Loading...
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55static umode_t udf_convert_permissions(struct fileEntry *);
56static int udf_update_inode(struct inode *, int);
57static int udf_sync_inode(struct inode *inode);
58static int udf_alloc_i_data(struct inode *inode, size_t size);
59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 struct kernel_lb_addr, uint32_t);
62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 struct kernel_long_ad *, int *);
64static void udf_prealloc_extents(struct inode *, int, int,
65 struct kernel_long_ad *, int *);
66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 int, struct extent_position *);
69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71static void __udf_clear_extent_cache(struct inode *inode)
72{
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79}
80
81/* Invalidate extent cache */
82static void udf_clear_extent_cache(struct inode *inode)
83{
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89}
90
91/* Return contents of extent cache */
92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94{
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111}
112
113/* Add extent to extent cache */
114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos)
116{
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 iinfo->cached_extent.lstart = estart;
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 break;
130 case ICBTAG_FLAG_AD_LONG:
131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 break;
133 }
134 spin_unlock(&iinfo->i_extent_cache_lock);
135}
136
137void udf_evict_inode(struct inode *inode)
138{
139 struct udf_inode_info *iinfo = UDF_I(inode);
140 int want_delete = 0;
141
142 if (!is_bad_inode(inode)) {
143 if (!inode->i_nlink) {
144 want_delete = 1;
145 udf_setsize(inode, 0);
146 udf_update_inode(inode, IS_SYNC(inode));
147 }
148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 inode->i_size != iinfo->i_lenExtents) {
150 udf_warn(inode->i_sb,
151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 inode->i_ino, inode->i_mode,
153 (unsigned long long)inode->i_size,
154 (unsigned long long)iinfo->i_lenExtents);
155 }
156 }
157 truncate_inode_pages_final(&inode->i_data);
158 invalidate_inode_buffers(inode);
159 clear_inode(inode);
160 kfree(iinfo->i_data);
161 iinfo->i_data = NULL;
162 udf_clear_extent_cache(inode);
163 if (want_delete) {
164 udf_free_inode(inode);
165 }
166}
167
168static void udf_write_failed(struct address_space *mapping, loff_t to)
169{
170 struct inode *inode = mapping->host;
171 struct udf_inode_info *iinfo = UDF_I(inode);
172 loff_t isize = inode->i_size;
173
174 if (to > isize) {
175 truncate_pagecache(inode, isize);
176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 down_write(&iinfo->i_data_sem);
178 udf_clear_extent_cache(inode);
179 udf_truncate_extents(inode);
180 up_write(&iinfo->i_data_sem);
181 }
182 }
183}
184
185static int udf_writepage(struct page *page, struct writeback_control *wbc)
186{
187 return block_write_full_page(page, udf_get_block, wbc);
188}
189
190static int udf_writepages(struct address_space *mapping,
191 struct writeback_control *wbc)
192{
193 return mpage_writepages(mapping, wbc, udf_get_block);
194}
195
196static int udf_readpage(struct file *file, struct page *page)
197{
198 return mpage_readpage(page, udf_get_block);
199}
200
201static void udf_readahead(struct readahead_control *rac)
202{
203 mpage_readahead(rac, udf_get_block);
204}
205
206static int udf_write_begin(struct file *file, struct address_space *mapping,
207 loff_t pos, unsigned len, unsigned flags,
208 struct page **pagep, void **fsdata)
209{
210 int ret;
211
212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 if (unlikely(ret))
214 udf_write_failed(mapping, pos + len);
215 return ret;
216}
217
218static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219{
220 struct file *file = iocb->ki_filp;
221 struct address_space *mapping = file->f_mapping;
222 struct inode *inode = mapping->host;
223 size_t count = iov_iter_count(iter);
224 ssize_t ret;
225
226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 udf_write_failed(mapping, iocb->ki_pos + count);
229 return ret;
230}
231
232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233{
234 return generic_block_bmap(mapping, block, udf_get_block);
235}
236
237const struct address_space_operations udf_aops = {
238 .set_page_dirty = __set_page_dirty_buffers,
239 .readpage = udf_readpage,
240 .readahead = udf_readahead,
241 .writepage = udf_writepage,
242 .writepages = udf_writepages,
243 .write_begin = udf_write_begin,
244 .write_end = generic_write_end,
245 .direct_IO = udf_direct_IO,
246 .bmap = udf_bmap,
247};
248
249/*
250 * Expand file stored in ICB to a normal one-block-file
251 *
252 * This function requires i_data_sem for writing and releases it.
253 * This function requires i_mutex held
254 */
255int udf_expand_file_adinicb(struct inode *inode)
256{
257 struct page *page;
258 char *kaddr;
259 struct udf_inode_info *iinfo = UDF_I(inode);
260 int err;
261 struct writeback_control udf_wbc = {
262 .sync_mode = WB_SYNC_NONE,
263 .nr_to_write = 1,
264 };
265
266 WARN_ON_ONCE(!inode_is_locked(inode));
267 if (!iinfo->i_lenAlloc) {
268 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
269 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
270 else
271 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
272 /* from now on we have normal address_space methods */
273 inode->i_data.a_ops = &udf_aops;
274 up_write(&iinfo->i_data_sem);
275 mark_inode_dirty(inode);
276 return 0;
277 }
278 /*
279 * Release i_data_sem so that we can lock a page - page lock ranks
280 * above i_data_sem. i_mutex still protects us against file changes.
281 */
282 up_write(&iinfo->i_data_sem);
283
284 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
285 if (!page)
286 return -ENOMEM;
287
288 if (!PageUptodate(page)) {
289 kaddr = kmap_atomic(page);
290 memset(kaddr + iinfo->i_lenAlloc, 0x00,
291 PAGE_SIZE - iinfo->i_lenAlloc);
292 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
293 iinfo->i_lenAlloc);
294 flush_dcache_page(page);
295 SetPageUptodate(page);
296 kunmap_atomic(kaddr);
297 }
298 down_write(&iinfo->i_data_sem);
299 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
300 iinfo->i_lenAlloc);
301 iinfo->i_lenAlloc = 0;
302 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
303 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
304 else
305 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
306 /* from now on we have normal address_space methods */
307 inode->i_data.a_ops = &udf_aops;
308 up_write(&iinfo->i_data_sem);
309 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
310 if (err) {
311 /* Restore everything back so that we don't lose data... */
312 lock_page(page);
313 down_write(&iinfo->i_data_sem);
314 kaddr = kmap_atomic(page);
315 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
316 kunmap_atomic(kaddr);
317 unlock_page(page);
318 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319 inode->i_data.a_ops = &udf_adinicb_aops;
320 up_write(&iinfo->i_data_sem);
321 }
322 put_page(page);
323 mark_inode_dirty(inode);
324
325 return err;
326}
327
328struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
329 udf_pblk_t *block, int *err)
330{
331 udf_pblk_t newblock;
332 struct buffer_head *dbh = NULL;
333 struct kernel_lb_addr eloc;
334 uint8_t alloctype;
335 struct extent_position epos;
336
337 struct udf_fileident_bh sfibh, dfibh;
338 loff_t f_pos = udf_ext0_offset(inode);
339 int size = udf_ext0_offset(inode) + inode->i_size;
340 struct fileIdentDesc cfi, *sfi, *dfi;
341 struct udf_inode_info *iinfo = UDF_I(inode);
342
343 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344 alloctype = ICBTAG_FLAG_AD_SHORT;
345 else
346 alloctype = ICBTAG_FLAG_AD_LONG;
347
348 if (!inode->i_size) {
349 iinfo->i_alloc_type = alloctype;
350 mark_inode_dirty(inode);
351 return NULL;
352 }
353
354 /* alloc block, and copy data to it */
355 *block = udf_new_block(inode->i_sb, inode,
356 iinfo->i_location.partitionReferenceNum,
357 iinfo->i_location.logicalBlockNum, err);
358 if (!(*block))
359 return NULL;
360 newblock = udf_get_pblock(inode->i_sb, *block,
361 iinfo->i_location.partitionReferenceNum,
362 0);
363 if (!newblock)
364 return NULL;
365 dbh = udf_tgetblk(inode->i_sb, newblock);
366 if (!dbh)
367 return NULL;
368 lock_buffer(dbh);
369 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370 set_buffer_uptodate(dbh);
371 unlock_buffer(dbh);
372 mark_buffer_dirty_inode(dbh, inode);
373
374 sfibh.soffset = sfibh.eoffset =
375 f_pos & (inode->i_sb->s_blocksize - 1);
376 sfibh.sbh = sfibh.ebh = NULL;
377 dfibh.soffset = dfibh.eoffset = 0;
378 dfibh.sbh = dfibh.ebh = dbh;
379 while (f_pos < size) {
380 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382 NULL, NULL, NULL);
383 if (!sfi) {
384 brelse(dbh);
385 return NULL;
386 }
387 iinfo->i_alloc_type = alloctype;
388 sfi->descTag.tagLocation = cpu_to_le32(*block);
389 dfibh.soffset = dfibh.eoffset;
390 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393 sfi->fileIdent +
394 le16_to_cpu(sfi->lengthOfImpUse))) {
395 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
396 brelse(dbh);
397 return NULL;
398 }
399 }
400 mark_buffer_dirty_inode(dbh, inode);
401
402 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
403 iinfo->i_lenAlloc = 0;
404 eloc.logicalBlockNum = *block;
405 eloc.partitionReferenceNum =
406 iinfo->i_location.partitionReferenceNum;
407 iinfo->i_lenExtents = inode->i_size;
408 epos.bh = NULL;
409 epos.block = iinfo->i_location;
410 epos.offset = udf_file_entry_alloc_offset(inode);
411 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
412 /* UniqueID stuff */
413
414 brelse(epos.bh);
415 mark_inode_dirty(inode);
416 return dbh;
417}
418
419static int udf_get_block(struct inode *inode, sector_t block,
420 struct buffer_head *bh_result, int create)
421{
422 int err, new;
423 sector_t phys = 0;
424 struct udf_inode_info *iinfo;
425
426 if (!create) {
427 phys = udf_block_map(inode, block);
428 if (phys)
429 map_bh(bh_result, inode->i_sb, phys);
430 return 0;
431 }
432
433 err = -EIO;
434 new = 0;
435 iinfo = UDF_I(inode);
436
437 down_write(&iinfo->i_data_sem);
438 if (block == iinfo->i_next_alloc_block + 1) {
439 iinfo->i_next_alloc_block++;
440 iinfo->i_next_alloc_goal++;
441 }
442
443 udf_clear_extent_cache(inode);
444 phys = inode_getblk(inode, block, &err, &new);
445 if (!phys)
446 goto abort;
447
448 if (new)
449 set_buffer_new(bh_result);
450 map_bh(bh_result, inode->i_sb, phys);
451
452abort:
453 up_write(&iinfo->i_data_sem);
454 return err;
455}
456
457static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
458 int create, int *err)
459{
460 struct buffer_head *bh;
461 struct buffer_head dummy;
462
463 dummy.b_state = 0;
464 dummy.b_blocknr = -1000;
465 *err = udf_get_block(inode, block, &dummy, create);
466 if (!*err && buffer_mapped(&dummy)) {
467 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
468 if (buffer_new(&dummy)) {
469 lock_buffer(bh);
470 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
471 set_buffer_uptodate(bh);
472 unlock_buffer(bh);
473 mark_buffer_dirty_inode(bh, inode);
474 }
475 return bh;
476 }
477
478 return NULL;
479}
480
481/* Extend the file with new blocks totaling 'new_block_bytes',
482 * return the number of extents added
483 */
484static int udf_do_extend_file(struct inode *inode,
485 struct extent_position *last_pos,
486 struct kernel_long_ad *last_ext,
487 loff_t new_block_bytes)
488{
489 uint32_t add;
490 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
491 struct super_block *sb = inode->i_sb;
492 struct kernel_lb_addr prealloc_loc = {};
493 uint32_t prealloc_len = 0;
494 struct udf_inode_info *iinfo;
495 int err;
496
497 /* The previous extent is fake and we should not extend by anything
498 * - there's nothing to do... */
499 if (!new_block_bytes && fake)
500 return 0;
501
502 iinfo = UDF_I(inode);
503 /* Round the last extent up to a multiple of block size */
504 if (last_ext->extLength & (sb->s_blocksize - 1)) {
505 last_ext->extLength =
506 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
507 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
508 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
509 iinfo->i_lenExtents =
510 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
511 ~(sb->s_blocksize - 1);
512 }
513
514 /* Last extent are just preallocated blocks? */
515 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
516 EXT_NOT_RECORDED_ALLOCATED) {
517 /* Save the extent so that we can reattach it to the end */
518 prealloc_loc = last_ext->extLocation;
519 prealloc_len = last_ext->extLength;
520 /* Mark the extent as a hole */
521 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
522 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
523 last_ext->extLocation.logicalBlockNum = 0;
524 last_ext->extLocation.partitionReferenceNum = 0;
525 }
526
527 /* Can we merge with the previous extent? */
528 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
529 EXT_NOT_RECORDED_NOT_ALLOCATED) {
530 add = (1 << 30) - sb->s_blocksize -
531 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
532 if (add > new_block_bytes)
533 add = new_block_bytes;
534 new_block_bytes -= add;
535 last_ext->extLength += add;
536 }
537
538 if (fake) {
539 udf_add_aext(inode, last_pos, &last_ext->extLocation,
540 last_ext->extLength, 1);
541 count++;
542 } else {
543 struct kernel_lb_addr tmploc;
544 uint32_t tmplen;
545
546 udf_write_aext(inode, last_pos, &last_ext->extLocation,
547 last_ext->extLength, 1);
548
549 /*
550 * We've rewritten the last extent. If we are going to add
551 * more extents, we may need to enter possible following
552 * empty indirect extent.
553 */
554 if (new_block_bytes || prealloc_len)
555 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
556 }
557
558 /* Managed to do everything necessary? */
559 if (!new_block_bytes)
560 goto out;
561
562 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
563 last_ext->extLocation.logicalBlockNum = 0;
564 last_ext->extLocation.partitionReferenceNum = 0;
565 add = (1 << 30) - sb->s_blocksize;
566 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
567
568 /* Create enough extents to cover the whole hole */
569 while (new_block_bytes > add) {
570 new_block_bytes -= add;
571 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
572 last_ext->extLength, 1);
573 if (err)
574 return err;
575 count++;
576 }
577 if (new_block_bytes) {
578 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
579 new_block_bytes;
580 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
581 last_ext->extLength, 1);
582 if (err)
583 return err;
584 count++;
585 }
586
587out:
588 /* Do we have some preallocated blocks saved? */
589 if (prealloc_len) {
590 err = udf_add_aext(inode, last_pos, &prealloc_loc,
591 prealloc_len, 1);
592 if (err)
593 return err;
594 last_ext->extLocation = prealloc_loc;
595 last_ext->extLength = prealloc_len;
596 count++;
597 }
598
599 /* last_pos should point to the last written extent... */
600 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
601 last_pos->offset -= sizeof(struct short_ad);
602 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
603 last_pos->offset -= sizeof(struct long_ad);
604 else
605 return -EIO;
606
607 return count;
608}
609
610/* Extend the final block of the file to final_block_len bytes */
611static void udf_do_extend_final_block(struct inode *inode,
612 struct extent_position *last_pos,
613 struct kernel_long_ad *last_ext,
614 uint32_t final_block_len)
615{
616 struct super_block *sb = inode->i_sb;
617 uint32_t added_bytes;
618
619 added_bytes = final_block_len -
620 (last_ext->extLength & (sb->s_blocksize - 1));
621 last_ext->extLength += added_bytes;
622 UDF_I(inode)->i_lenExtents += added_bytes;
623
624 udf_write_aext(inode, last_pos, &last_ext->extLocation,
625 last_ext->extLength, 1);
626}
627
628static int udf_extend_file(struct inode *inode, loff_t newsize)
629{
630
631 struct extent_position epos;
632 struct kernel_lb_addr eloc;
633 uint32_t elen;
634 int8_t etype;
635 struct super_block *sb = inode->i_sb;
636 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
637 unsigned long partial_final_block;
638 int adsize;
639 struct udf_inode_info *iinfo = UDF_I(inode);
640 struct kernel_long_ad extent;
641 int err = 0;
642 int within_final_block;
643
644 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
645 adsize = sizeof(struct short_ad);
646 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
647 adsize = sizeof(struct long_ad);
648 else
649 BUG();
650
651 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
652 within_final_block = (etype != -1);
653
654 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
655 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
656 /* File has no extents at all or has empty last
657 * indirect extent! Create a fake extent... */
658 extent.extLocation.logicalBlockNum = 0;
659 extent.extLocation.partitionReferenceNum = 0;
660 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
661 } else {
662 epos.offset -= adsize;
663 etype = udf_next_aext(inode, &epos, &extent.extLocation,
664 &extent.extLength, 0);
665 extent.extLength |= etype << 30;
666 }
667
668 partial_final_block = newsize & (sb->s_blocksize - 1);
669
670 /* File has extent covering the new size (could happen when extending
671 * inside a block)?
