Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/init.h>
 111#include <linux/highmem.h>
 112#include <linux/user_namespace.h>
 113#include <linux/static_key.h>
 114#include <linux/memcontrol.h>
 115#include <linux/prefetch.h>
 116#include <linux/compat.h>
 117
 118#include <linux/uaccess.h>
 119
 120#include <linux/netdevice.h>
 121#include <net/protocol.h>
 122#include <linux/skbuff.h>
 123#include <net/net_namespace.h>
 124#include <net/request_sock.h>
 125#include <net/sock.h>
 126#include <linux/net_tstamp.h>
 127#include <net/xfrm.h>
 128#include <linux/ipsec.h>
 129#include <net/cls_cgroup.h>
 130#include <net/netprio_cgroup.h>
 131#include <linux/sock_diag.h>
 132
 133#include <linux/filter.h>
 134#include <net/sock_reuseport.h>
 135#include <net/bpf_sk_storage.h>
 136
 137#include <trace/events/sock.h>
 138
 139#include <net/tcp.h>
 140#include <net/busy_poll.h>
 141
 142#include <linux/ethtool.h>
 143
 144static DEFINE_MUTEX(proto_list_mutex);
 145static LIST_HEAD(proto_list);
 146
 147static void sock_inuse_add(struct net *net, int val);
 148
 149/**
 150 * sk_ns_capable - General socket capability test
 151 * @sk: Socket to use a capability on or through
 152 * @user_ns: The user namespace of the capability to use
 153 * @cap: The capability to use
 154 *
 155 * Test to see if the opener of the socket had when the socket was
 156 * created and the current process has the capability @cap in the user
 157 * namespace @user_ns.
 158 */
 159bool sk_ns_capable(const struct sock *sk,
 160		   struct user_namespace *user_ns, int cap)
 161{
 162	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 163		ns_capable(user_ns, cap);
 164}
 165EXPORT_SYMBOL(sk_ns_capable);
 166
 167/**
 168 * sk_capable - Socket global capability test
 169 * @sk: Socket to use a capability on or through
 170 * @cap: The global capability to use
 171 *
 172 * Test to see if the opener of the socket had when the socket was
 173 * created and the current process has the capability @cap in all user
 174 * namespaces.
 175 */
 176bool sk_capable(const struct sock *sk, int cap)
 177{
 178	return sk_ns_capable(sk, &init_user_ns, cap);
 179}
 180EXPORT_SYMBOL(sk_capable);
 181
 182/**
 183 * sk_net_capable - Network namespace socket capability test
 184 * @sk: Socket to use a capability on or through
 185 * @cap: The capability to use
 186 *
 187 * Test to see if the opener of the socket had when the socket was created
 188 * and the current process has the capability @cap over the network namespace
 189 * the socket is a member of.
 190 */
 191bool sk_net_capable(const struct sock *sk, int cap)
 192{
 193	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 194}
 195EXPORT_SYMBOL(sk_net_capable);
 196
 197/*
 198 * Each address family might have different locking rules, so we have
 199 * one slock key per address family and separate keys for internal and
 200 * userspace sockets.
 201 */
 202static struct lock_class_key af_family_keys[AF_MAX];
 203static struct lock_class_key af_family_kern_keys[AF_MAX];
 204static struct lock_class_key af_family_slock_keys[AF_MAX];
 205static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 206
 207/*
 208 * Make lock validator output more readable. (we pre-construct these
 209 * strings build-time, so that runtime initialization of socket
 210 * locks is fast):
 211 */
 212
 213#define _sock_locks(x)						  \
 214  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 215  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 216  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 217  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 218  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 219  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 220  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 221  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 222  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 223  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 224  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 225  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 226  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 227  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 228  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 229  x "AF_MAX"
 230
 231static const char *const af_family_key_strings[AF_MAX+1] = {
 232	_sock_locks("sk_lock-")
 233};
 234static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 235	_sock_locks("slock-")
 236};
 237static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 238	_sock_locks("clock-")
 239};
 240
 241static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 242	_sock_locks("k-sk_lock-")
 243};
 244static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 245	_sock_locks("k-slock-")
 246};
 247static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 248	_sock_locks("k-clock-")
 249};
 250static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 251	_sock_locks("rlock-")
 252};
 253static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 254	_sock_locks("wlock-")
 255};
 256static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 257	_sock_locks("elock-")
 258};
 259
 260/*
 261 * sk_callback_lock and sk queues locking rules are per-address-family,
 262 * so split the lock classes by using a per-AF key:
 263 */
 264static struct lock_class_key af_callback_keys[AF_MAX];
 265static struct lock_class_key af_rlock_keys[AF_MAX];
 266static struct lock_class_key af_wlock_keys[AF_MAX];
 267static struct lock_class_key af_elock_keys[AF_MAX];
 268static struct lock_class_key af_kern_callback_keys[AF_MAX];
 269
 270/* Run time adjustable parameters. */
 271__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 272EXPORT_SYMBOL(sysctl_wmem_max);
 273__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 274EXPORT_SYMBOL(sysctl_rmem_max);
 275__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 276__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 277
 278/* Maximal space eaten by iovec or ancillary data plus some space */
 279int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 280EXPORT_SYMBOL(sysctl_optmem_max);
 281
 282int sysctl_tstamp_allow_data __read_mostly = 1;
 283
 284DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 285EXPORT_SYMBOL_GPL(memalloc_socks_key);
 286
 287/**
 288 * sk_set_memalloc - sets %SOCK_MEMALLOC
 289 * @sk: socket to set it on
 290 *
 291 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 292 * It's the responsibility of the admin to adjust min_free_kbytes
 293 * to meet the requirements
 294 */
 295void sk_set_memalloc(struct sock *sk)
 296{
 297	sock_set_flag(sk, SOCK_MEMALLOC);
 298	sk->sk_allocation |= __GFP_MEMALLOC;
 299	static_branch_inc(&memalloc_socks_key);
 300}
 301EXPORT_SYMBOL_GPL(sk_set_memalloc);
 302
 303void sk_clear_memalloc(struct sock *sk)
 304{
 305	sock_reset_flag(sk, SOCK_MEMALLOC);
 306	sk->sk_allocation &= ~__GFP_MEMALLOC;
 307	static_branch_dec(&memalloc_socks_key);
 308
 309	/*
 310	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 311	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 312	 * it has rmem allocations due to the last swapfile being deactivated
 313	 * but there is a risk that the socket is unusable due to exceeding
 314	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 315	 */
 316	sk_mem_reclaim(sk);
 317}
 318EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 319
 320int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 321{
 322	int ret;
 323	unsigned int noreclaim_flag;
 324
 325	/* these should have been dropped before queueing */
 326	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 327
 328	noreclaim_flag = memalloc_noreclaim_save();
 329	ret = sk->sk_backlog_rcv(sk, skb);
 330	memalloc_noreclaim_restore(noreclaim_flag);
 331
 332	return ret;
 333}
 334EXPORT_SYMBOL(__sk_backlog_rcv);
 335
 336void sk_error_report(struct sock *sk)
 337{
 338	sk->sk_error_report(sk);
 339
 340	switch (sk->sk_family) {
 341	case AF_INET:
 342		fallthrough;
 343	case AF_INET6:
 344		trace_inet_sk_error_report(sk);
 345		break;
 346	default:
 347		break;
 348	}
 349}
 350EXPORT_SYMBOL(sk_error_report);
 351
 352static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 353{
 354	struct __kernel_sock_timeval tv;
 
 355
 356	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 357		tv.tv_sec = 0;
 358		tv.tv_usec = 0;
 359	} else {
 360		tv.tv_sec = timeo / HZ;
 361		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 362	}
 363
 364	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 365		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 366		*(struct old_timeval32 *)optval = tv32;
 367		return sizeof(tv32);
 368	}
 369
 370	if (old_timeval) {
 371		struct __kernel_old_timeval old_tv;
 372		old_tv.tv_sec = tv.tv_sec;
 373		old_tv.tv_usec = tv.tv_usec;
 374		*(struct __kernel_old_timeval *)optval = old_tv;
 375		return sizeof(old_tv);
 
 
 
 376	}
 377
 378	*(struct __kernel_sock_timeval *)optval = tv;
 379	return sizeof(tv);
 380}
 381
 382static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 383			    bool old_timeval)
 384{
 385	struct __kernel_sock_timeval tv;
 386
 387	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 388		struct old_timeval32 tv32;
 389
 390		if (optlen < sizeof(tv32))
 391			return -EINVAL;
 392
 393		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 394			return -EFAULT;
 395		tv.tv_sec = tv32.tv_sec;
 396		tv.tv_usec = tv32.tv_usec;
 397	} else if (old_timeval) {
 398		struct __kernel_old_timeval old_tv;
 399
 400		if (optlen < sizeof(old_tv))
 401			return -EINVAL;
 402		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 403			return -EFAULT;
 404		tv.tv_sec = old_tv.tv_sec;
 405		tv.tv_usec = old_tv.tv_usec;
 406	} else {
 407		if (optlen < sizeof(tv))
 408			return -EINVAL;
 409		if (copy_from_sockptr(&tv, optval, sizeof(tv)))
 410			return -EFAULT;
 411	}
 412	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 413		return -EDOM;
 414
 415	if (tv.tv_sec < 0) {
 416		static int warned __read_mostly;
 417
 418		*timeo_p = 0;
 419		if (warned < 10 && net_ratelimit()) {
 420			warned++;
 421			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 422				__func__, current->comm, task_pid_nr(current));
 423		}
 424		return 0;
 425	}
 426	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 427	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 428		return 0;
 429	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
 430		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
 431	return 0;
 432}
 433
 
 
 
 
 
 
 
 
 
 
 
 
 434static bool sock_needs_netstamp(const struct sock *sk)
 435{
 436	switch (sk->sk_family) {
 437	case AF_UNSPEC:
 438	case AF_UNIX:
 439		return false;
 440	default:
 441		return true;
 442	}
 443}
 444
 445static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 446{
 447	if (sk->sk_flags & flags) {
 448		sk->sk_flags &= ~flags;
 449		if (sock_needs_netstamp(sk) &&
 450		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 451			net_disable_timestamp();
 452	}
 453}
 454
 455
 456int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 457{
 458	unsigned long flags;
 459	struct sk_buff_head *list = &sk->sk_receive_queue;
 460
 461	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 462		atomic_inc(&sk->sk_drops);
 463		trace_sock_rcvqueue_full(sk, skb);
 464		return -ENOMEM;
 465	}
 466
 467	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 468		atomic_inc(&sk->sk_drops);
 469		return -ENOBUFS;
 470	}
 471
 472	skb->dev = NULL;
 473	skb_set_owner_r(skb, sk);
 474
 475	/* we escape from rcu protected region, make sure we dont leak
 476	 * a norefcounted dst
 477	 */
 478	skb_dst_force(skb);
 479
 480	spin_lock_irqsave(&list->lock, flags);
 481	sock_skb_set_dropcount(sk, skb);
 482	__skb_queue_tail(list, skb);
 483	spin_unlock_irqrestore(&list->lock, flags);
 484
 485	if (!sock_flag(sk, SOCK_DEAD))
 486		sk->sk_data_ready(sk);
 487	return 0;
 488}
 489EXPORT_SYMBOL(__sock_queue_rcv_skb);
 490
 491int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 492{
 493	int err;
 494
 495	err = sk_filter(sk, skb);
 496	if (err)
 497		return err;
 498
 499	return __sock_queue_rcv_skb(sk, skb);
 500}
 501EXPORT_SYMBOL(sock_queue_rcv_skb);
 502
 503int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 504		     const int nested, unsigned int trim_cap, bool refcounted)
 505{
 506	int rc = NET_RX_SUCCESS;
 507
 508	if (sk_filter_trim_cap(sk, skb, trim_cap))
 509		goto discard_and_relse;
 510
 511	skb->dev = NULL;
 512
 513	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 514		atomic_inc(&sk->sk_drops);
 515		goto discard_and_relse;
 516	}
 517	if (nested)
 518		bh_lock_sock_nested(sk);
 519	else
 520		bh_lock_sock(sk);
 521	if (!sock_owned_by_user(sk)) {
 522		/*
 523		 * trylock + unlock semantics:
 524		 */
 525		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 526
 527		rc = sk_backlog_rcv(sk, skb);
 528
 529		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 530	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 531		bh_unlock_sock(sk);
 532		atomic_inc(&sk->sk_drops);
 533		goto discard_and_relse;
 534	}
 535
 536	bh_unlock_sock(sk);
 537out:
 538	if (refcounted)
 539		sock_put(sk);
 540	return rc;
 541discard_and_relse:
 542	kfree_skb(skb);
 543	goto out;
 544}
 545EXPORT_SYMBOL(__sk_receive_skb);
 546
 547INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
 548							  u32));
 549INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
 550							   u32));
 551struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 552{
 553	struct dst_entry *dst = __sk_dst_get(sk);
 554
 555	if (dst && dst->obsolete &&
 556	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 557			       dst, cookie) == NULL) {
 558		sk_tx_queue_clear(sk);
 559		sk->sk_dst_pending_confirm = 0;
 560		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 561		dst_release(dst);
 562		return NULL;
 563	}
 564
 565	return dst;
 566}
 567EXPORT_SYMBOL(__sk_dst_check);
 568
 569struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 570{
 571	struct dst_entry *dst = sk_dst_get(sk);
 572
 573	if (dst && dst->obsolete &&
 574	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 575			       dst, cookie) == NULL) {
 576		sk_dst_reset(sk);
 577		dst_release(dst);
 578		return NULL;
 579	}
 580
 581	return dst;
 582}
 583EXPORT_SYMBOL(sk_dst_check);
 584
 585static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 586{
 587	int ret = -ENOPROTOOPT;
 588#ifdef CONFIG_NETDEVICES
 589	struct net *net = sock_net(sk);
 590
 591	/* Sorry... */
 592	ret = -EPERM;
 593	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 594		goto out;
 595
 596	ret = -EINVAL;
 597	if (ifindex < 0)
 598		goto out;
 599
 600	sk->sk_bound_dev_if = ifindex;
 601	if (sk->sk_prot->rehash)
 602		sk->sk_prot->rehash(sk);
 603	sk_dst_reset(sk);
 604
 605	ret = 0;
 606
 607out:
 608#endif
 609
 610	return ret;
 611}
 612
 613int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 614{
 615	int ret;
 616
 617	if (lock_sk)
 618		lock_sock(sk);
 619	ret = sock_bindtoindex_locked(sk, ifindex);
 620	if (lock_sk)
 621		release_sock(sk);
 622
 623	return ret;
 624}
 625EXPORT_SYMBOL(sock_bindtoindex);
 626
 627static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 628{
 629	int ret = -ENOPROTOOPT;
 630#ifdef CONFIG_NETDEVICES
 631	struct net *net = sock_net(sk);
 632	char devname[IFNAMSIZ];
 633	int index;
 634
 635	ret = -EINVAL;
 636	if (optlen < 0)
 637		goto out;
 638
 639	/* Bind this socket to a particular device like "eth0",
 640	 * as specified in the passed interface name. If the
 641	 * name is "" or the option length is zero the socket
 642	 * is not bound.
 643	 */
 644	if (optlen > IFNAMSIZ - 1)
 645		optlen = IFNAMSIZ - 1;
 646	memset(devname, 0, sizeof(devname));
 647
 648	ret = -EFAULT;
 649	if (copy_from_sockptr(devname, optval, optlen))
 650		goto out;
 651
 652	index = 0;
 653	if (devname[0] != '\0') {
 654		struct net_device *dev;
 655
 656		rcu_read_lock();
 657		dev = dev_get_by_name_rcu(net, devname);
 658		if (dev)
 659			index = dev->ifindex;
 660		rcu_read_unlock();
 661		ret = -ENODEV;
 662		if (!dev)
 663			goto out;
 664	}
 665
 666	return sock_bindtoindex(sk, index, true);
 
 
 
 667out:
 668#endif
 669
 670	return ret;
 671}
 672
 673static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 674				int __user *optlen, int len)
 675{
 676	int ret = -ENOPROTOOPT;
 677#ifdef CONFIG_NETDEVICES
 678	struct net *net = sock_net(sk);
 679	char devname[IFNAMSIZ];
 680
 681	if (sk->sk_bound_dev_if == 0) {
 682		len = 0;
 683		goto zero;
 684	}
 685
 686	ret = -EINVAL;
 687	if (len < IFNAMSIZ)
 688		goto out;
 689
 690	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 691	if (ret)
 692		goto out;
 693
 694	len = strlen(devname) + 1;
 695
 696	ret = -EFAULT;
 697	if (copy_to_user(optval, devname, len))
 698		goto out;
 699
 700zero:
 701	ret = -EFAULT;
 702	if (put_user(len, optlen))
 703		goto out;
 704
 705	ret = 0;
 706
 707out:
 708#endif
 709
 710	return ret;
 711}
 712
 
 
 
 
 
 
 
 
 713bool sk_mc_loop(struct sock *sk)
 714{
 715	if (dev_recursion_level())
 716		return false;
 717	if (!sk)
 718		return true;
 719	switch (sk->sk_family) {
 720	case AF_INET:
 721		return inet_sk(sk)->mc_loop;
 722#if IS_ENABLED(CONFIG_IPV6)
 723	case AF_INET6:
 724		return inet6_sk(sk)->mc_loop;
 725#endif
 726	}
 727	WARN_ON_ONCE(1);
 728	return true;
 729}
 730EXPORT_SYMBOL(sk_mc_loop);
 731
 732void sock_set_reuseaddr(struct sock *sk)
 733{
 734	lock_sock(sk);
 735	sk->sk_reuse = SK_CAN_REUSE;
 736	release_sock(sk);
 737}
 738EXPORT_SYMBOL(sock_set_reuseaddr);
 739
 740void sock_set_reuseport(struct sock *sk)
 741{
 742	lock_sock(sk);
 743	sk->sk_reuseport = true;
 744	release_sock(sk);
 745}
 746EXPORT_SYMBOL(sock_set_reuseport);
 747
 748void sock_no_linger(struct sock *sk)
 749{
 750	lock_sock(sk);
 751	sk->sk_lingertime = 0;
 752	sock_set_flag(sk, SOCK_LINGER);
 753	release_sock(sk);
 754}
 755EXPORT_SYMBOL(sock_no_linger);
 756
 757void sock_set_priority(struct sock *sk, u32 priority)
 758{
 759	lock_sock(sk);
 760	sk->sk_priority = priority;
 761	release_sock(sk);
 762}
 763EXPORT_SYMBOL(sock_set_priority);
 764
 765void sock_set_sndtimeo(struct sock *sk, s64 secs)
 766{
 767	lock_sock(sk);
 768	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 769		sk->sk_sndtimeo = secs * HZ;
 770	else
 771		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
 772	release_sock(sk);
 773}
 774EXPORT_SYMBOL(sock_set_sndtimeo);
 775
 776static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 777{
 778	if (val)  {
 779		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 780		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
 781		sock_set_flag(sk, SOCK_RCVTSTAMP);
 782		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 783	} else {
 784		sock_reset_flag(sk, SOCK_RCVTSTAMP);
 785		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 786	}
 787}
 788
 789void sock_enable_timestamps(struct sock *sk)
 790{
 791	lock_sock(sk);
 792	__sock_set_timestamps(sk, true, false, true);
 793	release_sock(sk);
 794}
 795EXPORT_SYMBOL(sock_enable_timestamps);
 796
 797void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
 798{
 799	switch (optname) {
 800	case SO_TIMESTAMP_OLD:
 801		__sock_set_timestamps(sk, valbool, false, false);
 802		break;
 803	case SO_TIMESTAMP_NEW:
 804		__sock_set_timestamps(sk, valbool, true, false);
 805		break;
 806	case SO_TIMESTAMPNS_OLD:
 807		__sock_set_timestamps(sk, valbool, false, true);
 808		break;
 809	case SO_TIMESTAMPNS_NEW:
 810		__sock_set_timestamps(sk, valbool, true, true);
 811		break;
 812	}
 813}
 814
 815static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
 816{
 817	struct net *net = sock_net(sk);
 818	struct net_device *dev = NULL;
 819	bool match = false;
 820	int *vclock_index;
 821	int i, num;
 822
 823	if (sk->sk_bound_dev_if)
 824		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
 825
 826	if (!dev) {
 827		pr_err("%s: sock not bind to device\n", __func__);
 828		return -EOPNOTSUPP;
 829	}
 830
 831	num = ethtool_get_phc_vclocks(dev, &vclock_index);
 832	for (i = 0; i < num; i++) {
 833		if (*(vclock_index + i) == phc_index) {
 834			match = true;
 835			break;
 836		}
 837	}
 838
 839	if (num > 0)
 840		kfree(vclock_index);
 841
 842	if (!match)
 843		return -EINVAL;
 844
 845	sk->sk_bind_phc = phc_index;
 846
 847	return 0;
 848}
 849
 850int sock_set_timestamping(struct sock *sk, int optname,
 851			  struct so_timestamping timestamping)
 852{
 853	int val = timestamping.flags;
 854	int ret;
 855
 856	if (val & ~SOF_TIMESTAMPING_MASK)
 857		return -EINVAL;
 858
 859	if (val & SOF_TIMESTAMPING_OPT_ID &&
 860	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 861		if (sk->sk_protocol == IPPROTO_TCP &&
 862		    sk->sk_type == SOCK_STREAM) {
 863			if ((1 << sk->sk_state) &
 864			    (TCPF_CLOSE | TCPF_LISTEN))
 865				return -EINVAL;
 866			sk->sk_tskey = tcp_sk(sk)->snd_una;
 867		} else {
 868			sk->sk_tskey = 0;
 869		}
 870	}
 871
 872	if (val & SOF_TIMESTAMPING_OPT_STATS &&
 873	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
 874		return -EINVAL;
 875
 876	if (val & SOF_TIMESTAMPING_BIND_PHC) {
 877		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
 878		if (ret)
 879			return ret;
 880	}
 881
 882	sk->sk_tsflags = val;
 883	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
 884
 885	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 886		sock_enable_timestamp(sk,
 887				      SOCK_TIMESTAMPING_RX_SOFTWARE);
 888	else
 889		sock_disable_timestamp(sk,
 890				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 891	return 0;
 892}
 893
 894void sock_set_keepalive(struct sock *sk)
 895{
 896	lock_sock(sk);
 897	if (sk->sk_prot->keepalive)
 898		sk->sk_prot->keepalive(sk, true);
 899	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 900	release_sock(sk);
 901}
 902EXPORT_SYMBOL(sock_set_keepalive);
 903
 904static void __sock_set_rcvbuf(struct sock *sk, int val)
 905{
 906	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 907	 * as a negative value.
 908	 */
 909	val = min_t(int, val, INT_MAX / 2);
 910	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 911
 912	/* We double it on the way in to account for "struct sk_buff" etc.
 913	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 914	 * will allow that much actual data to be received on that socket.
 915	 *
 916	 * Applications are unaware that "struct sk_buff" and other overheads
 917	 * allocate from the receive buffer during socket buffer allocation.
 918	 *
 919	 * And after considering the possible alternatives, returning the value
 920	 * we actually used in getsockopt is the most desirable behavior.
 921	 */
 922	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 923}
 924
 925void sock_set_rcvbuf(struct sock *sk, int val)
 926{
 927	lock_sock(sk);
 928	__sock_set_rcvbuf(sk, val);
 929	release_sock(sk);
 930}
 931EXPORT_SYMBOL(sock_set_rcvbuf);
 932
 933static void __sock_set_mark(struct sock *sk, u32 val)
 934{
 935	if (val != sk->sk_mark) {
 936		sk->sk_mark = val;
 937		sk_dst_reset(sk);
 938	}
 939}
 940
 941void sock_set_mark(struct sock *sk, u32 val)
 942{
 943	lock_sock(sk);
 944	__sock_set_mark(sk, val);
 945	release_sock(sk);
 946}
 947EXPORT_SYMBOL(sock_set_mark);
 948
 949/*
 950 *	This is meant for all protocols to use and covers goings on
 951 *	at the socket level. Everything here is generic.
 952 */
 953
 954int sock_setsockopt(struct socket *sock, int level, int optname,
 955		    sockptr_t optval, unsigned int optlen)
 956{
 957	struct so_timestamping timestamping;
 958	struct sock_txtime sk_txtime;
 959	struct sock *sk = sock->sk;
 960	int val;
 961	int valbool;
 962	struct linger ling;
 963	int ret = 0;
 964
 965	/*
 966	 *	Options without arguments
 967	 */
 968
 969	if (optname == SO_BINDTODEVICE)
 970		return sock_setbindtodevice(sk, optval, optlen);
 971
 972	if (optlen < sizeof(int))
 973		return -EINVAL;
 974
 975	if (copy_from_sockptr(&val, optval, sizeof(val)))
 976		return -EFAULT;
 977
 978	valbool = val ? 1 : 0;
 979
 980	lock_sock(sk);
 981
 982	switch (optname) {
 983	case SO_DEBUG:
 984		if (val && !capable(CAP_NET_ADMIN))
 985			ret = -EACCES;
 986		else
 987			sock_valbool_flag(sk, SOCK_DBG, valbool);
 988		break;
 989	case SO_REUSEADDR:
 990		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 991		break;
 992	case SO_REUSEPORT:
 993		sk->sk_reuseport = valbool;
 994		break;
 995	case SO_TYPE:
 996	case SO_PROTOCOL:
 997	case SO_DOMAIN:
 998	case SO_ERROR:
 999		ret = -ENOPROTOOPT;
1000		break;
1001	case SO_DONTROUTE:
1002		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1003		sk_dst_reset(sk);
1004		break;
1005	case SO_BROADCAST:
1006		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1007		break;
1008	case SO_SNDBUF:
1009		/* Don't error on this BSD doesn't and if you think
1010		 * about it this is right. Otherwise apps have to
1011		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1012		 * are treated in BSD as hints
1013		 */
1014		val = min_t(u32, val, sysctl_wmem_max);
1015set_sndbuf:
1016		/* Ensure val * 2 fits into an int, to prevent max_t()
1017		 * from treating it as a negative value.
1018		 */
1019		val = min_t(int, val, INT_MAX / 2);
1020		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1021		WRITE_ONCE(sk->sk_sndbuf,
1022			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1023		/* Wake up sending tasks if we upped the value. */
1024		sk->sk_write_space(sk);
1025		break;
1026
1027	case SO_SNDBUFFORCE:
1028		if (!capable(CAP_NET_ADMIN)) {
1029			ret = -EPERM;
1030			break;
1031		}
1032
1033		/* No negative values (to prevent underflow, as val will be
1034		 * multiplied by 2).
1035		 */
1036		if (val < 0)
1037			val = 0;
1038		goto set_sndbuf;
1039
1040	case SO_RCVBUF:
1041		/* Don't error on this BSD doesn't and if you think
1042		 * about it this is right. Otherwise apps have to
1043		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1044		 * are treated in BSD as hints
1045		 */
1046		__sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047		break;
1048
1049	case SO_RCVBUFFORCE:
1050		if (!capable(CAP_NET_ADMIN)) {
1051			ret = -EPERM;
1052			break;
1053		}
1054
1055		/* No negative values (to prevent underflow, as val will be
1056		 * multiplied by 2).
1057		 */
1058		__sock_set_rcvbuf(sk, max(val, 0));
1059		break;
 
