ_ONCE(sk->sk_ll_usec);
1902 break;
1903 case SO_PREFER_BUSY_POLL:
1904 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1905 break;
1906#endif
1907
1908 case SO_MAX_PACING_RATE:
1909 /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1910 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1911 lv = sizeof(v.ulval);
1912 v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
1913 } else {
1914 /* 32bit version */
1915 v.val = min_t(unsigned long, ~0U,
1916 READ_ONCE(sk->sk_max_pacing_rate));
1917 }
1918 break;
1919
1920 case SO_INCOMING_CPU:
1921 v.val = READ_ONCE(sk->sk_incoming_cpu);
1922 break;
1923
1924 case SO_MEMINFO:
1925 {
1926 u32 meminfo[SK_MEMINFO_VARS];
1927
1928 sk_get_meminfo(sk, meminfo);
1929
1930 len = min_t(unsigned int, len, sizeof(meminfo));
1931 if (copy_to_sockptr(optval, &meminfo, len))
1932 return -EFAULT;
1933
1934 goto lenout;
1935 }
1936
1937#ifdef CONFIG_NET_RX_BUSY_POLL
1938 case SO_INCOMING_NAPI_ID:
1939 v.val = READ_ONCE(sk->sk_napi_id);
1940
1941 /* aggregate non-NAPI IDs down to 0 */
1942 if (v.val < MIN_NAPI_ID)
1943 v.val = 0;
1944
1945 break;
1946#endif
1947
1948 case SO_COOKIE:
1949 lv = sizeof(u64);
1950 if (len < lv)
1951 return -EINVAL;
1952 v.val64 = sock_gen_cookie(sk);
1953 break;
1954
1955 case SO_ZEROCOPY:
1956 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1957 break;
1958
1959 case SO_TXTIME:
1960 lv = sizeof(v.txtime);
1961 v.txtime.clockid = sk->sk_clockid;
1962 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1963 SOF_TXTIME_DEADLINE_MODE : 0;
1964 v.txtime.flags |= sk->sk_txtime_report_errors ?
1965 SOF_TXTIME_REPORT_ERRORS : 0;
1966 break;
1967
1968 case SO_BINDTOIFINDEX:
1969 v.val = READ_ONCE(sk->sk_bound_dev_if);
1970 break;
1971
1972 case SO_NETNS_COOKIE:
1973 lv = sizeof(u64);
1974 if (len != lv)
1975 return -EINVAL;
1976 v.val64 = sock_net(sk)->net_cookie;
1977 break;
1978
1979 case SO_BUF_LOCK:
1980 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1981 break;
1982
1983 case SO_RESERVE_MEM:
1984 v.val = READ_ONCE(sk->sk_reserved_mem);
1985 break;
1986
1987 case SO_TXREHASH:
1988 /* Paired with WRITE_ONCE() in sk_setsockopt() */
1989 v.val = READ_ONCE(sk->sk_txrehash);
1990 break;
1991
1992 default:
1993 /* We implement the SO_SNDLOWAT etc to not be settable
1994 * (1003.1g 7).
1995 */
1996 return -ENOPROTOOPT;
1997 }
1998
1999 if (len > lv)
2000 len = lv;
2001 if (copy_to_sockptr(optval, &v, len))
2002 return -EFAULT;
2003lenout:
2004 if (copy_to_sockptr(optlen, &len, sizeof(int)))
2005 return -EFAULT;
2006 return 0;
2007}
2008
2009/*
2010 * Initialize an sk_lock.
2011 *
2012 * (We also register the sk_lock with the lock validator.)
2013 */
2014static inline void sock_lock_init(struct sock *sk)
2015{
2016 if (sk->sk_kern_sock)
2017 sock_lock_init_class_and_name(
2018 sk,
2019 af_family_kern_slock_key_strings[sk->sk_family],
2020 af_family_kern_slock_keys + sk->sk_family,
2021 af_family_kern_key_strings[sk->sk_family],
2022 af_family_kern_keys + sk->sk_family);
2023 else
2024 sock_lock_init_class_and_name(
2025 sk,
2026 af_family_slock_key_strings[sk->sk_family],
2027 af_family_slock_keys + sk->sk_family,
2028 af_family_key_strings[sk->sk_family],
2029 af_family_keys + sk->sk_family);
2030}
2031
2032/*
2033 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2034 * even temporarly, because of RCU lookups. sk_node should also be left as is.
2035 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2036 */
2037static void sock_copy(struct sock *nsk, const struct sock *osk)
2038{
2039 const struct proto *prot = READ_ONCE(osk->sk_prot);
2040#ifdef CONFIG_SECURITY_NETWORK
2041 void *sptr = nsk->sk_security;
2042#endif
2043
2044 /* If we move sk_tx_queue_mapping out of the private section,
2045 * we must check if sk_tx_queue_clear() is called after
2046 * sock_copy() in sk_clone_lock().
2047 */
2048 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2049 offsetof(struct sock, sk_dontcopy_begin) ||
2050 offsetof(struct sock, sk_tx_queue_mapping) >=
2051 offsetof(struct sock, sk_dontcopy_end));
2052
2053 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2054
2055 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2056 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
2057
2058#ifdef CONFIG_SECURITY_NETWORK
2059 nsk->sk_security = sptr;
2060 security_sk_clone(osk, nsk);
2061#endif
2062}
2063
2064static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2065 int family)
2066{
2067 struct sock *sk;
2068 struct kmem_cache *slab;
2069
2070 slab = prot->slab;
2071 if (slab != NULL) {
2072 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2073 if (!sk)
2074 return sk;
2075 if (want_init_on_alloc(priority))
2076 sk_prot_clear_nulls(sk, prot->obj_size);
2077 } else
2078 sk = kmalloc(prot->obj_size, priority);
2079
2080 if (sk != NULL) {
2081 if (security_sk_alloc(sk, family, priority))
2082 goto out_free;
2083
2084 if (!try_module_get(prot->owner))
2085 goto out_free_sec;
2086 }
2087
2088 return sk;
2089
2090out_free_sec:
2091 security_sk_free(sk);
2092out_free:
2093 if (slab != NULL)
2094 kmem_cache_free(slab, sk);
2095 else
2096 kfree(sk);
2097 return NULL;
2098}
2099
2100static void sk_prot_free(struct proto *prot, struct sock *sk)
2101{
2102 struct kmem_cache *slab;
2103 struct module *owner;
2104
2105 owner = prot->owner;
2106 slab = prot->slab;
2107
2108 cgroup_sk_free(&sk->sk_cgrp_data);
2109 mem_cgroup_sk_free(sk);
2110 security_sk_free(sk);
2111 if (slab != NULL)
2112 kmem_cache_free(slab, sk);
2113 else
2114 kfree(sk);
2115 module_put(owner);
2116}
2117
2118/**
2119 * sk_alloc - All socket objects are allocated here
2120 * @net: the applicable net namespace
2121 * @family: protocol family
2122 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2123 * @prot: struct proto associated with this new sock instance
2124 * @kern: is this to be a kernel socket?
2125 */
2126struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2127 struct proto *prot, int kern)
2128{
2129 struct sock *sk;
2130
2131 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2132 if (sk) {
2133 sk->sk_family = family;
2134 /*
2135 * See comment in struct sock definition to understand
2136 * why we need sk_prot_creator -acme
2137 */
2138 sk->sk_prot = sk->sk_prot_creator = prot;
2139 sk->sk_kern_sock = kern;
2140 sock_lock_init(sk);
2141 sk->sk_net_refcnt = kern ? 0 : 1;
2142 if (likely(sk->sk_net_refcnt)) {
2143 get_net_track(net, &sk->ns_tracker, priority);
2144 sock_inuse_add(net, 1);
2145 } else {
2146 __netns_tracker_alloc(net, &sk->ns_tracker,
2147 false, priority);
2148 }
2149
2150 sock_net_set(sk, net);
2151 refcount_set(&sk->sk_wmem_alloc, 1);
2152
2153 mem_cgroup_sk_alloc(sk);
2154 cgroup_sk_alloc(&sk->sk_cgrp_data);
2155 sock_update_classid(&sk->sk_cgrp_data);
2156 sock_update_netprioidx(&sk->sk_cgrp_data);
2157 sk_tx_queue_clear(sk);
2158 }
2159
2160 return sk;
2161}
2162EXPORT_SYMBOL(sk_alloc);
2163
2164/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2165 * grace period. This is the case for UDP sockets and TCP listeners.
