Linux Audio

Check our new training course

Loading...
v5.14.15
   1/*
   2 * inode.c
   3 *
   4 * PURPOSE
   5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *  This file is distributed under the terms of the GNU General Public
   9 *  License (GPL). Copies of the GPL can be obtained from:
  10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *  Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1998 Dave Boynton
  14 *  (C) 1998-2004 Ben Fennema
  15 *  (C) 1999-2000 Stelias Computing Inc
  16 *
  17 * HISTORY
  18 *
  19 *  10/04/98 dgb  Added rudimentary directory functions
  20 *  10/07/98      Fully working udf_block_map! It works!
  21 *  11/25/98      bmap altered to better support extents
  22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23 *                and udf_read_inode
  24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25 *                block boundaries (which is not actually allowed)
  26 *  12/20/98      added support for strategy 4096
  27 *  03/07/99      rewrote udf_block_map (again)
  28 *                New funcs, inode_bmap, udf_next_aext
  29 *  04/19/99      Support for writing device EA's for major/minor #
  30 */
  31
  32#include "udfdecl.h"
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/pagemap.h>
  36#include <linux/writeback.h>
  37#include <linux/slab.h>
  38#include <linux/crc-itu-t.h>
  39#include <linux/mpage.h>
  40#include <linux/uio.h>
  41#include <linux/bio.h>
  42
  43#include "udf_i.h"
  44#include "udf_sb.h"
  45
  46#define EXTENT_MERGE_SIZE 5
  47
  48#define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
  49			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
  50			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
  51
  52#define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
  53			 FE_PERM_O_DELETE)
  54
  55static umode_t udf_convert_permissions(struct fileEntry *);
  56static int udf_update_inode(struct inode *, int);
  57static int udf_sync_inode(struct inode *inode);
  58static int udf_alloc_i_data(struct inode *inode, size_t size);
  59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
  60static int8_t udf_insert_aext(struct inode *, struct extent_position,
  61			      struct kernel_lb_addr, uint32_t);
  62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
  63			      struct kernel_long_ad *, int *);
  64static void udf_prealloc_extents(struct inode *, int, int,
  65				 struct kernel_long_ad *, int *);
  66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
  67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
  68			       int, struct extent_position *);
  69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
  70
  71static void __udf_clear_extent_cache(struct inode *inode)
  72{
  73	struct udf_inode_info *iinfo = UDF_I(inode);
  74
  75	if (iinfo->cached_extent.lstart != -1) {
  76		brelse(iinfo->cached_extent.epos.bh);
  77		iinfo->cached_extent.lstart = -1;
  78	}
  79}
  80
  81/* Invalidate extent cache */
  82static void udf_clear_extent_cache(struct inode *inode)
  83{
  84	struct udf_inode_info *iinfo = UDF_I(inode);
  85
  86	spin_lock(&iinfo->i_extent_cache_lock);
  87	__udf_clear_extent_cache(inode);
  88	spin_unlock(&iinfo->i_extent_cache_lock);
  89}
  90
  91/* Return contents of extent cache */
  92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  93				 loff_t *lbcount, struct extent_position *pos)
  94{
  95	struct udf_inode_info *iinfo = UDF_I(inode);
  96	int ret = 0;
  97
  98	spin_lock(&iinfo->i_extent_cache_lock);
  99	if ((iinfo->cached_extent.lstart <= bcount) &&
 100	    (iinfo->cached_extent.lstart != -1)) {
 101		/* Cache hit */
 102		*lbcount = iinfo->cached_extent.lstart;
 103		memcpy(pos, &iinfo->cached_extent.epos,
 104		       sizeof(struct extent_position));
 105		if (pos->bh)
 106			get_bh(pos->bh);
 107		ret = 1;
 108	}
 109	spin_unlock(&iinfo->i_extent_cache_lock);
 110	return ret;
 111}
 112
 113/* Add extent to extent cache */
 114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 115				    struct extent_position *pos)
 116{
 117	struct udf_inode_info *iinfo = UDF_I(inode);
 118
 119	spin_lock(&iinfo->i_extent_cache_lock);
 120	/* Invalidate previously cached extent */
 121	__udf_clear_extent_cache(inode);
 122	if (pos->bh)
 123		get_bh(pos->bh);
 124	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
 125	iinfo->cached_extent.lstart = estart;
 126	switch (iinfo->i_alloc_type) {
 127	case ICBTAG_FLAG_AD_SHORT:
 128		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
 129		break;
 130	case ICBTAG_FLAG_AD_LONG:
 131		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
 132		break;
 133	}
 134	spin_unlock(&iinfo->i_extent_cache_lock);
 135}
 136
 137void udf_evict_inode(struct inode *inode)
 138{
 139	struct udf_inode_info *iinfo = UDF_I(inode);
 140	int want_delete = 0;
 141
 142	if (!is_bad_inode(inode)) {
 143		if (!inode->i_nlink) {
 144			want_delete = 1;
 145			udf_setsize(inode, 0);
 146			udf_update_inode(inode, IS_SYNC(inode));
 147		}
 148		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 149		    inode->i_size != iinfo->i_lenExtents) {
 150			udf_warn(inode->i_sb,
 151				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 152				 inode->i_ino, inode->i_mode,
 153				 (unsigned long long)inode->i_size,
 154				 (unsigned long long)iinfo->i_lenExtents);
 155		}
 156	}
 157	truncate_inode_pages_final(&inode->i_data);
 158	invalidate_inode_buffers(inode);
 159	clear_inode(inode);
 160	kfree(iinfo->i_data);
 161	iinfo->i_data = NULL;
 
 
 
 
 
 
 
 162	udf_clear_extent_cache(inode);
 163	if (want_delete) {
 164		udf_free_inode(inode);
 165	}
 166}
 167
 168static void udf_write_failed(struct address_space *mapping, loff_t to)
 169{
 170	struct inode *inode = mapping->host;
 171	struct udf_inode_info *iinfo = UDF_I(inode);
 172	loff_t isize = inode->i_size;
 173
 174	if (to > isize) {
 175		truncate_pagecache(inode, isize);
 176		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 177			down_write(&iinfo->i_data_sem);
 178			udf_clear_extent_cache(inode);
 179			udf_truncate_extents(inode);
 180			up_write(&iinfo->i_data_sem);
 181		}
 182	}
 183}
 184
 185static int udf_writepage(struct page *page, struct writeback_control *wbc)
 186{
 187	return block_write_full_page(page, udf_get_block, wbc);
 188}
 189
 190static int udf_writepages(struct address_space *mapping,
 191			struct writeback_control *wbc)
 192{
 193	return mpage_writepages(mapping, wbc, udf_get_block);
 194}
 195
 196static int udf_readpage(struct file *file, struct page *page)
 197{
 198	return mpage_readpage(page, udf_get_block);
 199}
 200
 201static void udf_readahead(struct readahead_control *rac)
 202{
 203	mpage_readahead(rac, udf_get_block);
 204}
 205
 206static int udf_write_begin(struct file *file, struct address_space *mapping,
 207			loff_t pos, unsigned len, unsigned flags,
 208			struct page **pagep, void **fsdata)
 209{
 210	int ret;
 211
 212	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
 213	if (unlikely(ret))
 214		udf_write_failed(mapping, pos + len);
 215	return ret;
 216}
 217
 218static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 219{
 220	struct file *file = iocb->ki_filp;
 221	struct address_space *mapping = file->f_mapping;
 222	struct inode *inode = mapping->host;
 223	size_t count = iov_iter_count(iter);
 224	ssize_t ret;
 225
 226	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 227	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 228		udf_write_failed(mapping, iocb->ki_pos + count);
 229	return ret;
 230}
 231
 232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 233{
 234	return generic_block_bmap(mapping, block, udf_get_block);
 235}
 236
 237const struct address_space_operations udf_aops = {
 238	.set_page_dirty	= __set_page_dirty_buffers,
 239	.readpage	= udf_readpage,
 240	.readahead	= udf_readahead,
 241	.writepage	= udf_writepage,
 242	.writepages	= udf_writepages,
 243	.write_begin	= udf_write_begin,
 244	.write_end	= generic_write_end,
 245	.direct_IO	= udf_direct_IO,
 246	.bmap		= udf_bmap,
 247};
 248
 249/*
 250 * Expand file stored in ICB to a normal one-block-file
 251 *
 252 * This function requires i_data_sem for writing and releases it.
 253 * This function requires i_mutex held
 254 */
 255int udf_expand_file_adinicb(struct inode *inode)
 256{
 257	struct page *page;
 258	char *kaddr;
 259	struct udf_inode_info *iinfo = UDF_I(inode);
 260	int err;
 261	struct writeback_control udf_wbc = {
 262		.sync_mode = WB_SYNC_NONE,
 263		.nr_to_write = 1,
 264	};
 265
 266	WARN_ON_ONCE(!inode_is_locked(inode));
 267	if (!iinfo->i_lenAlloc) {
 268		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 269			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 270		else
 271			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 272		/* from now on we have normal address_space methods */
 273		inode->i_data.a_ops = &udf_aops;
 274		up_write(&iinfo->i_data_sem);
 275		mark_inode_dirty(inode);
 276		return 0;
 277	}
 278	/*
 279	 * Release i_data_sem so that we can lock a page - page lock ranks
 280	 * above i_data_sem. i_mutex still protects us against file changes.
 281	 */
 282	up_write(&iinfo->i_data_sem);
 283
 284	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 285	if (!page)
 286		return -ENOMEM;
 287
 288	if (!PageUptodate(page)) {
 289		kaddr = kmap_atomic(page);
 290		memset(kaddr + iinfo->i_lenAlloc, 0x00,
 291		       PAGE_SIZE - iinfo->i_lenAlloc);
 292		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
 293			iinfo->i_lenAlloc);
 294		flush_dcache_page(page);
 295		SetPageUptodate(page);
 296		kunmap_atomic(kaddr);
 297	}
 298	down_write(&iinfo->i_data_sem);
 299	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
 300	       iinfo->i_lenAlloc);
 301	iinfo->i_lenAlloc = 0;
 302	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 303		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 304	else
 305		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 306	/* from now on we have normal address_space methods */
 307	inode->i_data.a_ops = &udf_aops;
 308	up_write(&iinfo->i_data_sem);
 309	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
 310	if (err) {
 311		/* Restore everything back so that we don't lose data... */
 312		lock_page(page);
 313		down_write(&iinfo->i_data_sem);
 314		kaddr = kmap_atomic(page);
 315		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
 
 316		kunmap_atomic(kaddr);
 317		unlock_page(page);
 318		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 319		inode->i_data.a_ops = &udf_adinicb_aops;
 320		up_write(&iinfo->i_data_sem);
 321	}
 322	put_page(page);
 323	mark_inode_dirty(inode);
 324
 325	return err;
 326}
 327
 328struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
 329					    udf_pblk_t *block, int *err)
 330{
 331	udf_pblk_t newblock;
 332	struct buffer_head *dbh = NULL;
 333	struct kernel_lb_addr eloc;
 334	uint8_t alloctype;
 335	struct extent_position epos;
 336
 337	struct udf_fileident_bh sfibh, dfibh;
 338	loff_t f_pos = udf_ext0_offset(inode);
 339	int size = udf_ext0_offset(inode) + inode->i_size;
 340	struct fileIdentDesc cfi, *sfi, *dfi;
 341	struct udf_inode_info *iinfo = UDF_I(inode);
 342
 343	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 344		alloctype = ICBTAG_FLAG_AD_SHORT;
 345	else
 346		alloctype = ICBTAG_FLAG_AD_LONG;
 347
 348	if (!inode->i_size) {
 349		iinfo->i_alloc_type = alloctype;
 350		mark_inode_dirty(inode);
 351		return NULL;
 352	}
 353
 354	/* alloc block, and copy data to it */
 355	*block = udf_new_block(inode->i_sb, inode,
 356			       iinfo->i_location.partitionReferenceNum,
 357			       iinfo->i_location.logicalBlockNum, err);
 358	if (!(*block))
 359		return NULL;
 360	newblock = udf_get_pblock(inode->i_sb, *block,
 361				  iinfo->i_location.partitionReferenceNum,
 362				0);
 363	if (!newblock)
 364		return NULL;
 365	dbh = udf_tgetblk(inode->i_sb, newblock);
 366	if (!dbh)
 367		return NULL;
 368	lock_buffer(dbh);
 369	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 370	set_buffer_uptodate(dbh);
 371	unlock_buffer(dbh);
 372	mark_buffer_dirty_inode(dbh, inode);
 373
 374	sfibh.soffset = sfibh.eoffset =
 375			f_pos & (inode->i_sb->s_blocksize - 1);
 376	sfibh.sbh = sfibh.ebh = NULL;
 377	dfibh.soffset = dfibh.eoffset = 0;
 378	dfibh.sbh = dfibh.ebh = dbh;
 379	while (f_pos < size) {
 380		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 381		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 382					 NULL, NULL, NULL);
 383		if (!sfi) {
 384			brelse(dbh);
 385			return NULL;
 386		}
 387		iinfo->i_alloc_type = alloctype;
 388		sfi->descTag.tagLocation = cpu_to_le32(*block);
 389		dfibh.soffset = dfibh.eoffset;
 390		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 391		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 392		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 393				 sfi->fileIdent +
 394					le16_to_cpu(sfi->lengthOfImpUse))) {
 395			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 396			brelse(dbh);
 397			return NULL;
 398		}
 399	}
 400	mark_buffer_dirty_inode(dbh, inode);
 401
 402	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
 
