Linux Audio

Check our new training course

Loading...
v5.14.15
   1/*
   2 * inode.c
   3 *
   4 * PURPOSE
   5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *  This file is distributed under the terms of the GNU General Public
   9 *  License (GPL). Copies of the GPL can be obtained from:
  10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *  Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1998 Dave Boynton
  14 *  (C) 1998-2004 Ben Fennema
  15 *  (C) 1999-2000 Stelias Computing Inc
  16 *
  17 * HISTORY
  18 *
  19 *  10/04/98 dgb  Added rudimentary directory functions
  20 *  10/07/98      Fully working udf_block_map! It works!
  21 *  11/25/98      bmap altered to better support extents
  22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23 *                and udf_read_inode
  24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25 *                block boundaries (which is not actually allowed)
  26 *  12/20/98      added support for strategy 4096
  27 *  03/07/99      rewrote udf_block_map (again)
  28 *                New funcs, inode_bmap, udf_next_aext
  29 *  04/19/99      Support for writing device EA's for major/minor #
  30 */
  31
  32#include "udfdecl.h"
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/pagemap.h>
  36#include <linux/writeback.h>
  37#include <linux/slab.h>
  38#include <linux/crc-itu-t.h>
  39#include <linux/mpage.h>
  40#include <linux/uio.h>
  41#include <linux/bio.h>
  42
  43#include "udf_i.h"
  44#include "udf_sb.h"
  45
  46#define EXTENT_MERGE_SIZE 5
  47
  48#define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
  49			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
  50			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
  51
  52#define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
  53			 FE_PERM_O_DELETE)
  54
  55static umode_t udf_convert_permissions(struct fileEntry *);
  56static int udf_update_inode(struct inode *, int);
  57static int udf_sync_inode(struct inode *inode);
  58static int udf_alloc_i_data(struct inode *inode, size_t size);
  59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
  60static int8_t udf_insert_aext(struct inode *, struct extent_position,
  61			      struct kernel_lb_addr, uint32_t);
  62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
  63			      struct kernel_long_ad *, int *);
  64static void udf_prealloc_extents(struct inode *, int, int,
  65				 struct kernel_long_ad *, int *);
  66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
  67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
  68			       int, struct extent_position *);
  69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
  70
  71static void __udf_clear_extent_cache(struct inode *inode)
  72{
  73	struct udf_inode_info *iinfo = UDF_I(inode);
  74
  75	if (iinfo->cached_extent.lstart != -1) {
  76		brelse(iinfo->cached_extent.epos.bh);
  77		iinfo->cached_extent.lstart = -1;
  78	}
  79}
  80
  81/* Invalidate extent cache */
  82static void udf_clear_extent_cache(struct inode *inode)
  83{
  84	struct udf_inode_info *iinfo = UDF_I(inode);
  85
  86	spin_lock(&iinfo->i_extent_cache_lock);
  87	__udf_clear_extent_cache(inode);
  88	spin_unlock(&iinfo->i_extent_cache_lock);
  89}
  90
  91/* Return contents of extent cache */
  92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  93				 loff_t *lbcount, struct extent_position *pos)
  94{
  95	struct udf_inode_info *iinfo = UDF_I(inode);
  96	int ret = 0;
  97
  98	spin_lock(&iinfo->i_extent_cache_lock);
  99	if ((iinfo->cached_extent.lstart <= bcount) &&
 100	    (iinfo->cached_extent.lstart != -1)) {
 101		/* Cache hit */
 102		*lbcount = iinfo->cached_extent.lstart;
 103		memcpy(pos, &iinfo->cached_extent.epos,
 104		       sizeof(struct extent_position));
 105		if (pos->bh)
 106			get_bh(pos->bh);
 107		ret = 1;
 108	}
 109	spin_unlock(&iinfo->i_extent_cache_lock);
 110	return ret;
 111}
 112
 113/* Add extent to extent cache */
 114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 115				    struct extent_position *pos)
 116{
 117	struct udf_inode_info *iinfo = UDF_I(inode);
 118
 119	spin_lock(&iinfo->i_extent_cache_lock);
 120	/* Invalidate previously cached extent */
 121	__udf_clear_extent_cache(inode);
 122	if (pos->bh)
 123		get_bh(pos->bh);
 124	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
 125	iinfo->cached_extent.lstart = estart;
 126	switch (iinfo->i_alloc_type) {
 127	case ICBTAG_FLAG_AD_SHORT:
 128		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
 129		break;
 130	case ICBTAG_FLAG_AD_LONG:
 131		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
 132		break;
 133	}
 134	spin_unlock(&iinfo->i_extent_cache_lock);
 135}
 136
 137void udf_evict_inode(struct inode *inode)
 138{
 139	struct udf_inode_info *iinfo = UDF_I(inode);
 140	int want_delete = 0;
 141
 142	if (!is_bad_inode(inode)) {
 143		if (!inode->i_nlink) {
 144			want_delete = 1;
 145			udf_setsize(inode, 0);
 146			udf_update_inode(inode, IS_SYNC(inode));
 147		}
 148		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 149		    inode->i_size != iinfo->i_lenExtents) {
 150			udf_warn(inode->i_sb,
 151				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 152				 inode->i_ino, inode->i_mode,
 153				 (unsigned long long)inode->i_size,
 154				 (unsigned long long)iinfo->i_lenExtents);
 155		}
 156	}
 157	truncate_inode_pages_final(&inode->i_data);
 158	invalidate_inode_buffers(inode);
 159	clear_inode(inode);
 160	kfree(iinfo->i_data);
 161	iinfo->i_data = NULL;
 162	udf_clear_extent_cache(inode);
 163	if (want_delete) {
 164		udf_free_inode(inode);
 165	}
 166}
 167
 168static void udf_write_failed(struct address_space *mapping, loff_t to)
 169{
 170	struct inode *inode = mapping->host;
 171	struct udf_inode_info *iinfo = UDF_I(inode);
 172	loff_t isize = inode->i_size;
 173
 174	if (to > isize) {
 175		truncate_pagecache(inode, isize);
 176		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 177			down_write(&iinfo->i_data_sem);
 178			udf_clear_extent_cache(inode);
 179			udf_truncate_extents(inode);
 180			up_write(&iinfo->i_data_sem);
 181		}
 182	}
 183}
 184
 185static int udf_writepage(struct page *page, struct writeback_control *wbc)
 186{
 187	return block_write_full_page(page, udf_get_block, wbc);
 188}
 189
 190static int udf_writepages(struct address_space *mapping,
 191			struct writeback_control *wbc)
 192{
 193	return mpage_writepages(mapping, wbc, udf_get_block);
 194}
 195
 196static int udf_readpage(struct file *file, struct page *page)
 197{
 198	return mpage_readpage(page, udf_get_block);
 199}
 200
 201static void udf_readahead(struct readahead_control *rac)
 202{
 203	mpage_readahead(rac, udf_get_block);
 204}
 205
 206static int udf_write_begin(struct file *file, struct address_space *mapping,
 207			loff_t pos, unsigned len, unsigned flags,
 208			struct page **pagep, void **fsdata)
 209{
 210	int ret;
 211
 212	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
 213	if (unlikely(ret))
 214		udf_write_failed(mapping, pos + len);
 215	return ret;
 216}
 217
 218static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 219{
 220	struct file *file = iocb->ki_filp;
 221	struct address_space *mapping = file->f_mapping;
 222	struct inode *inode = mapping->host;
 223	size_t count = iov_iter_count(iter);
 224	ssize_t ret;
 225
 226	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 227	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 228		udf_write_failed(mapping, iocb->ki_pos + count);
 229	return ret;
 230}
 231
 232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 233{
 234	return generic_block_bmap(mapping, block, udf_get_block);
 235}
 236
 237const struct address_space_operations udf_aops = {
 238	.set_page_dirty	= __set_page_dirty_buffers,
 239	.readpage	= udf_readpage,
 
 240	.readahead	= udf_readahead,
 241	.writepage	= udf_writepage,
 242	.writepages	= udf_writepages,
 243	.write_begin	= udf_write_begin,
 244	.write_end	= generic_write_end,
 245	.direct_IO	= udf_direct_IO,
 246	.bmap		= udf_bmap,
 
 247};
 248
 249/*
 250 * Expand file stored in ICB to a normal one-block-file
 251 *
 252 * This function requires i_data_sem for writing and releases it.
 253 * This function requires i_mutex held
 254 */
 255int udf_expand_file_adinicb(struct inode *inode)
 256{
 257	struct page *page;
 258	char *kaddr;
 259	struct udf_inode_info *iinfo = UDF_I(inode);
 260	int err;
 261	struct writeback_control udf_wbc = {
 262		.sync_mode = WB_SYNC_NONE,
 263		.nr_to_write = 1,
 264	};
 265
 266	WARN_ON_ONCE(!inode_is_locked(inode));
 267	if (!iinfo->i_lenAlloc) {
 268		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 269			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 270		else
 271			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 272		/* from now on we have normal address_space methods */
 273		inode->i_data.a_ops = &udf_aops;
 274		up_write(&iinfo->i_data_sem);
 275		mark_inode_dirty(inode);
 276		return 0;
 277	}
 278	/*
 279	 * Release i_data_sem so that we can lock a page - page lock ranks
 280	 * above i_data_sem. i_mutex still protects us against file changes.
 281	 */
 282	up_write(&iinfo->i_data_sem);
 283
 284	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 285	if (!page)
 286		return -ENOMEM;
 287
 288	if (!PageUptodate(page)) {
 289		kaddr = kmap_atomic(page);
 290		memset(kaddr + iinfo->i_lenAlloc, 0x00,
 291		       PAGE_SIZE - iinfo->i_lenAlloc);
 292		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
 293			iinfo->i_lenAlloc);
 294		flush_dcache_page(page);
 295		SetPageUptodate(page);
 296		kunmap_atomic(kaddr);
 297	}
 298	down_write(&iinfo->i_data_sem);
 299	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
 300	       iinfo->i_lenAlloc);
 301	iinfo->i_lenAlloc = 0;
 302	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 303		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 304	else
 305		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 306	/* from now on we have normal address_space methods */
 307	inode->i_data.a_ops = &udf_aops;
 
 
 308	up_write(&iinfo->i_data_sem);
 309	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
 310	if (err) {
 311		/* Restore everything back so that we don't lose data... */
 312		lock_page(page);
 313		down_write(&iinfo->i_data_sem);
 314		kaddr = kmap_atomic(page);
 315		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
 316		kunmap_atomic(kaddr);
 317		unlock_page(page);
 318		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 319		inode->i_data.a_ops = &udf_adinicb_aops;
 
 320		up_write(&iinfo->i_data_sem);
 321	}
 322	put_page(page);
 323	mark_inode_dirty(inode);
 324
 325	return err;
 326}
 327
 328struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
 329					    udf_pblk_t *block, int *err)
 330{
 331	udf_pblk_t newblock;
 332	struct buffer_head *dbh = NULL;
 333	struct kernel_lb_addr eloc;
 334	uint8_t alloctype;
 335	struct extent_position epos;
 336
 337	struct udf_fileident_bh sfibh, dfibh;
 338	loff_t f_pos = udf_ext0_offset(inode);
 339	int size = udf_ext0_offset(inode) + inode->i_size;
 340	struct fileIdentDesc cfi, *sfi, *dfi;
 341	struct udf_inode_info *iinfo = UDF_I(inode);
 342
 343	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 344		alloctype = ICBTAG_FLAG_AD_SHORT;
 345	else
 346		alloctype = ICBTAG_FLAG_AD_LONG;
 347
 348	if (!inode->i_size) {
 349		iinfo->i_alloc_type = alloctype;
 350		mark_inode_dirty(inode);
 351		return NULL;
 352	}
 353
 354	/* alloc block, and copy data to it */
 355	*block = udf_new_block(inode->i_sb, inode,
 356			       iinfo->i_location.partitionReferenceNum,
 357			       iinfo->i_location.logicalBlockNum, err);
 358	if (!(*block))
 359		return NULL;
 360	newblock = udf_get_pblock(inode->i_sb, *block,
 361				  iinfo->i_location.partitionReferenceNum,
 362				0);
 363	if (!newblock)
 364		return NULL;
 365	dbh = udf_tgetblk(inode->i_sb, newblock);
 366	if (!dbh)
 367		return NULL;
 368	lock_buffer(dbh);
 369	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 370	set_buffer_uptodate(dbh);
 371	unlock_buffer(dbh);
 372	mark_buffer_dirty_inode(dbh, inode);
 373
 374	sfibh.soffset = sfibh.eoffset =
 375			f_pos & (inode->i_sb->s_blocksize - 1);
 376	sfibh.sbh = sfibh.ebh = NULL;
 377	dfibh.soffset = dfibh.eoffset = 0;
 378	dfibh.sbh = dfibh.ebh = dbh;
 379	while (f_pos < size) {
 380		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 381		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 382					 NULL, NULL, NULL);
 383		if (!sfi) {
 384			brelse(dbh);
 385			return NULL;
 386		}
 387		iinfo->i_alloc_type = alloctype;
 388		sfi->descTag.tagLocation = cpu_to_le32(*block);
 389		dfibh.soffset = dfibh.eoffset;
 390		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 391		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 392		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 393				 sfi->fileIdent +
 394					le16_to_cpu(sfi->lengthOfImpUse))) {
 395			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 396			brelse(dbh);
 397			return NULL;
 398		}
 399	}
 400	mark_buffer_dirty_inode(dbh, inode);
 401
 402	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
 403	iinfo->i_lenAlloc = 0;
 404	eloc.logicalBlockNum = *block;
 405	eloc.partitionReferenceNum =
 406				iinfo->i_location.partitionReferenceNum;
 407	iinfo->i_lenExtents = inode->i_size;
 408	epos.bh = NULL;
 409	epos.block = iinfo->i_location;
 410	epos.offset = udf_file_entry_alloc_offset(inode);
 411	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 412	/* UniqueID stuff */
 413
 414	brelse(epos.bh);
 415	mark_inode_dirty(inode);
 416	return dbh;
 417}
 418
 419static int udf_get_block(struct inode *inode, sector_t block,
 420			 struct buffer_head *bh_result, int create)
 421{
 422	int err, new;
 423	sector_t phys = 0;
 424	struct udf_inode_info *iinfo;
 425
 426	if (!create) {
 427		phys = udf_block_map(inode, block);
 428		if (phys)
 429			map_bh(bh_result, inode->i_sb, phys);
 430		return 0;
 431	}
 432
 433	err = -EIO;
 434	new = 0;
 435	iinfo = UDF_I(inode);
 436
 437	down_write(&iinfo->i_data_sem);
 438	if (block == iinfo->i_next_alloc_block + 1) {
 439		iinfo->i_next_alloc_block++;
 440		iinfo->i_next_alloc_goal++;
 441	}
 442
 
 
 
 
 
 
 443	udf_clear_extent_cache(inode);
 444	phys = inode_getblk(inode, block, &err, &new);
 445	if (!phys)
 446		goto abort;
 447
 448	if (new)
 449		set_buffer_new(bh_result);
 450	map_bh(bh_result, inode->i_sb, phys);
 451
 452abort:
 453	up_write(&iinfo->i_data_sem);
 454	return err;
 455}
 456
 457static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
 458				      int create, int *err)
 459{
 460	struct buffer_head *bh;
 461	struct buffer_head dummy;
 462
 463	dummy.b_state = 0;
 464	dummy.b_blocknr = -1000;
 465	*err = udf_get_block(inode, block, &dummy, create);
 466	if (!*err && buffer_mapped(&dummy)) {
 467		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 468		if (buffer_new(&dummy)) {
 469			lock_buffer(bh);
 470			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 471			set_buffer_uptodate(bh);
 472			unlock_buffer(bh);
 473			mark_buffer_dirty_inode(bh, inode);
 474		}
 475		return bh;
 476	}
 477
 478	return NULL;
 479}
 480
 481/* Extend the file with new blocks totaling 'new_block_bytes',
 482 * return the number of extents added
 483 */
 484static int udf_do_extend_file(struct inode *inode,
 485			      struct extent_position *last_pos,
 486			      struct kernel_long_ad *last_ext,
 487			      loff_t new_block_bytes)
 488{
 489	uint32_t add;
 490	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 491	struct super_block *sb = inode->i_sb;
 492	struct kernel_lb_addr prealloc_loc = {};
 493	uint32_t prealloc_len = 0;
 494	struct udf_inode_info *iinfo;
 495	int err;
 496
 497	/* The previous extent is fake and we should not extend by anything
 498	 * - there's nothing to do... */
 499	if (!new_block_bytes && fake)
 500		return 0;
 501
 502	iinfo = UDF_I(inode);
 503	/* Round the last extent up to a multiple of block size */
 504	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 505		last_ext->extLength =
 506			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 507			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 508			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 509		iinfo->i_lenExtents =
 510			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 511			~(sb->s_blocksize - 1);
 512	}
 513
 514	/* Last extent are just preallocated blocks? */
 515	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 516						EXT_NOT_RECORDED_ALLOCATED) {
 517		/* Save the extent so that we can reattach it to the end */
 518		prealloc_loc = last_ext->extLocation;
 519		prealloc_len = last_ext->extLength;
 520		/* Mark the extent as a hole */
 521		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 522			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 523		last_ext->extLocation.logicalBlockNum = 0;
 524		last_ext->extLocation.partitionReferenceNum = 0;
 525	}
 526
 527	/* Can we merge with the previous extent? */
 528	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 529					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 530		add = (1 << 30) - sb->s_blocksize -
 531			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 532		if (add > new_block_bytes)
 533			add = new_block_bytes;
 534		new_block_bytes -= add;
 535		last_ext->extLength += add;
 536	}
 537
 538	if (fake) {
 539		udf_add_aext(inode, last_pos, &last_ext->extLocation,
 540			     last_ext->extLength, 1);
 541		count++;
 542	} else {
 543		struct kernel_lb_addr tmploc;
 544		uint32_t tmplen;
 545
 546		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 547				last_ext->extLength, 1);
 548
 549		/*
 550		 * We've rewritten the last extent. If we are going to add
 551		 * more extents, we may need to enter possible following
 552		 * empty indirect extent.
 553		 */
 554		if (new_block_bytes || prealloc_len)
 555			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
 556	}
 557
 558	/* Managed to do everything necessary? */
 559	if (!new_block_bytes)
 560		goto out;
 561
 562	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 563	last_ext->extLocation.logicalBlockNum = 0;
 564	last_ext->extLocation.partitionReferenceNum = 0;
 565	add = (1 << 30) - sb->s_blocksize;
 566	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
 567
 568	/* Create enough extents to cover the whole hole */
 569	while (new_block_bytes > add) {
 570		new_block_bytes -= add;
 571		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 572				   last_ext->extLength, 1);
 573		if (err)
 574			return err;
 575		count++;
 576	}
 577	if (new_block_bytes) {
 578		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 579			new_block_bytes;
 580		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 581				   last_ext->extLength, 1);
 582		if (err)
 583			return err;
 584		count++;
 585	}
 586
 587out:
 588	/* Do we have some preallocated blocks saved? */
 589	if (prealloc_len) {
 590		err = udf_add_aext(inode, last_pos, &prealloc_loc,
 591				   prealloc_len, 1);
 592		if (err)
 593			return err;
 594		last_ext->extLocation = prealloc_loc;
 595		last_ext->extLength = prealloc_len;
 596		count++;
 597	}
 598
 599	/* last_pos should point to the last written extent... */
 600	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 601		last_pos->offset -= sizeof(struct short_ad);
 602	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 603		last_pos->offset -= sizeof(struct long_ad);
 604	else
 605		return -EIO;
 606
 607	return count;
 608}
 609
 610/* Extend the final block of the file to final_block_len bytes */
 611static void udf_do_extend_final_block(struct inode *inode,
 612				      struct extent_position *last_pos,
 613				      struct kernel_long_ad *last_ext,
 614				      uint32_t final_block_len)
 615{
 616	struct super_block *sb = inode->i_sb;
 617	uint32_t added_bytes;
 618
 619	added_bytes = final_block_len -
 620		      (last_ext->extLength & (sb->s_blocksize - 1));
 
