Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <asm/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/init.h>
111#include <linux/highmem.h>
112#include <linux/user_namespace.h>
113#include <linux/static_key.h>
114#include <linux/memcontrol.h>
115#include <linux/prefetch.h>
116#include <linux/compat.h>
117
118#include <linux/uaccess.h>
119
120#include <linux/netdevice.h>
121#include <net/protocol.h>
122#include <linux/skbuff.h>
123#include <net/net_namespace.h>
124#include <net/request_sock.h>
125#include <net/sock.h>
126#include <linux/net_tstamp.h>
127#include <net/xfrm.h>
128#include <linux/ipsec.h>
129#include <net/cls_cgroup.h>
130#include <net/netprio_cgroup.h>
131#include <linux/sock_diag.h>
132
133#include <linux/filter.h>
134#include <net/sock_reuseport.h>
135#include <net/bpf_sk_storage.h>
136
137#include <trace/events/sock.h>
138
139#include <net/tcp.h>
140#include <net/busy_poll.h>
141
142#include <linux/ethtool.h>
143
144static DEFINE_MUTEX(proto_list_mutex);
145static LIST_HEAD(proto_list);
146
147static void sock_inuse_add(struct net *net, int val);
148
149/**
150 * sk_ns_capable - General socket capability test
151 * @sk: Socket to use a capability on or through
152 * @user_ns: The user namespace of the capability to use
153 * @cap: The capability to use
154 *
155 * Test to see if the opener of the socket had when the socket was
156 * created and the current process has the capability @cap in the user
157 * namespace @user_ns.
158 */
159bool sk_ns_capable(const struct sock *sk,
160 struct user_namespace *user_ns, int cap)
161{
162 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
163 ns_capable(user_ns, cap);
164}
165EXPORT_SYMBOL(sk_ns_capable);
166
167/**
168 * sk_capable - Socket global capability test
169 * @sk: Socket to use a capability on or through
170 * @cap: The global capability to use
171 *
172 * Test to see if the opener of the socket had when the socket was
173 * created and the current process has the capability @cap in all user
174 * namespaces.
175 */
176bool sk_capable(const struct sock *sk, int cap)
177{
178 return sk_ns_capable(sk, &init_user_ns, cap);
179}
180EXPORT_SYMBOL(sk_capable);
181
182/**
183 * sk_net_capable - Network namespace socket capability test
184 * @sk: Socket to use a capability on or through
185 * @cap: The capability to use
186 *
187 * Test to see if the opener of the socket had when the socket was created
188 * and the current process has the capability @cap over the network namespace
189 * the socket is a member of.
190 */
191bool sk_net_capable(const struct sock *sk, int cap)
192{
193 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
194}
195EXPORT_SYMBOL(sk_net_capable);
196
197/*
198 * Each address family might have different locking rules, so we have
199 * one slock key per address family and separate keys for internal and
200 * userspace sockets.
201 */
202static struct lock_class_key af_family_keys[AF_MAX];
203static struct lock_class_key af_family_kern_keys[AF_MAX];
204static struct lock_class_key af_family_slock_keys[AF_MAX];
205static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
206
207/*
208 * Make lock validator output more readable. (we pre-construct these
209 * strings build-time, so that runtime initialization of socket
210 * locks is fast):
211 */
212
213#define _sock_locks(x) \
214 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
215 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
216 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
217 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
218 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
219 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
220 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
221 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
222 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
223 x "27" , x "28" , x "AF_CAN" , \
224 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
225 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
226 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
227 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
228 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
229 x "AF_MAX"
230
231static const char *const af_family_key_strings[AF_MAX+1] = {
232 _sock_locks("sk_lock-")
233};
234static const char *const af_family_slock_key_strings[AF_MAX+1] = {
235 _sock_locks("slock-")
236};
237static const char *const af_family_clock_key_strings[AF_MAX+1] = {
238 _sock_locks("clock-")
239};
240
241static const char *const af_family_kern_key_strings[AF_MAX+1] = {
242 _sock_locks("k-sk_lock-")
243};
244static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-slock-")
246};
247static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
248 _sock_locks("k-clock-")
249};
250static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
251 _sock_locks("rlock-")
252};
253static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
254 _sock_locks("wlock-")
255};
256static const char *const af_family_elock_key_strings[AF_MAX+1] = {
257 _sock_locks("elock-")
258};
259
260/*
261 * sk_callback_lock and sk queues locking rules are per-address-family,
262 * so split the lock classes by using a per-AF key:
263 */
264static struct lock_class_key af_callback_keys[AF_MAX];
265static struct lock_class_key af_rlock_keys[AF_MAX];
266static struct lock_class_key af_wlock_keys[AF_MAX];
267static struct lock_class_key af_elock_keys[AF_MAX];
268static struct lock_class_key af_kern_callback_keys[AF_MAX];
269
270/* Run time adjustable parameters. */
271__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
272EXPORT_SYMBOL(sysctl_wmem_max);
273__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
274EXPORT_SYMBOL(sysctl_rmem_max);
275__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
276__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
277
278/* Maximal space eaten by iovec or ancillary data plus some space */
279int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
280EXPORT_SYMBOL(sysctl_optmem_max);
281
282int sysctl_tstamp_allow_data __read_mostly = 1;
283
284DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
285EXPORT_SYMBOL_GPL(memalloc_socks_key);
286
287/**
288 * sk_set_memalloc - sets %SOCK_MEMALLOC
289 * @sk: socket to set it on
290 *
291 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
292 * It's the responsibility of the admin to adjust min_free_kbytes
293 * to meet the requirements
294 */
295void sk_set_memalloc(struct sock *sk)
296{
297 sock_set_flag(sk, SOCK_MEMALLOC);
298 sk->sk_allocation |= __GFP_MEMALLOC;
299 static_branch_inc(&memalloc_socks_key);
300}
301EXPORT_SYMBOL_GPL(sk_set_memalloc);
302
303void sk_clear_memalloc(struct sock *sk)
304{
305 sock_reset_flag(sk, SOCK_MEMALLOC);
306 sk->sk_allocation &= ~__GFP_MEMALLOC;
307 static_branch_dec(&memalloc_socks_key);
308
309 /*
310 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
311 * progress of swapping. SOCK_MEMALLOC may be cleared while
312 * it has rmem allocations due to the last swapfile being deactivated
313 * but there is a risk that the socket is unusable due to exceeding
314 * the rmem limits. Reclaim the reserves and obey rmem limits again.
315 */
316 sk_mem_reclaim(sk);
317}
318EXPORT_SYMBOL_GPL(sk_clear_memalloc);
319
320int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
321{
322 int ret;
323 unsigned int noreclaim_flag;
324
325 /* these should have been dropped before queueing */
326 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
327
328 noreclaim_flag = memalloc_noreclaim_save();
329 ret = sk->sk_backlog_rcv(sk, skb);
330 memalloc_noreclaim_restore(noreclaim_flag);
331
332 return ret;
333}
334EXPORT_SYMBOL(__sk_backlog_rcv);
335
336void sk_error_report(struct sock *sk)
337{
338 sk->sk_error_report(sk);
339
340 switch (sk->sk_family) {
341 case AF_INET:
342 fallthrough;
343 case AF_INET6:
344 trace_inet_sk_error_report(sk);
345 break;
346 default:
347 break;
348 }
349}
350EXPORT_SYMBOL(sk_error_report);
351
352static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
353{
354 struct __kernel_sock_timeval tv;
355
356 if (timeo == MAX_SCHEDULE_TIMEOUT) {
357 tv.tv_sec = 0;
358 tv.tv_usec = 0;
359 } else {
360 tv.tv_sec = timeo / HZ;
361 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
362 }
363
364 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
365 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
366 *(struct old_timeval32 *)optval = tv32;
367 return sizeof(tv32);
368 }
369
370 if (old_timeval) {
371 struct __kernel_old_timeval old_tv;
372 old_tv.tv_sec = tv.tv_sec;
373 old_tv.tv_usec = tv.tv_usec;
374 *(struct __kernel_old_timeval *)optval = old_tv;
375 return sizeof(old_tv);
376 }
377
378 *(struct __kernel_sock_timeval *)optval = tv;
379 return sizeof(tv);
380}
381
382static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
383 bool old_timeval)
384{
385 struct __kernel_sock_timeval tv;
386
387 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
388 struct old_timeval32 tv32;
389
390 if (optlen < sizeof(tv32))
391 return -EINVAL;
392
393 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
394 return -EFAULT;
395 tv.tv_sec = tv32.tv_sec;
396 tv.tv_usec = tv32.tv_usec;
397 } else if (old_timeval) {
398 struct __kernel_old_timeval old_tv;
399
400 if (optlen < sizeof(old_tv))
401 return -EINVAL;
402 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
403 return -EFAULT;
404 tv.tv_sec = old_tv.tv_sec;
405 tv.tv_usec = old_tv.tv_usec;
406 } else {
407 if (optlen < sizeof(tv))
408 return -EINVAL;
409 if (copy_from_sockptr(&tv, optval, sizeof(tv)))
410 return -EFAULT;
411 }
412 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
413 return -EDOM;
414
415 if (tv.tv_sec < 0) {
416 static int warned __read_mostly;
417
418 *timeo_p = 0;
419 if (warned < 10 && net_ratelimit()) {
420 warned++;
421 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
422 __func__, current->comm, task_pid_nr(current));
423 }
424 return 0;
425 }
426 *timeo_p = MAX_SCHEDULE_TIMEOUT;
427 if (tv.tv_sec == 0 && tv.tv_usec == 0)
428 return 0;
429 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
430 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
431 return 0;
432}
433
434static bool sock_needs_netstamp(const struct sock *sk)
435{
436 switch (sk->sk_family) {
437 case AF_UNSPEC:
438 case AF_UNIX:
439 return false;
440 default:
441 return true;
442 }
443}
444
445static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
446{
447 if (sk->sk_flags & flags) {
448 sk->sk_flags &= ~flags;
449 if (sock_needs_netstamp(sk) &&
450 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
451 net_disable_timestamp();
452 }
453}
454
455
456int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
457{
458 unsigned long flags;
459 struct sk_buff_head *list = &sk->sk_receive_queue;
460
461 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
462 atomic_inc(&sk->sk_drops);
463 trace_sock_rcvqueue_full(sk, skb);
464 return -ENOMEM;
465 }
466
467 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
468 atomic_inc(&sk->sk_drops);
469 return -ENOBUFS;
470 }
471
472 skb->dev = NULL;
473 skb_set_owner_r(skb, sk);
474
475 /* we escape from rcu protected region, make sure we dont leak
476 * a norefcounted dst
477 */
478 skb_dst_force(skb);
479
480 spin_lock_irqsave(&list->lock, flags);
481 sock_skb_set_dropcount(sk, skb);
482 __skb_queue_tail(list, skb);
483 spin_unlock_irqrestore(&list->lock, flags);
484
485 if (!sock_flag(sk, SOCK_DEAD))
486 sk->sk_data_ready(sk);
487 return 0;
488}
489EXPORT_SYMBOL(__sock_queue_rcv_skb);
490
491int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
492{
493 int err;
494
495 err = sk_filter(sk, skb);
496 if (err)
497 return err;
498
499 return __sock_queue_rcv_skb(sk, skb);
500}
501EXPORT_SYMBOL(sock_queue_rcv_skb);
502
503int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
504 const int nested, unsigned int trim_cap, bool refcounted)
505{
506 int rc = NET_RX_SUCCESS;
507
508 if (sk_filter_trim_cap(sk, skb, trim_cap))
509 goto discard_and_relse;
510
511 skb->dev = NULL;
512
513 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
514 atomic_inc(&sk->sk_drops);
515 goto discard_and_relse;
516 }
517 if (nested)
518 bh_lock_sock_nested(sk);
519 else
520 bh_lock_sock(sk);
521 if (!sock_owned_by_user(sk)) {
522 /*
523 * trylock + unlock semantics:
524 */
525 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
526
527 rc = sk_backlog_rcv(sk, skb);
528
529 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
530 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
531 bh_unlock_sock(sk);
532 atomic_inc(&sk->sk_drops);
533 goto discard_and_relse;
534 }
535
536 bh_unlock_sock(sk);
537out:
538 if (refcounted)
539 sock_put(sk);
540 return rc;
541discard_and_relse:
542 kfree_skb(skb);
543 goto out;
544}
545EXPORT_SYMBOL(__sk_receive_skb);
546
547INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
548 u32));
549INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
550 u32));
551struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
552{
553 struct dst_entry *dst = __sk_dst_get(sk);
554
555 if (dst && dst->obsolete &&
556 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
557 dst, cookie) == NULL) {
558 sk_tx_queue_clear(sk);
559 sk->sk_dst_pending_confirm = 0;
560 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
561 dst_release(dst);
562 return NULL;
563 }
564
565 return dst;
566}
567EXPORT_SYMBOL(__sk_dst_check);
568
569struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
570{
571 struct dst_entry *dst = sk_dst_get(sk);
572
573 if (dst && dst->obsolete &&
574 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
575 dst, cookie) == NULL) {
576 sk_dst_reset(sk);
577 dst_release(dst);
578 return NULL;
579 }
580
581 return dst;
582}
583EXPORT_SYMBOL(sk_dst_check);
584
585static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
586{
587 int ret = -ENOPROTOOPT;
588#ifdef CONFIG_NETDEVICES
589 struct net *net = sock_net(sk);
590
591 /* Sorry... */
592 ret = -EPERM;
593 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
594 goto out;
595
596 ret = -EINVAL;
597 if (ifindex < 0)
598 goto out;
599
600 sk->sk_bound_dev_if = ifindex;
601 if (sk->sk_prot->rehash)
602 sk->sk_prot->rehash(sk);
603 sk_dst_reset(sk);
604
605 ret = 0;
606
607out:
608#endif
609
610 return ret;
611}
612
613int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
614{
615 int ret;
616
617 if (lock_sk)
618 lock_sock(sk);
619 ret = sock_bindtoindex_locked(sk, ifindex);
620 if (lock_sk)
621 release_sock(sk);
622
623 return ret;
624}
625EXPORT_SYMBOL(sock_bindtoindex);
626
627static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
628{
629 int ret = -ENOPROTOOPT;
630#ifdef CONFIG_NETDEVICES
631 struct net *net = sock_net(sk);
632 char devname[IFNAMSIZ];
633 int index;
634
635 ret = -EINVAL;
636 if (optlen < 0)
637 goto out;
638
639 /* Bind this socket to a particular device like "eth0",
640 * as specified in the passed interface name. If the
641 * name is "" or the option length is zero the socket
642 * is not bound.
643 */
644 if (optlen > IFNAMSIZ - 1)
645 optlen = IFNAMSIZ - 1;
646 memset(devname, 0, sizeof(devname));
647
648 ret = -EFAULT;
649 if (copy_from_sockptr(devname, optval, optlen))
650 goto out;
651
652 index = 0;
653 if (devname[0] != '\0') {
654 struct net_device *dev;
655
656 rcu_read_lock();
657 dev = dev_get_by_name_rcu(net, devname);
658 if (dev)
659 index = dev->ifindex;
660 rcu_read_unlock();
661 ret = -ENODEV;
662 if (!dev)
663 goto out;
664 }
665
666 return sock_bindtoindex(sk, index, true);
667out:
668#endif
669
670 return ret;
671}
672
673static int sock_getbindtodevice(struct sock *sk, char __user *optval,
674 int __user *optlen, int len)
675{
676 int ret = -ENOPROTOOPT;
677#ifdef CONFIG_NETDEVICES
678 struct net *net = sock_net(sk);
679 char devname[IFNAMSIZ];
680
681 if (sk->sk_bound_dev_if == 0) {
682 len = 0;
683 goto zero;
684 }
685
686 ret = -EINVAL;
687 if (len < IFNAMSIZ)
688 goto out;
689
690 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
691 if (ret)
692 goto out;
693
694 len = strlen(devname) + 1;
695
696 ret = -EFAULT;
697 if (copy_to_user(optval, devname, len))
698 goto out;
699
700zero:
701 ret = -EFAULT;
702 if (put_user(len, optlen))
703 goto out;
704
705 ret = 0;
706
707out:
708#endif
709
710 return ret;
711}
712
713bool sk_mc_loop(struct sock *sk)
714{
715 if (dev_recursion_level())
716 return false;
717 if (!sk)
718 return true;
719 switch (sk->sk_family) {
720 case AF_INET:
721 return inet_sk(sk)->mc_loop;
722#if IS_ENABLED(CONFIG_IPV6)
723 case AF_INET6:
724 return inet6_sk(sk)->mc_loop;
725#endif
726 }
727 WARN_ON_ONCE(1);
728 return true;
729}
730EXPORT_SYMBOL(sk_mc_loop);
731
732void sock_set_reuseaddr(struct sock *sk)
733{
734 lock_sock(sk);
735 sk->sk_reuse = SK_CAN_REUSE;
736 release_sock(sk);
737}
738EXPORT_SYMBOL(sock_set_reuseaddr);
739
740void sock_set_reuseport(struct sock *sk)
741{
742 lock_sock(sk);
743 sk->sk_reuseport = true;
744 release_sock(sk);
745}
746EXPORT_SYMBOL(sock_set_reuseport);
747
748void sock_no_linger(struct sock *sk)
749{
750 lock_sock(sk);
751 sk->sk_lingertime = 0;
752 sock_set_flag(sk, SOCK_LINGER);
753 release_sock(sk);
754}
755EXPORT_SYMBOL(sock_no_linger);
756
757void sock_set_priority(struct sock *sk, u32 priority)
758{
759 lock_sock(sk);
760 sk->sk_priority = priority;
761 release_sock(sk);
762}
763EXPORT_SYMBOL(sock_set_priority);
764
765void sock_set_sndtimeo(struct sock *sk, s64 secs)
766{
767 lock_sock(sk);
768 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
769 sk->sk_sndtimeo = secs * HZ;
770 else
771 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
772 release_sock(sk);
773}
774EXPORT_SYMBOL(sock_set_sndtimeo);
775
776static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
777{
778 if (val) {
779 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
780 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
781 sock_set_flag(sk, SOCK_RCVTSTAMP);
782 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
783 } else {
784 sock_reset_flag(sk, SOCK_RCVTSTAMP);
785 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
786 }
787}
788
789void sock_enable_timestamps(struct sock *sk)
790{
791 lock_sock(sk);
792 __sock_set_timestamps(sk, true, false, true);
793 release_sock(sk);
794}
795EXPORT_SYMBOL(sock_enable_timestamps);
796
797void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
798{
799 switch (optname) {
800 case SO_TIMESTAMP_OLD:
801 __sock_set_timestamps(sk, valbool, false, false);
802 break;
803 case SO_TIMESTAMP_NEW:
804 __sock_set_timestamps(sk, valbool, true, false);
805 break;
806 case SO_TIMESTAMPNS_OLD:
807 __sock_set_timestamps(sk, valbool, false, true);
808 break;
809 case SO_TIMESTAMPNS_NEW:
810 __sock_set_timestamps(sk, valbool, true, true);
811 break;
812 }
813}
814
815static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
816{
817 struct net *net = sock_net(sk);
818 struct net_device *dev = NULL;
819 bool match = false;
820 int *vclock_index;
821 int i, num;
822
823 if (sk->sk_bound_dev_if)
824 dev = dev_get_by_index(net, sk->sk_bound_dev_if);
825
826 if (!dev) {
827 pr_err("%s: sock not bind to device\n", __func__);
828 return -EOPNOTSUPP;
829 }
830
831 num = ethtool_get_phc_vclocks(dev, &vclock_index);
832 for (i = 0; i < num; i++) {
833 if (*(vclock_index + i) == phc_index) {
834 match = true;
835 break;
836 }
837 }
838
839 if (num > 0)
840 kfree(vclock_index);
841
842 if (!match)
843 return -EINVAL;
844
845 sk->sk_bind_phc = phc_index;
846
847 return 0;
848}
849
850int sock_set_timestamping(struct sock *sk, int optname,
851 struct so_timestamping timestamping)
852{
853 int val = timestamping.flags;
854 int ret;
855
856 if (val & ~SOF_TIMESTAMPING_MASK)
857 return -EINVAL;
858
859 if (val & SOF_TIMESTAMPING_OPT_ID &&
860 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
861 if (sk->sk_protocol == IPPROTO_TCP &&
862 sk->sk_type == SOCK_STREAM) {
863 if ((1 << sk->sk_state) &
864 (TCPF_CLOSE | TCPF_LISTEN))
865 return -EINVAL;
866 sk->sk_tskey = tcp_sk(sk)->snd_una;
867 } else {
868 sk->sk_tskey = 0;
869 }
870 }
871
872 if (val & SOF_TIMESTAMPING_OPT_STATS &&
873 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
874 return -EINVAL;
875
876 if (val & SOF_TIMESTAMPING_BIND_PHC) {
877 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
878 if (ret)
879 return ret;
880 }
881
882 sk->sk_tsflags = val;
883 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
884
885 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
886 sock_enable_timestamp(sk,
887 SOCK_TIMESTAMPING_RX_SOFTWARE);
888 else
889 sock_disable_timestamp(sk,
890 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
891 return 0;
892}
893
894void sock_set_keepalive(struct sock *sk)
895{
896 lock_sock(sk);
897 if (sk->sk_prot->keepalive)
898 sk->sk_prot->keepalive(sk, true);
899 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
900 release_sock(sk);
901}
902EXPORT_SYMBOL(sock_set_keepalive);
903
904static void __sock_set_rcvbuf(struct sock *sk, int val)
905{
906 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
907 * as a negative value.
908 */
909 val = min_t(int, val, INT_MAX / 2);
910 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
911
912 /* We double it on the way in to account for "struct sk_buff" etc.
913 * overhead. Applications assume that the SO_RCVBUF setting they make
914 * will allow that much actual data to be received on that socket.
915 *
916 * Applications are unaware that "struct sk_buff" and other overheads
917 * allocate from the receive buffer during socket buffer allocation.
918 *
919 * And after considering the possible alternatives, returning the value
920 * we actually used in getsockopt is the most desirable behavior.
921 */
922 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
923}
924
925void sock_set_rcvbuf(struct sock *sk, int val)
926{
927 lock_sock(sk);
928 __sock_set_rcvbuf(sk, val);
929 release_sock(sk);
930}
931EXPORT_SYMBOL(sock_set_rcvbuf);
932
933static void __sock_set_mark(struct sock *sk, u32 val)
934{
935 if (val != sk->sk_mark) {
936 sk->sk_mark = val;
937 sk_dst_reset(sk);
938 }
939}
940
941void sock_set_mark(struct sock *sk, u32 val)
942{
943 lock_sock(sk);
944 __sock_set_mark(sk, val);
945 release_sock(sk);
946}
947EXPORT_SYMBOL(sock_set_mark);
948
949/*
950 * This is meant for all protocols to use and covers goings on
951 * at the socket level. Everything here is generic.
952 */
953
954int sock_setsockopt(struct socket *sock, int level, int optname,
955 sockptr_t optval, unsigned int optlen)
956{
957 struct so_timestamping timestamping;
958 struct sock_txtime sk_txtime;
959 struct sock *sk = sock->sk;
960 int val;
961 int valbool;
962 struct linger ling;
963 int ret = 0;
964
965 /*
966 * Options without arguments
967 */
968
969 if (optname == SO_BINDTODEVICE)
970 return sock_setbindtodevice(sk, optval, optlen);
971
972 if (optlen < sizeof(int))
973 return -EINVAL;
974
975 if (copy_from_sockptr(&val, optval, sizeof(val)))
976 return -EFAULT;
977
978 valbool = val ? 1 : 0;
979
980 lock_sock(sk);
981
982 switch (optname) {
983 case SO_DEBUG:
984 if (val && !capable(CAP_NET_ADMIN))
985 ret = -EACCES;
986 else
987 sock_valbool_flag(sk, SOCK_DBG, valbool);
988 break;
989 case SO_REUSEADDR:
990 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
991 break;
992 case SO_REUSEPORT:
993 sk->sk_reuseport = valbool;
994 break;
995 case SO_TYPE:
996 case SO_PROTOCOL:
997 case SO_DOMAIN:
998 case SO_ERROR:
999 ret = -ENOPROTOOPT;
1000 break;
1001 case SO_DONTROUTE:
1002 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1003 sk_dst_reset(sk);
1004 break;
1005 case SO_BROADCAST:
1006 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1007 break;
1008 case SO_SNDBUF:
1009 /* Don't error on this BSD doesn't and if you think
1010 * about it this is right. Otherwise apps have to
1011 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1012 * are treated in BSD as hints
1013 */
1014 val = min_t(u32, val, sysctl_wmem_max);
1015set_sndbuf:
1016 /* Ensure val * 2 fits into an int, to prevent max_t()
1017 * from treating it as a negative value.
1018 */
1019 val = min_t(int, val, INT_MAX / 2);
1020 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1021 WRITE_ONCE(sk->sk_sndbuf,
1022 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1023 /* Wake up sending tasks if we upped the value. */
1024 sk->sk_write_space(sk);
1025 break;
1026
1027 case SO_SNDBUFFORCE:
1028 if (!capable(CAP_NET_ADMIN)) {
1029 ret = -EPERM;
1030 break;
1031 }
1032
1033 /* No negative values (to prevent underflow, as val will be
1034 * multiplied by 2).
1035 */
1036 if (val < 0)
1037 val = 0;
1038 goto set_sndbuf;
1039
1040 case SO_RCVBUF:
1041 /* Don't error on this BSD doesn't and if you think
1042 * about it this is right. Otherwise apps have to
1043 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1044 * are treated in BSD as hints
1045 */
1046 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
1047 break;
1048
1049 case SO_RCVBUFFORCE:
1050 if (!capable(CAP_NET_ADMIN)) {
1051 ret = -EPERM;
1052 break;
1053 }
1054
1055 /* No negative values (to prevent underflow, as val will be
1056 * multiplied by 2).
