Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
 
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
 
 
 
 
 
 
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/init.h>
 111#include <linux/highmem.h>
 112#include <linux/user_namespace.h>
 113#include <linux/static_key.h>
 114#include <linux/memcontrol.h>
 115#include <linux/prefetch.h>
 116#include <linux/compat.h>
 117
 118#include <linux/uaccess.h>
 119
 120#include <linux/netdevice.h>
 121#include <net/protocol.h>
 122#include <linux/skbuff.h>
 123#include <net/net_namespace.h>
 124#include <net/request_sock.h>
 125#include <net/sock.h>
 126#include <linux/net_tstamp.h>
 127#include <net/xfrm.h>
 128#include <linux/ipsec.h>
 129#include <net/cls_cgroup.h>
 130#include <net/netprio_cgroup.h>
 131#include <linux/sock_diag.h>
 132
 133#include <linux/filter.h>
 134#include <net/sock_reuseport.h>
 135#include <net/bpf_sk_storage.h>
 136
 137#include <trace/events/sock.h>
 138
 139#include <net/tcp.h>
 140#include <net/busy_poll.h>
 141
 142#include <linux/ethtool.h>
 143
 144static DEFINE_MUTEX(proto_list_mutex);
 145static LIST_HEAD(proto_list);
 146
 147static void sock_inuse_add(struct net *net, int val);
 148
 149/**
 150 * sk_ns_capable - General socket capability test
 151 * @sk: Socket to use a capability on or through
 152 * @user_ns: The user namespace of the capability to use
 153 * @cap: The capability to use
 154 *
 155 * Test to see if the opener of the socket had when the socket was
 156 * created and the current process has the capability @cap in the user
 157 * namespace @user_ns.
 158 */
 159bool sk_ns_capable(const struct sock *sk,
 160		   struct user_namespace *user_ns, int cap)
 161{
 162	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 163		ns_capable(user_ns, cap);
 164}
 165EXPORT_SYMBOL(sk_ns_capable);
 166
 167/**
 168 * sk_capable - Socket global capability test
 169 * @sk: Socket to use a capability on or through
 170 * @cap: The global capability to use
 171 *
 172 * Test to see if the opener of the socket had when the socket was
 173 * created and the current process has the capability @cap in all user
 174 * namespaces.
 175 */
 176bool sk_capable(const struct sock *sk, int cap)
 177{
 178	return sk_ns_capable(sk, &init_user_ns, cap);
 179}
 180EXPORT_SYMBOL(sk_capable);
 181
 182/**
 183 * sk_net_capable - Network namespace socket capability test
 184 * @sk: Socket to use a capability on or through
 185 * @cap: The capability to use
 186 *
 187 * Test to see if the opener of the socket had when the socket was created
 188 * and the current process has the capability @cap over the network namespace
 189 * the socket is a member of.
 190 */
 191bool sk_net_capable(const struct sock *sk, int cap)
 192{
 193	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 194}
 195EXPORT_SYMBOL(sk_net_capable);
 196
 197/*
 198 * Each address family might have different locking rules, so we have
 199 * one slock key per address family and separate keys for internal and
 200 * userspace sockets.
 201 */
 202static struct lock_class_key af_family_keys[AF_MAX];
 203static struct lock_class_key af_family_kern_keys[AF_MAX];
 204static struct lock_class_key af_family_slock_keys[AF_MAX];
 205static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 206
 207/*
 208 * Make lock validator output more readable. (we pre-construct these
 209 * strings build-time, so that runtime initialization of socket
 210 * locks is fast):
 211 */
 212
 213#define _sock_locks(x)						  \
 214  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 215  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 216  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 217  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 218  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 219  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 220  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 221  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 222  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 223  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 224  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 225  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 226  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 227  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 228  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 229  x "AF_MAX"
 230
 231static const char *const af_family_key_strings[AF_MAX+1] = {
 232	_sock_locks("sk_lock-")
 233};
 234static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 235	_sock_locks("slock-")
 236};
 237static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 238	_sock_locks("clock-")
 239};
 240
 241static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 242	_sock_locks("k-sk_lock-")
 243};
 244static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 245	_sock_locks("k-slock-")
 246};
 247static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 248	_sock_locks("k-clock-")
 249};
 250static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 251	_sock_locks("rlock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252};
 253static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 254	_sock_locks("wlock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255};
 256static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 257	_sock_locks("elock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258};
 259
 260/*
 261 * sk_callback_lock and sk queues locking rules are per-address-family,
 262 * so split the lock classes by using a per-AF key:
 263 */
 264static struct lock_class_key af_callback_keys[AF_MAX];
 265static struct lock_class_key af_rlock_keys[AF_MAX];
 266static struct lock_class_key af_wlock_keys[AF_MAX];
 267static struct lock_class_key af_elock_keys[AF_MAX];
 268static struct lock_class_key af_kern_callback_keys[AF_MAX];
 269
 270/* Run time adjustable parameters. */
 271__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 272EXPORT_SYMBOL(sysctl_wmem_max);
 273__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 274EXPORT_SYMBOL(sysctl_rmem_max);
 275__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 276__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 277
 278/* Maximal space eaten by iovec or ancillary data plus some space */
 279int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 280EXPORT_SYMBOL(sysctl_optmem_max);
 281
 282int sysctl_tstamp_allow_data __read_mostly = 1;
 283
 284DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 285EXPORT_SYMBOL_GPL(memalloc_socks_key);
 286
 287/**
 288 * sk_set_memalloc - sets %SOCK_MEMALLOC
 289 * @sk: socket to set it on
 290 *
 291 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 292 * It's the responsibility of the admin to adjust min_free_kbytes
 293 * to meet the requirements
 294 */
 295void sk_set_memalloc(struct sock *sk)
 296{
 297	sock_set_flag(sk, SOCK_MEMALLOC);
 298	sk->sk_allocation |= __GFP_MEMALLOC;
 299	static_branch_inc(&memalloc_socks_key);
 300}
 301EXPORT_SYMBOL_GPL(sk_set_memalloc);
 302
 303void sk_clear_memalloc(struct sock *sk)
 304{
 305	sock_reset_flag(sk, SOCK_MEMALLOC);
 306	sk->sk_allocation &= ~__GFP_MEMALLOC;
 307	static_branch_dec(&memalloc_socks_key);
 308
 309	/*
 310	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 311	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 312	 * it has rmem allocations due to the last swapfile being deactivated
 313	 * but there is a risk that the socket is unusable due to exceeding
 314	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 315	 */
 316	sk_mem_reclaim(sk);
 317}
 318EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 319
 320int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 321{
 322	int ret;
 323	unsigned int noreclaim_flag;
 324
 325	/* these should have been dropped before queueing */
 326	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 327
 328	noreclaim_flag = memalloc_noreclaim_save();
 329	ret = sk->sk_backlog_rcv(sk, skb);
 330	memalloc_noreclaim_restore(noreclaim_flag);
 331
 332	return ret;
 333}
 334EXPORT_SYMBOL(__sk_backlog_rcv);
 335
 336void sk_error_report(struct sock *sk)
 337{
 338	sk->sk_error_report(sk);
 339
 340	switch (sk->sk_family) {
 341	case AF_INET:
 342		fallthrough;
 343	case AF_INET6:
 344		trace_inet_sk_error_report(sk);
 345		break;
 346	default:
 347		break;
 348	}
 349}
 350EXPORT_SYMBOL(sk_error_report);
 351
 352static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 353{
 354	struct __kernel_sock_timeval tv;
 355
 356	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 357		tv.tv_sec = 0;
 358		tv.tv_usec = 0;
 359	} else {
 360		tv.tv_sec = timeo / HZ;
 361		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 362	}
 363
 364	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 365		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 366		*(struct old_timeval32 *)optval = tv32;
 367		return sizeof(tv32);
 368	}
 369
 370	if (old_timeval) {
 371		struct __kernel_old_timeval old_tv;
 372		old_tv.tv_sec = tv.tv_sec;
 373		old_tv.tv_usec = tv.tv_usec;
 374		*(struct __kernel_old_timeval *)optval = old_tv;
 375		return sizeof(old_tv);
 376	}
 377
 378	*(struct __kernel_sock_timeval *)optval = tv;
 379	return sizeof(tv);
 380}
 381
 382static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 383			    bool old_timeval)
 384{
 385	struct __kernel_sock_timeval tv;
 386
 387	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 388		struct old_timeval32 tv32;
 389
 390		if (optlen < sizeof(tv32))
 391			return -EINVAL;
 392
 393		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 394			return -EFAULT;
 395		tv.tv_sec = tv32.tv_sec;
 396		tv.tv_usec = tv32.tv_usec;
 397	} else if (old_timeval) {
 398		struct __kernel_old_timeval old_tv;
 399
 400		if (optlen < sizeof(old_tv))
 401			return -EINVAL;
 402		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 403			return -EFAULT;
 404		tv.tv_sec = old_tv.tv_sec;
 405		tv.tv_usec = old_tv.tv_usec;
 406	} else {
 407		if (optlen < sizeof(tv))
 408			return -EINVAL;
 409		if (copy_from_sockptr(&tv, optval, sizeof(tv)))
 410			return -EFAULT;
 411	}
 412	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 413		return -EDOM;
 414
 415	if (tv.tv_sec < 0) {
 416		static int warned __read_mostly;
 417
 418		*timeo_p = 0;
 419		if (warned < 10 && net_ratelimit()) {
 420			warned++;
 421			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 422				__func__, current->comm, task_pid_nr(current));
 423		}
 424		return 0;
 425	}
 426	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 427	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 428		return 0;
 429	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
 430		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
 431	return 0;
 432}
 433
 
 
 
 
 
 
 
 
 
 
 
 
 434static bool sock_needs_netstamp(const struct sock *sk)
 435{
 436	switch (sk->sk_family) {
 437	case AF_UNSPEC:
 438	case AF_UNIX:
 439		return false;
 440	default:
 441		return true;
 442	}
 443}
 444
 445static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 446{
 447	if (sk->sk_flags & flags) {
 448		sk->sk_flags &= ~flags;
 449		if (sock_needs_netstamp(sk) &&
 450		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 451			net_disable_timestamp();
 452	}
 453}
 454
 455
 456int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 457{
 458	unsigned long flags;
 459	struct sk_buff_head *list = &sk->sk_receive_queue;
 460
 461	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 462		atomic_inc(&sk->sk_drops);
 463		trace_sock_rcvqueue_full(sk, skb);
 464		return -ENOMEM;
 465	}
 466
 467	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 468		atomic_inc(&sk->sk_drops);
 469		return -ENOBUFS;
 470	}
 471
 472	skb->dev = NULL;
 473	skb_set_owner_r(skb, sk);
 474
 475	/* we escape from rcu protected region, make sure we dont leak
 476	 * a norefcounted dst
 477	 */
 478	skb_dst_force(skb);
 479
 480	spin_lock_irqsave(&list->lock, flags);
 481	sock_skb_set_dropcount(sk, skb);
 482	__skb_queue_tail(list, skb);
 483	spin_unlock_irqrestore(&list->lock, flags);
 484
 485	if (!sock_flag(sk, SOCK_DEAD))
 486		sk->sk_data_ready(sk);
 487	return 0;
 488}
 489EXPORT_SYMBOL(__sock_queue_rcv_skb);
 490
 491int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 492{
 493	int err;
 494
 495	err = sk_filter(sk, skb);
 496	if (err)
 497		return err;
 498
 499	return __sock_queue_rcv_skb(sk, skb);
 500}
 501EXPORT_SYMBOL(sock_queue_rcv_skb);
 502
 503int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 504		     const int nested, unsigned int trim_cap, bool refcounted)
 505{
 506	int rc = NET_RX_SUCCESS;
 507
 508	if (sk_filter_trim_cap(sk, skb, trim_cap))
 509		goto discard_and_relse;
 510
 511	skb->dev = NULL;
 512
 513	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 514		atomic_inc(&sk->sk_drops);
 515		goto discard_and_relse;
 516	}
 517	if (nested)
 518		bh_lock_sock_nested(sk);
 519	else
 520		bh_lock_sock(sk);
 521	if (!sock_owned_by_user(sk)) {
 522		/*
 523		 * trylock + unlock semantics:
 524		 */
 525		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 526
 527		rc = sk_backlog_rcv(sk, skb);
 528
 529		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 530	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 531		bh_unlock_sock(sk);
 532		atomic_inc(&sk->sk_drops);
 533		goto discard_and_relse;
 534	}
 535
 536	bh_unlock_sock(sk);
 537out:
 538	if (refcounted)
 539		sock_put(sk);
 540	return rc;
 541discard_and_relse:
 542	kfree_skb(skb);
 543	goto out;
 544}
 545EXPORT_SYMBOL(__sk_receive_skb);
 546
 547INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
 548							  u32));
 549INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
 550							   u32));
 551struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 552{
 553	struct dst_entry *dst = __sk_dst_get(sk);
 554
 555	if (dst && dst->obsolete &&
 556	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 557			       dst, cookie) == NULL) {
 558		sk_tx_queue_clear(sk);
 559		sk->sk_dst_pending_confirm = 0;
 560		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 561		dst_release(dst);
 562		return NULL;
 563	}
 564
 565	return dst;
 566}
 567EXPORT_SYMBOL(__sk_dst_check);
 568
 569struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 570{
 571	struct dst_entry *dst = sk_dst_get(sk);
 572
 573	if (dst && dst->obsolete &&
 574	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 575			       dst, cookie) == NULL) {
 576		sk_dst_reset(sk);
 577		dst_release(dst);
 578		return NULL;
 579	}
 580
 581	return dst;
 582}
 583EXPORT_SYMBOL(sk_dst_check);
 584
 585static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 
 586{
 587	int ret = -ENOPROTOOPT;
 588#ifdef CONFIG_NETDEVICES
 589	struct net *net = sock_net(sk);
 
 
 590
 591	/* Sorry... */
 592	ret = -EPERM;
 593	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 594		goto out;
 595
 596	ret = -EINVAL;
 597	if (ifindex < 0)
 598		goto out;
 599
 600	sk->sk_bound_dev_if = ifindex;
 601	if (sk->sk_prot->rehash)
 602		sk->sk_prot->rehash(sk);
 603	sk_dst_reset(sk);
 604
 605	ret = 0;
 606
 607out:
 608#endif
 609
 610	return ret;
 611}
 612
 613int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 614{
 615	int ret;
 616
 617	if (lock_sk)
 618		lock_sock(sk);
 619	ret = sock_bindtoindex_locked(sk, ifindex);
 620	if (lock_sk)
 621		release_sock(sk);
 622
 623	return ret;
 624}
 625EXPORT_SYMBOL(sock_bindtoindex);
 626
 627static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 628{
 629	int ret = -ENOPROTOOPT;
 630#ifdef CONFIG_NETDEVICES
 631	struct net *net = sock_net(sk);
 632	char devname[IFNAMSIZ];
 633	int index;
 634
 635	ret = -EINVAL;
 636	if (optlen < 0)
 637		goto out;
 638
 639	/* Bind this socket to a particular device like "eth0",
 640	 * as specified in the passed interface name. If the
 641	 * name is "" or the option length is zero the socket
 642	 * is not bound.
 643	 */
 644	if (optlen > IFNAMSIZ - 1)
 645		optlen = IFNAMSIZ - 1;
 646	memset(devname, 0, sizeof(devname));
 647
 648	ret = -EFAULT;
 649	if (copy_from_sockptr(devname, optval, optlen))
 650		goto out;
 651
 652	index = 0;
 653	if (devname[0] != '\0') {
 654		struct net_device *dev;
 655
 656		rcu_read_lock();
 657		dev = dev_get_by_name_rcu(net, devname);
 658		if (dev)
 659			index = dev->ifindex;
 660		rcu_read_unlock();
 661		ret = -ENODEV;
 662		if (!dev)
 663			goto out;
 664	}
 665
 666	return sock_bindtoindex(sk, index, true);
 
 
 
 
 
 
 667out:
 668#endif
 669
 670	return ret;
 671}
 672
 673static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 674				int __user *optlen, int len)
 675{
 676	int ret = -ENOPROTOOPT;
 677#ifdef CONFIG_NETDEVICES
 678	struct net *net = sock_net(sk);
 679	char devname[IFNAMSIZ];
 680
 681	if (sk->sk_bound_dev_if == 0) {
 682		len = 0;
 683		goto zero;
 684	}
 685
 686	ret = -EINVAL;
 687	if (len < IFNAMSIZ)
 688		goto out;
 689
 690	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 691	if (ret)
 692		goto out;
 693
 694	len = strlen(devname) + 1;
 695
 696	ret = -EFAULT;
 697	if (copy_to_user(optval, devname, len))
 698		goto out;
 699
 700zero:
 701	ret = -EFAULT;
 702	if (put_user(len, optlen))
 703		goto out;
 704
 705	ret = 0;
 706
 707out:
 708#endif
 709
 710	return ret;
 711}
 712
 
 
 
 
 
 
 
 
 713bool sk_mc_loop(struct sock *sk)
 714{
 715	if (dev_recursion_level())
 716		return false;
 717	if (!sk)
 718		return true;
 719	switch (sk->sk_family) {
 720	case AF_INET:
 721		return inet_sk(sk)->mc_loop;
 722#if IS_ENABLED(CONFIG_IPV6)
 723	case AF_INET6:
 724		return inet6_sk(sk)->mc_loop;
 725#endif
 726	}
 727	WARN_ON_ONCE(1);
 728	return true;
 729}
 730EXPORT_SYMBOL(sk_mc_loop);
 731
 732void sock_set_reuseaddr(struct sock *sk)
 733{
 734	lock_sock(sk);
 735	sk->sk_reuse = SK_CAN_REUSE;
 736	release_sock(sk);
 737}
 738EXPORT_SYMBOL(sock_set_reuseaddr);
 739
 740void sock_set_reuseport(struct sock *sk)
 741{
 742	lock_sock(sk);
 743	sk->sk_reuseport = true;
 744	release_sock(sk);
 745}
 746EXPORT_SYMBOL(sock_set_reuseport);
 747
 748void sock_no_linger(struct sock *sk)
 749{
 750	lock_sock(sk);
 751	sk->sk_lingertime = 0;
 752	sock_set_flag(sk, SOCK_LINGER);
 753	release_sock(sk);
 754}
 755EXPORT_SYMBOL(sock_no_linger);
 756
 757void sock_set_priority(struct sock *sk, u32 priority)
 758{
 759	lock_sock(sk);
 760	sk->sk_priority = priority;
 761	release_sock(sk);
 762}
 763EXPORT_SYMBOL(sock_set_priority);
 764
 765void sock_set_sndtimeo(struct sock *sk, s64 secs)
 766{
 767	lock_sock(sk);
 768	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 769		sk->sk_sndtimeo = secs * HZ;
 770	else
 771		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
 772	release_sock(sk);
 773}
 774EXPORT_SYMBOL(sock_set_sndtimeo);
 775
 776static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 777{
 778	if (val)  {
 779		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 780		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
 781		sock_set_flag(sk, SOCK_RCVTSTAMP);
 782		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 783	} else {
 784		sock_reset_flag(sk, SOCK_RCVTSTAMP);
 785		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 786	}
 787}
 788
 789void sock_enable_timestamps(struct sock *sk)
 790{
 791	lock_sock(sk);
 792	__sock_set_timestamps(sk, true, false, true);
 793	release_sock(sk);
 794}
 795EXPORT_SYMBOL(sock_enable_timestamps);
 796
 797void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
 798{
 799	switch (optname) {
 800	case SO_TIMESTAMP_OLD:
 801		__sock_set_timestamps(sk, valbool, false, false);
 802		break;
 803	case SO_TIMESTAMP_NEW:
 804		__sock_set_timestamps(sk, valbool, true, false);
 805		break;
 806	case SO_TIMESTAMPNS_OLD:
 807		__sock_set_timestamps(sk, valbool, false, true);
 808		break;
 809	case SO_TIMESTAMPNS_NEW:
 810		__sock_set_timestamps(sk, valbool, true, true);
 811		break;
 812	}
 813}
 814
 815static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
 816{
 817	struct net *net = sock_net(sk);
 818	struct net_device *dev = NULL;
 819	bool match = false;
 820	int *vclock_index;
 821	int i, num;
 822
 823	if (sk->sk_bound_dev_if)
 824		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
 825
 826	if (!dev) {
 827		pr_err("%s: sock not bind to device\n", __func__);
 828		return -EOPNOTSUPP;
 829	}
 830
 831	num = ethtool_get_phc_vclocks(dev, &vclock_index);
 832	for (i = 0; i < num; i++) {
 833		if (*(vclock_index + i) == phc_index) {
 834			match = true;
 835			break;
 836		}
 837	}
 838
 839	if (num > 0)
 840		kfree(vclock_index);
 841
 842	if (!match)
 843		return -EINVAL;
 844
 845	sk->sk_bind_phc = phc_index;
 846
 847	return 0;
 848}
 849
 850int sock_set_timestamping(struct sock *sk, int optname,
 851			  struct so_timestamping timestamping)
 852{
 853	int val = timestamping.flags;
 854	int ret;
 855
 856	if (val & ~SOF_TIMESTAMPING_MASK)
 857		return -EINVAL;
 858
 859	if (val & SOF_TIMESTAMPING_OPT_ID &&
 860	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 861		if (sk->sk_protocol == IPPROTO_TCP &&
 862		    sk->sk_type == SOCK_STREAM) {
 863			if ((1 << sk->sk_state) &
 864			    (TCPF_CLOSE | TCPF_LISTEN))
 865				return -EINVAL;
 866			sk->sk_tskey = tcp_sk(sk)->snd_una;
 867		} else {
 868			sk->sk_tskey = 0;
 869		}
 870	}
 871
 872	if (val & SOF_TIMESTAMPING_OPT_STATS &&
 873	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
 874		return -EINVAL;
 875
 876	if (val & SOF_TIMESTAMPING_BIND_PHC) {
 877		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
 878		if (ret)
 879			return ret;
 880	}
 881
 882	sk->sk_tsflags = val;
 883	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
 884
 885	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 886		sock_enable_timestamp(sk,
 887				      SOCK_TIMESTAMPING_RX_SOFTWARE);
 888	else
 889		sock_disable_timestamp(sk,
 890				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 891	return 0;
 892}
 893
 894void sock_set_keepalive(struct sock *sk)
 895{
 896	lock_sock(sk);
 897	if (sk->sk_prot->keepalive)
 898		sk->sk_prot->keepalive(sk, true);
 899	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 900	release_sock(sk);
 901}
 902EXPORT_SYMBOL(sock_set_keepalive);
 903
 904static void __sock_set_rcvbuf(struct sock *sk, int val)
 905{
 906	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 907	 * as a negative value.
 908	 */
 909	val = min_t(int, val, INT_MAX / 2);
 910	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 911
 912	/* We double it on the way in to account for "struct sk_buff" etc.
 913	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 914	 * will allow that much actual data to be received on that socket.
 915	 *
 916	 * Applications are unaware that "struct sk_buff" and other overheads
 917	 * allocate from the receive buffer during socket buffer allocation.
 918	 *
 919	 * And after considering the possible alternatives, returning the value
 920	 * we actually used in getsockopt is the most desirable behavior.
 921	 */
 922	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 923}
 924
 925void sock_set_rcvbuf(struct sock *sk, int val)
 926{
 927	lock_sock(sk);
 928	__sock_set_rcvbuf(sk, val);
 929	release_sock(sk);
 930}
 931EXPORT_SYMBOL(sock_set_rcvbuf);
 932
 933static void __sock_set_mark(struct sock *sk, u32 val)
 934{
 935	if (val != sk->sk_mark) {
 936		sk->sk_mark = val;
 937		sk_dst_reset(sk);
 938	}
 939}
 940
 941void sock_set_mark(struct sock *sk, u32 val)
 942{
 943	lock_sock(sk);
 944	__sock_set_mark(sk, val);
 945	release_sock(sk);
 946}
 947EXPORT_SYMBOL(sock_set_mark);
 948
 949/*
 950 *	This is meant for all protocols to use and covers goings on
 951 *	at the socket level. Everything here is generic.
 952 */
 953
 954int sock_setsockopt(struct socket *sock, int level, int optname,
 955		    sockptr_t optval, unsigned int optlen)
 956{
 957	struct so_timestamping timestamping;
 958	struct sock_txtime sk_txtime;
 959	struct sock *sk = sock->sk;
 960	int val;
 961	int valbool;
 962	struct linger ling;
 963	int ret = 0;
 964
 965	/*
 966	 *	Options without arguments
 967	 */
 968
 969	if (optname == SO_BINDTODEVICE)
 970		return sock_setbindtodevice(sk, optval, optlen);
 971
 972	if (optlen < sizeof(int))
 973		return -EINVAL;
 974
 975	if (copy_from_sockptr(&val, optval, sizeof(val)))
 976		return -EFAULT;
 977
 978	valbool = val ? 1 : 0;
 979
 980	lock_sock(sk);
 981
 982	switch (optname) {
 983	case SO_DEBUG:
 984		if (val && !capable(CAP_NET_ADMIN))
 985			ret = -EACCES;
 986		else
 987			sock_valbool_flag(sk, SOCK_DBG, valbool);
 988		break;
 989	case SO_REUSEADDR:
 990		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 991		break;
 992	case SO_REUSEPORT:
 993		sk->sk_reuseport = valbool;
 994		break;
 995	case SO_TYPE:
 996	case SO_PROTOCOL:
 997	case SO_DOMAIN:
 998	case SO_ERROR:
 999		ret = -ENOPROTOOPT;
1000		break;
1001	case SO_DONTROUTE:
1002		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1003		sk_dst_reset(sk);
1004		break;
1005	case SO_BROADCAST:
1006		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1007		break;
1008	case SO_SNDBUF:
1009		/* Don't error on this BSD doesn't and if you think
1010		 * about it this is right. Otherwise apps have to
1011		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1012		 * are treated in BSD as hints
1013		 */
1014		val = min_t(u32, val, sysctl_wmem_max);
1015set_sndbuf:
1016		/* Ensure val * 2 fits into an int, to prevent max_t()
1017		 * from treating it as a negative value.
1018		 */
1019		val = min_t(int, val, INT_MAX / 2);
1020		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1021		WRITE_ONCE(sk->sk_sndbuf,
1022			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1023		/* Wake up sending tasks if we upped the value. */
1024		sk->sk_write_space(sk);
1025		break;
1026
1027	case SO_SNDBUFFORCE:
1028		if (!capable(CAP_NET_ADMIN)) {
1029			ret = -EPERM;
1030			break;
1031		}
1032
1033		/* No negative values (to prevent underflow, as val will be
1034		 * multiplied by 2).
1035		 */
1036		if (val < 0)
1037			val = 0;
1038		goto set_sndbuf;
1039
1040	case SO_RCVBUF:
1041		/* Don't error on this BSD doesn't and if you think
1042		 * about it this is right. Otherwise apps have to
1043		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1044		 * are treated in BSD as hints
1045		 */
1046		__sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047		break;
1048
1049	case SO_RCVBUFFORCE:
1050		if (!capable(CAP_NET_ADMIN)) {
1051			ret = -EPERM;
1052			break;
1053		}
1054
1055		/* No negative values (to prevent underflow, as val will be
1056		 * multiplied by 2).
1057		 */
1058		__sock_set_rcvbuf(sk, max(val, 0));
1059		break;
1060
1061	case SO_KEEPALIVE:
1062		if (sk->sk_prot->keepalive)
1063			sk->sk_prot->keepalive(sk, valbool);
1064		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1065		break;
1066
1067	case SO_OOBINLINE:
1068		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1069		break;
1070
1071	case SO_NO_CHECK:
1072		sk->sk_no_check_tx = valbool;
1073		break;
1074
1075	case SO_PRIORITY:
1076		if ((val >= 0 && val <= 6) ||
1077		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1078			sk->sk_priority = val;
1079		else
1080			ret = -EPERM;
1081		break;
1082
1083	case SO_LINGER:
1084		if (optlen < sizeof(ling)) {
1085			ret = -EINVAL;	/* 1003.1g */
1086			break;
1087		}
1088		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1089			ret = -EFAULT;
1090			break;
1091		}
1092		if (!ling.l_onoff)
1093			sock_reset_flag(sk, SOCK_LINGER);
1094		else {
1095#if (BITS_PER_LONG == 32)
1096			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1097				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1098			else
1099#endif
1100				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1101			sock_set_flag(sk, SOCK_LINGER);
1102		}
1103		break;
1104
1105	case SO_BSDCOMPAT:
 