 
 
 
 
 621	last_ext->extLength += added_bytes;
 622	UDF_I(inode)->i_lenExtents += added_bytes;
 623
 624	udf_write_aext(inode, last_pos, &last_ext->extLocation,
 625			last_ext->extLength, 1);
 626}
 627
 628static int udf_extend_file(struct inode *inode, loff_t newsize)
 629{
 630
 631	struct extent_position epos;
 632	struct kernel_lb_addr eloc;
 633	uint32_t elen;
 634	int8_t etype;
 635	struct super_block *sb = inode->i_sb;
 636	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 637	unsigned long partial_final_block;
 638	int adsize;
 639	struct udf_inode_info *iinfo = UDF_I(inode);
 640	struct kernel_long_ad extent;
 641	int err = 0;
 642	int within_final_block;
 643
 644	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 645		adsize = sizeof(struct short_ad);
 646	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 647		adsize = sizeof(struct long_ad);
 648	else
 649		BUG();
 650
 
 
 
 
 
 
 651	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 652	within_final_block = (etype != -1);
 
 
 
 653
 654	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 655	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 656		/* File has no extents at all or has empty last
 657		 * indirect extent! Create a fake extent... */
 658		extent.extLocation.logicalBlockNum = 0;
 659		extent.extLocation.partitionReferenceNum = 0;
 660		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 661	} else {
 662		epos.offset -= adsize;
 663		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 664				      &extent.extLength, 0);
 665		extent.extLength |= etype << 30;
 666	}
 667
 668	partial_final_block = newsize & (sb->s_blocksize - 1);
 
 669
 670	/* File has extent covering the new size (could happen when extending
 671	 * inside a block)?
 672	 */
 673	if (within_final_block) {
 674		/* Extending file within the last file block */
 675		udf_do_extend_final_block(inode, &epos, &extent,
 676					  partial_final_block);
 677	} else {
 678		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
 679			     partial_final_block;
 680		err = udf_do_extend_file(inode, &epos, &extent, add);
 681	}
 682
 683	if (err < 0)
 684		goto out;
 685	err = 0;
 686	iinfo->i_lenExtents = newsize;
 687out:
 688	brelse(epos.bh);
 689	return err;
 690}
 691
 692static sector_t inode_getblk(struct inode *inode, sector_t block,
 693			     int *err, int *new)
 694{
 695	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 696	struct extent_position prev_epos, cur_epos, next_epos;
 697	int count = 0, startnum = 0, endnum = 0;
 698	uint32_t elen = 0, tmpelen;
 699	struct kernel_lb_addr eloc, tmpeloc;
 700	int c = 1;
 701	loff_t lbcount = 0, b_off = 0;
 702	udf_pblk_t newblocknum, newblock;
 703	sector_t offset = 0;
 704	int8_t etype;
 705	struct udf_inode_info *iinfo = UDF_I(inode);
 706	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 707	int lastblock = 0;
 708	bool isBeyondEOF;
 709
 710	*err = 0;
 711	*new = 0;
 712	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 713	prev_epos.block = iinfo->i_location;
 714	prev_epos.bh = NULL;
 715	cur_epos = next_epos = prev_epos;
 716	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 717
 718	/* find the extent which contains the block we are looking for.
 719	   alternate between laarr[0] and laarr[1] for locations of the
 720	   current extent, and the previous extent */
 721	do {
 722		if (prev_epos.bh != cur_epos.bh) {
 723			brelse(prev_epos.bh);
 724			get_bh(cur_epos.bh);
 725			prev_epos.bh = cur_epos.bh;
 726		}
 727		if (cur_epos.bh != next_epos.bh) {
 728			brelse(cur_epos.bh);
 729			get_bh(next_epos.bh);
 730			cur_epos.bh = next_epos.bh;
 731		}
 732
 733		lbcount += elen;
 734
 735		prev_epos.block = cur_epos.block;
 736		cur_epos.block = next_epos.block;
 737
 738		prev_epos.offset = cur_epos.offset;
 739		cur_epos.offset = next_epos.offset;
 740
 741		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 742		if (etype == -1)
 743			break;
 744
 745		c = !c;
 746
 747		laarr[c].extLength = (etype << 30) | elen;
 748		laarr[c].extLocation = eloc;
 749
 750		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 751			pgoal = eloc.logicalBlockNum +
 752				((elen + inode->i_sb->s_blocksize - 1) >>
 753				 inode->i_sb->s_blocksize_bits);
 754
 755		count++;
 756	} while (lbcount + elen <= b_off);
 757
 758	b_off -= lbcount;
 759	offset = b_off >> inode->i_sb->s_blocksize_bits;
 760	/*
 761	 * Move prev_epos and cur_epos into indirect extent if we are at
 762	 * the pointer to it
 763	 */
 764	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 765	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 766
 767	/* if the extent is allocated and recorded, return the block
 768	   if the extent is not a multiple of the blocksize, round up */
 769
 770	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 771		if (elen & (inode->i_sb->s_blocksize - 1)) {
 772			elen = EXT_RECORDED_ALLOCATED |
 773				((elen + inode->i_sb->s_blocksize - 1) &
 774				 ~(inode->i_sb->s_blocksize - 1));
 775			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 776		}
 777		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 778		goto out_free;
 779	}
 780
 781	/* Are we beyond EOF? */
 782	if (etype == -1) {
 783		int ret;
 784		loff_t hole_len;
 