1060
1061	case SO_KEEPALIVE:
1062		if (sk->sk_prot->keepalive)
1063			sk->sk_prot->keepalive(sk, valbool);
1064		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1065		break;
1066
1067	case SO_OOBINLINE:
1068		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1069		break;
1070
1071	case SO_NO_CHECK:
1072		sk->sk_no_check_tx = valbool;
1073		break;
1074
1075	case SO_PRIORITY:
1076		if ((val >= 0 && val <= 6) ||
1077		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1078			sk->sk_priority = val;
1079		else
1080			ret = -EPERM;
1081		break;
1082
1083	case SO_LINGER:
1084		if (optlen < sizeof(ling)) {
1085			ret = -EINVAL;	/* 1003.1g */
1086			break;
1087		}
1088		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1089			ret = -EFAULT;
1090			break;
1091		}
1092		if (!ling.l_onoff)
1093			sock_reset_flag(sk, SOCK_LINGER);
1094		else {
1095#if (BITS_PER_LONG == 32)
1096			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1097				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1098			else
1099#endif
1100				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1101			sock_set_flag(sk, SOCK_LINGER);
1102		}
1103		break;
1104
1105	case SO_BSDCOMPAT:
 
1106		break;
1107
1108	case SO_PASSCRED:
1109		if (valbool)
1110			set_bit(SOCK_PASSCRED, &sock->flags);
1111		else
1112			clear_bit(SOCK_PASSCRED, &sock->flags);
1113		break;
1114
1115	case SO_TIMESTAMP_OLD:
1116	case SO_TIMESTAMP_NEW:
1117	case SO_TIMESTAMPNS_OLD:
1118	case SO_TIMESTAMPNS_NEW:
1119		sock_set_timestamp(sk, optname, valbool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120		break;
1121
1122	case SO_TIMESTAMPING_NEW:
 
 
1123	case SO_TIMESTAMPING_OLD:
1124		if (optlen == sizeof(timestamping)) {
1125			if (copy_from_sockptr(&timestamping, optval,
1126					      sizeof(timestamping))) {
1127				ret = -EFAULT;
1128				break;
 
 
 
 
 
 
 
 
 
 
 
 
1129			}
1130		} else {
1131			memset(&timestamping, 0, sizeof(timestamping));
1132			timestamping.flags = val;
1133		}
1134		ret = sock_set_timestamping(sk, optname, timestamping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135		break;
1136
1137	case SO_RCVLOWAT:
1138		if (val < 0)
1139			val = INT_MAX;
1140		if (sock->ops->set_rcvlowat)
1141			ret = sock->ops->set_rcvlowat(sk, val);
1142		else
1143			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1144		break;
1145
1146	case SO_RCVTIMEO_OLD:
1147	case SO_RCVTIMEO_NEW:
1148		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1149				       optlen, optname == SO_RCVTIMEO_OLD);
1150		break;
1151
1152	case SO_SNDTIMEO_OLD:
1153	case SO_SNDTIMEO_NEW:
1154		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1155				       optlen, optname == SO_SNDTIMEO_OLD);
1156		break;
1157
1158	case SO_ATTACH_FILTER: {
1159		struct sock_fprog fprog;
 
 
 
 
 
 
1160
1161		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1162		if (!ret)
1163			ret = sk_attach_filter(&fprog, sk);
 
1164		break;
1165	}
1166	case SO_ATTACH_BPF:
1167		ret = -EINVAL;
1168		if (optlen == sizeof(u32)) {
1169			u32 ufd;
1170
1171			ret = -EFAULT;
1172			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1173				break;
1174
1175			ret = sk_attach_bpf(ufd, sk);
1176		}
1177		break;
1178
1179	case SO_ATTACH_REUSEPORT_CBPF: {
1180		struct sock_fprog fprog;
 
 
 
 
 
 
1181
1182		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1183		if (!ret)
1184			ret = sk_reuseport_attach_filter(&fprog, sk);
 
1185		break;
1186	}
1187	case SO_ATTACH_REUSEPORT_EBPF:
1188		ret = -EINVAL;
1189		if (optlen == sizeof(u32)) {
1190			u32 ufd;
1191
1192			ret = -EFAULT;
1193			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1194				break;
1195
1196			ret = sk_reuseport_attach_bpf(ufd, sk);
1197		}
1198		break;
1199
1200	case SO_DETACH_REUSEPORT_BPF:
1201		ret = reuseport_detach_prog(sk);
1202		break;
1203
1204	case SO_DETACH_FILTER:
1205		ret = sk_detach_filter(sk);
1206		break;
1207
1208	case SO_LOCK_FILTER:
1209		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1210			ret = -EPERM;
1211		else
1212			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1213		break;
1214
1215	case SO_PASSSEC:
1216		if (valbool)
1217			set_bit(SOCK_PASSSEC, &sock->flags);
1218		else
1219			clear_bit(SOCK_PASSSEC, &sock->flags);
1220		break;
1221	case SO_MARK:
1222		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1223			ret = -EPERM;
1224			break;
 
 
1225		}
1226
1227		__sock_set_mark(sk, val);
1228		break;
1229
1230	case SO_RXQ_OVFL:
1231		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1232		break;
1233
1234	case SO_WIFI_STATUS:
1235		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1236		break;
1237
1238	case SO_PEEK_OFF:
1239		if (sock->ops->set_peek_off)
1240			ret = sock->ops->set_peek_off(sk, val);
1241		else
1242			ret = -EOPNOTSUPP;
1243		break;
1244
1245	case SO_NOFCS:
1246		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1247		break;
1248
1249	case SO_SELECT_ERR_QUEUE:
1250		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1251		break;
1252
1253#ifdef CONFIG_NET_RX_BUSY_POLL
1254	case SO_BUSY_POLL:
1255		/* allow unprivileged users to decrease the value */
1256		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1257			ret = -EPERM;
1258		else {
1259			if (val < 0)
1260				ret = -EINVAL;
1261			else
1262				WRITE_ONCE(sk->sk_ll_usec, val);
1263		}
1264		break;
1265	case SO_PREFER_BUSY_POLL:
1266		if (valbool && !capable(CAP_NET_ADMIN))
1267			ret = -EPERM;
1268		else
1269			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1270		break;
1271	case SO_BUSY_POLL_BUDGET:
1272		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1273			ret = -EPERM;
1274		} else {
1275			if (val < 0 || val > U16_MAX)
1276				ret = -EINVAL;
1277			else
1278				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1279		}
1280		break;
1281#endif
1282
1283	case SO_MAX_PACING_RATE:
1284		{
1285		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1286
1287		if (sizeof(ulval) != sizeof(val) &&
1288		    optlen >= sizeof(ulval) &&
1289		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1290			ret = -EFAULT;
1291			break;
1292		}
1293		if (ulval != ~0UL)
1294			cmpxchg(&sk->sk_pacing_status,
1295				SK_PACING_NONE,
1296				SK_PACING_NEEDED);
1297		sk->sk_max_pacing_rate = ulval;
1298		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1299		break;
1300		}
1301	case SO_INCOMING_CPU:
1302		WRITE_ONCE(sk->sk_incoming_cpu, val);
1303		break;
1304
1305	case SO_CNX_ADVICE:
1306		if (val == 1)
1307			dst_negative_advice(sk);
1308		break;
1309
1310	case SO_ZEROCOPY:
1311		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1312			if (!((sk->sk_type == SOCK_STREAM &&
1313			       sk->sk_protocol == IPPROTO_TCP) ||
1314			      (sk->sk_type == SOCK_DGRAM &&
1315			       sk->sk_protocol == IPPROTO_UDP)))
1316				ret = -ENOTSUPP;
1317		} else if (sk->sk_family != PF_RDS) {
1318			ret = -ENOTSUPP;
1319		}
1320		if (!ret) {
1321			if (val < 0 || val > 1)
1322				ret = -EINVAL;
1323			else
1324				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1325		}
1326		break;
1327
1328	case SO_TXTIME:
1329		if (optlen != sizeof(struct sock_txtime)) {
 
 
1330			ret = -EINVAL;
1331			break;
1332		} else if (copy_from_sockptr(&sk_txtime, optval,
1333			   sizeof(struct sock_txtime))) {
1334			ret = -EFAULT;
1335			break;
1336		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1337			ret = -EINVAL;
1338			break;
1339		}
1340		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1341		 * scheduler has enough safe guards.
1342		 */
1343		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1344		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1345			ret = -EPERM;
1346			break;
1347		}
1348		sock_valbool_flag(sk, SOCK_TXTIME, true);
1349		sk->sk_clockid = sk_txtime.clockid;
1350		sk->sk_txtime_deadline_mode =
1351			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1352		sk->sk_txtime_report_errors =
1353			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1354		break;
1355
1356	case SO_BINDTOIFINDEX:
1357		ret = sock_bindtoindex_locked(sk, val);
1358		break;
1359
1360	default:
1361		ret = -ENOPROTOOPT;
1362		break;
1363	}
1364	release_sock(sk);
1365	return ret;
1366}
1367EXPORT_SYMBOL(sock_setsockopt);
1368
1369static const struct cred *sk_get_peer_cred(struct sock *sk)
1370{
1371	const struct cred *cred;
1372
1373	spin_lock(&sk->sk_peer_lock);
1374	cred = get_cred(sk->sk_peer_cred);
1375	spin_unlock(&sk->sk_peer_lock);
1376
1377	return cred;
1378}
1379
1380static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1381			  struct ucred *ucred)
1382{
1383	ucred->pid = pid_vnr(pid);
1384	ucred->uid = ucred->gid = -1;
1385	if (cred) {
1386		struct user_namespace *current_ns = current_user_ns();
1387
1388		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1389		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1390	}
1391}
1392
1393static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1394{
1395	struct user_namespace *user_ns = current_user_ns();
1396	int i;
1397
1398	for (i = 0; i < src->ngroups; i++)
1399		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1400			return -EFAULT;
1401
1402	return 0;
1403}
1404
1405int sock_getsockopt(struct socket *sock, int level, int optname,
1406		    char __user *optval, int __user *optlen)
1407{
1408	struct sock *sk = sock->sk;
1409
1410	union {
1411		int val;
1412		u64 val64;
1413		unsigned long ulval;
1414		struct linger ling;
1415		struct old_timeval32 tm32;
1416		struct __kernel_old_timeval tm;
1417		struct  __kernel_sock_timeval stm;
1418		struct sock_txtime txtime;
1419		struct so_timestamping timestamping;
1420	} v;
1421
1422	int lv = sizeof(int);
1423	int len;
1424
1425	if (get_user(len, optlen))
1426		return -EFAULT;
1427	if (len < 0)
1428		return -EINVAL;
1429
1430	memset(&v, 0, sizeof(v));
1431
1432	switch (optname) {
1433	case SO_DEBUG:
1434		v.val = sock_flag(sk, SOCK_DBG);
1435		break;
1436
1437	case SO_DONTROUTE:
1438		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1439		break;
1440
1441	case SO_BROADCAST:
1442		v.val = sock_flag(sk, SOCK_BROADCAST);
1443		break;
1444
1445	case SO_SNDBUF:
1446		v.val = sk->sk_sndbuf;
1447		break;
1448
1449	case SO_RCVBUF:
1450		v.val = sk->sk_rcvbuf;
1451		break;
1452
1453	case SO_REUSEADDR:
1454		v.val = sk->sk_reuse;
1455		break;
1456
1457	case SO_REUSEPORT:
1458		v.val = sk->sk_reuseport;
1459		break;
1460
1461	case SO_KEEPALIVE:
1462		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1463		break;
1464
1465	case SO_TYPE:
1466		v.val = sk->sk_type;
1467		break;
1468
1469	case SO_PROTOCOL:
1470		v.val = sk->sk_protocol;
1471		break;
1472
1473	case SO_DOMAIN:
1474		v.val = sk->sk_family;
1475		break;
1476
1477	case SO_ERROR:
1478		v.val = -sock_error(sk);
1479		if (v.val == 0)
1480			v.val = xchg(&sk->sk_err_soft, 0);
1481		break;
1482
1483	case SO_OOBINLINE:
1484		v.val = sock_flag(sk, SOCK_URGINLINE);
1485		break;
1486
1487	case SO_NO_CHECK:
1488		v.val = sk->sk_no_check_tx;
1489		break;
1490
1491	case SO_PRIORITY:
1492		v.val = sk->sk_priority;
1493		break;
1494
1495	case SO_LINGER:
1496		lv		= sizeof(v.ling);
1497		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1498		v.ling.l_linger	= sk->sk_lingertime / HZ;
1499		break;
1500
1501	case SO_BSDCOMPAT:
 
1502		break;
1503
1504	case SO_TIMESTAMP_OLD:
1505		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1506				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1507				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1508		break;
1509
1510	case SO_TIMESTAMPNS_OLD:
1511		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1512		break;
1513
1514	case SO_TIMESTAMP_NEW:
1515		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1516		break;
1517
1518	case SO_TIMESTAMPNS_NEW:
1519		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1520		break;
1521
1522	case SO_TIMESTAMPING_OLD:
1523		lv = sizeof(v.timestamping);
1524		v.timestamping.flags = sk->sk_tsflags;
1525		v.timestamping.bind_phc = sk->sk_bind_phc;
1526		break;
1527
1528	case SO_RCVTIMEO_OLD:
1529	case SO_RCVTIMEO_NEW:
1530		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1531		break;
1532
1533	case SO_SNDTIMEO_OLD:
1534	case SO_SNDTIMEO_NEW:
1535		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1536		break;
1537
1538	case SO_RCVLOWAT:
1539		v.val = sk->sk_rcvlowat;
1540		break;
1541
1542	case SO_SNDLOWAT:
1543		v.val = 1;
1544		break;
1545
1546	case SO_PASSCRED:
1547		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1548		break;
1549
1550	case SO_PEERCRED:
1551	{
1552		struct ucred peercred;
1553		if (len > sizeof(peercred))
1554			len = sizeof(peercred);
1555
1556		spin_lock(&sk->sk_peer_lock);
1557		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1558		spin_unlock(&sk->sk_peer_lock);
1559
1560		if (copy_to_user(optval, &peercred, len))
1561			return -EFAULT;
1562		goto lenout;
1563	}
1564
1565	case SO_PEERGROUPS:
1566	{
1567		const struct cred *cred;
1568		int ret, n;
1569
1570		cred = sk_get_peer_cred(sk);
1571		if (!cred)
1572			return -ENODATA;
1573
1574		n = cred->group_info->ngroups;
1575		if (len < n * sizeof(gid_t)) {
1576			len = n * sizeof(gid_t);
1577			put_cred(cred);
1578			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1579		}
1580		len = n * sizeof(gid_t);
1581
1582		ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1583		put_cred(cred);
1584		if (ret)
1585			return ret;
1586		goto lenout;
1587	}
1588
1589	case SO_PEERNAME:
1590	{
1591		char address[128];
1592
1593		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1594		if (lv < 0)
1595			return -ENOTCONN;
1596		if (lv < len)
1597			return -EINVAL;
1598		if (copy_to_user(optval, address, len))
1599			return -EFAULT;
1600		goto lenout;
1601	}
1602
1603	/* Dubious BSD thing... Probably nobody even uses it, but
1604	 * the UNIX standard wants it for whatever reason... -DaveM
1605	 */
1606	case SO_ACCEPTCONN:
1607		v.val = sk->sk_state == TCP_LISTEN;
1608		break;
1609
1610	case SO_PASSSEC:
1611		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1612		break;
1613
1614	case SO_PEERSEC:
1615		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1616
1617	case SO_MARK:
1618		v.val = sk->sk_mark;
1619		break;
1620
1621	case SO_RXQ_OVFL:
1622		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1623		break;
1624
1625	case SO_WIFI_STATUS:
1626		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1627		break;
1628
1629	case SO_PEEK_OFF:
1630		if (!sock->ops->set_peek_off)
1631			return -EOPNOTSUPP;
1632
1633		v.val = sk->sk_peek_off;
1634		break;
1635	case SO_NOFCS:
1636		v.val = sock_flag(sk, SOCK_NOFCS);
1637		break;
1638
1639	case SO_BINDTODEVICE:
1640		return sock_getbindtodevice(sk, optval, optlen, len);
1641
1642	case SO_GET_FILTER:
1643		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1644		if (len < 0)
1645			return len;
1646
1647		goto lenout;
1648
1649	case SO_LOCK_FILTER:
1650		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1651		break;
1652
1653	case SO_BPF_EXTENSIONS:
1654		v.val = bpf_tell_extensions();
1655		break;
1656
1657	case SO_SELECT_ERR_QUEUE:
1658		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1659		break;
1660
1661#ifdef CONFIG_NET_RX_BUSY_POLL
1662	case SO_BUSY_POLL:
1663		v.val = sk->sk_ll_usec;
1664		break;
1665	case SO_PREFER_BUSY_POLL:
1666		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1667		break;
1668#endif
1669
1670	case SO_MAX_PACING_RATE:
1671		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1672			lv = sizeof(v.ulval);
1673			v.ulval = sk->sk_max_pacing_rate;
1674		} else {
1675			/* 32bit version */
1676			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1677		}
1678		break;
1679
1680	case SO_INCOMING_CPU:
1681		v.val = READ_ONCE(sk->sk_incoming_cpu);
1682		break;
1683
1684	case SO_MEMINFO:
1685	{
1686		u32 meminfo[SK_MEMINFO_VARS];
1687
1688		sk_get_meminfo(sk, meminfo);
1689
1690		len = min_t(unsigned int, len, sizeof(meminfo));
1691		if (copy_to_user(optval, &meminfo, len))
1692			return -EFAULT;
1693
1694		goto lenout;
1695	}
1696
1697#ifdef CONFIG_NET_RX_BUSY_POLL
1698	case SO_INCOMING_NAPI_ID:
1699		v.val = READ_ONCE(sk->sk_napi_id);
1700
1701		/* aggregate non-NAPI IDs down to 0 */
1702		if (v.val < MIN_NAPI_ID)
1703			v.val = 0;
1704
1705		break;
1706#endif
1707
1708	case SO_COOKIE:
1709		lv = sizeof(u64);
1710		if (len < lv)
1711			return -EINVAL;
1712		v.val64 = sock_gen_cookie(sk);
1713		break;
1714
1715	case SO_ZEROCOPY:
1716		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1717		break;
1718
1719	case SO_TXTIME:
1720		lv = sizeof(v.txtime);
1721		v.txtime.clockid = sk->sk_clockid;
1722		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1723				  SOF_TXTIME_DEADLINE_MODE : 0;
1724		v.txtime.flags |= sk->sk_txtime_report_errors ?
1725				  SOF_TXTIME_REPORT_ERRORS : 0;
1726		break;
1727
1728	case SO_BINDTOIFINDEX:
1729		v.val = sk->sk_bound_dev_if;
1730		break;
1731
1732	case SO_NETNS_COOKIE:
1733		lv = sizeof(u64);
1734		if (len != lv)
1735			return -EINVAL;
1736		v.val64 = sock_net(sk)->net_cookie;
1737		break;
1738
1739	default:
1740		/* We implement the SO_SNDLOWAT etc to not be settable
1741		 * (1003.1g 7).
1742		 */
1743		return -ENOPROTOOPT;
1744	}
1745
1746	if (len > lv)
1747		len = lv;
1748	if (copy_to_user(optval, &v, len))
1749		return -EFAULT;
1750lenout:
1751	if (put_user(len, optlen))
1752		return -EFAULT;
1753	return 0;
1754}
1755
1756/*
1757 * Initialize an sk_lock.
1758 *
1759 * (We also register the sk_lock with the lock validator.)
1760 */
1761static inline void sock_lock_init(struct sock *sk)
1762{
1763	if (sk->sk_kern_sock)
1764		sock_lock_init_class_and_name(
1765			sk,
1766			af_family_kern_slock_key_strings[sk->sk_family],
1767			af_family_kern_slock_keys + sk->sk_family,
1768			af_family_kern_key_strings[sk->sk_family],
1769			af_family_kern_keys + sk->sk_family);
1770	else
1771		sock_lock_init_class_and_name(
1772			sk,
1773			af_family_slock_key_strings[sk->sk_family],
1774			af_family_slock_keys + sk->sk_family,
1775			af_family_key_strings[sk->sk_family],
1776			af_family_keys + sk->sk_family);
1777}
1778
1779/*
1780 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1781 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1782 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1783 */
1784static void sock_copy(struct sock *nsk, const struct sock *osk)
1785{
1786	const struct proto *prot = READ_ONCE(osk->sk_prot);
1787#ifdef CONFIG_SECURITY_NETWORK
1788	void *sptr = nsk->sk_security;
1789#endif
1790
1791	/* If we move sk_tx_queue_mapping out of the private section,
1792	 * we must check if sk_tx_queue_clear() is called after
1793	 * sock_copy() in sk_clone_lock().
1794	 */
1795	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1796		     offsetof(struct sock, sk_dontcopy_begin) ||
1797		     offsetof(struct sock, sk_tx_queue_mapping) >=
1798		     offsetof(struct sock, sk_dontcopy_end));
1799
1800	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1801
1802	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1803	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1804
1805#ifdef CONFIG_SECURITY_NETWORK
1806	nsk->sk_security = sptr;
1807	security_sk_clone(osk, nsk);
1808#endif
1809}
1810
1811static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1812		int family)
1813{
1814	struct sock *sk;
1815	struct kmem_cache *slab;
1816
1817	slab = prot->slab;
1818	if (slab != NULL) {
1819		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1820		if (!sk)
1821			return sk;
1822		if (want_init_on_alloc(priority))
1823			sk_prot_clear_nulls(sk, prot->obj_size);
1824	} else
1825		sk = kmalloc(prot->obj_size, priority);
1826
1827	if (sk != NULL) {
1828		if (security_sk_alloc(sk, family, priority))
1829			goto out_free;
1830
1831		if (!try_module_get(prot->owner))
1832			goto out_free_sec;
 
1833	}
1834
1835	return sk;
1836
1837out_free_sec:
1838	security_sk_free(sk);
1839out_free:
1840	if (slab != NULL)
1841		kmem_cache_free(slab, sk);
1842	else
1843		kfree(sk);
1844	return NULL;
1845}
1846
1847static void sk_prot_free(struct proto *prot, struct sock *sk)
1848{
1849	struct kmem_cache *slab;
1850	struct module *owner;
1851
1852	owner = prot->owner;
1853	slab = prot->slab;
1854
1855	cgroup_sk_free(&sk->sk_cgrp_data);
1856	mem_cgroup_sk_free(sk);
1857	security_sk_free(sk);
1858	if (slab != NULL)
1859		kmem_cache_free(slab, sk);
1860	else
1861		kfree(sk);
1862	module_put(owner);
1863}
1864
1865/**
1866 *	sk_alloc - All socket objects are allocated here
1867 *	@net: the applicable net namespace
1868 *	@family: protocol family
1869 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1870 *	@prot: struct proto associated with this new sock instance
1871 *	@kern: is this to be a kernel socket?
1872 */
1873struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1874		      struct proto *prot, int kern)
1875{
1876	struct sock *sk;
1877
1878	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1879	if (sk) {
1880		sk->sk_family = family;
1881		/*
1882		 * See comment in struct sock definition to understand
1883		 * why we need sk_prot_creator -acme
1884		 */
1885		sk->sk_prot = sk->sk_prot_creator = prot;
1886		sk->sk_kern_sock = kern;
1887		sock_lock_init(sk);
1888		sk->sk_net_refcnt = kern ? 0 : 1;
1889		if (likely(sk->sk_net_refcnt)) {
1890			get_net(net);
1891			sock_inuse_add(net, 1);
1892		}
1893
1894		sock_net_set(sk, net);
1895		refcount_set(&sk->sk_wmem_alloc, 1);
1896
1897		mem_cgroup_sk_alloc(sk);
1898		cgroup_sk_alloc(&sk->sk_cgrp_data);
1899		sock_update_classid(&sk->sk_cgrp_data);
1900		sock_update_netprioidx(&sk->sk_cgrp_data);
1901		sk_tx_queue_clear(sk);
1902	}
1903
1904	return sk;
1905}
1906EXPORT_SYMBOL(sk_alloc);
1907
1908/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1909 * grace period. This is the case for UDP sockets and TCP listeners.
1910 */
1911static void __sk_destruct(struct rcu_head *head)
1912{
1913	struct sock *sk = container_of(head, struct sock, sk_rcu);
1914	struct sk_filter *filter;
1915
1916	if (sk->sk_destruct)
1917		sk->sk_destruct(sk);
1918
1919	filter = rcu_dereference_check(sk->sk_filter,
1920				       refcount_read(&sk->sk_wmem_alloc) == 0);
1921	if (filter) {
1922		sk_filter_uncharge(sk, filter);
1923		RCU_INIT_POINTER(sk->sk_filter, NULL);
1924	}
1925
1926	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1927
1928#ifdef CONFIG_BPF_SYSCALL
1929	bpf_sk_storage_free(sk);
1930#endif
1931
1932	if (atomic_read(&sk->sk_omem_alloc))
1933		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1934			 __func__, atomic_read(&sk->sk_omem_alloc));
1935
1936	if (sk->sk_frag.page) {
1937		put_page(sk->sk_frag.page);
1938		sk->sk_frag.page = NULL;
1939	}
1940
1941	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1942	put_cred(sk->sk_peer_cred);
1943	put_pid(sk->sk_peer_pid);
1944
1945	if (likely(sk->sk_net_refcnt))
1946		put_net(sock_net(sk));
1947	sk_prot_free(sk->sk_prot_creator, sk);
1948}
1949
1950void sk_destruct(struct sock *sk)
1951{
1952	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1953
1954	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1955		reuseport_detach_sock(sk);
1956		use_call_rcu = true;
1957	}
1958
1959	if (use_call_rcu)
1960		call_rcu(&sk->sk_rcu, __sk_destruct);
1961	else
1962		__sk_destruct(&sk->sk_rcu);
1963}
1964
1965static void __sk_free(struct sock *sk)
1966{
1967	if (likely(sk->sk_net_refcnt))
1968		sock_inuse_add(sock_net(sk), -1);
1969
1970	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1971		sock_diag_broadcast_destroy(sk);
1972	else
1973		sk_destruct(sk);
1974}
1975
1976void sk_free(struct sock *sk)
1977{
1978	/*
1979	 * We subtract one from sk_wmem_alloc and can know if
1980	 * some packets are still in some tx queue.
1981	 * If not null, sock_wfree() will call __sk_free(sk) later
1982	 */
1983	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1984		__sk_free(sk);
1985}
1986EXPORT_SYMBOL(sk_free);
1987
1988static void sk_init_common(struct sock *sk)
1989{
1990	skb_queue_head_init(&sk->sk_receive_queue);
1991	skb_queue_head_init(&sk->sk_write_queue);
1992	skb_queue_head_init(&sk->sk_error_queue);
1993
1994	rwlock_init(&sk->sk_callback_lock);
1995	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1996			af_rlock_keys + sk->sk_family,
1997			af_family_rlock_key_strings[sk->sk_family]);
1998	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1999			af_wlock_keys + sk->sk_family,
2000			af_family_wlock_key_strings[sk->sk_family]);
2001	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2002			af_elock_keys + sk->sk_family,
2003			af_family_elock_key_strings[sk->sk_family]);
2004	lockdep_set_class_and_name(&sk->sk_callback_lock,
2005			af_callback_keys + sk->sk_family,
2006			af_family_clock_key_strings[sk->sk_family]);
2007}
2008
2009/**
2010 *	sk_clone_lock - clone a socket, and lock its clone
2011 *	@sk: the socket to clone
2012 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2013 *
2014 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2015 */
2016struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2017{
2018	struct proto *prot = READ_ONCE(sk->sk_prot);
2019	struct sk_filter *filter;
2020	bool is_charged = true;
2021	struct sock *newsk;
 