672 */
673 if (within_final_block) {
674 /* Extending file within the last file block */
675 udf_do_extend_final_block(inode, &epos, &extent,
676 partial_final_block);
677 } else {
678 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
679 partial_final_block;
680 err = udf_do_extend_file(inode, &epos, &extent, add);
681 }
682
683 if (err < 0)
684 goto out;
685 err = 0;
686 iinfo->i_lenExtents = newsize;
687out:
688 brelse(epos.bh);
689 return err;
690}
691
692static sector_t inode_getblk(struct inode *inode, sector_t block,
693 int *err, int *new)
694{
695 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
696 struct extent_position prev_epos, cur_epos, next_epos;
697 int count = 0, startnum = 0, endnum = 0;
698 uint32_t elen = 0, tmpelen;
699 struct kernel_lb_addr eloc, tmpeloc;
700 int c = 1;
701 loff_t lbcount = 0, b_off = 0;
702 udf_pblk_t newblocknum, newblock;
703 sector_t offset = 0;
704 int8_t etype;
705 struct udf_inode_info *iinfo = UDF_I(inode);
706 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
707 int lastblock = 0;
708 bool isBeyondEOF;
709
710 *err = 0;
711 *new = 0;
712 prev_epos.offset = udf_file_entry_alloc_offset(inode);
713 prev_epos.block = iinfo->i_location;
714 prev_epos.bh = NULL;
715 cur_epos = next_epos = prev_epos;
716 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
717
718 /* find the extent which contains the block we are looking for.
719 alternate between laarr[0] and laarr[1] for locations of the
720 current extent, and the previous extent */
721 do {
722 if (prev_epos.bh != cur_epos.bh) {
723 brelse(prev_epos.bh);
724 get_bh(cur_epos.bh);
725 prev_epos.bh = cur_epos.bh;
726 }
727 if (cur_epos.bh != next_epos.bh) {
728 brelse(cur_epos.bh);
729 get_bh(next_epos.bh);
730 cur_epos.bh = next_epos.bh;
731 }
732
733 lbcount += elen;
734
735 prev_epos.block = cur_epos.block;
736 cur_epos.block = next_epos.block;
737
738 prev_epos.offset = cur_epos.offset;
739 cur_epos.offset = next_epos.offset;
740
741 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
742 if (etype == -1)
743 break;
744
745 c = !c;
746
747 laarr[c].extLength = (etype << 30) | elen;
748 laarr[c].extLocation = eloc;
749
750 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
751 pgoal = eloc.logicalBlockNum +
752 ((elen + inode->i_sb->s_blocksize - 1) >>
753 inode->i_sb->s_blocksize_bits);
754
755 count++;
756 } while (lbcount + elen <= b_off);
757
758 b_off -= lbcount;
759 offset = b_off >> inode->i_sb->s_blocksize_bits;
760 /*
761 * Move prev_epos and cur_epos into indirect extent if we are at
762 * the pointer to it
763 */
764 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
765 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
766
767 /* if the extent is allocated and recorded, return the block
768 if the extent is not a multiple of the blocksize, round up */
769
770 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
771 if (elen & (inode->i_sb->s_blocksize - 1)) {
772 elen = EXT_RECORDED_ALLOCATED |
773 ((elen + inode->i_sb->s_blocksize - 1) &
774 ~(inode->i_sb->s_blocksize - 1));
775 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
776 }
777 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
778 goto out_free;
779 }
780
781 /* Are we beyond EOF? */
782 if (etype == -1) {
783 int ret;
784 loff_t hole_len;
785 isBeyondEOF = true;
786 if (count) {
787 if (c)
788 laarr[0] = laarr[1];
789 startnum = 1;
790 } else {
791 /* Create a fake extent when there's not one */
792 memset(&laarr[0].extLocation, 0x00,
793 sizeof(struct kernel_lb_addr));
794 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
795 /* Will udf_do_extend_file() create real extent from
796 a fake one? */
797 startnum = (offset > 0);
798 }
799 /* Create extents for the hole between EOF and offset */
800 hole_len = (loff_t)offset << inode->i_blkbits;
801 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
802 if (ret < 0) {
803 *err = ret;
804 newblock = 0;
805 goto out_free;
806 }
807 c = 0;
808 offset = 0;
809 count += ret;
810 /* We are not covered by a preallocated extent? */
811 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
812 EXT_NOT_RECORDED_ALLOCATED) {
813 /* Is there any real extent? - otherwise we overwrite
814 * the fake one... */
815 if (count)
816 c = !c;
817 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
818 inode->i_sb->s_blocksize;
819 memset(&laarr[c].extLocation, 0x00,
820 sizeof(struct kernel_lb_addr));
821 count++;
822 }
823 endnum = c + 1;
824 lastblock = 1;
825 } else {
826 isBeyondEOF = false;
827 endnum = startnum = ((count > 2) ? 2 : count);
828
829 /* if the current extent is in position 0,
830 swap it with the previous */
831 if (!c && count != 1) {
832 laarr[2] = laarr[0];
833 laarr[0] = laarr[1];
834 laarr[1] = laarr[2];
835 c = 1;
836 }
837
838 /* if the current block is located in an extent,
839 read the next extent */
840 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
841 if (etype != -1) {
842 laarr[c + 1].extLength = (etype << 30) | elen;
843 laarr[c + 1].extLocation = eloc;
844 count++;
845 startnum++;
846 endnum++;
847 } else
848 lastblock = 1;
849 }
850
851 /* if the current extent is not recorded but allocated, get the
852 * block in the extent corresponding to the requested block */
853 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
854 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
855 else { /* otherwise, allocate a new block */
856 if (iinfo->i_next_alloc_block == block)
857 goal = iinfo->i_next_alloc_goal;
858
859 if (!goal) {
860 if (!(goal = pgoal)) /* XXX: what was intended here? */
861 goal = iinfo->i_location.logicalBlockNum + 1;
862 }
863
864 newblocknum = udf_new_block(inode->i_sb, inode,
865 iinfo->i_location.partitionReferenceNum,
866 goal, err);
867 if (!newblocknum) {
868 *err = -ENOSPC;
869 newblock = 0;
870 goto out_free;
871 }
872 if (isBeyondEOF)
873 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
874 }
875
876 /* if the extent the requsted block is located in contains multiple
877 * blocks, split the extent into at most three extents. blocks prior
878 * to requested block, requested block, and blocks after requested
879 * block */
880 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
881
882 /* We preallocate blocks only for regular files. It also makes sense
883 * for directories but there's a problem when to drop the
884 * preallocation. We might use some delayed work for that but I feel
885 * it's overengineering for a filesystem like UDF. */
886 if (S_ISREG(inode->i_mode))
887 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
888
889 /* merge any continuous blocks in laarr */
890 udf_merge_extents(inode, laarr, &endnum);
891
892 /* write back the new extents, inserting new extents if the new number
893 * of extents is greater than the old number, and deleting extents if
894 * the new number of extents is less than the old number */
895 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
896
897 newblock = udf_get_pblock(inode->i_sb, newblocknum,
898 iinfo->i_location.partitionReferenceNum, 0);
899 if (!newblock) {
900 *err = -EIO;
901 goto out_free;
902 }
903 *new = 1;
904 iinfo->i_next_alloc_block = block;
905 iinfo->i_next_alloc_goal = newblocknum;
906 inode->i_ctime = current_time(inode);
907
908 if (IS_SYNC(inode))
909 udf_sync_inode(inode);
910 else
911 mark_inode_dirty(inode);
912out_free:
913 brelse(prev_epos.bh);
914 brelse(cur_epos.bh);
915 brelse(next_epos.bh);
916 return newblock;
917}
918
919static void udf_split_extents(struct inode *inode, int *c, int offset,
920 udf_pblk_t newblocknum,
921 struct kernel_long_ad *laarr, int *endnum)
922{
923 unsigned long blocksize = inode->i_sb->s_blocksize;
924 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
925
926 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
927 (laarr[*c].extLength >> 30) ==
928 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
929 int curr = *c;
930 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
931 blocksize - 1) >> blocksize_bits;
932 int8_t etype = (laarr[curr].extLength >> 30);
933
934 if (blen == 1)
935 ;
936 else if (!offset || blen == offset + 1) {
937 laarr[curr + 2] = laarr[curr + 1];
938 laarr[curr + 1] = laarr[curr];
939 } else {
940 laarr[curr + 3] = laarr[curr + 1];
941 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
942 }
943
944 if (offset) {
945 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
946 udf_free_blocks(inode->i_sb, inode,
947 &laarr[curr].extLocation,
948 0, offset);
949 laarr[curr].extLength =
950 EXT_NOT_RECORDED_NOT_ALLOCATED |
951 (offset << blocksize_bits);
952 laarr[curr].extLocation.logicalBlockNum = 0;
953 laarr[curr].extLocation.
954 partitionReferenceNum = 0;
955 } else
956 laarr[curr].extLength = (etype << 30) |
957 (offset << blocksize_bits);
958 curr++;
959 (*c)++;
960 (*endnum)++;
961 }
962
963 laarr[curr].extLocation.logicalBlockNum = newblocknum;
964 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
965 laarr[curr].extLocation.partitionReferenceNum =
966 UDF_I(inode)->i_location.partitionReferenceNum;
967 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
968 blocksize;
969 curr++;
970
971 if (blen != offset + 1) {
972 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
973 laarr[curr].extLocation.logicalBlockNum +=
974 offset + 1;
975 laarr[curr].extLength = (etype << 30) |
976 ((blen - (offset + 1)) << blocksize_bits);
977 curr++;
978 (*endnum)++;
979 }
980 }
981}
982
983static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
984 struct kernel_long_ad *laarr,
985 int *endnum)
986{
987 int start, length = 0, currlength = 0, i;
988
989 if (*endnum >= (c + 1)) {
990 if (!lastblock)
991 return;
992 else
993 start = c;
994 } else {
995 if ((laarr[c + 1].extLength >> 30) ==
996 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
997 start = c + 1;
998 length = currlength =
999 (((laarr[c + 1].extLength &
1000 UDF_EXTENT_LENGTH_MASK) +
1001 inode->i_sb->s_blocksize - 1) >>
1002 inode->i_sb->s_blocksize_bits);
1003 } else
1004 start = c;
1005 }
1006
1007 for (i = start + 1; i <= *endnum; i++) {
1008 if (i == *endnum) {
1009 if (lastblock)
1010 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1011 } else if ((laarr[i].extLength >> 30) ==
1012 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1013 length += (((laarr[i].extLength &
1014 UDF_EXTENT_LENGTH_MASK) +
1015 inode->i_sb->s_blocksize - 1) >>
1016 inode->i_sb->s_blocksize_bits);
1017 } else
1018 break;
1019 }
1020
1021 if (length) {
1022 int next = laarr[start].extLocation.logicalBlockNum +
1023 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1024 inode->i_sb->s_blocksize - 1) >>
1025 inode->i_sb->s_blocksize_bits);
1026 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1027 laarr[start].extLocation.partitionReferenceNum,
1028 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1029 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1030 currlength);
1031 if (numalloc) {
1032 if (start == (c + 1))
1033 laarr[start].extLength +=
1034 (numalloc <<
1035 inode->i_sb->s_blocksize_bits);
1036 else {
1037 memmove(&laarr[c + 2], &laarr[c + 1],
1038 sizeof(struct long_ad) * (*endnum - (c + 1)));
1039 (*endnum)++;
1040 laarr[c + 1].extLocation.logicalBlockNum = next;
1041 laarr[c + 1].extLocation.partitionReferenceNum =
1042 laarr[c].extLocation.
1043 partitionReferenceNum;
1044 laarr[c + 1].extLength =
1045 EXT_NOT_RECORDED_ALLOCATED |
1046 (numalloc <<
1047 inode->i_sb->s_blocksize_bits);
1048 start = c + 1;
1049 }
1050
1051 for (i = start + 1; numalloc && i < *endnum; i++) {
1052 int elen = ((laarr[i].extLength &
1053 UDF_EXTENT_LENGTH_MASK) +
1054 inode->i_sb->s_blocksize - 1) >>
1055 inode->i_sb->s_blocksize_bits;
1056
1057 if (elen > numalloc) {
1058 laarr[i].extLength -=
1059 (numalloc <<
1060 inode->i_sb->s_blocksize_bits);
1061 numalloc = 0;
1062 } else {
1063 numalloc -= elen;
1064 if (*endnum > (i + 1))
1065 memmove(&laarr[i],
1066 &laarr[i + 1],
1067 sizeof(struct long_ad) *
1068 (*endnum - (i + 1)));
1069 i--;
1070 (*endnum)--;
1071 }
1072 }
1073 UDF_I(inode)->i_lenExtents +=
1074 numalloc << inode->i_sb->s_blocksize_bits;
1075 }
1076 }
1077}
1078
1079static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1080 int *endnum)
1081{
1082 int i;
1083 unsigned long blocksize = inode->i_sb->s_blocksize;
1084 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1085
1086 for (i = 0; i < (*endnum - 1); i++) {
1087 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1088 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1089
1090 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1091 (((li->extLength >> 30) ==
1092 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1093 ((lip1->extLocation.logicalBlockNum -
1094 li->extLocation.logicalBlockNum) ==
1095 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1096 blocksize - 1) >> blocksize_bits)))) {
1097
1098 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1099 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1100 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1101 lip1->extLength = (lip1->extLength -
1102 (li->extLength &
1103 UDF_EXTENT_LENGTH_MASK) +
1104 UDF_EXTENT_LENGTH_MASK) &
1105 ~(blocksize - 1);
1106 li->extLength = (li->extLength &
1107 UDF_EXTENT_FLAG_MASK) +
1108 (UDF_EXTENT_LENGTH_MASK + 1) -
1109 blocksize;
1110 lip1->extLocation.logicalBlockNum =
1111 li->extLocation.logicalBlockNum +
1112 ((li->extLength &
1113 UDF_EXTENT_LENGTH_MASK) >>
1114 blocksize_bits);
1115 } else {
1116 li->extLength = lip1->extLength +
1117 (((li->extLength &
1118 UDF_EXTENT_LENGTH_MASK) +
1119 blocksize - 1) & ~(blocksize - 1));
1120 if (*endnum > (i + 2))
1121 memmove(&laarr[i + 1], &laarr[i + 2],
1122 sizeof(struct long_ad) *
1123 (*endnum - (i + 2)));
1124 i--;
1125 (*endnum)--;
1126 }
1127 } else if (((li->extLength >> 30) ==
1128 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1129 ((lip1->extLength >> 30) ==
1130 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1131 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1132 ((li->extLength &
1133 UDF_EXTENT_LENGTH_MASK) +
1134 blocksize - 1) >> blocksize_bits);
1135 li->extLocation.logicalBlockNum = 0;
1136 li->extLocation.partitionReferenceNum = 0;
1137
1138 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1139 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1140 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1141 lip1->extLength = (lip1->extLength -
1142 (li->extLength &
1143 UDF_EXTENT_LENGTH_MASK) +
1144 UDF_EXTENT_LENGTH_MASK) &
1145 ~(blocksize - 1);
1146 li->extLength = (li->extLength &
1147 UDF_EXTENT_FLAG_MASK) +
1148 (UDF_EXTENT_LENGTH_MASK + 1) -
1149 blocksize;
1150 } else {
1151 li->extLength = lip1->extLength +
1152 (((li->extLength &
1153 UDF_EXTENT_LENGTH_MASK) +
1154 blocksize - 1) & ~(blocksize - 1));
1155 if (*endnum > (i + 2))
1156 memmove(&laarr[i + 1], &laarr[i + 2],
1157 sizeof(struct long_ad) *
1158 (*endnum - (i + 2)));
1159 i--;
1160 (*endnum)--;
1161 }
1162 } else if ((li->extLength >> 30) ==
1163 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1164 udf_free_blocks(inode->i_sb, inode,
1165 &li->extLocation, 0,
1166 ((li->extLength &
1167 UDF_EXTENT_LENGTH_MASK) +
1168 blocksize - 1) >> blocksize_bits);
1169 li->extLocation.logicalBlockNum = 0;
1170 li->extLocation.partitionReferenceNum = 0;
1171 li->extLength = (li->extLength &
1172 UDF_EXTENT_LENGTH_MASK) |
1173 EXT_NOT_RECORDED_NOT_ALLOCATED;
1174 }
1175 }
1176}
1177
1178static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1179 int startnum, int endnum,
1180 struct extent_position *epos)
1181{
1182 int start = 0, i;
1183 struct kernel_lb_addr tmploc;
1184 uint32_t tmplen;
1185
1186 if (startnum > endnum) {
1187 for (i = 0; i < (startnum - endnum); i++)
1188 udf_delete_aext(inode, *epos);
1189 } else if (startnum < endnum) {
1190 for (i = 0; i < (endnum - startnum); i++) {
1191 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1192 laarr[i].extLength);
1193 udf_next_aext(inode, epos, &laarr[i].extLocation,
1194 &laarr[i].extLength, 1);
1195 start++;
1196 }
1197 }
1198
1199 for (i = start; i < endnum; i++) {
1200 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1201 udf_write_aext(inode, epos, &laarr[i].extLocation,
1202 laarr[i].extLength, 1);
1203 }
1204}
1205
1206struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1207 int create, int *err)
1208{
1209 struct buffer_head *bh = NULL;
1210
1211 bh = udf_getblk(inode, block, create, err);
1212 if (!bh)
1213 return NULL;
1214
1215 if (buffer_uptodate(bh))
1216 return bh;
1217
1218 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219
1220 wait_on_buffer(bh);
1221 if (buffer_uptodate(bh))
1222 return bh;
1223
1224 brelse(bh);
1225 *err = -EIO;
1226 return NULL;
1227}
1228
1229int udf_setsize(struct inode *inode, loff_t newsize)
1230{
1231 int err;
1232 struct udf_inode_info *iinfo;
1233 unsigned int bsize = i_blocksize(inode);
1234
1235 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1236 S_ISLNK(inode->i_mode)))
1237 return -EINVAL;
1238 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1239 return -EPERM;
1240
1241 iinfo = UDF_I(inode);
1242 if (newsize > inode->i_size) {
1243 down_write(&iinfo->i_data_sem);
1244 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1245 if (bsize <
1246 (udf_file_entry_alloc_offset(inode) + newsize)) {
1247 err = udf_expand_file_adinicb(inode);
1248 if (err)
1249 return err;
1250 down_write(&iinfo->i_data_sem);
1251 } else {
1252 iinfo->i_lenAlloc = newsize;
1253 goto set_size;
1254 }
1255 }
1256 err = udf_extend_file(inode, newsize);
1257 if (err) {
1258 up_write(&iinfo->i_data_sem);
1259 return err;
1260 }
1261set_size:
1262 up_write(&iinfo->i_data_sem);
1263 truncate_setsize(inode, newsize);
1264 } else {
1265 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1266 down_write(&iinfo->i_data_sem);
1267 udf_clear_extent_cache(inode);
1268 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1269 0x00, bsize - newsize -
1270 udf_file_entry_alloc_offset(inode));
1271 iinfo->i_lenAlloc = newsize;
1272 truncate_setsize(inode, newsize);
1273 up_write(&iinfo->i_data_sem);
1274 goto update_time;
1275 }
1276 err = block_truncate_page(inode->i_mapping, newsize,
1277 udf_get_block);
1278 if (err)
1279 return err;
1280 truncate_setsize(inode, newsize);
1281 down_write(&iinfo->i_data_sem);
1282 udf_clear_extent_cache(inode);
1283 err = udf_truncate_extents(inode);
1284 up_write(&iinfo->i_data_sem);
1285 if (err)
1286 return err;
1287 }
1288update_time:
1289 inode->i_mtime = inode->i_ctime = current_time(inode);
1290 if (IS_SYNC(inode))
1291 udf_sync_inode(inode);
1292 else
1293 mark_inode_dirty(inode);
1294 return 0;
1295}
1296
1297/*
1298 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1299 * arbitrary - just that we hopefully don't limit any real use of rewritten
1300 * inode on write-once media but avoid looping for too long on corrupted media.