 403	iinfo->i_lenAlloc = 0;
 404	eloc.logicalBlockNum = *block;
 405	eloc.partitionReferenceNum =
 406				iinfo->i_location.partitionReferenceNum;
 407	iinfo->i_lenExtents = inode->i_size;
 408	epos.bh = NULL;
 409	epos.block = iinfo->i_location;
 410	epos.offset = udf_file_entry_alloc_offset(inode);
 411	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 412	/* UniqueID stuff */
 413
 414	brelse(epos.bh);
 415	mark_inode_dirty(inode);
 416	return dbh;
 417}
 418
 419static int udf_get_block(struct inode *inode, sector_t block,
 420			 struct buffer_head *bh_result, int create)
 421{
 422	int err, new;
 423	sector_t phys = 0;
 424	struct udf_inode_info *iinfo;
 425
 426	if (!create) {
 427		phys = udf_block_map(inode, block);
 428		if (phys)
 429			map_bh(bh_result, inode->i_sb, phys);
 430		return 0;
 431	}
 432
 433	err = -EIO;
 434	new = 0;
 435	iinfo = UDF_I(inode);
 436
 437	down_write(&iinfo->i_data_sem);
 438	if (block == iinfo->i_next_alloc_block + 1) {
 439		iinfo->i_next_alloc_block++;
 440		iinfo->i_next_alloc_goal++;
 441	}
 442
 443	udf_clear_extent_cache(inode);
 444	phys = inode_getblk(inode, block, &err, &new);
 445	if (!phys)
 446		goto abort;
 447
 448	if (new)
 449		set_buffer_new(bh_result);
 450	map_bh(bh_result, inode->i_sb, phys);
 451
 452abort:
 453	up_write(&iinfo->i_data_sem);
 454	return err;
 455}
 456
 457static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
 458				      int create, int *err)
 459{
 460	struct buffer_head *bh;
 461	struct buffer_head dummy;
 462
 463	dummy.b_state = 0;
 464	dummy.b_blocknr = -1000;
 465	*err = udf_get_block(inode, block, &dummy, create);
 466	if (!*err && buffer_mapped(&dummy)) {
 467		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 468		if (buffer_new(&dummy)) {
 469			lock_buffer(bh);
 470			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 471			set_buffer_uptodate(bh);
 472			unlock_buffer(bh);
 473			mark_buffer_dirty_inode(bh, inode);
 474		}
 475		return bh;
 476	}
 477
 478	return NULL;
 479}
 480
 481/* Extend the file with new blocks totaling 'new_block_bytes',
 482 * return the number of extents added
 483 */
 484static int udf_do_extend_file(struct inode *inode,
 485			      struct extent_position *last_pos,
 486			      struct kernel_long_ad *last_ext,
 487			      loff_t new_block_bytes)
 488{
 489	uint32_t add;
 490	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 491	struct super_block *sb = inode->i_sb;
 492	struct kernel_lb_addr prealloc_loc = {};
 493	uint32_t prealloc_len = 0;
 494	struct udf_inode_info *iinfo;
 495	int err;
 496
 497	/* The previous extent is fake and we should not extend by anything
 498	 * - there's nothing to do... */
 499	if (!new_block_bytes && fake)
 500		return 0;
 501
 502	iinfo = UDF_I(inode);
 503	/* Round the last extent up to a multiple of block size */
 504	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 505		last_ext->extLength =
 506			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 507			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 508			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 509		iinfo->i_lenExtents =
 510			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 511			~(sb->s_blocksize - 1);
 512	}
 513
 514	/* Last extent are just preallocated blocks? */
 515	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 516						EXT_NOT_RECORDED_ALLOCATED) {
 517		/* Save the extent so that we can reattach it to the end */
 518		prealloc_loc = last_ext->extLocation;
 519		prealloc_len = last_ext->extLength;
 520		/* Mark the extent as a hole */
 521		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 522			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 523		last_ext->extLocation.logicalBlockNum = 0;
 524		last_ext->extLocation.partitionReferenceNum = 0;
 525	}
 526
 527	/* Can we merge with the previous extent? */
 528	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 529					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 530		add = (1 << 30) - sb->s_blocksize -
 531			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 532		if (add > new_block_bytes)
 533			add = new_block_bytes;
 534		new_block_bytes -= add;
 535		last_ext->extLength += add;
 536	}
 537
 538	if (fake) {
 539		udf_add_aext(inode, last_pos, &last_ext->extLocation,
 540			     last_ext->extLength, 1);
 541		count++;
 542	} else {
 543		struct kernel_lb_addr tmploc;
 544		uint32_t tmplen;
 545
 546		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 547				last_ext->extLength, 1);
 548
 549		/*
 550		 * We've rewritten the last extent. If we are going to add
 551		 * more extents, we may need to enter possible following
 552		 * empty indirect extent.
 553		 */
 554		if (new_block_bytes || prealloc_len)
 555			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
 556	}
 557
 558	/* Managed to do everything necessary? */
 559	if (!new_block_bytes)
 560		goto out;
 561
 562	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 563	last_ext->extLocation.logicalBlockNum = 0;
 564	last_ext->extLocation.partitionReferenceNum = 0;
 565	add = (1 << 30) - sb->s_blocksize;
 566	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
 567
 568	/* Create enough extents to cover the whole hole */
 569	while (new_block_bytes > add) {
 570		new_block_bytes -= add;
 571		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 572				   last_ext->extLength, 1);
 573		if (err)
 574			return err;
 575		count++;
 576	}
 577	if (new_block_bytes) {
 578		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 579			new_block_bytes;
 580		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 581				   last_ext->extLength, 1);
 582		if (err)
 583			return err;
 584		count++;
 585	}
 586
 587out:
 588	/* Do we have some preallocated blocks saved? */
 589	if (prealloc_len) {
 590		err = udf_add_aext(inode, last_pos, &prealloc_loc,
 591				   prealloc_len, 1);
 592		if (err)
 593			return err;
 594		last_ext->extLocation = prealloc_loc;
 595		last_ext->extLength = prealloc_len;
 596		count++;
 597	}
 598
 599	/* last_pos should point to the last written extent... */
 600	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 601		last_pos->offset -= sizeof(struct short_ad);
 602	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 603		last_pos->offset -= sizeof(struct long_ad);
 604	else
 605		return -EIO;
 606
 607	return count;
 608}
 609
 610/* Extend the final block of the file to final_block_len bytes */
 611static void udf_do_extend_final_block(struct inode *inode,
 612				      struct extent_position *last_pos,
 613				      struct kernel_long_ad *last_ext,
 614				      uint32_t final_block_len)
 615{
 616	struct super_block *sb = inode->i_sb;
 617	uint32_t added_bytes;
 618
 619	added_bytes = final_block_len -
 620		      (last_ext->extLength & (sb->s_blocksize - 1));
 621	last_ext->extLength += added_bytes;
 622	UDF_I(inode)->i_lenExtents += added_bytes;
 623
 624	udf_write_aext(inode, last_pos, &last_ext->extLocation,
 625			last_ext->extLength, 1);
 626}
 627
 628static int udf_extend_file(struct inode *inode, loff_t newsize)
 629{
 630
 631	struct extent_position epos;
 632	struct kernel_lb_addr eloc;
 633	uint32_t elen;
 634	int8_t etype;
 635	struct super_block *sb = inode->i_sb;
 636	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 637	unsigned long partial_final_block;
 638	int adsize;
 639	struct udf_inode_info *iinfo = UDF_I(inode);
 640	struct kernel_long_ad extent;
 641	int err = 0;
 642	int within_final_block;
 643
 644	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 645		adsize = sizeof(struct short_ad);
 646	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 647		adsize = sizeof(struct long_ad);
 648	else
 649		BUG();
 650
 651	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 652	within_final_block = (etype != -1);
 653
 654	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 655	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 656		/* File has no extents at all or has empty last
 657		 * indirect extent! Create a fake extent... */
 658		extent.extLocation.logicalBlockNum = 0;
 659		extent.extLocation.partitionReferenceNum = 0;
 660		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 661	} else {
 662		epos.offset -= adsize;
 663		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 664				      &extent.extLength, 0);
 665		extent.extLength |= etype << 30;
 666	}
 667
 668	partial_final_block = newsize & (sb->s_blocksize - 1);
 669
 670	/* File has extent covering the new size (could happen when extending
 671	 * inside a block)?
 672	 */
 673	if (within_final_block) {
 674		/* Extending file within the last file block */
 675		udf_do_extend_final_block(inode, &epos, &extent,
 676					  partial_final_block);
 677	} else {
 678		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
 679			     partial_final_block;
 680		err = udf_do_extend_file(inode, &epos, &extent, add);
 681	}
 682
 683	if (err < 0)
 684		goto out;
 685	err = 0;
 686	iinfo->i_lenExtents = newsize;
 687out:
 688	brelse(epos.bh);
 689	return err;
 690}
 691
 692static sector_t inode_getblk(struct inode *inode, sector_t block,
 693			     int *err, int *new)
 694{
 695	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 696	struct extent_position prev_epos, cur_epos, next_epos;
 697	int count = 0, startnum = 0, endnum = 0;
 698	uint32_t elen = 0, tmpelen;
 699	struct kernel_lb_addr eloc, tmpeloc;
 700	int c = 1;
 701	loff_t lbcount = 0, b_off = 0;
 702	udf_pblk_t newblocknum, newblock;
 703	sector_t offset = 0;
 704	int8_t etype;
 705	struct udf_inode_info *iinfo = UDF_I(inode);
 706	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 707	int lastblock = 0;
 708	bool isBeyondEOF;
 709
 710	*err = 0;
 711	*new = 0;
 712	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 713	prev_epos.block = iinfo->i_location;
 714	prev_epos.bh = NULL;
 715	cur_epos = next_epos = prev_epos;
 716	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 717
 718	/* find the extent which contains the block we are looking for.
 719	   alternate between laarr[0] and laarr[1] for locations of the
 720	   current extent, and the previous extent */
 721	do {
 722		if (prev_epos.bh != cur_epos.bh) {
 723			brelse(prev_epos.bh);
 724			get_bh(cur_epos.bh);
 725			prev_epos.bh = cur_epos.bh;
 726		}
 727		if (cur_epos.bh != next_epos.bh) {
 728			brelse(cur_epos.bh);
 729			get_bh(next_epos.bh);
 730			cur_epos.bh = next_epos.bh;
 731		}
 732
 733		lbcount += elen;
 734
 735		prev_epos.block = cur_epos.block;
 736		cur_epos.block = next_epos.block;
 737
 738		prev_epos.offset = cur_epos.offset;
 739		cur_epos.offset = next_epos.offset;
 740
 741		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 742		if (etype == -1)
 743			break;
 744
 745		c = !c;
 746
 747		laarr[c].extLength = (etype << 30) | elen;
 748		laarr[c].extLocation = eloc;
 749
 750		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 751			pgoal = eloc.logicalBlockNum +
 752				((elen + inode->i_sb->s_blocksize - 1) >>
 753				 inode->i_sb->s_blocksize_bits);
 754
 755		count++;
 756	} while (lbcount + elen <= b_off);
 757
 758	b_off -= lbcount;
 759	offset = b_off >> inode->i_sb->s_blocksize_bits;
 760	/*
 761	 * Move prev_epos and cur_epos into indirect extent if we are at
 762	 * the pointer to it
 763	 */
 764	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 765	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 766
 767	/* if the extent is allocated and recorded, return the block
 768	   if the extent is not a multiple of the blocksize, round up */
 769
 770	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 771		if (elen & (inode->i_sb->s_blocksize - 1)) {
 772			elen = EXT_RECORDED_ALLOCATED |
 773				((elen + inode->i_sb->s_blocksize - 1) &
 774				 ~(inode->i_sb->s_blocksize - 1));
 775			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 776		}
 777		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 778		goto out_free;
 779	}
 780
 781	/* Are we beyond EOF? */
 782	if (etype == -1) {
 783		int ret;
 784		loff_t hole_len;
 785		isBeyondEOF = true;
 786		if (count) {
 787			if (c)
 788				laarr[0] = laarr[1];
 789			startnum = 1;
 790		} else {
 791			/* Create a fake extent when there's not one */
 792			memset(&laarr[0].extLocation, 0x00,
 793				sizeof(struct kernel_lb_addr));
 794			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 795			/* Will udf_do_extend_file() create real extent from
 796			   a fake one? */
 797			startnum = (offset > 0);
 798		}
 799		/* Create extents for the hole between EOF and offset */
 800		hole_len = (loff_t)offset << inode->i_blkbits;
 801		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
 802		if (ret < 0) {
 803			*err = ret;
 804			newblock = 0;
 805			goto out_free;
 806		}
 807		c = 0;
 808		offset = 0;
 809		count += ret;
 810		/* We are not covered by a preallocated extent? */
 811		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 812						EXT_NOT_RECORDED_ALLOCATED) {
 813			/* Is there any real extent? - otherwise we overwrite
 814			 * the fake one... */
 815			if (count)
 816				c = !c;
 817			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 818				inode->i_sb->s_blocksize;
 819			memset(&laarr[c].extLocation, 0x00,
 820				sizeof(struct kernel_lb_addr));
 821			count++;
 822		}
 823		endnum = c + 1;
 824		lastblock = 1;
 825	} else {
 826		isBeyondEOF = false;
 827		endnum = startnum = ((count > 2) ? 2 : count);
 828
 829		/* if the current extent is in position 0,
 830		   swap it with the previous */
 831		if (!c && count != 1) {
 832			laarr[2] = laarr[0];
 833			laarr[0] = laarr[1];
 834			laarr[1] = laarr[2];
 835			c = 1;
 836		}
 837
 838		/* if the current block is located in an extent,
 839		   read the next extent */
 840		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 841		if (etype != -1) {
 842			laarr[c + 1].extLength = (etype << 30) | elen;
 843			laarr[c + 1].extLocation = eloc;
 844			count++;
 845			startnum++;
 846			endnum++;
 847		} else
 848			lastblock = 1;
 849	}
 850
 851	/* if the current extent is not recorded but allocated, get the
 852	 * block in the extent corresponding to the requested block */
 853	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 854		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 855	else { /* otherwise, allocate a new block */
 856		if (iinfo->i_next_alloc_block == block)
 857			goal = iinfo->i_next_alloc_goal;
 858
 859		if (!goal) {
 860			if (!(goal = pgoal)) /* XXX: what was intended here? */
 861				goal = iinfo->i_location.logicalBlockNum + 1;
 862		}
 863
 864		newblocknum = udf_new_block(inode->i_sb, inode,
 865				iinfo->i_location.partitionReferenceNum,
 866				goal, err);
 867		if (!newblocknum) {
 868			*err = -ENOSPC;
 869			newblock = 0;
 870			goto out_free;
 871		}
 872		if (isBeyondEOF)
 873			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 874	}
 875
 876	/* if the extent the requsted block is located in contains multiple
 877	 * blocks, split the extent into at most three extents. blocks prior
 878	 * to requested block, requested block, and blocks after requested
 879	 * block */
 880	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 881
 882	/* We preallocate blocks only for regular files. It also makes sense
 883	 * for directories but there's a problem when to drop the
 884	 * preallocation. We might use some delayed work for that but I feel
 885	 * it's overengineering for a filesystem like UDF. */
 886	if (S_ISREG(inode->i_mode))
 887		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 888
 889	/* merge any continuous blocks in laarr */
 890	udf_merge_extents(inode, laarr, &endnum);
 891
 892	/* write back the new extents, inserting new extents if the new number
 893	 * of extents is greater than the old number, and deleting extents if
 894	 * the new number of extents is less than the old number */
 895	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 896
 897	newblock = udf_get_pblock(inode->i_sb, newblocknum,
 898				iinfo->i_location.partitionReferenceNum, 0);
 899	if (!newblock) {
 900		*err = -EIO;
 901		goto out_free;
 902	}
 903	*new = 1;
 904	iinfo->i_next_alloc_block = block;
 905	iinfo->i_next_alloc_goal = newblocknum;
 906	inode->i_ctime = current_time(inode);
 907
 908	if (IS_SYNC(inode))
 909		udf_sync_inode(inode);
 910	else
 911		mark_inode_dirty(inode);
 912out_free:
 913	brelse(prev_epos.bh);
 914	brelse(cur_epos.bh);
 915	brelse(next_epos.bh);
 916	return newblock;
 917}
 918
 919static void udf_split_extents(struct inode *inode, int *c, int offset,
 920			       udf_pblk_t newblocknum,
 921			       struct kernel_long_ad *laarr, int *endnum)
 922{
 923	unsigned long blocksize = inode->i_sb->s_blocksize;
 924	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 925
 926	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 927	    (laarr[*c].extLength >> 30) ==
 928				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 929		int curr = *c;
 930		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 931			    blocksize - 1) >> blocksize_bits;
 932		int8_t etype = (laarr[curr].extLength >> 30);
 933
 934		if (blen == 1)
 935			;
 936		else if (!offset || blen == offset + 1) {
 937			laarr[curr + 2] = laarr[curr + 1];
 938			laarr[curr + 1] = laarr[curr];
 939		} else {
 940			laarr[curr + 3] = laarr[curr + 1];
 941			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 942		}
 943
 944		if (offset) {
 945			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 946				udf_free_blocks(inode->i_sb, inode,
 947						&laarr[curr].extLocation,
 948						0, offset);
 949				laarr[curr].extLength =
 950					EXT_NOT_RECORDED_NOT_ALLOCATED |
 951					(offset << blocksize_bits);
 952				laarr[curr].extLocation.logicalBlockNum = 0;
 953				laarr[curr].extLocation.
 954						partitionReferenceNum = 0;
 955			} else
 956				laarr[curr].extLength = (etype << 30) |
 957					(offset << blocksize_bits);
 958			curr++;
 959			(*c)++;
 960			(*endnum)++;
 961		}
 962
 963		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 964		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 965			laarr[curr].extLocation.partitionReferenceNum =
 966				UDF_I(inode)->i_location.partitionReferenceNum;
 967		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 968			blocksize;
 969		curr++;
 970
 971		if (blen != offset + 1) {
 972			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 973				laarr[curr].extLocation.logicalBlockNum +=
 974								offset + 1;
 975			laarr[curr].extLength = (etype << 30) |
 976				((blen - (offset + 1)) << blocksize_bits);
 977			curr++;
 978			(*endnum)++;
 979		}
 980	}
 981}
 982
 983static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 984				 struct kernel_long_ad *laarr,
 985				 int *endnum)
 986{
 987	int start, length = 0, currlength = 0, i;
 988
 989	if (*endnum >= (c + 1)) {
 990		if (!lastblock)
 991			return;
 992		else
 993			start = c;
 994	} else {
 995		if ((laarr[c + 1].extLength >> 30) ==
 996					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 997			start = c + 1;
 998			length = currlength =
 999				(((laarr[c + 1].extLength &
1000					UDF_EXTENT_LENGTH_MASK) +
1001				inode->i_sb->s_blocksize - 1) >>
1002				inode->i_sb->s_blocksize_bits);
1003		} else
1004			start = c;
1005	}
1006
1007	for (i = start + 1; i <= *endnum; i++) {
1008		if (i == *endnum) {
1009			if (lastblock)
1010				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1011		} else if ((laarr[i].extLength >> 30) ==
1012				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1013			length += (((laarr[i].extLength &
1014						UDF_EXTENT_LENGTH_MASK) +
1015				    inode->i_sb->s_blocksize - 1) >>
1016				    inode->i_sb->s_blocksize_bits);
1017		} else
1018			break;
1019	}
1020
1021	if (length) {
1022		int next = laarr[start].extLocation.logicalBlockNum +
1023			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1024			  inode->i_sb->s_blocksize - 1) >>
1025			  inode->i_sb->s_blocksize_bits);
1026		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1027				laarr[start].extLocation.partitionReferenceNum,
1028				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1029				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1030				currlength);
1031		if (numalloc) 	{
1032			if (start == (c + 1))
1033				laarr[start].extLength +=
1034					(numalloc <<
1035					 inode->i_sb->s_blocksize_bits);
1036			else {
1037				memmove(&laarr[c + 2], &laarr[c + 1],
1038					sizeof(struct long_ad) * (*endnum - (c + 1)));
1039				(*endnum)++;
1040				laarr[c + 1].extLocation.logicalBlockNum = next;
1041				laarr[c + 1].extLocation.partitionReferenceNum =
1042					laarr[c].extLocation.
1043							partitionReferenceNum;
1044				laarr[c + 1].extLength =
1045					EXT_NOT_RECORDED_ALLOCATED |
1046					(numalloc <<
1047					 inode->i_sb->s_blocksize_bits);
1048				start = c + 1;
1049			}
1050
1051			for (i = start + 1; numalloc && i < *endnum; i++) {
1052				int elen = ((laarr[i].extLength &
1053						UDF_EXTENT_LENGTH_MASK) +
1054					    inode->i_sb->s_blocksize - 1) >>
1055					    inode->i_sb->s_blocksize_bits;
1056
1057				if (elen > numalloc) {
1058					laarr[i].extLength -=
1059						(numalloc <<
1060						 inode->i_sb->s_blocksize_bits);
1061					numalloc = 0;
1062				} else {
1063					numalloc -= elen;
1064					if (*endnum > (i + 1))
1065						memmove(&laarr[i],
1066							&laarr[i + 1],
1067							sizeof(struct long_ad) *
1068							(*endnum - (i + 1)));
1069					i--;
1070					(*endnum)--;
1071				}
1072			}
1073			UDF_I(inode)->i_lenExtents +=
1074				numalloc << inode->i_sb->s_blocksize_bits;
1075		}
1076	}
1077}
1078
1079static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1080			      int *endnum)
1081{
1082	int i;
1083	unsigned long blocksize = inode->i_sb->s_blocksize;
1084	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1085
1086	for (i = 0; i < (*endnum - 1); i++) {
1087		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1088		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1089
1090		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1091			(((li->extLength >> 30) ==
1092				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1093			((lip1->extLocation.logicalBlockNum -
1094			  li->extLocation.logicalBlockNum) ==
1095			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1096			blocksize - 1) >> blocksize_bits)))) {
1097
1098			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1099				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1100				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1101				lip1->extLength = (lip1->extLength -
1102						  (li->extLength &
1103						   UDF_EXTENT_LENGTH_MASK) +
1104						   UDF_EXTENT_LENGTH_MASK) &
1105							~(blocksize - 1);
1106				li->extLength = (li->extLength &
1107						 UDF_EXTENT_FLAG_MASK) +
1108						(UDF_EXTENT_LENGTH_MASK + 1) -
1109						blocksize;
1110				lip1->extLocation.logicalBlockNum =
1111					li->extLocation.logicalBlockNum +
1112					((li->extLength &
1113						UDF_EXTENT_LENGTH_MASK) >>
1114						blocksize_bits);