 785		isBeyondEOF = true;
 786		if (count) {
 787			if (c)
 788				laarr[0] = laarr[1];
 789			startnum = 1;
 790		} else {
 791			/* Create a fake extent when there's not one */
 792			memset(&laarr[0].extLocation, 0x00,
 793				sizeof(struct kernel_lb_addr));
 794			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 795			/* Will udf_do_extend_file() create real extent from
 796			   a fake one? */
 797			startnum = (offset > 0);
 798		}
 799		/* Create extents for the hole between EOF and offset */
 800		hole_len = (loff_t)offset << inode->i_blkbits;
 801		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
 802		if (ret < 0) {
 803			*err = ret;
 804			newblock = 0;
 805			goto out_free;
 806		}
 807		c = 0;
 808		offset = 0;
 809		count += ret;
 810		/* We are not covered by a preallocated extent? */
 811		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 812						EXT_NOT_RECORDED_ALLOCATED) {
 813			/* Is there any real extent? - otherwise we overwrite
 814			 * the fake one... */
 815			if (count)
 816				c = !c;
 817			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 818				inode->i_sb->s_blocksize;
 819			memset(&laarr[c].extLocation, 0x00,
 820				sizeof(struct kernel_lb_addr));
 821			count++;
 822		}
 823		endnum = c + 1;
 824		lastblock = 1;
 825	} else {
 826		isBeyondEOF = false;
 827		endnum = startnum = ((count > 2) ? 2 : count);
 828
 829		/* if the current extent is in position 0,
 830		   swap it with the previous */
 831		if (!c && count != 1) {
 832			laarr[2] = laarr[0];
 833			laarr[0] = laarr[1];
 834			laarr[1] = laarr[2];
 835			c = 1;
 836		}
 837
 838		/* if the current block is located in an extent,
 839		   read the next extent */
 840		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 841		if (etype != -1) {
 842			laarr[c + 1].extLength = (etype << 30) | elen;
 843			laarr[c + 1].extLocation = eloc;
 844			count++;
 845			startnum++;
 846			endnum++;
 847		} else
 848			lastblock = 1;
 849	}
 850
 851	/* if the current extent is not recorded but allocated, get the
 852	 * block in the extent corresponding to the requested block */
 853	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 854		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 855	else { /* otherwise, allocate a new block */
 856		if (iinfo->i_next_alloc_block == block)
 857			goal = iinfo->i_next_alloc_goal;
 858
 859		if (!goal) {
 860			if (!(goal = pgoal)) /* XXX: what was intended here? */
 861				goal = iinfo->i_location.logicalBlockNum + 1;
 862		}
 863
 864		newblocknum = udf_new_block(inode->i_sb, inode,
 865				iinfo->i_location.partitionReferenceNum,
 866				goal, err);
 867		if (!newblocknum) {
 868			*err = -ENOSPC;
 869			newblock = 0;
 870			goto out_free;
 871		}
 872		if (isBeyondEOF)
 873			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 874	}
 875
 876	/* if the extent the requsted block is located in contains multiple
 877	 * blocks, split the extent into at most three extents. blocks prior
 878	 * to requested block, requested block, and blocks after requested
 879	 * block */
 880	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 881
 882	/* We preallocate blocks only for regular files. It also makes sense
 883	 * for directories but there's a problem when to drop the
 884	 * preallocation. We might use some delayed work for that but I feel
 885	 * it's overengineering for a filesystem like UDF. */
 886	if (S_ISREG(inode->i_mode))
 887		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 888
 889	/* merge any continuous blocks in laarr */
 890	udf_merge_extents(inode, laarr, &endnum);
 891
 892	/* write back the new extents, inserting new extents if the new number
 893	 * of extents is greater than the old number, and deleting extents if
 894	 * the new number of extents is less than the old number */
 895	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 896
 897	newblock = udf_get_pblock(inode->i_sb, newblocknum,
 898				iinfo->i_location.partitionReferenceNum, 0);
 899	if (!newblock) {
 900		*err = -EIO;
 901		goto out_free;
 902	}
 903	*new = 1;
 904	iinfo->i_next_alloc_block = block;
 905	iinfo->i_next_alloc_goal = newblocknum;
 906	inode->i_ctime = current_time(inode);
 907
 908	if (IS_SYNC(inode))
 909		udf_sync_inode(inode);
 910	else
 911		mark_inode_dirty(inode);
 912out_free:
 913	brelse(prev_epos.bh);
 914	brelse(cur_epos.bh);
 915	brelse(next_epos.bh);
 916	return newblock;
 917}
 918
 919static void udf_split_extents(struct inode *inode, int *c, int offset,
 920			       udf_pblk_t newblocknum,
 921			       struct kernel_long_ad *laarr, int *endnum)
 922{
 923	unsigned long blocksize = inode->i_sb->s_blocksize;
 924	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 925
 926	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 927	    (laarr[*c].extLength >> 30) ==
 928				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 929		int curr = *c;
 930		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 931			    blocksize - 1) >> blocksize_bits;
 932		int8_t etype = (laarr[curr].extLength >> 30);
 933
 934		if (blen == 1)
 935			;
 936		else if (!offset || blen == offset + 1) {
 937			laarr[curr + 2] = laarr[curr + 1];
 938			laarr[curr + 1] = laarr[curr];
 939		} else {
 940			laarr[curr + 3] = laarr[curr + 1];
 941			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 942		}
 943
 944		if (offset) {
 945			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 946				udf_free_blocks(inode->i_sb, inode,
 947						&laarr[curr].extLocation,
 948						0, offset);
 949				laarr[curr].extLength =
 950					EXT_NOT_RECORDED_NOT_ALLOCATED |
 951					(offset << blocksize_bits);
 952				laarr[curr].extLocation.logicalBlockNum = 0;
 953				laarr[curr].extLocation.
 954						partitionReferenceNum = 0;
 955			} else
 956				laarr[curr].extLength = (etype << 30) |
 957					(offset << blocksize_bits);
 958			curr++;
 959			(*c)++;
 960			(*endnum)++;
 961		}
 962
 963		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 964		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 965			laarr[curr].extLocation.partitionReferenceNum =
 966				UDF_I(inode)->i_location.partitionReferenceNum;
 967		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 968			blocksize;
 969		curr++;
 970
 971		if (blen != offset + 1) {
 972			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 973				laarr[curr].extLocation.logicalBlockNum +=
 974								offset + 1;
 975			laarr[curr].extLength = (etype << 30) |
 976				((blen - (offset + 1)) << blocksize_bits);
 977			curr++;
 978			(*endnum)++;
 979		}
 980	}
 981}
 982
 983static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 984				 struct kernel_long_ad *laarr,
 985				 int *endnum)
 986{
 987	int start, length = 0, currlength = 0, i;
 988
 989	if (*endnum >= (c + 1)) {
 990		if (!lastblock)
 991			return;
 992		else
 993			start = c;
 994	} else {
 995		if ((laarr[c + 1].extLength >> 30) ==
 996					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 997			start = c + 1;
 998			length = currlength =
 999				(((laarr[c + 1].extLength &
1000					UDF_EXTENT_LENGTH_MASK) +
1001				inode->i_sb->s_blocksize - 1) >>
1002				inode->i_sb->s_blocksize_bits);
1003		} else
1004			start = c;
1005	}
1006
1007	for (i = start + 1; i <= *endnum; i++) {
1008		if (i == *endnum) {
1009			if (lastblock)
1010				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1011		} else if ((laarr[i].extLength >> 30) ==
1012				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1013			length += (((laarr[i].extLength &
1014						UDF_EXTENT_LENGTH_MASK) +
1015				    inode->i_sb->s_blocksize - 1) >>
1016				    inode->i_sb->s_blocksize_bits);
1017		} else
1018			break;
1019	}
1020
1021	if (length) {
1022		int next = laarr[start].extLocation.logicalBlockNum +
1023			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1024			  inode->i_sb->s_blocksize - 1) >>
1025			  inode->i_sb->s_blocksize_bits);
1026		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1027				laarr[start].extLocation.partitionReferenceNum,
1028				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1029				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1030				currlength);
1031		if (numalloc) 	{
1032			if (start == (c + 1))
1033				laarr[start].extLength +=
1034					(numalloc <<
1035					 inode->i_sb->s_blocksize_bits);
1036			else {
1037				memmove(&laarr[c + 2], &laarr[c + 1],
1038					sizeof(struct long_ad) * (*endnum - (c + 1)));
1039				(*endnum)++;
1040				laarr[c + 1].extLocation.logicalBlockNum = next;
1041				laarr[c + 1].extLocation.partitionReferenceNum =
1042					laarr[c].extLocation.
1043							partitionReferenceNum;
1044				laarr[c + 1].extLength =
1045					EXT_NOT_RECORDED_ALLOCATED |
1046					(numalloc <<
1047					 inode->i_sb->s_blocksize_bits);
1048				start = c + 1;
1049			}
1050
1051			for (i = start + 1; numalloc && i < *endnum; i++) {
1052				int elen = ((laarr[i].extLength &
1053						UDF_EXTENT_LENGTH_MASK) +
1054					    inode->i_sb->s_blocksize - 1) >>
1055					    inode->i_sb->s_blocksize_bits;
1056
1057				if (elen > numalloc) {
1058					laarr[i].extLength -=
1059						(numalloc <<
1060						 inode->i_sb->s_blocksize_bits);
1061					numalloc = 0;
1062				} else {
1063					numalloc -= elen;
1064					if (*endnum > (i + 1))
1065						memmove(&laarr[i],
1066							&laarr[i + 1],
1067							sizeof(struct long_ad) *
1068							(*endnum - (i + 1)));
1069					i--;
1070					(*endnum)--;
1071				}
1072			}
1073			UDF_I(inode)->i_lenExtents +=
1074				numalloc << inode->i_sb->s_blocksize_bits;
1075		}
1076	}
1077}
1078
1079static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1080			      int *endnum)
1081{
1082	int i;
1083	unsigned long blocksize = inode->i_sb->s_blocksize;
1084	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1085
1086	for (i = 0; i < (*endnum - 1); i++) {
1087		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1088		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1089
1090		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1091			(((li->extLength >> 30) ==
1092				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1093			((lip1->extLocation.logicalBlockNum -
1094			  li->extLocation.logicalBlockNum) ==
1095			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1096			blocksize - 1) >> blocksize_bits)))) {
1097
1098			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1099				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1100				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1101				lip1->extLength = (lip1->extLength -
1102						  (li->extLength &
1103						   UDF_EXTENT_LENGTH_MASK) +
1104						   UDF_EXTENT_LENGTH_MASK) &
1105							~(blocksize - 1);
1106				li->extLength = (li->extLength &
1107						 UDF_EXTENT_FLAG_MASK) +
1108						(UDF_EXTENT_LENGTH_MASK + 1) -
1109						blocksize;
1110				lip1->extLocation.logicalBlockNum =
1111					li->extLocation.logicalBlockNum +
1112					((li->extLength &
1113						UDF_EXTENT_LENGTH_MASK) >>
1114						blocksize_bits);
1115			} else {
1116				li->extLength = lip1->extLength +
1117					(((li->extLength &
1118						UDF_EXTENT_LENGTH_MASK) +
1119					 blocksize - 1) & ~(blocksize - 1));
1120				if (*endnum > (i + 2))
1121					memmove(&laarr[i + 1], &laarr[i + 2],
1122						sizeof(struct long_ad) *
1123						(*endnum - (i + 2)));
1124				i--;
1125				(*endnum)--;
1126			}
1127		} else if (((li->extLength >> 30) ==
1128				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1129			   ((lip1->extLength >> 30) ==
1130				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1131			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1132					((li->extLength &
1133					  UDF_EXTENT_LENGTH_MASK) +
1134					 blocksize - 1) >> blocksize_bits);
1135			li->extLocation.logicalBlockNum = 0;
1136			li->extLocation.partitionReferenceNum = 0;
1137
1138			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1139			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1140			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1141				lip1->extLength = (lip1->extLength -
1142						   (li->extLength &
1143						   UDF_EXTENT_LENGTH_MASK) +
1144						   UDF_EXTENT_LENGTH_MASK) &
1145						   ~(blocksize - 1);
1146				li->extLength = (li->extLength &
1147						 UDF_EXTENT_FLAG_MASK) +
1148						(UDF_EXTENT_LENGTH_MASK + 1) -
1149						blocksize;
1150			} else {
1151				li->extLength = lip1->extLength +
1152					(((li->extLength &
1153						UDF_EXTENT_LENGTH_MASK) +
1154					  blocksize - 1) & ~(blocksize - 1));
1155				if (*endnum > (i + 2))
1156					memmove(&laarr[i + 1], &laarr[i + 2],
1157						sizeof(struct long_ad) *
1158						(*endnum - (i + 2)));
1159				i--;
1160				(*endnum)--;
1161			}
1162		} else if ((li->extLength >> 30) ==
1163					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1164			udf_free_blocks(inode->i_sb, inode,
1165					&li->extLocation, 0,
1166					((li->extLength &
1167						UDF_EXTENT_LENGTH_MASK) +
1168					 blocksize - 1) >> blocksize_bits);
1169			li->extLocation.logicalBlockNum = 0;
1170			li->extLocation.partitionReferenceNum = 0;
1171			li->extLength = (li->extLength &
1172						UDF_EXTENT_LENGTH_MASK) |
1173						EXT_NOT_RECORDED_NOT_ALLOCATED;
1174		}
1175	}
1176}
1177
1178static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1179			       int startnum, int endnum,
1180			       struct extent_position *epos)
1181{
1182	int start = 0, i;
1183	struct kernel_lb_addr tmploc;
1184	uint32_t tmplen;
1185
1186	if (startnum > endnum) {
1187		for (i = 0; i < (startnum - endnum); i++)
1188			udf_delete_aext(inode, *epos);
1189	} else if (startnum < endnum) {
1190		for (i = 0; i < (endnum - startnum); i++) {
1191			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1192					laarr[i].extLength);
1193			udf_next_aext(inode, epos, &laarr[i].extLocation,
1194				      &laarr[i].extLength, 1);
1195			start++;
1196		}
1197	}
1198
1199	for (i = start; i < endnum; i++) {
1200		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1201		udf_write_aext(inode, epos, &laarr[i].extLocation,
1202			       laarr[i].extLength, 1);
1203	}
1204}
1205
1206struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1207			      int create, int *err)
1208{
1209	struct buffer_head *bh = NULL;
1210
1211	bh = udf_getblk(inode, block, create, err);
1212	if (!bh)
1213		return NULL;
1214
1215	if (buffer_uptodate(bh))
1216		return bh;
1217
1218	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219
1220	wait_on_buffer(bh);
1221	if (buffer_uptodate(bh))
1222		return bh;
1223
1224	brelse(bh);
1225	*err = -EIO;
1226	return NULL;
1227}
1228
1229int udf_setsize(struct inode *inode, loff_t newsize)
1230{
1231	int err;
1232	struct udf_inode_info *iinfo;
1233	unsigned int bsize = i_blocksize(inode);
1234
1235	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1236	      S_ISLNK(inode->i_mode)))
1237		return -EINVAL;
1238	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1239		return -EPERM;
1240
1241	iinfo = UDF_I(inode);
1242	if (newsize > inode->i_size) {
1243		down_write(&iinfo->i_data_sem);
1244		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1245			if (bsize <
1246			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1247				err = udf_expand_file_adinicb(inode);
1248				if (err)
1249					return err;
1250				down_write(&iinfo->i_data_sem);
1251			} else {
1252				iinfo->i_lenAlloc = newsize;
1253				goto set_size;
1254			}
1255		}
1256		err = udf_extend_file(inode, newsize);
1257		if (err) {
1258			up_write(&iinfo->i_data_sem);
1259			return err;
1260		}
1261set_size:
1262		up_write(&iinfo->i_data_sem);
1263		truncate_setsize(inode, newsize);
1264	} else {
1265		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1266			down_write(&iinfo->i_data_sem);
1267			udf_clear_extent_cache(inode);
1268			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1269			       0x00, bsize - newsize -
1270			       udf_file_entry_alloc_offset(inode));
1271			iinfo->i_lenAlloc = newsize;
1272			truncate_setsize(inode, newsize);
1273			up_write(&iinfo->i_data_sem);
1274			goto update_time;
1275		}
1276		err = block_truncate_page(inode->i_mapping, newsize,
1277					  udf_get_block);
1278		if (err)
1279			return err;
1280		truncate_setsize(inode, newsize);
1281		down_write(&iinfo->i_data_sem);
1282		udf_clear_extent_cache(inode);
1283		err = udf_truncate_extents(inode);
1284		up_write(&iinfo->i_data_sem);
1285		if (err)
1286			return err;
1287	}
1288update_time:
1289	inode->i_mtime = inode->i_ctime = current_time(inode);
1290	if (IS_SYNC(inode))
1291		udf_sync_inode(inode);
1292	else
1293		mark_inode_dirty(inode);
1294	return 0;
1295}
1296
1297/*
1298 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1299 * arbitrary - just that we hopefully don't limit any real use of rewritten
1300 * inode on write-once media but avoid looping for too long on corrupted media.
1301 */
1302#define UDF_MAX_ICB_NESTING 1024
1303
1304static int udf_read_inode(struct inode *inode, bool hidden_inode)
1305{
1306	struct buffer_head *bh = NULL;
1307	struct fileEntry *fe;
1308	struct extendedFileEntry *efe;
1309	uint16_t ident;
1310	struct udf_inode_info *iinfo = UDF_I(inode);
1311	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1312	struct kernel_lb_addr *iloc = &iinfo->i_location;
1313	unsigned int link_count;
1314	unsigned int indirections = 0;
1315	int bs = inode->i_sb->s_blocksize;
1316	int ret = -EIO;
1317	uint32_t uid, gid;
1318
1319reread:
1320	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1321		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1322			  iloc->partitionReferenceNum, sbi->s_partitions);
1323		return -EIO;
1324	}
1325
1326	if (iloc->logicalBlockNum >=
1327	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1328		udf_debug("block=%u, partition=%u out of range\n",
1329			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1330		return -EIO;
1331	}
1332
1333	/*
1334	 * Set defaults, but the inode is still incomplete!
1335	 * Note: get_new_inode() sets the following on a new inode:
1336	 *      i_sb = sb
1337	 *      i_no = ino
1338	 *      i_flags = sb->s_flags
1339	 *      i_state = 0
1340	 * clean_inode(): zero fills and sets
1341	 *      i_count = 1
1342	 *      i_nlink = 1
1343	 *      i_op = NULL;
1344	 */
1345	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1346	if (!bh) {
1347		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1348		return -EIO;
1349	}
1350
1351	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1352	    ident != TAG_IDENT_USE) {
1353		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1354			inode->i_ino, ident);
1355		goto out;
1356	}
1357
1358	fe = (struct fileEntry *)bh->b_data;
1359	efe = (struct extendedFileEntry *)bh->b_data;
1360
1361	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1362		struct buffer_head *ibh;
1363
1364		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1365		if (ident == TAG_IDENT_IE && ibh) {
1366			struct kernel_lb_addr loc;
1367			struct indirectEntry *ie;
1368
1369			ie = (struct indirectEntry *)ibh->b_data;
1370			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1371
1372			if (ie->indirectICB.extLength) {
1373				brelse(ibh);
1374				memcpy(&iinfo->i_location, &loc,
1375				       sizeof(struct kernel_lb_addr));
1376				if (++indirections > UDF_MAX_ICB_NESTING) {
1377					udf_err(inode->i_sb,
1378						"too many ICBs in ICB hierarchy"
1379						" (max %d supported)\n",
1380						UDF_MAX_ICB_NESTING);
1381					goto out;