1057 */
1058 __sock_set_rcvbuf(sk, max(val, 0));
1059 break;
1060
1061 case SO_KEEPALIVE:
1062 if (sk->sk_prot->keepalive)
1063 sk->sk_prot->keepalive(sk, valbool);
1064 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1065 break;
1066
1067 case SO_OOBINLINE:
1068 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1069 break;
1070
1071 case SO_NO_CHECK:
1072 sk->sk_no_check_tx = valbool;
1073 break;
1074
1075 case SO_PRIORITY:
1076 if ((val >= 0 && val <= 6) ||
1077 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1078 sk->sk_priority = val;
1079 else
1080 ret = -EPERM;
1081 break;
1082
1083 case SO_LINGER:
1084 if (optlen < sizeof(ling)) {
1085 ret = -EINVAL; /* 1003.1g */
1086 break;
1087 }
1088 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1089 ret = -EFAULT;
1090 break;
1091 }
1092 if (!ling.l_onoff)
1093 sock_reset_flag(sk, SOCK_LINGER);
1094 else {
1095#if (BITS_PER_LONG == 32)
1096 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1097 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1098 else
1099#endif
1100 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1101 sock_set_flag(sk, SOCK_LINGER);
1102 }
1103 break;
1104
1105 case SO_BSDCOMPAT:
1106 break;
1107
1108 case SO_PASSCRED:
1109 if (valbool)
1110 set_bit(SOCK_PASSCRED, &sock->flags);
1111 else
1112 clear_bit(SOCK_PASSCRED, &sock->flags);
1113 break;
1114
1115 case SO_TIMESTAMP_OLD:
1116 case SO_TIMESTAMP_NEW:
1117 case SO_TIMESTAMPNS_OLD:
1118 case SO_TIMESTAMPNS_NEW:
1119 sock_set_timestamp(sk, optname, valbool);
1120 break;
1121
1122 case SO_TIMESTAMPING_NEW:
1123 case SO_TIMESTAMPING_OLD:
1124 if (optlen == sizeof(timestamping)) {
1125 if (copy_from_sockptr(×tamping, optval,
1126 sizeof(timestamping))) {
1127 ret = -EFAULT;
1128 break;
1129 }
1130 } else {
1131 memset(×tamping, 0, sizeof(timestamping));
1132 timestamping.flags = val;
1133 }
1134 ret = sock_set_timestamping(sk, optname, timestamping);
1135 break;
1136
1137 case SO_RCVLOWAT:
1138 if (val < 0)
1139 val = INT_MAX;
1140 if (sock->ops->set_rcvlowat)
1141 ret = sock->ops->set_rcvlowat(sk, val);
1142 else
1143 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1144 break;
1145
1146 case SO_RCVTIMEO_OLD:
1147 case SO_RCVTIMEO_NEW:
1148 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1149 optlen, optname == SO_RCVTIMEO_OLD);
1150 break;
1151
1152 case SO_SNDTIMEO_OLD:
1153 case SO_SNDTIMEO_NEW:
1154 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1155 optlen, optname == SO_SNDTIMEO_OLD);
1156 break;
1157
1158 case SO_ATTACH_FILTER: {
1159 struct sock_fprog fprog;
1160
1161 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1162 if (!ret)
1163 ret = sk_attach_filter(&fprog, sk);
1164 break;
1165 }
1166 case SO_ATTACH_BPF:
1167 ret = -EINVAL;
1168 if (optlen == sizeof(u32)) {
1169 u32 ufd;
1170
1171 ret = -EFAULT;
1172 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1173 break;
1174
1175 ret = sk_attach_bpf(ufd, sk);
1176 }
1177 break;
1178
1179 case SO_ATTACH_REUSEPORT_CBPF: {
1180 struct sock_fprog fprog;
1181
1182 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1183 if (!ret)
1184 ret = sk_reuseport_attach_filter(&fprog, sk);
1185 break;
1186 }
1187 case SO_ATTACH_REUSEPORT_EBPF:
1188 ret = -EINVAL;
1189 if (optlen == sizeof(u32)) {
1190 u32 ufd;
1191
1192 ret = -EFAULT;
1193 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1194 break;
1195
1196 ret = sk_reuseport_attach_bpf(ufd, sk);
1197 }
1198 break;
1199
1200 case SO_DETACH_REUSEPORT_BPF:
1201 ret = reuseport_detach_prog(sk);
1202 break;
1203
1204 case SO_DETACH_FILTER:
1205 ret = sk_detach_filter(sk);
1206 break;
1207
1208 case SO_LOCK_FILTER:
1209 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1210 ret = -EPERM;
1211 else
1212 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1213 break;
1214
1215 case SO_PASSSEC:
1216 if (valbool)
1217 set_bit(SOCK_PASSSEC, &sock->flags);
1218 else
1219 clear_bit(SOCK_PASSSEC, &sock->flags);
1220 break;
1221 case SO_MARK:
1222 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1223 ret = -EPERM;
1224 break;
1225 }
1226
1227 __sock_set_mark(sk, val);
1228 break;
1229
1230 case SO_RXQ_OVFL:
1231 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1232 break;
1233
1234 case SO_WIFI_STATUS:
1235 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1236 break;
1237
1238 case SO_PEEK_OFF:
1239 if (sock->ops->set_peek_off)
1240 ret = sock->ops->set_peek_off(sk, val);
1241 else
1242 ret = -EOPNOTSUPP;
1243 break;
1244
1245 case SO_NOFCS:
1246 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1247 break;
1248
1249 case SO_SELECT_ERR_QUEUE:
1250 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1251 break;
1252
1253#ifdef CONFIG_NET_RX_BUSY_POLL
1254 case SO_BUSY_POLL:
1255 /* allow unprivileged users to decrease the value */
1256 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1257 ret = -EPERM;
1258 else {
1259 if (val < 0)
1260 ret = -EINVAL;
1261 else
1262 WRITE_ONCE(sk->sk_ll_usec, val);
1263 }
1264 break;
1265 case SO_PREFER_BUSY_POLL:
1266 if (valbool && !capable(CAP_NET_ADMIN))
1267 ret = -EPERM;
1268 else
1269 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1270 break;
1271 case SO_BUSY_POLL_BUDGET:
1272 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1273 ret = -EPERM;
1274 } else {
1275 if (val < 0 || val > U16_MAX)
1276 ret = -EINVAL;
1277 else
1278 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1279 }
1280 break;
1281#endif
1282
1283 case SO_MAX_PACING_RATE:
1284 {
1285 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1286
1287 if (sizeof(ulval) != sizeof(val) &&
1288 optlen >= sizeof(ulval) &&
1289 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1290 ret = -EFAULT;
1291 break;
1292 }
1293 if (ulval != ~0UL)
1294 cmpxchg(&sk->sk_pacing_status,
1295 SK_PACING_NONE,
1296 SK_PACING_NEEDED);
1297 sk->sk_max_pacing_rate = ulval;
1298 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1299 break;
1300 }
1301 case SO_INCOMING_CPU:
1302 WRITE_ONCE(sk->sk_incoming_cpu, val);
1303 break;
1304
1305 case SO_CNX_ADVICE:
1306 if (val == 1)
1307 dst_negative_advice(sk);
1308 break;
1309
1310 case SO_ZEROCOPY:
1311 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1312 if (!((sk->sk_type == SOCK_STREAM &&
1313 sk->sk_protocol == IPPROTO_TCP) ||
1314 (sk->sk_type == SOCK_DGRAM &&
1315 sk->sk_protocol == IPPROTO_UDP)))
1316 ret = -ENOTSUPP;
1317 } else if (sk->sk_family != PF_RDS) {
1318 ret = -ENOTSUPP;
1319 }
1320 if (!ret) {
1321 if (val < 0 || val > 1)
1322 ret = -EINVAL;
1323 else
1324 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1325 }
1326 break;
1327
1328 case SO_TXTIME:
1329 if (optlen != sizeof(struct sock_txtime)) {
1330 ret = -EINVAL;
1331 break;
1332 } else if (copy_from_sockptr(&sk_txtime, optval,
1333 sizeof(struct sock_txtime))) {
1334 ret = -EFAULT;
1335 break;
1336 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1337 ret = -EINVAL;
1338 break;
1339 }
1340 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1341 * scheduler has enough safe guards.
1342 */
1343 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1344 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1345 ret = -EPERM;
1346 break;
1347 }
1348 sock_valbool_flag(sk, SOCK_TXTIME, true);
1349 sk->sk_clockid = sk_txtime.clockid;
1350 sk->sk_txtime_deadline_mode =
1351 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1352 sk->sk_txtime_report_errors =
1353 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1354 break;
1355
1356 case SO_BINDTOIFINDEX:
1357 ret = sock_bindtoindex_locked(sk, val);
1358 break;
1359
1360 default:
1361 ret = -ENOPROTOOPT;
1362 break;
1363 }
1364 release_sock(sk);
1365 return ret;
1366}
1367EXPORT_SYMBOL(sock_setsockopt);
1368
1369static const struct cred *sk_get_peer_cred(struct sock *sk)
1370{
1371 const struct cred *cred;
1372
1373 spin_lock(&sk->sk_peer_lock);
1374 cred = get_cred(sk->sk_peer_cred);
1375 spin_unlock(&sk->sk_peer_lock);
1376
1377 return cred;
1378}
1379
1380static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1381 struct ucred *ucred)
1382{
1383 ucred->pid = pid_vnr(pid);
1384 ucred->uid = ucred->gid = -1;
1385 if (cred) {
1386 struct user_namespace *current_ns = current_user_ns();
1387
1388 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1389 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1390 }
1391}
1392
1393static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1394{
1395 struct user_namespace *user_ns = current_user_ns();
1396 int i;
1397
1398 for (i = 0; i < src->ngroups; i++)
1399 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1400 return -EFAULT;
1401
1402 return 0;
1403}
1404
1405int sock_getsockopt(struct socket *sock, int level, int optname,
1406 char __user *optval, int __user *optlen)
1407{
1408 struct sock *sk = sock->sk;
1409
1410 union {
1411 int val;
1412 u64 val64;
1413 unsigned long ulval;
1414 struct linger ling;
1415 struct old_timeval32 tm32;
1416 struct __kernel_old_timeval tm;
1417 struct __kernel_sock_timeval stm;
1418 struct sock_txtime txtime;
1419 struct so_timestamping timestamping;
1420 } v;
1421
1422 int lv = sizeof(int);
1423 int len;
1424
1425 if (get_user(len, optlen))
1426 return -EFAULT;
1427 if (len < 0)
1428 return -EINVAL;
1429
1430 memset(&v, 0, sizeof(v));
1431
1432 switch (optname) {
1433 case SO_DEBUG:
1434 v.val = sock_flag(sk, SOCK_DBG);
1435 break;
1436
1437 case SO_DONTROUTE:
1438 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1439 break;
1440
1441 case SO_BROADCAST:
1442 v.val = sock_flag(sk, SOCK_BROADCAST);
1443 break;
1444
1445 case SO_SNDBUF:
1446 v.val = sk->sk_sndbuf;
1447 break;
1448
1449 case SO_RCVBUF:
1450 v.val = sk->sk_rcvbuf;
1451 break;
1452
1453 case SO_REUSEADDR:
1454 v.val = sk->sk_reuse;
1455 break;
1456
1457 case SO_REUSEPORT:
1458 v.val = sk->sk_reuseport;
1459 break;
1460
1461 case SO_KEEPALIVE:
1462 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1463 break;
1464
1465 case SO_TYPE:
1466 v.val = sk->sk_type;
1467 break;
1468
1469 case SO_PROTOCOL:
1470 v.val = sk->sk_protocol;
1471 break;
1472
1473 case SO_DOMAIN:
1474 v.val = sk->sk_family;
1475 break;
1476
1477 case SO_ERROR:
1478 v.val = -sock_error(sk);
1479 if (v.val == 0)
1480 v.val = xchg(&sk->sk_err_soft, 0);
1481 break;
1482
1483 case SO_OOBINLINE:
1484 v.val = sock_flag(sk, SOCK_URGINLINE);
1485 break;
1486
1487 case SO_NO_CHECK:
1488 v.val = sk->sk_no_check_tx;
1489 break;
1490
1491 case SO_PRIORITY:
1492 v.val = sk->sk_priority;
1493 break;
1494
1495 case SO_LINGER:
1496 lv = sizeof(v.ling);
1497 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1498 v.ling.l_linger = sk->sk_lingertime / HZ;
1499 break;
1500
1501 case SO_BSDCOMPAT:
1502 break;
1503
1504 case SO_TIMESTAMP_OLD:
1505 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1506 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1507 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1508 break;
1509
1510 case SO_TIMESTAMPNS_OLD:
1511 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1512 break;
1513
1514 case SO_TIMESTAMP_NEW:
1515 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1516 break;
1517
1518 case SO_TIMESTAMPNS_NEW:
1519 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1520 break;
1521
1522 case SO_TIMESTAMPING_OLD:
1523 lv = sizeof(v.timestamping);
1524 v.timestamping.flags = sk->sk_tsflags;
1525 v.timestamping.bind_phc = sk->sk_bind_phc;
1526 break;
1527
1528 case SO_RCVTIMEO_OLD:
1529 case SO_RCVTIMEO_NEW:
1530 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1531 break;
1532
1533 case SO_SNDTIMEO_OLD:
1534 case SO_SNDTIMEO_NEW:
1535 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1536 break;
1537
1538 case SO_RCVLOWAT:
1539 v.val = sk->sk_rcvlowat;
1540 break;
1541
1542 case SO_SNDLOWAT:
1543 v.val = 1;
1544 break;
1545
1546 case SO_PASSCRED:
1547 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1548 break;
1549
1550 case SO_PEERCRED:
1551 {
1552 struct ucred peercred;
1553 if (len > sizeof(peercred))
1554 len = sizeof(peercred);
1555
1556 spin_lock(&sk->sk_peer_lock);
1557 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1558 spin_unlock(&sk->sk_peer_lock);
1559
1560 if (copy_to_user(optval, &peercred, len))
1561 return -EFAULT;
1562 goto lenout;
1563 }
1564
1565 case SO_PEERGROUPS:
1566 {
1567 const struct cred *cred;
1568 int ret, n;
1569
1570 cred = sk_get_peer_cred(sk);
1571 if (!cred)
1572 return -ENODATA;
1573
1574 n = cred->group_info->ngroups;
1575 if (len < n * sizeof(gid_t)) {
1576 len = n * sizeof(gid_t);
1577 put_cred(cred);
1578 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1579 }
1580 len = n * sizeof(gid_t);
1581
1582 ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1583 put_cred(cred);
1584 if (ret)
1585 return ret;
1586 goto lenout;
1587 }
1588
1589 case SO_PEERNAME:
1590 {
1591 char address[128];
1592
1593 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1594 if (lv < 0)
1595 return -ENOTCONN;
1596 if (lv < len)
1597 return -EINVAL;
1598 if (copy_to_user(optval, address, len))
1599 return -EFAULT;
1600 goto lenout;
1601 }
1602
1603 /* Dubious BSD thing... Probably nobody even uses it, but
1604 * the UNIX standard wants it for whatever reason... -DaveM
1605 */
1606 case SO_ACCEPTCONN:
1607 v.val = sk->sk_state == TCP_LISTEN;
1608 break;
1609
1610 case SO_PASSSEC:
1611 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1612 break;
1613
1614 case SO_PEERSEC:
1615 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1616
1617 case SO_MARK:
1618 v.val = sk->sk_mark;
1619 break;
1620
1621 case SO_RXQ_OVFL:
1622 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1623 break;
1624
1625 case SO_WIFI_STATUS:
1626 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1627 break;
1628
1629 case SO_PEEK_OFF:
1630 if (!sock->ops->set_peek_off)
1631 return -EOPNOTSUPP;
1632
1633 v.val = sk->sk_peek_off;
1634 break;
1635 case SO_NOFCS:
1636 v.val = sock_flag(sk, SOCK_NOFCS);
1637 break;
1638
1639 case SO_BINDTODEVICE:
1640 return sock_getbindtodevice(sk, optval, optlen, len);
1641
1642 case SO_GET_FILTER:
1643 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1644 if (len < 0)
1645 return len;
1646
1647 goto lenout;
1648
1649 case SO_LOCK_FILTER:
1650 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1651 break;
1652
1653 case SO_BPF_EXTENSIONS:
1654 v.val = bpf_tell_extensions();
1655 break;
1656
1657 case SO_SELECT_ERR_QUEUE:
1658 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1659 break;
1660
1661#ifdef CONFIG_NET_RX_BUSY_POLL
1662 case SO_BUSY_POLL:
1663 v.val = sk->sk_ll_usec;
1664 break;
1665 case SO_PREFER_BUSY_POLL:
1666 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1667 break;
1668#endif
1669
1670 case SO_MAX_PACING_RATE:
1671 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1672 lv = sizeof(v.ulval);
1673 v.ulval = sk->sk_max_pacing_rate;
1674 } else {
1675 /* 32bit version */
1676 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1677 }
1678 break;
1679
1680 case SO_INCOMING_CPU:
1681 v.val = READ_ONCE(sk->sk_incoming_cpu);
1682 break;
1683
1684 case SO_MEMINFO:
1685 {
1686 u32 meminfo[SK_MEMINFO_VARS];
1687
1688 sk_get_meminfo(sk, meminfo);
1689
1690 len = min_t(unsigned int, len, sizeof(meminfo));
1691 if (copy_to_user(optval, &meminfo, len))
1692 return -EFAULT;
1693
1694 goto lenout;
1695 }
1696
1697#ifdef CONFIG_NET_RX_BUSY_POLL
1698 case SO_INCOMING_NAPI_ID:
1699 v.val = READ_ONCE(sk->sk_napi_id);
1700
1701 /* aggregate non-NAPI IDs down to 0 */
1702 if (v.val < MIN_NAPI_ID)
1703 v.val = 0;
1704
1705 break;
1706#endif
1707
1708 case SO_COOKIE:
1709 lv = sizeof(u64);
1710 if (len < lv)
1711 return -EINVAL;
1712 v.val64 = sock_gen_cookie(sk);
1713 break;
1714
1715 case SO_ZEROCOPY:
1716 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1717 break;
1718
1719 case SO_TXTIME:
1720 lv = sizeof(v.txtime);
1721 v.txtime.clockid = sk->sk_clockid;
1722 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1723 SOF_TXTIME_DEADLINE_MODE : 0;
1724 v.txtime.flags |= sk->sk_txtime_report_errors ?
1725 SOF_TXTIME_REPORT_ERRORS : 0;
1726 break;
1727
1728 case SO_BINDTOIFINDEX:
1729 v.val = sk->sk_bound_dev_if;
1730 break;
1731
1732 case SO_NETNS_COOKIE:
1733 lv = sizeof(u64);
1734 if (len != lv)
1735 return -EINVAL;
1736 v.val64 = sock_net(sk)->net_cookie;
1737 break;
1738
1739 default:
1740 /* We implement the SO_SNDLOWAT etc to not be settable
1741 * (1003.1g 7).
1742 */
1743 return -ENOPROTOOPT;
1744 }
1745
1746 if (len > lv)
1747 len = lv;
1748 if (copy_to_user(optval, &v, len))
1749 return -EFAULT;
1750lenout:
1751 if (put_user(len, optlen))
1752 return -EFAULT;
1753 return 0;
1754}
1755
1756/*
1757 * Initialize an sk_lock.
1758 *
1759 * (We also register the sk_lock with the lock validator.)
1760 */
1761static inline void sock_lock_init(struct sock *sk)
1762{
1763 if (sk->sk_kern_sock)
1764 sock_lock_init_class_and_name(
1765 sk,
1766 af_family_kern_slock_key_strings[sk->sk_family],
1767 af_family_kern_slock_keys + sk->sk_family,
1768 af_family_kern_key_strings[sk->sk_family],
1769 af_family_kern_keys + sk->sk_family);
1770 else
1771 sock_lock_init_class_and_name(
1772 sk,
1773 af_family_slock_key_strings[sk->sk_family],
1774 af_family_slock_keys + sk->sk_family,
1775 af_family_key_strings[sk->sk_family],
1776 af_family_keys + sk->sk_family);
1777}
1778
1779/*
1780 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1781 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1782 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1783 */
1784static void sock_copy(struct sock *nsk, const struct sock *osk)
1785{
1786 const struct proto *prot = READ_ONCE(osk->sk_prot);
1787#ifdef CONFIG_SECURITY_NETWORK
1788 void *sptr = nsk->sk_security;
1789#endif
1790
1791 /* If we move sk_tx_queue_mapping out of the private section,
1792 * we must check if sk_tx_queue_clear() is called after
1793 * sock_copy() in sk_clone_lock().
1794 */
1795 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1796 offsetof(struct sock, sk_dontcopy_begin) ||
1797 offsetof(struct sock, sk_tx_queue_mapping) >=
1798 offsetof(struct sock, sk_dontcopy_end));
1799
1800 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1801
1802 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1803 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1804
1805#ifdef CONFIG_SECURITY_NETWORK
1806 nsk->sk_security = sptr;
1807 security_sk_clone(osk, nsk);
1808#endif
1809}
1810
1811static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1812 int family)
1813{
1814 struct sock *sk;
1815 struct kmem_cache *slab;
1816
1817 slab = prot->slab;
1818 if (slab != NULL) {
1819 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1820 if (!sk)
1821 return sk;
1822 if (want_init_on_alloc(priority))
1823 sk_prot_clear_nulls(sk, prot->obj_size);
1824 } else
1825 sk = kmalloc(prot->obj_size, priority);
1826
1827 if (sk != NULL) {
1828 if (security_sk_alloc(sk, family, priority))
1829 goto out_free;
1830
1831 if (!try_module_get(prot->owner))
1832 goto out_free_sec;
1833 }
1834
1835 return sk;
1836
1837out_free_sec:
1838 security_sk_free(sk);
1839out_free:
1840 if (slab != NULL)
1841 kmem_cache_free(slab, sk);
1842 else
1843 kfree(sk);
1844 return NULL;
1845}
1846
1847static void sk_prot_free(struct proto *prot, struct sock *sk)
1848{
1849 struct kmem_cache *slab;
1850 struct module *owner;
1851
1852 owner = prot->owner;
1853 slab = prot->slab;
1854
1855 cgroup_sk_free(&sk->sk_cgrp_data);
1856 mem_cgroup_sk_free(sk);
1857 security_sk_free(sk);
1858 if (slab != NULL)
1859 kmem_cache_free(slab, sk);
1860 else
1861 kfree(sk);
1862 module_put(owner);
1863}
1864
1865/**
1866 * sk_alloc - All socket objects are allocated here
1867 * @net: the applicable net namespace
1868 * @family: protocol family
1869 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1870 * @prot: struct proto associated with this new sock instance
1871 * @kern: is this to be a kernel socket?
1872 */
1873struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1874 struct proto *prot, int kern)
1875{
1876 struct sock *sk;
1877
1878 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1879 if (sk) {
1880 sk->sk_family = family;
1881 /*
1882 * See comment in struct sock definition to understand
1883 * why we need sk_prot_creator -acme
1884 */
1885 sk->sk_prot = sk->sk_prot_creator = prot;
1886 sk->sk_kern_sock = kern;
1887 sock_lock_init(sk);
1888 sk->sk_net_refcnt = kern ? 0 : 1;
1889 if (likely(sk->sk_net_refcnt)) {
1890 get_net(net);
1891 sock_inuse_add(net, 1);
1892 }
1893
1894 sock_net_set(sk, net);
1895 refcount_set(&sk->sk_wmem_alloc, 1);
1896
1897 mem_cgroup_sk_alloc(sk);
1898 cgroup_sk_alloc(&sk->sk_cgrp_data);
1899 sock_update_classid(&sk->sk_cgrp_data);
1900 sock_update_netprioidx(&sk->sk_cgrp_data);
1901 sk_tx_queue_clear(sk);
1902 }
1903
1904 return sk;
1905}
1906EXPORT_SYMBOL(sk_alloc);
1907
1908/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1909 * grace period. This is the case for UDP sockets and TCP listeners.
1910 */
1911static void __sk_destruct(struct rcu_head *head)
1912{
1913 struct sock *sk = container_of(head, struct sock, sk_rcu);
1914 struct sk_filter *filter;
1915
1916 if (sk->sk_destruct)
1917 sk->sk_destruct(sk);
1918
1919 filter = rcu_dereference_check(sk->sk_filter,
1920 refcount_read(&sk->sk_wmem_alloc) == 0);
1921 if (filter) {
1922 sk_filter_uncharge(sk, filter);
1923 RCU_INIT_POINTER(sk->sk_filter, NULL);
1924 }
1925
1926 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1927
1928#ifdef CONFIG_BPF_SYSCALL
1929 bpf_sk_storage_free(sk);
1930#endif
1931
1932 if (atomic_read(&sk->sk_omem_alloc))
1933 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1934 __func__, atomic_read(&sk->sk_omem_alloc));
1935
1936 if (sk->sk_frag.page) {
1937 put_page(sk->sk_frag.page);
1938 sk->sk_frag.page = NULL;
1939 }
1940
1941 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1942 put_cred(sk->sk_peer_cred);
1943 put_pid(sk->sk_peer_pid);
1944
1945 if (likely(sk->sk_net_refcnt))
1946 put_net(sock_net(sk));
1947 sk_prot_free(sk->sk_prot_creator, sk);
1948}
1949
1950void sk_destruct(struct sock *sk)
1951{
1952 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1953
1954 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1955 reuseport_detach_sock(sk);
1956 use_call_rcu = true;
1957 }
1958
1959 if (use_call_rcu)
1960 call_rcu(&sk->sk_rcu, __sk_destruct);
1961 else
1962 __sk_destruct(&sk->sk_rcu);
1963}
1964
1965static void __sk_free(struct sock *sk)
1966{
1967 if (likely(sk->sk_net_refcnt))
1968 sock_inuse_add(sock_net(sk), -1);
1969
1970 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1971 sock_diag_broadcast_destroy(sk);
1972 else
1973 sk_destruct(sk);
1974}
1975
1976void sk_free(struct sock *sk)
1977{
1978 /*
1979 * We subtract one from sk_wmem_alloc and can know if
1980 * some packets are still in some tx queue.