2022
2023	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2024	if (!newsk)
2025		goto out;
2026
2027	sock_copy(newsk, sk);
 
 
 
 
 
 
 
 
 
 
 
2028
2029	newsk->sk_prot_creator = prot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2030
2031	/* SANITY */
2032	if (likely(newsk->sk_net_refcnt))
2033		get_net(sock_net(newsk));
2034	sk_node_init(&newsk->sk_node);
2035	sock_lock_init(newsk);
2036	bh_lock_sock(newsk);
2037	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2038	newsk->sk_backlog.len = 0;
2039
2040	atomic_set(&newsk->sk_rmem_alloc, 0);
2041
2042	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2043	refcount_set(&newsk->sk_wmem_alloc, 1);
2044
2045	atomic_set(&newsk->sk_omem_alloc, 0);
2046	sk_init_common(newsk);
2047
2048	newsk->sk_dst_cache	= NULL;
2049	newsk->sk_dst_pending_confirm = 0;
2050	newsk->sk_wmem_queued	= 0;
2051	newsk->sk_forward_alloc = 0;
2052	atomic_set(&newsk->sk_drops, 0);
2053	newsk->sk_send_head	= NULL;
2054	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2055	atomic_set(&newsk->sk_zckey, 0);
2056
2057	sock_reset_flag(newsk, SOCK_DONE);
 
 
 
 
 
 
 
 
 
 
 
2058
2059	/* sk->sk_memcg will be populated at accept() time */
2060	newsk->sk_memcg = NULL;
 
 
 
2061
2062	cgroup_sk_clone(&newsk->sk_cgrp_data);
 
 
 
 
 
2063
2064	rcu_read_lock();
2065	filter = rcu_dereference(sk->sk_filter);
2066	if (filter != NULL)
2067		/* though it's an empty new sock, the charging may fail
2068		 * if sysctl_optmem_max was changed between creation of
2069		 * original socket and cloning
2070		 */
2071		is_charged = sk_filter_charge(newsk, filter);
2072	RCU_INIT_POINTER(newsk->sk_filter, filter);
2073	rcu_read_unlock();
2074
2075	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2076		/* We need to make sure that we don't uncharge the new
2077		 * socket if we couldn't charge it in the first place
2078		 * as otherwise we uncharge the parent's filter.
 
 
 
 
 
 
2079		 */
2080		if (!is_charged)
2081			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2082		sk_free_unlock_clone(newsk);
2083		newsk = NULL;
2084		goto out;
2085	}
2086	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2087
2088	if (bpf_sk_storage_clone(sk, newsk)) {
2089		sk_free_unlock_clone(newsk);
2090		newsk = NULL;
2091		goto out;
2092	}
2093
2094	/* Clear sk_user_data if parent had the pointer tagged
2095	 * as not suitable for copying when cloning.
2096	 */
2097	if (sk_user_data_is_nocopy(newsk))
2098		newsk->sk_user_data = NULL;
2099
2100	newsk->sk_err	   = 0;
2101	newsk->sk_err_soft = 0;
2102	newsk->sk_priority = 0;
2103	newsk->sk_incoming_cpu = raw_smp_processor_id();
2104	if (likely(newsk->sk_net_refcnt))
2105		sock_inuse_add(sock_net(newsk), 1);
2106
2107	/* Before updating sk_refcnt, we must commit prior changes to memory
2108	 * (Documentation/RCU/rculist_nulls.rst for details)
2109	 */
2110	smp_wmb();
2111	refcount_set(&newsk->sk_refcnt, 2);
2112
2113	/* Increment the counter in the same struct proto as the master
2114	 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2115	 * is the same as sk->sk_prot->socks, as this field was copied
2116	 * with memcpy).
2117	 *
2118	 * This _changes_ the previous behaviour, where
2119	 * tcp_create_openreq_child always was incrementing the
2120	 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2121	 * to be taken into account in all callers. -acme
2122	 */
2123	sk_refcnt_debug_inc(newsk);
2124	sk_set_socket(newsk, NULL);
2125	sk_tx_queue_clear(newsk);
2126	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2127
2128	if (newsk->sk_prot->sockets_allocated)
2129		sk_sockets_allocated_inc(newsk);
2130
2131	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2132		net_enable_timestamp();
2133out:
2134	return newsk;
2135}
2136EXPORT_SYMBOL_GPL(sk_clone_lock);
2137
2138void sk_free_unlock_clone(struct sock *sk)
2139{
2140	/* It is still raw copy of parent, so invalidate
2141	 * destructor and make plain sk_free() */
2142	sk->sk_destruct = NULL;
2143	bh_unlock_sock(sk);
2144	sk_free(sk);
2145}
2146EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2147
2148void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2149{
2150	u32 max_segs = 1;
2151
2152	sk_dst_set(sk, dst);
2153	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2154	if (sk->sk_route_caps & NETIF_F_GSO)
2155		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2156	sk->sk_route_caps &= ~sk->sk_route_nocaps;
2157	if (sk_can_gso(sk)) {
2158		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2159			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2160		} else {
2161			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2162			sk->sk_gso_max_size = dst->dev->gso_max_size;
2163			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2164		}
2165	}
2166	sk->sk_gso_max_segs = max_segs;
2167}
2168EXPORT_SYMBOL_GPL(sk_setup_caps);
2169
2170/*
2171 *	Simple resource managers for sockets.
2172 */
2173
2174
2175/*
2176 * Write buffer destructor automatically called from kfree_skb.
2177 */
2178void sock_wfree(struct sk_buff *skb)
2179{
2180	struct sock *sk = skb->sk;
2181	unsigned int len = skb->truesize;
2182
2183	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2184		/*
2185		 * Keep a reference on sk_wmem_alloc, this will be released
2186		 * after sk_write_space() call
2187		 */
2188		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2189		sk->sk_write_space(sk);
2190		len = 1;
2191	}
2192	/*
2193	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2194	 * could not do because of in-flight packets
2195	 */
2196	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2197		__sk_free(sk);
2198}
2199EXPORT_SYMBOL(sock_wfree);
2200
2201/* This variant of sock_wfree() is used by TCP,
2202 * since it sets SOCK_USE_WRITE_QUEUE.
2203 */
2204void __sock_wfree(struct sk_buff *skb)
2205{
2206	struct sock *sk = skb->sk;
2207
2208	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2209		__sk_free(sk);
2210}
2211
2212void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2213{
2214	skb_orphan(skb);
2215	skb->sk = sk;
2216#ifdef CONFIG_INET
2217	if (unlikely(!sk_fullsock(sk))) {
2218		skb->destructor = sock_edemux;
2219		sock_hold(sk);
2220		return;
2221	}
2222#endif
2223	skb->destructor = sock_wfree;
2224	skb_set_hash_from_sk(skb, sk);
2225	/*
2226	 * We used to take a refcount on sk, but following operation
2227	 * is enough to guarantee sk_free() wont free this sock until
2228	 * all in-flight packets are completed
2229	 */
2230	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2231}
2232EXPORT_SYMBOL(skb_set_owner_w);
2233
2234static bool can_skb_orphan_partial(const struct sk_buff *skb)
2235{
2236#ifdef CONFIG_TLS_DEVICE
2237	/* Drivers depend on in-order delivery for crypto offload,
2238	 * partial orphan breaks out-of-order-OK logic.
2239	 */
2240	if (skb->decrypted)
2241		return false;
2242#endif
2243	return (skb->destructor == sock_wfree ||
2244		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2245}
2246
2247/* This helper is used by netem, as it can hold packets in its
2248 * delay queue. We want to allow the owner socket to send more
2249 * packets, as if they were already TX completed by a typical driver.
2250 * But we also want to keep skb->sk set because some packet schedulers
2251 * rely on it (sch_fq for example).
2252 */
2253void skb_orphan_partial(struct sk_buff *skb)
2254{
2255	if (skb_is_tcp_pure_ack(skb))
2256		return;
2257
2258	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2259		return;
2260
2261	skb_orphan(skb);
 
 
 
 
 
 
2262}
2263EXPORT_SYMBOL(skb_orphan_partial);
2264
2265/*
2266 * Read buffer destructor automatically called from kfree_skb.
2267 */
2268void sock_rfree(struct sk_buff *skb)
2269{
2270	struct sock *sk = skb->sk;
2271	unsigned int len = skb->truesize;
2272
2273	atomic_sub(len, &sk->sk_rmem_alloc);
2274	sk_mem_uncharge(sk, len);
2275}
2276EXPORT_SYMBOL(sock_rfree);
2277
2278/*
2279 * Buffer destructor for skbs that are not used directly in read or write
2280 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2281 */
2282void sock_efree(struct sk_buff *skb)
2283{
2284	sock_put(skb->sk);
2285}
2286EXPORT_SYMBOL(sock_efree);
2287
2288/* Buffer destructor for prefetch/receive path where reference count may
2289 * not be held, e.g. for listen sockets.
2290 */
2291#ifdef CONFIG_INET
2292void sock_pfree(struct sk_buff *skb)
2293{
2294	if (sk_is_refcounted(skb->sk))
2295		sock_gen_put(skb->sk);
2296}
2297EXPORT_SYMBOL(sock_pfree);
2298#endif /* CONFIG_INET */
2299
2300kuid_t sock_i_uid(struct sock *sk)
2301{
2302	kuid_t uid;
2303
2304	read_lock_bh(&sk->sk_callback_lock);
2305	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2306	read_unlock_bh(&sk->sk_callback_lock);
2307	return uid;
2308}
2309EXPORT_SYMBOL(sock_i_uid);
2310
2311unsigned long sock_i_ino(struct sock *sk)
2312{
2313	unsigned long ino;
2314
2315	read_lock_bh(&sk->sk_callback_lock);
2316	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2317	read_unlock_bh(&sk->sk_callback_lock);
2318	return ino;
2319}
2320EXPORT_SYMBOL(sock_i_ino);
2321
2322/*
2323 * Allocate a skb from the socket's send buffer.
2324 */
2325struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2326			     gfp_t priority)
2327{
2328	if (force ||
2329	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2330		struct sk_buff *skb = alloc_skb(size, priority);
2331
2332		if (skb) {
2333			skb_set_owner_w(skb, sk);
2334			return skb;
2335		}
2336	}
2337	return NULL;
2338}
2339EXPORT_SYMBOL(sock_wmalloc);
2340
2341static void sock_ofree(struct sk_buff *skb)
2342{
2343	struct sock *sk = skb->sk;
2344
2345	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2346}
2347
2348struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2349			     gfp_t priority)
2350{
2351	struct sk_buff *skb;
2352
2353	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2354	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2355	    sysctl_optmem_max)
2356		return NULL;
2357
2358	skb = alloc_skb(size, priority);
2359	if (!skb)
2360		return NULL;
2361
2362	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2363	skb->sk = sk;
2364	skb->destructor = sock_ofree;
2365	return skb;
2366}
2367
2368/*
2369 * Allocate a memory block from the socket's option memory buffer.
2370 */
2371void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2372{
2373	if ((unsigned int)size <= sysctl_optmem_max &&
2374	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2375		void *mem;
2376		/* First do the add, to avoid the race if kmalloc
2377		 * might sleep.
2378		 */
2379		atomic_add(size, &sk->sk_omem_alloc);
2380		mem = kmalloc(size, priority);
2381		if (mem)
2382			return mem;
2383		atomic_sub(size, &sk->sk_omem_alloc);
2384	}
2385	return NULL;
2386}
2387EXPORT_SYMBOL(sock_kmalloc);
2388
2389/* Free an option memory block. Note, we actually want the inline
2390 * here as this allows gcc to detect the nullify and fold away the
2391 * condition entirely.
2392 */
2393static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2394				  const bool nullify)
2395{
2396	if (WARN_ON_ONCE(!mem))
2397		return;
2398	if (nullify)
2399		kfree_sensitive(mem);
2400	else
2401		kfree(mem);
2402	atomic_sub(size, &sk->sk_omem_alloc);
2403}
2404
2405void sock_kfree_s(struct sock *sk, void *mem, int size)
2406{
2407	__sock_kfree_s(sk, mem, size, false);
2408}
2409EXPORT_SYMBOL(sock_kfree_s);
2410
2411void sock_kzfree_s(struct sock *sk, void *mem, int size)
2412{
2413	__sock_kfree_s(sk, mem, size, true);
2414}
2415EXPORT_SYMBOL(sock_kzfree_s);
2416
2417/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2418   I think, these locks should be removed for datagram sockets.
2419 */
2420static long sock_wait_for_wmem(struct sock *sk, long timeo)
2421{
2422	DEFINE_WAIT(wait);
2423
2424	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2425	for (;;) {
2426		if (!timeo)
2427			break;
2428		if (signal_pending(current))
2429			break;
2430		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2431		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2432		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2433			break;
2434		if (sk->sk_shutdown & SEND_SHUTDOWN)
2435			break;
2436		if (sk->sk_err)
2437			break;
2438		timeo = schedule_timeout(timeo);
2439	}
2440	finish_wait(sk_sleep(sk), &wait);
2441	return timeo;
2442}
2443
2444
2445/*
2446 *	Generic send/receive buffer handlers
2447 */
2448
2449struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2450				     unsigned long data_len, int noblock,
2451				     int *errcode, int max_page_order)
2452{
2453	struct sk_buff *skb;
2454	long timeo;
2455	int err;
2456
2457	timeo = sock_sndtimeo(sk, noblock);
2458	for (;;) {
2459		err = sock_error(sk);
2460		if (err != 0)
2461			goto failure;
2462
2463		err = -EPIPE;
2464		if (sk->sk_shutdown & SEND_SHUTDOWN)
2465			goto failure;
2466
2467		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2468			break;
2469
2470		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2471		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2472		err = -EAGAIN;
2473		if (!timeo)
2474			goto failure;
2475		if (signal_pending(current))
2476			goto interrupted;
2477		timeo = sock_wait_for_wmem(sk, timeo);
2478	}
2479	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2480				   errcode, sk->sk_allocation);
2481	if (skb)
2482		skb_set_owner_w(skb, sk);
2483	return skb;
2484
2485interrupted:
2486	err = sock_intr_errno(timeo);
2487failure:
2488	*errcode = err;
2489	return NULL;
2490}
2491EXPORT_SYMBOL(sock_alloc_send_pskb);
2492
2493struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2494				    int noblock, int *errcode)
2495{
2496	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2497}
2498EXPORT_SYMBOL(sock_alloc_send_skb);
2499
2500int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2501		     struct sockcm_cookie *sockc)
2502{
2503	u32 tsflags;
2504
2505	switch (cmsg->cmsg_type) {
2506	case SO_MARK:
2507		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2508			return -EPERM;
2509		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2510			return -EINVAL;
2511		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2512		break;
2513	case SO_TIMESTAMPING_OLD:
2514		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2515			return -EINVAL;
2516
2517		tsflags = *(u32 *)CMSG_DATA(cmsg);
2518		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2519			return -EINVAL;
2520
2521		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2522		sockc->tsflags |= tsflags;
2523		break;
2524	case SCM_TXTIME:
2525		if (!sock_flag(sk, SOCK_TXTIME))
2526			return -EINVAL;
2527		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2528			return -EINVAL;
2529		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2530		break;
2531	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2532	case SCM_RIGHTS:
2533	case SCM_CREDENTIALS:
2534		break;
2535	default:
2536		return -EINVAL;
2537	}
2538	return 0;
2539}
2540EXPORT_SYMBOL(__sock_cmsg_send);
2541
2542int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2543		   struct sockcm_cookie *sockc)
2544{
2545	struct cmsghdr *cmsg;
2546	int ret;
2547
2548	for_each_cmsghdr(cmsg, msg) {
2549		if (!CMSG_OK(msg, cmsg))
2550			return -EINVAL;
2551		if (cmsg->cmsg_level != SOL_SOCKET)
2552			continue;
2553		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2554		if (ret)
2555			return ret;
2556	}
2557	return 0;
2558}
2559EXPORT_SYMBOL(sock_cmsg_send);
2560
2561static void sk_enter_memory_pressure(struct sock *sk)
2562{
2563	if (!sk->sk_prot->enter_memory_pressure)
2564		return;
2565
2566	sk->sk_prot->enter_memory_pressure(sk);
2567}
2568
2569static void sk_leave_memory_pressure(struct sock *sk)
2570{
2571	if (sk->sk_prot->leave_memory_pressure) {
2572		sk->sk_prot->leave_memory_pressure(sk);
2573	} else {
2574		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2575
2576		if (memory_pressure && READ_ONCE(*memory_pressure))
2577			WRITE_ONCE(*memory_pressure, 0);
2578	}
2579}
2580
 