1382				}
1383				brelse(bh);
1384				goto reread;
1385			}
1386		}
1387		brelse(ibh);
1388	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1389		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1390			le16_to_cpu(fe->icbTag.strategyType));
1391		goto out;
1392	}
1393	if (fe->icbTag.strategyType == cpu_to_le16(4))
1394		iinfo->i_strat4096 = 0;
1395	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1396		iinfo->i_strat4096 = 1;
1397
1398	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1399							ICBTAG_FLAG_AD_MASK;
1400	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1401	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1402	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1403		ret = -EIO;
1404		goto out;
1405	}
1406	iinfo->i_unique = 0;
1407	iinfo->i_lenEAttr = 0;
1408	iinfo->i_lenExtents = 0;
1409	iinfo->i_lenAlloc = 0;
1410	iinfo->i_next_alloc_block = 0;
1411	iinfo->i_next_alloc_goal = 0;
1412	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1413		iinfo->i_efe = 1;
1414		iinfo->i_use = 0;
1415		ret = udf_alloc_i_data(inode, bs -
1416					sizeof(struct extendedFileEntry));
1417		if (ret)
1418			goto out;
1419		memcpy(iinfo->i_data,
1420		       bh->b_data + sizeof(struct extendedFileEntry),
1421		       bs - sizeof(struct extendedFileEntry));
1422	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1423		iinfo->i_efe = 0;
1424		iinfo->i_use = 0;
1425		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1426		if (ret)
1427			goto out;
1428		memcpy(iinfo->i_data,
1429		       bh->b_data + sizeof(struct fileEntry),
1430		       bs - sizeof(struct fileEntry));
1431	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1432		iinfo->i_efe = 0;
1433		iinfo->i_use = 1;
1434		iinfo->i_lenAlloc = le32_to_cpu(
1435				((struct unallocSpaceEntry *)bh->b_data)->
1436				 lengthAllocDescs);
1437		ret = udf_alloc_i_data(inode, bs -
1438					sizeof(struct unallocSpaceEntry));
1439		if (ret)
1440			goto out;
1441		memcpy(iinfo->i_data,
1442		       bh->b_data + sizeof(struct unallocSpaceEntry),
1443		       bs - sizeof(struct unallocSpaceEntry));
1444		return 0;
1445	}
1446
1447	ret = -EIO;
1448	read_lock(&sbi->s_cred_lock);
1449	uid = le32_to_cpu(fe->uid);
1450	if (uid == UDF_INVALID_ID ||
1451	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1452		inode->i_uid = sbi->s_uid;
1453	else
1454		i_uid_write(inode, uid);
1455
1456	gid = le32_to_cpu(fe->gid);
1457	if (gid == UDF_INVALID_ID ||
1458	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1459		inode->i_gid = sbi->s_gid;
1460	else
1461		i_gid_write(inode, gid);
1462
1463	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1464			sbi->s_fmode != UDF_INVALID_MODE)
1465		inode->i_mode = sbi->s_fmode;
1466	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1467			sbi->s_dmode != UDF_INVALID_MODE)
1468		inode->i_mode = sbi->s_dmode;
1469	else
1470		inode->i_mode = udf_convert_permissions(fe);
1471	inode->i_mode &= ~sbi->s_umask;
1472	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1473
1474	read_unlock(&sbi->s_cred_lock);
1475
1476	link_count = le16_to_cpu(fe->fileLinkCount);
1477	if (!link_count) {
1478		if (!hidden_inode) {
1479			ret = -ESTALE;
1480			goto out;
1481		}
1482		link_count = 1;
1483	}
1484	set_nlink(inode, link_count);
1485
1486	inode->i_size = le64_to_cpu(fe->informationLength);
1487	iinfo->i_lenExtents = inode->i_size;
1488
1489	if (iinfo->i_efe == 0) {
1490		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1491			(inode->i_sb->s_blocksize_bits - 9);
1492
1493		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1494		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1495		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1496
1497		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1498		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1499		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1500		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1501		iinfo->i_streamdir = 0;
1502		iinfo->i_lenStreams = 0;
1503	} else {
1504		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1505		    (inode->i_sb->s_blocksize_bits - 9);
1506
1507		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1508		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1509		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1510		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1511
1512		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1513		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1514		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1515		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1516
1517		/* Named streams */
1518		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1519		iinfo->i_locStreamdir =
1520			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1521		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1522		if (iinfo->i_lenStreams >= inode->i_size)
1523			iinfo->i_lenStreams -= inode->i_size;
1524		else
1525			iinfo->i_lenStreams = 0;
1526	}
1527	inode->i_generation = iinfo->i_unique;
1528
1529	/*
1530	 * Sanity check length of allocation descriptors and extended attrs to
1531	 * avoid integer overflows
1532	 */
1533	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1534		goto out;
1535	/* Now do exact checks */
1536	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1537		goto out;
1538	/* Sanity checks for files in ICB so that we don't get confused later */
1539	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1540		/*
1541		 * For file in ICB data is stored in allocation descriptor
1542		 * so sizes should match
1543		 */
1544		if (iinfo->i_lenAlloc != inode->i_size)
1545			goto out;
1546		/* File in ICB has to fit in there... */
1547		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1548			goto out;
1549	}
1550
1551	switch (fe->icbTag.fileType) {
1552	case ICBTAG_FILE_TYPE_DIRECTORY:
1553		inode->i_op = &udf_dir_inode_operations;
1554		inode->i_fop = &udf_dir_operations;
1555		inode->i_mode |= S_IFDIR;
1556		inc_nlink(inode);
1557		break;
1558	case ICBTAG_FILE_TYPE_REALTIME:
1559	case ICBTAG_FILE_TYPE_REGULAR:
1560	case ICBTAG_FILE_TYPE_UNDEF:
1561	case ICBTAG_FILE_TYPE_VAT20:
1562		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1563			inode->i_data.a_ops = &udf_adinicb_aops;
1564		else
1565			inode->i_data.a_ops = &udf_aops;
1566		inode->i_op = &udf_file_inode_operations;
1567		inode->i_fop = &udf_file_operations;
1568		inode->i_mode |= S_IFREG;
1569		break;
1570	case ICBTAG_FILE_TYPE_BLOCK:
1571		inode->i_mode |= S_IFBLK;
1572		break;
1573	case ICBTAG_FILE_TYPE_CHAR:
1574		inode->i_mode |= S_IFCHR;
1575		break;
1576	case ICBTAG_FILE_TYPE_FIFO:
1577		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1578		break;
1579	case ICBTAG_FILE_TYPE_SOCKET:
1580		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1581		break;
1582	case ICBTAG_FILE_TYPE_SYMLINK:
1583		inode->i_data.a_ops = &udf_symlink_aops;
1584		inode->i_op = &udf_symlink_inode_operations;
1585		inode_nohighmem(inode);
1586		inode->i_mode = S_IFLNK | 0777;
1587		break;
1588	case ICBTAG_FILE_TYPE_MAIN:
1589		udf_debug("METADATA FILE-----\n");
1590		break;
1591	case ICBTAG_FILE_TYPE_MIRROR:
1592		udf_debug("METADATA MIRROR FILE-----\n");
1593		break;
1594	case ICBTAG_FILE_TYPE_BITMAP:
1595		udf_debug("METADATA BITMAP FILE-----\n");
1596		break;
1597	default:
1598		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1599			inode->i_ino, fe->icbTag.fileType);
1600		goto out;
1601	}
1602	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1603		struct deviceSpec *dsea =
1604			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1605		if (dsea) {
1606			init_special_inode(inode, inode->i_mode,
1607				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1608				      le32_to_cpu(dsea->minorDeviceIdent)));
1609			/* Developer ID ??? */
1610		} else
1611			goto out;
1612	}
1613	ret = 0;
1614out:
1615	brelse(bh);
1616	return ret;
1617}
1618
1619static int udf_alloc_i_data(struct inode *inode, size_t size)
1620{
1621	struct udf_inode_info *iinfo = UDF_I(inode);
1622	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1623	if (!iinfo->i_data)
1624		return -ENOMEM;
1625	return 0;
1626}
1627
1628static umode_t udf_convert_permissions(struct fileEntry *fe)
1629{
1630	umode_t mode;
1631	uint32_t permissions;
1632	uint32_t flags;
1633
1634	permissions = le32_to_cpu(fe->permissions);
1635	flags = le16_to_cpu(fe->icbTag.flags);
1636
1637	mode =	((permissions) & 0007) |
1638		((permissions >> 2) & 0070) |
1639		((permissions >> 4) & 0700) |
1640		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1641		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1642		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1643
1644	return mode;
1645}
1646
1647void udf_update_extra_perms(struct inode *inode, umode_t mode)
1648{
1649	struct udf_inode_info *iinfo = UDF_I(inode);
1650
1651	/*
1652	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1653	 * In Unix, delete permission tracks write
1654	 */
1655	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1656	if (mode & 0200)
1657		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1658	if (mode & 0020)
1659		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1660	if (mode & 0002)
1661		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1662}
1663
1664int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1665{
1666	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1667}
1668
1669static int udf_sync_inode(struct inode *inode)
1670{
1671	return udf_update_inode(inode, 1);
1672}
1673
1674static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1675{
1676	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1677	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1678	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1679		iinfo->i_crtime = time;
1680}
1681
1682static int udf_update_inode(struct inode *inode, int do_sync)
1683{
1684	struct buffer_head *bh = NULL;
1685	struct fileEntry *fe;
1686	struct extendedFileEntry *efe;
1687	uint64_t lb_recorded;
1688	uint32_t udfperms;
1689	uint16_t icbflags;
1690	uint16_t crclen;
1691	int err = 0;
1692	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1693	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1694	struct udf_inode_info *iinfo = UDF_I(inode);
1695
1696	bh = udf_tgetblk(inode->i_sb,
1697			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1698	if (!bh) {
1699		udf_debug("getblk failure\n");
1700		return -EIO;
1701	}
1702
1703	lock_buffer(bh);
1704	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1705	fe = (struct fileEntry *)bh->b_data;
1706	efe = (struct extendedFileEntry *)bh->b_data;
1707
1708	if (iinfo->i_use) {
1709		struct unallocSpaceEntry *use =
1710			(struct unallocSpaceEntry *)bh->b_data;
1711
1712		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1713		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1714		       iinfo->i_data, inode->i_sb->s_blocksize -
1715					sizeof(struct unallocSpaceEntry));
1716		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1717		crclen = sizeof(struct unallocSpaceEntry);
1718
1719		goto finish;
1720	}
1721
1722	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1723		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1724	else
1725		fe->uid = cpu_to_le32(i_uid_read(inode));
1726
1727	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1728		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1729	else
1730		fe->gid = cpu_to_le32(i_gid_read(inode));
1731
1732	udfperms = ((inode->i_mode & 0007)) |
1733		   ((inode->i_mode & 0070) << 2) |
1734		   ((inode->i_mode & 0700) << 4);
1735
1736	udfperms |= iinfo->i_extraPerms;
1737	fe->permissions = cpu_to_le32(udfperms);
1738
1739	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1740		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1741	else
1742		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1743
1744	fe->informationLength = cpu_to_le64(inode->i_size);
1745
1746	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1747		struct regid *eid;
1748		struct deviceSpec *dsea =
1749			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1750		if (!dsea) {
1751			dsea = (struct deviceSpec *)
1752				udf_add_extendedattr(inode,
1753						     sizeof(struct deviceSpec) +
1754						     sizeof(struct regid), 12, 0x3);
1755			dsea->attrType = cpu_to_le32(12);
1756			dsea->attrSubtype = 1;
1757			dsea->attrLength = cpu_to_le32(
1758						sizeof(struct deviceSpec) +
1759						sizeof(struct regid));
1760			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1761		}
1762		eid = (struct regid *)dsea->impUse;
1763		memset(eid, 0, sizeof(*eid));
1764		strcpy(eid->ident, UDF_ID_DEVELOPER);
1765		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1766		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1767		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1768		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1769	}
1770
1771	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1772		lb_recorded = 0; /* No extents => no blocks! */
1773	else
1774		lb_recorded =
1775			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1776			(blocksize_bits - 9);
1777
1778	if (iinfo->i_efe == 0) {
1779		memcpy(bh->b_data + sizeof(struct fileEntry),
1780		       iinfo->i_data,
1781		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1782		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1783
1784		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1785		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1786		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1787		memset(&(fe->impIdent), 0, sizeof(struct regid));
1788		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1789		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1790		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1791		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1792		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1793		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1794		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1795		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1796		crclen = sizeof(struct fileEntry);
1797	} else {
1798		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1799		       iinfo->i_data,
1800		       inode->i_sb->s_blocksize -
1801					sizeof(struct extendedFileEntry));
1802		efe->objectSize =
1803			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1804		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1805
1806		if (iinfo->i_streamdir) {
1807			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1808
1809			icb_lad->extLocation =
1810				cpu_to_lelb(iinfo->i_locStreamdir);
1811			icb_lad->extLength =
1812				cpu_to_le32(inode->i_sb->s_blocksize);
1813		}
1814
1815		udf_adjust_time(iinfo, inode->i_atime);
1816		udf_adjust_time(iinfo, inode->i_mtime);
1817		udf_adjust_time(iinfo, inode->i_ctime);
1818
1819		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1820		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1821		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1822		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1823
1824		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1825		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1826		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1827		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1828		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1829		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1830		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1831		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1832		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1833		crclen = sizeof(struct extendedFileEntry);
1834	}
1835
1836finish:
1837	if (iinfo->i_strat4096) {
1838		fe->icbTag.strategyType = cpu_to_le16(4096);
1839		fe->icbTag.strategyParameter = cpu_to_le16(1);
1840		fe->icbTag.numEntries = cpu_to_le16(2);
1841	} else {
1842		fe->icbTag.strategyType = cpu_to_le16(4);
1843		fe->icbTag.numEntries = cpu_to_le16(1);
1844	}
1845
1846	if (iinfo->i_use)
1847		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1848	else if (S_ISDIR(inode->i_mode))
1849		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1850	else if (S_ISREG(inode->i_mode))
1851		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1852	else if (S_ISLNK(inode->i_mode))
1853		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1854	else if (S_ISBLK(inode->i_mode))
1855		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1856	else if (S_ISCHR(inode->i_mode))
1857		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1858	else if (S_ISFIFO(inode->i_mode))
1859		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1860	else if (S_ISSOCK(inode->i_mode))
1861		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1862
1863	icbflags =	iinfo->i_alloc_type |
1864			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1865			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1866			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1867			(le16_to_cpu(fe->icbTag.flags) &
1868				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1869				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1870
1871	fe->icbTag.flags = cpu_to_le16(icbflags);
1872	if (sbi->s_udfrev >= 0x0200)
1873		fe->descTag.descVersion = cpu_to_le16(3);
1874	else
1875		fe->descTag.descVersion = cpu_to_le16(2);
1876	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1877	fe->descTag.tagLocation = cpu_to_le32(
1878					iinfo->i_location.logicalBlockNum);
1879	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1880	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1881	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1882						  crclen));
1883	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1884
1885	set_buffer_uptodate(bh);
1886	unlock_buffer(bh);
1887
1888	/* write the data blocks */
1889	mark_buffer_dirty(bh);
1890	if (do_sync) {
1891		sync_dirty_buffer(bh);
1892		if (buffer_write_io_error(bh)) {
1893			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1894				 inode->i_ino);
1895			err = -EIO;
1896		}
1897	}
1898	brelse(bh);
1899
1900	return err;
1901}
1902
1903struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1904			 bool hidden_inode)
1905{
1906	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1907	struct inode *inode = iget_locked(sb, block);
1908	int err;
1909
1910	if (!inode)
1911		return ERR_PTR(-ENOMEM);
1912
1913	if (!(inode->i_state & I_NEW))
1914		return inode;
1915
1916	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1917	err = udf_read_inode(inode, hidden_inode);
1918	if (err < 0) {
1919		iget_failed(inode);
1920		return ERR_PTR(err);
1921	}
1922	unlock_new_inode(inode);
1923
1924	return inode;
1925}
1926
1927int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1928			    struct extent_position *epos)
1929{
1930	struct super_block *sb = inode->i_sb;
1931	struct buffer_head *bh;
1932	struct allocExtDesc *aed;
1933	struct extent_position nepos;
1934	struct kernel_lb_addr neloc;
1935	int ver, adsize;
1936
1937	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938		adsize = sizeof(struct short_ad);
1939	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940		adsize = sizeof(struct long_ad);
1941	else
1942		return -EIO;
1943
1944	neloc.logicalBlockNum = block;
1945	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1946
1947	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1948	if (!bh)