1301 */
1302#define UDF_MAX_ICB_NESTING 1024
1303
1304static int udf_read_inode(struct inode *inode, bool hidden_inode)
1305{
1306 struct buffer_head *bh = NULL;
1307 struct fileEntry *fe;
1308 struct extendedFileEntry *efe;
1309 uint16_t ident;
1310 struct udf_inode_info *iinfo = UDF_I(inode);
1311 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1312 struct kernel_lb_addr *iloc = &iinfo->i_location;
1313 unsigned int link_count;
1314 unsigned int indirections = 0;
1315 int bs = inode->i_sb->s_blocksize;
1316 int ret = -EIO;
1317 uint32_t uid, gid;
1318
1319reread:
1320 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1321 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1322 iloc->partitionReferenceNum, sbi->s_partitions);
1323 return -EIO;
1324 }
1325
1326 if (iloc->logicalBlockNum >=
1327 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1328 udf_debug("block=%u, partition=%u out of range\n",
1329 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1330 return -EIO;
1331 }
1332
1333 /*
1334 * Set defaults, but the inode is still incomplete!
1335 * Note: get_new_inode() sets the following on a new inode:
1336 * i_sb = sb
1337 * i_no = ino
1338 * i_flags = sb->s_flags
1339 * i_state = 0
1340 * clean_inode(): zero fills and sets
1341 * i_count = 1
1342 * i_nlink = 1
1343 * i_op = NULL;
1344 */
1345 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1346 if (!bh) {
1347 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1348 return -EIO;
1349 }
1350
1351 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1352 ident != TAG_IDENT_USE) {
1353 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1354 inode->i_ino, ident);
1355 goto out;
1356 }
1357
1358 fe = (struct fileEntry *)bh->b_data;
1359 efe = (struct extendedFileEntry *)bh->b_data;
1360
1361 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1362 struct buffer_head *ibh;
1363
1364 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1365 if (ident == TAG_IDENT_IE && ibh) {
1366 struct kernel_lb_addr loc;
1367 struct indirectEntry *ie;
1368
1369 ie = (struct indirectEntry *)ibh->b_data;
1370 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1371
1372 if (ie->indirectICB.extLength) {
1373 brelse(ibh);
1374 memcpy(&iinfo->i_location, &loc,
1375 sizeof(struct kernel_lb_addr));
1376 if (++indirections > UDF_MAX_ICB_NESTING) {
1377 udf_err(inode->i_sb,
1378 "too many ICBs in ICB hierarchy"
1379 " (max %d supported)\n",
1380 UDF_MAX_ICB_NESTING);
1381 goto out;
1382 }
1383 brelse(bh);
1384 goto reread;
1385 }
1386 }
1387 brelse(ibh);
1388 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1389 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1390 le16_to_cpu(fe->icbTag.strategyType));
1391 goto out;
1392 }
1393 if (fe->icbTag.strategyType == cpu_to_le16(4))
1394 iinfo->i_strat4096 = 0;
1395 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1396 iinfo->i_strat4096 = 1;
1397
1398 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1399 ICBTAG_FLAG_AD_MASK;
1400 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1401 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1402 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1403 ret = -EIO;
1404 goto out;
1405 }
1406 iinfo->i_unique = 0;
1407 iinfo->i_lenEAttr = 0;
1408 iinfo->i_lenExtents = 0;
1409 iinfo->i_lenAlloc = 0;
1410 iinfo->i_next_alloc_block = 0;
1411 iinfo->i_next_alloc_goal = 0;
1412 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1413 iinfo->i_efe = 1;
1414 iinfo->i_use = 0;
1415 ret = udf_alloc_i_data(inode, bs -
1416 sizeof(struct extendedFileEntry));
1417 if (ret)
1418 goto out;
1419 memcpy(iinfo->i_data,
1420 bh->b_data + sizeof(struct extendedFileEntry),
1421 bs - sizeof(struct extendedFileEntry));
1422 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1423 iinfo->i_efe = 0;
1424 iinfo->i_use = 0;
1425 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1426 if (ret)
1427 goto out;
1428 memcpy(iinfo->i_data,
1429 bh->b_data + sizeof(struct fileEntry),
1430 bs - sizeof(struct fileEntry));
1431 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1432 iinfo->i_efe = 0;
1433 iinfo->i_use = 1;
1434 iinfo->i_lenAlloc = le32_to_cpu(
1435 ((struct unallocSpaceEntry *)bh->b_data)->
1436 lengthAllocDescs);
1437 ret = udf_alloc_i_data(inode, bs -
1438 sizeof(struct unallocSpaceEntry));
1439 if (ret)
1440 goto out;
1441 memcpy(iinfo->i_data,
1442 bh->b_data + sizeof(struct unallocSpaceEntry),
1443 bs - sizeof(struct unallocSpaceEntry));
1444 return 0;
1445 }
1446
1447 ret = -EIO;
1448 read_lock(&sbi->s_cred_lock);
1449 uid = le32_to_cpu(fe->uid);
1450 if (uid == UDF_INVALID_ID ||
1451 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1452 inode->i_uid = sbi->s_uid;
1453 else
1454 i_uid_write(inode, uid);
1455
1456 gid = le32_to_cpu(fe->gid);
1457 if (gid == UDF_INVALID_ID ||
1458 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1459 inode->i_gid = sbi->s_gid;
1460 else
1461 i_gid_write(inode, gid);
1462
1463 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1464 sbi->s_fmode != UDF_INVALID_MODE)
1465 inode->i_mode = sbi->s_fmode;
1466 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1467 sbi->s_dmode != UDF_INVALID_MODE)
1468 inode->i_mode = sbi->s_dmode;
1469 else
1470 inode->i_mode = udf_convert_permissions(fe);
1471 inode->i_mode &= ~sbi->s_umask;
1472 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1473
1474 read_unlock(&sbi->s_cred_lock);
1475
1476 link_count = le16_to_cpu(fe->fileLinkCount);
1477 if (!link_count) {
1478 if (!hidden_inode) {
1479 ret = -ESTALE;
1480 goto out;
1481 }
1482 link_count = 1;
1483 }
1484 set_nlink(inode, link_count);
1485
1486 inode->i_size = le64_to_cpu(fe->informationLength);
1487 iinfo->i_lenExtents = inode->i_size;
1488
1489 if (iinfo->i_efe == 0) {
1490 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1491 (inode->i_sb->s_blocksize_bits - 9);
1492
1493 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1494 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1495 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1496
1497 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1498 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1499 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1500 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1501 iinfo->i_streamdir = 0;
1502 iinfo->i_lenStreams = 0;
1503 } else {
1504 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1505 (inode->i_sb->s_blocksize_bits - 9);
1506
1507 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1508 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1509 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1510 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1511
1512 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1513 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1514 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1515 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1516
1517 /* Named streams */
1518 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1519 iinfo->i_locStreamdir =
1520 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1521 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1522 if (iinfo->i_lenStreams >= inode->i_size)
1523 iinfo->i_lenStreams -= inode->i_size;
1524 else
1525 iinfo->i_lenStreams = 0;
1526 }
1527 inode->i_generation = iinfo->i_unique;
1528
1529 /*
1530 * Sanity check length of allocation descriptors and extended attrs to
1531 * avoid integer overflows
1532 */
1533 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1534 goto out;
1535 /* Now do exact checks */
1536 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1537 goto out;
1538 /* Sanity checks for files in ICB so that we don't get confused later */
1539 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1540 /*
1541 * For file in ICB data is stored in allocation descriptor
1542 * so sizes should match
1543 */
1544 if (iinfo->i_lenAlloc != inode->i_size)
1545 goto out;
1546 /* File in ICB has to fit in there... */
1547 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1548 goto out;
1549 }
1550
1551 switch (fe->icbTag.fileType) {
1552 case ICBTAG_FILE_TYPE_DIRECTORY:
1553 inode->i_op = &udf_dir_inode_operations;
1554 inode->i_fop = &udf_dir_operations;
1555 inode->i_mode |= S_IFDIR;
1556 inc_nlink(inode);
1557 break;
1558 case ICBTAG_FILE_TYPE_REALTIME:
1559 case ICBTAG_FILE_TYPE_REGULAR:
1560 case ICBTAG_FILE_TYPE_UNDEF:
1561 case ICBTAG_FILE_TYPE_VAT20:
1562 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1563 inode->i_data.a_ops = &udf_adinicb_aops;
1564 else
1565 inode->i_data.a_ops = &udf_aops;
1566 inode->i_op = &udf_file_inode_operations;
1567 inode->i_fop = &udf_file_operations;
1568 inode->i_mode |= S_IFREG;
1569 break;
1570 case ICBTAG_FILE_TYPE_BLOCK:
1571 inode->i_mode |= S_IFBLK;
1572 break;
1573 case ICBTAG_FILE_TYPE_CHAR:
1574 inode->i_mode |= S_IFCHR;
1575 break;
1576 case ICBTAG_FILE_TYPE_FIFO:
1577 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1578 break;
1579 case ICBTAG_FILE_TYPE_SOCKET:
1580 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1581 break;
1582 case ICBTAG_FILE_TYPE_SYMLINK:
1583 inode->i_data.a_ops = &udf_symlink_aops;
1584 inode->i_op = &udf_symlink_inode_operations;
1585 inode_nohighmem(inode);
1586 inode->i_mode = S_IFLNK | 0777;
1587 break;
1588 case ICBTAG_FILE_TYPE_MAIN:
1589 udf_debug("METADATA FILE-----\n");
1590 break;
1591 case ICBTAG_FILE_TYPE_MIRROR:
1592 udf_debug("METADATA MIRROR FILE-----\n");
1593 break;
1594 case ICBTAG_FILE_TYPE_BITMAP:
1595 udf_debug("METADATA BITMAP FILE-----\n");
1596 break;
1597 default:
1598 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1599 inode->i_ino, fe->icbTag.fileType);
1600 goto out;
1601 }
1602 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1603 struct deviceSpec *dsea =
1604 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1605 if (dsea) {
1606 init_special_inode(inode, inode->i_mode,
1607 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1608 le32_to_cpu(dsea->minorDeviceIdent)));
1609 /* Developer ID ??? */
1610 } else
1611 goto out;
1612 }
1613 ret = 0;
1614out:
1615 brelse(bh);
1616 return ret;
1617}
1618
1619static int udf_alloc_i_data(struct inode *inode, size_t size)
1620{
1621 struct udf_inode_info *iinfo = UDF_I(inode);
1622 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1623 if (!iinfo->i_data)
1624 return -ENOMEM;
1625 return 0;
1626}
1627
1628static umode_t udf_convert_permissions(struct fileEntry *fe)
1629{
1630 umode_t mode;
1631 uint32_t permissions;
1632 uint32_t flags;
1633
1634 permissions = le32_to_cpu(fe->permissions);
1635 flags = le16_to_cpu(fe->icbTag.flags);
1636
1637 mode = ((permissions) & 0007) |
1638 ((permissions >> 2) & 0070) |
1639 ((permissions >> 4) & 0700) |
1640 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1641 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1642 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1643
1644 return mode;
1645}
1646
1647void udf_update_extra_perms(struct inode *inode, umode_t mode)
1648{
1649 struct udf_inode_info *iinfo = UDF_I(inode);
1650
1651 /*
1652 * UDF 2.01 sec. 3.3.3.3 Note 2:
1653 * In Unix, delete permission tracks write
1654 */
1655 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1656 if (mode & 0200)
1657 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1658 if (mode & 0020)
1659 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1660 if (mode & 0002)
1661 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1662}
1663
1664int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1665{
1666 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1667}
1668
1669static int udf_sync_inode(struct inode *inode)
1670{
1671 return udf_update_inode(inode, 1);
1672}
1673
1674static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1675{
1676 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1677 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1678 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1679 iinfo->i_crtime = time;
1680}
1681
1682static int udf_update_inode(struct inode *inode, int do_sync)
1683{
1684 struct buffer_head *bh = NULL;
1685 struct fileEntry *fe;
1686 struct extendedFileEntry *efe;
1687 uint64_t lb_recorded;
1688 uint32_t udfperms;
1689 uint16_t icbflags;
1690 uint16_t crclen;
1691 int err = 0;
1692 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1693 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1694 struct udf_inode_info *iinfo = UDF_I(inode);
1695
1696 bh = udf_tgetblk(inode->i_sb,
1697 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1698 if (!bh) {
1699 udf_debug("getblk failure\n");
1700 return -EIO;
1701 }
1702
1703 lock_buffer(bh);
1704 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1705 fe = (struct fileEntry *)bh->b_data;
1706 efe = (struct extendedFileEntry *)bh->b_data;
1707
1708 if (iinfo->i_use) {
1709 struct unallocSpaceEntry *use =
1710 (struct unallocSpaceEntry *)bh->b_data;
1711
1712 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1713 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1714 iinfo->i_data, inode->i_sb->s_blocksize -
1715 sizeof(struct unallocSpaceEntry));
1716 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1717 crclen = sizeof(struct unallocSpaceEntry);
1718
1719 goto finish;
1720 }
1721
1722 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1723 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1724 else
1725 fe->uid = cpu_to_le32(i_uid_read(inode));
1726
1727 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1728 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1729 else
1730 fe->gid = cpu_to_le32(i_gid_read(inode));
1731
1732 udfperms = ((inode->i_mode & 0007)) |
1733 ((inode->i_mode & 0070) << 2) |
1734 ((inode->i_mode & 0700) << 4);
1735
1736 udfperms |= iinfo->i_extraPerms;
1737 fe->permissions = cpu_to_le32(udfperms);
1738
1739 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1740 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1741 else
1742 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1743
1744 fe->informationLength = cpu_to_le64(inode->i_size);
1745
1746 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1747 struct regid *eid;
1748 struct deviceSpec *dsea =
1749 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1750 if (!dsea) {
1751 dsea = (struct deviceSpec *)
1752 udf_add_extendedattr(inode,
1753 sizeof(struct deviceSpec) +
1754 sizeof(struct regid), 12, 0x3);
1755 dsea->attrType = cpu_to_le32(12);
1756 dsea->attrSubtype = 1;
1757 dsea->attrLength = cpu_to_le32(
1758 sizeof(struct deviceSpec) +
1759 sizeof(struct regid));
1760 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1761 }
1762 eid = (struct regid *)dsea->impUse;
1763 memset(eid, 0, sizeof(*eid));
1764 strcpy(eid->ident, UDF_ID_DEVELOPER);
1765 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1766 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1767 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1768 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1769 }
1770
1771 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1772 lb_recorded = 0; /* No extents => no blocks! */
1773 else
1774 lb_recorded =
1775 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1776 (blocksize_bits - 9);
1777
1778 if (iinfo->i_efe == 0) {
1779 memcpy(bh->b_data + sizeof(struct fileEntry),
1780 iinfo->i_data,
1781 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1782 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1783
1784 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1785 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1786 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1787 memset(&(fe->impIdent), 0, sizeof(struct regid));
1788 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1789 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1790 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1791 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1792 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1793 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1794 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1795 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1796 crclen = sizeof(struct fileEntry);
1797 } else {
1798 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1799 iinfo->i_data,
1800 inode->i_sb->s_blocksize -
1801 sizeof(struct extendedFileEntry));
1802 efe->objectSize =
1803 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1804 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1805
1806 if (iinfo->i_streamdir) {
1807 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1808
1809 icb_lad->extLocation =
1810 cpu_to_lelb(iinfo->i_locStreamdir);
1811 icb_lad->extLength =
1812 cpu_to_le32(inode->i_sb->s_blocksize);
1813 }
1814
1815 udf_adjust_time(iinfo, inode->i_atime);
1816 udf_adjust_time(iinfo, inode->i_mtime);
1817 udf_adjust_time(iinfo, inode->i_ctime);
1818
1819 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1820 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1821 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1822 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1823
1824 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1825 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1826 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1827 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1828 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1829 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1830 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1831 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1832 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1833 crclen = sizeof(struct extendedFileEntry);
1834 }
1835
1836finish:
1837 if (iinfo->i_strat4096) {
1838 fe->icbTag.strategyType = cpu_to_le16(4096);
1839 fe->icbTag.strategyParameter = cpu_to_le16(1);
1840 fe->icbTag.numEntries = cpu_to_le16(2);
1841 } else {
1842 fe->icbTag.strategyType = cpu_to_le16(4);
1843 fe->icbTag.numEntries = cpu_to_le16(1);
1844 }
1845
1846 if (iinfo->i_use)
1847 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1848 else if (S_ISDIR(inode->i_mode))
1849 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1850 else if (S_ISREG(inode->i_mode))
1851 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1852 else if (S_ISLNK(inode->i_mode))
1853 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1854 else if (S_ISBLK(inode->i_mode))
1855 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1856 else if (S_ISCHR(inode->i_mode))
1857 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1858 else if (S_ISFIFO(inode->i_mode))
1859 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1860 else if (S_ISSOCK(inode->i_mode))
1861 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1862
1863 icbflags = iinfo->i_alloc_type |
1864 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1865 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1866 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1867 (le16_to_cpu(fe->icbTag.flags) &
1868 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1869 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1870
1871 fe->icbTag.flags = cpu_to_le16(icbflags);
1872 if (sbi->s_udfrev >= 0x0200)
1873 fe->descTag.descVersion = cpu_to_le16(3);
1874 else
1875 fe->descTag.descVersion = cpu_to_le16(2);
1876 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1877 fe->descTag.tagLocation = cpu_to_le32(
1878 iinfo->i_location.logicalBlockNum);
1879 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1880 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1881 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1882 crclen));
1883 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1884
1885 set_buffer_uptodate(bh);
1886 unlock_buffer(bh);
1887
1888 /* write the data blocks */
1889 mark_buffer_dirty(bh);
1890 if (do_sync) {
1891 sync_dirty_buffer(bh);
1892 if (buffer_write_io_error(bh)) {
1893 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1894 inode->i_ino);
1895 err = -EIO;
1896 }
1897 }
1898 brelse(bh);
1899
1900 return err;
1901}
1902
1903struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1904 bool hidden_inode)
1905{
1906 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1907 struct inode *inode = iget_locked(sb, block);
1908 int err;
1909
1910 if (!inode)
1911 return ERR_PTR(-ENOMEM);
1912
1913 if (!(inode->i_state & I_NEW))
1914 return inode;
1915
1916 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1917 err = udf_read_inode(inode, hidden_inode);
1918 if (err < 0) {
1919 iget_failed(inode);
1920 return ERR_PTR(err);
1921 }
1922 unlock_new_inode(inode);
1923
1924 return inode;
1925}
1926
1927int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1928 struct extent_position *epos)
1929{
1930 struct super_block *sb = inode->i_sb;
1931 struct buffer_head *bh;
1932 struct allocExtDesc *aed;
1933 struct extent_position nepos;
1934 struct kernel_lb_addr neloc;
1935 int ver, adsize;
1936
1937 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938 adsize = sizeof(struct short_ad);
1939 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940 adsize = sizeof(struct long_ad);
1941 else
1942 return -EIO;
1943
1944 neloc.logicalBlockNum = block;
1945 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1946
1947 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1948 if (!bh)
1949 return -EIO;
1950 lock_buffer(bh);
1951 memset(bh->b_data, 0x00, sb->s_blocksize);
1952 set_buffer_uptodate(bh);
1953 unlock_buffer(bh);
1954 mark_buffer_dirty_inode(bh, inode);
1955
1956 aed = (struct allocExtDesc *)(bh->b_data);
1957 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1958 aed->previousAllocExtLocation =
1959 cpu_to_le32(epos->block.logicalBlockNum);
1960 }
1961 aed->lengthAllocDescs = cpu_to_le32(0);
1962 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1963 ver = 3;
1964 else
1965 ver = 2;
1966 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1967 sizeof(struct tag));
1968
1969 nepos.block = neloc;
1970 nepos.offset = sizeof(struct allocExtDesc);
1971 nepos.bh = bh;
1972
1973 /*
1974 * Do we have to copy current last extent to make space for indirect
1975 * one?