2166 */
2167static void __sk_destruct(struct rcu_head *head)
2168{
2169 struct sock *sk = container_of(head, struct sock, sk_rcu);
2170 struct sk_filter *filter;
2171
2172 if (sk->sk_destruct)
2173 sk->sk_destruct(sk);
2174
2175 filter = rcu_dereference_check(sk->sk_filter,
2176 refcount_read(&sk->sk_wmem_alloc) == 0);
2177 if (filter) {
2178 sk_filter_uncharge(sk, filter);
2179 RCU_INIT_POINTER(sk->sk_filter, NULL);
2180 }
2181
2182 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2183
2184#ifdef CONFIG_BPF_SYSCALL
2185 bpf_sk_storage_free(sk);
2186#endif
2187
2188 if (atomic_read(&sk->sk_omem_alloc))
2189 pr_debug("%s: optmem leakage (%d bytes) detected\n",
2190 __func__, atomic_read(&sk->sk_omem_alloc));
2191
2192 if (sk->sk_frag.page) {
2193 put_page(sk->sk_frag.page);
2194 sk->sk_frag.page = NULL;
2195 }
2196
2197 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2198 put_cred(sk->sk_peer_cred);
2199 put_pid(sk->sk_peer_pid);
2200
2201 if (likely(sk->sk_net_refcnt))
2202 put_net_track(sock_net(sk), &sk->ns_tracker);
2203 else
2204 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2205
2206 sk_prot_free(sk->sk_prot_creator, sk);
2207}
2208
2209void sk_destruct(struct sock *sk)
2210{
2211 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2212
2213 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2214 reuseport_detach_sock(sk);
2215 use_call_rcu = true;
2216 }
2217
2218 if (use_call_rcu)
2219 call_rcu(&sk->sk_rcu, __sk_destruct);
2220 else
2221 __sk_destruct(&sk->sk_rcu);
2222}
2223
2224static void __sk_free(struct sock *sk)
2225{
2226 if (likely(sk->sk_net_refcnt))
2227 sock_inuse_add(sock_net(sk), -1);
2228
2229 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2230 sock_diag_broadcast_destroy(sk);
2231 else
2232 sk_destruct(sk);
2233}
2234
2235void sk_free(struct sock *sk)
2236{
2237 /*
2238 * We subtract one from sk_wmem_alloc and can know if
2239 * some packets are still in some tx queue.
2240 * If not null, sock_wfree() will call __sk_free(sk) later
2241 */
2242 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2243 __sk_free(sk);
2244}
2245EXPORT_SYMBOL(sk_free);
2246
2247static void sk_init_common(struct sock *sk)
2248{
2249 skb_queue_head_init(&sk->sk_receive_queue);
2250 skb_queue_head_init(&sk->sk_write_queue);
2251 skb_queue_head_init(&sk->sk_error_queue);
2252
2253 rwlock_init(&sk->sk_callback_lock);
2254 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2255 af_rlock_keys + sk->sk_family,
2256 af_family_rlock_key_strings[sk->sk_family]);
2257 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2258 af_wlock_keys + sk->sk_family,
2259 af_family_wlock_key_strings[sk->sk_family]);
2260 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2261 af_elock_keys + sk->sk_family,
2262 af_family_elock_key_strings[sk->sk_family]);
2263 lockdep_set_class_and_name(&sk->sk_callback_lock,
2264 af_callback_keys + sk->sk_family,
2265 af_family_clock_key_strings[sk->sk_family]);
2266}
2267
2268/**
2269 * sk_clone_lock - clone a socket, and lock its clone
2270 * @sk: the socket to clone
2271 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2272 *
2273 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2274 */
2275struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2276{
2277 struct proto *prot = READ_ONCE(sk->sk_prot);
2278 struct sk_filter *filter;
2279 bool is_charged = true;
2280 struct sock *newsk;
2281
2282 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2283 if (!newsk)
2284 goto out;
2285
2286 sock_copy(newsk, sk);
2287
2288 newsk->sk_prot_creator = prot;
2289
2290 /* SANITY */
2291 if (likely(newsk->sk_net_refcnt)) {
2292 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2293 sock_inuse_add(sock_net(newsk), 1);
2294 } else {
2295 /* Kernel sockets are not elevating the struct net refcount.
2296 * Instead, use a tracker to more easily detect if a layer
2297 * is not properly dismantling its kernel sockets at netns
2298 * destroy time.
2299 */
2300 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2301 false, priority);
2302 }
2303 sk_node_init(&newsk->sk_node);
2304 sock_lock_init(newsk);
2305 bh_lock_sock(newsk);
2306 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2307 newsk->sk_backlog.len = 0;
2308
2309 atomic_set(&newsk->sk_rmem_alloc, 0);
2310
2311 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2312 refcount_set(&newsk->sk_wmem_alloc, 1);
2313
2314 atomic_set(&newsk->sk_omem_alloc, 0);
2315 sk_init_common(newsk);
2316
2317 newsk->sk_dst_cache = NULL;
2318 newsk->sk_dst_pending_confirm = 0;
2319 newsk->sk_wmem_queued = 0;
2320 newsk->sk_forward_alloc = 0;
2321 newsk->sk_reserved_mem = 0;
2322 atomic_set(&newsk->sk_drops, 0);
2323 newsk->sk_send_head = NULL;
2324 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2325 atomic_set(&newsk->sk_zckey, 0);
2326
2327 sock_reset_flag(newsk, SOCK_DONE);
2328
2329 /* sk->sk_memcg will be populated at accept() time */
2330 newsk->sk_memcg = NULL;
2331
2332 cgroup_sk_clone(&newsk->sk_cgrp_data);
2333
2334 rcu_read_lock();
2335 filter = rcu_dereference(sk->sk_filter);
2336 if (filter != NULL)
2337 /* though it's an empty new sock, the charging may fail
2338 * if sysctl_optmem_max was changed between creation of
2339 * original socket and cloning
2340 */
2341 is_charged = sk_filter_charge(newsk, filter);
2342 RCU_INIT_POINTER(newsk->sk_filter, filter);
2343 rcu_read_unlock();
2344
2345 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2346 /* We need to make sure that we don't uncharge the new
2347 * socket if we couldn't charge it in the first place
2348 * as otherwise we uncharge the parent's filter.
2349 */
2350 if (!is_charged)
2351 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2352 sk_free_unlock_clone(newsk);
2353 newsk = NULL;
2354 goto out;
2355 }
2356 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2357
2358 if (bpf_sk_storage_clone(sk, newsk)) {
2359 sk_free_unlock_clone(newsk);
2360 newsk = NULL;
2361 goto out;
2362 }
2363
2364 /* Clear sk_user_data if parent had the pointer tagged
2365 * as not suitable for copying when cloning.
2366 */
2367 if (sk_user_data_is_nocopy(newsk))
2368 newsk->sk_user_data = NULL;
2369
2370 newsk->sk_err = 0;
2371 newsk->sk_err_soft = 0;
2372 newsk->sk_priority = 0;
2373 newsk->sk_incoming_cpu = raw_smp_processor_id();
2374
2375 /* Before updating sk_refcnt, we must commit prior changes to memory
2376 * (Documentation/RCU/rculist_nulls.rst for details)
2377 */
2378 smp_wmb();
2379 refcount_set(&newsk->sk_refcnt, 2);
2380
2381 sk_set_socket(newsk, NULL);
2382 sk_tx_queue_clear(newsk);
2383 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2384
2385 if (newsk->sk_prot->sockets_allocated)
2386 sk_sockets_allocated_inc(newsk);
2387
2388 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2389 net_enable_timestamp();
2390out:
2391 return newsk;
2392}
2393EXPORT_SYMBOL_GPL(sk_clone_lock);
2394
2395void sk_free_unlock_clone(struct sock *sk)
2396{
2397 /* It is still raw copy of parent, so invalidate
2398 * destructor and make plain sk_free() */
2399 sk->sk_destruct = NULL;
2400 bh_unlock_sock(sk);
2401 sk_free(sk);
2402}
2403EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2404
2405static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2406{
2407 bool is_ipv6 = false;
2408 u32 max_size;
2409
2410#if IS_ENABLED(CONFIG_IPV6)
2411 is_ipv6 = (sk->sk_family == AF_INET6 &&
2412 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2413#endif
2414 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2415 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2416 READ_ONCE(dst->dev->gso_ipv4_max_size);
2417 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2418 max_size = GSO_LEGACY_MAX_SIZE;
2419
2420 return max_size - (MAX_TCP_HEADER + 1);
2421}
2422
2423void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2424{
2425 u32 max_segs = 1;
2426
2427 sk->sk_route_caps = dst->dev->features;
2428 if (sk_is_tcp(sk))
2429 sk->sk_route_caps |= NETIF_F_GSO;
2430 if (sk->sk_route_caps & NETIF_F_GSO)
2431 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2432 if (unlikely(sk->sk_gso_disabled))
2433 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2434 if (sk_can_gso(sk)) {
2435 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2436 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2437 } else {
2438 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2439 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2440 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2441 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2442 }
2443 }
2444 sk->sk_gso_max_segs = max_segs;
2445 sk_dst_set(sk, dst);
2446}
2447EXPORT_SYMBOL_GPL(sk_setup_caps);
2448
2449/*
2450 * Simple resource managers for sockets.