1115			} else {
1116				li->extLength = lip1->extLength +
1117					(((li->extLength &
1118						UDF_EXTENT_LENGTH_MASK) +
1119					 blocksize - 1) & ~(blocksize - 1));
1120				if (*endnum > (i + 2))
1121					memmove(&laarr[i + 1], &laarr[i + 2],
1122						sizeof(struct long_ad) *
1123						(*endnum - (i + 2)));
1124				i--;
1125				(*endnum)--;
1126			}
1127		} else if (((li->extLength >> 30) ==
1128				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1129			   ((lip1->extLength >> 30) ==
1130				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1131			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1132					((li->extLength &
1133					  UDF_EXTENT_LENGTH_MASK) +
1134					 blocksize - 1) >> blocksize_bits);
1135			li->extLocation.logicalBlockNum = 0;
1136			li->extLocation.partitionReferenceNum = 0;
1137
1138			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1139			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1140			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1141				lip1->extLength = (lip1->extLength -
1142						   (li->extLength &
1143						   UDF_EXTENT_LENGTH_MASK) +
1144						   UDF_EXTENT_LENGTH_MASK) &
1145						   ~(blocksize - 1);
1146				li->extLength = (li->extLength &
1147						 UDF_EXTENT_FLAG_MASK) +
1148						(UDF_EXTENT_LENGTH_MASK + 1) -
1149						blocksize;
1150			} else {
1151				li->extLength = lip1->extLength +
1152					(((li->extLength &
1153						UDF_EXTENT_LENGTH_MASK) +
1154					  blocksize - 1) & ~(blocksize - 1));
1155				if (*endnum > (i + 2))
1156					memmove(&laarr[i + 1], &laarr[i + 2],
1157						sizeof(struct long_ad) *
1158						(*endnum - (i + 2)));
1159				i--;
1160				(*endnum)--;
1161			}
1162		} else if ((li->extLength >> 30) ==
1163					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1164			udf_free_blocks(inode->i_sb, inode,
1165					&li->extLocation, 0,
1166					((li->extLength &
1167						UDF_EXTENT_LENGTH_MASK) +
1168					 blocksize - 1) >> blocksize_bits);
1169			li->extLocation.logicalBlockNum = 0;
1170			li->extLocation.partitionReferenceNum = 0;
1171			li->extLength = (li->extLength &
1172						UDF_EXTENT_LENGTH_MASK) |
1173						EXT_NOT_RECORDED_NOT_ALLOCATED;
1174		}
1175	}
1176}
1177
1178static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1179			       int startnum, int endnum,
1180			       struct extent_position *epos)
1181{
1182	int start = 0, i;
1183	struct kernel_lb_addr tmploc;
1184	uint32_t tmplen;
1185
1186	if (startnum > endnum) {
1187		for (i = 0; i < (startnum - endnum); i++)
1188			udf_delete_aext(inode, *epos);
1189	} else if (startnum < endnum) {
1190		for (i = 0; i < (endnum - startnum); i++) {
1191			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1192					laarr[i].extLength);
1193			udf_next_aext(inode, epos, &laarr[i].extLocation,
1194				      &laarr[i].extLength, 1);
1195			start++;
1196		}
1197	}
1198
1199	for (i = start; i < endnum; i++) {
1200		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1201		udf_write_aext(inode, epos, &laarr[i].extLocation,
1202			       laarr[i].extLength, 1);
1203	}
1204}
1205
1206struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1207			      int create, int *err)
1208{
1209	struct buffer_head *bh = NULL;
1210
1211	bh = udf_getblk(inode, block, create, err);
1212	if (!bh)
1213		return NULL;
1214
1215	if (buffer_uptodate(bh))
1216		return bh;
1217
1218	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219
1220	wait_on_buffer(bh);
1221	if (buffer_uptodate(bh))
1222		return bh;
1223
1224	brelse(bh);
1225	*err = -EIO;
1226	return NULL;
1227}
1228
1229int udf_setsize(struct inode *inode, loff_t newsize)
1230{
1231	int err;
1232	struct udf_inode_info *iinfo;
1233	unsigned int bsize = i_blocksize(inode);
1234
1235	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1236	      S_ISLNK(inode->i_mode)))
1237		return -EINVAL;
1238	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1239		return -EPERM;
1240
1241	iinfo = UDF_I(inode);
1242	if (newsize > inode->i_size) {
1243		down_write(&iinfo->i_data_sem);
1244		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1245			if (bsize <
1246			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1247				err = udf_expand_file_adinicb(inode);
1248				if (err)
1249					return err;
1250				down_write(&iinfo->i_data_sem);
1251			} else {
1252				iinfo->i_lenAlloc = newsize;
1253				goto set_size;
1254			}
1255		}
1256		err = udf_extend_file(inode, newsize);
1257		if (err) {
1258			up_write(&iinfo->i_data_sem);
1259			return err;
1260		}
1261set_size:
1262		up_write(&iinfo->i_data_sem);
1263		truncate_setsize(inode, newsize);
1264	} else {
1265		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1266			down_write(&iinfo->i_data_sem);
1267			udf_clear_extent_cache(inode);
1268			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1269			       0x00, bsize - newsize -
1270			       udf_file_entry_alloc_offset(inode));
1271			iinfo->i_lenAlloc = newsize;
1272			truncate_setsize(inode, newsize);
1273			up_write(&iinfo->i_data_sem);
1274			goto update_time;
1275		}
1276		err = block_truncate_page(inode->i_mapping, newsize,
1277					  udf_get_block);
1278		if (err)
1279			return err;
1280		truncate_setsize(inode, newsize);
1281		down_write(&iinfo->i_data_sem);
1282		udf_clear_extent_cache(inode);
1283		err = udf_truncate_extents(inode);
1284		up_write(&iinfo->i_data_sem);
1285		if (err)
1286			return err;
1287	}
1288update_time:
1289	inode->i_mtime = inode->i_ctime = current_time(inode);
1290	if (IS_SYNC(inode))
1291		udf_sync_inode(inode);
1292	else
1293		mark_inode_dirty(inode);
1294	return 0;
1295}
1296
1297/*
1298 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1299 * arbitrary - just that we hopefully don't limit any real use of rewritten
1300 * inode on write-once media but avoid looping for too long on corrupted media.
1301 */
1302#define UDF_MAX_ICB_NESTING 1024
1303
1304static int udf_read_inode(struct inode *inode, bool hidden_inode)
1305{
1306	struct buffer_head *bh = NULL;
1307	struct fileEntry *fe;
1308	struct extendedFileEntry *efe;
1309	uint16_t ident;
1310	struct udf_inode_info *iinfo = UDF_I(inode);
1311	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1312	struct kernel_lb_addr *iloc = &iinfo->i_location;
1313	unsigned int link_count;
1314	unsigned int indirections = 0;
1315	int bs = inode->i_sb->s_blocksize;
1316	int ret = -EIO;
1317	uint32_t uid, gid;
1318
1319reread:
1320	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1321		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1322			  iloc->partitionReferenceNum, sbi->s_partitions);
1323		return -EIO;
1324	}
1325
1326	if (iloc->logicalBlockNum >=
1327	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1328		udf_debug("block=%u, partition=%u out of range\n",
1329			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1330		return -EIO;
1331	}
1332
1333	/*
1334	 * Set defaults, but the inode is still incomplete!
1335	 * Note: get_new_inode() sets the following on a new inode:
1336	 *      i_sb = sb
1337	 *      i_no = ino
1338	 *      i_flags = sb->s_flags
1339	 *      i_state = 0
1340	 * clean_inode(): zero fills and sets
1341	 *      i_count = 1
1342	 *      i_nlink = 1
1343	 *      i_op = NULL;
1344	 */
1345	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1346	if (!bh) {
1347		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1348		return -EIO;
1349	}
1350
1351	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1352	    ident != TAG_IDENT_USE) {
1353		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1354			inode->i_ino, ident);
1355		goto out;
1356	}
1357
1358	fe = (struct fileEntry *)bh->b_data;
1359	efe = (struct extendedFileEntry *)bh->b_data;
1360
1361	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1362		struct buffer_head *ibh;
1363
1364		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1365		if (ident == TAG_IDENT_IE && ibh) {
1366			struct kernel_lb_addr loc;
1367			struct indirectEntry *ie;
1368
1369			ie = (struct indirectEntry *)ibh->b_data;
1370			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1371
1372			if (ie->indirectICB.extLength) {
1373				brelse(ibh);
1374				memcpy(&iinfo->i_location, &loc,
1375				       sizeof(struct kernel_lb_addr));
1376				if (++indirections > UDF_MAX_ICB_NESTING) {
1377					udf_err(inode->i_sb,
1378						"too many ICBs in ICB hierarchy"
1379						" (max %d supported)\n",
1380						UDF_MAX_ICB_NESTING);
1381					goto out;
1382				}
1383				brelse(bh);
1384				goto reread;
1385			}
1386		}
1387		brelse(ibh);
1388	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1389		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1390			le16_to_cpu(fe->icbTag.strategyType));
1391		goto out;
1392	}
1393	if (fe->icbTag.strategyType == cpu_to_le16(4))
1394		iinfo->i_strat4096 = 0;
1395	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1396		iinfo->i_strat4096 = 1;
1397
1398	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1399							ICBTAG_FLAG_AD_MASK;
1400	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1401	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1402	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1403		ret = -EIO;
1404		goto out;
1405	}
1406	iinfo->i_unique = 0;
1407	iinfo->i_lenEAttr = 0;
1408	iinfo->i_lenExtents = 0;
1409	iinfo->i_lenAlloc = 0;
1410	iinfo->i_next_alloc_block = 0;
1411	iinfo->i_next_alloc_goal = 0;
1412	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1413		iinfo->i_efe = 1;
1414		iinfo->i_use = 0;
1415		ret = udf_alloc_i_data(inode, bs -
1416					sizeof(struct extendedFileEntry));
1417		if (ret)
1418			goto out;
1419		memcpy(iinfo->i_data,
1420		       bh->b_data + sizeof(struct extendedFileEntry),
1421		       bs - sizeof(struct extendedFileEntry));
1422	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1423		iinfo->i_efe = 0;
1424		iinfo->i_use = 0;
1425		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1426		if (ret)
1427			goto out;
1428		memcpy(iinfo->i_data,
1429		       bh->b_data + sizeof(struct fileEntry),
1430		       bs - sizeof(struct fileEntry));
1431	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1432		iinfo->i_efe = 0;
1433		iinfo->i_use = 1;
1434		iinfo->i_lenAlloc = le32_to_cpu(
1435				((struct unallocSpaceEntry *)bh->b_data)->
1436				 lengthAllocDescs);
1437		ret = udf_alloc_i_data(inode, bs -
1438					sizeof(struct unallocSpaceEntry));
1439		if (ret)
1440			goto out;
1441		memcpy(iinfo->i_data,
1442		       bh->b_data + sizeof(struct unallocSpaceEntry),
1443		       bs - sizeof(struct unallocSpaceEntry));
1444		return 0;
1445	}
1446
1447	ret = -EIO;
1448	read_lock(&sbi->s_cred_lock);
1449	uid = le32_to_cpu(fe->uid);
1450	if (uid == UDF_INVALID_ID ||
1451	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1452		inode->i_uid = sbi->s_uid;
1453	else
1454		i_uid_write(inode, uid);
1455
1456	gid = le32_to_cpu(fe->gid);
1457	if (gid == UDF_INVALID_ID ||
1458	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1459		inode->i_gid = sbi->s_gid;
1460	else
1461		i_gid_write(inode, gid);
1462
1463	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1464			sbi->s_fmode != UDF_INVALID_MODE)
1465		inode->i_mode = sbi->s_fmode;
1466	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1467			sbi->s_dmode != UDF_INVALID_MODE)
1468		inode->i_mode = sbi->s_dmode;
1469	else
1470		inode->i_mode = udf_convert_permissions(fe);
1471	inode->i_mode &= ~sbi->s_umask;
1472	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1473
1474	read_unlock(&sbi->s_cred_lock);
1475
1476	link_count = le16_to_cpu(fe->fileLinkCount);
1477	if (!link_count) {
1478		if (!hidden_inode) {
1479			ret = -ESTALE;
1480			goto out;
1481		}
1482		link_count = 1;
1483	}
1484	set_nlink(inode, link_count);
1485
1486	inode->i_size = le64_to_cpu(fe->informationLength);
1487	iinfo->i_lenExtents = inode->i_size;
1488
1489	if (iinfo->i_efe == 0) {
1490		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1491			(inode->i_sb->s_blocksize_bits - 9);
1492
1493		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1494		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1495		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1496
1497		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1498		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1499		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1500		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1501		iinfo->i_streamdir = 0;
1502		iinfo->i_lenStreams = 0;
1503	} else {
1504		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1505		    (inode->i_sb->s_blocksize_bits - 9);
1506
1507		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1508		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1509		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1510		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1511
1512		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1513		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1514		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1515		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1516
1517		/* Named streams */
1518		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1519		iinfo->i_locStreamdir =
1520			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1521		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1522		if (iinfo->i_lenStreams >= inode->i_size)
1523			iinfo->i_lenStreams -= inode->i_size;
1524		else
1525			iinfo->i_lenStreams = 0;
1526	}
1527	inode->i_generation = iinfo->i_unique;
1528
1529	/*
1530	 * Sanity check length of allocation descriptors and extended attrs to
1531	 * avoid integer overflows
1532	 */
1533	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1534		goto out;
1535	/* Now do exact checks */
1536	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1537		goto out;
1538	/* Sanity checks for files in ICB so that we don't get confused later */
1539	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1540		/*
1541		 * For file in ICB data is stored in allocation descriptor
1542		 * so sizes should match
1543		 */
1544		if (iinfo->i_lenAlloc != inode->i_size)
1545			goto out;
1546		/* File in ICB has to fit in there... */
1547		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1548			goto out;
1549	}
1550
1551	switch (fe->icbTag.fileType) {
1552	case ICBTAG_FILE_TYPE_DIRECTORY:
1553		inode->i_op = &udf_dir_inode_operations;
1554		inode->i_fop = &udf_dir_operations;
1555		inode->i_mode |= S_IFDIR;
1556		inc_nlink(inode);
1557		break;
1558	case ICBTAG_FILE_TYPE_REALTIME:
1559	case ICBTAG_FILE_TYPE_REGULAR:
1560	case ICBTAG_FILE_TYPE_UNDEF:
1561	case ICBTAG_FILE_TYPE_VAT20:
1562		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1563			inode->i_data.a_ops = &udf_adinicb_aops;
1564		else
1565			inode->i_data.a_ops = &udf_aops;
1566		inode->i_op = &udf_file_inode_operations;
1567		inode->i_fop = &udf_file_operations;
1568		inode->i_mode |= S_IFREG;
1569		break;
1570	case ICBTAG_FILE_TYPE_BLOCK:
1571		inode->i_mode |= S_IFBLK;
1572		break;
1573	case ICBTAG_FILE_TYPE_CHAR:
1574		inode->i_mode |= S_IFCHR;
1575		break;
1576	case ICBTAG_FILE_TYPE_FIFO:
1577		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1578		break;
1579	case ICBTAG_FILE_TYPE_SOCKET:
1580		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1581		break;
1582	case ICBTAG_FILE_TYPE_SYMLINK:
1583		inode->i_data.a_ops = &udf_symlink_aops;
1584		inode->i_op = &udf_symlink_inode_operations;
1585		inode_nohighmem(inode);
1586		inode->i_mode = S_IFLNK | 0777;
1587		break;
1588	case ICBTAG_FILE_TYPE_MAIN:
1589		udf_debug("METADATA FILE-----\n");
1590		break;
1591	case ICBTAG_FILE_TYPE_MIRROR:
1592		udf_debug("METADATA MIRROR FILE-----\n");
1593		break;
1594	case ICBTAG_FILE_TYPE_BITMAP:
1595		udf_debug("METADATA BITMAP FILE-----\n");
1596		break;
1597	default:
1598		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1599			inode->i_ino, fe->icbTag.fileType);
1600		goto out;
1601	}
1602	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1603		struct deviceSpec *dsea =
1604			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1605		if (dsea) {
1606			init_special_inode(inode, inode->i_mode,
1607				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1608				      le32_to_cpu(dsea->minorDeviceIdent)));
1609			/* Developer ID ??? */
1610		} else
1611			goto out;
1612	}
1613	ret = 0;
1614out:
1615	brelse(bh);
1616	return ret;
1617}
1618
1619static int udf_alloc_i_data(struct inode *inode, size_t size)
1620{
1621	struct udf_inode_info *iinfo = UDF_I(inode);
1622	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1623	if (!iinfo->i_data)
1624		return -ENOMEM;
1625	return 0;
1626}
1627
1628static umode_t udf_convert_permissions(struct fileEntry *fe)
1629{
1630	umode_t mode;
1631	uint32_t permissions;
1632	uint32_t flags;
1633
1634	permissions = le32_to_cpu(fe->permissions);
1635	flags = le16_to_cpu(fe->icbTag.flags);
1636
1637	mode =	((permissions) & 0007) |
1638		((permissions >> 2) & 0070) |
1639		((permissions >> 4) & 0700) |
1640		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1641		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1642		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1643
1644	return mode;
1645}
1646
1647void udf_update_extra_perms(struct inode *inode, umode_t mode)
1648{
1649	struct udf_inode_info *iinfo = UDF_I(inode);
1650
1651	/*
1652	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1653	 * In Unix, delete permission tracks write
1654	 */
1655	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1656	if (mode & 0200)
1657		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1658	if (mode & 0020)
1659		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1660	if (mode & 0002)
1661		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1662}
1663
1664int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1665{
1666	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1667}
1668
1669static int udf_sync_inode(struct inode *inode)
1670{
1671	return udf_update_inode(inode, 1);
1672}
1673
1674static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1675{
1676	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1677	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1678	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1679		iinfo->i_crtime = time;
1680}
1681
1682static int udf_update_inode(struct inode *inode, int do_sync)
1683{
1684	struct buffer_head *bh = NULL;
1685	struct fileEntry *fe;
1686	struct extendedFileEntry *efe;
1687	uint64_t lb_recorded;
1688	uint32_t udfperms;
1689	uint16_t icbflags;
1690	uint16_t crclen;
1691	int err = 0;
1692	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1693	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1694	struct udf_inode_info *iinfo = UDF_I(inode);
1695
1696	bh = udf_tgetblk(inode->i_sb,
1697			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1698	if (!bh) {
1699		udf_debug("getblk failure\n");
1700		return -EIO;
1701	}
1702
1703	lock_buffer(bh);
1704	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1705	fe = (struct fileEntry *)bh->b_data;
1706	efe = (struct extendedFileEntry *)bh->b_data;
1707
1708	if (iinfo->i_use) {
1709		struct unallocSpaceEntry *use =
1710			(struct unallocSpaceEntry *)bh->b_data;
1711
1712		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1713		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1714		       iinfo->i_data, inode->i_sb->s_blocksize -
1715					sizeof(struct unallocSpaceEntry));
1716		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1717		crclen = sizeof(struct unallocSpaceEntry);
1718
1719		goto finish;
1720	}
1721
1722	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1723		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1724	else
1725		fe->uid = cpu_to_le32(i_uid_read(inode));
1726
1727	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1728		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1729	else
1730		fe->gid = cpu_to_le32(i_gid_read(inode));
1731
1732	udfperms = ((inode->i_mode & 0007)) |
1733		   ((inode->i_mode & 0070) << 2) |
1734		   ((inode->i_mode & 0700) << 4);
1735
1736	udfperms |= iinfo->i_extraPerms;
1737	fe->permissions = cpu_to_le32(udfperms);
1738
1739	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1740		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1741	else
1742		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1743
1744	fe->informationLength = cpu_to_le64(inode->i_size);
1745
1746	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1747		struct regid *eid;
1748		struct deviceSpec *dsea =
1749			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1750		if (!dsea) {
1751			dsea = (struct deviceSpec *)
1752				udf_add_extendedattr(inode,
1753						     sizeof(struct deviceSpec) +
1754						     sizeof(struct regid), 12, 0x3);
1755			dsea->attrType = cpu_to_le32(12);
1756			dsea->attrSubtype = 1;
1757			dsea->attrLength = cpu_to_le32(
1758						sizeof(struct deviceSpec) +
1759						sizeof(struct regid));
1760			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1761		}
1762		eid = (struct regid *)dsea->impUse;
1763		memset(eid, 0, sizeof(*eid));
1764		strcpy(eid->ident, UDF_ID_DEVELOPER);
1765		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1766		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1767		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1768		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1769	}
1770
1771	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1772		lb_recorded = 0; /* No extents => no blocks! */
1773	else
1774		lb_recorded =
1775			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1776			(blocksize_bits - 9);
1777
1778	if (iinfo->i_efe == 0) {
1779		memcpy(bh->b_data + sizeof(struct fileEntry),
1780		       iinfo->i_data,
1781		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1782		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1783
1784		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1785		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1786		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1787		memset(&(fe->impIdent), 0, sizeof(struct regid));
1788		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1789		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1790		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1791		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1792		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1793		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1794		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1795		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1796		crclen = sizeof(struct fileEntry);
1797	} else {
1798		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1799		       iinfo->i_data,
1800		       inode->i_sb->s_blocksize -
1801					sizeof(struct extendedFileEntry));
1802		efe->objectSize =
1803			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1804		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1805
1806		if (iinfo->i_streamdir) {
1807			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1808
1809			icb_lad->extLocation =
1810				cpu_to_lelb(iinfo->i_locStreamdir);