1976 */
1977 if (epos->offset + adsize > sb->s_blocksize) {
1978 struct kernel_lb_addr cp_loc;
1979 uint32_t cp_len;
1980 int cp_type;
1981
1982 epos->offset -= adsize;
1983 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1984 cp_len |= ((uint32_t)cp_type) << 30;
1985
1986 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1987 udf_write_aext(inode, epos, &nepos.block,
1988 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1989 } else {
1990 __udf_add_aext(inode, epos, &nepos.block,
1991 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1992 }
1993
1994 brelse(epos->bh);
1995 *epos = nepos;
1996
1997 return 0;
1998}
1999
2000/*
2001 * Append extent at the given position - should be the first free one in inode
2002 * / indirect extent. This function assumes there is enough space in the inode
2003 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2004 */
2005int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2006 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007{
2008 struct udf_inode_info *iinfo = UDF_I(inode);
2009 struct allocExtDesc *aed;
2010 int adsize;
2011
2012 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013 adsize = sizeof(struct short_ad);
2014 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015 adsize = sizeof(struct long_ad);
2016 else
2017 return -EIO;
2018
2019 if (!epos->bh) {
2020 WARN_ON(iinfo->i_lenAlloc !=
2021 epos->offset - udf_file_entry_alloc_offset(inode));
2022 } else {
2023 aed = (struct allocExtDesc *)epos->bh->b_data;
2024 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2025 epos->offset - sizeof(struct allocExtDesc));
2026 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2027 }
2028
2029 udf_write_aext(inode, epos, eloc, elen, inc);
2030
2031 if (!epos->bh) {
2032 iinfo->i_lenAlloc += adsize;
2033 mark_inode_dirty(inode);
2034 } else {
2035 aed = (struct allocExtDesc *)epos->bh->b_data;
2036 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2037 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2038 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2039 udf_update_tag(epos->bh->b_data,
2040 epos->offset + (inc ? 0 : adsize));
2041 else
2042 udf_update_tag(epos->bh->b_data,
2043 sizeof(struct allocExtDesc));
2044 mark_buffer_dirty_inode(epos->bh, inode);
2045 }
2046
2047 return 0;
2048}
2049
2050/*
2051 * Append extent at given position - should be the first free one in inode
2052 * / indirect extent. Takes care of allocating and linking indirect blocks.
2053 */
2054int udf_add_aext(struct inode *inode, struct extent_position *epos,
2055 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2056{
2057 int adsize;
2058 struct super_block *sb = inode->i_sb;
2059
2060 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2061 adsize = sizeof(struct short_ad);
2062 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2063 adsize = sizeof(struct long_ad);
2064 else
2065 return -EIO;
2066
2067 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2068 int err;
2069 udf_pblk_t new_block;
2070
2071 new_block = udf_new_block(sb, NULL,
2072 epos->block.partitionReferenceNum,
2073 epos->block.logicalBlockNum, &err);
2074 if (!new_block)
2075 return -ENOSPC;
2076
2077 err = udf_setup_indirect_aext(inode, new_block, epos);
2078 if (err)
2079 return err;
2080 }
2081
2082 return __udf_add_aext(inode, epos, eloc, elen, inc);
2083}
2084
2085void udf_write_aext(struct inode *inode, struct extent_position *epos,
2086 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2087{
2088 int adsize;
2089 uint8_t *ptr;
2090 struct short_ad *sad;
2091 struct long_ad *lad;
2092 struct udf_inode_info *iinfo = UDF_I(inode);
2093
2094 if (!epos->bh)
2095 ptr = iinfo->i_data + epos->offset -
2096 udf_file_entry_alloc_offset(inode) +
2097 iinfo->i_lenEAttr;
2098 else
2099 ptr = epos->bh->b_data + epos->offset;
2100
2101 switch (iinfo->i_alloc_type) {
2102 case ICBTAG_FLAG_AD_SHORT:
2103 sad = (struct short_ad *)ptr;
2104 sad->extLength = cpu_to_le32(elen);
2105 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2106 adsize = sizeof(struct short_ad);
2107 break;
2108 case ICBTAG_FLAG_AD_LONG:
2109 lad = (struct long_ad *)ptr;
2110 lad->extLength = cpu_to_le32(elen);
2111 lad->extLocation = cpu_to_lelb(*eloc);
2112 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2113 adsize = sizeof(struct long_ad);
2114 break;
2115 default:
2116 return;
2117 }
2118
2119 if (epos->bh) {
2120 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2121 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2122 struct allocExtDesc *aed =
2123 (struct allocExtDesc *)epos->bh->b_data;
2124 udf_update_tag(epos->bh->b_data,
2125 le32_to_cpu(aed->lengthAllocDescs) +
2126 sizeof(struct allocExtDesc));
2127 }
2128 mark_buffer_dirty_inode(epos->bh, inode);
2129 } else {
2130 mark_inode_dirty(inode);
2131 }
2132
2133 if (inc)
2134 epos->offset += adsize;
2135}
2136
2137/*
2138 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2139 * someone does some weird stuff.
2140 */
2141#define UDF_MAX_INDIR_EXTS 16
2142
2143int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2144 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2145{
2146 int8_t etype;
2147 unsigned int indirections = 0;
2148
2149 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2150 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2151 udf_pblk_t block;
2152
2153 if (++indirections > UDF_MAX_INDIR_EXTS) {
2154 udf_err(inode->i_sb,
2155 "too many indirect extents in inode %lu\n",
2156 inode->i_ino);
2157 return -1;
2158 }
2159
2160 epos->block = *eloc;
2161 epos->offset = sizeof(struct allocExtDesc);
2162 brelse(epos->bh);
2163 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2164 epos->bh = udf_tread(inode->i_sb, block);
2165 if (!epos->bh) {
2166 udf_debug("reading block %u failed!\n", block);
2167 return -1;
2168 }
2169 }
2170
2171 return etype;
2172}
2173
2174int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2175 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2176{
2177 int alen;
2178 int8_t etype;
2179 uint8_t *ptr;
2180 struct short_ad *sad;
2181 struct long_ad *lad;
2182 struct udf_inode_info *iinfo = UDF_I(inode);
2183
2184 if (!epos->bh) {
2185 if (!epos->offset)
2186 epos->offset = udf_file_entry_alloc_offset(inode);
2187 ptr = iinfo->i_data + epos->offset -
2188 udf_file_entry_alloc_offset(inode) +
2189 iinfo->i_lenEAttr;
2190 alen = udf_file_entry_alloc_offset(inode) +
2191 iinfo->i_lenAlloc;
2192 } else {
2193 if (!epos->offset)
2194 epos->offset = sizeof(struct allocExtDesc);
2195 ptr = epos->bh->b_data + epos->offset;
2196 alen = sizeof(struct allocExtDesc) +
2197 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2198 lengthAllocDescs);
2199 }
2200
2201 switch (iinfo->i_alloc_type) {
2202 case ICBTAG_FLAG_AD_SHORT:
2203 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2204 if (!sad)
2205 return -1;
2206 etype = le32_to_cpu(sad->extLength) >> 30;
2207 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2208 eloc->partitionReferenceNum =
2209 iinfo->i_location.partitionReferenceNum;
2210 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2211 break;
2212 case ICBTAG_FLAG_AD_LONG:
2213 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2214 if (!lad)
2215 return -1;
2216 etype = le32_to_cpu(lad->extLength) >> 30;
2217 *eloc = lelb_to_cpu(lad->extLocation);
2218 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2219 break;
2220 default:
2221 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2222 return -1;
2223 }
2224
2225 return etype;
2226}
2227
2228static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2229 struct kernel_lb_addr neloc, uint32_t nelen)
2230{
2231 struct kernel_lb_addr oeloc;
2232 uint32_t oelen;
2233 int8_t etype;
2234
2235 if (epos.bh)
2236 get_bh(epos.bh);
2237
2238 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2239 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2240 neloc = oeloc;
2241 nelen = (etype << 30) | oelen;
2242 }
2243 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2244 brelse(epos.bh);
2245
2246 return (nelen >> 30);
2247}
2248
2249int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2250{
2251 struct extent_position oepos;
2252 int adsize;
2253 int8_t etype;
2254 struct allocExtDesc *aed;
2255 struct udf_inode_info *iinfo;
2256 struct kernel_lb_addr eloc;
2257 uint32_t elen;
2258
2259 if (epos.bh) {
2260 get_bh(epos.bh);
2261 get_bh(epos.bh);
2262 }
2263
2264 iinfo = UDF_I(inode);
2265 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2266 adsize = sizeof(struct short_ad);
2267 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2268 adsize = sizeof(struct long_ad);
2269 else
2270 adsize = 0;
2271
2272 oepos = epos;
2273 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2274 return -1;
2275
2276 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2277 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2278 if (oepos.bh != epos.bh) {
2279 oepos.block = epos.block;
2280 brelse(oepos.bh);
2281 get_bh(epos.bh);
2282 oepos.bh = epos.bh;
2283 oepos.offset = epos.offset - adsize;
2284 }
2285 }
2286 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2287 elen = 0;
2288
2289 if (epos.bh != oepos.bh) {
2290 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2291 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2292 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2293 if (!oepos.bh) {
2294 iinfo->i_lenAlloc -= (adsize * 2);
2295 mark_inode_dirty(inode);
2296 } else {
2297 aed = (struct allocExtDesc *)oepos.bh->b_data;
2298 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2299 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2300 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2301 udf_update_tag(oepos.bh->b_data,
2302 oepos.offset - (2 * adsize));
2303 else
2304 udf_update_tag(oepos.bh->b_data,
2305 sizeof(struct allocExtDesc));
2306 mark_buffer_dirty_inode(oepos.bh, inode);
2307 }
2308 } else {
2309 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2310 if (!oepos.bh) {
2311 iinfo->i_lenAlloc -= adsize;
2312 mark_inode_dirty(inode);
2313 } else {
2314 aed = (struct allocExtDesc *)oepos.bh->b_data;
2315 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2316 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2317 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2318 udf_update_tag(oepos.bh->b_data,
2319 epos.offset - adsize);
2320 else
2321 udf_update_tag(oepos.bh->b_data,
2322 sizeof(struct allocExtDesc));
2323 mark_buffer_dirty_inode(oepos.bh, inode);
2324 }
2325 }
2326
2327 brelse(epos.bh);
2328 brelse(oepos.bh);
2329
2330 return (elen >> 30);
2331}
2332
2333int8_t inode_bmap(struct inode *inode, sector_t block,
2334 struct extent_position *pos, struct kernel_lb_addr *eloc,
2335 uint32_t *elen, sector_t *offset)
2336{
2337 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2338 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2339 int8_t etype;
2340 struct udf_inode_info *iinfo;
2341
2342 iinfo = UDF_I(inode);
2343 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2344 pos->offset = 0;
2345 pos->block = iinfo->i_location;
2346 pos->bh = NULL;
2347 }
2348 *elen = 0;
2349 do {
2350 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2351 if (etype == -1) {
2352 *offset = (bcount - lbcount) >> blocksize_bits;
2353 iinfo->i_lenExtents = lbcount;
2354 return -1;
2355 }
2356 lbcount += *elen;
2357 } while (lbcount <= bcount);
2358 /* update extent cache */
2359 udf_update_extent_cache(inode, lbcount - *elen, pos);
2360 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2361
2362 return etype;
2363}
2364
2365udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2366{
2367 struct kernel_lb_addr eloc;
2368 uint32_t elen;
2369 sector_t offset;
2370 struct extent_position epos = {};
2371 udf_pblk_t ret;
2372
2373 down_read(&UDF_I(inode)->i_data_sem);
2374
2375 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2376 (EXT_RECORDED_ALLOCATED >> 30))
2377 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2378 else
2379 ret = 0;
2380
2381 up_read(&UDF_I(inode)->i_data_sem);
2382 brelse(epos.bh);
2383
2384 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2385 return udf_fixed_to_variable(ret);
2386 else
2387 return ret;
2388}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * inode.c
4 *
5 * PURPOSE
6 * Inode handling routines for the OSTA-UDF(tm) filesystem.
7 *
8 * COPYRIGHT
9 * (C) 1998 Dave Boynton
10 * (C) 1998-2004 Ben Fennema
11 * (C) 1999-2000 Stelias Computing Inc
12 *
13 * HISTORY
14 *
15 * 10/04/98 dgb Added rudimentary directory functions
16 * 10/07/98 Fully working udf_block_map! It works!
