Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <asm/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/init.h>
111#include <linux/highmem.h>
112#include <linux/user_namespace.h>
113#include <linux/static_key.h>
114#include <linux/memcontrol.h>
115#include <linux/prefetch.h>
116#include <linux/compat.h>
117
118#include <linux/uaccess.h>
119
120#include <linux/netdevice.h>
121#include <net/protocol.h>
122#include <linux/skbuff.h>
123#include <net/net_namespace.h>
124#include <net/request_sock.h>
125#include <net/sock.h>
126#include <linux/net_tstamp.h>
127#include <net/xfrm.h>
128#include <linux/ipsec.h>
129#include <net/cls_cgroup.h>
130#include <net/netprio_cgroup.h>
131#include <linux/sock_diag.h>
132
133#include <linux/filter.h>
134#include <net/sock_reuseport.h>
135#include <net/bpf_sk_storage.h>
136
137#include <trace/events/sock.h>
138
139#include <net/tcp.h>
140#include <net/busy_poll.h>
141
142#include <linux/ethtool.h>
143
144static DEFINE_MUTEX(proto_list_mutex);
145static LIST_HEAD(proto_list);
146
147static void sock_inuse_add(struct net *net, int val);
148
149/**
150 * sk_ns_capable - General socket capability test
151 * @sk: Socket to use a capability on or through
152 * @user_ns: The user namespace of the capability to use
153 * @cap: The capability to use
154 *
155 * Test to see if the opener of the socket had when the socket was
156 * created and the current process has the capability @cap in the user
157 * namespace @user_ns.
158 */
159bool sk_ns_capable(const struct sock *sk,
160 struct user_namespace *user_ns, int cap)
161{
162 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
163 ns_capable(user_ns, cap);
164}
165EXPORT_SYMBOL(sk_ns_capable);
166
167/**
168 * sk_capable - Socket global capability test
169 * @sk: Socket to use a capability on or through
170 * @cap: The global capability to use
171 *
172 * Test to see if the opener of the socket had when the socket was
173 * created and the current process has the capability @cap in all user
174 * namespaces.
175 */
176bool sk_capable(const struct sock *sk, int cap)
177{
178 return sk_ns_capable(sk, &init_user_ns, cap);
179}
180EXPORT_SYMBOL(sk_capable);
181
182/**
183 * sk_net_capable - Network namespace socket capability test
184 * @sk: Socket to use a capability on or through
185 * @cap: The capability to use
186 *
187 * Test to see if the opener of the socket had when the socket was created
188 * and the current process has the capability @cap over the network namespace
189 * the socket is a member of.
190 */
191bool sk_net_capable(const struct sock *sk, int cap)
192{
193 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
194}
195EXPORT_SYMBOL(sk_net_capable);
196
197/*
198 * Each address family might have different locking rules, so we have
199 * one slock key per address family and separate keys for internal and
200 * userspace sockets.
201 */
202static struct lock_class_key af_family_keys[AF_MAX];
203static struct lock_class_key af_family_kern_keys[AF_MAX];
204static struct lock_class_key af_family_slock_keys[AF_MAX];
205static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
206
207/*
208 * Make lock validator output more readable. (we pre-construct these
209 * strings build-time, so that runtime initialization of socket
210 * locks is fast):
211 */
212
213#define _sock_locks(x) \
214 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
215 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
216 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
217 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
218 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
219 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
220 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
221 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
222 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
223 x "27" , x "28" , x "AF_CAN" , \
224 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
225 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
226 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
227 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
228 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
229 x "AF_MAX"
230
231static const char *const af_family_key_strings[AF_MAX+1] = {
232 _sock_locks("sk_lock-")
233};
234static const char *const af_family_slock_key_strings[AF_MAX+1] = {
235 _sock_locks("slock-")
236};
237static const char *const af_family_clock_key_strings[AF_MAX+1] = {
238 _sock_locks("clock-")
239};
240
241static const char *const af_family_kern_key_strings[AF_MAX+1] = {
242 _sock_locks("k-sk_lock-")
243};
244static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-slock-")
246};
247static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
248 _sock_locks("k-clock-")
249};
250static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
251 _sock_locks("rlock-")
252};
253static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
254 _sock_locks("wlock-")
255};
256static const char *const af_family_elock_key_strings[AF_MAX+1] = {
257 _sock_locks("elock-")
258};
259
260/*
261 * sk_callback_lock and sk queues locking rules are per-address-family,
262 * so split the lock classes by using a per-AF key:
263 */
264static struct lock_class_key af_callback_keys[AF_MAX];
265static struct lock_class_key af_rlock_keys[AF_MAX];
266static struct lock_class_key af_wlock_keys[AF_MAX];
267static struct lock_class_key af_elock_keys[AF_MAX];
268static struct lock_class_key af_kern_callback_keys[AF_MAX];
269
270/* Run time adjustable parameters. */
271__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
272EXPORT_SYMBOL(sysctl_wmem_max);
273__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
274EXPORT_SYMBOL(sysctl_rmem_max);
275__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
276__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
277
278/* Maximal space eaten by iovec or ancillary data plus some space */
279int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
280EXPORT_SYMBOL(sysctl_optmem_max);
281
282int sysctl_tstamp_allow_data __read_mostly = 1;
283
284DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
285EXPORT_SYMBOL_GPL(memalloc_socks_key);
286
287/**
288 * sk_set_memalloc - sets %SOCK_MEMALLOC
289 * @sk: socket to set it on
290 *
291 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
292 * It's the responsibility of the admin to adjust min_free_kbytes
293 * to meet the requirements
294 */
295void sk_set_memalloc(struct sock *sk)
296{
297 sock_set_flag(sk, SOCK_MEMALLOC);
298 sk->sk_allocation |= __GFP_MEMALLOC;
299 static_branch_inc(&memalloc_socks_key);
300}
301EXPORT_SYMBOL_GPL(sk_set_memalloc);
302
303void sk_clear_memalloc(struct sock *sk)
304{
305 sock_reset_flag(sk, SOCK_MEMALLOC);
306 sk->sk_allocation &= ~__GFP_MEMALLOC;
307 static_branch_dec(&memalloc_socks_key);
308
309 /*
310 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
311 * progress of swapping. SOCK_MEMALLOC may be cleared while
312 * it has rmem allocations due to the last swapfile being deactivated
313 * but there is a risk that the socket is unusable due to exceeding
314 * the rmem limits. Reclaim the reserves and obey rmem limits again.
315 */
316 sk_mem_reclaim(sk);
317}
318EXPORT_SYMBOL_GPL(sk_clear_memalloc);
319
320int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
321{
322 int ret;
323 unsigned int noreclaim_flag;
324
325 /* these should have been dropped before queueing */
326 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
327
328 noreclaim_flag = memalloc_noreclaim_save();
329 ret = sk->sk_backlog_rcv(sk, skb);
330 memalloc_noreclaim_restore(noreclaim_flag);
331
332 return ret;
333}
334EXPORT_SYMBOL(__sk_backlog_rcv);
335
336void sk_error_report(struct sock *sk)
337{
338 sk->sk_error_report(sk);
339
340 switch (sk->sk_family) {
341 case AF_INET:
342 fallthrough;
343 case AF_INET6:
344 trace_inet_sk_error_report(sk);
345 break;
346 default:
347 break;
348 }
349}
350EXPORT_SYMBOL(sk_error_report);
351
352static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
353{
354 struct __kernel_sock_timeval tv;
355
356 if (timeo == MAX_SCHEDULE_TIMEOUT) {
357 tv.tv_sec = 0;
358 tv.tv_usec = 0;
359 } else {
360 tv.tv_sec = timeo / HZ;
361 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
362 }
363
364 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
365 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
366 *(struct old_timeval32 *)optval = tv32;
367 return sizeof(tv32);
368 }
369
370 if (old_timeval) {
371 struct __kernel_old_timeval old_tv;
372 old_tv.tv_sec = tv.tv_sec;
373 old_tv.tv_usec = tv.tv_usec;
374 *(struct __kernel_old_timeval *)optval = old_tv;
375 return sizeof(old_tv);
376 }
377
378 *(struct __kernel_sock_timeval *)optval = tv;
379 return sizeof(tv);
380}
381
382static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
383 bool old_timeval)
384{
385 struct __kernel_sock_timeval tv;
386
387 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
388 struct old_timeval32 tv32;
389
390 if (optlen < sizeof(tv32))
391 return -EINVAL;
392
393 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
394 return -EFAULT;
395 tv.tv_sec = tv32.tv_sec;
396 tv.tv_usec = tv32.tv_usec;
397 } else if (old_timeval) {
398 struct __kernel_old_timeval old_tv;
399
400 if (optlen < sizeof(old_tv))
401 return -EINVAL;
402 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
403 return -EFAULT;
404 tv.tv_sec = old_tv.tv_sec;
405 tv.tv_usec = old_tv.tv_usec;
406 } else {
407 if (optlen < sizeof(tv))
408 return -EINVAL;
409 if (copy_from_sockptr(&tv, optval, sizeof(tv)))
410 return -EFAULT;
411 }
412 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
413 return -EDOM;
414
415 if (tv.tv_sec < 0) {
416 static int warned __read_mostly;
417
418 *timeo_p = 0;
419 if (warned < 10 && net_ratelimit()) {
420 warned++;
421 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
422 __func__, current->comm, task_pid_nr(current));
423 }
424 return 0;
425 }
426 *timeo_p = MAX_SCHEDULE_TIMEOUT;
427 if (tv.tv_sec == 0 && tv.tv_usec == 0)
428 return 0;
429 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
430 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
431 return 0;
432}
433
434static bool sock_needs_netstamp(const struct sock *sk)
435{
436 switch (sk->sk_family) {
437 case AF_UNSPEC:
438 case AF_UNIX:
439 return false;
440 default:
441 return true;
442 }
443}
444
445static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
446{
447 if (sk->sk_flags & flags) {
448 sk->sk_flags &= ~flags;
449 if (sock_needs_netstamp(sk) &&
450 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
451 net_disable_timestamp();
452 }
453}
454
455
456int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
457{
458 unsigned long flags;
459 struct sk_buff_head *list = &sk->sk_receive_queue;
460
461 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
462 atomic_inc(&sk->sk_drops);
463 trace_sock_rcvqueue_full(sk, skb);
464 return -ENOMEM;
465 }
466
467 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
468 atomic_inc(&sk->sk_drops);
469 return -ENOBUFS;
470 }
471
472 skb->dev = NULL;
473 skb_set_owner_r(skb, sk);
474
475 /* we escape from rcu protected region, make sure we dont leak
476 * a norefcounted dst
477 */
478 skb_dst_force(skb);
479
480 spin_lock_irqsave(&list->lock, flags);
481 sock_skb_set_dropcount(sk, skb);
482 __skb_queue_tail(list, skb);
483 spin_unlock_irqrestore(&list->lock, flags);
484
485 if (!sock_flag(sk, SOCK_DEAD))
486 sk->sk_data_ready(sk);
487 return 0;
488}
489EXPORT_SYMBOL(__sock_queue_rcv_skb);
490
491int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
492{
493 int err;
494
495 err = sk_filter(sk, skb);
496 if (err)
497 return err;
498
499 return __sock_queue_rcv_skb(sk, skb);
500}
501EXPORT_SYMBOL(sock_queue_rcv_skb);
502
503int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
504 const int nested, unsigned int trim_cap, bool refcounted)
505{
506 int rc = NET_RX_SUCCESS;
507
508 if (sk_filter_trim_cap(sk, skb, trim_cap))
509 goto discard_and_relse;
510
511 skb->dev = NULL;
512
513 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
514 atomic_inc(&sk->sk_drops);
515 goto discard_and_relse;
516 }
517 if (nested)
518 bh_lock_sock_nested(sk);
519 else
520 bh_lock_sock(sk);
521 if (!sock_owned_by_user(sk)) {
522 /*
523 * trylock + unlock semantics:
524 */
525 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
526
527 rc = sk_backlog_rcv(sk, skb);
528
529 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
530 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
531 bh_unlock_sock(sk);
532 atomic_inc(&sk->sk_drops);
533 goto discard_and_relse;
534 }
535
536 bh_unlock_sock(sk);
537out:
538 if (refcounted)
539 sock_put(sk);
540 return rc;
541discard_and_relse:
542 kfree_skb(skb);
543 goto out;
544}
545EXPORT_SYMBOL(__sk_receive_skb);
546
547INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
548 u32));
549INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
550 u32));
551struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
552{
553 struct dst_entry *dst = __sk_dst_get(sk);
554
555 if (dst && dst->obsolete &&
556 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
557 dst, cookie) == NULL) {
558 sk_tx_queue_clear(sk);
559 sk->sk_dst_pending_confirm = 0;
560 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
561 dst_release(dst);
562 return NULL;
563 }
564
565 return dst;
566}
567EXPORT_SYMBOL(__sk_dst_check);
568
569struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
570{
571 struct dst_entry *dst = sk_dst_get(sk);
572
573 if (dst && dst->obsolete &&
574 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
575 dst, cookie) == NULL) {
576 sk_dst_reset(sk);
577 dst_release(dst);
578 return NULL;
579 }
580
581 return dst;
582}
583EXPORT_SYMBOL(sk_dst_check);
584
585static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
586{
587 int ret = -ENOPROTOOPT;
588#ifdef CONFIG_NETDEVICES
589 struct net *net = sock_net(sk);
590
591 /* Sorry... */
592 ret = -EPERM;
593 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
594 goto out;
595
596 ret = -EINVAL;
597 if (ifindex < 0)
598 goto out;
599
600 sk->sk_bound_dev_if = ifindex;
601 if (sk->sk_prot->rehash)
602 sk->sk_prot->rehash(sk);
603 sk_dst_reset(sk);
604
605 ret = 0;
606
607out:
608#endif
609
610 return ret;
611}
612
613int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
614{
615 int ret;
616
617 if (lock_sk)
618 lock_sock(sk);
619 ret = sock_bindtoindex_locked(sk, ifindex);
620 if (lock_sk)
621 release_sock(sk);
622
623 return ret;
624}
625EXPORT_SYMBOL(sock_bindtoindex);
626
627static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
628{
629 int ret = -ENOPROTOOPT;
630#ifdef CONFIG_NETDEVICES
631 struct net *net = sock_net(sk);
632 char devname[IFNAMSIZ];
633 int index;
634
635 ret = -EINVAL;
636 if (optlen < 0)
637 goto out;
638
639 /* Bind this socket to a particular device like "eth0",
640 * as specified in the passed interface name. If the
641 * name is "" or the option length is zero the socket
642 * is not bound.
643 */
644 if (optlen > IFNAMSIZ - 1)
645 optlen = IFNAMSIZ - 1;
646 memset(devname, 0, sizeof(devname));
647
648 ret = -EFAULT;
649 if (copy_from_sockptr(devname, optval, optlen))
650 goto out;
651
652 index = 0;
653 if (devname[0] != '\0') {
654 struct net_device *dev;
655
656 rcu_read_lock();
657 dev = dev_get_by_name_rcu(net, devname);
658 if (dev)
659 index = dev->ifindex;
660 rcu_read_unlock();
661 ret = -ENODEV;
662 if (!dev)
663 goto out;
664 }
665
666 return sock_bindtoindex(sk, index, true);
667out:
668#endif
669
670 return ret;
671}
672
673static int sock_getbindtodevice(struct sock *sk, char __user *optval,
674 int __user *optlen, int len)
675{
676 int ret = -ENOPROTOOPT;
677#ifdef CONFIG_NETDEVICES
678 struct net *net = sock_net(sk);
679 char devname[IFNAMSIZ];
680
681 if (sk->sk_bound_dev_if == 0) {
682 len = 0;
683 goto zero;
684 }
685
686 ret = -EINVAL;
687 if (len < IFNAMSIZ)
688 goto out;
689
690 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
691 if (ret)
692 goto out;
693
694 len = strlen(devname) + 1;
695
696 ret = -EFAULT;
697 if (copy_to_user(optval, devname, len))
698 goto out;
699
700zero:
701 ret = -EFAULT;
702 if (put_user(len, optlen))
703 goto out;
704
705 ret = 0;
706
707out:
708#endif
709
710 return ret;
711}
712
713bool sk_mc_loop(struct sock *sk)
714{
715 if (dev_recursion_level())
716 return false;
717 if (!sk)
718 return true;
719 switch (sk->sk_family) {
720 case AF_INET:
721 return inet_sk(sk)->mc_loop;
722#if IS_ENABLED(CONFIG_IPV6)
723 case AF_INET6:
724 return inet6_sk(sk)->mc_loop;
725#endif
726 }
727 WARN_ON_ONCE(1);
728 return true;
729}
730EXPORT_SYMBOL(sk_mc_loop);
731
732void sock_set_reuseaddr(struct sock *sk)
733{
734 lock_sock(sk);
735 sk->sk_reuse = SK_CAN_REUSE;
736 release_sock(sk);
737}
738EXPORT_SYMBOL(sock_set_reuseaddr);
739
740void sock_set_reuseport(struct sock *sk)
741{
742 lock_sock(sk);
743 sk->sk_reuseport = true;
744 release_sock(sk);
745}
746EXPORT_SYMBOL(sock_set_reuseport);
747
748void sock_no_linger(struct sock *sk)
749{
750 lock_sock(sk);
751 sk->sk_lingertime = 0;
752 sock_set_flag(sk, SOCK_LINGER);
753 release_sock(sk);
754}
755EXPORT_SYMBOL(sock_no_linger);
756
757void sock_set_priority(struct sock *sk, u32 priority)
758{
759 lock_sock(sk);
760 sk->sk_priority = priority;
761 release_sock(sk);
762}
763EXPORT_SYMBOL(sock_set_priority);
764
765void sock_set_sndtimeo(struct sock *sk, s64 secs)
766{
767 lock_sock(sk);
768 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
769 sk->sk_sndtimeo = secs * HZ;
770 else
771 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
772 release_sock(sk);
773}
774EXPORT_SYMBOL(sock_set_sndtimeo);
775
776static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
777{
778 if (val) {
779 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
780 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
781 sock_set_flag(sk, SOCK_RCVTSTAMP);
782 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
783 } else {
784 sock_reset_flag(sk, SOCK_RCVTSTAMP);
785 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
786 }
787}
788
789void sock_enable_timestamps(struct sock *sk)
790{
791 lock_sock(sk);
792 __sock_set_timestamps(sk, true, false, true);
793 release_sock(sk);
794}
795EXPORT_SYMBOL(sock_enable_timestamps);
796
797void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
798{
799 switch (optname) {
800 case SO_TIMESTAMP_OLD:
801 __sock_set_timestamps(sk, valbool, false, false);
802 break;
803 case SO_TIMESTAMP_NEW:
804 __sock_set_timestamps(sk, valbool, true, false);
805 break;
806 case SO_TIMESTAMPNS_OLD:
807 __sock_set_timestamps(sk, valbool, false, true);
808 break;
809 case SO_TIMESTAMPNS_NEW:
810 __sock_set_timestamps(sk, valbool, true, true);
811 break;
812 }
813}
814
815static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
816{
817 struct net *net = sock_net(sk);
818 struct net_device *dev = NULL;
819 bool match = false;
820 int *vclock_index;
821 int i, num;
822
823 if (sk->sk_bound_dev_if)
824 dev = dev_get_by_index(net, sk->sk_bound_dev_if);
825
826 if (!dev) {
827 pr_err("%s: sock not bind to device\n", __func__);
828 return -EOPNOTSUPP;
829 }
830
831 num = ethtool_get_phc_vclocks(dev, &vclock_index);
832 for (i = 0; i < num; i++) {
833 if (*(vclock_index + i) == phc_index) {
834 match = true;
835 break;
836 }
837 }
838
839 if (num > 0)
840 kfree(vclock_index);
841
842 if (!match)
843 return -EINVAL;
844
845 sk->sk_bind_phc = phc_index;
846
847 return 0;
848}
849
850int sock_set_timestamping(struct sock *sk, int optname,
851 struct so_timestamping timestamping)
852{
853 int val = timestamping.flags;
854 int ret;
855
856 if (val & ~SOF_TIMESTAMPING_MASK)
857 return -EINVAL;
858
859 if (val & SOF_TIMESTAMPING_OPT_ID &&
860 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
861 if (sk->sk_protocol == IPPROTO_TCP &&
862 sk->sk_type == SOCK_STREAM) {
863 if ((1 << sk->sk_state) &
864 (TCPF_CLOSE | TCPF_LISTEN))
865 return -EINVAL;
866 sk->sk_tskey = tcp_sk(sk)->snd_una;
867 } else {
868 sk->sk_tskey = 0;
869 }
870 }
871
872 if (val & SOF_TIMESTAMPING_OPT_STATS &&
873 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
874 return -EINVAL;
875
876 if (val & SOF_TIMESTAMPING_BIND_PHC) {
877 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
878 if (ret)
879 return ret;
880 }
881
882 sk->sk_tsflags = val;
883 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
884
885 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
886 sock_enable_timestamp(sk,
887 SOCK_TIMESTAMPING_RX_SOFTWARE);
888 else
889 sock_disable_timestamp(sk,
890 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
891 return 0;
892}
893
894void sock_set_keepalive(struct sock *sk)
895{
896 lock_sock(sk);
897 if (sk->sk_prot->keepalive)
898 sk->sk_prot->keepalive(sk, true);
899 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
900 release_sock(sk);
901}
902EXPORT_SYMBOL(sock_set_keepalive);
903
904static void __sock_set_rcvbuf(struct sock *sk, int val)
905{
906 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
907 * as a negative value.
908 */
909 val = min_t(int, val, INT_MAX / 2);
910 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
911
912 /* We double it on the way in to account for "struct sk_buff" etc.
913 * overhead. Applications assume that the SO_RCVBUF setting they make
914 * will allow that much actual data to be received on that socket.
915 *
916 * Applications are unaware that "struct sk_buff" and other overheads
917 * allocate from the receive buffer during socket buffer allocation.
918 *
919 * And after considering the possible alternatives, returning the value
920 * we actually used in getsockopt is the most desirable behavior.
921 */
922 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
923}
924
925void sock_set_rcvbuf(struct sock *sk, int val)
926{
927 lock_sock(sk);
928 __sock_set_rcvbuf(sk, val);
929 release_sock(sk);
930}
931EXPORT_SYMBOL(sock_set_rcvbuf);
932
933static void __sock_set_mark(struct sock *sk, u32 val)
934{
935 if (val != sk->sk_mark) {
936 sk->sk_mark = val;
937 sk_dst_reset(sk);
938 }
939}
940
941void sock_set_mark(struct sock *sk, u32 val)
942{
943 lock_sock(sk);
944 __sock_set_mark(sk, val);
945 release_sock(sk);
946}
947EXPORT_SYMBOL(sock_set_mark);
948
949/*
950 * This is meant for all protocols to use and covers goings on
951 * at the socket level. Everything here is generic.
952 */
953
954int sock_setsockopt(struct socket *sock, int level, int optname,
955 sockptr_t optval, unsigned int optlen)
956{
957 struct so_timestamping timestamping;
958 struct sock_txtime sk_txtime;
959 struct sock *sk = sock->sk;
960 int val;
961 int valbool;
962 struct linger ling;
963 int ret = 0;
964
965 /*
966 * Options without arguments
967 */
968
969 if (optname == SO_BINDTODEVICE)
970 return sock_setbindtodevice(sk, optval, optlen);
971
972 if (optlen < sizeof(int))
973 return -EINVAL;
974
975 if (copy_from_sockptr(&val, optval, sizeof(val)))
976 return -EFAULT;
977
978 valbool = val ? 1 : 0;
979
980 lock_sock(sk);
981
982 switch (optname) {
983 case SO_DEBUG:
984 if (val && !capable(CAP_NET_ADMIN))
985 ret = -EACCES;
986 else
987 sock_valbool_flag(sk, SOCK_DBG, valbool);
988 break;
989 case SO_REUSEADDR:
990 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
991 break;
992 case SO_REUSEPORT:
993 sk->sk_reuseport = valbool;
994 break;
995 case SO_TYPE:
996 case SO_PROTOCOL:
997 case SO_DOMAIN:
998 case SO_ERROR:
999 ret = -ENOPROTOOPT;
1000 break;
1001 case SO_DONTROUTE:
1002 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1003 sk_dst_reset(sk);
1004 break;
1005 case SO_BROADCAST:
1006 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1007 break;
1008 case SO_SNDBUF:
1009 /* Don't error on this BSD doesn't and if you think
1010 * about it this is right. Otherwise apps have to
1011 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1012 * are treated in BSD as hints
1013 */
1014 val = min_t(u32, val, sysctl_wmem_max);
1015set_sndbuf:
1016 /* Ensure val * 2 fits into an int, to prevent max_t()
1017 * from treating it as a negative value.
1018 */
1019 val = min_t(int, val, INT_MAX / 2);
1020 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1021 WRITE_ONCE(sk->sk_sndbuf,
1022 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1023 /* Wake up sending tasks if we upped the value. */
1024 sk->sk_write_space(sk);
1025 break;
1026
1027 case SO_SNDBUFFORCE:
1028 if (!capable(CAP_NET_ADMIN)) {
1029 ret = -EPERM;
1030 break;
1031 }
1032
1033 /* No negative values (to prevent underflow, as val will be
1034 * multiplied by 2).
