Loading...
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55static umode_t udf_convert_permissions(struct fileEntry *);
56static int udf_update_inode(struct inode *, int);
57static int udf_sync_inode(struct inode *inode);
58static int udf_alloc_i_data(struct inode *inode, size_t size);
59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 struct kernel_lb_addr, uint32_t);
62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 struct kernel_long_ad *, int *);
64static void udf_prealloc_extents(struct inode *, int, int,
65 struct kernel_long_ad *, int *);
66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 int, struct extent_position *);
69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71static void __udf_clear_extent_cache(struct inode *inode)
72{
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79}
80
81/* Invalidate extent cache */
82static void udf_clear_extent_cache(struct inode *inode)
83{
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89}
90
91/* Return contents of extent cache */
92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94{
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111}
112
113/* Add extent to extent cache */
114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos)
116{
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 iinfo->cached_extent.lstart = estart;
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 break;
130 case ICBTAG_FLAG_AD_LONG:
131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 break;
133 }
134 spin_unlock(&iinfo->i_extent_cache_lock);
135}
136
137void udf_evict_inode(struct inode *inode)
138{
139 struct udf_inode_info *iinfo = UDF_I(inode);
140 int want_delete = 0;
141
142 if (!is_bad_inode(inode)) {
143 if (!inode->i_nlink) {
144 want_delete = 1;
145 udf_setsize(inode, 0);
146 udf_update_inode(inode, IS_SYNC(inode));
147 }
148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 inode->i_size != iinfo->i_lenExtents) {
150 udf_warn(inode->i_sb,
151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 inode->i_ino, inode->i_mode,
153 (unsigned long long)inode->i_size,
154 (unsigned long long)iinfo->i_lenExtents);
155 }
156 }
157 truncate_inode_pages_final(&inode->i_data);
158 invalidate_inode_buffers(inode);
159 clear_inode(inode);
160 kfree(iinfo->i_data);
161 iinfo->i_data = NULL;
162 udf_clear_extent_cache(inode);
163 if (want_delete) {
164 udf_free_inode(inode);
165 }
166}
167
168static void udf_write_failed(struct address_space *mapping, loff_t to)
169{
170 struct inode *inode = mapping->host;
171 struct udf_inode_info *iinfo = UDF_I(inode);
172 loff_t isize = inode->i_size;
173
174 if (to > isize) {
175 truncate_pagecache(inode, isize);
176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 down_write(&iinfo->i_data_sem);
178 udf_clear_extent_cache(inode);
179 udf_truncate_extents(inode);
180 up_write(&iinfo->i_data_sem);
181 }
182 }
183}
184
185static int udf_writepage(struct page *page, struct writeback_control *wbc)
186{
187 return block_write_full_page(page, udf_get_block, wbc);
188}
189
190static int udf_writepages(struct address_space *mapping,
191 struct writeback_control *wbc)
192{
193 return mpage_writepages(mapping, wbc, udf_get_block);
194}
195
196static int udf_readpage(struct file *file, struct page *page)
197{
198 return mpage_readpage(page, udf_get_block);
199}
200
201static void udf_readahead(struct readahead_control *rac)
202{
203 mpage_readahead(rac, udf_get_block);
204}
205
206static int udf_write_begin(struct file *file, struct address_space *mapping,
207 loff_t pos, unsigned len, unsigned flags,
208 struct page **pagep, void **fsdata)
209{
210 int ret;
211
212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 if (unlikely(ret))
214 udf_write_failed(mapping, pos + len);
215 return ret;
216}
217
218static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219{
220 struct file *file = iocb->ki_filp;
221 struct address_space *mapping = file->f_mapping;
222 struct inode *inode = mapping->host;
223 size_t count = iov_iter_count(iter);
224 ssize_t ret;
225
226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 udf_write_failed(mapping, iocb->ki_pos + count);
229 return ret;
230}
231
232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233{
234 return generic_block_bmap(mapping, block, udf_get_block);
235}
236
237const struct address_space_operations udf_aops = {
238 .set_page_dirty = __set_page_dirty_buffers,
239 .readpage = udf_readpage,
240 .readahead = udf_readahead,
241 .writepage = udf_writepage,
242 .writepages = udf_writepages,
243 .write_begin = udf_write_begin,
244 .write_end = generic_write_end,
245 .direct_IO = udf_direct_IO,
246 .bmap = udf_bmap,
247};
248
249/*
250 * Expand file stored in ICB to a normal one-block-file
251 *
252 * This function requires i_data_sem for writing and releases it.
253 * This function requires i_mutex held
254 */
255int udf_expand_file_adinicb(struct inode *inode)
256{
257 struct page *page;
258 char *kaddr;
259 struct udf_inode_info *iinfo = UDF_I(inode);
260 int err;
261 struct writeback_control udf_wbc = {
262 .sync_mode = WB_SYNC_NONE,
263 .nr_to_write = 1,
264 };
265
266 WARN_ON_ONCE(!inode_is_locked(inode));
267 if (!iinfo->i_lenAlloc) {
268 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
269 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
270 else
271 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
272 /* from now on we have normal address_space methods */
273 inode->i_data.a_ops = &udf_aops;
274 up_write(&iinfo->i_data_sem);
275 mark_inode_dirty(inode);
276 return 0;
277 }
278 /*
279 * Release i_data_sem so that we can lock a page - page lock ranks
280 * above i_data_sem. i_mutex still protects us against file changes.
281 */
282 up_write(&iinfo->i_data_sem);
283
284 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
285 if (!page)
286 return -ENOMEM;
287
288 if (!PageUptodate(page)) {
289 kaddr = kmap_atomic(page);
290 memset(kaddr + iinfo->i_lenAlloc, 0x00,
291 PAGE_SIZE - iinfo->i_lenAlloc);
292 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
293 iinfo->i_lenAlloc);
294 flush_dcache_page(page);
295 SetPageUptodate(page);
296 kunmap_atomic(kaddr);
297 }
298 down_write(&iinfo->i_data_sem);
299 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
300 iinfo->i_lenAlloc);
301 iinfo->i_lenAlloc = 0;
302 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
303 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
304 else
305 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
306 /* from now on we have normal address_space methods */
307 inode->i_data.a_ops = &udf_aops;
308 up_write(&iinfo->i_data_sem);
309 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
310 if (err) {
311 /* Restore everything back so that we don't lose data... */
312 lock_page(page);
313 down_write(&iinfo->i_data_sem);
314 kaddr = kmap_atomic(page);
315 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
316 kunmap_atomic(kaddr);
317 unlock_page(page);
318 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319 inode->i_data.a_ops = &udf_adinicb_aops;
320 up_write(&iinfo->i_data_sem);
321 }
322 put_page(page);
323 mark_inode_dirty(inode);
324
325 return err;
326}
327
328struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
329 udf_pblk_t *block, int *err)
330{
331 udf_pblk_t newblock;
332 struct buffer_head *dbh = NULL;
333 struct kernel_lb_addr eloc;
334 uint8_t alloctype;
335 struct extent_position epos;
336
337 struct udf_fileident_bh sfibh, dfibh;
338 loff_t f_pos = udf_ext0_offset(inode);
339 int size = udf_ext0_offset(inode) + inode->i_size;
340 struct fileIdentDesc cfi, *sfi, *dfi;
341 struct udf_inode_info *iinfo = UDF_I(inode);
342
343 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344 alloctype = ICBTAG_FLAG_AD_SHORT;
345 else
346 alloctype = ICBTAG_FLAG_AD_LONG;
347
348 if (!inode->i_size) {
349 iinfo->i_alloc_type = alloctype;
350 mark_inode_dirty(inode);
351 return NULL;
352 }
353
354 /* alloc block, and copy data to it */
355 *block = udf_new_block(inode->i_sb, inode,
356 iinfo->i_location.partitionReferenceNum,
357 iinfo->i_location.logicalBlockNum, err);
358 if (!(*block))
359 return NULL;
360 newblock = udf_get_pblock(inode->i_sb, *block,
361 iinfo->i_location.partitionReferenceNum,
362 0);
363 if (!newblock)
364 return NULL;
365 dbh = udf_tgetblk(inode->i_sb, newblock);
366 if (!dbh)
367 return NULL;
368 lock_buffer(dbh);
369 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370 set_buffer_uptodate(dbh);
371 unlock_buffer(dbh);
372 mark_buffer_dirty_inode(dbh, inode);
373
374 sfibh.soffset = sfibh.eoffset =
375 f_pos & (inode->i_sb->s_blocksize - 1);
376 sfibh.sbh = sfibh.ebh = NULL;
377 dfibh.soffset = dfibh.eoffset = 0;
378 dfibh.sbh = dfibh.ebh = dbh;
379 while (f_pos < size) {
380 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382 NULL, NULL, NULL);
383 if (!sfi) {
384 brelse(dbh);
385 return NULL;
386 }
387 iinfo->i_alloc_type = alloctype;
388 sfi->descTag.tagLocation = cpu_to_le32(*block);
389 dfibh.soffset = dfibh.eoffset;
390 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393 sfi->fileIdent +
394 le16_to_cpu(sfi->lengthOfImpUse))) {
395 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
396 brelse(dbh);
397 return NULL;
398 }
399 }
400 mark_buffer_dirty_inode(dbh, inode);
401
402 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
403 iinfo->i_lenAlloc = 0;
404 eloc.logicalBlockNum = *block;
405 eloc.partitionReferenceNum =
406 iinfo->i_location.partitionReferenceNum;
407 iinfo->i_lenExtents = inode->i_size;
408 epos.bh = NULL;
409 epos.block = iinfo->i_location;
410 epos.offset = udf_file_entry_alloc_offset(inode);
411 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
412 /* UniqueID stuff */
413
414 brelse(epos.bh);
415 mark_inode_dirty(inode);
416 return dbh;
417}
418
419static int udf_get_block(struct inode *inode, sector_t block,
420 struct buffer_head *bh_result, int create)
421{
422 int err, new;
423 sector_t phys = 0;
424 struct udf_inode_info *iinfo;
425
426 if (!create) {
427 phys = udf_block_map(inode, block);
428 if (phys)
429 map_bh(bh_result, inode->i_sb, phys);
430 return 0;
431 }
432
433 err = -EIO;
434 new = 0;
435 iinfo = UDF_I(inode);
436
437 down_write(&iinfo->i_data_sem);
438 if (block == iinfo->i_next_alloc_block + 1) {
439 iinfo->i_next_alloc_block++;
440 iinfo->i_next_alloc_goal++;
441 }
442
443 udf_clear_extent_cache(inode);
444 phys = inode_getblk(inode, block, &err, &new);
445 if (!phys)
446 goto abort;
447
448 if (new)
449 set_buffer_new(bh_result);
450 map_bh(bh_result, inode->i_sb, phys);
451
452abort:
453 up_write(&iinfo->i_data_sem);
454 return err;
455}
456
457static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
458 int create, int *err)
459{
460 struct buffer_head *bh;
461 struct buffer_head dummy;
462
463 dummy.b_state = 0;
464 dummy.b_blocknr = -1000;
465 *err = udf_get_block(inode, block, &dummy, create);
466 if (!*err && buffer_mapped(&dummy)) {
467 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
468 if (buffer_new(&dummy)) {
469 lock_buffer(bh);
470 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
471 set_buffer_uptodate(bh);
472 unlock_buffer(bh);
473 mark_buffer_dirty_inode(bh, inode);
474 }
475 return bh;
476 }
477
478 return NULL;
479}
480
481/* Extend the file with new blocks totaling 'new_block_bytes',
482 * return the number of extents added
483 */
484static int udf_do_extend_file(struct inode *inode,
485 struct extent_position *last_pos,
486 struct kernel_long_ad *last_ext,
487 loff_t new_block_bytes)
488{
489 uint32_t add;
490 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
491 struct super_block *sb = inode->i_sb;
492 struct kernel_lb_addr prealloc_loc = {};
493 uint32_t prealloc_len = 0;
494 struct udf_inode_info *iinfo;
495 int err;
496
497 /* The previous extent is fake and we should not extend by anything
498 * - there's nothing to do... */
499 if (!new_block_bytes && fake)
500 return 0;
501
502 iinfo = UDF_I(inode);
503 /* Round the last extent up to a multiple of block size */
504 if (last_ext->extLength & (sb->s_blocksize - 1)) {
505 last_ext->extLength =
506 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
507 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
508 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
509 iinfo->i_lenExtents =
510 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
511 ~(sb->s_blocksize - 1);
512 }
513
514 /* Last extent are just preallocated blocks? */
515 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
516 EXT_NOT_RECORDED_ALLOCATED) {
517 /* Save the extent so that we can reattach it to the end */
518 prealloc_loc = last_ext->extLocation;
519 prealloc_len = last_ext->extLength;
520 /* Mark the extent as a hole */
521 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
522 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
523 last_ext->extLocation.logicalBlockNum = 0;
524 last_ext->extLocation.partitionReferenceNum = 0;
525 }
526
527 /* Can we merge with the previous extent? */
528 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
529 EXT_NOT_RECORDED_NOT_ALLOCATED) {
530 add = (1 << 30) - sb->s_blocksize -
531 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
532 if (add > new_block_bytes)
533 add = new_block_bytes;
534 new_block_bytes -= add;
535 last_ext->extLength += add;
536 }
537
538 if (fake) {
539 udf_add_aext(inode, last_pos, &last_ext->extLocation,
540 last_ext->extLength, 1);
541 count++;
542 } else {
543 struct kernel_lb_addr tmploc;
544 uint32_t tmplen;
545
546 udf_write_aext(inode, last_pos, &last_ext->extLocation,
547 last_ext->extLength, 1);
548
549 /*
550 * We've rewritten the last extent. If we are going to add
551 * more extents, we may need to enter possible following
552 * empty indirect extent.