1981 * If not null, sock_wfree() will call __sk_free(sk) later
1982 */
1983 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1984 __sk_free(sk);
1985}
1986EXPORT_SYMBOL(sk_free);
1987
1988static void sk_init_common(struct sock *sk)
1989{
1990 skb_queue_head_init(&sk->sk_receive_queue);
1991 skb_queue_head_init(&sk->sk_write_queue);
1992 skb_queue_head_init(&sk->sk_error_queue);
1993
1994 rwlock_init(&sk->sk_callback_lock);
1995 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1996 af_rlock_keys + sk->sk_family,
1997 af_family_rlock_key_strings[sk->sk_family]);
1998 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1999 af_wlock_keys + sk->sk_family,
2000 af_family_wlock_key_strings[sk->sk_family]);
2001 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2002 af_elock_keys + sk->sk_family,
2003 af_family_elock_key_strings[sk->sk_family]);
2004 lockdep_set_class_and_name(&sk->sk_callback_lock,
2005 af_callback_keys + sk->sk_family,
2006 af_family_clock_key_strings[sk->sk_family]);
2007}
2008
2009/**
2010 * sk_clone_lock - clone a socket, and lock its clone
2011 * @sk: the socket to clone
2012 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2013 *
2014 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2015 */
2016struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2017{
2018 struct proto *prot = READ_ONCE(sk->sk_prot);
2019 struct sk_filter *filter;
2020 bool is_charged = true;
2021 struct sock *newsk;
2022
2023 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2024 if (!newsk)
2025 goto out;
2026
2027 sock_copy(newsk, sk);
2028
2029 newsk->sk_prot_creator = prot;
2030
2031 /* SANITY */
2032 if (likely(newsk->sk_net_refcnt))
2033 get_net(sock_net(newsk));
2034 sk_node_init(&newsk->sk_node);
2035 sock_lock_init(newsk);
2036 bh_lock_sock(newsk);
2037 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2038 newsk->sk_backlog.len = 0;
2039
2040 atomic_set(&newsk->sk_rmem_alloc, 0);
2041
2042 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2043 refcount_set(&newsk->sk_wmem_alloc, 1);
2044
2045 atomic_set(&newsk->sk_omem_alloc, 0);
2046 sk_init_common(newsk);
2047
2048 newsk->sk_dst_cache = NULL;
2049 newsk->sk_dst_pending_confirm = 0;
2050 newsk->sk_wmem_queued = 0;
2051 newsk->sk_forward_alloc = 0;
2052 atomic_set(&newsk->sk_drops, 0);
2053 newsk->sk_send_head = NULL;
2054 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2055 atomic_set(&newsk->sk_zckey, 0);
2056
2057 sock_reset_flag(newsk, SOCK_DONE);
2058
2059 /* sk->sk_memcg will be populated at accept() time */
2060 newsk->sk_memcg = NULL;
2061
2062 cgroup_sk_clone(&newsk->sk_cgrp_data);
2063
2064 rcu_read_lock();
2065 filter = rcu_dereference(sk->sk_filter);
2066 if (filter != NULL)
2067 /* though it's an empty new sock, the charging may fail
2068 * if sysctl_optmem_max was changed between creation of
2069 * original socket and cloning
2070 */
2071 is_charged = sk_filter_charge(newsk, filter);
2072 RCU_INIT_POINTER(newsk->sk_filter, filter);
2073 rcu_read_unlock();
2074
2075 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2076 /* We need to make sure that we don't uncharge the new
2077 * socket if we couldn't charge it in the first place
2078 * as otherwise we uncharge the parent's filter.
2079 */
2080 if (!is_charged)
2081 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2082 sk_free_unlock_clone(newsk);
2083 newsk = NULL;
2084 goto out;
2085 }
2086 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2087
2088 if (bpf_sk_storage_clone(sk, newsk)) {
2089 sk_free_unlock_clone(newsk);
2090 newsk = NULL;
2091 goto out;
2092 }
2093
2094 /* Clear sk_user_data if parent had the pointer tagged
2095 * as not suitable for copying when cloning.
2096 */
2097 if (sk_user_data_is_nocopy(newsk))
2098 newsk->sk_user_data = NULL;
2099
2100 newsk->sk_err = 0;
2101 newsk->sk_err_soft = 0;
2102 newsk->sk_priority = 0;
2103 newsk->sk_incoming_cpu = raw_smp_processor_id();
2104 if (likely(newsk->sk_net_refcnt))
2105 sock_inuse_add(sock_net(newsk), 1);
2106
2107 /* Before updating sk_refcnt, we must commit prior changes to memory
2108 * (Documentation/RCU/rculist_nulls.rst for details)
2109 */
2110 smp_wmb();
2111 refcount_set(&newsk->sk_refcnt, 2);
2112
2113 /* Increment the counter in the same struct proto as the master
2114 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2115 * is the same as sk->sk_prot->socks, as this field was copied
2116 * with memcpy).
2117 *
2118 * This _changes_ the previous behaviour, where
2119 * tcp_create_openreq_child always was incrementing the
2120 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2121 * to be taken into account in all callers. -acme
2122 */
2123 sk_refcnt_debug_inc(newsk);
2124 sk_set_socket(newsk, NULL);
2125 sk_tx_queue_clear(newsk);
2126 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2127
2128 if (newsk->sk_prot->sockets_allocated)
2129 sk_sockets_allocated_inc(newsk);
2130
2131 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2132 net_enable_timestamp();
2133out:
2134 return newsk;
2135}
2136EXPORT_SYMBOL_GPL(sk_clone_lock);
2137
2138void sk_free_unlock_clone(struct sock *sk)
2139{
2140 /* It is still raw copy of parent, so invalidate
2141 * destructor and make plain sk_free() */
2142 sk->sk_destruct = NULL;
2143 bh_unlock_sock(sk);
2144 sk_free(sk);
2145}
2146EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2147
2148void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2149{
2150 u32 max_segs = 1;
2151
2152 sk_dst_set(sk, dst);
2153 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2154 if (sk->sk_route_caps & NETIF_F_GSO)
2155 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2156 sk->sk_route_caps &= ~sk->sk_route_nocaps;
2157 if (sk_can_gso(sk)) {
2158 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2159 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2160 } else {
2161 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2162 sk->sk_gso_max_size = dst->dev->gso_max_size;
2163 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2164 }
2165 }
2166 sk->sk_gso_max_segs = max_segs;
2167}
2168EXPORT_SYMBOL_GPL(sk_setup_caps);
2169
2170/*
2171 * Simple resource managers for sockets.
2172 */
2173
2174
2175/*
2176 * Write buffer destructor automatically called from kfree_skb.
2177 */
2178void sock_wfree(struct sk_buff *skb)
2179{
2180 struct sock *sk = skb->sk;
2181 unsigned int len = skb->truesize;
2182
2183 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2184 /*
2185 * Keep a reference on sk_wmem_alloc, this will be released
2186 * after sk_write_space() call
2187 */
2188 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2189 sk->sk_write_space(sk);
2190 len = 1;
2191 }
2192 /*
2193 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2194 * could not do because of in-flight packets
2195 */
2196 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2197 __sk_free(sk);
2198}
2199EXPORT_SYMBOL(sock_wfree);
2200
2201/* This variant of sock_wfree() is used by TCP,
2202 * since it sets SOCK_USE_WRITE_QUEUE.
2203 */
2204void __sock_wfree(struct sk_buff *skb)
2205{
2206 struct sock *sk = skb->sk;
2207
2208 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2209 __sk_free(sk);
2210}
2211
2212void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2213{
2214 skb_orphan(skb);
2215 skb->sk = sk;
2216#ifdef CONFIG_INET
2217 if (unlikely(!sk_fullsock(sk))) {
2218 skb->destructor = sock_edemux;
2219 sock_hold(sk);
2220 return;
2221 }
2222#endif
2223 skb->destructor = sock_wfree;
2224 skb_set_hash_from_sk(skb, sk);
2225 /*
2226 * We used to take a refcount on sk, but following operation
2227 * is enough to guarantee sk_free() wont free this sock until
2228 * all in-flight packets are completed
2229 */
2230 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2231}
2232EXPORT_SYMBOL(skb_set_owner_w);
2233
2234static bool can_skb_orphan_partial(const struct sk_buff *skb)
2235{
2236#ifdef CONFIG_TLS_DEVICE
2237 /* Drivers depend on in-order delivery for crypto offload,
2238 * partial orphan breaks out-of-order-OK logic.
2239 */
2240 if (skb->decrypted)
2241 return false;
2242#endif
2243 return (skb->destructor == sock_wfree ||
2244 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2245}
2246
2247/* This helper is used by netem, as it can hold packets in its
2248 * delay queue. We want to allow the owner socket to send more
2249 * packets, as if they were already TX completed by a typical driver.
2250 * But we also want to keep skb->sk set because some packet schedulers
2251 * rely on it (sch_fq for example).
2252 */
2253void skb_orphan_partial(struct sk_buff *skb)
2254{
2255 if (skb_is_tcp_pure_ack(skb))
2256 return;
2257
2258 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2259 return;
2260
2261 skb_orphan(skb);
2262}
2263EXPORT_SYMBOL(skb_orphan_partial);
2264
2265/*
2266 * Read buffer destructor automatically called from kfree_skb.
2267 */
2268void sock_rfree(struct sk_buff *skb)
2269{
2270 struct sock *sk = skb->sk;
2271 unsigned int len = skb->truesize;
2272
2273 atomic_sub(len, &sk->sk_rmem_alloc);
2274 sk_mem_uncharge(sk, len);
2275}
2276EXPORT_SYMBOL(sock_rfree);
2277
2278/*
2279 * Buffer destructor for skbs that are not used directly in read or write
2280 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2281 */
2282void sock_efree(struct sk_buff *skb)
2283{
2284 sock_put(skb->sk);
2285}
2286EXPORT_SYMBOL(sock_efree);
2287
2288/* Buffer destructor for prefetch/receive path where reference count may
2289 * not be held, e.g. for listen sockets.
2290 */
2291#ifdef CONFIG_INET
2292void sock_pfree(struct sk_buff *skb)
2293{
2294 if (sk_is_refcounted(skb->sk))
2295 sock_gen_put(skb->sk);
2296}
2297EXPORT_SYMBOL(sock_pfree);
2298#endif /* CONFIG_INET */
2299
2300kuid_t sock_i_uid(struct sock *sk)
2301{
2302 kuid_t uid;
2303
2304 read_lock_bh(&sk->sk_callback_lock);
2305 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2306 read_unlock_bh(&sk->sk_callback_lock);
2307 return uid;
2308}
2309EXPORT_SYMBOL(sock_i_uid);
2310
2311unsigned long sock_i_ino(struct sock *sk)
2312{
2313 unsigned long ino;
2314
2315 read_lock_bh(&sk->sk_callback_lock);
2316 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2317 read_unlock_bh(&sk->sk_callback_lock);
2318 return ino;
2319}
2320EXPORT_SYMBOL(sock_i_ino);
2321
2322/*
2323 * Allocate a skb from the socket's send buffer.
2324 */
2325struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2326 gfp_t priority)
2327{
2328 if (force ||
2329 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2330 struct sk_buff *skb = alloc_skb(size, priority);
2331
2332 if (skb) {
2333 skb_set_owner_w(skb, sk);
2334 return skb;
2335 }
2336 }
2337 return NULL;
2338}
2339EXPORT_SYMBOL(sock_wmalloc);
2340
2341static void sock_ofree(struct sk_buff *skb)
2342{
2343 struct sock *sk = skb->sk;
2344
2345 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2346}
2347
2348struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2349 gfp_t priority)
2350{
2351 struct sk_buff *skb;
2352
2353 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2354 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2355 sysctl_optmem_max)
2356 return NULL;
2357
2358 skb = alloc_skb(size, priority);
2359 if (!skb)
2360 return NULL;
2361
2362 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2363 skb->sk = sk;
2364 skb->destructor = sock_ofree;
2365 return skb;
2366}
2367
2368/*
2369 * Allocate a memory block from the socket's option memory buffer.
2370 */
2371void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2372{
2373 if ((unsigned int)size <= sysctl_optmem_max &&
2374 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2375 void *mem;
2376 /* First do the add, to avoid the race if kmalloc
2377 * might sleep.
2378 */
2379 atomic_add(size, &sk->sk_omem_alloc);
2380 mem = kmalloc(size, priority);
2381 if (mem)
2382 return mem;
2383 atomic_sub(size, &sk->sk_omem_alloc);
2384 }
2385 return NULL;
2386}
2387EXPORT_SYMBOL(sock_kmalloc);
2388
2389/* Free an option memory block. Note, we actually want the inline
2390 * here as this allows gcc to detect the nullify and fold away the
2391 * condition entirely.
2392 */
2393static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2394 const bool nullify)
2395{
2396 if (WARN_ON_ONCE(!mem))
2397 return;
2398 if (nullify)
2399 kfree_sensitive(mem);
2400 else
2401 kfree(mem);
2402 atomic_sub(size, &sk->sk_omem_alloc);
2403}
2404
2405void sock_kfree_s(struct sock *sk, void *mem, int size)
2406{
2407 __sock_kfree_s(sk, mem, size, false);
2408}
2409EXPORT_SYMBOL(sock_kfree_s);
2410
2411void sock_kzfree_s(struct sock *sk, void *mem, int size)
2412{
2413 __sock_kfree_s(sk, mem, size, true);
2414}
2415EXPORT_SYMBOL(sock_kzfree_s);
2416
2417/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2418 I think, these locks should be removed for datagram sockets.
2419 */
2420static long sock_wait_for_wmem(struct sock *sk, long timeo)
2421{
2422 DEFINE_WAIT(wait);
2423
2424 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2425 for (;;) {
2426 if (!timeo)
2427 break;
2428 if (signal_pending(current))
2429 break;
2430 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2431 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2432 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2433 break;
2434 if (sk->sk_shutdown & SEND_SHUTDOWN)
2435 break;
2436 if (sk->sk_err)
2437 break;
2438 timeo = schedule_timeout(timeo);
2439 }
2440 finish_wait(sk_sleep(sk), &wait);
2441 return timeo;
2442}
2443
2444
2445/*
2446 * Generic send/receive buffer handlers
2447 */
2448
2449struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2450 unsigned long data_len, int noblock,
2451 int *errcode, int max_page_order)
2452{
2453 struct sk_buff *skb;
2454 long timeo;
2455 int err;
2456
2457 timeo = sock_sndtimeo(sk, noblock);
2458 for (;;) {
2459 err = sock_error(sk);
2460 if (err != 0)
2461 goto failure;
2462
2463 err = -EPIPE;
2464 if (sk->sk_shutdown & SEND_SHUTDOWN)
2465 goto failure;
2466
2467 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2468 break;
2469
2470 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2471 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2472 err = -EAGAIN;
2473 if (!timeo)
2474 goto failure;
2475 if (signal_pending(current))
2476 goto interrupted;
2477 timeo = sock_wait_for_wmem(sk, timeo);
2478 }
2479 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2480 errcode, sk->sk_allocation);
2481 if (skb)
2482 skb_set_owner_w(skb, sk);
2483 return skb;
2484
2485interrupted:
2486 err = sock_intr_errno(timeo);
2487failure:
2488 *errcode = err;
2489 return NULL;
2490}
2491EXPORT_SYMBOL(sock_alloc_send_pskb);
2492
2493struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2494 int noblock, int *errcode)
2495{
2496 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2497}
2498EXPORT_SYMBOL(sock_alloc_send_skb);
2499
2500int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2501 struct sockcm_cookie *sockc)
2502{
2503 u32 tsflags;
2504
2505 switch (cmsg->cmsg_type) {
2506 case SO_MARK:
2507 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2508 return -EPERM;
2509 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2510 return -EINVAL;
2511 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2512 break;
2513 case SO_TIMESTAMPING_OLD:
2514 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2515 return -EINVAL;
2516
2517 tsflags = *(u32 *)CMSG_DATA(cmsg);
2518 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2519 return -EINVAL;
2520
2521 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2522 sockc->tsflags |= tsflags;
2523 break;
2524 case SCM_TXTIME:
2525 if (!sock_flag(sk, SOCK_TXTIME))
2526 return -EINVAL;
2527 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2528 return -EINVAL;
2529 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2530 break;
2531 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2532 case SCM_RIGHTS:
2533 case SCM_CREDENTIALS:
2534 break;
2535 default:
2536 return -EINVAL;
2537 }
2538 return 0;
2539}
2540EXPORT_SYMBOL(__sock_cmsg_send);
2541
2542int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2543 struct sockcm_cookie *sockc)
2544{
2545 struct cmsghdr *cmsg;
2546 int ret;
2547
2548 for_each_cmsghdr(cmsg, msg) {
2549 if (!CMSG_OK(msg, cmsg))
2550 return -EINVAL;
2551 if (cmsg->cmsg_level != SOL_SOCKET)
2552 continue;
2553 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2554 if (ret)
2555 return ret;
2556 }
2557 return 0;
2558}
2559EXPORT_SYMBOL(sock_cmsg_send);
2560
2561static void sk_enter_memory_pressure(struct sock *sk)
2562{
2563 if (!sk->sk_prot->enter_memory_pressure)
2564 return;
2565
2566 sk->sk_prot->enter_memory_pressure(sk);
2567}
2568
2569static void sk_leave_memory_pressure(struct sock *sk)
2570{
2571 if (sk->sk_prot->leave_memory_pressure) {
2572 sk->sk_prot->leave_memory_pressure(sk);
2573 } else {
2574 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2575
2576 if (memory_pressure && READ_ONCE(*memory_pressure))
2577 WRITE_ONCE(*memory_pressure, 0);
2578 }
2579}
2580
2581#define SKB_FRAG_PAGE_ORDER get_order(32768)
2582DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2583
2584/**
2585 * skb_page_frag_refill - check that a page_frag contains enough room
2586 * @sz: minimum size of the fragment we want to get
2587 * @pfrag: pointer to page_frag
2588 * @gfp: priority for memory allocation
2589 *
2590 * Note: While this allocator tries to use high order pages, there is
2591 * no guarantee that allocations succeed. Therefore, @sz MUST be
2592 * less or equal than PAGE_SIZE.
2593 */
2594bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2595{
2596 if (pfrag->page) {
2597 if (page_ref_count(pfrag->page) == 1) {
2598 pfrag->offset = 0;
2599 return true;
2600 }
2601 if (pfrag->offset + sz <= pfrag->size)
2602 return true;
2603 put_page(pfrag->page);
2604 }
2605
2606 pfrag->offset = 0;
2607 if (SKB_FRAG_PAGE_ORDER &&
2608 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2609 /* Avoid direct reclaim but allow kswapd to wake */
2610 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2611 __GFP_COMP | __GFP_NOWARN |
2612 __GFP_NORETRY,
2613 SKB_FRAG_PAGE_ORDER);
2614 if (likely(pfrag->page)) {
2615 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2616 return true;
2617 }
2618 }
2619 pfrag->page = alloc_page(gfp);
2620 if (likely(pfrag->page)) {
2621 pfrag->size = PAGE_SIZE;
2622 return true;
2623 }
2624 return false;
2625}
2626EXPORT_SYMBOL(skb_page_frag_refill);
2627
2628bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2629{
2630 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2631 return true;
2632
2633 sk_enter_memory_pressure(sk);
2634 sk_stream_moderate_sndbuf(sk);
2635 return false;
2636}
2637EXPORT_SYMBOL(sk_page_frag_refill);
2638
2639void __lock_sock(struct sock *sk)
2640 __releases(&sk->sk_lock.slock)
2641 __acquires(&sk->sk_lock.slock)
2642{
2643 DEFINE_WAIT(wait);
2644
2645 for (;;) {
2646 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2647 TASK_UNINTERRUPTIBLE);
2648 spin_unlock_bh(&sk->sk_lock.slock);
2649 schedule();
2650 spin_lock_bh(&sk->sk_lock.slock);
2651 if (!sock_owned_by_user(sk))
2652 break;
2653 }
2654 finish_wait(&sk->sk_lock.wq, &wait);
2655}
2656
2657void __release_sock(struct sock *sk)
2658 __releases(&sk->sk_lock.slock)
2659 __acquires(&sk->sk_lock.slock)
2660{
2661 struct sk_buff *skb, *next;
2662
2663 while ((skb = sk->sk_backlog.head) != NULL) {
2664 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2665
2666 spin_unlock_bh(&sk->sk_lock.slock);
2667
2668 do {
2669 next = skb->next;
2670 prefetch(next);
2671 WARN_ON_ONCE(skb_dst_is_noref(skb));
2672 skb_mark_not_on_list(skb);
2673 sk_backlog_rcv(sk, skb);
2674
2675 cond_resched();
2676
2677 skb = next;
2678 } while (skb != NULL);
2679
2680 spin_lock_bh(&sk->sk_lock.slock);
2681 }
2682
2683 /*
2684 * Doing the zeroing here guarantee we can not loop forever
2685 * while a wild producer attempts to flood us.
2686 */
2687 sk->sk_backlog.len = 0;
2688}
2689
2690void __sk_flush_backlog(struct sock *sk)
2691{
2692 spin_lock_bh(&sk->sk_lock.slock);
2693 __release_sock(sk);
2694 spin_unlock_bh(&sk->sk_lock.slock);
2695}
2696
2697/**
2698 * sk_wait_data - wait for data to arrive at sk_receive_queue
2699 * @sk: sock to wait on
2700 * @timeo: for how long
2701 * @skb: last skb seen on sk_receive_queue
2702 *
2703 * Now socket state including sk->sk_err is changed only under lock,
2704 * hence we may omit checks after joining wait queue.
2705 * We check receive queue before schedule() only as optimization;
2706 * it is very likely that release_sock() added new data.
2707 */
2708int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2709{
2710 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2711 int rc;
2712
2713 add_wait_queue(sk_sleep(sk), &wait);
2714 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2715 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2716 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2717 remove_wait_queue(sk_sleep(sk), &wait);
2718 return rc;
2719}
2720EXPORT_SYMBOL(sk_wait_data);
2721
2722/**
2723 * __sk_mem_raise_allocated - increase memory_allocated
2724 * @sk: socket
2725 * @size: memory size to allocate
2726 * @amt: pages to allocate
2727 * @kind: allocation type
2728 *
2729 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2730 */
2731int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2732{
2733 struct proto *prot = sk->sk_prot;
2734 long allocated = sk_memory_allocated_add(sk, amt);
2735 bool charged = true;
2736
2737 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2738 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2739 goto suppress_allocation;
2740
2741 /* Under limit. */
2742 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2743 sk_leave_memory_pressure(sk);
2744 return 1;
2745 }
2746
2747 /* Under pressure. */
2748 if (allocated > sk_prot_mem_limits(sk, 1))
2749 sk_enter_memory_pressure(sk);
2750
2751 /* Over hard limit. */
2752 if (allocated > sk_prot_mem_limits(sk, 2))
2753 goto suppress_allocation;
2754
2755 /* guarantee minimum buffer size under pressure */
2756 if (kind == SK_MEM_RECV) {
2757 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2758 return 1;
2759
2760 } else { /* SK_MEM_SEND */
2761 int wmem0 = sk_get_wmem0(sk, prot);
2762
2763 if (sk->sk_type == SOCK_STREAM) {
2764 if (sk->sk_wmem_queued < wmem0)
2765 return 1;
2766 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2767 return 1;
2768 }
2769 }
2770
2771 if (sk_has_memory_pressure(sk)) {
2772 u64 alloc;
2773
2774 if (!sk_under_memory_pressure(sk))
2775 return 1;
2776 alloc = sk_sockets_allocated_read_positive(sk);
2777 if (sk_prot_mem_limits(sk, 2) > alloc *
2778 sk_mem_pages(sk->sk_wmem_queued +
2779 atomic_read(&sk->sk_rmem_alloc) +
2780 sk->sk_forward_alloc))
2781 return 1;
2782 }
2783
2784suppress_allocation:
2785
2786 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2787 sk_stream_moderate_sndbuf(sk);
2788
2789 /* Fail only if socket is _under_ its sndbuf.
2790 * In this case we cannot block, so that we have to fail.
2791 */
2792 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2793 return 1;
2794 }
2795
2796 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2797 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2798
2799 sk_memory_allocated_sub(sk, amt);
2800
2801 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2802 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2803
2804 return 0;
2805}
2806EXPORT_SYMBOL(__sk_mem_raise_allocated);
2807
2808/**
2809 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2810 * @sk: socket
2811 * @size: memory size to allocate
2812 * @kind: allocation type
2813 *
2814 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2815 * rmem allocation. This function assumes that protocols which have
2816 * memory_pressure use sk_wmem_queued as write buffer accounting.
2817 */
2818int __sk_mem_schedule(struct sock *sk, int size, int kind)
2819{
2820 int ret, amt = sk_mem_pages(size);
2821
2822 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2823 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2824 if (!ret)
2825 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2826 return ret;
2827}
2828EXPORT_SYMBOL(__sk_mem_schedule);
2829
2830/**
2831 * __sk_mem_reduce_allocated - reclaim memory_allocated
2832 * @sk: socket
2833 * @amount: number of quanta
2834 *
2835 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2836 */
2837void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2838{
2839 sk_memory_allocated_sub(sk, amount);
2840
2841 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2842 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2843
2844 if (sk_under_memory_pressure(sk) &&
2845 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2846 sk_leave_memory_pressure(sk);
2847}
2848EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2849
2850/**
2851 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2852 * @sk: socket
2853 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2854 */
2855void __sk_mem_reclaim(struct sock *sk, int amount)
2856{
2857 amount >>= SK_MEM_QUANTUM_SHIFT;
2858 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2859 __sk_mem_reduce_allocated(sk, amount);
2860}
2861EXPORT_SYMBOL(__sk_mem_reclaim);
2862
2863int sk_set_peek_off(struct sock *sk, int val)
2864{
2865 sk->sk_peek_off = val;
2866 return 0;
2867}
2868EXPORT_SYMBOL_GPL(sk_set_peek_off);
2869
2870/*
2871 * Set of default routines for initialising struct proto_ops when
2872 * the protocol does not support a particular function. In certain
2873 * cases where it makes no sense for a protocol to have a "do nothing"
2874 * function, some default processing is provided.