2581#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2582DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2583
2584/**
2585 * skb_page_frag_refill - check that a page_frag contains enough room
2586 * @sz: minimum size of the fragment we want to get
2587 * @pfrag: pointer to page_frag
2588 * @gfp: priority for memory allocation
2589 *
2590 * Note: While this allocator tries to use high order pages, there is
2591 * no guarantee that allocations succeed. Therefore, @sz MUST be
2592 * less or equal than PAGE_SIZE.
2593 */
2594bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2595{
2596	if (pfrag->page) {
2597		if (page_ref_count(pfrag->page) == 1) {
2598			pfrag->offset = 0;
2599			return true;
2600		}
2601		if (pfrag->offset + sz <= pfrag->size)
2602			return true;
2603		put_page(pfrag->page);
2604	}
2605
2606	pfrag->offset = 0;
2607	if (SKB_FRAG_PAGE_ORDER &&
2608	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2609		/* Avoid direct reclaim but allow kswapd to wake */
2610		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2611					  __GFP_COMP | __GFP_NOWARN |
2612					  __GFP_NORETRY,
2613					  SKB_FRAG_PAGE_ORDER);
2614		if (likely(pfrag->page)) {
2615			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2616			return true;
2617		}
2618	}
2619	pfrag->page = alloc_page(gfp);
2620	if (likely(pfrag->page)) {
2621		pfrag->size = PAGE_SIZE;
2622		return true;
2623	}
2624	return false;
2625}
2626EXPORT_SYMBOL(skb_page_frag_refill);
2627
2628bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2629{
2630	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2631		return true;
2632
2633	sk_enter_memory_pressure(sk);
2634	sk_stream_moderate_sndbuf(sk);
2635	return false;
2636}
2637EXPORT_SYMBOL(sk_page_frag_refill);
2638
2639void __lock_sock(struct sock *sk)
2640	__releases(&sk->sk_lock.slock)
2641	__acquires(&sk->sk_lock.slock)
2642{
2643	DEFINE_WAIT(wait);
2644
2645	for (;;) {
2646		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2647					TASK_UNINTERRUPTIBLE);
2648		spin_unlock_bh(&sk->sk_lock.slock);
2649		schedule();
2650		spin_lock_bh(&sk->sk_lock.slock);
2651		if (!sock_owned_by_user(sk))
2652			break;
2653	}
2654	finish_wait(&sk->sk_lock.wq, &wait);
2655}
2656
2657void __release_sock(struct sock *sk)
2658	__releases(&sk->sk_lock.slock)
2659	__acquires(&sk->sk_lock.slock)
2660{
2661	struct sk_buff *skb, *next;
2662
2663	while ((skb = sk->sk_backlog.head) != NULL) {
2664		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2665
2666		spin_unlock_bh(&sk->sk_lock.slock);
2667
2668		do {
2669			next = skb->next;
2670			prefetch(next);
2671			WARN_ON_ONCE(skb_dst_is_noref(skb));
2672			skb_mark_not_on_list(skb);
2673			sk_backlog_rcv(sk, skb);
2674
2675			cond_resched();
2676
2677			skb = next;
2678		} while (skb != NULL);
2679
2680		spin_lock_bh(&sk->sk_lock.slock);
2681	}
2682
2683	/*
2684	 * Doing the zeroing here guarantee we can not loop forever
2685	 * while a wild producer attempts to flood us.
2686	 */
2687	sk->sk_backlog.len = 0;
2688}
2689
2690void __sk_flush_backlog(struct sock *sk)
2691{
2692	spin_lock_bh(&sk->sk_lock.slock);
2693	__release_sock(sk);
2694	spin_unlock_bh(&sk->sk_lock.slock);
2695}
2696
2697/**
2698 * sk_wait_data - wait for data to arrive at sk_receive_queue
2699 * @sk:    sock to wait on
2700 * @timeo: for how long
2701 * @skb:   last skb seen on sk_receive_queue
2702 *
2703 * Now socket state including sk->sk_err is changed only under lock,
2704 * hence we may omit checks after joining wait queue.
2705 * We check receive queue before schedule() only as optimization;
2706 * it is very likely that release_sock() added new data.
2707 */
2708int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2709{
2710	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2711	int rc;
2712
2713	add_wait_queue(sk_sleep(sk), &wait);
2714	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2715	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2716	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2717	remove_wait_queue(sk_sleep(sk), &wait);
2718	return rc;
2719}
2720EXPORT_SYMBOL(sk_wait_data);
2721
2722/**
2723 *	__sk_mem_raise_allocated - increase memory_allocated
2724 *	@sk: socket
2725 *	@size: memory size to allocate
2726 *	@amt: pages to allocate
2727 *	@kind: allocation type
2728 *
2729 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2730 */
2731int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2732{
2733	struct proto *prot = sk->sk_prot;
2734	long allocated = sk_memory_allocated_add(sk, amt);
2735	bool charged = true;
2736
2737	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2738	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2739		goto suppress_allocation;
2740
2741	/* Under limit. */
2742	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2743		sk_leave_memory_pressure(sk);
2744		return 1;
2745	}
2746
2747	/* Under pressure. */
2748	if (allocated > sk_prot_mem_limits(sk, 1))
2749		sk_enter_memory_pressure(sk);
2750
2751	/* Over hard limit. */
2752	if (allocated > sk_prot_mem_limits(sk, 2))
2753		goto suppress_allocation;
2754
2755	/* guarantee minimum buffer size under pressure */
2756	if (kind == SK_MEM_RECV) {
2757		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2758			return 1;
2759
2760	} else { /* SK_MEM_SEND */
2761		int wmem0 = sk_get_wmem0(sk, prot);
2762
2763		if (sk->sk_type == SOCK_STREAM) {
2764			if (sk->sk_wmem_queued < wmem0)
2765				return 1;
2766		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2767				return 1;
2768		}
2769	}
2770
2771	if (sk_has_memory_pressure(sk)) {
2772		u64 alloc;
2773
2774		if (!sk_under_memory_pressure(sk))
2775			return 1;
2776		alloc = sk_sockets_allocated_read_positive(sk);
2777		if (sk_prot_mem_limits(sk, 2) > alloc *
2778		    sk_mem_pages(sk->sk_wmem_queued +
2779				 atomic_read(&sk->sk_rmem_alloc) +
2780				 sk->sk_forward_alloc))
2781			return 1;
2782	}
2783
2784suppress_allocation:
2785
2786	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2787		sk_stream_moderate_sndbuf(sk);
2788
2789		/* Fail only if socket is _under_ its sndbuf.
2790		 * In this case we cannot block, so that we have to fail.
2791		 */
2792		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2793			return 1;
2794	}
2795
2796	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2797		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2798
2799	sk_memory_allocated_sub(sk, amt);
2800
2801	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2802		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2803
2804	return 0;
2805}
2806EXPORT_SYMBOL(__sk_mem_raise_allocated);
2807
2808/**
2809 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2810 *	@sk: socket
2811 *	@size: memory size to allocate
2812 *	@kind: allocation type
2813 *
2814 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2815 *	rmem allocation. This function assumes that protocols which have
2816 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2817 */
2818int __sk_mem_schedule(struct sock *sk, int size, int kind)
2819{
2820	int ret, amt = sk_mem_pages(size);
2821
2822	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2823	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2824	if (!ret)
2825		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2826	return ret;
2827}
2828EXPORT_SYMBOL(__sk_mem_schedule);
2829
2830/**
2831 *	__sk_mem_reduce_allocated - reclaim memory_allocated
2832 *	@sk: socket
2833 *	@amount: number of quanta
2834 *
2835 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2836 */
2837void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2838{
2839	sk_memory_allocated_sub(sk, amount);
2840
2841	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2842		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2843
2844	if (sk_under_memory_pressure(sk) &&
2845	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2846		sk_leave_memory_pressure(sk);
2847}
2848EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2849
2850/**
2851 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2852 *	@sk: socket
2853 *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2854 */
2855void __sk_mem_reclaim(struct sock *sk, int amount)
2856{
2857	amount >>= SK_MEM_QUANTUM_SHIFT;
2858	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2859	__sk_mem_reduce_allocated(sk, amount);
2860}
2861EXPORT_SYMBOL(__sk_mem_reclaim);
2862
2863int sk_set_peek_off(struct sock *sk, int val)
2864{
2865	sk->sk_peek_off = val;
2866	return 0;
2867}
2868EXPORT_SYMBOL_GPL(sk_set_peek_off);
2869
2870/*
2871 * Set of default routines for initialising struct proto_ops when
2872 * the protocol does not support a particular function. In certain
2873 * cases where it makes no sense for a protocol to have a "do nothing"
2874 * function, some default processing is provided.
2875 */
2876
2877int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2878{
2879	return -EOPNOTSUPP;
2880}
2881EXPORT_SYMBOL(sock_no_bind);
2882
2883int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2884		    int len, int flags)
2885{
2886	return -EOPNOTSUPP;
2887}
2888EXPORT_SYMBOL(sock_no_connect);
2889
2890int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2891{
2892	return -EOPNOTSUPP;
2893}
2894EXPORT_SYMBOL(sock_no_socketpair);
2895
2896int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2897		   bool kern)
2898{
2899	return -EOPNOTSUPP;
2900}
2901EXPORT_SYMBOL(sock_no_accept);
2902
2903int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2904		    int peer)
2905{
2906	return -EOPNOTSUPP;
2907}
2908EXPORT_SYMBOL(sock_no_getname);
2909
2910int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2911{
2912	return -EOPNOTSUPP;
2913}
2914EXPORT_SYMBOL(sock_no_ioctl);
2915
2916int sock_no_listen(struct socket *sock, int backlog)
2917{
2918	return -EOPNOTSUPP;
2919}
2920EXPORT_SYMBOL(sock_no_listen);
2921
2922int sock_no_shutdown(struct socket *sock, int how)
2923{
2924	return -EOPNOTSUPP;
2925}
2926EXPORT_SYMBOL(sock_no_shutdown);
2927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2928int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2929{
2930	return -EOPNOTSUPP;
2931}
2932EXPORT_SYMBOL(sock_no_sendmsg);
2933
2934int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2935{
2936	return -EOPNOTSUPP;
2937}
2938EXPORT_SYMBOL(sock_no_sendmsg_locked);
2939
2940int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2941		    int flags)
2942{
2943	return -EOPNOTSUPP;
2944}
2945EXPORT_SYMBOL(sock_no_recvmsg);
2946
2947int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2948{
2949	/* Mirror missing mmap method error code */
2950	return -ENODEV;
2951}
2952EXPORT_SYMBOL(sock_no_mmap);
2953
2954/*
2955 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2956 * various sock-based usage counts.
2957 */
2958void __receive_sock(struct file *file)
2959{
2960	struct socket *sock;
2961
2962	sock = sock_from_file(file);
2963	if (sock) {
2964		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2965		sock_update_classid(&sock->sk->sk_cgrp_data);
2966	}
2967}
2968
2969ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2970{
2971	ssize_t res;
2972	struct msghdr msg = {.msg_flags = flags};
2973	struct kvec iov;
2974	char *kaddr = kmap(page);
2975	iov.iov_base = kaddr + offset;
2976	iov.iov_len = size;
2977	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2978	kunmap(page);
2979	return res;
2980}
2981EXPORT_SYMBOL(sock_no_sendpage);
2982
2983ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2984				int offset, size_t size, int flags)
2985{
2986	ssize_t res;
2987	struct msghdr msg = {.msg_flags = flags};
2988	struct kvec iov;
2989	char *kaddr = kmap(page);
2990
2991	iov.iov_base = kaddr + offset;
2992	iov.iov_len = size;
2993	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2994	kunmap(page);
2995	return res;
2996}
2997EXPORT_SYMBOL(sock_no_sendpage_locked);
2998
2999/*
3000 *	Default Socket Callbacks
3001 */
3002
3003static void sock_def_wakeup(struct sock *sk)
3004{
3005	struct socket_wq *wq;
3006
3007	rcu_read_lock();
3008	wq = rcu_dereference(sk->sk_wq);
3009	if (skwq_has_sleeper(wq))
3010		wake_up_interruptible_all(&wq->wait);
3011	rcu_read_unlock();
3012}
3013
3014static void sock_def_error_report(struct sock *sk)
3015{
3016	struct socket_wq *wq;
3017
3018	rcu_read_lock();
3019	wq = rcu_dereference(sk->sk_wq);
3020	if (skwq_has_sleeper(wq))
3021		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3022	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3023	rcu_read_unlock();
3024}
3025
3026void sock_def_readable(struct sock *sk)
3027{
3028	struct socket_wq *wq;
3029
3030	rcu_read_lock();
3031	wq = rcu_dereference(sk->sk_wq);
3032	if (skwq_has_sleeper(wq))
3033		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3034						EPOLLRDNORM | EPOLLRDBAND);
3035	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3036	rcu_read_unlock();
3037}
3038
3039static void sock_def_write_space(struct sock *sk)
3040{
3041	struct socket_wq *wq;
3042
3043	rcu_read_lock();
3044
3045	/* Do not wake up a writer until he can make "significant"
3046	 * progress.  --DaveM
3047	 */
3048	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
3049		wq = rcu_dereference(sk->sk_wq);
3050		if (skwq_has_sleeper(wq))
3051			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3052						EPOLLWRNORM | EPOLLWRBAND);
3053
3054		/* Should agree with poll, otherwise some programs break */
3055		if (sock_writeable(sk))
3056			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3057	}
3058
3059	rcu_read_unlock();
3060}
3061
3062static void sock_def_destruct(struct sock *sk)
3063{
3064}
3065
3066void sk_send_sigurg(struct sock *sk)
3067{
3068	if (sk->sk_socket && sk->sk_socket->file)
3069		if (send_sigurg(&sk->sk_socket->file->f_owner))
3070			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3071}
3072EXPORT_SYMBOL(sk_send_sigurg);
3073
3074void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3075		    unsigned long expires)
3076{
3077	if (!mod_timer(timer, expires))
3078		sock_hold(sk);
3079}
3080EXPORT_SYMBOL(sk_reset_timer);
3081
3082void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3083{
3084	if (del_timer(timer))
3085		__sock_put(sk);
3086}
3087EXPORT_SYMBOL(sk_stop_timer);
3088
3089void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3090{
3091	if (del_timer_sync(timer))
3092		__sock_put(sk);
3093}
3094EXPORT_SYMBOL(sk_stop_timer_sync);
3095
3096void sock_init_data(struct socket *sock, struct sock *sk)
3097{
3098	sk_init_common(sk);
3099	sk->sk_send_head	=	NULL;
3100
3101	timer_setup(&sk->sk_timer, NULL, 0);
3102
3103	sk->sk_allocation	=	GFP_KERNEL;
3104	sk->sk_rcvbuf		=	sysctl_rmem_default;
3105	sk->sk_sndbuf		=	sysctl_wmem_default;
3106	sk->sk_state		=	TCP_CLOSE;
3107	sk_set_socket(sk, sock);
3108
3109	sock_set_flag(sk, SOCK_ZAPPED);
3110
3111	if (sock) {
3112		sk->sk_type	=	sock->type;
3113		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3114		sock->sk	=	sk;
3115		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
3116	} else {
3117		RCU_INIT_POINTER(sk->sk_wq, NULL);
3118		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
3119	}
3120
3121	rwlock_init(&sk->sk_callback_lock);
3122	if (sk->sk_kern_sock)
3123		lockdep_set_class_and_name(
3124			&sk->sk_callback_lock,
3125			af_kern_callback_keys + sk->sk_family,
3126			af_family_kern_clock_key_strings[sk->sk_family]);
3127	else
3128		lockdep_set_class_and_name(
3129			&sk->sk_callback_lock,
3130			af_callback_keys + sk->sk_family,
3131			af_family_clock_key_strings[sk->sk_family]);
3132
3133	sk->sk_state_change	=	sock_def_wakeup;
3134	sk->sk_data_ready	=	sock_def_readable;
3135	sk->sk_write_space	=	sock_def_write_space;
3136	sk->sk_error_report	=	sock_def_error_report;
3137	sk->sk_destruct		=	sock_def_destruct;
3138
3139	sk->sk_frag.page	=	NULL;
3140	sk->sk_frag.offset	=	0;
3141	sk->sk_peek_off		=	-1;
3142
3143	sk->sk_peer_pid 	=	NULL;
3144	sk->sk_peer_cred	=	NULL;
3145	spin_lock_init(&sk->sk_peer_lock);
3146
3147	sk->sk_write_pending	=	0;
3148	sk->sk_rcvlowat		=	1;
3149	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3150	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3151
3152	sk->sk_stamp = SK_DEFAULT_STAMP;
3153#if BITS_PER_LONG==32
3154	seqlock_init(&sk->sk_stamp_seq);
3155#endif
3156	atomic_set(&sk->sk_zckey, 0);
3157
3158#ifdef CONFIG_NET_RX_BUSY_POLL
3159	sk->sk_napi_id		=	0;
3160	sk->sk_ll_usec		=	sysctl_net_busy_read;
3161#endif
3162
3163	sk->sk_max_pacing_rate = ~0UL;
3164	sk->sk_pacing_rate = ~0UL;
3165	WRITE_ONCE(sk->sk_pacing_shift, 10);
3166	sk->sk_incoming_cpu = -1;
3167
3168	sk_rx_queue_clear(sk);
3169	/*
3170	 * Before updating sk_refcnt, we must commit prior changes to memory
3171	 * (Documentation/RCU/rculist_nulls.rst for details)
3172	 */
3173	smp_wmb();
3174	refcount_set(&sk->sk_refcnt, 1);
3175	atomic_set(&sk->sk_drops, 0);
3176}
3177EXPORT_SYMBOL(sock_init_data);
3178
3179void lock_sock_nested(struct sock *sk, int subclass)
3180{
3181	might_sleep();
3182	spin_lock_bh(&sk->sk_lock.slock);
3183	if (sk->sk_lock.owned)
3184		__lock_sock(sk);
3185	sk->sk_lock.owned = 1;
3186	spin_unlock(&sk->sk_lock.slock);
3187	/*
3188	 * The sk_lock has mutex_lock() semantics here:
3189	 */
3190	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3191	local_bh_enable();
3192}
3193EXPORT_SYMBOL(lock_sock_nested);
3194
3195void release_sock(struct sock *sk)
3196{
3197	spin_lock_bh(&sk->sk_lock.slock);
3198	if (sk->sk_backlog.tail)
3199		__release_sock(sk);
3200
3201	/* Warning : release_cb() might need to release sk ownership,
3202	 * ie call sock_release_ownership(sk) before us.
3203	 */
3204	if (sk->sk_prot->release_cb)
3205		sk->sk_prot->release_cb(sk);
3206
3207	sock_release_ownership(sk);
3208	if (waitqueue_active(&sk->sk_lock.wq))
3209		wake_up(&sk->sk_lock.wq);
3210	spin_unlock_bh(&sk->sk_lock.slock);
3211}
3212EXPORT_SYMBOL(release_sock);
3213
3214/**
3215 * lock_sock_fast - fast version of lock_sock
3216 * @sk: socket
3217 *
3218 * This version should be used for very small section, where process wont block
3219 * return false if fast path is taken:
3220 *
3221 *   sk_lock.slock locked, owned = 0, BH disabled
3222 *
3223 * return true if slow path is taken:
3224 *
3225 *   sk_lock.slock unlocked, owned = 1, BH enabled
3226 */
3227bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3228{
3229	might_sleep();
3230	spin_lock_bh(&sk->sk_lock.slock);
3231
3232	if (!sk->sk_lock.owned)
3233		/*
3234		 * Note : We must disable BH
3235		 */
3236		return false;
3237
3238	__lock_sock(sk);
3239	sk->sk_lock.owned = 1;
3240	spin_unlock(&sk->sk_lock.slock);
3241	/*
3242	 * The sk_lock has mutex_lock() semantics here:
3243	 */
3244	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3245	__acquire(&sk->sk_lock.slock);
3246	local_bh_enable();
3247	return true;
3248}
3249EXPORT_SYMBOL(lock_sock_fast);
3250
3251int sock_gettstamp(struct socket *sock, void __user *userstamp,
3252		   bool timeval, bool time32)
3253{
3254	struct sock *sk = sock->sk;
3255	struct timespec64 ts;
3256
3257	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3258	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3259	if (ts.tv_sec == -1)
3260		return -ENOENT;
3261	if (ts.tv_sec == 0) {
3262		ktime_t kt = ktime_get_real();
3263		sock_write_timestamp(sk, kt);
3264		ts = ktime_to_timespec64(kt);
3265	}
3266
3267	if (timeval)
3268		ts.tv_nsec /= 1000;
3269
3270#ifdef CONFIG_COMPAT_32BIT_TIME
3271	if (time32)
3272		return put_old_timespec32(&ts, userstamp);
3273#endif
3274#ifdef CONFIG_SPARC64
3275	/* beware of padding in sparc64 timeval */
3276	if (timeval && !in_compat_syscall()) {
3277		struct __kernel_old_timeval __user tv = {
3278			.tv_sec = ts.tv_sec,
3279			.tv_usec = ts.tv_nsec,
3280		};
3281		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3282			return -EFAULT;
3283		return 0;
3284	}
3285#endif
3286	return put_timespec64(&ts, userstamp);
3287}
3288EXPORT_SYMBOL(sock_gettstamp);
3289
3290void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3291{
3292	if (!sock_flag(sk, flag)) {
3293		unsigned long previous_flags = sk->sk_flags;
3294
3295		sock_set_flag(sk, flag);
3296		/*
3297		 * we just set one of the two flags which require net
3298		 * time stamping, but time stamping might have been on
3299		 * already because of the other one
3300		 */
3301		if (sock_needs_netstamp(sk) &&
3302		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3303			net_enable_timestamp();
3304	}
3305}
3306
3307int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3308		       int level, int type)
3309{
3310	struct sock_exterr_skb *serr;
3311	struct sk_buff *skb;
3312	int copied, err;
3313
3314	err = -EAGAIN;
3315	skb = sock_dequeue_err_skb(sk);
3316	if (skb == NULL)
3317		goto out;
3318
3319	copied = skb->len;
3320	if (copied > len) {
3321		msg->msg_flags |= MSG_TRUNC;
3322		copied = len;
3323	}
3324	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3325	if (err)
3326		goto out_free_skb;
3327
3328	sock_recv_timestamp(msg, sk, skb);
3329
3330	serr = SKB_EXT_ERR(skb);
3331	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3332
3333	msg->msg_flags |= MSG_ERRQUEUE;
3334	err = copied;
3335
3336out_free_skb:
3337	kfree_skb(skb);
3338out:
3339	return err;
3340}
3341EXPORT_SYMBOL(sock_recv_errqueue);
3342
3343/*
3344 *	Get a socket option on an socket.
3345 *
3346 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3347 *	asynchronous errors should be reported by getsockopt. We assume
3348 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3349 */
3350int sock_common_getsockopt(struct socket *sock, int level, int optname,
3351			   char __user *optval, int __user *optlen)
3352{
3353	struct sock *sk = sock->sk;
3354
3355	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3356}
3357EXPORT_SYMBOL(sock_common_getsockopt);
3358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3359int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3360			int flags)
3361{
3362	struct sock *sk = sock->sk;
3363	int addr_len = 0;
3364	int err;
3365
3366	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3367				   flags & ~MSG_DONTWAIT, &addr_len);
3368	if (err >= 0)
3369		msg->msg_namelen = addr_len;
3370	return err;
3371}
3372EXPORT_SYMBOL(sock_common_recvmsg);
3373
3374/*
3375 *	Set socket options on an inet socket.
3376 */
3377int sock_common_setsockopt(struct socket *sock, int level, int optname,
3378			   sockptr_t optval, unsigned int optlen)
3379{
3380	struct sock *sk = sock->sk;
3381
3382	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3383}
3384EXPORT_SYMBOL(sock_common_setsockopt);
3385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3386void sk_common_release(struct sock *sk)
3387{
3388	if (sk->sk_prot->destroy)
3389		sk->sk_prot->destroy(sk);
3390
3391	/*
3392	 * Observation: when sk_common_release is called, processes have
3393	 * no access to socket. But net still has.
3394	 * Step one, detach it from networking:
3395	 *
3396	 * A. Remove from hash tables.
3397	 */
3398
3399	sk->sk_prot->unhash(sk);
3400
3401	/*
3402	 * In this point socket cannot receive new packets, but it is possible
3403	 * that some packets are in flight because some CPU runs receiver and
3404	 * did hash table lookup before we unhashed socket. They will achieve
3405	 * receive queue and will be purged by socket destructor.
3406	 *
3407	 * Also we still have packets pending on receive queue and probably,
3408	 * our own packets waiting in device queues. sock_destroy will drain
3409	 * receive queue, but transmitted packets will delay socket destruction
3410	 * until the last reference will be released.
3411	 */
3412
3413	sock_orphan(sk);
3414
3415	xfrm_sk_free_policy(sk);
3416
3417	sk_refcnt_debug_release(sk);
3418
3419	sock_put(sk);
3420}
3421EXPORT_SYMBOL(sk_common_release);
3422
3423void sk_get_meminfo(const struct sock *sk, u32 *mem)
3424{
3425	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3426
3427	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3428	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3429	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3430	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3431	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3432	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3433	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3434	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3435	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3436}
3437
3438#ifdef CONFIG_PROC_FS
3439#define PROTO_INUSE_NR	64	/* should be enough for the first time */
3440struct prot_inuse {
3441	int val[PROTO_INUSE_NR];
3442};
3443
3444static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3445
3446void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3447{
3448	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3449}
3450EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3451
3452int sock_prot_inuse_get(struct net *net, struct proto *prot)
3453{
3454	int cpu, idx = prot->inuse_idx;
3455	int res = 0;
3456
3457	for_each_possible_cpu(cpu)
3458		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3459
3460	return res >= 0 ? res : 0;
3461}
3462EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3463
3464static void sock_inuse_add(struct net *net, int val)
3465{
3466	this_cpu_add(*net->core.sock_inuse, val);
3467}
3468
3469int sock_inuse_get(struct net *net)
3470{
3471	int cpu, res = 0;
3472
3473	for_each_possible_cpu(cpu)
3474		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3475
3476	return res;
3477}
3478
3479EXPORT_SYMBOL_GPL(sock_inuse_get);
3480
3481static int __net_init sock_inuse_init_net(struct net *net)
3482{
3483	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3484	if (net->core.prot_inuse == NULL)
3485		return -ENOMEM;
3486
3487	net->core.sock_inuse = alloc_percpu(int);
3488	if (net->core.sock_inuse == NULL)
3489		goto out;
3490
3491	return 0;
3492
3493out:
3494	free_percpu(net->core.prot_inuse);
3495	return -ENOMEM;
3496}
3497
3498static void __net_exit sock_inuse_exit_net(struct net *net)
3499{
3500	free_percpu(net->core.prot_inuse);
3501	free_percpu(net->core.sock_inuse);
3502}
3503
3504static struct pernet_operations net_inuse_ops = {
3505	.init = sock_inuse_init_net,
3506	.exit = sock_inuse_exit_net,
3507};
3508
3509static __init int net_inuse_init(void)
3510{
3511	if (register_pernet_subsys(&net_inuse_ops))
3512		panic("Cannot initialize net inuse counters");
3513
3514	return 0;
3515}
3516
3517core_initcall(net_inuse_init);
3518
3519static int assign_proto_idx(struct proto *prot)
3520{
3521	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3522
3523	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3524		pr_err("PROTO_INUSE_NR exhausted\n");
3525		return -ENOSPC;
3526	}
3527
3528	set_bit(prot->inuse_idx, proto_inuse_idx);
3529	return 0;
3530}
3531
3532static void release_proto_idx(struct proto *prot)
3533{
3534	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3535		clear_bit(prot->inuse_idx, proto_inuse_idx);
3536}
3537#else
3538static inline int assign_proto_idx(struct proto *prot)
3539{
3540	return 0;
3541}
3542
3543static inline void release_proto_idx(struct proto *prot)
3544{
3545}
3546
3547static void sock_inuse_add(struct net *net, int val)
3548{
3549}
3550#endif
3551
3552static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3553{
3554	if (!twsk_prot)
3555		return;
3556	kfree(twsk_prot->twsk_slab_name);
3557	twsk_prot->twsk_slab_name = NULL;
3558	kmem_cache_destroy(twsk_prot->twsk_slab);
3559	twsk_prot->twsk_slab = NULL;
3560}
3561
3562static int tw_prot_init(const struct proto *prot)
3563{
3564	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3565
3566	if (!twsk_prot)
3567		return 0;
3568
3569	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3570					      prot->name);
3571	if (!twsk_prot->twsk_slab_name)
3572		return -ENOMEM;
3573
3574	twsk_prot->twsk_slab =
3575		kmem_cache_create(twsk_prot->twsk_slab_name,
3576				  twsk_prot->twsk_obj_size, 0,
3577				  SLAB_ACCOUNT | prot->slab_flags,
3578				  NULL);
3579	if (!twsk_prot->twsk_slab) {
3580		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3581			prot->name);
3582		return -ENOMEM;
3583	}
3584
3585	return 0;
3586}
3587
3588static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3589{
3590	if (!rsk_prot)
3591		return;
3592	kfree(rsk_prot->slab_name);
3593	rsk_prot->slab_name = NULL;
3594	kmem_cache_destroy(rsk_prot->slab);
3595	rsk_prot->slab = NULL;
3596}
3597
3598static int req_prot_init(const struct proto *prot)
3599{
3600	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3601
3602	if (!rsk_prot)
3603		return 0;
3604
3605	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3606					prot->name);
3607	if (!rsk_prot->slab_name)
3608		return -ENOMEM;
3609
3610	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3611					   rsk_prot->obj_size, 0,
3612					   SLAB_ACCOUNT | prot->slab_flags,
3613					   NULL);
3614
3615	if (!rsk_prot->slab) {
3616		pr_crit("%s: Can't create request sock SLAB cache!\n",
3617			prot->name);
3618		return -ENOMEM;
3619	}
3620	return 0;
3621}
3622
3623int proto_register(struct proto *prot, int alloc_slab)
3624{
3625	int ret = -ENOBUFS;
3626
3627	if (alloc_slab) {
3628		prot->slab = kmem_cache_create_usercopy(prot->name,
3629					prot->obj_size, 0,
3630					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3631					prot->slab_flags,
3632					prot->useroffset, prot->usersize,
3633					NULL);
3634
3635		if (prot->slab == NULL) {
3636			pr_crit("%s: Can't create sock SLAB cache!\n",
3637				prot->name);
3638			goto out;
3639		}
3640
3641		if (req_prot_init(prot))
3642			goto out_free_request_sock_slab;
3643
3644		if (tw_prot_init(prot))
3645			goto out_free_timewait_sock_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3646	}
3647
3648	mutex_lock(&proto_list_mutex);
3649	ret = assign_proto_idx(prot);
3650	if (ret) {
3651		mutex_unlock(&proto_list_mutex);
3652		goto out_free_timewait_sock_slab;
3653	}
3654	list_add(&prot->node, &proto_list);
3655	mutex_unlock(&proto_list_mutex);
3656	return ret;
3657
3658out_free_timewait_sock_slab:
3659	if (alloc_slab)
3660		tw_prot_cleanup(prot->twsk_prot);
3661out_free_request_sock_slab:
3662	if (alloc_slab) {
3663		req_prot_cleanup(prot->rsk_prot);
3664
3665		kmem_cache_destroy(prot->slab);
3666		prot->slab = NULL;
3667	}
3668out:
3669	return ret;
3670}
3671EXPORT_SYMBOL(proto_register);
3672
3673void proto_unregister(struct proto *prot)
3674{
3675	mutex_lock(&proto_list_mutex);
3676	release_proto_idx(prot);
3677	list_del(&prot->node);
3678	mutex_unlock(&proto_list_mutex);
3679
3680	kmem_cache_destroy(prot->slab);
3681	prot->slab = NULL;
3682
3683	req_prot_cleanup(prot->rsk_prot);
3684	tw_prot_cleanup(prot->twsk_prot);
 
 
 
 
 