1811			icb_lad->extLength =
1812				cpu_to_le32(inode->i_sb->s_blocksize);
1813		}
1814
1815		udf_adjust_time(iinfo, inode->i_atime);
1816		udf_adjust_time(iinfo, inode->i_mtime);
1817		udf_adjust_time(iinfo, inode->i_ctime);
1818
1819		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1820		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1821		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1822		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1823
1824		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1825		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1826		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1827		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1828		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1829		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1830		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1831		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1832		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1833		crclen = sizeof(struct extendedFileEntry);
1834	}
1835
1836finish:
1837	if (iinfo->i_strat4096) {
1838		fe->icbTag.strategyType = cpu_to_le16(4096);
1839		fe->icbTag.strategyParameter = cpu_to_le16(1);
1840		fe->icbTag.numEntries = cpu_to_le16(2);
1841	} else {
1842		fe->icbTag.strategyType = cpu_to_le16(4);
1843		fe->icbTag.numEntries = cpu_to_le16(1);
1844	}
1845
1846	if (iinfo->i_use)
1847		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1848	else if (S_ISDIR(inode->i_mode))
1849		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1850	else if (S_ISREG(inode->i_mode))
1851		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1852	else if (S_ISLNK(inode->i_mode))
1853		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1854	else if (S_ISBLK(inode->i_mode))
1855		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1856	else if (S_ISCHR(inode->i_mode))
1857		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1858	else if (S_ISFIFO(inode->i_mode))
1859		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1860	else if (S_ISSOCK(inode->i_mode))
1861		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1862
1863	icbflags =	iinfo->i_alloc_type |
1864			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1865			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1866			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1867			(le16_to_cpu(fe->icbTag.flags) &
1868				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1869				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1870
1871	fe->icbTag.flags = cpu_to_le16(icbflags);
1872	if (sbi->s_udfrev >= 0x0200)
1873		fe->descTag.descVersion = cpu_to_le16(3);
1874	else
1875		fe->descTag.descVersion = cpu_to_le16(2);
1876	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1877	fe->descTag.tagLocation = cpu_to_le32(
1878					iinfo->i_location.logicalBlockNum);
1879	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1880	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1881	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1882						  crclen));
1883	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1884
1885	set_buffer_uptodate(bh);
1886	unlock_buffer(bh);
1887
1888	/* write the data blocks */
1889	mark_buffer_dirty(bh);
1890	if (do_sync) {
1891		sync_dirty_buffer(bh);
1892		if (buffer_write_io_error(bh)) {
1893			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1894				 inode->i_ino);
1895			err = -EIO;
1896		}
1897	}
1898	brelse(bh);
1899
1900	return err;
1901}
1902
1903struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1904			 bool hidden_inode)
1905{
1906	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1907	struct inode *inode = iget_locked(sb, block);
1908	int err;
1909
1910	if (!inode)
1911		return ERR_PTR(-ENOMEM);
1912
1913	if (!(inode->i_state & I_NEW))
1914		return inode;
1915
1916	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1917	err = udf_read_inode(inode, hidden_inode);
1918	if (err < 0) {
1919		iget_failed(inode);
1920		return ERR_PTR(err);
1921	}
1922	unlock_new_inode(inode);
1923
1924	return inode;
1925}
1926
1927int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1928			    struct extent_position *epos)
1929{
1930	struct super_block *sb = inode->i_sb;
1931	struct buffer_head *bh;
1932	struct allocExtDesc *aed;
1933	struct extent_position nepos;
1934	struct kernel_lb_addr neloc;
1935	int ver, adsize;
1936
1937	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938		adsize = sizeof(struct short_ad);
1939	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940		adsize = sizeof(struct long_ad);
1941	else
1942		return -EIO;
1943
1944	neloc.logicalBlockNum = block;
1945	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1946
1947	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1948	if (!bh)
1949		return -EIO;
1950	lock_buffer(bh);
1951	memset(bh->b_data, 0x00, sb->s_blocksize);
1952	set_buffer_uptodate(bh);
1953	unlock_buffer(bh);
1954	mark_buffer_dirty_inode(bh, inode);
1955
1956	aed = (struct allocExtDesc *)(bh->b_data);
1957	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1958		aed->previousAllocExtLocation =
1959				cpu_to_le32(epos->block.logicalBlockNum);
1960	}
1961	aed->lengthAllocDescs = cpu_to_le32(0);
1962	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1963		ver = 3;
1964	else
1965		ver = 2;
1966	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1967		    sizeof(struct tag));
1968
1969	nepos.block = neloc;
1970	nepos.offset = sizeof(struct allocExtDesc);
1971	nepos.bh = bh;
1972
1973	/*
1974	 * Do we have to copy current last extent to make space for indirect
1975	 * one?
1976	 */
1977	if (epos->offset + adsize > sb->s_blocksize) {
1978		struct kernel_lb_addr cp_loc;
1979		uint32_t cp_len;
1980		int cp_type;
1981
1982		epos->offset -= adsize;
1983		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1984		cp_len |= ((uint32_t)cp_type) << 30;
1985
1986		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1987		udf_write_aext(inode, epos, &nepos.block,
1988			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1989	} else {
1990		__udf_add_aext(inode, epos, &nepos.block,
1991			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1992	}
1993
1994	brelse(epos->bh);
1995	*epos = nepos;
1996
1997	return 0;
1998}
1999
2000/*
2001 * Append extent at the given position - should be the first free one in inode
2002 * / indirect extent. This function assumes there is enough space in the inode
2003 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2004 */
2005int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2006		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007{
2008	struct udf_inode_info *iinfo = UDF_I(inode);
2009	struct allocExtDesc *aed;
2010	int adsize;
2011
2012	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013		adsize = sizeof(struct short_ad);
2014	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015		adsize = sizeof(struct long_ad);
2016	else
2017		return -EIO;
2018
2019	if (!epos->bh) {
2020		WARN_ON(iinfo->i_lenAlloc !=
2021			epos->offset - udf_file_entry_alloc_offset(inode));
2022	} else {
2023		aed = (struct allocExtDesc *)epos->bh->b_data;
2024		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2025			epos->offset - sizeof(struct allocExtDesc));
2026		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2027	}
2028
2029	udf_write_aext(inode, epos, eloc, elen, inc);
2030
2031	if (!epos->bh) {
2032		iinfo->i_lenAlloc += adsize;
2033		mark_inode_dirty(inode);
2034	} else {
2035		aed = (struct allocExtDesc *)epos->bh->b_data;
2036		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2037		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2038				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2039			udf_update_tag(epos->bh->b_data,
2040					epos->offset + (inc ? 0 : adsize));
2041		else
2042			udf_update_tag(epos->bh->b_data,
2043					sizeof(struct allocExtDesc));
2044		mark_buffer_dirty_inode(epos->bh, inode);
2045	}
2046
2047	return 0;
2048}
2049
2050/*
2051 * Append extent at given position - should be the first free one in inode
2052 * / indirect extent. Takes care of allocating and linking indirect blocks.
2053 */
2054int udf_add_aext(struct inode *inode, struct extent_position *epos,
2055		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2056{
2057	int adsize;
2058	struct super_block *sb = inode->i_sb;
2059
2060	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2061		adsize = sizeof(struct short_ad);
2062	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2063		adsize = sizeof(struct long_ad);
2064	else
2065		return -EIO;
2066
2067	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2068		int err;
2069		udf_pblk_t new_block;
2070
2071		new_block = udf_new_block(sb, NULL,
2072					  epos->block.partitionReferenceNum,
2073					  epos->block.logicalBlockNum, &err);
2074		if (!new_block)
2075			return -ENOSPC;
2076
2077		err = udf_setup_indirect_aext(inode, new_block, epos);
2078		if (err)
2079			return err;
2080	}
2081
2082	return __udf_add_aext(inode, epos, eloc, elen, inc);
2083}
2084
2085void udf_write_aext(struct inode *inode, struct extent_position *epos,
2086		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2087{
2088	int adsize;
2089	uint8_t *ptr;
2090	struct short_ad *sad;
2091	struct long_ad *lad;
2092	struct udf_inode_info *iinfo = UDF_I(inode);
2093
2094	if (!epos->bh)
2095		ptr = iinfo->i_data + epos->offset -
2096			udf_file_entry_alloc_offset(inode) +
2097			iinfo->i_lenEAttr;
2098	else
2099		ptr = epos->bh->b_data + epos->offset;
2100
2101	switch (iinfo->i_alloc_type) {
2102	case ICBTAG_FLAG_AD_SHORT:
2103		sad = (struct short_ad *)ptr;
2104		sad->extLength = cpu_to_le32(elen);
2105		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2106		adsize = sizeof(struct short_ad);
2107		break;
2108	case ICBTAG_FLAG_AD_LONG:
2109		lad = (struct long_ad *)ptr;
2110		lad->extLength = cpu_to_le32(elen);
2111		lad->extLocation = cpu_to_lelb(*eloc);
2112		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2113		adsize = sizeof(struct long_ad);
2114		break;
2115	default:
2116		return;
2117	}
2118
2119	if (epos->bh) {
2120		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2121		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2122			struct allocExtDesc *aed =
2123				(struct allocExtDesc *)epos->bh->b_data;
2124			udf_update_tag(epos->bh->b_data,
2125				       le32_to_cpu(aed->lengthAllocDescs) +
2126				       sizeof(struct allocExtDesc));
2127		}
2128		mark_buffer_dirty_inode(epos->bh, inode);
2129	} else {
2130		mark_inode_dirty(inode);
2131	}
2132
2133	if (inc)
2134		epos->offset += adsize;
2135}
2136
2137/*
2138 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2139 * someone does some weird stuff.
2140 */
2141#define UDF_MAX_INDIR_EXTS 16
2142
2143int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2144		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2145{
2146	int8_t etype;
2147	unsigned int indirections = 0;
2148
2149	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2150	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2151		udf_pblk_t block;
2152
2153		if (++indirections > UDF_MAX_INDIR_EXTS) {
2154			udf_err(inode->i_sb,
2155				"too many indirect extents in inode %lu\n",
2156				inode->i_ino);
2157			return -1;
2158		}
2159
2160		epos->block = *eloc;
2161		epos->offset = sizeof(struct allocExtDesc);
2162		brelse(epos->bh);
2163		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2164		epos->bh = udf_tread(inode->i_sb, block);
2165		if (!epos->bh) {
2166			udf_debug("reading block %u failed!\n", block);
2167			return -1;
2168		}
2169	}
2170
2171	return etype;
2172}
2173
2174int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2175			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2176{
2177	int alen;
2178	int8_t etype;
2179	uint8_t *ptr;
2180	struct short_ad *sad;
2181	struct long_ad *lad;
2182	struct udf_inode_info *iinfo = UDF_I(inode);
2183
2184	if (!epos->bh) {
2185		if (!epos->offset)
2186			epos->offset = udf_file_entry_alloc_offset(inode);
2187		ptr = iinfo->i_data + epos->offset -
2188			udf_file_entry_alloc_offset(inode) +
2189			iinfo->i_lenEAttr;
2190		alen = udf_file_entry_alloc_offset(inode) +
2191							iinfo->i_lenAlloc;
2192	} else {
2193		if (!epos->offset)
2194			epos->offset = sizeof(struct allocExtDesc);
2195		ptr = epos->bh->b_data + epos->offset;
2196		alen = sizeof(struct allocExtDesc) +
2197			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2198							lengthAllocDescs);
2199	}
2200
2201	switch (iinfo->i_alloc_type) {
2202	case ICBTAG_FLAG_AD_SHORT:
2203		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2204		if (!sad)
2205			return -1;
2206		etype = le32_to_cpu(sad->extLength) >> 30;
2207		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2208		eloc->partitionReferenceNum =
2209				iinfo->i_location.partitionReferenceNum;
2210		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2211		break;
2212	case ICBTAG_FLAG_AD_LONG:
2213		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2214		if (!lad)
2215			return -1;
2216		etype = le32_to_cpu(lad->extLength) >> 30;
2217		*eloc = lelb_to_cpu(lad->extLocation);
2218		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2219		break;
2220	default:
2221		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2222		return -1;
2223	}
2224
2225	return etype;
2226}
2227
2228static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2229			      struct kernel_lb_addr neloc, uint32_t nelen)
2230{
2231	struct kernel_lb_addr oeloc;
2232	uint32_t oelen;
2233	int8_t etype;
2234
2235	if (epos.bh)
2236		get_bh(epos.bh);
2237
2238	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2239		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2240		neloc = oeloc;
2241		nelen = (etype << 30) | oelen;
2242	}
2243	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2244	brelse(epos.bh);
2245
2246	return (nelen >> 30);
2247}
2248
2249int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2250{
2251	struct extent_position oepos;
2252	int adsize;
2253	int8_t etype;
2254	struct allocExtDesc *aed;
2255	struct udf_inode_info *iinfo;
2256	struct kernel_lb_addr eloc;
2257	uint32_t elen;
2258
2259	if (epos.bh) {
2260		get_bh(epos.bh);
2261		get_bh(epos.bh);
2262	}
2263
2264	iinfo = UDF_I(inode);
2265	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2266		adsize = sizeof(struct short_ad);
2267	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2268		adsize = sizeof(struct long_ad);
2269	else
2270		adsize = 0;
2271
2272	oepos = epos;
2273	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2274		return -1;
2275
2276	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2277		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2278		if (oepos.bh != epos.bh) {
2279			oepos.block = epos.block;
2280			brelse(oepos.bh);
2281			get_bh(epos.bh);
2282			oepos.bh = epos.bh;
2283			oepos.offset = epos.offset - adsize;
2284		}
2285	}
2286	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2287	elen = 0;
2288
2289	if (epos.bh != oepos.bh) {
2290		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2291		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2292		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2293		if (!oepos.bh) {
2294			iinfo->i_lenAlloc -= (adsize * 2);
2295			mark_inode_dirty(inode);
2296		} else {
2297			aed = (struct allocExtDesc *)oepos.bh->b_data;
2298			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2299			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2300			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2301				udf_update_tag(oepos.bh->b_data,
2302						oepos.offset - (2 * adsize));
2303			else
2304				udf_update_tag(oepos.bh->b_data,
2305						sizeof(struct allocExtDesc));
2306			mark_buffer_dirty_inode(oepos.bh, inode);
2307		}
2308	} else {
2309		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2310		if (!oepos.bh) {
2311			iinfo->i_lenAlloc -= adsize;
2312			mark_inode_dirty(inode);
2313		} else {
2314			aed = (struct allocExtDesc *)oepos.bh->b_data;
2315			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2316			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2317			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2318				udf_update_tag(oepos.bh->b_data,
2319						epos.offset - adsize);
2320			else
2321				udf_update_tag(oepos.bh->b_data,
2322						sizeof(struct allocExtDesc));
2323			mark_buffer_dirty_inode(oepos.bh, inode);
2324		}
2325	}
2326
2327	brelse(epos.bh);
2328	brelse(oepos.bh);
2329
2330	return (elen >> 30);
2331}
2332
2333int8_t inode_bmap(struct inode *inode, sector_t block,
2334		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2335		  uint32_t *elen, sector_t *offset)
2336{
2337	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2338	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2339	int8_t etype;
2340	struct udf_inode_info *iinfo;
2341
2342	iinfo = UDF_I(inode);
2343	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2344		pos->offset = 0;
2345		pos->block = iinfo->i_location;
2346		pos->bh = NULL;
2347	}
2348	*elen = 0;
2349	do {
2350		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2351		if (etype == -1) {
2352			*offset = (bcount - lbcount) >> blocksize_bits;
2353			iinfo->i_lenExtents = lbcount;
2354			return -1;
2355		}
2356		lbcount += *elen;
2357	} while (lbcount <= bcount);
2358	/* update extent cache */
2359	udf_update_extent_cache(inode, lbcount - *elen, pos);
2360	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2361
2362	return etype;
2363}
2364
2365udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2366{
2367	struct kernel_lb_addr eloc;
2368	uint32_t elen;
2369	sector_t offset;
2370	struct extent_position epos = {};
2371	udf_pblk_t ret;
2372
2373	down_read(&UDF_I(inode)->i_data_sem);
2374
2375	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2376						(EXT_RECORDED_ALLOCATED >> 30))
2377		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2378	else
2379		ret = 0;
2380
2381	up_read(&UDF_I(inode)->i_data_sem);
2382	brelse(epos.bh);
2383
2384	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2385		return udf_fixed_to_variable(ret);
2386	else
2387		return ret;
2388}
v5.9
   1/*
   2 * inode.c
   3 *
   4 * PURPOSE
   5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *  This file is distributed under the terms of the GNU General Public
   9 *  License (GPL). Copies of the GPL can be obtained from:
  10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *  Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1998 Dave Boynton
  14 *  (C) 1998-2004 Ben Fennema
  15 *  (C) 1999-2000 Stelias Computing Inc
  16 *
  17 * HISTORY
  18 *
  19 *  10/04/98 dgb  Added rudimentary directory functions
  20 *  10/07/98      Fully working udf_block_map! It works!
  21 *  11/25/98      bmap altered to better support extents
  22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23 *                and udf_read_inode
  24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25 *                block boundaries (which is not actually allowed)
  26 *  12/20/98      added support for strategy 4096
  27 *  03/07/99      rewrote udf_block_map (again)
  28 *                New funcs, inode_bmap, udf_next_aext
  29 *  04/19/99      Support for writing device EA's for major/minor #
  30 */
  31
  32#include "udfdecl.h"
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/pagemap.h>
  36#include <linux/writeback.h>
  37#include <linux/slab.h>
  38#include <linux/crc-itu-t.h>
  39#include <linux/mpage.h>
  40#include <linux/uio.h>
  41#include <linux/bio.h>
  42
  43#include "udf_i.h"
  44#include "udf_sb.h"
  45
  46#define EXTENT_MERGE_SIZE 5
  47
  48#define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
  49			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
  50			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
  51
  52#define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
  53			 FE_PERM_O_DELETE)
  54
  55static umode_t udf_convert_permissions(struct fileEntry *);
  56static int udf_update_inode(struct inode *, int);
  57static int udf_sync_inode(struct inode *inode);
  58static int udf_alloc_i_data(struct inode *inode, size_t size);
  59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
  60static int8_t udf_insert_aext(struct inode *, struct extent_position,
  61			      struct kernel_lb_addr, uint32_t);
  62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
  63			      struct kernel_long_ad *, int *);
  64static void udf_prealloc_extents(struct inode *, int, int,
  65				 struct kernel_long_ad *, int *);
  66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
  67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
  68			       int, struct extent_position *);
  69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
  70
  71static void __udf_clear_extent_cache(struct inode *inode)
  72{
  73	struct udf_inode_info *iinfo = UDF_I(inode);
  74
  75	if (iinfo->cached_extent.lstart != -1) {
  76		brelse(iinfo->cached_extent.epos.bh);
  77		iinfo->cached_extent.lstart = -1;
  78	}
  79}
  80
  81/* Invalidate extent cache */
  82static void udf_clear_extent_cache(struct inode *inode)
  83{
  84	struct udf_inode_info *iinfo = UDF_I(inode);
  85
  86	spin_lock(&iinfo->i_extent_cache_lock);
  87	__udf_clear_extent_cache(inode);
  88	spin_unlock(&iinfo->i_extent_cache_lock);
  89}
  90
  91/* Return contents of extent cache */
  92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  93				 loff_t *lbcount, struct extent_position *pos)
  94{
  95	struct udf_inode_info *iinfo = UDF_I(inode);
  96	int ret = 0;
  97
  98	spin_lock(&iinfo->i_extent_cache_lock);
  99	if ((iinfo->cached_extent.lstart <= bcount) &&
 100	    (iinfo->cached_extent.lstart != -1)) {
 101		/* Cache hit */
 102		*lbcount = iinfo->cached_extent.lstart;
 103		memcpy(pos, &iinfo->cached_extent.epos,
 104		       sizeof(struct extent_position));
 105		if (pos->bh)
 106			get_bh(pos->bh);
 107		ret = 1;
 108	}
 109	spin_unlock(&iinfo->i_extent_cache_lock);
 110	return ret;
 111}
 112
 113/* Add extent to extent cache */
 114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 115				    struct extent_position *pos)
 116{
 117	struct udf_inode_info *iinfo = UDF_I(inode);
 118
 119	spin_lock(&iinfo->i_extent_cache_lock);
 120	/* Invalidate previously cached extent */
 121	__udf_clear_extent_cache(inode);
 122	if (pos->bh)
 123		get_bh(pos->bh);
 124	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
 125	iinfo->cached_extent.lstart = estart;
 126	switch (iinfo->i_alloc_type) {
 127	case ICBTAG_FLAG_AD_SHORT:
 128		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
 129		break;
 130	case ICBTAG_FLAG_AD_LONG:
 131		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
 132		break;
 133	}
 134	spin_unlock(&iinfo->i_extent_cache_lock);
 135}
 136
 137void udf_evict_inode(struct inode *inode)
 138{
 139	struct udf_inode_info *iinfo = UDF_I(inode);
 140	int want_delete = 0;
 141
 142	if (!inode->i_nlink && !is_bad_inode(inode)) {
 143		want_delete = 1;
 144		udf_setsize(inode, 0);
 145		udf_update_inode(inode, IS_SYNC(inode));
 