1106		break;
1107
1108	case SO_PASSCRED:
1109		if (valbool)
1110			set_bit(SOCK_PASSCRED, &sock->flags);
1111		else
1112			clear_bit(SOCK_PASSCRED, &sock->flags);
1113		break;
1114
1115	case SO_TIMESTAMP_OLD:
1116	case SO_TIMESTAMP_NEW:
1117	case SO_TIMESTAMPNS_OLD:
1118	case SO_TIMESTAMPNS_NEW:
1119		sock_set_timestamp(sk, optname, valbool);
 
 
 
 
 
 
 
 
1120		break;
1121
1122	case SO_TIMESTAMPING_NEW:
1123	case SO_TIMESTAMPING_OLD:
1124		if (optlen == sizeof(timestamping)) {
1125			if (copy_from_sockptr(&timestamping, optval,
1126					      sizeof(timestamping))) {
1127				ret = -EFAULT;
1128				break;
 
 
 
 
 
 
 
 
 
 
 
1129			}
1130		} else {
1131			memset(&timestamping, 0, sizeof(timestamping));
1132			timestamping.flags = val;
1133		}
1134		ret = sock_set_timestamping(sk, optname, timestamping);
 
 
 
 
 
 
 
 
 
 
 
 
 
1135		break;
1136
1137	case SO_RCVLOWAT:
1138		if (val < 0)
1139			val = INT_MAX;
1140		if (sock->ops->set_rcvlowat)
1141			ret = sock->ops->set_rcvlowat(sk, val);
1142		else
1143			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1144		break;
1145
1146	case SO_RCVTIMEO_OLD:
1147	case SO_RCVTIMEO_NEW:
1148		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1149				       optlen, optname == SO_RCVTIMEO_OLD);
1150		break;
1151
1152	case SO_SNDTIMEO_OLD:
1153	case SO_SNDTIMEO_NEW:
1154		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1155				       optlen, optname == SO_SNDTIMEO_OLD);
1156		break;
1157
1158	case SO_ATTACH_FILTER: {
1159		struct sock_fprog fprog;
 
 
 
 
 
 
1160
1161		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1162		if (!ret)
1163			ret = sk_attach_filter(&fprog, sk);
 
1164		break;
1165	}
1166	case SO_ATTACH_BPF:
1167		ret = -EINVAL;
1168		if (optlen == sizeof(u32)) {
1169			u32 ufd;
1170
1171			ret = -EFAULT;
1172			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1173				break;
1174
1175			ret = sk_attach_bpf(ufd, sk);
1176		}
1177		break;
1178
1179	case SO_ATTACH_REUSEPORT_CBPF: {
1180		struct sock_fprog fprog;
 
 
 
 
 
 
1181
1182		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1183		if (!ret)
1184			ret = sk_reuseport_attach_filter(&fprog, sk);
 
1185		break;
1186	}
1187	case SO_ATTACH_REUSEPORT_EBPF:
1188		ret = -EINVAL;
1189		if (optlen == sizeof(u32)) {
1190			u32 ufd;
1191
1192			ret = -EFAULT;
1193			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1194				break;
1195
1196			ret = sk_reuseport_attach_bpf(ufd, sk);
1197		}
1198		break;
1199
1200	case SO_DETACH_REUSEPORT_BPF:
1201		ret = reuseport_detach_prog(sk);
1202		break;
1203
1204	case SO_DETACH_FILTER:
1205		ret = sk_detach_filter(sk);
1206		break;
1207
1208	case SO_LOCK_FILTER:
1209		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1210			ret = -EPERM;
1211		else
1212			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1213		break;
1214
1215	case SO_PASSSEC:
1216		if (valbool)
1217			set_bit(SOCK_PASSSEC, &sock->flags);
1218		else
1219			clear_bit(SOCK_PASSSEC, &sock->flags);
1220		break;
1221	case SO_MARK:
1222		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1223			ret = -EPERM;
1224			break;
1225		}
1226
1227		__sock_set_mark(sk, val);
1228		break;
1229
1230	case SO_RXQ_OVFL:
1231		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1232		break;
1233
1234	case SO_WIFI_STATUS:
1235		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1236		break;
1237
1238	case SO_PEEK_OFF:
1239		if (sock->ops->set_peek_off)
1240			ret = sock->ops->set_peek_off(sk, val);
1241		else
1242			ret = -EOPNOTSUPP;
1243		break;
1244
1245	case SO_NOFCS:
1246		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1247		break;
1248
1249	case SO_SELECT_ERR_QUEUE:
1250		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1251		break;
1252
1253#ifdef CONFIG_NET_RX_BUSY_POLL
1254	case SO_BUSY_POLL:
1255		/* allow unprivileged users to decrease the value */
1256		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1257			ret = -EPERM;
1258		else {
1259			if (val < 0)
1260				ret = -EINVAL;
1261			else
1262				WRITE_ONCE(sk->sk_ll_usec, val);
1263		}
1264		break;
1265	case SO_PREFER_BUSY_POLL:
1266		if (valbool && !capable(CAP_NET_ADMIN))
1267			ret = -EPERM;
1268		else
1269			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1270		break;
1271	case SO_BUSY_POLL_BUDGET:
1272		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1273			ret = -EPERM;
1274		} else {
1275			if (val < 0 || val > U16_MAX)
1276				ret = -EINVAL;
1277			else
1278				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1279		}
1280		break;
1281#endif
1282
1283	case SO_MAX_PACING_RATE:
1284		{
1285		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1286
1287		if (sizeof(ulval) != sizeof(val) &&
1288		    optlen >= sizeof(ulval) &&
1289		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1290			ret = -EFAULT;
1291			break;
1292		}
1293		if (ulval != ~0UL)
1294			cmpxchg(&sk->sk_pacing_status,
1295				SK_PACING_NONE,
1296				SK_PACING_NEEDED);
1297		sk->sk_max_pacing_rate = ulval;
1298		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
 
1299		break;
1300		}
1301	case SO_INCOMING_CPU:
1302		WRITE_ONCE(sk->sk_incoming_cpu, val);
1303		break;
1304
1305	case SO_CNX_ADVICE:
1306		if (val == 1)
1307			dst_negative_advice(sk);
1308		break;
1309
1310	case SO_ZEROCOPY:
1311		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1312			if (!((sk->sk_type == SOCK_STREAM &&
1313			       sk->sk_protocol == IPPROTO_TCP) ||
1314			      (sk->sk_type == SOCK_DGRAM &&
1315			       sk->sk_protocol == IPPROTO_UDP)))
1316				ret = -ENOTSUPP;
1317		} else if (sk->sk_family != PF_RDS) {
1318			ret = -ENOTSUPP;
1319		}
1320		if (!ret) {
1321			if (val < 0 || val > 1)
1322				ret = -EINVAL;
1323			else
1324				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1325		}
1326		break;
1327
1328	case SO_TXTIME:
1329		if (optlen != sizeof(struct sock_txtime)) {
1330			ret = -EINVAL;
1331			break;
1332		} else if (copy_from_sockptr(&sk_txtime, optval,
1333			   sizeof(struct sock_txtime))) {
1334			ret = -EFAULT;
1335			break;
1336		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1337			ret = -EINVAL;
1338			break;
1339		}
1340		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1341		 * scheduler has enough safe guards.
1342		 */
1343		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1344		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1345			ret = -EPERM;
1346			break;
1347		}
1348		sock_valbool_flag(sk, SOCK_TXTIME, true);
1349		sk->sk_clockid = sk_txtime.clockid;
1350		sk->sk_txtime_deadline_mode =
1351			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1352		sk->sk_txtime_report_errors =
1353			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1354		break;
1355
1356	case SO_BINDTOIFINDEX:
1357		ret = sock_bindtoindex_locked(sk, val);
1358		break;
1359
1360	default:
1361		ret = -ENOPROTOOPT;
1362		break;
1363	}
1364	release_sock(sk);
1365	return ret;
1366}
1367EXPORT_SYMBOL(sock_setsockopt);
1368
1369static const struct cred *sk_get_peer_cred(struct sock *sk)
1370{
1371	const struct cred *cred;
1372
1373	spin_lock(&sk->sk_peer_lock);
1374	cred = get_cred(sk->sk_peer_cred);
1375	spin_unlock(&sk->sk_peer_lock);
1376
1377	return cred;
1378}
1379
1380static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1381			  struct ucred *ucred)
1382{
1383	ucred->pid = pid_vnr(pid);
1384	ucred->uid = ucred->gid = -1;
1385	if (cred) {
1386		struct user_namespace *current_ns = current_user_ns();
1387
1388		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1389		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1390	}
1391}
1392
1393static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1394{
1395	struct user_namespace *user_ns = current_user_ns();
1396	int i;
1397
1398	for (i = 0; i < src->ngroups; i++)
1399		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1400			return -EFAULT;
1401
1402	return 0;
1403}
1404
1405int sock_getsockopt(struct socket *sock, int level, int optname,
1406		    char __user *optval, int __user *optlen)
1407{
1408	struct sock *sk = sock->sk;
1409
1410	union {
1411		int val;
1412		u64 val64;
1413		unsigned long ulval;
1414		struct linger ling;
1415		struct old_timeval32 tm32;
1416		struct __kernel_old_timeval tm;
1417		struct  __kernel_sock_timeval stm;
1418		struct sock_txtime txtime;
1419		struct so_timestamping timestamping;
1420	} v;
1421
1422	int lv = sizeof(int);
1423	int len;
1424
1425	if (get_user(len, optlen))
1426		return -EFAULT;
1427	if (len < 0)
1428		return -EINVAL;
1429
1430	memset(&v, 0, sizeof(v));
1431
1432	switch (optname) {
1433	case SO_DEBUG:
1434		v.val = sock_flag(sk, SOCK_DBG);
1435		break;
1436
1437	case SO_DONTROUTE:
1438		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1439		break;
1440
1441	case SO_BROADCAST:
1442		v.val = sock_flag(sk, SOCK_BROADCAST);
1443		break;
1444
1445	case SO_SNDBUF:
1446		v.val = sk->sk_sndbuf;
1447		break;
1448
1449	case SO_RCVBUF:
1450		v.val = sk->sk_rcvbuf;
1451		break;
1452
1453	case SO_REUSEADDR:
1454		v.val = sk->sk_reuse;
1455		break;
1456
1457	case SO_REUSEPORT:
1458		v.val = sk->sk_reuseport;
1459		break;
1460
1461	case SO_KEEPALIVE:
1462		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1463		break;
1464
1465	case SO_TYPE:
1466		v.val = sk->sk_type;
1467		break;
1468
1469	case SO_PROTOCOL:
1470		v.val = sk->sk_protocol;
1471		break;
1472
1473	case SO_DOMAIN:
1474		v.val = sk->sk_family;
1475		break;
1476
1477	case SO_ERROR:
1478		v.val = -sock_error(sk);
1479		if (v.val == 0)
1480			v.val = xchg(&sk->sk_err_soft, 0);
1481		break;
1482
1483	case SO_OOBINLINE:
1484		v.val = sock_flag(sk, SOCK_URGINLINE);
1485		break;
1486
1487	case SO_NO_CHECK:
1488		v.val = sk->sk_no_check_tx;
1489		break;
1490
1491	case SO_PRIORITY:
1492		v.val = sk->sk_priority;
1493		break;
1494
1495	case SO_LINGER:
1496		lv		= sizeof(v.ling);
1497		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1498		v.ling.l_linger	= sk->sk_lingertime / HZ;
1499		break;
1500
1501	case SO_BSDCOMPAT:
 
1502		break;
1503
1504	case SO_TIMESTAMP_OLD:
1505		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1506				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1507				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1508		break;
1509
1510	case SO_TIMESTAMPNS_OLD:
1511		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1512		break;
1513
1514	case SO_TIMESTAMP_NEW:
1515		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1516		break;
1517
1518	case SO_TIMESTAMPNS_NEW:
1519		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1520		break;
1521
1522	case SO_TIMESTAMPING_OLD:
1523		lv = sizeof(v.timestamping);
1524		v.timestamping.flags = sk->sk_tsflags;
1525		v.timestamping.bind_phc = sk->sk_bind_phc;
1526		break;
1527
1528	case SO_RCVTIMEO_OLD:
1529	case SO_RCVTIMEO_NEW:
1530		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1531		break;
1532
1533	case SO_SNDTIMEO_OLD:
1534	case SO_SNDTIMEO_NEW:
1535		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
 
 
 
 
 
 
1536		break;
1537
1538	case SO_RCVLOWAT:
1539		v.val = sk->sk_rcvlowat;
1540		break;
1541
1542	case SO_SNDLOWAT:
1543		v.val = 1;
1544		break;
1545
1546	case SO_PASSCRED:
1547		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1548		break;
1549
1550	case SO_PEERCRED:
1551	{
1552		struct ucred peercred;
1553		if (len > sizeof(peercred))
1554			len = sizeof(peercred);
1555
1556		spin_lock(&sk->sk_peer_lock);
1557		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1558		spin_unlock(&sk->sk_peer_lock);
1559
1560		if (copy_to_user(optval, &peercred, len))
1561			return -EFAULT;
1562		goto lenout;
1563	}
1564
1565	case SO_PEERGROUPS:
1566	{
1567		const struct cred *cred;
1568		int ret, n;
1569
1570		cred = sk_get_peer_cred(sk);
1571		if (!cred)
1572			return -ENODATA;
1573
1574		n = cred->group_info->ngroups;
1575		if (len < n * sizeof(gid_t)) {
1576			len = n * sizeof(gid_t);
1577			put_cred(cred);
1578			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1579		}
1580		len = n * sizeof(gid_t);
1581
1582		ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1583		put_cred(cred);
1584		if (ret)
1585			return ret;
1586		goto lenout;
1587	}
1588
1589	case SO_PEERNAME:
1590	{
1591		char address[128];
1592
1593		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1594		if (lv < 0)
1595			return -ENOTCONN;
1596		if (lv < len)
1597			return -EINVAL;
1598		if (copy_to_user(optval, address, len))
1599			return -EFAULT;
1600		goto lenout;
1601	}
1602
1603	/* Dubious BSD thing... Probably nobody even uses it, but
1604	 * the UNIX standard wants it for whatever reason... -DaveM
1605	 */
1606	case SO_ACCEPTCONN:
1607		v.val = sk->sk_state == TCP_LISTEN;
1608		break;
1609
1610	case SO_PASSSEC:
1611		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1612		break;
1613
1614	case SO_PEERSEC:
1615		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1616
1617	case SO_MARK:
1618		v.val = sk->sk_mark;
1619		break;
1620
1621	case SO_RXQ_OVFL:
1622		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1623		break;
1624
1625	case SO_WIFI_STATUS:
1626		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1627		break;
1628
1629	case SO_PEEK_OFF:
1630		if (!sock->ops->set_peek_off)
1631			return -EOPNOTSUPP;
1632
1633		v.val = sk->sk_peek_off;
1634		break;
1635	case SO_NOFCS:
1636		v.val = sock_flag(sk, SOCK_NOFCS);
1637		break;
1638
1639	case SO_BINDTODEVICE:
1640		return sock_getbindtodevice(sk, optval, optlen, len);
1641
1642	case SO_GET_FILTER:
1643		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1644		if (len < 0)
1645			return len;
1646
1647		goto lenout;
1648
1649	case SO_LOCK_FILTER:
1650		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1651		break;
1652
1653	case SO_BPF_EXTENSIONS:
1654		v.val = bpf_tell_extensions();
1655		break;
1656
1657	case SO_SELECT_ERR_QUEUE:
1658		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1659		break;
1660
1661#ifdef CONFIG_NET_RX_BUSY_POLL
1662	case SO_BUSY_POLL:
1663		v.val = sk->sk_ll_usec;
1664		break;
1665	case SO_PREFER_BUSY_POLL:
1666		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1667		break;
1668#endif
1669
1670	case SO_MAX_PACING_RATE:
1671		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1672			lv = sizeof(v.ulval);
1673			v.ulval = sk->sk_max_pacing_rate;
1674		} else {
1675			/* 32bit version */
1676			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1677		}
1678		break;
1679
1680	case SO_INCOMING_CPU:
1681		v.val = READ_ONCE(sk->sk_incoming_cpu);
1682		break;
1683
1684	case SO_MEMINFO:
1685	{
1686		u32 meminfo[SK_MEMINFO_VARS];
1687
 
 
 
1688		sk_get_meminfo(sk, meminfo);
1689
1690		len = min_t(unsigned int, len, sizeof(meminfo));
1691		if (copy_to_user(optval, &meminfo, len))
1692			return -EFAULT;
1693
1694		goto lenout;
1695	}
1696
1697#ifdef CONFIG_NET_RX_BUSY_POLL
1698	case SO_INCOMING_NAPI_ID:
1699		v.val = READ_ONCE(sk->sk_napi_id);
1700
1701		/* aggregate non-NAPI IDs down to 0 */
1702		if (v.val < MIN_NAPI_ID)
1703			v.val = 0;
1704
1705		break;
1706#endif
1707
1708	case SO_COOKIE:
1709		lv = sizeof(u64);
1710		if (len < lv)
1711			return -EINVAL;
1712		v.val64 = sock_gen_cookie(sk);
1713		break;
1714
1715	case SO_ZEROCOPY:
1716		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1717		break;
1718
1719	case SO_TXTIME:
1720		lv = sizeof(v.txtime);
1721		v.txtime.clockid = sk->sk_clockid;
1722		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1723				  SOF_TXTIME_DEADLINE_MODE : 0;
1724		v.txtime.flags |= sk->sk_txtime_report_errors ?
1725				  SOF_TXTIME_REPORT_ERRORS : 0;
1726		break;
1727
1728	case SO_BINDTOIFINDEX:
1729		v.val = sk->sk_bound_dev_if;
1730		break;
1731
1732	case SO_NETNS_COOKIE:
1733		lv = sizeof(u64);
1734		if (len != lv)
1735			return -EINVAL;
1736		v.val64 = sock_net(sk)->net_cookie;
1737		break;
1738
1739	default:
1740		/* We implement the SO_SNDLOWAT etc to not be settable
1741		 * (1003.1g 7).
1742		 */
1743		return -ENOPROTOOPT;
1744	}
1745
1746	if (len > lv)
1747		len = lv;
1748	if (copy_to_user(optval, &v, len))
1749		return -EFAULT;
1750lenout:
1751	if (put_user(len, optlen))
1752		return -EFAULT;
1753	return 0;
1754}
1755
1756/*
1757 * Initialize an sk_lock.
1758 *
1759 * (We also register the sk_lock with the lock validator.)
1760 */
1761static inline void sock_lock_init(struct sock *sk)
1762{
1763	if (sk->sk_kern_sock)
1764		sock_lock_init_class_and_name(
1765			sk,
1766			af_family_kern_slock_key_strings[sk->sk_family],
1767			af_family_kern_slock_keys + sk->sk_family,
1768			af_family_kern_key_strings[sk->sk_family],
1769			af_family_kern_keys + sk->sk_family);
1770	else
1771		sock_lock_init_class_and_name(
1772			sk,
1773			af_family_slock_key_strings[sk->sk_family],
1774			af_family_slock_keys + sk->sk_family,
1775			af_family_key_strings[sk->sk_family],
1776			af_family_keys + sk->sk_family);
1777}
1778
1779/*
1780 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1781 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1782 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1783 */
1784static void sock_copy(struct sock *nsk, const struct sock *osk)
1785{
1786	const struct proto *prot = READ_ONCE(osk->sk_prot);
1787#ifdef CONFIG_SECURITY_NETWORK
1788	void *sptr = nsk->sk_security;
1789#endif
1790
1791	/* If we move sk_tx_queue_mapping out of the private section,
1792	 * we must check if sk_tx_queue_clear() is called after
1793	 * sock_copy() in sk_clone_lock().
1794	 */
1795	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1796		     offsetof(struct sock, sk_dontcopy_begin) ||
1797		     offsetof(struct sock, sk_tx_queue_mapping) >=
1798		     offsetof(struct sock, sk_dontcopy_end));
1799
1800	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1801
1802	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1803	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1804
1805#ifdef CONFIG_SECURITY_NETWORK
1806	nsk->sk_security = sptr;
1807	security_sk_clone(osk, nsk);
1808#endif
1809}
1810
1811static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1812		int family)
1813{
1814	struct sock *sk;
1815	struct kmem_cache *slab;
1816
1817	slab = prot->slab;
1818	if (slab != NULL) {
1819		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1820		if (!sk)
1821			return sk;
1822		if (want_init_on_alloc(priority))
1823			sk_prot_clear_nulls(sk, prot->obj_size);
1824	} else
1825		sk = kmalloc(prot->obj_size, priority);
1826
1827	if (sk != NULL) {
1828		if (security_sk_alloc(sk, family, priority))
1829			goto out_free;
1830
1831		if (!try_module_get(prot->owner))
1832			goto out_free_sec;
 
1833	}
1834
1835	return sk;
1836
1837out_free_sec:
1838	security_sk_free(sk);
1839out_free:
1840	if (slab != NULL)
1841		kmem_cache_free(slab, sk);
1842	else
1843		kfree(sk);
1844	return NULL;
1845}
1846
1847static void sk_prot_free(struct proto *prot, struct sock *sk)
1848{
1849	struct kmem_cache *slab;
1850	struct module *owner;
1851
1852	owner = prot->owner;
1853	slab = prot->slab;
1854
1855	cgroup_sk_free(&sk->sk_cgrp_data);
1856	mem_cgroup_sk_free(sk);
1857	security_sk_free(sk);
1858	if (slab != NULL)
1859		kmem_cache_free(slab, sk);
1860	else
1861		kfree(sk);
1862	module_put(owner);
1863}
1864
1865/**
1866 *	sk_alloc - All socket objects are allocated here
1867 *	@net: the applicable net namespace
1868 *	@family: protocol family
1869 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1870 *	@prot: struct proto associated with this new sock instance
1871 *	@kern: is this to be a kernel socket?
1872 */
1873struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1874		      struct proto *prot, int kern)
1875{
1876	struct sock *sk;
1877
1878	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1879	if (sk) {
1880		sk->sk_family = family;
1881		/*
1882		 * See comment in struct sock definition to understand
1883		 * why we need sk_prot_creator -acme
1884		 */
1885		sk->sk_prot = sk->sk_prot_creator = prot;
1886		sk->sk_kern_sock = kern;
1887		sock_lock_init(sk);
1888		sk->sk_net_refcnt = kern ? 0 : 1;
1889		if (likely(sk->sk_net_refcnt)) {
1890			get_net(net);
1891			sock_inuse_add(net, 1);
1892		}
1893
1894		sock_net_set(sk, net);
1895		refcount_set(&sk->sk_wmem_alloc, 1);
1896
1897		mem_cgroup_sk_alloc(sk);
1898		cgroup_sk_alloc(&sk->sk_cgrp_data);
1899		sock_update_classid(&sk->sk_cgrp_data);
1900		sock_update_netprioidx(&sk->sk_cgrp_data);
1901		sk_tx_queue_clear(sk);
1902	}
1903
1904	return sk;
1905}
1906EXPORT_SYMBOL(sk_alloc);
1907
1908/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1909 * grace period. This is the case for UDP sockets and TCP listeners.
1910 */
1911static void __sk_destruct(struct rcu_head *head)
1912{
1913	struct sock *sk = container_of(head, struct sock, sk_rcu);
1914	struct sk_filter *filter;
1915
1916	if (sk->sk_destruct)
1917		sk->sk_destruct(sk);
1918
1919	filter = rcu_dereference_check(sk->sk_filter,
1920				       refcount_read(&sk->sk_wmem_alloc) == 0);
1921	if (filter) {
1922		sk_filter_uncharge(sk, filter);
1923		RCU_INIT_POINTER(sk->sk_filter, NULL);
1924	}
 