3685}
3686EXPORT_SYMBOL(proto_unregister);
3687
3688int sock_load_diag_module(int family, int protocol)
3689{
3690	if (!protocol) {
3691		if (!sock_is_registered(family))
3692			return -ENOENT;
3693
3694		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3695				      NETLINK_SOCK_DIAG, family);
3696	}
3697
3698#ifdef CONFIG_INET
3699	if (family == AF_INET &&
3700	    protocol != IPPROTO_RAW &&
3701	    protocol < MAX_INET_PROTOS &&
3702	    !rcu_access_pointer(inet_protos[protocol]))
3703		return -ENOENT;
3704#endif
3705
3706	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3707			      NETLINK_SOCK_DIAG, family, protocol);
3708}
3709EXPORT_SYMBOL(sock_load_diag_module);
3710
3711#ifdef CONFIG_PROC_FS
3712static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3713	__acquires(proto_list_mutex)
3714{
3715	mutex_lock(&proto_list_mutex);
3716	return seq_list_start_head(&proto_list, *pos);
3717}
3718
3719static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3720{
3721	return seq_list_next(v, &proto_list, pos);
3722}
3723
3724static void proto_seq_stop(struct seq_file *seq, void *v)
3725	__releases(proto_list_mutex)
3726{
3727	mutex_unlock(&proto_list_mutex);
3728}
3729
3730static char proto_method_implemented(const void *method)
3731{
3732	return method == NULL ? 'n' : 'y';
3733}
3734static long sock_prot_memory_allocated(struct proto *proto)
3735{
3736	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3737}
3738
3739static const char *sock_prot_memory_pressure(struct proto *proto)
3740{
3741	return proto->memory_pressure != NULL ?
3742	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3743}
3744
3745static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3746{
3747
3748	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3749			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3750		   proto->name,
3751		   proto->obj_size,
3752		   sock_prot_inuse_get(seq_file_net(seq), proto),
3753		   sock_prot_memory_allocated(proto),
3754		   sock_prot_memory_pressure(proto),
3755		   proto->max_header,
3756		   proto->slab == NULL ? "no" : "yes",
3757		   module_name(proto->owner),
3758		   proto_method_implemented(proto->close),
3759		   proto_method_implemented(proto->connect),
3760		   proto_method_implemented(proto->disconnect),
3761		   proto_method_implemented(proto->accept),
3762		   proto_method_implemented(proto->ioctl),
3763		   proto_method_implemented(proto->init),
3764		   proto_method_implemented(proto->destroy),
3765		   proto_method_implemented(proto->shutdown),
3766		   proto_method_implemented(proto->setsockopt),
3767		   proto_method_implemented(proto->getsockopt),
3768		   proto_method_implemented(proto->sendmsg),
3769		   proto_method_implemented(proto->recvmsg),
3770		   proto_method_implemented(proto->sendpage),
3771		   proto_method_implemented(proto->bind),
3772		   proto_method_implemented(proto->backlog_rcv),
3773		   proto_method_implemented(proto->hash),
3774		   proto_method_implemented(proto->unhash),
3775		   proto_method_implemented(proto->get_port),
3776		   proto_method_implemented(proto->enter_memory_pressure));
3777}
3778
3779static int proto_seq_show(struct seq_file *seq, void *v)
3780{
3781	if (v == &proto_list)
3782		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3783			   "protocol",
3784			   "size",
3785			   "sockets",
3786			   "memory",
3787			   "press",
3788			   "maxhdr",
3789			   "slab",
3790			   "module",
3791			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3792	else
3793		proto_seq_printf(seq, list_entry(v, struct proto, node));
3794	return 0;
3795}
3796
3797static const struct seq_operations proto_seq_ops = {
3798	.start  = proto_seq_start,
3799	.next   = proto_seq_next,
3800	.stop   = proto_seq_stop,
3801	.show   = proto_seq_show,
3802};
3803
3804static __net_init int proto_init_net(struct net *net)
3805{
3806	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3807			sizeof(struct seq_net_private)))
3808		return -ENOMEM;
3809
3810	return 0;
3811}
3812
3813static __net_exit void proto_exit_net(struct net *net)
3814{
3815	remove_proc_entry("protocols", net->proc_net);
3816}
3817
3818
3819static __net_initdata struct pernet_operations proto_net_ops = {
3820	.init = proto_init_net,
3821	.exit = proto_exit_net,
3822};
3823
3824static int __init proto_init(void)
3825{
3826	return register_pernet_subsys(&proto_net_ops);
3827}
3828
3829subsys_initcall(proto_init);
3830
3831#endif /* PROC_FS */
3832
3833#ifdef CONFIG_NET_RX_BUSY_POLL
3834bool sk_busy_loop_end(void *p, unsigned long start_time)
3835{
3836	struct sock *sk = p;
3837
3838	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3839	       sk_busy_loop_timeout(sk, start_time);
3840}
3841EXPORT_SYMBOL(sk_busy_loop_end);
3842#endif /* CONFIG_NET_RX_BUSY_POLL */
3843
3844int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3845{
3846	if (!sk->sk_prot->bind_add)
3847		return -EOPNOTSUPP;
3848	return sk->sk_prot->bind_add(sk, addr, addr_len);
3849}
3850EXPORT_SYMBOL(sock_bind_add);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/init.h>
 111#include <linux/highmem.h>
 112#include <linux/user_namespace.h>
 113#include <linux/static_key.h>
 114#include <linux/memcontrol.h>
 115#include <linux/prefetch.h>
 
 116
 117#include <linux/uaccess.h>
 118
 119#include <linux/netdevice.h>
 120#include <net/protocol.h>
 121#include <linux/skbuff.h>
 122#include <net/net_namespace.h>
 123#include <net/request_sock.h>
 124#include <net/sock.h>
 125#include <linux/net_tstamp.h>
 126#include <net/xfrm.h>
 127#include <linux/ipsec.h>
 128#include <net/cls_cgroup.h>
 129#include <net/netprio_cgroup.h>
 130#include <linux/sock_diag.h>
 131
 132#include <linux/filter.h>
 133#include <net/sock_reuseport.h>
 134#include <net/bpf_sk_storage.h>
 135
 136#include <trace/events/sock.h>
 137
 138#include <net/tcp.h>
 139#include <net/busy_poll.h>
 140
 
 
 141static DEFINE_MUTEX(proto_list_mutex);
 142static LIST_HEAD(proto_list);
 143
 144static void sock_inuse_add(struct net *net, int val);
 145
 146/**
 147 * sk_ns_capable - General socket capability test
 148 * @sk: Socket to use a capability on or through
 149 * @user_ns: The user namespace of the capability to use
 150 * @cap: The capability to use
 151 *
 152 * Test to see if the opener of the socket had when the socket was
 153 * created and the current process has the capability @cap in the user
 154 * namespace @user_ns.
 155 */
 156bool sk_ns_capable(const struct sock *sk,
 157		   struct user_namespace *user_ns, int cap)
 158{
 159	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 160		ns_capable(user_ns, cap);
 161}
 162EXPORT_SYMBOL(sk_ns_capable);
 163
 164/**
 165 * sk_capable - Socket global capability test
 166 * @sk: Socket to use a capability on or through
 167 * @cap: The global capability to use
 168 *
 169 * Test to see if the opener of the socket had when the socket was
 170 * created and the current process has the capability @cap in all user
 171 * namespaces.
 172 */
 173bool sk_capable(const struct sock *sk, int cap)
 174{
 175	return sk_ns_capable(sk, &init_user_ns, cap);
 176}
 177EXPORT_SYMBOL(sk_capable);
 178
 179/**
 180 * sk_net_capable - Network namespace socket capability test
 181 * @sk: Socket to use a capability on or through
 182 * @cap: The capability to use
 183 *
 184 * Test to see if the opener of the socket had when the socket was created
 185 * and the current process has the capability @cap over the network namespace
 186 * the socket is a member of.
 187 */
 188bool sk_net_capable(const struct sock *sk, int cap)
 189{
 190	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 191}
 192EXPORT_SYMBOL(sk_net_capable);
 193
 194/*
 195 * Each address family might have different locking rules, so we have
 196 * one slock key per address family and separate keys for internal and
 197 * userspace sockets.
 198 */
 199static struct lock_class_key af_family_keys[AF_MAX];
 200static struct lock_class_key af_family_kern_keys[AF_MAX];
 201static struct lock_class_key af_family_slock_keys[AF_MAX];
 202static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 203
 204/*
 205 * Make lock validator output more readable. (we pre-construct these
 206 * strings build-time, so that runtime initialization of socket
 207 * locks is fast):
 208 */
 209
 210#define _sock_locks(x)						  \
 211  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 212  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 213  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 214  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 215  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 216  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 217  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 218  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 219  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 220  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 221  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 222  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 223  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 224  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 225  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 226  x "AF_MAX"
 227
 228static const char *const af_family_key_strings[AF_MAX+1] = {
 229	_sock_locks("sk_lock-")
 230};
 231static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 232	_sock_locks("slock-")
 233};
 234static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 235	_sock_locks("clock-")
 236};
 237
 238static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 239	_sock_locks("k-sk_lock-")
 240};
 241static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 242	_sock_locks("k-slock-")
 243};
 244static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 245	_sock_locks("k-clock-")
 246};
 247static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 248	_sock_locks("rlock-")
 249};
 250static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 251	_sock_locks("wlock-")
 252};
 253static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 254	_sock_locks("elock-")
 255};
 256
 257/*
 258 * sk_callback_lock and sk queues locking rules are per-address-family,
 259 * so split the lock classes by using a per-AF key:
 260 */
 261static struct lock_class_key af_callback_keys[AF_MAX];
 262static struct lock_class_key af_rlock_keys[AF_MAX];
 263static struct lock_class_key af_wlock_keys[AF_MAX];
 264static struct lock_class_key af_elock_keys[AF_MAX];
 265static struct lock_class_key af_kern_callback_keys[AF_MAX];
 266
 267/* Run time adjustable parameters. */
 268__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 269EXPORT_SYMBOL(sysctl_wmem_max);
 270__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 271EXPORT_SYMBOL(sysctl_rmem_max);
 272__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 273__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 274
 275/* Maximal space eaten by iovec or ancillary data plus some space */
 276int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 277EXPORT_SYMBOL(sysctl_optmem_max);
 278
 279int sysctl_tstamp_allow_data __read_mostly = 1;
 280
 281DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 282EXPORT_SYMBOL_GPL(memalloc_socks_key);
 283
 284/**
 285 * sk_set_memalloc - sets %SOCK_MEMALLOC
 286 * @sk: socket to set it on
 287 *
 288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 289 * It's the responsibility of the admin to adjust min_free_kbytes
 290 * to meet the requirements
 291 */
 292void sk_set_memalloc(struct sock *sk)
 293{
 294	sock_set_flag(sk, SOCK_MEMALLOC);
 295	sk->sk_allocation |= __GFP_MEMALLOC;
 296	static_branch_inc(&memalloc_socks_key);
 297}
 298EXPORT_SYMBOL_GPL(sk_set_memalloc);
 299
 300void sk_clear_memalloc(struct sock *sk)
 301{
 302	sock_reset_flag(sk, SOCK_MEMALLOC);
 303	sk->sk_allocation &= ~__GFP_MEMALLOC;
 304	static_branch_dec(&memalloc_socks_key);
 305
 306	/*
 307	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 308	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 309	 * it has rmem allocations due to the last swapfile being deactivated
 310	 * but there is a risk that the socket is unusable due to exceeding
 311	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 312	 */
 313	sk_mem_reclaim(sk);
 314}
 315EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 316
 317int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 318{
 319	int ret;
 320	unsigned int noreclaim_flag;
 321
 322	/* these should have been dropped before queueing */
 323	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 324
 325	noreclaim_flag = memalloc_noreclaim_save();
 326	ret = sk->sk_backlog_rcv(sk, skb);
 327	memalloc_noreclaim_restore(noreclaim_flag);
 328
 329	return ret;
 330}
 331EXPORT_SYMBOL(__sk_backlog_rcv);
 332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 334{
 335	struct __kernel_sock_timeval tv;
 336	int size;
 337
 338	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 339		tv.tv_sec = 0;
 340		tv.tv_usec = 0;
 341	} else {
 342		tv.tv_sec = timeo / HZ;
 343		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 344	}
 345
 346	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 347		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 348		*(struct old_timeval32 *)optval = tv32;
 349		return sizeof(tv32);
 350	}
 351
 352	if (old_timeval) {
 353		struct __kernel_old_timeval old_tv;
 354		old_tv.tv_sec = tv.tv_sec;
 355		old_tv.tv_usec = tv.tv_usec;
 356		*(struct __kernel_old_timeval *)optval = old_tv;
 357		size = sizeof(old_tv);
 358	} else {
 359		*(struct __kernel_sock_timeval *)optval = tv;
 360		size = sizeof(tv);
 361	}
 362
 363	return size;
 
 364}
 365
 366static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval)
 
 367{
 368	struct __kernel_sock_timeval tv;
 369
 370	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 371		struct old_timeval32 tv32;
 372
 373		if (optlen < sizeof(tv32))
 374			return -EINVAL;
 375
 376		if (copy_from_user(&tv32, optval, sizeof(tv32)))
 377			return -EFAULT;
 378		tv.tv_sec = tv32.tv_sec;
 379		tv.tv_usec = tv32.tv_usec;
 380	} else if (old_timeval) {
 381		struct __kernel_old_timeval old_tv;
 382
 383		if (optlen < sizeof(old_tv))
 384			return -EINVAL;
 385		if (copy_from_user(&old_tv, optval, sizeof(old_tv)))
 386			return -EFAULT;
 387		tv.tv_sec = old_tv.tv_sec;
 388		tv.tv_usec = old_tv.tv_usec;
 389	} else {
 390		if (optlen < sizeof(tv))
 391			return -EINVAL;
 392		if (copy_from_user(&tv, optval, sizeof(tv)))
 393			return -EFAULT;
 394	}
 395	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 396		return -EDOM;
 397
 398	if (tv.tv_sec < 0) {
 399		static int warned __read_mostly;
 400
 401		*timeo_p = 0;
 402		if (warned < 10 && net_ratelimit()) {
 403			warned++;
 404			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 405				__func__, current->comm, task_pid_nr(current));
 406		}
 407		return 0;
 408	}
 409	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 410	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 411		return 0;
 412	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
 413		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
 414	return 0;
 415}
 416
 417static void sock_warn_obsolete_bsdism(const char *name)
 418{
 419	static int warned;
 420	static char warncomm[TASK_COMM_LEN];
 421	if (strcmp(warncomm, current->comm) && warned < 5) {
 422		strcpy(warncomm,  current->comm);
 423		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 424			warncomm, name);
 425		warned++;
 426	}
 427}
 428
 429static bool sock_needs_netstamp(const struct sock *sk)
 430{
 431	switch (sk->sk_family) {
 432	case AF_UNSPEC:
 433	case AF_UNIX:
 434		return false;
 435	default:
 436		return true;
 437	}
 438}
 439
 440static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 441{
 442	if (sk->sk_flags & flags) {
 443		sk->sk_flags &= ~flags;
 444		if (sock_needs_netstamp(sk) &&
 445		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 446			net_disable_timestamp();
 447	}
 448}
 449
 450
 451int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 452{
 453	unsigned long flags;
 454	struct sk_buff_head *list = &sk->sk_receive_queue;
 455
 456	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 457		atomic_inc(&sk->sk_drops);
 458		trace_sock_rcvqueue_full(sk, skb);
 459		return -ENOMEM;
 460	}
 461
 462	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 463		atomic_inc(&sk->sk_drops);
 464		return -ENOBUFS;
 465	}
 466
 467	skb->dev = NULL;
 468	skb_set_owner_r(skb, sk);
 469
 470	/* we escape from rcu protected region, make sure we dont leak
 471	 * a norefcounted dst
 472	 */
 473	skb_dst_force(skb);
 474
 475	spin_lock_irqsave(&list->lock, flags);
 476	sock_skb_set_dropcount(sk, skb);
 477	__skb_queue_tail(list, skb);
 478	spin_unlock_irqrestore(&list->lock, flags);
 479
 480	if (!sock_flag(sk, SOCK_DEAD))
 481		sk->sk_data_ready(sk);
 482	return 0;
 483}
 484EXPORT_SYMBOL(__sock_queue_rcv_skb);
 485
 486int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 487{
 488	int err;
 489
 490	err = sk_filter(sk, skb);
 491	if (err)
 492		return err;
 493
 494	return __sock_queue_rcv_skb(sk, skb);
 495}
 496EXPORT_SYMBOL(sock_queue_rcv_skb);
 497
 498int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 499		     const int nested, unsigned int trim_cap, bool refcounted)
 500{
 501	int rc = NET_RX_SUCCESS;
 502
 503	if (sk_filter_trim_cap(sk, skb, trim_cap))
 504		goto discard_and_relse;
 505
 506	skb->dev = NULL;
 507
 508	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 509		atomic_inc(&sk->sk_drops);
 510		goto discard_and_relse;
 511	}
 512	if (nested)
 513		bh_lock_sock_nested(sk);
 514	else
 515		bh_lock_sock(sk);
 516	if (!sock_owned_by_user(sk)) {
 517		/*
 518		 * trylock + unlock semantics:
 519		 */
 520		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 521
 522		rc = sk_backlog_rcv(sk, skb);
 523
 524		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 525	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 526		bh_unlock_sock(sk);
 527		atomic_inc(&sk->sk_drops);
 528		goto discard_and_relse;
 529	}
 530
 531	bh_unlock_sock(sk);
 532out:
 533	if (refcounted)
 534		sock_put(sk);
 535	return rc;
 536discard_and_relse:
 537	kfree_skb(skb);
 538	goto out;
 539}
 540EXPORT_SYMBOL(__sk_receive_skb);
 541
 
 
 
 
 542struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 543{
 544	struct dst_entry *dst = __sk_dst_get(sk);
 545
 546	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 547		sk_tx_queue_clear(sk);
 548		sk->sk_dst_pending_confirm = 0;
 549		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 550		dst_release(dst);
 551		return NULL;
 552	}
 553
 554	return dst;
 555}
 556EXPORT_SYMBOL(__sk_dst_check);
 557
 558struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 559{
 560	struct dst_entry *dst = sk_dst_get(sk);
 561
 562	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 563		sk_dst_reset(sk);
 564		dst_release(dst);
 565		return NULL;
 566	}
 567
 568	return dst;
 569}
 570EXPORT_SYMBOL(sk_dst_check);
 571
 572static int sock_setbindtodevice_locked(struct sock *sk, int ifindex)
 573{
 574	int ret = -ENOPROTOOPT;
 575#ifdef CONFIG_NETDEVICES
 576	struct net *net = sock_net(sk);
 577
 578	/* Sorry... */
 579	ret = -EPERM;
 580	if (!ns_capable(net->user_ns, CAP_NET_RAW))
 581		goto out;
 582
 583	ret = -EINVAL;
 584	if (ifindex < 0)
 585		goto out;
 586
 587	sk->sk_bound_dev_if = ifindex;
 588	if (sk->sk_prot->rehash)
 589		sk->sk_prot->rehash(sk);
 590	sk_dst_reset(sk);
 591
 592	ret = 0;
 593
 594out:
 595#endif
 596
 597	return ret;
 598}
 599
 600static int sock_setbindtodevice(struct sock *sk, char __user *optval,
 601				int optlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 602{
 603	int ret = -ENOPROTOOPT;
 604#ifdef CONFIG_NETDEVICES
 605	struct net *net = sock_net(sk);
 606	char devname[IFNAMSIZ];
 607	int index;
 608
 609	ret = -EINVAL;
 610	if (optlen < 0)
 611		goto out;
 612
 613	/* Bind this socket to a particular device like "eth0",
 614	 * as specified in the passed interface name. If the
 615	 * name is "" or the option length is zero the socket
 616	 * is not bound.
 617	 */
 618	if (optlen > IFNAMSIZ - 1)
 619		optlen = IFNAMSIZ - 1;
 620	memset(devname, 0, sizeof(devname));
 621
 622	ret = -EFAULT;
 623	if (copy_from_user(devname, optval, optlen))
 624		goto out;
 625
 626	index = 0;
 627	if (devname[0] != '\0') {
 628		struct net_device *dev;
 629
 630		rcu_read_lock();
 631		dev = dev_get_by_name_rcu(net, devname);
 632		if (dev)
 633			index = dev->ifindex;
 634		rcu_read_unlock();
 635		ret = -ENODEV;
 636		if (!dev)
 637			goto out;
 638	}
 639
 640	lock_sock(sk);
 641	ret = sock_setbindtodevice_locked(sk, index);
 642	release_sock(sk);
 643
 644out:
 645#endif
 646
 647	return ret;
 648}
 649
 650static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 651				int __user *optlen, int len)
 652{
 653	int ret = -ENOPROTOOPT;
 654#ifdef CONFIG_NETDEVICES
 655	struct net *net = sock_net(sk);
 656	char devname[IFNAMSIZ];
 657
 658	if (sk->sk_bound_dev_if == 0) {
 659		len = 0;
 660		goto zero;
 661	}
 662
 663	ret = -EINVAL;
 664	if (len < IFNAMSIZ)
 665		goto out;
 666
 667	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 668	if (ret)
 669		goto out;
 670
 671	len = strlen(devname) + 1;
 672
 673	ret = -EFAULT;
 674	if (copy_to_user(optval, devname, len))
 675		goto out;
 676
 677zero:
 678	ret = -EFAULT;
 679	if (put_user(len, optlen))
 680		goto out;
 681
 682	ret = 0;
 683
 684out:
 685#endif
 686
 687	return ret;
 688}
 689
 690static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 691{
 692	if (valbool)
 693		sock_set_flag(sk, bit);
 694	else
 695		sock_reset_flag(sk, bit);
 696}
 697
 698bool sk_mc_loop(struct sock *sk)
 699{
 700	if (dev_recursion_level())
 701		return false;
 702	if (!sk)
 703		return true;
 704	switch (sk->sk_family) {
 705	case AF_INET:
 706		return inet_sk(sk)->mc_loop;
 707#if IS_ENABLED(CONFIG_IPV6)
 708	case AF_INET6:
 709		return inet6_sk(sk)->mc_loop;
 710#endif
 711	}
 712	WARN_ON(1);
 713	return true;
 714}
 715EXPORT_SYMBOL(sk_mc_loop);
 716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717/*
 718 *	This is meant for all protocols to use and covers goings on
 719 *	at the socket level. Everything here is generic.
 720 */
 721
 722int sock_setsockopt(struct socket *sock, int level, int optname,
 723		    char __user *optval, unsigned int optlen)
 724{
 
 725	struct sock_txtime sk_txtime;
 726	struct sock *sk = sock->sk;
 727	int val;
 728	int valbool;
 729	struct linger ling;
 730	int ret = 0;
 731
 732	/*
 733	 *	Options without arguments
 734	 */
 735
 736	if (optname == SO_BINDTODEVICE)
 737		return sock_setbindtodevice(sk, optval, optlen);
 738
 739	if (optlen < sizeof(int))
 740		return -EINVAL;
 741
 742	if (get_user(val, (int __user *)optval))
 743		return -EFAULT;
 744
 745	valbool = val ? 1 : 0;
 746
 747	lock_sock(sk);
 748
 749	switch (optname) {
 750	case SO_DEBUG:
 751		if (val && !capable(CAP_NET_ADMIN))
 752			ret = -EACCES;
 753		else
 754			sock_valbool_flag(sk, SOCK_DBG, valbool);
 755		break;
 756	case SO_REUSEADDR:
 757		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 758		break;
 759	case SO_REUSEPORT:
 760		sk->sk_reuseport = valbool;
 761		break;
 762	case SO_TYPE:
 763	case SO_PROTOCOL:
 764	case SO_DOMAIN:
 765	case SO_ERROR:
 766		ret = -ENOPROTOOPT;
 767		break;
 768	case SO_DONTROUTE:
 769		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 770		sk_dst_reset(sk);
 771		break;
 772	case SO_BROADCAST:
 773		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 774		break;
 775	case SO_SNDBUF:
 776		/* Don't error on this BSD doesn't and if you think
 777		 * about it this is right. Otherwise apps have to
 778		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 779		 * are treated in BSD as hints
 780		 */
 781		val = min_t(u32, val, sysctl_wmem_max);
 782set_sndbuf:
 783		/* Ensure val * 2 fits into an int, to prevent max_t()
 784		 * from treating it as a negative value.
 785		 */
 786		val = min_t(int, val, INT_MAX / 2);
 787		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 788		WRITE_ONCE(sk->sk_sndbuf,
 789			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
 790		/* Wake up sending tasks if we upped the value. */
 791		sk->sk_write_space(sk);
 792		break;
 793
 794	case SO_SNDBUFFORCE:
 795		if (!capable(CAP_NET_ADMIN)) {
 796			ret = -EPERM;
 797			break;
 798		}
 799
 800		/* No negative values (to prevent underflow, as val will be
 801		 * multiplied by 2).
 802		 */
 803		if (val < 0)
 804			val = 0;
 805		goto set_sndbuf;
 806
 807	case SO_RCVBUF:
 808		/* Don't error on this BSD doesn't and if you think
 809		 * about it this is right. Otherwise apps have to
 810		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 811		 * are treated in BSD as hints
 812		 */
 813		val = min_t(u32, val, sysctl_rmem_max);
 814set_rcvbuf:
 815		/* Ensure val * 2 fits into an int, to prevent max_t()
 816		 * from treating it as a negative value.
 817		 */
 818		val = min_t(int, val, INT_MAX / 2);
 819		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 820		/*
 821		 * We double it on the way in to account for
 822		 * "struct sk_buff" etc. overhead.   Applications
 823		 * assume that the SO_RCVBUF setting they make will
 824		 * allow that much actual data to be received on that
 825		 * socket.
 826		 *
 827		 * Applications are unaware that "struct sk_buff" and
 828		 * other overheads allocate from the receive buffer
 829		 * during socket buffer allocation.
 830		 *
 831		 * And after considering the possible alternatives,
 832		 * returning the value we actually used in getsockopt
 833		 * is the most desirable behavior.
 834		 */
 835		WRITE_ONCE(sk->sk_rcvbuf,
 836			   max_t(int, val * 2, SOCK_MIN_RCVBUF));
 837		break;
 838
 839	case SO_RCVBUFFORCE:
 840		if (!capable(CAP_NET_ADMIN)) {
 841			ret = -EPERM;
 842			break;
 843		}
 844
 845		/* No negative values (to prevent underflow, as val will be
 846		 * multiplied by 2).
 847		 */
 848		if (val < 0)
 849			val = 0;
 850		goto set_rcvbuf;
 851
 852	case SO_KEEPALIVE:
 853		if (sk->sk_prot->keepalive)
 854			sk->sk_prot->keepalive(sk, valbool);
 855		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 856		break;
 857
 858	case SO_OOBINLINE:
 859		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 860		break;
 861
 862	case SO_NO_CHECK:
 863		sk->sk_no_check_tx = valbool;
 864		break;
 865
 866	case SO_PRIORITY:
 867		if ((val >= 0 && val <= 6) ||
 868		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 869			sk->sk_priority = val;
 870		else
 871			ret = -EPERM;
 872		break;
 873
 874	case SO_LINGER:
 875		if (optlen < sizeof(ling)) {
 876			ret = -EINVAL;	/* 1003.1g */
 877			break;
 878		}
 879		if (copy_from_user(&ling, optval, sizeof(ling))) {
 880			ret = -EFAULT;
 881			break;
 882		}
 883		if (!ling.l_onoff)
 884			sock_reset_flag(sk, SOCK_LINGER);
 885		else {
 886#if (BITS_PER_LONG == 32)
 887			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 888				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 889			else
 890#endif
 891				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 892			sock_set_flag(sk, SOCK_LINGER);
 893		}
 894		break;
 895
 896	case SO_BSDCOMPAT:
 897		sock_warn_obsolete_bsdism("setsockopt");
 898		break;
 899
 900	case SO_PASSCRED:
 901		if (valbool)
 902			set_bit(SOCK_PASSCRED, &sock->flags);
 903		else
 904			clear_bit(SOCK_PASSCRED, &sock->flags);
 905		break;
 906
 907	case SO_TIMESTAMP_OLD:
 908	case SO_TIMESTAMP_NEW:
 909	case SO_TIMESTAMPNS_OLD:
 910	case SO_TIMESTAMPNS_NEW:
 911		if (valbool)  {
 912			if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW)
 913				sock_set_flag(sk, SOCK_TSTAMP_NEW);
 914			else
 915				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
 916
 917			if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW)
 918				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 919			else
 920				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 921			sock_set_flag(sk, SOCK_RCVTSTAMP);
 922			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 923		} else {
 924			sock_reset_flag(sk, SOCK_RCVTSTAMP);
 925			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 926			sock_reset_flag(sk, SOCK_TSTAMP_NEW);
 927		}
 928		break;
 929
 930	case SO_TIMESTAMPING_NEW:
 931		sock_set_flag(sk, SOCK_TSTAMP_NEW);
 932		/* fall through */
 933	case SO_TIMESTAMPING_OLD:
 934		if (val & ~SOF_TIMESTAMPING_MASK) {
 935			ret = -EINVAL;
 936			break;
 937		}
 938
 939		if (val & SOF_TIMESTAMPING_OPT_ID &&
 940		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 941			if (sk->sk_protocol == IPPROTO_TCP &&
 942			    sk->sk_type == SOCK_STREAM) {
 943				if ((1 << sk->sk_state) &
 944				    (TCPF_CLOSE | TCPF_LISTEN)) {
 945					ret = -EINVAL;
 946					break;
 947				}
 948				sk->sk_tskey = tcp_sk(sk)->snd_una;
 949			} else {
 950				sk->sk_tskey = 0;
 951			}
 