17 * 11/25/98 bmap altered to better support extents
18 * 12/06/98 blf partition support in udf_iget, udf_block_map
19 * and udf_read_inode
20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
21 * block boundaries (which is not actually allowed)
22 * 12/20/98 added support for strategy 4096
23 * 03/07/99 rewrote udf_block_map (again)
24 * New funcs, inode_bmap, udf_next_aext
25 * 04/19/99 Support for writing device EA's for major/minor #
26 */
27
28#include "udfdecl.h"
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/pagemap.h>
32#include <linux/writeback.h>
33#include <linux/slab.h>
34#include <linux/crc-itu-t.h>
35#include <linux/mpage.h>
36#include <linux/uio.h>
37#include <linux/bio.h>
38
39#include "udf_i.h"
40#include "udf_sb.h"
41
42#define EXTENT_MERGE_SIZE 5
43
44#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47
48#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49 FE_PERM_O_DELETE)
50
51struct udf_map_rq;
52
53static umode_t udf_convert_permissions(struct fileEntry *);
54static int udf_update_inode(struct inode *, int);
55static int udf_sync_inode(struct inode *inode);
56static int udf_alloc_i_data(struct inode *inode, size_t size);
57static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58static int udf_insert_aext(struct inode *, struct extent_position,
59 struct kernel_lb_addr, uint32_t);
60static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61 struct kernel_long_ad *, int *);
62static void udf_prealloc_extents(struct inode *, int, int,
63 struct kernel_long_ad *, int *);
64static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66 int, struct extent_position *);
67static int udf_get_block_wb(struct inode *inode, sector_t block,
68 struct buffer_head *bh_result, int create);
69
70static void __udf_clear_extent_cache(struct inode *inode)
71{
72 struct udf_inode_info *iinfo = UDF_I(inode);
73
74 if (iinfo->cached_extent.lstart != -1) {
75 brelse(iinfo->cached_extent.epos.bh);
76 iinfo->cached_extent.lstart = -1;
77 }
78}
79
80/* Invalidate extent cache */
81static void udf_clear_extent_cache(struct inode *inode)
82{
83 struct udf_inode_info *iinfo = UDF_I(inode);
84
85 spin_lock(&iinfo->i_extent_cache_lock);
86 __udf_clear_extent_cache(inode);
87 spin_unlock(&iinfo->i_extent_cache_lock);
88}
89
90/* Return contents of extent cache */
91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 loff_t *lbcount, struct extent_position *pos)
93{
94 struct udf_inode_info *iinfo = UDF_I(inode);
95 int ret = 0;
96
97 spin_lock(&iinfo->i_extent_cache_lock);
98 if ((iinfo->cached_extent.lstart <= bcount) &&
99 (iinfo->cached_extent.lstart != -1)) {
100 /* Cache hit */
101 *lbcount = iinfo->cached_extent.lstart;
102 memcpy(pos, &iinfo->cached_extent.epos,
103 sizeof(struct extent_position));
104 if (pos->bh)
105 get_bh(pos->bh);
106 ret = 1;
107 }
108 spin_unlock(&iinfo->i_extent_cache_lock);
109 return ret;
110}
111
112/* Add extent to extent cache */
113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 struct extent_position *pos)
115{
116 struct udf_inode_info *iinfo = UDF_I(inode);
117
118 spin_lock(&iinfo->i_extent_cache_lock);
119 /* Invalidate previously cached extent */
120 __udf_clear_extent_cache(inode);
121 if (pos->bh)
122 get_bh(pos->bh);
123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124 iinfo->cached_extent.lstart = estart;
125 switch (iinfo->i_alloc_type) {
126 case ICBTAG_FLAG_AD_SHORT:
127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128 break;
129 case ICBTAG_FLAG_AD_LONG:
130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131 break;
132 }
133 spin_unlock(&iinfo->i_extent_cache_lock);
134}
135
136void udf_evict_inode(struct inode *inode)
137{
138 struct udf_inode_info *iinfo = UDF_I(inode);
139 int want_delete = 0;
140
141 if (!is_bad_inode(inode)) {
142 if (!inode->i_nlink) {
143 want_delete = 1;
144 udf_setsize(inode, 0);
145 udf_update_inode(inode, IS_SYNC(inode));
146 }
147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148 inode->i_size != iinfo->i_lenExtents) {
149 udf_warn(inode->i_sb,
150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151 inode->i_ino, inode->i_mode,
152 (unsigned long long)inode->i_size,
153 (unsigned long long)iinfo->i_lenExtents);
154 }
155 }
156 truncate_inode_pages_final(&inode->i_data);
157 invalidate_inode_buffers(inode);
158 clear_inode(inode);
159 kfree(iinfo->i_data);
160 iinfo->i_data = NULL;
161 udf_clear_extent_cache(inode);
162 if (want_delete) {
163 udf_free_inode(inode);
164 }
165}
166
167static void udf_write_failed(struct address_space *mapping, loff_t to)
168{
169 struct inode *inode = mapping->host;
170 struct udf_inode_info *iinfo = UDF_I(inode);
171 loff_t isize = inode->i_size;
172
173 if (to > isize) {
174 truncate_pagecache(inode, isize);
175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 down_write(&iinfo->i_data_sem);
177 udf_clear_extent_cache(inode);
178 udf_truncate_extents(inode);
179 up_write(&iinfo->i_data_sem);
180 }
181 }
182}
183
184static int udf_adinicb_writepage(struct folio *folio,
185 struct writeback_control *wbc, void *data)
186{
187 struct inode *inode = folio->mapping->host;
188 struct udf_inode_info *iinfo = UDF_I(inode);
189
190 BUG_ON(!folio_test_locked(folio));
191 BUG_ON(folio->index != 0);
192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
193 i_size_read(inode));
194 folio_unlock(folio);
195 mark_inode_dirty(inode);
196
197 return 0;
198}
199
200static int udf_writepages(struct address_space *mapping,
201 struct writeback_control *wbc)
202{
203 struct inode *inode = mapping->host;
204 struct udf_inode_info *iinfo = UDF_I(inode);
205
206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
207 return mpage_writepages(mapping, wbc, udf_get_block_wb);
208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
209}
210
211static void udf_adinicb_readpage(struct page *page)
212{
213 struct inode *inode = page->mapping->host;
214 char *kaddr;
215 struct udf_inode_info *iinfo = UDF_I(inode);
216 loff_t isize = i_size_read(inode);
217
218 kaddr = kmap_local_page(page);
219 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize);
220 memset(kaddr + isize, 0, PAGE_SIZE - isize);
221 flush_dcache_page(page);
222 SetPageUptodate(page);
223 kunmap_local(kaddr);
224}
225
226static int udf_read_folio(struct file *file, struct folio *folio)
227{
228 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
229
230 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
231 udf_adinicb_readpage(&folio->page);
232 folio_unlock(folio);
233 return 0;
234 }
235 return mpage_read_folio(folio, udf_get_block);
236}
237
238static void udf_readahead(struct readahead_control *rac)
239{
240 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
241
242 /*
243 * No readahead needed for in-ICB files and udf_get_block() would get
244 * confused for such file anyway.
245 */
246 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
247 return;
248
249 mpage_readahead(rac, udf_get_block);
250}
251
252static int udf_write_begin(struct file *file, struct address_space *mapping,
253 loff_t pos, unsigned len,
254 struct page **pagep, void **fsdata)
255{
256 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
257 struct page *page;
258 int ret;
259
260 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
261 ret = block_write_begin(mapping, pos, len, pagep,
262 udf_get_block);
263 if (unlikely(ret))
264 udf_write_failed(mapping, pos + len);
265 return ret;
266 }
267 if (WARN_ON_ONCE(pos >= PAGE_SIZE))
268 return -EIO;
269 page = grab_cache_page_write_begin(mapping, 0);
270 if (!page)
271 return -ENOMEM;
272 *pagep = page;
273 if (!PageUptodate(page))
274 udf_adinicb_readpage(page);
275 return 0;
276}
277
278static int udf_write_end(struct file *file, struct address_space *mapping,
279 loff_t pos, unsigned len, unsigned copied,
280 struct page *page, void *fsdata)
281{
282 struct inode *inode = file_inode(file);
283 loff_t last_pos;
284
285 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
286 return generic_write_end(file, mapping, pos, len, copied, page,
287 fsdata);
288 last_pos = pos + copied;
289 if (last_pos > inode->i_size)
290 i_size_write(inode, last_pos);
291 set_page_dirty(page);
292 unlock_page(page);
293 put_page(page);
294
295 return copied;
296}
297
298static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
299{
300 struct file *file = iocb->ki_filp;
301 struct address_space *mapping = file->f_mapping;
302 struct inode *inode = mapping->host;
303 size_t count = iov_iter_count(iter);
304 ssize_t ret;
305
306 /* Fallback to buffered IO for in-ICB files */
307 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
308 return 0;
309 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
310 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
311 udf_write_failed(mapping, iocb->ki_pos + count);
312 return ret;
313}
314
315static sector_t udf_bmap(struct address_space *mapping, sector_t block)
316{
317 struct udf_inode_info *iinfo = UDF_I(mapping->host);
318
319 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
320 return -EINVAL;
321 return generic_block_bmap(mapping, block, udf_get_block);
322}
323
324const struct address_space_operations udf_aops = {
325 .dirty_folio = block_dirty_folio,
326 .invalidate_folio = block_invalidate_folio,
327 .read_folio = udf_read_folio,
328 .readahead = udf_readahead,
329 .writepages = udf_writepages,
330 .write_begin = udf_write_begin,
331 .write_end = udf_write_end,
332 .direct_IO = udf_direct_IO,
333 .bmap = udf_bmap,
334 .migrate_folio = buffer_migrate_folio,
335};
336
337/*
338 * Expand file stored in ICB to a normal one-block-file
339 *
340 * This function requires i_mutex held
341 */
342int udf_expand_file_adinicb(struct inode *inode)
343{
344 struct page *page;
345 struct udf_inode_info *iinfo = UDF_I(inode);
346 int err;
347
348 WARN_ON_ONCE(!inode_is_locked(inode));
349 if (!iinfo->i_lenAlloc) {
350 down_write(&iinfo->i_data_sem);
351 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
352 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
353 else
354 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
355 up_write(&iinfo->i_data_sem);
356 mark_inode_dirty(inode);
357 return 0;
358 }
359
360 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
361 if (!page)
362 return -ENOMEM;
363
364 if (!PageUptodate(page))
365 udf_adinicb_readpage(page);
366 down_write(&iinfo->i_data_sem);
367 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
368 iinfo->i_lenAlloc);
369 iinfo->i_lenAlloc = 0;
370 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
371 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
372 else
373 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
374 set_page_dirty(page);
375 unlock_page(page);
376 up_write(&iinfo->i_data_sem);
377 err = filemap_fdatawrite(inode->i_mapping);
378 if (err) {
379 /* Restore everything back so that we don't lose data... */
380 lock_page(page);
381 down_write(&iinfo->i_data_sem);
382 memcpy_to_page(page, 0, iinfo->i_data + iinfo->i_lenEAttr,
383 inode->i_size);
384 unlock_page(page);
385 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
386 iinfo->i_lenAlloc = inode->i_size;
387 up_write(&iinfo->i_data_sem);
388 }
389 put_page(page);
390 mark_inode_dirty(inode);
391
392 return err;
393}
394
395#define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */
396#define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */
397
398#define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */
399#define UDF_BLK_NEW 0x02 /* Block was freshly allocated */
400
401struct udf_map_rq {
402 sector_t lblk;
403 udf_pblk_t pblk;
404 int iflags; /* UDF_MAP_ flags determining behavior */
405 int oflags; /* UDF_BLK_ flags reporting results */
406};
407
408static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
409{
410 int err;
411 struct udf_inode_info *iinfo = UDF_I(inode);
412
413 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
414 return -EFSCORRUPTED;
415
416 map->oflags = 0;
417 if (!(map->iflags & UDF_MAP_CREATE)) {
418 struct kernel_lb_addr eloc;
419 uint32_t elen;
420 sector_t offset;
421 struct extent_position epos = {};
422
423 down_read(&iinfo->i_data_sem);
424 if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset)
425 == (EXT_RECORDED_ALLOCATED >> 30)) {
426 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
427 offset);
428 map->oflags |= UDF_BLK_MAPPED;
429 }
430 up_read(&iinfo->i_data_sem);
431 brelse(epos.bh);
432
433 return 0;
434 }
435
436 down_write(&iinfo->i_data_sem);
437 /*
438 * Block beyond EOF and prealloc extents? Just discard preallocation
439 * as it is not useful and complicates things.
440 */
441 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
442 udf_discard_prealloc(inode);
443 udf_clear_extent_cache(inode);
444 err = inode_getblk(inode, map);
445 up_write(&iinfo->i_data_sem);
446 return err;
447}
448
449static int __udf_get_block(struct inode *inode, sector_t block,
450 struct buffer_head *bh_result, int flags)
451{
452 int err;
453 struct udf_map_rq map = {
454 .lblk = block,
455 .iflags = flags,
456 };
457
458 err = udf_map_block(inode, &map);
459 if (err < 0)
460 return err;
461 if (map.oflags & UDF_BLK_MAPPED) {
462 map_bh(bh_result, inode->i_sb, map.pblk);
463 if (map.oflags & UDF_BLK_NEW)
464 set_buffer_new(bh_result);
465 }
466 return 0;
467}
468
469int udf_get_block(struct inode *inode, sector_t block,
470 struct buffer_head *bh_result, int create)
471{
472 int flags = create ? UDF_MAP_CREATE : 0;
473
474 /*
475 * We preallocate blocks only for regular files. It also makes sense
476 * for directories but there's a problem when to drop the
477 * preallocation. We might use some delayed work for that but I feel
478 * it's overengineering for a filesystem like UDF.
479 */
480 if (!S_ISREG(inode->i_mode))
481 flags |= UDF_MAP_NOPREALLOC;
482 return __udf_get_block(inode, block, bh_result, flags);
483}
484
485/*
486 * We shouldn't be allocating blocks on page writeback since we allocate them
487 * on page fault. We can spot dirty buffers without allocated blocks though
488 * when truncate expands file. These however don't have valid data so we can
489 * safely ignore them. So never allocate blocks from page writeback.
490 */
491static int udf_get_block_wb(struct inode *inode, sector_t block,
492 struct buffer_head *bh_result, int create)
493{
494 return __udf_get_block(inode, block, bh_result, 0);
495}
496
497/* Extend the file with new blocks totaling 'new_block_bytes',
498 * return the number of extents added
499 */
500static int udf_do_extend_file(struct inode *inode,
501 struct extent_position *last_pos,
502 struct kernel_long_ad *last_ext,
503 loff_t new_block_bytes)
504{
505 uint32_t add;
506 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
507 struct super_block *sb = inode->i_sb;
508 struct udf_inode_info *iinfo;
509 int err;
510
511 /* The previous extent is fake and we should not extend by anything
512 * - there's nothing to do... */
513 if (!new_block_bytes && fake)
514 return 0;
515
516 iinfo = UDF_I(inode);
517 /* Round the last extent up to a multiple of block size */
518 if (last_ext->extLength & (sb->s_blocksize - 1)) {
519 last_ext->extLength =
520 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
521 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
522 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
523 iinfo->i_lenExtents =
524 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
525 ~(sb->s_blocksize - 1);
526 }
527
528 add = 0;
529 /* Can we merge with the previous extent? */
530 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
531 EXT_NOT_RECORDED_NOT_ALLOCATED) {
532 add = (1 << 30) - sb->s_blocksize -
533 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
534 if (add > new_block_bytes)
535 add = new_block_bytes;
536 new_block_bytes -= add;
537 last_ext->extLength += add;
538 }
539
540 if (fake) {
541 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
542 last_ext->extLength, 1);
543 if (err < 0)
544 goto out_err;
545 count++;
546 } else {
547 struct kernel_lb_addr tmploc;
548 uint32_t tmplen;
549
550 udf_write_aext(inode, last_pos, &last_ext->extLocation,
551 last_ext->extLength, 1);
552
553 /*
554 * We've rewritten the last extent. If we are going to add
555 * more extents, we may need to enter possible following
556 * empty indirect extent.
557 */
558 if (new_block_bytes)
559 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
560 }
561 iinfo->i_lenExtents += add;
562
563 /* Managed to do everything necessary? */
564 if (!new_block_bytes)
565 goto out;
566
567 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
568 last_ext->extLocation.logicalBlockNum = 0;
569 last_ext->extLocation.partitionReferenceNum = 0;
570 add = (1 << 30) - sb->s_blocksize;
571 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
572
573 /* Create enough extents to cover the whole hole */
574 while (new_block_bytes > add) {
575 new_block_bytes -= add;
576 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
577 last_ext->extLength, 1);
578 if (err)
579 goto out_err;
580 iinfo->i_lenExtents += add;
581 count++;
582 }
583 if (new_block_bytes) {
584 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
585 new_block_bytes;
586 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
587 last_ext->extLength, 1);
588 if (err)
589 goto out_err;
590 iinfo->i_lenExtents += new_block_bytes;
591 count++;
592 }
593
594out:
595 /* last_pos should point to the last written extent... */
596 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
597 last_pos->offset -= sizeof(struct short_ad);
598 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
599 last_pos->offset -= sizeof(struct long_ad);
600 else
601 return -EIO;
602
603 return count;
604out_err:
605 /* Remove extents we've created so far */
606 udf_clear_extent_cache(inode);
607 udf_truncate_extents(inode);
608 return err;
609}
610
611/* Extend the final block of the file to final_block_len bytes */
612static void udf_do_extend_final_block(struct inode *inode,
613 struct extent_position *last_pos,
614 struct kernel_long_ad *last_ext,
615 uint32_t new_elen)
616{
617 uint32_t added_bytes;
618
619 /*
620 * Extent already large enough? It may be already rounded up to block
621 * size...
622 */
623 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
624 return;
625 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
626 last_ext->extLength += added_bytes;
627 UDF_I(inode)->i_lenExtents += added_bytes;
628
629 udf_write_aext(inode, last_pos, &last_ext->extLocation,
630 last_ext->extLength, 1);
631}
632
633static int udf_extend_file(struct inode *inode, loff_t newsize)
634{
635
636 struct extent_position epos;
637 struct kernel_lb_addr eloc;
638 uint32_t elen;
639 int8_t etype;
640 struct super_block *sb = inode->i_sb;
641 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
642 loff_t new_elen;
643 int adsize;
644 struct udf_inode_info *iinfo = UDF_I(inode);
645 struct kernel_long_ad extent;
646 int err = 0;
647 bool within_last_ext;
648
649 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
650 adsize = sizeof(struct short_ad);
651 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
652 adsize = sizeof(struct long_ad);
653 else
654 BUG();
655
656 down_write(&iinfo->i_data_sem);
657 /*
658 * When creating hole in file, just don't bother with preserving
659 * preallocation. It likely won't be very useful anyway.