1949		return -EIO;
1950	lock_buffer(bh);
1951	memset(bh->b_data, 0x00, sb->s_blocksize);
1952	set_buffer_uptodate(bh);
1953	unlock_buffer(bh);
1954	mark_buffer_dirty_inode(bh, inode);
1955
1956	aed = (struct allocExtDesc *)(bh->b_data);
1957	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1958		aed->previousAllocExtLocation =
1959				cpu_to_le32(epos->block.logicalBlockNum);
1960	}
1961	aed->lengthAllocDescs = cpu_to_le32(0);
1962	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1963		ver = 3;
1964	else
1965		ver = 2;
1966	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1967		    sizeof(struct tag));
1968
1969	nepos.block = neloc;
1970	nepos.offset = sizeof(struct allocExtDesc);
1971	nepos.bh = bh;
1972
1973	/*
1974	 * Do we have to copy current last extent to make space for indirect
1975	 * one?
1976	 */
1977	if (epos->offset + adsize > sb->s_blocksize) {
1978		struct kernel_lb_addr cp_loc;
1979		uint32_t cp_len;
1980		int cp_type;
1981
1982		epos->offset -= adsize;
1983		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1984		cp_len |= ((uint32_t)cp_type) << 30;
1985
1986		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1987		udf_write_aext(inode, epos, &nepos.block,
1988			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1989	} else {
1990		__udf_add_aext(inode, epos, &nepos.block,
1991			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1992	}
1993
1994	brelse(epos->bh);
1995	*epos = nepos;
1996
1997	return 0;
1998}
1999
2000/*
2001 * Append extent at the given position - should be the first free one in inode
2002 * / indirect extent. This function assumes there is enough space in the inode
2003 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2004 */
2005int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2006		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007{
2008	struct udf_inode_info *iinfo = UDF_I(inode);
2009	struct allocExtDesc *aed;
2010	int adsize;
2011
2012	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013		adsize = sizeof(struct short_ad);
2014	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015		adsize = sizeof(struct long_ad);
2016	else
2017		return -EIO;
2018
2019	if (!epos->bh) {
2020		WARN_ON(iinfo->i_lenAlloc !=
2021			epos->offset - udf_file_entry_alloc_offset(inode));
2022	} else {
2023		aed = (struct allocExtDesc *)epos->bh->b_data;
2024		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2025			epos->offset - sizeof(struct allocExtDesc));
2026		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2027	}
2028
2029	udf_write_aext(inode, epos, eloc, elen, inc);
2030
2031	if (!epos->bh) {
2032		iinfo->i_lenAlloc += adsize;
2033		mark_inode_dirty(inode);
2034	} else {
2035		aed = (struct allocExtDesc *)epos->bh->b_data;
2036		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2037		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2038				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2039			udf_update_tag(epos->bh->b_data,
2040					epos->offset + (inc ? 0 : adsize));
2041		else
2042			udf_update_tag(epos->bh->b_data,
2043					sizeof(struct allocExtDesc));
2044		mark_buffer_dirty_inode(epos->bh, inode);
2045	}
2046
2047	return 0;
2048}
2049
2050/*
2051 * Append extent at given position - should be the first free one in inode
2052 * / indirect extent. Takes care of allocating and linking indirect blocks.
2053 */
2054int udf_add_aext(struct inode *inode, struct extent_position *epos,
2055		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2056{
2057	int adsize;
2058	struct super_block *sb = inode->i_sb;
2059
2060	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2061		adsize = sizeof(struct short_ad);
2062	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2063		adsize = sizeof(struct long_ad);
2064	else
2065		return -EIO;
2066
2067	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2068		int err;
2069		udf_pblk_t new_block;
2070
2071		new_block = udf_new_block(sb, NULL,
2072					  epos->block.partitionReferenceNum,
2073					  epos->block.logicalBlockNum, &err);
2074		if (!new_block)
2075			return -ENOSPC;
2076
2077		err = udf_setup_indirect_aext(inode, new_block, epos);
2078		if (err)
2079			return err;
2080	}
2081
2082	return __udf_add_aext(inode, epos, eloc, elen, inc);
2083}
2084
2085void udf_write_aext(struct inode *inode, struct extent_position *epos,
2086		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2087{
2088	int adsize;
2089	uint8_t *ptr;
2090	struct short_ad *sad;
2091	struct long_ad *lad;
2092	struct udf_inode_info *iinfo = UDF_I(inode);
2093
2094	if (!epos->bh)
2095		ptr = iinfo->i_data + epos->offset -
2096			udf_file_entry_alloc_offset(inode) +
2097			iinfo->i_lenEAttr;
2098	else
2099		ptr = epos->bh->b_data + epos->offset;
2100
2101	switch (iinfo->i_alloc_type) {
2102	case ICBTAG_FLAG_AD_SHORT:
2103		sad = (struct short_ad *)ptr;
2104		sad->extLength = cpu_to_le32(elen);
2105		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2106		adsize = sizeof(struct short_ad);
2107		break;
2108	case ICBTAG_FLAG_AD_LONG:
2109		lad = (struct long_ad *)ptr;
2110		lad->extLength = cpu_to_le32(elen);
2111		lad->extLocation = cpu_to_lelb(*eloc);
2112		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2113		adsize = sizeof(struct long_ad);
2114		break;
2115	default:
2116		return;
2117	}
2118
2119	if (epos->bh) {
2120		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2121		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2122			struct allocExtDesc *aed =
2123				(struct allocExtDesc *)epos->bh->b_data;
2124			udf_update_tag(epos->bh->b_data,
2125				       le32_to_cpu(aed->lengthAllocDescs) +
2126				       sizeof(struct allocExtDesc));
2127		}
2128		mark_buffer_dirty_inode(epos->bh, inode);
2129	} else {
2130		mark_inode_dirty(inode);
2131	}
2132
2133	if (inc)
2134		epos->offset += adsize;
2135}
2136
2137/*
2138 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2139 * someone does some weird stuff.
2140 */
2141#define UDF_MAX_INDIR_EXTS 16
2142
2143int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2144		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2145{
2146	int8_t etype;
2147	unsigned int indirections = 0;
2148
2149	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2150	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2151		udf_pblk_t block;
2152
2153		if (++indirections > UDF_MAX_INDIR_EXTS) {
2154			udf_err(inode->i_sb,
2155				"too many indirect extents in inode %lu\n",
2156				inode->i_ino);
2157			return -1;
2158		}
2159
2160		epos->block = *eloc;
2161		epos->offset = sizeof(struct allocExtDesc);
2162		brelse(epos->bh);
2163		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2164		epos->bh = udf_tread(inode->i_sb, block);
2165		if (!epos->bh) {
2166			udf_debug("reading block %u failed!\n", block);
2167			return -1;
2168		}
2169	}
2170
2171	return etype;
2172}
2173
2174int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2175			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2176{
2177	int alen;
2178	int8_t etype;
2179	uint8_t *ptr;
2180	struct short_ad *sad;
2181	struct long_ad *lad;
2182	struct udf_inode_info *iinfo = UDF_I(inode);
2183
2184	if (!epos->bh) {
2185		if (!epos->offset)
2186			epos->offset = udf_file_entry_alloc_offset(inode);
2187		ptr = iinfo->i_data + epos->offset -
2188			udf_file_entry_alloc_offset(inode) +
2189			iinfo->i_lenEAttr;
2190		alen = udf_file_entry_alloc_offset(inode) +
2191							iinfo->i_lenAlloc;
2192	} else {
2193		if (!epos->offset)
2194			epos->offset = sizeof(struct allocExtDesc);
2195		ptr = epos->bh->b_data + epos->offset;
2196		alen = sizeof(struct allocExtDesc) +
2197			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2198							lengthAllocDescs);
2199	}
2200
2201	switch (iinfo->i_alloc_type) {
2202	case ICBTAG_FLAG_AD_SHORT:
2203		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2204		if (!sad)
2205			return -1;
2206		etype = le32_to_cpu(sad->extLength) >> 30;
2207		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2208		eloc->partitionReferenceNum =
2209				iinfo->i_location.partitionReferenceNum;
2210		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2211		break;
2212	case ICBTAG_FLAG_AD_LONG:
2213		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2214		if (!lad)
2215			return -1;
2216		etype = le32_to_cpu(lad->extLength) >> 30;
2217		*eloc = lelb_to_cpu(lad->extLocation);
2218		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2219		break;
2220	default:
2221		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2222		return -1;
2223	}
2224
2225	return etype;
2226}
2227
2228static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2229			      struct kernel_lb_addr neloc, uint32_t nelen)
2230{
2231	struct kernel_lb_addr oeloc;
2232	uint32_t oelen;
2233	int8_t etype;
2234
2235	if (epos.bh)
2236		get_bh(epos.bh);
2237
2238	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2239		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2240		neloc = oeloc;
2241		nelen = (etype << 30) | oelen;
2242	}
2243	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2244	brelse(epos.bh);
2245
2246	return (nelen >> 30);
2247}
2248
2249int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2250{
2251	struct extent_position oepos;
2252	int adsize;
2253	int8_t etype;
2254	struct allocExtDesc *aed;
2255	struct udf_inode_info *iinfo;
2256	struct kernel_lb_addr eloc;
2257	uint32_t elen;
2258
2259	if (epos.bh) {
2260		get_bh(epos.bh);
2261		get_bh(epos.bh);
2262	}
2263
2264	iinfo = UDF_I(inode);
2265	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2266		adsize = sizeof(struct short_ad);
2267	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2268		adsize = sizeof(struct long_ad);
2269	else
2270		adsize = 0;
2271
2272	oepos = epos;
2273	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2274		return -1;
2275
2276	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2277		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2278		if (oepos.bh != epos.bh) {
2279			oepos.block = epos.block;
2280			brelse(oepos.bh);
2281			get_bh(epos.bh);
2282			oepos.bh = epos.bh;
2283			oepos.offset = epos.offset - adsize;
2284		}
2285	}
2286	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2287	elen = 0;
2288
2289	if (epos.bh != oepos.bh) {
2290		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2291		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2292		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2293		if (!oepos.bh) {
2294			iinfo->i_lenAlloc -= (adsize * 2);
2295			mark_inode_dirty(inode);
2296		} else {
2297			aed = (struct allocExtDesc *)oepos.bh->b_data;
2298			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2299			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2300			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2301				udf_update_tag(oepos.bh->b_data,
2302						oepos.offset - (2 * adsize));
2303			else
2304				udf_update_tag(oepos.bh->b_data,
2305						sizeof(struct allocExtDesc));
2306			mark_buffer_dirty_inode(oepos.bh, inode);
2307		}
2308	} else {
2309		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2310		if (!oepos.bh) {
2311			iinfo->i_lenAlloc -= adsize;
2312			mark_inode_dirty(inode);
2313		} else {
2314			aed = (struct allocExtDesc *)oepos.bh->b_data;
2315			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2316			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2317			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2318				udf_update_tag(oepos.bh->b_data,
2319						epos.offset - adsize);
2320			else
2321				udf_update_tag(oepos.bh->b_data,
2322						sizeof(struct allocExtDesc));
2323			mark_buffer_dirty_inode(oepos.bh, inode);
2324		}
2325	}
2326
2327	brelse(epos.bh);
2328	brelse(oepos.bh);
2329
2330	return (elen >> 30);
2331}
2332
2333int8_t inode_bmap(struct inode *inode, sector_t block,
2334		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2335		  uint32_t *elen, sector_t *offset)
2336{
2337	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2338	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2339	int8_t etype;
2340	struct udf_inode_info *iinfo;
2341
2342	iinfo = UDF_I(inode);
2343	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2344		pos->offset = 0;
2345		pos->block = iinfo->i_location;
2346		pos->bh = NULL;
2347	}
2348	*elen = 0;
2349	do {
2350		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2351		if (etype == -1) {
2352			*offset = (bcount - lbcount) >> blocksize_bits;
2353			iinfo->i_lenExtents = lbcount;
2354			return -1;
2355		}
2356		lbcount += *elen;
2357	} while (lbcount <= bcount);
2358	/* update extent cache */
2359	udf_update_extent_cache(inode, lbcount - *elen, pos);
2360	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2361
2362	return etype;
2363}
2364
2365udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2366{
2367	struct kernel_lb_addr eloc;
2368	uint32_t elen;
2369	sector_t offset;
2370	struct extent_position epos = {};
2371	udf_pblk_t ret;
2372
2373	down_read(&UDF_I(inode)->i_data_sem);
2374
2375	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2376						(EXT_RECORDED_ALLOCATED >> 30))
2377		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2378	else
2379		ret = 0;
2380
2381	up_read(&UDF_I(inode)->i_data_sem);
2382	brelse(epos.bh);
2383
2384	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2385		return udf_fixed_to_variable(ret);
2386	else
2387		return ret;
2388}
v6.2
   1/*
   2 * inode.c
   3 *
   4 * PURPOSE
   5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *  This file is distributed under the terms of the GNU General Public
   9 *  License (GPL). Copies of the GPL can be obtained from:
  10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *  Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1998 Dave Boynton
  14 *  (C) 1998-2004 Ben Fennema
  15 *  (C) 1999-2000 Stelias Computing Inc
  16 *
  17 * HISTORY
  18 *
  19 *  10/04/98 dgb  Added rudimentary directory functions
  20 *  10/07/98      Fully working udf_block_map! It works!
  21 *  11/25/98      bmap altered to better support extents
  22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23 *                and udf_read_inode
  24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25 *                block boundaries (which is not actually allowed)
  26 *  12/20/98      added support for strategy 4096
  27 *  03/07/99      rewrote udf_block_map (again)
  28 *                New funcs, inode_bmap, udf_next_aext
  29 *  04/19/99      Support for writing device EA's for major/minor #
  30 */
  31
  32#include "udfdecl.h"
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/pagemap.h>
  36#include <linux/writeback.h>
  37#include <linux/slab.h>
  38#include <linux/crc-itu-t.h>
  39#include <linux/mpage.h>
  40#include <linux/uio.h>
  41#include <linux/bio.h>
  42
  43#include "udf_i.h"
  44#include "udf_sb.h"
  45
  46#define EXTENT_MERGE_SIZE 5
  47
  48#define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
  49			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
  50			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
  51
  52#define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
  53			 FE_PERM_O_DELETE)
  54
  55static umode_t udf_convert_permissions(struct fileEntry *);
  56static int udf_update_inode(struct inode *, int);
  57static int udf_sync_inode(struct inode *inode);
  58static int udf_alloc_i_data(struct inode *inode, size_t size);
  59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
  60static int8_t udf_insert_aext(struct inode *, struct extent_position,
  61			      struct kernel_lb_addr, uint32_t);
  62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
  63			      struct kernel_long_ad *, int *);
  64static void udf_prealloc_extents(struct inode *, int, int,
  65				 struct kernel_long_ad *, int *);
  66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
  67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
  68			       int, struct extent_position *);
  69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
  70
  71static void __udf_clear_extent_cache(struct inode *inode)
  72{
  73	struct udf_inode_info *iinfo = UDF_I(inode);
  74
  75	if (iinfo->cached_extent.lstart != -1) {
  76		brelse(iinfo->cached_extent.epos.bh);
  77		iinfo->cached_extent.lstart = -1;
  78	}
  79}
  80
  81/* Invalidate extent cache */
  82static void udf_clear_extent_cache(struct inode *inode)
  83{
  84	struct udf_inode_info *iinfo = UDF_I(inode);
  85
  86	spin_lock(&iinfo->i_extent_cache_lock);
  87	__udf_clear_extent_cache(inode);
  88	spin_unlock(&iinfo->i_extent_cache_lock);
  89}
  90
  91/* Return contents of extent cache */
  92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  93				 loff_t *lbcount, struct extent_position *pos)
  94{
  95	struct udf_inode_info *iinfo = UDF_I(inode);
  96	int ret = 0;
  97
  98	spin_lock(&iinfo->i_extent_cache_lock);
  99	if ((iinfo->cached_extent.lstart <= bcount) &&
 100	    (iinfo->cached_extent.lstart != -1)) {
 101		/* Cache hit */
 102		*lbcount = iinfo->cached_extent.lstart;
 103		memcpy(pos, &iinfo->cached_extent.epos,
 104		       sizeof(struct extent_position));
 105		if (pos->bh)
 106			get_bh(pos->bh);
 107		ret = 1;
 108	}
 109	spin_unlock(&iinfo->i_extent_cache_lock);
 110	return ret;
 111}
 112
 113/* Add extent to extent cache */
 114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 115				    struct extent_position *pos)
 116{
 117	struct udf_inode_info *iinfo = UDF_I(inode);
 118
 119	spin_lock(&iinfo->i_extent_cache_lock);
 120	/* Invalidate previously cached extent */
 121	__udf_clear_extent_cache(inode);
 122	if (pos->bh)
 123		get_bh(pos->bh);
 124	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
 125	iinfo->cached_extent.lstart = estart;
 126	switch (iinfo->i_alloc_type) {
 127	case ICBTAG_FLAG_AD_SHORT:
 128		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
 129		break;
 130	case ICBTAG_FLAG_AD_LONG:
 131		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
 132		break;
 133	}
 134	spin_unlock(&iinfo->i_extent_cache_lock);
 135}
 136
 137void udf_evict_inode(struct inode *inode)
 138{
 139	struct udf_inode_info *iinfo = UDF_I(inode);
 140	int want_delete = 0;
 141
 142	if (!is_bad_inode(inode)) {
 143		if (!inode->i_nlink) {
 144			want_delete = 1;
 145			udf_setsize(inode, 0);
 146			udf_update_inode(inode, IS_SYNC(inode));
 147		}
 148		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 149		    inode->i_size != iinfo->i_lenExtents) {
 150			udf_warn(inode->i_sb,
 151				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 152				 inode->i_ino, inode->i_mode,
 153				 (unsigned long long)inode->i_size,
 154				 (unsigned long long)iinfo->i_lenExtents);
 155		}
 156	}
 157	truncate_inode_pages_final(&inode->i_data);
 158	invalidate_inode_buffers(inode);
 159	clear_inode(inode);
 160	kfree(iinfo->i_data);
 161	iinfo->i_data = NULL;
 162	udf_clear_extent_cache(inode);
 163	if (want_delete) {
 164		udf_free_inode(inode);
 165	}
 166}
 167
 168static void udf_write_failed(struct address_space *mapping, loff_t to)
 169{
 170	struct inode *inode = mapping->host;
 171	struct udf_inode_info *iinfo = UDF_I(inode);
 172	loff_t isize = inode->i_size;
 173
 174	if (to > isize) {
 175		truncate_pagecache(inode, isize);
 176		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 177			down_write(&iinfo->i_data_sem);
 178			udf_clear_extent_cache(inode);
 179			udf_truncate_extents(inode);
 180			up_write(&iinfo->i_data_sem);
 181		}
 182	}
 183}
 184
 