2451 */
2452
2453
2454/*
2455 * Write buffer destructor automatically called from kfree_skb.
2456 */
2457void sock_wfree(struct sk_buff *skb)
2458{
2459 struct sock *sk = skb->sk;
2460 unsigned int len = skb->truesize;
2461 bool free;
2462
2463 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2464 if (sock_flag(sk, SOCK_RCU_FREE) &&
2465 sk->sk_write_space == sock_def_write_space) {
2466 rcu_read_lock();
2467 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2468 sock_def_write_space_wfree(sk);
2469 rcu_read_unlock();
2470 if (unlikely(free))
2471 __sk_free(sk);
2472 return;
2473 }
2474
2475 /*
2476 * Keep a reference on sk_wmem_alloc, this will be released
2477 * after sk_write_space() call
2478 */
2479 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2480 sk->sk_write_space(sk);
2481 len = 1;
2482 }
2483 /*
2484 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2485 * could not do because of in-flight packets
2486 */
2487 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2488 __sk_free(sk);
2489}
2490EXPORT_SYMBOL(sock_wfree);
2491
2492/* This variant of sock_wfree() is used by TCP,
2493 * since it sets SOCK_USE_WRITE_QUEUE.
2494 */
2495void __sock_wfree(struct sk_buff *skb)
2496{
2497 struct sock *sk = skb->sk;
2498
2499 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2500 __sk_free(sk);
2501}
2502
2503void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2504{
2505 skb_orphan(skb);
2506 skb->sk = sk;
2507#ifdef CONFIG_INET
2508 if (unlikely(!sk_fullsock(sk))) {
2509 skb->destructor = sock_edemux;
2510 sock_hold(sk);
2511 return;
2512 }
2513#endif
2514 skb->destructor = sock_wfree;
2515 skb_set_hash_from_sk(skb, sk);
2516 /*
2517 * We used to take a refcount on sk, but following operation
2518 * is enough to guarantee sk_free() wont free this sock until
2519 * all in-flight packets are completed
2520 */
2521 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2522}
2523EXPORT_SYMBOL(skb_set_owner_w);
2524
2525static bool can_skb_orphan_partial(const struct sk_buff *skb)
2526{
2527#ifdef CONFIG_TLS_DEVICE
2528 /* Drivers depend on in-order delivery for crypto offload,
2529 * partial orphan breaks out-of-order-OK logic.
2530 */
2531 if (skb->decrypted)
2532 return false;
2533#endif
2534 return (skb->destructor == sock_wfree ||
2535 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2536}
2537
2538/* This helper is used by netem, as it can hold packets in its
2539 * delay queue. We want to allow the owner socket to send more
2540 * packets, as if they were already TX completed by a typical driver.
2541 * But we also want to keep skb->sk set because some packet schedulers
2542 * rely on it (sch_fq for example).
2543 */
2544void skb_orphan_partial(struct sk_buff *skb)
2545{
2546 if (skb_is_tcp_pure_ack(skb))
2547 return;
2548
2549 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2550 return;
2551
2552 skb_orphan(skb);
2553}
2554EXPORT_SYMBOL(skb_orphan_partial);
2555
2556/*
2557 * Read buffer destructor automatically called from kfree_skb.
2558 */
2559void sock_rfree(struct sk_buff *skb)
2560{
2561 struct sock *sk = skb->sk;
2562 unsigned int len = skb->truesize;
2563
2564 atomic_sub(len, &sk->sk_rmem_alloc);
2565 sk_mem_uncharge(sk, len);
2566}
2567EXPORT_SYMBOL(sock_rfree);
2568
2569/*
2570 * Buffer destructor for skbs that are not used directly in read or write
2571 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2572 */
2573void sock_efree(struct sk_buff *skb)
2574{
2575 sock_put(skb->sk);
2576}
2577EXPORT_SYMBOL(sock_efree);
2578
2579/* Buffer destructor for prefetch/receive path where reference count may
2580 * not be held, e.g. for listen sockets.
2581 */
2582#ifdef CONFIG_INET
2583void sock_pfree(struct sk_buff *skb)
2584{
2585 if (sk_is_refcounted(skb->sk))
2586 sock_gen_put(skb->sk);
2587}
2588EXPORT_SYMBOL(sock_pfree);
2589#endif /* CONFIG_INET */
2590
2591kuid_t sock_i_uid(struct sock *sk)
2592{
2593 kuid_t uid;
2594
2595 read_lock_bh(&sk->sk_callback_lock);
2596 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2597 read_unlock_bh(&sk->sk_callback_lock);
2598 return uid;
2599}
2600EXPORT_SYMBOL(sock_i_uid);
2601
2602unsigned long __sock_i_ino(struct sock *sk)
2603{
2604 unsigned long ino;
2605
2606 read_lock(&sk->sk_callback_lock);
2607 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2608 read_unlock(&sk->sk_callback_lock);
2609 return ino;
2610}
2611EXPORT_SYMBOL(__sock_i_ino);
2612
2613unsigned long sock_i_ino(struct sock *sk)
2614{
2615 unsigned long ino;
2616
2617 local_bh_disable();
2618 ino = __sock_i_ino(sk);
2619 local_bh_enable();
2620 return ino;
2621}
2622EXPORT_SYMBOL(sock_i_ino);
2623
2624/*
2625 * Allocate a skb from the socket's send buffer.
2626 */
2627struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2628 gfp_t priority)
2629{
2630 if (force ||
2631 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2632 struct sk_buff *skb = alloc_skb(size, priority);
2633
2634 if (skb) {
2635 skb_set_owner_w(skb, sk);
2636 return skb;
2637 }
2638 }
2639 return NULL;
2640}
2641EXPORT_SYMBOL(sock_wmalloc);
2642
2643static void sock_ofree(struct sk_buff *skb)
2644{
2645 struct sock *sk = skb->sk;
2646
2647 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2648}
2649
2650struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2651 gfp_t priority)
2652{
2653 struct sk_buff *skb;
2654
2655 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2656 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2657 READ_ONCE(sock_net(sk)->core.sysctl_optmem_max))
2658 return NULL;
2659
2660 skb = alloc_skb(size, priority);
2661 if (!skb)
2662 return NULL;
2663
2664 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2665 skb->sk = sk;
2666 skb->destructor = sock_ofree;
2667 return skb;
2668}
2669
2670/*
2671 * Allocate a memory block from the socket's option memory buffer.
2672 */
2673void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2674{
2675 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
2676
2677 if ((unsigned int)size <= optmem_max &&
2678 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2679 void *mem;
2680 /* First do the add, to avoid the race if kmalloc
2681 * might sleep.
2682 */
2683 atomic_add(size, &sk->sk_omem_alloc);
2684 mem = kmalloc(size, priority);
2685 if (mem)
2686 return mem;
2687 atomic_sub(size, &sk->sk_omem_alloc);
2688 }
2689 return NULL;
2690}
2691EXPORT_SYMBOL(sock_kmalloc);
2692
2693/* Free an option memory block. Note, we actually want the inline
2694 * here as this allows gcc to detect the nullify and fold away the
2695 * condition entirely.
2696 */
2697static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2698 const bool nullify)
2699{
2700 if (WARN_ON_ONCE(!mem))
2701 return;
2702 if (nullify)
2703 kfree_sensitive(mem);
2704 else
2705 kfree(mem);
2706 atomic_sub(size, &sk->sk_omem_alloc);
2707}
2708
2709void sock_kfree_s(struct sock *sk, void *mem, int size)
2710{
2711 __sock_kfree_s(sk, mem, size, false);
2712}
2713EXPORT_SYMBOL(sock_kfree_s);
2714
2715void sock_kzfree_s(struct sock *sk, void *mem, int size)
2716{
2717 __sock_kfree_s(sk, mem, size, true);
2718}
2719EXPORT_SYMBOL(sock_kzfree_s);
2720
2721/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2722 I think, these locks should be removed for datagram sockets.