 
 
 952		}
 953
 954		if (val & SOF_TIMESTAMPING_OPT_STATS &&
 955		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
 956			ret = -EINVAL;
 957			break;
 958		}
 959
 960		sk->sk_tsflags = val;
 961		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 962			sock_enable_timestamp(sk,
 963					      SOCK_TIMESTAMPING_RX_SOFTWARE);
 964		else {
 965			if (optname == SO_TIMESTAMPING_NEW)
 966				sock_reset_flag(sk, SOCK_TSTAMP_NEW);
 967
 968			sock_disable_timestamp(sk,
 969					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 970		}
 971		break;
 972
 973	case SO_RCVLOWAT:
 974		if (val < 0)
 975			val = INT_MAX;
 976		if (sock->ops->set_rcvlowat)
 977			ret = sock->ops->set_rcvlowat(sk, val);
 978		else
 979			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
 980		break;
 981
 982	case SO_RCVTIMEO_OLD:
 983	case SO_RCVTIMEO_NEW:
 984		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD);
 
 985		break;
 986
 987	case SO_SNDTIMEO_OLD:
 988	case SO_SNDTIMEO_NEW:
 989		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD);
 
 990		break;
 991
 992	case SO_ATTACH_FILTER:
 993		ret = -EINVAL;
 994		if (optlen == sizeof(struct sock_fprog)) {
 995			struct sock_fprog fprog;
 996
 997			ret = -EFAULT;
 998			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 999				break;
1000
 
 
1001			ret = sk_attach_filter(&fprog, sk);
1002		}
1003		break;
1004
1005	case SO_ATTACH_BPF:
1006		ret = -EINVAL;
1007		if (optlen == sizeof(u32)) {
1008			u32 ufd;
1009
1010			ret = -EFAULT;
1011			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1012				break;
1013
1014			ret = sk_attach_bpf(ufd, sk);
1015		}
1016		break;
1017
1018	case SO_ATTACH_REUSEPORT_CBPF:
1019		ret = -EINVAL;
1020		if (optlen == sizeof(struct sock_fprog)) {
1021			struct sock_fprog fprog;
1022
1023			ret = -EFAULT;
1024			if (copy_from_user(&fprog, optval, sizeof(fprog)))
1025				break;
1026
 
 
1027			ret = sk_reuseport_attach_filter(&fprog, sk);
1028		}
1029		break;
1030
1031	case SO_ATTACH_REUSEPORT_EBPF:
1032		ret = -EINVAL;
1033		if (optlen == sizeof(u32)) {
1034			u32 ufd;
1035
1036			ret = -EFAULT;
1037			if (copy_from_user(&ufd, optval, sizeof(ufd)))
1038				break;
1039
1040			ret = sk_reuseport_attach_bpf(ufd, sk);
1041		}
1042		break;
1043
1044	case SO_DETACH_REUSEPORT_BPF:
1045		ret = reuseport_detach_prog(sk);
1046		break;
1047
1048	case SO_DETACH_FILTER:
1049		ret = sk_detach_filter(sk);
1050		break;
1051
1052	case SO_LOCK_FILTER:
1053		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1054			ret = -EPERM;
1055		else
1056			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1057		break;
1058
1059	case SO_PASSSEC:
1060		if (valbool)
1061			set_bit(SOCK_PASSSEC, &sock->flags);
1062		else
1063			clear_bit(SOCK_PASSSEC, &sock->flags);
1064		break;
1065	case SO_MARK:
1066		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1067			ret = -EPERM;
1068		} else if (val != sk->sk_mark) {
1069			sk->sk_mark = val;
1070			sk_dst_reset(sk);
1071		}
 
 
1072		break;
1073
1074	case SO_RXQ_OVFL:
1075		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1076		break;
1077
1078	case SO_WIFI_STATUS:
1079		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1080		break;
1081
1082	case SO_PEEK_OFF:
1083		if (sock->ops->set_peek_off)
1084			ret = sock->ops->set_peek_off(sk, val);
1085		else
1086			ret = -EOPNOTSUPP;
1087		break;
1088
1089	case SO_NOFCS:
1090		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1091		break;
1092
1093	case SO_SELECT_ERR_QUEUE:
1094		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1095		break;
1096
1097#ifdef CONFIG_NET_RX_BUSY_POLL
1098	case SO_BUSY_POLL:
1099		/* allow unprivileged users to decrease the value */
1100		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1101			ret = -EPERM;
1102		else {
1103			if (val < 0)
1104				ret = -EINVAL;
1105			else
1106				sk->sk_ll_usec = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107		}
1108		break;
1109#endif
1110
1111	case SO_MAX_PACING_RATE:
1112		{
1113		unsigned long ulval = (val == ~0U) ? ~0UL : val;
1114
1115		if (sizeof(ulval) != sizeof(val) &&
1116		    optlen >= sizeof(ulval) &&
1117		    get_user(ulval, (unsigned long __user *)optval)) {
1118			ret = -EFAULT;
1119			break;
1120		}
1121		if (ulval != ~0UL)
1122			cmpxchg(&sk->sk_pacing_status,
1123				SK_PACING_NONE,
1124				SK_PACING_NEEDED);
1125		sk->sk_max_pacing_rate = ulval;
1126		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1127		break;
1128		}
1129	case SO_INCOMING_CPU:
1130		WRITE_ONCE(sk->sk_incoming_cpu, val);
1131		break;
1132
1133	case SO_CNX_ADVICE:
1134		if (val == 1)
1135			dst_negative_advice(sk);
1136		break;
1137
1138	case SO_ZEROCOPY:
1139		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1140			if (!((sk->sk_type == SOCK_STREAM &&
1141			       sk->sk_protocol == IPPROTO_TCP) ||
1142			      (sk->sk_type == SOCK_DGRAM &&
1143			       sk->sk_protocol == IPPROTO_UDP)))
1144				ret = -ENOTSUPP;
1145		} else if (sk->sk_family != PF_RDS) {
1146			ret = -ENOTSUPP;
1147		}
1148		if (!ret) {
1149			if (val < 0 || val > 1)
1150				ret = -EINVAL;
1151			else
1152				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1153		}
1154		break;
1155
1156	case SO_TXTIME:
1157		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1158			ret = -EPERM;
1159		} else if (optlen != sizeof(struct sock_txtime)) {
1160			ret = -EINVAL;
1161		} else if (copy_from_user(&sk_txtime, optval,
 
1162			   sizeof(struct sock_txtime))) {
1163			ret = -EFAULT;
 
1164		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1165			ret = -EINVAL;
1166		} else {
1167			sock_valbool_flag(sk, SOCK_TXTIME, true);
1168			sk->sk_clockid = sk_txtime.clockid;
1169			sk->sk_txtime_deadline_mode =
1170				!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1171			sk->sk_txtime_report_errors =
1172				!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
 
 
1173		}
 
 
 
 
 
 
1174		break;
1175
1176	case SO_BINDTOIFINDEX:
1177		ret = sock_setbindtodevice_locked(sk, val);
1178		break;
1179
1180	default:
1181		ret = -ENOPROTOOPT;
1182		break;
1183	}
1184	release_sock(sk);
1185	return ret;
1186}
1187EXPORT_SYMBOL(sock_setsockopt);
1188
 
 
 
 
 
 
 
 
 
 
1189
1190static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1191			  struct ucred *ucred)
1192{
1193	ucred->pid = pid_vnr(pid);
1194	ucred->uid = ucred->gid = -1;
1195	if (cred) {
1196		struct user_namespace *current_ns = current_user_ns();
1197
1198		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1199		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1200	}
1201}
1202
1203static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1204{
1205	struct user_namespace *user_ns = current_user_ns();
1206	int i;
1207
1208	for (i = 0; i < src->ngroups; i++)
1209		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1210			return -EFAULT;
1211
1212	return 0;
1213}
1214
1215int sock_getsockopt(struct socket *sock, int level, int optname,
1216		    char __user *optval, int __user *optlen)
1217{
1218	struct sock *sk = sock->sk;
1219
1220	union {
1221		int val;
1222		u64 val64;
1223		unsigned long ulval;
1224		struct linger ling;
1225		struct old_timeval32 tm32;
1226		struct __kernel_old_timeval tm;
1227		struct  __kernel_sock_timeval stm;
1228		struct sock_txtime txtime;
 
1229	} v;
1230
1231	int lv = sizeof(int);
1232	int len;
1233
1234	if (get_user(len, optlen))
1235		return -EFAULT;
1236	if (len < 0)
1237		return -EINVAL;
1238
1239	memset(&v, 0, sizeof(v));
1240
1241	switch (optname) {
1242	case SO_DEBUG:
1243		v.val = sock_flag(sk, SOCK_DBG);
1244		break;
1245
1246	case SO_DONTROUTE:
1247		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1248		break;
1249
1250	case SO_BROADCAST:
1251		v.val = sock_flag(sk, SOCK_BROADCAST);
1252		break;
1253
1254	case SO_SNDBUF:
1255		v.val = sk->sk_sndbuf;
1256		break;
1257
1258	case SO_RCVBUF:
1259		v.val = sk->sk_rcvbuf;
1260		break;
1261
1262	case SO_REUSEADDR:
1263		v.val = sk->sk_reuse;
1264		break;
1265
1266	case SO_REUSEPORT:
1267		v.val = sk->sk_reuseport;
1268		break;
1269
1270	case SO_KEEPALIVE:
1271		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1272		break;
1273
1274	case SO_TYPE:
1275		v.val = sk->sk_type;
1276		break;
1277
1278	case SO_PROTOCOL:
1279		v.val = sk->sk_protocol;
1280		break;
1281
1282	case SO_DOMAIN:
1283		v.val = sk->sk_family;
1284		break;
1285
1286	case SO_ERROR:
1287		v.val = -sock_error(sk);
1288		if (v.val == 0)
1289			v.val = xchg(&sk->sk_err_soft, 0);
1290		break;
1291
1292	case SO_OOBINLINE:
1293		v.val = sock_flag(sk, SOCK_URGINLINE);
1294		break;
1295
1296	case SO_NO_CHECK:
1297		v.val = sk->sk_no_check_tx;
1298		break;
1299
1300	case SO_PRIORITY:
1301		v.val = sk->sk_priority;
1302		break;
1303
1304	case SO_LINGER:
1305		lv		= sizeof(v.ling);
1306		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1307		v.ling.l_linger	= sk->sk_lingertime / HZ;
1308		break;
1309
1310	case SO_BSDCOMPAT:
1311		sock_warn_obsolete_bsdism("getsockopt");
1312		break;
1313
1314	case SO_TIMESTAMP_OLD:
1315		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1316				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1317				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1318		break;
1319
1320	case SO_TIMESTAMPNS_OLD:
1321		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1322		break;
1323
1324	case SO_TIMESTAMP_NEW:
1325		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1326		break;
1327
1328	case SO_TIMESTAMPNS_NEW:
1329		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1330		break;
1331
1332	case SO_TIMESTAMPING_OLD:
1333		v.val = sk->sk_tsflags;
 
 
1334		break;
1335
1336	case SO_RCVTIMEO_OLD:
1337	case SO_RCVTIMEO_NEW:
1338		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1339		break;
1340
1341	case SO_SNDTIMEO_OLD:
1342	case SO_SNDTIMEO_NEW:
1343		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1344		break;
1345
1346	case SO_RCVLOWAT:
1347		v.val = sk->sk_rcvlowat;
1348		break;
1349
1350	case SO_SNDLOWAT:
1351		v.val = 1;
1352		break;
1353
1354	case SO_PASSCRED:
1355		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1356		break;
1357
1358	case SO_PEERCRED:
1359	{
1360		struct ucred peercred;
1361		if (len > sizeof(peercred))
1362			len = sizeof(peercred);
 
 
1363		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
 
 
1364		if (copy_to_user(optval, &peercred, len))
1365			return -EFAULT;
1366		goto lenout;
1367	}
1368
1369	case SO_PEERGROUPS:
1370	{
 
1371		int ret, n;
1372
1373		if (!sk->sk_peer_cred)
 
1374			return -ENODATA;
1375
1376		n = sk->sk_peer_cred->group_info->ngroups;
1377		if (len < n * sizeof(gid_t)) {
1378			len = n * sizeof(gid_t);
 
1379			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1380		}
1381		len = n * sizeof(gid_t);
1382
1383		ret = groups_to_user((gid_t __user *)optval,
1384				     sk->sk_peer_cred->group_info);
1385		if (ret)
1386			return ret;
1387		goto lenout;
1388	}
1389
1390	case SO_PEERNAME:
1391	{
1392		char address[128];
1393
1394		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1395		if (lv < 0)
1396			return -ENOTCONN;
1397		if (lv < len)
1398			return -EINVAL;
1399		if (copy_to_user(optval, address, len))
1400			return -EFAULT;
1401		goto lenout;
1402	}
1403
1404	/* Dubious BSD thing... Probably nobody even uses it, but
1405	 * the UNIX standard wants it for whatever reason... -DaveM
1406	 */
1407	case SO_ACCEPTCONN:
1408		v.val = sk->sk_state == TCP_LISTEN;
1409		break;
1410
1411	case SO_PASSSEC:
1412		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1413		break;
1414
1415	case SO_PEERSEC:
1416		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1417
1418	case SO_MARK:
1419		v.val = sk->sk_mark;
1420		break;
1421
1422	case SO_RXQ_OVFL:
1423		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1424		break;
1425
1426	case SO_WIFI_STATUS:
1427		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1428		break;
1429
1430	case SO_PEEK_OFF:
1431		if (!sock->ops->set_peek_off)
1432			return -EOPNOTSUPP;
1433
1434		v.val = sk->sk_peek_off;
1435		break;
1436	case SO_NOFCS:
1437		v.val = sock_flag(sk, SOCK_NOFCS);
1438		break;
1439
1440	case SO_BINDTODEVICE:
1441		return sock_getbindtodevice(sk, optval, optlen, len);
1442
1443	case SO_GET_FILTER:
1444		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1445		if (len < 0)
1446			return len;
1447
1448		goto lenout;
1449
1450	case SO_LOCK_FILTER:
1451		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1452		break;
1453
1454	case SO_BPF_EXTENSIONS:
1455		v.val = bpf_tell_extensions();
1456		break;
1457
1458	case SO_SELECT_ERR_QUEUE:
1459		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1460		break;
1461
1462#ifdef CONFIG_NET_RX_BUSY_POLL
1463	case SO_BUSY_POLL:
1464		v.val = sk->sk_ll_usec;
1465		break;
 
 
 
1466#endif
1467
1468	case SO_MAX_PACING_RATE:
1469		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1470			lv = sizeof(v.ulval);
1471			v.ulval = sk->sk_max_pacing_rate;
1472		} else {
1473			/* 32bit version */
1474			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1475		}
1476		break;
1477
1478	case SO_INCOMING_CPU:
1479		v.val = READ_ONCE(sk->sk_incoming_cpu);
1480		break;
1481
1482	case SO_MEMINFO:
1483	{
1484		u32 meminfo[SK_MEMINFO_VARS];
1485
1486		sk_get_meminfo(sk, meminfo);
1487
1488		len = min_t(unsigned int, len, sizeof(meminfo));
1489		if (copy_to_user(optval, &meminfo, len))
1490			return -EFAULT;
1491
1492		goto lenout;
1493	}
1494
1495#ifdef CONFIG_NET_RX_BUSY_POLL
1496	case SO_INCOMING_NAPI_ID:
1497		v.val = READ_ONCE(sk->sk_napi_id);
1498
1499		/* aggregate non-NAPI IDs down to 0 */
1500		if (v.val < MIN_NAPI_ID)
1501			v.val = 0;
1502
1503		break;
1504#endif
1505
1506	case SO_COOKIE:
1507		lv = sizeof(u64);
1508		if (len < lv)
1509			return -EINVAL;
1510		v.val64 = sock_gen_cookie(sk);
1511		break;
1512
1513	case SO_ZEROCOPY:
1514		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1515		break;
1516
1517	case SO_TXTIME:
1518		lv = sizeof(v.txtime);
1519		v.txtime.clockid = sk->sk_clockid;
1520		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1521				  SOF_TXTIME_DEADLINE_MODE : 0;
1522		v.txtime.flags |= sk->sk_txtime_report_errors ?
1523				  SOF_TXTIME_REPORT_ERRORS : 0;
1524		break;
1525
1526	case SO_BINDTOIFINDEX:
1527		v.val = sk->sk_bound_dev_if;
1528		break;
1529
 
 
 
 
 
 
 
1530	default:
1531		/* We implement the SO_SNDLOWAT etc to not be settable
1532		 * (1003.1g 7).
1533		 */
1534		return -ENOPROTOOPT;
1535	}
1536
1537	if (len > lv)
1538		len = lv;
1539	if (copy_to_user(optval, &v, len))
1540		return -EFAULT;
1541lenout:
1542	if (put_user(len, optlen))
1543		return -EFAULT;
1544	return 0;
1545}
1546
1547/*
1548 * Initialize an sk_lock.
1549 *
1550 * (We also register the sk_lock with the lock validator.)
1551 */
1552static inline void sock_lock_init(struct sock *sk)
1553{
1554	if (sk->sk_kern_sock)
1555		sock_lock_init_class_and_name(
1556			sk,
1557			af_family_kern_slock_key_strings[sk->sk_family],
1558			af_family_kern_slock_keys + sk->sk_family,
1559			af_family_kern_key_strings[sk->sk_family],
1560			af_family_kern_keys + sk->sk_family);
1561	else
1562		sock_lock_init_class_and_name(
1563			sk,
1564			af_family_slock_key_strings[sk->sk_family],
1565			af_family_slock_keys + sk->sk_family,
1566			af_family_key_strings[sk->sk_family],
1567			af_family_keys + sk->sk_family);
1568}
1569
1570/*
1571 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1572 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1573 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1574 */
1575static void sock_copy(struct sock *nsk, const struct sock *osk)
1576{
 
1577#ifdef CONFIG_SECURITY_NETWORK
1578	void *sptr = nsk->sk_security;
1579#endif
 
 
 
 
 
 
 
 
 
 
1580	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1581
1582	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1583	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1584
1585#ifdef CONFIG_SECURITY_NETWORK
1586	nsk->sk_security = sptr;
1587	security_sk_clone(osk, nsk);
1588#endif
1589}
1590
1591static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1592		int family)
1593{
1594	struct sock *sk;
1595	struct kmem_cache *slab;
1596
1597	slab = prot->slab;
1598	if (slab != NULL) {
1599		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1600		if (!sk)
1601			return sk;
1602		if (want_init_on_alloc(priority))
1603			sk_prot_clear_nulls(sk, prot->obj_size);
1604	} else
1605		sk = kmalloc(prot->obj_size, priority);
1606
1607	if (sk != NULL) {
1608		if (security_sk_alloc(sk, family, priority))
1609			goto out_free;
1610
1611		if (!try_module_get(prot->owner))
1612			goto out_free_sec;
1613		sk_tx_queue_clear(sk);
1614	}
1615
1616	return sk;
1617
1618out_free_sec:
1619	security_sk_free(sk);
1620out_free:
1621	if (slab != NULL)
1622		kmem_cache_free(slab, sk);
1623	else
1624		kfree(sk);
1625	return NULL;
1626}
1627
1628static void sk_prot_free(struct proto *prot, struct sock *sk)
1629{
1630	struct kmem_cache *slab;
1631	struct module *owner;
1632
1633	owner = prot->owner;
1634	slab = prot->slab;
1635
1636	cgroup_sk_free(&sk->sk_cgrp_data);
1637	mem_cgroup_sk_free(sk);
1638	security_sk_free(sk);
1639	if (slab != NULL)
1640		kmem_cache_free(slab, sk);
1641	else
1642		kfree(sk);
1643	module_put(owner);
1644}
1645
1646/**
1647 *	sk_alloc - All socket objects are allocated here
1648 *	@net: the applicable net namespace
1649 *	@family: protocol family
1650 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1651 *	@prot: struct proto associated with this new sock instance
1652 *	@kern: is this to be a kernel socket?
1653 */
1654struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1655		      struct proto *prot, int kern)
1656{
1657	struct sock *sk;
1658
1659	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1660	if (sk) {
1661		sk->sk_family = family;
1662		/*
1663		 * See comment in struct sock definition to understand
1664		 * why we need sk_prot_creator -acme
1665		 */
1666		sk->sk_prot = sk->sk_prot_creator = prot;
1667		sk->sk_kern_sock = kern;
1668		sock_lock_init(sk);
1669		sk->sk_net_refcnt = kern ? 0 : 1;
1670		if (likely(sk->sk_net_refcnt)) {
1671			get_net(net);
1672			sock_inuse_add(net, 1);
1673		}
1674
1675		sock_net_set(sk, net);
1676		refcount_set(&sk->sk_wmem_alloc, 1);
1677
1678		mem_cgroup_sk_alloc(sk);
1679		cgroup_sk_alloc(&sk->sk_cgrp_data);
1680		sock_update_classid(&sk->sk_cgrp_data);
1681		sock_update_netprioidx(&sk->sk_cgrp_data);
 
1682	}
1683
1684	return sk;
1685}
1686EXPORT_SYMBOL(sk_alloc);
1687
1688/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1689 * grace period. This is the case for UDP sockets and TCP listeners.
1690 */
1691static void __sk_destruct(struct rcu_head *head)
1692{
1693	struct sock *sk = container_of(head, struct sock, sk_rcu);
1694	struct sk_filter *filter;
1695
1696	if (sk->sk_destruct)
1697		sk->sk_destruct(sk);
1698
1699	filter = rcu_dereference_check(sk->sk_filter,
1700				       refcount_read(&sk->sk_wmem_alloc) == 0);
1701	if (filter) {
1702		sk_filter_uncharge(sk, filter);
1703		RCU_INIT_POINTER(sk->sk_filter, NULL);
1704	}
1705
1706	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1707
1708#ifdef CONFIG_BPF_SYSCALL
1709	bpf_sk_storage_free(sk);
1710#endif
1711
1712	if (atomic_read(&sk->sk_omem_alloc))
1713		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1714			 __func__, atomic_read(&sk->sk_omem_alloc));
1715
1716	if (sk->sk_frag.page) {
1717		put_page(sk->sk_frag.page);
1718		sk->sk_frag.page = NULL;
1719	}
1720
1721	if (sk->sk_peer_cred)
1722		put_cred(sk->sk_peer_cred);
1723	put_pid(sk->sk_peer_pid);
 
1724	if (likely(sk->sk_net_refcnt))
1725		put_net(sock_net(sk));
1726	sk_prot_free(sk->sk_prot_creator, sk);
1727}
1728
1729void sk_destruct(struct sock *sk)
1730{
1731	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1732
1733	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1734		reuseport_detach_sock(sk);
1735		use_call_rcu = true;
1736	}
1737
1738	if (use_call_rcu)
1739		call_rcu(&sk->sk_rcu, __sk_destruct);
1740	else
1741		__sk_destruct(&sk->sk_rcu);
1742}
1743
1744static void __sk_free(struct sock *sk)
1745{
1746	if (likely(sk->sk_net_refcnt))
1747		sock_inuse_add(sock_net(sk), -1);
1748
1749	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1750		sock_diag_broadcast_destroy(sk);
1751	else
1752		sk_destruct(sk);
1753}
1754
1755void sk_free(struct sock *sk)
1756{
1757	/*
1758	 * We subtract one from sk_wmem_alloc and can know if
1759	 * some packets are still in some tx queue.
1760	 * If not null, sock_wfree() will call __sk_free(sk) later
1761	 */
1762	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1763		__sk_free(sk);
1764}
1765EXPORT_SYMBOL(sk_free);
1766
1767static void sk_init_common(struct sock *sk)
1768{
1769	skb_queue_head_init(&sk->sk_receive_queue);
1770	skb_queue_head_init(&sk->sk_write_queue);
1771	skb_queue_head_init(&sk->sk_error_queue);
1772
1773	rwlock_init(&sk->sk_callback_lock);
1774	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1775			af_rlock_keys + sk->sk_family,
1776			af_family_rlock_key_strings[sk->sk_family]);
1777	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1778			af_wlock_keys + sk->sk_family,
1779			af_family_wlock_key_strings[sk->sk_family]);
1780	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1781			af_elock_keys + sk->sk_family,
1782			af_family_elock_key_strings[sk->sk_family]);
1783	lockdep_set_class_and_name(&sk->sk_callback_lock,
1784			af_callback_keys + sk->sk_family,
1785			af_family_clock_key_strings[sk->sk_family]);
1786}
1787
1788/**
1789 *	sk_clone_lock - clone a socket, and lock its clone
1790 *	@sk: the socket to clone
1791 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1792 *
1793 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1794 */
1795struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1796{
 
 
 