 
 
 
 
 185static int udf_writepages(struct address_space *mapping,
 186			struct writeback_control *wbc)
 187{
 188	return mpage_writepages(mapping, wbc, udf_get_block);
 189}
 190
 191static int udf_read_folio(struct file *file, struct folio *folio)
 192{
 193	return mpage_read_folio(folio, udf_get_block);
 194}
 195
 196static void udf_readahead(struct readahead_control *rac)
 197{
 198	mpage_readahead(rac, udf_get_block);
 199}
 200
 201static int udf_write_begin(struct file *file, struct address_space *mapping,
 202			loff_t pos, unsigned len,
 203			struct page **pagep, void **fsdata)
 204{
 205	int ret;
 206
 207	ret = block_write_begin(mapping, pos, len, pagep, udf_get_block);
 208	if (unlikely(ret))
 209		udf_write_failed(mapping, pos + len);
 210	return ret;
 211}
 212
 213static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 214{
 215	struct file *file = iocb->ki_filp;
 216	struct address_space *mapping = file->f_mapping;
 217	struct inode *inode = mapping->host;
 218	size_t count = iov_iter_count(iter);
 219	ssize_t ret;
 220
 221	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 222	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 223		udf_write_failed(mapping, iocb->ki_pos + count);
 224	return ret;
 225}
 226
 227static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 228{
 229	return generic_block_bmap(mapping, block, udf_get_block);
 230}
 231
 232const struct address_space_operations udf_aops = {
 233	.dirty_folio	= block_dirty_folio,
 234	.invalidate_folio = block_invalidate_folio,
 235	.read_folio	= udf_read_folio,
 236	.readahead	= udf_readahead,
 
 237	.writepages	= udf_writepages,
 238	.write_begin	= udf_write_begin,
 239	.write_end	= generic_write_end,
 240	.direct_IO	= udf_direct_IO,
 241	.bmap		= udf_bmap,
 242	.migrate_folio	= buffer_migrate_folio,
 243};
 244
 245/*
 246 * Expand file stored in ICB to a normal one-block-file
 247 *
 248 * This function requires i_data_sem for writing and releases it.
 249 * This function requires i_mutex held
 250 */
 251int udf_expand_file_adinicb(struct inode *inode)
 252{
 253	struct page *page;
 254	char *kaddr;
 255	struct udf_inode_info *iinfo = UDF_I(inode);
 256	int err;
 
 
 
 
 257
 258	WARN_ON_ONCE(!inode_is_locked(inode));
 259	if (!iinfo->i_lenAlloc) {
 260		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 261			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 262		else
 263			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 264		/* from now on we have normal address_space methods */
 265		inode->i_data.a_ops = &udf_aops;
 266		up_write(&iinfo->i_data_sem);
 267		mark_inode_dirty(inode);
 268		return 0;
 269	}
 270	/*
 271	 * Release i_data_sem so that we can lock a page - page lock ranks
 272	 * above i_data_sem. i_mutex still protects us against file changes.
 273	 */
 274	up_write(&iinfo->i_data_sem);
 275
 276	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 277	if (!page)
 278		return -ENOMEM;
 279
 280	if (!PageUptodate(page)) {
 281		kaddr = kmap_atomic(page);
 282		memset(kaddr + iinfo->i_lenAlloc, 0x00,
 283		       PAGE_SIZE - iinfo->i_lenAlloc);
 284		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
 285			iinfo->i_lenAlloc);
 286		flush_dcache_page(page);
 287		SetPageUptodate(page);
 288		kunmap_atomic(kaddr);
 289	}
 290	down_write(&iinfo->i_data_sem);
 291	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
 292	       iinfo->i_lenAlloc);
 293	iinfo->i_lenAlloc = 0;
 294	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 295		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 296	else
 297		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 298	/* from now on we have normal address_space methods */
 299	inode->i_data.a_ops = &udf_aops;
 300	set_page_dirty(page);
 301	unlock_page(page);
 302	up_write(&iinfo->i_data_sem);
 303	err = filemap_fdatawrite(inode->i_mapping);
 304	if (err) {
 305		/* Restore everything back so that we don't lose data... */
 306		lock_page(page);
 307		down_write(&iinfo->i_data_sem);
 308		kaddr = kmap_atomic(page);
 309		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
 310		kunmap_atomic(kaddr);
 311		unlock_page(page);
 312		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 313		inode->i_data.a_ops = &udf_adinicb_aops;
 314		iinfo->i_lenAlloc = inode->i_size;
 315		up_write(&iinfo->i_data_sem);
 316	}
 317	put_page(page);
 318	mark_inode_dirty(inode);
 319
 320	return err;
 321}
 322
 323struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
 324					    udf_pblk_t *block, int *err)
 325{
 326	udf_pblk_t newblock;
 327	struct buffer_head *dbh = NULL;
 328	struct kernel_lb_addr eloc;
 329	uint8_t alloctype;
 330	struct extent_position epos;
 331
 332	struct udf_fileident_bh sfibh, dfibh;
 333	loff_t f_pos = udf_ext0_offset(inode);
 334	int size = udf_ext0_offset(inode) + inode->i_size;
 335	struct fileIdentDesc cfi, *sfi, *dfi;
 336	struct udf_inode_info *iinfo = UDF_I(inode);
 337
 338	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 339		alloctype = ICBTAG_FLAG_AD_SHORT;
 340	else
 341		alloctype = ICBTAG_FLAG_AD_LONG;
 342
 343	if (!inode->i_size) {
 344		iinfo->i_alloc_type = alloctype;
 345		mark_inode_dirty(inode);
 346		return NULL;
 347	}
 348
 349	/* alloc block, and copy data to it */
 350	*block = udf_new_block(inode->i_sb, inode,
 351			       iinfo->i_location.partitionReferenceNum,
 352			       iinfo->i_location.logicalBlockNum, err);
 353	if (!(*block))
 354		return NULL;
 355	newblock = udf_get_pblock(inode->i_sb, *block,
 356				  iinfo->i_location.partitionReferenceNum,
 357				0);
 358	if (!newblock)
 359		return NULL;
 360	dbh = udf_tgetblk(inode->i_sb, newblock);
 361	if (!dbh)
 362		return NULL;
 363	lock_buffer(dbh);
 364	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 365	set_buffer_uptodate(dbh);
 366	unlock_buffer(dbh);
 367	mark_buffer_dirty_inode(dbh, inode);
 368
 369	sfibh.soffset = sfibh.eoffset =
 370			f_pos & (inode->i_sb->s_blocksize - 1);
 371	sfibh.sbh = sfibh.ebh = NULL;
 372	dfibh.soffset = dfibh.eoffset = 0;
 373	dfibh.sbh = dfibh.ebh = dbh;
 374	while (f_pos < size) {
 375		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 376		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 377					 NULL, NULL, NULL);
 378		if (!sfi) {
 379			brelse(dbh);
 380			return NULL;
 381		}
 382		iinfo->i_alloc_type = alloctype;
 383		sfi->descTag.tagLocation = cpu_to_le32(*block);
 384		dfibh.soffset = dfibh.eoffset;
 385		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 386		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 387		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 388				 udf_get_fi_ident(sfi))) {
 
 389			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 390			brelse(dbh);
 391			return NULL;
 392		}
 393	}
 394	mark_buffer_dirty_inode(dbh, inode);
 395
 396	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
 397	iinfo->i_lenAlloc = 0;
 398	eloc.logicalBlockNum = *block;
 399	eloc.partitionReferenceNum =
 400				iinfo->i_location.partitionReferenceNum;
 401	iinfo->i_lenExtents = inode->i_size;
 402	epos.bh = NULL;
 403	epos.block = iinfo->i_location;
 404	epos.offset = udf_file_entry_alloc_offset(inode);
 405	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 406	/* UniqueID stuff */
 407
 408	brelse(epos.bh);
 409	mark_inode_dirty(inode);
 410	return dbh;
 411}
 412
 413static int udf_get_block(struct inode *inode, sector_t block,
 414			 struct buffer_head *bh_result, int create)
 415{
 416	int err, new;
 417	sector_t phys = 0;
 418	struct udf_inode_info *iinfo;
 419
 420	if (!create) {
 421		phys = udf_block_map(inode, block);
 422		if (phys)
 423			map_bh(bh_result, inode->i_sb, phys);
 424		return 0;
 425	}
 426
 427	err = -EIO;
 428	new = 0;
 429	iinfo = UDF_I(inode);
 430
 431	down_write(&iinfo->i_data_sem);
 432	if (block == iinfo->i_next_alloc_block + 1) {
 433		iinfo->i_next_alloc_block++;
 434		iinfo->i_next_alloc_goal++;
 435	}
 436
 437	/*
 438	 * Block beyond EOF and prealloc extents? Just discard preallocation
 439	 * as it is not useful and complicates things.
 440	 */
 441	if (((loff_t)block) << inode->i_blkbits > iinfo->i_lenExtents)
 442		udf_discard_prealloc(inode);
 443	udf_clear_extent_cache(inode);
 444	phys = inode_getblk(inode, block, &err, &new);
 445	if (!phys)
 446		goto abort;
 447
 448	if (new)
 449		set_buffer_new(bh_result);
 450	map_bh(bh_result, inode->i_sb, phys);
 451
 452abort:
 453	up_write(&iinfo->i_data_sem);
 454	return err;
 455}
 456
 457static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
 458				      int create, int *err)
 459{
 460	struct buffer_head *bh;
 461	struct buffer_head dummy;
 462
 463	dummy.b_state = 0;
 464	dummy.b_blocknr = -1000;
 465	*err = udf_get_block(inode, block, &dummy, create);
 466	if (!*err && buffer_mapped(&dummy)) {
 467		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 468		if (buffer_new(&dummy)) {
 469			lock_buffer(bh);
 470			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 471			set_buffer_uptodate(bh);
 472			unlock_buffer(bh);
 473			mark_buffer_dirty_inode(bh, inode);
 474		}
 475		return bh;
 476	}
 477
 478	return NULL;
 479}
 480
 481/* Extend the file with new blocks totaling 'new_block_bytes',
 482 * return the number of extents added
 483 */
 484static int udf_do_extend_file(struct inode *inode,
 485			      struct extent_position *last_pos,
 486			      struct kernel_long_ad *last_ext,
 487			      loff_t new_block_bytes)
 488{
 489	uint32_t add;
 490	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 491	struct super_block *sb = inode->i_sb;
 
 
 492	struct udf_inode_info *iinfo;
 493	int err;
 494
 495	/* The previous extent is fake and we should not extend by anything
 496	 * - there's nothing to do... */
 497	if (!new_block_bytes && fake)
 498		return 0;
 499
 500	iinfo = UDF_I(inode);
 501	/* Round the last extent up to a multiple of block size */
 502	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 503		last_ext->extLength =
 504			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 505			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 506			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 507		iinfo->i_lenExtents =
 508			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 509			~(sb->s_blocksize - 1);
 510	}
 511
 
 
 
 
 
 
 
 
 
 
 
 
 
 512	/* Can we merge with the previous extent? */
 513	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 514					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 515		add = (1 << 30) - sb->s_blocksize -
 516			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 517		if (add > new_block_bytes)
 518			add = new_block_bytes;
 519		new_block_bytes -= add;
 520		last_ext->extLength += add;
 521	}
 522
 523	if (fake) {
 524		udf_add_aext(inode, last_pos, &last_ext->extLocation,
 525			     last_ext->extLength, 1);
 526		count++;
 527	} else {
 528		struct kernel_lb_addr tmploc;
 529		uint32_t tmplen;
 530
 531		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 532				last_ext->extLength, 1);
 533
 534		/*
 535		 * We've rewritten the last extent. If we are going to add
 536		 * more extents, we may need to enter possible following
 537		 * empty indirect extent.
 538		 */
 539		if (new_block_bytes)
 540			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
 541	}
 542
 543	/* Managed to do everything necessary? */
 544	if (!new_block_bytes)
 545		goto out;
 546
 547	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 548	last_ext->extLocation.logicalBlockNum = 0;
 549	last_ext->extLocation.partitionReferenceNum = 0;
 550	add = (1 << 30) - sb->s_blocksize;
 551	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
 552
 553	/* Create enough extents to cover the whole hole */
 554	while (new_block_bytes > add) {
 555		new_block_bytes -= add;
 556		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 557				   last_ext->extLength, 1);
 558		if (err)
 559			return err;
 560		count++;
 561	}
 562	if (new_block_bytes) {
 563		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 564			new_block_bytes;
 565		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 566				   last_ext->extLength, 1);
 567		if (err)
 568			return err;
 569		count++;
 570	}
 571
 572out:
 