553 */
554 if (new_block_bytes || prealloc_len)
555 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
556 }
557
558 /* Managed to do everything necessary? */
559 if (!new_block_bytes)
560 goto out;
561
562 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
563 last_ext->extLocation.logicalBlockNum = 0;
564 last_ext->extLocation.partitionReferenceNum = 0;
565 add = (1 << 30) - sb->s_blocksize;
566 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
567
568 /* Create enough extents to cover the whole hole */
569 while (new_block_bytes > add) {
570 new_block_bytes -= add;
571 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
572 last_ext->extLength, 1);
573 if (err)
574 return err;
575 count++;
576 }
577 if (new_block_bytes) {
578 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
579 new_block_bytes;
580 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
581 last_ext->extLength, 1);
582 if (err)
583 return err;
584 count++;
585 }
586
587out:
588 /* Do we have some preallocated blocks saved? */
589 if (prealloc_len) {
590 err = udf_add_aext(inode, last_pos, &prealloc_loc,
591 prealloc_len, 1);
592 if (err)
593 return err;
594 last_ext->extLocation = prealloc_loc;
595 last_ext->extLength = prealloc_len;
596 count++;
597 }
598
599 /* last_pos should point to the last written extent... */
600 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
601 last_pos->offset -= sizeof(struct short_ad);
602 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
603 last_pos->offset -= sizeof(struct long_ad);
604 else
605 return -EIO;
606
607 return count;
608}
609
610/* Extend the final block of the file to final_block_len bytes */
611static void udf_do_extend_final_block(struct inode *inode,
612 struct extent_position *last_pos,
613 struct kernel_long_ad *last_ext,
614 uint32_t final_block_len)
615{
616 struct super_block *sb = inode->i_sb;
617 uint32_t added_bytes;
618
619 added_bytes = final_block_len -
620 (last_ext->extLength & (sb->s_blocksize - 1));
621 last_ext->extLength += added_bytes;
622 UDF_I(inode)->i_lenExtents += added_bytes;
623
624 udf_write_aext(inode, last_pos, &last_ext->extLocation,
625 last_ext->extLength, 1);
626}
627
628static int udf_extend_file(struct inode *inode, loff_t newsize)
629{
630
631 struct extent_position epos;
632 struct kernel_lb_addr eloc;
633 uint32_t elen;
634 int8_t etype;
635 struct super_block *sb = inode->i_sb;
636 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
637 unsigned long partial_final_block;
638 int adsize;
639 struct udf_inode_info *iinfo = UDF_I(inode);
640 struct kernel_long_ad extent;
641 int err = 0;
642 int within_final_block;
643
644 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
645 adsize = sizeof(struct short_ad);
646 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
647 adsize = sizeof(struct long_ad);
648 else
649 BUG();
650
651 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
652 within_final_block = (etype != -1);
653
654 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
655 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
656 /* File has no extents at all or has empty last
657 * indirect extent! Create a fake extent... */
658 extent.extLocation.logicalBlockNum = 0;
659 extent.extLocation.partitionReferenceNum = 0;
660 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
661 } else {
662 epos.offset -= adsize;
663 etype = udf_next_aext(inode, &epos, &extent.extLocation,
664 &extent.extLength, 0);
665 extent.extLength |= etype << 30;
666 }
667
668 partial_final_block = newsize & (sb->s_blocksize - 1);
669
670 /* File has extent covering the new size (could happen when extending
671 * inside a block)?
672 */
673 if (within_final_block) {
674 /* Extending file within the last file block */
675 udf_do_extend_final_block(inode, &epos, &extent,
676 partial_final_block);
677 } else {
678 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
679 partial_final_block;
680 err = udf_do_extend_file(inode, &epos, &extent, add);
681 }
682
683 if (err < 0)
684 goto out;
685 err = 0;
686 iinfo->i_lenExtents = newsize;
687out:
688 brelse(epos.bh);
689 return err;
690}
691
692static sector_t inode_getblk(struct inode *inode, sector_t block,
693 int *err, int *new)
694{
695 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
696 struct extent_position prev_epos, cur_epos, next_epos;
697 int count = 0, startnum = 0, endnum = 0;
698 uint32_t elen = 0, tmpelen;
699 struct kernel_lb_addr eloc, tmpeloc;
700 int c = 1;
701 loff_t lbcount = 0, b_off = 0;
702 udf_pblk_t newblocknum, newblock;
703 sector_t offset = 0;
704 int8_t etype;
705 struct udf_inode_info *iinfo = UDF_I(inode);
706 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
707 int lastblock = 0;
708 bool isBeyondEOF;
709
710 *err = 0;
711 *new = 0;
712 prev_epos.offset = udf_file_entry_alloc_offset(inode);
713 prev_epos.block = iinfo->i_location;
714 prev_epos.bh = NULL;
715 cur_epos = next_epos = prev_epos;
716 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
717
718 /* find the extent which contains the block we are looking for.
719 alternate between laarr[0] and laarr[1] for locations of the
720 current extent, and the previous extent */
721 do {
722 if (prev_epos.bh != cur_epos.bh) {
723 brelse(prev_epos.bh);
724 get_bh(cur_epos.bh);
725 prev_epos.bh = cur_epos.bh;
726 }
727 if (cur_epos.bh != next_epos.bh) {
728 brelse(cur_epos.bh);
729 get_bh(next_epos.bh);
730 cur_epos.bh = next_epos.bh;
731 }
732
733 lbcount += elen;
734
735 prev_epos.block = cur_epos.block;
736 cur_epos.block = next_epos.block;
737
738 prev_epos.offset = cur_epos.offset;
739 cur_epos.offset = next_epos.offset;
740
741 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
742 if (etype == -1)
743 break;
744
745 c = !c;
746
747 laarr[c].extLength = (etype << 30) | elen;
748 laarr[c].extLocation = eloc;
749
750 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
751 pgoal = eloc.logicalBlockNum +
752 ((elen + inode->i_sb->s_blocksize - 1) >>
753 inode->i_sb->s_blocksize_bits);
754
755 count++;
756 } while (lbcount + elen <= b_off);
757
758 b_off -= lbcount;
759 offset = b_off >> inode->i_sb->s_blocksize_bits;
760 /*
761 * Move prev_epos and cur_epos into indirect extent if we are at
762 * the pointer to it
763 */
764 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
765 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
766
767 /* if the extent is allocated and recorded, return the block
768 if the extent is not a multiple of the blocksize, round up */
769
770 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
771 if (elen & (inode->i_sb->s_blocksize - 1)) {
772 elen = EXT_RECORDED_ALLOCATED |
773 ((elen + inode->i_sb->s_blocksize - 1) &
774 ~(inode->i_sb->s_blocksize - 1));
775 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
776 }
777 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
778 goto out_free;
779 }
780
781 /* Are we beyond EOF? */
782 if (etype == -1) {
783 int ret;
784 loff_t hole_len;
785 isBeyondEOF = true;
786 if (count) {
787 if (c)
788 laarr[0] = laarr[1];
789 startnum = 1;
790 } else {
791 /* Create a fake extent when there's not one */
792 memset(&laarr[0].extLocation, 0x00,
793 sizeof(struct kernel_lb_addr));
794 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
795 /* Will udf_do_extend_file() create real extent from
796 a fake one? */
797 startnum = (offset > 0);
798 }
799 /* Create extents for the hole between EOF and offset */
800 hole_len = (loff_t)offset << inode->i_blkbits;
801 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
802 if (ret < 0) {
803 *err = ret;
804 newblock = 0;
805 goto out_free;
806 }
807 c = 0;
808 offset = 0;
809 count += ret;
810 /* We are not covered by a preallocated extent? */
811 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
812 EXT_NOT_RECORDED_ALLOCATED) {
813 /* Is there any real extent? - otherwise we overwrite
814 * the fake one... */
815 if (count)
816 c = !c;
817 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
818 inode->i_sb->s_blocksize;
819 memset(&laarr[c].extLocation, 0x00,
820 sizeof(struct kernel_lb_addr));
821 count++;
822 }
823 endnum = c + 1;
824 lastblock = 1;
825 } else {
826 isBeyondEOF = false;
827 endnum = startnum = ((count > 2) ? 2 : count);
828
829 /* if the current extent is in position 0,
830 swap it with the previous */
831 if (!c && count != 1) {
832 laarr[2] = laarr[0];
833 laarr[0] = laarr[1];
834 laarr[1] = laarr[2];
835 c = 1;
836 }
837
838 /* if the current block is located in an extent,
839 read the next extent */
840 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
841 if (etype != -1) {
842 laarr[c + 1].extLength = (etype << 30) | elen;
843 laarr[c + 1].extLocation = eloc;
844 count++;
845 startnum++;
846 endnum++;
847 } else
848 lastblock = 1;
849 }
850
851 /* if the current extent is not recorded but allocated, get the
852 * block in the extent corresponding to the requested block */
853 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
854 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
855 else { /* otherwise, allocate a new block */
856 if (iinfo->i_next_alloc_block == block)
857 goal = iinfo->i_next_alloc_goal;
858
859 if (!goal) {
860 if (!(goal = pgoal)) /* XXX: what was intended here? */
861 goal = iinfo->i_location.logicalBlockNum + 1;
862 }
863
864 newblocknum = udf_new_block(inode->i_sb, inode,
865 iinfo->i_location.partitionReferenceNum,
866 goal, err);
867 if (!newblocknum) {
868 *err = -ENOSPC;
869 newblock = 0;
870 goto out_free;
871 }
872 if (isBeyondEOF)
873 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
874 }
875
876 /* if the extent the requsted block is located in contains multiple
877 * blocks, split the extent into at most three extents. blocks prior
878 * to requested block, requested block, and blocks after requested
879 * block */
880 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
881
882 /* We preallocate blocks only for regular files. It also makes sense
883 * for directories but there's a problem when to drop the
884 * preallocation. We might use some delayed work for that but I feel
885 * it's overengineering for a filesystem like UDF. */
886 if (S_ISREG(inode->i_mode))
887 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
888
889 /* merge any continuous blocks in laarr */
890 udf_merge_extents(inode, laarr, &endnum);
891
892 /* write back the new extents, inserting new extents if the new number
893 * of extents is greater than the old number, and deleting extents if
894 * the new number of extents is less than the old number */
895 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
896
897 newblock = udf_get_pblock(inode->i_sb, newblocknum,
898 iinfo->i_location.partitionReferenceNum, 0);
899 if (!newblock) {
900 *err = -EIO;
901 goto out_free;
902 }
903 *new = 1;
904 iinfo->i_next_alloc_block = block;
905 iinfo->i_next_alloc_goal = newblocknum;
906 inode->i_ctime = current_time(inode);
907
908 if (IS_SYNC(inode))
909 udf_sync_inode(inode);
910 else
911 mark_inode_dirty(inode);
912out_free:
913 brelse(prev_epos.bh);
914 brelse(cur_epos.bh);
915 brelse(next_epos.bh);
916 return newblock;
917}
918
919static void udf_split_extents(struct inode *inode, int *c, int offset,
920 udf_pblk_t newblocknum,
921 struct kernel_long_ad *laarr, int *endnum)
922{
923 unsigned long blocksize = inode->i_sb->s_blocksize;
924 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
925
926 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
927 (laarr[*c].extLength >> 30) ==
928 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
929 int curr = *c;
930 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
931 blocksize - 1) >> blocksize_bits;
932 int8_t etype = (laarr[curr].extLength >> 30);
933
934 if (blen == 1)
935 ;
936 else if (!offset || blen == offset + 1) {
937 laarr[curr + 2] = laarr[curr + 1];
938 laarr[curr + 1] = laarr[curr];
939 } else {
940 laarr[curr + 3] = laarr[curr + 1];
941 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
942 }
943
944 if (offset) {
945 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
946 udf_free_blocks(inode->i_sb, inode,
947 &laarr[curr].extLocation,
948 0, offset);
949 laarr[curr].extLength =
950 EXT_NOT_RECORDED_NOT_ALLOCATED |
951 (offset << blocksize_bits);
952 laarr[curr].extLocation.logicalBlockNum = 0;
953 laarr[curr].extLocation.
954 partitionReferenceNum = 0;
955 } else
956 laarr[curr].extLength = (etype << 30) |
957 (offset << blocksize_bits);
958 curr++;
959 (*c)++;
960 (*endnum)++;
961 }
962
963 laarr[curr].extLocation.logicalBlockNum = newblocknum;
964 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
965 laarr[curr].extLocation.partitionReferenceNum =
966 UDF_I(inode)->i_location.partitionReferenceNum;
967 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
968 blocksize;
969 curr++;
970
971 if (blen != offset + 1) {
972 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
973 laarr[curr].extLocation.logicalBlockNum +=
974 offset + 1;
975 laarr[curr].extLength = (etype << 30) |
976 ((blen - (offset + 1)) << blocksize_bits);
977 curr++;
978 (*endnum)++;
979 }
980 }
981}
982
983static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
984 struct kernel_long_ad *laarr,
985 int *endnum)
986{
987 int start, length = 0, currlength = 0, i;
988
989 if (*endnum >= (c + 1)) {
990 if (!lastblock)
991 return;
992 else
993 start = c;
994 } else {
995 if ((laarr[c + 1].extLength >> 30) ==
996 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
997 start = c + 1;
998 length = currlength =
999 (((laarr[c + 1].extLength &
1000 UDF_EXTENT_LENGTH_MASK) +
1001 inode->i_sb->s_blocksize - 1) >>
1002 inode->i_sb->s_blocksize_bits);
1003 } else
1004 start = c;
1005 }
1006
1007 for (i = start + 1; i <= *endnum; i++) {
1008 if (i == *endnum) {
1009 if (lastblock)
1010 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1011 } else if ((laarr[i].extLength >> 30) ==
1012 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1013 length += (((laarr[i].extLength &
1014 UDF_EXTENT_LENGTH_MASK) +
1015 inode->i_sb->s_blocksize - 1) >>
1016 inode->i_sb->s_blocksize_bits);
1017 } else
1018 break;
1019 }
1020
1021 if (length) {
1022 int next = laarr[start].extLocation.logicalBlockNum +
1023 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1024 inode->i_sb->s_blocksize - 1) >>
1025 inode->i_sb->s_blocksize_bits);
1026 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1027 laarr[start].extLocation.partitionReferenceNum,
1028 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1029 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1030 currlength);
1031 if (numalloc) {
1032 if (start == (c + 1))
1033 laarr[start].extLength +=
1034 (numalloc <<
1035 inode->i_sb->s_blocksize_bits);
1036 else {
1037 memmove(&laarr[c + 2], &laarr[c + 1],
1038 sizeof(struct long_ad) * (*endnum - (c + 1)));
1039 (*endnum)++;
1040 laarr[c + 1].extLocation.logicalBlockNum = next;
1041 laarr[c + 1].extLocation.partitionReferenceNum =
1042 laarr[c].extLocation.