1035 */
1036 if (val < 0)
1037 val = 0;
1038 goto set_sndbuf;
1039
1040 case SO_RCVBUF:
1041 /* Don't error on this BSD doesn't and if you think
1042 * about it this is right. Otherwise apps have to
1043 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1044 * are treated in BSD as hints
1045 */
1046 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
1047 break;
1048
1049 case SO_RCVBUFFORCE:
1050 if (!capable(CAP_NET_ADMIN)) {
1051 ret = -EPERM;
1052 break;
1053 }
1054
1055 /* No negative values (to prevent underflow, as val will be
1056 * multiplied by 2).
1057 */
1058 __sock_set_rcvbuf(sk, max(val, 0));
1059 break;
1060
1061 case SO_KEEPALIVE:
1062 if (sk->sk_prot->keepalive)
1063 sk->sk_prot->keepalive(sk, valbool);
1064 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1065 break;
1066
1067 case SO_OOBINLINE:
1068 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1069 break;
1070
1071 case SO_NO_CHECK:
1072 sk->sk_no_check_tx = valbool;
1073 break;
1074
1075 case SO_PRIORITY:
1076 if ((val >= 0 && val <= 6) ||
1077 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1078 sk->sk_priority = val;
1079 else
1080 ret = -EPERM;
1081 break;
1082
1083 case SO_LINGER:
1084 if (optlen < sizeof(ling)) {
1085 ret = -EINVAL; /* 1003.1g */
1086 break;
1087 }
1088 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1089 ret = -EFAULT;
1090 break;
1091 }
1092 if (!ling.l_onoff)
1093 sock_reset_flag(sk, SOCK_LINGER);
1094 else {
1095#if (BITS_PER_LONG == 32)
1096 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1097 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1098 else
1099#endif
1100 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1101 sock_set_flag(sk, SOCK_LINGER);
1102 }
1103 break;
1104
1105 case SO_BSDCOMPAT:
1106 break;
1107
1108 case SO_PASSCRED:
1109 if (valbool)
1110 set_bit(SOCK_PASSCRED, &sock->flags);
1111 else
1112 clear_bit(SOCK_PASSCRED, &sock->flags);
1113 break;
1114
1115 case SO_TIMESTAMP_OLD:
1116 case SO_TIMESTAMP_NEW:
1117 case SO_TIMESTAMPNS_OLD:
1118 case SO_TIMESTAMPNS_NEW:
1119 sock_set_timestamp(sk, optname, valbool);
1120 break;
1121
1122 case SO_TIMESTAMPING_NEW:
1123 case SO_TIMESTAMPING_OLD:
1124 if (optlen == sizeof(timestamping)) {
1125 if (copy_from_sockptr(×tamping, optval,
1126 sizeof(timestamping))) {
1127 ret = -EFAULT;
1128 break;
1129 }
1130 } else {
1131 memset(×tamping, 0, sizeof(timestamping));
1132 timestamping.flags = val;
1133 }
1134 ret = sock_set_timestamping(sk, optname, timestamping);
1135 break;
1136
1137 case SO_RCVLOWAT:
1138 if (val < 0)
1139 val = INT_MAX;
1140 if (sock->ops->set_rcvlowat)
1141 ret = sock->ops->set_rcvlowat(sk, val);
1142 else
1143 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1144 break;
1145
1146 case SO_RCVTIMEO_OLD:
1147 case SO_RCVTIMEO_NEW:
1148 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1149 optlen, optname == SO_RCVTIMEO_OLD);
1150 break;
1151
1152 case SO_SNDTIMEO_OLD:
1153 case SO_SNDTIMEO_NEW:
1154 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1155 optlen, optname == SO_SNDTIMEO_OLD);
1156 break;
1157
1158 case SO_ATTACH_FILTER: {
1159 struct sock_fprog fprog;
1160
1161 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1162 if (!ret)
1163 ret = sk_attach_filter(&fprog, sk);
1164 break;
1165 }
1166 case SO_ATTACH_BPF:
1167 ret = -EINVAL;
1168 if (optlen == sizeof(u32)) {
1169 u32 ufd;
1170
1171 ret = -EFAULT;
1172 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1173 break;
1174
1175 ret = sk_attach_bpf(ufd, sk);
1176 }
1177 break;
1178
1179 case SO_ATTACH_REUSEPORT_CBPF: {
1180 struct sock_fprog fprog;
1181
1182 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1183 if (!ret)
1184 ret = sk_reuseport_attach_filter(&fprog, sk);
1185 break;
1186 }
1187 case SO_ATTACH_REUSEPORT_EBPF:
1188 ret = -EINVAL;
1189 if (optlen == sizeof(u32)) {
1190 u32 ufd;
1191
1192 ret = -EFAULT;
1193 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1194 break;
1195
1196 ret = sk_reuseport_attach_bpf(ufd, sk);
1197 }
1198 break;
1199
1200 case SO_DETACH_REUSEPORT_BPF:
1201 ret = reuseport_detach_prog(sk);
1202 break;
1203
1204 case SO_DETACH_FILTER:
1205 ret = sk_detach_filter(sk);
1206 break;
1207
1208 case SO_LOCK_FILTER:
1209 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1210 ret = -EPERM;
1211 else
1212 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1213 break;
1214
1215 case SO_PASSSEC:
1216 if (valbool)
1217 set_bit(SOCK_PASSSEC, &sock->flags);
1218 else
1219 clear_bit(SOCK_PASSSEC, &sock->flags);
1220 break;
1221 case SO_MARK:
1222 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1223 ret = -EPERM;
1224 break;
1225 }
1226
1227 __sock_set_mark(sk, val);
1228 break;
1229
1230 case SO_RXQ_OVFL:
1231 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1232 break;
1233
1234 case SO_WIFI_STATUS:
1235 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1236 break;
1237
1238 case SO_PEEK_OFF:
1239 if (sock->ops->set_peek_off)
1240 ret = sock->ops->set_peek_off(sk, val);
1241 else
1242 ret = -EOPNOTSUPP;
1243 break;
1244
1245 case SO_NOFCS:
1246 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1247 break;
1248
1249 case SO_SELECT_ERR_QUEUE:
1250 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1251 break;
1252
1253#ifdef CONFIG_NET_RX_BUSY_POLL
1254 case SO_BUSY_POLL:
1255 /* allow unprivileged users to decrease the value */
1256 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1257 ret = -EPERM;
1258 else {
1259 if (val < 0)
1260 ret = -EINVAL;
1261 else
1262 WRITE_ONCE(sk->sk_ll_usec, val);
1263 }
1264 break;
1265 case SO_PREFER_BUSY_POLL:
1266 if (valbool && !capable(CAP_NET_ADMIN))
1267 ret = -EPERM;
1268 else
1269 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1270 break;
1271 case SO_BUSY_POLL_BUDGET:
1272 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1273 ret = -EPERM;
1274 } else {
1275 if (val < 0 || val > U16_MAX)
1276 ret = -EINVAL;
1277 else
1278 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1279 }
1280 break;
1281#endif
1282
1283 case SO_MAX_PACING_RATE:
1284 {
1285 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1286
1287 if (sizeof(ulval) != sizeof(val) &&
1288 optlen >= sizeof(ulval) &&
1289 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1290 ret = -EFAULT;
1291 break;
1292 }
1293 if (ulval != ~0UL)
1294 cmpxchg(&sk->sk_pacing_status,
1295 SK_PACING_NONE,
1296 SK_PACING_NEEDED);
1297 sk->sk_max_pacing_rate = ulval;
1298 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1299 break;
1300 }
1301 case SO_INCOMING_CPU:
1302 WRITE_ONCE(sk->sk_incoming_cpu, val);
1303 break;
1304
1305 case SO_CNX_ADVICE:
1306 if (val == 1)
1307 dst_negative_advice(sk);
1308 break;
1309
1310 case SO_ZEROCOPY:
1311 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1312 if (!((sk->sk_type == SOCK_STREAM &&
1313 sk->sk_protocol == IPPROTO_TCP) ||
1314 (sk->sk_type == SOCK_DGRAM &&
1315 sk->sk_protocol == IPPROTO_UDP)))
1316 ret = -ENOTSUPP;
1317 } else if (sk->sk_family != PF_RDS) {
1318 ret = -ENOTSUPP;
1319 }
1320 if (!ret) {
1321 if (val < 0 || val > 1)
1322 ret = -EINVAL;
1323 else
1324 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1325 }
1326 break;
1327
1328 case SO_TXTIME:
1329 if (optlen != sizeof(struct sock_txtime)) {
1330 ret = -EINVAL;
1331 break;
1332 } else if (copy_from_sockptr(&sk_txtime, optval,
1333 sizeof(struct sock_txtime))) {
1334 ret = -EFAULT;
1335 break;
1336 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1337 ret = -EINVAL;
1338 break;
1339 }
1340 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1341 * scheduler has enough safe guards.
1342 */
1343 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1344 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1345 ret = -EPERM;
1346 break;
1347 }
1348 sock_valbool_flag(sk, SOCK_TXTIME, true);
1349 sk->sk_clockid = sk_txtime.clockid;
1350 sk->sk_txtime_deadline_mode =
1351 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1352 sk->sk_txtime_report_errors =
1353 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1354 break;
1355
1356 case SO_BINDTOIFINDEX:
1357 ret = sock_bindtoindex_locked(sk, val);
1358 break;
1359
1360 default:
1361 ret = -ENOPROTOOPT;
1362 break;
1363 }
1364 release_sock(sk);
1365 return ret;
1366}
1367EXPORT_SYMBOL(sock_setsockopt);
1368
1369static const struct cred *sk_get_peer_cred(struct sock *sk)
1370{
1371 const struct cred *cred;
1372
1373 spin_lock(&sk->sk_peer_lock);
1374 cred = get_cred(sk->sk_peer_cred);
1375 spin_unlock(&sk->sk_peer_lock);
1376
1377 return cred;
1378}
1379
1380static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1381 struct ucred *ucred)
1382{
1383 ucred->pid = pid_vnr(pid);
1384 ucred->uid = ucred->gid = -1;
1385 if (cred) {
1386 struct user_namespace *current_ns = current_user_ns();
1387
1388 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1389 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1390 }
1391}
1392
1393static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1394{
1395 struct user_namespace *user_ns = current_user_ns();
1396 int i;
1397
1398 for (i = 0; i < src->ngroups; i++)
1399 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1400 return -EFAULT;
1401
1402 return 0;
1403}
1404
1405int sock_getsockopt(struct socket *sock, int level, int optname,
1406 char __user *optval, int __user *optlen)
1407{
1408 struct sock *sk = sock->sk;
1409
1410 union {
1411 int val;
1412 u64 val64;
1413 unsigned long ulval;
1414 struct linger ling;
1415 struct old_timeval32 tm32;
1416 struct __kernel_old_timeval tm;
1417 struct __kernel_sock_timeval stm;
1418 struct sock_txtime txtime;
1419 struct so_timestamping timestamping;
1420 } v;
1421
1422 int lv = sizeof(int);
1423 int len;
1424
1425 if (get_user(len, optlen))
1426 return -EFAULT;
1427 if (len < 0)
1428 return -EINVAL;
1429
1430 memset(&v, 0, sizeof(v));
1431
1432 switch (optname) {
1433 case SO_DEBUG:
1434 v.val = sock_flag(sk, SOCK_DBG);
1435 break;
1436
1437 case SO_DONTROUTE:
1438 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1439 break;
1440
1441 case SO_BROADCAST:
1442 v.val = sock_flag(sk, SOCK_BROADCAST);
1443 break;
1444
1445 case SO_SNDBUF:
1446 v.val = sk->sk_sndbuf;
1447 break;
1448
1449 case SO_RCVBUF:
1450 v.val = sk->sk_rcvbuf;
1451 break;
1452
1453 case SO_REUSEADDR:
1454 v.val = sk->sk_reuse;
1455 break;
1456
1457 case SO_REUSEPORT:
1458 v.val = sk->sk_reuseport;
1459 break;
1460
1461 case SO_KEEPALIVE:
1462 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1463 break;
1464
1465 case SO_TYPE:
1466 v.val = sk->sk_type;
1467 break;
1468
1469 case SO_PROTOCOL:
1470 v.val = sk->sk_protocol;
1471 break;
1472
1473 case SO_DOMAIN:
1474 v.val = sk->sk_family;
1475 break;
1476
1477 case SO_ERROR:
1478 v.val = -sock_error(sk);
1479 if (v.val == 0)
1480 v.val = xchg(&sk->sk_err_soft, 0);
1481 break;
1482
1483 case SO_OOBINLINE:
1484 v.val = sock_flag(sk, SOCK_URGINLINE);
1485 break;
1486
1487 case SO_NO_CHECK:
1488 v.val = sk->sk_no_check_tx;
1489 break;
1490
1491 case SO_PRIORITY:
1492 v.val = sk->sk_priority;
1493 break;
1494
1495 case SO_LINGER:
1496 lv = sizeof(v.ling);
1497 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1498 v.ling.l_linger = sk->sk_lingertime / HZ;
1499 break;
1500
1501 case SO_BSDCOMPAT:
1502 break;
1503
1504 case SO_TIMESTAMP_OLD:
1505 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1506 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1507 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1508 break;
1509
1510 case SO_TIMESTAMPNS_OLD:
1511 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1512 break;
1513
1514 case SO_TIMESTAMP_NEW:
1515 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1516 break;
1517
1518 case SO_TIMESTAMPNS_NEW:
1519 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1520 break;
1521
1522 case SO_TIMESTAMPING_OLD:
1523 lv = sizeof(v.timestamping);
1524 v.timestamping.flags = sk->sk_tsflags;
1525 v.timestamping.bind_phc = sk->sk_bind_phc;
1526 break;
1527
1528 case SO_RCVTIMEO_OLD:
1529 case SO_RCVTIMEO_NEW:
1530 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1531 break;
1532
1533 case SO_SNDTIMEO_OLD:
1534 case SO_SNDTIMEO_NEW:
1535 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1536 break;
1537
1538 case SO_RCVLOWAT:
1539 v.val = sk->sk_rcvlowat;
1540 break;
1541
1542 case SO_SNDLOWAT:
1543 v.val = 1;
1544 break;
1545
1546 case SO_PASSCRED:
1547 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1548 break;
1549
1550 case SO_PEERCRED:
1551 {
1552 struct ucred peercred;
1553 if (len > sizeof(peercred))
1554 len = sizeof(peercred);
1555
1556 spin_lock(&sk->sk_peer_lock);
1557 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1558 spin_unlock(&sk->sk_peer_lock);
1559
1560 if (copy_to_user(optval, &peercred, len))
1561 return -EFAULT;
1562 goto lenout;
1563 }
1564
1565 case SO_PEERGROUPS:
1566 {
1567 const struct cred *cred;
1568 int ret, n;
1569
1570 cred = sk_get_peer_cred(sk);
1571 if (!cred)
1572 return -ENODATA;
1573
1574 n = cred->group_info->ngroups;
1575 if (len < n * sizeof(gid_t)) {
1576 len = n * sizeof(gid_t);
1577 put_cred(cred);
1578 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1579 }
1580 len = n * sizeof(gid_t);
1581
1582 ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1583 put_cred(cred);
1584 if (ret)
1585 return ret;
1586 goto lenout;
1587 }
1588
1589 case SO_PEERNAME:
1590 {
1591 char address[128];
1592
1593 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1594 if (lv < 0)
1595 return -ENOTCONN;
1596 if (lv < len)
1597 return -EINVAL;
1598 if (copy_to_user(optval, address, len))
1599 return -EFAULT;
1600 goto lenout;
1601 }
1602
1603 /* Dubious BSD thing... Probably nobody even uses it, but
1604 * the UNIX standard wants it for whatever reason... -DaveM
1605 */
1606 case SO_ACCEPTCONN:
1607 v.val = sk->sk_state == TCP_LISTEN;
1608 break;
1609
1610 case SO_PASSSEC:
1611 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1612 break;
1613
1614 case SO_PEERSEC:
1615 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1616
1617 case SO_MARK:
1618 v.val = sk->sk_mark;
1619 break;
1620
1621 case SO_RXQ_OVFL:
1622 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1623 break;
1624
1625 case SO_WIFI_STATUS:
1626 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1627 break;
1628
1629 case SO_PEEK_OFF:
1630 if (!sock->ops->set_peek_off)
1631 return -EOPNOTSUPP;
1632
1633 v.val = sk->sk_peek_off;
1634 break;
1635 case SO_NOFCS:
1636 v.val = sock_flag(sk, SOCK_NOFCS);
1637 break;
1638
1639 case SO_BINDTODEVICE:
1640 return sock_getbindtodevice(sk, optval, optlen, len);
1641
1642 case SO_GET_FILTER:
1643 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1644 if (len < 0)
1645 return len;
1646
1647 goto lenout;
1648
1649 case SO_LOCK_FILTER:
1650 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1651 break;
1652
1653 case SO_BPF_EXTENSIONS:
1654 v.val = bpf_tell_extensions();
1655 break;
1656
1657 case SO_SELECT_ERR_QUEUE:
1658 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1659 break;
1660
1661#ifdef CONFIG_NET_RX_BUSY_POLL
1662 case SO_BUSY_POLL:
1663 v.val = sk->sk_ll_usec;
1664 break;
1665 case SO_PREFER_BUSY_POLL:
1666 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1667 break;
1668#endif
1669
1670 case SO_MAX_PACING_RATE:
1671 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1672 lv = sizeof(v.ulval);
1673 v.ulval = sk->sk_max_pacing_rate;
1674 } else {
1675 /* 32bit version */
1676 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1677 }
1678 break;
1679
1680 case SO_INCOMING_CPU:
1681 v.val = READ_ONCE(sk->sk_incoming_cpu);
1682 break;
1683
1684 case SO_MEMINFO:
1685 {
1686 u32 meminfo[SK_MEMINFO_VARS];
1687
1688 sk_get_meminfo(sk, meminfo);
1689
1690 len = min_t(unsigned int, len, sizeof(meminfo));
1691 if (copy_to_user(optval, &meminfo, len))
1692 return -EFAULT;
1693
1694 goto lenout;
1695 }
1696
1697#ifdef CONFIG_NET_RX_BUSY_POLL
1698 case SO_INCOMING_NAPI_ID:
1699 v.val = READ_ONCE(sk->sk_napi_id);
1700
1701 /* aggregate non-NAPI IDs down to 0 */
1702 if (v.val < MIN_NAPI_ID)
1703 v.val = 0;
1704
1705 break;
1706#endif
1707
1708 case SO_COOKIE:
1709 lv = sizeof(u64);
1710 if (len < lv)
1711 return -EINVAL;
1712 v.val64 = sock_gen_cookie(sk);
1713 break;
1714
1715 case SO_ZEROCOPY:
1716 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1717 break;
1718
1719 case SO_TXTIME:
1720 lv = sizeof(v.txtime);
1721 v.txtime.clockid = sk->sk_clockid;
1722 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1723 SOF_TXTIME_DEADLINE_MODE : 0;
1724 v.txtime.flags |= sk->sk_txtime_report_errors ?
1725 SOF_TXTIME_REPORT_ERRORS : 0;
1726 break;
1727
1728 case SO_BINDTOIFINDEX:
1729 v.val = sk->sk_bound_dev_if;
1730 break;
1731
1732 case SO_NETNS_COOKIE:
1733 lv = sizeof(u64);
1734 if (len != lv)
1735 return -EINVAL;
1736 v.val64 = sock_net(sk)->net_cookie;
1737 break;
1738
1739 default:
1740 /* We implement the SO_SNDLOWAT etc to not be settable
1741 * (1003.1g 7).
1742 */
1743 return -ENOPROTOOPT;
1744 }
1745
1746 if (len > lv)
1747 len = lv;
1748 if (copy_to_user(optval, &v, len))
1749 return -EFAULT;
1750lenout:
1751 if (put_user(len, optlen))
1752 return -EFAULT;
1753 return 0;
1754}
1755
1756/*
1757 * Initialize an sk_lock.
1758 *
1759 * (We also register the sk_lock with the lock validator.)
1760 */
1761static inline void sock_lock_init(struct sock *sk)
1762{
1763 if (sk->sk_kern_sock)
1764 sock_lock_init_class_and_name(
1765 sk,
1766 af_family_kern_slock_key_strings[sk->sk_family],
1767 af_family_kern_slock_keys + sk->sk_family,
1768 af_family_kern_key_strings[sk->sk_family],
1769 af_family_kern_keys + sk->sk_family);
1770 else
1771 sock_lock_init_class_and_name(
1772 sk,
1773 af_family_slock_key_strings[sk->sk_family],
1774 af_family_slock_keys + sk->sk_family,
1775 af_family_key_strings[sk->sk_family],
1776 af_family_keys + sk->sk_family);
1777}
1778
1779/*
1780 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1781 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1782 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1783 */
1784static void sock_copy(struct sock *nsk, const struct sock *osk)
1785{
1786 const struct proto *prot = READ_ONCE(osk->sk_prot);
1787#ifdef CONFIG_SECURITY_NETWORK
1788 void *sptr = nsk->sk_security;
1789#endif
1790
1791 /* If we move sk_tx_queue_mapping out of the private section,
1792 * we must check if sk_tx_queue_clear() is called after
1793 * sock_copy() in sk_clone_lock().
1794 */
1795 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1796 offsetof(struct sock, sk_dontcopy_begin) ||
1797 offsetof(struct sock, sk_tx_queue_mapping) >=
1798 offsetof(struct sock, sk_dontcopy_end));
1799
1800 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1801
1802 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1803 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1804
1805#ifdef CONFIG_SECURITY_NETWORK
1806 nsk->sk_security = sptr;
1807 security_sk_clone(osk, nsk);
1808#endif
1809}
1810
1811static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1812 int family)
1813{
1814 struct sock *sk;
1815 struct kmem_cache *slab;
1816
1817 slab = prot->slab;
1818 if (slab != NULL) {
1819 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1820 if (!sk)
1821 return sk;
1822 if (want_init_on_alloc(priority))
1823 sk_prot_clear_nulls(sk, prot->obj_size);
1824 } else
1825 sk = kmalloc(prot->obj_size, priority);
1826
1827 if (sk != NULL) {
1828 if (security_sk_alloc(sk, family, priority))
1829 goto out_free;
1830
1831 if (!try_module_get(prot->owner))
1832 goto out_free_sec;
1833 }
1834
1835 return sk;
1836
1837out_free_sec:
1838 security_sk_free(sk);
1839out_free:
1840 if (slab != NULL)
1841 kmem_cache_free(slab, sk);
1842 else
1843 kfree(sk);
1844 return NULL;
1845}
1846
1847static void sk_prot_free(struct proto *prot, struct sock *sk)
1848{
1849 struct kmem_cache *slab;
1850 struct module *owner;
1851
1852 owner = prot->owner;
1853 slab = prot->slab;
1854
1855 cgroup_sk_free(&sk->sk_cgrp_data);
1856 mem_cgroup_sk_free(sk);
1857 security_sk_free(sk);
1858 if (slab != NULL)
1859 kmem_cache_free(slab, sk);
1860 else
1861 kfree(sk);
1862 module_put(owner);
1863}
1864
1865/**
1866 * sk_alloc - All socket objects are allocated here
1867 * @net: the applicable net namespace
1868 * @family: protocol family
1869 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1870 * @prot: struct proto associated with this new sock instance
1871 * @kern: is this to be a kernel socket?
1872 */
1873struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1874 struct proto *prot, int kern)
1875{
1876 struct sock *sk;
1877
1878 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1879 if (sk) {
1880 sk->sk_family = family;
1881 /*
1882 * See comment in struct sock definition to understand
1883 * why we need sk_prot_creator -acme
1884 */
1885 sk->sk_prot = sk->sk_prot_creator = prot;
1886 sk->sk_kern_sock = kern;
1887 sock_lock_init(sk);
1888 sk->sk_net_refcnt = kern ? 0 : 1;
1889 if (likely(sk->sk_net_refcnt)) {
1890 get_net(net);
1891 sock_inuse_add(net, 1);
1892 }
1893
1894 sock_net_set(sk, net);
1895 refcount_set(&sk->sk_wmem_alloc, 1);
1896
1897 mem_cgroup_sk_alloc(sk);
1898 cgroup_sk_alloc(&sk->sk_cgrp_data);
1899 sock_update_classid(&sk->sk_cgrp_data);
1900 sock_update_netprioidx(&sk->sk_cgrp_data);
1901 sk_tx_queue_clear(sk);
1902 }
1903
1904 return sk;
1905}
1906EXPORT_SYMBOL(sk_alloc);
1907
1908/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1909 * grace period. This is the case for UDP sockets and TCP listeners.