2875 */
2876
2877int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2878{
2879 return -EOPNOTSUPP;
2880}
2881EXPORT_SYMBOL(sock_no_bind);
2882
2883int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2884 int len, int flags)
2885{
2886 return -EOPNOTSUPP;
2887}
2888EXPORT_SYMBOL(sock_no_connect);
2889
2890int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2891{
2892 return -EOPNOTSUPP;
2893}
2894EXPORT_SYMBOL(sock_no_socketpair);
2895
2896int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2897 bool kern)
2898{
2899 return -EOPNOTSUPP;
2900}
2901EXPORT_SYMBOL(sock_no_accept);
2902
2903int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2904 int peer)
2905{
2906 return -EOPNOTSUPP;
2907}
2908EXPORT_SYMBOL(sock_no_getname);
2909
2910int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2911{
2912 return -EOPNOTSUPP;
2913}
2914EXPORT_SYMBOL(sock_no_ioctl);
2915
2916int sock_no_listen(struct socket *sock, int backlog)
2917{
2918 return -EOPNOTSUPP;
2919}
2920EXPORT_SYMBOL(sock_no_listen);
2921
2922int sock_no_shutdown(struct socket *sock, int how)
2923{
2924 return -EOPNOTSUPP;
2925}
2926EXPORT_SYMBOL(sock_no_shutdown);
2927
2928int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2929{
2930 return -EOPNOTSUPP;
2931}
2932EXPORT_SYMBOL(sock_no_sendmsg);
2933
2934int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2935{
2936 return -EOPNOTSUPP;
2937}
2938EXPORT_SYMBOL(sock_no_sendmsg_locked);
2939
2940int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2941 int flags)
2942{
2943 return -EOPNOTSUPP;
2944}
2945EXPORT_SYMBOL(sock_no_recvmsg);
2946
2947int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2948{
2949 /* Mirror missing mmap method error code */
2950 return -ENODEV;
2951}
2952EXPORT_SYMBOL(sock_no_mmap);
2953
2954/*
2955 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2956 * various sock-based usage counts.
2957 */
2958void __receive_sock(struct file *file)
2959{
2960 struct socket *sock;
2961
2962 sock = sock_from_file(file);
2963 if (sock) {
2964 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2965 sock_update_classid(&sock->sk->sk_cgrp_data);
2966 }
2967}
2968
2969ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2970{
2971 ssize_t res;
2972 struct msghdr msg = {.msg_flags = flags};
2973 struct kvec iov;
2974 char *kaddr = kmap(page);
2975 iov.iov_base = kaddr + offset;
2976 iov.iov_len = size;
2977 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2978 kunmap(page);
2979 return res;
2980}
2981EXPORT_SYMBOL(sock_no_sendpage);
2982
2983ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2984 int offset, size_t size, int flags)
2985{
2986 ssize_t res;
2987 struct msghdr msg = {.msg_flags = flags};
2988 struct kvec iov;
2989 char *kaddr = kmap(page);
2990
2991 iov.iov_base = kaddr + offset;
2992 iov.iov_len = size;
2993 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2994 kunmap(page);
2995 return res;
2996}
2997EXPORT_SYMBOL(sock_no_sendpage_locked);
2998
2999/*
3000 * Default Socket Callbacks
3001 */
3002
3003static void sock_def_wakeup(struct sock *sk)
3004{
3005 struct socket_wq *wq;
3006
3007 rcu_read_lock();
3008 wq = rcu_dereference(sk->sk_wq);
3009 if (skwq_has_sleeper(wq))
3010 wake_up_interruptible_all(&wq->wait);
3011 rcu_read_unlock();
3012}
3013
3014static void sock_def_error_report(struct sock *sk)
3015{
3016 struct socket_wq *wq;
3017
3018 rcu_read_lock();
3019 wq = rcu_dereference(sk->sk_wq);
3020 if (skwq_has_sleeper(wq))
3021 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3022 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3023 rcu_read_unlock();
3024}
3025
3026void sock_def_readable(struct sock *sk)
3027{
3028 struct socket_wq *wq;
3029
3030 rcu_read_lock();
3031 wq = rcu_dereference(sk->sk_wq);
3032 if (skwq_has_sleeper(wq))
3033 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3034 EPOLLRDNORM | EPOLLRDBAND);
3035 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3036 rcu_read_unlock();
3037}
3038
3039static void sock_def_write_space(struct sock *sk)
3040{
3041 struct socket_wq *wq;
3042
3043 rcu_read_lock();
3044
3045 /* Do not wake up a writer until he can make "significant"
3046 * progress. --DaveM
3047 */
3048 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
3049 wq = rcu_dereference(sk->sk_wq);
3050 if (skwq_has_sleeper(wq))
3051 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3052 EPOLLWRNORM | EPOLLWRBAND);
3053
3054 /* Should agree with poll, otherwise some programs break */
3055 if (sock_writeable(sk))
3056 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3057 }
3058
3059 rcu_read_unlock();
3060}
3061
3062static void sock_def_destruct(struct sock *sk)
3063{
3064}
3065
3066void sk_send_sigurg(struct sock *sk)
3067{
3068 if (sk->sk_socket && sk->sk_socket->file)
3069 if (send_sigurg(&sk->sk_socket->file->f_owner))
3070 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3071}
3072EXPORT_SYMBOL(sk_send_sigurg);
3073
3074void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3075 unsigned long expires)
3076{
3077 if (!mod_timer(timer, expires))
3078 sock_hold(sk);
3079}
3080EXPORT_SYMBOL(sk_reset_timer);
3081
3082void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3083{
3084 if (del_timer(timer))
3085 __sock_put(sk);
3086}
3087EXPORT_SYMBOL(sk_stop_timer);
3088
3089void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3090{
3091 if (del_timer_sync(timer))
3092 __sock_put(sk);
3093}
3094EXPORT_SYMBOL(sk_stop_timer_sync);
3095
3096void sock_init_data(struct socket *sock, struct sock *sk)
3097{
3098 sk_init_common(sk);
3099 sk->sk_send_head = NULL;
3100
3101 timer_setup(&sk->sk_timer, NULL, 0);
3102
3103 sk->sk_allocation = GFP_KERNEL;
3104 sk->sk_rcvbuf = sysctl_rmem_default;
3105 sk->sk_sndbuf = sysctl_wmem_default;
3106 sk->sk_state = TCP_CLOSE;
3107 sk_set_socket(sk, sock);
3108
3109 sock_set_flag(sk, SOCK_ZAPPED);
3110
3111 if (sock) {
3112 sk->sk_type = sock->type;
3113 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3114 sock->sk = sk;
3115 sk->sk_uid = SOCK_INODE(sock)->i_uid;
3116 } else {
3117 RCU_INIT_POINTER(sk->sk_wq, NULL);
3118 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
3119 }
3120
3121 rwlock_init(&sk->sk_callback_lock);
3122 if (sk->sk_kern_sock)
3123 lockdep_set_class_and_name(
3124 &sk->sk_callback_lock,
3125 af_kern_callback_keys + sk->sk_family,
3126 af_family_kern_clock_key_strings[sk->sk_family]);
3127 else
3128 lockdep_set_class_and_name(
3129 &sk->sk_callback_lock,
3130 af_callback_keys + sk->sk_family,
3131 af_family_clock_key_strings[sk->sk_family]);
3132
3133 sk->sk_state_change = sock_def_wakeup;
3134 sk->sk_data_ready = sock_def_readable;
3135 sk->sk_write_space = sock_def_write_space;
3136 sk->sk_error_report = sock_def_error_report;
3137 sk->sk_destruct = sock_def_destruct;
3138
3139 sk->sk_frag.page = NULL;
3140 sk->sk_frag.offset = 0;
3141 sk->sk_peek_off = -1;
3142
3143 sk->sk_peer_pid = NULL;
3144 sk->sk_peer_cred = NULL;
3145 spin_lock_init(&sk->sk_peer_lock);
3146
3147 sk->sk_write_pending = 0;
3148 sk->sk_rcvlowat = 1;
3149 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3150 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3151
3152 sk->sk_stamp = SK_DEFAULT_STAMP;
3153#if BITS_PER_LONG==32
3154 seqlock_init(&sk->sk_stamp_seq);
3155#endif
3156 atomic_set(&sk->sk_zckey, 0);
3157
3158#ifdef CONFIG_NET_RX_BUSY_POLL
3159 sk->sk_napi_id = 0;
3160 sk->sk_ll_usec = sysctl_net_busy_read;
3161#endif
3162
3163 sk->sk_max_pacing_rate = ~0UL;
3164 sk->sk_pacing_rate = ~0UL;
3165 WRITE_ONCE(sk->sk_pacing_shift, 10);
3166 sk->sk_incoming_cpu = -1;
3167
3168 sk_rx_queue_clear(sk);
3169 /*
3170 * Before updating sk_refcnt, we must commit prior changes to memory
3171 * (Documentation/RCU/rculist_nulls.rst for details)
3172 */
3173 smp_wmb();
3174 refcount_set(&sk->sk_refcnt, 1);
3175 atomic_set(&sk->sk_drops, 0);
3176}
3177EXPORT_SYMBOL(sock_init_data);
3178
3179void lock_sock_nested(struct sock *sk, int subclass)
3180{
3181 might_sleep();
3182 spin_lock_bh(&sk->sk_lock.slock);
3183 if (sk->sk_lock.owned)
3184 __lock_sock(sk);
3185 sk->sk_lock.owned = 1;
3186 spin_unlock(&sk->sk_lock.slock);
3187 /*
3188 * The sk_lock has mutex_lock() semantics here:
3189 */
3190 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3191 local_bh_enable();
3192}
3193EXPORT_SYMBOL(lock_sock_nested);
3194
3195void release_sock(struct sock *sk)
3196{
3197 spin_lock_bh(&sk->sk_lock.slock);
3198 if (sk->sk_backlog.tail)
3199 __release_sock(sk);
3200
3201 /* Warning : release_cb() might need to release sk ownership,
3202 * ie call sock_release_ownership(sk) before us.
3203 */
3204 if (sk->sk_prot->release_cb)
3205 sk->sk_prot->release_cb(sk);
3206
3207 sock_release_ownership(sk);
3208 if (waitqueue_active(&sk->sk_lock.wq))
3209 wake_up(&sk->sk_lock.wq);
3210 spin_unlock_bh(&sk->sk_lock.slock);
3211}
3212EXPORT_SYMBOL(release_sock);
3213
3214/**
3215 * lock_sock_fast - fast version of lock_sock
3216 * @sk: socket
3217 *
3218 * This version should be used for very small section, where process wont block
3219 * return false if fast path is taken:
3220 *
3221 * sk_lock.slock locked, owned = 0, BH disabled
3222 *
3223 * return true if slow path is taken:
3224 *
3225 * sk_lock.slock unlocked, owned = 1, BH enabled
3226 */
3227bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3228{
3229 might_sleep();
3230 spin_lock_bh(&sk->sk_lock.slock);
3231
3232 if (!sk->sk_lock.owned)
3233 /*
3234 * Note : We must disable BH
3235 */
3236 return false;
3237
3238 __lock_sock(sk);
3239 sk->sk_lock.owned = 1;
3240 spin_unlock(&sk->sk_lock.slock);
3241 /*
3242 * The sk_lock has mutex_lock() semantics here:
3243 */
3244 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3245 __acquire(&sk->sk_lock.slock);
3246 local_bh_enable();
3247 return true;
3248}
3249EXPORT_SYMBOL(lock_sock_fast);
3250
3251int sock_gettstamp(struct socket *sock, void __user *userstamp,
3252 bool timeval, bool time32)
3253{
3254 struct sock *sk = sock->sk;
3255 struct timespec64 ts;
3256
3257 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3258 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3259 if (ts.tv_sec == -1)
3260 return -ENOENT;
3261 if (ts.tv_sec == 0) {
3262 ktime_t kt = ktime_get_real();
3263 sock_write_timestamp(sk, kt);
3264 ts = ktime_to_timespec64(kt);
3265 }
3266
3267 if (timeval)
3268 ts.tv_nsec /= 1000;
3269
3270#ifdef CONFIG_COMPAT_32BIT_TIME
3271 if (time32)
3272 return put_old_timespec32(&ts, userstamp);
3273#endif
3274#ifdef CONFIG_SPARC64
3275 /* beware of padding in sparc64 timeval */
3276 if (timeval && !in_compat_syscall()) {
3277 struct __kernel_old_timeval __user tv = {
3278 .tv_sec = ts.tv_sec,
3279 .tv_usec = ts.tv_nsec,
3280 };
3281 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3282 return -EFAULT;
3283 return 0;
3284 }
3285#endif
3286 return put_timespec64(&ts, userstamp);
3287}
3288EXPORT_SYMBOL(sock_gettstamp);
3289
3290void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3291{
3292 if (!sock_flag(sk, flag)) {
3293 unsigned long previous_flags = sk->sk_flags;
3294
3295 sock_set_flag(sk, flag);
3296 /*
3297 * we just set one of the two flags which require net
3298 * time stamping, but time stamping might have been on
3299 * already because of the other one
3300 */
3301 if (sock_needs_netstamp(sk) &&
3302 !(previous_flags & SK_FLAGS_TIMESTAMP))
3303 net_enable_timestamp();
3304 }
3305}
3306
3307int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3308 int level, int type)
3309{
3310 struct sock_exterr_skb *serr;
3311 struct sk_buff *skb;
3312 int copied, err;
3313
3314 err = -EAGAIN;
3315 skb = sock_dequeue_err_skb(sk);
3316 if (skb == NULL)
3317 goto out;
3318
3319 copied = skb->len;
3320 if (copied > len) {
3321 msg->msg_flags |= MSG_TRUNC;
3322 copied = len;
3323 }
3324 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3325 if (err)
3326 goto out_free_skb;
3327
3328 sock_recv_timestamp(msg, sk, skb);
3329
3330 serr = SKB_EXT_ERR(skb);
3331 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3332
3333 msg->msg_flags |= MSG_ERRQUEUE;
3334 err = copied;
3335
3336out_free_skb:
3337 kfree_skb(skb);
3338out:
3339 return err;
3340}
3341EXPORT_SYMBOL(sock_recv_errqueue);
3342
3343/*
3344 * Get a socket option on an socket.
3345 *
3346 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3347 * asynchronous errors should be reported by getsockopt. We assume
3348 * this means if you specify SO_ERROR (otherwise whats the point of it).
3349 */
3350int sock_common_getsockopt(struct socket *sock, int level, int optname,
3351 char __user *optval, int __user *optlen)
3352{
3353 struct sock *sk = sock->sk;
3354
3355 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3356}
3357EXPORT_SYMBOL(sock_common_getsockopt);
3358
3359int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3360 int flags)
3361{
3362 struct sock *sk = sock->sk;
3363 int addr_len = 0;
3364 int err;
3365
3366 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3367 flags & ~MSG_DONTWAIT, &addr_len);
3368 if (err >= 0)
3369 msg->msg_namelen = addr_len;
3370 return err;
3371}
3372EXPORT_SYMBOL(sock_common_recvmsg);
3373
3374/*
3375 * Set socket options on an inet socket.
3376 */
3377int sock_common_setsockopt(struct socket *sock, int level, int optname,
3378 sockptr_t optval, unsigned int optlen)
3379{
3380 struct sock *sk = sock->sk;
3381
3382 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3383}
3384EXPORT_SYMBOL(sock_common_setsockopt);
3385
3386void sk_common_release(struct sock *sk)
3387{
3388 if (sk->sk_prot->destroy)
3389 sk->sk_prot->destroy(sk);
3390
3391 /*
3392 * Observation: when sk_common_release is called, processes have
3393 * no access to socket. But net still has.
3394 * Step one, detach it from networking:
3395 *
3396 * A. Remove from hash tables.
3397 */
3398
3399 sk->sk_prot->unhash(sk);
3400
3401 /*
3402 * In this point socket cannot receive new packets, but it is possible
3403 * that some packets are in flight because some CPU runs receiver and
3404 * did hash table lookup before we unhashed socket. They will achieve
3405 * receive queue and will be purged by socket destructor.
3406 *
3407 * Also we still have packets pending on receive queue and probably,
3408 * our own packets waiting in device queues. sock_destroy will drain
3409 * receive queue, but transmitted packets will delay socket destruction
3410 * until the last reference will be released.
3411 */
3412
3413 sock_orphan(sk);
3414
3415 xfrm_sk_free_policy(sk);
3416
3417 sk_refcnt_debug_release(sk);
3418
3419 sock_put(sk);
3420}
3421EXPORT_SYMBOL(sk_common_release);
3422
3423void sk_get_meminfo(const struct sock *sk, u32 *mem)
3424{
3425 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3426
3427 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3428 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3429 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3430 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3431 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3432 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3433 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3434 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3435 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3436}
3437
3438#ifdef CONFIG_PROC_FS
3439#define PROTO_INUSE_NR 64 /* should be enough for the first time */
3440struct prot_inuse {
3441 int val[PROTO_INUSE_NR];
3442};
3443
3444static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3445
3446void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3447{
3448 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3449}
3450EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3451
3452int sock_prot_inuse_get(struct net *net, struct proto *prot)
3453{
3454 int cpu, idx = prot->inuse_idx;
3455 int res = 0;
3456
3457 for_each_possible_cpu(cpu)
3458 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3459
3460 return res >= 0 ? res : 0;
3461}
3462EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3463
3464static void sock_inuse_add(struct net *net, int val)
3465{
3466 this_cpu_add(*net->core.sock_inuse, val);
3467}
3468
3469int sock_inuse_get(struct net *net)
3470{
3471 int cpu, res = 0;
3472
3473 for_each_possible_cpu(cpu)
3474 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3475
3476 return res;
3477}
3478
3479EXPORT_SYMBOL_GPL(sock_inuse_get);
3480
3481static int __net_init sock_inuse_init_net(struct net *net)
3482{
3483 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3484 if (net->core.prot_inuse == NULL)
3485 return -ENOMEM;
3486
3487 net->core.sock_inuse = alloc_percpu(int);
3488 if (net->core.sock_inuse == NULL)
3489 goto out;
3490
3491 return 0;
3492
3493out:
3494 free_percpu(net->core.prot_inuse);
3495 return -ENOMEM;
3496}
3497
3498static void __net_exit sock_inuse_exit_net(struct net *net)
3499{
3500 free_percpu(net->core.prot_inuse);
3501 free_percpu(net->core.sock_inuse);
3502}
3503
3504static struct pernet_operations net_inuse_ops = {
3505 .init = sock_inuse_init_net,
3506 .exit = sock_inuse_exit_net,
3507};
3508
3509static __init int net_inuse_init(void)
3510{
3511 if (register_pernet_subsys(&net_inuse_ops))
3512 panic("Cannot initialize net inuse counters");
3513
3514 return 0;
3515}
3516
3517core_initcall(net_inuse_init);
3518
3519static int assign_proto_idx(struct proto *prot)
3520{
3521 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3522
3523 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3524 pr_err("PROTO_INUSE_NR exhausted\n");
3525 return -ENOSPC;
3526 }
3527
3528 set_bit(prot->inuse_idx, proto_inuse_idx);
3529 return 0;
3530}
3531
3532static void release_proto_idx(struct proto *prot)
3533{
3534 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3535 clear_bit(prot->inuse_idx, proto_inuse_idx);
3536}
3537#else
3538static inline int assign_proto_idx(struct proto *prot)
3539{
3540 return 0;
3541}
3542
3543static inline void release_proto_idx(struct proto *prot)
3544{
3545}
3546
3547static void sock_inuse_add(struct net *net, int val)
3548{
3549}
3550#endif
3551
3552static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3553{
3554 if (!twsk_prot)
3555 return;
3556 kfree(twsk_prot->twsk_slab_name);
3557 twsk_prot->twsk_slab_name = NULL;
3558 kmem_cache_destroy(twsk_prot->twsk_slab);
3559 twsk_prot->twsk_slab = NULL;
3560}
3561
3562static int tw_prot_init(const struct proto *prot)
3563{
3564 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3565
3566 if (!twsk_prot)
3567 return 0;
3568
3569 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3570 prot->name);
3571 if (!twsk_prot->twsk_slab_name)
3572 return -ENOMEM;
3573
3574 twsk_prot->twsk_slab =
3575 kmem_cache_create(twsk_prot->twsk_slab_name,
3576 twsk_prot->twsk_obj_size, 0,
3577 SLAB_ACCOUNT | prot->slab_flags,
3578 NULL);
3579 if (!twsk_prot->twsk_slab) {
3580 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3581 prot->name);
3582 return -ENOMEM;
3583 }
3584
3585 return 0;
3586}
3587
3588static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3589{
3590 if (!rsk_prot)
3591 return;
3592 kfree(rsk_prot->slab_name);
3593 rsk_prot->slab_name = NULL;
3594 kmem_cache_destroy(rsk_prot->slab);
3595 rsk_prot->slab = NULL;
3596}
3597
3598static int req_prot_init(const struct proto *prot)
3599{
3600 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3601
3602 if (!rsk_prot)
3603 return 0;
3604
3605 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3606 prot->name);
3607 if (!rsk_prot->slab_name)
3608 return -ENOMEM;
3609
3610 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3611 rsk_prot->obj_size, 0,
3612 SLAB_ACCOUNT | prot->slab_flags,
3613 NULL);
3614
3615 if (!rsk_prot->slab) {
3616 pr_crit("%s: Can't create request sock SLAB cache!\n",
3617 prot->name);
3618 return -ENOMEM;
3619 }
3620 return 0;
3621}
3622
3623int proto_register(struct proto *prot, int alloc_slab)
3624{
3625 int ret = -ENOBUFS;
3626
3627 if (alloc_slab) {
3628 prot->slab = kmem_cache_create_usercopy(prot->name,
3629 prot->obj_size, 0,
3630 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3631 prot->slab_flags,
3632 prot->useroffset, prot->usersize,
3633 NULL);
3634
3635 if (prot->slab == NULL) {
3636 pr_crit("%s: Can't create sock SLAB cache!\n",
3637 prot->name);
3638 goto out;
3639 }
3640
3641 if (req_prot_init(prot))
3642 goto out_free_request_sock_slab;
3643
3644 if (tw_prot_init(prot))
3645 goto out_free_timewait_sock_slab;
3646 }
3647
3648 mutex_lock(&proto_list_mutex);
3649 ret = assign_proto_idx(prot);
3650 if (ret) {
3651 mutex_unlock(&proto_list_mutex);
3652 goto out_free_timewait_sock_slab;
3653 }
3654 list_add(&prot->node, &proto_list);
3655 mutex_unlock(&proto_list_mutex);
3656 return ret;
3657
3658out_free_timewait_sock_slab:
3659 if (alloc_slab)
3660 tw_prot_cleanup(prot->twsk_prot);
3661out_free_request_sock_slab:
3662 if (alloc_slab) {
3663 req_prot_cleanup(prot->rsk_prot);
3664
3665 kmem_cache_destroy(prot->slab);
3666 prot->slab = NULL;
3667 }
3668out:
3669 return ret;
3670}
3671EXPORT_SYMBOL(proto_register);
3672
3673void proto_unregister(struct proto *prot)
3674{
3675 mutex_lock(&proto_list_mutex);
3676 release_proto_idx(prot);
3677 list_del(&prot->node);
3678 mutex_unlock(&proto_list_mutex);
3679
3680 kmem_cache_destroy(prot->slab);
3681 prot->slab = NULL;
3682
3683 req_prot_cleanup(prot->rsk_prot);
3684 tw_prot_cleanup(prot->twsk_prot);
3685}
3686EXPORT_SYMBOL(proto_unregister);
3687
3688int sock_load_diag_module(int family, int protocol)
3689{
3690 if (!protocol) {
3691 if (!sock_is_registered(family))
3692 return -ENOENT;
3693
3694 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3695 NETLINK_SOCK_DIAG, family);
3696 }
3697
3698#ifdef CONFIG_INET
3699 if (family == AF_INET &&
3700 protocol != IPPROTO_RAW &&
3701 protocol < MAX_INET_PROTOS &&
3702 !rcu_access_pointer(inet_protos[protocol]))
3703 return -ENOENT;
3704#endif
3705
3706 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3707 NETLINK_SOCK_DIAG, family, protocol);
3708}
3709EXPORT_SYMBOL(sock_load_diag_module);
3710
3711#ifdef CONFIG_PROC_FS
3712static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3713 __acquires(proto_list_mutex)
3714{
3715 mutex_lock(&proto_list_mutex);
3716 return seq_list_start_head(&proto_list, *pos);
3717}
3718
3719static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3720{
3721 return seq_list_next(v, &proto_list, pos);
3722}
3723
3724static void proto_seq_stop(struct seq_file *seq, void *v)
3725 __releases(proto_list_mutex)
3726{
3727 mutex_unlock(&proto_list_mutex);
3728}
3729
3730static char proto_method_implemented(const void *method)
3731{
3732 return method == NULL ? 'n' : 'y';
3733}
3734static long sock_prot_memory_allocated(struct proto *proto)
3735{
3736 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3737}
3738
3739static const char *sock_prot_memory_pressure(struct proto *proto)
3740{
3741 return proto->memory_pressure != NULL ?