2723 */
2724static long sock_wait_for_wmem(struct sock *sk, long timeo)
2725{
2726 DEFINE_WAIT(wait);
2727
2728 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2729 for (;;) {
2730 if (!timeo)
2731 break;
2732 if (signal_pending(current))
2733 break;
2734 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2735 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2736 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2737 break;
2738 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2739 break;
2740 if (READ_ONCE(sk->sk_err))
2741 break;
2742 timeo = schedule_timeout(timeo);
2743 }
2744 finish_wait(sk_sleep(sk), &wait);
2745 return timeo;
2746}
2747
2748
2749/*
2750 * Generic send/receive buffer handlers
2751 */
2752
2753struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2754 unsigned long data_len, int noblock,
2755 int *errcode, int max_page_order)
2756{
2757 struct sk_buff *skb;
2758 long timeo;
2759 int err;
2760
2761 timeo = sock_sndtimeo(sk, noblock);
2762 for (;;) {
2763 err = sock_error(sk);
2764 if (err != 0)
2765 goto failure;
2766
2767 err = -EPIPE;
2768 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2769 goto failure;
2770
2771 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2772 break;
2773
2774 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2775 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2776 err = -EAGAIN;
2777 if (!timeo)
2778 goto failure;
2779 if (signal_pending(current))
2780 goto interrupted;
2781 timeo = sock_wait_for_wmem(sk, timeo);
2782 }
2783 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2784 errcode, sk->sk_allocation);
2785 if (skb)
2786 skb_set_owner_w(skb, sk);
2787 return skb;
2788
2789interrupted:
2790 err = sock_intr_errno(timeo);
2791failure:
2792 *errcode = err;
2793 return NULL;
2794}
2795EXPORT_SYMBOL(sock_alloc_send_pskb);
2796
2797int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2798 struct sockcm_cookie *sockc)
2799{
2800 u32 tsflags;
2801
2802 switch (cmsg->cmsg_type) {
2803 case SO_MARK:
2804 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2805 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2806 return -EPERM;
2807 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2808 return -EINVAL;
2809 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2810 break;
2811 case SO_TIMESTAMPING_OLD:
2812 case SO_TIMESTAMPING_NEW:
2813 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2814 return -EINVAL;
2815
2816 tsflags = *(u32 *)CMSG_DATA(cmsg);
2817 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2818 return -EINVAL;
2819
2820 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2821 sockc->tsflags |= tsflags;
2822 break;
2823 case SCM_TXTIME:
2824 if (!sock_flag(sk, SOCK_TXTIME))
2825 return -EINVAL;
2826 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2827 return -EINVAL;
2828 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2829 break;
2830 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2831 case SCM_RIGHTS:
2832 case SCM_CREDENTIALS:
2833 break;
2834 default:
2835 return -EINVAL;
2836 }
2837 return 0;
2838}
2839EXPORT_SYMBOL(__sock_cmsg_send);
2840
2841int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2842 struct sockcm_cookie *sockc)
2843{
2844 struct cmsghdr *cmsg;
2845 int ret;
2846
2847 for_each_cmsghdr(cmsg, msg) {
2848 if (!CMSG_OK(msg, cmsg))
2849 return -EINVAL;
2850 if (cmsg->cmsg_level != SOL_SOCKET)
2851 continue;
2852 ret = __sock_cmsg_send(sk, cmsg, sockc);
2853 if (ret)
2854 return ret;
2855 }
2856 return 0;
2857}
2858EXPORT_SYMBOL(sock_cmsg_send);
2859
2860static void sk_enter_memory_pressure(struct sock *sk)
2861{
2862 if (!sk->sk_prot->enter_memory_pressure)
2863 return;
2864
2865 sk->sk_prot->enter_memory_pressure(sk);
2866}
2867
2868static void sk_leave_memory_pressure(struct sock *sk)
2869{
2870 if (sk->sk_prot->leave_memory_pressure) {
2871 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
2872 tcp_leave_memory_pressure, sk);
2873 } else {
2874 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2875
2876 if (memory_pressure && READ_ONCE(*memory_pressure))
2877 WRITE_ONCE(*memory_pressure, 0);
2878 }
2879}
2880
2881DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2882
2883/**
2884 * skb_page_frag_refill - check that a page_frag contains enough room
2885 * @sz: minimum size of the fragment we want to get
2886 * @pfrag: pointer to page_frag
2887 * @gfp: priority for memory allocation
2888 *
2889 * Note: While this allocator tries to use high order pages, there is
2890 * no guarantee that allocations succeed. Therefore, @sz MUST be
2891 * less or equal than PAGE_SIZE.
2892 */
2893bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2894{
2895 if (pfrag->page) {
2896 if (page_ref_count(pfrag->page) == 1) {
2897 pfrag->offset = 0;
2898 return true;
2899 }
2900 if (pfrag->offset + sz <= pfrag->size)
2901 return true;
2902 put_page(pfrag->page);
2903 }
2904
2905 pfrag->offset = 0;
2906 if (SKB_FRAG_PAGE_ORDER &&
2907 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2908 /* Avoid direct reclaim but allow kswapd to wake */
2909 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2910 __GFP_COMP | __GFP_NOWARN |
2911 __GFP_NORETRY,
2912 SKB_FRAG_PAGE_ORDER);
2913 if (likely(pfrag->page)) {
2914 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2915 return true;
2916 }
2917 }
2918 pfrag->page = alloc_page(gfp);
2919 if (likely(pfrag->page)) {
2920 pfrag->size = PAGE_SIZE;
2921 return true;
2922 }
2923 return false;
2924}
2925EXPORT_SYMBOL(skb_page_frag_refill);
2926
2927bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2928{
2929 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2930 return true;
2931
2932 sk_enter_memory_pressure(sk);
2933 sk_stream_moderate_sndbuf(sk);
2934 return false;
2935}
2936EXPORT_SYMBOL(sk_page_frag_refill);
2937
2938void __lock_sock(struct sock *sk)
2939 __releases(&sk->sk_lock.slock)
2940 __acquires(&sk->sk_lock.slock)
2941{
2942 DEFINE_WAIT(wait);
2943
2944 for (;;) {
2945 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2946 TASK_UNINTERRUPTIBLE);
2947 spin_unlock_bh(&sk->sk_lock.slock);
2948 schedule();
2949 spin_lock_bh(&sk->sk_lock.slock);
2950 if (!sock_owned_by_user(sk))
2951 break;
2952 }
2953 finish_wait(&sk->sk_lock.wq, &wait);
2954}
2955
2956void __release_sock(struct sock *sk)
2957 __releases(&sk->sk_lock.slock)
2958 __acquires(&sk->sk_lock.slock)
2959{
2960 struct sk_buff *skb, *next;
2961
2962 while ((skb = sk->sk_backlog.head) != NULL) {
2963 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2964
2965 spin_unlock_bh(&sk->sk_lock.slock);
2966
2967 do {
2968 next = skb->next;
2969 prefetch(next);
2970 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2971 skb_mark_not_on_list(skb);
2972 sk_backlog_rcv(sk, skb);
2973
2974 cond_resched();
2975
2976 skb = next;
2977 } while (skb != NULL);
2978
2979 spin_lock_bh(&sk->sk_lock.slock);
2980 }
2981
2982 /*
2983 * Doing the zeroing here guarantee we can not loop forever
2984 * while a wild producer attempts to flood us.
2985 */
2986 sk->sk_backlog.len = 0;
2987}
2988
2989void __sk_flush_backlog(struct sock *sk)
2990{
2991 spin_lock_bh(&sk->sk_lock.slock);
2992 __release_sock(sk);
2993
2994 if (sk->sk_prot->release_cb)
2995 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
2996 tcp_release_cb, sk);
2997
2998 spin_unlock_bh(&sk->sk_lock.slock);
2999}
3000EXPORT_SYMBOL_GPL(__sk_flush_backlog);
3001
3002/**
3003 * sk_wait_data - wait for data to arrive at sk_receive_queue
3004 * @sk: sock to wait on
3005 * @timeo: for how long
3006 * @skb: last skb seen on sk_receive_queue
3007 *
3008 * Now socket state including sk->sk_err is changed only under lock,
3009 * hence we may omit checks after joining wait queue.
3010 * We check receive queue before schedule() only as optimization;
3011 * it is very likely that release_sock() added new data.
3012 */
3013int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3014{
3015 DEFINE_WAIT_FUNC(wait, woken_wake_function);
3016 int rc;
3017
3018 add_wait_queue(sk_sleep(sk), &wait);
3019 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3020 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3021 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3022 remove_wait_queue(sk_sleep(sk), &wait);
3023 return rc;
3024}
3025EXPORT_SYMBOL(sk_wait_data);
3026
3027/**
3028 * __sk_mem_raise_allocated - increase memory_allocated
3029 * @sk: socket
3030 * @size: memory size to allocate
3031 * @amt: pages to allocate
3032 * @kind: allocation type
3033 *
3034 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc.
3035 *
3036 * Unlike the globally shared limits among the sockets under same protocol,
3037 * consuming the budget of a memcg won't have direct effect on other ones.
3038 * So be optimistic about memcg's tolerance, and leave the callers to decide
3039 * whether or not to raise allocated through sk_under_memory_pressure() or
3040 * its variants.