1910 */
1911static void __sk_destruct(struct rcu_head *head)
1912{
1913 struct sock *sk = container_of(head, struct sock, sk_rcu);
1914 struct sk_filter *filter;
1915
1916 if (sk->sk_destruct)
1917 sk->sk_destruct(sk);
1918
1919 filter = rcu_dereference_check(sk->sk_filter,
1920 refcount_read(&sk->sk_wmem_alloc) == 0);
1921 if (filter) {
1922 sk_filter_uncharge(sk, filter);
1923 RCU_INIT_POINTER(sk->sk_filter, NULL);
1924 }
1925
1926 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1927
1928#ifdef CONFIG_BPF_SYSCALL
1929 bpf_sk_storage_free(sk);
1930#endif
1931
1932 if (atomic_read(&sk->sk_omem_alloc))
1933 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1934 __func__, atomic_read(&sk->sk_omem_alloc));
1935
1936 if (sk->sk_frag.page) {
1937 put_page(sk->sk_frag.page);
1938 sk->sk_frag.page = NULL;
1939 }
1940
1941 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1942 put_cred(sk->sk_peer_cred);
1943 put_pid(sk->sk_peer_pid);
1944
1945 if (likely(sk->sk_net_refcnt))
1946 put_net(sock_net(sk));
1947 sk_prot_free(sk->sk_prot_creator, sk);
1948}
1949
1950void sk_destruct(struct sock *sk)
1951{
1952 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1953
1954 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1955 reuseport_detach_sock(sk);
1956 use_call_rcu = true;
1957 }
1958
1959 if (use_call_rcu)
1960 call_rcu(&sk->sk_rcu, __sk_destruct);
1961 else
1962 __sk_destruct(&sk->sk_rcu);
1963}
1964
1965static void __sk_free(struct sock *sk)
1966{
1967 if (likely(sk->sk_net_refcnt))
1968 sock_inuse_add(sock_net(sk), -1);
1969
1970 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1971 sock_diag_broadcast_destroy(sk);
1972 else
1973 sk_destruct(sk);
1974}
1975
1976void sk_free(struct sock *sk)
1977{
1978 /*
1979 * We subtract one from sk_wmem_alloc and can know if
1980 * some packets are still in some tx queue.
1981 * If not null, sock_wfree() will call __sk_free(sk) later
1982 */
1983 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1984 __sk_free(sk);
1985}
1986EXPORT_SYMBOL(sk_free);
1987
1988static void sk_init_common(struct sock *sk)
1989{
1990 skb_queue_head_init(&sk->sk_receive_queue);
1991 skb_queue_head_init(&sk->sk_write_queue);
1992 skb_queue_head_init(&sk->sk_error_queue);
1993
1994 rwlock_init(&sk->sk_callback_lock);
1995 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1996 af_rlock_keys + sk->sk_family,
1997 af_family_rlock_key_strings[sk->sk_family]);
1998 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1999 af_wlock_keys + sk->sk_family,
2000 af_family_wlock_key_strings[sk->sk_family]);
2001 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2002 af_elock_keys + sk->sk_family,
2003 af_family_elock_key_strings[sk->sk_family]);
2004 lockdep_set_class_and_name(&sk->sk_callback_lock,
2005 af_callback_keys + sk->sk_family,
2006 af_family_clock_key_strings[sk->sk_family]);
2007}
2008
2009/**
2010 * sk_clone_lock - clone a socket, and lock its clone
2011 * @sk: the socket to clone
2012 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2013 *
2014 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2015 */
2016struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2017{
2018 struct proto *prot = READ_ONCE(sk->sk_prot);
2019 struct sk_filter *filter;
2020 bool is_charged = true;
2021 struct sock *newsk;
2022
2023 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2024 if (!newsk)
2025 goto out;
2026
2027 sock_copy(newsk, sk);
2028
2029 newsk->sk_prot_creator = prot;
2030
2031 /* SANITY */
2032 if (likely(newsk->sk_net_refcnt))
2033 get_net(sock_net(newsk));
2034 sk_node_init(&newsk->sk_node);
2035 sock_lock_init(newsk);
2036 bh_lock_sock(newsk);
2037 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2038 newsk->sk_backlog.len = 0;
2039
2040 atomic_set(&newsk->sk_rmem_alloc, 0);
2041
2042 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2043 refcount_set(&newsk->sk_wmem_alloc, 1);
2044
2045 atomic_set(&newsk->sk_omem_alloc, 0);
2046 sk_init_common(newsk);
2047
2048 newsk->sk_dst_cache = NULL;
2049 newsk->sk_dst_pending_confirm = 0;
2050 newsk->sk_wmem_queued = 0;
2051 newsk->sk_forward_alloc = 0;
2052 atomic_set(&newsk->sk_drops, 0);
2053 newsk->sk_send_head = NULL;
2054 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2055 atomic_set(&newsk->sk_zckey, 0);
2056
2057 sock_reset_flag(newsk, SOCK_DONE);
2058
2059 /* sk->sk_memcg will be populated at accept() time */
2060 newsk->sk_memcg = NULL;
2061
2062 cgroup_sk_clone(&newsk->sk_cgrp_data);
2063
2064 rcu_read_lock();
2065 filter = rcu_dereference(sk->sk_filter);
2066 if (filter != NULL)
2067 /* though it's an empty new sock, the charging may fail
2068 * if sysctl_optmem_max was changed between creation of
2069 * original socket and cloning
2070 */
2071 is_charged = sk_filter_charge(newsk, filter);
2072 RCU_INIT_POINTER(newsk->sk_filter, filter);
2073 rcu_read_unlock();
2074
2075 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2076 /* We need to make sure that we don't uncharge the new
2077 * socket if we couldn't charge it in the first place
2078 * as otherwise we uncharge the parent's filter.
2079 */
2080 if (!is_charged)
2081 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2082 sk_free_unlock_clone(newsk);
2083 newsk = NULL;
2084 goto out;
2085 }
2086 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2087
2088 if (bpf_sk_storage_clone(sk, newsk)) {
2089 sk_free_unlock_clone(newsk);
2090 newsk = NULL;
2091 goto out;
2092 }
2093
2094 /* Clear sk_user_data if parent had the pointer tagged
2095 * as not suitable for copying when cloning.
2096 */
2097 if (sk_user_data_is_nocopy(newsk))
2098 newsk->sk_user_data = NULL;
2099
2100 newsk->sk_err = 0;
2101 newsk->sk_err_soft = 0;
2102 newsk->sk_priority = 0;
2103 newsk->sk_incoming_cpu = raw_smp_processor_id();
2104 if (likely(newsk->sk_net_refcnt))
2105 sock_inuse_add(sock_net(newsk), 1);
2106
2107 /* Before updating sk_refcnt, we must commit prior changes to memory
2108 * (Documentation/RCU/rculist_nulls.rst for details)
2109 */
2110 smp_wmb();
2111 refcount_set(&newsk->sk_refcnt, 2);
2112
2113 /* Increment the counter in the same struct proto as the master
2114 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2115 * is the same as sk->sk_prot->socks, as this field was copied
2116 * with memcpy).
2117 *
2118 * This _changes_ the previous behaviour, where
2119 * tcp_create_openreq_child always was incrementing the
2120 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2121 * to be taken into account in all callers. -acme
2122 */
2123 sk_refcnt_debug_inc(newsk);
2124 sk_set_socket(newsk, NULL);
2125 sk_tx_queue_clear(newsk);
2126 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2127
2128 if (newsk->sk_prot->sockets_allocated)
2129 sk_sockets_allocated_inc(newsk);
2130
2131 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2132 net_enable_timestamp();
2133out:
2134 return newsk;
2135}
2136EXPORT_SYMBOL_GPL(sk_clone_lock);
2137
2138void sk_free_unlock_clone(struct sock *sk)
2139{
2140 /* It is still raw copy of parent, so invalidate
2141 * destructor and make plain sk_free() */
2142 sk->sk_destruct = NULL;
2143 bh_unlock_sock(sk);
2144 sk_free(sk);
2145}
2146EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2147
2148void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2149{
2150 u32 max_segs = 1;
2151
2152 sk_dst_set(sk, dst);
2153 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2154 if (sk->sk_route_caps & NETIF_F_GSO)
2155 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2156 sk->sk_route_caps &= ~sk->sk_route_nocaps;
2157 if (sk_can_gso(sk)) {
2158 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2159 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2160 } else {
2161 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2162 sk->sk_gso_max_size = dst->dev->gso_max_size;
2163 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2164 }
2165 }
2166 sk->sk_gso_max_segs = max_segs;
2167}
2168EXPORT_SYMBOL_GPL(sk_setup_caps);
2169
2170/*
2171 * Simple resource managers for sockets.
2172 */
2173
2174
2175/*
2176 * Write buffer destructor automatically called from kfree_skb.
2177 */
2178void sock_wfree(struct sk_buff *skb)
2179{
2180 struct sock *sk = skb->sk;
2181 unsigned int len = skb->truesize;
2182
2183 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2184 /*
2185 * Keep a reference on sk_wmem_alloc, this will be released
2186 * after sk_write_space() call
2187 */
2188 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2189 sk->sk_write_space(sk);
2190 len = 1;
2191 }
2192 /*
2193 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2194 * could not do because of in-flight packets
2195 */
2196 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2197 __sk_free(sk);
2198}
2199EXPORT_SYMBOL(sock_wfree);
2200
2201/* This variant of sock_wfree() is used by TCP,
2202 * since it sets SOCK_USE_WRITE_QUEUE.
2203 */
2204void __sock_wfree(struct sk_buff *skb)
2205{
2206 struct sock *sk = skb->sk;
2207
2208 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2209 __sk_free(sk);
2210}
2211
2212void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2213{
2214 skb_orphan(skb);
2215 skb->sk = sk;
2216#ifdef CONFIG_INET
2217 if (unlikely(!sk_fullsock(sk))) {
2218 skb->destructor = sock_edemux;
2219 sock_hold(sk);
2220 return;
2221 }
2222#endif
2223 skb->destructor = sock_wfree;
2224 skb_set_hash_from_sk(skb, sk);
2225 /*
2226 * We used to take a refcount on sk, but following operation
2227 * is enough to guarantee sk_free() wont free this sock until
2228 * all in-flight packets are completed
2229 */
2230 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2231}
2232EXPORT_SYMBOL(skb_set_owner_w);
2233
2234static bool can_skb_orphan_partial(const struct sk_buff *skb)
2235{
2236#ifdef CONFIG_TLS_DEVICE
2237 /* Drivers depend on in-order delivery for crypto offload,
2238 * partial orphan breaks out-of-order-OK logic.
2239 */
2240 if (skb->decrypted)
2241 return false;
2242#endif
2243 return (skb->destructor == sock_wfree ||
2244 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2245}
2246
2247/* This helper is used by netem, as it can hold packets in its
2248 * delay queue. We want to allow the owner socket to send more
2249 * packets, as if they were already TX completed by a typical driver.
2250 * But we also want to keep skb->sk set because some packet schedulers
2251 * rely on it (sch_fq for example).
2252 */
2253void skb_orphan_partial(struct sk_buff *skb)
2254{
2255 if (skb_is_tcp_pure_ack(skb))
2256 return;
2257
2258 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2259 return;
2260
2261 skb_orphan(skb);
2262}
2263EXPORT_SYMBOL(skb_orphan_partial);
2264
2265/*
2266 * Read buffer destructor automatically called from kfree_skb.
2267 */
2268void sock_rfree(struct sk_buff *skb)
2269{
2270 struct sock *sk = skb->sk;
2271 unsigned int len = skb->truesize;
2272
2273 atomic_sub(len, &sk->sk_rmem_alloc);
2274 sk_mem_uncharge(sk, len);
2275}
2276EXPORT_SYMBOL(sock_rfree);
2277
2278/*
2279 * Buffer destructor for skbs that are not used directly in read or write
2280 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2281 */
2282void sock_efree(struct sk_buff *skb)
2283{
2284 sock_put(skb->sk);
2285}
2286EXPORT_SYMBOL(sock_efree);
2287
2288/* Buffer destructor for prefetch/receive path where reference count may
2289 * not be held, e.g. for listen sockets.
2290 */
2291#ifdef CONFIG_INET
2292void sock_pfree(struct sk_buff *skb)
2293{
2294 if (sk_is_refcounted(skb->sk))
2295 sock_gen_put(skb->sk);
2296}
2297EXPORT_SYMBOL(sock_pfree);
2298#endif /* CONFIG_INET */
2299
2300kuid_t sock_i_uid(struct sock *sk)
2301{
2302 kuid_t uid;
2303
2304 read_lock_bh(&sk->sk_callback_lock);
2305 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2306 read_unlock_bh(&sk->sk_callback_lock);
2307 return uid;
2308}
2309EXPORT_SYMBOL(sock_i_uid);
2310
2311unsigned long sock_i_ino(struct sock *sk)
2312{
2313 unsigned long ino;
2314
2315 read_lock_bh(&sk->sk_callback_lock);
2316 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2317 read_unlock_bh(&sk->sk_callback_lock);
2318 return ino;
2319}
2320EXPORT_SYMBOL(sock_i_ino);
2321
2322/*
2323 * Allocate a skb from the socket's send buffer.
2324 */
2325struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2326 gfp_t priority)
2327{
2328 if (force ||
2329 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2330 struct sk_buff *skb = alloc_skb(size, priority);
2331
2332 if (skb) {
2333 skb_set_owner_w(skb, sk);
2334 return skb;
2335 }
2336 }
2337 return NULL;
2338}
2339EXPORT_SYMBOL(sock_wmalloc);
2340
2341static void sock_ofree(struct sk_buff *skb)
2342{
2343 struct sock *sk = skb->sk;
2344
2345 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2346}
2347
2348struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2349 gfp_t priority)
2350{
2351 struct sk_buff *skb;
2352
2353 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2354 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2355 sysctl_optmem_max)
2356 return NULL;
2357
2358 skb = alloc_skb(size, priority);
2359 if (!skb)
2360 return NULL;
2361
2362 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2363 skb->sk = sk;
2364 skb->destructor = sock_ofree;
2365 return skb;
2366}
2367
2368/*
2369 * Allocate a memory block from the socket's option memory buffer.
2370 */
2371void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2372{
2373 if ((unsigned int)size <= sysctl_optmem_max &&
2374 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2375 void *mem;
2376 /* First do the add, to avoid the race if kmalloc
2377 * might sleep.
2378 */
2379 atomic_add(size, &sk->sk_omem_alloc);
2380 mem = kmalloc(size, priority);
2381 if (mem)
2382 return mem;
2383 atomic_sub(size, &sk->sk_omem_alloc);
2384 }
2385 return NULL;
2386}
2387EXPORT_SYMBOL(sock_kmalloc);
2388
2389/* Free an option memory block. Note, we actually want the inline
2390 * here as this allows gcc to detect the nullify and fold away the
2391 * condition entirely.
2392 */
2393static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2394 const bool nullify)
2395{
2396 if (WARN_ON_ONCE(!mem))
2397 return;
2398 if (nullify)
2399 kfree_sensitive(mem);
2400 else
2401 kfree(mem);
2402 atomic_sub(size, &sk->sk_omem_alloc);
2403}
2404
2405void sock_kfree_s(struct sock *sk, void *mem, int size)
2406{
2407 __sock_kfree_s(sk, mem, size, false);
2408}
2409EXPORT_SYMBOL(sock_kfree_s);
2410
2411void sock_kzfree_s(struct sock *sk, void *mem, int size)
2412{
2413 __sock_kfree_s(sk, mem, size, true);
2414}
2415EXPORT_SYMBOL(sock_kzfree_s);
2416
2417/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2418 I think, these locks should be removed for datagram sockets.
2419 */
2420static long sock_wait_for_wmem(struct sock *sk, long timeo)
2421{
2422 DEFINE_WAIT(wait);
2423
2424 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2425 for (;;) {
2426 if (!timeo)
2427 break;
2428 if (signal_pending(current))
2429 break;
2430 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2431 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2432 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2433 break;
2434 if (sk->sk_shutdown & SEND_SHUTDOWN)
2435 break;
2436 if (sk->sk_err)
2437 break;
2438 timeo = schedule_timeout(timeo);
2439 }
2440 finish_wait(sk_sleep(sk), &wait);
2441 return timeo;
2442}
2443
2444
2445/*
2446 * Generic send/receive buffer handlers
2447 */
2448
2449struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2450 unsigned long data_len, int noblock,
2451 int *errcode, int max_page_order)
2452{
2453 struct sk_buff *skb;
2454 long timeo;
2455 int err;
2456
2457 timeo = sock_sndtimeo(sk, noblock);
2458 for (;;) {
2459 err = sock_error(sk);
2460 if (err != 0)
2461 goto failure;
2462
2463 err = -EPIPE;
2464 if (sk->sk_shutdown & SEND_SHUTDOWN)
2465 goto failure;
2466
2467 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2468 break;
2469
2470 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2471 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2472 err = -EAGAIN;
2473 if (!timeo)
2474 goto failure;
2475 if (signal_pending(current))
2476 goto interrupted;
2477 timeo = sock_wait_for_wmem(sk, timeo);
2478 }
2479 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2480 errcode, sk->sk_allocation);
2481 if (skb)
2482 skb_set_owner_w(skb, sk);
2483 return skb;
2484
2485interrupted:
2486 err = sock_intr_errno(timeo);
2487failure:
2488 *errcode = err;
2489 return NULL;
2490}
2491EXPORT_SYMBOL(sock_alloc_send_pskb);
2492
2493struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2494 int noblock, int *errcode)
2495{
2496 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2497}
2498EXPORT_SYMBOL(sock_alloc_send_skb);
2499
2500int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2501 struct sockcm_cookie *sockc)
2502{
2503 u32 tsflags;
2504
2505 switch (cmsg->cmsg_type) {
2506 case SO_MARK:
2507 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2508 return -EPERM;
2509 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2510 return -EINVAL;
2511 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2512 break;
2513 case SO_TIMESTAMPING_OLD:
2514 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2515 return -EINVAL;
2516
2517 tsflags = *(u32 *)CMSG_DATA(cmsg);
2518 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2519 return -EINVAL;
2520
2521 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2522 sockc->tsflags |= tsflags;
2523 break;
2524 case SCM_TXTIME:
2525 if (!sock_flag(sk, SOCK_TXTIME))
2526 return -EINVAL;
2527 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2528 return -EINVAL;
2529 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2530 break;
2531 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2532 case SCM_RIGHTS:
2533 case SCM_CREDENTIALS:
2534 break;
2535 default:
2536 return -EINVAL;
2537 }
2538 return 0;
2539}
2540EXPORT_SYMBOL(__sock_cmsg_send);
2541
2542int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2543 struct sockcm_cookie *sockc)
2544{
2545 struct cmsghdr *cmsg;
2546 int ret;
2547
2548 for_each_cmsghdr(cmsg, msg) {
2549 if (!CMSG_OK(msg, cmsg))
2550 return -EINVAL;
2551 if (cmsg->cmsg_level != SOL_SOCKET)
2552 continue;
2553 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2554 if (ret)
2555 return ret;
2556 }
2557 return 0;
2558}
2559EXPORT_SYMBOL(sock_cmsg_send);
2560
2561static void sk_enter_memory_pressure(struct sock *sk)
2562{
2563 if (!sk->sk_prot->enter_memory_pressure)
2564 return;
2565
2566 sk->sk_prot->enter_memory_pressure(sk);
2567}
2568
2569static void sk_leave_memory_pressure(struct sock *sk)
2570{
2571 if (sk->sk_prot->leave_memory_pressure) {
2572 sk->sk_prot->leave_memory_pressure(sk);
2573 } else {
2574 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2575
2576 if (memory_pressure && READ_ONCE(*memory_pressure))
2577 WRITE_ONCE(*memory_pressure, 0);
2578 }
2579}
2580
2581#define SKB_FRAG_PAGE_ORDER get_order(32768)
2582DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2583
2584/**
2585 * skb_page_frag_refill - check that a page_frag contains enough room
2586 * @sz: minimum size of the fragment we want to get
2587 * @pfrag: pointer to page_frag
2588 * @gfp: priority for memory allocation
2589 *
2590 * Note: While this allocator tries to use high order pages, there is
2591 * no guarantee that allocations succeed. Therefore, @sz MUST be
2592 * less or equal than PAGE_SIZE.
2593 */
2594bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2595{
2596 if (pfrag->page) {
2597 if (page_ref_count(pfrag->page) == 1) {
2598 pfrag->offset = 0;
2599 return true;
2600 }
2601 if (pfrag->offset + sz <= pfrag->size)
2602 return true;
2603 put_page(pfrag->page);
2604 }
2605
2606 pfrag->offset = 0;
2607 if (SKB_FRAG_PAGE_ORDER &&
2608 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2609 /* Avoid direct reclaim but allow kswapd to wake */
2610 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2611 __GFP_COMP | __GFP_NOWARN |
2612 __GFP_NORETRY,
2613 SKB_FRAG_PAGE_ORDER);
2614 if (likely(pfrag->page)) {
2615 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2616 return true;
2617 }
2618 }
2619 pfrag->page = alloc_page(gfp);
2620 if (likely(pfrag->page)) {
2621 pfrag->size = PAGE_SIZE;
2622 return true;
2623 }
2624 return false;
2625}
2626EXPORT_SYMBOL(skb_page_frag_refill);
2627
2628bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2629{
2630 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2631 return true;
2632
2633 sk_enter_memory_pressure(sk);
2634 sk_stream_moderate_sndbuf(sk);
2635 return false;
2636}
2637EXPORT_SYMBOL(sk_page_frag_refill);
2638
2639void __lock_sock(struct sock *sk)
2640 __releases(&sk->sk_lock.slock)
2641 __acquires(&sk->sk_lock.slock)
2642{
2643 DEFINE_WAIT(wait);
2644
2645 for (;;) {
2646 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2647 TASK_UNINTERRUPTIBLE);
2648 spin_unlock_bh(&sk->sk_lock.slock);
2649 schedule();
2650 spin_lock_bh(&sk->sk_lock.slock);
2651 if (!sock_owned_by_user(sk))
2652 break;
2653 }
2654 finish_wait(&sk->sk_lock.wq, &wait);
2655}
2656
2657void __release_sock(struct sock *sk)
2658 __releases(&sk->sk_lock.slock)
2659 __acquires(&sk->sk_lock.slock)
2660{
2661 struct sk_buff *skb, *next;
2662
2663 while ((skb = sk->sk_backlog.head) != NULL) {
2664 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2665
2666 spin_unlock_bh(&sk->sk_lock.slock);
2667
2668 do {
2669 next = skb->next;
2670 prefetch(next);
2671 WARN_ON_ONCE(skb_dst_is_noref(skb));
2672 skb_mark_not_on_list(skb);
2673 sk_backlog_rcv(sk, skb);
2674
2675 cond_resched();
2676
2677 skb = next;
2678 } while (skb != NULL);
2679
2680 spin_lock_bh(&sk->sk_lock.slock);
2681 }
2682
2683 /*
2684 * Doing the zeroing here guarantee we can not loop forever
2685 * while a wild producer attempts to flood us.
2686 */
2687 sk->sk_backlog.len = 0;
2688}
2689
2690void __sk_flush_backlog(struct sock *sk)
2691{
2692 spin_lock_bh(&sk->sk_lock.slock);
2693 __release_sock(sk);
2694 spin_unlock_bh(&sk->sk_lock.slock);
2695}
2696
2697/**
2698 * sk_wait_data - wait for data to arrive at sk_receive_queue
2699 * @sk: sock to wait on
2700 * @timeo: for how long
2701 * @skb: last skb seen on sk_receive_queue
2702 *
2703 * Now socket state including sk->sk_err is changed only under lock,
2704 * hence we may omit checks after joining wait queue.
2705 * We check receive queue before schedule() only as optimization;
2706 * it is very likely that release_sock() added new data.
2707 */
2708int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2709{
2710 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2711 int rc;
2712
2713 add_wait_queue(sk_sleep(sk), &wait);
2714 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2715 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2716 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2717 remove_wait_queue(sk_sleep(sk), &wait);
2718 return rc;
2719}
2720EXPORT_SYMBOL(sk_wait_data);
2721
2722/**
2723 * __sk_mem_raise_allocated - increase memory_allocated
2724 * @sk: socket
2725 * @size: memory size to allocate
2726 * @amt: pages to allocate
2727 * @kind: allocation type
2728 *
2729 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2730 */
2731int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2732{
2733 struct proto *prot = sk->sk_prot;
2734 long allocated = sk_memory_allocated_add(sk, amt);
2735 bool charged = true;
2736
2737 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2738 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2739 goto suppress_allocation;
2740
2741 /* Under limit. */
2742 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2743 sk_leave_memory_pressure(sk);
2744 return 1;
2745 }
2746
2747 /* Under pressure. */
2748 if (allocated > sk_prot_mem_limits(sk, 1))
2749 sk_enter_memory_pressure(sk);
2750
2751 /* Over hard limit. */
2752 if (allocated > sk_prot_mem_limits(sk, 2))
2753 goto suppress_allocation;
2754
2755 /* guarantee minimum buffer size under pressure */
2756 if (kind == SK_MEM_RECV) {
2757 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2758 return 1;
2759
2760 } else { /* SK_MEM_SEND */
2761 int wmem0 = sk_get_wmem0(sk, prot);
2762
2763 if (sk->sk_type == SOCK_STREAM) {
2764 if (sk->sk_wmem_queued < wmem0)
2765 return 1;
2766 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2767 return 1;
2768 }
2769 }
2770
2771 if (sk_has_memory_pressure(sk)) {
2772 u64 alloc;
2773
2774 if (!sk_under_memory_pressure(sk))
2775 return 1;
2776 alloc = sk_sockets_allocated_read_positive(sk);
2777 if (sk_prot_mem_limits(sk, 2) > alloc *
2778 sk_mem_pages(sk->sk_wmem_queued +
2779 atomic_read(&sk->sk_rmem_alloc) +
2780 sk->sk_forward_alloc))
2781 return 1;
2782 }
2783
2784suppress_allocation:
2785
2786 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2787 sk_stream_moderate_sndbuf(sk);
2788
2789 /* Fail only if socket is _under_ its sndbuf.
2790 * In this case we cannot block, so that we have to fail.