1043 partitionReferenceNum;
1044 laarr[c + 1].extLength =
1045 EXT_NOT_RECORDED_ALLOCATED |
1046 (numalloc <<
1047 inode->i_sb->s_blocksize_bits);
1048 start = c + 1;
1049 }
1050
1051 for (i = start + 1; numalloc && i < *endnum; i++) {
1052 int elen = ((laarr[i].extLength &
1053 UDF_EXTENT_LENGTH_MASK) +
1054 inode->i_sb->s_blocksize - 1) >>
1055 inode->i_sb->s_blocksize_bits;
1056
1057 if (elen > numalloc) {
1058 laarr[i].extLength -=
1059 (numalloc <<
1060 inode->i_sb->s_blocksize_bits);
1061 numalloc = 0;
1062 } else {
1063 numalloc -= elen;
1064 if (*endnum > (i + 1))
1065 memmove(&laarr[i],
1066 &laarr[i + 1],
1067 sizeof(struct long_ad) *
1068 (*endnum - (i + 1)));
1069 i--;
1070 (*endnum)--;
1071 }
1072 }
1073 UDF_I(inode)->i_lenExtents +=
1074 numalloc << inode->i_sb->s_blocksize_bits;
1075 }
1076 }
1077}
1078
1079static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1080 int *endnum)
1081{
1082 int i;
1083 unsigned long blocksize = inode->i_sb->s_blocksize;
1084 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1085
1086 for (i = 0; i < (*endnum - 1); i++) {
1087 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1088 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1089
1090 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1091 (((li->extLength >> 30) ==
1092 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1093 ((lip1->extLocation.logicalBlockNum -
1094 li->extLocation.logicalBlockNum) ==
1095 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1096 blocksize - 1) >> blocksize_bits)))) {
1097
1098 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1099 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1100 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1101 lip1->extLength = (lip1->extLength -
1102 (li->extLength &
1103 UDF_EXTENT_LENGTH_MASK) +
1104 UDF_EXTENT_LENGTH_MASK) &
1105 ~(blocksize - 1);
1106 li->extLength = (li->extLength &
1107 UDF_EXTENT_FLAG_MASK) +
1108 (UDF_EXTENT_LENGTH_MASK + 1) -
1109 blocksize;
1110 lip1->extLocation.logicalBlockNum =
1111 li->extLocation.logicalBlockNum +
1112 ((li->extLength &
1113 UDF_EXTENT_LENGTH_MASK) >>
1114 blocksize_bits);
1115 } else {
1116 li->extLength = lip1->extLength +
1117 (((li->extLength &
1118 UDF_EXTENT_LENGTH_MASK) +
1119 blocksize - 1) & ~(blocksize - 1));
1120 if (*endnum > (i + 2))
1121 memmove(&laarr[i + 1], &laarr[i + 2],
1122 sizeof(struct long_ad) *
1123 (*endnum - (i + 2)));
1124 i--;
1125 (*endnum)--;
1126 }
1127 } else if (((li->extLength >> 30) ==
1128 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1129 ((lip1->extLength >> 30) ==
1130 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1131 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1132 ((li->extLength &
1133 UDF_EXTENT_LENGTH_MASK) +
1134 blocksize - 1) >> blocksize_bits);
1135 li->extLocation.logicalBlockNum = 0;
1136 li->extLocation.partitionReferenceNum = 0;
1137
1138 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1139 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1140 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1141 lip1->extLength = (lip1->extLength -
1142 (li->extLength &
1143 UDF_EXTENT_LENGTH_MASK) +
1144 UDF_EXTENT_LENGTH_MASK) &
1145 ~(blocksize - 1);
1146 li->extLength = (li->extLength &
1147 UDF_EXTENT_FLAG_MASK) +
1148 (UDF_EXTENT_LENGTH_MASK + 1) -
1149 blocksize;
1150 } else {
1151 li->extLength = lip1->extLength +
1152 (((li->extLength &
1153 UDF_EXTENT_LENGTH_MASK) +
1154 blocksize - 1) & ~(blocksize - 1));
1155 if (*endnum > (i + 2))
1156 memmove(&laarr[i + 1], &laarr[i + 2],
1157 sizeof(struct long_ad) *
1158 (*endnum - (i + 2)));
1159 i--;
1160 (*endnum)--;
1161 }
1162 } else if ((li->extLength >> 30) ==
1163 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1164 udf_free_blocks(inode->i_sb, inode,
1165 &li->extLocation, 0,
1166 ((li->extLength &
1167 UDF_EXTENT_LENGTH_MASK) +
1168 blocksize - 1) >> blocksize_bits);
1169 li->extLocation.logicalBlockNum = 0;
1170 li->extLocation.partitionReferenceNum = 0;
1171 li->extLength = (li->extLength &
1172 UDF_EXTENT_LENGTH_MASK) |
1173 EXT_NOT_RECORDED_NOT_ALLOCATED;
1174 }
1175 }
1176}
1177
1178static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1179 int startnum, int endnum,
1180 struct extent_position *epos)
1181{
1182 int start = 0, i;
1183 struct kernel_lb_addr tmploc;
1184 uint32_t tmplen;
1185
1186 if (startnum > endnum) {
1187 for (i = 0; i < (startnum - endnum); i++)
1188 udf_delete_aext(inode, *epos);
1189 } else if (startnum < endnum) {
1190 for (i = 0; i < (endnum - startnum); i++) {
1191 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1192 laarr[i].extLength);
1193 udf_next_aext(inode, epos, &laarr[i].extLocation,
1194 &laarr[i].extLength, 1);
1195 start++;
1196 }
1197 }
1198
1199 for (i = start; i < endnum; i++) {
1200 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1201 udf_write_aext(inode, epos, &laarr[i].extLocation,
1202 laarr[i].extLength, 1);
1203 }
1204}
1205
1206struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1207 int create, int *err)
1208{
1209 struct buffer_head *bh = NULL;
1210
1211 bh = udf_getblk(inode, block, create, err);
1212 if (!bh)
1213 return NULL;
1214
1215 if (buffer_uptodate(bh))
1216 return bh;
1217
1218 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219
1220 wait_on_buffer(bh);
1221 if (buffer_uptodate(bh))
1222 return bh;
1223
1224 brelse(bh);
1225 *err = -EIO;
1226 return NULL;
1227}
1228
1229int udf_setsize(struct inode *inode, loff_t newsize)
1230{
1231 int err;
1232 struct udf_inode_info *iinfo;
1233 unsigned int bsize = i_blocksize(inode);
1234
1235 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1236 S_ISLNK(inode->i_mode)))
1237 return -EINVAL;
1238 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1239 return -EPERM;
1240
1241 iinfo = UDF_I(inode);
1242 if (newsize > inode->i_size) {
1243 down_write(&iinfo->i_data_sem);
1244 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1245 if (bsize <
1246 (udf_file_entry_alloc_offset(inode) + newsize)) {
1247 err = udf_expand_file_adinicb(inode);
1248 if (err)
1249 return err;
1250 down_write(&iinfo->i_data_sem);
1251 } else {
1252 iinfo->i_lenAlloc = newsize;
1253 goto set_size;
1254 }
1255 }
1256 err = udf_extend_file(inode, newsize);
1257 if (err) {
1258 up_write(&iinfo->i_data_sem);
1259 return err;
1260 }
1261set_size:
1262 up_write(&iinfo->i_data_sem);
1263 truncate_setsize(inode, newsize);
1264 } else {
1265 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1266 down_write(&iinfo->i_data_sem);
1267 udf_clear_extent_cache(inode);
1268 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1269 0x00, bsize - newsize -
1270 udf_file_entry_alloc_offset(inode));
1271 iinfo->i_lenAlloc = newsize;
1272 truncate_setsize(inode, newsize);
1273 up_write(&iinfo->i_data_sem);
1274 goto update_time;
1275 }
1276 err = block_truncate_page(inode->i_mapping, newsize,
1277 udf_get_block);
1278 if (err)
1279 return err;
1280 truncate_setsize(inode, newsize);
1281 down_write(&iinfo->i_data_sem);
1282 udf_clear_extent_cache(inode);
1283 err = udf_truncate_extents(inode);
1284 up_write(&iinfo->i_data_sem);
1285 if (err)
1286 return err;
1287 }
1288update_time:
1289 inode->i_mtime = inode->i_ctime = current_time(inode);
1290 if (IS_SYNC(inode))
1291 udf_sync_inode(inode);
1292 else
1293 mark_inode_dirty(inode);
1294 return 0;
1295}
1296
1297/*
1298 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1299 * arbitrary - just that we hopefully don't limit any real use of rewritten
1300 * inode on write-once media but avoid looping for too long on corrupted media.
1301 */
1302#define UDF_MAX_ICB_NESTING 1024
1303
1304static int udf_read_inode(struct inode *inode, bool hidden_inode)
1305{
1306 struct buffer_head *bh = NULL;
1307 struct fileEntry *fe;
1308 struct extendedFileEntry *efe;
1309 uint16_t ident;
1310 struct udf_inode_info *iinfo = UDF_I(inode);
1311 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1312 struct kernel_lb_addr *iloc = &iinfo->i_location;
1313 unsigned int link_count;
1314 unsigned int indirections = 0;
1315 int bs = inode->i_sb->s_blocksize;
1316 int ret = -EIO;
1317 uint32_t uid, gid;
1318
1319reread:
1320 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1321 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1322 iloc->partitionReferenceNum, sbi->s_partitions);
1323 return -EIO;
1324 }
1325
1326 if (iloc->logicalBlockNum >=
1327 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1328 udf_debug("block=%u, partition=%u out of range\n",
1329 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1330 return -EIO;
1331 }
1332
1333 /*
1334 * Set defaults, but the inode is still incomplete!
1335 * Note: get_new_inode() sets the following on a new inode:
1336 * i_sb = sb
1337 * i_no = ino
1338 * i_flags = sb->s_flags
1339 * i_state = 0
1340 * clean_inode(): zero fills and sets
1341 * i_count = 1
1342 * i_nlink = 1
1343 * i_op = NULL;
1344 */
1345 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1346 if (!bh) {
1347 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1348 return -EIO;
1349 }
1350
1351 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1352 ident != TAG_IDENT_USE) {
1353 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1354 inode->i_ino, ident);
1355 goto out;
1356 }
1357
1358 fe = (struct fileEntry *)bh->b_data;
1359 efe = (struct extendedFileEntry *)bh->b_data;
1360
1361 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1362 struct buffer_head *ibh;
1363
1364 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1365 if (ident == TAG_IDENT_IE && ibh) {
1366 struct kernel_lb_addr loc;
1367 struct indirectEntry *ie;
1368
1369 ie = (struct indirectEntry *)ibh->b_data;
1370 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1371
1372 if (ie->indirectICB.extLength) {
1373 brelse(ibh);
1374 memcpy(&iinfo->i_location, &loc,
1375 sizeof(struct kernel_lb_addr));
1376 if (++indirections > UDF_MAX_ICB_NESTING) {
1377 udf_err(inode->i_sb,
1378 "too many ICBs in ICB hierarchy"
1379 " (max %d supported)\n",
1380 UDF_MAX_ICB_NESTING);
1381 goto out;
1382 }
1383 brelse(bh);
1384 goto reread;
1385 }
1386 }
1387 brelse(ibh);
1388 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1389 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1390 le16_to_cpu(fe->icbTag.strategyType));
1391 goto out;
1392 }
1393 if (fe->icbTag.strategyType == cpu_to_le16(4))
1394 iinfo->i_strat4096 = 0;
1395 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1396 iinfo->i_strat4096 = 1;
1397
1398 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1399 ICBTAG_FLAG_AD_MASK;
1400 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1401 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1402 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1403 ret = -EIO;
1404 goto out;
1405 }
1406 iinfo->i_unique = 0;
1407 iinfo->i_lenEAttr = 0;
1408 iinfo->i_lenExtents = 0;
1409 iinfo->i_lenAlloc = 0;
1410 iinfo->i_next_alloc_block = 0;
1411 iinfo->i_next_alloc_goal = 0;
1412 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1413 iinfo->i_efe = 1;
1414 iinfo->i_use = 0;
1415 ret = udf_alloc_i_data(inode, bs -
1416 sizeof(struct extendedFileEntry));
1417 if (ret)
1418 goto out;
1419 memcpy(iinfo->i_data,
1420 bh->b_data + sizeof(struct extendedFileEntry),
1421 bs - sizeof(struct extendedFileEntry));
1422 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1423 iinfo->i_efe = 0;
1424 iinfo->i_use = 0;
1425 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1426 if (ret)
1427 goto out;
1428 memcpy(iinfo->i_data,
1429 bh->b_data + sizeof(struct fileEntry),
1430 bs - sizeof(struct fileEntry));
1431 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1432 iinfo->i_efe = 0;
1433 iinfo->i_use = 1;
1434 iinfo->i_lenAlloc = le32_to_cpu(
1435 ((struct unallocSpaceEntry *)bh->b_data)->
1436 lengthAllocDescs);
1437 ret = udf_alloc_i_data(inode, bs -
1438 sizeof(struct unallocSpaceEntry));
1439 if (ret)
1440 goto out;
1441 memcpy(iinfo->i_data,
1442 bh->b_data + sizeof(struct unallocSpaceEntry),
1443 bs - sizeof(struct unallocSpaceEntry));
1444 return 0;
1445 }
1446
1447 ret = -EIO;
1448 read_lock(&sbi->s_cred_lock);
1449 uid = le32_to_cpu(fe->uid);
1450 if (uid == UDF_INVALID_ID ||
1451 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1452 inode->i_uid = sbi->s_uid;
1453 else
1454 i_uid_write(inode, uid);
1455
1456 gid = le32_to_cpu(fe->gid);
1457 if (gid == UDF_INVALID_ID ||
1458 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1459 inode->i_gid = sbi->s_gid;
1460 else
1461 i_gid_write(inode, gid);
1462
1463 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1464 sbi->s_fmode != UDF_INVALID_MODE)
1465 inode->i_mode = sbi->s_fmode;
1466 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1467 sbi->s_dmode != UDF_INVALID_MODE)
1468 inode->i_mode = sbi->s_dmode;
1469 else
1470 inode->i_mode = udf_convert_permissions(fe);
1471 inode->i_mode &= ~sbi->s_umask;
1472 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1473
1474 read_unlock(&sbi->s_cred_lock);
1475
1476 link_count = le16_to_cpu(fe->fileLinkCount);
1477 if (!link_count) {
1478 if (!hidden_inode) {
1479 ret = -ESTALE;
1480 goto out;
1481 }
1482 link_count = 1;
1483 }
1484 set_nlink(inode, link_count);
1485
1486 inode->i_size = le64_to_cpu(fe->informationLength);
1487 iinfo->i_lenExtents = inode->i_size;
1488
1489 if (iinfo->i_efe == 0) {
1490 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1491 (inode->i_sb->s_blocksize_bits - 9);
1492
1493 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1494 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1495 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1496
1497 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1498 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1499 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1500 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1501 iinfo->i_streamdir = 0;
1502 iinfo->i_lenStreams = 0;
1503 } else {
1504 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1505 (inode->i_sb->s_blocksize_bits - 9);
1506
1507 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1508 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1509 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1510 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1511
1512 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1513 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1514 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1515 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1516
1517 /* Named streams */
1518 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1519 iinfo->i_locStreamdir =
1520 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1521 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1522 if (iinfo->i_lenStreams >= inode->i_size)
1523 iinfo->i_lenStreams -= inode->i_size;
1524 else
1525 iinfo->i_lenStreams = 0;
1526 }
1527 inode->i_generation = iinfo->i_unique;
1528
1529 /*
1530 * Sanity check length of allocation descriptors and extended attrs to
1531 * avoid integer overflows
1532 */
1533 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1534 goto out;
1535 /* Now do exact checks */
1536 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1537 goto out;
1538 /* Sanity checks for files in ICB so that we don't get confused later */
1539 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1540 /*
1541 * For file in ICB data is stored in allocation descriptor
1542 * so sizes should match
1543 */
1544 if (iinfo->i_lenAlloc != inode->i_size)
1545 goto out;
1546 /* File in ICB has to fit in there... */
1547 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1548 goto out;
1549 }
1550
1551 switch (fe->icbTag.fileType) {
1552 case ICBTAG_FILE_TYPE_DIRECTORY:
1553 inode->i_op = &udf_dir_inode_operations;
1554 inode->i_fop = &udf_dir_operations;
1555 inode->i_mode |= S_IFDIR;
1556 inc_nlink(inode);
1557 break;
1558 case ICBTAG_FILE_TYPE_REALTIME:
1559 case ICBTAG_FILE_TYPE_REGULAR:
1560 case ICBTAG_FILE_TYPE_UNDEF:
1561 case ICBTAG_FILE_TYPE_VAT20:
1562 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1563 inode->i_data.a_ops = &udf_adinicb_aops;