660 */
661 udf_discard_prealloc(inode);
662
663 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
664 within_last_ext = (etype != -1);
665 /* We don't expect extents past EOF... */
666 WARN_ON_ONCE(within_last_ext &&
667 elen > ((loff_t)offset + 1) << inode->i_blkbits);
668
669 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
670 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
671 /* File has no extents at all or has empty last
672 * indirect extent! Create a fake extent... */
673 extent.extLocation.logicalBlockNum = 0;
674 extent.extLocation.partitionReferenceNum = 0;
675 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
676 } else {
677 epos.offset -= adsize;
678 etype = udf_next_aext(inode, &epos, &extent.extLocation,
679 &extent.extLength, 0);
680 extent.extLength |= etype << 30;
681 }
682
683 new_elen = ((loff_t)offset << inode->i_blkbits) |
684 (newsize & (sb->s_blocksize - 1));
685
686 /* File has extent covering the new size (could happen when extending
687 * inside a block)?
688 */
689 if (within_last_ext) {
690 /* Extending file within the last file block */
691 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
692 } else {
693 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
694 }
695
696 if (err < 0)
697 goto out;
698 err = 0;
699out:
700 brelse(epos.bh);
701 up_write(&iinfo->i_data_sem);
702 return err;
703}
704
705static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
706{
707 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
708 struct extent_position prev_epos, cur_epos, next_epos;
709 int count = 0, startnum = 0, endnum = 0;
710 uint32_t elen = 0, tmpelen;
711 struct kernel_lb_addr eloc, tmpeloc;
712 int c = 1;
713 loff_t lbcount = 0, b_off = 0;
714 udf_pblk_t newblocknum;
715 sector_t offset = 0;
716 int8_t etype;
717 struct udf_inode_info *iinfo = UDF_I(inode);
718 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
719 int lastblock = 0;
720 bool isBeyondEOF;
721 int ret = 0;
722
723 prev_epos.offset = udf_file_entry_alloc_offset(inode);
724 prev_epos.block = iinfo->i_location;
725 prev_epos.bh = NULL;
726 cur_epos = next_epos = prev_epos;
727 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
728
729 /* find the extent which contains the block we are looking for.
730 alternate between laarr[0] and laarr[1] for locations of the
731 current extent, and the previous extent */
732 do {
733 if (prev_epos.bh != cur_epos.bh) {
734 brelse(prev_epos.bh);
735 get_bh(cur_epos.bh);
736 prev_epos.bh = cur_epos.bh;
737 }
738 if (cur_epos.bh != next_epos.bh) {
739 brelse(cur_epos.bh);
740 get_bh(next_epos.bh);
741 cur_epos.bh = next_epos.bh;
742 }
743
744 lbcount += elen;
745
746 prev_epos.block = cur_epos.block;
747 cur_epos.block = next_epos.block;
748
749 prev_epos.offset = cur_epos.offset;
750 cur_epos.offset = next_epos.offset;
751
752 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
753 if (etype == -1)
754 break;
755
756 c = !c;
757
758 laarr[c].extLength = (etype << 30) | elen;
759 laarr[c].extLocation = eloc;
760
761 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
762 pgoal = eloc.logicalBlockNum +
763 ((elen + inode->i_sb->s_blocksize - 1) >>
764 inode->i_sb->s_blocksize_bits);
765
766 count++;
767 } while (lbcount + elen <= b_off);
768
769 b_off -= lbcount;
770 offset = b_off >> inode->i_sb->s_blocksize_bits;
771 /*
772 * Move prev_epos and cur_epos into indirect extent if we are at
773 * the pointer to it
774 */
775 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
776 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
777
778 /* if the extent is allocated and recorded, return the block
779 if the extent is not a multiple of the blocksize, round up */
780
781 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
782 if (elen & (inode->i_sb->s_blocksize - 1)) {
783 elen = EXT_RECORDED_ALLOCATED |
784 ((elen + inode->i_sb->s_blocksize - 1) &
785 ~(inode->i_sb->s_blocksize - 1));
786 iinfo->i_lenExtents =
787 ALIGN(iinfo->i_lenExtents,
788 inode->i_sb->s_blocksize);
789 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
790 }
791 map->oflags = UDF_BLK_MAPPED;
792 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
793 goto out_free;
794 }
795
796 /* Are we beyond EOF and preallocated extent? */
797 if (etype == -1) {
798 loff_t hole_len;
799
800 isBeyondEOF = true;
801 if (count) {
802 if (c)
803 laarr[0] = laarr[1];
804 startnum = 1;
805 } else {
806 /* Create a fake extent when there's not one */
807 memset(&laarr[0].extLocation, 0x00,
808 sizeof(struct kernel_lb_addr));
809 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
810 /* Will udf_do_extend_file() create real extent from
811 a fake one? */
812 startnum = (offset > 0);
813 }
814 /* Create extents for the hole between EOF and offset */
815 hole_len = (loff_t)offset << inode->i_blkbits;
816 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
817 if (ret < 0)
818 goto out_free;
819 c = 0;
820 offset = 0;
821 count += ret;
822 /*
823 * Is there any real extent? - otherwise we overwrite the fake
824 * one...
825 */
826 if (count)
827 c = !c;
828 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
829 inode->i_sb->s_blocksize;
830 memset(&laarr[c].extLocation, 0x00,
831 sizeof(struct kernel_lb_addr));
832 count++;
833 endnum = c + 1;
834 lastblock = 1;
835 } else {
836 isBeyondEOF = false;
837 endnum = startnum = ((count > 2) ? 2 : count);
838
839 /* if the current extent is in position 0,
840 swap it with the previous */
841 if (!c && count != 1) {
842 laarr[2] = laarr[0];
843 laarr[0] = laarr[1];
844 laarr[1] = laarr[2];
845 c = 1;
846 }
847
848 /* if the current block is located in an extent,
849 read the next extent */
850 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
851 if (etype != -1) {
852 laarr[c + 1].extLength = (etype << 30) | elen;
853 laarr[c + 1].extLocation = eloc;
854 count++;
855 startnum++;
856 endnum++;
857 } else
858 lastblock = 1;
859 }
860
861 /* if the current extent is not recorded but allocated, get the
862 * block in the extent corresponding to the requested block */
863 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
864 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
865 else { /* otherwise, allocate a new block */
866 if (iinfo->i_next_alloc_block == map->lblk)
867 goal = iinfo->i_next_alloc_goal;
868
869 if (!goal) {
870 if (!(goal = pgoal)) /* XXX: what was intended here? */
871 goal = iinfo->i_location.logicalBlockNum + 1;
872 }
873
874 newblocknum = udf_new_block(inode->i_sb, inode,
875 iinfo->i_location.partitionReferenceNum,
876 goal, &ret);
877 if (!newblocknum)
878 goto out_free;
879 if (isBeyondEOF)
880 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
881 }
882
883 /* if the extent the requsted block is located in contains multiple
884 * blocks, split the extent into at most three extents. blocks prior
885 * to requested block, requested block, and blocks after requested
886 * block */
887 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
888
889 if (!(map->iflags & UDF_MAP_NOPREALLOC))
890 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
891
892 /* merge any continuous blocks in laarr */
893 udf_merge_extents(inode, laarr, &endnum);
894
895 /* write back the new extents, inserting new extents if the new number
896 * of extents is greater than the old number, and deleting extents if
897 * the new number of extents is less than the old number */
898 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
899 if (ret < 0)
900 goto out_free;
901
902 map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
903 iinfo->i_location.partitionReferenceNum, 0);
904 if (!map->pblk) {
905 ret = -EFSCORRUPTED;
906 goto out_free;
907 }
908 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
909 iinfo->i_next_alloc_block = map->lblk + 1;
910 iinfo->i_next_alloc_goal = newblocknum + 1;
911 inode_set_ctime_current(inode);
912
913 if (IS_SYNC(inode))
914 udf_sync_inode(inode);
915 else
916 mark_inode_dirty(inode);
917 ret = 0;
918out_free:
919 brelse(prev_epos.bh);
920 brelse(cur_epos.bh);
921 brelse(next_epos.bh);
922 return ret;
923}
924
925static void udf_split_extents(struct inode *inode, int *c, int offset,
926 udf_pblk_t newblocknum,
927 struct kernel_long_ad *laarr, int *endnum)
928{
929 unsigned long blocksize = inode->i_sb->s_blocksize;
930 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
931
932 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
933 (laarr[*c].extLength >> 30) ==
934 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
935 int curr = *c;
936 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
937 blocksize - 1) >> blocksize_bits;
938 int8_t etype = (laarr[curr].extLength >> 30);
939
940 if (blen == 1)
941 ;
942 else if (!offset || blen == offset + 1) {
943 laarr[curr + 2] = laarr[curr + 1];
944 laarr[curr + 1] = laarr[curr];
945 } else {
946 laarr[curr + 3] = laarr[curr + 1];
947 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
948 }
949
950 if (offset) {
951 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
952 udf_free_blocks(inode->i_sb, inode,
953 &laarr[curr].extLocation,
954 0, offset);
955 laarr[curr].extLength =
956 EXT_NOT_RECORDED_NOT_ALLOCATED |
957 (offset << blocksize_bits);
958 laarr[curr].extLocation.logicalBlockNum = 0;
959 laarr[curr].extLocation.
960 partitionReferenceNum = 0;
961 } else
962 laarr[curr].extLength = (etype << 30) |
963 (offset << blocksize_bits);
964 curr++;
965 (*c)++;
966 (*endnum)++;
967 }
968
969 laarr[curr].extLocation.logicalBlockNum = newblocknum;
970 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
971 laarr[curr].extLocation.partitionReferenceNum =
972 UDF_I(inode)->i_location.partitionReferenceNum;
973 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
974 blocksize;
975 curr++;
976
977 if (blen != offset + 1) {
978 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
979 laarr[curr].extLocation.logicalBlockNum +=
980 offset + 1;
981 laarr[curr].extLength = (etype << 30) |
982 ((blen - (offset + 1)) << blocksize_bits);
983 curr++;
984 (*endnum)++;
985 }
986 }
987}
988
989static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
990 struct kernel_long_ad *laarr,
991 int *endnum)
992{
993 int start, length = 0, currlength = 0, i;
994
995 if (*endnum >= (c + 1)) {
996 if (!lastblock)
997 return;
998 else
999 start = c;
1000 } else {
1001 if ((laarr[c + 1].extLength >> 30) ==
1002 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1003 start = c + 1;
1004 length = currlength =
1005 (((laarr[c + 1].extLength &
1006 UDF_EXTENT_LENGTH_MASK) +
1007 inode->i_sb->s_blocksize - 1) >>
1008 inode->i_sb->s_blocksize_bits);
1009 } else
1010 start = c;
1011 }
1012
1013 for (i = start + 1; i <= *endnum; i++) {
1014 if (i == *endnum) {
1015 if (lastblock)
1016 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1017 } else if ((laarr[i].extLength >> 30) ==
1018 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1019 length += (((laarr[i].extLength &
1020 UDF_EXTENT_LENGTH_MASK) +
1021 inode->i_sb->s_blocksize - 1) >>
1022 inode->i_sb->s_blocksize_bits);
1023 } else
1024 break;
1025 }
1026
1027 if (length) {
1028 int next = laarr[start].extLocation.logicalBlockNum +
1029 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1030 inode->i_sb->s_blocksize - 1) >>
1031 inode->i_sb->s_blocksize_bits);
1032 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1033 laarr[start].extLocation.partitionReferenceNum,
1034 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1035 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1036 currlength);
1037 if (numalloc) {
1038 if (start == (c + 1))
1039 laarr[start].extLength +=
1040 (numalloc <<
1041 inode->i_sb->s_blocksize_bits);
1042 else {
1043 memmove(&laarr[c + 2], &laarr[c + 1],
1044 sizeof(struct long_ad) * (*endnum - (c + 1)));
1045 (*endnum)++;
1046 laarr[c + 1].extLocation.logicalBlockNum = next;
1047 laarr[c + 1].extLocation.partitionReferenceNum =
1048 laarr[c].extLocation.
1049 partitionReferenceNum;
1050 laarr[c + 1].extLength =
1051 EXT_NOT_RECORDED_ALLOCATED |
1052 (numalloc <<
1053 inode->i_sb->s_blocksize_bits);
1054 start = c + 1;
1055 }
1056
1057 for (i = start + 1; numalloc && i < *endnum; i++) {
1058 int elen = ((laarr[i].extLength &
1059 UDF_EXTENT_LENGTH_MASK) +
1060 inode->i_sb->s_blocksize - 1) >>
1061 inode->i_sb->s_blocksize_bits;
1062
1063 if (elen > numalloc) {
1064 laarr[i].extLength -=
1065 (numalloc <<
1066 inode->i_sb->s_blocksize_bits);
1067 numalloc = 0;
1068 } else {
1069 numalloc -= elen;
1070 if (*endnum > (i + 1))
1071 memmove(&laarr[i],
1072 &laarr[i + 1],
1073 sizeof(struct long_ad) *
1074 (*endnum - (i + 1)));
1075 i--;
1076 (*endnum)--;
1077 }
1078 }
1079 UDF_I(inode)->i_lenExtents +=
1080 numalloc << inode->i_sb->s_blocksize_bits;
1081 }
1082 }
1083}
1084
1085static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1086 int *endnum)
1087{
1088 int i;
1089 unsigned long blocksize = inode->i_sb->s_blocksize;
1090 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1091
1092 for (i = 0; i < (*endnum - 1); i++) {
1093 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1094 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1095
1096 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1097 (((li->extLength >> 30) ==
1098 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1099 ((lip1->extLocation.logicalBlockNum -
1100 li->extLocation.logicalBlockNum) ==
1101 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1102 blocksize - 1) >> blocksize_bits)))) {
1103
1104 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1105 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1106 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1107 li->extLength = lip1->extLength +
1108 (((li->extLength &
1109 UDF_EXTENT_LENGTH_MASK) +
1110 blocksize - 1) & ~(blocksize - 1));
1111 if (*endnum > (i + 2))
1112 memmove(&laarr[i + 1], &laarr[i + 2],
1113 sizeof(struct long_ad) *
1114 (*endnum - (i + 2)));
1115 i--;
1116 (*endnum)--;
1117 }
1118 } else if (((li->extLength >> 30) ==
1119 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1120 ((lip1->extLength >> 30) ==
1121 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1122 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1123 ((li->extLength &
1124 UDF_EXTENT_LENGTH_MASK) +
1125 blocksize - 1) >> blocksize_bits);
1126 li->extLocation.logicalBlockNum = 0;
1127 li->extLocation.partitionReferenceNum = 0;
1128
1129 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1130 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1131 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1132 lip1->extLength = (lip1->extLength -
1133 (li->extLength &
1134 UDF_EXTENT_LENGTH_MASK) +
1135 UDF_EXTENT_LENGTH_MASK) &
1136 ~(blocksize - 1);
1137 li->extLength = (li->extLength &
1138 UDF_EXTENT_FLAG_MASK) +
1139 (UDF_EXTENT_LENGTH_MASK + 1) -
1140 blocksize;
1141 } else {
1142 li->extLength = lip1->extLength +
1143 (((li->extLength &
1144 UDF_EXTENT_LENGTH_MASK) +
1145 blocksize - 1) & ~(blocksize - 1));
1146 if (*endnum > (i + 2))
1147 memmove(&laarr[i + 1], &laarr[i + 2],
1148 sizeof(struct long_ad) *
1149 (*endnum - (i + 2)));
1150 i--;
1151 (*endnum)--;
1152 }
1153 } else if ((li->extLength >> 30) ==
1154 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1155 udf_free_blocks(inode->i_sb, inode,
1156 &li->extLocation, 0,
1157 ((li->extLength &
1158 UDF_EXTENT_LENGTH_MASK) +
1159 blocksize - 1) >> blocksize_bits);
1160 li->extLocation.logicalBlockNum = 0;
1161 li->extLocation.partitionReferenceNum = 0;
1162 li->extLength = (li->extLength &
1163 UDF_EXTENT_LENGTH_MASK) |
1164 EXT_NOT_RECORDED_NOT_ALLOCATED;
1165 }
1166 }
1167}
1168
1169static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1170 int startnum, int endnum,
1171 struct extent_position *epos)
1172{
1173 int start = 0, i;
1174 struct kernel_lb_addr tmploc;
1175 uint32_t tmplen;
1176 int err;
1177
1178 if (startnum > endnum) {
1179 for (i = 0; i < (startnum - endnum); i++)
1180 udf_delete_aext(inode, *epos);
1181 } else if (startnum < endnum) {
1182 for (i = 0; i < (endnum - startnum); i++) {
1183 err = udf_insert_aext(inode, *epos,
1184 laarr[i].extLocation,
1185 laarr[i].extLength);
1186 /*
1187 * If we fail here, we are likely corrupting the extent
1188 * list and leaking blocks. At least stop early to
1189 * limit the damage.