 
 
 
 
 
 
 
 
 
 146	}
 147	truncate_inode_pages_final(&inode->i_data);
 148	invalidate_inode_buffers(inode);
 149	clear_inode(inode);
 150	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 151	    inode->i_size != iinfo->i_lenExtents) {
 152		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 153			 inode->i_ino, inode->i_mode,
 154			 (unsigned long long)inode->i_size,
 155			 (unsigned long long)iinfo->i_lenExtents);
 156	}
 157	kfree(iinfo->i_ext.i_data);
 158	iinfo->i_ext.i_data = NULL;
 159	udf_clear_extent_cache(inode);
 160	if (want_delete) {
 161		udf_free_inode(inode);
 162	}
 163}
 164
 165static void udf_write_failed(struct address_space *mapping, loff_t to)
 166{
 167	struct inode *inode = mapping->host;
 168	struct udf_inode_info *iinfo = UDF_I(inode);
 169	loff_t isize = inode->i_size;
 170
 171	if (to > isize) {
 172		truncate_pagecache(inode, isize);
 173		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 174			down_write(&iinfo->i_data_sem);
 175			udf_clear_extent_cache(inode);
 176			udf_truncate_extents(inode);
 177			up_write(&iinfo->i_data_sem);
 178		}
 179	}
 180}
 181
 182static int udf_writepage(struct page *page, struct writeback_control *wbc)
 183{
 184	return block_write_full_page(page, udf_get_block, wbc);
 185}
 186
 187static int udf_writepages(struct address_space *mapping,
 188			struct writeback_control *wbc)
 189{
 190	return mpage_writepages(mapping, wbc, udf_get_block);
 191}
 192
 193static int udf_readpage(struct file *file, struct page *page)
 194{
 195	return mpage_readpage(page, udf_get_block);
 196}
 197
 198static void udf_readahead(struct readahead_control *rac)
 199{
 200	mpage_readahead(rac, udf_get_block);
 201}
 202
 203static int udf_write_begin(struct file *file, struct address_space *mapping,
 204			loff_t pos, unsigned len, unsigned flags,
 205			struct page **pagep, void **fsdata)
 206{
 207	int ret;
 208
 209	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
 210	if (unlikely(ret))
 211		udf_write_failed(mapping, pos + len);
 212	return ret;
 213}
 214
 215static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 216{
 217	struct file *file = iocb->ki_filp;
 218	struct address_space *mapping = file->f_mapping;
 219	struct inode *inode = mapping->host;
 220	size_t count = iov_iter_count(iter);
 221	ssize_t ret;
 222
 223	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 224	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 225		udf_write_failed(mapping, iocb->ki_pos + count);
 226	return ret;
 227}
 228
 229static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 230{
 231	return generic_block_bmap(mapping, block, udf_get_block);
 232}
 233
 234const struct address_space_operations udf_aops = {
 
 235	.readpage	= udf_readpage,
 236	.readahead	= udf_readahead,
 237	.writepage	= udf_writepage,
 238	.writepages	= udf_writepages,
 239	.write_begin	= udf_write_begin,
 240	.write_end	= generic_write_end,
 241	.direct_IO	= udf_direct_IO,
 242	.bmap		= udf_bmap,
 243};
 244
 245/*
 246 * Expand file stored in ICB to a normal one-block-file
 247 *
 248 * This function requires i_data_sem for writing and releases it.
 249 * This function requires i_mutex held
 250 */
 251int udf_expand_file_adinicb(struct inode *inode)
 252{
 253	struct page *page;
 254	char *kaddr;
 255	struct udf_inode_info *iinfo = UDF_I(inode);
 256	int err;
 257	struct writeback_control udf_wbc = {
 258		.sync_mode = WB_SYNC_NONE,
 259		.nr_to_write = 1,
 260	};
 261
 262	WARN_ON_ONCE(!inode_is_locked(inode));
 263	if (!iinfo->i_lenAlloc) {
 264		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 265			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 266		else
 267			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 268		/* from now on we have normal address_space methods */
 269		inode->i_data.a_ops = &udf_aops;
 270		up_write(&iinfo->i_data_sem);
 271		mark_inode_dirty(inode);
 272		return 0;
 273	}
 274	/*
 275	 * Release i_data_sem so that we can lock a page - page lock ranks
 276	 * above i_data_sem. i_mutex still protects us against file changes.
 277	 */
 278	up_write(&iinfo->i_data_sem);
 279
 280	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 281	if (!page)
 282		return -ENOMEM;
 283
 284	if (!PageUptodate(page)) {
 285		kaddr = kmap_atomic(page);
 286		memset(kaddr + iinfo->i_lenAlloc, 0x00,
 287		       PAGE_SIZE - iinfo->i_lenAlloc);
 288		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
 289			iinfo->i_lenAlloc);
 290		flush_dcache_page(page);
 291		SetPageUptodate(page);
 292		kunmap_atomic(kaddr);
 293	}
 294	down_write(&iinfo->i_data_sem);
 295	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
 296	       iinfo->i_lenAlloc);
 297	iinfo->i_lenAlloc = 0;
 298	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 299		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 300	else
 301		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 302	/* from now on we have normal address_space methods */
 303	inode->i_data.a_ops = &udf_aops;
 304	up_write(&iinfo->i_data_sem);
 305	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
 306	if (err) {
 307		/* Restore everything back so that we don't lose data... */
 308		lock_page(page);
 309		down_write(&iinfo->i_data_sem);
 310		kaddr = kmap_atomic(page);
 311		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
 312		       inode->i_size);
 313		kunmap_atomic(kaddr);
 314		unlock_page(page);
 315		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 316		inode->i_data.a_ops = &udf_adinicb_aops;
 317		up_write(&iinfo->i_data_sem);
 318	}
 319	put_page(page);
 320	mark_inode_dirty(inode);
 321
 322	return err;
 323}
 324
 325struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
 326					    udf_pblk_t *block, int *err)
 327{
 328	udf_pblk_t newblock;
 329	struct buffer_head *dbh = NULL;
 330	struct kernel_lb_addr eloc;
 331	uint8_t alloctype;
 332	struct extent_position epos;
 333
 334	struct udf_fileident_bh sfibh, dfibh;
 335	loff_t f_pos = udf_ext0_offset(inode);
 336	int size = udf_ext0_offset(inode) + inode->i_size;
 337	struct fileIdentDesc cfi, *sfi, *dfi;
 338	struct udf_inode_info *iinfo = UDF_I(inode);
 339
 340	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 341		alloctype = ICBTAG_FLAG_AD_SHORT;
 342	else
 343		alloctype = ICBTAG_FLAG_AD_LONG;
 344
 345	if (!inode->i_size) {
 346		iinfo->i_alloc_type = alloctype;
 347		mark_inode_dirty(inode);
 348		return NULL;
 349	}
 350
 351	/* alloc block, and copy data to it */
 352	*block = udf_new_block(inode->i_sb, inode,
 353			       iinfo->i_location.partitionReferenceNum,
 354			       iinfo->i_location.logicalBlockNum, err);
 355	if (!(*block))
 356		return NULL;
 357	newblock = udf_get_pblock(inode->i_sb, *block,
 358				  iinfo->i_location.partitionReferenceNum,
 359				0);
 360	if (!newblock)
 361		return NULL;
 362	dbh = udf_tgetblk(inode->i_sb, newblock);
 363	if (!dbh)
 364		return NULL;
 365	lock_buffer(dbh);
 366	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 367	set_buffer_uptodate(dbh);
 368	unlock_buffer(dbh);
 369	mark_buffer_dirty_inode(dbh, inode);
 370
 371	sfibh.soffset = sfibh.eoffset =
 372			f_pos & (inode->i_sb->s_blocksize - 1);
 373	sfibh.sbh = sfibh.ebh = NULL;
 374	dfibh.soffset = dfibh.eoffset = 0;
 375	dfibh.sbh = dfibh.ebh = dbh;
 376	while (f_pos < size) {
 377		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 378		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 379					 NULL, NULL, NULL);
 380		if (!sfi) {
 381			brelse(dbh);
 382			return NULL;
 383		}
 384		iinfo->i_alloc_type = alloctype;
 385		sfi->descTag.tagLocation = cpu_to_le32(*block);
 386		dfibh.soffset = dfibh.eoffset;
 387		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 388		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 389		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 390				 sfi->fileIdent +
 391					le16_to_cpu(sfi->lengthOfImpUse))) {
 392			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 393			brelse(dbh);
 394			return NULL;
 395		}
 396	}
 397	mark_buffer_dirty_inode(dbh, inode);
 398
 399	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
 400		iinfo->i_lenAlloc);
 401	iinfo->i_lenAlloc = 0;
 402	eloc.logicalBlockNum = *block;
 403	eloc.partitionReferenceNum =
 404				iinfo->i_location.partitionReferenceNum;
 405	iinfo->i_lenExtents = inode->i_size;
 406	epos.bh = NULL;
 407	epos.block = iinfo->i_location;
 408	epos.offset = udf_file_entry_alloc_offset(inode);
 409	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 410	/* UniqueID stuff */
 411
 412	brelse(epos.bh);
 413	mark_inode_dirty(inode);
 414	return dbh;
 415}
 416
 417static int udf_get_block(struct inode *inode, sector_t block,
 418			 struct buffer_head *bh_result, int create)
 419{
 420	int err, new;
 421	sector_t phys = 0;
 422	struct udf_inode_info *iinfo;
 423
 424	if (!create) {
 425		phys = udf_block_map(inode, block);
 426		if (phys)
 427			map_bh(bh_result, inode->i_sb, phys);
 428		return 0;
 429	}
 430
 431	err = -EIO;
 432	new = 0;
 433	iinfo = UDF_I(inode);
 434
 435	down_write(&iinfo->i_data_sem);
 436	if (block == iinfo->i_next_alloc_block + 1) {
 437		iinfo->i_next_alloc_block++;
 438		iinfo->i_next_alloc_goal++;
 439	}
 440
 441	udf_clear_extent_cache(inode);
 442	phys = inode_getblk(inode, block, &err, &new);
 443	if (!phys)
 444		goto abort;
 445
 446	if (new)
 447		set_buffer_new(bh_result);
 448	map_bh(bh_result, inode->i_sb, phys);
 449
 450abort:
 451	up_write(&iinfo->i_data_sem);
 452	return err;
 453}
 454
 455static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
 456				      int create, int *err)
 457{
 458	struct buffer_head *bh;
 459	struct buffer_head dummy;
 460
 461	dummy.b_state = 0;
 462	dummy.b_blocknr = -1000;
 463	*err = udf_get_block(inode, block, &dummy, create);
 464	if (!*err && buffer_mapped(&dummy)) {
 465		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 466		if (buffer_new(&dummy)) {
 467			lock_buffer(bh);
 468			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 469			set_buffer_uptodate(bh);
 470			unlock_buffer(bh);
 471			mark_buffer_dirty_inode(bh, inode);
 472		}
 473		return bh;
 474	}
 475
 476	return NULL;
 477}
 478
 479/* Extend the file with new blocks totaling 'new_block_bytes',
 480 * return the number of extents added
 481 */
 482static int udf_do_extend_file(struct inode *inode,
 483			      struct extent_position *last_pos,
 484			      struct kernel_long_ad *last_ext,
 485			      loff_t new_block_bytes)
 486{
 487	uint32_t add;
 488	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 489	struct super_block *sb = inode->i_sb;
 490	struct kernel_lb_addr prealloc_loc = {};
 491	uint32_t prealloc_len = 0;
 492	struct udf_inode_info *iinfo;
 493	int err;
 494
 495	/* The previous extent is fake and we should not extend by anything
 496	 * - there's nothing to do... */
 497	if (!new_block_bytes && fake)
 498		return 0;
 499
 500	iinfo = UDF_I(inode);
 501	/* Round the last extent up to a multiple of block size */
 502	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 503		last_ext->extLength =
 504			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 505			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 506			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 507		iinfo->i_lenExtents =
 508			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 509			~(sb->s_blocksize - 1);
 510	}
 511
 512	/* Last extent are just preallocated blocks? */
 513	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 514						EXT_NOT_RECORDED_ALLOCATED) {
 515		/* Save the extent so that we can reattach it to the end */
 516		prealloc_loc = last_ext->extLocation;
 517		prealloc_len = last_ext->extLength;
 518		/* Mark the extent as a hole */
 519		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 520			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 521		last_ext->extLocation.logicalBlockNum = 0;
 522		last_ext->extLocation.partitionReferenceNum = 0;
 523	}
 524
 525	/* Can we merge with the previous extent? */
 526	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 527					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 528		add = (1 << 30) - sb->s_blocksize -
 529			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 530		if (add > new_block_bytes)
 531			add = new_block_bytes;
 532		new_block_bytes -= add;
 533		last_ext->extLength += add;
 534	}
 535
 536	if (fake) {
 537		udf_add_aext(inode, last_pos, &last_ext->extLocation,
 538			     last_ext->extLength, 1);
 539		count++;
 540	} else {
 541		struct kernel_lb_addr tmploc;
 542		uint32_t tmplen;
 543
 544		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 545				last_ext->extLength, 1);
 
 546		/*
 547		 * We've rewritten the last extent but there may be empty
 548		 * indirect extent after it - enter it.
 