3041 */
3042int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3043{
3044 struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL;
3045 struct proto *prot = sk->sk_prot;
3046 bool charged = false;
3047 long allocated;
3048
3049 sk_memory_allocated_add(sk, amt);
3050 allocated = sk_memory_allocated(sk);
3051
3052 if (memcg) {
3053 if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge()))
3054 goto suppress_allocation;
3055 charged = true;
3056 }
3057
3058 /* Under limit. */
3059 if (allocated <= sk_prot_mem_limits(sk, 0)) {
3060 sk_leave_memory_pressure(sk);
3061 return 1;
3062 }
3063
3064 /* Under pressure. */
3065 if (allocated > sk_prot_mem_limits(sk, 1))
3066 sk_enter_memory_pressure(sk);
3067
3068 /* Over hard limit. */
3069 if (allocated > sk_prot_mem_limits(sk, 2))
3070 goto suppress_allocation;
3071
3072 /* Guarantee minimum buffer size under pressure (either global
3073 * or memcg) to make sure features described in RFC 7323 (TCP
3074 * Extensions for High Performance) work properly.
3075 *
3076 * This rule does NOT stand when exceeds global or memcg's hard
3077 * limit, or else a DoS attack can be taken place by spawning
3078 * lots of sockets whose usage are under minimum buffer size.
3079 */
3080 if (kind == SK_MEM_RECV) {
3081 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3082 return 1;
3083
3084 } else { /* SK_MEM_SEND */
3085 int wmem0 = sk_get_wmem0(sk, prot);
3086
3087 if (sk->sk_type == SOCK_STREAM) {
3088 if (sk->sk_wmem_queued < wmem0)
3089 return 1;
3090 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3091 return 1;
3092 }
3093 }
3094
3095 if (sk_has_memory_pressure(sk)) {
3096 u64 alloc;
3097
3098 /* The following 'average' heuristic is within the
3099 * scope of global accounting, so it only makes
3100 * sense for global memory pressure.
3101 */
3102 if (!sk_under_global_memory_pressure(sk))
3103 return 1;
3104
3105 /* Try to be fair among all the sockets under global
3106 * pressure by allowing the ones that below average
3107 * usage to raise.
3108 */
3109 alloc = sk_sockets_allocated_read_positive(sk);
3110 if (sk_prot_mem_limits(sk, 2) > alloc *
3111 sk_mem_pages(sk->sk_wmem_queued +
3112 atomic_read(&sk->sk_rmem_alloc) +
3113 sk->sk_forward_alloc))
3114 return 1;
3115 }
3116
3117suppress_allocation:
3118
3119 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3120 sk_stream_moderate_sndbuf(sk);
3121
3122 /* Fail only if socket is _under_ its sndbuf.
3123 * In this case we cannot block, so that we have to fail.
3124 */
3125 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3126 /* Force charge with __GFP_NOFAIL */
3127 if (memcg && !charged) {
3128 mem_cgroup_charge_skmem(memcg, amt,
3129 gfp_memcg_charge() | __GFP_NOFAIL);
3130 }
3131 return 1;
3132 }
3133 }
3134
3135 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3136 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3137
3138 sk_memory_allocated_sub(sk, amt);
3139
3140 if (charged)
3141 mem_cgroup_uncharge_skmem(memcg, amt);
3142
3143 return 0;
3144}
3145
3146/**
3147 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3148 * @sk: socket
3149 * @size: memory size to allocate
3150 * @kind: allocation type
3151 *
3152 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3153 * rmem allocation. This function assumes that protocols which have
3154 * memory_pressure use sk_wmem_queued as write buffer accounting.
3155 */
3156int __sk_mem_schedule(struct sock *sk, int size, int kind)
3157{
3158 int ret, amt = sk_mem_pages(size);
3159
3160 sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3161 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3162 if (!ret)
3163 sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
3164 return ret;
3165}
3166EXPORT_SYMBOL(__sk_mem_schedule);
3167
3168/**
3169 * __sk_mem_reduce_allocated - reclaim memory_allocated
3170 * @sk: socket
3171 * @amount: number of quanta
3172 *
3173 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3174 */
3175void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3176{
3177 sk_memory_allocated_sub(sk, amount);
3178
3179 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3180 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3181
3182 if (sk_under_global_memory_pressure(sk) &&
3183 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3184 sk_leave_memory_pressure(sk);
3185}
3186
3187/**
3188 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3189 * @sk: socket
3190 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3191 */
3192void __sk_mem_reclaim(struct sock *sk, int amount)
3193{
3194 amount >>= PAGE_SHIFT;
3195 sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
3196 __sk_mem_reduce_allocated(sk, amount);
3197}
3198EXPORT_SYMBOL(__sk_mem_reclaim);
3199
3200int sk_set_peek_off(struct sock *sk, int val)
3201{
3202 WRITE_ONCE(sk->sk_peek_off, val);
3203 return 0;
3204}
3205EXPORT_SYMBOL_GPL(sk_set_peek_off);
3206
3207/*
3208 * Set of default routines for initialising struct proto_ops when
3209 * the protocol does not support a particular function. In certain
3210 * cases where it makes no sense for a protocol to have a "do nothing"
3211 * function, some default processing is provided.
3212 */
3213
3214int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3215{
3216 return -EOPNOTSUPP;
3217}
3218EXPORT_SYMBOL(sock_no_bind);
3219
3220int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3221 int len, int flags)
3222{
3223 return -EOPNOTSUPP;
3224}
3225EXPORT_SYMBOL(sock_no_connect);
3226
3227int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3228{
3229 return -EOPNOTSUPP;
3230}
3231EXPORT_SYMBOL(sock_no_socketpair);
3232
3233int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3234 bool kern)
3235{
3236 return -EOPNOTSUPP;
3237}
3238EXPORT_SYMBOL(sock_no_accept);
3239
3240int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3241 int peer)
3242{
3243 return -EOPNOTSUPP;
3244}
3245EXPORT_SYMBOL(sock_no_getname);
3246
3247int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3248{
3249 return -EOPNOTSUPP;
3250}
3251EXPORT_SYMBOL(sock_no_ioctl);
3252
3253int sock_no_listen(struct socket *sock, int backlog)
3254{
3255 return -EOPNOTSUPP;
3256}
3257EXPORT_SYMBOL(sock_no_listen);
3258
3259int sock_no_shutdown(struct socket *sock, int how)
3260{
3261 return -EOPNOTSUPP;
3262}
3263EXPORT_SYMBOL(sock_no_shutdown);
3264
3265int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3266{
3267 return -EOPNOTSUPP;
3268}
3269EXPORT_SYMBOL(sock_no_sendmsg);
3270
3271int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3272{
3273 return -EOPNOTSUPP;
3274}
3275EXPORT_SYMBOL(sock_no_sendmsg_locked);
3276
3277int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3278 int flags)
3279{
3280 return -EOPNOTSUPP;
3281}
3282EXPORT_SYMBOL(sock_no_recvmsg);
3283
3284int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3285{
3286 /* Mirror missing mmap method error code */
3287 return -ENODEV;
3288}
3289EXPORT_SYMBOL(sock_no_mmap);
3290
3291/*
3292 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3293 * various sock-based usage counts.
3294 */
3295void __receive_sock(struct file *file)
3296{
3297 struct socket *sock;
3298
3299 sock = sock_from_file(file);
3300 if (sock) {
3301 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3302 sock_update_classid(&sock->sk->sk_cgrp_data);
3303 }
3304}
3305
3306/*
3307 * Default Socket Callbacks
3308 */
3309
3310static void sock_def_wakeup(struct sock *sk)
3311{
3312 struct socket_wq *wq;
3313
3314 rcu_read_lock();
3315 wq = rcu_dereference(sk->sk_wq);
3316 if (skwq_has_sleeper(wq))
3317 wake_up_interruptible_all(&wq->wait);
3318 rcu_read_unlock();
3319}
3320
3321static void sock_def_error_report(struct sock *sk)
3322{
3323 struct socket_wq *wq;
3324
3325 rcu_read_lock();
3326 wq = rcu_dereference(sk->sk_wq);
3327 if (skwq_has_sleeper(wq))
3328 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3329 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3330 rcu_read_unlock();
3331}
3332
3333void sock_def_readable(struct sock *sk)
3334{
3335 struct socket_wq *wq;
3336
3337 trace_sk_data_ready(sk);
3338
3339 rcu_read_lock();
3340 wq = rcu_dereference(sk->sk_wq);
3341 if (skwq_has_sleeper(wq))
3342 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3343 EPOLLRDNORM | EPOLLRDBAND);
3344 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3345 rcu_read_unlock();
3346}
3347
3348static void sock_def_write_space(struct sock *sk)
3349{
3350 struct socket_wq *wq;
3351
3352 rcu_read_lock();
3353
3354 /* Do not wake up a writer until he can make "significant"
3355 * progress. --DaveM
3356 */
3357 if (sock_writeable(sk)) {
3358 wq = rcu_dereference(sk->sk_wq);
3359 if (skwq_has_sleeper(wq))
3360 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3361 EPOLLWRNORM | EPOLLWRBAND);
3362
3363 /* Should agree with poll, otherwise some programs break */
3364 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3365 }
3366
3367 rcu_read_unlock();
3368}
3369
3370/* An optimised version of sock_def_write_space(), should only be called
3371 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3372 * ->sk_wmem_alloc.