1564 else
1565 inode->i_data.a_ops = &udf_aops;
1566 inode->i_op = &udf_file_inode_operations;
1567 inode->i_fop = &udf_file_operations;
1568 inode->i_mode |= S_IFREG;
1569 break;
1570 case ICBTAG_FILE_TYPE_BLOCK:
1571 inode->i_mode |= S_IFBLK;
1572 break;
1573 case ICBTAG_FILE_TYPE_CHAR:
1574 inode->i_mode |= S_IFCHR;
1575 break;
1576 case ICBTAG_FILE_TYPE_FIFO:
1577 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1578 break;
1579 case ICBTAG_FILE_TYPE_SOCKET:
1580 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1581 break;
1582 case ICBTAG_FILE_TYPE_SYMLINK:
1583 inode->i_data.a_ops = &udf_symlink_aops;
1584 inode->i_op = &udf_symlink_inode_operations;
1585 inode_nohighmem(inode);
1586 inode->i_mode = S_IFLNK | 0777;
1587 break;
1588 case ICBTAG_FILE_TYPE_MAIN:
1589 udf_debug("METADATA FILE-----\n");
1590 break;
1591 case ICBTAG_FILE_TYPE_MIRROR:
1592 udf_debug("METADATA MIRROR FILE-----\n");
1593 break;
1594 case ICBTAG_FILE_TYPE_BITMAP:
1595 udf_debug("METADATA BITMAP FILE-----\n");
1596 break;
1597 default:
1598 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1599 inode->i_ino, fe->icbTag.fileType);
1600 goto out;
1601 }
1602 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1603 struct deviceSpec *dsea =
1604 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1605 if (dsea) {
1606 init_special_inode(inode, inode->i_mode,
1607 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1608 le32_to_cpu(dsea->minorDeviceIdent)));
1609 /* Developer ID ??? */
1610 } else
1611 goto out;
1612 }
1613 ret = 0;
1614out:
1615 brelse(bh);
1616 return ret;
1617}
1618
1619static int udf_alloc_i_data(struct inode *inode, size_t size)
1620{
1621 struct udf_inode_info *iinfo = UDF_I(inode);
1622 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1623 if (!iinfo->i_data)
1624 return -ENOMEM;
1625 return 0;
1626}
1627
1628static umode_t udf_convert_permissions(struct fileEntry *fe)
1629{
1630 umode_t mode;
1631 uint32_t permissions;
1632 uint32_t flags;
1633
1634 permissions = le32_to_cpu(fe->permissions);
1635 flags = le16_to_cpu(fe->icbTag.flags);
1636
1637 mode = ((permissions) & 0007) |
1638 ((permissions >> 2) & 0070) |
1639 ((permissions >> 4) & 0700) |
1640 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1641 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1642 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1643
1644 return mode;
1645}
1646
1647void udf_update_extra_perms(struct inode *inode, umode_t mode)
1648{
1649 struct udf_inode_info *iinfo = UDF_I(inode);
1650
1651 /*
1652 * UDF 2.01 sec. 3.3.3.3 Note 2:
1653 * In Unix, delete permission tracks write
1654 */
1655 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1656 if (mode & 0200)
1657 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1658 if (mode & 0020)
1659 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1660 if (mode & 0002)
1661 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1662}
1663
1664int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1665{
1666 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1667}
1668
1669static int udf_sync_inode(struct inode *inode)
1670{
1671 return udf_update_inode(inode, 1);
1672}
1673
1674static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1675{
1676 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1677 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1678 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1679 iinfo->i_crtime = time;
1680}
1681
1682static int udf_update_inode(struct inode *inode, int do_sync)
1683{
1684 struct buffer_head *bh = NULL;
1685 struct fileEntry *fe;
1686 struct extendedFileEntry *efe;
1687 uint64_t lb_recorded;
1688 uint32_t udfperms;
1689 uint16_t icbflags;
1690 uint16_t crclen;
1691 int err = 0;
1692 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1693 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1694 struct udf_inode_info *iinfo = UDF_I(inode);
1695
1696 bh = udf_tgetblk(inode->i_sb,
1697 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1698 if (!bh) {
1699 udf_debug("getblk failure\n");
1700 return -EIO;
1701 }
1702
1703 lock_buffer(bh);
1704 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1705 fe = (struct fileEntry *)bh->b_data;
1706 efe = (struct extendedFileEntry *)bh->b_data;
1707
1708 if (iinfo->i_use) {
1709 struct unallocSpaceEntry *use =
1710 (struct unallocSpaceEntry *)bh->b_data;
1711
1712 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1713 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1714 iinfo->i_data, inode->i_sb->s_blocksize -
1715 sizeof(struct unallocSpaceEntry));
1716 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1717 crclen = sizeof(struct unallocSpaceEntry);
1718
1719 goto finish;
1720 }
1721
1722 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1723 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1724 else
1725 fe->uid = cpu_to_le32(i_uid_read(inode));
1726
1727 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1728 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1729 else
1730 fe->gid = cpu_to_le32(i_gid_read(inode));
1731
1732 udfperms = ((inode->i_mode & 0007)) |
1733 ((inode->i_mode & 0070) << 2) |
1734 ((inode->i_mode & 0700) << 4);
1735
1736 udfperms |= iinfo->i_extraPerms;
1737 fe->permissions = cpu_to_le32(udfperms);
1738
1739 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1740 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1741 else
1742 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1743
1744 fe->informationLength = cpu_to_le64(inode->i_size);
1745
1746 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1747 struct regid *eid;
1748 struct deviceSpec *dsea =
1749 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1750 if (!dsea) {
1751 dsea = (struct deviceSpec *)
1752 udf_add_extendedattr(inode,
1753 sizeof(struct deviceSpec) +
1754 sizeof(struct regid), 12, 0x3);
1755 dsea->attrType = cpu_to_le32(12);
1756 dsea->attrSubtype = 1;
1757 dsea->attrLength = cpu_to_le32(
1758 sizeof(struct deviceSpec) +
1759 sizeof(struct regid));
1760 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1761 }
1762 eid = (struct regid *)dsea->impUse;
1763 memset(eid, 0, sizeof(*eid));
1764 strcpy(eid->ident, UDF_ID_DEVELOPER);
1765 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1766 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1767 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1768 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1769 }
1770
1771 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1772 lb_recorded = 0; /* No extents => no blocks! */
1773 else
1774 lb_recorded =
1775 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1776 (blocksize_bits - 9);
1777
1778 if (iinfo->i_efe == 0) {
1779 memcpy(bh->b_data + sizeof(struct fileEntry),
1780 iinfo->i_data,
1781 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1782 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1783
1784 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1785 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1786 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1787 memset(&(fe->impIdent), 0, sizeof(struct regid));
1788 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1789 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1790 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1791 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1792 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1793 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1794 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1795 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1796 crclen = sizeof(struct fileEntry);
1797 } else {
1798 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1799 iinfo->i_data,
1800 inode->i_sb->s_blocksize -
1801 sizeof(struct extendedFileEntry));
1802 efe->objectSize =
1803 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1804 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1805
1806 if (iinfo->i_streamdir) {
1807 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1808
1809 icb_lad->extLocation =
1810 cpu_to_lelb(iinfo->i_locStreamdir);
1811 icb_lad->extLength =
1812 cpu_to_le32(inode->i_sb->s_blocksize);
1813 }
1814
1815 udf_adjust_time(iinfo, inode->i_atime);
1816 udf_adjust_time(iinfo, inode->i_mtime);
1817 udf_adjust_time(iinfo, inode->i_ctime);
1818
1819 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1820 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1821 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1822 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1823
1824 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1825 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1826 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1827 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1828 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1829 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1830 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1831 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1832 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1833 crclen = sizeof(struct extendedFileEntry);
1834 }
1835
1836finish:
1837 if (iinfo->i_strat4096) {
1838 fe->icbTag.strategyType = cpu_to_le16(4096);
1839 fe->icbTag.strategyParameter = cpu_to_le16(1);
1840 fe->icbTag.numEntries = cpu_to_le16(2);
1841 } else {
1842 fe->icbTag.strategyType = cpu_to_le16(4);
1843 fe->icbTag.numEntries = cpu_to_le16(1);
1844 }
1845
1846 if (iinfo->i_use)
1847 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1848 else if (S_ISDIR(inode->i_mode))
1849 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1850 else if (S_ISREG(inode->i_mode))
1851 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1852 else if (S_ISLNK(inode->i_mode))
1853 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1854 else if (S_ISBLK(inode->i_mode))
1855 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1856 else if (S_ISCHR(inode->i_mode))
1857 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1858 else if (S_ISFIFO(inode->i_mode))
1859 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1860 else if (S_ISSOCK(inode->i_mode))
1861 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1862
1863 icbflags = iinfo->i_alloc_type |
1864 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1865 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1866 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1867 (le16_to_cpu(fe->icbTag.flags) &
1868 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1869 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1870
1871 fe->icbTag.flags = cpu_to_le16(icbflags);
1872 if (sbi->s_udfrev >= 0x0200)
1873 fe->descTag.descVersion = cpu_to_le16(3);
1874 else
1875 fe->descTag.descVersion = cpu_to_le16(2);
1876 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1877 fe->descTag.tagLocation = cpu_to_le32(
1878 iinfo->i_location.logicalBlockNum);
1879 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1880 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1881 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1882 crclen));
1883 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1884
1885 set_buffer_uptodate(bh);
1886 unlock_buffer(bh);
1887
1888 /* write the data blocks */
1889 mark_buffer_dirty(bh);
1890 if (do_sync) {
1891 sync_dirty_buffer(bh);
1892 if (buffer_write_io_error(bh)) {
1893 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1894 inode->i_ino);
1895 err = -EIO;
1896 }
1897 }
1898 brelse(bh);
1899
1900 return err;
1901}
1902
1903struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1904 bool hidden_inode)
1905{
1906 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1907 struct inode *inode = iget_locked(sb, block);
1908 int err;
1909
1910 if (!inode)
1911 return ERR_PTR(-ENOMEM);
1912
1913 if (!(inode->i_state & I_NEW))
1914 return inode;
1915
1916 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1917 err = udf_read_inode(inode, hidden_inode);
1918 if (err < 0) {
1919 iget_failed(inode);
1920 return ERR_PTR(err);
1921 }
1922 unlock_new_inode(inode);
1923
1924 return inode;
1925}
1926
1927int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1928 struct extent_position *epos)
1929{
1930 struct super_block *sb = inode->i_sb;
1931 struct buffer_head *bh;
1932 struct allocExtDesc *aed;
1933 struct extent_position nepos;
1934 struct kernel_lb_addr neloc;
1935 int ver, adsize;
1936
1937 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938 adsize = sizeof(struct short_ad);
1939 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940 adsize = sizeof(struct long_ad);
1941 else
1942 return -EIO;
1943
1944 neloc.logicalBlockNum = block;
1945 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1946
1947 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1948 if (!bh)
1949 return -EIO;
1950 lock_buffer(bh);
1951 memset(bh->b_data, 0x00, sb->s_blocksize);
1952 set_buffer_uptodate(bh);
1953 unlock_buffer(bh);
1954 mark_buffer_dirty_inode(bh, inode);
1955
1956 aed = (struct allocExtDesc *)(bh->b_data);
1957 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1958 aed->previousAllocExtLocation =
1959 cpu_to_le32(epos->block.logicalBlockNum);
1960 }
1961 aed->lengthAllocDescs = cpu_to_le32(0);
1962 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1963 ver = 3;
1964 else
1965 ver = 2;
1966 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1967 sizeof(struct tag));
1968
1969 nepos.block = neloc;
1970 nepos.offset = sizeof(struct allocExtDesc);
1971 nepos.bh = bh;
1972
1973 /*
1974 * Do we have to copy current last extent to make space for indirect
1975 * one?
1976 */
1977 if (epos->offset + adsize > sb->s_blocksize) {
1978 struct kernel_lb_addr cp_loc;
1979 uint32_t cp_len;
1980 int cp_type;
1981
1982 epos->offset -= adsize;
1983 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1984 cp_len |= ((uint32_t)cp_type) << 30;
1985
1986 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1987 udf_write_aext(inode, epos, &nepos.block,
1988 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1989 } else {
1990 __udf_add_aext(inode, epos, &nepos.block,
1991 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1992 }
1993
1994 brelse(epos->bh);
1995 *epos = nepos;
1996
1997 return 0;
1998}
1999
2000/*
2001 * Append extent at the given position - should be the first free one in inode
2002 * / indirect extent. This function assumes there is enough space in the inode
2003 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2004 */
2005int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2006 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007{
2008 struct udf_inode_info *iinfo = UDF_I(inode);
2009 struct allocExtDesc *aed;
2010 int adsize;
2011
2012 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013 adsize = sizeof(struct short_ad);
2014 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015 adsize = sizeof(struct long_ad);
2016 else
2017 return -EIO;
2018
2019 if (!epos->bh) {
2020 WARN_ON(iinfo->i_lenAlloc !=
2021 epos->offset - udf_file_entry_alloc_offset(inode));
2022 } else {
2023 aed = (struct allocExtDesc *)epos->bh->b_data;
2024 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2025 epos->offset - sizeof(struct allocExtDesc));
2026 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2027 }
2028
2029 udf_write_aext(inode, epos, eloc, elen, inc);
2030
2031 if (!epos->bh) {
2032 iinfo->i_lenAlloc += adsize;
2033 mark_inode_dirty(inode);
2034 } else {
2035 aed = (struct allocExtDesc *)epos->bh->b_data;
2036 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2037 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2038 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2039 udf_update_tag(epos->bh->b_data,
2040 epos->offset + (inc ? 0 : adsize));
2041 else
2042 udf_update_tag(epos->bh->b_data,
2043 sizeof(struct allocExtDesc));
2044 mark_buffer_dirty_inode(epos->bh, inode);
2045 }
2046
2047 return 0;
2048}
2049
2050/*
2051 * Append extent at given position - should be the first free one in inode
2052 * / indirect extent. Takes care of allocating and linking indirect blocks.