 549		 */
 550		udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
 
 551	}
 552
 553	/* Managed to do everything necessary? */
 554	if (!new_block_bytes)
 555		goto out;
 556
 557	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 558	last_ext->extLocation.logicalBlockNum = 0;
 559	last_ext->extLocation.partitionReferenceNum = 0;
 560	add = (1 << 30) - sb->s_blocksize;
 561	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
 562
 563	/* Create enough extents to cover the whole hole */
 564	while (new_block_bytes > add) {
 565		new_block_bytes -= add;
 566		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 567				   last_ext->extLength, 1);
 568		if (err)
 569			return err;
 570		count++;
 571	}
 572	if (new_block_bytes) {
 573		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 574			new_block_bytes;
 575		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 576				   last_ext->extLength, 1);
 577		if (err)
 578			return err;
 579		count++;
 580	}
 581
 582out:
 583	/* Do we have some preallocated blocks saved? */
 584	if (prealloc_len) {
 585		err = udf_add_aext(inode, last_pos, &prealloc_loc,
 586				   prealloc_len, 1);
 587		if (err)
 588			return err;
 589		last_ext->extLocation = prealloc_loc;
 590		last_ext->extLength = prealloc_len;
 591		count++;
 592	}
 593
 594	/* last_pos should point to the last written extent... */
 595	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 596		last_pos->offset -= sizeof(struct short_ad);
 597	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 598		last_pos->offset -= sizeof(struct long_ad);
 599	else
 600		return -EIO;
 601
 602	return count;
 603}
 604
 605/* Extend the final block of the file to final_block_len bytes */
 606static void udf_do_extend_final_block(struct inode *inode,
 607				      struct extent_position *last_pos,
 608				      struct kernel_long_ad *last_ext,
 609				      uint32_t final_block_len)
 610{
 611	struct super_block *sb = inode->i_sb;
 612	uint32_t added_bytes;
 613
 614	added_bytes = final_block_len -
 615		      (last_ext->extLength & (sb->s_blocksize - 1));
 616	last_ext->extLength += added_bytes;
 617	UDF_I(inode)->i_lenExtents += added_bytes;
 618
 619	udf_write_aext(inode, last_pos, &last_ext->extLocation,
 620			last_ext->extLength, 1);
 621}
 622
 623static int udf_extend_file(struct inode *inode, loff_t newsize)
 624{
 625
 626	struct extent_position epos;
 627	struct kernel_lb_addr eloc;
 628	uint32_t elen;
 629	int8_t etype;
 630	struct super_block *sb = inode->i_sb;
 631	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 632	unsigned long partial_final_block;
 633	int adsize;
 634	struct udf_inode_info *iinfo = UDF_I(inode);
 635	struct kernel_long_ad extent;
 636	int err = 0;
 637	int within_final_block;
 638
 639	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 640		adsize = sizeof(struct short_ad);
 641	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 642		adsize = sizeof(struct long_ad);
 643	else
 644		BUG();
 645
 646	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 647	within_final_block = (etype != -1);
 648
 649	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 650	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 651		/* File has no extents at all or has empty last
 652		 * indirect extent! Create a fake extent... */
 653		extent.extLocation.logicalBlockNum = 0;
 654		extent.extLocation.partitionReferenceNum = 0;
 655		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 656	} else {
 657		epos.offset -= adsize;
 658		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 659				      &extent.extLength, 0);
 660		extent.extLength |= etype << 30;
 661	}
 662
 663	partial_final_block = newsize & (sb->s_blocksize - 1);
 664
 665	/* File has extent covering the new size (could happen when extending
 666	 * inside a block)?
 667	 */
 668	if (within_final_block) {
 669		/* Extending file within the last file block */
 670		udf_do_extend_final_block(inode, &epos, &extent,
 671					  partial_final_block);
 672	} else {
 673		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
 674			     partial_final_block;
 675		err = udf_do_extend_file(inode, &epos, &extent, add);
 676	}
 677
 678	if (err < 0)
 679		goto out;
 680	err = 0;
 681	iinfo->i_lenExtents = newsize;
 682out:
 683	brelse(epos.bh);
 684	return err;
 685}
 686
 687static sector_t inode_getblk(struct inode *inode, sector_t block,
 688			     int *err, int *new)
 689{
 690	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 691	struct extent_position prev_epos, cur_epos, next_epos;
 692	int count = 0, startnum = 0, endnum = 0;
 693	uint32_t elen = 0, tmpelen;
 694	struct kernel_lb_addr eloc, tmpeloc;
 695	int c = 1;
 696	loff_t lbcount = 0, b_off = 0;
 697	udf_pblk_t newblocknum, newblock;
 698	sector_t offset = 0;
 699	int8_t etype;
 700	struct udf_inode_info *iinfo = UDF_I(inode);
 701	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 702	int lastblock = 0;
 703	bool isBeyondEOF;
 704
 705	*err = 0;
 706	*new = 0;
 707	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 708	prev_epos.block = iinfo->i_location;
 709	prev_epos.bh = NULL;
 710	cur_epos = next_epos = prev_epos;
 711	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 712
 713	/* find the extent which contains the block we are looking for.
 714	   alternate between laarr[0] and laarr[1] for locations of the
 715	   current extent, and the previous extent */
 716	do {
 717		if (prev_epos.bh != cur_epos.bh) {
 718			brelse(prev_epos.bh);
 719			get_bh(cur_epos.bh);
 720			prev_epos.bh = cur_epos.bh;
 721		}
 722		if (cur_epos.bh != next_epos.bh) {
 723			brelse(cur_epos.bh);
 724			get_bh(next_epos.bh);
 725			cur_epos.bh = next_epos.bh;
 726		}
 727
 728		lbcount += elen;
 729
 730		prev_epos.block = cur_epos.block;
 731		cur_epos.block = next_epos.block;
 732
 733		prev_epos.offset = cur_epos.offset;
 734		cur_epos.offset = next_epos.offset;
 735
 736		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 737		if (etype == -1)
 738			break;
 739
 740		c = !c;
 741
 742		laarr[c].extLength = (etype << 30) | elen;
 743		laarr[c].extLocation = eloc;
 744
 745		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 746			pgoal = eloc.logicalBlockNum +
 747				((elen + inode->i_sb->s_blocksize - 1) >>
 748				 inode->i_sb->s_blocksize_bits);
 749
 750		count++;
 751	} while (lbcount + elen <= b_off);
 752
 753	b_off -= lbcount;
 754	offset = b_off >> inode->i_sb->s_blocksize_bits;
 755	/*
 756	 * Move prev_epos and cur_epos into indirect extent if we are at
 757	 * the pointer to it
 758	 */
 759	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 760	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 761
 762	/* if the extent is allocated and recorded, return the block
 763	   if the extent is not a multiple of the blocksize, round up */
 764
 765	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 766		if (elen & (inode->i_sb->s_blocksize - 1)) {
 767			elen = EXT_RECORDED_ALLOCATED |
 768				((elen + inode->i_sb->s_blocksize - 1) &
 769				 ~(inode->i_sb->s_blocksize - 1));
 770			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 771		}
 772		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 773		goto out_free;
 774	}
 775
 776	/* Are we beyond EOF? */
 777	if (etype == -1) {
 778		int ret;
 779		loff_t hole_len;
 780		isBeyondEOF = true;
 781		if (count) {
 782			if (c)
 783				laarr[0] = laarr[1];
 784			startnum = 1;
 785		} else {
 786			/* Create a fake extent when there's not one */
 787			memset(&laarr[0].extLocation, 0x00,
 788				sizeof(struct kernel_lb_addr));
 789			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 790			/* Will udf_do_extend_file() create real extent from
 791			   a fake one? */
 792			startnum = (offset > 0);
 793		}
 794		/* Create extents for the hole between EOF and offset */
 795		hole_len = (loff_t)offset << inode->i_blkbits;
 796		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
 797		if (ret < 0) {
 798			*err = ret;
 799			newblock = 0;
 800			goto out_free;
 801		}
 802		c = 0;
 803		offset = 0;
 804		count += ret;
 805		/* We are not covered by a preallocated extent? */
 806		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 807						EXT_NOT_RECORDED_ALLOCATED) {
 808			/* Is there any real extent? - otherwise we overwrite
 809			 * the fake one... */
 810			if (count)
 811				c = !c;
 812			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 813				inode->i_sb->s_blocksize;
 814			memset(&laarr[c].extLocation, 0x00,
 815				sizeof(struct kernel_lb_addr));
 816			count++;
 817		}
 818		endnum = c + 1;
 819		lastblock = 1;
 820	} else {
 821		isBeyondEOF = false;
 822		endnum = startnum = ((count > 2) ? 2 : count);
 823
 824		/* if the current extent is in position 0,
 825		   swap it with the previous */
 826		if (!c && count != 1) {
 827			laarr[2] = laarr[0];
 828			laarr[0] = laarr[1];
 829			laarr[1] = laarr[2];
 830			c = 1;
 831		}
 832
 833		/* if the current block is located in an extent,
 834		   read the next extent */
 835		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 836		if (etype != -1) {
 837			laarr[c + 1].extLength = (etype << 30) | elen;
 838			laarr[c + 1].extLocation = eloc;
 839			count++;
 840			startnum++;
 841			endnum++;
 842		} else
 843			lastblock = 1;
 844	}
 845
 846	/* if the current extent is not recorded but allocated, get the
 847	 * block in the extent corresponding to the requested block */
 848	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 849		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 850	else { /* otherwise, allocate a new block */
 851		if (iinfo->i_next_alloc_block == block)
 852			goal = iinfo->i_next_alloc_goal;
 853
 854		if (!goal) {
 855			if (!(goal = pgoal)) /* XXX: what was intended here? */
 856				goal = iinfo->i_location.logicalBlockNum + 1;
 857		}
 858
 859		newblocknum = udf_new_block(inode->i_sb, inode,
 860				iinfo->i_location.partitionReferenceNum,
 861				goal, err);
 862		if (!newblocknum) {
 863			*err = -ENOSPC;
 864			newblock = 0;
 865			goto out_free;
 866		}
 867		if (isBeyondEOF)
 868			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 869	}
 870
 871	/* if the extent the requsted block is located in contains multiple
 872	 * blocks, split the extent into at most three extents. blocks prior
 873	 * to requested block, requested block, and blocks after requested
 874	 * block */
 875	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 876
 877	/* We preallocate blocks only for regular files. It also makes sense
 878	 * for directories but there's a problem when to drop the
 879	 * preallocation. We might use some delayed work for that but I feel
 880	 * it's overengineering for a filesystem like UDF. */
 881	if (S_ISREG(inode->i_mode))
 882		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 883
 884	/* merge any continuous blocks in laarr */
 885	udf_merge_extents(inode, laarr, &endnum);
 886
 887	/* write back the new extents, inserting new extents if the new number
 888	 * of extents is greater than the old number, and deleting extents if
 889	 * the new number of extents is less than the old number */
 890	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 891
 892	newblock = udf_get_pblock(inode->i_sb, newblocknum,
 893				iinfo->i_location.partitionReferenceNum, 0);
 894	if (!newblock) {
 895		*err = -EIO;
 896		goto out_free;
 897	}
 898	*new = 1;
 899	iinfo->i_next_alloc_block = block;
 900	iinfo->i_next_alloc_goal = newblocknum;
 901	inode->i_ctime = current_time(inode);
 902
 903	if (IS_SYNC(inode))
 904		udf_sync_inode(inode);
 905	else
 906		mark_inode_dirty(inode);
 907out_free:
 908	brelse(prev_epos.bh);
 909	brelse(cur_epos.bh);
 910	brelse(next_epos.bh);
 911	return newblock;
 912}
 913
 914static void udf_split_extents(struct inode *inode, int *c, int offset,
 915			       udf_pblk_t newblocknum,
 916			       struct kernel_long_ad *laarr, int *endnum)
 917{
 918	unsigned long blocksize = inode->i_sb->s_blocksize;
 919	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 920
 921	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 922	    (laarr[*c].extLength >> 30) ==
 923				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 924		int curr = *c;
 925		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 926			    blocksize - 1) >> blocksize_bits;
 927		int8_t etype = (laarr[curr].extLength >> 30);
 928
 929		if (blen == 1)
 930			;
 931		else if (!offset || blen == offset + 1) {
 932			laarr[curr + 2] = laarr[curr + 1];
 933			laarr[curr + 1] = laarr[curr];
 934		} else {
 935			laarr[curr + 3] = laarr[curr + 1];
 936			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 937		}
 938
 939		if (offset) {
 940			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 941				udf_free_blocks(inode->i_sb, inode,
 942						&laarr[curr].extLocation,
 943						0, offset);
 944				laarr[curr].extLength =
 945					EXT_NOT_RECORDED_NOT_ALLOCATED |
 946					(offset << blocksize_bits);
 947				laarr[curr].extLocation.logicalBlockNum = 0;
 948				laarr[curr].extLocation.
 949						partitionReferenceNum = 0;
 950			} else
 951				laarr[curr].extLength = (etype << 30) |
 952					(offset << blocksize_bits);
 953			curr++;
 954			(*c)++;
 955			(*endnum)++;
 956		}
 957
 958		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 959		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 960			laarr[curr].extLocation.partitionReferenceNum =
 961				UDF_I(inode)->i_location.partitionReferenceNum;
 962		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 963			blocksize;
 964		curr++;
 965
 966		if (blen != offset + 1) {
 967			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 968				laarr[curr].extLocation.logicalBlockNum +=
 969								offset + 1;
 970			laarr[curr].extLength = (etype << 30) |
 971				((blen - (offset + 1)) << blocksize_bits);
 972			curr++;
 973			(*endnum)++;
 974		}
 975	}
 976}
 977
 978static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 979				 struct kernel_long_ad *laarr,
 980				 int *endnum)
 981{
 982	int start, length = 0, currlength = 0, i;
 983
 984	if (*endnum >= (c + 1)) {
 985		if (!lastblock)
 986			return;
 987		else
 988			start = c;
 989	} else {
 990		if ((laarr[c + 1].extLength >> 30) ==
 991					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 992			start = c + 1;
 993			length = currlength =
 994				(((laarr[c + 1].extLength &
 995					UDF_EXTENT_LENGTH_MASK) +
 996				inode->i_sb->s_blocksize - 1) >>
 997				inode->i_sb->s_blocksize_bits);
 998		} else
 999			start = c;
1000	}
1001
1002	for (i = start + 1; i <= *endnum; i++) {
1003		if (i == *endnum) {
1004			if (lastblock)
1005				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1006		} else if ((laarr[i].extLength >> 30) ==
1007				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1008			length += (((laarr[i].extLength &
1009						UDF_EXTENT_LENGTH_MASK) +
1010				    inode->i_sb->s_blocksize - 1) >>
1011				    inode->i_sb->s_blocksize_bits);
1012		} else
1013			break;
1014	}
1015
1016	if (length) {
1017		int next = laarr[start].extLocation.logicalBlockNum +
1018			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1019			  inode->i_sb->s_blocksize - 1) >>
1020			  inode->i_sb->s_blocksize_bits);
1021		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1022				laarr[start].extLocation.partitionReferenceNum,
1023				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1024				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1025				currlength);
1026		if (numalloc) 	{
1027			if (start == (c + 1))
1028				laarr[start].extLength +=
1029					(numalloc <<
1030					 inode->i_sb->s_blocksize_bits);
1031			else {
1032				memmove(&laarr[c + 2], &laarr[c + 1],
1033					sizeof(struct long_ad) * (*endnum - (c + 1)));
1034				(*endnum)++;
1035				laarr[c + 1].extLocation.logicalBlockNum = next;
1036				laarr[c + 1].extLocation.partitionReferenceNum =
1037					laarr[c].extLocation.
1038							partitionReferenceNum;
1039				laarr[c + 1].extLength =
1040					EXT_NOT_RECORDED_ALLOCATED |
1041					(numalloc <<
1042					 inode->i_sb->s_blocksize_bits);
1043				start = c + 1;
1044			}
1045
1046			for (i = start + 1; numalloc && i < *endnum; i++) {
1047				int elen = ((laarr[i].extLength &
1048						UDF_EXTENT_LENGTH_MASK) +
1049					    inode->i_sb->s_blocksize - 1) >>
1050					    inode->i_sb->s_blocksize_bits;
1051
1052				if (elen > numalloc) {
1053					laarr[i].extLength -=
1054						(numalloc <<
1055						 inode->i_sb->s_blocksize_bits);
1056					numalloc = 0;
1057				} else {
1058					numalloc -= elen;
1059					if (*endnum > (i + 1))
1060						memmove(&laarr[i],
1061							&laarr[i + 1],
1062							sizeof(struct long_ad) *
1063							(*endnum - (i + 1)));
1064					i--;
1065					(*endnum)--;
1066				}
1067			}
1068			UDF_I(inode)->i_lenExtents +=
1069				numalloc << inode->i_sb->s_blocksize_bits;
1070		}
1071	}
1072}
1073
1074static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1075			      int *endnum)
1076{
1077	int i;
1078	unsigned long blocksize = inode->i_sb->s_blocksize;
1079	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1080
1081	for (i = 0; i < (*endnum - 1); i++) {
1082		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1083		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1084
1085		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1086			(((li->extLength >> 30) ==
1087				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1088			((lip1->extLocation.logicalBlockNum -
1089			  li->extLocation.logicalBlockNum) ==
1090			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1091			blocksize - 1) >> blocksize_bits)))) {
1092
1093			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1094				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1095				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1096				lip1->extLength = (lip1->extLength -
1097						  (li->extLength &
1098						   UDF_EXTENT_LENGTH_MASK) +
1099						   UDF_EXTENT_LENGTH_MASK) &
1100							~(blocksize - 1);
1101				li->extLength = (li->extLength &
1102						 UDF_EXTENT_FLAG_MASK) +
1103						(UDF_EXTENT_LENGTH_MASK + 1) -
1104						blocksize;
1105				lip1->extLocation.logicalBlockNum =
1106					li->extLocation.logicalBlockNum +
1107					((li->extLength &
1108						UDF_EXTENT_LENGTH_MASK) >>
1109						blocksize_bits);
1110			} else {
1111				li->extLength = lip1->extLength +
1112					(((li->extLength &
1113						UDF_EXTENT_LENGTH_MASK) +
1114					 blocksize - 1) & ~(blocksize - 1));
1115				if (*endnum > (i + 2))
1116					memmove(&laarr[i + 1], &laarr[i + 2],
1117						sizeof(struct long_ad) *
1118						(*endnum - (i + 2)));
1119				i--;
1120				(*endnum)--;
1121			}
1122		} else if (((li->extLength >> 30) ==
1123				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1124			   ((lip1->extLength >> 30) ==
1125				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1126			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1127					((li->extLength &
1128					  UDF_EXTENT_LENGTH_MASK) +
1129					 blocksize - 1) >> blocksize_bits);
1130			li->extLocation.logicalBlockNum = 0;
1131			li->extLocation.partitionReferenceNum = 0;
1132
1133			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1134			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1135			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1136				lip1->extLength = (lip1->extLength -
1137						   (li->extLength &
1138						   UDF_EXTENT_LENGTH_MASK) +
1139						   UDF_EXTENT_LENGTH_MASK) &
1140						   ~(blocksize - 1);
1141				li->extLength = (li->extLength &
1142						 UDF_EXTENT_FLAG_MASK) +
1143						(UDF_EXTENT_LENGTH_MASK + 1) -
1144						blocksize;
1145			} else {
1146				li->extLength = lip1->extLength +
1147					(((li->extLength &
1148						UDF_EXTENT_LENGTH_MASK) +
1149					  blocksize - 1) & ~(blocksize - 1));
1150				if (*endnum > (i + 2))