 
1925
1926	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1927
1928#ifdef CONFIG_BPF_SYSCALL
1929	bpf_sk_storage_free(sk);
1930#endif
1931
1932	if (atomic_read(&sk->sk_omem_alloc))
1933		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1934			 __func__, atomic_read(&sk->sk_omem_alloc));
1935
1936	if (sk->sk_frag.page) {
1937		put_page(sk->sk_frag.page);
1938		sk->sk_frag.page = NULL;
1939	}
1940
1941	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1942	put_cred(sk->sk_peer_cred);
1943	put_pid(sk->sk_peer_pid);
1944
1945	if (likely(sk->sk_net_refcnt))
1946		put_net(sock_net(sk));
1947	sk_prot_free(sk->sk_prot_creator, sk);
1948}
1949
1950void sk_destruct(struct sock *sk)
1951{
1952	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1953
1954	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1955		reuseport_detach_sock(sk);
1956		use_call_rcu = true;
1957	}
1958
1959	if (use_call_rcu)
1960		call_rcu(&sk->sk_rcu, __sk_destruct);
1961	else
1962		__sk_destruct(&sk->sk_rcu);
1963}
1964
1965static void __sk_free(struct sock *sk)
1966{
1967	if (likely(sk->sk_net_refcnt))
1968		sock_inuse_add(sock_net(sk), -1);
1969
1970	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1971		sock_diag_broadcast_destroy(sk);
1972	else
1973		sk_destruct(sk);
1974}
1975
1976void sk_free(struct sock *sk)
1977{
1978	/*
1979	 * We subtract one from sk_wmem_alloc and can know if
1980	 * some packets are still in some tx queue.
1981	 * If not null, sock_wfree() will call __sk_free(sk) later
1982	 */
1983	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1984		__sk_free(sk);
1985}
1986EXPORT_SYMBOL(sk_free);
1987
1988static void sk_init_common(struct sock *sk)
1989{
1990	skb_queue_head_init(&sk->sk_receive_queue);
1991	skb_queue_head_init(&sk->sk_write_queue);
1992	skb_queue_head_init(&sk->sk_error_queue);
1993
1994	rwlock_init(&sk->sk_callback_lock);
1995	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1996			af_rlock_keys + sk->sk_family,
1997			af_family_rlock_key_strings[sk->sk_family]);
1998	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1999			af_wlock_keys + sk->sk_family,
2000			af_family_wlock_key_strings[sk->sk_family]);
2001	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2002			af_elock_keys + sk->sk_family,
2003			af_family_elock_key_strings[sk->sk_family]);
2004	lockdep_set_class_and_name(&sk->sk_callback_lock,
2005			af_callback_keys + sk->sk_family,
2006			af_family_clock_key_strings[sk->sk_family]);
2007}
2008
2009/**
2010 *	sk_clone_lock - clone a socket, and lock its clone
2011 *	@sk: the socket to clone
2012 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2013 *
2014 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2015 */
2016struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2017{
2018	struct proto *prot = READ_ONCE(sk->sk_prot);
2019	struct sk_filter *filter;
2020	bool is_charged = true;
2021	struct sock *newsk;
 
2022
2023	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2024	if (!newsk)
2025		goto out;
2026
2027	sock_copy(newsk, sk);
2028
2029	newsk->sk_prot_creator = prot;
 
 
 
 
 
 
 
 
 
2030
2031	/* SANITY */
2032	if (likely(newsk->sk_net_refcnt))
2033		get_net(sock_net(newsk));
2034	sk_node_init(&newsk->sk_node);
2035	sock_lock_init(newsk);
2036	bh_lock_sock(newsk);
2037	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2038	newsk->sk_backlog.len = 0;
2039
2040	atomic_set(&newsk->sk_rmem_alloc, 0);
2041
2042	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2043	refcount_set(&newsk->sk_wmem_alloc, 1);
2044
2045	atomic_set(&newsk->sk_omem_alloc, 0);
2046	sk_init_common(newsk);
2047
2048	newsk->sk_dst_cache	= NULL;
2049	newsk->sk_dst_pending_confirm = 0;
2050	newsk->sk_wmem_queued	= 0;
2051	newsk->sk_forward_alloc = 0;
2052	atomic_set(&newsk->sk_drops, 0);
2053	newsk->sk_send_head	= NULL;
2054	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2055	atomic_set(&newsk->sk_zckey, 0);
2056
2057	sock_reset_flag(newsk, SOCK_DONE);
 
 
 
 
 
 
 
 
 
2058
2059	/* sk->sk_memcg will be populated at accept() time */
2060	newsk->sk_memcg = NULL;
 
 
 
 
 
 
 
 
 
 
2061
2062	cgroup_sk_clone(&newsk->sk_cgrp_data);
 
 
 
 
 
 
2063
2064	rcu_read_lock();
2065	filter = rcu_dereference(sk->sk_filter);
2066	if (filter != NULL)
2067		/* though it's an empty new sock, the charging may fail
2068		 * if sysctl_optmem_max was changed between creation of
2069		 * original socket and cloning
2070		 */
2071		is_charged = sk_filter_charge(newsk, filter);
2072	RCU_INIT_POINTER(newsk->sk_filter, filter);
2073	rcu_read_unlock();
2074
2075	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2076		/* We need to make sure that we don't uncharge the new
2077		 * socket if we couldn't charge it in the first place
2078		 * as otherwise we uncharge the parent's filter.
 
 
 
 
 
 
2079		 */
2080		if (!is_charged)
2081			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2082		sk_free_unlock_clone(newsk);
2083		newsk = NULL;
2084		goto out;
2085	}
2086	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2087
2088	if (bpf_sk_storage_clone(sk, newsk)) {
2089		sk_free_unlock_clone(newsk);
2090		newsk = NULL;
2091		goto out;
2092	}
2093
2094	/* Clear sk_user_data if parent had the pointer tagged
2095	 * as not suitable for copying when cloning.
2096	 */
2097	if (sk_user_data_is_nocopy(newsk))
2098		newsk->sk_user_data = NULL;
2099
2100	newsk->sk_err	   = 0;
2101	newsk->sk_err_soft = 0;
2102	newsk->sk_priority = 0;
2103	newsk->sk_incoming_cpu = raw_smp_processor_id();
2104	if (likely(newsk->sk_net_refcnt))
2105		sock_inuse_add(sock_net(newsk), 1);
2106
2107	/* Before updating sk_refcnt, we must commit prior changes to memory
2108	 * (Documentation/RCU/rculist_nulls.rst for details)
2109	 */
2110	smp_wmb();
2111	refcount_set(&newsk->sk_refcnt, 2);
2112
2113	/* Increment the counter in the same struct proto as the master
2114	 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2115	 * is the same as sk->sk_prot->socks, as this field was copied
2116	 * with memcpy).
2117	 *
2118	 * This _changes_ the previous behaviour, where
2119	 * tcp_create_openreq_child always was incrementing the
2120	 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2121	 * to be taken into account in all callers. -acme
2122	 */
2123	sk_refcnt_debug_inc(newsk);
2124	sk_set_socket(newsk, NULL);
2125	sk_tx_queue_clear(newsk);
2126	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2127
2128	if (newsk->sk_prot->sockets_allocated)
2129		sk_sockets_allocated_inc(newsk);
2130
2131	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2132		net_enable_timestamp();
 
 
2133out:
2134	return newsk;
2135}
2136EXPORT_SYMBOL_GPL(sk_clone_lock);
2137
2138void sk_free_unlock_clone(struct sock *sk)
2139{
2140	/* It is still raw copy of parent, so invalidate
2141	 * destructor and make plain sk_free() */
2142	sk->sk_destruct = NULL;
2143	bh_unlock_sock(sk);
2144	sk_free(sk);
2145}
2146EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2147
2148void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2149{
2150	u32 max_segs = 1;
2151
2152	sk_dst_set(sk, dst);
2153	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2154	if (sk->sk_route_caps & NETIF_F_GSO)
2155		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2156	sk->sk_route_caps &= ~sk->sk_route_nocaps;
2157	if (sk_can_gso(sk)) {
2158		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2159			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2160		} else {
2161			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2162			sk->sk_gso_max_size = dst->dev->gso_max_size;
2163			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2164		}
2165	}
2166	sk->sk_gso_max_segs = max_segs;
2167}
2168EXPORT_SYMBOL_GPL(sk_setup_caps);
2169
2170/*
2171 *	Simple resource managers for sockets.
2172 */
2173
2174
2175/*
2176 * Write buffer destructor automatically called from kfree_skb.
2177 */
2178void sock_wfree(struct sk_buff *skb)
2179{
2180	struct sock *sk = skb->sk;
2181	unsigned int len = skb->truesize;
2182
2183	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2184		/*
2185		 * Keep a reference on sk_wmem_alloc, this will be released
2186		 * after sk_write_space() call
2187		 */
2188		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2189		sk->sk_write_space(sk);
2190		len = 1;
2191	}
2192	/*
2193	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2194	 * could not do because of in-flight packets
2195	 */
2196	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2197		__sk_free(sk);
2198}
2199EXPORT_SYMBOL(sock_wfree);
2200
2201/* This variant of sock_wfree() is used by TCP,
2202 * since it sets SOCK_USE_WRITE_QUEUE.
2203 */
2204void __sock_wfree(struct sk_buff *skb)
2205{
2206	struct sock *sk = skb->sk;
2207
2208	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2209		__sk_free(sk);
2210}
2211
2212void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2213{
2214	skb_orphan(skb);
2215	skb->sk = sk;
2216#ifdef CONFIG_INET
2217	if (unlikely(!sk_fullsock(sk))) {
2218		skb->destructor = sock_edemux;
2219		sock_hold(sk);
2220		return;
2221	}
2222#endif
2223	skb->destructor = sock_wfree;
2224	skb_set_hash_from_sk(skb, sk);
2225	/*
2226	 * We used to take a refcount on sk, but following operation
2227	 * is enough to guarantee sk_free() wont free this sock until
2228	 * all in-flight packets are completed
2229	 */
2230	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2231}
2232EXPORT_SYMBOL(skb_set_owner_w);
2233
2234static bool can_skb_orphan_partial(const struct sk_buff *skb)
2235{
2236#ifdef CONFIG_TLS_DEVICE
2237	/* Drivers depend on in-order delivery for crypto offload,
2238	 * partial orphan breaks out-of-order-OK logic.
2239	 */
2240	if (skb->decrypted)
2241		return false;
2242#endif
2243	return (skb->destructor == sock_wfree ||
2244		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2245}
2246
2247/* This helper is used by netem, as it can hold packets in its
2248 * delay queue. We want to allow the owner socket to send more
2249 * packets, as if they were already TX completed by a typical driver.
2250 * But we also want to keep skb->sk set because some packet schedulers
2251 * rely on it (sch_fq for example).
2252 */
2253void skb_orphan_partial(struct sk_buff *skb)
2254{
2255	if (skb_is_tcp_pure_ack(skb))
2256		return;
2257
2258	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2259		return;
 
 
 
 
2260
2261	skb_orphan(skb);
 
 
 
 
 
 
2262}
2263EXPORT_SYMBOL(skb_orphan_partial);
2264
2265/*
2266 * Read buffer destructor automatically called from kfree_skb.
2267 */
2268void sock_rfree(struct sk_buff *skb)
2269{
2270	struct sock *sk = skb->sk;
2271	unsigned int len = skb->truesize;
2272
2273	atomic_sub(len, &sk->sk_rmem_alloc);
2274	sk_mem_uncharge(sk, len);
2275}
2276EXPORT_SYMBOL(sock_rfree);
2277
2278/*
2279 * Buffer destructor for skbs that are not used directly in read or write
2280 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2281 */
2282void sock_efree(struct sk_buff *skb)
2283{
2284	sock_put(skb->sk);
2285}
2286EXPORT_SYMBOL(sock_efree);
2287
2288/* Buffer destructor for prefetch/receive path where reference count may
2289 * not be held, e.g. for listen sockets.
2290 */
2291#ifdef CONFIG_INET
2292void sock_pfree(struct sk_buff *skb)
2293{
2294	if (sk_is_refcounted(skb->sk))
2295		sock_gen_put(skb->sk);
2296}
2297EXPORT_SYMBOL(sock_pfree);
2298#endif /* CONFIG_INET */
2299
2300kuid_t sock_i_uid(struct sock *sk)
2301{
2302	kuid_t uid;
2303
2304	read_lock_bh(&sk->sk_callback_lock);
2305	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2306	read_unlock_bh(&sk->sk_callback_lock);
2307	return uid;
2308}
2309EXPORT_SYMBOL(sock_i_uid);
2310
2311unsigned long sock_i_ino(struct sock *sk)
2312{
2313	unsigned long ino;
2314
2315	read_lock_bh(&sk->sk_callback_lock);
2316	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2317	read_unlock_bh(&sk->sk_callback_lock);
2318	return ino;
2319}
2320EXPORT_SYMBOL(sock_i_ino);
2321
2322/*
2323 * Allocate a skb from the socket's send buffer.
2324 */
2325struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2326			     gfp_t priority)
2327{
2328	if (force ||
2329	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2330		struct sk_buff *skb = alloc_skb(size, priority);
2331
2332		if (skb) {
2333			skb_set_owner_w(skb, sk);
2334			return skb;
2335		}
2336	}
2337	return NULL;
2338}
2339EXPORT_SYMBOL(sock_wmalloc);
2340
2341static void sock_ofree(struct sk_buff *skb)
2342{
2343	struct sock *sk = skb->sk;
2344
2345	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2346}
2347
2348struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2349			     gfp_t priority)
2350{
2351	struct sk_buff *skb;
2352
2353	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2354	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2355	    sysctl_optmem_max)
2356		return NULL;
2357
2358	skb = alloc_skb(size, priority);
2359	if (!skb)
2360		return NULL;
2361
2362	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2363	skb->sk = sk;
2364	skb->destructor = sock_ofree;
2365	return skb;
2366}
2367
2368/*
2369 * Allocate a memory block from the socket's option memory buffer.
2370 */
2371void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2372{
2373	if ((unsigned int)size <= sysctl_optmem_max &&
2374	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2375		void *mem;
2376		/* First do the add, to avoid the race if kmalloc
2377		 * might sleep.
2378		 */
2379		atomic_add(size, &sk->sk_omem_alloc);
2380		mem = kmalloc(size, priority);
2381		if (mem)
2382			return mem;
2383		atomic_sub(size, &sk->sk_omem_alloc);
2384	}
2385	return NULL;
2386}
2387EXPORT_SYMBOL(sock_kmalloc);
2388
2389/* Free an option memory block. Note, we actually want the inline
2390 * here as this allows gcc to detect the nullify and fold away the
2391 * condition entirely.
2392 */
2393static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2394				  const bool nullify)
2395{
2396	if (WARN_ON_ONCE(!mem))
2397		return;
2398	if (nullify)
2399		kfree_sensitive(mem);
2400	else
2401		kfree(mem);
2402	atomic_sub(size, &sk->sk_omem_alloc);
2403}
2404
2405void sock_kfree_s(struct sock *sk, void *mem, int size)
2406{
2407	__sock_kfree_s(sk, mem, size, false);
2408}
2409EXPORT_SYMBOL(sock_kfree_s);
2410
2411void sock_kzfree_s(struct sock *sk, void *mem, int size)
2412{
2413	__sock_kfree_s(sk, mem, size, true);
2414}
2415EXPORT_SYMBOL(sock_kzfree_s);
2416
2417/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2418   I think, these locks should be removed for datagram sockets.
2419 */
2420static long sock_wait_for_wmem(struct sock *sk, long timeo)
2421{
2422	DEFINE_WAIT(wait);
2423
2424	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2425	for (;;) {
2426		if (!timeo)
2427			break;
2428		if (signal_pending(current))
2429			break;
2430		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2431		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2432		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2433			break;
2434		if (sk->sk_shutdown & SEND_SHUTDOWN)
2435			break;
2436		if (sk->sk_err)
2437			break;
2438		timeo = schedule_timeout(timeo);
2439	}
2440	finish_wait(sk_sleep(sk), &wait);
2441	return timeo;
2442}
2443
2444
2445/*
2446 *	Generic send/receive buffer handlers
2447 */
2448
2449struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2450				     unsigned long data_len, int noblock,
2451				     int *errcode, int max_page_order)
2452{
2453	struct sk_buff *skb;
2454	long timeo;
2455	int err;
2456
2457	timeo = sock_sndtimeo(sk, noblock);
2458	for (;;) {
2459		err = sock_error(sk);
2460		if (err != 0)
2461			goto failure;
2462
2463		err = -EPIPE;
2464		if (sk->sk_shutdown & SEND_SHUTDOWN)
2465			goto failure;
2466
2467		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2468			break;
2469
2470		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2471		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2472		err = -EAGAIN;
2473		if (!timeo)
2474			goto failure;
2475		if (signal_pending(current))
2476			goto interrupted;
2477		timeo = sock_wait_for_wmem(sk, timeo);
2478	}
2479	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2480				   errcode, sk->sk_allocation);
2481	if (skb)
2482		skb_set_owner_w(skb, sk);
2483	return skb;
2484
2485interrupted:
2486	err = sock_intr_errno(timeo);
2487failure:
2488	*errcode = err;
2489	return NULL;
2490}
2491EXPORT_SYMBOL(sock_alloc_send_pskb);
2492
2493struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2494				    int noblock, int *errcode)
2495{
2496	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2497}
2498EXPORT_SYMBOL(sock_alloc_send_skb);
2499
2500int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2501		     struct sockcm_cookie *sockc)
2502{
2503	u32 tsflags;
2504
2505	switch (cmsg->cmsg_type) {
2506	case SO_MARK:
2507		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2508			return -EPERM;
2509		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2510			return -EINVAL;
2511		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2512		break;
2513	case SO_TIMESTAMPING_OLD:
2514		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2515			return -EINVAL;
2516
2517		tsflags = *(u32 *)CMSG_DATA(cmsg);
2518		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2519			return -EINVAL;
2520
2521		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2522		sockc->tsflags |= tsflags;
2523		break;
2524	case SCM_TXTIME:
2525		if (!sock_flag(sk, SOCK_TXTIME))
2526			return -EINVAL;
2527		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2528			return -EINVAL;
2529		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2530		break;
2531	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2532	case SCM_RIGHTS:
2533	case SCM_CREDENTIALS:
2534		break;
2535	default:
2536		return -EINVAL;
2537	}
2538	return 0;
2539}
2540EXPORT_SYMBOL(__sock_cmsg_send);
2541
2542int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2543		   struct sockcm_cookie *sockc)
2544{
2545	struct cmsghdr *cmsg;
2546	int ret;
2547
2548	for_each_cmsghdr(cmsg, msg) {
2549		if (!CMSG_OK(msg, cmsg))
2550			return -EINVAL;
2551		if (cmsg->cmsg_level != SOL_SOCKET)
2552			continue;
2553		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2554		if (ret)
2555			return ret;
2556	}
2557	return 0;
2558}
2559EXPORT_SYMBOL(sock_cmsg_send);
2560
2561static void sk_enter_memory_pressure(struct sock *sk)
2562{
2563	if (!sk->sk_prot->enter_memory_pressure)
2564		return;
2565
2566	sk->sk_prot->enter_memory_pressure(sk);
2567}
2568
2569static void sk_leave_memory_pressure(struct sock *sk)
2570{
2571	if (sk->sk_prot->leave_memory_pressure) {
2572		sk->sk_prot->leave_memory_pressure(sk);
2573	} else {
2574		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2575
2576		if (memory_pressure && READ_ONCE(*memory_pressure))
2577			WRITE_ONCE(*memory_pressure, 0);
2578	}
2579}
2580
 
2581#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2582DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2583
2584/**
2585 * skb_page_frag_refill - check that a page_frag contains enough room
2586 * @sz: minimum size of the fragment we want to get
2587 * @pfrag: pointer to page_frag
2588 * @gfp: priority for memory allocation
2589 *
2590 * Note: While this allocator tries to use high order pages, there is
2591 * no guarantee that allocations succeed. Therefore, @sz MUST be
2592 * less or equal than PAGE_SIZE.
2593 */
2594bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2595{
2596	if (pfrag->page) {
2597		if (page_ref_count(pfrag->page) == 1) {
2598			pfrag->offset = 0;
2599			return true;
2600		}
2601		if (pfrag->offset + sz <= pfrag->size)
2602			return true;
2603		put_page(pfrag->page);
2604	}
2605
2606	pfrag->offset = 0;
2607	if (SKB_FRAG_PAGE_ORDER &&
2608	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2609		/* Avoid direct reclaim but allow kswapd to wake */
2610		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2611					  __GFP_COMP | __GFP_NOWARN |
2612					  __GFP_NORETRY,
2613					  SKB_FRAG_PAGE_ORDER);
2614		if (likely(pfrag->page)) {
2615			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2616			return true;
2617		}
2618	}
2619	pfrag->page = alloc_page(gfp);
2620	if (likely(pfrag->page)) {
2621		pfrag->size = PAGE_SIZE;
2622		return true;
2623	}
2624	return false;
2625}
2626EXPORT_SYMBOL(skb_page_frag_refill);
2627
2628bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2629{
2630	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2631		return true;
2632
2633	sk_enter_memory_pressure(sk);
2634	sk_stream_moderate_sndbuf(sk);
2635	return false;
2636}
2637EXPORT_SYMBOL(sk_page_frag_refill);
2638
2639void __lock_sock(struct sock *sk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2640	__releases(&sk->sk_lock.slock)
2641	__acquires(&sk->sk_lock.slock)
2642{
2643	DEFINE_WAIT(wait);
2644
2645	for (;;) {
2646		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2647					TASK_UNINTERRUPTIBLE);
2648		spin_unlock_bh(&sk->sk_lock.slock);
2649		schedule();
2650		spin_lock_bh(&sk->sk_lock.slock);
2651		if (!sock_owned_by_user(sk))
2652			break;
2653	}
2654	finish_wait(&sk->sk_lock.wq, &wait);
2655}
2656
2657void __release_sock(struct sock *sk)
2658	__releases(&sk->sk_lock.slock)
2659	__acquires(&sk->sk_lock.slock)
2660{
2661	struct sk_buff *skb, *next;
2662
2663	while ((skb = sk->sk_backlog.head) != NULL) {
2664		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2665
2666		spin_unlock_bh(&sk->sk_lock.slock);
2667
2668		do {
2669			next = skb->next;
2670			prefetch(next);
2671			WARN_ON_ONCE(skb_dst_is_noref(skb));
2672			skb_mark_not_on_list(skb);
2673			sk_backlog_rcv(sk, skb);
2674
2675			cond_resched();
2676
2677			skb = next;
2678		} while (skb != NULL);
2679
2680		spin_lock_bh(&sk->sk_lock.slock);
2681	}
2682
2683	/*
2684	 * Doing the zeroing here guarantee we can not loop forever
2685	 * while a wild producer attempts to flood us.
2686	 */
2687	sk->sk_backlog.len = 0;
2688}
2689
2690void __sk_flush_backlog(struct sock *sk)
2691{
2692	spin_lock_bh(&sk->sk_lock.slock);
2693	__release_sock(sk);
2694	spin_unlock_bh(&sk->sk_lock.slock);
2695}
2696
2697/**
2698 * sk_wait_data - wait for data to arrive at sk_receive_queue
2699 * @sk:    sock to wait on
2700 * @timeo: for how long
2701 * @skb:   last skb seen on sk_receive_queue
2702 *
2703 * Now socket state including sk->sk_err is changed only under lock,
2704 * hence we may omit checks after joining wait queue.
2705 * We check receive queue before schedule() only as optimization;
2706 * it is very likely that release_sock() added new data.
2707 */
2708int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2709{
2710	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2711	int rc;
2712
2713	add_wait_queue(sk_sleep(sk), &wait);
2714	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2715	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2716	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2717	remove_wait_queue(sk_sleep(sk), &wait);
2718	return rc;
2719}
2720EXPORT_SYMBOL(sk_wait_data);
2721
2722/**
2723 *	__sk_mem_raise_allocated - increase memory_allocated
2724 *	@sk: socket
2725 *	@size: memory size to allocate
2726 *	@amt: pages to allocate
2727 *	@kind: allocation type
2728 *
2729 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2730 */
2731int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2732{
2733	struct proto *prot = sk->sk_prot;
2734	long allocated = sk_memory_allocated_add(sk, amt);
2735	bool charged = true;
2736
2737	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2738	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2739		goto suppress_allocation;
2740
2741	/* Under limit. */
2742	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2743		sk_leave_memory_pressure(sk);
2744		return 1;
2745	}
2746
2747	/* Under pressure. */
2748	if (allocated > sk_prot_mem_limits(sk, 1))
2749		sk_enter_memory_pressure(sk);
2750
2751	/* Over hard limit. */
2752	if (allocated > sk_prot_mem_limits(sk, 2))
2753		goto suppress_allocation;
2754
2755	/* guarantee minimum buffer size under pressure */
2756	if (kind == SK_MEM_RECV) {
2757		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2758			return 1;
2759
2760	} else { /* SK_MEM_SEND */
2761		int wmem0 = sk_get_wmem0(sk, prot);
2762
2763		if (sk->sk_type == SOCK_STREAM) {
2764			if (sk->sk_wmem_queued < wmem0)
2765				return 1;
2766		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2767				return 1;
2768		}
2769	}
2770
2771	if (sk_has_memory_pressure(sk)) {
2772		u64 alloc;
2773
2774		if (!sk_under_memory_pressure(sk))
2775			return 1;
2776		alloc = sk_sockets_allocated_read_positive(sk);
2777		if (sk_prot_mem_limits(sk, 2) > alloc *
2778		    sk_mem_pages(sk->sk_wmem_queued +
2779				 atomic_read(&sk->sk_rmem_alloc) +
2780				 sk->sk_forward_alloc))
2781			return 1;
2782	}
2783
2784suppress_allocation:
2785
2786	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2787		sk_stream_moderate_sndbuf(sk);
2788
2789		/* Fail only if socket is _under_ its sndbuf.
2790		 * In this case we cannot block, so that we have to fail.
2791		 */
2792		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2793			return 1;
2794	}
2795
2796	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2797		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2798
2799	sk_memory_allocated_sub(sk, amt);
2800
2801	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2802		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2803
2804	return 0;
2805}
2806EXPORT_SYMBOL(__sk_mem_raise_allocated);
2807
2808/**
2809 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2810 *	@sk: socket
2811 *	@size: memory size to allocate
2812 *	@kind: allocation type
2813 *
2814 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2815 *	rmem allocation. This function assumes that protocols which have
2816 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2817 */
2818int __sk_mem_schedule(struct sock *sk, int size, int kind)
2819{
2820	int ret, amt = sk_mem_pages(size);
2821
2822	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2823	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2824	if (!ret)
2825		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2826	return ret;
2827}
2828EXPORT_SYMBOL(__sk_mem_schedule);
2829
2830/**
2831 *	__sk_mem_reduce_allocated - reclaim memory_allocated
2832 *	@sk: socket
2833 *	@amount: number of quanta
2834 *
2835 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2836 */
2837void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2838{
2839	sk_memory_allocated_sub(sk, amount);
2840
2841	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2842		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2843
2844	if (sk_under_memory_pressure(sk) &&
2845	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2846		sk_leave_memory_pressure(sk);
2847}
2848EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2849
2850/**
2851 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2852 *	@sk: socket
2853 *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2854 */
2855void __sk_mem_reclaim(struct sock *sk, int amount)
2856{
2857	amount >>= SK_MEM_QUANTUM_SHIFT;
2858	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2859	__sk_mem_reduce_allocated(sk, amount);
2860}
2861EXPORT_SYMBOL(__sk_mem_reclaim);
2862
2863int sk_set_peek_off(struct sock *sk, int val)
2864{
2865	sk->sk_peek_off = val;
2866	return 0;
2867}
2868EXPORT_SYMBOL_GPL(sk_set_peek_off);
2869
2870/*
2871 * Set of default routines for initialising struct proto_ops when
2872 * the protocol does not support a particular function. In certain
2873 * cases where it makes no sense for a protocol to have a "do nothing"
2874 * function, some default processing is provided.
2875 */
2876
2877int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2878{
2879	return -EOPNOTSUPP;
2880}
2881EXPORT_SYMBOL(sock_no_bind);
2882
2883int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2884		    int len, int flags)
2885{
2886	return -EOPNOTSUPP;
2887}
2888EXPORT_SYMBOL(sock_no_connect);
2889
2890int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2891{
2892	return -EOPNOTSUPP;
2893}
2894EXPORT_SYMBOL(sock_no_socketpair);
2895
2896int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2897		   bool kern)
2898{
2899	return -EOPNOTSUPP;
2900}
2901EXPORT_SYMBOL(sock_no_accept);
2902
2903int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2904		    int peer)
2905{
2906	return -EOPNOTSUPP;
2907}
2908EXPORT_SYMBOL(sock_no_getname);
2909
 