2791 */
2792 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2793 return 1;
2794 }
2795
2796 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2797 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2798
2799 sk_memory_allocated_sub(sk, amt);
2800
2801 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2802 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2803
2804 return 0;
2805}
2806EXPORT_SYMBOL(__sk_mem_raise_allocated);
2807
2808/**
2809 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2810 * @sk: socket
2811 * @size: memory size to allocate
2812 * @kind: allocation type
2813 *
2814 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2815 * rmem allocation. This function assumes that protocols which have
2816 * memory_pressure use sk_wmem_queued as write buffer accounting.
2817 */
2818int __sk_mem_schedule(struct sock *sk, int size, int kind)
2819{
2820 int ret, amt = sk_mem_pages(size);
2821
2822 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2823 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2824 if (!ret)
2825 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2826 return ret;
2827}
2828EXPORT_SYMBOL(__sk_mem_schedule);
2829
2830/**
2831 * __sk_mem_reduce_allocated - reclaim memory_allocated
2832 * @sk: socket
2833 * @amount: number of quanta
2834 *
2835 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2836 */
2837void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2838{
2839 sk_memory_allocated_sub(sk, amount);
2840
2841 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2842 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2843
2844 if (sk_under_memory_pressure(sk) &&
2845 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2846 sk_leave_memory_pressure(sk);
2847}
2848EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2849
2850/**
2851 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2852 * @sk: socket
2853 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2854 */
2855void __sk_mem_reclaim(struct sock *sk, int amount)
2856{
2857 amount >>= SK_MEM_QUANTUM_SHIFT;
2858 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2859 __sk_mem_reduce_allocated(sk, amount);
2860}
2861EXPORT_SYMBOL(__sk_mem_reclaim);
2862
2863int sk_set_peek_off(struct sock *sk, int val)
2864{
2865 sk->sk_peek_off = val;
2866 return 0;
2867}
2868EXPORT_SYMBOL_GPL(sk_set_peek_off);
2869
2870/*
2871 * Set of default routines for initialising struct proto_ops when
2872 * the protocol does not support a particular function. In certain
2873 * cases where it makes no sense for a protocol to have a "do nothing"
2874 * function, some default processing is provided.
2875 */
2876
2877int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2878{
2879 return -EOPNOTSUPP;
2880}
2881EXPORT_SYMBOL(sock_no_bind);
2882
2883int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2884 int len, int flags)
2885{
2886 return -EOPNOTSUPP;
2887}
2888EXPORT_SYMBOL(sock_no_connect);
2889
2890int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2891{
2892 return -EOPNOTSUPP;
2893}
2894EXPORT_SYMBOL(sock_no_socketpair);
2895
2896int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2897 bool kern)
2898{
2899 return -EOPNOTSUPP;
2900}
2901EXPORT_SYMBOL(sock_no_accept);
2902
2903int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2904 int peer)
2905{
2906 return -EOPNOTSUPP;
2907}
2908EXPORT_SYMBOL(sock_no_getname);
2909
2910int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2911{
2912 return -EOPNOTSUPP;
2913}
2914EXPORT_SYMBOL(sock_no_ioctl);
2915
2916int sock_no_listen(struct socket *sock, int backlog)
2917{
2918 return -EOPNOTSUPP;
2919}
2920EXPORT_SYMBOL(sock_no_listen);
2921
2922int sock_no_shutdown(struct socket *sock, int how)
2923{
2924 return -EOPNOTSUPP;
2925}
2926EXPORT_SYMBOL(sock_no_shutdown);
2927
2928int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2929{
2930 return -EOPNOTSUPP;
2931}
2932EXPORT_SYMBOL(sock_no_sendmsg);
2933
2934int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2935{
2936 return -EOPNOTSUPP;
2937}
2938EXPORT_SYMBOL(sock_no_sendmsg_locked);
2939
2940int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2941 int flags)
2942{
2943 return -EOPNOTSUPP;
2944}
2945EXPORT_SYMBOL(sock_no_recvmsg);
2946
2947int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2948{
2949 /* Mirror missing mmap method error code */
2950 return -ENODEV;
2951}
2952EXPORT_SYMBOL(sock_no_mmap);
2953
2954/*
2955 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2956 * various sock-based usage counts.
2957 */
2958void __receive_sock(struct file *file)
2959{
2960 struct socket *sock;
2961
2962 sock = sock_from_file(file);
2963 if (sock) {
2964 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2965 sock_update_classid(&sock->sk->sk_cgrp_data);
2966 }
2967}
2968
2969ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2970{
2971 ssize_t res;
2972 struct msghdr msg = {.msg_flags = flags};
2973 struct kvec iov;
2974 char *kaddr = kmap(page);
2975 iov.iov_base = kaddr + offset;
2976 iov.iov_len = size;
2977 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2978 kunmap(page);
2979 return res;
2980}
2981EXPORT_SYMBOL(sock_no_sendpage);
2982
2983ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2984 int offset, size_t size, int flags)
2985{
2986 ssize_t res;
2987 struct msghdr msg = {.msg_flags = flags};
2988 struct kvec iov;
2989 char *kaddr = kmap(page);
2990
2991 iov.iov_base = kaddr + offset;
2992 iov.iov_len = size;
2993 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2994 kunmap(page);
2995 return res;
2996}
2997EXPORT_SYMBOL(sock_no_sendpage_locked);
2998
2999/*
3000 * Default Socket Callbacks
3001 */
3002
3003static void sock_def_wakeup(struct sock *sk)
3004{
3005 struct socket_wq *wq;
3006
3007 rcu_read_lock();
3008 wq = rcu_dereference(sk->sk_wq);
3009 if (skwq_has_sleeper(wq))
3010 wake_up_interruptible_all(&wq->wait);
3011 rcu_read_unlock();
3012}
3013
3014static void sock_def_error_report(struct sock *sk)
3015{
3016 struct socket_wq *wq;
3017
3018 rcu_read_lock();
3019 wq = rcu_dereference(sk->sk_wq);
3020 if (skwq_has_sleeper(wq))
3021 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3022 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3023 rcu_read_unlock();
3024}
3025
3026void sock_def_readable(struct sock *sk)
3027{
3028 struct socket_wq *wq;
3029
3030 rcu_read_lock();
3031 wq = rcu_dereference(sk->sk_wq);
3032 if (skwq_has_sleeper(wq))
3033 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3034 EPOLLRDNORM | EPOLLRDBAND);
3035 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3036 rcu_read_unlock();
3037}
3038
3039static void sock_def_write_space(struct sock *sk)
3040{
3041 struct socket_wq *wq;
3042
3043 rcu_read_lock();
3044
3045 /* Do not wake up a writer until he can make "significant"
3046 * progress. --DaveM
3047 */
3048 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
3049 wq = rcu_dereference(sk->sk_wq);
3050 if (skwq_has_sleeper(wq))
3051 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3052 EPOLLWRNORM | EPOLLWRBAND);
3053
3054 /* Should agree with poll, otherwise some programs break */
3055 if (sock_writeable(sk))
3056 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3057 }
3058
3059 rcu_read_unlock();
3060}
3061
3062static void sock_def_destruct(struct sock *sk)
3063{
3064}
3065
3066void sk_send_sigurg(struct sock *sk)
3067{
3068 if (sk->sk_socket && sk->sk_socket->file)
3069 if (send_sigurg(&sk->sk_socket->file->f_owner))
3070 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3071}
3072EXPORT_SYMBOL(sk_send_sigurg);
3073
3074void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3075 unsigned long expires)
3076{
3077 if (!mod_timer(timer, expires))
3078 sock_hold(sk);
3079}
3080EXPORT_SYMBOL(sk_reset_timer);
3081
3082void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3083{
3084 if (del_timer(timer))
3085 __sock_put(sk);
3086}
3087EXPORT_SYMBOL(sk_stop_timer);
3088
3089void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3090{
3091 if (del_timer_sync(timer))
3092 __sock_put(sk);
3093}
3094EXPORT_SYMBOL(sk_stop_timer_sync);
3095
3096void sock_init_data(struct socket *sock, struct sock *sk)
3097{
3098 sk_init_common(sk);
3099 sk->sk_send_head = NULL;
3100
3101 timer_setup(&sk->sk_timer, NULL, 0);
3102
3103 sk->sk_allocation = GFP_KERNEL;
3104 sk->sk_rcvbuf = sysctl_rmem_default;
3105 sk->sk_sndbuf = sysctl_wmem_default;
3106 sk->sk_state = TCP_CLOSE;
3107 sk_set_socket(sk, sock);
3108
3109 sock_set_flag(sk, SOCK_ZAPPED);
3110
3111 if (sock) {
3112 sk->sk_type = sock->type;
3113 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3114 sock->sk = sk;
3115 sk->sk_uid = SOCK_INODE(sock)->i_uid;
3116 } else {
3117 RCU_INIT_POINTER(sk->sk_wq, NULL);
3118 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
3119 }
3120
3121 rwlock_init(&sk->sk_callback_lock);
3122 if (sk->sk_kern_sock)
3123 lockdep_set_class_and_name(
3124 &sk->sk_callback_lock,
3125 af_kern_callback_keys + sk->sk_family,
3126 af_family_kern_clock_key_strings[sk->sk_family]);
3127 else
3128 lockdep_set_class_and_name(
3129 &sk->sk_callback_lock,
3130 af_callback_keys + sk->sk_family,
3131 af_family_clock_key_strings[sk->sk_family]);
3132
3133 sk->sk_state_change = sock_def_wakeup;
3134 sk->sk_data_ready = sock_def_readable;
3135 sk->sk_write_space = sock_def_write_space;
3136 sk->sk_error_report = sock_def_error_report;
3137 sk->sk_destruct = sock_def_destruct;
3138
3139 sk->sk_frag.page = NULL;
3140 sk->sk_frag.offset = 0;
3141 sk->sk_peek_off = -1;
3142
3143 sk->sk_peer_pid = NULL;
3144 sk->sk_peer_cred = NULL;
3145 spin_lock_init(&sk->sk_peer_lock);
3146
3147 sk->sk_write_pending = 0;
3148 sk->sk_rcvlowat = 1;
3149 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3150 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3151
3152 sk->sk_stamp = SK_DEFAULT_STAMP;
3153#if BITS_PER_LONG==32
3154 seqlock_init(&sk->sk_stamp_seq);
3155#endif
3156 atomic_set(&sk->sk_zckey, 0);
3157
3158#ifdef CONFIG_NET_RX_BUSY_POLL
3159 sk->sk_napi_id = 0;
3160 sk->sk_ll_usec = sysctl_net_busy_read;
3161#endif
3162
3163 sk->sk_max_pacing_rate = ~0UL;
3164 sk->sk_pacing_rate = ~0UL;
3165 WRITE_ONCE(sk->sk_pacing_shift, 10);
3166 sk->sk_incoming_cpu = -1;
3167
3168 sk_rx_queue_clear(sk);
3169 /*
3170 * Before updating sk_refcnt, we must commit prior changes to memory
3171 * (Documentation/RCU/rculist_nulls.rst for details)
3172 */
3173 smp_wmb();
3174 refcount_set(&sk->sk_refcnt, 1);
3175 atomic_set(&sk->sk_drops, 0);
3176}
3177EXPORT_SYMBOL(sock_init_data);
3178
3179void lock_sock_nested(struct sock *sk, int subclass)
3180{
3181 might_sleep();
3182 spin_lock_bh(&sk->sk_lock.slock);
3183 if (sk->sk_lock.owned)
3184 __lock_sock(sk);
3185 sk->sk_lock.owned = 1;
3186 spin_unlock(&sk->sk_lock.slock);
3187 /*
3188 * The sk_lock has mutex_lock() semantics here:
3189 */
3190 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3191 local_bh_enable();
3192}
3193EXPORT_SYMBOL(lock_sock_nested);
3194
3195void release_sock(struct sock *sk)
3196{
3197 spin_lock_bh(&sk->sk_lock.slock);
3198 if (sk->sk_backlog.tail)
3199 __release_sock(sk);
3200
3201 /* Warning : release_cb() might need to release sk ownership,
3202 * ie call sock_release_ownership(sk) before us.
3203 */
3204 if (sk->sk_prot->release_cb)
3205 sk->sk_prot->release_cb(sk);
3206
3207 sock_release_ownership(sk);
3208 if (waitqueue_active(&sk->sk_lock.wq))
3209 wake_up(&sk->sk_lock.wq);
3210 spin_unlock_bh(&sk->sk_lock.slock);
3211}
3212EXPORT_SYMBOL(release_sock);
3213
3214/**
3215 * lock_sock_fast - fast version of lock_sock
3216 * @sk: socket
3217 *
3218 * This version should be used for very small section, where process wont block
3219 * return false if fast path is taken:
3220 *
3221 * sk_lock.slock locked, owned = 0, BH disabled
3222 *
3223 * return true if slow path is taken:
3224 *
3225 * sk_lock.slock unlocked, owned = 1, BH enabled
3226 */
3227bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3228{
3229 might_sleep();
3230 spin_lock_bh(&sk->sk_lock.slock);
3231
3232 if (!sk->sk_lock.owned)
3233 /*
3234 * Note : We must disable BH
3235 */
3236 return false;
3237
3238 __lock_sock(sk);
3239 sk->sk_lock.owned = 1;
3240 spin_unlock(&sk->sk_lock.slock);
3241 /*
3242 * The sk_lock has mutex_lock() semantics here:
3243 */
3244 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3245 __acquire(&sk->sk_lock.slock);
3246 local_bh_enable();
3247 return true;
3248}
3249EXPORT_SYMBOL(lock_sock_fast);
3250
3251int sock_gettstamp(struct socket *sock, void __user *userstamp,
3252 bool timeval, bool time32)
3253{
3254 struct sock *sk = sock->sk;
3255 struct timespec64 ts;
3256
3257 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3258 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3259 if (ts.tv_sec == -1)
3260 return -ENOENT;
3261 if (ts.tv_sec == 0) {
3262 ktime_t kt = ktime_get_real();
3263 sock_write_timestamp(sk, kt);
3264 ts = ktime_to_timespec64(kt);
3265 }
3266
3267 if (timeval)
3268 ts.tv_nsec /= 1000;
3269
3270#ifdef CONFIG_COMPAT_32BIT_TIME
3271 if (time32)
3272 return put_old_timespec32(&ts, userstamp);
3273#endif
3274#ifdef CONFIG_SPARC64
3275 /* beware of padding in sparc64 timeval */
3276 if (timeval && !in_compat_syscall()) {
3277 struct __kernel_old_timeval __user tv = {
3278 .tv_sec = ts.tv_sec,
3279 .tv_usec = ts.tv_nsec,
3280 };
3281 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3282 return -EFAULT;
3283 return 0;
3284 }
3285#endif
3286 return put_timespec64(&ts, userstamp);
3287}
3288EXPORT_SYMBOL(sock_gettstamp);
3289
3290void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3291{
3292 if (!sock_flag(sk, flag)) {
3293 unsigned long previous_flags = sk->sk_flags;
3294
3295 sock_set_flag(sk, flag);
3296 /*
3297 * we just set one of the two flags which require net
3298 * time stamping, but time stamping might have been on
3299 * already because of the other one
3300 */
3301 if (sock_needs_netstamp(sk) &&
3302 !(previous_flags & SK_FLAGS_TIMESTAMP))
3303 net_enable_timestamp();
3304 }
3305}
3306
3307int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3308 int level, int type)
3309{
3310 struct sock_exterr_skb *serr;
3311 struct sk_buff *skb;
3312 int copied, err;
3313
3314 err = -EAGAIN;
3315 skb = sock_dequeue_err_skb(sk);
3316 if (skb == NULL)
3317 goto out;
3318
3319 copied = skb->len;
3320 if (copied > len) {
3321 msg->msg_flags |= MSG_TRUNC;
3322 copied = len;
3323 }
3324 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3325 if (err)
3326 goto out_free_skb;
3327
3328 sock_recv_timestamp(msg, sk, skb);
3329
3330 serr = SKB_EXT_ERR(skb);
3331 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3332
3333 msg->msg_flags |= MSG_ERRQUEUE;
3334 err = copied;
3335
3336out_free_skb:
3337 kfree_skb(skb);
3338out:
3339 return err;
3340}
3341EXPORT_SYMBOL(sock_recv_errqueue);
3342
3343/*
3344 * Get a socket option on an socket.
3345 *
3346 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3347 * asynchronous errors should be reported by getsockopt. We assume
3348 * this means if you specify SO_ERROR (otherwise whats the point of it).
3349 */
3350int sock_common_getsockopt(struct socket *sock, int level, int optname,
3351 char __user *optval, int __user *optlen)
3352{
3353 struct sock *sk = sock->sk;
3354
3355 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3356}
3357EXPORT_SYMBOL(sock_common_getsockopt);
3358
3359int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3360 int flags)
3361{
3362 struct sock *sk = sock->sk;
3363 int addr_len = 0;
3364 int err;
3365
3366 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3367 flags & ~MSG_DONTWAIT, &addr_len);
3368 if (err >= 0)
3369 msg->msg_namelen = addr_len;
3370 return err;
3371}
3372EXPORT_SYMBOL(sock_common_recvmsg);
3373
3374/*
3375 * Set socket options on an inet socket.
3376 */
3377int sock_common_setsockopt(struct socket *sock, int level, int optname,
3378 sockptr_t optval, unsigned int optlen)
3379{
3380 struct sock *sk = sock->sk;
3381
3382 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3383}
3384EXPORT_SYMBOL(sock_common_setsockopt);
3385
3386void sk_common_release(struct sock *sk)
3387{
3388 if (sk->sk_prot->destroy)
3389 sk->sk_prot->destroy(sk);
3390
3391 /*
3392 * Observation: when sk_common_release is called, processes have
3393 * no access to socket. But net still has.
3394 * Step one, detach it from networking:
3395 *
3396 * A. Remove from hash tables.
3397 */
3398
3399 sk->sk_prot->unhash(sk);
3400
3401 /*
3402 * In this point socket cannot receive new packets, but it is possible
3403 * that some packets are in flight because some CPU runs receiver and
3404 * did hash table lookup before we unhashed socket. They will achieve
3405 * receive queue and will be purged by socket destructor.
3406 *
3407 * Also we still have packets pending on receive queue and probably,
3408 * our own packets waiting in device queues. sock_destroy will drain
3409 * receive queue, but transmitted packets will delay socket destruction
3410 * until the last reference will be released.
3411 */
3412
3413 sock_orphan(sk);
3414
3415 xfrm_sk_free_policy(sk);
3416
3417 sk_refcnt_debug_release(sk);
3418
3419 sock_put(sk);
3420}
3421EXPORT_SYMBOL(sk_common_release);
3422
3423void sk_get_meminfo(const struct sock *sk, u32 *mem)
3424{
3425 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3426
3427 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3428 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3429 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3430 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3431 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3432 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3433 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3434 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3435 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3436}
3437
3438#ifdef CONFIG_PROC_FS
3439#define PROTO_INUSE_NR 64 /* should be enough for the first time */
3440struct prot_inuse {
3441 int val[PROTO_INUSE_NR];
3442};
3443
3444static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3445
3446void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3447{
3448 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3449}
3450EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3451
3452int sock_prot_inuse_get(struct net *net, struct proto *prot)
3453{
3454 int cpu, idx = prot->inuse_idx;
3455 int res = 0;
3456
3457 for_each_possible_cpu(cpu)
3458 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3459
3460 return res >= 0 ? res : 0;
3461}
3462EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3463
3464static void sock_inuse_add(struct net *net, int val)
3465{
3466 this_cpu_add(*net->core.sock_inuse, val);
3467}
3468
3469int sock_inuse_get(struct net *net)
3470{
3471 int cpu, res = 0;
3472
3473 for_each_possible_cpu(cpu)
3474 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3475
3476 return res;
3477}
3478
3479EXPORT_SYMBOL_GPL(sock_inuse_get);
3480
3481static int __net_init sock_inuse_init_net(struct net *net)
3482{
3483 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3484 if (net->core.prot_inuse == NULL)
3485 return -ENOMEM;
3486
3487 net->core.sock_inuse = alloc_percpu(int);
3488 if (net->core.sock_inuse == NULL)
3489 goto out;
3490
3491 return 0;
3492
3493out:
3494 free_percpu(net->core.prot_inuse);
3495 return -ENOMEM;
3496}
3497
3498static void __net_exit sock_inuse_exit_net(struct net *net)
3499{
3500 free_percpu(net->core.prot_inuse);
3501 free_percpu(net->core.sock_inuse);
3502}
3503
3504static struct pernet_operations net_inuse_ops = {
3505 .init = sock_inuse_init_net,
3506 .exit = sock_inuse_exit_net,
3507};
3508
3509static __init int net_inuse_init(void)
3510{
3511 if (register_pernet_subsys(&net_inuse_ops))
3512 panic("Cannot initialize net inuse counters");
3513
3514 return 0;
3515}
3516
3517core_initcall(net_inuse_init);
3518
3519static int assign_proto_idx(struct proto *prot)
3520{
3521 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3522
3523 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3524 pr_err("PROTO_INUSE_NR exhausted\n");
3525 return -ENOSPC;
3526 }
3527
3528 set_bit(prot->inuse_idx, proto_inuse_idx);
3529 return 0;
3530}
3531
3532static void release_proto_idx(struct proto *prot)
3533{
3534 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3535 clear_bit(prot->inuse_idx, proto_inuse_idx);
3536}
3537#else
3538static inline int assign_proto_idx(struct proto *prot)
3539{
3540 return 0;
3541}
3542
3543static inline void release_proto_idx(struct proto *prot)
3544{
3545}
3546
3547static void sock_inuse_add(struct net *net, int val)
3548{
3549}
3550#endif
3551
3552static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3553{
3554 if (!twsk_prot)
3555 return;
3556 kfree(twsk_prot->twsk_slab_name);
3557 twsk_prot->twsk_slab_name = NULL;
3558 kmem_cache_destroy(twsk_prot->twsk_slab);
3559 twsk_prot->twsk_slab = NULL;
3560}
3561
3562static int tw_prot_init(const struct proto *prot)
3563{
3564 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3565
3566 if (!twsk_prot)
3567 return 0;
3568
3569 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3570 prot->name);
3571 if (!twsk_prot->twsk_slab_name)
3572 return -ENOMEM;
3573
3574 twsk_prot->twsk_slab =
3575 kmem_cache_create(twsk_prot->twsk_slab_name,
3576 twsk_prot->twsk_obj_size, 0,
3577 SLAB_ACCOUNT | prot->slab_flags,
3578 NULL);
3579 if (!twsk_prot->twsk_slab) {
3580 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3581 prot->name);
3582 return -ENOMEM;
3583 }
3584
3585 return 0;
3586}
3587
3588static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3589{
3590 if (!rsk_prot)
3591 return;
3592 kfree(rsk_prot->slab_name);
3593 rsk_prot->slab_name = NULL;
3594 kmem_cache_destroy(rsk_prot->slab);
3595 rsk_prot->slab = NULL;
3596}
3597
3598static int req_prot_init(const struct proto *prot)
3599{
3600 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3601
3602 if (!rsk_prot)
3603 return 0;
3604
3605 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3606 prot->name);
3607 if (!rsk_prot->slab_name)
3608 return -ENOMEM;
3609
3610 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3611 rsk_prot->obj_size, 0,
3612 SLAB_ACCOUNT | prot->slab_flags,
3613 NULL);
3614
3615 if (!rsk_prot->slab) {
3616 pr_crit("%s: Can't create request sock SLAB cache!\n",
3617 prot->name);
3618 return -ENOMEM;
3619 }
3620 return 0;
3621}
3622
3623int proto_register(struct proto *prot, int alloc_slab)
3624{
3625 int ret = -ENOBUFS;
3626
3627 if (alloc_slab) {
3628 prot->slab = kmem_cache_create_usercopy(prot->name,
3629 prot->obj_size, 0,
3630 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3631 prot->slab_flags,
3632 prot->useroffset, prot->usersize,
3633 NULL);
3634
3635 if (prot->slab == NULL) {
3636 pr_crit("%s: Can't create sock SLAB cache!\n",
3637 prot->name);
3638 goto out;
3639 }
3640
3641 if (req_prot_init(prot))
3642 goto out_free_request_sock_slab;
3643
3644 if (tw_prot_init(prot))
3645 goto out_free_timewait_sock_slab;
3646 }
3647
3648 mutex_lock(&proto_list_mutex);
3649 ret = assign_proto_idx(prot);
3650 if (ret) {
3651 mutex_unlock(&proto_list_mutex);
3652 goto out_free_timewait_sock_slab;
3653 }
3654 list_add(&prot->node, &proto_list);
3655 mutex_unlock(&proto_list_mutex);
3656 return ret;
3657
3658out_free_timewait_sock_slab:
3659 if (alloc_slab)
3660 tw_prot_cleanup(prot->twsk_prot);
3661out_free_request_sock_slab:
3662 if (alloc_slab) {
3663 req_prot_cleanup(prot->rsk_prot);
3664
3665 kmem_cache_destroy(prot->slab);
3666 prot->slab = NULL;
3667 }
3668out:
3669 return ret;
3670}
3671EXPORT_SYMBOL(proto_register);
3672
3673void proto_unregister(struct proto *prot)
3674{
3675 mutex_lock(&proto_list_mutex);
3676 release_proto_idx(prot);
3677 list_del(&prot->node);
3678 mutex_unlock(&proto_list_mutex);
3679
3680 kmem_cache_destroy(prot->slab);
3681 prot->slab = NULL;
3682
3683 req_prot_cleanup(prot->rsk_prot);
3684 tw_prot_cleanup(prot->twsk_prot);
3685}
3686EXPORT_SYMBOL(proto_unregister);
3687
3688int sock_load_diag_module(int family, int protocol)
3689{
3690 if (!protocol) {
3691 if (!sock_is_registered(family))
3692 return -ENOENT;
3693
3694 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3695 NETLINK_SOCK_DIAG, family);
3696 }
3697
3698#ifdef CONFIG_INET
3699 if (family == AF_INET &&
3700 protocol != IPPROTO_RAW &&
3701 protocol < MAX_INET_PROTOS &&
3702 !rcu_access_pointer(inet_protos[protocol]))
3703 return -ENOENT;
3704#endif
3705
3706 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3707 NETLINK_SOCK_DIAG, family, protocol);
3708}
3709EXPORT_SYMBOL(sock_load_diag_module);
3710
3711#ifdef CONFIG_PROC_FS
3712static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3713 __acquires(proto_list_mutex)
3714{
3715 mutex_lock(&proto_list_mutex);
3716 return seq_list_start_head(&proto_list, *pos);
3717}
3718
3719static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3720{
3721 return seq_list_next(v, &proto_list, pos);
3722}
3723
3724static void proto_seq_stop(struct seq_file *seq, void *v)
3725 __releases(proto_list_mutex)
3726{
3727 mutex_unlock(&proto_list_mutex);
3728}
3729
3730static char proto_method_implemented(const void *method)
3731{
3732 return method == NULL ? 'n' : 'y';
3733}
3734static long sock_prot_memory_allocated(struct proto *proto)
3735{
3736 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3737}
3738
3739static const char *sock_prot_memory_pressure(struct proto *proto)
3740{
3741 return proto->memory_pressure != NULL ?