1151					memmove(&laarr[i + 1], &laarr[i + 2],
1152						sizeof(struct long_ad) *
1153						(*endnum - (i + 2)));
1154				i--;
1155				(*endnum)--;
1156			}
1157		} else if ((li->extLength >> 30) ==
1158					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1159			udf_free_blocks(inode->i_sb, inode,
1160					&li->extLocation, 0,
1161					((li->extLength &
1162						UDF_EXTENT_LENGTH_MASK) +
1163					 blocksize - 1) >> blocksize_bits);
1164			li->extLocation.logicalBlockNum = 0;
1165			li->extLocation.partitionReferenceNum = 0;
1166			li->extLength = (li->extLength &
1167						UDF_EXTENT_LENGTH_MASK) |
1168						EXT_NOT_RECORDED_NOT_ALLOCATED;
1169		}
1170	}
1171}
1172
1173static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1174			       int startnum, int endnum,
1175			       struct extent_position *epos)
1176{
1177	int start = 0, i;
1178	struct kernel_lb_addr tmploc;
1179	uint32_t tmplen;
1180
1181	if (startnum > endnum) {
1182		for (i = 0; i < (startnum - endnum); i++)
1183			udf_delete_aext(inode, *epos);
1184	} else if (startnum < endnum) {
1185		for (i = 0; i < (endnum - startnum); i++) {
1186			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1187					laarr[i].extLength);
1188			udf_next_aext(inode, epos, &laarr[i].extLocation,
1189				      &laarr[i].extLength, 1);
1190			start++;
1191		}
1192	}
1193
1194	for (i = start; i < endnum; i++) {
1195		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1196		udf_write_aext(inode, epos, &laarr[i].extLocation,
1197			       laarr[i].extLength, 1);
1198	}
1199}
1200
1201struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1202			      int create, int *err)
1203{
1204	struct buffer_head *bh = NULL;
1205
1206	bh = udf_getblk(inode, block, create, err);
1207	if (!bh)
1208		return NULL;
1209
1210	if (buffer_uptodate(bh))
1211		return bh;
1212
1213	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1214
1215	wait_on_buffer(bh);
1216	if (buffer_uptodate(bh))
1217		return bh;
1218
1219	brelse(bh);
1220	*err = -EIO;
1221	return NULL;
1222}
1223
1224int udf_setsize(struct inode *inode, loff_t newsize)
1225{
1226	int err;
1227	struct udf_inode_info *iinfo;
1228	unsigned int bsize = i_blocksize(inode);
1229
1230	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1231	      S_ISLNK(inode->i_mode)))
1232		return -EINVAL;
1233	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1234		return -EPERM;
1235
1236	iinfo = UDF_I(inode);
1237	if (newsize > inode->i_size) {
1238		down_write(&iinfo->i_data_sem);
1239		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1240			if (bsize <
1241			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1242				err = udf_expand_file_adinicb(inode);
1243				if (err)
1244					return err;
1245				down_write(&iinfo->i_data_sem);
1246			} else {
1247				iinfo->i_lenAlloc = newsize;
1248				goto set_size;
1249			}
1250		}
1251		err = udf_extend_file(inode, newsize);
1252		if (err) {
1253			up_write(&iinfo->i_data_sem);
1254			return err;
1255		}
1256set_size:
1257		up_write(&iinfo->i_data_sem);
1258		truncate_setsize(inode, newsize);
1259	} else {
1260		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1261			down_write(&iinfo->i_data_sem);
1262			udf_clear_extent_cache(inode);
1263			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1264			       0x00, bsize - newsize -
1265			       udf_file_entry_alloc_offset(inode));
1266			iinfo->i_lenAlloc = newsize;
1267			truncate_setsize(inode, newsize);
1268			up_write(&iinfo->i_data_sem);
1269			goto update_time;
1270		}
1271		err = block_truncate_page(inode->i_mapping, newsize,
1272					  udf_get_block);
1273		if (err)
1274			return err;
1275		truncate_setsize(inode, newsize);
1276		down_write(&iinfo->i_data_sem);
1277		udf_clear_extent_cache(inode);
1278		err = udf_truncate_extents(inode);
1279		up_write(&iinfo->i_data_sem);
1280		if (err)
1281			return err;
1282	}
1283update_time:
1284	inode->i_mtime = inode->i_ctime = current_time(inode);
1285	if (IS_SYNC(inode))
1286		udf_sync_inode(inode);
1287	else
1288		mark_inode_dirty(inode);
1289	return 0;
1290}
1291
1292/*
1293 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1294 * arbitrary - just that we hopefully don't limit any real use of rewritten
1295 * inode on write-once media but avoid looping for too long on corrupted media.
1296 */
1297#define UDF_MAX_ICB_NESTING 1024
1298
1299static int udf_read_inode(struct inode *inode, bool hidden_inode)
1300{
1301	struct buffer_head *bh = NULL;
1302	struct fileEntry *fe;
1303	struct extendedFileEntry *efe;
1304	uint16_t ident;
1305	struct udf_inode_info *iinfo = UDF_I(inode);
1306	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1307	struct kernel_lb_addr *iloc = &iinfo->i_location;
1308	unsigned int link_count;
1309	unsigned int indirections = 0;
1310	int bs = inode->i_sb->s_blocksize;
1311	int ret = -EIO;
1312	uint32_t uid, gid;
1313
1314reread:
1315	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1316		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1317			  iloc->partitionReferenceNum, sbi->s_partitions);
1318		return -EIO;
1319	}
1320
1321	if (iloc->logicalBlockNum >=
1322	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1323		udf_debug("block=%u, partition=%u out of range\n",
1324			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1325		return -EIO;
1326	}
1327
1328	/*
1329	 * Set defaults, but the inode is still incomplete!
1330	 * Note: get_new_inode() sets the following on a new inode:
1331	 *      i_sb = sb
1332	 *      i_no = ino
1333	 *      i_flags = sb->s_flags
1334	 *      i_state = 0
1335	 * clean_inode(): zero fills and sets
1336	 *      i_count = 1
1337	 *      i_nlink = 1
1338	 *      i_op = NULL;
1339	 */
1340	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1341	if (!bh) {
1342		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1343		return -EIO;
1344	}
1345
1346	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1347	    ident != TAG_IDENT_USE) {
1348		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1349			inode->i_ino, ident);
1350		goto out;
1351	}
1352
1353	fe = (struct fileEntry *)bh->b_data;
1354	efe = (struct extendedFileEntry *)bh->b_data;
1355
1356	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1357		struct buffer_head *ibh;
1358
1359		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1360		if (ident == TAG_IDENT_IE && ibh) {
1361			struct kernel_lb_addr loc;
1362			struct indirectEntry *ie;
1363
1364			ie = (struct indirectEntry *)ibh->b_data;
1365			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1366
1367			if (ie->indirectICB.extLength) {
1368				brelse(ibh);
1369				memcpy(&iinfo->i_location, &loc,
1370				       sizeof(struct kernel_lb_addr));
1371				if (++indirections > UDF_MAX_ICB_NESTING) {
1372					udf_err(inode->i_sb,
1373						"too many ICBs in ICB hierarchy"
1374						" (max %d supported)\n",
1375						UDF_MAX_ICB_NESTING);
1376					goto out;
1377				}
1378				brelse(bh);
1379				goto reread;
1380			}
1381		}
1382		brelse(ibh);
1383	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1384		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1385			le16_to_cpu(fe->icbTag.strategyType));
1386		goto out;
1387	}
1388	if (fe->icbTag.strategyType == cpu_to_le16(4))
1389		iinfo->i_strat4096 = 0;
1390	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1391		iinfo->i_strat4096 = 1;
1392
1393	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1394							ICBTAG_FLAG_AD_MASK;
1395	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1396	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1397	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1398		ret = -EIO;
1399		goto out;
1400	}
1401	iinfo->i_unique = 0;
1402	iinfo->i_lenEAttr = 0;
1403	iinfo->i_lenExtents = 0;
1404	iinfo->i_lenAlloc = 0;
1405	iinfo->i_next_alloc_block = 0;
1406	iinfo->i_next_alloc_goal = 0;
1407	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1408		iinfo->i_efe = 1;
1409		iinfo->i_use = 0;
1410		ret = udf_alloc_i_data(inode, bs -
1411					sizeof(struct extendedFileEntry));
1412		if (ret)
1413			goto out;
1414		memcpy(iinfo->i_ext.i_data,
1415		       bh->b_data + sizeof(struct extendedFileEntry),
1416		       bs - sizeof(struct extendedFileEntry));
1417	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1418		iinfo->i_efe = 0;
1419		iinfo->i_use = 0;
1420		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1421		if (ret)
1422			goto out;
1423		memcpy(iinfo->i_ext.i_data,
1424		       bh->b_data + sizeof(struct fileEntry),
1425		       bs - sizeof(struct fileEntry));
1426	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1427		iinfo->i_efe = 0;
1428		iinfo->i_use = 1;
1429		iinfo->i_lenAlloc = le32_to_cpu(
1430				((struct unallocSpaceEntry *)bh->b_data)->
1431				 lengthAllocDescs);
1432		ret = udf_alloc_i_data(inode, bs -
1433					sizeof(struct unallocSpaceEntry));
1434		if (ret)
1435			goto out;
1436		memcpy(iinfo->i_ext.i_data,
1437		       bh->b_data + sizeof(struct unallocSpaceEntry),
1438		       bs - sizeof(struct unallocSpaceEntry));
1439		return 0;
1440	}
1441
1442	ret = -EIO;
1443	read_lock(&sbi->s_cred_lock);
1444	uid = le32_to_cpu(fe->uid);
1445	if (uid == UDF_INVALID_ID ||
1446	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1447		inode->i_uid = sbi->s_uid;
1448	else
1449		i_uid_write(inode, uid);
1450
1451	gid = le32_to_cpu(fe->gid);
1452	if (gid == UDF_INVALID_ID ||
1453	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1454		inode->i_gid = sbi->s_gid;
1455	else
1456		i_gid_write(inode, gid);
1457
1458	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1459			sbi->s_fmode != UDF_INVALID_MODE)
1460		inode->i_mode = sbi->s_fmode;
1461	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1462			sbi->s_dmode != UDF_INVALID_MODE)
1463		inode->i_mode = sbi->s_dmode;
1464	else
1465		inode->i_mode = udf_convert_permissions(fe);
1466	inode->i_mode &= ~sbi->s_umask;
1467	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1468
1469	read_unlock(&sbi->s_cred_lock);
1470
1471	link_count = le16_to_cpu(fe->fileLinkCount);
1472	if (!link_count) {
1473		if (!hidden_inode) {
1474			ret = -ESTALE;
1475			goto out;
1476		}
1477		link_count = 1;
1478	}
1479	set_nlink(inode, link_count);
1480
1481	inode->i_size = le64_to_cpu(fe->informationLength);
1482	iinfo->i_lenExtents = inode->i_size;
1483
1484	if (iinfo->i_efe == 0) {
1485		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1486			(inode->i_sb->s_blocksize_bits - 9);
1487
1488		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1489		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1490		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1491
1492		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1493		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1494		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1495		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1496		iinfo->i_streamdir = 0;
1497		iinfo->i_lenStreams = 0;
1498	} else {
1499		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1500		    (inode->i_sb->s_blocksize_bits - 9);
1501
1502		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1503		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1504		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1505		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1506
1507		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1508		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1509		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1510		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1511
1512		/* Named streams */
1513		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1514		iinfo->i_locStreamdir =
1515			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1516		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1517		if (iinfo->i_lenStreams >= inode->i_size)
1518			iinfo->i_lenStreams -= inode->i_size;
1519		else
1520			iinfo->i_lenStreams = 0;
1521	}
1522	inode->i_generation = iinfo->i_unique;
1523
1524	/*
1525	 * Sanity check length of allocation descriptors and extended attrs to
1526	 * avoid integer overflows
1527	 */
1528	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1529		goto out;
1530	/* Now do exact checks */
1531	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1532		goto out;
1533	/* Sanity checks for files in ICB so that we don't get confused later */
1534	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1535		/*
1536		 * For file in ICB data is stored in allocation descriptor
1537		 * so sizes should match
1538		 */
1539		if (iinfo->i_lenAlloc != inode->i_size)
1540			goto out;
1541		/* File in ICB has to fit in there... */
1542		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1543			goto out;
1544	}
1545
1546	switch (fe->icbTag.fileType) {
1547	case ICBTAG_FILE_TYPE_DIRECTORY:
1548		inode->i_op = &udf_dir_inode_operations;
1549		inode->i_fop = &udf_dir_operations;
1550		inode->i_mode |= S_IFDIR;
1551		inc_nlink(inode);
1552		break;
1553	case ICBTAG_FILE_TYPE_REALTIME:
1554	case ICBTAG_FILE_TYPE_REGULAR:
1555	case ICBTAG_FILE_TYPE_UNDEF:
1556	case ICBTAG_FILE_TYPE_VAT20:
1557		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1558			inode->i_data.a_ops = &udf_adinicb_aops;
1559		else
1560			inode->i_data.a_ops = &udf_aops;
1561		inode->i_op = &udf_file_inode_operations;
1562		inode->i_fop = &udf_file_operations;
1563		inode->i_mode |= S_IFREG;
1564		break;
1565	case ICBTAG_FILE_TYPE_BLOCK:
1566		inode->i_mode |= S_IFBLK;
1567		break;
1568	case ICBTAG_FILE_TYPE_CHAR:
1569		inode->i_mode |= S_IFCHR;
1570		break;
1571	case ICBTAG_FILE_TYPE_FIFO:
1572		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1573		break;
1574	case ICBTAG_FILE_TYPE_SOCKET:
1575		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1576		break;
1577	case ICBTAG_FILE_TYPE_SYMLINK:
1578		inode->i_data.a_ops = &udf_symlink_aops;
1579		inode->i_op = &udf_symlink_inode_operations;
1580		inode_nohighmem(inode);
1581		inode->i_mode = S_IFLNK | 0777;
1582		break;
1583	case ICBTAG_FILE_TYPE_MAIN:
1584		udf_debug("METADATA FILE-----\n");
1585		break;
1586	case ICBTAG_FILE_TYPE_MIRROR:
1587		udf_debug("METADATA MIRROR FILE-----\n");
1588		break;
1589	case ICBTAG_FILE_TYPE_BITMAP:
1590		udf_debug("METADATA BITMAP FILE-----\n");
1591		break;
1592	default:
1593		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1594			inode->i_ino, fe->icbTag.fileType);
1595		goto out;
1596	}
1597	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1598		struct deviceSpec *dsea =
1599			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1600		if (dsea) {
1601			init_special_inode(inode, inode->i_mode,
1602				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1603				      le32_to_cpu(dsea->minorDeviceIdent)));
1604			/* Developer ID ??? */
1605		} else
1606			goto out;
1607	}
1608	ret = 0;
1609out:
1610	brelse(bh);
1611	return ret;
1612}
1613
1614static int udf_alloc_i_data(struct inode *inode, size_t size)
1615{
1616	struct udf_inode_info *iinfo = UDF_I(inode);
1617	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1618	if (!iinfo->i_ext.i_data)
1619		return -ENOMEM;
1620	return 0;
1621}
1622
1623static umode_t udf_convert_permissions(struct fileEntry *fe)
1624{
1625	umode_t mode;
1626	uint32_t permissions;
1627	uint32_t flags;
1628
1629	permissions = le32_to_cpu(fe->permissions);
1630	flags = le16_to_cpu(fe->icbTag.flags);
1631
1632	mode =	((permissions) & 0007) |
1633		((permissions >> 2) & 0070) |
1634		((permissions >> 4) & 0700) |
1635		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1636		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1637		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1638
1639	return mode;
1640}
1641
1642void udf_update_extra_perms(struct inode *inode, umode_t mode)
1643{
1644	struct udf_inode_info *iinfo = UDF_I(inode);
1645
1646	/*
1647	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1648	 * In Unix, delete permission tracks write
1649	 */
1650	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1651	if (mode & 0200)
1652		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1653	if (mode & 0020)
1654		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1655	if (mode & 0002)
1656		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1657}
1658
1659int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1660{
1661	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1662}
1663
1664static int udf_sync_inode(struct inode *inode)
1665{
1666	return udf_update_inode(inode, 1);
1667}
1668
1669static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1670{
1671	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1672	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1673	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1674		iinfo->i_crtime = time;
1675}
1676
1677static int udf_update_inode(struct inode *inode, int do_sync)
1678{
1679	struct buffer_head *bh = NULL;
1680	struct fileEntry *fe;
1681	struct extendedFileEntry *efe;
1682	uint64_t lb_recorded;
1683	uint32_t udfperms;
1684	uint16_t icbflags;
1685	uint16_t crclen;
1686	int err = 0;
1687	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1688	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1689	struct udf_inode_info *iinfo = UDF_I(inode);
1690
1691	bh = udf_tgetblk(inode->i_sb,
1692			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1693	if (!bh) {
1694		udf_debug("getblk failure\n");
1695		return -EIO;
1696	}
1697
1698	lock_buffer(bh);
1699	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1700	fe = (struct fileEntry *)bh->b_data;
1701	efe = (struct extendedFileEntry *)bh->b_data;
1702
1703	if (iinfo->i_use) {
1704		struct unallocSpaceEntry *use =
1705			(struct unallocSpaceEntry *)bh->b_data;
1706
1707		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1708		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1709		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1710					sizeof(struct unallocSpaceEntry));
1711		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1712		crclen = sizeof(struct unallocSpaceEntry);
1713
1714		goto finish;
1715	}
1716
1717	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1718		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1719	else
1720		fe->uid = cpu_to_le32(i_uid_read(inode));
1721
1722	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1723		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1724	else
1725		fe->gid = cpu_to_le32(i_gid_read(inode));
1726
1727	udfperms = ((inode->i_mode & 0007)) |
1728		   ((inode->i_mode & 0070) << 2) |
1729		   ((inode->i_mode & 0700) << 4);
1730
1731	udfperms |= iinfo->i_extraPerms;
1732	fe->permissions = cpu_to_le32(udfperms);
1733
1734	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1735		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1736	else
1737		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1738
1739	fe->informationLength = cpu_to_le64(inode->i_size);
1740
1741	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1742		struct regid *eid;
1743		struct deviceSpec *dsea =
1744			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1745		if (!dsea) {
1746			dsea = (struct deviceSpec *)
1747				udf_add_extendedattr(inode,
1748						     sizeof(struct deviceSpec) +
1749						     sizeof(struct regid), 12, 0x3);
1750			dsea->attrType = cpu_to_le32(12);
1751			dsea->attrSubtype = 1;
1752			dsea->attrLength = cpu_to_le32(
1753						sizeof(struct deviceSpec) +
1754						sizeof(struct regid));
1755			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1756		}
1757		eid = (struct regid *)dsea->impUse;
1758		memset(eid, 0, sizeof(*eid));
1759		strcpy(eid->ident, UDF_ID_DEVELOPER);
1760		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1761		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1762		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1763		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1764	}
1765