1797	struct sock *newsk;
1798	bool is_charged = true;
1799
1800	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1801	if (newsk != NULL) {
1802		struct sk_filter *filter;
1803
1804		sock_copy(newsk, sk);
1805
1806		newsk->sk_prot_creator = sk->sk_prot;
1807
1808		/* SANITY */
1809		if (likely(newsk->sk_net_refcnt))
1810			get_net(sock_net(newsk));
1811		sk_node_init(&newsk->sk_node);
1812		sock_lock_init(newsk);
1813		bh_lock_sock(newsk);
1814		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1815		newsk->sk_backlog.len = 0;
1816
1817		atomic_set(&newsk->sk_rmem_alloc, 0);
1818		/*
1819		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1820		 */
1821		refcount_set(&newsk->sk_wmem_alloc, 1);
1822		atomic_set(&newsk->sk_omem_alloc, 0);
1823		sk_init_common(newsk);
1824
1825		newsk->sk_dst_cache	= NULL;
1826		newsk->sk_dst_pending_confirm = 0;
1827		newsk->sk_wmem_queued	= 0;
1828		newsk->sk_forward_alloc = 0;
1829		atomic_set(&newsk->sk_drops, 0);
1830		newsk->sk_send_head	= NULL;
1831		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1832		atomic_set(&newsk->sk_zckey, 0);
1833
1834		sock_reset_flag(newsk, SOCK_DONE);
1835		mem_cgroup_sk_alloc(newsk);
1836		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1837
1838		rcu_read_lock();
1839		filter = rcu_dereference(sk->sk_filter);
1840		if (filter != NULL)
1841			/* though it's an empty new sock, the charging may fail
1842			 * if sysctl_optmem_max was changed between creation of
1843			 * original socket and cloning
1844			 */
1845			is_charged = sk_filter_charge(newsk, filter);
1846		RCU_INIT_POINTER(newsk->sk_filter, filter);
1847		rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1848
1849		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1850			/* We need to make sure that we don't uncharge the new
1851			 * socket if we couldn't charge it in the first place
1852			 * as otherwise we uncharge the parent's filter.
1853			 */
1854			if (!is_charged)
1855				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1856			sk_free_unlock_clone(newsk);
1857			newsk = NULL;
1858			goto out;
1859		}
1860		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1861
1862		if (bpf_sk_storage_clone(sk, newsk)) {
1863			sk_free_unlock_clone(newsk);
1864			newsk = NULL;
1865			goto out;
1866		}
1867
1868		newsk->sk_err	   = 0;
1869		newsk->sk_err_soft = 0;
1870		newsk->sk_priority = 0;
1871		newsk->sk_incoming_cpu = raw_smp_processor_id();
1872		if (likely(newsk->sk_net_refcnt))
1873			sock_inuse_add(sock_net(newsk), 1);
1874
1875		/*
1876		 * Before updating sk_refcnt, we must commit prior changes to memory
1877		 * (Documentation/RCU/rculist_nulls.txt for details)
 
 
 
1878		 */
1879		smp_wmb();
1880		refcount_set(&newsk->sk_refcnt, 2);
 
1881
1882		/*
1883		 * Increment the counter in the same struct proto as the master
1884		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1885		 * is the same as sk->sk_prot->socks, as this field was copied
1886		 * with memcpy).
1887		 *
1888		 * This _changes_ the previous behaviour, where
1889		 * tcp_create_openreq_child always was incrementing the
1890		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1891		 * to be taken into account in all callers. -acme
1892		 */
1893		sk_refcnt_debug_inc(newsk);
1894		sk_set_socket(newsk, NULL);
1895		RCU_INIT_POINTER(newsk->sk_wq, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896
1897		if (newsk->sk_prot->sockets_allocated)
1898			sk_sockets_allocated_inc(newsk);
 
 
 
 
1899
1900		if (sock_needs_netstamp(sk) &&
1901		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1902			net_enable_timestamp();
1903	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904out:
1905	return newsk;
1906}
1907EXPORT_SYMBOL_GPL(sk_clone_lock);
1908
1909void sk_free_unlock_clone(struct sock *sk)
1910{
1911	/* It is still raw copy of parent, so invalidate
1912	 * destructor and make plain sk_free() */
1913	sk->sk_destruct = NULL;
1914	bh_unlock_sock(sk);
1915	sk_free(sk);
1916}
1917EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1918
1919void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1920{
1921	u32 max_segs = 1;
1922
1923	sk_dst_set(sk, dst);
1924	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1925	if (sk->sk_route_caps & NETIF_F_GSO)
1926		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1927	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1928	if (sk_can_gso(sk)) {
1929		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1930			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1931		} else {
1932			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1933			sk->sk_gso_max_size = dst->dev->gso_max_size;
1934			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1935		}
1936	}
1937	sk->sk_gso_max_segs = max_segs;
1938}
1939EXPORT_SYMBOL_GPL(sk_setup_caps);
1940
1941/*
1942 *	Simple resource managers for sockets.
1943 */
1944
1945
1946/*
1947 * Write buffer destructor automatically called from kfree_skb.
1948 */
1949void sock_wfree(struct sk_buff *skb)
1950{
1951	struct sock *sk = skb->sk;
1952	unsigned int len = skb->truesize;
1953
1954	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1955		/*
1956		 * Keep a reference on sk_wmem_alloc, this will be released
1957		 * after sk_write_space() call
1958		 */
1959		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1960		sk->sk_write_space(sk);
1961		len = 1;
1962	}
1963	/*
1964	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1965	 * could not do because of in-flight packets
1966	 */
1967	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1968		__sk_free(sk);
1969}
1970EXPORT_SYMBOL(sock_wfree);
1971
1972/* This variant of sock_wfree() is used by TCP,
1973 * since it sets SOCK_USE_WRITE_QUEUE.
1974 */
1975void __sock_wfree(struct sk_buff *skb)
1976{
1977	struct sock *sk = skb->sk;
1978
1979	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1980		__sk_free(sk);
1981}
1982
1983void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1984{
1985	skb_orphan(skb);
1986	skb->sk = sk;
1987#ifdef CONFIG_INET
1988	if (unlikely(!sk_fullsock(sk))) {
1989		skb->destructor = sock_edemux;
1990		sock_hold(sk);
1991		return;
1992	}
1993#endif
1994	skb->destructor = sock_wfree;
1995	skb_set_hash_from_sk(skb, sk);
1996	/*
1997	 * We used to take a refcount on sk, but following operation
1998	 * is enough to guarantee sk_free() wont free this sock until
1999	 * all in-flight packets are completed
2000	 */
2001	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2002}
2003EXPORT_SYMBOL(skb_set_owner_w);
2004
2005static bool can_skb_orphan_partial(const struct sk_buff *skb)
2006{
2007#ifdef CONFIG_TLS_DEVICE
2008	/* Drivers depend on in-order delivery for crypto offload,
2009	 * partial orphan breaks out-of-order-OK logic.
2010	 */
2011	if (skb->decrypted)
2012		return false;
2013#endif
2014	return (skb->destructor == sock_wfree ||
2015		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2016}
2017
2018/* This helper is used by netem, as it can hold packets in its
2019 * delay queue. We want to allow the owner socket to send more
2020 * packets, as if they were already TX completed by a typical driver.
2021 * But we also want to keep skb->sk set because some packet schedulers
2022 * rely on it (sch_fq for example).
2023 */
2024void skb_orphan_partial(struct sk_buff *skb)
2025{
2026	if (skb_is_tcp_pure_ack(skb))
2027		return;
2028
2029	if (can_skb_orphan_partial(skb)) {
2030		struct sock *sk = skb->sk;
2031
2032		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2033			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2034			skb->destructor = sock_efree;
2035		}
2036	} else {
2037		skb_orphan(skb);
2038	}
2039}
2040EXPORT_SYMBOL(skb_orphan_partial);
2041
2042/*
2043 * Read buffer destructor automatically called from kfree_skb.
2044 */
2045void sock_rfree(struct sk_buff *skb)
2046{
2047	struct sock *sk = skb->sk;
2048	unsigned int len = skb->truesize;
2049
2050	atomic_sub(len, &sk->sk_rmem_alloc);
2051	sk_mem_uncharge(sk, len);
2052}
2053EXPORT_SYMBOL(sock_rfree);
2054
2055/*
2056 * Buffer destructor for skbs that are not used directly in read or write
2057 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2058 */
2059void sock_efree(struct sk_buff *skb)
2060{
2061	sock_put(skb->sk);
2062}
2063EXPORT_SYMBOL(sock_efree);
2064
 
 
 
 
 
 
 
 
 
 
 
 
2065kuid_t sock_i_uid(struct sock *sk)
2066{
2067	kuid_t uid;
2068
2069	read_lock_bh(&sk->sk_callback_lock);
2070	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2071	read_unlock_bh(&sk->sk_callback_lock);
2072	return uid;
2073}
2074EXPORT_SYMBOL(sock_i_uid);
2075
2076unsigned long sock_i_ino(struct sock *sk)
2077{
2078	unsigned long ino;
2079
2080	read_lock_bh(&sk->sk_callback_lock);
2081	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2082	read_unlock_bh(&sk->sk_callback_lock);
2083	return ino;
2084}
2085EXPORT_SYMBOL(sock_i_ino);
2086
2087/*
2088 * Allocate a skb from the socket's send buffer.
2089 */
2090struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2091			     gfp_t priority)
2092{
2093	if (force ||
2094	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2095		struct sk_buff *skb = alloc_skb(size, priority);
2096
2097		if (skb) {
2098			skb_set_owner_w(skb, sk);
2099			return skb;
2100		}
2101	}
2102	return NULL;
2103}
2104EXPORT_SYMBOL(sock_wmalloc);
2105
2106static void sock_ofree(struct sk_buff *skb)
2107{
2108	struct sock *sk = skb->sk;
2109
2110	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2111}
2112
2113struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2114			     gfp_t priority)
2115{
2116	struct sk_buff *skb;
2117
2118	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2119	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2120	    sysctl_optmem_max)
2121		return NULL;
2122
2123	skb = alloc_skb(size, priority);
2124	if (!skb)
2125		return NULL;
2126
2127	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2128	skb->sk = sk;
2129	skb->destructor = sock_ofree;
2130	return skb;
2131}
2132
2133/*
2134 * Allocate a memory block from the socket's option memory buffer.
2135 */
2136void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2137{
2138	if ((unsigned int)size <= sysctl_optmem_max &&
2139	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2140		void *mem;
2141		/* First do the add, to avoid the race if kmalloc
2142		 * might sleep.
2143		 */
2144		atomic_add(size, &sk->sk_omem_alloc);
2145		mem = kmalloc(size, priority);
2146		if (mem)
2147			return mem;
2148		atomic_sub(size, &sk->sk_omem_alloc);
2149	}
2150	return NULL;
2151}
2152EXPORT_SYMBOL(sock_kmalloc);
2153
2154/* Free an option memory block. Note, we actually want the inline
2155 * here as this allows gcc to detect the nullify and fold away the
2156 * condition entirely.
2157 */
2158static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2159				  const bool nullify)
2160{
2161	if (WARN_ON_ONCE(!mem))
2162		return;
2163	if (nullify)
2164		kzfree(mem);
2165	else
2166		kfree(mem);
2167	atomic_sub(size, &sk->sk_omem_alloc);
2168}
2169
2170void sock_kfree_s(struct sock *sk, void *mem, int size)
2171{
2172	__sock_kfree_s(sk, mem, size, false);
2173}
2174EXPORT_SYMBOL(sock_kfree_s);
2175
2176void sock_kzfree_s(struct sock *sk, void *mem, int size)
2177{
2178	__sock_kfree_s(sk, mem, size, true);
2179}
2180EXPORT_SYMBOL(sock_kzfree_s);
2181
2182/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2183   I think, these locks should be removed for datagram sockets.
2184 */
2185static long sock_wait_for_wmem(struct sock *sk, long timeo)
2186{
2187	DEFINE_WAIT(wait);
2188
2189	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2190	for (;;) {
2191		if (!timeo)
2192			break;
2193		if (signal_pending(current))
2194			break;
2195		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2196		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2197		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2198			break;
2199		if (sk->sk_shutdown & SEND_SHUTDOWN)
2200			break;
2201		if (sk->sk_err)
2202			break;
2203		timeo = schedule_timeout(timeo);
2204	}
2205	finish_wait(sk_sleep(sk), &wait);
2206	return timeo;
2207}
2208
2209
2210/*
2211 *	Generic send/receive buffer handlers
2212 */
2213
2214struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2215				     unsigned long data_len, int noblock,
2216				     int *errcode, int max_page_order)
2217{
2218	struct sk_buff *skb;
2219	long timeo;
2220	int err;
2221
2222	timeo = sock_sndtimeo(sk, noblock);
2223	for (;;) {
2224		err = sock_error(sk);
2225		if (err != 0)
2226			goto failure;
2227
2228		err = -EPIPE;
2229		if (sk->sk_shutdown & SEND_SHUTDOWN)
2230			goto failure;
2231
2232		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2233			break;
2234
2235		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2236		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2237		err = -EAGAIN;
2238		if (!timeo)
2239			goto failure;
2240		if (signal_pending(current))
2241			goto interrupted;
2242		timeo = sock_wait_for_wmem(sk, timeo);
2243	}
2244	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2245				   errcode, sk->sk_allocation);
2246	if (skb)
2247		skb_set_owner_w(skb, sk);
2248	return skb;
2249
2250interrupted:
2251	err = sock_intr_errno(timeo);
2252failure:
2253	*errcode = err;
2254	return NULL;
2255}
2256EXPORT_SYMBOL(sock_alloc_send_pskb);
2257
2258struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2259				    int noblock, int *errcode)
2260{
2261	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2262}
2263EXPORT_SYMBOL(sock_alloc_send_skb);
2264
2265int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2266		     struct sockcm_cookie *sockc)
2267{
2268	u32 tsflags;
2269
2270	switch (cmsg->cmsg_type) {
2271	case SO_MARK:
2272		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2273			return -EPERM;
2274		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2275			return -EINVAL;
2276		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2277		break;
2278	case SO_TIMESTAMPING_OLD:
2279		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2280			return -EINVAL;
2281
2282		tsflags = *(u32 *)CMSG_DATA(cmsg);
2283		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2284			return -EINVAL;
2285
2286		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2287		sockc->tsflags |= tsflags;
2288		break;
2289	case SCM_TXTIME:
2290		if (!sock_flag(sk, SOCK_TXTIME))
2291			return -EINVAL;
2292		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2293			return -EINVAL;
2294		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2295		break;
2296	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2297	case SCM_RIGHTS:
2298	case SCM_CREDENTIALS:
2299		break;
2300	default:
2301		return -EINVAL;
2302	}
2303	return 0;
2304}
2305EXPORT_SYMBOL(__sock_cmsg_send);
2306
2307int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2308		   struct sockcm_cookie *sockc)
2309{
2310	struct cmsghdr *cmsg;
2311	int ret;
2312
2313	for_each_cmsghdr(cmsg, msg) {
2314		if (!CMSG_OK(msg, cmsg))
2315			return -EINVAL;
2316		if (cmsg->cmsg_level != SOL_SOCKET)
2317			continue;
2318		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2319		if (ret)
2320			return ret;
2321	}
2322	return 0;
2323}
2324EXPORT_SYMBOL(sock_cmsg_send);
2325
2326static void sk_enter_memory_pressure(struct sock *sk)
2327{
2328	if (!sk->sk_prot->enter_memory_pressure)
2329		return;
2330
2331	sk->sk_prot->enter_memory_pressure(sk);
2332}
2333
2334static void sk_leave_memory_pressure(struct sock *sk)
2335{
2336	if (sk->sk_prot->leave_memory_pressure) {
2337		sk->sk_prot->leave_memory_pressure(sk);
2338	} else {
2339		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2340
2341		if (memory_pressure && READ_ONCE(*memory_pressure))
2342			WRITE_ONCE(*memory_pressure, 0);
2343	}
2344}
2345
2346/* On 32bit arches, an skb frag is limited to 2^15 */
2347#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2348DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2349
2350/**
2351 * skb_page_frag_refill - check that a page_frag contains enough room
2352 * @sz: minimum size of the fragment we want to get
2353 * @pfrag: pointer to page_frag
2354 * @gfp: priority for memory allocation
2355 *
2356 * Note: While this allocator tries to use high order pages, there is
2357 * no guarantee that allocations succeed. Therefore, @sz MUST be
2358 * less or equal than PAGE_SIZE.
2359 */
2360bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2361{
2362	if (pfrag->page) {
2363		if (page_ref_count(pfrag->page) == 1) {
2364			pfrag->offset = 0;
2365			return true;
2366		}
2367		if (pfrag->offset + sz <= pfrag->size)
2368			return true;
2369		put_page(pfrag->page);
2370	}
2371
2372	pfrag->offset = 0;
2373	if (SKB_FRAG_PAGE_ORDER &&
2374	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2375		/* Avoid direct reclaim but allow kswapd to wake */
2376		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2377					  __GFP_COMP | __GFP_NOWARN |
2378					  __GFP_NORETRY,
2379					  SKB_FRAG_PAGE_ORDER);
2380		if (likely(pfrag->page)) {
2381			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2382			return true;
2383		}
2384	}
2385	pfrag->page = alloc_page(gfp);
2386	if (likely(pfrag->page)) {
2387		pfrag->size = PAGE_SIZE;
2388		return true;
2389	}
2390	return false;
2391}
2392EXPORT_SYMBOL(skb_page_frag_refill);
2393
2394bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2395{
2396	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2397		return true;
2398
2399	sk_enter_memory_pressure(sk);
2400	sk_stream_moderate_sndbuf(sk);
2401	return false;
2402}
2403EXPORT_SYMBOL(sk_page_frag_refill);
2404
2405static void __lock_sock(struct sock *sk)
2406	__releases(&sk->sk_lock.slock)
2407	__acquires(&sk->sk_lock.slock)
2408{
2409	DEFINE_WAIT(wait);
2410
2411	for (;;) {
2412		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2413					TASK_UNINTERRUPTIBLE);
2414		spin_unlock_bh(&sk->sk_lock.slock);
2415		schedule();
2416		spin_lock_bh(&sk->sk_lock.slock);
2417		if (!sock_owned_by_user(sk))
2418			break;
2419	}
2420	finish_wait(&sk->sk_lock.wq, &wait);
2421}
2422
2423void __release_sock(struct sock *sk)
2424	__releases(&sk->sk_lock.slock)
2425	__acquires(&sk->sk_lock.slock)
2426{
2427	struct sk_buff *skb, *next;
2428
2429	while ((skb = sk->sk_backlog.head) != NULL) {
2430		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2431
2432		spin_unlock_bh(&sk->sk_lock.slock);
2433
2434		do {
2435			next = skb->next;
2436			prefetch(next);
2437			WARN_ON_ONCE(skb_dst_is_noref(skb));
2438			skb_mark_not_on_list(skb);
2439			sk_backlog_rcv(sk, skb);
2440
2441			cond_resched();
2442
2443			skb = next;
2444		} while (skb != NULL);
2445
2446		spin_lock_bh(&sk->sk_lock.slock);
2447	}
2448
2449	/*
2450	 * Doing the zeroing here guarantee we can not loop forever
2451	 * while a wild producer attempts to flood us.
2452	 */
2453	sk->sk_backlog.len = 0;
2454}
2455
2456void __sk_flush_backlog(struct sock *sk)
2457{
2458	spin_lock_bh(&sk->sk_lock.slock);
2459	__release_sock(sk);
2460	spin_unlock_bh(&sk->sk_lock.slock);
2461}
2462
2463/**
2464 * sk_wait_data - wait for data to arrive at sk_receive_queue
2465 * @sk:    sock to wait on
2466 * @timeo: for how long
2467 * @skb:   last skb seen on sk_receive_queue
2468 *
2469 * Now socket state including sk->sk_err is changed only under lock,
2470 * hence we may omit checks after joining wait queue.
2471 * We check receive queue before schedule() only as optimization;
2472 * it is very likely that release_sock() added new data.
2473 */
2474int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2475{
2476	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2477	int rc;
2478
2479	add_wait_queue(sk_sleep(sk), &wait);
2480	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2481	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2482	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2483	remove_wait_queue(sk_sleep(sk), &wait);
2484	return rc;
2485}
2486EXPORT_SYMBOL(sk_wait_data);
2487
2488/**
2489 *	__sk_mem_raise_allocated - increase memory_allocated
2490 *	@sk: socket
2491 *	@size: memory size to allocate
2492 *	@amt: pages to allocate
2493 *	@kind: allocation type
2494 *
2495 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2496 */
2497int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2498{
2499	struct proto *prot = sk->sk_prot;
2500	long allocated = sk_memory_allocated_add(sk, amt);
2501	bool charged = true;
2502
2503	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2504	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2505		goto suppress_allocation;
2506
2507	/* Under limit. */
2508	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2509		sk_leave_memory_pressure(sk);
2510		return 1;
2511	}
2512
2513	/* Under pressure. */
2514	if (allocated > sk_prot_mem_limits(sk, 1))
2515		sk_enter_memory_pressure(sk);
2516
2517	/* Over hard limit. */
2518	if (allocated > sk_prot_mem_limits(sk, 2))
2519		goto suppress_allocation;
2520
2521	/* guarantee minimum buffer size under pressure */
2522	if (kind == SK_MEM_RECV) {
2523		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2524			return 1;
2525
2526	} else { /* SK_MEM_SEND */
2527		int wmem0 = sk_get_wmem0(sk, prot);
2528
2529		if (sk->sk_type == SOCK_STREAM) {
2530			if (sk->sk_wmem_queued < wmem0)
2531				return 1;
2532		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2533				return 1;
2534		}
2535	}
2536
2537	if (sk_has_memory_pressure(sk)) {
2538		u64 alloc;
2539
2540		if (!sk_under_memory_pressure(sk))
2541			return 1;
2542		alloc = sk_sockets_allocated_read_positive(sk);
2543		if (sk_prot_mem_limits(sk, 2) > alloc *
2544		    sk_mem_pages(sk->sk_wmem_queued +
2545				 atomic_read(&sk->sk_rmem_alloc) +
2546				 sk->sk_forward_alloc))
2547			return 1;
2548	}
2549
2550suppress_allocation:
2551
2552	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2553		sk_stream_moderate_sndbuf(sk);
2554
2555		/* Fail only if socket is _under_ its sndbuf.
2556		 * In this case we cannot block, so that we have to fail.
2557		 */
2558		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2559			return 1;
2560	}
2561
2562	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2563		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2564
2565	sk_memory_allocated_sub(sk, amt);
2566
2567	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2568		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2569
2570	return 0;
2571}
2572EXPORT_SYMBOL(__sk_mem_raise_allocated);
2573
2574/**
2575 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2576 *	@sk: socket
2577 *	@size: memory size to allocate
2578 *	@kind: allocation type
2579 *
2580 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2581 *	rmem allocation. This function assumes that protocols which have
2582 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2583 */
2584int __sk_mem_schedule(struct sock *sk, int size, int kind)
2585{
2586	int ret, amt = sk_mem_pages(size);
2587
2588	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2589	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2590	if (!ret)
2591		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2592	return ret;
2593}
2594EXPORT_SYMBOL(__sk_mem_schedule);
2595
2596/**
2597 *	__sk_mem_reduce_allocated - reclaim memory_allocated
2598 *	@sk: socket
2599 *	@amount: number of quanta
2600 *
2601 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2602 */
2603void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2604{
2605	sk_memory_allocated_sub(sk, amount);
2606
2607	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2608		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2609
2610	if (sk_under_memory_pressure(sk) &&
2611	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2612		sk_leave_memory_pressure(sk);
2613}
2614EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2615
2616/**
2617 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2618 *	@sk: socket
2619 *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2620 */
2621void __sk_mem_reclaim(struct sock *sk, int amount)
2622{
2623	amount >>= SK_MEM_QUANTUM_SHIFT;
2624	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2625	__sk_mem_reduce_allocated(sk, amount);
2626}
2627EXPORT_SYMBOL(__sk_mem_reclaim);
2628
2629int sk_set_peek_off(struct sock *sk, int val)
2630{
2631	sk->sk_peek_off = val;
2632	return 0;
2633}
2634EXPORT_SYMBOL_GPL(sk_set_peek_off);
2635
2636/*
2637 * Set of default routines for initialising struct proto_ops when
2638 * the protocol does not support a particular function. In certain
2639 * cases where it makes no sense for a protocol to have a "do nothing"
2640 * function, some default processing is provided.
2641 */
2642
2643int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2644{
2645	return -EOPNOTSUPP;
2646}
2647EXPORT_SYMBOL(sock_no_bind);
2648
2649int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2650		    int len, int flags)
2651{
2652	return -EOPNOTSUPP;
2653}
2654EXPORT_SYMBOL(sock_no_connect);
2655
2656int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2657{
2658	return -EOPNOTSUPP;
2659}
2660EXPORT_SYMBOL(sock_no_socketpair);
2661
2662int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2663		   bool kern)
2664{
2665	return -EOPNOTSUPP;
2666}
2667EXPORT_SYMBOL(sock_no_accept);
2668
2669int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2670		    int peer)
2671{
2672	return -EOPNOTSUPP;
2673}
2674EXPORT_SYMBOL(sock_no_getname);
2675
2676int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2677{
2678	return -EOPNOTSUPP;
2679}
2680EXPORT_SYMBOL(sock_no_ioctl);
2681
2682int sock_no_listen(struct socket *sock, int backlog)
2683{
2684	return -EOPNOTSUPP;
2685}
2686EXPORT_SYMBOL(sock_no_listen);
2687
2688int sock_no_shutdown(struct socket *sock, int how)
2689{
2690	return -EOPNOTSUPP;
2691}
2692EXPORT_SYMBOL(sock_no_shutdown);
2693
2694int sock_no_setsockopt(struct socket *sock, int level, int optname,
2695		    char __user *optval, unsigned int optlen)
2696{
2697	return -EOPNOTSUPP;
2698}
2699EXPORT_SYMBOL(sock_no_setsockopt);
2700
2701int sock_no_getsockopt(struct socket *sock, int level, int optname,
2702		    char __user *optval, int __user *optlen)
2703{
2704	return -EOPNOTSUPP;
2705}
2706EXPORT_SYMBOL(sock_no_getsockopt);
2707
2708int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2709{
2710	return -EOPNOTSUPP;
2711}
2712EXPORT_SYMBOL(sock_no_sendmsg);
2713
2714int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2715{
2716	return -EOPNOTSUPP;
2717}
2718EXPORT_SYMBOL(sock_no_sendmsg_locked);
2719
2720int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2721		    int flags)
2722{
2723	return -EOPNOTSUPP;
2724}
2725EXPORT_SYMBOL(sock_no_recvmsg);
2726
2727int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2728{
2729	/* Mirror missing mmap method error code */
2730	return -ENODEV;
2731}
2732EXPORT_SYMBOL(sock_no_mmap);
2733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2734ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2735{
2736	ssize_t res;
2737	struct msghdr msg = {.msg_flags = flags};
2738	struct kvec iov;
2739	char *kaddr = kmap(page);
2740	iov.iov_base = kaddr + offset;
2741	iov.iov_len = size;
2742	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2743	kunmap(page);
2744	return res;
2745}
2746EXPORT_SYMBOL(sock_no_sendpage);
2747
2748ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2749				int offset, size_t size, int flags)
2750{
2751	ssize_t res;
2752	struct msghdr msg = {.msg_flags = flags};
2753	struct kvec iov;
2754	char *kaddr = kmap(page);
2755
2756	iov.iov_base = kaddr + offset;
2757	iov.iov_len = size;
2758	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2759	kunmap(page);
2760	return res;
2761}
2762EXPORT_SYMBOL(sock_no_sendpage_locked);
2763
2764/*
2765 *	Default Socket Callbacks
2766 */
2767
2768static void sock_def_wakeup(struct sock *sk)
2769{
2770	struct socket_wq *wq;
2771
2772	rcu_read_lock();
2773	wq = rcu_dereference(sk->sk_wq);
2774	if (skwq_has_sleeper(wq))
2775		wake_up_interruptible_all(&wq->wait);
2776	rcu_read_unlock();
2777}
2778
2779static void sock_def_error_report(struct sock *sk)
2780{
2781	struct socket_wq *wq;
2782
2783	rcu_read_lock();
2784	wq = rcu_dereference(sk->sk_wq);
2785	if (skwq_has_sleeper(wq))
2786		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2787	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2788	rcu_read_unlock();
2789}
2790
2791static void sock_def_readable(struct sock *sk)
2792{
2793	struct socket_wq *wq;
2794
2795	rcu_read_lock();
2796	wq = rcu_dereference(sk->sk_wq);
2797	if (skwq_has_sleeper(wq))
2798		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2799						EPOLLRDNORM | EPOLLRDBAND);
2800	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2801	rcu_read_unlock();
2802}
2803
2804static void sock_def_write_space(struct sock *sk)
2805{
2806	struct socket_wq *wq;
2807
2808	rcu_read_lock();
2809
2810	/* Do not wake up a writer until he can make "significant"
2811	 * progress.  --DaveM
2812	 */
2813	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2814		wq = rcu_dereference(sk->sk_wq);
2815		if (skwq_has_sleeper(wq))
2816			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2817						EPOLLWRNORM | EPOLLWRBAND);
2818
2819		/* Should agree with poll, otherwise some programs break */
2820		if (sock_writeable(sk))
2821			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2822	}
2823
2824	rcu_read_unlock();
2825}
2826
2827static void sock_def_destruct(struct sock *sk)
2828{
2829}
2830
2831void sk_send_sigurg(struct sock *sk)
2832{
2833	if (sk->sk_socket && sk->sk_socket->file)
2834		if (send_sigurg(&sk->sk_socket->file->f_owner))
2835			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2836}
2837EXPORT_SYMBOL(sk_send_sigurg);
2838
2839void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2840		    unsigned long expires)
2841{
2842	if (!mod_timer(timer, expires))
2843		sock_hold(sk);
2844}
2845EXPORT_SYMBOL(sk_reset_timer);
2846
2847void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2848{
2849	if (del_timer(timer))
2850		__sock_put(sk);
2851}
2852EXPORT_SYMBOL(sk_stop_timer);
2853
 