3742 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3743}
3744
3745static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3746{
3747
3748 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3749 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3750 proto->name,
3751 proto->obj_size,
3752 sock_prot_inuse_get(seq_file_net(seq), proto),
3753 sock_prot_memory_allocated(proto),
3754 sock_prot_memory_pressure(proto),
3755 proto->max_header,
3756 proto->slab == NULL ? "no" : "yes",
3757 module_name(proto->owner),
3758 proto_method_implemented(proto->close),
3759 proto_method_implemented(proto->connect),
3760 proto_method_implemented(proto->disconnect),
3761 proto_method_implemented(proto->accept),
3762 proto_method_implemented(proto->ioctl),
3763 proto_method_implemented(proto->init),
3764 proto_method_implemented(proto->destroy),
3765 proto_method_implemented(proto->shutdown),
3766 proto_method_implemented(proto->setsockopt),
3767 proto_method_implemented(proto->getsockopt),
3768 proto_method_implemented(proto->sendmsg),
3769 proto_method_implemented(proto->recvmsg),
3770 proto_method_implemented(proto->sendpage),
3771 proto_method_implemented(proto->bind),
3772 proto_method_implemented(proto->backlog_rcv),
3773 proto_method_implemented(proto->hash),
3774 proto_method_implemented(proto->unhash),
3775 proto_method_implemented(proto->get_port),
3776 proto_method_implemented(proto->enter_memory_pressure));
3777}
3778
3779static int proto_seq_show(struct seq_file *seq, void *v)
3780{
3781 if (v == &proto_list)
3782 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3783 "protocol",
3784 "size",
3785 "sockets",
3786 "memory",
3787 "press",
3788 "maxhdr",
3789 "slab",
3790 "module",
3791 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3792 else
3793 proto_seq_printf(seq, list_entry(v, struct proto, node));
3794 return 0;
3795}
3796
3797static const struct seq_operations proto_seq_ops = {
3798 .start = proto_seq_start,
3799 .next = proto_seq_next,
3800 .stop = proto_seq_stop,
3801 .show = proto_seq_show,
3802};
3803
3804static __net_init int proto_init_net(struct net *net)
3805{
3806 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3807 sizeof(struct seq_net_private)))
3808 return -ENOMEM;
3809
3810 return 0;
3811}
3812
3813static __net_exit void proto_exit_net(struct net *net)
3814{
3815 remove_proc_entry("protocols", net->proc_net);
3816}
3817
3818
3819static __net_initdata struct pernet_operations proto_net_ops = {
3820 .init = proto_init_net,
3821 .exit = proto_exit_net,
3822};
3823
3824static int __init proto_init(void)
3825{
3826 return register_pernet_subsys(&proto_net_ops);
3827}
3828
3829subsys_initcall(proto_init);
3830
3831#endif /* PROC_FS */
3832
3833#ifdef CONFIG_NET_RX_BUSY_POLL
3834bool sk_busy_loop_end(void *p, unsigned long start_time)
3835{
3836 struct sock *sk = p;
3837
3838 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3839 sk_busy_loop_timeout(sk, start_time);
3840}
3841EXPORT_SYMBOL(sk_busy_loop_end);
3842#endif /* CONFIG_NET_RX_BUSY_POLL */
3843
3844int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3845{
3846 if (!sk->sk_prot->bind_add)
3847 return -EOPNOTSUPP;
3848 return sk->sk_prot->bind_add(sk, addr, addr_len);
3849}
3850EXPORT_SYMBOL(sock_bind_add);
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/errqueue.h>
97#include <linux/types.h>
98#include <linux/socket.h>
99#include <linux/in.h>
100#include <linux/kernel.h>
101#include <linux/module.h>
102#include <linux/proc_fs.h>
103#include <linux/seq_file.h>
104#include <linux/sched.h>
105#include <linux/sched/mm.h>
106#include <linux/timer.h>
107#include <linux/string.h>
108#include <linux/sockios.h>
109#include <linux/net.h>
110#include <linux/mm.h>
111#include <linux/slab.h>
112#include <linux/interrupt.h>
113#include <linux/poll.h>
114#include <linux/tcp.h>
115#include <linux/init.h>
116#include <linux/highmem.h>
117#include <linux/user_namespace.h>
118#include <linux/static_key.h>
119#include <linux/memcontrol.h>
120#include <linux/prefetch.h>
121
122#include <linux/uaccess.h>
123
124#include <linux/netdevice.h>
125#include <net/protocol.h>
126#include <linux/skbuff.h>
127#include <net/net_namespace.h>
128#include <net/request_sock.h>
129#include <net/sock.h>
130#include <linux/net_tstamp.h>
131#include <net/xfrm.h>
132#include <linux/ipsec.h>
133#include <net/cls_cgroup.h>
134#include <net/netprio_cgroup.h>
135#include <linux/sock_diag.h>
136
137#include <linux/filter.h>
138#include <net/sock_reuseport.h>
139
140#include <trace/events/sock.h>
141
142#include <net/tcp.h>
143#include <net/busy_poll.h>
144
145static DEFINE_MUTEX(proto_list_mutex);
146static LIST_HEAD(proto_list);
147
148static void sock_inuse_add(struct net *net, int val);
149
150/**
151 * sk_ns_capable - General socket capability test
152 * @sk: Socket to use a capability on or through
153 * @user_ns: The user namespace of the capability to use
154 * @cap: The capability to use
155 *
156 * Test to see if the opener of the socket had when the socket was
157 * created and the current process has the capability @cap in the user
158 * namespace @user_ns.
159 */
160bool sk_ns_capable(const struct sock *sk,
161 struct user_namespace *user_ns, int cap)
162{
163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 ns_capable(user_ns, cap);
165}
166EXPORT_SYMBOL(sk_ns_capable);
167
168/**
169 * sk_capable - Socket global capability test
170 * @sk: Socket to use a capability on or through
171 * @cap: The global capability to use
172 *
173 * Test to see if the opener of the socket had when the socket was
174 * created and the current process has the capability @cap in all user
175 * namespaces.
176 */
177bool sk_capable(const struct sock *sk, int cap)
178{
179 return sk_ns_capable(sk, &init_user_ns, cap);
180}
181EXPORT_SYMBOL(sk_capable);
182
183/**
184 * sk_net_capable - Network namespace socket capability test
185 * @sk: Socket to use a capability on or through
186 * @cap: The capability to use
187 *
188 * Test to see if the opener of the socket had when the socket was created
189 * and the current process has the capability @cap over the network namespace
190 * the socket is a member of.
191 */
192bool sk_net_capable(const struct sock *sk, int cap)
193{
194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195}
196EXPORT_SYMBOL(sk_net_capable);
197
198/*
199 * Each address family might have different locking rules, so we have
200 * one slock key per address family and separate keys for internal and
201 * userspace sockets.
202 */
203static struct lock_class_key af_family_keys[AF_MAX];
204static struct lock_class_key af_family_kern_keys[AF_MAX];
205static struct lock_class_key af_family_slock_keys[AF_MAX];
206static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
207
208/*
209 * Make lock validator output more readable. (we pre-construct these
210 * strings build-time, so that runtime initialization of socket
211 * locks is fast):
212 */
213
214#define _sock_locks(x) \
215 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
216 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
217 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
218 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
219 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
220 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
221 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
222 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
223 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
224 x "27" , x "28" , x "AF_CAN" , \
225 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
226 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
227 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
228 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
229 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX"
230
231static const char *const af_family_key_strings[AF_MAX+1] = {
232 _sock_locks("sk_lock-")
233};
234static const char *const af_family_slock_key_strings[AF_MAX+1] = {
235 _sock_locks("slock-")
236};
237static const char *const af_family_clock_key_strings[AF_MAX+1] = {
238 _sock_locks("clock-")
239};
240
241static const char *const af_family_kern_key_strings[AF_MAX+1] = {
242 _sock_locks("k-sk_lock-")
243};
244static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-slock-")
246};
247static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
248 _sock_locks("k-clock-")
249};
250static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
251 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" ,
252 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK",
253 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" ,
254 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" ,
255 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" ,
256 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" ,
257 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" ,
258 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" ,
259 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" ,
260 "rlock-27" , "rlock-28" , "rlock-AF_CAN" ,
261 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" ,
262 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" ,
263 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" ,
264 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" ,
265 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX"
266};
267static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
268 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" ,
269 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK",
270 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" ,
271 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" ,
272 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" ,
273 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" ,
274 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" ,
275 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" ,
276 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" ,
277 "wlock-27" , "wlock-28" , "wlock-AF_CAN" ,
278 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" ,
279 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" ,
280 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" ,
281 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" ,
282 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX"
283};
284static const char *const af_family_elock_key_strings[AF_MAX+1] = {
285 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" ,
286 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK",
287 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" ,
288 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" ,
289 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" ,
290 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" ,
291 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" ,
292 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" ,
293 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" ,
294 "elock-27" , "elock-28" , "elock-AF_CAN" ,
295 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" ,
296 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" ,
297 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" ,
298 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" ,
299 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX"
300};
301
302/*
303 * sk_callback_lock and sk queues locking rules are per-address-family,
304 * so split the lock classes by using a per-AF key:
305 */
306static struct lock_class_key af_callback_keys[AF_MAX];
307static struct lock_class_key af_rlock_keys[AF_MAX];
308static struct lock_class_key af_wlock_keys[AF_MAX];
309static struct lock_class_key af_elock_keys[AF_MAX];
310static struct lock_class_key af_kern_callback_keys[AF_MAX];
311
312/* Run time adjustable parameters. */
313__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
314EXPORT_SYMBOL(sysctl_wmem_max);
315__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
316EXPORT_SYMBOL(sysctl_rmem_max);
317__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
318__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
319
320/* Maximal space eaten by iovec or ancillary data plus some space */
321int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
322EXPORT_SYMBOL(sysctl_optmem_max);
323
324int sysctl_tstamp_allow_data __read_mostly = 1;
325
326struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
327EXPORT_SYMBOL_GPL(memalloc_socks);
328
329/**
330 * sk_set_memalloc - sets %SOCK_MEMALLOC
331 * @sk: socket to set it on
332 *
333 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
334 * It's the responsibility of the admin to adjust min_free_kbytes
335 * to meet the requirements
336 */
337void sk_set_memalloc(struct sock *sk)
338{
339 sock_set_flag(sk, SOCK_MEMALLOC);
340 sk->sk_allocation |= __GFP_MEMALLOC;
341 static_key_slow_inc(&memalloc_socks);
342}
343EXPORT_SYMBOL_GPL(sk_set_memalloc);
344
345void sk_clear_memalloc(struct sock *sk)
346{
347 sock_reset_flag(sk, SOCK_MEMALLOC);
348 sk->sk_allocation &= ~__GFP_MEMALLOC;
349 static_key_slow_dec(&memalloc_socks);
350
351 /*
352 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
353 * progress of swapping. SOCK_MEMALLOC may be cleared while
354 * it has rmem allocations due to the last swapfile being deactivated
355 * but there is a risk that the socket is unusable due to exceeding
356 * the rmem limits. Reclaim the reserves and obey rmem limits again.
357 */
358 sk_mem_reclaim(sk);
359}
360EXPORT_SYMBOL_GPL(sk_clear_memalloc);
361
362int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
363{
364 int ret;
365 unsigned int noreclaim_flag;
366
367 /* these should have been dropped before queueing */
368 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
369
370 noreclaim_flag = memalloc_noreclaim_save();
371 ret = sk->sk_backlog_rcv(sk, skb);
372 memalloc_noreclaim_restore(noreclaim_flag);
373
374 return ret;
375}
376EXPORT_SYMBOL(__sk_backlog_rcv);
377
378static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
379{
380 struct timeval tv;
381
382 if (optlen < sizeof(tv))
383 return -EINVAL;
384 if (copy_from_user(&tv, optval, sizeof(tv)))
385 return -EFAULT;
386 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
387 return -EDOM;
388
389 if (tv.tv_sec < 0) {
390 static int warned __read_mostly;
391
392 *timeo_p = 0;
393 if (warned < 10 && net_ratelimit()) {
394 warned++;
395 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
396 __func__, current->comm, task_pid_nr(current));
397 }
398 return 0;
399 }
400 *timeo_p = MAX_SCHEDULE_TIMEOUT;
401 if (tv.tv_sec == 0 && tv.tv_usec == 0)
402 return 0;
403 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
404 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
405 return 0;
406}
407
408static void sock_warn_obsolete_bsdism(const char *name)
409{
410 static int warned;
411 static char warncomm[TASK_COMM_LEN];
412 if (strcmp(warncomm, current->comm) && warned < 5) {
413 strcpy(warncomm, current->comm);
414 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
415 warncomm, name);
416 warned++;
417 }
418}
419
420static bool sock_needs_netstamp(const struct sock *sk)
421{
422 switch (sk->sk_family) {
423 case AF_UNSPEC:
424 case AF_UNIX:
425 return false;
426 default:
427 return true;
428 }
429}
430
431static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
432{
433 if (sk->sk_flags & flags) {
434 sk->sk_flags &= ~flags;
435 if (sock_needs_netstamp(sk) &&
436 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
437 net_disable_timestamp();
438 }
439}
440
441
442int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
443{
444 unsigned long flags;
445 struct sk_buff_head *list = &sk->sk_receive_queue;
446
447 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
448 atomic_inc(&sk->sk_drops);
449 trace_sock_rcvqueue_full(sk, skb);
450 return -ENOMEM;
451 }
452
453 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
454 atomic_inc(&sk->sk_drops);
455 return -ENOBUFS;
456 }
457
458 skb->dev = NULL;
459 skb_set_owner_r(skb, sk);
460
461 /* we escape from rcu protected region, make sure we dont leak
462 * a norefcounted dst
463 */
464 skb_dst_force(skb);
465
466 spin_lock_irqsave(&list->lock, flags);
467 sock_skb_set_dropcount(sk, skb);
468 __skb_queue_tail(list, skb);
469 spin_unlock_irqrestore(&list->lock, flags);
470
471 if (!sock_flag(sk, SOCK_DEAD))
472 sk->sk_data_ready(sk);
473 return 0;
474}
475EXPORT_SYMBOL(__sock_queue_rcv_skb);
476
477int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
478{
479 int err;
480
481 err = sk_filter(sk, skb);
482 if (err)
483 return err;
484
485 return __sock_queue_rcv_skb(sk, skb);
486}
487EXPORT_SYMBOL(sock_queue_rcv_skb);
488
489int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
490 const int nested, unsigned int trim_cap, bool refcounted)
491{
492 int rc = NET_RX_SUCCESS;
493
494 if (sk_filter_trim_cap(sk, skb, trim_cap))
495 goto discard_and_relse;
496
497 skb->dev = NULL;
498
499 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
500 atomic_inc(&sk->sk_drops);
501 goto discard_and_relse;
502 }
503 if (nested)
504 bh_lock_sock_nested(sk);
505 else
506 bh_lock_sock(sk);
507 if (!sock_owned_by_user(sk)) {
508 /*
509 * trylock + unlock semantics:
510 */
511 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
512
513 rc = sk_backlog_rcv(sk, skb);
514
515 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
516 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
517 bh_unlock_sock(sk);
518 atomic_inc(&sk->sk_drops);
519 goto discard_and_relse;
520 }
521
522 bh_unlock_sock(sk);
523out:
524 if (refcounted)
525 sock_put(sk);
526 return rc;
527discard_and_relse:
528 kfree_skb(skb);
529 goto out;
530}
531EXPORT_SYMBOL(__sk_receive_skb);
532
533struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
534{
535 struct dst_entry *dst = __sk_dst_get(sk);
536
537 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
538 sk_tx_queue_clear(sk);
539 sk->sk_dst_pending_confirm = 0;
540 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
541 dst_release(dst);
542 return NULL;
543 }
544
545 return dst;
546}
547EXPORT_SYMBOL(__sk_dst_check);
548
549struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
550{
551 struct dst_entry *dst = sk_dst_get(sk);
552
553 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
554 sk_dst_reset(sk);
555 dst_release(dst);
556 return NULL;
557 }
558
559 return dst;
560}
561EXPORT_SYMBOL(sk_dst_check);
562
563static int sock_setbindtodevice(struct sock *sk, char __user *optval,
564 int optlen)
565{
566 int ret = -ENOPROTOOPT;
567#ifdef CONFIG_NETDEVICES
568 struct net *net = sock_net(sk);
569 char devname[IFNAMSIZ];
570 int index;
571
572 /* Sorry... */
573 ret = -EPERM;
574 if (!ns_capable(net->user_ns, CAP_NET_RAW))
575 goto out;
576
577 ret = -EINVAL;
578 if (optlen < 0)
579 goto out;
580
581 /* Bind this socket to a particular device like "eth0",
582 * as specified in the passed interface name. If the
583 * name is "" or the option length is zero the socket
584 * is not bound.
585 */
586 if (optlen > IFNAMSIZ - 1)
587 optlen = IFNAMSIZ - 1;
588 memset(devname, 0, sizeof(devname));
589
590 ret = -EFAULT;
591 if (copy_from_user(devname, optval, optlen))
592 goto out;
593
594 index = 0;
595 if (devname[0] != '\0') {
596 struct net_device *dev;
597
598 rcu_read_lock();
599 dev = dev_get_by_name_rcu(net, devname);
600 if (dev)
601 index = dev->ifindex;
602 rcu_read_unlock();
603 ret = -ENODEV;
604 if (!dev)
605 goto out;
606 }
607
608 lock_sock(sk);
609 sk->sk_bound_dev_if = index;
610 sk_dst_reset(sk);
611 release_sock(sk);
612
613 ret = 0;
614
615out:
616#endif
617
618 return ret;
619}
620
621static int sock_getbindtodevice(struct sock *sk, char __user *optval,
622 int __user *optlen, int len)
623{
624 int ret = -ENOPROTOOPT;
625#ifdef CONFIG_NETDEVICES
626 struct net *net = sock_net(sk);
627 char devname[IFNAMSIZ];
628
629 if (sk->sk_bound_dev_if == 0) {
630 len = 0;
631 goto zero;
632 }
633
634 ret = -EINVAL;
635 if (len < IFNAMSIZ)
636 goto out;
637
638 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
639 if (ret)
640 goto out;
641
642 len = strlen(devname) + 1;
643
644 ret = -EFAULT;
645 if (copy_to_user(optval, devname, len))
646 goto out;
647
648zero:
649 ret = -EFAULT;
650 if (put_user(len, optlen))
651 goto out;
652
653 ret = 0;
654
655out:
656#endif
657
658 return ret;
659}
660
661static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
662{
663 if (valbool)
664 sock_set_flag(sk, bit);
665 else
666 sock_reset_flag(sk, bit);
667}
668
669bool sk_mc_loop(struct sock *sk)
670{
671 if (dev_recursion_level())
672 return false;
673 if (!sk)
674 return true;
675 switch (sk->sk_family) {
676 case AF_INET:
677 return inet_sk(sk)->mc_loop;
678#if IS_ENABLED(CONFIG_IPV6)
679 case AF_INET6:
680 return inet6_sk(sk)->mc_loop;
681#endif
682 }
683 WARN_ON(1);
684 return true;
685}
686EXPORT_SYMBOL(sk_mc_loop);
687
688/*
689 * This is meant for all protocols to use and covers goings on
690 * at the socket level. Everything here is generic.
691 */
692
693int sock_setsockopt(struct socket *sock, int level, int optname,
694 char __user *optval, unsigned int optlen)
695{
696 struct sock *sk = sock->sk;
697 int val;
698 int valbool;
699 struct linger ling;
700 int ret = 0;
701
702 /*
703 * Options without arguments
704 */
705
706 if (optname == SO_BINDTODEVICE)
707 return sock_setbindtodevice(sk, optval, optlen);
708
709 if (optlen < sizeof(int))
710 return -EINVAL;
711
712 if (get_user(val, (int __user *)optval))
713 return -EFAULT;
714
715 valbool = val ? 1 : 0;
716
717 lock_sock(sk);
718
719 switch (optname) {
720 case SO_DEBUG:
721 if (val && !capable(CAP_NET_ADMIN))
722 ret = -EACCES;
723 else
724 sock_valbool_flag(sk, SOCK_DBG, valbool);
725 break;
726 case SO_REUSEADDR:
727 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
728 break;
729 case SO_REUSEPORT:
730 sk->sk_reuseport = valbool;
731 break;
732 case SO_TYPE:
733 case SO_PROTOCOL:
734 case SO_DOMAIN:
735 case SO_ERROR:
736 ret = -ENOPROTOOPT;
737 break;
738 case SO_DONTROUTE:
739 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
740 break;
741 case SO_BROADCAST:
742 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
743 break;
744 case SO_SNDBUF:
745 /* Don't error on this BSD doesn't and if you think
746 * about it this is right. Otherwise apps have to
747 * play 'guess the biggest size' games. RCVBUF/SNDBUF
748 * are treated in BSD as hints
749 */
750 val = min_t(u32, val, sysctl_wmem_max);
751set_sndbuf:
752 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
753 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
754 /* Wake up sending tasks if we upped the value. */
755 sk->sk_write_space(sk);
756 break;
757
758 case SO_SNDBUFFORCE:
759 if (!capable(CAP_NET_ADMIN)) {
760 ret = -EPERM;
761 break;
762 }
763 goto set_sndbuf;
764
765 case SO_RCVBUF:
766 /* Don't error on this BSD doesn't and if you think
767 * about it this is right. Otherwise apps have to
768 * play 'guess the biggest size' games. RCVBUF/SNDBUF
769 * are treated in BSD as hints
770 */
771 val = min_t(u32, val, sysctl_rmem_max);
772set_rcvbuf:
773 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
774 /*
775 * We double it on the way in to account for
776 * "struct sk_buff" etc. overhead. Applications
777 * assume that the SO_RCVBUF setting they make will
778 * allow that much actual data to be received on that
779 * socket.
780 *
781 * Applications are unaware that "struct sk_buff" and
782 * other overheads allocate from the receive buffer
783 * during socket buffer allocation.
784 *
785 * And after considering the possible alternatives,
786 * returning the value we actually used in getsockopt
787 * is the most desirable behavior.