1190 */
1191 if (err < 0)
1192 return err;
1193 udf_next_aext(inode, epos, &laarr[i].extLocation,
1194 &laarr[i].extLength, 1);
1195 start++;
1196 }
1197 }
1198
1199 for (i = start; i < endnum; i++) {
1200 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1201 udf_write_aext(inode, epos, &laarr[i].extLocation,
1202 laarr[i].extLength, 1);
1203 }
1204 return 0;
1205}
1206
1207struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1208 int create, int *err)
1209{
1210 struct buffer_head *bh = NULL;
1211 struct udf_map_rq map = {
1212 .lblk = block,
1213 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1214 };
1215
1216 *err = udf_map_block(inode, &map);
1217 if (*err || !(map.oflags & UDF_BLK_MAPPED))
1218 return NULL;
1219
1220 bh = sb_getblk(inode->i_sb, map.pblk);
1221 if (!bh) {
1222 *err = -ENOMEM;
1223 return NULL;
1224 }
1225 if (map.oflags & UDF_BLK_NEW) {
1226 lock_buffer(bh);
1227 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1228 set_buffer_uptodate(bh);
1229 unlock_buffer(bh);
1230 mark_buffer_dirty_inode(bh, inode);
1231 return bh;
1232 }
1233
1234 if (bh_read(bh, 0) >= 0)
1235 return bh;
1236
1237 brelse(bh);
1238 *err = -EIO;
1239 return NULL;
1240}
1241
1242int udf_setsize(struct inode *inode, loff_t newsize)
1243{
1244 int err = 0;
1245 struct udf_inode_info *iinfo;
1246 unsigned int bsize = i_blocksize(inode);
1247
1248 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1249 S_ISLNK(inode->i_mode)))
1250 return -EINVAL;
1251 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1252 return -EPERM;
1253
1254 filemap_invalidate_lock(inode->i_mapping);
1255 iinfo = UDF_I(inode);
1256 if (newsize > inode->i_size) {
1257 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1258 if (bsize >=
1259 (udf_file_entry_alloc_offset(inode) + newsize)) {
1260 down_write(&iinfo->i_data_sem);
1261 iinfo->i_lenAlloc = newsize;
1262 up_write(&iinfo->i_data_sem);
1263 goto set_size;
1264 }
1265 err = udf_expand_file_adinicb(inode);
1266 if (err)
1267 goto out_unlock;
1268 }
1269 err = udf_extend_file(inode, newsize);
1270 if (err)
1271 goto out_unlock;
1272set_size:
1273 truncate_setsize(inode, newsize);
1274 } else {
1275 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1276 down_write(&iinfo->i_data_sem);
1277 udf_clear_extent_cache(inode);
1278 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1279 0x00, bsize - newsize -
1280 udf_file_entry_alloc_offset(inode));
1281 iinfo->i_lenAlloc = newsize;
1282 truncate_setsize(inode, newsize);
1283 up_write(&iinfo->i_data_sem);
1284 goto update_time;
1285 }
1286 err = block_truncate_page(inode->i_mapping, newsize,
1287 udf_get_block);
1288 if (err)
1289 goto out_unlock;
1290 truncate_setsize(inode, newsize);
1291 down_write(&iinfo->i_data_sem);
1292 udf_clear_extent_cache(inode);
1293 err = udf_truncate_extents(inode);
1294 up_write(&iinfo->i_data_sem);
1295 if (err)
1296 goto out_unlock;
1297 }
1298update_time:
1299 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1300 if (IS_SYNC(inode))
1301 udf_sync_inode(inode);
1302 else
1303 mark_inode_dirty(inode);
1304out_unlock:
1305 filemap_invalidate_unlock(inode->i_mapping);
1306 return err;
1307}
1308
1309/*
1310 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1311 * arbitrary - just that we hopefully don't limit any real use of rewritten
1312 * inode on write-once media but avoid looping for too long on corrupted media.
1313 */
1314#define UDF_MAX_ICB_NESTING 1024
1315
1316static int udf_read_inode(struct inode *inode, bool hidden_inode)
1317{
1318 struct buffer_head *bh = NULL;
1319 struct fileEntry *fe;
1320 struct extendedFileEntry *efe;
1321 uint16_t ident;
1322 struct udf_inode_info *iinfo = UDF_I(inode);
1323 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1324 struct kernel_lb_addr *iloc = &iinfo->i_location;
1325 unsigned int link_count;
1326 unsigned int indirections = 0;
1327 int bs = inode->i_sb->s_blocksize;
1328 int ret = -EIO;
1329 uint32_t uid, gid;
1330 struct timespec64 ts;
1331
1332reread:
1333 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1334 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1335 iloc->partitionReferenceNum, sbi->s_partitions);
1336 return -EIO;
1337 }
1338
1339 if (iloc->logicalBlockNum >=
1340 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1341 udf_debug("block=%u, partition=%u out of range\n",
1342 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1343 return -EIO;
1344 }
1345
1346 /*
1347 * Set defaults, but the inode is still incomplete!
1348 * Note: get_new_inode() sets the following on a new inode:
1349 * i_sb = sb
1350 * i_no = ino
1351 * i_flags = sb->s_flags
1352 * i_state = 0
1353 * clean_inode(): zero fills and sets
1354 * i_count = 1
1355 * i_nlink = 1
1356 * i_op = NULL;
1357 */
1358 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1359 if (!bh) {
1360 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1361 return -EIO;
1362 }
1363
1364 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1365 ident != TAG_IDENT_USE) {
1366 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1367 inode->i_ino, ident);
1368 goto out;
1369 }
1370
1371 fe = (struct fileEntry *)bh->b_data;
1372 efe = (struct extendedFileEntry *)bh->b_data;
1373
1374 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1375 struct buffer_head *ibh;
1376
1377 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1378 if (ident == TAG_IDENT_IE && ibh) {
1379 struct kernel_lb_addr loc;
1380 struct indirectEntry *ie;
1381
1382 ie = (struct indirectEntry *)ibh->b_data;
1383 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1384
1385 if (ie->indirectICB.extLength) {
1386 brelse(ibh);
1387 memcpy(&iinfo->i_location, &loc,
1388 sizeof(struct kernel_lb_addr));
1389 if (++indirections > UDF_MAX_ICB_NESTING) {
1390 udf_err(inode->i_sb,
1391 "too many ICBs in ICB hierarchy"
1392 " (max %d supported)\n",
1393 UDF_MAX_ICB_NESTING);
1394 goto out;
1395 }
1396 brelse(bh);
1397 goto reread;
1398 }
1399 }
1400 brelse(ibh);
1401 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1402 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1403 le16_to_cpu(fe->icbTag.strategyType));
1404 goto out;
1405 }
1406 if (fe->icbTag.strategyType == cpu_to_le16(4))
1407 iinfo->i_strat4096 = 0;
1408 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1409 iinfo->i_strat4096 = 1;
1410
1411 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1412 ICBTAG_FLAG_AD_MASK;
1413 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1414 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1415 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1416 ret = -EIO;
1417 goto out;
1418 }
1419 iinfo->i_hidden = hidden_inode;
1420 iinfo->i_unique = 0;
1421 iinfo->i_lenEAttr = 0;
1422 iinfo->i_lenExtents = 0;
1423 iinfo->i_lenAlloc = 0;
1424 iinfo->i_next_alloc_block = 0;
1425 iinfo->i_next_alloc_goal = 0;
1426 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1427 iinfo->i_efe = 1;
1428 iinfo->i_use = 0;
1429 ret = udf_alloc_i_data(inode, bs -
1430 sizeof(struct extendedFileEntry));
1431 if (ret)
1432 goto out;
1433 memcpy(iinfo->i_data,
1434 bh->b_data + sizeof(struct extendedFileEntry),
1435 bs - sizeof(struct extendedFileEntry));
1436 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1437 iinfo->i_efe = 0;
1438 iinfo->i_use = 0;
1439 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1440 if (ret)
1441 goto out;
1442 memcpy(iinfo->i_data,
1443 bh->b_data + sizeof(struct fileEntry),
1444 bs - sizeof(struct fileEntry));
1445 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1446 iinfo->i_efe = 0;
1447 iinfo->i_use = 1;
1448 iinfo->i_lenAlloc = le32_to_cpu(
1449 ((struct unallocSpaceEntry *)bh->b_data)->
1450 lengthAllocDescs);
1451 ret = udf_alloc_i_data(inode, bs -
1452 sizeof(struct unallocSpaceEntry));
1453 if (ret)
1454 goto out;
1455 memcpy(iinfo->i_data,
1456 bh->b_data + sizeof(struct unallocSpaceEntry),
1457 bs - sizeof(struct unallocSpaceEntry));
1458 return 0;
1459 }
1460
1461 ret = -EIO;
1462 read_lock(&sbi->s_cred_lock);
1463 uid = le32_to_cpu(fe->uid);
1464 if (uid == UDF_INVALID_ID ||
1465 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1466 inode->i_uid = sbi->s_uid;
1467 else
1468 i_uid_write(inode, uid);
1469
1470 gid = le32_to_cpu(fe->gid);
1471 if (gid == UDF_INVALID_ID ||
1472 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1473 inode->i_gid = sbi->s_gid;
1474 else
1475 i_gid_write(inode, gid);
1476
1477 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1478 sbi->s_fmode != UDF_INVALID_MODE)
1479 inode->i_mode = sbi->s_fmode;
1480 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1481 sbi->s_dmode != UDF_INVALID_MODE)
1482 inode->i_mode = sbi->s_dmode;
1483 else
1484 inode->i_mode = udf_convert_permissions(fe);
1485 inode->i_mode &= ~sbi->s_umask;
1486 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1487
1488 read_unlock(&sbi->s_cred_lock);
1489
1490 link_count = le16_to_cpu(fe->fileLinkCount);
1491 if (!link_count) {
1492 if (!hidden_inode) {
1493 ret = -ESTALE;
1494 goto out;
1495 }
1496 link_count = 1;
1497 }
1498 set_nlink(inode, link_count);
1499
1500 inode->i_size = le64_to_cpu(fe->informationLength);
1501 iinfo->i_lenExtents = inode->i_size;
1502
1503 if (iinfo->i_efe == 0) {
1504 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1505 (inode->i_sb->s_blocksize_bits - 9);
1506
1507 udf_disk_stamp_to_time(&ts, fe->accessTime);
1508 inode_set_atime_to_ts(inode, ts);
1509 udf_disk_stamp_to_time(&ts, fe->modificationTime);
1510 inode_set_mtime_to_ts(inode, ts);
1511 udf_disk_stamp_to_time(&ts, fe->attrTime);
1512 inode_set_ctime_to_ts(inode, ts);
1513
1514 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1515 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1516 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1517 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1518 iinfo->i_streamdir = 0;
1519 iinfo->i_lenStreams = 0;
1520 } else {
1521 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1522 (inode->i_sb->s_blocksize_bits - 9);
1523
1524 udf_disk_stamp_to_time(&ts, efe->accessTime);
1525 inode_set_atime_to_ts(inode, ts);
1526 udf_disk_stamp_to_time(&ts, efe->modificationTime);
1527 inode_set_mtime_to_ts(inode, ts);
1528 udf_disk_stamp_to_time(&ts, efe->attrTime);
1529 inode_set_ctime_to_ts(inode, ts);
1530 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1531
1532 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1533 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1534 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1535 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1536
1537 /* Named streams */
1538 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1539 iinfo->i_locStreamdir =
1540 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1541 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1542 if (iinfo->i_lenStreams >= inode->i_size)
1543 iinfo->i_lenStreams -= inode->i_size;
1544 else
1545 iinfo->i_lenStreams = 0;
1546 }
1547 inode->i_generation = iinfo->i_unique;
1548
1549 /*
1550 * Sanity check length of allocation descriptors and extended attrs to
1551 * avoid integer overflows
1552 */
1553 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1554 goto out;
1555 /* Now do exact checks */
1556 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1557 goto out;
1558 /* Sanity checks for files in ICB so that we don't get confused later */
1559 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1560 /*
1561 * For file in ICB data is stored in allocation descriptor
1562 * so sizes should match
1563 */
1564 if (iinfo->i_lenAlloc != inode->i_size)
1565 goto out;
1566 /* File in ICB has to fit in there... */
1567 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1568 goto out;
1569 }
1570
1571 switch (fe->icbTag.fileType) {
1572 case ICBTAG_FILE_TYPE_DIRECTORY:
1573 inode->i_op = &udf_dir_inode_operations;
1574 inode->i_fop = &udf_dir_operations;
1575 inode->i_mode |= S_IFDIR;
1576 inc_nlink(inode);
1577 break;
1578 case ICBTAG_FILE_TYPE_REALTIME:
1579 case ICBTAG_FILE_TYPE_REGULAR:
1580 case ICBTAG_FILE_TYPE_UNDEF:
1581 case ICBTAG_FILE_TYPE_VAT20:
1582 inode->i_data.a_ops = &udf_aops;
1583 inode->i_op = &udf_file_inode_operations;
1584 inode->i_fop = &udf_file_operations;
1585 inode->i_mode |= S_IFREG;
1586 break;
1587 case ICBTAG_FILE_TYPE_BLOCK:
1588 inode->i_mode |= S_IFBLK;
1589 break;
1590 case ICBTAG_FILE_TYPE_CHAR:
1591 inode->i_mode |= S_IFCHR;
1592 break;
1593 case ICBTAG_FILE_TYPE_FIFO:
1594 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1595 break;
1596 case ICBTAG_FILE_TYPE_SOCKET:
1597 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1598 break;
1599 case ICBTAG_FILE_TYPE_SYMLINK:
1600 inode->i_data.a_ops = &udf_symlink_aops;
1601 inode->i_op = &udf_symlink_inode_operations;
1602 inode_nohighmem(inode);
1603 inode->i_mode = S_IFLNK | 0777;
1604 break;
1605 case ICBTAG_FILE_TYPE_MAIN:
1606 udf_debug("METADATA FILE-----\n");
1607 break;
1608 case ICBTAG_FILE_TYPE_MIRROR:
1609 udf_debug("METADATA MIRROR FILE-----\n");
1610 break;
1611 case ICBTAG_FILE_TYPE_BITMAP:
1612 udf_debug("METADATA BITMAP FILE-----\n");
1613 break;
1614 default:
1615 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1616 inode->i_ino, fe->icbTag.fileType);
1617 goto out;
1618 }
1619 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1620 struct deviceSpec *dsea =
1621 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1622 if (dsea) {
1623 init_special_inode(inode, inode->i_mode,
1624 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1625 le32_to_cpu(dsea->minorDeviceIdent)));
1626 /* Developer ID ??? */
1627 } else
1628 goto out;
1629 }
1630 ret = 0;
1631out:
1632 brelse(bh);
1633 return ret;
1634}
1635
1636static int udf_alloc_i_data(struct inode *inode, size_t size)
1637{
1638 struct udf_inode_info *iinfo = UDF_I(inode);
1639 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1640 if (!iinfo->i_data)
1641 return -ENOMEM;
1642 return 0;
1643}
1644
1645static umode_t udf_convert_permissions(struct fileEntry *fe)
1646{
1647 umode_t mode;
1648 uint32_t permissions;
1649 uint32_t flags;
1650
1651 permissions = le32_to_cpu(fe->permissions);
1652 flags = le16_to_cpu(fe->icbTag.flags);
1653
1654 mode = ((permissions) & 0007) |
1655 ((permissions >> 2) & 0070) |
1656 ((permissions >> 4) & 0700) |
1657 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1658 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1659 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1660
1661 return mode;
1662}
1663
1664void udf_update_extra_perms(struct inode *inode, umode_t mode)
1665{
1666 struct udf_inode_info *iinfo = UDF_I(inode);
1667
1668 /*
1669 * UDF 2.01 sec. 3.3.3.3 Note 2:
1670 * In Unix, delete permission tracks write
1671 */
1672 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1673 if (mode & 0200)
1674 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1675 if (mode & 0020)
1676 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1677 if (mode & 0002)
1678 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1679}
1680
1681int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1682{
1683 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1684}
1685
1686static int udf_sync_inode(struct inode *inode)
1687{
1688 return udf_update_inode(inode, 1);
1689}
1690
1691static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1692{
1693 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1694 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1695 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1696 iinfo->i_crtime = time;
1697}
1698
1699static int udf_update_inode(struct inode *inode, int do_sync)
1700{
1701 struct buffer_head *bh = NULL;
1702 struct fileEntry *fe;
1703 struct extendedFileEntry *efe;
1704 uint64_t lb_recorded;
1705 uint32_t udfperms;
1706 uint16_t icbflags;
1707 uint16_t crclen;
1708 int err = 0;
1709 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1710 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1711 struct udf_inode_info *iinfo = UDF_I(inode);
1712
1713 bh = sb_getblk(inode->i_sb,
1714 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1715 if (!bh) {
1716 udf_debug("getblk failure\n");
1717 return -EIO;
1718 }
1719
1720 lock_buffer(bh);
1721 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1722 fe = (struct fileEntry *)bh->b_data;
1723 efe = (struct extendedFileEntry *)bh->b_data;
1724
1725 if (iinfo->i_use) {
1726 struct unallocSpaceEntry *use =
1727 (struct unallocSpaceEntry *)bh->b_data;
1728
1729 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1730 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1731 iinfo->i_data, inode->i_sb->s_blocksize -
1732 sizeof(struct unallocSpaceEntry));
1733 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1734 crclen = sizeof(struct unallocSpaceEntry);
1735
1736 goto finish;
1737 }
1738
1739 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1740 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1741 else
1742 fe->uid = cpu_to_le32(i_uid_read(inode));
1743
1744 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1745 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1746 else
1747 fe->gid = cpu_to_le32(i_gid_read(inode));
1748
1749 udfperms = ((inode->i_mode & 0007)) |
1750 ((inode->i_mode & 0070) << 2) |
1751 ((inode->i_mode & 0700) << 4);
1752
1753 udfperms |= iinfo->i_extraPerms;
1754 fe->permissions = cpu_to_le32(udfperms);
1755
1756 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1757 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1758 else {
1759 if (iinfo->i_hidden)
1760 fe->fileLinkCount = cpu_to_le16(0);
1761 else
1762 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1763 }
1764
1765 fe->informationLength = cpu_to_le64(inode->i_size);
1766
1767 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1768 struct regid *eid;
1769 struct deviceSpec *dsea =
1770 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1771 if (!dsea) {
1772 dsea = (struct deviceSpec *)
1773 udf_add_extendedattr(inode,
1774 sizeof(struct deviceSpec) +
1775 sizeof(struct regid), 12, 0x3);
1776 dsea->attrType = cpu_to_le32(12);
1777 dsea->attrSubtype = 1;
1778 dsea->attrLength = cpu_to_le32(
1779 sizeof(struct deviceSpec) +
1780 sizeof(struct regid));
1781 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1782 }
1783 eid = (struct regid *)dsea->impUse;
1784 memset(eid, 0, sizeof(*eid));
1785 strcpy(eid->ident, UDF_ID_DEVELOPER);
1786 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1787 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1788 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1789 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1790 }
1791
1792 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1793 lb_recorded = 0; /* No extents => no blocks! */
1794 else
1795 lb_recorded =