3373 */
3374static void sock_def_write_space_wfree(struct sock *sk)
3375{
3376 /* Do not wake up a writer until he can make "significant"
3377 * progress. --DaveM
3378 */
3379 if (sock_writeable(sk)) {
3380 struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3381
3382 /* rely on refcount_sub from sock_wfree() */
3383 smp_mb__after_atomic();
3384 if (wq && waitqueue_active(&wq->wait))
3385 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3386 EPOLLWRNORM | EPOLLWRBAND);
3387
3388 /* Should agree with poll, otherwise some programs break */
3389 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3390 }
3391}
3392
3393static void sock_def_destruct(struct sock *sk)
3394{
3395}
3396
3397void sk_send_sigurg(struct sock *sk)
3398{
3399 if (sk->sk_socket && sk->sk_socket->file)
3400 if (send_sigurg(&sk->sk_socket->file->f_owner))
3401 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3402}
3403EXPORT_SYMBOL(sk_send_sigurg);
3404
3405void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3406 unsigned long expires)
3407{
3408 if (!mod_timer(timer, expires))
3409 sock_hold(sk);
3410}
3411EXPORT_SYMBOL(sk_reset_timer);
3412
3413void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3414{
3415 if (del_timer(timer))
3416 __sock_put(sk);
3417}
3418EXPORT_SYMBOL(sk_stop_timer);
3419
3420void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3421{
3422 if (del_timer_sync(timer))
3423 __sock_put(sk);
3424}
3425EXPORT_SYMBOL(sk_stop_timer_sync);
3426
3427void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3428{
3429 sk_init_common(sk);
3430 sk->sk_send_head = NULL;
3431
3432 timer_setup(&sk->sk_timer, NULL, 0);
3433
3434 sk->sk_allocation = GFP_KERNEL;
3435 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default);
3436 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
3437 sk->sk_state = TCP_CLOSE;
3438 sk->sk_use_task_frag = true;
3439 sk_set_socket(sk, sock);
3440
3441 sock_set_flag(sk, SOCK_ZAPPED);
3442
3443 if (sock) {
3444 sk->sk_type = sock->type;
3445 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3446 sock->sk = sk;
3447 } else {
3448 RCU_INIT_POINTER(sk->sk_wq, NULL);
3449 }
3450 sk->sk_uid = uid;
3451
3452 rwlock_init(&sk->sk_callback_lock);
3453 if (sk->sk_kern_sock)
3454 lockdep_set_class_and_name(
3455 &sk->sk_callback_lock,
3456 af_kern_callback_keys + sk->sk_family,
3457 af_family_kern_clock_key_strings[sk->sk_family]);
3458 else
3459 lockdep_set_class_and_name(
3460 &sk->sk_callback_lock,
3461 af_callback_keys + sk->sk_family,
3462 af_family_clock_key_strings[sk->sk_family]);
3463
3464 sk->sk_state_change = sock_def_wakeup;
3465 sk->sk_data_ready = sock_def_readable;
3466 sk->sk_write_space = sock_def_write_space;
3467 sk->sk_error_report = sock_def_error_report;
3468 sk->sk_destruct = sock_def_destruct;
3469
3470 sk->sk_frag.page = NULL;
3471 sk->sk_frag.offset = 0;
3472 sk->sk_peek_off = -1;
3473
3474 sk->sk_peer_pid = NULL;
3475 sk->sk_peer_cred = NULL;
3476 spin_lock_init(&sk->sk_peer_lock);
3477
3478 sk->sk_write_pending = 0;
3479 sk->sk_rcvlowat = 1;
3480 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3481 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3482
3483 sk->sk_stamp = SK_DEFAULT_STAMP;
3484#if BITS_PER_LONG==32
3485 seqlock_init(&sk->sk_stamp_seq);
3486#endif
3487 atomic_set(&sk->sk_zckey, 0);
3488
3489#ifdef CONFIG_NET_RX_BUSY_POLL
3490 sk->sk_napi_id = 0;
3491 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read);
3492#endif
3493
3494 sk->sk_max_pacing_rate = ~0UL;
3495 sk->sk_pacing_rate = ~0UL;
3496 WRITE_ONCE(sk->sk_pacing_shift, 10);
3497 sk->sk_incoming_cpu = -1;
3498
3499 sk_rx_queue_clear(sk);
3500 /*
3501 * Before updating sk_refcnt, we must commit prior changes to memory
3502 * (Documentation/RCU/rculist_nulls.rst for details)
3503 */
3504 smp_wmb();
3505 refcount_set(&sk->sk_refcnt, 1);
3506 atomic_set(&sk->sk_drops, 0);
3507}
3508EXPORT_SYMBOL(sock_init_data_uid);
3509
3510void sock_init_data(struct socket *sock, struct sock *sk)
3511{
3512 kuid_t uid = sock ?
3513 SOCK_INODE(sock)->i_uid :
3514 make_kuid(sock_net(sk)->user_ns, 0);
3515
3516 sock_init_data_uid(sock, sk, uid);
3517}
3518EXPORT_SYMBOL(sock_init_data);
3519
3520void lock_sock_nested(struct sock *sk, int subclass)
3521{
3522 /* The sk_lock has mutex_lock() semantics here. */
3523 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3524
3525 might_sleep();
3526 spin_lock_bh(&sk->sk_lock.slock);
3527 if (sock_owned_by_user_nocheck(sk))
3528 __lock_sock(sk);
3529 sk->sk_lock.owned = 1;
3530 spin_unlock_bh(&sk->sk_lock.slock);
3531}
3532EXPORT_SYMBOL(lock_sock_nested);
3533
3534void release_sock(struct sock *sk)
3535{
3536 spin_lock_bh(&sk->sk_lock.slock);
3537 if (sk->sk_backlog.tail)
3538 __release_sock(sk);
3539
3540 if (sk->sk_prot->release_cb)
3541 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3542 tcp_release_cb, sk);
3543
3544 sock_release_ownership(sk);
3545 if (waitqueue_active(&sk->sk_lock.wq))
3546 wake_up(&sk->sk_lock.wq);
3547 spin_unlock_bh(&sk->sk_lock.slock);
3548}
3549EXPORT_SYMBOL(release_sock);
3550
3551bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3552{
3553 might_sleep();
3554 spin_lock_bh(&sk->sk_lock.slock);
3555
3556 if (!sock_owned_by_user_nocheck(sk)) {
3557 /*
3558 * Fast path return with bottom halves disabled and
3559 * sock::sk_lock.slock held.
3560 *
3561 * The 'mutex' is not contended and holding
3562 * sock::sk_lock.slock prevents all other lockers to
3563 * proceed so the corresponding unlock_sock_fast() can
3564 * avoid the slow path of release_sock() completely and
3565 * just release slock.
3566 *
3567 * From a semantical POV this is equivalent to 'acquiring'
3568 * the 'mutex', hence the corresponding lockdep
3569 * mutex_release() has to happen in the fast path of
3570 * unlock_sock_fast().