788 */
789 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
790 break;
791
792 case SO_RCVBUFFORCE:
793 if (!capable(CAP_NET_ADMIN)) {
794 ret = -EPERM;
795 break;
796 }
797 goto set_rcvbuf;
798
799 case SO_KEEPALIVE:
800 if (sk->sk_prot->keepalive)
801 sk->sk_prot->keepalive(sk, valbool);
802 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
803 break;
804
805 case SO_OOBINLINE:
806 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
807 break;
808
809 case SO_NO_CHECK:
810 sk->sk_no_check_tx = valbool;
811 break;
812
813 case SO_PRIORITY:
814 if ((val >= 0 && val <= 6) ||
815 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
816 sk->sk_priority = val;
817 else
818 ret = -EPERM;
819 break;
820
821 case SO_LINGER:
822 if (optlen < sizeof(ling)) {
823 ret = -EINVAL; /* 1003.1g */
824 break;
825 }
826 if (copy_from_user(&ling, optval, sizeof(ling))) {
827 ret = -EFAULT;
828 break;
829 }
830 if (!ling.l_onoff)
831 sock_reset_flag(sk, SOCK_LINGER);
832 else {
833#if (BITS_PER_LONG == 32)
834 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
835 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
836 else
837#endif
838 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
839 sock_set_flag(sk, SOCK_LINGER);
840 }
841 break;
842
843 case SO_BSDCOMPAT:
844 sock_warn_obsolete_bsdism("setsockopt");
845 break;
846
847 case SO_PASSCRED:
848 if (valbool)
849 set_bit(SOCK_PASSCRED, &sock->flags);
850 else
851 clear_bit(SOCK_PASSCRED, &sock->flags);
852 break;
853
854 case SO_TIMESTAMP:
855 case SO_TIMESTAMPNS:
856 if (valbool) {
857 if (optname == SO_TIMESTAMP)
858 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
859 else
860 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
861 sock_set_flag(sk, SOCK_RCVTSTAMP);
862 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
863 } else {
864 sock_reset_flag(sk, SOCK_RCVTSTAMP);
865 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
866 }
867 break;
868
869 case SO_TIMESTAMPING:
870 if (val & ~SOF_TIMESTAMPING_MASK) {
871 ret = -EINVAL;
872 break;
873 }
874
875 if (val & SOF_TIMESTAMPING_OPT_ID &&
876 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
877 if (sk->sk_protocol == IPPROTO_TCP &&
878 sk->sk_type == SOCK_STREAM) {
879 if ((1 << sk->sk_state) &
880 (TCPF_CLOSE | TCPF_LISTEN)) {
881 ret = -EINVAL;
882 break;
883 }
884 sk->sk_tskey = tcp_sk(sk)->snd_una;
885 } else {
886 sk->sk_tskey = 0;
887 }
888 }
889
890 if (val & SOF_TIMESTAMPING_OPT_STATS &&
891 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
892 ret = -EINVAL;
893 break;
894 }
895
896 sk->sk_tsflags = val;
897 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
898 sock_enable_timestamp(sk,
899 SOCK_TIMESTAMPING_RX_SOFTWARE);
900 else
901 sock_disable_timestamp(sk,
902 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
903 break;
904
905 case SO_RCVLOWAT:
906 if (val < 0)
907 val = INT_MAX;
908 sk->sk_rcvlowat = val ? : 1;
909 break;
910
911 case SO_RCVTIMEO:
912 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
913 break;
914
915 case SO_SNDTIMEO:
916 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
917 break;
918
919 case SO_ATTACH_FILTER:
920 ret = -EINVAL;
921 if (optlen == sizeof(struct sock_fprog)) {
922 struct sock_fprog fprog;
923
924 ret = -EFAULT;
925 if (copy_from_user(&fprog, optval, sizeof(fprog)))
926 break;
927
928 ret = sk_attach_filter(&fprog, sk);
929 }
930 break;
931
932 case SO_ATTACH_BPF:
933 ret = -EINVAL;
934 if (optlen == sizeof(u32)) {
935 u32 ufd;
936
937 ret = -EFAULT;
938 if (copy_from_user(&ufd, optval, sizeof(ufd)))
939 break;
940
941 ret = sk_attach_bpf(ufd, sk);
942 }
943 break;
944
945 case SO_ATTACH_REUSEPORT_CBPF:
946 ret = -EINVAL;
947 if (optlen == sizeof(struct sock_fprog)) {
948 struct sock_fprog fprog;
949
950 ret = -EFAULT;
951 if (copy_from_user(&fprog, optval, sizeof(fprog)))
952 break;
953
954 ret = sk_reuseport_attach_filter(&fprog, sk);
955 }
956 break;
957
958 case SO_ATTACH_REUSEPORT_EBPF:
959 ret = -EINVAL;
960 if (optlen == sizeof(u32)) {
961 u32 ufd;
962
963 ret = -EFAULT;
964 if (copy_from_user(&ufd, optval, sizeof(ufd)))
965 break;
966
967 ret = sk_reuseport_attach_bpf(ufd, sk);
968 }
969 break;
970
971 case SO_DETACH_FILTER:
972 ret = sk_detach_filter(sk);
973 break;
974
975 case SO_LOCK_FILTER:
976 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
977 ret = -EPERM;
978 else
979 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
980 break;
981
982 case SO_PASSSEC:
983 if (valbool)
984 set_bit(SOCK_PASSSEC, &sock->flags);
985 else
986 clear_bit(SOCK_PASSSEC, &sock->flags);
987 break;
988 case SO_MARK:
989 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
990 ret = -EPERM;
991 else
992 sk->sk_mark = val;
993 break;
994
995 case SO_RXQ_OVFL:
996 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
997 break;
998
999 case SO_WIFI_STATUS:
1000 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1001 break;
1002
1003 case SO_PEEK_OFF:
1004 if (sock->ops->set_peek_off)
1005 ret = sock->ops->set_peek_off(sk, val);
1006 else
1007 ret = -EOPNOTSUPP;
1008 break;
1009
1010 case SO_NOFCS:
1011 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1012 break;
1013
1014 case SO_SELECT_ERR_QUEUE:
1015 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1016 break;
1017
1018#ifdef CONFIG_NET_RX_BUSY_POLL
1019 case SO_BUSY_POLL:
1020 /* allow unprivileged users to decrease the value */
1021 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1022 ret = -EPERM;
1023 else {
1024 if (val < 0)
1025 ret = -EINVAL;
1026 else
1027 sk->sk_ll_usec = val;
1028 }
1029 break;
1030#endif
1031
1032 case SO_MAX_PACING_RATE:
1033 if (val != ~0U)
1034 cmpxchg(&sk->sk_pacing_status,
1035 SK_PACING_NONE,
1036 SK_PACING_NEEDED);
1037 sk->sk_max_pacing_rate = val;
1038 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1039 sk->sk_max_pacing_rate);
1040 break;
1041
1042 case SO_INCOMING_CPU:
1043 sk->sk_incoming_cpu = val;
1044 break;
1045
1046 case SO_CNX_ADVICE:
1047 if (val == 1)
1048 dst_negative_advice(sk);
1049 break;
1050
1051 case SO_ZEROCOPY:
1052 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1053 if (sk->sk_protocol != IPPROTO_TCP)
1054 ret = -ENOTSUPP;
1055 } else if (sk->sk_family != PF_RDS) {
1056 ret = -ENOTSUPP;
1057 }
1058 if (!ret) {
1059 if (val < 0 || val > 1)
1060 ret = -EINVAL;
1061 else
1062 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1063 }
1064 break;
1065
1066 default:
1067 ret = -ENOPROTOOPT;
1068 break;
1069 }
1070 release_sock(sk);
1071 return ret;
1072}
1073EXPORT_SYMBOL(sock_setsockopt);
1074
1075
1076static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1077 struct ucred *ucred)
1078{
1079 ucred->pid = pid_vnr(pid);
1080 ucred->uid = ucred->gid = -1;
1081 if (cred) {
1082 struct user_namespace *current_ns = current_user_ns();
1083
1084 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1085 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1086 }
1087}
1088
1089static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1090{
1091 struct user_namespace *user_ns = current_user_ns();
1092 int i;
1093
1094 for (i = 0; i < src->ngroups; i++)
1095 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1096 return -EFAULT;
1097
1098 return 0;
1099}
1100
1101int sock_getsockopt(struct socket *sock, int level, int optname,
1102 char __user *optval, int __user *optlen)
1103{
1104 struct sock *sk = sock->sk;
1105
1106 union {
1107 int val;
1108 u64 val64;
1109 struct linger ling;
1110 struct timeval tm;
1111 } v;
1112
1113 int lv = sizeof(int);
1114 int len;
1115
1116 if (get_user(len, optlen))
1117 return -EFAULT;
1118 if (len < 0)
1119 return -EINVAL;
1120
1121 memset(&v, 0, sizeof(v));
1122
1123 switch (optname) {
1124 case SO_DEBUG:
1125 v.val = sock_flag(sk, SOCK_DBG);
1126 break;
1127
1128 case SO_DONTROUTE:
1129 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1130 break;
1131
1132 case SO_BROADCAST:
1133 v.val = sock_flag(sk, SOCK_BROADCAST);
1134 break;
1135
1136 case SO_SNDBUF:
1137 v.val = sk->sk_sndbuf;
1138 break;
1139
1140 case SO_RCVBUF:
1141 v.val = sk->sk_rcvbuf;
1142 break;
1143
1144 case SO_REUSEADDR:
1145 v.val = sk->sk_reuse;
1146 break;
1147
1148 case SO_REUSEPORT:
1149 v.val = sk->sk_reuseport;
1150 break;
1151
1152 case SO_KEEPALIVE:
1153 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1154 break;
1155
1156 case SO_TYPE:
1157 v.val = sk->sk_type;
1158 break;
1159
1160 case SO_PROTOCOL:
1161 v.val = sk->sk_protocol;
1162 break;
1163
1164 case SO_DOMAIN:
1165 v.val = sk->sk_family;
1166 break;
1167
1168 case SO_ERROR:
1169 v.val = -sock_error(sk);
1170 if (v.val == 0)
1171 v.val = xchg(&sk->sk_err_soft, 0);
1172 break;
1173
1174 case SO_OOBINLINE:
1175 v.val = sock_flag(sk, SOCK_URGINLINE);
1176 break;
1177
1178 case SO_NO_CHECK:
1179 v.val = sk->sk_no_check_tx;
1180 break;
1181
1182 case SO_PRIORITY:
1183 v.val = sk->sk_priority;
1184 break;
1185
1186 case SO_LINGER:
1187 lv = sizeof(v.ling);
1188 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1189 v.ling.l_linger = sk->sk_lingertime / HZ;
1190 break;
1191
1192 case SO_BSDCOMPAT:
1193 sock_warn_obsolete_bsdism("getsockopt");
1194 break;
1195
1196 case SO_TIMESTAMP:
1197 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1198 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1199 break;
1200
1201 case SO_TIMESTAMPNS:
1202 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1203 break;
1204
1205 case SO_TIMESTAMPING:
1206 v.val = sk->sk_tsflags;
1207 break;
1208
1209 case SO_RCVTIMEO:
1210 lv = sizeof(struct timeval);
1211 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1212 v.tm.tv_sec = 0;
1213 v.tm.tv_usec = 0;
1214 } else {
1215 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1216 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1217 }
1218 break;
1219
1220 case SO_SNDTIMEO:
1221 lv = sizeof(struct timeval);
1222 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1223 v.tm.tv_sec = 0;
1224 v.tm.tv_usec = 0;
1225 } else {
1226 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1227 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1228 }
1229 break;
1230
1231 case SO_RCVLOWAT:
1232 v.val = sk->sk_rcvlowat;
1233 break;
1234
1235 case SO_SNDLOWAT:
1236 v.val = 1;
1237 break;
1238
1239 case SO_PASSCRED:
1240 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1241 break;
1242
1243 case SO_PEERCRED:
1244 {
1245 struct ucred peercred;
1246 if (len > sizeof(peercred))
1247 len = sizeof(peercred);
1248 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1249 if (copy_to_user(optval, &peercred, len))
1250 return -EFAULT;
1251 goto lenout;
1252 }
1253
1254 case SO_PEERGROUPS:
1255 {
1256 int ret, n;
1257
1258 if (!sk->sk_peer_cred)
1259 return -ENODATA;
1260
1261 n = sk->sk_peer_cred->group_info->ngroups;
1262 if (len < n * sizeof(gid_t)) {
1263 len = n * sizeof(gid_t);
1264 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1265 }
1266 len = n * sizeof(gid_t);
1267
1268 ret = groups_to_user((gid_t __user *)optval,
1269 sk->sk_peer_cred->group_info);
1270 if (ret)
1271 return ret;
1272 goto lenout;
1273 }
1274
1275 case SO_PEERNAME:
1276 {
1277 char address[128];
1278
1279 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1280 if (lv < 0)
1281 return -ENOTCONN;
1282 if (lv < len)
1283 return -EINVAL;
1284 if (copy_to_user(optval, address, len))
1285 return -EFAULT;
1286 goto lenout;
1287 }
1288
1289 /* Dubious BSD thing... Probably nobody even uses it, but
1290 * the UNIX standard wants it for whatever reason... -DaveM
1291 */
1292 case SO_ACCEPTCONN:
1293 v.val = sk->sk_state == TCP_LISTEN;
1294 break;
1295
1296 case SO_PASSSEC:
1297 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1298 break;
1299
1300 case SO_PEERSEC:
1301 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1302
1303 case SO_MARK:
1304 v.val = sk->sk_mark;
1305 break;
1306
1307 case SO_RXQ_OVFL:
1308 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1309 break;
1310
1311 case SO_WIFI_STATUS:
1312 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1313 break;
1314
1315 case SO_PEEK_OFF:
1316 if (!sock->ops->set_peek_off)
1317 return -EOPNOTSUPP;
1318
1319 v.val = sk->sk_peek_off;
1320 break;
1321 case SO_NOFCS:
1322 v.val = sock_flag(sk, SOCK_NOFCS);
1323 break;
1324
1325 case SO_BINDTODEVICE:
1326 return sock_getbindtodevice(sk, optval, optlen, len);
1327
1328 case SO_GET_FILTER:
1329 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1330 if (len < 0)
1331 return len;
1332
1333 goto lenout;
1334
1335 case SO_LOCK_FILTER:
1336 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1337 break;
1338
1339 case SO_BPF_EXTENSIONS:
1340 v.val = bpf_tell_extensions();
1341 break;
1342
1343 case SO_SELECT_ERR_QUEUE:
1344 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1345 break;
1346
1347#ifdef CONFIG_NET_RX_BUSY_POLL
1348 case SO_BUSY_POLL:
1349 v.val = sk->sk_ll_usec;
1350 break;
1351#endif
1352
1353 case SO_MAX_PACING_RATE:
1354 v.val = sk->sk_max_pacing_rate;
1355 break;
1356
1357 case SO_INCOMING_CPU:
1358 v.val = sk->sk_incoming_cpu;
1359 break;
1360
1361 case SO_MEMINFO:
1362 {
1363 u32 meminfo[SK_MEMINFO_VARS];
1364
1365 if (get_user(len, optlen))
1366 return -EFAULT;
1367
1368 sk_get_meminfo(sk, meminfo);
1369
1370 len = min_t(unsigned int, len, sizeof(meminfo));
1371 if (copy_to_user(optval, &meminfo, len))
1372 return -EFAULT;
1373
1374 goto lenout;
1375 }
1376
1377#ifdef CONFIG_NET_RX_BUSY_POLL
1378 case SO_INCOMING_NAPI_ID:
1379 v.val = READ_ONCE(sk->sk_napi_id);
1380
1381 /* aggregate non-NAPI IDs down to 0 */
1382 if (v.val < MIN_NAPI_ID)
1383 v.val = 0;
1384
1385 break;
1386#endif
1387
1388 case SO_COOKIE:
1389 lv = sizeof(u64);
1390 if (len < lv)
1391 return -EINVAL;
1392 v.val64 = sock_gen_cookie(sk);
1393 break;
1394
1395 case SO_ZEROCOPY:
1396 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1397 break;
1398
1399 default:
1400 /* We implement the SO_SNDLOWAT etc to not be settable
1401 * (1003.1g 7).
1402 */
1403 return -ENOPROTOOPT;
1404 }
1405
1406 if (len > lv)
1407 len = lv;
1408 if (copy_to_user(optval, &v, len))
1409 return -EFAULT;
1410lenout:
1411 if (put_user(len, optlen))
1412 return -EFAULT;
1413 return 0;
1414}
1415
1416/*
1417 * Initialize an sk_lock.
1418 *
1419 * (We also register the sk_lock with the lock validator.)
1420 */
1421static inline void sock_lock_init(struct sock *sk)
1422{
1423 if (sk->sk_kern_sock)
1424 sock_lock_init_class_and_name(
1425 sk,
1426 af_family_kern_slock_key_strings[sk->sk_family],
1427 af_family_kern_slock_keys + sk->sk_family,
1428 af_family_kern_key_strings[sk->sk_family],
1429 af_family_kern_keys + sk->sk_family);
1430 else
1431 sock_lock_init_class_and_name(
1432 sk,
1433 af_family_slock_key_strings[sk->sk_family],
1434 af_family_slock_keys + sk->sk_family,
1435 af_family_key_strings[sk->sk_family],
1436 af_family_keys + sk->sk_family);
1437}
1438
1439/*
1440 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1441 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1442 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1443 */
1444static void sock_copy(struct sock *nsk, const struct sock *osk)
1445{
1446#ifdef CONFIG_SECURITY_NETWORK
1447 void *sptr = nsk->sk_security;
1448#endif
1449 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1450
1451 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1452 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1453
1454#ifdef CONFIG_SECURITY_NETWORK
1455 nsk->sk_security = sptr;
1456 security_sk_clone(osk, nsk);
1457#endif
1458}
1459
1460static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1461 int family)
1462{
1463 struct sock *sk;
1464 struct kmem_cache *slab;
1465
1466 slab = prot->slab;
1467 if (slab != NULL) {
1468 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1469 if (!sk)
1470 return sk;
1471 if (priority & __GFP_ZERO)
1472 sk_prot_clear_nulls(sk, prot->obj_size);
1473 } else
1474 sk = kmalloc(prot->obj_size, priority);
1475
1476 if (sk != NULL) {
1477 if (security_sk_alloc(sk, family, priority))
1478 goto out_free;
1479
1480 if (!try_module_get(prot->owner))
1481 goto out_free_sec;
1482 sk_tx_queue_clear(sk);
1483 }
1484
1485 return sk;
1486
1487out_free_sec:
1488 security_sk_free(sk);
1489out_free:
1490 if (slab != NULL)
1491 kmem_cache_free(slab, sk);
1492 else
1493 kfree(sk);
1494 return NULL;
1495}
1496
1497static void sk_prot_free(struct proto *prot, struct sock *sk)
1498{
1499 struct kmem_cache *slab;
1500 struct module *owner;
1501
1502 owner = prot->owner;
1503 slab = prot->slab;
1504
1505 cgroup_sk_free(&sk->sk_cgrp_data);
1506 mem_cgroup_sk_free(sk);
1507 security_sk_free(sk);
1508 if (slab != NULL)
1509 kmem_cache_free(slab, sk);
1510 else
1511 kfree(sk);
1512 module_put(owner);
1513}
1514
1515/**
1516 * sk_alloc - All socket objects are allocated here
1517 * @net: the applicable net namespace
1518 * @family: protocol family
1519 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1520 * @prot: struct proto associated with this new sock instance
1521 * @kern: is this to be a kernel socket?
1522 */
1523struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1524 struct proto *prot, int kern)
1525{
1526 struct sock *sk;
1527
1528 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1529 if (sk) {
1530 sk->sk_family = family;
1531 /*
1532 * See comment in struct sock definition to understand
1533 * why we need sk_prot_creator -acme
1534 */
1535 sk->sk_prot = sk->sk_prot_creator = prot;
1536 sk->sk_kern_sock = kern;
1537 sock_lock_init(sk);
1538 sk->sk_net_refcnt = kern ? 0 : 1;
1539 if (likely(sk->sk_net_refcnt)) {
1540 get_net(net);
1541 sock_inuse_add(net, 1);
1542 }
1543
1544 sock_net_set(sk, net);
1545 refcount_set(&sk->sk_wmem_alloc, 1);
1546
1547 mem_cgroup_sk_alloc(sk);
1548 cgroup_sk_alloc(&sk->sk_cgrp_data);
1549 sock_update_classid(&sk->sk_cgrp_data);
1550 sock_update_netprioidx(&sk->sk_cgrp_data);
1551 }
1552
1553 return sk;
1554}
1555EXPORT_SYMBOL(sk_alloc);
1556
1557/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1558 * grace period. This is the case for UDP sockets and TCP listeners.
1559 */
1560static void __sk_destruct(struct rcu_head *head)
1561{
1562 struct sock *sk = container_of(head, struct sock, sk_rcu);
1563 struct sk_filter *filter;
1564
1565 if (sk->sk_destruct)
1566 sk->sk_destruct(sk);
1567
1568 filter = rcu_dereference_check(sk->sk_filter,
1569 refcount_read(&sk->sk_wmem_alloc) == 0);
1570 if (filter) {
1571 sk_filter_uncharge(sk, filter);
1572 RCU_INIT_POINTER(sk->sk_filter, NULL);
1573 }
1574 if (rcu_access_pointer(sk->sk_reuseport_cb))
1575 reuseport_detach_sock(sk);
1576
1577 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1578
1579 if (atomic_read(&sk->sk_omem_alloc))
1580 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1581 __func__, atomic_read(&sk->sk_omem_alloc));
1582
1583 if (sk->sk_frag.page) {
1584 put_page(sk->sk_frag.page);
1585 sk->sk_frag.page = NULL;
1586 }
1587
1588 if (sk->sk_peer_cred)
1589 put_cred(sk->sk_peer_cred);
1590 put_pid(sk->sk_peer_pid);
1591 if (likely(sk->sk_net_refcnt))
1592 put_net(sock_net(sk));
1593 sk_prot_free(sk->sk_prot_creator, sk);
1594}
1595
1596void sk_destruct(struct sock *sk)
1597{
1598 if (sock_flag(sk, SOCK_RCU_FREE))
1599 call_rcu(&sk->sk_rcu, __sk_destruct);
1600 else
1601 __sk_destruct(&sk->sk_rcu);
1602}
1603
1604static void __sk_free(struct sock *sk)
1605{
1606 if (likely(sk->sk_net_refcnt))
1607 sock_inuse_add(sock_net(sk), -1);
1608
1609 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1610 sock_diag_broadcast_destroy(sk);
1611 else
1612 sk_destruct(sk);
1613}
1614
1615void sk_free(struct sock *sk)
1616{
1617 /*
1618 * We subtract one from sk_wmem_alloc and can know if
1619 * some packets are still in some tx queue.
1620 * If not null, sock_wfree() will call __sk_free(sk) later
1621 */
1622 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1623 __sk_free(sk);
1624}
1625EXPORT_SYMBOL(sk_free);
1626
1627static void sk_init_common(struct sock *sk)
1628{
1629 skb_queue_head_init(&sk->sk_receive_queue);
1630 skb_queue_head_init(&sk->sk_write_queue);
1631 skb_queue_head_init(&sk->sk_error_queue);
1632
1633 rwlock_init(&sk->sk_callback_lock);
1634 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1635 af_rlock_keys + sk->sk_family,
1636 af_family_rlock_key_strings[sk->sk_family]);
1637 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1638 af_wlock_keys + sk->sk_family,
1639 af_family_wlock_key_strings[sk->sk_family]);
1640 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1641 af_elock_keys + sk->sk_family,
1642 af_family_elock_key_strings[sk->sk_family]);
1643 lockdep_set_class_and_name(&sk->sk_callback_lock,
1644 af_callback_keys + sk->sk_family,
1645 af_family_clock_key_strings[sk->sk_family]);
1646}
1647
1648/**
1649 * sk_clone_lock - clone a socket, and lock its clone
1650 * @sk: the socket to clone
1651 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1652 *
1653 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1654 */
1655struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1656{
1657 struct sock *newsk;
1658 bool is_charged = true;
1659
1660 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1661 if (newsk != NULL) {
1662 struct sk_filter *filter;
1663
1664 sock_copy(newsk, sk);
1665
1666 newsk->sk_prot_creator = sk->sk_prot;
1667
1668 /* SANITY */
1669 if (likely(newsk->sk_net_refcnt))
1670 get_net(sock_net(newsk));
1671 sk_node_init(&newsk->sk_node);
1672 sock_lock_init(newsk);
1673 bh_lock_sock(newsk);
1674 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1675 newsk->sk_backlog.len = 0;
1676
1677 atomic_set(&newsk->sk_rmem_alloc, 0);
1678 /*
1679 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1680 */
1681 refcount_set(&newsk->sk_wmem_alloc, 1);
1682 atomic_set(&newsk->sk_omem_alloc, 0);
1683 sk_init_common(newsk);
1684
1685 newsk->sk_dst_cache = NULL;
1686 newsk->sk_dst_pending_confirm = 0;
1687 newsk->sk_wmem_queued = 0;
1688 newsk->sk_forward_alloc = 0;
1689 atomic_set(&newsk->sk_drops, 0);
1690 newsk->sk_send_head = NULL;
1691 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1692 atomic_set(&newsk->sk_zckey, 0);
1693
1694 sock_reset_flag(newsk, SOCK_DONE);
1695 mem_cgroup_sk_alloc(newsk);
1696 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1697
1698 rcu_read_lock();
1699 filter = rcu_dereference(sk->sk_filter);
1700 if (filter != NULL)
1701 /* though it's an empty new sock, the charging may fail
1702 * if sysctl_optmem_max was changed between creation of
1703 * original socket and cloning
1704 */
1705 is_charged = sk_filter_charge(newsk, filter);
1706 RCU_INIT_POINTER(newsk->sk_filter, filter);
1707 rcu_read_unlock();
1708
1709 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1710 /* We need to make sure that we don't uncharge the new
1711 * socket if we couldn't charge it in the first place
1712 * as otherwise we uncharge the parent's filter.
1713 */
1714 if (!is_charged)
1715 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1716 sk_free_unlock_clone(newsk);
1717 newsk = NULL;
1718 goto out;
1719 }
1720 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1721
1722 newsk->sk_err = 0;
1723 newsk->sk_err_soft = 0;
1724 newsk->sk_priority = 0;
1725 newsk->sk_incoming_cpu = raw_smp_processor_id();
1726 atomic64_set(&newsk->sk_cookie, 0);
1727 if (likely(newsk->sk_net_refcnt))
1728 sock_inuse_add(sock_net(newsk), 1);
1729
1730 /*
1731 * Before updating sk_refcnt, we must commit prior changes to memory
1732 * (Documentation/RCU/rculist_nulls.txt for details)
1733 */
1734 smp_wmb();
1735 refcount_set(&newsk->sk_refcnt, 2);
1736
1737 /*
1738 * Increment the counter in the same struct proto as the master
1739 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1740 * is the same as sk->sk_prot->socks, as this field was copied
1741 * with memcpy).