 
 
 
 
 
 
 
 
 
 
 573	/* last_pos should point to the last written extent... */
 574	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 575		last_pos->offset -= sizeof(struct short_ad);
 576	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 577		last_pos->offset -= sizeof(struct long_ad);
 578	else
 579		return -EIO;
 580
 581	return count;
 582}
 583
 584/* Extend the final block of the file to final_block_len bytes */
 585static void udf_do_extend_final_block(struct inode *inode,
 586				      struct extent_position *last_pos,
 587				      struct kernel_long_ad *last_ext,
 588				      uint32_t new_elen)
 589{
 
 590	uint32_t added_bytes;
 591
 592	/*
 593	 * Extent already large enough? It may be already rounded up to block
 594	 * size...
 595	 */
 596	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
 597		return;
 598	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 599	last_ext->extLength += added_bytes;
 600	UDF_I(inode)->i_lenExtents += added_bytes;
 601
 602	udf_write_aext(inode, last_pos, &last_ext->extLocation,
 603			last_ext->extLength, 1);
 604}
 605
 606static int udf_extend_file(struct inode *inode, loff_t newsize)
 607{
 608
 609	struct extent_position epos;
 610	struct kernel_lb_addr eloc;
 611	uint32_t elen;
 612	int8_t etype;
 613	struct super_block *sb = inode->i_sb;
 614	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 615	loff_t new_elen;
 616	int adsize;
 617	struct udf_inode_info *iinfo = UDF_I(inode);
 618	struct kernel_long_ad extent;
 619	int err = 0;
 620	bool within_last_ext;
 621
 622	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 623		adsize = sizeof(struct short_ad);
 624	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 625		adsize = sizeof(struct long_ad);
 626	else
 627		BUG();
 628
 629	/*
 630	 * When creating hole in file, just don't bother with preserving
 631	 * preallocation. It likely won't be very useful anyway.
 632	 */
 633	udf_discard_prealloc(inode);
 634
 635	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 636	within_last_ext = (etype != -1);
 637	/* We don't expect extents past EOF... */
 638	WARN_ON_ONCE(within_last_ext &&
 639		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
 640
 641	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 642	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 643		/* File has no extents at all or has empty last
 644		 * indirect extent! Create a fake extent... */
 645		extent.extLocation.logicalBlockNum = 0;
 646		extent.extLocation.partitionReferenceNum = 0;
 647		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 648	} else {
 649		epos.offset -= adsize;
 650		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 651				      &extent.extLength, 0);
 652		extent.extLength |= etype << 30;
 653	}
 654
 655	new_elen = ((loff_t)offset << inode->i_blkbits) |
 656					(newsize & (sb->s_blocksize - 1));
 657
 658	/* File has extent covering the new size (could happen when extending
 659	 * inside a block)?
 660	 */
 661	if (within_last_ext) {
 662		/* Extending file within the last file block */
 663		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
 
 664	} else {
 665		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
 
 
 666	}
 667
 668	if (err < 0)
 669		goto out;
 670	err = 0;
 671	iinfo->i_lenExtents = newsize;
 672out:
 673	brelse(epos.bh);
 674	return err;
 675}
 676
 677static sector_t inode_getblk(struct inode *inode, sector_t block,
 678			     int *err, int *new)
 679{
 680	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 681	struct extent_position prev_epos, cur_epos, next_epos;
 682	int count = 0, startnum = 0, endnum = 0;
 683	uint32_t elen = 0, tmpelen;
 684	struct kernel_lb_addr eloc, tmpeloc;
 685	int c = 1;
 686	loff_t lbcount = 0, b_off = 0;
 687	udf_pblk_t newblocknum, newblock = 0;
 688	sector_t offset = 0;
 689	int8_t etype;
 690	struct udf_inode_info *iinfo = UDF_I(inode);
 691	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 692	int lastblock = 0;
 693	bool isBeyondEOF;
 694
 695	*err = 0;
 696	*new = 0;
 697	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 698	prev_epos.block = iinfo->i_location;
 699	prev_epos.bh = NULL;
 700	cur_epos = next_epos = prev_epos;
 701	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 702
 703	/* find the extent which contains the block we are looking for.
 704	   alternate between laarr[0] and laarr[1] for locations of the
 705	   current extent, and the previous extent */
 706	do {
 707		if (prev_epos.bh != cur_epos.bh) {
 708			brelse(prev_epos.bh);
 709			get_bh(cur_epos.bh);
 710			prev_epos.bh = cur_epos.bh;
 711		}
 712		if (cur_epos.bh != next_epos.bh) {
 713			brelse(cur_epos.bh);
 714			get_bh(next_epos.bh);
 715			cur_epos.bh = next_epos.bh;
 716		}
 717
 718		lbcount += elen;
 719
 720		prev_epos.block = cur_epos.block;
 721		cur_epos.block = next_epos.block;
 722
 723		prev_epos.offset = cur_epos.offset;
 724		cur_epos.offset = next_epos.offset;
 725
 726		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 727		if (etype == -1)
 728			break;
 729
 730		c = !c;
 731
 732		laarr[c].extLength = (etype << 30) | elen;
 733		laarr[c].extLocation = eloc;
 734
 735		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 736			pgoal = eloc.logicalBlockNum +
 737				((elen + inode->i_sb->s_blocksize - 1) >>
 738				 inode->i_sb->s_blocksize_bits);
 739
 740		count++;
 741	} while (lbcount + elen <= b_off);
 742
 743	b_off -= lbcount;
 744	offset = b_off >> inode->i_sb->s_blocksize_bits;
 745	/*
 746	 * Move prev_epos and cur_epos into indirect extent if we are at
 747	 * the pointer to it
 748	 */
 749	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 750	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 751
 752	/* if the extent is allocated and recorded, return the block
 753	   if the extent is not a multiple of the blocksize, round up */
 754
 755	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 756		if (elen & (inode->i_sb->s_blocksize - 1)) {
 757			elen = EXT_RECORDED_ALLOCATED |
 758				((elen + inode->i_sb->s_blocksize - 1) &
 759				 ~(inode->i_sb->s_blocksize - 1));
 760			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 761		}
 762		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 763		goto out_free;
 764	}
 765
 766	/* Are we beyond EOF and preallocated extent? */
 767	if (etype == -1) {
 768		int ret;
 769		loff_t hole_len;
 770
 771		isBeyondEOF = true;
 772		if (count) {
 773			if (c)
 774				laarr[0] = laarr[1];
 775			startnum = 1;
 776		} else {
 777			/* Create a fake extent when there's not one */
 778			memset(&laarr[0].extLocation, 0x00,
 779				sizeof(struct kernel_lb_addr));
 780			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 781			/* Will udf_do_extend_file() create real extent from
 782			   a fake one? */
 783			startnum = (offset > 0);
 784		}
 785		/* Create extents for the hole between EOF and offset */
 786		hole_len = (loff_t)offset << inode->i_blkbits;
 787		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
 788		if (ret < 0) {
 789			*err = ret;
 
 790			goto out_free;
 791		}
 792		c = 0;
 793		offset = 0;
 794		count += ret;
 795		/* We are not covered by a preallocated extent? */
 796		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 797						EXT_NOT_RECORDED_ALLOCATED) {
 798			/* Is there any real extent? - otherwise we overwrite
 799			 * the fake one... */
 800			if (count)
 801				c = !c;
 802			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 803				inode->i_sb->s_blocksize;
 804			memset(&laarr[c].extLocation, 0x00,
 805				sizeof(struct kernel_lb_addr));
 806			count++;
 807		}
 808		endnum = c + 1;
 809		lastblock = 1;
 810	} else {
 811		isBeyondEOF = false;
 812		endnum = startnum = ((count > 2) ? 2 : count);
 813
 814		/* if the current extent is in position 0,
 815		   swap it with the previous */
 816		if (!c && count != 1) {
 817			laarr[2] = laarr[0];
 818			laarr[0] = laarr[1];
 819			laarr[1] = laarr[2];
 820			c = 1;
 821		}
 822
 823		/* if the current block is located in an extent,
 824		   read the next extent */
 825		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 826		if (etype != -1) {
 827			laarr[c + 1].extLength = (etype << 30) | elen;
 828			laarr[c + 1].extLocation = eloc;
 829			count++;
 830			startnum++;
 831			endnum++;
 832		} else
 833			lastblock = 1;
 834	}
 835
 836	/* if the current extent is not recorded but allocated, get the
 837	 * block in the extent corresponding to the requested block */
 838	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 839		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 840	else { /* otherwise, allocate a new block */
 841		if (iinfo->i_next_alloc_block == block)
 842			goal = iinfo->i_next_alloc_goal;
 843
 844		if (!goal) {
 845			if (!(goal = pgoal)) /* XXX: what was intended here? */
 846				goal = iinfo->i_location.logicalBlockNum + 1;
 847		}
 848
 849		newblocknum = udf_new_block(inode->i_sb, inode,
 850				iinfo->i_location.partitionReferenceNum,
 851				goal, err);
 852		if (!newblocknum) {
 853			*err = -ENOSPC;
 
 854			goto out_free;
 855		}
 856		if (isBeyondEOF)
 857			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 858	}
 859
 860	/* if the extent the requsted block is located in contains multiple
 861	 * blocks, split the extent into at most three extents. blocks prior
 862	 * to requested block, requested block, and blocks after requested
 863	 * block */
 864	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 865
 866	/* We preallocate blocks only for regular files. It also makes sense
 867	 * for directories but there's a problem when to drop the
 868	 * preallocation. We might use some delayed work for that but I feel
 869	 * it's overengineering for a filesystem like UDF. */
 870	if (S_ISREG(inode->i_mode))
 871		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 872
 873	/* merge any continuous blocks in laarr */
 874	udf_merge_extents(inode, laarr, &endnum);
 875
 876	/* write back the new extents, inserting new extents if the new number
 877	 * of extents is greater than the old number, and deleting extents if
 878	 * the new number of extents is less than the old number */
 879	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 880
 881	newblock = udf_get_pblock(inode->i_sb, newblocknum,
 882				iinfo->i_location.partitionReferenceNum, 0);
 883	if (!newblock) {
 884		*err = -EIO;
 885		goto out_free;
 886	}
 887	*new = 1;
 888	iinfo->i_next_alloc_block = block;
 889	iinfo->i_next_alloc_goal = newblocknum;
 890	inode->i_ctime = current_time(inode);
 891
 892	if (IS_SYNC(inode))
 893		udf_sync_inode(inode);
 894	else
 895		mark_inode_dirty(inode);
 896out_free:
 897	brelse(prev_epos.bh);
 898	brelse(cur_epos.bh);
 899	brelse(next_epos.bh);
 900	return newblock;
 901}
 902
 903static void udf_split_extents(struct inode *inode, int *c, int offset,
 904			       udf_pblk_t newblocknum,
 905			       struct kernel_long_ad *laarr, int *endnum)
 906{
 907	unsigned long blocksize = inode->i_sb->s_blocksize;
 908	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 909
 910	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 911	    (laarr[*c].extLength >> 30) ==
 912				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 913		int curr = *c;
 914		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 915			    blocksize - 1) >> blocksize_bits;
 916		int8_t etype = (laarr[curr].extLength >> 30);
 917
 918		if (blen == 1)
 919			;
 920		else if (!offset || blen == offset + 1) {
 921			laarr[curr + 2] = laarr[curr + 1];
 922			laarr[curr + 1] = laarr[curr];
 923		} else {
 924			laarr[curr + 3] = laarr[curr + 1];
 925			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 926		}
 927
 928		if (offset) {
 929			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 930				udf_free_blocks(inode->i_sb, inode,
 931						&laarr[curr].extLocation,
 932						0, offset);
 933				laarr[curr].extLength =
 934					EXT_NOT_RECORDED_NOT_ALLOCATED |
 935					(offset << blocksize_bits);
 936				laarr[curr].extLocation.logicalBlockNum = 0;
 937				laarr[curr].extLocation.
 938						partitionReferenceNum = 0;
 939			} else
 940				laarr[curr].extLength = (etype << 30) |
 941					(offset << blocksize_bits);
 942			curr++;
 943			(*c)++;
 944			(*endnum)++;
 945		}
 946
 947		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 948		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 949			laarr[curr].extLocation.partitionReferenceNum =
 950				UDF_I(inode)->i_location.partitionReferenceNum;
 951		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 952			blocksize;
 953		curr++;
 954
 955		if (blen != offset + 1) {
 956			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 957				laarr[curr].extLocation.logicalBlockNum +=
 958								offset + 1;
 959			laarr[curr].extLength = (etype << 30) |
 960				((blen - (offset + 1)) << blocksize_bits);
 961			curr++;
 962			(*endnum)++;
 963		}
 964	}
 965}
 966
 967static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 968				 struct kernel_long_ad *laarr,
 969				 int *endnum)
 970{
 971	int start, length = 0, currlength = 0, i;
 972
 973	if (*endnum >= (c + 1)) {
 974		if (!lastblock)
 975			return;
 976		else
 977			start = c;
 978	} else {
 979		if ((laarr[c + 1].extLength >> 30) ==
 980					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 981			start = c + 1;
 982			length = currlength =
 983				(((laarr[c + 1].extLength &
 984					UDF_EXTENT_LENGTH_MASK) +
 985				inode->i_sb->s_blocksize - 1) >>
 986				inode->i_sb->s_blocksize_bits);
 987		} else
 988			start = c;
 989	}
 990
 991	for (i = start + 1; i <= *endnum; i++) {
 992		if (i == *endnum) {
 993			if (lastblock)
 994				length += UDF_DEFAULT_PREALLOC_BLOCKS;
 995		} else if ((laarr[i].extLength >> 30) ==
 996				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 997			length += (((laarr[i].extLength &
 998						UDF_EXTENT_LENGTH_MASK) +
 999				    inode->i_sb->s_blocksize - 1) >>
1000				    inode->i_sb->s_blocksize_bits);
1001		} else
1002			break;
1003	}
1004
1005	if (length) {
1006		int next = laarr[start].extLocation.logicalBlockNum +
1007			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1008			  inode->i_sb->s_blocksize - 1) >>
1009			  inode->i_sb->s_blocksize_bits);
1010		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1011				laarr[start].extLocation.partitionReferenceNum,
1012				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1013				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1014				currlength);
1015		if (numalloc) 	{
1016			if (start == (c + 1))
1017				laarr[start].extLength +=
1018					(numalloc <<
1019					 inode->i_sb->s_blocksize_bits);
1020			else {
1021				memmove(&laarr[c + 2], &laarr[c + 1],
1022					sizeof(struct long_ad) * (*endnum - (c + 1)));
1023				(*endnum)++;
1024				laarr[c + 1].extLocation.logicalBlockNum = next;
1025				laarr[c + 1].extLocation.partitionReferenceNum =
1026					laarr[c].extLocation.
1027							partitionReferenceNum;
1028				laarr[c + 1].extLength =
1029					EXT_NOT_RECORDED_ALLOCATED |
1030					(numalloc <<
1031					 inode->i_sb->s_blocksize_bits);
1032				start = c + 1;
1033			}
1034
1035			for (i = start + 1; numalloc && i < *endnum; i++) {
1036				int elen = ((laarr[i].extLength &
1037						UDF_EXTENT_LENGTH_MASK) +
1038					    inode->i_sb->s_blocksize - 1) >>
1039					    inode->i_sb->s_blocksize_bits;
1040
1041				if (elen > numalloc) {
1042					laarr[i].extLength -=
1043						(numalloc <<
1044						 inode->i_sb->s_blocksize_bits);
1045					numalloc = 0;
1046				} else {
1047					numalloc -= elen;
1048					if (*endnum > (i + 1))
1049						memmove(&laarr[i],
1050							&laarr[i + 1],
1051							sizeof(struct long_ad) *
1052							(*endnum - (i + 1)));
1053					i--;
1054					(*endnum)--;
1055				}
1056			}
1057			UDF_I(inode)->i_lenExtents +=
1058				numalloc << inode->i_sb->s_blocksize_bits;
1059		}
1060	}
1061}
1062
1063static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1064			      int *endnum)
1065{
1066	int i;
1067	unsigned long blocksize = inode->i_sb->s_blocksize;
1068	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1069
1070	for (i = 0; i < (*endnum - 1); i++) {
1071		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1072		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1073
1074		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1075			(((li->extLength >> 30) ==
1076				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1077			((lip1->extLocation.logicalBlockNum -
1078			  li->extLocation.logicalBlockNum) ==
1079			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1080			blocksize - 1) >> blocksize_bits)))) {
1081
1082			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1083				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1084				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1085				lip1->extLength = (lip1->extLength -
1086						  (li->extLength &
1087						   UDF_EXTENT_LENGTH_MASK) +
1088						   UDF_EXTENT_LENGTH_MASK) &
1089							~(blocksize - 1);
1090				li->extLength = (li->extLength &
1091						 UDF_EXTENT_FLAG_MASK) +
1092						(UDF_EXTENT_LENGTH_MASK + 1) -
1093						blocksize;
1094				lip1->extLocation.logicalBlockNum =
1095					li->extLocation.logicalBlockNum +
1096					((li->extLength &
1097						UDF_EXTENT_LENGTH_MASK) >>
1098						blocksize_bits);
1099			} else {
1100				li->extLength = lip1->extLength +
1101					(((li->extLength &
1102						UDF_EXTENT_LENGTH_MASK) +
1103					 blocksize - 1) & ~(blocksize - 1));
1104				if (*endnum > (i + 2))
1105					memmove(&laarr[i + 1], &laarr[i + 2],
1106						sizeof(struct long_ad) *
1107						(*endnum - (i + 2)));
1108				i--;
1109				(*endnum)--;
1110			}
1111		} else if (((li->extLength >> 30) ==
1112				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1113			   ((lip1->extLength >> 30) ==
1114				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1115			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1116					((li->extLength &
1117					  UDF_EXTENT_LENGTH_MASK) +
1118					 blocksize - 1) >> blocksize_bits);
1119			li->extLocation.logicalBlockNum = 0;
1120			li->extLocation.partitionReferenceNum = 0;
1121
1122			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1123			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1124			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1125				lip1->extLength = (lip1->extLength -
1126						   (li->extLength &
1127						   UDF_EXTENT_LENGTH_MASK) +
1128						   UDF_EXTENT_LENGTH_MASK) &
1129						   ~(blocksize - 1);
1130				li->extLength = (li->extLength &
1131						 UDF_EXTENT_FLAG_MASK) +
1132						(UDF_EXTENT_LENGTH_MASK + 1) -
1133						blocksize;
1134			} else {
1135				li->extLength = lip1->extLength +
1136					(((li->extLength &
1137						UDF_EXTENT_LENGTH_MASK) +
1138					  blocksize - 1) & ~(blocksize - 1));
1139				if (*endnum > (i + 2))
1140					memmove(&laarr[i + 1], &laarr[i + 2],
1141						sizeof(struct long_ad) *
1142						(*endnum - (i + 2)));
1143				i--;
1144				(*endnum)--;
1145			}
1146		} else if ((li->extLength >> 30) ==
1147					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1148			udf_free_blocks(inode->i_sb, inode,
1149					&li->extLocation, 0,
1150					((li->extLength &
1151						UDF_EXTENT_LENGTH_MASK) +
1152					 blocksize - 1) >> blocksize_bits);
1153			li->extLocation.logicalBlockNum = 0;
1154			li->extLocation.partitionReferenceNum = 0;
1155			li->extLength = (li->extLength &
1156						UDF_EXTENT_LENGTH_MASK) |
1157						EXT_NOT_RECORDED_NOT_ALLOCATED;
1158		}
1159	}
1160}
1161
1162static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1163			       int startnum, int endnum,
1164			       struct extent_position *epos)
1165{
1166	int start = 0, i;
1167	struct kernel_lb_addr tmploc;
1168	uint32_t tmplen;
1169
1170	if (startnum > endnum) {
1171		for (i = 0; i < (startnum - endnum); i++)
1172			udf_delete_aext(inode, *epos);
1173	} else if (startnum < endnum) {
1174		for (i = 0; i < (endnum - startnum); i++) {
1175			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1176					laarr[i].extLength);
1177			udf_next_aext(inode, epos, &laarr[i].extLocation,
1178				      &laarr[i].extLength, 1);
1179			start++;
1180		}
1181	}
1182
1183	for (i = start; i < endnum; i++) {
1184		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1185		udf_write_aext(inode, epos, &laarr[i].extLocation,
1186			       laarr[i].extLength, 1);
1187	}
1188}
1189
1190struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1191			      int create, int *err)
1192{
1193	struct buffer_head *bh = NULL;
1194
1195	bh = udf_getblk(inode, block, create, err);
1196	if (!bh)
1197		return NULL;
1198
1199	if (bh_read(bh, 0) >= 0)
 