2053 */
2054int udf_add_aext(struct inode *inode, struct extent_position *epos,
2055 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2056{
2057 int adsize;
2058 struct super_block *sb = inode->i_sb;
2059
2060 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2061 adsize = sizeof(struct short_ad);
2062 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2063 adsize = sizeof(struct long_ad);
2064 else
2065 return -EIO;
2066
2067 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2068 int err;
2069 udf_pblk_t new_block;
2070
2071 new_block = udf_new_block(sb, NULL,
2072 epos->block.partitionReferenceNum,
2073 epos->block.logicalBlockNum, &err);
2074 if (!new_block)
2075 return -ENOSPC;
2076
2077 err = udf_setup_indirect_aext(inode, new_block, epos);
2078 if (err)
2079 return err;
2080 }
2081
2082 return __udf_add_aext(inode, epos, eloc, elen, inc);
2083}
2084
2085void udf_write_aext(struct inode *inode, struct extent_position *epos,
2086 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2087{
2088 int adsize;
2089 uint8_t *ptr;
2090 struct short_ad *sad;
2091 struct long_ad *lad;
2092 struct udf_inode_info *iinfo = UDF_I(inode);
2093
2094 if (!epos->bh)
2095 ptr = iinfo->i_data + epos->offset -
2096 udf_file_entry_alloc_offset(inode) +
2097 iinfo->i_lenEAttr;
2098 else
2099 ptr = epos->bh->b_data + epos->offset;
2100
2101 switch (iinfo->i_alloc_type) {
2102 case ICBTAG_FLAG_AD_SHORT:
2103 sad = (struct short_ad *)ptr;
2104 sad->extLength = cpu_to_le32(elen);
2105 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2106 adsize = sizeof(struct short_ad);
2107 break;
2108 case ICBTAG_FLAG_AD_LONG:
2109 lad = (struct long_ad *)ptr;
2110 lad->extLength = cpu_to_le32(elen);
2111 lad->extLocation = cpu_to_lelb(*eloc);
2112 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2113 adsize = sizeof(struct long_ad);
2114 break;
2115 default:
2116 return;
2117 }
2118
2119 if (epos->bh) {
2120 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2121 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2122 struct allocExtDesc *aed =
2123 (struct allocExtDesc *)epos->bh->b_data;
2124 udf_update_tag(epos->bh->b_data,
2125 le32_to_cpu(aed->lengthAllocDescs) +
2126 sizeof(struct allocExtDesc));
2127 }
2128 mark_buffer_dirty_inode(epos->bh, inode);
2129 } else {
2130 mark_inode_dirty(inode);
2131 }
2132
2133 if (inc)
2134 epos->offset += adsize;
2135}
2136
2137/*
2138 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2139 * someone does some weird stuff.
2140 */
2141#define UDF_MAX_INDIR_EXTS 16
2142
2143int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2144 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2145{
2146 int8_t etype;
2147 unsigned int indirections = 0;
2148
2149 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2150 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2151 udf_pblk_t block;
2152
2153 if (++indirections > UDF_MAX_INDIR_EXTS) {
2154 udf_err(inode->i_sb,
2155 "too many indirect extents in inode %lu\n",
2156 inode->i_ino);
2157 return -1;
2158 }
2159
2160 epos->block = *eloc;
2161 epos->offset = sizeof(struct allocExtDesc);
2162 brelse(epos->bh);
2163 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2164 epos->bh = udf_tread(inode->i_sb, block);
2165 if (!epos->bh) {
2166 udf_debug("reading block %u failed!\n", block);
2167 return -1;
2168 }
2169 }
2170
2171 return etype;
2172}
2173
2174int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2175 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2176{
2177 int alen;
2178 int8_t etype;
2179 uint8_t *ptr;
2180 struct short_ad *sad;
2181 struct long_ad *lad;
2182 struct udf_inode_info *iinfo = UDF_I(inode);
2183
2184 if (!epos->bh) {
2185 if (!epos->offset)
2186 epos->offset = udf_file_entry_alloc_offset(inode);
2187 ptr = iinfo->i_data + epos->offset -
2188 udf_file_entry_alloc_offset(inode) +
2189 iinfo->i_lenEAttr;
2190 alen = udf_file_entry_alloc_offset(inode) +
2191 iinfo->i_lenAlloc;
2192 } else {
2193 if (!epos->offset)
2194 epos->offset = sizeof(struct allocExtDesc);
2195 ptr = epos->bh->b_data + epos->offset;
2196 alen = sizeof(struct allocExtDesc) +
2197 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2198 lengthAllocDescs);
2199 }
2200
2201 switch (iinfo->i_alloc_type) {
2202 case ICBTAG_FLAG_AD_SHORT:
2203 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2204 if (!sad)
2205 return -1;
2206 etype = le32_to_cpu(sad->extLength) >> 30;
2207 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2208 eloc->partitionReferenceNum =
2209 iinfo->i_location.partitionReferenceNum;
2210 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2211 break;
2212 case ICBTAG_FLAG_AD_LONG:
2213 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2214 if (!lad)
2215 return -1;
2216 etype = le32_to_cpu(lad->extLength) >> 30;
2217 *eloc = lelb_to_cpu(lad->extLocation);
2218 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2219 break;
2220 default:
2221 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2222 return -1;
2223 }
2224
2225 return etype;
2226}
2227
2228static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2229 struct kernel_lb_addr neloc, uint32_t nelen)
2230{
2231 struct kernel_lb_addr oeloc;
2232 uint32_t oelen;
2233 int8_t etype;
2234
2235 if (epos.bh)
2236 get_bh(epos.bh);
2237
2238 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2239 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2240 neloc = oeloc;
2241 nelen = (etype << 30) | oelen;
2242 }
2243 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2244 brelse(epos.bh);
2245
2246 return (nelen >> 30);
2247}
2248
2249int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2250{
2251 struct extent_position oepos;
2252 int adsize;
2253 int8_t etype;
2254 struct allocExtDesc *aed;
2255 struct udf_inode_info *iinfo;
2256 struct kernel_lb_addr eloc;
2257 uint32_t elen;
2258
2259 if (epos.bh) {
2260 get_bh(epos.bh);
2261 get_bh(epos.bh);
2262 }
2263
2264 iinfo = UDF_I(inode);
2265 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2266 adsize = sizeof(struct short_ad);
2267 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2268 adsize = sizeof(struct long_ad);
2269 else
2270 adsize = 0;
2271
2272 oepos = epos;
2273 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2274 return -1;
2275
2276 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2277 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2278 if (oepos.bh != epos.bh) {
2279 oepos.block = epos.block;
2280 brelse(oepos.bh);
2281 get_bh(epos.bh);
2282 oepos.bh = epos.bh;
2283 oepos.offset = epos.offset - adsize;
2284 }
2285 }
2286 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2287 elen = 0;
2288
2289 if (epos.bh != oepos.bh) {
2290 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2291 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2292 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2293 if (!oepos.bh) {
2294 iinfo->i_lenAlloc -= (adsize * 2);
2295 mark_inode_dirty(inode);
2296 } else {
2297 aed = (struct allocExtDesc *)oepos.bh->b_data;
2298 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2299 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2300 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2301 udf_update_tag(oepos.bh->b_data,
2302 oepos.offset - (2 * adsize));
2303 else
2304 udf_update_tag(oepos.bh->b_data,
2305 sizeof(struct allocExtDesc));
2306 mark_buffer_dirty_inode(oepos.bh, inode);
2307 }
2308 } else {
2309 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2310 if (!oepos.bh) {
2311 iinfo->i_lenAlloc -= adsize;
2312 mark_inode_dirty(inode);
2313 } else {
2314 aed = (struct allocExtDesc *)oepos.bh->b_data;
2315 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2316 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2317 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2318 udf_update_tag(oepos.bh->b_data,
2319 epos.offset - adsize);
2320 else
2321 udf_update_tag(oepos.bh->b_data,
2322 sizeof(struct allocExtDesc));
2323 mark_buffer_dirty_inode(oepos.bh, inode);
2324 }
2325 }
2326
2327 brelse(epos.bh);
2328 brelse(oepos.bh);
2329
2330 return (elen >> 30);
2331}
2332
2333int8_t inode_bmap(struct inode *inode, sector_t block,
2334 struct extent_position *pos, struct kernel_lb_addr *eloc,
2335 uint32_t *elen, sector_t *offset)
2336{
2337 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2338 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2339 int8_t etype;
2340 struct udf_inode_info *iinfo;
2341
2342 iinfo = UDF_I(inode);
2343 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2344 pos->offset = 0;
2345 pos->block = iinfo->i_location;
2346 pos->bh = NULL;
2347 }
2348 *elen = 0;
2349 do {
2350 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2351 if (etype == -1) {
2352 *offset = (bcount - lbcount) >> blocksize_bits;
2353 iinfo->i_lenExtents = lbcount;
2354 return -1;
2355 }
2356 lbcount += *elen;
2357 } while (lbcount <= bcount);
2358 /* update extent cache */
2359 udf_update_extent_cache(inode, lbcount - *elen, pos);
2360 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2361
2362 return etype;
2363}
2364
2365udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2366{
2367 struct kernel_lb_addr eloc;
2368 uint32_t elen;
2369 sector_t offset;
2370 struct extent_position epos = {};
2371 udf_pblk_t ret;
2372
2373 down_read(&UDF_I(inode)->i_data_sem);
2374
2375 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2376 (EXT_RECORDED_ALLOCATED >> 30))
2377 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2378 else
2379 ret = 0;
2380
2381 up_read(&UDF_I(inode)->i_data_sem);
2382 brelse(epos.bh);
2383
2384 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2385 return udf_fixed_to_variable(ret);
2386 else
2387 return ret;
2388}
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55static umode_t udf_convert_permissions(struct fileEntry *);
56static int udf_update_inode(struct inode *, int);
57static int udf_sync_inode(struct inode *inode);
58static int udf_alloc_i_data(struct inode *inode, size_t size);
59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 struct kernel_lb_addr, uint32_t);
62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 struct kernel_long_ad *, int *);
64static void udf_prealloc_extents(struct inode *, int, int,
65 struct kernel_long_ad *, int *);
66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 int, struct extent_position *);
69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71static void __udf_clear_extent_cache(struct inode *inode)
72{
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79}
80
81/* Invalidate extent cache */
82static void udf_clear_extent_cache(struct inode *inode)
83{
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89}
90
91/* Return contents of extent cache */
92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94{
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111}
112
113/* Add extent to extent cache */
114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos)
116{
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 iinfo->cached_extent.lstart = estart;
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 break;
130 case ICBTAG_FLAG_AD_LONG:
131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 break;
133 }
134 spin_unlock(&iinfo->i_extent_cache_lock);
135}
136
137void udf_evict_inode(struct inode *inode)
138{
139 struct udf_inode_info *iinfo = UDF_I(inode);
140 int want_delete = 0;
141
142 if (!is_bad_inode(inode)) {
143 if (!inode->i_nlink) {
144 want_delete = 1;
145 udf_setsize(inode, 0);
146 udf_update_inode(inode, IS_SYNC(inode));
147 }
148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 inode->i_size != iinfo->i_lenExtents) {
150 udf_warn(inode->i_sb,
151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 inode->i_ino, inode->i_mode,
153 (unsigned long long)inode->i_size,
154 (unsigned long long)iinfo->i_lenExtents);
155 }
156 }
157 truncate_inode_pages_final(&inode->i_data);
158 invalidate_inode_buffers(inode);
159 clear_inode(inode);
160 kfree(iinfo->i_data);
161 iinfo->i_data = NULL;
162 udf_clear_extent_cache(inode);
163 if (want_delete) {
164 udf_free_inode(inode);
165 }
166}
167
168static void udf_write_failed(struct address_space *mapping, loff_t to)
169{
170 struct inode *inode = mapping->host;
171 struct udf_inode_info *iinfo = UDF_I(inode);
172 loff_t isize = inode->i_size;
173
174 if (to > isize) {
175 truncate_pagecache(inode, isize);
176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 down_write(&iinfo->i_data_sem);
178 udf_clear_extent_cache(inode);
179 udf_truncate_extents(inode);
180 up_write(&iinfo->i_data_sem);
181 }
182 }
183}
184
185static int udf_writepages(struct address_space *mapping,
186 struct writeback_control *wbc)
187{
188 return mpage_writepages(mapping, wbc, udf_get_block);
189}
190
191static int udf_read_folio(struct file *file, struct folio *folio)
192{
193 return mpage_read_folio(folio, udf_get_block);
194}
195
196static void udf_readahead(struct readahead_control *rac)
197{
198 mpage_readahead(rac, udf_get_block);
199}
200
201static int udf_write_begin(struct file *file, struct address_space *mapping,
202 loff_t pos, unsigned len,
203 struct page **pagep, void **fsdata)
204{
205 int ret;
206
207 ret = block_write_begin(mapping, pos, len, pagep, udf_get_block);
208 if (unlikely(ret))
209 udf_write_failed(mapping, pos + len);
210 return ret;
211}
212
213static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
214{
215 struct file *file = iocb->ki_filp;
216 struct address_space *mapping = file->f_mapping;
217 struct inode *inode = mapping->host;
218 size_t count = iov_iter_count(iter);
219 ssize_t ret;
220
221 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
222 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
223 udf_write_failed(mapping, iocb->ki_pos + count);
224 return ret;
225}
226
227static sector_t udf_bmap(struct address_space *mapping, sector_t block)
228{
229 return generic_block_bmap(mapping, block, udf_get_block);
230}
231
232const struct address_space_operations udf_aops = {
233 .dirty_folio = block_dirty_folio,
234 .invalidate_folio = block_invalidate_folio,
235 .read_folio = udf_read_folio,
236 .readahead = udf_readahead,
237 .writepages = udf_writepages,
238 .write_begin = udf_write_begin,
239 .write_end = generic_write_end,
240 .direct_IO = udf_direct_IO,
241 .bmap = udf_bmap,
242 .migrate_folio = buffer_migrate_folio,
243};
244
245/*
246 * Expand file stored in ICB to a normal one-block-file
247 *
248 * This function requires i_data_sem for writing and releases it.
249 * This function requires i_mutex held
250 */
251int udf_expand_file_adinicb(struct inode *inode)
252{
253 struct page *page;
254 char *kaddr;
255 struct udf_inode_info *iinfo = UDF_I(inode);
256 int err;
257
258 WARN_ON_ONCE(!inode_is_locked(inode));
259 if (!iinfo->i_lenAlloc) {
260 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
262 else
263 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
264 /* from now on we have normal address_space methods */
265 inode->i_data.a_ops = &udf_aops;
266 up_write(&iinfo->i_data_sem);
267 mark_inode_dirty(inode);
268 return 0;
269 }
270 /*
271 * Release i_data_sem so that we can lock a page - page lock ranks
272 * above i_data_sem. i_mutex still protects us against file changes.