1766	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1767		lb_recorded = 0; /* No extents => no blocks! */
1768	else
1769		lb_recorded =
1770			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1771			(blocksize_bits - 9);
1772
1773	if (iinfo->i_efe == 0) {
1774		memcpy(bh->b_data + sizeof(struct fileEntry),
1775		       iinfo->i_ext.i_data,
1776		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1777		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1778
1779		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1780		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1781		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1782		memset(&(fe->impIdent), 0, sizeof(struct regid));
1783		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1784		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1785		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1786		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1787		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1788		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1789		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1790		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1791		crclen = sizeof(struct fileEntry);
1792	} else {
1793		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1794		       iinfo->i_ext.i_data,
1795		       inode->i_sb->s_blocksize -
1796					sizeof(struct extendedFileEntry));
1797		efe->objectSize =
1798			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1799		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1800
1801		if (iinfo->i_streamdir) {
1802			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1803
1804			icb_lad->extLocation =
1805				cpu_to_lelb(iinfo->i_locStreamdir);
1806			icb_lad->extLength =
1807				cpu_to_le32(inode->i_sb->s_blocksize);
1808		}
1809
1810		udf_adjust_time(iinfo, inode->i_atime);
1811		udf_adjust_time(iinfo, inode->i_mtime);
1812		udf_adjust_time(iinfo, inode->i_ctime);
1813
1814		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1815		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1816		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1817		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1818
1819		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1820		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1821		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1822		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1823		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1824		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1825		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1826		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1827		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1828		crclen = sizeof(struct extendedFileEntry);
1829	}
1830
1831finish:
1832	if (iinfo->i_strat4096) {
1833		fe->icbTag.strategyType = cpu_to_le16(4096);
1834		fe->icbTag.strategyParameter = cpu_to_le16(1);
1835		fe->icbTag.numEntries = cpu_to_le16(2);
1836	} else {
1837		fe->icbTag.strategyType = cpu_to_le16(4);
1838		fe->icbTag.numEntries = cpu_to_le16(1);
1839	}
1840
1841	if (iinfo->i_use)
1842		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1843	else if (S_ISDIR(inode->i_mode))
1844		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1845	else if (S_ISREG(inode->i_mode))
1846		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1847	else if (S_ISLNK(inode->i_mode))
1848		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1849	else if (S_ISBLK(inode->i_mode))
1850		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1851	else if (S_ISCHR(inode->i_mode))
1852		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1853	else if (S_ISFIFO(inode->i_mode))
1854		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1855	else if (S_ISSOCK(inode->i_mode))
1856		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1857
1858	icbflags =	iinfo->i_alloc_type |
1859			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1860			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1861			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1862			(le16_to_cpu(fe->icbTag.flags) &
1863				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1864				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1865
1866	fe->icbTag.flags = cpu_to_le16(icbflags);
1867	if (sbi->s_udfrev >= 0x0200)
1868		fe->descTag.descVersion = cpu_to_le16(3);
1869	else
1870		fe->descTag.descVersion = cpu_to_le16(2);
1871	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1872	fe->descTag.tagLocation = cpu_to_le32(
1873					iinfo->i_location.logicalBlockNum);
1874	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1875	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1876	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1877						  crclen));
1878	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1879
1880	set_buffer_uptodate(bh);
1881	unlock_buffer(bh);
1882
1883	/* write the data blocks */
1884	mark_buffer_dirty(bh);
1885	if (do_sync) {
1886		sync_dirty_buffer(bh);
1887		if (buffer_write_io_error(bh)) {
1888			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1889				 inode->i_ino);
1890			err = -EIO;
1891		}
1892	}
1893	brelse(bh);
1894
1895	return err;
1896}
1897
1898struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1899			 bool hidden_inode)
1900{
1901	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1902	struct inode *inode = iget_locked(sb, block);
1903	int err;
1904
1905	if (!inode)
1906		return ERR_PTR(-ENOMEM);
1907
1908	if (!(inode->i_state & I_NEW))
1909		return inode;
1910
1911	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1912	err = udf_read_inode(inode, hidden_inode);
1913	if (err < 0) {
1914		iget_failed(inode);
1915		return ERR_PTR(err);
1916	}
1917	unlock_new_inode(inode);
1918
1919	return inode;
1920}
1921
1922int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1923			    struct extent_position *epos)
1924{
1925	struct super_block *sb = inode->i_sb;
1926	struct buffer_head *bh;
1927	struct allocExtDesc *aed;
1928	struct extent_position nepos;
1929	struct kernel_lb_addr neloc;
1930	int ver, adsize;
1931
1932	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1933		adsize = sizeof(struct short_ad);
1934	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1935		adsize = sizeof(struct long_ad);
1936	else
1937		return -EIO;
1938
1939	neloc.logicalBlockNum = block;
1940	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1941
1942	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1943	if (!bh)
1944		return -EIO;
1945	lock_buffer(bh);
1946	memset(bh->b_data, 0x00, sb->s_blocksize);
1947	set_buffer_uptodate(bh);
1948	unlock_buffer(bh);
1949	mark_buffer_dirty_inode(bh, inode);
1950
1951	aed = (struct allocExtDesc *)(bh->b_data);
1952	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1953		aed->previousAllocExtLocation =
1954				cpu_to_le32(epos->block.logicalBlockNum);
1955	}
1956	aed->lengthAllocDescs = cpu_to_le32(0);
1957	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1958		ver = 3;
1959	else
1960		ver = 2;
1961	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1962		    sizeof(struct tag));
1963
1964	nepos.block = neloc;
1965	nepos.offset = sizeof(struct allocExtDesc);
1966	nepos.bh = bh;
1967
1968	/*
1969	 * Do we have to copy current last extent to make space for indirect
1970	 * one?
1971	 */
1972	if (epos->offset + adsize > sb->s_blocksize) {
1973		struct kernel_lb_addr cp_loc;
1974		uint32_t cp_len;
1975		int cp_type;
1976
1977		epos->offset -= adsize;
1978		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1979		cp_len |= ((uint32_t)cp_type) << 30;
1980
1981		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1982		udf_write_aext(inode, epos, &nepos.block,
1983			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1984	} else {
1985		__udf_add_aext(inode, epos, &nepos.block,
1986			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1987	}
1988
1989	brelse(epos->bh);
1990	*epos = nepos;
1991
1992	return 0;
1993}
1994
1995/*
1996 * Append extent at the given position - should be the first free one in inode
1997 * / indirect extent. This function assumes there is enough space in the inode
1998 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1999 */
2000int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2001		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2002{
2003	struct udf_inode_info *iinfo = UDF_I(inode);
2004	struct allocExtDesc *aed;
2005	int adsize;
2006
2007	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2008		adsize = sizeof(struct short_ad);
2009	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2010		adsize = sizeof(struct long_ad);
2011	else
2012		return -EIO;
2013
2014	if (!epos->bh) {
2015		WARN_ON(iinfo->i_lenAlloc !=
2016			epos->offset - udf_file_entry_alloc_offset(inode));
2017	} else {
2018		aed = (struct allocExtDesc *)epos->bh->b_data;
2019		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2020			epos->offset - sizeof(struct allocExtDesc));
2021		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2022	}
2023
2024	udf_write_aext(inode, epos, eloc, elen, inc);
2025
2026	if (!epos->bh) {
2027		iinfo->i_lenAlloc += adsize;
2028		mark_inode_dirty(inode);
2029	} else {
2030		aed = (struct allocExtDesc *)epos->bh->b_data;
2031		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2032		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2033				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2034			udf_update_tag(epos->bh->b_data,
2035					epos->offset + (inc ? 0 : adsize));
2036		else
2037			udf_update_tag(epos->bh->b_data,
2038					sizeof(struct allocExtDesc));
2039		mark_buffer_dirty_inode(epos->bh, inode);
2040	}
2041
2042	return 0;
2043}
2044
2045/*
2046 * Append extent at given position - should be the first free one in inode
2047 * / indirect extent. Takes care of allocating and linking indirect blocks.
2048 */
2049int udf_add_aext(struct inode *inode, struct extent_position *epos,
2050		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2051{
2052	int adsize;
2053	struct super_block *sb = inode->i_sb;
2054
2055	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2056		adsize = sizeof(struct short_ad);
2057	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2058		adsize = sizeof(struct long_ad);
2059	else
2060		return -EIO;
2061
2062	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2063		int err;
2064		udf_pblk_t new_block;
2065
2066		new_block = udf_new_block(sb, NULL,
2067					  epos->block.partitionReferenceNum,
2068					  epos->block.logicalBlockNum, &err);
2069		if (!new_block)
2070			return -ENOSPC;
2071
2072		err = udf_setup_indirect_aext(inode, new_block, epos);
2073		if (err)
2074			return err;
2075	}
2076
2077	return __udf_add_aext(inode, epos, eloc, elen, inc);
2078}
2079
2080void udf_write_aext(struct inode *inode, struct extent_position *epos,
2081		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2082{
2083	int adsize;
2084	uint8_t *ptr;
2085	struct short_ad *sad;
2086	struct long_ad *lad;
2087	struct udf_inode_info *iinfo = UDF_I(inode);
2088
2089	if (!epos->bh)
2090		ptr = iinfo->i_ext.i_data + epos->offset -
2091			udf_file_entry_alloc_offset(inode) +
2092			iinfo->i_lenEAttr;
2093	else
2094		ptr = epos->bh->b_data + epos->offset;
2095
2096	switch (iinfo->i_alloc_type) {
2097	case ICBTAG_FLAG_AD_SHORT:
2098		sad = (struct short_ad *)ptr;
2099		sad->extLength = cpu_to_le32(elen);
2100		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2101		adsize = sizeof(struct short_ad);
2102		break;
2103	case ICBTAG_FLAG_AD_LONG:
2104		lad = (struct long_ad *)ptr;
2105		lad->extLength = cpu_to_le32(elen);
2106		lad->extLocation = cpu_to_lelb(*eloc);
2107		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2108		adsize = sizeof(struct long_ad);
2109		break;
2110	default:
2111		return;
2112	}
2113
2114	if (epos->bh) {
2115		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2116		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2117			struct allocExtDesc *aed =
2118				(struct allocExtDesc *)epos->bh->b_data;
2119			udf_update_tag(epos->bh->b_data,
2120				       le32_to_cpu(aed->lengthAllocDescs) +
2121				       sizeof(struct allocExtDesc));
2122		}
2123		mark_buffer_dirty_inode(epos->bh, inode);
2124	} else {
2125		mark_inode_dirty(inode);
2126	}
2127
2128	if (inc)
2129		epos->offset += adsize;
2130}
2131
2132/*
2133 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2134 * someone does some weird stuff.
2135 */
2136#define UDF_MAX_INDIR_EXTS 16
2137
2138int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2139		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2140{
2141	int8_t etype;
2142	unsigned int indirections = 0;
2143
2144	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2145	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2146		udf_pblk_t block;
2147
2148		if (++indirections > UDF_MAX_INDIR_EXTS) {
2149			udf_err(inode->i_sb,
2150				"too many indirect extents in inode %lu\n",
2151				inode->i_ino);
2152			return -1;
2153		}
2154
2155		epos->block = *eloc;
2156		epos->offset = sizeof(struct allocExtDesc);
2157		brelse(epos->bh);
2158		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2159		epos->bh = udf_tread(inode->i_sb, block);
2160		if (!epos->bh) {
2161			udf_debug("reading block %u failed!\n", block);
2162			return -1;
2163		}
2164	}
2165
2166	return etype;
2167}
2168
2169int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2170			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2171{
2172	int alen;
2173	int8_t etype;
2174	uint8_t *ptr;
2175	struct short_ad *sad;
2176	struct long_ad *lad;
2177	struct udf_inode_info *iinfo = UDF_I(inode);
2178
2179	if (!epos->bh) {
2180		if (!epos->offset)
2181			epos->offset = udf_file_entry_alloc_offset(inode);
2182		ptr = iinfo->i_ext.i_data + epos->offset -
2183			udf_file_entry_alloc_offset(inode) +
2184			iinfo->i_lenEAttr;
2185		alen = udf_file_entry_alloc_offset(inode) +
2186							iinfo->i_lenAlloc;
2187	} else {
2188		if (!epos->offset)
2189			epos->offset = sizeof(struct allocExtDesc);
2190		ptr = epos->bh->b_data + epos->offset;
2191		alen = sizeof(struct allocExtDesc) +
2192			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2193							lengthAllocDescs);
2194	}
2195
2196	switch (iinfo->i_alloc_type) {
2197	case ICBTAG_FLAG_AD_SHORT:
2198		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2199		if (!sad)
2200			return -1;
2201		etype = le32_to_cpu(sad->extLength) >> 30;
2202		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2203		eloc->partitionReferenceNum =
2204				iinfo->i_location.partitionReferenceNum;
2205		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2206		break;
2207	case ICBTAG_FLAG_AD_LONG:
2208		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2209		if (!lad)
2210			return -1;
2211		etype = le32_to_cpu(lad->extLength) >> 30;
2212		*eloc = lelb_to_cpu(lad->extLocation);
2213		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2214		break;
2215	default:
2216		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2217		return -1;
2218	}
2219
2220	return etype;
2221}
2222
2223static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2224			      struct kernel_lb_addr neloc, uint32_t nelen)
2225{
2226	struct kernel_lb_addr oeloc;
2227	uint32_t oelen;
2228	int8_t etype;
2229
2230	if (epos.bh)
2231		get_bh(epos.bh);
2232
2233	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2234		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2235		neloc = oeloc;
2236		nelen = (etype << 30) | oelen;
2237	}
2238	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2239	brelse(epos.bh);
2240
2241	return (nelen >> 30);
2242}
2243
2244int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2245{
2246	struct extent_position oepos;
2247	int adsize;
2248	int8_t etype;
2249	struct allocExtDesc *aed;
2250	struct udf_inode_info *iinfo;
2251	struct kernel_lb_addr eloc;
2252	uint32_t elen;
2253
2254	if (epos.bh) {
2255		get_bh(epos.bh);
2256		get_bh(epos.bh);
2257	}
2258
2259	iinfo = UDF_I(inode);
2260	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2261		adsize = sizeof(struct short_ad);
2262	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2263		adsize = sizeof(struct long_ad);
2264	else
2265		adsize = 0;
2266
2267	oepos = epos;
2268	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2269		return -1;
2270
2271	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2272		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2273		if (oepos.bh != epos.bh) {
2274			oepos.block = epos.block;
2275			brelse(oepos.bh);
2276			get_bh(epos.bh);
2277			oepos.bh = epos.bh;
2278			oepos.offset = epos.offset - adsize;
2279		}
2280	}
2281	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2282	elen = 0;
2283
2284	if (epos.bh != oepos.bh) {
2285		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2286		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2287		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288		if (!oepos.bh) {
2289			iinfo->i_lenAlloc -= (adsize * 2);
2290			mark_inode_dirty(inode);
2291		} else {
2292			aed = (struct allocExtDesc *)oepos.bh->b_data;
2293			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2294			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2295			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2296				udf_update_tag(oepos.bh->b_data,
2297						oepos.offset - (2 * adsize));
2298			else
2299				udf_update_tag(oepos.bh->b_data,
2300						sizeof(struct allocExtDesc));
2301			mark_buffer_dirty_inode(oepos.bh, inode);
2302		}
2303	} else {
2304		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2305		if (!oepos.bh) {
2306			iinfo->i_lenAlloc -= adsize;
2307			mark_inode_dirty(inode);
2308		} else {
2309			aed = (struct allocExtDesc *)oepos.bh->b_data;
2310			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2311			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2312			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2313				udf_update_tag(oepos.bh->b_data,
2314						epos.offset - adsize);
2315			else
2316				udf_update_tag(oepos.bh->b_data,
2317						sizeof(struct allocExtDesc));
2318			mark_buffer_dirty_inode(oepos.bh, inode);
2319		}
2320	}
2321
2322	brelse(epos.bh);
2323	brelse(oepos.bh);
2324
2325	return (elen >> 30);
2326}
2327
2328int8_t inode_bmap(struct inode *inode, sector_t block,
2329		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2330		  uint32_t *elen, sector_t *offset)
2331{
2332	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2333	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2334	int8_t etype;
2335	struct udf_inode_info *iinfo;
2336
2337	iinfo = UDF_I(inode);
2338	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2339		pos->offset = 0;
2340		pos->block = iinfo->i_location;
2341		pos->bh = NULL;
2342	}
2343	*elen = 0;
2344	do {
2345		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2346		if (etype == -1) {
2347			*offset = (bcount - lbcount) >> blocksize_bits;
2348			iinfo->i_lenExtents = lbcount;
2349			return -1;
2350		}
2351		lbcount += *elen;
2352	} while (lbcount <= bcount);
2353	/* update extent cache */
2354	udf_update_extent_cache(inode, lbcount - *elen, pos);
2355	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2356
2357	return etype;
2358}
2359
2360udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2361{
2362	struct kernel_lb_addr eloc;
2363	uint32_t elen;
2364	sector_t offset;
2365	struct extent_position epos = {};
2366	udf_pblk_t ret;
2367
2368	down_read(&UDF_I(inode)->i_data_sem);
2369
2370	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2371						(EXT_RECORDED_ALLOCATED >> 30))
2372		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2373	else
2374		ret = 0;
2375
2376	up_read(&UDF_I(inode)->i_data_sem);
2377	brelse(epos.bh);
2378
2379	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2380		return udf_fixed_to_variable(ret);
2381	else
2382		return ret;
2383}