 
 
 
 
 
2910int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2911{
2912	return -EOPNOTSUPP;
2913}
2914EXPORT_SYMBOL(sock_no_ioctl);
2915
2916int sock_no_listen(struct socket *sock, int backlog)
2917{
2918	return -EOPNOTSUPP;
2919}
2920EXPORT_SYMBOL(sock_no_listen);
2921
2922int sock_no_shutdown(struct socket *sock, int how)
2923{
2924	return -EOPNOTSUPP;
2925}
2926EXPORT_SYMBOL(sock_no_shutdown);
2927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2928int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2929{
2930	return -EOPNOTSUPP;
2931}
2932EXPORT_SYMBOL(sock_no_sendmsg);
2933
2934int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2935{
2936	return -EOPNOTSUPP;
2937}
2938EXPORT_SYMBOL(sock_no_sendmsg_locked);
2939
2940int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2941		    int flags)
2942{
2943	return -EOPNOTSUPP;
2944}
2945EXPORT_SYMBOL(sock_no_recvmsg);
2946
2947int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2948{
2949	/* Mirror missing mmap method error code */
2950	return -ENODEV;
2951}
2952EXPORT_SYMBOL(sock_no_mmap);
2953
2954/*
2955 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2956 * various sock-based usage counts.
2957 */
2958void __receive_sock(struct file *file)
2959{
2960	struct socket *sock;
2961
2962	sock = sock_from_file(file);
2963	if (sock) {
2964		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2965		sock_update_classid(&sock->sk->sk_cgrp_data);
2966	}
2967}
2968
2969ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2970{
2971	ssize_t res;
2972	struct msghdr msg = {.msg_flags = flags};
2973	struct kvec iov;
2974	char *kaddr = kmap(page);
2975	iov.iov_base = kaddr + offset;
2976	iov.iov_len = size;
2977	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2978	kunmap(page);
2979	return res;
2980}
2981EXPORT_SYMBOL(sock_no_sendpage);
2982
2983ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2984				int offset, size_t size, int flags)
2985{
2986	ssize_t res;
2987	struct msghdr msg = {.msg_flags = flags};
2988	struct kvec iov;
2989	char *kaddr = kmap(page);
2990
2991	iov.iov_base = kaddr + offset;
2992	iov.iov_len = size;
2993	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2994	kunmap(page);
2995	return res;
2996}
2997EXPORT_SYMBOL(sock_no_sendpage_locked);
2998
2999/*
3000 *	Default Socket Callbacks
3001 */
3002
3003static void sock_def_wakeup(struct sock *sk)
3004{
3005	struct socket_wq *wq;
3006
3007	rcu_read_lock();
3008	wq = rcu_dereference(sk->sk_wq);
3009	if (skwq_has_sleeper(wq))
3010		wake_up_interruptible_all(&wq->wait);
3011	rcu_read_unlock();
3012}
3013
3014static void sock_def_error_report(struct sock *sk)
3015{
3016	struct socket_wq *wq;
3017
3018	rcu_read_lock();
3019	wq = rcu_dereference(sk->sk_wq);
3020	if (skwq_has_sleeper(wq))
3021		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3022	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3023	rcu_read_unlock();
3024}
3025
3026void sock_def_readable(struct sock *sk)
3027{
3028	struct socket_wq *wq;
3029
3030	rcu_read_lock();
3031	wq = rcu_dereference(sk->sk_wq);
3032	if (skwq_has_sleeper(wq))
3033		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3034						EPOLLRDNORM | EPOLLRDBAND);
3035	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3036	rcu_read_unlock();
3037}
3038
3039static void sock_def_write_space(struct sock *sk)
3040{
3041	struct socket_wq *wq;
3042
3043	rcu_read_lock();
3044
3045	/* Do not wake up a writer until he can make "significant"
3046	 * progress.  --DaveM
3047	 */
3048	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
3049		wq = rcu_dereference(sk->sk_wq);
3050		if (skwq_has_sleeper(wq))
3051			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3052						EPOLLWRNORM | EPOLLWRBAND);
3053
3054		/* Should agree with poll, otherwise some programs break */
3055		if (sock_writeable(sk))
3056			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3057	}
3058
3059	rcu_read_unlock();
3060}
3061
3062static void sock_def_destruct(struct sock *sk)
3063{
3064}
3065
3066void sk_send_sigurg(struct sock *sk)
3067{
3068	if (sk->sk_socket && sk->sk_socket->file)
3069		if (send_sigurg(&sk->sk_socket->file->f_owner))
3070			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3071}
3072EXPORT_SYMBOL(sk_send_sigurg);
3073
3074void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3075		    unsigned long expires)
3076{
3077	if (!mod_timer(timer, expires))
3078		sock_hold(sk);
3079}
3080EXPORT_SYMBOL(sk_reset_timer);
3081
3082void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3083{
3084	if (del_timer(timer))
3085		__sock_put(sk);
3086}
3087EXPORT_SYMBOL(sk_stop_timer);
3088
3089void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3090{
3091	if (del_timer_sync(timer))
3092		__sock_put(sk);
3093}
3094EXPORT_SYMBOL(sk_stop_timer_sync);
3095
3096void sock_init_data(struct socket *sock, struct sock *sk)
3097{
3098	sk_init_common(sk);
3099	sk->sk_send_head	=	NULL;
3100
3101	timer_setup(&sk->sk_timer, NULL, 0);
3102
3103	sk->sk_allocation	=	GFP_KERNEL;
3104	sk->sk_rcvbuf		=	sysctl_rmem_default;
3105	sk->sk_sndbuf		=	sysctl_wmem_default;
3106	sk->sk_state		=	TCP_CLOSE;
3107	sk_set_socket(sk, sock);
3108
3109	sock_set_flag(sk, SOCK_ZAPPED);
3110
3111	if (sock) {
3112		sk->sk_type	=	sock->type;
3113		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3114		sock->sk	=	sk;
3115		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
3116	} else {
3117		RCU_INIT_POINTER(sk->sk_wq, NULL);
3118		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
3119	}
3120
3121	rwlock_init(&sk->sk_callback_lock);
3122	if (sk->sk_kern_sock)
3123		lockdep_set_class_and_name(
3124			&sk->sk_callback_lock,
3125			af_kern_callback_keys + sk->sk_family,
3126			af_family_kern_clock_key_strings[sk->sk_family]);
3127	else
3128		lockdep_set_class_and_name(
3129			&sk->sk_callback_lock,
3130			af_callback_keys + sk->sk_family,
3131			af_family_clock_key_strings[sk->sk_family]);
3132
3133	sk->sk_state_change	=	sock_def_wakeup;
3134	sk->sk_data_ready	=	sock_def_readable;
3135	sk->sk_write_space	=	sock_def_write_space;
3136	sk->sk_error_report	=	sock_def_error_report;
3137	sk->sk_destruct		=	sock_def_destruct;
3138
3139	sk->sk_frag.page	=	NULL;
3140	sk->sk_frag.offset	=	0;
3141	sk->sk_peek_off		=	-1;
3142
3143	sk->sk_peer_pid 	=	NULL;
3144	sk->sk_peer_cred	=	NULL;
3145	spin_lock_init(&sk->sk_peer_lock);
3146
3147	sk->sk_write_pending	=	0;
3148	sk->sk_rcvlowat		=	1;
3149	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3150	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3151
3152	sk->sk_stamp = SK_DEFAULT_STAMP;
3153#if BITS_PER_LONG==32
3154	seqlock_init(&sk->sk_stamp_seq);
3155#endif
3156	atomic_set(&sk->sk_zckey, 0);
3157
3158#ifdef CONFIG_NET_RX_BUSY_POLL
3159	sk->sk_napi_id		=	0;
3160	sk->sk_ll_usec		=	sysctl_net_busy_read;
3161#endif
3162
3163	sk->sk_max_pacing_rate = ~0UL;
3164	sk->sk_pacing_rate = ~0UL;
3165	WRITE_ONCE(sk->sk_pacing_shift, 10);
3166	sk->sk_incoming_cpu = -1;
3167
3168	sk_rx_queue_clear(sk);
3169	/*
3170	 * Before updating sk_refcnt, we must commit prior changes to memory
3171	 * (Documentation/RCU/rculist_nulls.rst for details)
3172	 */
3173	smp_wmb();
3174	refcount_set(&sk->sk_refcnt, 1);
3175	atomic_set(&sk->sk_drops, 0);
3176}
3177EXPORT_SYMBOL(sock_init_data);
3178
3179void lock_sock_nested(struct sock *sk, int subclass)
3180{
3181	might_sleep();
3182	spin_lock_bh(&sk->sk_lock.slock);
3183	if (sk->sk_lock.owned)
3184		__lock_sock(sk);
3185	sk->sk_lock.owned = 1;
3186	spin_unlock(&sk->sk_lock.slock);
3187	/*
3188	 * The sk_lock has mutex_lock() semantics here:
3189	 */
3190	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3191	local_bh_enable();
3192}
3193EXPORT_SYMBOL(lock_sock_nested);
3194
3195void release_sock(struct sock *sk)
3196{
3197	spin_lock_bh(&sk->sk_lock.slock);
3198	if (sk->sk_backlog.tail)
3199		__release_sock(sk);
3200
3201	/* Warning : release_cb() might need to release sk ownership,
3202	 * ie call sock_release_ownership(sk) before us.
3203	 */
3204	if (sk->sk_prot->release_cb)
3205		sk->sk_prot->release_cb(sk);
3206
3207	sock_release_ownership(sk);
3208	if (waitqueue_active(&sk->sk_lock.wq))
3209		wake_up(&sk->sk_lock.wq);
3210	spin_unlock_bh(&sk->sk_lock.slock);
3211}
3212EXPORT_SYMBOL(release_sock);
3213
3214/**
3215 * lock_sock_fast - fast version of lock_sock
3216 * @sk: socket
3217 *
3218 * This version should be used for very small section, where process wont block
3219 * return false if fast path is taken:
3220 *
3221 *   sk_lock.slock locked, owned = 0, BH disabled
3222 *
3223 * return true if slow path is taken:
3224 *
3225 *   sk_lock.slock unlocked, owned = 1, BH enabled
3226 */
3227bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3228{
3229	might_sleep();
3230	spin_lock_bh(&sk->sk_lock.slock);
3231
3232	if (!sk->sk_lock.owned)
3233		/*
3234		 * Note : We must disable BH
3235		 */
3236		return false;
3237
3238	__lock_sock(sk);
3239	sk->sk_lock.owned = 1;
3240	spin_unlock(&sk->sk_lock.slock);
3241	/*
3242	 * The sk_lock has mutex_lock() semantics here:
3243	 */
3244	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3245	__acquire(&sk->sk_lock.slock);
3246	local_bh_enable();
3247	return true;
3248}
3249EXPORT_SYMBOL(lock_sock_fast);
3250
3251int sock_gettstamp(struct socket *sock, void __user *userstamp,
3252		   bool timeval, bool time32)
3253{
3254	struct sock *sk = sock->sk;
3255	struct timespec64 ts;
 
 
 
 
 
 
 
 
 
 
 
3256
3257	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3258	ts = ktime_to_timespec64(sock_read_timestamp(sk));
 
 
 
 
3259	if (ts.tv_sec == -1)
3260		return -ENOENT;
3261	if (ts.tv_sec == 0) {
3262		ktime_t kt = ktime_get_real();
3263		sock_write_timestamp(sk, kt);
3264		ts = ktime_to_timespec64(kt);
3265	}
3266
3267	if (timeval)
3268		ts.tv_nsec /= 1000;
3269
3270#ifdef CONFIG_COMPAT_32BIT_TIME
3271	if (time32)
3272		return put_old_timespec32(&ts, userstamp);
3273#endif
3274#ifdef CONFIG_SPARC64
3275	/* beware of padding in sparc64 timeval */
3276	if (timeval && !in_compat_syscall()) {
3277		struct __kernel_old_timeval __user tv = {
3278			.tv_sec = ts.tv_sec,
3279			.tv_usec = ts.tv_nsec,
3280		};
3281		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3282			return -EFAULT;
3283		return 0;
3284	}
3285#endif
3286	return put_timespec64(&ts, userstamp);
3287}
3288EXPORT_SYMBOL(sock_gettstamp);
3289
3290void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3291{
3292	if (!sock_flag(sk, flag)) {
3293		unsigned long previous_flags = sk->sk_flags;
3294
3295		sock_set_flag(sk, flag);
3296		/*
3297		 * we just set one of the two flags which require net
3298		 * time stamping, but time stamping might have been on
3299		 * already because of the other one
3300		 */
3301		if (sock_needs_netstamp(sk) &&
3302		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3303			net_enable_timestamp();
3304	}
3305}
3306
3307int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3308		       int level, int type)
3309{
3310	struct sock_exterr_skb *serr;
3311	struct sk_buff *skb;
3312	int copied, err;
3313
3314	err = -EAGAIN;
3315	skb = sock_dequeue_err_skb(sk);
3316	if (skb == NULL)
3317		goto out;
3318
3319	copied = skb->len;
3320	if (copied > len) {
3321		msg->msg_flags |= MSG_TRUNC;
3322		copied = len;
3323	}
3324	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3325	if (err)
3326		goto out_free_skb;
3327
3328	sock_recv_timestamp(msg, sk, skb);
3329
3330	serr = SKB_EXT_ERR(skb);
3331	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3332
3333	msg->msg_flags |= MSG_ERRQUEUE;
3334	err = copied;
3335
3336out_free_skb:
3337	kfree_skb(skb);
3338out:
3339	return err;
3340}
3341EXPORT_SYMBOL(sock_recv_errqueue);
3342
3343/*
3344 *	Get a socket option on an socket.
3345 *
3346 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3347 *	asynchronous errors should be reported by getsockopt. We assume
3348 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3349 */
3350int sock_common_getsockopt(struct socket *sock, int level, int optname,
3351			   char __user *optval, int __user *optlen)
3352{
3353	struct sock *sk = sock->sk;
3354
3355	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3356}
3357EXPORT_SYMBOL(sock_common_getsockopt);
3358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3359int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3360			int flags)
3361{
3362	struct sock *sk = sock->sk;
3363	int addr_len = 0;
3364	int err;
3365
3366	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3367				   flags & ~MSG_DONTWAIT, &addr_len);
3368	if (err >= 0)
3369		msg->msg_namelen = addr_len;
3370	return err;
3371}
3372EXPORT_SYMBOL(sock_common_recvmsg);
3373
3374/*
3375 *	Set socket options on an inet socket.
3376 */
3377int sock_common_setsockopt(struct socket *sock, int level, int optname,
3378			   sockptr_t optval, unsigned int optlen)
3379{
3380	struct sock *sk = sock->sk;
3381
3382	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3383}
3384EXPORT_SYMBOL(sock_common_setsockopt);
3385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3386void sk_common_release(struct sock *sk)
3387{
3388	if (sk->sk_prot->destroy)
3389		sk->sk_prot->destroy(sk);
3390
3391	/*
3392	 * Observation: when sk_common_release is called, processes have
3393	 * no access to socket. But net still has.
3394	 * Step one, detach it from networking:
3395	 *
3396	 * A. Remove from hash tables.
3397	 */
3398
3399	sk->sk_prot->unhash(sk);
3400
3401	/*
3402	 * In this point socket cannot receive new packets, but it is possible
3403	 * that some packets are in flight because some CPU runs receiver and
3404	 * did hash table lookup before we unhashed socket. They will achieve
3405	 * receive queue and will be purged by socket destructor.
3406	 *
3407	 * Also we still have packets pending on receive queue and probably,
3408	 * our own packets waiting in device queues. sock_destroy will drain
3409	 * receive queue, but transmitted packets will delay socket destruction
3410	 * until the last reference will be released.
3411	 */
3412
3413	sock_orphan(sk);
3414
3415	xfrm_sk_free_policy(sk);
3416
3417	sk_refcnt_debug_release(sk);
3418
3419	sock_put(sk);
3420}
3421EXPORT_SYMBOL(sk_common_release);
3422
3423void sk_get_meminfo(const struct sock *sk, u32 *mem)
3424{
3425	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3426
3427	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3428	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3429	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3430	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3431	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3432	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3433	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3434	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3435	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3436}
3437
3438#ifdef CONFIG_PROC_FS
3439#define PROTO_INUSE_NR	64	/* should be enough for the first time */
3440struct prot_inuse {
3441	int val[PROTO_INUSE_NR];
3442};
3443
3444static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3445
3446void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3447{
3448	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3449}
3450EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3451
3452int sock_prot_inuse_get(struct net *net, struct proto *prot)
3453{
3454	int cpu, idx = prot->inuse_idx;
3455	int res = 0;
3456
3457	for_each_possible_cpu(cpu)
3458		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3459
3460	return res >= 0 ? res : 0;
3461}
3462EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3463
3464static void sock_inuse_add(struct net *net, int val)
3465{
3466	this_cpu_add(*net->core.sock_inuse, val);
3467}
3468
3469int sock_inuse_get(struct net *net)
3470{
3471	int cpu, res = 0;
3472
3473	for_each_possible_cpu(cpu)
3474		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3475
3476	return res;
3477}
3478
3479EXPORT_SYMBOL_GPL(sock_inuse_get);
3480
3481static int __net_init sock_inuse_init_net(struct net *net)
3482{
3483	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3484	if (net->core.prot_inuse == NULL)
3485		return -ENOMEM;
3486
3487	net->core.sock_inuse = alloc_percpu(int);
3488	if (net->core.sock_inuse == NULL)
3489		goto out;
3490
3491	return 0;
3492
3493out:
3494	free_percpu(net->core.prot_inuse);
3495	return -ENOMEM;
3496}
3497
3498static void __net_exit sock_inuse_exit_net(struct net *net)
3499{
3500	free_percpu(net->core.prot_inuse);
3501	free_percpu(net->core.sock_inuse);
3502}
3503
3504static struct pernet_operations net_inuse_ops = {
3505	.init = sock_inuse_init_net,
3506	.exit = sock_inuse_exit_net,
3507};
3508
3509static __init int net_inuse_init(void)
3510{
3511	if (register_pernet_subsys(&net_inuse_ops))
3512		panic("Cannot initialize net inuse counters");
3513
3514	return 0;
3515}
3516
3517core_initcall(net_inuse_init);
3518
3519static int assign_proto_idx(struct proto *prot)
3520{
3521	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3522
3523	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3524		pr_err("PROTO_INUSE_NR exhausted\n");
3525		return -ENOSPC;
3526	}
3527
3528	set_bit(prot->inuse_idx, proto_inuse_idx);
3529	return 0;
3530}
3531
3532static void release_proto_idx(struct proto *prot)
3533{
3534	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3535		clear_bit(prot->inuse_idx, proto_inuse_idx);
3536}
3537#else
3538static inline int assign_proto_idx(struct proto *prot)
3539{
3540	return 0;
3541}
3542
3543static inline void release_proto_idx(struct proto *prot)
3544{
3545}
3546
3547static void sock_inuse_add(struct net *net, int val)
3548{
3549}
3550#endif
3551
3552static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3553{
3554	if (!twsk_prot)
3555		return;
3556	kfree(twsk_prot->twsk_slab_name);
3557	twsk_prot->twsk_slab_name = NULL;
3558	kmem_cache_destroy(twsk_prot->twsk_slab);
3559	twsk_prot->twsk_slab = NULL;
3560}
3561
3562static int tw_prot_init(const struct proto *prot)
3563{
3564	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3565
3566	if (!twsk_prot)
3567		return 0;
3568
3569	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3570					      prot->name);
3571	if (!twsk_prot->twsk_slab_name)
3572		return -ENOMEM;
3573
3574	twsk_prot->twsk_slab =
3575		kmem_cache_create(twsk_prot->twsk_slab_name,
3576				  twsk_prot->twsk_obj_size, 0,
3577				  SLAB_ACCOUNT | prot->slab_flags,
3578				  NULL);
3579	if (!twsk_prot->twsk_slab) {
3580		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3581			prot->name);
3582		return -ENOMEM;
3583	}
3584
3585	return 0;
3586}
3587
3588static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3589{
3590	if (!rsk_prot)
3591		return;
3592	kfree(rsk_prot->slab_name);
3593	rsk_prot->slab_name = NULL;
3594	kmem_cache_destroy(rsk_prot->slab);
3595	rsk_prot->slab = NULL;
3596}
3597
3598static int req_prot_init(const struct proto *prot)
3599{
3600	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3601
3602	if (!rsk_prot)
3603		return 0;
3604
3605	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3606					prot->name);
3607	if (!rsk_prot->slab_name)
3608		return -ENOMEM;
3609
3610	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3611					   rsk_prot->obj_size, 0,
3612					   SLAB_ACCOUNT | prot->slab_flags,
3613					   NULL);
3614
3615	if (!rsk_prot->slab) {
3616		pr_crit("%s: Can't create request sock SLAB cache!\n",
3617			prot->name);
3618		return -ENOMEM;
3619	}
3620	return 0;
3621}
3622
3623int proto_register(struct proto *prot, int alloc_slab)
3624{
3625	int ret = -ENOBUFS;
3626
3627	if (alloc_slab) {
3628		prot->slab = kmem_cache_create_usercopy(prot->name,
3629					prot->obj_size, 0,
3630					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3631					prot->slab_flags,
3632					prot->useroffset, prot->usersize,
3633					NULL);
3634
3635		if (prot->slab == NULL) {
3636			pr_crit("%s: Can't create sock SLAB cache!\n",
3637				prot->name);
3638			goto out;
3639		}
3640
3641		if (req_prot_init(prot))
3642			goto out_free_request_sock_slab;
3643
3644		if (tw_prot_init(prot))
3645			goto out_free_timewait_sock_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
3646	}
3647
3648	mutex_lock(&proto_list_mutex);
3649	ret = assign_proto_idx(prot);
3650	if (ret) {
3651		mutex_unlock(&proto_list_mutex);
3652		goto out_free_timewait_sock_slab;
3653	}
3654	list_add(&prot->node, &proto_list);
 
3655	mutex_unlock(&proto_list_mutex);
3656	return ret;
3657
3658out_free_timewait_sock_slab:
3659	if (alloc_slab)
3660		tw_prot_cleanup(prot->twsk_prot);
3661out_free_request_sock_slab:
3662	if (alloc_slab) {
3663		req_prot_cleanup(prot->rsk_prot);
3664
3665		kmem_cache_destroy(prot->slab);
3666		prot->slab = NULL;
3667	}
3668out:
3669	return ret;
3670}
3671EXPORT_SYMBOL(proto_register);
3672
3673void proto_unregister(struct proto *prot)
3674{
3675	mutex_lock(&proto_list_mutex);
3676	release_proto_idx(prot);
3677	list_del(&prot->node);
3678	mutex_unlock(&proto_list_mutex);
3679
3680	kmem_cache_destroy(prot->slab);
3681	prot->slab = NULL;
3682
3683	req_prot_cleanup(prot->rsk_prot);
3684	tw_prot_cleanup(prot->twsk_prot);
 
 
 
 
 
3685}
3686EXPORT_SYMBOL(proto_unregister);
3687
3688int sock_load_diag_module(int family, int protocol)
3689{
3690	if (!protocol) {
3691		if (!sock_is_registered(family))
3692			return -ENOENT;
3693
3694		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3695				      NETLINK_SOCK_DIAG, family);
3696	}
3697
3698#ifdef CONFIG_INET
3699	if (family == AF_INET &&
3700	    protocol != IPPROTO_RAW &&
3701	    protocol < MAX_INET_PROTOS &&
3702	    !rcu_access_pointer(inet_protos[protocol]))
3703		return -ENOENT;
3704#endif
3705
3706	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3707			      NETLINK_SOCK_DIAG, family, protocol);
3708}
3709EXPORT_SYMBOL(sock_load_diag_module);
3710
3711#ifdef CONFIG_PROC_FS
3712static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3713	__acquires(proto_list_mutex)
3714{
3715	mutex_lock(&proto_list_mutex);
3716	return seq_list_start_head(&proto_list, *pos);
3717}
3718
3719static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3720{
3721	return seq_list_next(v, &proto_list, pos);
3722}
3723
3724static void proto_seq_stop(struct seq_file *seq, void *v)
3725	__releases(proto_list_mutex)
3726{
3727	mutex_unlock(&proto_list_mutex);
3728}
3729
3730static char proto_method_implemented(const void *method)
3731{
3732	return method == NULL ? 'n' : 'y';
3733}
3734static long sock_prot_memory_allocated(struct proto *proto)
3735{
3736	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3737}
3738
3739static const char *sock_prot_memory_pressure(struct proto *proto)
3740{
3741	return proto->memory_pressure != NULL ?
3742	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3743}
3744
3745static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3746{
3747
3748	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3749			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3750		   proto->name,
3751		   proto->obj_size,
3752		   sock_prot_inuse_get(seq_file_net(seq), proto),
3753		   sock_prot_memory_allocated(proto),
3754		   sock_prot_memory_pressure(proto),
3755		   proto->max_header,
3756		   proto->slab == NULL ? "no" : "yes",
3757		   module_name(proto->owner),
3758		   proto_method_implemented(proto->close),
3759		   proto_method_implemented(proto->connect),
3760		   proto_method_implemented(proto->disconnect),
3761		   proto_method_implemented(proto->accept),
3762		   proto_method_implemented(proto->ioctl),
3763		   proto_method_implemented(proto->init),
3764		   proto_method_implemented(proto->destroy),
3765		   proto_method_implemented(proto->shutdown),
3766		   proto_method_implemented(proto->setsockopt),
3767		   proto_method_implemented(proto->getsockopt),
3768		   proto_method_implemented(proto->sendmsg),
3769		   proto_method_implemented(proto->recvmsg),
3770		   proto_method_implemented(proto->sendpage),
3771		   proto_method_implemented(proto->bind),
3772		   proto_method_implemented(proto->backlog_rcv),
3773		   proto_method_implemented(proto->hash),
3774		   proto_method_implemented(proto->unhash),
3775		   proto_method_implemented(proto->get_port),
3776		   proto_method_implemented(proto->enter_memory_pressure));
3777}
3778
3779static int proto_seq_show(struct seq_file *seq, void *v)
3780{
3781	if (v == &proto_list)
3782		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3783			   "protocol",
3784			   "size",
3785			   "sockets",
3786			   "memory",
3787			   "press",
3788			   "maxhdr",
3789			   "slab",
3790			   "module",
3791			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3792	else
3793		proto_seq_printf(seq, list_entry(v, struct proto, node));
3794	return 0;
3795}
3796
3797static const struct seq_operations proto_seq_ops = {
3798	.start  = proto_seq_start,
3799	.next   = proto_seq_next,
3800	.stop   = proto_seq_stop,
3801	.show   = proto_seq_show,
3802};
3803
 