273 */
274 up_write(&iinfo->i_data_sem);
275
276 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
277 if (!page)
278 return -ENOMEM;
279
280 if (!PageUptodate(page)) {
281 kaddr = kmap_atomic(page);
282 memset(kaddr + iinfo->i_lenAlloc, 0x00,
283 PAGE_SIZE - iinfo->i_lenAlloc);
284 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
285 iinfo->i_lenAlloc);
286 flush_dcache_page(page);
287 SetPageUptodate(page);
288 kunmap_atomic(kaddr);
289 }
290 down_write(&iinfo->i_data_sem);
291 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
292 iinfo->i_lenAlloc);
293 iinfo->i_lenAlloc = 0;
294 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
295 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
296 else
297 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
298 /* from now on we have normal address_space methods */
299 inode->i_data.a_ops = &udf_aops;
300 set_page_dirty(page);
301 unlock_page(page);
302 up_write(&iinfo->i_data_sem);
303 err = filemap_fdatawrite(inode->i_mapping);
304 if (err) {
305 /* Restore everything back so that we don't lose data... */
306 lock_page(page);
307 down_write(&iinfo->i_data_sem);
308 kaddr = kmap_atomic(page);
309 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
310 kunmap_atomic(kaddr);
311 unlock_page(page);
312 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
313 inode->i_data.a_ops = &udf_adinicb_aops;
314 iinfo->i_lenAlloc = inode->i_size;
315 up_write(&iinfo->i_data_sem);
316 }
317 put_page(page);
318 mark_inode_dirty(inode);
319
320 return err;
321}
322
323struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
324 udf_pblk_t *block, int *err)
325{
326 udf_pblk_t newblock;
327 struct buffer_head *dbh = NULL;
328 struct kernel_lb_addr eloc;
329 uint8_t alloctype;
330 struct extent_position epos;
331
332 struct udf_fileident_bh sfibh, dfibh;
333 loff_t f_pos = udf_ext0_offset(inode);
334 int size = udf_ext0_offset(inode) + inode->i_size;
335 struct fileIdentDesc cfi, *sfi, *dfi;
336 struct udf_inode_info *iinfo = UDF_I(inode);
337
338 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
339 alloctype = ICBTAG_FLAG_AD_SHORT;
340 else
341 alloctype = ICBTAG_FLAG_AD_LONG;
342
343 if (!inode->i_size) {
344 iinfo->i_alloc_type = alloctype;
345 mark_inode_dirty(inode);
346 return NULL;
347 }
348
349 /* alloc block, and copy data to it */
350 *block = udf_new_block(inode->i_sb, inode,
351 iinfo->i_location.partitionReferenceNum,
352 iinfo->i_location.logicalBlockNum, err);
353 if (!(*block))
354 return NULL;
355 newblock = udf_get_pblock(inode->i_sb, *block,
356 iinfo->i_location.partitionReferenceNum,
357 0);
358 if (!newblock)
359 return NULL;
360 dbh = udf_tgetblk(inode->i_sb, newblock);
361 if (!dbh)
362 return NULL;
363 lock_buffer(dbh);
364 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
365 set_buffer_uptodate(dbh);
366 unlock_buffer(dbh);
367 mark_buffer_dirty_inode(dbh, inode);
368
369 sfibh.soffset = sfibh.eoffset =
370 f_pos & (inode->i_sb->s_blocksize - 1);
371 sfibh.sbh = sfibh.ebh = NULL;
372 dfibh.soffset = dfibh.eoffset = 0;
373 dfibh.sbh = dfibh.ebh = dbh;
374 while (f_pos < size) {
375 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
376 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
377 NULL, NULL, NULL);
378 if (!sfi) {
379 brelse(dbh);
380 return NULL;
381 }
382 iinfo->i_alloc_type = alloctype;
383 sfi->descTag.tagLocation = cpu_to_le32(*block);
384 dfibh.soffset = dfibh.eoffset;
385 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
386 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
387 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
388 udf_get_fi_ident(sfi))) {
389 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
390 brelse(dbh);
391 return NULL;
392 }
393 }
394 mark_buffer_dirty_inode(dbh, inode);
395
396 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
397 iinfo->i_lenAlloc = 0;
398 eloc.logicalBlockNum = *block;
399 eloc.partitionReferenceNum =
400 iinfo->i_location.partitionReferenceNum;
401 iinfo->i_lenExtents = inode->i_size;
402 epos.bh = NULL;
403 epos.block = iinfo->i_location;
404 epos.offset = udf_file_entry_alloc_offset(inode);
405 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
406 /* UniqueID stuff */
407
408 brelse(epos.bh);
409 mark_inode_dirty(inode);
410 return dbh;
411}
412
413static int udf_get_block(struct inode *inode, sector_t block,
414 struct buffer_head *bh_result, int create)
415{
416 int err, new;
417 sector_t phys = 0;
418 struct udf_inode_info *iinfo;
419
420 if (!create) {
421 phys = udf_block_map(inode, block);
422 if (phys)
423 map_bh(bh_result, inode->i_sb, phys);
424 return 0;
425 }
426
427 err = -EIO;
428 new = 0;
429 iinfo = UDF_I(inode);
430
431 down_write(&iinfo->i_data_sem);
432 if (block == iinfo->i_next_alloc_block + 1) {
433 iinfo->i_next_alloc_block++;
434 iinfo->i_next_alloc_goal++;
435 }
436
437 /*
438 * Block beyond EOF and prealloc extents? Just discard preallocation
439 * as it is not useful and complicates things.
440 */
441 if (((loff_t)block) << inode->i_blkbits > iinfo->i_lenExtents)
442 udf_discard_prealloc(inode);
443 udf_clear_extent_cache(inode);
444 phys = inode_getblk(inode, block, &err, &new);
445 if (!phys)
446 goto abort;
447
448 if (new)
449 set_buffer_new(bh_result);
450 map_bh(bh_result, inode->i_sb, phys);
451
452abort:
453 up_write(&iinfo->i_data_sem);
454 return err;
455}
456
457static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
458 int create, int *err)
459{
460 struct buffer_head *bh;
461 struct buffer_head dummy;
462
463 dummy.b_state = 0;
464 dummy.b_blocknr = -1000;
465 *err = udf_get_block(inode, block, &dummy, create);
466 if (!*err && buffer_mapped(&dummy)) {
467 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
468 if (buffer_new(&dummy)) {
469 lock_buffer(bh);
470 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
471 set_buffer_uptodate(bh);
472 unlock_buffer(bh);
473 mark_buffer_dirty_inode(bh, inode);
474 }
475 return bh;
476 }
477
478 return NULL;
479}
480
481/* Extend the file with new blocks totaling 'new_block_bytes',
482 * return the number of extents added
483 */
484static int udf_do_extend_file(struct inode *inode,
485 struct extent_position *last_pos,
486 struct kernel_long_ad *last_ext,
487 loff_t new_block_bytes)
488{
489 uint32_t add;
490 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
491 struct super_block *sb = inode->i_sb;
492 struct udf_inode_info *iinfo;
493 int err;
494
495 /* The previous extent is fake and we should not extend by anything
496 * - there's nothing to do... */
497 if (!new_block_bytes && fake)
498 return 0;
499
500 iinfo = UDF_I(inode);
501 /* Round the last extent up to a multiple of block size */
502 if (last_ext->extLength & (sb->s_blocksize - 1)) {
503 last_ext->extLength =
504 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
505 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
506 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
507 iinfo->i_lenExtents =
508 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
509 ~(sb->s_blocksize - 1);
510 }
511
512 /* Can we merge with the previous extent? */
513 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
514 EXT_NOT_RECORDED_NOT_ALLOCATED) {
515 add = (1 << 30) - sb->s_blocksize -
516 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
517 if (add > new_block_bytes)
518 add = new_block_bytes;
519 new_block_bytes -= add;
520 last_ext->extLength += add;
521 }
522
523 if (fake) {
524 udf_add_aext(inode, last_pos, &last_ext->extLocation,
525 last_ext->extLength, 1);
526 count++;
527 } else {
528 struct kernel_lb_addr tmploc;
529 uint32_t tmplen;
530
531 udf_write_aext(inode, last_pos, &last_ext->extLocation,
532 last_ext->extLength, 1);
533
534 /*
535 * We've rewritten the last extent. If we are going to add
536 * more extents, we may need to enter possible following
537 * empty indirect extent.
538 */
539 if (new_block_bytes)
540 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
541 }
542
543 /* Managed to do everything necessary? */
544 if (!new_block_bytes)
545 goto out;
546
547 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
548 last_ext->extLocation.logicalBlockNum = 0;
549 last_ext->extLocation.partitionReferenceNum = 0;
550 add = (1 << 30) - sb->s_blocksize;
551 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
552
553 /* Create enough extents to cover the whole hole */
554 while (new_block_bytes > add) {
555 new_block_bytes -= add;
556 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
557 last_ext->extLength, 1);
558 if (err)
559 return err;
560 count++;
561 }
562 if (new_block_bytes) {
563 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
564 new_block_bytes;
565 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
566 last_ext->extLength, 1);
567 if (err)
568 return err;
569 count++;
570 }
571
572out:
573 /* last_pos should point to the last written extent... */
574 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
575 last_pos->offset -= sizeof(struct short_ad);
576 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
577 last_pos->offset -= sizeof(struct long_ad);
578 else
579 return -EIO;
580
581 return count;
582}
583
584/* Extend the final block of the file to final_block_len bytes */
585static void udf_do_extend_final_block(struct inode *inode,
586 struct extent_position *last_pos,
587 struct kernel_long_ad *last_ext,
588 uint32_t new_elen)
589{
590 uint32_t added_bytes;
591
592 /*
593 * Extent already large enough? It may be already rounded up to block
594 * size...
595 */
596 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
597 return;
598 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
599 last_ext->extLength += added_bytes;
600 UDF_I(inode)->i_lenExtents += added_bytes;
601
602 udf_write_aext(inode, last_pos, &last_ext->extLocation,
603 last_ext->extLength, 1);
604}
605
606static int udf_extend_file(struct inode *inode, loff_t newsize)
607{
608
609 struct extent_position epos;
610 struct kernel_lb_addr eloc;
611 uint32_t elen;
612 int8_t etype;
613 struct super_block *sb = inode->i_sb;
614 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
615 loff_t new_elen;
616 int adsize;
617 struct udf_inode_info *iinfo = UDF_I(inode);
618 struct kernel_long_ad extent;
619 int err = 0;
620 bool within_last_ext;
621
622 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
623 adsize = sizeof(struct short_ad);
624 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
625 adsize = sizeof(struct long_ad);
626 else
627 BUG();
628
629 /*
630 * When creating hole in file, just don't bother with preserving
631 * preallocation. It likely won't be very useful anyway.
632 */
633 udf_discard_prealloc(inode);
634
635 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
636 within_last_ext = (etype != -1);
637 /* We don't expect extents past EOF... */
638 WARN_ON_ONCE(within_last_ext &&
639 elen > ((loff_t)offset + 1) << inode->i_blkbits);
640
641 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
642 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
643 /* File has no extents at all or has empty last
644 * indirect extent! Create a fake extent... */
645 extent.extLocation.logicalBlockNum = 0;
646 extent.extLocation.partitionReferenceNum = 0;
647 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
648 } else {
649 epos.offset -= adsize;
650 etype = udf_next_aext(inode, &epos, &extent.extLocation,
651 &extent.extLength, 0);
652 extent.extLength |= etype << 30;
653 }
654
655 new_elen = ((loff_t)offset << inode->i_blkbits) |
656 (newsize & (sb->s_blocksize - 1));
657
658 /* File has extent covering the new size (could happen when extending
659 * inside a block)?
660 */
661 if (within_last_ext) {
662 /* Extending file within the last file block */
663 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
664 } else {
665 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
666 }
667
668 if (err < 0)
669 goto out;
670 err = 0;
671 iinfo->i_lenExtents = newsize;
672out:
673 brelse(epos.bh);
674 return err;
675}
676
677static sector_t inode_getblk(struct inode *inode, sector_t block,
678 int *err, int *new)
679{
680 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
681 struct extent_position prev_epos, cur_epos, next_epos;
682 int count = 0, startnum = 0, endnum = 0;
683 uint32_t elen = 0, tmpelen;
684 struct kernel_lb_addr eloc, tmpeloc;
685 int c = 1;
686 loff_t lbcount = 0, b_off = 0;
687 udf_pblk_t newblocknum, newblock = 0;
688 sector_t offset = 0;
689 int8_t etype;
690 struct udf_inode_info *iinfo = UDF_I(inode);
691 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
692 int lastblock = 0;
693 bool isBeyondEOF;
694
695 *err = 0;
696 *new = 0;
697 prev_epos.offset = udf_file_entry_alloc_offset(inode);
698 prev_epos.block = iinfo->i_location;
699 prev_epos.bh = NULL;
700 cur_epos = next_epos = prev_epos;
701 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
702
703 /* find the extent which contains the block we are looking for.
704 alternate between laarr[0] and laarr[1] for locations of the
705 current extent, and the previous extent */
706 do {
707 if (prev_epos.bh != cur_epos.bh) {
708 brelse(prev_epos.bh);
709 get_bh(cur_epos.bh);
710 prev_epos.bh = cur_epos.bh;
711 }
712 if (cur_epos.bh != next_epos.bh) {
713 brelse(cur_epos.bh);
714 get_bh(next_epos.bh);
715 cur_epos.bh = next_epos.bh;
716 }
717
718 lbcount += elen;
719
720 prev_epos.block = cur_epos.block;
721 cur_epos.block = next_epos.block;
722
723 prev_epos.offset = cur_epos.offset;
724 cur_epos.offset = next_epos.offset;
725
726 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
727 if (etype == -1)
728 break;
729
730 c = !c;
731
732 laarr[c].extLength = (etype << 30) | elen;
733 laarr[c].extLocation = eloc;
734
735 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
736 pgoal = eloc.logicalBlockNum +
737 ((elen + inode->i_sb->s_blocksize - 1) >>
738 inode->i_sb->s_blocksize_bits);
739
740 count++;
741 } while (lbcount + elen <= b_off);
742
743 b_off -= lbcount;
744 offset = b_off >> inode->i_sb->s_blocksize_bits;
745 /*
746 * Move prev_epos and cur_epos into indirect extent if we are at
747 * the pointer to it
748 */
749 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
750 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
751
752 /* if the extent is allocated and recorded, return the block
753 if the extent is not a multiple of the blocksize, round up */
754
755 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
756 if (elen & (inode->i_sb->s_blocksize - 1)) {
757 elen = EXT_RECORDED_ALLOCATED |
758 ((elen + inode->i_sb->s_blocksize - 1) &
759 ~(inode->i_sb->s_blocksize - 1));
760 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
761 }
762 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
763 goto out_free;
764 }
765
766 /* Are we beyond EOF and preallocated extent? */
767 if (etype == -1) {
768 int ret;
769 loff_t hole_len;
770
771 isBeyondEOF = true;
772 if (count) {
773 if (c)
774 laarr[0] = laarr[1];
775 startnum = 1;
776 } else {
777 /* Create a fake extent when there's not one */
778 memset(&laarr[0].extLocation, 0x00,
779 sizeof(struct kernel_lb_addr));
780 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
781 /* Will udf_do_extend_file() create real extent from
782 a fake one? */
783 startnum = (offset > 0);
784 }
785 /* Create extents for the hole between EOF and offset */
786 hole_len = (loff_t)offset << inode->i_blkbits;
787 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
788 if (ret < 0) {
789 *err = ret;
790 goto out_free;
791 }
792 c = 0;
793 offset = 0;
794 count += ret;
795 /* We are not covered by a preallocated extent? */
796 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
797 EXT_NOT_RECORDED_ALLOCATED) {
798 /* Is there any real extent? - otherwise we overwrite
799 * the fake one... */
800 if (count)
801 c = !c;
802 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
803 inode->i_sb->s_blocksize;
804 memset(&laarr[c].extLocation, 0x00,
805 sizeof(struct kernel_lb_addr));
806 count++;
807 }
808 endnum = c + 1;
809 lastblock = 1;
810 } else {
811 isBeyondEOF = false;
812 endnum = startnum = ((count > 2) ? 2 : count);
813
814 /* if the current extent is in position 0,
815 swap it with the previous */
816 if (!c && count != 1) {
817 laarr[2] = laarr[0];
818 laarr[0] = laarr[1];
819 laarr[1] = laarr[2];
820 c = 1;
821 }
822
823 /* if the current block is located in an extent,
824 read the next extent */
825 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
826 if (etype != -1) {
827 laarr[c + 1].extLength = (etype << 30) | elen;
828 laarr[c + 1].extLocation = eloc;
829 count++;
830 startnum++;
831 endnum++;
832 } else
833 lastblock = 1;
834 }
835
836 /* if the current extent is not recorded but allocated, get the
837 * block in the extent corresponding to the requested block */
838 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
839 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
840 else { /* otherwise, allocate a new block */
841 if (iinfo->i_next_alloc_block == block)
842 goal = iinfo->i_next_alloc_goal;
843
844 if (!goal) {
845 if (!(goal = pgoal)) /* XXX: what was intended here? */
846 goal = iinfo->i_location.logicalBlockNum + 1;
847 }
848
849 newblocknum = udf_new_block(inode->i_sb, inode,
850 iinfo->i_location.partitionReferenceNum,
851 goal, err);
852 if (!newblocknum) {
853 *err = -ENOSPC;
854 goto out_free;
855 }
856 if (isBeyondEOF)
857 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
858 }
859
860 /* if the extent the requsted block is located in contains multiple
861 * blocks, split the extent into at most three extents. blocks prior
862 * to requested block, requested block, and blocks after requested
863 * block */
864 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
865
866 /* We preallocate blocks only for regular files. It also makes sense
867 * for directories but there's a problem when to drop the
868 * preallocation. We might use some delayed work for that but I feel
869 * it's overengineering for a filesystem like UDF. */
870 if (S_ISREG(inode->i_mode))
871 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
872
873 /* merge any continuous blocks in laarr */
874 udf_merge_extents(inode, laarr, &endnum);
875
876 /* write back the new extents, inserting new extents if the new number
877 * of extents is greater than the old number, and deleting extents if
878 * the new number of extents is less than the old number */
879 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
880
881 newblock = udf_get_pblock(inode->i_sb, newblocknum,
882 iinfo->i_location.partitionReferenceNum, 0);
883 if (!newblock) {
884 *err = -EIO;
885 goto out_free;
886 }
887 *new = 1;
888 iinfo->i_next_alloc_block = block;
889 iinfo->i_next_alloc_goal = newblocknum;
890 inode->i_ctime = current_time(inode);
891
892 if (IS_SYNC(inode))
893 udf_sync_inode(inode);
894 else
895 mark_inode_dirty(inode);
896out_free:
897 brelse(prev_epos.bh);
898 brelse(cur_epos.bh);
899 brelse(next_epos.bh);
900 return newblock;
901}
902
903static void udf_split_extents(struct inode *inode, int *c, int offset,
904 udf_pblk_t newblocknum,
905 struct kernel_long_ad *laarr, int *endnum)
906{
907 unsigned long blocksize = inode->i_sb->s_blocksize;
908 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
909
910 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
911 (laarr[*c].extLength >> 30) ==
912 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
913 int curr = *c;
914 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
915 blocksize - 1) >> blocksize_bits;
916 int8_t etype = (laarr[curr].extLength >> 30);
917
918 if (blen == 1)
919 ;
920 else if (!offset || blen == offset + 1) {
921 laarr[curr + 2] = laarr[curr + 1];
922 laarr[curr + 1] = laarr[curr];
923 } else {
924 laarr[curr + 3] = laarr[curr + 1];
925 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
926 }
927
928 if (offset) {
929 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
930 udf_free_blocks(inode->i_sb, inode,
931 &laarr[curr].extLocation,
932 0, offset);
933 laarr[curr].extLength =
934 EXT_NOT_RECORDED_NOT_ALLOCATED |
935 (offset << blocksize_bits);
936 laarr[curr].extLocation.logicalBlockNum = 0;
937 laarr[curr].extLocation.