1796 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1797 (blocksize_bits - 9);
1798
1799 if (iinfo->i_efe == 0) {
1800 memcpy(bh->b_data + sizeof(struct fileEntry),
1801 iinfo->i_data,
1802 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1803 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1804
1805 udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode));
1806 udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode));
1807 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1808 memset(&(fe->impIdent), 0, sizeof(struct regid));
1809 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1810 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1811 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1812 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1813 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1814 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1815 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1816 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1817 crclen = sizeof(struct fileEntry);
1818 } else {
1819 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1820 iinfo->i_data,
1821 inode->i_sb->s_blocksize -
1822 sizeof(struct extendedFileEntry));
1823 efe->objectSize =
1824 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1825 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1826
1827 if (iinfo->i_streamdir) {
1828 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1829
1830 icb_lad->extLocation =
1831 cpu_to_lelb(iinfo->i_locStreamdir);
1832 icb_lad->extLength =
1833 cpu_to_le32(inode->i_sb->s_blocksize);
1834 }
1835
1836 udf_adjust_time(iinfo, inode_get_atime(inode));
1837 udf_adjust_time(iinfo, inode_get_mtime(inode));
1838 udf_adjust_time(iinfo, inode_get_ctime(inode));
1839
1840 udf_time_to_disk_stamp(&efe->accessTime,
1841 inode_get_atime(inode));
1842 udf_time_to_disk_stamp(&efe->modificationTime,
1843 inode_get_mtime(inode));
1844 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1845 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1846
1847 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1848 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1849 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1850 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1851 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1852 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1853 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1854 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1855 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1856 crclen = sizeof(struct extendedFileEntry);
1857 }
1858
1859finish:
1860 if (iinfo->i_strat4096) {
1861 fe->icbTag.strategyType = cpu_to_le16(4096);
1862 fe->icbTag.strategyParameter = cpu_to_le16(1);
1863 fe->icbTag.numEntries = cpu_to_le16(2);
1864 } else {
1865 fe->icbTag.strategyType = cpu_to_le16(4);
1866 fe->icbTag.numEntries = cpu_to_le16(1);
1867 }
1868
1869 if (iinfo->i_use)
1870 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1871 else if (S_ISDIR(inode->i_mode))
1872 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1873 else if (S_ISREG(inode->i_mode))
1874 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1875 else if (S_ISLNK(inode->i_mode))
1876 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1877 else if (S_ISBLK(inode->i_mode))
1878 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1879 else if (S_ISCHR(inode->i_mode))
1880 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1881 else if (S_ISFIFO(inode->i_mode))
1882 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1883 else if (S_ISSOCK(inode->i_mode))
1884 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1885
1886 icbflags = iinfo->i_alloc_type |
1887 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1888 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1889 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1890 (le16_to_cpu(fe->icbTag.flags) &
1891 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1892 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1893
1894 fe->icbTag.flags = cpu_to_le16(icbflags);
1895 if (sbi->s_udfrev >= 0x0200)
1896 fe->descTag.descVersion = cpu_to_le16(3);
1897 else
1898 fe->descTag.descVersion = cpu_to_le16(2);
1899 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1900 fe->descTag.tagLocation = cpu_to_le32(
1901 iinfo->i_location.logicalBlockNum);
1902 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1903 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1904 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1905 crclen));
1906 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1907
1908 set_buffer_uptodate(bh);
1909 unlock_buffer(bh);
1910
1911 /* write the data blocks */
1912 mark_buffer_dirty(bh);
1913 if (do_sync) {
1914 sync_dirty_buffer(bh);
1915 if (buffer_write_io_error(bh)) {
1916 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1917 inode->i_ino);
1918 err = -EIO;
1919 }
1920 }
1921 brelse(bh);
1922
1923 return err;
1924}
1925
1926struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1927 bool hidden_inode)
1928{
1929 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1930 struct inode *inode = iget_locked(sb, block);
1931 int err;
1932
1933 if (!inode)
1934 return ERR_PTR(-ENOMEM);
1935
1936 if (!(inode->i_state & I_NEW)) {
1937 if (UDF_I(inode)->i_hidden != hidden_inode) {
1938 iput(inode);
1939 return ERR_PTR(-EFSCORRUPTED);
1940 }
1941 return inode;
1942 }
1943
1944 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1945 err = udf_read_inode(inode, hidden_inode);
1946 if (err < 0) {
1947 iget_failed(inode);
1948 return ERR_PTR(err);
1949 }
1950 unlock_new_inode(inode);
1951
1952 return inode;
1953}
1954
1955int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1956 struct extent_position *epos)
1957{
1958 struct super_block *sb = inode->i_sb;
1959 struct buffer_head *bh;
1960 struct allocExtDesc *aed;
1961 struct extent_position nepos;
1962 struct kernel_lb_addr neloc;
1963 int ver, adsize;
1964
1965 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1966 adsize = sizeof(struct short_ad);
1967 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1968 adsize = sizeof(struct long_ad);
1969 else
1970 return -EIO;
1971
1972 neloc.logicalBlockNum = block;
1973 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1974
1975 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1976 if (!bh)
1977 return -EIO;
1978 lock_buffer(bh);
1979 memset(bh->b_data, 0x00, sb->s_blocksize);
1980 set_buffer_uptodate(bh);
1981 unlock_buffer(bh);
1982 mark_buffer_dirty_inode(bh, inode);
1983
1984 aed = (struct allocExtDesc *)(bh->b_data);
1985 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1986 aed->previousAllocExtLocation =
1987 cpu_to_le32(epos->block.logicalBlockNum);
1988 }
1989 aed->lengthAllocDescs = cpu_to_le32(0);
1990 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1991 ver = 3;
1992 else
1993 ver = 2;
1994 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1995 sizeof(struct tag));
1996
1997 nepos.block = neloc;
1998 nepos.offset = sizeof(struct allocExtDesc);
1999 nepos.bh = bh;
2000
2001 /*
2002 * Do we have to copy current last extent to make space for indirect
2003 * one?
2004 */
2005 if (epos->offset + adsize > sb->s_blocksize) {
2006 struct kernel_lb_addr cp_loc;
2007 uint32_t cp_len;
2008 int cp_type;
2009
2010 epos->offset -= adsize;
2011 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
2012 cp_len |= ((uint32_t)cp_type) << 30;
2013
2014 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2015 udf_write_aext(inode, epos, &nepos.block,
2016 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2017 } else {
2018 __udf_add_aext(inode, epos, &nepos.block,
2019 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2020 }
2021
2022 brelse(epos->bh);
2023 *epos = nepos;
2024
2025 return 0;
2026}
2027
2028/*
2029 * Append extent at the given position - should be the first free one in inode
2030 * / indirect extent. This function assumes there is enough space in the inode
2031 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2032 */
2033int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2034 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2035{
2036 struct udf_inode_info *iinfo = UDF_I(inode);
2037 struct allocExtDesc *aed;
2038 int adsize;
2039
2040 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2041 adsize = sizeof(struct short_ad);
2042 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2043 adsize = sizeof(struct long_ad);
2044 else
2045 return -EIO;
2046
2047 if (!epos->bh) {
2048 WARN_ON(iinfo->i_lenAlloc !=
2049 epos->offset - udf_file_entry_alloc_offset(inode));
2050 } else {
2051 aed = (struct allocExtDesc *)epos->bh->b_data;
2052 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2053 epos->offset - sizeof(struct allocExtDesc));
2054 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2055 }
2056
2057 udf_write_aext(inode, epos, eloc, elen, inc);
2058
2059 if (!epos->bh) {
2060 iinfo->i_lenAlloc += adsize;
2061 mark_inode_dirty(inode);
2062 } else {
2063 aed = (struct allocExtDesc *)epos->bh->b_data;
2064 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2065 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2066 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2067 udf_update_tag(epos->bh->b_data,
2068 epos->offset + (inc ? 0 : adsize));
2069 else
2070 udf_update_tag(epos->bh->b_data,
2071 sizeof(struct allocExtDesc));
2072 mark_buffer_dirty_inode(epos->bh, inode);
2073 }
2074
2075 return 0;
2076}
2077
2078/*
2079 * Append extent at given position - should be the first free one in inode
2080 * / indirect extent. Takes care of allocating and linking indirect blocks.
2081 */
2082int udf_add_aext(struct inode *inode, struct extent_position *epos,
2083 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2084{
2085 int adsize;
2086 struct super_block *sb = inode->i_sb;
2087
2088 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2089 adsize = sizeof(struct short_ad);
2090 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2091 adsize = sizeof(struct long_ad);
2092 else
2093 return -EIO;
2094
2095 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2096 int err;
2097 udf_pblk_t new_block;
2098
2099 new_block = udf_new_block(sb, NULL,
2100 epos->block.partitionReferenceNum,
2101 epos->block.logicalBlockNum, &err);
2102 if (!new_block)
2103 return -ENOSPC;
2104
2105 err = udf_setup_indirect_aext(inode, new_block, epos);
2106 if (err)
2107 return err;
2108 }
2109
2110 return __udf_add_aext(inode, epos, eloc, elen, inc);
2111}
2112
2113void udf_write_aext(struct inode *inode, struct extent_position *epos,
2114 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2115{
2116 int adsize;
2117 uint8_t *ptr;
2118 struct short_ad *sad;
2119 struct long_ad *lad;
2120 struct udf_inode_info *iinfo = UDF_I(inode);
2121
2122 if (!epos->bh)
2123 ptr = iinfo->i_data + epos->offset -
2124 udf_file_entry_alloc_offset(inode) +
2125 iinfo->i_lenEAttr;
2126 else
2127 ptr = epos->bh->b_data + epos->offset;
2128
2129 switch (iinfo->i_alloc_type) {
2130 case ICBTAG_FLAG_AD_SHORT:
2131 sad = (struct short_ad *)ptr;
2132 sad->extLength = cpu_to_le32(elen);
2133 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2134 adsize = sizeof(struct short_ad);
2135 break;
2136 case ICBTAG_FLAG_AD_LONG:
2137 lad = (struct long_ad *)ptr;
2138 lad->extLength = cpu_to_le32(elen);
2139 lad->extLocation = cpu_to_lelb(*eloc);
2140 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2141 adsize = sizeof(struct long_ad);
2142 break;
2143 default:
2144 return;
2145 }
2146
2147 if (epos->bh) {
2148 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2149 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2150 struct allocExtDesc *aed =
2151 (struct allocExtDesc *)epos->bh->b_data;
2152 udf_update_tag(epos->bh->b_data,
2153 le32_to_cpu(aed->lengthAllocDescs) +
2154 sizeof(struct allocExtDesc));
2155 }
2156 mark_buffer_dirty_inode(epos->bh, inode);
2157 } else {
2158 mark_inode_dirty(inode);
2159 }
2160
2161 if (inc)
2162 epos->offset += adsize;
2163}
2164
2165/*
2166 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2167 * someone does some weird stuff.
2168 */
2169#define UDF_MAX_INDIR_EXTS 16
2170
2171int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2172 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2173{
2174 int8_t etype;
2175 unsigned int indirections = 0;
2176
2177 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2178 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2179 udf_pblk_t block;
2180
2181 if (++indirections > UDF_MAX_INDIR_EXTS) {
2182 udf_err(inode->i_sb,
2183 "too many indirect extents in inode %lu\n",
2184 inode->i_ino);
2185 return -1;
2186 }
2187
2188 epos->block = *eloc;
2189 epos->offset = sizeof(struct allocExtDesc);
2190 brelse(epos->bh);
2191 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2192 epos->bh = sb_bread(inode->i_sb, block);
2193 if (!epos->bh) {
2194 udf_debug("reading block %u failed!\n", block);
2195 return -1;
2196 }
2197 }
2198
2199 return etype;
2200}
2201
2202int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2203 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2204{
2205 int alen;
2206 int8_t etype;
2207 uint8_t *ptr;
2208 struct short_ad *sad;
2209 struct long_ad *lad;
2210 struct udf_inode_info *iinfo = UDF_I(inode);
2211
2212 if (!epos->bh) {
2213 if (!epos->offset)
2214 epos->offset = udf_file_entry_alloc_offset(inode);
2215 ptr = iinfo->i_data + epos->offset -
2216 udf_file_entry_alloc_offset(inode) +
2217 iinfo->i_lenEAttr;
2218 alen = udf_file_entry_alloc_offset(inode) +
2219 iinfo->i_lenAlloc;
2220 } else {
2221 if (!epos->offset)
2222 epos->offset = sizeof(struct allocExtDesc);
2223 ptr = epos->bh->b_data + epos->offset;
2224 alen = sizeof(struct allocExtDesc) +
2225 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2226 lengthAllocDescs);
2227 }
2228
2229 switch (iinfo->i_alloc_type) {
2230 case ICBTAG_FLAG_AD_SHORT:
2231 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2232 if (!sad)
2233 return -1;
2234 etype = le32_to_cpu(sad->extLength) >> 30;
2235 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2236 eloc->partitionReferenceNum =
2237 iinfo->i_location.partitionReferenceNum;
2238 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2239 break;
2240 case ICBTAG_FLAG_AD_LONG:
2241 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2242 if (!lad)
2243 return -1;
2244 etype = le32_to_cpu(lad->extLength) >> 30;
2245 *eloc = lelb_to_cpu(lad->extLocation);
2246 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2247 break;
2248 default:
2249 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2250 return -1;
2251 }
2252
2253 return etype;
2254}
2255
2256static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2257 struct kernel_lb_addr neloc, uint32_t nelen)
2258{
2259 struct kernel_lb_addr oeloc;
2260 uint32_t oelen;
2261 int8_t etype;
2262 int err;
2263
2264 if (epos.bh)
2265 get_bh(epos.bh);
2266
2267 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2268 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2269 neloc = oeloc;
2270 nelen = (etype << 30) | oelen;
2271 }
2272 err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2273 brelse(epos.bh);
2274
2275 return err;
2276}
2277
2278int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2279{
2280 struct extent_position oepos;
2281 int adsize;
2282 int8_t etype;
2283 struct allocExtDesc *aed;
2284 struct udf_inode_info *iinfo;
2285 struct kernel_lb_addr eloc;
2286 uint32_t elen;
2287
2288 if (epos.bh) {
2289 get_bh(epos.bh);
2290 get_bh(epos.bh);
2291 }
2292
2293 iinfo = UDF_I(inode);
2294 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2295 adsize = sizeof(struct short_ad);
2296 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2297 adsize = sizeof(struct long_ad);
2298 else
2299 adsize = 0;
2300
2301 oepos = epos;
2302 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2303 return -1;
2304
2305 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2306 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2307 if (oepos.bh != epos.bh) {
2308 oepos.block = epos.block;
2309 brelse(oepos.bh);
2310 get_bh(epos.bh);
2311 oepos.bh = epos.bh;
2312 oepos.offset = epos.offset - adsize;
2313 }
2314 }
2315 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2316 elen = 0;
2317
2318 if (epos.bh != oepos.bh) {
2319 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2320 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2321 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2322 if (!oepos.bh) {
2323 iinfo->i_lenAlloc -= (adsize * 2);
2324 mark_inode_dirty(inode);
2325 } else {
2326 aed = (struct allocExtDesc *)oepos.bh->b_data;
2327 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2328 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2329 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2330 udf_update_tag(oepos.bh->b_data,
2331 oepos.offset - (2 * adsize));
2332 else
2333 udf_update_tag(oepos.bh->b_data,
2334 sizeof(struct allocExtDesc));
2335 mark_buffer_dirty_inode(oepos.bh, inode);
2336 }
2337 } else {
2338 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2339 if (!oepos.bh) {
2340 iinfo->i_lenAlloc -= adsize;
2341 mark_inode_dirty(inode);
2342 } else {
2343 aed = (struct allocExtDesc *)oepos.bh->b_data;
2344 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2345 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2346 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2347 udf_update_tag(oepos.bh->b_data,
2348 epos.offset - adsize);
2349 else
2350 udf_update_tag(oepos.bh->b_data,
2351 sizeof(struct allocExtDesc));
2352 mark_buffer_dirty_inode(oepos.bh, inode);
2353 }
2354 }
2355
2356 brelse(epos.bh);
2357 brelse(oepos.bh);
2358
2359 return (elen >> 30);
2360}
2361
2362int8_t inode_bmap(struct inode *inode, sector_t block,
2363 struct extent_position *pos, struct kernel_lb_addr *eloc,
2364 uint32_t *elen, sector_t *offset)
2365{
2366 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2367 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2368 int8_t etype;
2369 struct udf_inode_info *iinfo;
2370
2371 iinfo = UDF_I(inode);
2372 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2373 pos->offset = 0;
2374 pos->block = iinfo->i_location;
2375 pos->bh = NULL;
2376 }
2377 *elen = 0;
2378 do {
2379 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2380 if (etype == -1) {
2381 *offset = (bcount - lbcount) >> blocksize_bits;
2382 iinfo->i_lenExtents = lbcount;
2383 return -1;
2384 }
2385 lbcount += *elen;
2386 } while (lbcount <= bcount);
2387 /* update extent cache */
2388 udf_update_extent_cache(inode, lbcount - *elen, pos);
2389 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2390
2391 return etype;
2392}