 
 
 
 
 
 
 
 
 
 
 
 
3804static __net_init int proto_init_net(struct net *net)
3805{
3806	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3807			sizeof(struct seq_net_private)))
3808		return -ENOMEM;
3809
3810	return 0;
3811}
3812
3813static __net_exit void proto_exit_net(struct net *net)
3814{
3815	remove_proc_entry("protocols", net->proc_net);
3816}
3817
3818
3819static __net_initdata struct pernet_operations proto_net_ops = {
3820	.init = proto_init_net,
3821	.exit = proto_exit_net,
3822};
3823
3824static int __init proto_init(void)
3825{
3826	return register_pernet_subsys(&proto_net_ops);
3827}
3828
3829subsys_initcall(proto_init);
3830
3831#endif /* PROC_FS */
3832
3833#ifdef CONFIG_NET_RX_BUSY_POLL
3834bool sk_busy_loop_end(void *p, unsigned long start_time)
3835{
3836	struct sock *sk = p;
3837
3838	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3839	       sk_busy_loop_timeout(sk, start_time);
3840}
3841EXPORT_SYMBOL(sk_busy_loop_end);
3842#endif /* CONFIG_NET_RX_BUSY_POLL */
3843
3844int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3845{
3846	if (!sk->sk_prot->bind_add)
3847		return -EOPNOTSUPP;
3848	return sk->sk_prot->bind_add(sk, addr, addr_len);
3849}
3850EXPORT_SYMBOL(sock_bind_add);
v4.17
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Generic socket support routines. Memory allocators, socket lock/release
   7 *		handler for protocols to use and generic option handler.
   8 *
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 *
  85 *
  86 *		This program is free software; you can redistribute it and/or
  87 *		modify it under the terms of the GNU General Public License
  88 *		as published by the Free Software Foundation; either version
  89 *		2 of the License, or (at your option) any later version.
  90 */
  91
  92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  93
 
  94#include <linux/capability.h>
  95#include <linux/errno.h>
  96#include <linux/errqueue.h>
  97#include <linux/types.h>
  98#include <linux/socket.h>
  99#include <linux/in.h>
 100#include <linux/kernel.h>
 101#include <linux/module.h>
 102#include <linux/proc_fs.h>
 103#include <linux/seq_file.h>
 104#include <linux/sched.h>
 105#include <linux/sched/mm.h>
 106#include <linux/timer.h>
 107#include <linux/string.h>
 108#include <linux/sockios.h>
 109#include <linux/net.h>
 110#include <linux/mm.h>
 111#include <linux/slab.h>
 112#include <linux/interrupt.h>
 113#include <linux/poll.h>
 114#include <linux/tcp.h>
 115#include <linux/init.h>
 116#include <linux/highmem.h>
 117#include <linux/user_namespace.h>
 118#include <linux/static_key.h>
 119#include <linux/memcontrol.h>
 120#include <linux/prefetch.h>
 
 121
 122#include <linux/uaccess.h>
 123
 124#include <linux/netdevice.h>
 125#include <net/protocol.h>
 126#include <linux/skbuff.h>
 127#include <net/net_namespace.h>
 128#include <net/request_sock.h>
 129#include <net/sock.h>
 130#include <linux/net_tstamp.h>
 131#include <net/xfrm.h>
 132#include <linux/ipsec.h>
 133#include <net/cls_cgroup.h>
 134#include <net/netprio_cgroup.h>
 135#include <linux/sock_diag.h>
 136
 137#include <linux/filter.h>
 138#include <net/sock_reuseport.h>
 
 139
 140#include <trace/events/sock.h>
 141
 142#include <net/tcp.h>
 143#include <net/busy_poll.h>
 144
 
 
 145static DEFINE_MUTEX(proto_list_mutex);
 146static LIST_HEAD(proto_list);
 147
 148static void sock_inuse_add(struct net *net, int val);
 149
 150/**
 151 * sk_ns_capable - General socket capability test
 152 * @sk: Socket to use a capability on or through
 153 * @user_ns: The user namespace of the capability to use
 154 * @cap: The capability to use
 155 *
 156 * Test to see if the opener of the socket had when the socket was
 157 * created and the current process has the capability @cap in the user
 158 * namespace @user_ns.
 159 */
 160bool sk_ns_capable(const struct sock *sk,
 161		   struct user_namespace *user_ns, int cap)
 162{
 163	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 164		ns_capable(user_ns, cap);
 165}
 166EXPORT_SYMBOL(sk_ns_capable);
 167
 168/**
 169 * sk_capable - Socket global capability test
 170 * @sk: Socket to use a capability on or through
 171 * @cap: The global capability to use
 172 *
 173 * Test to see if the opener of the socket had when the socket was
 174 * created and the current process has the capability @cap in all user
 175 * namespaces.
 176 */
 177bool sk_capable(const struct sock *sk, int cap)
 178{
 179	return sk_ns_capable(sk, &init_user_ns, cap);
 180}
 181EXPORT_SYMBOL(sk_capable);
 182
 183/**
 184 * sk_net_capable - Network namespace socket capability test
 185 * @sk: Socket to use a capability on or through
 186 * @cap: The capability to use
 187 *
 188 * Test to see if the opener of the socket had when the socket was created
 189 * and the current process has the capability @cap over the network namespace
 190 * the socket is a member of.
 191 */
 192bool sk_net_capable(const struct sock *sk, int cap)
 193{
 194	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 195}
 196EXPORT_SYMBOL(sk_net_capable);
 197
 198/*
 199 * Each address family might have different locking rules, so we have
 200 * one slock key per address family and separate keys for internal and
 201 * userspace sockets.
 202 */
 203static struct lock_class_key af_family_keys[AF_MAX];
 204static struct lock_class_key af_family_kern_keys[AF_MAX];
 205static struct lock_class_key af_family_slock_keys[AF_MAX];
 206static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 207
 208/*
 209 * Make lock validator output more readable. (we pre-construct these
 210 * strings build-time, so that runtime initialization of socket
 211 * locks is fast):
 212 */
 213
 214#define _sock_locks(x)						  \
 215  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 216  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 217  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 218  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 219  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 220  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 221  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 222  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 223  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 224  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 225  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 226  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 227  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 228  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 229  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_MAX"
 
 230
 231static const char *const af_family_key_strings[AF_MAX+1] = {
 232	_sock_locks("sk_lock-")
 233};
 234static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 235	_sock_locks("slock-")
 236};
 237static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 238	_sock_locks("clock-")
 239};
 240
 241static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 242	_sock_locks("k-sk_lock-")
 243};
 244static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 245	_sock_locks("k-slock-")
 246};
 247static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 248	_sock_locks("k-clock-")
 249};
 250static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 251  "rlock-AF_UNSPEC", "rlock-AF_UNIX"     , "rlock-AF_INET"     ,
 252  "rlock-AF_AX25"  , "rlock-AF_IPX"      , "rlock-AF_APPLETALK",
 253  "rlock-AF_NETROM", "rlock-AF_BRIDGE"   , "rlock-AF_ATMPVC"   ,
 254  "rlock-AF_X25"   , "rlock-AF_INET6"    , "rlock-AF_ROSE"     ,
 255  "rlock-AF_DECnet", "rlock-AF_NETBEUI"  , "rlock-AF_SECURITY" ,
 256  "rlock-AF_KEY"   , "rlock-AF_NETLINK"  , "rlock-AF_PACKET"   ,
 257  "rlock-AF_ASH"   , "rlock-AF_ECONET"   , "rlock-AF_ATMSVC"   ,
 258  "rlock-AF_RDS"   , "rlock-AF_SNA"      , "rlock-AF_IRDA"     ,
 259  "rlock-AF_PPPOX" , "rlock-AF_WANPIPE"  , "rlock-AF_LLC"      ,
 260  "rlock-27"       , "rlock-28"          , "rlock-AF_CAN"      ,
 261  "rlock-AF_TIPC"  , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV"     ,
 262  "rlock-AF_RXRPC" , "rlock-AF_ISDN"     , "rlock-AF_PHONET"   ,
 263  "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG"      ,
 264  "rlock-AF_NFC"   , "rlock-AF_VSOCK"    , "rlock-AF_KCM"      ,
 265  "rlock-AF_QIPCRTR", "rlock-AF_SMC"     , "rlock-AF_MAX"
 266};
 267static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 268  "wlock-AF_UNSPEC", "wlock-AF_UNIX"     , "wlock-AF_INET"     ,
 269  "wlock-AF_AX25"  , "wlock-AF_IPX"      , "wlock-AF_APPLETALK",
 270  "wlock-AF_NETROM", "wlock-AF_BRIDGE"   , "wlock-AF_ATMPVC"   ,
 271  "wlock-AF_X25"   , "wlock-AF_INET6"    , "wlock-AF_ROSE"     ,
 272  "wlock-AF_DECnet", "wlock-AF_NETBEUI"  , "wlock-AF_SECURITY" ,
 273  "wlock-AF_KEY"   , "wlock-AF_NETLINK"  , "wlock-AF_PACKET"   ,
 274  "wlock-AF_ASH"   , "wlock-AF_ECONET"   , "wlock-AF_ATMSVC"   ,
 275  "wlock-AF_RDS"   , "wlock-AF_SNA"      , "wlock-AF_IRDA"     ,
 276  "wlock-AF_PPPOX" , "wlock-AF_WANPIPE"  , "wlock-AF_LLC"      ,
 277  "wlock-27"       , "wlock-28"          , "wlock-AF_CAN"      ,
 278  "wlock-AF_TIPC"  , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV"     ,
 279  "wlock-AF_RXRPC" , "wlock-AF_ISDN"     , "wlock-AF_PHONET"   ,
 280  "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG"      ,
 281  "wlock-AF_NFC"   , "wlock-AF_VSOCK"    , "wlock-AF_KCM"      ,
 282  "wlock-AF_QIPCRTR", "wlock-AF_SMC"     , "wlock-AF_MAX"
 283};
 284static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 285  "elock-AF_UNSPEC", "elock-AF_UNIX"     , "elock-AF_INET"     ,
 286  "elock-AF_AX25"  , "elock-AF_IPX"      , "elock-AF_APPLETALK",
 287  "elock-AF_NETROM", "elock-AF_BRIDGE"   , "elock-AF_ATMPVC"   ,
 288  "elock-AF_X25"   , "elock-AF_INET6"    , "elock-AF_ROSE"     ,
 289  "elock-AF_DECnet", "elock-AF_NETBEUI"  , "elock-AF_SECURITY" ,
 290  "elock-AF_KEY"   , "elock-AF_NETLINK"  , "elock-AF_PACKET"   ,
 291  "elock-AF_ASH"   , "elock-AF_ECONET"   , "elock-AF_ATMSVC"   ,
 292  "elock-AF_RDS"   , "elock-AF_SNA"      , "elock-AF_IRDA"     ,
 293  "elock-AF_PPPOX" , "elock-AF_WANPIPE"  , "elock-AF_LLC"      ,
 294  "elock-27"       , "elock-28"          , "elock-AF_CAN"      ,
 295  "elock-AF_TIPC"  , "elock-AF_BLUETOOTH", "elock-AF_IUCV"     ,
 296  "elock-AF_RXRPC" , "elock-AF_ISDN"     , "elock-AF_PHONET"   ,
 297  "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG"      ,
 298  "elock-AF_NFC"   , "elock-AF_VSOCK"    , "elock-AF_KCM"      ,
 299  "elock-AF_QIPCRTR", "elock-AF_SMC"     , "elock-AF_MAX"
 300};
 301
 302/*
 303 * sk_callback_lock and sk queues locking rules are per-address-family,
 304 * so split the lock classes by using a per-AF key:
 305 */
 306static struct lock_class_key af_callback_keys[AF_MAX];
 307static struct lock_class_key af_rlock_keys[AF_MAX];
 308static struct lock_class_key af_wlock_keys[AF_MAX];
 309static struct lock_class_key af_elock_keys[AF_MAX];
 310static struct lock_class_key af_kern_callback_keys[AF_MAX];
 311
 312/* Run time adjustable parameters. */
 313__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 314EXPORT_SYMBOL(sysctl_wmem_max);
 315__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 316EXPORT_SYMBOL(sysctl_rmem_max);
 317__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 318__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 319
 320/* Maximal space eaten by iovec or ancillary data plus some space */
 321int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 322EXPORT_SYMBOL(sysctl_optmem_max);
 323
 324int sysctl_tstamp_allow_data __read_mostly = 1;
 325
 326struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
 327EXPORT_SYMBOL_GPL(memalloc_socks);
 328
 329/**
 330 * sk_set_memalloc - sets %SOCK_MEMALLOC
 331 * @sk: socket to set it on
 332 *
 333 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 334 * It's the responsibility of the admin to adjust min_free_kbytes
 335 * to meet the requirements
 336 */
 337void sk_set_memalloc(struct sock *sk)
 338{
 339	sock_set_flag(sk, SOCK_MEMALLOC);
 340	sk->sk_allocation |= __GFP_MEMALLOC;
 341	static_key_slow_inc(&memalloc_socks);
 342}
 343EXPORT_SYMBOL_GPL(sk_set_memalloc);
 344
 345void sk_clear_memalloc(struct sock *sk)
 346{
 347	sock_reset_flag(sk, SOCK_MEMALLOC);
 348	sk->sk_allocation &= ~__GFP_MEMALLOC;
 349	static_key_slow_dec(&memalloc_socks);
 350
 351	/*
 352	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 353	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 354	 * it has rmem allocations due to the last swapfile being deactivated
 355	 * but there is a risk that the socket is unusable due to exceeding
 356	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 357	 */
 358	sk_mem_reclaim(sk);
 359}
 360EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 361
 362int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 363{
 364	int ret;
 365	unsigned int noreclaim_flag;
 366
 367	/* these should have been dropped before queueing */
 368	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 369
 370	noreclaim_flag = memalloc_noreclaim_save();
 371	ret = sk->sk_backlog_rcv(sk, skb);
 372	memalloc_noreclaim_restore(noreclaim_flag);
 373
 374	return ret;
 375}
 376EXPORT_SYMBOL(__sk_backlog_rcv);
 377
 378static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379{
 380	struct timeval tv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381
 382	if (optlen < sizeof(tv))
 383		return -EINVAL;
 384	if (copy_from_user(&tv, optval, sizeof(tv)))
 385		return -EFAULT;
 
 
 
 
 
 
 
 
 386	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 387		return -EDOM;
 388
 389	if (tv.tv_sec < 0) {
 390		static int warned __read_mostly;
 391
 392		*timeo_p = 0;
 393		if (warned < 10 && net_ratelimit()) {
 394			warned++;
 395			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 396				__func__, current->comm, task_pid_nr(current));
 397		}
 398		return 0;
 399	}
 400	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 401	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 402		return 0;
 403	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
 404		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
 405	return 0;
 406}
 407
 408static void sock_warn_obsolete_bsdism(const char *name)
 409{
 410	static int warned;
 411	static char warncomm[TASK_COMM_LEN];
 412	if (strcmp(warncomm, current->comm) && warned < 5) {
 413		strcpy(warncomm,  current->comm);
 414		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 415			warncomm, name);
 416		warned++;
 417	}
 418}
 419
 420static bool sock_needs_netstamp(const struct sock *sk)
 421{
 422	switch (sk->sk_family) {
 423	case AF_UNSPEC:
 424	case AF_UNIX:
 425		return false;
 426	default:
 427		return true;
 428	}
 429}
 430
 431static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 432{
 433	if (sk->sk_flags & flags) {
 434		sk->sk_flags &= ~flags;
 435		if (sock_needs_netstamp(sk) &&
 436		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 437			net_disable_timestamp();
 438	}
 439}
 440
 441
 442int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 443{
 444	unsigned long flags;
 445	struct sk_buff_head *list = &sk->sk_receive_queue;
 446
 447	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 448		atomic_inc(&sk->sk_drops);
 449		trace_sock_rcvqueue_full(sk, skb);
 450		return -ENOMEM;
 451	}
 452
 453	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 454		atomic_inc(&sk->sk_drops);
 455		return -ENOBUFS;
 456	}
 457
 458	skb->dev = NULL;
 459	skb_set_owner_r(skb, sk);
 460
 461	/* we escape from rcu protected region, make sure we dont leak
 462	 * a norefcounted dst
 463	 */
 464	skb_dst_force(skb);
 465
 466	spin_lock_irqsave(&list->lock, flags);
 467	sock_skb_set_dropcount(sk, skb);
 468	__skb_queue_tail(list, skb);
 469	spin_unlock_irqrestore(&list->lock, flags);
 470
 471	if (!sock_flag(sk, SOCK_DEAD))
 472		sk->sk_data_ready(sk);
 473	return 0;
 474}
 475EXPORT_SYMBOL(__sock_queue_rcv_skb);
 476
 477int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 478{
 479	int err;
 480
 481	err = sk_filter(sk, skb);
 482	if (err)
 483		return err;
 484
 485	return __sock_queue_rcv_skb(sk, skb);
 486}
 487EXPORT_SYMBOL(sock_queue_rcv_skb);
 488
 489int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 490		     const int nested, unsigned int trim_cap, bool refcounted)
 491{
 492	int rc = NET_RX_SUCCESS;
 493
 494	if (sk_filter_trim_cap(sk, skb, trim_cap))
 495		goto discard_and_relse;
 496
 497	skb->dev = NULL;
 498
 499	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 500		atomic_inc(&sk->sk_drops);
 501		goto discard_and_relse;
 502	}
 503	if (nested)
 504		bh_lock_sock_nested(sk);
 505	else
 506		bh_lock_sock(sk);
 507	if (!sock_owned_by_user(sk)) {
 508		/*
 509		 * trylock + unlock semantics:
 510		 */
 511		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 512
 513		rc = sk_backlog_rcv(sk, skb);
 514
 515		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 516	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
 517		bh_unlock_sock(sk);
 518		atomic_inc(&sk->sk_drops);
 519		goto discard_and_relse;
 520	}
 521
 522	bh_unlock_sock(sk);
 523out:
 524	if (refcounted)
 525		sock_put(sk);
 526	return rc;
 527discard_and_relse:
 528	kfree_skb(skb);
 529	goto out;
 530}
 531EXPORT_SYMBOL(__sk_receive_skb);
 532
 
 
 
 
 533struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 534{
 535	struct dst_entry *dst = __sk_dst_get(sk);
 536
 537	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 538		sk_tx_queue_clear(sk);
 539		sk->sk_dst_pending_confirm = 0;
 540		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 541		dst_release(dst);
 542		return NULL;
 543	}
 544
 545	return dst;
 546}
 547EXPORT_SYMBOL(__sk_dst_check);
 548
 549struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 550{
 551	struct dst_entry *dst = sk_dst_get(sk);
 552
 553	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 554		sk_dst_reset(sk);
 555		dst_release(dst);
 556		return NULL;
 557	}
 558
 559	return dst;
 560}
 561EXPORT_SYMBOL(sk_dst_check);
 562
 563static int sock_setbindtodevice(struct sock *sk, char __user *optval,
 564				int optlen)
 565{
 566	int ret = -ENOPROTOOPT;
 567#ifdef CONFIG_NETDEVICES
 568	struct net *net = sock_net(sk);
 569	char devname[IFNAMSIZ];
 570	int index;
 571
 572	/* Sorry... */
 573	ret = -EPERM;
 574	if (!ns_capable(net->user_ns, CAP_NET_RAW))
 575		goto out;
 576
 577	ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578	if (optlen < 0)
 579		goto out;
 580
 581	/* Bind this socket to a particular device like "eth0",
 582	 * as specified in the passed interface name. If the
 583	 * name is "" or the option length is zero the socket
 584	 * is not bound.
 585	 */
 586	if (optlen > IFNAMSIZ - 1)
 587		optlen = IFNAMSIZ - 1;
 588	memset(devname, 0, sizeof(devname));
 589
 590	ret = -EFAULT;
 591	if (copy_from_user(devname, optval, optlen))
 592		goto out;
 593
 594	index = 0;
 595	if (devname[0] != '\0') {
 596		struct net_device *dev;
 597
 598		rcu_read_lock();
 599		dev = dev_get_by_name_rcu(net, devname);
 600		if (dev)
 601			index = dev->ifindex;
 602		rcu_read_unlock();
 603		ret = -ENODEV;
 604		if (!dev)
 605			goto out;
 606	}
 607
 608	lock_sock(sk);
 609	sk->sk_bound_dev_if = index;
 610	sk_dst_reset(sk);
 611	release_sock(sk);
 612
 613	ret = 0;
 614
 615out:
 616#endif
 617
 618	return ret;
 619}
 620
 621static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 622				int __user *optlen, int len)
 623{
 624	int ret = -ENOPROTOOPT;
 625#ifdef CONFIG_NETDEVICES
 626	struct net *net = sock_net(sk);
 627	char devname[IFNAMSIZ];
 628
 629	if (sk->sk_bound_dev_if == 0) {
 630		len = 0;
 631		goto zero;
 632	}
 633
 634	ret = -EINVAL;
 635	if (len < IFNAMSIZ)
 636		goto out;
 637
 638	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 639	if (ret)
 640		goto out;
 641
 642	len = strlen(devname) + 1;
 643
 644	ret = -EFAULT;
 645	if (copy_to_user(optval, devname, len))
 646		goto out;
 647
 648zero:
 649	ret = -EFAULT;
 650	if (put_user(len, optlen))
 651		goto out;
 652
 653	ret = 0;
 654
 655out:
 656#endif
 657
 658	return ret;
 659}
 660
 661static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 662{
 663	if (valbool)
 664		sock_set_flag(sk, bit);
 665	else
 666		sock_reset_flag(sk, bit);
 667}
 668
 669bool sk_mc_loop(struct sock *sk)
 670{
 671	if (dev_recursion_level())
 672		return false;
 673	if (!sk)
 674		return true;
 675	switch (sk->sk_family) {
 676	case AF_INET:
 677		return inet_sk(sk)->mc_loop;
 678#if IS_ENABLED(CONFIG_IPV6)
 679	case AF_INET6:
 680		return inet6_sk(sk)->mc_loop;
 681#endif
 682	}
 683	WARN_ON(1);
 684	return true;
 685}
 686EXPORT_SYMBOL(sk_mc_loop);
 687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 688/*
 689 *	This is meant for all protocols to use and covers goings on
 690 *	at the socket level. Everything here is generic.
 691 */
 692
 693int sock_setsockopt(struct socket *sock, int level, int optname,
 694		    char __user *optval, unsigned int optlen)
 695{
 
 
 696	struct sock *sk = sock->sk;
 697	int val;
 698	int valbool;
 699	struct linger ling;
 700	int ret = 0;
 701
 702	/*
 703	 *	Options without arguments
 704	 */
 705
 706	if (optname == SO_BINDTODEVICE)
 707		return sock_setbindtodevice(sk, optval, optlen);
 708
 709	if (optlen < sizeof(int))
 710		return -EINVAL;
 711
 712	if (get_user(val, (int __user *)optval))
 713		return -EFAULT;
 714
 715	valbool = val ? 1 : 0;
 716
 717	lock_sock(sk);
 718
 719	switch (optname) {
 720	case SO_DEBUG:
 721		if (val && !capable(CAP_NET_ADMIN))
 722			ret = -EACCES;
 723		else
 724			sock_valbool_flag(sk, SOCK_DBG, valbool);
 725		break;
 726	case SO_REUSEADDR:
 727		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 728		break;
 729	case SO_REUSEPORT:
 730		sk->sk_reuseport = valbool;
 731		break;
 732	case SO_TYPE:
 733	case SO_PROTOCOL:
 734	case SO_DOMAIN:
 735	case SO_ERROR:
 736		ret = -ENOPROTOOPT;
 737		break;
 738	case SO_DONTROUTE:
 739		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 
 740		break;
 741	case SO_BROADCAST:
 742		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 743		break;
 744	case SO_SNDBUF:
 745		/* Don't error on this BSD doesn't and if you think
 746		 * about it this is right. Otherwise apps have to
 747		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 748		 * are treated in BSD as hints
 749		 */
 750		val = min_t(u32, val, sysctl_wmem_max);
 751set_sndbuf:
 
 
 
 
 752		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 753		sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
 
 754		/* Wake up sending tasks if we upped the value. */
 755		sk->sk_write_space(sk);
 756		break;
 757
 758	case SO_SNDBUFFORCE:
 759		if (!capable(CAP_NET_ADMIN)) {
 760			ret = -EPERM;
 761			break;
 762		}
 
 
 
 
 
 
 763		goto set_sndbuf;
 764
 765	case SO_RCVBUF:
 766		/* Don't error on this BSD doesn't and if you think
 767		 * about it this is right. Otherwise apps have to
 768		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 769		 * are treated in BSD as hints
 770		 */
 771		val = min_t(u32, val, sysctl_rmem_max);
 772set_rcvbuf:
 773		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 774		/*
 775		 * We double it on the way in to account for
 776		 * "struct sk_buff" etc. overhead.   Applications
 777		 * assume that the SO_RCVBUF setting they make will
 778		 * allow that much actual data to be received on that
 779		 * socket.
 780		 *
 781		 * Applications are unaware that "struct sk_buff" and
 782		 * other overheads allocate from the receive buffer
 783		 * during socket buffer allocation.
 784		 *
 785		 * And after considering the possible alternatives,
 786		 * returning the value we actually used in getsockopt
 787		 * is the most desirable behavior.
 788		 */
 789		sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
 790		break;
 791
 792	case SO_RCVBUFFORCE:
 793		if (!capable(CAP_NET_ADMIN)) {
 794			ret = -EPERM;
 795			break;
 796		}
 797		goto set_rcvbuf;
 