938 partitionReferenceNum = 0;
939 } else
940 laarr[curr].extLength = (etype << 30) |
941 (offset << blocksize_bits);
942 curr++;
943 (*c)++;
944 (*endnum)++;
945 }
946
947 laarr[curr].extLocation.logicalBlockNum = newblocknum;
948 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
949 laarr[curr].extLocation.partitionReferenceNum =
950 UDF_I(inode)->i_location.partitionReferenceNum;
951 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
952 blocksize;
953 curr++;
954
955 if (blen != offset + 1) {
956 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
957 laarr[curr].extLocation.logicalBlockNum +=
958 offset + 1;
959 laarr[curr].extLength = (etype << 30) |
960 ((blen - (offset + 1)) << blocksize_bits);
961 curr++;
962 (*endnum)++;
963 }
964 }
965}
966
967static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
968 struct kernel_long_ad *laarr,
969 int *endnum)
970{
971 int start, length = 0, currlength = 0, i;
972
973 if (*endnum >= (c + 1)) {
974 if (!lastblock)
975 return;
976 else
977 start = c;
978 } else {
979 if ((laarr[c + 1].extLength >> 30) ==
980 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
981 start = c + 1;
982 length = currlength =
983 (((laarr[c + 1].extLength &
984 UDF_EXTENT_LENGTH_MASK) +
985 inode->i_sb->s_blocksize - 1) >>
986 inode->i_sb->s_blocksize_bits);
987 } else
988 start = c;
989 }
990
991 for (i = start + 1; i <= *endnum; i++) {
992 if (i == *endnum) {
993 if (lastblock)
994 length += UDF_DEFAULT_PREALLOC_BLOCKS;
995 } else if ((laarr[i].extLength >> 30) ==
996 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
997 length += (((laarr[i].extLength &
998 UDF_EXTENT_LENGTH_MASK) +
999 inode->i_sb->s_blocksize - 1) >>
1000 inode->i_sb->s_blocksize_bits);
1001 } else
1002 break;
1003 }
1004
1005 if (length) {
1006 int next = laarr[start].extLocation.logicalBlockNum +
1007 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1008 inode->i_sb->s_blocksize - 1) >>
1009 inode->i_sb->s_blocksize_bits);
1010 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1011 laarr[start].extLocation.partitionReferenceNum,
1012 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1013 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1014 currlength);
1015 if (numalloc) {
1016 if (start == (c + 1))
1017 laarr[start].extLength +=
1018 (numalloc <<
1019 inode->i_sb->s_blocksize_bits);
1020 else {
1021 memmove(&laarr[c + 2], &laarr[c + 1],
1022 sizeof(struct long_ad) * (*endnum - (c + 1)));
1023 (*endnum)++;
1024 laarr[c + 1].extLocation.logicalBlockNum = next;
1025 laarr[c + 1].extLocation.partitionReferenceNum =
1026 laarr[c].extLocation.
1027 partitionReferenceNum;
1028 laarr[c + 1].extLength =
1029 EXT_NOT_RECORDED_ALLOCATED |
1030 (numalloc <<
1031 inode->i_sb->s_blocksize_bits);
1032 start = c + 1;
1033 }
1034
1035 for (i = start + 1; numalloc && i < *endnum; i++) {
1036 int elen = ((laarr[i].extLength &
1037 UDF_EXTENT_LENGTH_MASK) +
1038 inode->i_sb->s_blocksize - 1) >>
1039 inode->i_sb->s_blocksize_bits;
1040
1041 if (elen > numalloc) {
1042 laarr[i].extLength -=
1043 (numalloc <<
1044 inode->i_sb->s_blocksize_bits);
1045 numalloc = 0;
1046 } else {
1047 numalloc -= elen;
1048 if (*endnum > (i + 1))
1049 memmove(&laarr[i],
1050 &laarr[i + 1],
1051 sizeof(struct long_ad) *
1052 (*endnum - (i + 1)));
1053 i--;
1054 (*endnum)--;
1055 }
1056 }
1057 UDF_I(inode)->i_lenExtents +=
1058 numalloc << inode->i_sb->s_blocksize_bits;
1059 }
1060 }
1061}
1062
1063static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1064 int *endnum)
1065{
1066 int i;
1067 unsigned long blocksize = inode->i_sb->s_blocksize;
1068 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1069
1070 for (i = 0; i < (*endnum - 1); i++) {
1071 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1072 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1073
1074 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1075 (((li->extLength >> 30) ==
1076 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1077 ((lip1->extLocation.logicalBlockNum -
1078 li->extLocation.logicalBlockNum) ==
1079 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1080 blocksize - 1) >> blocksize_bits)))) {
1081
1082 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1083 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1084 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1085 lip1->extLength = (lip1->extLength -
1086 (li->extLength &
1087 UDF_EXTENT_LENGTH_MASK) +
1088 UDF_EXTENT_LENGTH_MASK) &
1089 ~(blocksize - 1);
1090 li->extLength = (li->extLength &
1091 UDF_EXTENT_FLAG_MASK) +
1092 (UDF_EXTENT_LENGTH_MASK + 1) -
1093 blocksize;
1094 lip1->extLocation.logicalBlockNum =
1095 li->extLocation.logicalBlockNum +
1096 ((li->extLength &
1097 UDF_EXTENT_LENGTH_MASK) >>
1098 blocksize_bits);
1099 } else {
1100 li->extLength = lip1->extLength +
1101 (((li->extLength &
1102 UDF_EXTENT_LENGTH_MASK) +
1103 blocksize - 1) & ~(blocksize - 1));
1104 if (*endnum > (i + 2))
1105 memmove(&laarr[i + 1], &laarr[i + 2],
1106 sizeof(struct long_ad) *
1107 (*endnum - (i + 2)));
1108 i--;
1109 (*endnum)--;
1110 }
1111 } else if (((li->extLength >> 30) ==
1112 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1113 ((lip1->extLength >> 30) ==
1114 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1115 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1116 ((li->extLength &
1117 UDF_EXTENT_LENGTH_MASK) +
1118 blocksize - 1) >> blocksize_bits);
1119 li->extLocation.logicalBlockNum = 0;
1120 li->extLocation.partitionReferenceNum = 0;
1121
1122 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1123 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1124 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1125 lip1->extLength = (lip1->extLength -
1126 (li->extLength &
1127 UDF_EXTENT_LENGTH_MASK) +
1128 UDF_EXTENT_LENGTH_MASK) &
1129 ~(blocksize - 1);
1130 li->extLength = (li->extLength &
1131 UDF_EXTENT_FLAG_MASK) +
1132 (UDF_EXTENT_LENGTH_MASK + 1) -
1133 blocksize;
1134 } else {
1135 li->extLength = lip1->extLength +
1136 (((li->extLength &
1137 UDF_EXTENT_LENGTH_MASK) +
1138 blocksize - 1) & ~(blocksize - 1));
1139 if (*endnum > (i + 2))
1140 memmove(&laarr[i + 1], &laarr[i + 2],
1141 sizeof(struct long_ad) *
1142 (*endnum - (i + 2)));
1143 i--;
1144 (*endnum)--;
1145 }
1146 } else if ((li->extLength >> 30) ==
1147 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1148 udf_free_blocks(inode->i_sb, inode,
1149 &li->extLocation, 0,
1150 ((li->extLength &
1151 UDF_EXTENT_LENGTH_MASK) +
1152 blocksize - 1) >> blocksize_bits);
1153 li->extLocation.logicalBlockNum = 0;
1154 li->extLocation.partitionReferenceNum = 0;
1155 li->extLength = (li->extLength &
1156 UDF_EXTENT_LENGTH_MASK) |
1157 EXT_NOT_RECORDED_NOT_ALLOCATED;
1158 }
1159 }
1160}
1161
1162static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1163 int startnum, int endnum,
1164 struct extent_position *epos)
1165{
1166 int start = 0, i;
1167 struct kernel_lb_addr tmploc;
1168 uint32_t tmplen;
1169
1170 if (startnum > endnum) {
1171 for (i = 0; i < (startnum - endnum); i++)
1172 udf_delete_aext(inode, *epos);
1173 } else if (startnum < endnum) {
1174 for (i = 0; i < (endnum - startnum); i++) {
1175 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1176 laarr[i].extLength);
1177 udf_next_aext(inode, epos, &laarr[i].extLocation,
1178 &laarr[i].extLength, 1);
1179 start++;
1180 }
1181 }
1182
1183 for (i = start; i < endnum; i++) {
1184 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1185 udf_write_aext(inode, epos, &laarr[i].extLocation,
1186 laarr[i].extLength, 1);
1187 }
1188}
1189
1190struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1191 int create, int *err)
1192{
1193 struct buffer_head *bh = NULL;
1194
1195 bh = udf_getblk(inode, block, create, err);
1196 if (!bh)
1197 return NULL;
1198
1199 if (bh_read(bh, 0) >= 0)
1200 return bh;
1201
1202 brelse(bh);
1203 *err = -EIO;
1204 return NULL;
1205}
1206
1207int udf_setsize(struct inode *inode, loff_t newsize)
1208{
1209 int err;
1210 struct udf_inode_info *iinfo;
1211 unsigned int bsize = i_blocksize(inode);
1212
1213 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1214 S_ISLNK(inode->i_mode)))
1215 return -EINVAL;
1216 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1217 return -EPERM;
1218
1219 iinfo = UDF_I(inode);
1220 if (newsize > inode->i_size) {
1221 down_write(&iinfo->i_data_sem);
1222 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1223 if (bsize <
1224 (udf_file_entry_alloc_offset(inode) + newsize)) {
1225 err = udf_expand_file_adinicb(inode);
1226 if (err)
1227 return err;
1228 down_write(&iinfo->i_data_sem);
1229 } else {
1230 iinfo->i_lenAlloc = newsize;
1231 goto set_size;
1232 }
1233 }
1234 err = udf_extend_file(inode, newsize);
1235 if (err) {
1236 up_write(&iinfo->i_data_sem);
1237 return err;
1238 }
1239set_size:
1240 up_write(&iinfo->i_data_sem);
1241 truncate_setsize(inode, newsize);
1242 } else {
1243 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1244 down_write(&iinfo->i_data_sem);
1245 udf_clear_extent_cache(inode);
1246 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1247 0x00, bsize - newsize -
1248 udf_file_entry_alloc_offset(inode));
1249 iinfo->i_lenAlloc = newsize;
1250 truncate_setsize(inode, newsize);
1251 up_write(&iinfo->i_data_sem);
1252 goto update_time;
1253 }
1254 err = block_truncate_page(inode->i_mapping, newsize,
1255 udf_get_block);
1256 if (err)
1257 return err;
1258 truncate_setsize(inode, newsize);
1259 down_write(&iinfo->i_data_sem);
1260 udf_clear_extent_cache(inode);
1261 err = udf_truncate_extents(inode);
1262 up_write(&iinfo->i_data_sem);
1263 if (err)
1264 return err;
1265 }
1266update_time:
1267 inode->i_mtime = inode->i_ctime = current_time(inode);
1268 if (IS_SYNC(inode))
1269 udf_sync_inode(inode);
1270 else
1271 mark_inode_dirty(inode);
1272 return 0;
1273}
1274
1275/*
1276 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1277 * arbitrary - just that we hopefully don't limit any real use of rewritten
1278 * inode on write-once media but avoid looping for too long on corrupted media.