 
 
 
 
 
 
2854void sock_init_data(struct socket *sock, struct sock *sk)
2855{
2856	sk_init_common(sk);
2857	sk->sk_send_head	=	NULL;
2858
2859	timer_setup(&sk->sk_timer, NULL, 0);
2860
2861	sk->sk_allocation	=	GFP_KERNEL;
2862	sk->sk_rcvbuf		=	sysctl_rmem_default;
2863	sk->sk_sndbuf		=	sysctl_wmem_default;
2864	sk->sk_state		=	TCP_CLOSE;
2865	sk_set_socket(sk, sock);
2866
2867	sock_set_flag(sk, SOCK_ZAPPED);
2868
2869	if (sock) {
2870		sk->sk_type	=	sock->type;
2871		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2872		sock->sk	=	sk;
2873		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2874	} else {
2875		RCU_INIT_POINTER(sk->sk_wq, NULL);
2876		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2877	}
2878
2879	rwlock_init(&sk->sk_callback_lock);
2880	if (sk->sk_kern_sock)
2881		lockdep_set_class_and_name(
2882			&sk->sk_callback_lock,
2883			af_kern_callback_keys + sk->sk_family,
2884			af_family_kern_clock_key_strings[sk->sk_family]);
2885	else
2886		lockdep_set_class_and_name(
2887			&sk->sk_callback_lock,
2888			af_callback_keys + sk->sk_family,
2889			af_family_clock_key_strings[sk->sk_family]);
2890
2891	sk->sk_state_change	=	sock_def_wakeup;
2892	sk->sk_data_ready	=	sock_def_readable;
2893	sk->sk_write_space	=	sock_def_write_space;
2894	sk->sk_error_report	=	sock_def_error_report;
2895	sk->sk_destruct		=	sock_def_destruct;
2896
2897	sk->sk_frag.page	=	NULL;
2898	sk->sk_frag.offset	=	0;
2899	sk->sk_peek_off		=	-1;
2900
2901	sk->sk_peer_pid 	=	NULL;
2902	sk->sk_peer_cred	=	NULL;
 
 
2903	sk->sk_write_pending	=	0;
2904	sk->sk_rcvlowat		=	1;
2905	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2906	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2907
2908	sk->sk_stamp = SK_DEFAULT_STAMP;
2909#if BITS_PER_LONG==32
2910	seqlock_init(&sk->sk_stamp_seq);
2911#endif
2912	atomic_set(&sk->sk_zckey, 0);
2913
2914#ifdef CONFIG_NET_RX_BUSY_POLL
2915	sk->sk_napi_id		=	0;
2916	sk->sk_ll_usec		=	sysctl_net_busy_read;
2917#endif
2918
2919	sk->sk_max_pacing_rate = ~0UL;
2920	sk->sk_pacing_rate = ~0UL;
2921	sk->sk_pacing_shift = 10;
2922	sk->sk_incoming_cpu = -1;
2923
2924	sk_rx_queue_clear(sk);
2925	/*
2926	 * Before updating sk_refcnt, we must commit prior changes to memory
2927	 * (Documentation/RCU/rculist_nulls.txt for details)
2928	 */
2929	smp_wmb();
2930	refcount_set(&sk->sk_refcnt, 1);
2931	atomic_set(&sk->sk_drops, 0);
2932}
2933EXPORT_SYMBOL(sock_init_data);
2934
2935void lock_sock_nested(struct sock *sk, int subclass)
2936{
2937	might_sleep();
2938	spin_lock_bh(&sk->sk_lock.slock);
2939	if (sk->sk_lock.owned)
2940		__lock_sock(sk);
2941	sk->sk_lock.owned = 1;
2942	spin_unlock(&sk->sk_lock.slock);
2943	/*
2944	 * The sk_lock has mutex_lock() semantics here:
2945	 */
2946	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2947	local_bh_enable();
2948}
2949EXPORT_SYMBOL(lock_sock_nested);
2950
2951void release_sock(struct sock *sk)
2952{
2953	spin_lock_bh(&sk->sk_lock.slock);
2954	if (sk->sk_backlog.tail)
2955		__release_sock(sk);
2956
2957	/* Warning : release_cb() might need to release sk ownership,
2958	 * ie call sock_release_ownership(sk) before us.
2959	 */
2960	if (sk->sk_prot->release_cb)
2961		sk->sk_prot->release_cb(sk);
2962
2963	sock_release_ownership(sk);
2964	if (waitqueue_active(&sk->sk_lock.wq))
2965		wake_up(&sk->sk_lock.wq);
2966	spin_unlock_bh(&sk->sk_lock.slock);
2967}
2968EXPORT_SYMBOL(release_sock);
2969
2970/**
2971 * lock_sock_fast - fast version of lock_sock
2972 * @sk: socket
2973 *
2974 * This version should be used for very small section, where process wont block
2975 * return false if fast path is taken:
2976 *
2977 *   sk_lock.slock locked, owned = 0, BH disabled
2978 *
2979 * return true if slow path is taken:
2980 *
2981 *   sk_lock.slock unlocked, owned = 1, BH enabled
2982 */
2983bool lock_sock_fast(struct sock *sk)
2984{
2985	might_sleep();
2986	spin_lock_bh(&sk->sk_lock.slock);
2987
2988	if (!sk->sk_lock.owned)
2989		/*
2990		 * Note : We must disable BH
2991		 */
2992		return false;
2993
2994	__lock_sock(sk);
2995	sk->sk_lock.owned = 1;
2996	spin_unlock(&sk->sk_lock.slock);
2997	/*
2998	 * The sk_lock has mutex_lock() semantics here:
2999	 */
3000	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
 
3001	local_bh_enable();
3002	return true;
3003}
3004EXPORT_SYMBOL(lock_sock_fast);
3005
3006int sock_gettstamp(struct socket *sock, void __user *userstamp,
3007		   bool timeval, bool time32)
3008{
3009	struct sock *sk = sock->sk;
3010	struct timespec64 ts;
3011
3012	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3013	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3014	if (ts.tv_sec == -1)
3015		return -ENOENT;
3016	if (ts.tv_sec == 0) {
3017		ktime_t kt = ktime_get_real();
3018		sock_write_timestamp(sk, kt);;
3019		ts = ktime_to_timespec64(kt);
3020	}
3021
3022	if (timeval)
3023		ts.tv_nsec /= 1000;
3024
3025#ifdef CONFIG_COMPAT_32BIT_TIME
3026	if (time32)
3027		return put_old_timespec32(&ts, userstamp);
3028#endif
3029#ifdef CONFIG_SPARC64
3030	/* beware of padding in sparc64 timeval */
3031	if (timeval && !in_compat_syscall()) {
3032		struct __kernel_old_timeval __user tv = {
3033			.tv_sec = ts.tv_sec,
3034			.tv_usec = ts.tv_nsec,
3035		};
3036		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3037			return -EFAULT;
3038		return 0;
3039	}
3040#endif
3041	return put_timespec64(&ts, userstamp);
3042}
3043EXPORT_SYMBOL(sock_gettstamp);
3044
3045void sock_enable_timestamp(struct sock *sk, int flag)
3046{
3047	if (!sock_flag(sk, flag)) {
3048		unsigned long previous_flags = sk->sk_flags;
3049
3050		sock_set_flag(sk, flag);
3051		/*
3052		 * we just set one of the two flags which require net
3053		 * time stamping, but time stamping might have been on
3054		 * already because of the other one
3055		 */
3056		if (sock_needs_netstamp(sk) &&
3057		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3058			net_enable_timestamp();
3059	}
3060}
3061
3062int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3063		       int level, int type)
3064{
3065	struct sock_exterr_skb *serr;
3066	struct sk_buff *skb;
3067	int copied, err;
3068
3069	err = -EAGAIN;
3070	skb = sock_dequeue_err_skb(sk);
3071	if (skb == NULL)
3072		goto out;
3073
3074	copied = skb->len;
3075	if (copied > len) {
3076		msg->msg_flags |= MSG_TRUNC;
3077		copied = len;
3078	}
3079	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3080	if (err)
3081		goto out_free_skb;
3082
3083	sock_recv_timestamp(msg, sk, skb);
3084
3085	serr = SKB_EXT_ERR(skb);
3086	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3087
3088	msg->msg_flags |= MSG_ERRQUEUE;
3089	err = copied;
3090
3091out_free_skb:
3092	kfree_skb(skb);
3093out:
3094	return err;
3095}
3096EXPORT_SYMBOL(sock_recv_errqueue);
3097
3098/*
3099 *	Get a socket option on an socket.
3100 *
3101 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3102 *	asynchronous errors should be reported by getsockopt. We assume
3103 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3104 */
3105int sock_common_getsockopt(struct socket *sock, int level, int optname,
3106			   char __user *optval, int __user *optlen)
3107{
3108	struct sock *sk = sock->sk;
3109
3110	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3111}
3112EXPORT_SYMBOL(sock_common_getsockopt);
3113
3114#ifdef CONFIG_COMPAT
3115int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3116				  char __user *optval, int __user *optlen)
3117{
3118	struct sock *sk = sock->sk;
3119
3120	if (sk->sk_prot->compat_getsockopt != NULL)
3121		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3122						      optval, optlen);
3123	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3124}
3125EXPORT_SYMBOL(compat_sock_common_getsockopt);
3126#endif
3127
3128int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3129			int flags)
3130{
3131	struct sock *sk = sock->sk;
3132	int addr_len = 0;
3133	int err;
3134
3135	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3136				   flags & ~MSG_DONTWAIT, &addr_len);
3137	if (err >= 0)
3138		msg->msg_namelen = addr_len;
3139	return err;
3140}
3141EXPORT_SYMBOL(sock_common_recvmsg);
3142
3143/*
3144 *	Set socket options on an inet socket.
3145 */
3146int sock_common_setsockopt(struct socket *sock, int level, int optname,
3147			   char __user *optval, unsigned int optlen)
3148{
3149	struct sock *sk = sock->sk;
3150
3151	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3152}
3153EXPORT_SYMBOL(sock_common_setsockopt);
3154
3155#ifdef CONFIG_COMPAT
3156int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3157				  char __user *optval, unsigned int optlen)
3158{
3159	struct sock *sk = sock->sk;
3160
3161	if (sk->sk_prot->compat_setsockopt != NULL)
3162		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3163						      optval, optlen);
3164	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3165}
3166EXPORT_SYMBOL(compat_sock_common_setsockopt);
3167#endif
3168
3169void sk_common_release(struct sock *sk)
3170{
3171	if (sk->sk_prot->destroy)
3172		sk->sk_prot->destroy(sk);
3173
3174	/*
3175	 * Observation: when sock_common_release is called, processes have
3176	 * no access to socket. But net still has.
3177	 * Step one, detach it from networking:
3178	 *
3179	 * A. Remove from hash tables.
3180	 */
3181
3182	sk->sk_prot->unhash(sk);
3183
3184	/*
3185	 * In this point socket cannot receive new packets, but it is possible
3186	 * that some packets are in flight because some CPU runs receiver and
3187	 * did hash table lookup before we unhashed socket. They will achieve
3188	 * receive queue and will be purged by socket destructor.
3189	 *
3190	 * Also we still have packets pending on receive queue and probably,
3191	 * our own packets waiting in device queues. sock_destroy will drain
3192	 * receive queue, but transmitted packets will delay socket destruction
3193	 * until the last reference will be released.
3194	 */
3195
3196	sock_orphan(sk);
3197
3198	xfrm_sk_free_policy(sk);
3199
3200	sk_refcnt_debug_release(sk);
3201
3202	sock_put(sk);
3203}
3204EXPORT_SYMBOL(sk_common_release);
3205
3206void sk_get_meminfo(const struct sock *sk, u32 *mem)
3207{
3208	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3209
3210	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3211	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3212	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3213	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3214	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3215	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3216	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3217	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3218	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3219}
3220
3221#ifdef CONFIG_PROC_FS
3222#define PROTO_INUSE_NR	64	/* should be enough for the first time */
3223struct prot_inuse {
3224	int val[PROTO_INUSE_NR];
3225};
3226
3227static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3228
3229void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3230{
3231	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3232}
3233EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3234
3235int sock_prot_inuse_get(struct net *net, struct proto *prot)
3236{
3237	int cpu, idx = prot->inuse_idx;
3238	int res = 0;
3239
3240	for_each_possible_cpu(cpu)
3241		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3242
3243	return res >= 0 ? res : 0;
3244}
3245EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3246
3247static void sock_inuse_add(struct net *net, int val)
3248{
3249	this_cpu_add(*net->core.sock_inuse, val);
3250}
3251
3252int sock_inuse_get(struct net *net)
3253{
3254	int cpu, res = 0;
3255
3256	for_each_possible_cpu(cpu)
3257		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3258
3259	return res;
3260}
3261
3262EXPORT_SYMBOL_GPL(sock_inuse_get);
3263
3264static int __net_init sock_inuse_init_net(struct net *net)
3265{
3266	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3267	if (net->core.prot_inuse == NULL)
3268		return -ENOMEM;
3269
3270	net->core.sock_inuse = alloc_percpu(int);
3271	if (net->core.sock_inuse == NULL)
3272		goto out;
3273
3274	return 0;
3275
3276out:
3277	free_percpu(net->core.prot_inuse);
3278	return -ENOMEM;
3279}
3280
3281static void __net_exit sock_inuse_exit_net(struct net *net)
3282{
3283	free_percpu(net->core.prot_inuse);
3284	free_percpu(net->core.sock_inuse);
3285}
3286
3287static struct pernet_operations net_inuse_ops = {
3288	.init = sock_inuse_init_net,
3289	.exit = sock_inuse_exit_net,
3290};
3291
3292static __init int net_inuse_init(void)
3293{
3294	if (register_pernet_subsys(&net_inuse_ops))
3295		panic("Cannot initialize net inuse counters");
3296
3297	return 0;
3298}
3299
3300core_initcall(net_inuse_init);
3301
3302static int assign_proto_idx(struct proto *prot)
3303{
3304	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3305
3306	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3307		pr_err("PROTO_INUSE_NR exhausted\n");
3308		return -ENOSPC;
3309	}
3310
3311	set_bit(prot->inuse_idx, proto_inuse_idx);
3312	return 0;
3313}
3314
3315static void release_proto_idx(struct proto *prot)
3316{
3317	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3318		clear_bit(prot->inuse_idx, proto_inuse_idx);
3319}
3320#else
3321static inline int assign_proto_idx(struct proto *prot)
3322{
3323	return 0;
3324}
3325
3326static inline void release_proto_idx(struct proto *prot)
3327{
3328}
3329
3330static void sock_inuse_add(struct net *net, int val)
3331{
3332}
3333#endif
3334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3335static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3336{
3337	if (!rsk_prot)
3338		return;
3339	kfree(rsk_prot->slab_name);
3340	rsk_prot->slab_name = NULL;
3341	kmem_cache_destroy(rsk_prot->slab);
3342	rsk_prot->slab = NULL;
3343}
3344
3345static int req_prot_init(const struct proto *prot)
3346{
3347	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3348
3349	if (!rsk_prot)
3350		return 0;
3351
3352	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3353					prot->name);
3354	if (!rsk_prot->slab_name)
3355		return -ENOMEM;
3356
3357	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3358					   rsk_prot->obj_size, 0,
3359					   SLAB_ACCOUNT | prot->slab_flags,
3360					   NULL);
3361
3362	if (!rsk_prot->slab) {
3363		pr_crit("%s: Can't create request sock SLAB cache!\n",
3364			prot->name);
3365		return -ENOMEM;
3366	}
3367	return 0;
3368}
3369
3370int proto_register(struct proto *prot, int alloc_slab)
3371{
3372	int ret = -ENOBUFS;
3373
3374	if (alloc_slab) {
3375		prot->slab = kmem_cache_create_usercopy(prot->name,
3376					prot->obj_size, 0,
3377					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3378					prot->slab_flags,
3379					prot->useroffset, prot->usersize,
3380					NULL);
3381
3382		if (prot->slab == NULL) {
3383			pr_crit("%s: Can't create sock SLAB cache!\n",
3384				prot->name);
3385			goto out;
3386		}
3387
3388		if (req_prot_init(prot))
3389			goto out_free_request_sock_slab;
3390
3391		if (prot->twsk_prot != NULL) {
3392			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3393
3394			if (prot->twsk_prot->twsk_slab_name == NULL)
3395				goto out_free_request_sock_slab;
3396
3397			prot->twsk_prot->twsk_slab =
3398				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3399						  prot->twsk_prot->twsk_obj_size,
3400						  0,
3401						  SLAB_ACCOUNT |
3402						  prot->slab_flags,
3403						  NULL);
3404			if (prot->twsk_prot->twsk_slab == NULL)
3405				goto out_free_timewait_sock_slab_name;
3406		}
3407	}
3408
3409	mutex_lock(&proto_list_mutex);
3410	ret = assign_proto_idx(prot);
3411	if (ret) {
3412		mutex_unlock(&proto_list_mutex);
3413		goto out_free_timewait_sock_slab_name;
3414	}
3415	list_add(&prot->node, &proto_list);
3416	mutex_unlock(&proto_list_mutex);
3417	return ret;
3418
3419out_free_timewait_sock_slab_name:
3420	if (alloc_slab && prot->twsk_prot)
3421		kfree(prot->twsk_prot->twsk_slab_name);
3422out_free_request_sock_slab:
3423	if (alloc_slab) {
3424		req_prot_cleanup(prot->rsk_prot);
3425
3426		kmem_cache_destroy(prot->slab);
3427		prot->slab = NULL;
3428	}
3429out:
3430	return ret;
3431}
3432EXPORT_SYMBOL(proto_register);
3433
3434void proto_unregister(struct proto *prot)
3435{
3436	mutex_lock(&proto_list_mutex);
3437	release_proto_idx(prot);
3438	list_del(&prot->node);
3439	mutex_unlock(&proto_list_mutex);
3440
3441	kmem_cache_destroy(prot->slab);
3442	prot->slab = NULL;
3443
3444	req_prot_cleanup(prot->rsk_prot);
3445
3446	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3447		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3448		kfree(prot->twsk_prot->twsk_slab_name);
3449		prot->twsk_prot->twsk_slab = NULL;
3450	}
3451}
3452EXPORT_SYMBOL(proto_unregister);
3453
3454int sock_load_diag_module(int family, int protocol)
3455{
3456	if (!protocol) {
3457		if (!sock_is_registered(family))
3458			return -ENOENT;
3459
3460		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3461				      NETLINK_SOCK_DIAG, family);
3462	}
3463
3464#ifdef CONFIG_INET
3465	if (family == AF_INET &&
3466	    protocol != IPPROTO_RAW &&
 
3467	    !rcu_access_pointer(inet_protos[protocol]))
3468		return -ENOENT;
3469#endif
3470
3471	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3472			      NETLINK_SOCK_DIAG, family, protocol);
3473}
3474EXPORT_SYMBOL(sock_load_diag_module);
3475
3476#ifdef CONFIG_PROC_FS
3477static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3478	__acquires(proto_list_mutex)
3479{
3480	mutex_lock(&proto_list_mutex);
3481	return seq_list_start_head(&proto_list, *pos);
3482}
3483
3484static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3485{
3486	return seq_list_next(v, &proto_list, pos);
3487}
3488
3489static void proto_seq_stop(struct seq_file *seq, void *v)
3490	__releases(proto_list_mutex)
3491{
3492	mutex_unlock(&proto_list_mutex);
3493}
3494
3495static char proto_method_implemented(const void *method)
3496{
3497	return method == NULL ? 'n' : 'y';
3498}
3499static long sock_prot_memory_allocated(struct proto *proto)
3500{
3501	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3502}
3503
3504static const char *sock_prot_memory_pressure(struct proto *proto)
3505{
3506	return proto->memory_pressure != NULL ?
3507	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3508}
3509
3510static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3511{
3512
3513	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3514			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3515		   proto->name,
3516		   proto->obj_size,
3517		   sock_prot_inuse_get(seq_file_net(seq), proto),
3518		   sock_prot_memory_allocated(proto),
3519		   sock_prot_memory_pressure(proto),
3520		   proto->max_header,
3521		   proto->slab == NULL ? "no" : "yes",
3522		   module_name(proto->owner),
3523		   proto_method_implemented(proto->close),
3524		   proto_method_implemented(proto->connect),
3525		   proto_method_implemented(proto->disconnect),
3526		   proto_method_implemented(proto->accept),
3527		   proto_method_implemented(proto->ioctl),
3528		   proto_method_implemented(proto->init),
3529		   proto_method_implemented(proto->destroy),
3530		   proto_method_implemented(proto->shutdown),
3531		   proto_method_implemented(proto->setsockopt),
3532		   proto_method_implemented(proto->getsockopt),
3533		   proto_method_implemented(proto->sendmsg),
3534		   proto_method_implemented(proto->recvmsg),
3535		   proto_method_implemented(proto->sendpage),
3536		   proto_method_implemented(proto->bind),
3537		   proto_method_implemented(proto->backlog_rcv),
3538		   proto_method_implemented(proto->hash),
3539		   proto_method_implemented(proto->unhash),
3540		   proto_method_implemented(proto->get_port),
3541		   proto_method_implemented(proto->enter_memory_pressure));
3542}
3543
3544static int proto_seq_show(struct seq_file *seq, void *v)
3545{
3546	if (v == &proto_list)
3547		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3548			   "protocol",
3549			   "size",
3550			   "sockets",
3551			   "memory",
3552			   "press",
3553			   "maxhdr",
3554			   "slab",
3555			   "module",
3556			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3557	else
3558		proto_seq_printf(seq, list_entry(v, struct proto, node));
3559	return 0;
3560}
3561
3562static const struct seq_operations proto_seq_ops = {
3563	.start  = proto_seq_start,
3564	.next   = proto_seq_next,
3565	.stop   = proto_seq_stop,
3566	.show   = proto_seq_show,
3567};
3568
3569static __net_init int proto_init_net(struct net *net)
3570{
3571	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3572			sizeof(struct seq_net_private)))
3573		return -ENOMEM;
3574
3575	return 0;
3576}
3577
3578static __net_exit void proto_exit_net(struct net *net)
3579{
3580	remove_proc_entry("protocols", net->proc_net);
3581}
3582
3583
3584static __net_initdata struct pernet_operations proto_net_ops = {
3585	.init = proto_init_net,
3586	.exit = proto_exit_net,
3587};
3588
3589static int __init proto_init(void)
3590{
3591	return register_pernet_subsys(&proto_net_ops);
3592}
3593
3594subsys_initcall(proto_init);
3595
3596#endif /* PROC_FS */
3597
3598#ifdef CONFIG_NET_RX_BUSY_POLL
3599bool sk_busy_loop_end(void *p, unsigned long start_time)
3600{
3601	struct sock *sk = p;
3602
3603	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3604	       sk_busy_loop_timeout(sk, start_time);
3605}
3606EXPORT_SYMBOL(sk_busy_loop_end);
3607#endif /* CONFIG_NET_RX_BUSY_POLL */