3742 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3743}
3744
3745static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3746{
3747
3748 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3749 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3750 proto->name,
3751 proto->obj_size,
3752 sock_prot_inuse_get(seq_file_net(seq), proto),
3753 sock_prot_memory_allocated(proto),
3754 sock_prot_memory_pressure(proto),
3755 proto->max_header,
3756 proto->slab == NULL ? "no" : "yes",
3757 module_name(proto->owner),
3758 proto_method_implemented(proto->close),
3759 proto_method_implemented(proto->connect),
3760 proto_method_implemented(proto->disconnect),
3761 proto_method_implemented(proto->accept),
3762 proto_method_implemented(proto->ioctl),
3763 proto_method_implemented(proto->init),
3764 proto_method_implemented(proto->destroy),
3765 proto_method_implemented(proto->shutdown),
3766 proto_method_implemented(proto->setsockopt),
3767 proto_method_implemented(proto->getsockopt),
3768 proto_method_implemented(proto->sendmsg),
3769 proto_method_implemented(proto->recvmsg),
3770 proto_method_implemented(proto->sendpage),
3771 proto_method_implemented(proto->bind),
3772 proto_method_implemented(proto->backlog_rcv),
3773 proto_method_implemented(proto->hash),
3774 proto_method_implemented(proto->unhash),
3775 proto_method_implemented(proto->get_port),
3776 proto_method_implemented(proto->enter_memory_pressure));
3777}
3778
3779static int proto_seq_show(struct seq_file *seq, void *v)
3780{
3781 if (v == &proto_list)
3782 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3783 "protocol",
3784 "size",
3785 "sockets",
3786 "memory",
3787 "press",
3788 "maxhdr",
3789 "slab",
3790 "module",
3791 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3792 else
3793 proto_seq_printf(seq, list_entry(v, struct proto, node));
3794 return 0;
3795}
3796
3797static const struct seq_operations proto_seq_ops = {
3798 .start = proto_seq_start,
3799 .next = proto_seq_next,
3800 .stop = proto_seq_stop,
3801 .show = proto_seq_show,
3802};
3803
3804static __net_init int proto_init_net(struct net *net)
3805{
3806 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3807 sizeof(struct seq_net_private)))
3808 return -ENOMEM;
3809
3810 return 0;
3811}
3812
3813static __net_exit void proto_exit_net(struct net *net)
3814{
3815 remove_proc_entry("protocols", net->proc_net);
3816}
3817
3818
3819static __net_initdata struct pernet_operations proto_net_ops = {
3820 .init = proto_init_net,
3821 .exit = proto_exit_net,
3822};
3823
3824static int __init proto_init(void)
3825{
3826 return register_pernet_subsys(&proto_net_ops);
3827}
3828
3829subsys_initcall(proto_init);
3830
3831#endif /* PROC_FS */
3832
3833#ifdef CONFIG_NET_RX_BUSY_POLL
3834bool sk_busy_loop_end(void *p, unsigned long start_time)
3835{
3836 struct sock *sk = p;
3837
3838 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3839 sk_busy_loop_timeout(sk, start_time);
3840}
3841EXPORT_SYMBOL(sk_busy_loop_end);
3842#endif /* CONFIG_NET_RX_BUSY_POLL */
3843
3844int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3845{
3846 if (!sk->sk_prot->bind_add)
3847 return -EOPNOTSUPP;
3848 return sk->sk_prot->bind_add(sk, addr, addr_len);
3849}
3850EXPORT_SYMBOL(sock_bind_add);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <asm/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/init.h>
111#include <linux/highmem.h>
112#include <linux/user_namespace.h>
113#include <linux/static_key.h>
114#include <linux/memcontrol.h>
115#include <linux/prefetch.h>
116
117#include <linux/uaccess.h>
118
119#include <linux/netdevice.h>
120#include <net/protocol.h>
121#include <linux/skbuff.h>
122#include <net/net_namespace.h>
123#include <net/request_sock.h>
124#include <net/sock.h>
125#include <linux/net_tstamp.h>
126#include <net/xfrm.h>
127#include <linux/ipsec.h>
128#include <net/cls_cgroup.h>
129#include <net/netprio_cgroup.h>
130#include <linux/sock_diag.h>
131
132#include <linux/filter.h>
133#include <net/sock_reuseport.h>
134#include <net/bpf_sk_storage.h>
135
136#include <trace/events/sock.h>
137
138#include <net/tcp.h>
139#include <net/busy_poll.h>
140
141static DEFINE_MUTEX(proto_list_mutex);
142static LIST_HEAD(proto_list);
143
144static void sock_inuse_add(struct net *net, int val);
145
146/**
147 * sk_ns_capable - General socket capability test
148 * @sk: Socket to use a capability on or through
149 * @user_ns: The user namespace of the capability to use
150 * @cap: The capability to use
151 *
152 * Test to see if the opener of the socket had when the socket was
153 * created and the current process has the capability @cap in the user
154 * namespace @user_ns.
155 */
156bool sk_ns_capable(const struct sock *sk,
157 struct user_namespace *user_ns, int cap)
158{
159 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
160 ns_capable(user_ns, cap);
161}
162EXPORT_SYMBOL(sk_ns_capable);
163
164/**
165 * sk_capable - Socket global capability test
166 * @sk: Socket to use a capability on or through
167 * @cap: The global capability to use
168 *
169 * Test to see if the opener of the socket had when the socket was
170 * created and the current process has the capability @cap in all user
171 * namespaces.
172 */
173bool sk_capable(const struct sock *sk, int cap)
174{
175 return sk_ns_capable(sk, &init_user_ns, cap);
176}
177EXPORT_SYMBOL(sk_capable);
178
179/**
180 * sk_net_capable - Network namespace socket capability test
181 * @sk: Socket to use a capability on or through
182 * @cap: The capability to use
183 *
184 * Test to see if the opener of the socket had when the socket was created
185 * and the current process has the capability @cap over the network namespace
186 * the socket is a member of.
187 */
188bool sk_net_capable(const struct sock *sk, int cap)
189{
190 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
191}
192EXPORT_SYMBOL(sk_net_capable);
193
194/*
195 * Each address family might have different locking rules, so we have
196 * one slock key per address family and separate keys for internal and
197 * userspace sockets.
198 */
199static struct lock_class_key af_family_keys[AF_MAX];
200static struct lock_class_key af_family_kern_keys[AF_MAX];
201static struct lock_class_key af_family_slock_keys[AF_MAX];
202static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
203
204/*
205 * Make lock validator output more readable. (we pre-construct these
206 * strings build-time, so that runtime initialization of socket
207 * locks is fast):
208 */
209
210#define _sock_locks(x) \
211 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
212 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
213 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
214 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
215 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
216 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
217 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
218 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
219 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
220 x "27" , x "28" , x "AF_CAN" , \
221 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
222 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
223 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
224 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
225 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
226 x "AF_MAX"
227
228static const char *const af_family_key_strings[AF_MAX+1] = {
229 _sock_locks("sk_lock-")
230};
231static const char *const af_family_slock_key_strings[AF_MAX+1] = {
232 _sock_locks("slock-")
233};
234static const char *const af_family_clock_key_strings[AF_MAX+1] = {
235 _sock_locks("clock-")
236};
237
238static const char *const af_family_kern_key_strings[AF_MAX+1] = {
239 _sock_locks("k-sk_lock-")
240};
241static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
242 _sock_locks("k-slock-")
243};
244static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-clock-")
246};
247static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
248 _sock_locks("rlock-")
249};
250static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
251 _sock_locks("wlock-")
252};
253static const char *const af_family_elock_key_strings[AF_MAX+1] = {
254 _sock_locks("elock-")
255};
256
257/*
258 * sk_callback_lock and sk queues locking rules are per-address-family,
259 * so split the lock classes by using a per-AF key:
260 */
261static struct lock_class_key af_callback_keys[AF_MAX];
262static struct lock_class_key af_rlock_keys[AF_MAX];
263static struct lock_class_key af_wlock_keys[AF_MAX];
264static struct lock_class_key af_elock_keys[AF_MAX];
265static struct lock_class_key af_kern_callback_keys[AF_MAX];
266
267/* Run time adjustable parameters. */
268__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
269EXPORT_SYMBOL(sysctl_wmem_max);
270__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
271EXPORT_SYMBOL(sysctl_rmem_max);
272__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
273__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
274
275/* Maximal space eaten by iovec or ancillary data plus some space */
276int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
277EXPORT_SYMBOL(sysctl_optmem_max);
278
279int sysctl_tstamp_allow_data __read_mostly = 1;
280
281DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
282EXPORT_SYMBOL_GPL(memalloc_socks_key);
283
284/**
285 * sk_set_memalloc - sets %SOCK_MEMALLOC
286 * @sk: socket to set it on
287 *
288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
289 * It's the responsibility of the admin to adjust min_free_kbytes
290 * to meet the requirements
291 */
292void sk_set_memalloc(struct sock *sk)
293{
294 sock_set_flag(sk, SOCK_MEMALLOC);
295 sk->sk_allocation |= __GFP_MEMALLOC;
296 static_branch_inc(&memalloc_socks_key);
297}
298EXPORT_SYMBOL_GPL(sk_set_memalloc);
299
300void sk_clear_memalloc(struct sock *sk)
301{
302 sock_reset_flag(sk, SOCK_MEMALLOC);
303 sk->sk_allocation &= ~__GFP_MEMALLOC;
304 static_branch_dec(&memalloc_socks_key);
305
306 /*
307 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
308 * progress of swapping. SOCK_MEMALLOC may be cleared while
309 * it has rmem allocations due to the last swapfile being deactivated
310 * but there is a risk that the socket is unusable due to exceeding
311 * the rmem limits. Reclaim the reserves and obey rmem limits again.
312 */
313 sk_mem_reclaim(sk);
314}
315EXPORT_SYMBOL_GPL(sk_clear_memalloc);
316
317int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
318{
319 int ret;
320 unsigned int noreclaim_flag;
321
322 /* these should have been dropped before queueing */
323 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
324
325 noreclaim_flag = memalloc_noreclaim_save();
326 ret = sk->sk_backlog_rcv(sk, skb);
327 memalloc_noreclaim_restore(noreclaim_flag);
328
329 return ret;
330}
331EXPORT_SYMBOL(__sk_backlog_rcv);
332
333static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
334{
335 struct __kernel_sock_timeval tv;
336 int size;
337
338 if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 tv.tv_sec = 0;
340 tv.tv_usec = 0;
341 } else {
342 tv.tv_sec = timeo / HZ;
343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 }
345
346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 *(struct old_timeval32 *)optval = tv32;
349 return sizeof(tv32);
350 }
351
352 if (old_timeval) {
353 struct __kernel_old_timeval old_tv;
354 old_tv.tv_sec = tv.tv_sec;
355 old_tv.tv_usec = tv.tv_usec;
356 *(struct __kernel_old_timeval *)optval = old_tv;
357 size = sizeof(old_tv);
358 } else {
359 *(struct __kernel_sock_timeval *)optval = tv;
360 size = sizeof(tv);
361 }
362
363 return size;
364}
365
366static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval)
367{
368 struct __kernel_sock_timeval tv;
369
370 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
371 struct old_timeval32 tv32;
372
373 if (optlen < sizeof(tv32))
374 return -EINVAL;
375
376 if (copy_from_user(&tv32, optval, sizeof(tv32)))
377 return -EFAULT;
378 tv.tv_sec = tv32.tv_sec;
379 tv.tv_usec = tv32.tv_usec;
380 } else if (old_timeval) {
381 struct __kernel_old_timeval old_tv;
382
383 if (optlen < sizeof(old_tv))
384 return -EINVAL;
385 if (copy_from_user(&old_tv, optval, sizeof(old_tv)))
386 return -EFAULT;
387 tv.tv_sec = old_tv.tv_sec;
388 tv.tv_usec = old_tv.tv_usec;
389 } else {
390 if (optlen < sizeof(tv))
391 return -EINVAL;
392 if (copy_from_user(&tv, optval, sizeof(tv)))
393 return -EFAULT;
394 }
395 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
396 return -EDOM;
397
398 if (tv.tv_sec < 0) {
399 static int warned __read_mostly;
400
401 *timeo_p = 0;
402 if (warned < 10 && net_ratelimit()) {
403 warned++;
404 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
405 __func__, current->comm, task_pid_nr(current));
406 }
407 return 0;
408 }
409 *timeo_p = MAX_SCHEDULE_TIMEOUT;
410 if (tv.tv_sec == 0 && tv.tv_usec == 0)
411 return 0;
412 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
413 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
414 return 0;
415}
416
417static void sock_warn_obsolete_bsdism(const char *name)
418{
419 static int warned;
420 static char warncomm[TASK_COMM_LEN];
421 if (strcmp(warncomm, current->comm) && warned < 5) {
422 strcpy(warncomm, current->comm);
423 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
424 warncomm, name);
425 warned++;
426 }
427}
428
429static bool sock_needs_netstamp(const struct sock *sk)
430{
431 switch (sk->sk_family) {
432 case AF_UNSPEC:
433 case AF_UNIX:
434 return false;
435 default:
436 return true;
437 }
438}
439
440static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
441{
442 if (sk->sk_flags & flags) {
443 sk->sk_flags &= ~flags;
444 if (sock_needs_netstamp(sk) &&
445 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
446 net_disable_timestamp();
447 }
448}
449
450
451int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
452{
453 unsigned long flags;
454 struct sk_buff_head *list = &sk->sk_receive_queue;
455
456 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
457 atomic_inc(&sk->sk_drops);
458 trace_sock_rcvqueue_full(sk, skb);
459 return -ENOMEM;
460 }
461
462 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
463 atomic_inc(&sk->sk_drops);
464 return -ENOBUFS;
465 }
466
467 skb->dev = NULL;
468 skb_set_owner_r(skb, sk);
469
470 /* we escape from rcu protected region, make sure we dont leak
471 * a norefcounted dst
472 */
473 skb_dst_force(skb);
474
475 spin_lock_irqsave(&list->lock, flags);
476 sock_skb_set_dropcount(sk, skb);
477 __skb_queue_tail(list, skb);
478 spin_unlock_irqrestore(&list->lock, flags);
479
480 if (!sock_flag(sk, SOCK_DEAD))
481 sk->sk_data_ready(sk);
482 return 0;
483}
484EXPORT_SYMBOL(__sock_queue_rcv_skb);
485
486int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
487{
488 int err;
489
490 err = sk_filter(sk, skb);
491 if (err)
492 return err;
493
494 return __sock_queue_rcv_skb(sk, skb);
495}
496EXPORT_SYMBOL(sock_queue_rcv_skb);
497
498int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
499 const int nested, unsigned int trim_cap, bool refcounted)
500{
501 int rc = NET_RX_SUCCESS;
502
503 if (sk_filter_trim_cap(sk, skb, trim_cap))
504 goto discard_and_relse;
505
506 skb->dev = NULL;
507
508 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
509 atomic_inc(&sk->sk_drops);
510 goto discard_and_relse;
511 }
512 if (nested)
513 bh_lock_sock_nested(sk);
514 else
515 bh_lock_sock(sk);
516 if (!sock_owned_by_user(sk)) {
517 /*
518 * trylock + unlock semantics:
519 */
520 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
521
522 rc = sk_backlog_rcv(sk, skb);
523
524 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
525 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
526 bh_unlock_sock(sk);
527 atomic_inc(&sk->sk_drops);
528 goto discard_and_relse;
529 }
530
531 bh_unlock_sock(sk);
532out:
533 if (refcounted)
534 sock_put(sk);
535 return rc;
536discard_and_relse:
537 kfree_skb(skb);
538 goto out;
539}
540EXPORT_SYMBOL(__sk_receive_skb);
541
542struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
543{
544 struct dst_entry *dst = __sk_dst_get(sk);
545
546 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
547 sk_tx_queue_clear(sk);
548 sk->sk_dst_pending_confirm = 0;
549 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
550 dst_release(dst);
551 return NULL;
552 }
553
554 return dst;
555}
556EXPORT_SYMBOL(__sk_dst_check);
557
558struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
559{
560 struct dst_entry *dst = sk_dst_get(sk);
561
562 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
563 sk_dst_reset(sk);
564 dst_release(dst);
565 return NULL;
566 }
567
568 return dst;
569}
570EXPORT_SYMBOL(sk_dst_check);
571
572static int sock_setbindtodevice_locked(struct sock *sk, int ifindex)
573{
574 int ret = -ENOPROTOOPT;
575#ifdef CONFIG_NETDEVICES
576 struct net *net = sock_net(sk);
577
578 /* Sorry... */
579 ret = -EPERM;
580 if (!ns_capable(net->user_ns, CAP_NET_RAW))
581 goto out;
582
583 ret = -EINVAL;
584 if (ifindex < 0)
585 goto out;
586
587 sk->sk_bound_dev_if = ifindex;
588 if (sk->sk_prot->rehash)
589 sk->sk_prot->rehash(sk);
590 sk_dst_reset(sk);
591
592 ret = 0;
593
594out:
595#endif
596
597 return ret;
598}
599
600static int sock_setbindtodevice(struct sock *sk, char __user *optval,
601 int optlen)
602{
603 int ret = -ENOPROTOOPT;
604#ifdef CONFIG_NETDEVICES
605 struct net *net = sock_net(sk);
606 char devname[IFNAMSIZ];
607 int index;
608
609 ret = -EINVAL;
610 if (optlen < 0)
611 goto out;
612
613 /* Bind this socket to a particular device like "eth0",
614 * as specified in the passed interface name. If the
615 * name is "" or the option length is zero the socket
616 * is not bound.
617 */
618 if (optlen > IFNAMSIZ - 1)
619 optlen = IFNAMSIZ - 1;
620 memset(devname, 0, sizeof(devname));
621
622 ret = -EFAULT;
623 if (copy_from_user(devname, optval, optlen))
624 goto out;
625
626 index = 0;
627 if (devname[0] != '\0') {
628 struct net_device *dev;
629
630 rcu_read_lock();
631 dev = dev_get_by_name_rcu(net, devname);
632 if (dev)
633 index = dev->ifindex;
634 rcu_read_unlock();
635 ret = -ENODEV;
636 if (!dev)
637 goto out;
638 }
639
640 lock_sock(sk);
641 ret = sock_setbindtodevice_locked(sk, index);
642 release_sock(sk);
643
644out:
645#endif
646
647 return ret;
648}
649
650static int sock_getbindtodevice(struct sock *sk, char __user *optval,
651 int __user *optlen, int len)
652{
653 int ret = -ENOPROTOOPT;
654#ifdef CONFIG_NETDEVICES
655 struct net *net = sock_net(sk);
656 char devname[IFNAMSIZ];
657
658 if (sk->sk_bound_dev_if == 0) {
659 len = 0;
660 goto zero;
661 }
662
663 ret = -EINVAL;
664 if (len < IFNAMSIZ)
665 goto out;
666
667 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
668 if (ret)
669 goto out;
670
671 len = strlen(devname) + 1;
672
673 ret = -EFAULT;
674 if (copy_to_user(optval, devname, len))
675 goto out;
676
677zero:
678 ret = -EFAULT;
679 if (put_user(len, optlen))
680 goto out;
681
682 ret = 0;
683
684out:
685#endif
686
687 return ret;
688}
689
690static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
691{
692 if (valbool)
693 sock_set_flag(sk, bit);
694 else
695 sock_reset_flag(sk, bit);
696}
697
698bool sk_mc_loop(struct sock *sk)
699{
700 if (dev_recursion_level())
701 return false;
702 if (!sk)
703 return true;
704 switch (sk->sk_family) {
705 case AF_INET:
706 return inet_sk(sk)->mc_loop;
707#if IS_ENABLED(CONFIG_IPV6)
708 case AF_INET6:
709 return inet6_sk(sk)->mc_loop;
710#endif
711 }
712 WARN_ON(1);
713 return true;
714}
715EXPORT_SYMBOL(sk_mc_loop);
716
717/*
718 * This is meant for all protocols to use and covers goings on
719 * at the socket level. Everything here is generic.
720 */
721
722int sock_setsockopt(struct socket *sock, int level, int optname,
723 char __user *optval, unsigned int optlen)
724{
725 struct sock_txtime sk_txtime;
726 struct sock *sk = sock->sk;
727 int val;
728 int valbool;
729 struct linger ling;
730 int ret = 0;
731
732 /*
733 * Options without arguments
734 */
735
736 if (optname == SO_BINDTODEVICE)
737 return sock_setbindtodevice(sk, optval, optlen);
738
739 if (optlen < sizeof(int))
740 return -EINVAL;
741
742 if (get_user(val, (int __user *)optval))
743 return -EFAULT;
744
745 valbool = val ? 1 : 0;
746
747 lock_sock(sk);
748
749 switch (optname) {
750 case SO_DEBUG:
751 if (val && !capable(CAP_NET_ADMIN))
752 ret = -EACCES;
753 else
754 sock_valbool_flag(sk, SOCK_DBG, valbool);
755 break;
756 case SO_REUSEADDR:
757 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
758 break;
759 case SO_REUSEPORT:
760 sk->sk_reuseport = valbool;
761 break;
762 case SO_TYPE:
763 case SO_PROTOCOL:
764 case SO_DOMAIN:
765 case SO_ERROR:
766 ret = -ENOPROTOOPT;
767 break;
768 case SO_DONTROUTE:
769 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
770 sk_dst_reset(sk);
771 break;
772 case SO_BROADCAST:
773 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
774 break;
775 case SO_SNDBUF:
776 /* Don't error on this BSD doesn't and if you think
777 * about it this is right. Otherwise apps have to
778 * play 'guess the biggest size' games. RCVBUF/SNDBUF
779 * are treated in BSD as hints
780 */
781 val = min_t(u32, val, sysctl_wmem_max);
782set_sndbuf:
783 /* Ensure val * 2 fits into an int, to prevent max_t()
784 * from treating it as a negative value.
785 */
786 val = min_t(int, val, INT_MAX / 2);
787 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
788 WRITE_ONCE(sk->sk_sndbuf,
789 max_t(int, val * 2, SOCK_MIN_SNDBUF));
790 /* Wake up sending tasks if we upped the value. */
791 sk->sk_write_space(sk);
792 break;
793
794 case SO_SNDBUFFORCE:
795 if (!capable(CAP_NET_ADMIN)) {
796 ret = -EPERM;
797 break;
798 }
799
800 /* No negative values (to prevent underflow, as val will be
801 * multiplied by 2).
802 */
803 if (val < 0)
804 val = 0;
805 goto set_sndbuf;
806
807 case SO_RCVBUF:
808 /* Don't error on this BSD doesn't and if you think
809 * about it this is right. Otherwise apps have to
810 * play 'guess the biggest size' games. RCVBUF/SNDBUF
811 * are treated in BSD as hints
812 */
813 val = min_t(u32, val, sysctl_rmem_max);
814set_rcvbuf:
815 /* Ensure val * 2 fits into an int, to prevent max_t()
816 * from treating it as a negative value.
817 */
818 val = min_t(int, val, INT_MAX / 2);
819 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
820 /*
821 * We double it on the way in to account for
822 * "struct sk_buff" etc. overhead. Applications
823 * assume that the SO_RCVBUF setting they make will
824 * allow that much actual data to be received on that
825 * socket.
826 *
827 * Applications are unaware that "struct sk_buff" and
828 * other overheads allocate from the receive buffer
829 * during socket buffer allocation.
830 *
831 * And after considering the possible alternatives,
832 * returning the value we actually used in getsockopt
833 * is the most desirable behavior.
834 */
835 WRITE_ONCE(sk->sk_rcvbuf,
836 max_t(int, val * 2, SOCK_MIN_RCVBUF));
837 break;
838
839 case SO_RCVBUFFORCE:
840 if (!capable(CAP_NET_ADMIN)) {
841 ret = -EPERM;
842 break;
843 }
844
845 /* No negative values (to prevent underflow, as val will be
846 * multiplied by 2).