 
 
 
 
 
1200		return bh;
1201
1202	brelse(bh);
1203	*err = -EIO;
1204	return NULL;
1205}
1206
1207int udf_setsize(struct inode *inode, loff_t newsize)
1208{
1209	int err;
1210	struct udf_inode_info *iinfo;
1211	unsigned int bsize = i_blocksize(inode);
1212
1213	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1214	      S_ISLNK(inode->i_mode)))
1215		return -EINVAL;
1216	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1217		return -EPERM;
1218
1219	iinfo = UDF_I(inode);
1220	if (newsize > inode->i_size) {
1221		down_write(&iinfo->i_data_sem);
1222		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1223			if (bsize <
1224			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1225				err = udf_expand_file_adinicb(inode);
1226				if (err)
1227					return err;
1228				down_write(&iinfo->i_data_sem);
1229			} else {
1230				iinfo->i_lenAlloc = newsize;
1231				goto set_size;
1232			}
1233		}
1234		err = udf_extend_file(inode, newsize);
1235		if (err) {
1236			up_write(&iinfo->i_data_sem);
1237			return err;
1238		}
1239set_size:
1240		up_write(&iinfo->i_data_sem);
1241		truncate_setsize(inode, newsize);
1242	} else {
1243		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1244			down_write(&iinfo->i_data_sem);
1245			udf_clear_extent_cache(inode);
1246			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1247			       0x00, bsize - newsize -
1248			       udf_file_entry_alloc_offset(inode));
1249			iinfo->i_lenAlloc = newsize;
1250			truncate_setsize(inode, newsize);
1251			up_write(&iinfo->i_data_sem);
1252			goto update_time;
1253		}
1254		err = block_truncate_page(inode->i_mapping, newsize,
1255					  udf_get_block);
1256		if (err)
1257			return err;
1258		truncate_setsize(inode, newsize);
1259		down_write(&iinfo->i_data_sem);
1260		udf_clear_extent_cache(inode);
1261		err = udf_truncate_extents(inode);
1262		up_write(&iinfo->i_data_sem);
1263		if (err)
1264			return err;
1265	}
1266update_time:
1267	inode->i_mtime = inode->i_ctime = current_time(inode);
1268	if (IS_SYNC(inode))
1269		udf_sync_inode(inode);
1270	else
1271		mark_inode_dirty(inode);
1272	return 0;
1273}
1274
1275/*
1276 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1277 * arbitrary - just that we hopefully don't limit any real use of rewritten
1278 * inode on write-once media but avoid looping for too long on corrupted media.
1279 */
1280#define UDF_MAX_ICB_NESTING 1024
1281
1282static int udf_read_inode(struct inode *inode, bool hidden_inode)
1283{
1284	struct buffer_head *bh = NULL;
1285	struct fileEntry *fe;
1286	struct extendedFileEntry *efe;
1287	uint16_t ident;
1288	struct udf_inode_info *iinfo = UDF_I(inode);
1289	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1290	struct kernel_lb_addr *iloc = &iinfo->i_location;
1291	unsigned int link_count;
1292	unsigned int indirections = 0;
1293	int bs = inode->i_sb->s_blocksize;
1294	int ret = -EIO;
1295	uint32_t uid, gid;
1296
1297reread:
1298	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1299		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1300			  iloc->partitionReferenceNum, sbi->s_partitions);
1301		return -EIO;
1302	}
1303
1304	if (iloc->logicalBlockNum >=
1305	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1306		udf_debug("block=%u, partition=%u out of range\n",
1307			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1308		return -EIO;
1309	}
1310
1311	/*
1312	 * Set defaults, but the inode is still incomplete!
1313	 * Note: get_new_inode() sets the following on a new inode:
1314	 *      i_sb = sb
1315	 *      i_no = ino
1316	 *      i_flags = sb->s_flags
1317	 *      i_state = 0
1318	 * clean_inode(): zero fills and sets
1319	 *      i_count = 1
1320	 *      i_nlink = 1
1321	 *      i_op = NULL;
1322	 */
1323	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1324	if (!bh) {
1325		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1326		return -EIO;
1327	}
1328
1329	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1330	    ident != TAG_IDENT_USE) {
1331		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1332			inode->i_ino, ident);
1333		goto out;
1334	}
1335
1336	fe = (struct fileEntry *)bh->b_data;
1337	efe = (struct extendedFileEntry *)bh->b_data;
1338
1339	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1340		struct buffer_head *ibh;
1341
1342		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1343		if (ident == TAG_IDENT_IE && ibh) {
1344			struct kernel_lb_addr loc;
1345			struct indirectEntry *ie;
1346
1347			ie = (struct indirectEntry *)ibh->b_data;
1348			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1349
1350			if (ie->indirectICB.extLength) {
1351				brelse(ibh);
1352				memcpy(&iinfo->i_location, &loc,
1353				       sizeof(struct kernel_lb_addr));
1354				if (++indirections > UDF_MAX_ICB_NESTING) {
1355					udf_err(inode->i_sb,
1356						"too many ICBs in ICB hierarchy"
1357						" (max %d supported)\n",
1358						UDF_MAX_ICB_NESTING);
1359					goto out;
1360				}
1361				brelse(bh);
1362				goto reread;
1363			}
1364		}
1365		brelse(ibh);
1366	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1367		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1368			le16_to_cpu(fe->icbTag.strategyType));
1369		goto out;
1370	}
1371	if (fe->icbTag.strategyType == cpu_to_le16(4))
1372		iinfo->i_strat4096 = 0;
1373	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1374		iinfo->i_strat4096 = 1;
1375
1376	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1377							ICBTAG_FLAG_AD_MASK;
1378	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1379	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1380	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1381		ret = -EIO;
1382		goto out;
1383	}
1384	iinfo->i_unique = 0;
1385	iinfo->i_lenEAttr = 0;
1386	iinfo->i_lenExtents = 0;
1387	iinfo->i_lenAlloc = 0;
1388	iinfo->i_next_alloc_block = 0;
1389	iinfo->i_next_alloc_goal = 0;
1390	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1391		iinfo->i_efe = 1;
1392		iinfo->i_use = 0;
1393		ret = udf_alloc_i_data(inode, bs -
1394					sizeof(struct extendedFileEntry));
1395		if (ret)
1396			goto out;
1397		memcpy(iinfo->i_data,
1398		       bh->b_data + sizeof(struct extendedFileEntry),
1399		       bs - sizeof(struct extendedFileEntry));
1400	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1401		iinfo->i_efe = 0;
1402		iinfo->i_use = 0;
1403		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1404		if (ret)
1405			goto out;
1406		memcpy(iinfo->i_data,
1407		       bh->b_data + sizeof(struct fileEntry),
1408		       bs - sizeof(struct fileEntry));
1409	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1410		iinfo->i_efe = 0;
1411		iinfo->i_use = 1;
1412		iinfo->i_lenAlloc = le32_to_cpu(
1413				((struct unallocSpaceEntry *)bh->b_data)->
1414				 lengthAllocDescs);
1415		ret = udf_alloc_i_data(inode, bs -
1416					sizeof(struct unallocSpaceEntry));
1417		if (ret)
1418			goto out;
1419		memcpy(iinfo->i_data,
1420		       bh->b_data + sizeof(struct unallocSpaceEntry),
1421		       bs - sizeof(struct unallocSpaceEntry));
1422		return 0;
1423	}
1424
1425	ret = -EIO;
1426	read_lock(&sbi->s_cred_lock);
1427	uid = le32_to_cpu(fe->uid);
1428	if (uid == UDF_INVALID_ID ||
1429	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1430		inode->i_uid = sbi->s_uid;
1431	else
1432		i_uid_write(inode, uid);
1433
1434	gid = le32_to_cpu(fe->gid);
1435	if (gid == UDF_INVALID_ID ||
1436	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1437		inode->i_gid = sbi->s_gid;
1438	else
1439		i_gid_write(inode, gid);
1440
1441	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1442			sbi->s_fmode != UDF_INVALID_MODE)
1443		inode->i_mode = sbi->s_fmode;
1444	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1445			sbi->s_dmode != UDF_INVALID_MODE)
1446		inode->i_mode = sbi->s_dmode;
1447	else
1448		inode->i_mode = udf_convert_permissions(fe);
1449	inode->i_mode &= ~sbi->s_umask;
1450	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1451
1452	read_unlock(&sbi->s_cred_lock);
1453
1454	link_count = le16_to_cpu(fe->fileLinkCount);
1455	if (!link_count) {
1456		if (!hidden_inode) {
1457			ret = -ESTALE;
1458			goto out;
1459		}
1460		link_count = 1;
1461	}
1462	set_nlink(inode, link_count);
1463
1464	inode->i_size = le64_to_cpu(fe->informationLength);
1465	iinfo->i_lenExtents = inode->i_size;
1466
1467	if (iinfo->i_efe == 0) {
1468		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1469			(inode->i_sb->s_blocksize_bits - 9);
1470
1471		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1472		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1473		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1474
1475		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1476		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1477		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1478		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1479		iinfo->i_streamdir = 0;
1480		iinfo->i_lenStreams = 0;
1481	} else {
1482		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1483		    (inode->i_sb->s_blocksize_bits - 9);
1484
1485		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1486		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1487		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1488		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1489
1490		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1491		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1492		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1493		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1494
1495		/* Named streams */
1496		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1497		iinfo->i_locStreamdir =
1498			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1499		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1500		if (iinfo->i_lenStreams >= inode->i_size)
1501			iinfo->i_lenStreams -= inode->i_size;
1502		else
1503			iinfo->i_lenStreams = 0;
1504	}
1505	inode->i_generation = iinfo->i_unique;
1506
1507	/*
1508	 * Sanity check length of allocation descriptors and extended attrs to
1509	 * avoid integer overflows
1510	 */
1511	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1512		goto out;
1513	/* Now do exact checks */
1514	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1515		goto out;
1516	/* Sanity checks for files in ICB so that we don't get confused later */
1517	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1518		/*
1519		 * For file in ICB data is stored in allocation descriptor
1520		 * so sizes should match
1521		 */
1522		if (iinfo->i_lenAlloc != inode->i_size)
1523			goto out;
1524		/* File in ICB has to fit in there... */
1525		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1526			goto out;
1527	}
1528
1529	switch (fe->icbTag.fileType) {
1530	case ICBTAG_FILE_TYPE_DIRECTORY:
1531		inode->i_op = &udf_dir_inode_operations;
1532		inode->i_fop = &udf_dir_operations;
1533		inode->i_mode |= S_IFDIR;
1534		inc_nlink(inode);
1535		break;
1536	case ICBTAG_FILE_TYPE_REALTIME:
1537	case ICBTAG_FILE_TYPE_REGULAR:
1538	case ICBTAG_FILE_TYPE_UNDEF:
1539	case ICBTAG_FILE_TYPE_VAT20:
1540		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1541			inode->i_data.a_ops = &udf_adinicb_aops;
1542		else
1543			inode->i_data.a_ops = &udf_aops;
1544		inode->i_op = &udf_file_inode_operations;
1545		inode->i_fop = &udf_file_operations;
1546		inode->i_mode |= S_IFREG;
1547		break;
1548	case ICBTAG_FILE_TYPE_BLOCK:
1549		inode->i_mode |= S_IFBLK;
1550		break;
1551	case ICBTAG_FILE_TYPE_CHAR:
1552		inode->i_mode |= S_IFCHR;
1553		break;
1554	case ICBTAG_FILE_TYPE_FIFO:
1555		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1556		break;
1557	case ICBTAG_FILE_TYPE_SOCKET:
1558		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1559		break;
1560	case ICBTAG_FILE_TYPE_SYMLINK:
1561		inode->i_data.a_ops = &udf_symlink_aops;
1562		inode->i_op = &udf_symlink_inode_operations;
1563		inode_nohighmem(inode);
1564		inode->i_mode = S_IFLNK | 0777;
1565		break;
1566	case ICBTAG_FILE_TYPE_MAIN:
1567		udf_debug("METADATA FILE-----\n");
1568		break;
1569	case ICBTAG_FILE_TYPE_MIRROR:
1570		udf_debug("METADATA MIRROR FILE-----\n");
1571		break;
1572	case ICBTAG_FILE_TYPE_BITMAP:
1573		udf_debug("METADATA BITMAP FILE-----\n");
1574		break;
1575	default:
1576		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1577			inode->i_ino, fe->icbTag.fileType);
1578		goto out;
1579	}
1580	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1581		struct deviceSpec *dsea =
1582			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1583		if (dsea) {
1584			init_special_inode(inode, inode->i_mode,
1585				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1586				      le32_to_cpu(dsea->minorDeviceIdent)));
1587			/* Developer ID ??? */
1588		} else
1589			goto out;
1590	}
1591	ret = 0;
1592out:
1593	brelse(bh);
1594	return ret;
1595}
1596
1597static int udf_alloc_i_data(struct inode *inode, size_t size)
1598{
1599	struct udf_inode_info *iinfo = UDF_I(inode);
1600	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1601	if (!iinfo->i_data)
1602		return -ENOMEM;
1603	return 0;
1604}
1605
1606static umode_t udf_convert_permissions(struct fileEntry *fe)
1607{
1608	umode_t mode;
1609	uint32_t permissions;
1610	uint32_t flags;
1611
1612	permissions = le32_to_cpu(fe->permissions);
1613	flags = le16_to_cpu(fe->icbTag.flags);
1614
1615	mode =	((permissions) & 0007) |
1616		((permissions >> 2) & 0070) |
1617		((permissions >> 4) & 0700) |
1618		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1619		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1620		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1621
1622	return mode;
1623}
1624
1625void udf_update_extra_perms(struct inode *inode, umode_t mode)
1626{
1627	struct udf_inode_info *iinfo = UDF_I(inode);
1628
1629	/*
1630	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1631	 * In Unix, delete permission tracks write
1632	 */
1633	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1634	if (mode & 0200)
1635		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1636	if (mode & 0020)
1637		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1638	if (mode & 0002)
1639		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1640}
1641
1642int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1643{
1644	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1645}
1646
1647static int udf_sync_inode(struct inode *inode)
1648{
1649	return udf_update_inode(inode, 1);
1650}
1651
1652static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1653{
1654	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1655	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1656	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1657		iinfo->i_crtime = time;
1658}
1659
1660static int udf_update_inode(struct inode *inode, int do_sync)
1661{
1662	struct buffer_head *bh = NULL;
1663	struct fileEntry *fe;
1664	struct extendedFileEntry *efe;
1665	uint64_t lb_recorded;
1666	uint32_t udfperms;
1667	uint16_t icbflags;
1668	uint16_t crclen;
1669	int err = 0;
1670	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1671	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1672	struct udf_inode_info *iinfo = UDF_I(inode);
1673
1674	bh = udf_tgetblk(inode->i_sb,
1675			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1676	if (!bh) {
1677		udf_debug("getblk failure\n");
1678		return -EIO;
1679	}
1680
1681	lock_buffer(bh);
1682	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1683	fe = (struct fileEntry *)bh->b_data;
1684	efe = (struct extendedFileEntry *)bh->b_data;
1685
1686	if (iinfo->i_use) {
1687		struct unallocSpaceEntry *use =
1688			(struct unallocSpaceEntry *)bh->b_data;
1689
1690		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1691		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1692		       iinfo->i_data, inode->i_sb->s_blocksize -
1693					sizeof(struct unallocSpaceEntry));
1694		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1695		crclen = sizeof(struct unallocSpaceEntry);
1696
1697		goto finish;
1698	}
1699
1700	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1701		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1702	else
1703		fe->uid = cpu_to_le32(i_uid_read(inode));
1704
1705	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1706		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1707	else
1708		fe->gid = cpu_to_le32(i_gid_read(inode));
1709
1710	udfperms = ((inode->i_mode & 0007)) |
1711		   ((inode->i_mode & 0070) << 2) |
1712		   ((inode->i_mode & 0700) << 4);
1713
1714	udfperms |= iinfo->i_extraPerms;
1715	fe->permissions = cpu_to_le32(udfperms);
1716
1717	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1718		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1719	else
1720		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1721
1722	fe->informationLength = cpu_to_le64(inode->i_size);
1723
1724	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1725		struct regid *eid;
1726		struct deviceSpec *dsea =
1727			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1728		if (!dsea) {
1729			dsea = (struct deviceSpec *)
1730				udf_add_extendedattr(inode,
1731						     sizeof(struct deviceSpec) +
1732						     sizeof(struct regid), 12, 0x3);
1733			dsea->attrType = cpu_to_le32(12);
1734			dsea->attrSubtype = 1;
1735			dsea->attrLength = cpu_to_le32(
1736						sizeof(struct deviceSpec) +
1737						sizeof(struct regid));
1738			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1739		}
1740		eid = (struct regid *)dsea->impUse;
1741		memset(eid, 0, sizeof(*eid));
1742		strcpy(eid->ident, UDF_ID_DEVELOPER);
1743		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1744		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1745		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1746		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1747	}
1748
1749	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1750		lb_recorded = 0; /* No extents => no blocks! */
1751	else
1752		lb_recorded =
1753			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1754			(blocksize_bits - 9);
1755
1756	if (iinfo->i_efe == 0) {
1757		memcpy(bh->b_data + sizeof(struct fileEntry),
1758		       iinfo->i_data,
1759		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1760		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1761
1762		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1763		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1764		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1765		memset(&(fe->impIdent), 0, sizeof(struct regid));
1766		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1767		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1768		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1769		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1770		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1771		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1772		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1773		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1774		crclen = sizeof(struct fileEntry);
1775	} else {
1776		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1777		       iinfo->i_data,
1778		       inode->i_sb->s_blocksize -
1779					sizeof(struct extendedFileEntry));
1780		efe->objectSize =
1781			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1782		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1783
1784		if (iinfo->i_streamdir) {
1785			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1786
1787			icb_lad->extLocation =
1788				cpu_to_lelb(iinfo->i_locStreamdir);
1789			icb_lad->extLength =
1790				cpu_to_le32(inode->i_sb->s_blocksize);
1791		}
1792
1793		udf_adjust_time(iinfo, inode->i_atime);
1794		udf_adjust_time(iinfo, inode->i_mtime);
1795		udf_adjust_time(iinfo, inode->i_ctime);
1796
1797		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1798		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1799		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1800		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1801
1802		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1803		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1804		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1805		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1806		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1807		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1808		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1809		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1810		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1811		crclen = sizeof(struct extendedFileEntry);
1812	}
1813
1814finish:
1815	if (iinfo->i_strat4096) {
1816		fe->icbTag.strategyType = cpu_to_le16(4096);
1817		fe->icbTag.strategyParameter = cpu_to_le16(1);
1818		fe->icbTag.numEntries = cpu_to_le16(2);
1819	} else {
1820		fe->icbTag.strategyType = cpu_to_le16(4);
1821		fe->icbTag.numEntries = cpu_to_le16(1);
1822	}
1823
1824	if (iinfo->i_use)
1825		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1826	else if (S_ISDIR(inode->i_mode))
1827		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1828	else if (S_ISREG(inode->i_mode))
1829		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1830	else if (S_ISLNK(inode->i_mode))
1831		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1832	else if (S_ISBLK(inode->i_mode))
1833		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1834	else if (S_ISCHR(inode->i_mode))
1835		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1836	else if (S_ISFIFO(inode->i_mode))
1837		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1838	else if (S_ISSOCK(inode->i_mode))
1839		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1840
1841	icbflags =	iinfo->i_alloc_type |
1842			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1843			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1844			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1845			(le16_to_cpu(fe->icbTag.flags) &
1846				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1847				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1848
1849	fe->icbTag.flags = cpu_to_le16(icbflags);
1850	if (sbi->s_udfrev >= 0x0200)
1851		fe->descTag.descVersion = cpu_to_le16(3);
1852	else
1853		fe->descTag.descVersion = cpu_to_le16(2);
1854	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1855	fe->descTag.tagLocation = cpu_to_le32(
1856					iinfo->i_location.logicalBlockNum);
1857	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1858	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1859	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1860						  crclen));
1861	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1862
1863	set_buffer_uptodate(bh);
1864	unlock_buffer(bh);
1865
1866	/* write the data blocks */
1867	mark_buffer_dirty(bh);
1868	if (do_sync) {
1869		sync_dirty_buffer(bh);
1870		if (buffer_write_io_error(bh)) {
1871			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1872				 inode->i_ino);
1873			err = -EIO;
1874		}
1875	}
1876	brelse(bh);
1877
1878	return err;
1879}
1880
1881struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1882			 bool hidden_inode)
1883{
1884	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1885	struct inode *inode = iget_locked(sb, block);
1886	int err;
1887
1888	if (!inode)
1889		return ERR_PTR(-ENOMEM);
1890
1891	if (!(inode->i_state & I_NEW))
1892		return inode;
1893
1894	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1895	err = udf_read_inode(inode, hidden_inode);
1896	if (err < 0) {
1897		iget_failed(inode);
1898		return ERR_PTR(err);
1899	}
1900	unlock_new_inode(inode);
1901
1902	return inode;
1903}
1904
1905int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1906			    struct extent_position *epos)
1907{
1908	struct super_block *sb = inode->i_sb;
1909	struct buffer_head *bh;
1910	struct allocExtDesc *aed;
1911	struct extent_position nepos;
1912	struct kernel_lb_addr neloc;
1913	int ver, adsize;
1914
1915	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1916		adsize = sizeof(struct short_ad);
1917	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1918		adsize = sizeof(struct long_ad);
1919	else
1920		return -EIO;
1921
1922	neloc.logicalBlockNum = block;
1923	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1924
1925	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1926	if (!bh)
1927		return -EIO;
1928	lock_buffer(bh);
1929	memset(bh->b_data, 0x00, sb->s_blocksize);
1930	set_buffer_uptodate(bh);
1931	unlock_buffer(bh);
1932	mark_buffer_dirty_inode(bh, inode);
1933
1934	aed = (struct allocExtDesc *)(bh->b_data);
1935	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1936		aed->previousAllocExtLocation =
1937				cpu_to_le32(epos->block.logicalBlockNum);
1938	}
1939	aed->lengthAllocDescs = cpu_to_le32(0);
1940	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1941		ver = 3;
1942	else
1943		ver = 2;
1944	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1945		    sizeof(struct tag));
1946
1947	nepos.block = neloc;
1948	nepos.offset = sizeof(struct allocExtDesc);
1949	nepos.bh = bh;
1950
1951	/*
1952	 * Do we have to copy current last extent to make space for indirect
1953	 * one?
1954	 */
1955	if (epos->offset + adsize > sb->s_blocksize) {
1956		struct kernel_lb_addr cp_loc;
1957		uint32_t cp_len;
1958		int cp_type;
1959
1960		epos->offset -= adsize;
1961		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1962		cp_len |= ((uint32_t)cp_type) << 30;
1963
1964		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1965		udf_write_aext(inode, epos, &nepos.block,
1966			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1967	} else {
1968		__udf_add_aext(inode, epos, &nepos.block,
1969			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1970	}
1971
1972	brelse(epos->bh);
1973	*epos = nepos;
1974
1975	return 0;
1976}
1977
1978/*
1979 * Append extent at the given position - should be the first free one in inode
1980 * / indirect extent. This function assumes there is enough space in the inode
1981 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1982 */
1983int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1984		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1985{
1986	struct udf_inode_info *iinfo = UDF_I(inode);
1987	struct allocExtDesc *aed;
1988	int adsize;
1989
1990	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1991		adsize = sizeof(struct short_ad);
1992	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1993		adsize = sizeof(struct long_ad);
1994	else
1995		return -EIO;
1996
1997	if (!epos->bh) {
1998		WARN_ON(iinfo->i_lenAlloc !=
1999			epos->offset - udf_file_entry_alloc_offset(inode));
2000	} else {
2001		aed = (struct allocExtDesc *)epos->bh->b_data;
2002		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2003			epos->offset - sizeof(struct allocExtDesc));
2004		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2005	}
2006
2007	udf_write_aext(inode, epos, eloc, elen, inc);
2008
2009	if (!epos->bh) {
2010		iinfo->i_lenAlloc += adsize;
2011		mark_inode_dirty(inode);
2012	} else {
2013		aed = (struct allocExtDesc *)epos->bh->b_data;
2014		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2015		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2016				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2017			udf_update_tag(epos->bh->b_data,
2018					epos->offset + (inc ? 0 : adsize));
2019		else
2020			udf_update_tag(epos->bh->b_data,
2021					sizeof(struct allocExtDesc));
2022		mark_buffer_dirty_inode(epos->bh, inode);
2023	}
2024
2025	return 0;
2026}
2027
2028/*
2029 * Append extent at given position - should be the first free one in inode
2030 * / indirect extent. Takes care of allocating and linking indirect blocks.
2031 */
2032int udf_add_aext(struct inode *inode, struct extent_position *epos,
2033		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2034{
2035	int adsize;
2036	struct super_block *sb = inode->i_sb;
2037
2038	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2039		adsize = sizeof(struct short_ad);
2040	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2041		adsize = sizeof(struct long_ad);
2042	else
2043		return -EIO;
2044
2045	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2046		int err;
2047		udf_pblk_t new_block;
2048
2049		new_block = udf_new_block(sb, NULL,
2050					  epos->block.partitionReferenceNum,
2051					  epos->block.logicalBlockNum, &err);
2052		if (!new_block)
2053			return -ENOSPC;
2054
2055		err = udf_setup_indirect_aext(inode, new_block, epos);
2056		if (err)
2057			return err;
2058	}
2059
2060	return __udf_add_aext(inode, epos, eloc, elen, inc);
2061}
2062
2063void udf_write_aext(struct inode *inode, struct extent_position *epos,
2064		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2065{
2066	int adsize;
2067	uint8_t *ptr;
2068	struct short_ad *sad;
2069	struct long_ad *lad;
2070	struct udf_inode_info *iinfo = UDF_I(inode);
2071
2072	if (!epos->bh)
2073		ptr = iinfo->i_data + epos->offset -
2074			udf_file_entry_alloc_offset(inode) +
2075			iinfo->i_lenEAttr;
2076	else
2077		ptr = epos->bh->b_data + epos->offset;
2078
2079	switch (iinfo->i_alloc_type) {
2080	case ICBTAG_FLAG_AD_SHORT:
2081		sad = (struct short_ad *)ptr;
2082		sad->extLength = cpu_to_le32(elen);
2083		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2084		adsize = sizeof(struct short_ad);
2085		break;
2086	case ICBTAG_FLAG_AD_LONG:
2087		lad = (struct long_ad *)ptr;
2088		lad->extLength = cpu_to_le32(elen);
2089		lad->extLocation = cpu_to_lelb(*eloc);
2090		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2091		adsize = sizeof(struct long_ad);
2092		break;
2093	default:
2094		return;
2095	}
2096
2097	if (epos->bh) {
2098		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2099		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2100			struct allocExtDesc *aed =
2101				(struct allocExtDesc *)epos->bh->b_data;
2102			udf_update_tag(epos->bh->b_data,
2103				       le32_to_cpu(aed->lengthAllocDescs) +
2104				       sizeof(struct allocExtDesc));
2105		}
2106		mark_buffer_dirty_inode(epos->bh, inode);
2107	} else {
2108		mark_inode_dirty(inode);
2109	}
2110
2111	if (inc)
2112		epos->offset += adsize;
2113}
2114
2115/*
2116 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2117 * someone does some weird stuff.
2118 */
2119#define UDF_MAX_INDIR_EXTS 16
2120
2121int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2122		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2123{
2124	int8_t etype;
2125	unsigned int indirections = 0;
2126
2127	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2128	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2129		udf_pblk_t block;
2130
2131		if (++indirections > UDF_MAX_INDIR_EXTS) {
2132			udf_err(inode->i_sb,
2133				"too many indirect extents in inode %lu\n",
2134				inode->i_ino);
2135			return -1;
2136		}
2137
2138		epos->block = *eloc;
2139		epos->offset = sizeof(struct allocExtDesc);
2140		brelse(epos->bh);
2141		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2142		epos->bh = udf_tread(inode->i_sb, block);
2143		if (!epos->bh) {
2144			udf_debug("reading block %u failed!\n", block);
2145			return -1;
2146		}
2147	}
2148
2149	return etype;
2150}
2151
2152int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2153			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2154{
2155	int alen;
2156	int8_t etype;
2157	uint8_t *ptr;
2158	struct short_ad *sad;
2159	struct long_ad *lad;
2160	struct udf_inode_info *iinfo = UDF_I(inode);
2161
2162	if (!epos->bh) {
2163		if (!epos->offset)
2164			epos->offset = udf_file_entry_alloc_offset(inode);
2165		ptr = iinfo->i_data + epos->offset -
2166			udf_file_entry_alloc_offset(inode) +
2167			iinfo->i_lenEAttr;
2168		alen = udf_file_entry_alloc_offset(inode) +
2169							iinfo->i_lenAlloc;
2170	} else {
2171		if (!epos->offset)
2172			epos->offset = sizeof(struct allocExtDesc);
2173		ptr = epos->bh->b_data + epos->offset;
2174		alen = sizeof(struct allocExtDesc) +
2175			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2176							lengthAllocDescs);
2177	}
2178
2179	switch (iinfo->i_alloc_type) {
2180	case ICBTAG_FLAG_AD_SHORT:
2181		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2182		if (!sad)
2183			return -1;
2184		etype = le32_to_cpu(sad->extLength) >> 30;
2185		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2186		eloc->partitionReferenceNum =
2187				iinfo->i_location.partitionReferenceNum;
2188		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2189		break;
2190	case ICBTAG_FLAG_AD_LONG:
2191		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2192		if (!lad)
2193			return -1;
2194		etype = le32_to_cpu(lad->extLength) >> 30;
2195		*eloc = lelb_to_cpu(lad->extLocation);
2196		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2197		break;
2198	default:
2199		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2200		return -1;
2201	}
2202
2203	return etype;
2204}
2205
2206static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2207			      struct kernel_lb_addr neloc, uint32_t nelen)
2208{
2209	struct kernel_lb_addr oeloc;
2210	uint32_t oelen;
2211	int8_t etype;
2212
2213	if (epos.bh)
2214		get_bh(epos.bh);
2215
2216	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2217		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2218		neloc = oeloc;
2219		nelen = (etype << 30) | oelen;
2220	}
2221	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2222	brelse(epos.bh);
2223
2224	return (nelen >> 30);
2225}
2226
2227int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2228{
2229	struct extent_position oepos;
2230	int adsize;
2231	int8_t etype;
2232	struct allocExtDesc *aed;
2233	struct udf_inode_info *iinfo;
2234	struct kernel_lb_addr eloc;
2235	uint32_t elen;
2236
2237	if (epos.bh) {
2238		get_bh(epos.bh);
2239		get_bh(epos.bh);
2240	}
2241
2242	iinfo = UDF_I(inode);
2243	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2244		adsize = sizeof(struct short_ad);
2245	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2246		adsize = sizeof(struct long_ad);
2247	else
2248		adsize = 0;
2249
2250	oepos = epos;
2251	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2252		return -1;
2253
2254	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2255		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2256		if (oepos.bh != epos.bh) {
2257			oepos.block = epos.block;
2258			brelse(oepos.bh);
2259			get_bh(epos.bh);
2260			oepos.bh = epos.bh;
2261			oepos.offset = epos.offset - adsize;
2262		}
2263	}
2264	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2265	elen = 0;
2266
2267	if (epos.bh != oepos.bh) {
2268		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2269		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2270		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2271		if (!oepos.bh) {
2272			iinfo->i_lenAlloc -= (adsize * 2);
2273			mark_inode_dirty(inode);
2274		} else {
2275			aed = (struct allocExtDesc *)oepos.bh->b_data;
2276			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2277			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2278			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2279				udf_update_tag(oepos.bh->b_data,
2280						oepos.offset - (2 * adsize));
2281			else
2282				udf_update_tag(oepos.bh->b_data,
2283						sizeof(struct allocExtDesc));
2284			mark_buffer_dirty_inode(oepos.bh, inode);
2285		}
2286	} else {
2287		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288		if (!oepos.bh) {
2289			iinfo->i_lenAlloc -= adsize;
2290			mark_inode_dirty(inode);
2291		} else {
2292			aed = (struct allocExtDesc *)oepos.bh->b_data;
2293			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2294			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2295			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2296				udf_update_tag(oepos.bh->b_data,
2297						epos.offset - adsize);
2298			else
2299				udf_update_tag(oepos.bh->b_data,
2300						sizeof(struct allocExtDesc));
2301			mark_buffer_dirty_inode(oepos.bh, inode);
2302		}
2303	}
2304
2305	brelse(epos.bh);
2306	brelse(oepos.bh);
2307
2308	return (elen >> 30);
2309}
2310
2311int8_t inode_bmap(struct inode *inode, sector_t block,
2312		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2313		  uint32_t *elen, sector_t *offset)
2314{
2315	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2316	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2317	int8_t etype;
2318	struct udf_inode_info *iinfo;
2319
2320	iinfo = UDF_I(inode);
2321	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2322		pos->offset = 0;
2323		pos->block = iinfo->i_location;
2324		pos->bh = NULL;
2325	}
2326	*elen = 0;
2327	do {
2328		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2329		if (etype == -1) {
2330			*offset = (bcount - lbcount) >> blocksize_bits;
2331			iinfo->i_lenExtents = lbcount;
2332			return -1;
2333		}
2334		lbcount += *elen;
2335	} while (lbcount <= bcount);
2336	/* update extent cache */
2337	udf_update_extent_cache(inode, lbcount - *elen, pos);
2338	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2339
2340	return etype;
2341}
2342
2343udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2344{
2345	struct kernel_lb_addr eloc;
2346	uint32_t elen;
2347	sector_t offset;
2348	struct extent_position epos = {};
2349	udf_pblk_t ret;
2350
2351	down_read(&UDF_I(inode)->i_data_sem);
2352
2353	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2354						(EXT_RECORDED_ALLOCATED >> 30))
2355		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2356	else
2357		ret = 0;
2358
2359	up_read(&UDF_I(inode)->i_data_sem);
2360	brelse(epos.bh);
2361
2362	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2363		return udf_fixed_to_variable(ret);
2364	else
2365		return ret;
2366}