1742 *
1743 * This _changes_ the previous behaviour, where
1744 * tcp_create_openreq_child always was incrementing the
1745 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1746 * to be taken into account in all callers. -acme
1747 */
1748 sk_refcnt_debug_inc(newsk);
1749 sk_set_socket(newsk, NULL);
1750 newsk->sk_wq = NULL;
1751
1752 if (newsk->sk_prot->sockets_allocated)
1753 sk_sockets_allocated_inc(newsk);
1754
1755 if (sock_needs_netstamp(sk) &&
1756 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1757 net_enable_timestamp();
1758 }
1759out:
1760 return newsk;
1761}
1762EXPORT_SYMBOL_GPL(sk_clone_lock);
1763
1764void sk_free_unlock_clone(struct sock *sk)
1765{
1766 /* It is still raw copy of parent, so invalidate
1767 * destructor and make plain sk_free() */
1768 sk->sk_destruct = NULL;
1769 bh_unlock_sock(sk);
1770 sk_free(sk);
1771}
1772EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1773
1774void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1775{
1776 u32 max_segs = 1;
1777
1778 sk_dst_set(sk, dst);
1779 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1780 if (sk->sk_route_caps & NETIF_F_GSO)
1781 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1782 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1783 if (sk_can_gso(sk)) {
1784 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1785 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1786 } else {
1787 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1788 sk->sk_gso_max_size = dst->dev->gso_max_size;
1789 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1790 }
1791 }
1792 sk->sk_gso_max_segs = max_segs;
1793}
1794EXPORT_SYMBOL_GPL(sk_setup_caps);
1795
1796/*
1797 * Simple resource managers for sockets.
1798 */
1799
1800
1801/*
1802 * Write buffer destructor automatically called from kfree_skb.
1803 */
1804void sock_wfree(struct sk_buff *skb)
1805{
1806 struct sock *sk = skb->sk;
1807 unsigned int len = skb->truesize;
1808
1809 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1810 /*
1811 * Keep a reference on sk_wmem_alloc, this will be released
1812 * after sk_write_space() call
1813 */
1814 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1815 sk->sk_write_space(sk);
1816 len = 1;
1817 }
1818 /*
1819 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1820 * could not do because of in-flight packets
1821 */
1822 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1823 __sk_free(sk);
1824}
1825EXPORT_SYMBOL(sock_wfree);
1826
1827/* This variant of sock_wfree() is used by TCP,
1828 * since it sets SOCK_USE_WRITE_QUEUE.
1829 */
1830void __sock_wfree(struct sk_buff *skb)
1831{
1832 struct sock *sk = skb->sk;
1833
1834 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1835 __sk_free(sk);
1836}
1837
1838void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1839{
1840 skb_orphan(skb);
1841 skb->sk = sk;
1842#ifdef CONFIG_INET
1843 if (unlikely(!sk_fullsock(sk))) {
1844 skb->destructor = sock_edemux;
1845 sock_hold(sk);
1846 return;
1847 }
1848#endif
1849 skb->destructor = sock_wfree;
1850 skb_set_hash_from_sk(skb, sk);
1851 /*
1852 * We used to take a refcount on sk, but following operation
1853 * is enough to guarantee sk_free() wont free this sock until
1854 * all in-flight packets are completed
1855 */
1856 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1857}
1858EXPORT_SYMBOL(skb_set_owner_w);
1859
1860/* This helper is used by netem, as it can hold packets in its
1861 * delay queue. We want to allow the owner socket to send more
1862 * packets, as if they were already TX completed by a typical driver.
1863 * But we also want to keep skb->sk set because some packet schedulers
1864 * rely on it (sch_fq for example).
1865 */
1866void skb_orphan_partial(struct sk_buff *skb)
1867{
1868 if (skb_is_tcp_pure_ack(skb))
1869 return;
1870
1871 if (skb->destructor == sock_wfree
1872#ifdef CONFIG_INET
1873 || skb->destructor == tcp_wfree
1874#endif
1875 ) {
1876 struct sock *sk = skb->sk;
1877
1878 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1879 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1880 skb->destructor = sock_efree;
1881 }
1882 } else {
1883 skb_orphan(skb);
1884 }
1885}
1886EXPORT_SYMBOL(skb_orphan_partial);
1887
1888/*
1889 * Read buffer destructor automatically called from kfree_skb.
1890 */
1891void sock_rfree(struct sk_buff *skb)
1892{
1893 struct sock *sk = skb->sk;
1894 unsigned int len = skb->truesize;
1895
1896 atomic_sub(len, &sk->sk_rmem_alloc);
1897 sk_mem_uncharge(sk, len);
1898}
1899EXPORT_SYMBOL(sock_rfree);
1900
1901/*
1902 * Buffer destructor for skbs that are not used directly in read or write
1903 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1904 */
1905void sock_efree(struct sk_buff *skb)
1906{
1907 sock_put(skb->sk);
1908}
1909EXPORT_SYMBOL(sock_efree);
1910
1911kuid_t sock_i_uid(struct sock *sk)
1912{
1913 kuid_t uid;
1914
1915 read_lock_bh(&sk->sk_callback_lock);
1916 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1917 read_unlock_bh(&sk->sk_callback_lock);
1918 return uid;
1919}
1920EXPORT_SYMBOL(sock_i_uid);
1921
1922unsigned long sock_i_ino(struct sock *sk)
1923{
1924 unsigned long ino;
1925
1926 read_lock_bh(&sk->sk_callback_lock);
1927 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1928 read_unlock_bh(&sk->sk_callback_lock);
1929 return ino;
1930}
1931EXPORT_SYMBOL(sock_i_ino);
1932
1933/*
1934 * Allocate a skb from the socket's send buffer.
1935 */
1936struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1937 gfp_t priority)
1938{
1939 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1940 struct sk_buff *skb = alloc_skb(size, priority);
1941 if (skb) {
1942 skb_set_owner_w(skb, sk);
1943 return skb;
1944 }
1945 }
1946 return NULL;
1947}
1948EXPORT_SYMBOL(sock_wmalloc);
1949
1950static void sock_ofree(struct sk_buff *skb)
1951{
1952 struct sock *sk = skb->sk;
1953
1954 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1955}
1956
1957struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1958 gfp_t priority)
1959{
1960 struct sk_buff *skb;
1961
1962 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1963 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1964 sysctl_optmem_max)
1965 return NULL;
1966
1967 skb = alloc_skb(size, priority);
1968 if (!skb)
1969 return NULL;
1970
1971 atomic_add(skb->truesize, &sk->sk_omem_alloc);
1972 skb->sk = sk;
1973 skb->destructor = sock_ofree;
1974 return skb;
1975}
1976
1977/*
1978 * Allocate a memory block from the socket's option memory buffer.
1979 */
1980void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1981{
1982 if ((unsigned int)size <= sysctl_optmem_max &&
1983 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1984 void *mem;
1985 /* First do the add, to avoid the race if kmalloc
1986 * might sleep.
1987 */
1988 atomic_add(size, &sk->sk_omem_alloc);
1989 mem = kmalloc(size, priority);
1990 if (mem)
1991 return mem;
1992 atomic_sub(size, &sk->sk_omem_alloc);
1993 }
1994 return NULL;
1995}
1996EXPORT_SYMBOL(sock_kmalloc);
1997
1998/* Free an option memory block. Note, we actually want the inline
1999 * here as this allows gcc to detect the nullify and fold away the
2000 * condition entirely.
2001 */
2002static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2003 const bool nullify)
2004{
2005 if (WARN_ON_ONCE(!mem))
2006 return;
2007 if (nullify)
2008 kzfree(mem);
2009 else
2010 kfree(mem);
2011 atomic_sub(size, &sk->sk_omem_alloc);
2012}
2013
2014void sock_kfree_s(struct sock *sk, void *mem, int size)
2015{
2016 __sock_kfree_s(sk, mem, size, false);
2017}
2018EXPORT_SYMBOL(sock_kfree_s);
2019
2020void sock_kzfree_s(struct sock *sk, void *mem, int size)
2021{
2022 __sock_kfree_s(sk, mem, size, true);
2023}
2024EXPORT_SYMBOL(sock_kzfree_s);
2025
2026/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2027 I think, these locks should be removed for datagram sockets.
2028 */
2029static long sock_wait_for_wmem(struct sock *sk, long timeo)
2030{
2031 DEFINE_WAIT(wait);
2032
2033 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2034 for (;;) {
2035 if (!timeo)
2036 break;
2037 if (signal_pending(current))
2038 break;
2039 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2040 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2041 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2042 break;
2043 if (sk->sk_shutdown & SEND_SHUTDOWN)
2044 break;
2045 if (sk->sk_err)
2046 break;
2047 timeo = schedule_timeout(timeo);
2048 }
2049 finish_wait(sk_sleep(sk), &wait);
2050 return timeo;
2051}
2052
2053
2054/*
2055 * Generic send/receive buffer handlers
2056 */
2057
2058struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2059 unsigned long data_len, int noblock,
2060 int *errcode, int max_page_order)
2061{
2062 struct sk_buff *skb;
2063 long timeo;
2064 int err;
2065
2066 timeo = sock_sndtimeo(sk, noblock);
2067 for (;;) {
2068 err = sock_error(sk);
2069 if (err != 0)
2070 goto failure;
2071
2072 err = -EPIPE;
2073 if (sk->sk_shutdown & SEND_SHUTDOWN)
2074 goto failure;
2075
2076 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2077 break;
2078
2079 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2080 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2081 err = -EAGAIN;
2082 if (!timeo)
2083 goto failure;
2084 if (signal_pending(current))
2085 goto interrupted;
2086 timeo = sock_wait_for_wmem(sk, timeo);
2087 }
2088 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2089 errcode, sk->sk_allocation);
2090 if (skb)
2091 skb_set_owner_w(skb, sk);
2092 return skb;
2093
2094interrupted:
2095 err = sock_intr_errno(timeo);
2096failure:
2097 *errcode = err;
2098 return NULL;
2099}
2100EXPORT_SYMBOL(sock_alloc_send_pskb);
2101
2102struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2103 int noblock, int *errcode)
2104{
2105 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2106}
2107EXPORT_SYMBOL(sock_alloc_send_skb);
2108
2109int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2110 struct sockcm_cookie *sockc)
2111{
2112 u32 tsflags;
2113
2114 switch (cmsg->cmsg_type) {
2115 case SO_MARK:
2116 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2117 return -EPERM;
2118 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2119 return -EINVAL;
2120 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2121 break;
2122 case SO_TIMESTAMPING:
2123 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2124 return -EINVAL;
2125
2126 tsflags = *(u32 *)CMSG_DATA(cmsg);
2127 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2128 return -EINVAL;
2129
2130 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2131 sockc->tsflags |= tsflags;
2132 break;
2133 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2134 case SCM_RIGHTS:
2135 case SCM_CREDENTIALS:
2136 break;
2137 default:
2138 return -EINVAL;
2139 }
2140 return 0;
2141}
2142EXPORT_SYMBOL(__sock_cmsg_send);
2143
2144int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2145 struct sockcm_cookie *sockc)
2146{
2147 struct cmsghdr *cmsg;
2148 int ret;
2149
2150 for_each_cmsghdr(cmsg, msg) {
2151 if (!CMSG_OK(msg, cmsg))
2152 return -EINVAL;
2153 if (cmsg->cmsg_level != SOL_SOCKET)
2154 continue;
2155 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2156 if (ret)
2157 return ret;
2158 }
2159 return 0;
2160}
2161EXPORT_SYMBOL(sock_cmsg_send);
2162
2163static void sk_enter_memory_pressure(struct sock *sk)
2164{
2165 if (!sk->sk_prot->enter_memory_pressure)
2166 return;
2167
2168 sk->sk_prot->enter_memory_pressure(sk);
2169}
2170
2171static void sk_leave_memory_pressure(struct sock *sk)
2172{
2173 if (sk->sk_prot->leave_memory_pressure) {
2174 sk->sk_prot->leave_memory_pressure(sk);
2175 } else {
2176 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2177
2178 if (memory_pressure && *memory_pressure)
2179 *memory_pressure = 0;
2180 }
2181}
2182
2183/* On 32bit arches, an skb frag is limited to 2^15 */
2184#define SKB_FRAG_PAGE_ORDER get_order(32768)
2185
2186/**
2187 * skb_page_frag_refill - check that a page_frag contains enough room
2188 * @sz: minimum size of the fragment we want to get
2189 * @pfrag: pointer to page_frag
2190 * @gfp: priority for memory allocation
2191 *
2192 * Note: While this allocator tries to use high order pages, there is
2193 * no guarantee that allocations succeed. Therefore, @sz MUST be
2194 * less or equal than PAGE_SIZE.
2195 */
2196bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2197{
2198 if (pfrag->page) {
2199 if (page_ref_count(pfrag->page) == 1) {
2200 pfrag->offset = 0;
2201 return true;
2202 }
2203 if (pfrag->offset + sz <= pfrag->size)
2204 return true;
2205 put_page(pfrag->page);
2206 }
2207
2208 pfrag->offset = 0;
2209 if (SKB_FRAG_PAGE_ORDER) {
2210 /* Avoid direct reclaim but allow kswapd to wake */
2211 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2212 __GFP_COMP | __GFP_NOWARN |
2213 __GFP_NORETRY,
2214 SKB_FRAG_PAGE_ORDER);
2215 if (likely(pfrag->page)) {
2216 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2217 return true;
2218 }
2219 }
2220 pfrag->page = alloc_page(gfp);
2221 if (likely(pfrag->page)) {
2222 pfrag->size = PAGE_SIZE;
2223 return true;
2224 }
2225 return false;
2226}
2227EXPORT_SYMBOL(skb_page_frag_refill);
2228
2229bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2230{
2231 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2232 return true;
2233
2234 sk_enter_memory_pressure(sk);
2235 sk_stream_moderate_sndbuf(sk);
2236 return false;
2237}
2238EXPORT_SYMBOL(sk_page_frag_refill);
2239
2240int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2241 int sg_start, int *sg_curr_index, unsigned int *sg_curr_size,
2242 int first_coalesce)
2243{
2244 int sg_curr = *sg_curr_index, use = 0, rc = 0;
2245 unsigned int size = *sg_curr_size;
2246 struct page_frag *pfrag;
2247 struct scatterlist *sge;
2248
2249 len -= size;
2250 pfrag = sk_page_frag(sk);
2251
2252 while (len > 0) {
2253 unsigned int orig_offset;
2254
2255 if (!sk_page_frag_refill(sk, pfrag)) {
2256 rc = -ENOMEM;
2257 goto out;
2258 }
2259
2260 use = min_t(int, len, pfrag->size - pfrag->offset);
2261
2262 if (!sk_wmem_schedule(sk, use)) {
2263 rc = -ENOMEM;
2264 goto out;
2265 }
2266
2267 sk_mem_charge(sk, use);
2268 size += use;
2269 orig_offset = pfrag->offset;
2270 pfrag->offset += use;
2271
2272 sge = sg + sg_curr - 1;
2273 if (sg_curr > first_coalesce && sg_page(sg) == pfrag->page &&
2274 sg->offset + sg->length == orig_offset) {
2275 sg->length += use;
2276 } else {
2277 sge = sg + sg_curr;
2278 sg_unmark_end(sge);
2279 sg_set_page(sge, pfrag->page, use, orig_offset);
2280 get_page(pfrag->page);
2281 sg_curr++;
2282
2283 if (sg_curr == MAX_SKB_FRAGS)
2284 sg_curr = 0;
2285
2286 if (sg_curr == sg_start) {
2287 rc = -ENOSPC;
2288 break;
2289 }
2290 }
2291
2292 len -= use;
2293 }
2294out:
2295 *sg_curr_size = size;
2296 *sg_curr_index = sg_curr;
2297 return rc;
2298}
2299EXPORT_SYMBOL(sk_alloc_sg);
2300
2301static void __lock_sock(struct sock *sk)
2302 __releases(&sk->sk_lock.slock)
2303 __acquires(&sk->sk_lock.slock)
2304{
2305 DEFINE_WAIT(wait);
2306
2307 for (;;) {
2308 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2309 TASK_UNINTERRUPTIBLE);
2310 spin_unlock_bh(&sk->sk_lock.slock);
2311 schedule();
2312 spin_lock_bh(&sk->sk_lock.slock);
2313 if (!sock_owned_by_user(sk))
2314 break;
2315 }
2316 finish_wait(&sk->sk_lock.wq, &wait);
2317}
2318
2319static void __release_sock(struct sock *sk)
2320 __releases(&sk->sk_lock.slock)
2321 __acquires(&sk->sk_lock.slock)
2322{
2323 struct sk_buff *skb, *next;
2324
2325 while ((skb = sk->sk_backlog.head) != NULL) {
2326 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2327
2328 spin_unlock_bh(&sk->sk_lock.slock);
2329
2330 do {
2331 next = skb->next;
2332 prefetch(next);
2333 WARN_ON_ONCE(skb_dst_is_noref(skb));
2334 skb->next = NULL;
2335 sk_backlog_rcv(sk, skb);
2336
2337 cond_resched();
2338
2339 skb = next;
2340 } while (skb != NULL);
2341
2342 spin_lock_bh(&sk->sk_lock.slock);
2343 }
2344
2345 /*
2346 * Doing the zeroing here guarantee we can not loop forever
2347 * while a wild producer attempts to flood us.
2348 */
2349 sk->sk_backlog.len = 0;
2350}
2351
2352void __sk_flush_backlog(struct sock *sk)
2353{
2354 spin_lock_bh(&sk->sk_lock.slock);
2355 __release_sock(sk);
2356 spin_unlock_bh(&sk->sk_lock.slock);
2357}
2358
2359/**
2360 * sk_wait_data - wait for data to arrive at sk_receive_queue
2361 * @sk: sock to wait on
2362 * @timeo: for how long
2363 * @skb: last skb seen on sk_receive_queue
2364 *
2365 * Now socket state including sk->sk_err is changed only under lock,
2366 * hence we may omit checks after joining wait queue.
2367 * We check receive queue before schedule() only as optimization;
2368 * it is very likely that release_sock() added new data.
2369 */
2370int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2371{
2372 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2373 int rc;
2374
2375 add_wait_queue(sk_sleep(sk), &wait);
2376 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2377 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2378 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2379 remove_wait_queue(sk_sleep(sk), &wait);
2380 return rc;
2381}
2382EXPORT_SYMBOL(sk_wait_data);
2383
2384/**
2385 * __sk_mem_raise_allocated - increase memory_allocated
2386 * @sk: socket
2387 * @size: memory size to allocate
2388 * @amt: pages to allocate
2389 * @kind: allocation type
2390 *
2391 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2392 */
2393int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2394{
2395 struct proto *prot = sk->sk_prot;
2396 long allocated = sk_memory_allocated_add(sk, amt);
2397
2398 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2399 !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2400 goto suppress_allocation;
2401
2402 /* Under limit. */
2403 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2404 sk_leave_memory_pressure(sk);
2405 return 1;
2406 }
2407
2408 /* Under pressure. */
2409 if (allocated > sk_prot_mem_limits(sk, 1))
2410 sk_enter_memory_pressure(sk);
2411
2412 /* Over hard limit. */
2413 if (allocated > sk_prot_mem_limits(sk, 2))
2414 goto suppress_allocation;
2415
2416 /* guarantee minimum buffer size under pressure */
2417 if (kind == SK_MEM_RECV) {
2418 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2419 return 1;
2420
2421 } else { /* SK_MEM_SEND */
2422 int wmem0 = sk_get_wmem0(sk, prot);
2423
2424 if (sk->sk_type == SOCK_STREAM) {
2425 if (sk->sk_wmem_queued < wmem0)
2426 return 1;
2427 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2428 return 1;
2429 }
2430 }
2431
2432 if (sk_has_memory_pressure(sk)) {
2433 int alloc;
2434
2435 if (!sk_under_memory_pressure(sk))
2436 return 1;
2437 alloc = sk_sockets_allocated_read_positive(sk);
2438 if (sk_prot_mem_limits(sk, 2) > alloc *
2439 sk_mem_pages(sk->sk_wmem_queued +
2440 atomic_read(&sk->sk_rmem_alloc) +
2441 sk->sk_forward_alloc))
2442 return 1;
2443 }
2444
2445suppress_allocation:
2446
2447 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2448 sk_stream_moderate_sndbuf(sk);
2449
2450 /* Fail only if socket is _under_ its sndbuf.
2451 * In this case we cannot block, so that we have to fail.
2452 */
2453 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2454 return 1;
2455 }
2456
2457 trace_sock_exceed_buf_limit(sk, prot, allocated);
2458
2459 sk_memory_allocated_sub(sk, amt);
2460
2461 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2462 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2463
2464 return 0;
2465}
2466EXPORT_SYMBOL(__sk_mem_raise_allocated);
2467
2468/**
2469 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2470 * @sk: socket
2471 * @size: memory size to allocate
2472 * @kind: allocation type
2473 *
2474 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2475 * rmem allocation. This function assumes that protocols which have
2476 * memory_pressure use sk_wmem_queued as write buffer accounting.
2477 */
2478int __sk_mem_schedule(struct sock *sk, int size, int kind)
2479{
2480 int ret, amt = sk_mem_pages(size);
2481
2482 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2483 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2484 if (!ret)
2485 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2486 return ret;
2487}
2488EXPORT_SYMBOL(__sk_mem_schedule);
2489
2490/**
2491 * __sk_mem_reduce_allocated - reclaim memory_allocated
2492 * @sk: socket
2493 * @amount: number of quanta
2494 *
2495 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2496 */
2497void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2498{
2499 sk_memory_allocated_sub(sk, amount);
2500
2501 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2502 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2503
2504 if (sk_under_memory_pressure(sk) &&
2505 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2506 sk_leave_memory_pressure(sk);
2507}
2508EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2509
2510/**
2511 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2512 * @sk: socket
2513 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2514 */
2515void __sk_mem_reclaim(struct sock *sk, int amount)
2516{
2517 amount >>= SK_MEM_QUANTUM_SHIFT;
2518 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2519 __sk_mem_reduce_allocated(sk, amount);
2520}
2521EXPORT_SYMBOL(__sk_mem_reclaim);
2522
2523int sk_set_peek_off(struct sock *sk, int val)
2524{
2525 sk->sk_peek_off = val;
2526 return 0;
2527}
2528EXPORT_SYMBOL_GPL(sk_set_peek_off);
2529
2530/*
2531 * Set of default routines for initialising struct proto_ops when
2532 * the protocol does not support a particular function. In certain
2533 * cases where it makes no sense for a protocol to have a "do nothing"
2534 * function, some default processing is provided.