 
 
 
 
 798
 799	case SO_KEEPALIVE:
 800		if (sk->sk_prot->keepalive)
 801			sk->sk_prot->keepalive(sk, valbool);
 802		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 803		break;
 804
 805	case SO_OOBINLINE:
 806		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 807		break;
 808
 809	case SO_NO_CHECK:
 810		sk->sk_no_check_tx = valbool;
 811		break;
 812
 813	case SO_PRIORITY:
 814		if ((val >= 0 && val <= 6) ||
 815		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 816			sk->sk_priority = val;
 817		else
 818			ret = -EPERM;
 819		break;
 820
 821	case SO_LINGER:
 822		if (optlen < sizeof(ling)) {
 823			ret = -EINVAL;	/* 1003.1g */
 824			break;
 825		}
 826		if (copy_from_user(&ling, optval, sizeof(ling))) {
 827			ret = -EFAULT;
 828			break;
 829		}
 830		if (!ling.l_onoff)
 831			sock_reset_flag(sk, SOCK_LINGER);
 832		else {
 833#if (BITS_PER_LONG == 32)
 834			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 835				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 836			else
 837#endif
 838				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 839			sock_set_flag(sk, SOCK_LINGER);
 840		}
 841		break;
 842
 843	case SO_BSDCOMPAT:
 844		sock_warn_obsolete_bsdism("setsockopt");
 845		break;
 846
 847	case SO_PASSCRED:
 848		if (valbool)
 849			set_bit(SOCK_PASSCRED, &sock->flags);
 850		else
 851			clear_bit(SOCK_PASSCRED, &sock->flags);
 852		break;
 853
 854	case SO_TIMESTAMP:
 855	case SO_TIMESTAMPNS:
 856		if (valbool)  {
 857			if (optname == SO_TIMESTAMP)
 858				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 859			else
 860				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 861			sock_set_flag(sk, SOCK_RCVTSTAMP);
 862			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 863		} else {
 864			sock_reset_flag(sk, SOCK_RCVTSTAMP);
 865			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 866		}
 867		break;
 868
 869	case SO_TIMESTAMPING:
 870		if (val & ~SOF_TIMESTAMPING_MASK) {
 871			ret = -EINVAL;
 872			break;
 873		}
 874
 875		if (val & SOF_TIMESTAMPING_OPT_ID &&
 876		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 877			if (sk->sk_protocol == IPPROTO_TCP &&
 878			    sk->sk_type == SOCK_STREAM) {
 879				if ((1 << sk->sk_state) &
 880				    (TCPF_CLOSE | TCPF_LISTEN)) {
 881					ret = -EINVAL;
 882					break;
 883				}
 884				sk->sk_tskey = tcp_sk(sk)->snd_una;
 885			} else {
 886				sk->sk_tskey = 0;
 887			}
 
 
 
 888		}
 889
 890		if (val & SOF_TIMESTAMPING_OPT_STATS &&
 891		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
 892			ret = -EINVAL;
 893			break;
 894		}
 895
 896		sk->sk_tsflags = val;
 897		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 898			sock_enable_timestamp(sk,
 899					      SOCK_TIMESTAMPING_RX_SOFTWARE);
 900		else
 901			sock_disable_timestamp(sk,
 902					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 903		break;
 904
 905	case SO_RCVLOWAT:
 906		if (val < 0)
 907			val = INT_MAX;
 908		sk->sk_rcvlowat = val ? : 1;
 
 
 
 909		break;
 910
 911	case SO_RCVTIMEO:
 912		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
 
 
 913		break;
 914
 915	case SO_SNDTIMEO:
 916		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
 
 
 917		break;
 918
 919	case SO_ATTACH_FILTER:
 920		ret = -EINVAL;
 921		if (optlen == sizeof(struct sock_fprog)) {
 922			struct sock_fprog fprog;
 923
 924			ret = -EFAULT;
 925			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 926				break;
 927
 
 
 928			ret = sk_attach_filter(&fprog, sk);
 929		}
 930		break;
 931
 932	case SO_ATTACH_BPF:
 933		ret = -EINVAL;
 934		if (optlen == sizeof(u32)) {
 935			u32 ufd;
 936
 937			ret = -EFAULT;
 938			if (copy_from_user(&ufd, optval, sizeof(ufd)))
 939				break;
 940
 941			ret = sk_attach_bpf(ufd, sk);
 942		}
 943		break;
 944
 945	case SO_ATTACH_REUSEPORT_CBPF:
 946		ret = -EINVAL;
 947		if (optlen == sizeof(struct sock_fprog)) {
 948			struct sock_fprog fprog;
 949
 950			ret = -EFAULT;
 951			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 952				break;
 953
 
 
 954			ret = sk_reuseport_attach_filter(&fprog, sk);
 955		}
 956		break;
 957
 958	case SO_ATTACH_REUSEPORT_EBPF:
 959		ret = -EINVAL;
 960		if (optlen == sizeof(u32)) {
 961			u32 ufd;
 962
 963			ret = -EFAULT;
 964			if (copy_from_user(&ufd, optval, sizeof(ufd)))
 965				break;
 966
 967			ret = sk_reuseport_attach_bpf(ufd, sk);
 968		}
 969		break;
 970
 
 
 
 
 971	case SO_DETACH_FILTER:
 972		ret = sk_detach_filter(sk);
 973		break;
 974
 975	case SO_LOCK_FILTER:
 976		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
 977			ret = -EPERM;
 978		else
 979			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
 980		break;
 981
 982	case SO_PASSSEC:
 983		if (valbool)
 984			set_bit(SOCK_PASSSEC, &sock->flags);
 985		else
 986			clear_bit(SOCK_PASSSEC, &sock->flags);
 987		break;
 988	case SO_MARK:
 989		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 990			ret = -EPERM;
 991		else
 992			sk->sk_mark = val;
 
 
 993		break;
 994
 995	case SO_RXQ_OVFL:
 996		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
 997		break;
 998
 999	case SO_WIFI_STATUS:
1000		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1001		break;
1002
1003	case SO_PEEK_OFF:
1004		if (sock->ops->set_peek_off)
1005			ret = sock->ops->set_peek_off(sk, val);
1006		else
1007			ret = -EOPNOTSUPP;
1008		break;
1009
1010	case SO_NOFCS:
1011		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1012		break;
1013
1014	case SO_SELECT_ERR_QUEUE:
1015		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1016		break;
1017
1018#ifdef CONFIG_NET_RX_BUSY_POLL
1019	case SO_BUSY_POLL:
1020		/* allow unprivileged users to decrease the value */
1021		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1022			ret = -EPERM;
1023		else {
1024			if (val < 0)
1025				ret = -EINVAL;
1026			else
1027				sk->sk_ll_usec = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028		}
1029		break;
1030#endif
1031
1032	case SO_MAX_PACING_RATE:
1033		if (val != ~0U)
 
 
 
 
 
 
 
 
 
1034			cmpxchg(&sk->sk_pacing_status,
1035				SK_PACING_NONE,
1036				SK_PACING_NEEDED);
1037		sk->sk_max_pacing_rate = val;
1038		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1039					 sk->sk_max_pacing_rate);
1040		break;
1041
1042	case SO_INCOMING_CPU:
1043		sk->sk_incoming_cpu = val;
1044		break;
1045
1046	case SO_CNX_ADVICE:
1047		if (val == 1)
1048			dst_negative_advice(sk);
1049		break;
1050
1051	case SO_ZEROCOPY:
1052		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1053			if (sk->sk_protocol != IPPROTO_TCP)
 
 
 
1054				ret = -ENOTSUPP;
1055		} else if (sk->sk_family != PF_RDS) {
1056			ret = -ENOTSUPP;
1057		}
1058		if (!ret) {
1059			if (val < 0 || val > 1)
1060				ret = -EINVAL;
1061			else
1062				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1063		}
1064		break;
1065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066	default:
1067		ret = -ENOPROTOOPT;
1068		break;
1069	}
1070	release_sock(sk);
1071	return ret;
1072}
1073EXPORT_SYMBOL(sock_setsockopt);
1074
 
 
 
 
 
 
 
 
 
 
1075
1076static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1077			  struct ucred *ucred)
1078{
1079	ucred->pid = pid_vnr(pid);
1080	ucred->uid = ucred->gid = -1;
1081	if (cred) {
1082		struct user_namespace *current_ns = current_user_ns();
1083
1084		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1085		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1086	}
1087}
1088
1089static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1090{
1091	struct user_namespace *user_ns = current_user_ns();
1092	int i;
1093
1094	for (i = 0; i < src->ngroups; i++)
1095		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1096			return -EFAULT;
1097
1098	return 0;
1099}
1100
1101int sock_getsockopt(struct socket *sock, int level, int optname,
1102		    char __user *optval, int __user *optlen)
1103{
1104	struct sock *sk = sock->sk;
1105
1106	union {
1107		int val;
1108		u64 val64;
 
1109		struct linger ling;
1110		struct timeval tm;
 
 
 
 
1111	} v;
1112
1113	int lv = sizeof(int);
1114	int len;
1115
1116	if (get_user(len, optlen))
1117		return -EFAULT;
1118	if (len < 0)
1119		return -EINVAL;
1120
1121	memset(&v, 0, sizeof(v));
1122
1123	switch (optname) {
1124	case SO_DEBUG:
1125		v.val = sock_flag(sk, SOCK_DBG);
1126		break;
1127
1128	case SO_DONTROUTE:
1129		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1130		break;
1131
1132	case SO_BROADCAST:
1133		v.val = sock_flag(sk, SOCK_BROADCAST);
1134		break;
1135
1136	case SO_SNDBUF:
1137		v.val = sk->sk_sndbuf;
1138		break;
1139
1140	case SO_RCVBUF:
1141		v.val = sk->sk_rcvbuf;
1142		break;
1143
1144	case SO_REUSEADDR:
1145		v.val = sk->sk_reuse;
1146		break;
1147
1148	case SO_REUSEPORT:
1149		v.val = sk->sk_reuseport;
1150		break;
1151
1152	case SO_KEEPALIVE:
1153		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1154		break;
1155
1156	case SO_TYPE:
1157		v.val = sk->sk_type;
1158		break;
1159
1160	case SO_PROTOCOL:
1161		v.val = sk->sk_protocol;
1162		break;
1163
1164	case SO_DOMAIN:
1165		v.val = sk->sk_family;
1166		break;
1167
1168	case SO_ERROR:
1169		v.val = -sock_error(sk);
1170		if (v.val == 0)
1171			v.val = xchg(&sk->sk_err_soft, 0);
1172		break;
1173
1174	case SO_OOBINLINE:
1175		v.val = sock_flag(sk, SOCK_URGINLINE);
1176		break;
1177
1178	case SO_NO_CHECK:
1179		v.val = sk->sk_no_check_tx;
1180		break;
1181
1182	case SO_PRIORITY:
1183		v.val = sk->sk_priority;
1184		break;
1185
1186	case SO_LINGER:
1187		lv		= sizeof(v.ling);
1188		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1189		v.ling.l_linger	= sk->sk_lingertime / HZ;
1190		break;
1191
1192	case SO_BSDCOMPAT:
1193		sock_warn_obsolete_bsdism("getsockopt");
1194		break;
1195
1196	case SO_TIMESTAMP:
1197		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
 
1198				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1199		break;
1200
1201	case SO_TIMESTAMPNS:
1202		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
 
 
 
 
1203		break;
1204
1205	case SO_TIMESTAMPING:
1206		v.val = sk->sk_tsflags;
1207		break;
1208
1209	case SO_RCVTIMEO:
1210		lv = sizeof(struct timeval);
1211		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1212			v.tm.tv_sec = 0;
1213			v.tm.tv_usec = 0;
1214		} else {
1215			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1216			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1217		}
1218		break;
1219
1220	case SO_SNDTIMEO:
1221		lv = sizeof(struct timeval);
1222		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1223			v.tm.tv_sec = 0;
1224			v.tm.tv_usec = 0;
1225		} else {
1226			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1227			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1228		}
1229		break;
1230
1231	case SO_RCVLOWAT:
1232		v.val = sk->sk_rcvlowat;
1233		break;
1234
1235	case SO_SNDLOWAT:
1236		v.val = 1;
1237		break;
1238
1239	case SO_PASSCRED:
1240		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1241		break;
1242
1243	case SO_PEERCRED:
1244	{
1245		struct ucred peercred;
1246		if (len > sizeof(peercred))
1247			len = sizeof(peercred);
 
 
1248		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
 
 
1249		if (copy_to_user(optval, &peercred, len))
1250			return -EFAULT;
1251		goto lenout;
1252	}
1253
1254	case SO_PEERGROUPS:
1255	{
 
1256		int ret, n;
1257
1258		if (!sk->sk_peer_cred)
 
1259			return -ENODATA;
1260
1261		n = sk->sk_peer_cred->group_info->ngroups;
1262		if (len < n * sizeof(gid_t)) {
1263			len = n * sizeof(gid_t);
 
1264			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1265		}
1266		len = n * sizeof(gid_t);
1267
1268		ret = groups_to_user((gid_t __user *)optval,
1269				     sk->sk_peer_cred->group_info);
1270		if (ret)
1271			return ret;
1272		goto lenout;
1273	}
1274
1275	case SO_PEERNAME:
1276	{
1277		char address[128];
1278
1279		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1280		if (lv < 0)
1281			return -ENOTCONN;
1282		if (lv < len)
1283			return -EINVAL;
1284		if (copy_to_user(optval, address, len))
1285			return -EFAULT;
1286		goto lenout;
1287	}
1288
1289	/* Dubious BSD thing... Probably nobody even uses it, but
1290	 * the UNIX standard wants it for whatever reason... -DaveM
1291	 */
1292	case SO_ACCEPTCONN:
1293		v.val = sk->sk_state == TCP_LISTEN;
1294		break;
1295
1296	case SO_PASSSEC:
1297		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1298		break;
1299
1300	case SO_PEERSEC:
1301		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1302
1303	case SO_MARK:
1304		v.val = sk->sk_mark;
1305		break;
1306
1307	case SO_RXQ_OVFL:
1308		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1309		break;
1310
1311	case SO_WIFI_STATUS:
1312		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1313		break;
1314
1315	case SO_PEEK_OFF:
1316		if (!sock->ops->set_peek_off)
1317			return -EOPNOTSUPP;
1318
1319		v.val = sk->sk_peek_off;
1320		break;
1321	case SO_NOFCS:
1322		v.val = sock_flag(sk, SOCK_NOFCS);
1323		break;
1324
1325	case SO_BINDTODEVICE:
1326		return sock_getbindtodevice(sk, optval, optlen, len);
1327
1328	case SO_GET_FILTER:
1329		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1330		if (len < 0)
1331			return len;
1332
1333		goto lenout;
1334
1335	case SO_LOCK_FILTER:
1336		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1337		break;
1338
1339	case SO_BPF_EXTENSIONS:
1340		v.val = bpf_tell_extensions();
1341		break;
1342
1343	case SO_SELECT_ERR_QUEUE:
1344		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1345		break;
1346
1347#ifdef CONFIG_NET_RX_BUSY_POLL
1348	case SO_BUSY_POLL:
1349		v.val = sk->sk_ll_usec;
1350		break;
 
 
 
1351#endif
1352
1353	case SO_MAX_PACING_RATE:
1354		v.val = sk->sk_max_pacing_rate;
 
 
 
 
 
 
1355		break;
1356
1357	case SO_INCOMING_CPU:
1358		v.val = sk->sk_incoming_cpu;
1359		break;
1360
1361	case SO_MEMINFO:
1362	{
1363		u32 meminfo[SK_MEMINFO_VARS];
1364
1365		if (get_user(len, optlen))
1366			return -EFAULT;
1367
1368		sk_get_meminfo(sk, meminfo);
1369
1370		len = min_t(unsigned int, len, sizeof(meminfo));
1371		if (copy_to_user(optval, &meminfo, len))
1372			return -EFAULT;
1373
1374		goto lenout;
1375	}
1376
1377#ifdef CONFIG_NET_RX_BUSY_POLL
1378	case SO_INCOMING_NAPI_ID:
1379		v.val = READ_ONCE(sk->sk_napi_id);
1380
1381		/* aggregate non-NAPI IDs down to 0 */
1382		if (v.val < MIN_NAPI_ID)
1383			v.val = 0;
1384
1385		break;
1386#endif
1387
1388	case SO_COOKIE:
1389		lv = sizeof(u64);
1390		if (len < lv)
1391			return -EINVAL;
1392		v.val64 = sock_gen_cookie(sk);
1393		break;
1394
1395	case SO_ZEROCOPY:
1396		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1397		break;
1398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1399	default:
1400		/* We implement the SO_SNDLOWAT etc to not be settable
1401		 * (1003.1g 7).
1402		 */
1403		return -ENOPROTOOPT;
1404	}
1405
1406	if (len > lv)
1407		len = lv;
1408	if (copy_to_user(optval, &v, len))
1409		return -EFAULT;
1410lenout:
1411	if (put_user(len, optlen))
1412		return -EFAULT;
1413	return 0;
1414}
1415
1416/*
1417 * Initialize an sk_lock.
1418 *
1419 * (We also register the sk_lock with the lock validator.)
1420 */
1421static inline void sock_lock_init(struct sock *sk)
1422{
1423	if (sk->sk_kern_sock)
1424		sock_lock_init_class_and_name(
1425			sk,
1426			af_family_kern_slock_key_strings[sk->sk_family],
1427			af_family_kern_slock_keys + sk->sk_family,
1428			af_family_kern_key_strings[sk->sk_family],
1429			af_family_kern_keys + sk->sk_family);
1430	else
1431		sock_lock_init_class_and_name(
1432			sk,
1433			af_family_slock_key_strings[sk->sk_family],
1434			af_family_slock_keys + sk->sk_family,
1435			af_family_key_strings[sk->sk_family],
1436			af_family_keys + sk->sk_family);
1437}
1438
1439/*
1440 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1441 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1442 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1443 */
1444static void sock_copy(struct sock *nsk, const struct sock *osk)
1445{
 
1446#ifdef CONFIG_SECURITY_NETWORK
1447	void *sptr = nsk->sk_security;
1448#endif
 
 
 
 
 
 
 
 
 
 
1449	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1450
1451	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1452	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1453
1454#ifdef CONFIG_SECURITY_NETWORK
1455	nsk->sk_security = sptr;
1456	security_sk_clone(osk, nsk);
1457#endif
1458}
1459
1460static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1461		int family)
1462{
1463	struct sock *sk;
1464	struct kmem_cache *slab;
1465
1466	slab = prot->slab;
1467	if (slab != NULL) {
1468		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1469		if (!sk)
1470			return sk;
1471		if (priority & __GFP_ZERO)
1472			sk_prot_clear_nulls(sk, prot->obj_size);
1473	} else
1474		sk = kmalloc(prot->obj_size, priority);
1475
1476	if (sk != NULL) {
1477		if (security_sk_alloc(sk, family, priority))
1478			goto out_free;
1479
1480		if (!try_module_get(prot->owner))
1481			goto out_free_sec;
1482		sk_tx_queue_clear(sk);
1483	}
1484
1485	return sk;
1486
1487out_free_sec:
1488	security_sk_free(sk);
1489out_free:
1490	if (slab != NULL)
1491		kmem_cache_free(slab, sk);
1492	else
1493		kfree(sk);
1494	return NULL;
1495}
1496
1497static void sk_prot_free(struct proto *prot, struct sock *sk)
1498{
1499	struct kmem_cache *slab;
1500	struct module *owner;
1501
1502	owner = prot->owner;
1503	slab = prot->slab;
1504
1505	cgroup_sk_free(&sk->sk_cgrp_data);
1506	mem_cgroup_sk_free(sk);
1507	security_sk_free(sk);
1508	if (slab != NULL)
1509		kmem_cache_free(slab, sk);
1510	else
1511		kfree(sk);
1512	module_put(owner);
1513}
1514
1515/**
1516 *	sk_alloc - All socket objects are allocated here
1517 *	@net: the applicable net namespace
1518 *	@family: protocol family
1519 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1520 *	@prot: struct proto associated with this new sock instance
1521 *	@kern: is this to be a kernel socket?
1522 */
1523struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1524		      struct proto *prot, int kern)
1525{
1526	struct sock *sk;
1527
1528	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1529	if (sk) {
1530		sk->sk_family = family;
1531		/*
1532		 * See comment in struct sock definition to understand
1533		 * why we need sk_prot_creator -acme
1534		 */
1535		sk->sk_prot = sk->sk_prot_creator = prot;
1536		sk->sk_kern_sock = kern;
1537		sock_lock_init(sk);
1538		sk->sk_net_refcnt = kern ? 0 : 1;
1539		if (likely(sk->sk_net_refcnt)) {
1540			get_net(net);
1541			sock_inuse_add(net, 1);
1542		}
1543
1544		sock_net_set(sk, net);
1545		refcount_set(&sk->sk_wmem_alloc, 1);
1546
1547		mem_cgroup_sk_alloc(sk);
1548		cgroup_sk_alloc(&sk->sk_cgrp_data);
1549		sock_update_classid(&sk->sk_cgrp_data);
1550		sock_update_netprioidx(&sk->sk_cgrp_data);
 
1551	}
1552
1553	return sk;
1554}
1555EXPORT_SYMBOL(sk_alloc);
1556
1557/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1558 * grace period. This is the case for UDP sockets and TCP listeners.
1559 */
1560static void __sk_destruct(struct rcu_head *head)
1561{
1562	struct sock *sk = container_of(head, struct sock, sk_rcu);
1563	struct sk_filter *filter;
1564
1565	if (sk->sk_destruct)
1566		sk->sk_destruct(sk);
1567
1568	filter = rcu_dereference_check(sk->sk_filter,
1569				       refcount_read(&sk->sk_wmem_alloc) == 0);
1570	if (filter) {
1571		sk_filter_uncharge(sk, filter);
1572		RCU_INIT_POINTER(sk->sk_filter, NULL);
1573	}
1574	if (rcu_access_pointer(sk->sk_reuseport_cb))
1575		reuseport_detach_sock(sk);
1576
1577	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1578
 
 
 
 
1579	if (atomic_read(&sk->sk_omem_alloc))
1580		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1581			 __func__, atomic_read(&sk->sk_omem_alloc));
1582
1583	if (sk->sk_frag.page) {
1584		put_page(sk->sk_frag.page);
1585		sk->sk_frag.page = NULL;
1586	}
1587
1588	if (sk->sk_peer_cred)
1589		put_cred(sk->sk_peer_cred);
1590	put_pid(sk->sk_peer_pid);
 
1591	if (likely(sk->sk_net_refcnt))
1592		put_net(sock_net(sk));
1593	sk_prot_free(sk->sk_prot_creator, sk);
1594}
1595
1596void sk_destruct(struct sock *sk)
1597{
1598	if (sock_flag(sk, SOCK_RCU_FREE))
 
 
 
 
 
 
 
1599		call_rcu(&sk->sk_rcu, __sk_destruct);
1600	else
1601		__sk_destruct(&sk->sk_rcu);
1602}
1603
1604static void __sk_free(struct sock *sk)
1605{
1606	if (likely(sk->sk_net_refcnt))
1607		sock_inuse_add(sock_net(sk), -1);
1608
1609	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1610		sock_diag_broadcast_destroy(sk);
1611	else
1612		sk_destruct(sk);
1613}
1614
1615void sk_free(struct sock *sk)
1616{
1617	/*
1618	 * We subtract one from sk_wmem_alloc and can know if
1619	 * some packets are still in some tx queue.
1620	 * If not null, sock_wfree() will call __sk_free(sk) later
1621	 */
1622	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1623		__sk_free(sk);
1624}
1625EXPORT_SYMBOL(sk_free);
1626
1627static void sk_init_common(struct sock *sk)
1628{
1629	skb_queue_head_init(&sk->sk_receive_queue);
1630	skb_queue_head_init(&sk->sk_write_queue);
1631	skb_queue_head_init(&sk->sk_error_queue);
1632
1633	rwlock_init(&sk->sk_callback_lock);
1634	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1635			af_rlock_keys + sk->sk_family,
1636			af_family_rlock_key_strings[sk->sk_family]);
1637	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1638			af_wlock_keys + sk->sk_family,
1639			af_family_wlock_key_strings[sk->sk_family]);
1640	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1641			af_elock_keys + sk->sk_family,
1642			af_family_elock_key_strings[sk->sk_family]);
1643	lockdep_set_class_and_name(&sk->sk_callback_lock,
1644			af_callback_keys + sk->sk_family,
1645			af_family_clock_key_strings[sk->sk_family]);
1646}
1647
1648/**
1649 *	sk_clone_lock - clone a socket, and lock its clone
1650 *	@sk: the socket to clone
1651 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1652 *
1653 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1654 */
1655struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1656{
 
 
 
1657	struct sock *newsk;
1658	bool is_charged = true;
1659
1660	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1661	if (newsk != NULL) {
1662		struct sk_filter *filter;
1663
1664		sock_copy(newsk, sk);
1665
1666		newsk->sk_prot_creator = sk->sk_prot;
1667
1668		/* SANITY */
1669		if (likely(newsk->sk_net_refcnt))
1670			get_net(sock_net(newsk));
1671		sk_node_init(&newsk->sk_node);
1672		sock_lock_init(newsk);
1673		bh_lock_sock(newsk);
1674		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1675		newsk->sk_backlog.len = 0;
1676
1677		atomic_set(&newsk->sk_rmem_alloc, 0);
1678		/*
1679		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1680		 */
1681		refcount_set(&newsk->sk_wmem_alloc, 1);
1682		atomic_set(&newsk->sk_omem_alloc, 0);
1683		sk_init_common(newsk);
1684
1685		newsk->sk_dst_cache	= NULL;
1686		newsk->sk_dst_pending_confirm = 0;
1687		newsk->sk_wmem_queued	= 0;
1688		newsk->sk_forward_alloc = 0;
1689		atomic_set(&newsk->sk_drops, 0);
1690		newsk->sk_send_head	= NULL;
1691		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1692		atomic_set(&newsk->sk_zckey, 0);
1693
1694		sock_reset_flag(newsk, SOCK_DONE);
1695		mem_cgroup_sk_alloc(newsk);
1696		cgroup_sk_alloc(&newsk->sk_cgrp_data);
 