3571 */
3572 return false;
3573 }
3574
3575 __lock_sock(sk);
3576 sk->sk_lock.owned = 1;
3577 __acquire(&sk->sk_lock.slock);
3578 spin_unlock_bh(&sk->sk_lock.slock);
3579 return true;
3580}
3581EXPORT_SYMBOL(__lock_sock_fast);
3582
3583int sock_gettstamp(struct socket *sock, void __user *userstamp,
3584 bool timeval, bool time32)
3585{
3586 struct sock *sk = sock->sk;
3587 struct timespec64 ts;
3588
3589 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3590 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3591 if (ts.tv_sec == -1)
3592 return -ENOENT;
3593 if (ts.tv_sec == 0) {
3594 ktime_t kt = ktime_get_real();
3595 sock_write_timestamp(sk, kt);
3596 ts = ktime_to_timespec64(kt);
3597 }
3598
3599 if (timeval)
3600 ts.tv_nsec /= 1000;
3601
3602#ifdef CONFIG_COMPAT_32BIT_TIME
3603 if (time32)
3604 return put_old_timespec32(&ts, userstamp);
3605#endif
3606#ifdef CONFIG_SPARC64
3607 /* beware of padding in sparc64 timeval */
3608 if (timeval && !in_compat_syscall()) {
3609 struct __kernel_old_timeval __user tv = {
3610 .tv_sec = ts.tv_sec,
3611 .tv_usec = ts.tv_nsec,
3612 };
3613 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3614 return -EFAULT;
3615 return 0;
3616 }
3617#endif
3618 return put_timespec64(&ts, userstamp);
3619}
3620EXPORT_SYMBOL(sock_gettstamp);
3621
3622void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3623{
3624 if (!sock_flag(sk, flag)) {
3625 unsigned long previous_flags = sk->sk_flags;
3626
3627 sock_set_flag(sk, flag);
3628 /*
3629 * we just set one of the two flags which require net
3630 * time stamping, but time stamping might have been on
3631 * already because of the other one
3632 */
3633 if (sock_needs_netstamp(sk) &&
3634 !(previous_flags & SK_FLAGS_TIMESTAMP))
3635 net_enable_timestamp();
3636 }
3637}
3638
3639int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3640 int level, int type)
3641{
3642 struct sock_exterr_skb *serr;
3643 struct sk_buff *skb;
3644 int copied, err;
3645
3646 err = -EAGAIN;
3647 skb = sock_dequeue_err_skb(sk);
3648 if (skb == NULL)
3649 goto out;
3650
3651 copied = skb->len;
3652 if (copied > len) {
3653 msg->msg_flags |= MSG_TRUNC;
3654 copied = len;
3655 }
3656 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3657 if (err)
3658 goto out_free_skb;
3659
3660 sock_recv_timestamp(msg, sk, skb);
3661
3662 serr = SKB_EXT_ERR(skb);
3663 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3664
3665 msg->msg_flags |= MSG_ERRQUEUE;
3666 err = copied;
3667
3668out_free_skb:
3669 kfree_skb(skb);
3670out:
3671 return err;
3672}
3673EXPORT_SYMBOL(sock_recv_errqueue);
3674
3675/*
3676 * Get a socket option on an socket.
3677 *
3678 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3679 * asynchronous errors should be reported by getsockopt. We assume
3680 * this means if you specify SO_ERROR (otherwise whats the point of it).
3681 */
3682int sock_common_getsockopt(struct socket *sock, int level, int optname,
3683 char __user *optval, int __user *optlen)
3684{
3685 struct sock *sk = sock->sk;
3686
3687 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3688 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3689}
3690EXPORT_SYMBOL(sock_common_getsockopt);
3691
3692int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3693 int flags)
3694{
3695 struct sock *sk = sock->sk;
3696 int addr_len = 0;
3697 int err;
3698
3699 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3700 if (err >= 0)
3701 msg->msg_namelen = addr_len;
3702 return err;
3703}
3704EXPORT_SYMBOL(sock_common_recvmsg);
3705
3706/*
3707 * Set socket options on an inet socket.
3708 */
3709int sock_common_setsockopt(struct socket *sock, int level, int optname,
3710 sockptr_t optval, unsigned int optlen)
3711{
3712 struct sock *sk = sock->sk;
3713
3714 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3715 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3716}
3717EXPORT_SYMBOL(sock_common_setsockopt);
3718
3719void sk_common_release(struct sock *sk)
3720{
3721 if (sk->sk_prot->destroy)
3722 sk->sk_prot->destroy(sk);
3723
3724 /*
3725 * Observation: when sk_common_release is called, processes have
3726 * no access to socket. But net still has.
3727 * Step one, detach it from networking:
3728 *
3729 * A. Remove from hash tables.
3730 */
3731
3732 sk->sk_prot->unhash(sk);
3733
3734 /*
3735 * In this point socket cannot receive new packets, but it is possible
3736 * that some packets are in flight because some CPU runs receiver and
3737 * did hash table lookup before we unhashed socket. They will achieve
3738 * receive queue and will be purged by socket destructor.
3739 *
3740 * Also we still have packets pending on receive queue and probably,
3741 * our own packets waiting in device queues. sock_destroy will drain
3742 * receive queue, but transmitted packets will delay socket destruction
3743 * until the last reference will be released.
3744 */
3745
3746 sock_orphan(sk);
3747
3748 xfrm_sk_free_policy(sk);
3749
3750 sock_put(sk);
3751}
3752EXPORT_SYMBOL(sk_common_release);
3753
3754void sk_get_meminfo(const struct sock *sk, u32 *mem)
3755{
3756 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3757
3758 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3759 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3760 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3761 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3762 mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3763 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3764 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3765 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3766 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3767}
3768
3769#ifdef CONFIG_PROC_FS
3770static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3771
3772int sock_prot_inuse_get(struct net *net, struct proto *prot)
3773{
3774 int cpu, idx = prot->inuse_idx;
3775 int res = 0;
3776
3777 for_each_possible_cpu(cpu)
3778 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3779
3780 return res >= 0 ? res : 0;
3781}
3782EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3783
3784int sock_inuse_get(struct net *net)
3785{
3786 int cpu, res = 0;
3787
3788 for_each_possible_cpu(cpu)
3789 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3790
3791 return res;
3792}
3793
3794EXPORT_SYMBOL_GPL(sock_inuse_get);
3795
3796static int __net_init sock_inuse_init_net(struct net *net)
3797{
3798 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3799 if (net->core.prot_inuse == NULL)
3800 return -ENOMEM;
3801 return 0;
3802}
3803
3804static void __net_exit sock_inuse_exit_net(struct net *net)
3805{
3806 free_percpu(net->core.prot_inuse);
3807}
3808
3809static struct pernet_operations net_inuse_ops = {
3810 .init = sock_inuse_init_net,
3811 .exit = sock_inuse_exit_net,
3812};
3813
3814static __init int net_inuse_init(void)
3815{
3816 if (register_pernet_subsys(&net_inuse_ops))
3817 panic("Cannot initialize net inuse counters");
3818
3819 return 0;
3820}
3821
3822core_initcall(net_inuse_init);
3823
3824static int assign_proto_idx(struct proto *prot)
3825{
3826 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3827
3828 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3829 pr_err("PROTO_INUSE_NR exhausted\n");
3830 return -ENOSPC;
3831 }
3832
3833 set_bit(prot->inuse_idx, proto_inuse_idx);
3834 return 0;
3835}
3836
3837static void release_proto_idx(struct proto *prot)
3838{
3839 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3840 clear_bit(prot->inuse_idx, proto_inuse_idx);
3841}
3842#else
3843static inline int assign_proto_idx(struct proto *prot)
3844{
3845 return 0;
3846}
3847
3848static inline void release_proto_idx(struct proto *prot)
3849{
3850}
3851
3852#endif
3853
3854static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3855{
3856 if (!twsk_prot)
3857 return;
3858 kfree(twsk_prot->twsk_slab_name);
3859 twsk_prot->twsk_slab_name = NULL;
3860 kmem_cache_destroy(twsk_prot->twsk_slab);
3861 twsk_prot->twsk_slab = NULL;
3862}
3863
3864static int tw_prot_init(const struct proto *prot)
3865{
3866 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3867
3868 if (!twsk_prot)
3869 return 0;
3870
3871 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3872 prot->name);
3873 if (!twsk_prot->twsk_slab_name)
3874 return -ENOMEM;
3875
3876 twsk_prot->twsk_slab =
3877 kmem_cache_create(twsk_prot->twsk_slab_name,
3878 twsk_prot->twsk_obj_size, 0,
3879 SLAB_ACCOUNT | prot->slab_flags,
3880 NULL);
3881 if (!twsk_prot->twsk_slab) {
3882 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3883 prot->name);
3884 return -ENOMEM;
3885 }
3886
3887 return 0;
3888}
3889
3890static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3891{
3892 if (!rsk_prot)
3893 return;
3894 kfree(rsk_prot->slab_name);
3895 rsk_prot->slab_name = NULL;
3896 kmem_cache_destroy(rsk_prot->slab);
3897 rsk_prot->slab = NULL;
3898}
3899
3900static int req_prot_init(const struct proto *prot)
3901{
3902 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3903
3904 if (!rsk_prot)
3905 return 0;