847 */
848 if (val < 0)
849 val = 0;
850 goto set_rcvbuf;
851
852 case SO_KEEPALIVE:
853 if (sk->sk_prot->keepalive)
854 sk->sk_prot->keepalive(sk, valbool);
855 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
856 break;
857
858 case SO_OOBINLINE:
859 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
860 break;
861
862 case SO_NO_CHECK:
863 sk->sk_no_check_tx = valbool;
864 break;
865
866 case SO_PRIORITY:
867 if ((val >= 0 && val <= 6) ||
868 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
869 sk->sk_priority = val;
870 else
871 ret = -EPERM;
872 break;
873
874 case SO_LINGER:
875 if (optlen < sizeof(ling)) {
876 ret = -EINVAL; /* 1003.1g */
877 break;
878 }
879 if (copy_from_user(&ling, optval, sizeof(ling))) {
880 ret = -EFAULT;
881 break;
882 }
883 if (!ling.l_onoff)
884 sock_reset_flag(sk, SOCK_LINGER);
885 else {
886#if (BITS_PER_LONG == 32)
887 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
888 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
889 else
890#endif
891 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
892 sock_set_flag(sk, SOCK_LINGER);
893 }
894 break;
895
896 case SO_BSDCOMPAT:
897 sock_warn_obsolete_bsdism("setsockopt");
898 break;
899
900 case SO_PASSCRED:
901 if (valbool)
902 set_bit(SOCK_PASSCRED, &sock->flags);
903 else
904 clear_bit(SOCK_PASSCRED, &sock->flags);
905 break;
906
907 case SO_TIMESTAMP_OLD:
908 case SO_TIMESTAMP_NEW:
909 case SO_TIMESTAMPNS_OLD:
910 case SO_TIMESTAMPNS_NEW:
911 if (valbool) {
912 if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW)
913 sock_set_flag(sk, SOCK_TSTAMP_NEW);
914 else
915 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
916
917 if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW)
918 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
919 else
920 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
921 sock_set_flag(sk, SOCK_RCVTSTAMP);
922 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
923 } else {
924 sock_reset_flag(sk, SOCK_RCVTSTAMP);
925 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
926 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
927 }
928 break;
929
930 case SO_TIMESTAMPING_NEW:
931 sock_set_flag(sk, SOCK_TSTAMP_NEW);
932 /* fall through */
933 case SO_TIMESTAMPING_OLD:
934 if (val & ~SOF_TIMESTAMPING_MASK) {
935 ret = -EINVAL;
936 break;
937 }
938
939 if (val & SOF_TIMESTAMPING_OPT_ID &&
940 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
941 if (sk->sk_protocol == IPPROTO_TCP &&
942 sk->sk_type == SOCK_STREAM) {
943 if ((1 << sk->sk_state) &
944 (TCPF_CLOSE | TCPF_LISTEN)) {
945 ret = -EINVAL;
946 break;
947 }
948 sk->sk_tskey = tcp_sk(sk)->snd_una;
949 } else {
950 sk->sk_tskey = 0;
951 }
952 }
953
954 if (val & SOF_TIMESTAMPING_OPT_STATS &&
955 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
956 ret = -EINVAL;
957 break;
958 }
959
960 sk->sk_tsflags = val;
961 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
962 sock_enable_timestamp(sk,
963 SOCK_TIMESTAMPING_RX_SOFTWARE);
964 else {
965 if (optname == SO_TIMESTAMPING_NEW)
966 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
967
968 sock_disable_timestamp(sk,
969 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
970 }
971 break;
972
973 case SO_RCVLOWAT:
974 if (val < 0)
975 val = INT_MAX;
976 if (sock->ops->set_rcvlowat)
977 ret = sock->ops->set_rcvlowat(sk, val);
978 else
979 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
980 break;
981
982 case SO_RCVTIMEO_OLD:
983 case SO_RCVTIMEO_NEW:
984 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD);
985 break;
986
987 case SO_SNDTIMEO_OLD:
988 case SO_SNDTIMEO_NEW:
989 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD);
990 break;
991
992 case SO_ATTACH_FILTER:
993 ret = -EINVAL;
994 if (optlen == sizeof(struct sock_fprog)) {
995 struct sock_fprog fprog;
996
997 ret = -EFAULT;
998 if (copy_from_user(&fprog, optval, sizeof(fprog)))
999 break;
1000
1001 ret = sk_attach_filter(&fprog, sk);
1002 }
1003 break;
1004
1005 case SO_ATTACH_BPF:
1006 ret = -EINVAL;
1007 if (optlen == sizeof(u32)) {
1008 u32 ufd;
1009
1010 ret = -EFAULT;
1011 if (copy_from_user(&ufd, optval, sizeof(ufd)))
1012 break;
1013
1014 ret = sk_attach_bpf(ufd, sk);
1015 }
1016 break;
1017
1018 case SO_ATTACH_REUSEPORT_CBPF:
1019 ret = -EINVAL;
1020 if (optlen == sizeof(struct sock_fprog)) {
1021 struct sock_fprog fprog;
1022
1023 ret = -EFAULT;
1024 if (copy_from_user(&fprog, optval, sizeof(fprog)))
1025 break;
1026
1027 ret = sk_reuseport_attach_filter(&fprog, sk);
1028 }
1029 break;
1030
1031 case SO_ATTACH_REUSEPORT_EBPF:
1032 ret = -EINVAL;
1033 if (optlen == sizeof(u32)) {
1034 u32 ufd;
1035
1036 ret = -EFAULT;
1037 if (copy_from_user(&ufd, optval, sizeof(ufd)))
1038 break;
1039
1040 ret = sk_reuseport_attach_bpf(ufd, sk);
1041 }
1042 break;
1043
1044 case SO_DETACH_REUSEPORT_BPF:
1045 ret = reuseport_detach_prog(sk);
1046 break;
1047
1048 case SO_DETACH_FILTER:
1049 ret = sk_detach_filter(sk);
1050 break;
1051
1052 case SO_LOCK_FILTER:
1053 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1054 ret = -EPERM;
1055 else
1056 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1057 break;
1058
1059 case SO_PASSSEC:
1060 if (valbool)
1061 set_bit(SOCK_PASSSEC, &sock->flags);
1062 else
1063 clear_bit(SOCK_PASSSEC, &sock->flags);
1064 break;
1065 case SO_MARK:
1066 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1067 ret = -EPERM;
1068 } else if (val != sk->sk_mark) {
1069 sk->sk_mark = val;
1070 sk_dst_reset(sk);
1071 }
1072 break;
1073
1074 case SO_RXQ_OVFL:
1075 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1076 break;
1077
1078 case SO_WIFI_STATUS:
1079 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1080 break;
1081
1082 case SO_PEEK_OFF:
1083 if (sock->ops->set_peek_off)
1084 ret = sock->ops->set_peek_off(sk, val);
1085 else
1086 ret = -EOPNOTSUPP;
1087 break;
1088
1089 case SO_NOFCS:
1090 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1091 break;
1092
1093 case SO_SELECT_ERR_QUEUE:
1094 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1095 break;
1096
1097#ifdef CONFIG_NET_RX_BUSY_POLL
1098 case SO_BUSY_POLL:
1099 /* allow unprivileged users to decrease the value */
1100 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1101 ret = -EPERM;
1102 else {
1103 if (val < 0)
1104 ret = -EINVAL;
1105 else
1106 sk->sk_ll_usec = val;
1107 }
1108 break;
1109#endif
1110
1111 case SO_MAX_PACING_RATE:
1112 {
1113 unsigned long ulval = (val == ~0U) ? ~0UL : val;
1114
1115 if (sizeof(ulval) != sizeof(val) &&
1116 optlen >= sizeof(ulval) &&
1117 get_user(ulval, (unsigned long __user *)optval)) {
1118 ret = -EFAULT;
1119 break;
1120 }
1121 if (ulval != ~0UL)
1122 cmpxchg(&sk->sk_pacing_status,
1123 SK_PACING_NONE,
1124 SK_PACING_NEEDED);
1125 sk->sk_max_pacing_rate = ulval;
1126 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1127 break;
1128 }
1129 case SO_INCOMING_CPU:
1130 WRITE_ONCE(sk->sk_incoming_cpu, val);
1131 break;
1132
1133 case SO_CNX_ADVICE:
1134 if (val == 1)
1135 dst_negative_advice(sk);
1136 break;
1137
1138 case SO_ZEROCOPY:
1139 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1140 if (!((sk->sk_type == SOCK_STREAM &&
1141 sk->sk_protocol == IPPROTO_TCP) ||
1142 (sk->sk_type == SOCK_DGRAM &&
1143 sk->sk_protocol == IPPROTO_UDP)))
1144 ret = -ENOTSUPP;
1145 } else if (sk->sk_family != PF_RDS) {
1146 ret = -ENOTSUPP;
1147 }
1148 if (!ret) {
1149 if (val < 0 || val > 1)
1150 ret = -EINVAL;
1151 else
1152 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1153 }
1154 break;
1155
1156 case SO_TXTIME:
1157 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1158 ret = -EPERM;
1159 } else if (optlen != sizeof(struct sock_txtime)) {
1160 ret = -EINVAL;
1161 } else if (copy_from_user(&sk_txtime, optval,
1162 sizeof(struct sock_txtime))) {
1163 ret = -EFAULT;
1164 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1165 ret = -EINVAL;
1166 } else {
1167 sock_valbool_flag(sk, SOCK_TXTIME, true);
1168 sk->sk_clockid = sk_txtime.clockid;
1169 sk->sk_txtime_deadline_mode =
1170 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1171 sk->sk_txtime_report_errors =
1172 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1173 }
1174 break;
1175
1176 case SO_BINDTOIFINDEX:
1177 ret = sock_setbindtodevice_locked(sk, val);
1178 break;
1179
1180 default:
1181 ret = -ENOPROTOOPT;
1182 break;
1183 }
1184 release_sock(sk);
1185 return ret;
1186}
1187EXPORT_SYMBOL(sock_setsockopt);
1188
1189
1190static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1191 struct ucred *ucred)
1192{
1193 ucred->pid = pid_vnr(pid);
1194 ucred->uid = ucred->gid = -1;
1195 if (cred) {
1196 struct user_namespace *current_ns = current_user_ns();
1197
1198 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1199 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1200 }
1201}
1202
1203static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1204{
1205 struct user_namespace *user_ns = current_user_ns();
1206 int i;
1207
1208 for (i = 0; i < src->ngroups; i++)
1209 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1210 return -EFAULT;
1211
1212 return 0;
1213}
1214
1215int sock_getsockopt(struct socket *sock, int level, int optname,
1216 char __user *optval, int __user *optlen)
1217{
1218 struct sock *sk = sock->sk;
1219
1220 union {
1221 int val;
1222 u64 val64;
1223 unsigned long ulval;
1224 struct linger ling;
1225 struct old_timeval32 tm32;
1226 struct __kernel_old_timeval tm;
1227 struct __kernel_sock_timeval stm;
1228 struct sock_txtime txtime;
1229 } v;
1230
1231 int lv = sizeof(int);
1232 int len;
1233
1234 if (get_user(len, optlen))
1235 return -EFAULT;
1236 if (len < 0)
1237 return -EINVAL;
1238
1239 memset(&v, 0, sizeof(v));
1240
1241 switch (optname) {
1242 case SO_DEBUG:
1243 v.val = sock_flag(sk, SOCK_DBG);
1244 break;
1245
1246 case SO_DONTROUTE:
1247 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1248 break;
1249
1250 case SO_BROADCAST:
1251 v.val = sock_flag(sk, SOCK_BROADCAST);
1252 break;
1253
1254 case SO_SNDBUF:
1255 v.val = sk->sk_sndbuf;
1256 break;
1257
1258 case SO_RCVBUF:
1259 v.val = sk->sk_rcvbuf;
1260 break;
1261
1262 case SO_REUSEADDR:
1263 v.val = sk->sk_reuse;
1264 break;
1265
1266 case SO_REUSEPORT:
1267 v.val = sk->sk_reuseport;
1268 break;
1269
1270 case SO_KEEPALIVE:
1271 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1272 break;
1273
1274 case SO_TYPE:
1275 v.val = sk->sk_type;
1276 break;
1277
1278 case SO_PROTOCOL:
1279 v.val = sk->sk_protocol;
1280 break;
1281
1282 case SO_DOMAIN:
1283 v.val = sk->sk_family;
1284 break;
1285
1286 case SO_ERROR:
1287 v.val = -sock_error(sk);
1288 if (v.val == 0)
1289 v.val = xchg(&sk->sk_err_soft, 0);
1290 break;
1291
1292 case SO_OOBINLINE:
1293 v.val = sock_flag(sk, SOCK_URGINLINE);
1294 break;
1295
1296 case SO_NO_CHECK:
1297 v.val = sk->sk_no_check_tx;
1298 break;
1299
1300 case SO_PRIORITY:
1301 v.val = sk->sk_priority;
1302 break;
1303
1304 case SO_LINGER:
1305 lv = sizeof(v.ling);
1306 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1307 v.ling.l_linger = sk->sk_lingertime / HZ;
1308 break;
1309
1310 case SO_BSDCOMPAT:
1311 sock_warn_obsolete_bsdism("getsockopt");
1312 break;
1313
1314 case SO_TIMESTAMP_OLD:
1315 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1316 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1317 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1318 break;
1319
1320 case SO_TIMESTAMPNS_OLD:
1321 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1322 break;
1323
1324 case SO_TIMESTAMP_NEW:
1325 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1326 break;
1327
1328 case SO_TIMESTAMPNS_NEW:
1329 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1330 break;
1331
1332 case SO_TIMESTAMPING_OLD:
1333 v.val = sk->sk_tsflags;
1334 break;
1335
1336 case SO_RCVTIMEO_OLD:
1337 case SO_RCVTIMEO_NEW:
1338 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1339 break;
1340
1341 case SO_SNDTIMEO_OLD:
1342 case SO_SNDTIMEO_NEW:
1343 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1344 break;
1345
1346 case SO_RCVLOWAT:
1347 v.val = sk->sk_rcvlowat;
1348 break;
1349
1350 case SO_SNDLOWAT:
1351 v.val = 1;
1352 break;
1353
1354 case SO_PASSCRED:
1355 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1356 break;
1357
1358 case SO_PEERCRED:
1359 {
1360 struct ucred peercred;
1361 if (len > sizeof(peercred))
1362 len = sizeof(peercred);
1363 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1364 if (copy_to_user(optval, &peercred, len))
1365 return -EFAULT;
1366 goto lenout;
1367 }
1368
1369 case SO_PEERGROUPS:
1370 {
1371 int ret, n;
1372
1373 if (!sk->sk_peer_cred)
1374 return -ENODATA;
1375
1376 n = sk->sk_peer_cred->group_info->ngroups;
1377 if (len < n * sizeof(gid_t)) {
1378 len = n * sizeof(gid_t);
1379 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1380 }
1381 len = n * sizeof(gid_t);
1382
1383 ret = groups_to_user((gid_t __user *)optval,
1384 sk->sk_peer_cred->group_info);
1385 if (ret)
1386 return ret;
1387 goto lenout;
1388 }
1389
1390 case SO_PEERNAME:
1391 {
1392 char address[128];
1393
1394 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1395 if (lv < 0)
1396 return -ENOTCONN;
1397 if (lv < len)
1398 return -EINVAL;
1399 if (copy_to_user(optval, address, len))
1400 return -EFAULT;
1401 goto lenout;
1402 }
1403
1404 /* Dubious BSD thing... Probably nobody even uses it, but
1405 * the UNIX standard wants it for whatever reason... -DaveM
1406 */
1407 case SO_ACCEPTCONN:
1408 v.val = sk->sk_state == TCP_LISTEN;
1409 break;
1410
1411 case SO_PASSSEC:
1412 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1413 break;
1414
1415 case SO_PEERSEC:
1416 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1417
1418 case SO_MARK:
1419 v.val = sk->sk_mark;
1420 break;
1421
1422 case SO_RXQ_OVFL:
1423 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1424 break;
1425
1426 case SO_WIFI_STATUS:
1427 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1428 break;
1429
1430 case SO_PEEK_OFF:
1431 if (!sock->ops->set_peek_off)
1432 return -EOPNOTSUPP;
1433
1434 v.val = sk->sk_peek_off;
1435 break;
1436 case SO_NOFCS:
1437 v.val = sock_flag(sk, SOCK_NOFCS);
1438 break;
1439
1440 case SO_BINDTODEVICE:
1441 return sock_getbindtodevice(sk, optval, optlen, len);
1442
1443 case SO_GET_FILTER:
1444 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1445 if (len < 0)
1446 return len;
1447
1448 goto lenout;
1449
1450 case SO_LOCK_FILTER:
1451 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1452 break;
1453
1454 case SO_BPF_EXTENSIONS:
1455 v.val = bpf_tell_extensions();
1456 break;
1457
1458 case SO_SELECT_ERR_QUEUE:
1459 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1460 break;
1461
1462#ifdef CONFIG_NET_RX_BUSY_POLL
1463 case SO_BUSY_POLL:
1464 v.val = sk->sk_ll_usec;
1465 break;
1466#endif
1467
1468 case SO_MAX_PACING_RATE:
1469 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1470 lv = sizeof(v.ulval);
1471 v.ulval = sk->sk_max_pacing_rate;
1472 } else {
1473 /* 32bit version */
1474 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1475 }
1476 break;
1477
1478 case SO_INCOMING_CPU:
1479 v.val = READ_ONCE(sk->sk_incoming_cpu);
1480 break;
1481
1482 case SO_MEMINFO:
1483 {
1484 u32 meminfo[SK_MEMINFO_VARS];
1485
1486 sk_get_meminfo(sk, meminfo);
1487
1488 len = min_t(unsigned int, len, sizeof(meminfo));
1489 if (copy_to_user(optval, &meminfo, len))
1490 return -EFAULT;
1491
1492 goto lenout;
1493 }
1494
1495#ifdef CONFIG_NET_RX_BUSY_POLL
1496 case SO_INCOMING_NAPI_ID:
1497 v.val = READ_ONCE(sk->sk_napi_id);
1498
1499 /* aggregate non-NAPI IDs down to 0 */
1500 if (v.val < MIN_NAPI_ID)
1501 v.val = 0;
1502
1503 break;
1504#endif
1505
1506 case SO_COOKIE:
1507 lv = sizeof(u64);
1508 if (len < lv)
1509 return -EINVAL;
1510 v.val64 = sock_gen_cookie(sk);
1511 break;
1512
1513 case SO_ZEROCOPY:
1514 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1515 break;
1516
1517 case SO_TXTIME:
1518 lv = sizeof(v.txtime);
1519 v.txtime.clockid = sk->sk_clockid;
1520 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1521 SOF_TXTIME_DEADLINE_MODE : 0;
1522 v.txtime.flags |= sk->sk_txtime_report_errors ?
1523 SOF_TXTIME_REPORT_ERRORS : 0;
1524 break;
1525
1526 case SO_BINDTOIFINDEX:
1527 v.val = sk->sk_bound_dev_if;
1528 break;
1529
1530 default:
1531 /* We implement the SO_SNDLOWAT etc to not be settable
1532 * (1003.1g 7).
1533 */
1534 return -ENOPROTOOPT;
1535 }
1536
1537 if (len > lv)
1538 len = lv;
1539 if (copy_to_user(optval, &v, len))
1540 return -EFAULT;
1541lenout:
1542 if (put_user(len, optlen))
1543 return -EFAULT;
1544 return 0;
1545}
1546
1547/*
1548 * Initialize an sk_lock.
1549 *
1550 * (We also register the sk_lock with the lock validator.)
1551 */
1552static inline void sock_lock_init(struct sock *sk)
1553{
1554 if (sk->sk_kern_sock)
1555 sock_lock_init_class_and_name(
1556 sk,
1557 af_family_kern_slock_key_strings[sk->sk_family],
1558 af_family_kern_slock_keys + sk->sk_family,
1559 af_family_kern_key_strings[sk->sk_family],
1560 af_family_kern_keys + sk->sk_family);
1561 else
1562 sock_lock_init_class_and_name(
1563 sk,
1564 af_family_slock_key_strings[sk->sk_family],
1565 af_family_slock_keys + sk->sk_family,
1566 af_family_key_strings[sk->sk_family],
1567 af_family_keys + sk->sk_family);
1568}
1569
1570/*
1571 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1572 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1573 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1574 */
1575static void sock_copy(struct sock *nsk, const struct sock *osk)
1576{
1577#ifdef CONFIG_SECURITY_NETWORK
1578 void *sptr = nsk->sk_security;
1579#endif
1580 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1581
1582 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1583 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1584
1585#ifdef CONFIG_SECURITY_NETWORK
1586 nsk->sk_security = sptr;
1587 security_sk_clone(osk, nsk);
1588#endif
1589}
1590
1591static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1592 int family)
1593{
1594 struct sock *sk;
1595 struct kmem_cache *slab;
1596
1597 slab = prot->slab;
1598 if (slab != NULL) {
1599 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1600 if (!sk)
1601 return sk;
1602 if (want_init_on_alloc(priority))
1603 sk_prot_clear_nulls(sk, prot->obj_size);
1604 } else
1605 sk = kmalloc(prot->obj_size, priority);
1606
1607 if (sk != NULL) {
1608 if (security_sk_alloc(sk, family, priority))
1609 goto out_free;
1610
1611 if (!try_module_get(prot->owner))
1612 goto out_free_sec;
1613 sk_tx_queue_clear(sk);
1614 }
1615
1616 return sk;
1617
1618out_free_sec:
1619 security_sk_free(sk);
1620out_free:
1621 if (slab != NULL)
1622 kmem_cache_free(slab, sk);
1623 else
1624 kfree(sk);
1625 return NULL;
1626}
1627
1628static void sk_prot_free(struct proto *prot, struct sock *sk)
1629{
1630 struct kmem_cache *slab;
1631 struct module *owner;
1632
1633 owner = prot->owner;
1634 slab = prot->slab;
1635
1636 cgroup_sk_free(&sk->sk_cgrp_data);
1637 mem_cgroup_sk_free(sk);
1638 security_sk_free(sk);
1639 if (slab != NULL)
1640 kmem_cache_free(slab, sk);
1641 else
1642 kfree(sk);
1643 module_put(owner);
1644}
1645
1646/**
1647 * sk_alloc - All socket objects are allocated here
1648 * @net: the applicable net namespace
1649 * @family: protocol family
1650 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1651 * @prot: struct proto associated with this new sock instance
1652 * @kern: is this to be a kernel socket?
1653 */
1654struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1655 struct proto *prot, int kern)
1656{
1657 struct sock *sk;
1658
1659 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1660 if (sk) {
1661 sk->sk_family = family;
1662 /*
1663 * See comment in struct sock definition to understand
1664 * why we need sk_prot_creator -acme
1665 */
1666 sk->sk_prot = sk->sk_prot_creator = prot;
1667 sk->sk_kern_sock = kern;
1668 sock_lock_init(sk);
1669 sk->sk_net_refcnt = kern ? 0 : 1;
1670 if (likely(sk->sk_net_refcnt)) {
1671 get_net(net);
1672 sock_inuse_add(net, 1);
1673 }
1674
1675 sock_net_set(sk, net);
1676 refcount_set(&sk->sk_wmem_alloc, 1);
1677
1678 mem_cgroup_sk_alloc(sk);
1679 cgroup_sk_alloc(&sk->sk_cgrp_data);
1680 sock_update_classid(&sk->sk_cgrp_data);
1681 sock_update_netprioidx(&sk->sk_cgrp_data);
1682 }
1683
1684 return sk;
1685}
1686EXPORT_SYMBOL(sk_alloc);
1687
1688/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1689 * grace period. This is the case for UDP sockets and TCP listeners.
1690 */
1691static void __sk_destruct(struct rcu_head *head)
1692{
1693 struct sock *sk = container_of(head, struct sock, sk_rcu);
1694 struct sk_filter *filter;
1695
1696 if (sk->sk_destruct)
1697 sk->sk_destruct(sk);
1698
1699 filter = rcu_dereference_check(sk->sk_filter,
1700 refcount_read(&sk->sk_wmem_alloc) == 0);
1701 if (filter) {
1702 sk_filter_uncharge(sk, filter);
1703 RCU_INIT_POINTER(sk->sk_filter, NULL);
1704 }
1705
1706 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1707
1708#ifdef CONFIG_BPF_SYSCALL
1709 bpf_sk_storage_free(sk);
1710#endif
1711
1712 if (atomic_read(&sk->sk_omem_alloc))
1713 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1714 __func__, atomic_read(&sk->sk_omem_alloc));
1715
1716 if (sk->sk_frag.page) {
1717 put_page(sk->sk_frag.page);
1718 sk->sk_frag.page = NULL;
1719 }
1720
1721 if (sk->sk_peer_cred)
1722 put_cred(sk->sk_peer_cred);
1723 put_pid(sk->sk_peer_pid);
1724 if (likely(sk->sk_net_refcnt))
1725 put_net(sock_net(sk));
1726 sk_prot_free(sk->sk_prot_creator, sk);
1727}
1728
1729void sk_destruct(struct sock *sk)
1730{
1731 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1732
1733 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1734 reuseport_detach_sock(sk);
1735 use_call_rcu = true;
1736 }
1737
1738 if (use_call_rcu)
1739 call_rcu(&sk->sk_rcu, __sk_destruct);
1740 else
1741 __sk_destruct(&sk->sk_rcu);
1742}
1743
1744static void __sk_free(struct sock *sk)
1745{
1746 if (likely(sk->sk_net_refcnt))
1747 sock_inuse_add(sock_net(sk), -1);
1748
1749 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1750 sock_diag_broadcast_destroy(sk);
1751 else
1752 sk_destruct(sk);
1753}
1754
1755void sk_free(struct sock *sk)
1756{
1757 /*
1758 * We subtract one from sk_wmem_alloc and can know if
1759 * some packets are still in some tx queue.
1760 * If not null, sock_wfree() will call __sk_free(sk) later
1761 */
1762 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1763 __sk_free(sk);
1764}
1765EXPORT_SYMBOL(sk_free);
1766
1767static void sk_init_common(struct sock *sk)
1768{
1769 skb_queue_head_init(&sk->sk_receive_queue);
1770 skb_queue_head_init(&sk->sk_write_queue);
1771 skb_queue_head_init(&sk->sk_error_queue);
1772
1773 rwlock_init(&sk->sk_callback_lock);
1774 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1775 af_rlock_keys + sk->sk_family,
1776 af_family_rlock_key_strings[sk->sk_family]);
1777 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1778 af_wlock_keys + sk->sk_family,
1779 af_family_wlock_key_strings[sk->sk_family]);
1780 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1781 af_elock_keys + sk->sk_family,
1782 af_family_elock_key_strings[sk->sk_family]);
1783 lockdep_set_class_and_name(&sk->sk_callback_lock,
1784 af_callback_keys + sk->sk_family,
1785 af_family_clock_key_strings[sk->sk_family]);
1786}
1787
1788/**
1789 * sk_clone_lock - clone a socket, and lock its clone
1790 * @sk: the socket to clone
1791 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1792 *
1793 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1794 */
1795struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1796{
1797 struct sock *newsk;
1798 bool is_charged = true;
1799
1800 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1801 if (newsk != NULL) {
1802 struct sk_filter *filter;
1803
1804 sock_copy(newsk, sk);
1805
1806 newsk->sk_prot_creator = sk->sk_prot;
1807
1808 /* SANITY */
1809 if (likely(newsk->sk_net_refcnt))
1810 get_net(sock_net(newsk));
1811 sk_node_init(&newsk->sk_node);
1812 sock_lock_init(newsk);
1813 bh_lock_sock(newsk);
1814 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1815 newsk->sk_backlog.len = 0;
1816
1817 atomic_set(&newsk->sk_rmem_alloc, 0);
1818 /*
1819 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1820 */
1821 refcount_set(&newsk->sk_wmem_alloc, 1);
1822 atomic_set(&newsk->sk_omem_alloc, 0);
1823 sk_init_common(newsk);
1824
1825 newsk->sk_dst_cache = NULL;
1826 newsk->sk_dst_pending_confirm = 0;
1827 newsk->sk_wmem_queued = 0;
1828 newsk->sk_forward_alloc = 0;
1829 atomic_set(&newsk->sk_drops, 0);
1830 newsk->sk_send_head = NULL;
1831 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1832 atomic_set(&newsk->sk_zckey, 0);
1833
1834 sock_reset_flag(newsk, SOCK_DONE);
1835 mem_cgroup_sk_alloc(newsk);
1836 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1837
1838 rcu_read_lock();
1839 filter = rcu_dereference(sk->sk_filter);
1840 if (filter != NULL)
1841 /* though it's an empty new sock, the charging may fail
1842 * if sysctl_optmem_max was changed between creation of
1843 * original socket and cloning
1844 */
1845 is_charged = sk_filter_charge(newsk, filter);
1846 RCU_INIT_POINTER(newsk->sk_filter, filter);
1847 rcu_read_unlock();
1848
1849 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1850 /* We need to make sure that we don't uncharge the new
1851 * socket if we couldn't charge it in the first place
1852 * as otherwise we uncharge the parent's filter.