 
 
 
 
1697
1698		rcu_read_lock();
1699		filter = rcu_dereference(sk->sk_filter);
1700		if (filter != NULL)
1701			/* though it's an empty new sock, the charging may fail
1702			 * if sysctl_optmem_max was changed between creation of
1703			 * original socket and cloning
1704			 */
1705			is_charged = sk_filter_charge(newsk, filter);
1706		RCU_INIT_POINTER(newsk->sk_filter, filter);
1707		rcu_read_unlock();
1708
1709		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1710			/* We need to make sure that we don't uncharge the new
1711			 * socket if we couldn't charge it in the first place
1712			 * as otherwise we uncharge the parent's filter.
1713			 */
1714			if (!is_charged)
1715				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1716			sk_free_unlock_clone(newsk);
1717			newsk = NULL;
1718			goto out;
1719		}
1720		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1721
1722		newsk->sk_err	   = 0;
1723		newsk->sk_err_soft = 0;
1724		newsk->sk_priority = 0;
1725		newsk->sk_incoming_cpu = raw_smp_processor_id();
1726		atomic64_set(&newsk->sk_cookie, 0);
1727		if (likely(newsk->sk_net_refcnt))
1728			sock_inuse_add(sock_net(newsk), 1);
1729
1730		/*
1731		 * Before updating sk_refcnt, we must commit prior changes to memory
1732		 * (Documentation/RCU/rculist_nulls.txt for details)
 
 
 
1733		 */
1734		smp_wmb();
1735		refcount_set(&newsk->sk_refcnt, 2);
 
1736
1737		/*
1738		 * Increment the counter in the same struct proto as the master
1739		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1740		 * is the same as sk->sk_prot->socks, as this field was copied
1741		 * with memcpy).
1742		 *
1743		 * This _changes_ the previous behaviour, where
1744		 * tcp_create_openreq_child always was incrementing the
1745		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1746		 * to be taken into account in all callers. -acme
1747		 */
1748		sk_refcnt_debug_inc(newsk);
1749		sk_set_socket(newsk, NULL);
1750		newsk->sk_wq = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751
1752		if (newsk->sk_prot->sockets_allocated)
1753			sk_sockets_allocated_inc(newsk);
1754
1755		if (sock_needs_netstamp(sk) &&
1756		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1757			net_enable_timestamp();
1758	}
1759out:
1760	return newsk;
1761}
1762EXPORT_SYMBOL_GPL(sk_clone_lock);
1763
1764void sk_free_unlock_clone(struct sock *sk)
1765{
1766	/* It is still raw copy of parent, so invalidate
1767	 * destructor and make plain sk_free() */
1768	sk->sk_destruct = NULL;
1769	bh_unlock_sock(sk);
1770	sk_free(sk);
1771}
1772EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1773
1774void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1775{
1776	u32 max_segs = 1;
1777
1778	sk_dst_set(sk, dst);
1779	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1780	if (sk->sk_route_caps & NETIF_F_GSO)
1781		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1782	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1783	if (sk_can_gso(sk)) {
1784		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1785			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1786		} else {
1787			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1788			sk->sk_gso_max_size = dst->dev->gso_max_size;
1789			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1790		}
1791	}
1792	sk->sk_gso_max_segs = max_segs;
1793}
1794EXPORT_SYMBOL_GPL(sk_setup_caps);
1795
1796/*
1797 *	Simple resource managers for sockets.
1798 */
1799
1800
1801/*
1802 * Write buffer destructor automatically called from kfree_skb.
1803 */
1804void sock_wfree(struct sk_buff *skb)
1805{
1806	struct sock *sk = skb->sk;
1807	unsigned int len = skb->truesize;
1808
1809	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1810		/*
1811		 * Keep a reference on sk_wmem_alloc, this will be released
1812		 * after sk_write_space() call
1813		 */
1814		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1815		sk->sk_write_space(sk);
1816		len = 1;
1817	}
1818	/*
1819	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1820	 * could not do because of in-flight packets
1821	 */
1822	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1823		__sk_free(sk);
1824}
1825EXPORT_SYMBOL(sock_wfree);
1826
1827/* This variant of sock_wfree() is used by TCP,
1828 * since it sets SOCK_USE_WRITE_QUEUE.
1829 */
1830void __sock_wfree(struct sk_buff *skb)
1831{
1832	struct sock *sk = skb->sk;
1833
1834	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1835		__sk_free(sk);
1836}
1837
1838void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1839{
1840	skb_orphan(skb);
1841	skb->sk = sk;
1842#ifdef CONFIG_INET
1843	if (unlikely(!sk_fullsock(sk))) {
1844		skb->destructor = sock_edemux;
1845		sock_hold(sk);
1846		return;
1847	}
1848#endif
1849	skb->destructor = sock_wfree;
1850	skb_set_hash_from_sk(skb, sk);
1851	/*
1852	 * We used to take a refcount on sk, but following operation
1853	 * is enough to guarantee sk_free() wont free this sock until
1854	 * all in-flight packets are completed
1855	 */
1856	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1857}
1858EXPORT_SYMBOL(skb_set_owner_w);
1859
 
 
 
 
 
 
 
 
 
 
 
 
 
1860/* This helper is used by netem, as it can hold packets in its
1861 * delay queue. We want to allow the owner socket to send more
1862 * packets, as if they were already TX completed by a typical driver.
1863 * But we also want to keep skb->sk set because some packet schedulers
1864 * rely on it (sch_fq for example).
1865 */
1866void skb_orphan_partial(struct sk_buff *skb)
1867{
1868	if (skb_is_tcp_pure_ack(skb))
1869		return;
1870
1871	if (skb->destructor == sock_wfree
1872#ifdef CONFIG_INET
1873	    || skb->destructor == tcp_wfree
1874#endif
1875		) {
1876		struct sock *sk = skb->sk;
1877
1878		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1879			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1880			skb->destructor = sock_efree;
1881		}
1882	} else {
1883		skb_orphan(skb);
1884	}
1885}
1886EXPORT_SYMBOL(skb_orphan_partial);
1887
1888/*
1889 * Read buffer destructor automatically called from kfree_skb.
1890 */
1891void sock_rfree(struct sk_buff *skb)
1892{
1893	struct sock *sk = skb->sk;
1894	unsigned int len = skb->truesize;
1895
1896	atomic_sub(len, &sk->sk_rmem_alloc);
1897	sk_mem_uncharge(sk, len);
1898}
1899EXPORT_SYMBOL(sock_rfree);
1900
1901/*
1902 * Buffer destructor for skbs that are not used directly in read or write
1903 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1904 */
1905void sock_efree(struct sk_buff *skb)
1906{
1907	sock_put(skb->sk);
1908}
1909EXPORT_SYMBOL(sock_efree);
1910
 
 
 
 
 
 
 
 
 
 
 
 
1911kuid_t sock_i_uid(struct sock *sk)
1912{
1913	kuid_t uid;
1914
1915	read_lock_bh(&sk->sk_callback_lock);
1916	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1917	read_unlock_bh(&sk->sk_callback_lock);
1918	return uid;
1919}
1920EXPORT_SYMBOL(sock_i_uid);
1921
1922unsigned long sock_i_ino(struct sock *sk)
1923{
1924	unsigned long ino;
1925
1926	read_lock_bh(&sk->sk_callback_lock);
1927	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1928	read_unlock_bh(&sk->sk_callback_lock);
1929	return ino;
1930}
1931EXPORT_SYMBOL(sock_i_ino);
1932
1933/*
1934 * Allocate a skb from the socket's send buffer.
1935 */
1936struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1937			     gfp_t priority)
1938{
1939	if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
 
1940		struct sk_buff *skb = alloc_skb(size, priority);
 
1941		if (skb) {
1942			skb_set_owner_w(skb, sk);
1943			return skb;
1944		}
1945	}
1946	return NULL;
1947}
1948EXPORT_SYMBOL(sock_wmalloc);
1949
1950static void sock_ofree(struct sk_buff *skb)
1951{
1952	struct sock *sk = skb->sk;
1953
1954	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1955}
1956
1957struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1958			     gfp_t priority)
1959{
1960	struct sk_buff *skb;
1961
1962	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1963	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1964	    sysctl_optmem_max)
1965		return NULL;
1966
1967	skb = alloc_skb(size, priority);
1968	if (!skb)
1969		return NULL;
1970
1971	atomic_add(skb->truesize, &sk->sk_omem_alloc);
1972	skb->sk = sk;
1973	skb->destructor = sock_ofree;
1974	return skb;
1975}
1976
1977/*
1978 * Allocate a memory block from the socket's option memory buffer.
1979 */
1980void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1981{
1982	if ((unsigned int)size <= sysctl_optmem_max &&
1983	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1984		void *mem;
1985		/* First do the add, to avoid the race if kmalloc
1986		 * might sleep.
1987		 */
1988		atomic_add(size, &sk->sk_omem_alloc);
1989		mem = kmalloc(size, priority);
1990		if (mem)
1991			return mem;
1992		atomic_sub(size, &sk->sk_omem_alloc);
1993	}
1994	return NULL;
1995}
1996EXPORT_SYMBOL(sock_kmalloc);
1997
1998/* Free an option memory block. Note, we actually want the inline
1999 * here as this allows gcc to detect the nullify and fold away the
2000 * condition entirely.
2001 */
2002static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2003				  const bool nullify)
2004{
2005	if (WARN_ON_ONCE(!mem))
2006		return;
2007	if (nullify)
2008		kzfree(mem);
2009	else
2010		kfree(mem);
2011	atomic_sub(size, &sk->sk_omem_alloc);
2012}
2013
2014void sock_kfree_s(struct sock *sk, void *mem, int size)
2015{
2016	__sock_kfree_s(sk, mem, size, false);
2017}
2018EXPORT_SYMBOL(sock_kfree_s);
2019
2020void sock_kzfree_s(struct sock *sk, void *mem, int size)
2021{
2022	__sock_kfree_s(sk, mem, size, true);
2023}
2024EXPORT_SYMBOL(sock_kzfree_s);
2025
2026/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2027   I think, these locks should be removed for datagram sockets.
2028 */
2029static long sock_wait_for_wmem(struct sock *sk, long timeo)
2030{
2031	DEFINE_WAIT(wait);
2032
2033	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2034	for (;;) {
2035		if (!timeo)
2036			break;
2037		if (signal_pending(current))
2038			break;
2039		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2040		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2041		if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2042			break;
2043		if (sk->sk_shutdown & SEND_SHUTDOWN)
2044			break;
2045		if (sk->sk_err)
2046			break;
2047		timeo = schedule_timeout(timeo);
2048	}
2049	finish_wait(sk_sleep(sk), &wait);
2050	return timeo;
2051}
2052
2053
2054/*
2055 *	Generic send/receive buffer handlers
2056 */
2057
2058struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2059				     unsigned long data_len, int noblock,
2060				     int *errcode, int max_page_order)
2061{
2062	struct sk_buff *skb;
2063	long timeo;
2064	int err;
2065
2066	timeo = sock_sndtimeo(sk, noblock);
2067	for (;;) {
2068		err = sock_error(sk);
2069		if (err != 0)
2070			goto failure;
2071
2072		err = -EPIPE;
2073		if (sk->sk_shutdown & SEND_SHUTDOWN)
2074			goto failure;
2075
2076		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2077			break;
2078
2079		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2080		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2081		err = -EAGAIN;
2082		if (!timeo)
2083			goto failure;
2084		if (signal_pending(current))
2085			goto interrupted;
2086		timeo = sock_wait_for_wmem(sk, timeo);
2087	}
2088	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2089				   errcode, sk->sk_allocation);
2090	if (skb)
2091		skb_set_owner_w(skb, sk);
2092	return skb;
2093
2094interrupted:
2095	err = sock_intr_errno(timeo);
2096failure:
2097	*errcode = err;
2098	return NULL;
2099}
2100EXPORT_SYMBOL(sock_alloc_send_pskb);
2101
2102struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2103				    int noblock, int *errcode)
2104{
2105	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2106}
2107EXPORT_SYMBOL(sock_alloc_send_skb);
2108
2109int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2110		     struct sockcm_cookie *sockc)
2111{
2112	u32 tsflags;
2113
2114	switch (cmsg->cmsg_type) {
2115	case SO_MARK:
2116		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2117			return -EPERM;
2118		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2119			return -EINVAL;
2120		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2121		break;
2122	case SO_TIMESTAMPING:
2123		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2124			return -EINVAL;
2125
2126		tsflags = *(u32 *)CMSG_DATA(cmsg);
2127		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2128			return -EINVAL;
2129
2130		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2131		sockc->tsflags |= tsflags;
2132		break;
 
 
 
 
 
 
 
2133	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2134	case SCM_RIGHTS:
2135	case SCM_CREDENTIALS:
2136		break;
2137	default:
2138		return -EINVAL;
2139	}
2140	return 0;
2141}
2142EXPORT_SYMBOL(__sock_cmsg_send);
2143
2144int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2145		   struct sockcm_cookie *sockc)
2146{
2147	struct cmsghdr *cmsg;
2148	int ret;
2149
2150	for_each_cmsghdr(cmsg, msg) {
2151		if (!CMSG_OK(msg, cmsg))
2152			return -EINVAL;
2153		if (cmsg->cmsg_level != SOL_SOCKET)
2154			continue;
2155		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2156		if (ret)
2157			return ret;
2158	}
2159	return 0;
2160}
2161EXPORT_SYMBOL(sock_cmsg_send);
2162
2163static void sk_enter_memory_pressure(struct sock *sk)
2164{
2165	if (!sk->sk_prot->enter_memory_pressure)
2166		return;
2167
2168	sk->sk_prot->enter_memory_pressure(sk);
2169}
2170
2171static void sk_leave_memory_pressure(struct sock *sk)
2172{
2173	if (sk->sk_prot->leave_memory_pressure) {
2174		sk->sk_prot->leave_memory_pressure(sk);
2175	} else {
2176		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2177
2178		if (memory_pressure && *memory_pressure)
2179			*memory_pressure = 0;
2180	}
2181}
2182
2183/* On 32bit arches, an skb frag is limited to 2^15 */
2184#define SKB_FRAG_PAGE_ORDER	get_order(32768)
 
2185
2186/**
2187 * skb_page_frag_refill - check that a page_frag contains enough room
2188 * @sz: minimum size of the fragment we want to get
2189 * @pfrag: pointer to page_frag
2190 * @gfp: priority for memory allocation
2191 *
2192 * Note: While this allocator tries to use high order pages, there is
2193 * no guarantee that allocations succeed. Therefore, @sz MUST be
2194 * less or equal than PAGE_SIZE.
2195 */
2196bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2197{
2198	if (pfrag->page) {
2199		if (page_ref_count(pfrag->page) == 1) {
2200			pfrag->offset = 0;
2201			return true;
2202		}
2203		if (pfrag->offset + sz <= pfrag->size)
2204			return true;
2205		put_page(pfrag->page);
2206	}
2207
2208	pfrag->offset = 0;
2209	if (SKB_FRAG_PAGE_ORDER) {
 
2210		/* Avoid direct reclaim but allow kswapd to wake */
2211		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2212					  __GFP_COMP | __GFP_NOWARN |
2213					  __GFP_NORETRY,
2214					  SKB_FRAG_PAGE_ORDER);
2215		if (likely(pfrag->page)) {
2216			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2217			return true;
2218		}
2219	}
2220	pfrag->page = alloc_page(gfp);
2221	if (likely(pfrag->page)) {
2222		pfrag->size = PAGE_SIZE;
2223		return true;
2224	}
2225	return false;
2226}
2227EXPORT_SYMBOL(skb_page_frag_refill);
2228
2229bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2230{
2231	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2232		return true;
2233
2234	sk_enter_memory_pressure(sk);
2235	sk_stream_moderate_sndbuf(sk);
2236	return false;
2237}
2238EXPORT_SYMBOL(sk_page_frag_refill);
2239
2240int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2241		int sg_start, int *sg_curr_index, unsigned int *sg_curr_size,
2242		int first_coalesce)
2243{
2244	int sg_curr = *sg_curr_index, use = 0, rc = 0;
2245	unsigned int size = *sg_curr_size;
2246	struct page_frag *pfrag;
2247	struct scatterlist *sge;
2248
2249	len -= size;
2250	pfrag = sk_page_frag(sk);
2251
2252	while (len > 0) {
2253		unsigned int orig_offset;
2254
2255		if (!sk_page_frag_refill(sk, pfrag)) {
2256			rc = -ENOMEM;
2257			goto out;
2258		}
2259
2260		use = min_t(int, len, pfrag->size - pfrag->offset);
2261
2262		if (!sk_wmem_schedule(sk, use)) {
2263			rc = -ENOMEM;
2264			goto out;
2265		}
2266
2267		sk_mem_charge(sk, use);
2268		size += use;
2269		orig_offset = pfrag->offset;
2270		pfrag->offset += use;
2271
2272		sge = sg + sg_curr - 1;
2273		if (sg_curr > first_coalesce && sg_page(sg) == pfrag->page &&
2274		    sg->offset + sg->length == orig_offset) {
2275			sg->length += use;
2276		} else {
2277			sge = sg + sg_curr;
2278			sg_unmark_end(sge);
2279			sg_set_page(sge, pfrag->page, use, orig_offset);
2280			get_page(pfrag->page);
2281			sg_curr++;
2282
2283			if (sg_curr == MAX_SKB_FRAGS)
2284				sg_curr = 0;
2285
2286			if (sg_curr == sg_start) {
2287				rc = -ENOSPC;
2288				break;
2289			}
2290		}
2291
2292		len -= use;
2293	}
2294out:
2295	*sg_curr_size = size;
2296	*sg_curr_index = sg_curr;
2297	return rc;
2298}
2299EXPORT_SYMBOL(sk_alloc_sg);
2300
2301static void __lock_sock(struct sock *sk)
2302	__releases(&sk->sk_lock.slock)
2303	__acquires(&sk->sk_lock.slock)
2304{
2305	DEFINE_WAIT(wait);
2306
2307	for (;;) {
2308		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2309					TASK_UNINTERRUPTIBLE);
2310		spin_unlock_bh(&sk->sk_lock.slock);
2311		schedule();
2312		spin_lock_bh(&sk->sk_lock.slock);
2313		if (!sock_owned_by_user(sk))
2314			break;
2315	}
2316	finish_wait(&sk->sk_lock.wq, &wait);
2317}
2318
2319static void __release_sock(struct sock *sk)
2320	__releases(&sk->sk_lock.slock)
2321	__acquires(&sk->sk_lock.slock)
2322{
2323	struct sk_buff *skb, *next;
2324
2325	while ((skb = sk->sk_backlog.head) != NULL) {
2326		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2327
2328		spin_unlock_bh(&sk->sk_lock.slock);
2329
2330		do {
2331			next = skb->next;
2332			prefetch(next);
2333			WARN_ON_ONCE(skb_dst_is_noref(skb));
2334			skb->next = NULL;
2335			sk_backlog_rcv(sk, skb);
2336
2337			cond_resched();
2338
2339			skb = next;
2340		} while (skb != NULL);
2341
2342		spin_lock_bh(&sk->sk_lock.slock);
2343	}
2344
2345	/*
2346	 * Doing the zeroing here guarantee we can not loop forever
2347	 * while a wild producer attempts to flood us.
2348	 */
2349	sk->sk_backlog.len = 0;
2350}
2351
2352void __sk_flush_backlog(struct sock *sk)
2353{
2354	spin_lock_bh(&sk->sk_lock.slock);
2355	__release_sock(sk);
2356	spin_unlock_bh(&sk->sk_lock.slock);
2357}
2358
2359/**
2360 * sk_wait_data - wait for data to arrive at sk_receive_queue
2361 * @sk:    sock to wait on
2362 * @timeo: for how long
2363 * @skb:   last skb seen on sk_receive_queue
2364 *
2365 * Now socket state including sk->sk_err is changed only under lock,
2366 * hence we may omit checks after joining wait queue.
2367 * We check receive queue before schedule() only as optimization;
2368 * it is very likely that release_sock() added new data.
2369 */
2370int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2371{
2372	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2373	int rc;
2374
2375	add_wait_queue(sk_sleep(sk), &wait);
2376	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2377	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2378	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2379	remove_wait_queue(sk_sleep(sk), &wait);
2380	return rc;
2381}
2382EXPORT_SYMBOL(sk_wait_data);
2383
2384/**
2385 *	__sk_mem_raise_allocated - increase memory_allocated
2386 *	@sk: socket
2387 *	@size: memory size to allocate
2388 *	@amt: pages to allocate
2389 *	@kind: allocation type
2390 *
2391 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2392 */
2393int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2394{
2395	struct proto *prot = sk->sk_prot;
2396	long allocated = sk_memory_allocated_add(sk, amt);
 
2397
2398	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2399	    !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2400		goto suppress_allocation;
2401
2402	/* Under limit. */
2403	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2404		sk_leave_memory_pressure(sk);
2405		return 1;
2406	}
2407
2408	/* Under pressure. */
2409	if (allocated > sk_prot_mem_limits(sk, 1))
2410		sk_enter_memory_pressure(sk);
2411
2412	/* Over hard limit. */
2413	if (allocated > sk_prot_mem_limits(sk, 2))
2414		goto suppress_allocation;
2415
2416	/* guarantee minimum buffer size under pressure */
2417	if (kind == SK_MEM_RECV) {
2418		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2419			return 1;
2420
2421	} else { /* SK_MEM_SEND */
2422		int wmem0 = sk_get_wmem0(sk, prot);
2423
2424		if (sk->sk_type == SOCK_STREAM) {
2425			if (sk->sk_wmem_queued < wmem0)
2426				return 1;
2427		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2428				return 1;
2429		}
2430	}
2431
2432	if (sk_has_memory_pressure(sk)) {
2433		int alloc;
2434
2435		if (!sk_under_memory_pressure(sk))
2436			return 1;
2437		alloc = sk_sockets_allocated_read_positive(sk);
2438		if (sk_prot_mem_limits(sk, 2) > alloc *
2439		    sk_mem_pages(sk->sk_wmem_queued +
2440				 atomic_read(&sk->sk_rmem_alloc) +
2441				 sk->sk_forward_alloc))
2442			return 1;
2443	}
2444
2445suppress_allocation:
2446
2447	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2448		sk_stream_moderate_sndbuf(sk);
2449
2450		/* Fail only if socket is _under_ its sndbuf.
2451		 * In this case we cannot block, so that we have to fail.
2452		 */
2453		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2454			return 1;
2455	}
2456
2457	trace_sock_exceed_buf_limit(sk, prot, allocated);
 
2458
2459	sk_memory_allocated_sub(sk, amt);
2460
2461	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2462		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2463
2464	return 0;
2465}
2466EXPORT_SYMBOL(__sk_mem_raise_allocated);
2467
2468/**
2469 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2470 *	@sk: socket
2471 *	@size: memory size to allocate
2472 *	@kind: allocation type
2473 *
2474 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2475 *	rmem allocation. This function assumes that protocols which have
2476 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2477 */
2478int __sk_mem_schedule(struct sock *sk, int size, int kind)
2479{
2480	int ret, amt = sk_mem_pages(size);
2481
2482	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2483	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2484	if (!ret)
2485		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2486	return ret;
2487}
2488EXPORT_SYMBOL(__sk_mem_schedule);
2489
2490/**
2491 *	__sk_mem_reduce_allocated - reclaim memory_allocated
2492 *	@sk: socket
2493 *	@amount: number of quanta
2494 *
2495 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2496 */
2497void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2498{
2499	sk_memory_allocated_sub(sk, amount);
2500
2501	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2502		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2503
2504	if (sk_under_memory_pressure(sk) &&
2505	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2506		sk_leave_memory_pressure(sk);
2507}
2508EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2509
2510/**
2511 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2512 *	@sk: socket
2513 *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2514 */
2515void __sk_mem_reclaim(struct sock *sk, int amount)
2516{
2517	amount >>= SK_MEM_QUANTUM_SHIFT;
2518	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2519	__sk_mem_reduce_allocated(sk, amount);
2520}
2521EXPORT_SYMBOL(__sk_mem_reclaim);
2522
2523int sk_set_peek_off(struct sock *sk, int val)
2524{
2525	sk->sk_peek_off = val;
2526	return 0;
2527}
2528EXPORT_SYMBOL_GPL(sk_set_peek_off);
2529
2530/*
2531 * Set of default routines for initialising struct proto_ops when
2532 * the protocol does not support a particular function. In certain
2533 * cases where it makes no sense for a protocol to have a "do nothing"
2534 * function, some default processing is provided.
2535 */
2536
2537int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2538{
2539	return -EOPNOTSUPP;
2540}
2541EXPORT_SYMBOL(sock_no_bind);
2542
2543int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2544		    int len, int flags)
2545{
2546	return -EOPNOTSUPP;
2547}
2548EXPORT_SYMBOL(sock_no_connect);
2549
2550int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2551{
2552	return -EOPNOTSUPP;
2553}
2554EXPORT_SYMBOL(sock_no_socketpair);
2555
2556int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2557		   bool kern)
2558{
2559	return -EOPNOTSUPP;
2560}
2561EXPORT_SYMBOL(sock_no_accept);
2562
2563int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2564		    int peer)
2565{
2566	return -EOPNOTSUPP;
2567}
2568EXPORT_SYMBOL(sock_no_getname);
2569
2570__poll_t sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2571{
2572	return 0;
2573}
2574EXPORT_SYMBOL(sock_no_poll);
2575
2576int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2577{
2578	return -EOPNOTSUPP;
2579}
2580EXPORT_SYMBOL(sock_no_ioctl);
2581
2582int sock_no_listen(struct socket *sock, int backlog)
2583{
2584	return -EOPNOTSUPP;
2585}
2586EXPORT_SYMBOL(sock_no_listen);
2587
2588int sock_no_shutdown(struct socket *sock, int how)
2589{
2590	return -EOPNOTSUPP;
2591}
2592EXPORT_SYMBOL(sock_no_shutdown);
2593
2594int sock_no_setsockopt(struct socket *sock, int level, int optname,
2595		    char __user *optval, unsigned int optlen)
2596{
2597	return -EOPNOTSUPP;
2598}
2599EXPORT_SYMBOL(sock_no_setsockopt);
2600
2601int sock_no_getsockopt(struct socket *sock, int level, int optname,
2602		    char __user *optval, int __user *optlen)
2603{
2604	return -EOPNOTSUPP;
2605}
2606EXPORT_SYMBOL(sock_no_getsockopt);
2607
2608int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2609{
2610	return -EOPNOTSUPP;
2611}
2612EXPORT_SYMBOL(sock_no_sendmsg);
2613
2614int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2615{
2616	return -EOPNOTSUPP;
2617}
2618EXPORT_SYMBOL(sock_no_sendmsg_locked);
2619
2620int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2621		    int flags)
2622{
2623	return -EOPNOTSUPP;
2624}
2625EXPORT_SYMBOL(sock_no_recvmsg);
2626
2627int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2628{
2629	/* Mirror missing mmap method error code */
2630	return -ENODEV;
2631}
2632EXPORT_SYMBOL(sock_no_mmap);
2633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2634ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2635{
2636	ssize_t res;
2637	struct msghdr msg = {.msg_flags = flags};
2638	struct kvec iov;
2639	char *kaddr = kmap(page);
2640	iov.iov_base = kaddr + offset;
2641	iov.iov_len = size;
2642	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2643	kunmap(page);
2644	return res;
2645}
2646EXPORT_SYMBOL(sock_no_sendpage);
2647
2648ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2649				int offset, size_t size, int flags)
2650{
2651	ssize_t res;
2652	struct msghdr msg = {.msg_flags = flags};
2653	struct kvec iov;
2654	char *kaddr = kmap(page);
2655
2656	iov.iov_base = kaddr + offset;
2657	iov.iov_len = size;
2658	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2659	kunmap(page);
2660	return res;
2661}
2662EXPORT_SYMBOL(sock_no_sendpage_locked);
2663
2664/*
2665 *	Default Socket Callbacks
2666 */
2667
2668static void sock_def_wakeup(struct sock *sk)
2669{
2670	struct socket_wq *wq;
2671
2672	rcu_read_lock();
2673	wq = rcu_dereference(sk->sk_wq);
2674	if (skwq_has_sleeper(wq))
2675		wake_up_interruptible_all(&wq->wait);
2676	rcu_read_unlock();
2677}
2678
2679static void sock_def_error_report(struct sock *sk)
2680{
2681	struct socket_wq *wq;
2682
2683	rcu_read_lock();
2684	wq = rcu_dereference(sk->sk_wq);
2685	if (skwq_has_sleeper(wq))
2686		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2687	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2688	rcu_read_unlock();
2689}
2690
2691static void sock_def_readable(struct sock *sk)
2692{
2693	struct socket_wq *wq;
2694
2695	rcu_read_lock();
2696	wq = rcu_dereference(sk->sk_wq);
2697	if (skwq_has_sleeper(wq))
2698		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2699						EPOLLRDNORM | EPOLLRDBAND);
2700	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2701	rcu_read_unlock();
2702}
2703
2704static void sock_def_write_space(struct sock *sk)
2705{
2706	struct socket_wq *wq;
2707
2708	rcu_read_lock();
2709
2710	/* Do not wake up a writer until he can make "significant"
2711	 * progress.  --DaveM
2712	 */
2713	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2714		wq = rcu_dereference(sk->sk_wq);
2715		if (skwq_has_sleeper(wq))
2716			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2717						EPOLLWRNORM | EPOLLWRBAND);
2718
2719		/* Should agree with poll, otherwise some programs break */
2720		if (sock_writeable(sk))
2721			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2722	}
2723
2724	rcu_read_unlock();
2725}
2726
2727static void sock_def_destruct(struct sock *sk)
2728{
2729}
2730
2731void sk_send_sigurg(struct sock *sk)
2732{
2733	if (sk->sk_socket && sk->sk_socket->file)
2734		if (send_sigurg(&sk->sk_socket->file->f_owner))
2735			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2736}
2737EXPORT_SYMBOL(sk_send_sigurg);
2738
2739void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2740		    unsigned long expires)
2741{
2742	if (!mod_timer(timer, expires))
2743		sock_hold(sk);
2744}
2745EXPORT_SYMBOL(sk_reset_timer);
2746
2747void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2748{
2749	if (del_timer(timer))
2750		__sock_put(sk);
2751}
2752EXPORT_SYMBOL(sk_stop_timer);
2753
 