2535 */
2536
2537int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2538{
2539 return -EOPNOTSUPP;
2540}
2541EXPORT_SYMBOL(sock_no_bind);
2542
2543int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2544 int len, int flags)
2545{
2546 return -EOPNOTSUPP;
2547}
2548EXPORT_SYMBOL(sock_no_connect);
2549
2550int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2551{
2552 return -EOPNOTSUPP;
2553}
2554EXPORT_SYMBOL(sock_no_socketpair);
2555
2556int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2557 bool kern)
2558{
2559 return -EOPNOTSUPP;
2560}
2561EXPORT_SYMBOL(sock_no_accept);
2562
2563int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2564 int peer)
2565{
2566 return -EOPNOTSUPP;
2567}
2568EXPORT_SYMBOL(sock_no_getname);
2569
2570__poll_t sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2571{
2572 return 0;
2573}
2574EXPORT_SYMBOL(sock_no_poll);
2575
2576int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2577{
2578 return -EOPNOTSUPP;
2579}
2580EXPORT_SYMBOL(sock_no_ioctl);
2581
2582int sock_no_listen(struct socket *sock, int backlog)
2583{
2584 return -EOPNOTSUPP;
2585}
2586EXPORT_SYMBOL(sock_no_listen);
2587
2588int sock_no_shutdown(struct socket *sock, int how)
2589{
2590 return -EOPNOTSUPP;
2591}
2592EXPORT_SYMBOL(sock_no_shutdown);
2593
2594int sock_no_setsockopt(struct socket *sock, int level, int optname,
2595 char __user *optval, unsigned int optlen)
2596{
2597 return -EOPNOTSUPP;
2598}
2599EXPORT_SYMBOL(sock_no_setsockopt);
2600
2601int sock_no_getsockopt(struct socket *sock, int level, int optname,
2602 char __user *optval, int __user *optlen)
2603{
2604 return -EOPNOTSUPP;
2605}
2606EXPORT_SYMBOL(sock_no_getsockopt);
2607
2608int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2609{
2610 return -EOPNOTSUPP;
2611}
2612EXPORT_SYMBOL(sock_no_sendmsg);
2613
2614int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2615{
2616 return -EOPNOTSUPP;
2617}
2618EXPORT_SYMBOL(sock_no_sendmsg_locked);
2619
2620int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2621 int flags)
2622{
2623 return -EOPNOTSUPP;
2624}
2625EXPORT_SYMBOL(sock_no_recvmsg);
2626
2627int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2628{
2629 /* Mirror missing mmap method error code */
2630 return -ENODEV;
2631}
2632EXPORT_SYMBOL(sock_no_mmap);
2633
2634ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2635{
2636 ssize_t res;
2637 struct msghdr msg = {.msg_flags = flags};
2638 struct kvec iov;
2639 char *kaddr = kmap(page);
2640 iov.iov_base = kaddr + offset;
2641 iov.iov_len = size;
2642 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2643 kunmap(page);
2644 return res;
2645}
2646EXPORT_SYMBOL(sock_no_sendpage);
2647
2648ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2649 int offset, size_t size, int flags)
2650{
2651 ssize_t res;
2652 struct msghdr msg = {.msg_flags = flags};
2653 struct kvec iov;
2654 char *kaddr = kmap(page);
2655
2656 iov.iov_base = kaddr + offset;
2657 iov.iov_len = size;
2658 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2659 kunmap(page);
2660 return res;
2661}
2662EXPORT_SYMBOL(sock_no_sendpage_locked);
2663
2664/*
2665 * Default Socket Callbacks
2666 */
2667
2668static void sock_def_wakeup(struct sock *sk)
2669{
2670 struct socket_wq *wq;
2671
2672 rcu_read_lock();
2673 wq = rcu_dereference(sk->sk_wq);
2674 if (skwq_has_sleeper(wq))
2675 wake_up_interruptible_all(&wq->wait);
2676 rcu_read_unlock();
2677}
2678
2679static void sock_def_error_report(struct sock *sk)
2680{
2681 struct socket_wq *wq;
2682
2683 rcu_read_lock();
2684 wq = rcu_dereference(sk->sk_wq);
2685 if (skwq_has_sleeper(wq))
2686 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2687 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2688 rcu_read_unlock();
2689}
2690
2691static void sock_def_readable(struct sock *sk)
2692{
2693 struct socket_wq *wq;
2694
2695 rcu_read_lock();
2696 wq = rcu_dereference(sk->sk_wq);
2697 if (skwq_has_sleeper(wq))
2698 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2699 EPOLLRDNORM | EPOLLRDBAND);
2700 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2701 rcu_read_unlock();
2702}
2703
2704static void sock_def_write_space(struct sock *sk)
2705{
2706 struct socket_wq *wq;
2707
2708 rcu_read_lock();
2709
2710 /* Do not wake up a writer until he can make "significant"
2711 * progress. --DaveM
2712 */
2713 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2714 wq = rcu_dereference(sk->sk_wq);
2715 if (skwq_has_sleeper(wq))
2716 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2717 EPOLLWRNORM | EPOLLWRBAND);
2718
2719 /* Should agree with poll, otherwise some programs break */
2720 if (sock_writeable(sk))
2721 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2722 }
2723
2724 rcu_read_unlock();
2725}
2726
2727static void sock_def_destruct(struct sock *sk)
2728{
2729}
2730
2731void sk_send_sigurg(struct sock *sk)
2732{
2733 if (sk->sk_socket && sk->sk_socket->file)
2734 if (send_sigurg(&sk->sk_socket->file->f_owner))
2735 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2736}
2737EXPORT_SYMBOL(sk_send_sigurg);
2738
2739void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2740 unsigned long expires)
2741{
2742 if (!mod_timer(timer, expires))
2743 sock_hold(sk);
2744}
2745EXPORT_SYMBOL(sk_reset_timer);
2746
2747void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2748{
2749 if (del_timer(timer))
2750 __sock_put(sk);
2751}
2752EXPORT_SYMBOL(sk_stop_timer);
2753
2754void sock_init_data(struct socket *sock, struct sock *sk)
2755{
2756 sk_init_common(sk);
2757 sk->sk_send_head = NULL;
2758
2759 timer_setup(&sk->sk_timer, NULL, 0);
2760
2761 sk->sk_allocation = GFP_KERNEL;
2762 sk->sk_rcvbuf = sysctl_rmem_default;
2763 sk->sk_sndbuf = sysctl_wmem_default;
2764 sk->sk_state = TCP_CLOSE;
2765 sk_set_socket(sk, sock);
2766
2767 sock_set_flag(sk, SOCK_ZAPPED);
2768
2769 if (sock) {
2770 sk->sk_type = sock->type;
2771 sk->sk_wq = sock->wq;
2772 sock->sk = sk;
2773 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2774 } else {
2775 sk->sk_wq = NULL;
2776 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2777 }
2778
2779 rwlock_init(&sk->sk_callback_lock);
2780 if (sk->sk_kern_sock)
2781 lockdep_set_class_and_name(
2782 &sk->sk_callback_lock,
2783 af_kern_callback_keys + sk->sk_family,
2784 af_family_kern_clock_key_strings[sk->sk_family]);
2785 else
2786 lockdep_set_class_and_name(
2787 &sk->sk_callback_lock,
2788 af_callback_keys + sk->sk_family,
2789 af_family_clock_key_strings[sk->sk_family]);
2790
2791 sk->sk_state_change = sock_def_wakeup;
2792 sk->sk_data_ready = sock_def_readable;
2793 sk->sk_write_space = sock_def_write_space;
2794 sk->sk_error_report = sock_def_error_report;
2795 sk->sk_destruct = sock_def_destruct;
2796
2797 sk->sk_frag.page = NULL;
2798 sk->sk_frag.offset = 0;
2799 sk->sk_peek_off = -1;
2800
2801 sk->sk_peer_pid = NULL;
2802 sk->sk_peer_cred = NULL;
2803 sk->sk_write_pending = 0;
2804 sk->sk_rcvlowat = 1;
2805 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2806 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2807
2808 sk->sk_stamp = SK_DEFAULT_STAMP;
2809 atomic_set(&sk->sk_zckey, 0);
2810
2811#ifdef CONFIG_NET_RX_BUSY_POLL
2812 sk->sk_napi_id = 0;
2813 sk->sk_ll_usec = sysctl_net_busy_read;
2814#endif
2815
2816 sk->sk_max_pacing_rate = ~0U;
2817 sk->sk_pacing_rate = ~0U;
2818 sk->sk_pacing_shift = 10;
2819 sk->sk_incoming_cpu = -1;
2820 /*
2821 * Before updating sk_refcnt, we must commit prior changes to memory
2822 * (Documentation/RCU/rculist_nulls.txt for details)
2823 */
2824 smp_wmb();
2825 refcount_set(&sk->sk_refcnt, 1);
2826 atomic_set(&sk->sk_drops, 0);
2827}
2828EXPORT_SYMBOL(sock_init_data);
2829
2830void lock_sock_nested(struct sock *sk, int subclass)
2831{
2832 might_sleep();
2833 spin_lock_bh(&sk->sk_lock.slock);
2834 if (sk->sk_lock.owned)
2835 __lock_sock(sk);
2836 sk->sk_lock.owned = 1;
2837 spin_unlock(&sk->sk_lock.slock);
2838 /*
2839 * The sk_lock has mutex_lock() semantics here:
2840 */
2841 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2842 local_bh_enable();
2843}
2844EXPORT_SYMBOL(lock_sock_nested);
2845
2846void release_sock(struct sock *sk)
2847{
2848 spin_lock_bh(&sk->sk_lock.slock);
2849 if (sk->sk_backlog.tail)
2850 __release_sock(sk);
2851
2852 /* Warning : release_cb() might need to release sk ownership,
2853 * ie call sock_release_ownership(sk) before us.
2854 */
2855 if (sk->sk_prot->release_cb)
2856 sk->sk_prot->release_cb(sk);
2857
2858 sock_release_ownership(sk);
2859 if (waitqueue_active(&sk->sk_lock.wq))
2860 wake_up(&sk->sk_lock.wq);
2861 spin_unlock_bh(&sk->sk_lock.slock);
2862}
2863EXPORT_SYMBOL(release_sock);
2864
2865/**
2866 * lock_sock_fast - fast version of lock_sock
2867 * @sk: socket
2868 *
2869 * This version should be used for very small section, where process wont block
2870 * return false if fast path is taken:
2871 *
2872 * sk_lock.slock locked, owned = 0, BH disabled
2873 *
2874 * return true if slow path is taken:
2875 *
2876 * sk_lock.slock unlocked, owned = 1, BH enabled
2877 */
2878bool lock_sock_fast(struct sock *sk)
2879{
2880 might_sleep();
2881 spin_lock_bh(&sk->sk_lock.slock);
2882
2883 if (!sk->sk_lock.owned)
2884 /*
2885 * Note : We must disable BH
2886 */
2887 return false;
2888
2889 __lock_sock(sk);
2890 sk->sk_lock.owned = 1;
2891 spin_unlock(&sk->sk_lock.slock);
2892 /*
2893 * The sk_lock has mutex_lock() semantics here:
2894 */
2895 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2896 local_bh_enable();
2897 return true;
2898}
2899EXPORT_SYMBOL(lock_sock_fast);
2900
2901int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2902{
2903 struct timeval tv;
2904 if (!sock_flag(sk, SOCK_TIMESTAMP))
2905 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2906 tv = ktime_to_timeval(sk->sk_stamp);
2907 if (tv.tv_sec == -1)
2908 return -ENOENT;
2909 if (tv.tv_sec == 0) {
2910 sk->sk_stamp = ktime_get_real();
2911 tv = ktime_to_timeval(sk->sk_stamp);
2912 }
2913 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2914}
2915EXPORT_SYMBOL(sock_get_timestamp);
2916
2917int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2918{
2919 struct timespec ts;
2920 if (!sock_flag(sk, SOCK_TIMESTAMP))
2921 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2922 ts = ktime_to_timespec(sk->sk_stamp);
2923 if (ts.tv_sec == -1)
2924 return -ENOENT;
2925 if (ts.tv_sec == 0) {
2926 sk->sk_stamp = ktime_get_real();
2927 ts = ktime_to_timespec(sk->sk_stamp);
2928 }
2929 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2930}
2931EXPORT_SYMBOL(sock_get_timestampns);
2932
2933void sock_enable_timestamp(struct sock *sk, int flag)
2934{
2935 if (!sock_flag(sk, flag)) {
2936 unsigned long previous_flags = sk->sk_flags;
2937
2938 sock_set_flag(sk, flag);
2939 /*
2940 * we just set one of the two flags which require net
2941 * time stamping, but time stamping might have been on
2942 * already because of the other one
2943 */
2944 if (sock_needs_netstamp(sk) &&
2945 !(previous_flags & SK_FLAGS_TIMESTAMP))
2946 net_enable_timestamp();
2947 }
2948}
2949
2950int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2951 int level, int type)
2952{
2953 struct sock_exterr_skb *serr;
2954 struct sk_buff *skb;
2955 int copied, err;
2956
2957 err = -EAGAIN;
2958 skb = sock_dequeue_err_skb(sk);
2959 if (skb == NULL)
2960 goto out;
2961
2962 copied = skb->len;
2963 if (copied > len) {
2964 msg->msg_flags |= MSG_TRUNC;
2965 copied = len;
2966 }
2967 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2968 if (err)
2969 goto out_free_skb;
2970
2971 sock_recv_timestamp(msg, sk, skb);
2972
2973 serr = SKB_EXT_ERR(skb);
2974 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2975
2976 msg->msg_flags |= MSG_ERRQUEUE;
2977 err = copied;
2978
2979out_free_skb:
2980 kfree_skb(skb);
2981out:
2982 return err;
2983}
2984EXPORT_SYMBOL(sock_recv_errqueue);
2985
2986/*
2987 * Get a socket option on an socket.
2988 *
2989 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2990 * asynchronous errors should be reported by getsockopt. We assume
2991 * this means if you specify SO_ERROR (otherwise whats the point of it).
2992 */
2993int sock_common_getsockopt(struct socket *sock, int level, int optname,
2994 char __user *optval, int __user *optlen)
2995{
2996 struct sock *sk = sock->sk;
2997
2998 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2999}
3000EXPORT_SYMBOL(sock_common_getsockopt);
3001
3002#ifdef CONFIG_COMPAT
3003int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3004 char __user *optval, int __user *optlen)
3005{
3006 struct sock *sk = sock->sk;
3007
3008 if (sk->sk_prot->compat_getsockopt != NULL)
3009 return sk->sk_prot->compat_getsockopt(sk, level, optname,
3010 optval, optlen);
3011 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3012}
3013EXPORT_SYMBOL(compat_sock_common_getsockopt);
3014#endif
3015
3016int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3017 int flags)
3018{
3019 struct sock *sk = sock->sk;
3020 int addr_len = 0;
3021 int err;
3022
3023 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3024 flags & ~MSG_DONTWAIT, &addr_len);
3025 if (err >= 0)
3026 msg->msg_namelen = addr_len;
3027 return err;
3028}
3029EXPORT_SYMBOL(sock_common_recvmsg);
3030
3031/*
3032 * Set socket options on an inet socket.
3033 */
3034int sock_common_setsockopt(struct socket *sock, int level, int optname,
3035 char __user *optval, unsigned int optlen)
3036{
3037 struct sock *sk = sock->sk;
3038
3039 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3040}
3041EXPORT_SYMBOL(sock_common_setsockopt);
3042
3043#ifdef CONFIG_COMPAT
3044int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3045 char __user *optval, unsigned int optlen)
3046{
3047 struct sock *sk = sock->sk;
3048
3049 if (sk->sk_prot->compat_setsockopt != NULL)
3050 return sk->sk_prot->compat_setsockopt(sk, level, optname,
3051 optval, optlen);
3052 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3053}
3054EXPORT_SYMBOL(compat_sock_common_setsockopt);
3055#endif
3056
3057void sk_common_release(struct sock *sk)
3058{
3059 if (sk->sk_prot->destroy)
3060 sk->sk_prot->destroy(sk);
3061
3062 /*
3063 * Observation: when sock_common_release is called, processes have
3064 * no access to socket. But net still has.
3065 * Step one, detach it from networking:
3066 *
3067 * A. Remove from hash tables.
3068 */
3069
3070 sk->sk_prot->unhash(sk);
3071
3072 /*
3073 * In this point socket cannot receive new packets, but it is possible
3074 * that some packets are in flight because some CPU runs receiver and
3075 * did hash table lookup before we unhashed socket. They will achieve
3076 * receive queue and will be purged by socket destructor.
3077 *
3078 * Also we still have packets pending on receive queue and probably,
3079 * our own packets waiting in device queues. sock_destroy will drain
3080 * receive queue, but transmitted packets will delay socket destruction
3081 * until the last reference will be released.
3082 */
3083
3084 sock_orphan(sk);
3085
3086 xfrm_sk_free_policy(sk);
3087
3088 sk_refcnt_debug_release(sk);
3089
3090 sock_put(sk);
3091}
3092EXPORT_SYMBOL(sk_common_release);
3093
3094void sk_get_meminfo(const struct sock *sk, u32 *mem)
3095{
3096 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3097
3098 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3099 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3100 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3101 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3102 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3103 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3104 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3105 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3106 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3107}
3108
3109#ifdef CONFIG_PROC_FS
3110#define PROTO_INUSE_NR 64 /* should be enough for the first time */
3111struct prot_inuse {
3112 int val[PROTO_INUSE_NR];
3113};
3114
3115static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3116
3117void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3118{
3119 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3120}
3121EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3122
3123int sock_prot_inuse_get(struct net *net, struct proto *prot)
3124{
3125 int cpu, idx = prot->inuse_idx;
3126 int res = 0;
3127
3128 for_each_possible_cpu(cpu)
3129 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3130
3131 return res >= 0 ? res : 0;
3132}
3133EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3134
3135static void sock_inuse_add(struct net *net, int val)
3136{
3137 this_cpu_add(*net->core.sock_inuse, val);
3138}
3139
3140int sock_inuse_get(struct net *net)
3141{
3142 int cpu, res = 0;
3143
3144 for_each_possible_cpu(cpu)
3145 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3146
3147 return res;
3148}
3149
3150EXPORT_SYMBOL_GPL(sock_inuse_get);
3151
3152static int __net_init sock_inuse_init_net(struct net *net)
3153{
3154 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3155 if (net->core.prot_inuse == NULL)
3156 return -ENOMEM;
3157
3158 net->core.sock_inuse = alloc_percpu(int);
3159 if (net->core.sock_inuse == NULL)
3160 goto out;
3161
3162 return 0;
3163
3164out:
3165 free_percpu(net->core.prot_inuse);
3166 return -ENOMEM;
3167}
3168
3169static void __net_exit sock_inuse_exit_net(struct net *net)
3170{
3171 free_percpu(net->core.prot_inuse);
3172 free_percpu(net->core.sock_inuse);
3173}
3174
3175static struct pernet_operations net_inuse_ops = {
3176 .init = sock_inuse_init_net,
3177 .exit = sock_inuse_exit_net,
3178};
3179
3180static __init int net_inuse_init(void)
3181{
3182 if (register_pernet_subsys(&net_inuse_ops))
3183 panic("Cannot initialize net inuse counters");
3184
3185 return 0;
3186}
3187
3188core_initcall(net_inuse_init);
3189
3190static void assign_proto_idx(struct proto *prot)
3191{
3192 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3193
3194 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3195 pr_err("PROTO_INUSE_NR exhausted\n");
3196 return;
3197 }
3198
3199 set_bit(prot->inuse_idx, proto_inuse_idx);
3200}
3201
3202static void release_proto_idx(struct proto *prot)
3203{
3204 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3205 clear_bit(prot->inuse_idx, proto_inuse_idx);
3206}
3207#else
3208static inline void assign_proto_idx(struct proto *prot)
3209{
3210}
3211
3212static inline void release_proto_idx(struct proto *prot)
3213{
3214}
3215
3216static void sock_inuse_add(struct net *net, int val)
3217{
3218}
3219#endif
3220
3221static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3222{
3223 if (!rsk_prot)
3224 return;
3225 kfree(rsk_prot->slab_name);
3226 rsk_prot->slab_name = NULL;
3227 kmem_cache_destroy(rsk_prot->slab);
3228 rsk_prot->slab = NULL;
3229}
3230
3231static int req_prot_init(const struct proto *prot)
3232{
3233 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3234
3235 if (!rsk_prot)
3236 return 0;
3237
3238 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3239 prot->name);
3240 if (!rsk_prot->slab_name)
3241 return -ENOMEM;
3242
3243 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3244 rsk_prot->obj_size, 0,
3245 prot->slab_flags, NULL);
3246
3247 if (!rsk_prot->slab) {
3248 pr_crit("%s: Can't create request sock SLAB cache!\n",
3249 prot->name);
3250 return -ENOMEM;
3251 }
3252 return 0;
3253}
3254
3255int proto_register(struct proto *prot, int alloc_slab)
3256{
3257 if (alloc_slab) {
3258 prot->slab = kmem_cache_create_usercopy(prot->name,
3259 prot->obj_size, 0,
3260 SLAB_HWCACHE_ALIGN | prot->slab_flags,
3261 prot->useroffset, prot->usersize,
3262 NULL);
3263
3264 if (prot->slab == NULL) {
3265 pr_crit("%s: Can't create sock SLAB cache!\n",
3266 prot->name);
3267 goto out;
3268 }
3269
3270 if (req_prot_init(prot))
3271 goto out_free_request_sock_slab;
3272
3273 if (prot->twsk_prot != NULL) {
3274 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3275
3276 if (prot->twsk_prot->twsk_slab_name == NULL)
3277 goto out_free_request_sock_slab;
3278
3279 prot->twsk_prot->twsk_slab =
3280 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3281 prot->twsk_prot->twsk_obj_size,
3282 0,
3283 prot->slab_flags,
3284 NULL);
3285 if (prot->twsk_prot->twsk_slab == NULL)
3286 goto out_free_timewait_sock_slab_name;
3287 }
3288 }
3289
3290 mutex_lock(&proto_list_mutex);
3291 list_add(&prot->node, &proto_list);
3292 assign_proto_idx(prot);
3293 mutex_unlock(&proto_list_mutex);
3294 return 0;
3295
3296out_free_timewait_sock_slab_name:
3297 kfree(prot->twsk_prot->twsk_slab_name);
3298out_free_request_sock_slab:
3299 req_prot_cleanup(prot->rsk_prot);
3300
3301 kmem_cache_destroy(prot->slab);
3302 prot->slab = NULL;
3303out:
3304 return -ENOBUFS;
3305}
3306EXPORT_SYMBOL(proto_register);
3307
3308void proto_unregister(struct proto *prot)
3309{
3310 mutex_lock(&proto_list_mutex);
3311 release_proto_idx(prot);
3312 list_del(&prot->node);
3313 mutex_unlock(&proto_list_mutex);
3314
3315 kmem_cache_destroy(prot->slab);
3316 prot->slab = NULL;
3317
3318 req_prot_cleanup(prot->rsk_prot);
3319
3320 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3321 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3322 kfree(prot->twsk_prot->twsk_slab_name);
3323 prot->twsk_prot->twsk_slab = NULL;
3324 }
3325}
3326EXPORT_SYMBOL(proto_unregister);
3327
3328int sock_load_diag_module(int family, int protocol)
3329{
3330 if (!protocol) {
3331 if (!sock_is_registered(family))
3332 return -ENOENT;
3333
3334 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3335 NETLINK_SOCK_DIAG, family);
3336 }
3337
3338#ifdef CONFIG_INET
3339 if (family == AF_INET &&
3340 !rcu_access_pointer(inet_protos[protocol]))
3341 return -ENOENT;
3342#endif
3343
3344 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3345 NETLINK_SOCK_DIAG, family, protocol);
3346}
3347EXPORT_SYMBOL(sock_load_diag_module);
3348
3349#ifdef CONFIG_PROC_FS
3350static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3351 __acquires(proto_list_mutex)
3352{
3353 mutex_lock(&proto_list_mutex);
3354 return seq_list_start_head(&proto_list, *pos);
3355}
3356
3357static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3358{
3359 return seq_list_next(v, &proto_list, pos);
3360}
3361
3362static void proto_seq_stop(struct seq_file *seq, void *v)
3363 __releases(proto_list_mutex)
3364{
3365 mutex_unlock(&proto_list_mutex);
3366}
3367
3368static char proto_method_implemented(const void *method)
3369{
3370 return method == NULL ? 'n' : 'y';
3371}
3372static long sock_prot_memory_allocated(struct proto *proto)
3373{
3374 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3375}
3376
3377static char *sock_prot_memory_pressure(struct proto *proto)
3378{
3379 return proto->memory_pressure != NULL ?
3380 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3381}
3382
3383static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3384{
3385
3386 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3387 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3388 proto->name,
3389 proto->obj_size,
3390 sock_prot_inuse_get(seq_file_net(seq), proto),
3391 sock_prot_memory_allocated(proto),
3392 sock_prot_memory_pressure(proto),
3393 proto->max_header,
3394 proto->slab == NULL ? "no" : "yes",
3395 module_name(proto->owner),
3396 proto_method_implemented(proto->close),
3397 proto_method_implemented(proto->connect),
3398 proto_method_implemented(proto->disconnect),
3399 proto_method_implemented(proto->accept),
3400 proto_method_implemented(proto->ioctl),
3401 proto_method_implemented(proto->init),
3402 proto_method_implemented(proto->destroy),
3403 proto_method_implemented(proto->shutdown),
3404 proto_method_implemented(proto->setsockopt),
3405 proto_method_implemented(proto->getsockopt),
3406 proto_method_implemented(proto->sendmsg),
3407 proto_method_implemented(proto->recvmsg),
3408 proto_method_implemented(proto->sendpage),
3409 proto_method_implemented(proto->bind),
3410 proto_method_implemented(proto->backlog_rcv),
3411 proto_method_implemented(proto->hash),
3412 proto_method_implemented(proto->unhash),
3413 proto_method_implemented(proto->get_port),
3414 proto_method_implemented(proto->enter_memory_pressure));
3415}
3416
3417static int proto_seq_show(struct seq_file *seq, void *v)
3418{
3419 if (v == &proto_list)
3420 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3421 "protocol",
3422 "size",
3423 "sockets",
3424 "memory",
3425 "press",
3426 "maxhdr",
3427 "slab",
3428 "module",
3429 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3430 else
3431 proto_seq_printf(seq, list_entry(v, struct proto, node));
3432 return 0;
3433}
3434
3435static const struct seq_operations proto_seq_ops = {
3436 .start = proto_seq_start,
3437 .next = proto_seq_next,
3438 .stop = proto_seq_stop,
3439 .show = proto_seq_show,
3440};
3441
3442static int proto_seq_open(struct inode *inode, struct file *file)
3443{
3444 return seq_open_net(inode, file, &proto_seq_ops,
3445 sizeof(struct seq_net_private));
3446}
3447
3448static const struct file_operations proto_seq_fops = {
3449 .open = proto_seq_open,
3450 .read = seq_read,
3451 .llseek = seq_lseek,
3452 .release = seq_release_net,
3453};
3454
3455static __net_init int proto_init_net(struct net *net)
3456{
3457 if (!proc_create("protocols", 0444, net->proc_net, &proto_seq_fops))
3458 return -ENOMEM;
3459
3460 return 0;
3461}
3462
3463static __net_exit void proto_exit_net(struct net *net)
3464{
3465 remove_proc_entry("protocols", net->proc_net);
3466}
3467
3468
3469static __net_initdata struct pernet_operations proto_net_ops = {
3470 .init = proto_init_net,
3471 .exit = proto_exit_net,
3472};
3473
3474static int __init proto_init(void)
3475{
3476 return register_pernet_subsys(&proto_net_ops);
3477}
3478
3479subsys_initcall(proto_init);
3480
3481#endif /* PROC_FS */
3482
3483#ifdef CONFIG_NET_RX_BUSY_POLL
3484bool sk_busy_loop_end(void *p, unsigned long start_time)
3485{
3486 struct sock *sk = p;
3487
3488 return !skb_queue_empty(&sk->sk_receive_queue) ||
3489 sk_busy_loop_timeout(sk, start_time);
3490}
3491EXPORT_SYMBOL(sk_busy_loop_end);
3492#endif /* CONFIG_NET_RX_BUSY_POLL */