1853 */
1854 if (!is_charged)
1855 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1856 sk_free_unlock_clone(newsk);
1857 newsk = NULL;
1858 goto out;
1859 }
1860 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1861
1862 if (bpf_sk_storage_clone(sk, newsk)) {
1863 sk_free_unlock_clone(newsk);
1864 newsk = NULL;
1865 goto out;
1866 }
1867
1868 newsk->sk_err = 0;
1869 newsk->sk_err_soft = 0;
1870 newsk->sk_priority = 0;
1871 newsk->sk_incoming_cpu = raw_smp_processor_id();
1872 if (likely(newsk->sk_net_refcnt))
1873 sock_inuse_add(sock_net(newsk), 1);
1874
1875 /*
1876 * Before updating sk_refcnt, we must commit prior changes to memory
1877 * (Documentation/RCU/rculist_nulls.txt for details)
1878 */
1879 smp_wmb();
1880 refcount_set(&newsk->sk_refcnt, 2);
1881
1882 /*
1883 * Increment the counter in the same struct proto as the master
1884 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1885 * is the same as sk->sk_prot->socks, as this field was copied
1886 * with memcpy).
1887 *
1888 * This _changes_ the previous behaviour, where
1889 * tcp_create_openreq_child always was incrementing the
1890 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1891 * to be taken into account in all callers. -acme
1892 */
1893 sk_refcnt_debug_inc(newsk);
1894 sk_set_socket(newsk, NULL);
1895 RCU_INIT_POINTER(newsk->sk_wq, NULL);
1896
1897 if (newsk->sk_prot->sockets_allocated)
1898 sk_sockets_allocated_inc(newsk);
1899
1900 if (sock_needs_netstamp(sk) &&
1901 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1902 net_enable_timestamp();
1903 }
1904out:
1905 return newsk;
1906}
1907EXPORT_SYMBOL_GPL(sk_clone_lock);
1908
1909void sk_free_unlock_clone(struct sock *sk)
1910{
1911 /* It is still raw copy of parent, so invalidate
1912 * destructor and make plain sk_free() */
1913 sk->sk_destruct = NULL;
1914 bh_unlock_sock(sk);
1915 sk_free(sk);
1916}
1917EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1918
1919void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1920{
1921 u32 max_segs = 1;
1922
1923 sk_dst_set(sk, dst);
1924 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1925 if (sk->sk_route_caps & NETIF_F_GSO)
1926 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1927 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1928 if (sk_can_gso(sk)) {
1929 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1930 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1931 } else {
1932 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1933 sk->sk_gso_max_size = dst->dev->gso_max_size;
1934 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1935 }
1936 }
1937 sk->sk_gso_max_segs = max_segs;
1938}
1939EXPORT_SYMBOL_GPL(sk_setup_caps);
1940
1941/*
1942 * Simple resource managers for sockets.
1943 */
1944
1945
1946/*
1947 * Write buffer destructor automatically called from kfree_skb.
1948 */
1949void sock_wfree(struct sk_buff *skb)
1950{
1951 struct sock *sk = skb->sk;
1952 unsigned int len = skb->truesize;
1953
1954 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1955 /*
1956 * Keep a reference on sk_wmem_alloc, this will be released
1957 * after sk_write_space() call
1958 */
1959 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1960 sk->sk_write_space(sk);
1961 len = 1;
1962 }
1963 /*
1964 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1965 * could not do because of in-flight packets
1966 */
1967 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1968 __sk_free(sk);
1969}
1970EXPORT_SYMBOL(sock_wfree);
1971
1972/* This variant of sock_wfree() is used by TCP,
1973 * since it sets SOCK_USE_WRITE_QUEUE.
1974 */
1975void __sock_wfree(struct sk_buff *skb)
1976{
1977 struct sock *sk = skb->sk;
1978
1979 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1980 __sk_free(sk);
1981}
1982
1983void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1984{
1985 skb_orphan(skb);
1986 skb->sk = sk;
1987#ifdef CONFIG_INET
1988 if (unlikely(!sk_fullsock(sk))) {
1989 skb->destructor = sock_edemux;
1990 sock_hold(sk);
1991 return;
1992 }
1993#endif
1994 skb->destructor = sock_wfree;
1995 skb_set_hash_from_sk(skb, sk);
1996 /*
1997 * We used to take a refcount on sk, but following operation
1998 * is enough to guarantee sk_free() wont free this sock until
1999 * all in-flight packets are completed
2000 */
2001 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2002}
2003EXPORT_SYMBOL(skb_set_owner_w);
2004
2005static bool can_skb_orphan_partial(const struct sk_buff *skb)
2006{
2007#ifdef CONFIG_TLS_DEVICE
2008 /* Drivers depend on in-order delivery for crypto offload,
2009 * partial orphan breaks out-of-order-OK logic.
2010 */
2011 if (skb->decrypted)
2012 return false;
2013#endif
2014 return (skb->destructor == sock_wfree ||
2015 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2016}
2017
2018/* This helper is used by netem, as it can hold packets in its
2019 * delay queue. We want to allow the owner socket to send more
2020 * packets, as if they were already TX completed by a typical driver.
2021 * But we also want to keep skb->sk set because some packet schedulers
2022 * rely on it (sch_fq for example).
2023 */
2024void skb_orphan_partial(struct sk_buff *skb)
2025{
2026 if (skb_is_tcp_pure_ack(skb))
2027 return;
2028
2029 if (can_skb_orphan_partial(skb)) {
2030 struct sock *sk = skb->sk;
2031
2032 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2033 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2034 skb->destructor = sock_efree;
2035 }
2036 } else {
2037 skb_orphan(skb);
2038 }
2039}
2040EXPORT_SYMBOL(skb_orphan_partial);
2041
2042/*
2043 * Read buffer destructor automatically called from kfree_skb.
2044 */
2045void sock_rfree(struct sk_buff *skb)
2046{
2047 struct sock *sk = skb->sk;
2048 unsigned int len = skb->truesize;
2049
2050 atomic_sub(len, &sk->sk_rmem_alloc);
2051 sk_mem_uncharge(sk, len);
2052}
2053EXPORT_SYMBOL(sock_rfree);
2054
2055/*
2056 * Buffer destructor for skbs that are not used directly in read or write
2057 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2058 */
2059void sock_efree(struct sk_buff *skb)
2060{
2061 sock_put(skb->sk);
2062}
2063EXPORT_SYMBOL(sock_efree);
2064
2065kuid_t sock_i_uid(struct sock *sk)
2066{
2067 kuid_t uid;
2068
2069 read_lock_bh(&sk->sk_callback_lock);
2070 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2071 read_unlock_bh(&sk->sk_callback_lock);
2072 return uid;
2073}
2074EXPORT_SYMBOL(sock_i_uid);
2075
2076unsigned long sock_i_ino(struct sock *sk)
2077{
2078 unsigned long ino;
2079
2080 read_lock_bh(&sk->sk_callback_lock);
2081 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2082 read_unlock_bh(&sk->sk_callback_lock);
2083 return ino;
2084}
2085EXPORT_SYMBOL(sock_i_ino);
2086
2087/*
2088 * Allocate a skb from the socket's send buffer.
2089 */
2090struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2091 gfp_t priority)
2092{
2093 if (force ||
2094 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2095 struct sk_buff *skb = alloc_skb(size, priority);
2096
2097 if (skb) {
2098 skb_set_owner_w(skb, sk);
2099 return skb;
2100 }
2101 }
2102 return NULL;
2103}
2104EXPORT_SYMBOL(sock_wmalloc);
2105
2106static void sock_ofree(struct sk_buff *skb)
2107{
2108 struct sock *sk = skb->sk;
2109
2110 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2111}
2112
2113struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2114 gfp_t priority)
2115{
2116 struct sk_buff *skb;
2117
2118 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2119 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2120 sysctl_optmem_max)
2121 return NULL;
2122
2123 skb = alloc_skb(size, priority);
2124 if (!skb)
2125 return NULL;
2126
2127 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2128 skb->sk = sk;
2129 skb->destructor = sock_ofree;
2130 return skb;
2131}
2132
2133/*
2134 * Allocate a memory block from the socket's option memory buffer.
2135 */
2136void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2137{
2138 if ((unsigned int)size <= sysctl_optmem_max &&
2139 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2140 void *mem;
2141 /* First do the add, to avoid the race if kmalloc
2142 * might sleep.
2143 */
2144 atomic_add(size, &sk->sk_omem_alloc);
2145 mem = kmalloc(size, priority);
2146 if (mem)
2147 return mem;
2148 atomic_sub(size, &sk->sk_omem_alloc);
2149 }
2150 return NULL;
2151}
2152EXPORT_SYMBOL(sock_kmalloc);
2153
2154/* Free an option memory block. Note, we actually want the inline
2155 * here as this allows gcc to detect the nullify and fold away the
2156 * condition entirely.
2157 */
2158static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2159 const bool nullify)
2160{
2161 if (WARN_ON_ONCE(!mem))
2162 return;
2163 if (nullify)
2164 kzfree(mem);
2165 else
2166 kfree(mem);
2167 atomic_sub(size, &sk->sk_omem_alloc);
2168}
2169
2170void sock_kfree_s(struct sock *sk, void *mem, int size)
2171{
2172 __sock_kfree_s(sk, mem, size, false);
2173}
2174EXPORT_SYMBOL(sock_kfree_s);
2175
2176void sock_kzfree_s(struct sock *sk, void *mem, int size)
2177{
2178 __sock_kfree_s(sk, mem, size, true);
2179}
2180EXPORT_SYMBOL(sock_kzfree_s);
2181
2182/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2183 I think, these locks should be removed for datagram sockets.
2184 */
2185static long sock_wait_for_wmem(struct sock *sk, long timeo)
2186{
2187 DEFINE_WAIT(wait);
2188
2189 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2190 for (;;) {
2191 if (!timeo)
2192 break;
2193 if (signal_pending(current))
2194 break;
2195 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2196 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2197 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2198 break;
2199 if (sk->sk_shutdown & SEND_SHUTDOWN)
2200 break;
2201 if (sk->sk_err)
2202 break;
2203 timeo = schedule_timeout(timeo);
2204 }
2205 finish_wait(sk_sleep(sk), &wait);
2206 return timeo;
2207}
2208
2209
2210/*
2211 * Generic send/receive buffer handlers
2212 */
2213
2214struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2215 unsigned long data_len, int noblock,
2216 int *errcode, int max_page_order)
2217{
2218 struct sk_buff *skb;
2219 long timeo;
2220 int err;
2221
2222 timeo = sock_sndtimeo(sk, noblock);
2223 for (;;) {
2224 err = sock_error(sk);
2225 if (err != 0)
2226 goto failure;
2227
2228 err = -EPIPE;
2229 if (sk->sk_shutdown & SEND_SHUTDOWN)
2230 goto failure;
2231
2232 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2233 break;
2234
2235 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2236 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2237 err = -EAGAIN;
2238 if (!timeo)
2239 goto failure;
2240 if (signal_pending(current))
2241 goto interrupted;
2242 timeo = sock_wait_for_wmem(sk, timeo);
2243 }
2244 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2245 errcode, sk->sk_allocation);
2246 if (skb)
2247 skb_set_owner_w(skb, sk);
2248 return skb;
2249
2250interrupted:
2251 err = sock_intr_errno(timeo);
2252failure:
2253 *errcode = err;
2254 return NULL;
2255}
2256EXPORT_SYMBOL(sock_alloc_send_pskb);
2257
2258struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2259 int noblock, int *errcode)
2260{
2261 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2262}
2263EXPORT_SYMBOL(sock_alloc_send_skb);
2264
2265int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2266 struct sockcm_cookie *sockc)
2267{
2268 u32 tsflags;
2269
2270 switch (cmsg->cmsg_type) {
2271 case SO_MARK:
2272 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2273 return -EPERM;
2274 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2275 return -EINVAL;
2276 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2277 break;
2278 case SO_TIMESTAMPING_OLD:
2279 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2280 return -EINVAL;
2281
2282 tsflags = *(u32 *)CMSG_DATA(cmsg);
2283 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2284 return -EINVAL;
2285
2286 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2287 sockc->tsflags |= tsflags;
2288 break;
2289 case SCM_TXTIME:
2290 if (!sock_flag(sk, SOCK_TXTIME))
2291 return -EINVAL;
2292 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2293 return -EINVAL;
2294 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2295 break;
2296 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2297 case SCM_RIGHTS:
2298 case SCM_CREDENTIALS:
2299 break;
2300 default:
2301 return -EINVAL;
2302 }
2303 return 0;
2304}
2305EXPORT_SYMBOL(__sock_cmsg_send);
2306
2307int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2308 struct sockcm_cookie *sockc)
2309{
2310 struct cmsghdr *cmsg;
2311 int ret;
2312
2313 for_each_cmsghdr(cmsg, msg) {
2314 if (!CMSG_OK(msg, cmsg))
2315 return -EINVAL;
2316 if (cmsg->cmsg_level != SOL_SOCKET)
2317 continue;
2318 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2319 if (ret)
2320 return ret;
2321 }
2322 return 0;
2323}
2324EXPORT_SYMBOL(sock_cmsg_send);
2325
2326static void sk_enter_memory_pressure(struct sock *sk)
2327{
2328 if (!sk->sk_prot->enter_memory_pressure)
2329 return;
2330
2331 sk->sk_prot->enter_memory_pressure(sk);
2332}
2333
2334static void sk_leave_memory_pressure(struct sock *sk)
2335{
2336 if (sk->sk_prot->leave_memory_pressure) {
2337 sk->sk_prot->leave_memory_pressure(sk);
2338 } else {
2339 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2340
2341 if (memory_pressure && READ_ONCE(*memory_pressure))
2342 WRITE_ONCE(*memory_pressure, 0);
2343 }
2344}
2345
2346/* On 32bit arches, an skb frag is limited to 2^15 */
2347#define SKB_FRAG_PAGE_ORDER get_order(32768)
2348DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2349
2350/**
2351 * skb_page_frag_refill - check that a page_frag contains enough room
2352 * @sz: minimum size of the fragment we want to get
2353 * @pfrag: pointer to page_frag
2354 * @gfp: priority for memory allocation
2355 *
2356 * Note: While this allocator tries to use high order pages, there is
2357 * no guarantee that allocations succeed. Therefore, @sz MUST be
2358 * less or equal than PAGE_SIZE.
2359 */
2360bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2361{
2362 if (pfrag->page) {
2363 if (page_ref_count(pfrag->page) == 1) {
2364 pfrag->offset = 0;
2365 return true;
2366 }
2367 if (pfrag->offset + sz <= pfrag->size)
2368 return true;
2369 put_page(pfrag->page);
2370 }
2371
2372 pfrag->offset = 0;
2373 if (SKB_FRAG_PAGE_ORDER &&
2374 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2375 /* Avoid direct reclaim but allow kswapd to wake */
2376 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2377 __GFP_COMP | __GFP_NOWARN |
2378 __GFP_NORETRY,
2379 SKB_FRAG_PAGE_ORDER);
2380 if (likely(pfrag->page)) {
2381 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2382 return true;
2383 }
2384 }
2385 pfrag->page = alloc_page(gfp);
2386 if (likely(pfrag->page)) {
2387 pfrag->size = PAGE_SIZE;
2388 return true;
2389 }
2390 return false;
2391}
2392EXPORT_SYMBOL(skb_page_frag_refill);
2393
2394bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2395{
2396 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2397 return true;
2398
2399 sk_enter_memory_pressure(sk);
2400 sk_stream_moderate_sndbuf(sk);
2401 return false;
2402}
2403EXPORT_SYMBOL(sk_page_frag_refill);
2404
2405static void __lock_sock(struct sock *sk)
2406 __releases(&sk->sk_lock.slock)
2407 __acquires(&sk->sk_lock.slock)
2408{
2409 DEFINE_WAIT(wait);
2410
2411 for (;;) {
2412 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2413 TASK_UNINTERRUPTIBLE);
2414 spin_unlock_bh(&sk->sk_lock.slock);
2415 schedule();
2416 spin_lock_bh(&sk->sk_lock.slock);
2417 if (!sock_owned_by_user(sk))
2418 break;
2419 }
2420 finish_wait(&sk->sk_lock.wq, &wait);
2421}
2422
2423void __release_sock(struct sock *sk)
2424 __releases(&sk->sk_lock.slock)
2425 __acquires(&sk->sk_lock.slock)
2426{
2427 struct sk_buff *skb, *next;
2428
2429 while ((skb = sk->sk_backlog.head) != NULL) {
2430 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2431
2432 spin_unlock_bh(&sk->sk_lock.slock);
2433
2434 do {
2435 next = skb->next;
2436 prefetch(next);
2437 WARN_ON_ONCE(skb_dst_is_noref(skb));
2438 skb_mark_not_on_list(skb);
2439 sk_backlog_rcv(sk, skb);
2440
2441 cond_resched();
2442
2443 skb = next;
2444 } while (skb != NULL);
2445
2446 spin_lock_bh(&sk->sk_lock.slock);
2447 }
2448
2449 /*
2450 * Doing the zeroing here guarantee we can not loop forever
2451 * while a wild producer attempts to flood us.
2452 */
2453 sk->sk_backlog.len = 0;
2454}
2455
2456void __sk_flush_backlog(struct sock *sk)
2457{
2458 spin_lock_bh(&sk->sk_lock.slock);
2459 __release_sock(sk);
2460 spin_unlock_bh(&sk->sk_lock.slock);
2461}
2462
2463/**
2464 * sk_wait_data - wait for data to arrive at sk_receive_queue
2465 * @sk: sock to wait on
2466 * @timeo: for how long
2467 * @skb: last skb seen on sk_receive_queue
2468 *
2469 * Now socket state including sk->sk_err is changed only under lock,
2470 * hence we may omit checks after joining wait queue.
2471 * We check receive queue before schedule() only as optimization;
2472 * it is very likely that release_sock() added new data.
2473 */
2474int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2475{
2476 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2477 int rc;
2478
2479 add_wait_queue(sk_sleep(sk), &wait);
2480 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2481 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2482 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2483 remove_wait_queue(sk_sleep(sk), &wait);
2484 return rc;
2485}
2486EXPORT_SYMBOL(sk_wait_data);
2487
2488/**
2489 * __sk_mem_raise_allocated - increase memory_allocated
2490 * @sk: socket
2491 * @size: memory size to allocate
2492 * @amt: pages to allocate
2493 * @kind: allocation type
2494 *
2495 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2496 */
2497int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2498{
2499 struct proto *prot = sk->sk_prot;
2500 long allocated = sk_memory_allocated_add(sk, amt);
2501 bool charged = true;
2502
2503 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2504 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2505 goto suppress_allocation;
2506
2507 /* Under limit. */
2508 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2509 sk_leave_memory_pressure(sk);
2510 return 1;
2511 }
2512
2513 /* Under pressure. */
2514 if (allocated > sk_prot_mem_limits(sk, 1))
2515 sk_enter_memory_pressure(sk);
2516
2517 /* Over hard limit. */
2518 if (allocated > sk_prot_mem_limits(sk, 2))
2519 goto suppress_allocation;
2520
2521 /* guarantee minimum buffer size under pressure */
2522 if (kind == SK_MEM_RECV) {
2523 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2524 return 1;
2525
2526 } else { /* SK_MEM_SEND */
2527 int wmem0 = sk_get_wmem0(sk, prot);
2528
2529 if (sk->sk_type == SOCK_STREAM) {
2530 if (sk->sk_wmem_queued < wmem0)
2531 return 1;
2532 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2533 return 1;
2534 }
2535 }
2536
2537 if (sk_has_memory_pressure(sk)) {
2538 u64 alloc;
2539
2540 if (!sk_under_memory_pressure(sk))
2541 return 1;
2542 alloc = sk_sockets_allocated_read_positive(sk);
2543 if (sk_prot_mem_limits(sk, 2) > alloc *
2544 sk_mem_pages(sk->sk_wmem_queued +
2545 atomic_read(&sk->sk_rmem_alloc) +
2546 sk->sk_forward_alloc))
2547 return 1;
2548 }
2549
2550suppress_allocation:
2551
2552 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2553 sk_stream_moderate_sndbuf(sk);
2554
2555 /* Fail only if socket is _under_ its sndbuf.
2556 * In this case we cannot block, so that we have to fail.
2557 */
2558 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2559 return 1;
2560 }
2561
2562 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2563 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2564
2565 sk_memory_allocated_sub(sk, amt);
2566
2567 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2568 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2569
2570 return 0;
2571}
2572EXPORT_SYMBOL(__sk_mem_raise_allocated);
2573
2574/**
2575 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2576 * @sk: socket
2577 * @size: memory size to allocate
2578 * @kind: allocation type
2579 *
2580 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2581 * rmem allocation. This function assumes that protocols which have
2582 * memory_pressure use sk_wmem_queued as write buffer accounting.
2583 */
2584int __sk_mem_schedule(struct sock *sk, int size, int kind)
2585{
2586 int ret, amt = sk_mem_pages(size);
2587
2588 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2589 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2590 if (!ret)
2591 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2592 return ret;
2593}
2594EXPORT_SYMBOL(__sk_mem_schedule);
2595
2596/**
2597 * __sk_mem_reduce_allocated - reclaim memory_allocated
2598 * @sk: socket
2599 * @amount: number of quanta
2600 *
2601 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2602 */
2603void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2604{
2605 sk_memory_allocated_sub(sk, amount);
2606
2607 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2608 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2609
2610 if (sk_under_memory_pressure(sk) &&
2611 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2612 sk_leave_memory_pressure(sk);
2613}
2614EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2615
2616/**
2617 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2618 * @sk: socket
2619 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2620 */
2621void __sk_mem_reclaim(struct sock *sk, int amount)
2622{
2623 amount >>= SK_MEM_QUANTUM_SHIFT;
2624 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2625 __sk_mem_reduce_allocated(sk, amount);
2626}
2627EXPORT_SYMBOL(__sk_mem_reclaim);
2628
2629int sk_set_peek_off(struct sock *sk, int val)
2630{
2631 sk->sk_peek_off = val;
2632 return 0;
2633}
2634EXPORT_SYMBOL_GPL(sk_set_peek_off);
2635
2636/*
2637 * Set of default routines for initialising struct proto_ops when
2638 * the protocol does not support a particular function. In certain
2639 * cases where it makes no sense for a protocol to have a "do nothing"
2640 * function, some default processing is provided.