 
 
 
 
 
 
2754void sock_init_data(struct socket *sock, struct sock *sk)
2755{
2756	sk_init_common(sk);
2757	sk->sk_send_head	=	NULL;
2758
2759	timer_setup(&sk->sk_timer, NULL, 0);
2760
2761	sk->sk_allocation	=	GFP_KERNEL;
2762	sk->sk_rcvbuf		=	sysctl_rmem_default;
2763	sk->sk_sndbuf		=	sysctl_wmem_default;
2764	sk->sk_state		=	TCP_CLOSE;
2765	sk_set_socket(sk, sock);
2766
2767	sock_set_flag(sk, SOCK_ZAPPED);
2768
2769	if (sock) {
2770		sk->sk_type	=	sock->type;
2771		sk->sk_wq	=	sock->wq;
2772		sock->sk	=	sk;
2773		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2774	} else {
2775		sk->sk_wq	=	NULL;
2776		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2777	}
2778
2779	rwlock_init(&sk->sk_callback_lock);
2780	if (sk->sk_kern_sock)
2781		lockdep_set_class_and_name(
2782			&sk->sk_callback_lock,
2783			af_kern_callback_keys + sk->sk_family,
2784			af_family_kern_clock_key_strings[sk->sk_family]);
2785	else
2786		lockdep_set_class_and_name(
2787			&sk->sk_callback_lock,
2788			af_callback_keys + sk->sk_family,
2789			af_family_clock_key_strings[sk->sk_family]);
2790
2791	sk->sk_state_change	=	sock_def_wakeup;
2792	sk->sk_data_ready	=	sock_def_readable;
2793	sk->sk_write_space	=	sock_def_write_space;
2794	sk->sk_error_report	=	sock_def_error_report;
2795	sk->sk_destruct		=	sock_def_destruct;
2796
2797	sk->sk_frag.page	=	NULL;
2798	sk->sk_frag.offset	=	0;
2799	sk->sk_peek_off		=	-1;
2800
2801	sk->sk_peer_pid 	=	NULL;
2802	sk->sk_peer_cred	=	NULL;
 
 
2803	sk->sk_write_pending	=	0;
2804	sk->sk_rcvlowat		=	1;
2805	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2806	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2807
2808	sk->sk_stamp = SK_DEFAULT_STAMP;
 
 
 
2809	atomic_set(&sk->sk_zckey, 0);
2810
2811#ifdef CONFIG_NET_RX_BUSY_POLL
2812	sk->sk_napi_id		=	0;
2813	sk->sk_ll_usec		=	sysctl_net_busy_read;
2814#endif
2815
2816	sk->sk_max_pacing_rate = ~0U;
2817	sk->sk_pacing_rate = ~0U;
2818	sk->sk_pacing_shift = 10;
2819	sk->sk_incoming_cpu = -1;
 
 
2820	/*
2821	 * Before updating sk_refcnt, we must commit prior changes to memory
2822	 * (Documentation/RCU/rculist_nulls.txt for details)
2823	 */
2824	smp_wmb();
2825	refcount_set(&sk->sk_refcnt, 1);
2826	atomic_set(&sk->sk_drops, 0);
2827}
2828EXPORT_SYMBOL(sock_init_data);
2829
2830void lock_sock_nested(struct sock *sk, int subclass)
2831{
2832	might_sleep();
2833	spin_lock_bh(&sk->sk_lock.slock);
2834	if (sk->sk_lock.owned)
2835		__lock_sock(sk);
2836	sk->sk_lock.owned = 1;
2837	spin_unlock(&sk->sk_lock.slock);
2838	/*
2839	 * The sk_lock has mutex_lock() semantics here:
2840	 */
2841	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2842	local_bh_enable();
2843}
2844EXPORT_SYMBOL(lock_sock_nested);
2845
2846void release_sock(struct sock *sk)
2847{
2848	spin_lock_bh(&sk->sk_lock.slock);
2849	if (sk->sk_backlog.tail)
2850		__release_sock(sk);
2851
2852	/* Warning : release_cb() might need to release sk ownership,
2853	 * ie call sock_release_ownership(sk) before us.
2854	 */
2855	if (sk->sk_prot->release_cb)
2856		sk->sk_prot->release_cb(sk);
2857
2858	sock_release_ownership(sk);
2859	if (waitqueue_active(&sk->sk_lock.wq))
2860		wake_up(&sk->sk_lock.wq);
2861	spin_unlock_bh(&sk->sk_lock.slock);
2862}
2863EXPORT_SYMBOL(release_sock);
2864
2865/**
2866 * lock_sock_fast - fast version of lock_sock
2867 * @sk: socket
2868 *
2869 * This version should be used for very small section, where process wont block
2870 * return false if fast path is taken:
2871 *
2872 *   sk_lock.slock locked, owned = 0, BH disabled
2873 *
2874 * return true if slow path is taken:
2875 *
2876 *   sk_lock.slock unlocked, owned = 1, BH enabled
2877 */
2878bool lock_sock_fast(struct sock *sk)
2879{
2880	might_sleep();
2881	spin_lock_bh(&sk->sk_lock.slock);
2882
2883	if (!sk->sk_lock.owned)
2884		/*
2885		 * Note : We must disable BH
2886		 */
2887		return false;
2888
2889	__lock_sock(sk);
2890	sk->sk_lock.owned = 1;
2891	spin_unlock(&sk->sk_lock.slock);
2892	/*
2893	 * The sk_lock has mutex_lock() semantics here:
2894	 */
2895	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
 
2896	local_bh_enable();
2897	return true;
2898}
2899EXPORT_SYMBOL(lock_sock_fast);
2900
2901int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
 
2902{
2903	struct timeval tv;
2904	if (!sock_flag(sk, SOCK_TIMESTAMP))
2905		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2906	tv = ktime_to_timeval(sk->sk_stamp);
2907	if (tv.tv_sec == -1)
2908		return -ENOENT;
2909	if (tv.tv_sec == 0) {
2910		sk->sk_stamp = ktime_get_real();
2911		tv = ktime_to_timeval(sk->sk_stamp);
2912	}
2913	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2914}
2915EXPORT_SYMBOL(sock_get_timestamp);
2916
2917int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2918{
2919	struct timespec ts;
2920	if (!sock_flag(sk, SOCK_TIMESTAMP))
2921		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2922	ts = ktime_to_timespec(sk->sk_stamp);
2923	if (ts.tv_sec == -1)
2924		return -ENOENT;
2925	if (ts.tv_sec == 0) {
2926		sk->sk_stamp = ktime_get_real();
2927		ts = ktime_to_timespec(sk->sk_stamp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2928	}
2929	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
 
2930}
2931EXPORT_SYMBOL(sock_get_timestampns);
2932
2933void sock_enable_timestamp(struct sock *sk, int flag)
2934{
2935	if (!sock_flag(sk, flag)) {
2936		unsigned long previous_flags = sk->sk_flags;
2937
2938		sock_set_flag(sk, flag);
2939		/*
2940		 * we just set one of the two flags which require net
2941		 * time stamping, but time stamping might have been on
2942		 * already because of the other one
2943		 */
2944		if (sock_needs_netstamp(sk) &&
2945		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2946			net_enable_timestamp();
2947	}
2948}
2949
2950int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2951		       int level, int type)
2952{
2953	struct sock_exterr_skb *serr;
2954	struct sk_buff *skb;
2955	int copied, err;
2956
2957	err = -EAGAIN;
2958	skb = sock_dequeue_err_skb(sk);
2959	if (skb == NULL)
2960		goto out;
2961
2962	copied = skb->len;
2963	if (copied > len) {
2964		msg->msg_flags |= MSG_TRUNC;
2965		copied = len;
2966	}
2967	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2968	if (err)
2969		goto out_free_skb;
2970
2971	sock_recv_timestamp(msg, sk, skb);
2972
2973	serr = SKB_EXT_ERR(skb);
2974	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2975
2976	msg->msg_flags |= MSG_ERRQUEUE;
2977	err = copied;
2978
2979out_free_skb:
2980	kfree_skb(skb);
2981out:
2982	return err;
2983}
2984EXPORT_SYMBOL(sock_recv_errqueue);
2985
2986/*
2987 *	Get a socket option on an socket.
2988 *
2989 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2990 *	asynchronous errors should be reported by getsockopt. We assume
2991 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2992 */
2993int sock_common_getsockopt(struct socket *sock, int level, int optname,
2994			   char __user *optval, int __user *optlen)
2995{
2996	struct sock *sk = sock->sk;
2997
2998	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2999}
3000EXPORT_SYMBOL(sock_common_getsockopt);
3001
3002#ifdef CONFIG_COMPAT
3003int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3004				  char __user *optval, int __user *optlen)
3005{
3006	struct sock *sk = sock->sk;
3007
3008	if (sk->sk_prot->compat_getsockopt != NULL)
3009		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3010						      optval, optlen);
3011	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3012}
3013EXPORT_SYMBOL(compat_sock_common_getsockopt);
3014#endif
3015
3016int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3017			int flags)
3018{
3019	struct sock *sk = sock->sk;
3020	int addr_len = 0;
3021	int err;
3022
3023	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3024				   flags & ~MSG_DONTWAIT, &addr_len);
3025	if (err >= 0)
3026		msg->msg_namelen = addr_len;
3027	return err;
3028}
3029EXPORT_SYMBOL(sock_common_recvmsg);
3030
3031/*
3032 *	Set socket options on an inet socket.
3033 */
3034int sock_common_setsockopt(struct socket *sock, int level, int optname,
3035			   char __user *optval, unsigned int optlen)
3036{
3037	struct sock *sk = sock->sk;
3038
3039	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3040}
3041EXPORT_SYMBOL(sock_common_setsockopt);
3042
3043#ifdef CONFIG_COMPAT
3044int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3045				  char __user *optval, unsigned int optlen)
3046{
3047	struct sock *sk = sock->sk;
3048
3049	if (sk->sk_prot->compat_setsockopt != NULL)
3050		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3051						      optval, optlen);
3052	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3053}
3054EXPORT_SYMBOL(compat_sock_common_setsockopt);
3055#endif
3056
3057void sk_common_release(struct sock *sk)
3058{
3059	if (sk->sk_prot->destroy)
3060		sk->sk_prot->destroy(sk);
3061
3062	/*
3063	 * Observation: when sock_common_release is called, processes have
3064	 * no access to socket. But net still has.
3065	 * Step one, detach it from networking:
3066	 *
3067	 * A. Remove from hash tables.
3068	 */
3069
3070	sk->sk_prot->unhash(sk);
3071
3072	/*
3073	 * In this point socket cannot receive new packets, but it is possible
3074	 * that some packets are in flight because some CPU runs receiver and
3075	 * did hash table lookup before we unhashed socket. They will achieve
3076	 * receive queue and will be purged by socket destructor.
3077	 *
3078	 * Also we still have packets pending on receive queue and probably,
3079	 * our own packets waiting in device queues. sock_destroy will drain
3080	 * receive queue, but transmitted packets will delay socket destruction
3081	 * until the last reference will be released.
3082	 */
3083
3084	sock_orphan(sk);
3085
3086	xfrm_sk_free_policy(sk);
3087
3088	sk_refcnt_debug_release(sk);
3089
3090	sock_put(sk);
3091}
3092EXPORT_SYMBOL(sk_common_release);
3093
3094void sk_get_meminfo(const struct sock *sk, u32 *mem)
3095{
3096	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3097
3098	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3099	mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3100	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3101	mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3102	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3103	mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3104	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3105	mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3106	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3107}
3108
3109#ifdef CONFIG_PROC_FS
3110#define PROTO_INUSE_NR	64	/* should be enough for the first time */
3111struct prot_inuse {
3112	int val[PROTO_INUSE_NR];
3113};
3114
3115static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3116
3117void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3118{
3119	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3120}
3121EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3122
3123int sock_prot_inuse_get(struct net *net, struct proto *prot)
3124{
3125	int cpu, idx = prot->inuse_idx;
3126	int res = 0;
3127
3128	for_each_possible_cpu(cpu)
3129		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3130
3131	return res >= 0 ? res : 0;
3132}
3133EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3134
3135static void sock_inuse_add(struct net *net, int val)
3136{
3137	this_cpu_add(*net->core.sock_inuse, val);
3138}
3139
3140int sock_inuse_get(struct net *net)
3141{
3142	int cpu, res = 0;
3143
3144	for_each_possible_cpu(cpu)
3145		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3146
3147	return res;
3148}
3149
3150EXPORT_SYMBOL_GPL(sock_inuse_get);
3151
3152static int __net_init sock_inuse_init_net(struct net *net)
3153{
3154	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3155	if (net->core.prot_inuse == NULL)
3156		return -ENOMEM;
3157
3158	net->core.sock_inuse = alloc_percpu(int);
3159	if (net->core.sock_inuse == NULL)
3160		goto out;
3161
3162	return 0;
3163
3164out:
3165	free_percpu(net->core.prot_inuse);
3166	return -ENOMEM;
3167}
3168
3169static void __net_exit sock_inuse_exit_net(struct net *net)
3170{
3171	free_percpu(net->core.prot_inuse);
3172	free_percpu(net->core.sock_inuse);
3173}
3174
3175static struct pernet_operations net_inuse_ops = {
3176	.init = sock_inuse_init_net,
3177	.exit = sock_inuse_exit_net,
3178};
3179
3180static __init int net_inuse_init(void)
3181{
3182	if (register_pernet_subsys(&net_inuse_ops))
3183		panic("Cannot initialize net inuse counters");
3184
3185	return 0;
3186}
3187
3188core_initcall(net_inuse_init);
3189
3190static void assign_proto_idx(struct proto *prot)
3191{
3192	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3193
3194	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3195		pr_err("PROTO_INUSE_NR exhausted\n");
3196		return;
3197	}
3198
3199	set_bit(prot->inuse_idx, proto_inuse_idx);
 
3200}
3201
3202static void release_proto_idx(struct proto *prot)
3203{
3204	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3205		clear_bit(prot->inuse_idx, proto_inuse_idx);
3206}
3207#else
3208static inline void assign_proto_idx(struct proto *prot)
3209{
 
3210}
3211
3212static inline void release_proto_idx(struct proto *prot)
3213{
3214}
3215
3216static void sock_inuse_add(struct net *net, int val)
3217{
3218}
3219#endif
3220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3221static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3222{
3223	if (!rsk_prot)
3224		return;
3225	kfree(rsk_prot->slab_name);
3226	rsk_prot->slab_name = NULL;
3227	kmem_cache_destroy(rsk_prot->slab);
3228	rsk_prot->slab = NULL;
3229}
3230
3231static int req_prot_init(const struct proto *prot)
3232{
3233	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3234
3235	if (!rsk_prot)
3236		return 0;
3237
3238	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3239					prot->name);
3240	if (!rsk_prot->slab_name)
3241		return -ENOMEM;
3242
3243	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3244					   rsk_prot->obj_size, 0,
3245					   prot->slab_flags, NULL);
 
3246
3247	if (!rsk_prot->slab) {
3248		pr_crit("%s: Can't create request sock SLAB cache!\n",
3249			prot->name);
3250		return -ENOMEM;
3251	}
3252	return 0;
3253}
3254
3255int proto_register(struct proto *prot, int alloc_slab)
3256{
 
 
3257	if (alloc_slab) {
3258		prot->slab = kmem_cache_create_usercopy(prot->name,
3259					prot->obj_size, 0,
3260					SLAB_HWCACHE_ALIGN | prot->slab_flags,
 
3261					prot->useroffset, prot->usersize,
3262					NULL);
3263
3264		if (prot->slab == NULL) {
3265			pr_crit("%s: Can't create sock SLAB cache!\n",
3266				prot->name);
3267			goto out;
3268		}
3269
3270		if (req_prot_init(prot))
3271			goto out_free_request_sock_slab;
3272
3273		if (prot->twsk_prot != NULL) {
3274			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3275
3276			if (prot->twsk_prot->twsk_slab_name == NULL)
3277				goto out_free_request_sock_slab;
3278
3279			prot->twsk_prot->twsk_slab =
3280				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3281						  prot->twsk_prot->twsk_obj_size,
3282						  0,
3283						  prot->slab_flags,
3284						  NULL);
3285			if (prot->twsk_prot->twsk_slab == NULL)
3286				goto out_free_timewait_sock_slab_name;
3287		}
3288	}
3289
3290	mutex_lock(&proto_list_mutex);
 
 
 
 
 
3291	list_add(&prot->node, &proto_list);
3292	assign_proto_idx(prot);
3293	mutex_unlock(&proto_list_mutex);
3294	return 0;
3295
3296out_free_timewait_sock_slab_name:
3297	kfree(prot->twsk_prot->twsk_slab_name);
 
3298out_free_request_sock_slab:
3299	req_prot_cleanup(prot->rsk_prot);
 
3300
3301	kmem_cache_destroy(prot->slab);
3302	prot->slab = NULL;
 
3303out:
3304	return -ENOBUFS;
3305}
3306EXPORT_SYMBOL(proto_register);
3307
3308void proto_unregister(struct proto *prot)
3309{
3310	mutex_lock(&proto_list_mutex);
3311	release_proto_idx(prot);
3312	list_del(&prot->node);
3313	mutex_unlock(&proto_list_mutex);
3314
3315	kmem_cache_destroy(prot->slab);
3316	prot->slab = NULL;
3317
3318	req_prot_cleanup(prot->rsk_prot);
3319
3320	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3321		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3322		kfree(prot->twsk_prot->twsk_slab_name);
3323		prot->twsk_prot->twsk_slab = NULL;
3324	}
3325}
3326EXPORT_SYMBOL(proto_unregister);
3327
3328int sock_load_diag_module(int family, int protocol)
3329{
3330	if (!protocol) {
3331		if (!sock_is_registered(family))
3332			return -ENOENT;
3333
3334		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3335				      NETLINK_SOCK_DIAG, family);
3336	}
3337
3338#ifdef CONFIG_INET
3339	if (family == AF_INET &&
 
 
3340	    !rcu_access_pointer(inet_protos[protocol]))
3341		return -ENOENT;
3342#endif
3343
3344	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3345			      NETLINK_SOCK_DIAG, family, protocol);
3346}
3347EXPORT_SYMBOL(sock_load_diag_module);
3348
3349#ifdef CONFIG_PROC_FS
3350static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3351	__acquires(proto_list_mutex)
3352{
3353	mutex_lock(&proto_list_mutex);
3354	return seq_list_start_head(&proto_list, *pos);
3355}
3356
3357static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3358{
3359	return seq_list_next(v, &proto_list, pos);
3360}
3361
3362static void proto_seq_stop(struct seq_file *seq, void *v)
3363	__releases(proto_list_mutex)
3364{
3365	mutex_unlock(&proto_list_mutex);
3366}
3367
3368static char proto_method_implemented(const void *method)
3369{
3370	return method == NULL ? 'n' : 'y';
3371}
3372static long sock_prot_memory_allocated(struct proto *proto)
3373{
3374	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3375}
3376
3377static char *sock_prot_memory_pressure(struct proto *proto)
3378{
3379	return proto->memory_pressure != NULL ?
3380	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3381}
3382
3383static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3384{
3385
3386	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3387			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3388		   proto->name,
3389		   proto->obj_size,
3390		   sock_prot_inuse_get(seq_file_net(seq), proto),
3391		   sock_prot_memory_allocated(proto),
3392		   sock_prot_memory_pressure(proto),
3393		   proto->max_header,
3394		   proto->slab == NULL ? "no" : "yes",
3395		   module_name(proto->owner),
3396		   proto_method_implemented(proto->close),
3397		   proto_method_implemented(proto->connect),
3398		   proto_method_implemented(proto->disconnect),
3399		   proto_method_implemented(proto->accept),
3400		   proto_method_implemented(proto->ioctl),
3401		   proto_method_implemented(proto->init),
3402		   proto_method_implemented(proto->destroy),
3403		   proto_method_implemented(proto->shutdown),
3404		   proto_method_implemented(proto->setsockopt),
3405		   proto_method_implemented(proto->getsockopt),
3406		   proto_method_implemented(proto->sendmsg),
3407		   proto_method_implemented(proto->recvmsg),
3408		   proto_method_implemented(proto->sendpage),
3409		   proto_method_implemented(proto->bind),
3410		   proto_method_implemented(proto->backlog_rcv),
3411		   proto_method_implemented(proto->hash),
3412		   proto_method_implemented(proto->unhash),
3413		   proto_method_implemented(proto->get_port),
3414		   proto_method_implemented(proto->enter_memory_pressure));
3415}
3416
3417static int proto_seq_show(struct seq_file *seq, void *v)
3418{
3419	if (v == &proto_list)
3420		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3421			   "protocol",
3422			   "size",
3423			   "sockets",
3424			   "memory",
3425			   "press",
3426			   "maxhdr",
3427			   "slab",
3428			   "module",
3429			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3430	else
3431		proto_seq_printf(seq, list_entry(v, struct proto, node));
3432	return 0;
3433}
3434
3435static const struct seq_operations proto_seq_ops = {
3436	.start  = proto_seq_start,
3437	.next   = proto_seq_next,
3438	.stop   = proto_seq_stop,
3439	.show   = proto_seq_show,
3440};
3441
3442static int proto_seq_open(struct inode *inode, struct file *file)
3443{
3444	return seq_open_net(inode, file, &proto_seq_ops,
3445			    sizeof(struct seq_net_private));
3446}
3447
3448static const struct file_operations proto_seq_fops = {
3449	.open		= proto_seq_open,
3450	.read		= seq_read,
3451	.llseek		= seq_lseek,
3452	.release	= seq_release_net,
3453};
3454
3455static __net_init int proto_init_net(struct net *net)
3456{
3457	if (!proc_create("protocols", 0444, net->proc_net, &proto_seq_fops))
 
3458		return -ENOMEM;
3459
3460	return 0;
3461}
3462
3463static __net_exit void proto_exit_net(struct net *net)
3464{
3465	remove_proc_entry("protocols", net->proc_net);
3466}
3467
3468
3469static __net_initdata struct pernet_operations proto_net_ops = {
3470	.init = proto_init_net,
3471	.exit = proto_exit_net,
3472};
3473
3474static int __init proto_init(void)
3475{
3476	return register_pernet_subsys(&proto_net_ops);
3477}
3478
3479subsys_initcall(proto_init);
3480
3481#endif /* PROC_FS */
3482
3483#ifdef CONFIG_NET_RX_BUSY_POLL
3484bool sk_busy_loop_end(void *p, unsigned long start_time)
3485{
3486	struct sock *sk = p;
3487
3488	return !skb_queue_empty(&sk->sk_receive_queue) ||
3489	       sk_busy_loop_timeout(sk, start_time);
3490}
3491EXPORT_SYMBOL(sk_busy_loop_end);
3492#endif /* CONFIG_NET_RX_BUSY_POLL */