3906
3907 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3908 prot->name);
3909 if (!rsk_prot->slab_name)
3910 return -ENOMEM;
3911
3912 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3913 rsk_prot->obj_size, 0,
3914 SLAB_ACCOUNT | prot->slab_flags,
3915 NULL);
3916
3917 if (!rsk_prot->slab) {
3918 pr_crit("%s: Can't create request sock SLAB cache!\n",
3919 prot->name);
3920 return -ENOMEM;
3921 }
3922 return 0;
3923}
3924
3925int proto_register(struct proto *prot, int alloc_slab)
3926{
3927 int ret = -ENOBUFS;
3928
3929 if (prot->memory_allocated && !prot->sysctl_mem) {
3930 pr_err("%s: missing sysctl_mem\n", prot->name);
3931 return -EINVAL;
3932 }
3933 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3934 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3935 return -EINVAL;
3936 }
3937 if (alloc_slab) {
3938 prot->slab = kmem_cache_create_usercopy(prot->name,
3939 prot->obj_size, 0,
3940 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3941 prot->slab_flags,
3942 prot->useroffset, prot->usersize,
3943 NULL);
3944
3945 if (prot->slab == NULL) {
3946 pr_crit("%s: Can't create sock SLAB cache!\n",
3947 prot->name);
3948 goto out;
3949 }
3950
3951 if (req_prot_init(prot))
3952 goto out_free_request_sock_slab;
3953
3954 if (tw_prot_init(prot))
3955 goto out_free_timewait_sock_slab;
3956 }
3957
3958 mutex_lock(&proto_list_mutex);
3959 ret = assign_proto_idx(prot);
3960 if (ret) {
3961 mutex_unlock(&proto_list_mutex);
3962 goto out_free_timewait_sock_slab;
3963 }
3964 list_add(&prot->node, &proto_list);
3965 mutex_unlock(&proto_list_mutex);
3966 return ret;
3967
3968out_free_timewait_sock_slab:
3969 if (alloc_slab)
3970 tw_prot_cleanup(prot->twsk_prot);
3971out_free_request_sock_slab:
3972 if (alloc_slab) {
3973 req_prot_cleanup(prot->rsk_prot);
3974
3975 kmem_cache_destroy(prot->slab);
3976 prot->slab = NULL;
3977 }
3978out:
3979 return ret;
3980}
3981EXPORT_SYMBOL(proto_register);
3982
3983void proto_unregister(struct proto *prot)
3984{
3985 mutex_lock(&proto_list_mutex);
3986 release_proto_idx(prot);
3987 list_del(&prot->node);
3988 mutex_unlock(&proto_list_mutex);
3989
3990 kmem_cache_destroy(prot->slab);
3991 prot->slab = NULL;
3992
3993 req_prot_cleanup(prot->rsk_prot);
3994 tw_prot_cleanup(prot->twsk_prot);
3995}
3996EXPORT_SYMBOL(proto_unregister);
3997
3998int sock_load_diag_module(int family, int protocol)
3999{
4000 if (!protocol) {
4001 if (!sock_is_registered(family))
4002 return -ENOENT;
4003
4004 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
4005 NETLINK_SOCK_DIAG, family);
4006 }
4007
4008#ifdef CONFIG_INET
4009 if (family == AF_INET &&
4010 protocol != IPPROTO_RAW &&
4011 protocol < MAX_INET_PROTOS &&
4012 !rcu_access_pointer(inet_protos[protocol]))
4013 return -ENOENT;
4014#endif
4015
4016 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4017 NETLINK_SOCK_DIAG, family, protocol);
4018}
4019EXPORT_SYMBOL(sock_load_diag_module);
4020
4021#ifdef CONFIG_PROC_FS
4022static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4023 __acquires(proto_list_mutex)
4024{
4025 mutex_lock(&proto_list_mutex);
4026 return seq_list_start_head(&proto_list, *pos);
4027}
4028
4029static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4030{
4031 return seq_list_next(v, &proto_list, pos);
4032}
4033
4034static void proto_seq_stop(struct seq_file *seq, void *v)
4035 __releases(proto_list_mutex)
4036{
4037 mutex_unlock(&proto_list_mutex);
4038}
4039
4040static char proto_method_implemented(const void *method)
4041{
4042 return method == NULL ? 'n' : 'y';
4043}
4044static long sock_prot_memory_allocated(struct proto *proto)
4045{
4046 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4047}
4048
4049static const char *sock_prot_memory_pressure(struct proto *proto)
4050{
4051 return proto->memory_pressure != NULL ?
4052 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4053}
4054
4055static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4056{
4057
4058 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
4059 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4060 proto->name,
4061 proto->obj_size,
4062 sock_prot_inuse_get(seq_file_net(seq), proto),
4063 sock_prot_memory_allocated(proto),
4064 sock_prot_memory_pressure(proto),
4065 proto->max_header,
4066 proto->slab == NULL ? "no" : "yes",
4067 module_name(proto->owner),
4068 proto_method_implemented(proto->close),
4069 proto_method_implemented(proto->connect),
4070 proto_method_implemented(proto->disconnect),
4071 proto_method_implemented(proto->accept),
4072 proto_method_implemented(proto->ioctl),
4073 proto_method_implemented(proto->init),
4074 proto_method_implemented(proto->destroy),
4075 proto_method_implemented(proto->shutdown),
4076 proto_method_implemented(proto->setsockopt),
4077 proto_method_implemented(proto->getsockopt),
4078 proto_method_implemented(proto->sendmsg),
4079 proto_method_implemented(proto->recvmsg),
4080 proto_method_implemented(proto->bind),
4081 proto_method_implemented(proto->backlog_rcv),
4082 proto_method_implemented(proto->hash),
4083 proto_method_implemented(proto->unhash),
4084 proto_method_implemented(proto->get_port),
4085 proto_method_implemented(proto->enter_memory_pressure));
4086}
4087
4088static int proto_seq_show(struct seq_file *seq, void *v)
4089{
4090 if (v == &proto_list)
4091 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4092 "protocol",
4093 "size",
4094 "sockets",
4095 "memory",
4096 "press",
4097 "maxhdr",
4098 "slab",
4099 "module",
4100 "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4101 else
4102 proto_seq_printf(seq, list_entry(v, struct proto, node));
4103 return 0;
4104}
4105
4106static const struct seq_operations proto_seq_ops = {
4107 .start = proto_seq_start,
4108 .next = proto_seq_next,
4109 .stop = proto_seq_stop,
4110 .show = proto_seq_show,
4111};
4112
4113static __net_init int proto_init_net(struct net *net)
4114{
4115 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4116 sizeof(struct seq_net_private)))
4117 return -ENOMEM;
4118
4119 return 0;
4120}
4121
4122static __net_exit void proto_exit_net(struct net *net)
4123{
4124 remove_proc_entry("protocols", net->proc_net);
4125}
4126
4127
4128static __net_initdata struct pernet_operations proto_net_ops = {
4129 .init = proto_init_net,
4130 .exit = proto_exit_net,
4131};
4132
4133static int __init proto_init(void)
4134{
4135 return register_pernet_subsys(&proto_net_ops);
4136}
4137
4138subsys_initcall(proto_init);
4139
4140#endif /* PROC_FS */
4141
4142#ifdef CONFIG_NET_RX_BUSY_POLL
4143bool sk_busy_loop_end(void *p, unsigned long start_time)
4144{
4145 struct sock *sk = p;
4146
4147 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
4148 return true;
4149
4150 if (sk_is_udp(sk) &&
4151 !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
4152 return true;
4153
4154 return sk_busy_loop_timeout(sk, start_time);
4155}
4156EXPORT_SYMBOL(sk_busy_loop_end);
4157#endif /* CONFIG_NET_RX_BUSY_POLL */
4158
4159int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4160{
4161 if (!sk->sk_prot->bind_add)
4162 return -EOPNOTSUPP;
4163 return sk->sk_prot->bind_add(sk, addr, addr_len);
4164}
4165EXPORT_SYMBOL(sock_bind_add);
4166
4167/* Copy 'size' bytes from userspace and return `size` back to userspace */
4168int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4169 void __user *arg, void *karg, size_t size)
4170{
4171 int ret;
4172
4173 if (copy_from_user(karg, arg, size))
4174 return -EFAULT;
4175
4176 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4177 if (ret)
4178 return ret;
4179
4180 if (copy_to_user(arg, karg, size))
4181 return -EFAULT;
4182
4183 return 0;
4184}
4185EXPORT_SYMBOL(sock_ioctl_inout);
4186
4187/* This is the most common ioctl prep function, where the result (4 bytes) is
4188 * copied back to userspace if the ioctl() returns successfully. No input is
4189 * copied from userspace as input argument.
4190 */
4191static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4192{
4193 int ret, karg = 0;
4194
4195 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4196 if (ret)
4197 return ret;
4198
4199 return put_user(karg, (int __user *)arg);
4200}
4201
4202/* A wrapper around sock ioctls, which copies the data from userspace
4203 * (depending on the protocol/ioctl), and copies back the result to userspace.
4204 * The main motivation for this function is to pass kernel memory to the
4205 * protocol ioctl callbacks, instead of userspace memory.
4206 */
4207int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4208{
4209 int rc = 1;
4210
4211 if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4212 rc = ipmr_sk_ioctl(sk, cmd, arg);
4213 else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4214 rc = ip6mr_sk_ioctl(sk, cmd, arg);
4215 else if (sk_is_phonet(sk))
4216 rc = phonet_sk_ioctl(sk, cmd, arg);
4217
4218 /* If ioctl was processed, returns its value */
4219 if (rc <= 0)
4220 return rc;
4221
4222 /* Otherwise call the default handler */
4223 return sock_ioctl_out(sk, cmd, arg);
4224}
4225EXPORT_SYMBOL(sk_ioctl);