2641 */
2642
2643int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2644{
2645 return -EOPNOTSUPP;
2646}
2647EXPORT_SYMBOL(sock_no_bind);
2648
2649int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2650 int len, int flags)
2651{
2652 return -EOPNOTSUPP;
2653}
2654EXPORT_SYMBOL(sock_no_connect);
2655
2656int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2657{
2658 return -EOPNOTSUPP;
2659}
2660EXPORT_SYMBOL(sock_no_socketpair);
2661
2662int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2663 bool kern)
2664{
2665 return -EOPNOTSUPP;
2666}
2667EXPORT_SYMBOL(sock_no_accept);
2668
2669int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2670 int peer)
2671{
2672 return -EOPNOTSUPP;
2673}
2674EXPORT_SYMBOL(sock_no_getname);
2675
2676int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2677{
2678 return -EOPNOTSUPP;
2679}
2680EXPORT_SYMBOL(sock_no_ioctl);
2681
2682int sock_no_listen(struct socket *sock, int backlog)
2683{
2684 return -EOPNOTSUPP;
2685}
2686EXPORT_SYMBOL(sock_no_listen);
2687
2688int sock_no_shutdown(struct socket *sock, int how)
2689{
2690 return -EOPNOTSUPP;
2691}
2692EXPORT_SYMBOL(sock_no_shutdown);
2693
2694int sock_no_setsockopt(struct socket *sock, int level, int optname,
2695 char __user *optval, unsigned int optlen)
2696{
2697 return -EOPNOTSUPP;
2698}
2699EXPORT_SYMBOL(sock_no_setsockopt);
2700
2701int sock_no_getsockopt(struct socket *sock, int level, int optname,
2702 char __user *optval, int __user *optlen)
2703{
2704 return -EOPNOTSUPP;
2705}
2706EXPORT_SYMBOL(sock_no_getsockopt);
2707
2708int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2709{
2710 return -EOPNOTSUPP;
2711}
2712EXPORT_SYMBOL(sock_no_sendmsg);
2713
2714int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2715{
2716 return -EOPNOTSUPP;
2717}
2718EXPORT_SYMBOL(sock_no_sendmsg_locked);
2719
2720int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2721 int flags)
2722{
2723 return -EOPNOTSUPP;
2724}
2725EXPORT_SYMBOL(sock_no_recvmsg);
2726
2727int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2728{
2729 /* Mirror missing mmap method error code */
2730 return -ENODEV;
2731}
2732EXPORT_SYMBOL(sock_no_mmap);
2733
2734ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2735{
2736 ssize_t res;
2737 struct msghdr msg = {.msg_flags = flags};
2738 struct kvec iov;
2739 char *kaddr = kmap(page);
2740 iov.iov_base = kaddr + offset;
2741 iov.iov_len = size;
2742 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2743 kunmap(page);
2744 return res;
2745}
2746EXPORT_SYMBOL(sock_no_sendpage);
2747
2748ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2749 int offset, size_t size, int flags)
2750{
2751 ssize_t res;
2752 struct msghdr msg = {.msg_flags = flags};
2753 struct kvec iov;
2754 char *kaddr = kmap(page);
2755
2756 iov.iov_base = kaddr + offset;
2757 iov.iov_len = size;
2758 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2759 kunmap(page);
2760 return res;
2761}
2762EXPORT_SYMBOL(sock_no_sendpage_locked);
2763
2764/*
2765 * Default Socket Callbacks
2766 */
2767
2768static void sock_def_wakeup(struct sock *sk)
2769{
2770 struct socket_wq *wq;
2771
2772 rcu_read_lock();
2773 wq = rcu_dereference(sk->sk_wq);
2774 if (skwq_has_sleeper(wq))
2775 wake_up_interruptible_all(&wq->wait);
2776 rcu_read_unlock();
2777}
2778
2779static void sock_def_error_report(struct sock *sk)
2780{
2781 struct socket_wq *wq;
2782
2783 rcu_read_lock();
2784 wq = rcu_dereference(sk->sk_wq);
2785 if (skwq_has_sleeper(wq))
2786 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2787 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2788 rcu_read_unlock();
2789}
2790
2791static void sock_def_readable(struct sock *sk)
2792{
2793 struct socket_wq *wq;
2794
2795 rcu_read_lock();
2796 wq = rcu_dereference(sk->sk_wq);
2797 if (skwq_has_sleeper(wq))
2798 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2799 EPOLLRDNORM | EPOLLRDBAND);
2800 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2801 rcu_read_unlock();
2802}
2803
2804static void sock_def_write_space(struct sock *sk)
2805{
2806 struct socket_wq *wq;
2807
2808 rcu_read_lock();
2809
2810 /* Do not wake up a writer until he can make "significant"
2811 * progress. --DaveM
2812 */
2813 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2814 wq = rcu_dereference(sk->sk_wq);
2815 if (skwq_has_sleeper(wq))
2816 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2817 EPOLLWRNORM | EPOLLWRBAND);
2818
2819 /* Should agree with poll, otherwise some programs break */
2820 if (sock_writeable(sk))
2821 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2822 }
2823
2824 rcu_read_unlock();
2825}
2826
2827static void sock_def_destruct(struct sock *sk)
2828{
2829}
2830
2831void sk_send_sigurg(struct sock *sk)
2832{
2833 if (sk->sk_socket && sk->sk_socket->file)
2834 if (send_sigurg(&sk->sk_socket->file->f_owner))
2835 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2836}
2837EXPORT_SYMBOL(sk_send_sigurg);
2838
2839void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2840 unsigned long expires)
2841{
2842 if (!mod_timer(timer, expires))
2843 sock_hold(sk);
2844}
2845EXPORT_SYMBOL(sk_reset_timer);
2846
2847void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2848{
2849 if (del_timer(timer))
2850 __sock_put(sk);
2851}
2852EXPORT_SYMBOL(sk_stop_timer);
2853
2854void sock_init_data(struct socket *sock, struct sock *sk)
2855{
2856 sk_init_common(sk);
2857 sk->sk_send_head = NULL;
2858
2859 timer_setup(&sk->sk_timer, NULL, 0);
2860
2861 sk->sk_allocation = GFP_KERNEL;
2862 sk->sk_rcvbuf = sysctl_rmem_default;
2863 sk->sk_sndbuf = sysctl_wmem_default;
2864 sk->sk_state = TCP_CLOSE;
2865 sk_set_socket(sk, sock);
2866
2867 sock_set_flag(sk, SOCK_ZAPPED);
2868
2869 if (sock) {
2870 sk->sk_type = sock->type;
2871 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2872 sock->sk = sk;
2873 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2874 } else {
2875 RCU_INIT_POINTER(sk->sk_wq, NULL);
2876 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2877 }
2878
2879 rwlock_init(&sk->sk_callback_lock);
2880 if (sk->sk_kern_sock)
2881 lockdep_set_class_and_name(
2882 &sk->sk_callback_lock,
2883 af_kern_callback_keys + sk->sk_family,
2884 af_family_kern_clock_key_strings[sk->sk_family]);
2885 else
2886 lockdep_set_class_and_name(
2887 &sk->sk_callback_lock,
2888 af_callback_keys + sk->sk_family,
2889 af_family_clock_key_strings[sk->sk_family]);
2890
2891 sk->sk_state_change = sock_def_wakeup;
2892 sk->sk_data_ready = sock_def_readable;
2893 sk->sk_write_space = sock_def_write_space;
2894 sk->sk_error_report = sock_def_error_report;
2895 sk->sk_destruct = sock_def_destruct;
2896
2897 sk->sk_frag.page = NULL;
2898 sk->sk_frag.offset = 0;
2899 sk->sk_peek_off = -1;
2900
2901 sk->sk_peer_pid = NULL;
2902 sk->sk_peer_cred = NULL;
2903 sk->sk_write_pending = 0;
2904 sk->sk_rcvlowat = 1;
2905 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2906 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2907
2908 sk->sk_stamp = SK_DEFAULT_STAMP;
2909#if BITS_PER_LONG==32
2910 seqlock_init(&sk->sk_stamp_seq);
2911#endif
2912 atomic_set(&sk->sk_zckey, 0);
2913
2914#ifdef CONFIG_NET_RX_BUSY_POLL
2915 sk->sk_napi_id = 0;
2916 sk->sk_ll_usec = sysctl_net_busy_read;
2917#endif
2918
2919 sk->sk_max_pacing_rate = ~0UL;
2920 sk->sk_pacing_rate = ~0UL;
2921 sk->sk_pacing_shift = 10;
2922 sk->sk_incoming_cpu = -1;
2923
2924 sk_rx_queue_clear(sk);
2925 /*
2926 * Before updating sk_refcnt, we must commit prior changes to memory
2927 * (Documentation/RCU/rculist_nulls.txt for details)
2928 */
2929 smp_wmb();
2930 refcount_set(&sk->sk_refcnt, 1);
2931 atomic_set(&sk->sk_drops, 0);
2932}
2933EXPORT_SYMBOL(sock_init_data);
2934
2935void lock_sock_nested(struct sock *sk, int subclass)
2936{
2937 might_sleep();
2938 spin_lock_bh(&sk->sk_lock.slock);
2939 if (sk->sk_lock.owned)
2940 __lock_sock(sk);
2941 sk->sk_lock.owned = 1;
2942 spin_unlock(&sk->sk_lock.slock);
2943 /*
2944 * The sk_lock has mutex_lock() semantics here:
2945 */
2946 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2947 local_bh_enable();
2948}
2949EXPORT_SYMBOL(lock_sock_nested);
2950
2951void release_sock(struct sock *sk)
2952{
2953 spin_lock_bh(&sk->sk_lock.slock);
2954 if (sk->sk_backlog.tail)
2955 __release_sock(sk);
2956
2957 /* Warning : release_cb() might need to release sk ownership,
2958 * ie call sock_release_ownership(sk) before us.
2959 */
2960 if (sk->sk_prot->release_cb)
2961 sk->sk_prot->release_cb(sk);
2962
2963 sock_release_ownership(sk);
2964 if (waitqueue_active(&sk->sk_lock.wq))
2965 wake_up(&sk->sk_lock.wq);
2966 spin_unlock_bh(&sk->sk_lock.slock);
2967}
2968EXPORT_SYMBOL(release_sock);
2969
2970/**
2971 * lock_sock_fast - fast version of lock_sock
2972 * @sk: socket
2973 *
2974 * This version should be used for very small section, where process wont block
2975 * return false if fast path is taken:
2976 *
2977 * sk_lock.slock locked, owned = 0, BH disabled
2978 *
2979 * return true if slow path is taken:
2980 *
2981 * sk_lock.slock unlocked, owned = 1, BH enabled
2982 */
2983bool lock_sock_fast(struct sock *sk)
2984{
2985 might_sleep();
2986 spin_lock_bh(&sk->sk_lock.slock);
2987
2988 if (!sk->sk_lock.owned)
2989 /*
2990 * Note : We must disable BH
2991 */
2992 return false;
2993
2994 __lock_sock(sk);
2995 sk->sk_lock.owned = 1;
2996 spin_unlock(&sk->sk_lock.slock);
2997 /*
2998 * The sk_lock has mutex_lock() semantics here:
2999 */
3000 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3001 local_bh_enable();
3002 return true;
3003}
3004EXPORT_SYMBOL(lock_sock_fast);
3005
3006int sock_gettstamp(struct socket *sock, void __user *userstamp,
3007 bool timeval, bool time32)
3008{
3009 struct sock *sk = sock->sk;
3010 struct timespec64 ts;
3011
3012 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3013 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3014 if (ts.tv_sec == -1)
3015 return -ENOENT;
3016 if (ts.tv_sec == 0) {
3017 ktime_t kt = ktime_get_real();
3018 sock_write_timestamp(sk, kt);;
3019 ts = ktime_to_timespec64(kt);
3020 }
3021
3022 if (timeval)
3023 ts.tv_nsec /= 1000;
3024
3025#ifdef CONFIG_COMPAT_32BIT_TIME
3026 if (time32)
3027 return put_old_timespec32(&ts, userstamp);
3028#endif
3029#ifdef CONFIG_SPARC64
3030 /* beware of padding in sparc64 timeval */
3031 if (timeval && !in_compat_syscall()) {
3032 struct __kernel_old_timeval __user tv = {
3033 .tv_sec = ts.tv_sec,
3034 .tv_usec = ts.tv_nsec,
3035 };
3036 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3037 return -EFAULT;
3038 return 0;
3039 }
3040#endif
3041 return put_timespec64(&ts, userstamp);
3042}
3043EXPORT_SYMBOL(sock_gettstamp);
3044
3045void sock_enable_timestamp(struct sock *sk, int flag)
3046{
3047 if (!sock_flag(sk, flag)) {
3048 unsigned long previous_flags = sk->sk_flags;
3049
3050 sock_set_flag(sk, flag);
3051 /*
3052 * we just set one of the two flags which require net
3053 * time stamping, but time stamping might have been on
3054 * already because of the other one
3055 */
3056 if (sock_needs_netstamp(sk) &&
3057 !(previous_flags & SK_FLAGS_TIMESTAMP))
3058 net_enable_timestamp();
3059 }
3060}
3061
3062int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3063 int level, int type)
3064{
3065 struct sock_exterr_skb *serr;
3066 struct sk_buff *skb;
3067 int copied, err;
3068
3069 err = -EAGAIN;
3070 skb = sock_dequeue_err_skb(sk);
3071 if (skb == NULL)
3072 goto out;
3073
3074 copied = skb->len;
3075 if (copied > len) {
3076 msg->msg_flags |= MSG_TRUNC;
3077 copied = len;
3078 }
3079 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3080 if (err)
3081 goto out_free_skb;
3082
3083 sock_recv_timestamp(msg, sk, skb);
3084
3085 serr = SKB_EXT_ERR(skb);
3086 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3087
3088 msg->msg_flags |= MSG_ERRQUEUE;
3089 err = copied;
3090
3091out_free_skb:
3092 kfree_skb(skb);
3093out:
3094 return err;
3095}
3096EXPORT_SYMBOL(sock_recv_errqueue);
3097
3098/*
3099 * Get a socket option on an socket.
3100 *
3101 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3102 * asynchronous errors should be reported by getsockopt. We assume
3103 * this means if you specify SO_ERROR (otherwise whats the point of it).
3104 */
3105int sock_common_getsockopt(struct socket *sock, int level, int optname,
3106 char __user *optval, int __user *optlen)
3107{
3108 struct sock *sk = sock->sk;
3109
3110 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3111}
3112EXPORT_SYMBOL(sock_common_getsockopt);
3113
3114#ifdef CONFIG_COMPAT
3115int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3116 char __user *optval, int __user *optlen)
3117{
3118 struct sock *sk = sock->sk;
3119
3120 if (sk->sk_prot->compat_getsockopt != NULL)
3121 return sk->sk_prot->compat_getsockopt(sk, level, optname,
3122 optval, optlen);
3123 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3124}
3125EXPORT_SYMBOL(compat_sock_common_getsockopt);
3126#endif
3127
3128int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3129 int flags)
3130{
3131 struct sock *sk = sock->sk;
3132 int addr_len = 0;
3133 int err;
3134
3135 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3136 flags & ~MSG_DONTWAIT, &addr_len);
3137 if (err >= 0)
3138 msg->msg_namelen = addr_len;
3139 return err;
3140}
3141EXPORT_SYMBOL(sock_common_recvmsg);
3142
3143/*
3144 * Set socket options on an inet socket.
3145 */
3146int sock_common_setsockopt(struct socket *sock, int level, int optname,
3147 char __user *optval, unsigned int optlen)
3148{
3149 struct sock *sk = sock->sk;
3150
3151 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3152}
3153EXPORT_SYMBOL(sock_common_setsockopt);
3154
3155#ifdef CONFIG_COMPAT
3156int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3157 char __user *optval, unsigned int optlen)
3158{
3159 struct sock *sk = sock->sk;
3160
3161 if (sk->sk_prot->compat_setsockopt != NULL)
3162 return sk->sk_prot->compat_setsockopt(sk, level, optname,
3163 optval, optlen);
3164 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3165}
3166EXPORT_SYMBOL(compat_sock_common_setsockopt);
3167#endif
3168
3169void sk_common_release(struct sock *sk)
3170{
3171 if (sk->sk_prot->destroy)
3172 sk->sk_prot->destroy(sk);
3173
3174 /*
3175 * Observation: when sock_common_release is called, processes have
3176 * no access to socket. But net still has.
3177 * Step one, detach it from networking:
3178 *
3179 * A. Remove from hash tables.
3180 */
3181
3182 sk->sk_prot->unhash(sk);
3183
3184 /*
3185 * In this point socket cannot receive new packets, but it is possible
3186 * that some packets are in flight because some CPU runs receiver and
3187 * did hash table lookup before we unhashed socket. They will achieve
3188 * receive queue and will be purged by socket destructor.
3189 *
3190 * Also we still have packets pending on receive queue and probably,
3191 * our own packets waiting in device queues. sock_destroy will drain
3192 * receive queue, but transmitted packets will delay socket destruction
3193 * until the last reference will be released.
3194 */
3195
3196 sock_orphan(sk);
3197
3198 xfrm_sk_free_policy(sk);
3199
3200 sk_refcnt_debug_release(sk);
3201
3202 sock_put(sk);
3203}
3204EXPORT_SYMBOL(sk_common_release);
3205
3206void sk_get_meminfo(const struct sock *sk, u32 *mem)
3207{
3208 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3209
3210 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3211 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3212 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3213 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3214 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3215 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3216 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3217 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3218 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3219}
3220
3221#ifdef CONFIG_PROC_FS
3222#define PROTO_INUSE_NR 64 /* should be enough for the first time */
3223struct prot_inuse {
3224 int val[PROTO_INUSE_NR];
3225};
3226
3227static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3228
3229void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3230{
3231 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3232}
3233EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3234
3235int sock_prot_inuse_get(struct net *net, struct proto *prot)
3236{
3237 int cpu, idx = prot->inuse_idx;
3238 int res = 0;
3239
3240 for_each_possible_cpu(cpu)
3241 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3242
3243 return res >= 0 ? res : 0;
3244}
3245EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3246
3247static void sock_inuse_add(struct net *net, int val)
3248{
3249 this_cpu_add(*net->core.sock_inuse, val);
3250}
3251
3252int sock_inuse_get(struct net *net)
3253{
3254 int cpu, res = 0;
3255
3256 for_each_possible_cpu(cpu)
3257 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3258
3259 return res;
3260}
3261
3262EXPORT_SYMBOL_GPL(sock_inuse_get);
3263
3264static int __net_init sock_inuse_init_net(struct net *net)
3265{
3266 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3267 if (net->core.prot_inuse == NULL)
3268 return -ENOMEM;
3269
3270 net->core.sock_inuse = alloc_percpu(int);
3271 if (net->core.sock_inuse == NULL)
3272 goto out;
3273
3274 return 0;
3275
3276out:
3277 free_percpu(net->core.prot_inuse);
3278 return -ENOMEM;
3279}
3280
3281static void __net_exit sock_inuse_exit_net(struct net *net)
3282{
3283 free_percpu(net->core.prot_inuse);
3284 free_percpu(net->core.sock_inuse);
3285}
3286
3287static struct pernet_operations net_inuse_ops = {
3288 .init = sock_inuse_init_net,
3289 .exit = sock_inuse_exit_net,
3290};
3291
3292static __init int net_inuse_init(void)
3293{
3294 if (register_pernet_subsys(&net_inuse_ops))
3295 panic("Cannot initialize net inuse counters");
3296
3297 return 0;
3298}
3299
3300core_initcall(net_inuse_init);
3301
3302static int assign_proto_idx(struct proto *prot)
3303{
3304 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3305
3306 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3307 pr_err("PROTO_INUSE_NR exhausted\n");
3308 return -ENOSPC;
3309 }
3310
3311 set_bit(prot->inuse_idx, proto_inuse_idx);
3312 return 0;
3313}
3314
3315static void release_proto_idx(struct proto *prot)
3316{
3317 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3318 clear_bit(prot->inuse_idx, proto_inuse_idx);
3319}
3320#else
3321static inline int assign_proto_idx(struct proto *prot)
3322{
3323 return 0;
3324}
3325
3326static inline void release_proto_idx(struct proto *prot)
3327{
3328}
3329
3330static void sock_inuse_add(struct net *net, int val)
3331{
3332}
3333#endif
3334
3335static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3336{
3337 if (!rsk_prot)
3338 return;
3339 kfree(rsk_prot->slab_name);
3340 rsk_prot->slab_name = NULL;
3341 kmem_cache_destroy(rsk_prot->slab);
3342 rsk_prot->slab = NULL;
3343}
3344
3345static int req_prot_init(const struct proto *prot)
3346{
3347 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3348
3349 if (!rsk_prot)
3350 return 0;
3351
3352 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3353 prot->name);
3354 if (!rsk_prot->slab_name)
3355 return -ENOMEM;
3356
3357 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3358 rsk_prot->obj_size, 0,
3359 SLAB_ACCOUNT | prot->slab_flags,
3360 NULL);
3361
3362 if (!rsk_prot->slab) {
3363 pr_crit("%s: Can't create request sock SLAB cache!\n",
3364 prot->name);
3365 return -ENOMEM;
3366 }
3367 return 0;
3368}
3369
3370int proto_register(struct proto *prot, int alloc_slab)
3371{
3372 int ret = -ENOBUFS;
3373
3374 if (alloc_slab) {
3375 prot->slab = kmem_cache_create_usercopy(prot->name,
3376 prot->obj_size, 0,
3377 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3378 prot->slab_flags,
3379 prot->useroffset, prot->usersize,
3380 NULL);
3381
3382 if (prot->slab == NULL) {
3383 pr_crit("%s: Can't create sock SLAB cache!\n",
3384 prot->name);
3385 goto out;
3386 }
3387
3388 if (req_prot_init(prot))
3389 goto out_free_request_sock_slab;
3390
3391 if (prot->twsk_prot != NULL) {
3392 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3393
3394 if (prot->twsk_prot->twsk_slab_name == NULL)
3395 goto out_free_request_sock_slab;
3396
3397 prot->twsk_prot->twsk_slab =
3398 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3399 prot->twsk_prot->twsk_obj_size,
3400 0,
3401 SLAB_ACCOUNT |
3402 prot->slab_flags,
3403 NULL);
3404 if (prot->twsk_prot->twsk_slab == NULL)
3405 goto out_free_timewait_sock_slab_name;
3406 }
3407 }
3408
3409 mutex_lock(&proto_list_mutex);
3410 ret = assign_proto_idx(prot);
3411 if (ret) {
3412 mutex_unlock(&proto_list_mutex);
3413 goto out_free_timewait_sock_slab_name;
3414 }
3415 list_add(&prot->node, &proto_list);
3416 mutex_unlock(&proto_list_mutex);
3417 return ret;
3418
3419out_free_timewait_sock_slab_name:
3420 if (alloc_slab && prot->twsk_prot)
3421 kfree(prot->twsk_prot->twsk_slab_name);
3422out_free_request_sock_slab:
3423 if (alloc_slab) {
3424 req_prot_cleanup(prot->rsk_prot);
3425
3426 kmem_cache_destroy(prot->slab);
3427 prot->slab = NULL;
3428 }
3429out:
3430 return ret;
3431}
3432EXPORT_SYMBOL(proto_register);
3433
3434void proto_unregister(struct proto *prot)
3435{
3436 mutex_lock(&proto_list_mutex);
3437 release_proto_idx(prot);
3438 list_del(&prot->node);
3439 mutex_unlock(&proto_list_mutex);
3440
3441 kmem_cache_destroy(prot->slab);
3442 prot->slab = NULL;
3443
3444 req_prot_cleanup(prot->rsk_prot);
3445
3446 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3447 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3448 kfree(prot->twsk_prot->twsk_slab_name);
3449 prot->twsk_prot->twsk_slab = NULL;
3450 }
3451}
3452EXPORT_SYMBOL(proto_unregister);
3453
3454int sock_load_diag_module(int family, int protocol)
3455{
3456 if (!protocol) {
3457 if (!sock_is_registered(family))
3458 return -ENOENT;
3459
3460 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3461 NETLINK_SOCK_DIAG, family);
3462 }
3463
3464#ifdef CONFIG_INET
3465 if (family == AF_INET &&
3466 protocol != IPPROTO_RAW &&
3467 !rcu_access_pointer(inet_protos[protocol]))
3468 return -ENOENT;
3469#endif
3470
3471 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3472 NETLINK_SOCK_DIAG, family, protocol);
3473}
3474EXPORT_SYMBOL(sock_load_diag_module);
3475
3476#ifdef CONFIG_PROC_FS
3477static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3478 __acquires(proto_list_mutex)
3479{
3480 mutex_lock(&proto_list_mutex);
3481 return seq_list_start_head(&proto_list, *pos);
3482}
3483
3484static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3485{
3486 return seq_list_next(v, &proto_list, pos);
3487}
3488
3489static void proto_seq_stop(struct seq_file *seq, void *v)
3490 __releases(proto_list_mutex)
3491{
3492 mutex_unlock(&proto_list_mutex);
3493}
3494
3495static char proto_method_implemented(const void *method)
3496{
3497 return method == NULL ? 'n' : 'y';
3498}
3499static long sock_prot_memory_allocated(struct proto *proto)
3500{
3501 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3502}
3503
3504static const char *sock_prot_memory_pressure(struct proto *proto)
3505{
3506 return proto->memory_pressure != NULL ?
3507 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3508}
3509
3510static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3511{
3512
3513 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3514 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3515 proto->name,
3516 proto->obj_size,
3517 sock_prot_inuse_get(seq_file_net(seq), proto),
3518 sock_prot_memory_allocated(proto),
3519 sock_prot_memory_pressure(proto),
3520 proto->max_header,
3521 proto->slab == NULL ? "no" : "yes",
3522 module_name(proto->owner),
3523 proto_method_implemented(proto->close),
3524 proto_method_implemented(proto->connect),
3525 proto_method_implemented(proto->disconnect),
3526 proto_method_implemented(proto->accept),
3527 proto_method_implemented(proto->ioctl),
3528 proto_method_implemented(proto->init),
3529 proto_method_implemented(proto->destroy),
3530 proto_method_implemented(proto->shutdown),
3531 proto_method_implemented(proto->setsockopt),
3532 proto_method_implemented(proto->getsockopt),
3533 proto_method_implemented(proto->sendmsg),
3534 proto_method_implemented(proto->recvmsg),
3535 proto_method_implemented(proto->sendpage),
3536 proto_method_implemented(proto->bind),
3537 proto_method_implemented(proto->backlog_rcv),
3538 proto_method_implemented(proto->hash),
3539 proto_method_implemented(proto->unhash),
3540 proto_method_implemented(proto->get_port),
3541 proto_method_implemented(proto->enter_memory_pressure));
3542}
3543
3544static int proto_seq_show(struct seq_file *seq, void *v)
3545{
3546 if (v == &proto_list)
3547 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3548 "protocol",
3549 "size",
3550 "sockets",
3551 "memory",
3552 "press",
3553 "maxhdr",
3554 "slab",
3555 "module",
3556 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3557 else
3558 proto_seq_printf(seq, list_entry(v, struct proto, node));
3559 return 0;
3560}
3561
3562static const struct seq_operations proto_seq_ops = {
3563 .start = proto_seq_start,
3564 .next = proto_seq_next,
3565 .stop = proto_seq_stop,
3566 .show = proto_seq_show,
3567};
3568
3569static __net_init int proto_init_net(struct net *net)
3570{
3571 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3572 sizeof(struct seq_net_private)))
3573 return -ENOMEM;
3574
3575 return 0;
3576}
3577
3578static __net_exit void proto_exit_net(struct net *net)
3579{
3580 remove_proc_entry("protocols", net->proc_net);
3581}
3582
3583
3584static __net_initdata struct pernet_operations proto_net_ops = {
3585 .init = proto_init_net,
3586 .exit = proto_exit_net,
3587};
3588
3589static int __init proto_init(void)
3590{
3591 return register_pernet_subsys(&proto_net_ops);
3592}
3593
3594subsys_initcall(proto_init);
3595
3596#endif /* PROC_FS */
3597
3598#ifdef CONFIG_NET_RX_BUSY_POLL
3599bool sk_busy_loop_end(void *p, unsigned long start_time)
3600{
3601 struct sock *sk = p;
3602
3603 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3604 sk_busy_loop_timeout(sk, start_time);
3605}
3606EXPORT_SYMBOL(sk_busy_loop_end);
3607#endif /* CONFIG_NET_RX_BUSY_POLL */