1279 */
1280#define UDF_MAX_ICB_NESTING 1024
1281
1282static int udf_read_inode(struct inode *inode, bool hidden_inode)
1283{
1284 struct buffer_head *bh = NULL;
1285 struct fileEntry *fe;
1286 struct extendedFileEntry *efe;
1287 uint16_t ident;
1288 struct udf_inode_info *iinfo = UDF_I(inode);
1289 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1290 struct kernel_lb_addr *iloc = &iinfo->i_location;
1291 unsigned int link_count;
1292 unsigned int indirections = 0;
1293 int bs = inode->i_sb->s_blocksize;
1294 int ret = -EIO;
1295 uint32_t uid, gid;
1296
1297reread:
1298 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1299 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1300 iloc->partitionReferenceNum, sbi->s_partitions);
1301 return -EIO;
1302 }
1303
1304 if (iloc->logicalBlockNum >=
1305 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1306 udf_debug("block=%u, partition=%u out of range\n",
1307 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1308 return -EIO;
1309 }
1310
1311 /*
1312 * Set defaults, but the inode is still incomplete!
1313 * Note: get_new_inode() sets the following on a new inode:
1314 * i_sb = sb
1315 * i_no = ino
1316 * i_flags = sb->s_flags
1317 * i_state = 0
1318 * clean_inode(): zero fills and sets
1319 * i_count = 1
1320 * i_nlink = 1
1321 * i_op = NULL;
1322 */
1323 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1324 if (!bh) {
1325 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1326 return -EIO;
1327 }
1328
1329 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1330 ident != TAG_IDENT_USE) {
1331 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1332 inode->i_ino, ident);
1333 goto out;
1334 }
1335
1336 fe = (struct fileEntry *)bh->b_data;
1337 efe = (struct extendedFileEntry *)bh->b_data;
1338
1339 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1340 struct buffer_head *ibh;
1341
1342 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1343 if (ident == TAG_IDENT_IE && ibh) {
1344 struct kernel_lb_addr loc;
1345 struct indirectEntry *ie;
1346
1347 ie = (struct indirectEntry *)ibh->b_data;
1348 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1349
1350 if (ie->indirectICB.extLength) {
1351 brelse(ibh);
1352 memcpy(&iinfo->i_location, &loc,
1353 sizeof(struct kernel_lb_addr));
1354 if (++indirections > UDF_MAX_ICB_NESTING) {
1355 udf_err(inode->i_sb,
1356 "too many ICBs in ICB hierarchy"
1357 " (max %d supported)\n",
1358 UDF_MAX_ICB_NESTING);
1359 goto out;
1360 }
1361 brelse(bh);
1362 goto reread;
1363 }
1364 }
1365 brelse(ibh);
1366 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1367 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1368 le16_to_cpu(fe->icbTag.strategyType));
1369 goto out;
1370 }
1371 if (fe->icbTag.strategyType == cpu_to_le16(4))
1372 iinfo->i_strat4096 = 0;
1373 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1374 iinfo->i_strat4096 = 1;
1375
1376 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1377 ICBTAG_FLAG_AD_MASK;
1378 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1379 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1380 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1381 ret = -EIO;
1382 goto out;
1383 }
1384 iinfo->i_unique = 0;
1385 iinfo->i_lenEAttr = 0;
1386 iinfo->i_lenExtents = 0;
1387 iinfo->i_lenAlloc = 0;
1388 iinfo->i_next_alloc_block = 0;
1389 iinfo->i_next_alloc_goal = 0;
1390 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1391 iinfo->i_efe = 1;
1392 iinfo->i_use = 0;
1393 ret = udf_alloc_i_data(inode, bs -
1394 sizeof(struct extendedFileEntry));
1395 if (ret)
1396 goto out;
1397 memcpy(iinfo->i_data,
1398 bh->b_data + sizeof(struct extendedFileEntry),
1399 bs - sizeof(struct extendedFileEntry));
1400 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1401 iinfo->i_efe = 0;
1402 iinfo->i_use = 0;
1403 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1404 if (ret)
1405 goto out;
1406 memcpy(iinfo->i_data,
1407 bh->b_data + sizeof(struct fileEntry),
1408 bs - sizeof(struct fileEntry));
1409 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1410 iinfo->i_efe = 0;
1411 iinfo->i_use = 1;
1412 iinfo->i_lenAlloc = le32_to_cpu(
1413 ((struct unallocSpaceEntry *)bh->b_data)->
1414 lengthAllocDescs);
1415 ret = udf_alloc_i_data(inode, bs -
1416 sizeof(struct unallocSpaceEntry));
1417 if (ret)
1418 goto out;
1419 memcpy(iinfo->i_data,
1420 bh->b_data + sizeof(struct unallocSpaceEntry),
1421 bs - sizeof(struct unallocSpaceEntry));
1422 return 0;
1423 }
1424
1425 ret = -EIO;
1426 read_lock(&sbi->s_cred_lock);
1427 uid = le32_to_cpu(fe->uid);
1428 if (uid == UDF_INVALID_ID ||
1429 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1430 inode->i_uid = sbi->s_uid;
1431 else
1432 i_uid_write(inode, uid);
1433
1434 gid = le32_to_cpu(fe->gid);
1435 if (gid == UDF_INVALID_ID ||
1436 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1437 inode->i_gid = sbi->s_gid;
1438 else
1439 i_gid_write(inode, gid);
1440
1441 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1442 sbi->s_fmode != UDF_INVALID_MODE)
1443 inode->i_mode = sbi->s_fmode;
1444 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1445 sbi->s_dmode != UDF_INVALID_MODE)
1446 inode->i_mode = sbi->s_dmode;
1447 else
1448 inode->i_mode = udf_convert_permissions(fe);
1449 inode->i_mode &= ~sbi->s_umask;
1450 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1451
1452 read_unlock(&sbi->s_cred_lock);
1453
1454 link_count = le16_to_cpu(fe->fileLinkCount);
1455 if (!link_count) {
1456 if (!hidden_inode) {
1457 ret = -ESTALE;
1458 goto out;
1459 }
1460 link_count = 1;
1461 }
1462 set_nlink(inode, link_count);
1463
1464 inode->i_size = le64_to_cpu(fe->informationLength);
1465 iinfo->i_lenExtents = inode->i_size;
1466
1467 if (iinfo->i_efe == 0) {
1468 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1469 (inode->i_sb->s_blocksize_bits - 9);
1470
1471 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1472 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1473 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1474
1475 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1476 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1477 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1478 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1479 iinfo->i_streamdir = 0;
1480 iinfo->i_lenStreams = 0;
1481 } else {
1482 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1483 (inode->i_sb->s_blocksize_bits - 9);
1484
1485 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1486 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1487 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1488 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1489
1490 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1491 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1492 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1493 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1494
1495 /* Named streams */
1496 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1497 iinfo->i_locStreamdir =
1498 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1499 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1500 if (iinfo->i_lenStreams >= inode->i_size)
1501 iinfo->i_lenStreams -= inode->i_size;
1502 else
1503 iinfo->i_lenStreams = 0;
1504 }
1505 inode->i_generation = iinfo->i_unique;
1506
1507 /*
1508 * Sanity check length of allocation descriptors and extended attrs to
1509 * avoid integer overflows
1510 */
1511 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1512 goto out;
1513 /* Now do exact checks */
1514 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1515 goto out;
1516 /* Sanity checks for files in ICB so that we don't get confused later */
1517 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1518 /*
1519 * For file in ICB data is stored in allocation descriptor
1520 * so sizes should match
1521 */
1522 if (iinfo->i_lenAlloc != inode->i_size)
1523 goto out;
1524 /* File in ICB has to fit in there... */
1525 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1526 goto out;
1527 }
1528
1529 switch (fe->icbTag.fileType) {
1530 case ICBTAG_FILE_TYPE_DIRECTORY:
1531 inode->i_op = &udf_dir_inode_operations;
1532 inode->i_fop = &udf_dir_operations;
1533 inode->i_mode |= S_IFDIR;
1534 inc_nlink(inode);
1535 break;
1536 case ICBTAG_FILE_TYPE_REALTIME:
1537 case ICBTAG_FILE_TYPE_REGULAR:
1538 case ICBTAG_FILE_TYPE_UNDEF:
1539 case ICBTAG_FILE_TYPE_VAT20:
1540 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1541 inode->i_data.a_ops = &udf_adinicb_aops;
1542 else
1543 inode->i_data.a_ops = &udf_aops;
1544 inode->i_op = &udf_file_inode_operations;
1545 inode->i_fop = &udf_file_operations;
1546 inode->i_mode |= S_IFREG;
1547 break;
1548 case ICBTAG_FILE_TYPE_BLOCK:
1549 inode->i_mode |= S_IFBLK;
1550 break;
1551 case ICBTAG_FILE_TYPE_CHAR:
1552 inode->i_mode |= S_IFCHR;
1553 break;
1554 case ICBTAG_FILE_TYPE_FIFO:
1555 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1556 break;
1557 case ICBTAG_FILE_TYPE_SOCKET:
1558 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1559 break;
1560 case ICBTAG_FILE_TYPE_SYMLINK:
1561 inode->i_data.a_ops = &udf_symlink_aops;
1562 inode->i_op = &udf_symlink_inode_operations;
1563 inode_nohighmem(inode);
1564 inode->i_mode = S_IFLNK | 0777;
1565 break;
1566 case ICBTAG_FILE_TYPE_MAIN:
1567 udf_debug("METADATA FILE-----\n");
1568 break;
1569 case ICBTAG_FILE_TYPE_MIRROR:
1570 udf_debug("METADATA MIRROR FILE-----\n");
1571 break;
1572 case ICBTAG_FILE_TYPE_BITMAP:
1573 udf_debug("METADATA BITMAP FILE-----\n");
1574 break;
1575 default:
1576 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1577 inode->i_ino, fe->icbTag.fileType);
1578 goto out;
1579 }
1580 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1581 struct deviceSpec *dsea =
1582 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1583 if (dsea) {
1584 init_special_inode(inode, inode->i_mode,
1585 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1586 le32_to_cpu(dsea->minorDeviceIdent)));
1587 /* Developer ID ??? */
1588 } else
1589 goto out;
1590 }
1591 ret = 0;
1592out:
1593 brelse(bh);
1594 return ret;
1595}
1596
1597static int udf_alloc_i_data(struct inode *inode, size_t size)
1598{
1599 struct udf_inode_info *iinfo = UDF_I(inode);
1600 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1601 if (!iinfo->i_data)
1602 return -ENOMEM;
1603 return 0;
1604}
1605
1606static umode_t udf_convert_permissions(struct fileEntry *fe)
1607{
1608 umode_t mode;
1609 uint32_t permissions;
1610 uint32_t flags;
1611
1612 permissions = le32_to_cpu(fe->permissions);
1613 flags = le16_to_cpu(fe->icbTag.flags);
1614
1615 mode = ((permissions) & 0007) |
1616 ((permissions >> 2) & 0070) |
1617 ((permissions >> 4) & 0700) |
1618 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1619 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1620 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1621
1622 return mode;
1623}
1624
1625void udf_update_extra_perms(struct inode *inode, umode_t mode)
1626{
1627 struct udf_inode_info *iinfo = UDF_I(inode);
1628
1629 /*
1630 * UDF 2.01 sec. 3.3.3.3 Note 2:
1631 * In Unix, delete permission tracks write
1632 */
1633 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1634 if (mode & 0200)
1635 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1636 if (mode & 0020)
1637 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1638 if (mode & 0002)
1639 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1640}
1641
1642int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1643{
1644 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1645}
1646
1647static int udf_sync_inode(struct inode *inode)
1648{
1649 return udf_update_inode(inode, 1);
1650}
1651
1652static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1653{
1654 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1655 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1656 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1657 iinfo->i_crtime = time;
1658}
1659
1660static int udf_update_inode(struct inode *inode, int do_sync)
1661{
1662 struct buffer_head *bh = NULL;
1663 struct fileEntry *fe;
1664 struct extendedFileEntry *efe;
1665 uint64_t lb_recorded;
1666 uint32_t udfperms;
1667 uint16_t icbflags;
1668 uint16_t crclen;
1669 int err = 0;
1670 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1671 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1672 struct udf_inode_info *iinfo = UDF_I(inode);
1673
1674 bh = udf_tgetblk(inode->i_sb,
1675 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1676 if (!bh) {
1677 udf_debug("getblk failure\n");
1678 return -EIO;
1679 }
1680
1681 lock_buffer(bh);
1682 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1683 fe = (struct fileEntry *)bh->b_data;
1684 efe = (struct extendedFileEntry *)bh->b_data;
1685
1686 if (iinfo->i_use) {
1687 struct unallocSpaceEntry *use =
1688 (struct unallocSpaceEntry *)bh->b_data;
1689
1690 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1691 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1692 iinfo->i_data, inode->i_sb->s_blocksize -
1693 sizeof(struct unallocSpaceEntry));
1694 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1695 crclen = sizeof(struct unallocSpaceEntry);
1696
1697 goto finish;
1698 }
1699
1700 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1701 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1702 else
1703 fe->uid = cpu_to_le32(i_uid_read(inode));
1704
1705 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1706 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1707 else
1708 fe->gid = cpu_to_le32(i_gid_read(inode));
1709
1710 udfperms = ((inode->i_mode & 0007)) |
1711 ((inode->i_mode & 0070) << 2) |
1712 ((inode->i_mode & 0700) << 4);
1713
1714 udfperms |= iinfo->i_extraPerms;
1715 fe->permissions = cpu_to_le32(udfperms);
1716
1717 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1718 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1719 else
1720 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1721
1722 fe->informationLength = cpu_to_le64(inode->i_size);
1723
1724 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1725 struct regid *eid;
1726 struct deviceSpec *dsea =
1727 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1728 if (!dsea) {
1729 dsea = (struct deviceSpec *)
1730 udf_add_extendedattr(inode,
1731 sizeof(struct deviceSpec) +
1732 sizeof(struct regid), 12, 0x3);
1733 dsea->attrType = cpu_to_le32(12);
1734 dsea->attrSubtype = 1;
1735 dsea->attrLength = cpu_to_le32(
1736 sizeof(struct deviceSpec) +
1737 sizeof(struct regid));
1738 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1739 }
1740 eid = (struct regid *)dsea->impUse;
1741 memset(eid, 0, sizeof(*eid));
1742 strcpy(eid->ident, UDF_ID_DEVELOPER);
1743 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1744 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1745 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1746 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1747 }
1748
1749 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1750 lb_recorded = 0; /* No extents => no blocks! */
1751 else
1752 lb_recorded =
1753 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1754 (blocksize_bits - 9);
1755
1756 if (iinfo->i_efe == 0) {
1757 memcpy(bh->b_data + sizeof(struct fileEntry),
1758 iinfo->i_data,
1759 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1760 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1761
1762 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1763 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1764 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1765 memset(&(fe->impIdent), 0, sizeof(struct regid));
1766 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1767 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1768 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1769 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1770 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1771 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1772 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1773 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1774 crclen = sizeof(struct fileEntry);
1775 } else {
1776 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1777 iinfo->i_data,
1778 inode->i_sb->s_blocksize -
1779 sizeof(struct extendedFileEntry));
1780 efe->objectSize =
1781 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1782 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1783
1784 if (iinfo->i_streamdir) {
1785 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1786
1787 icb_lad->extLocation =
1788 cpu_to_lelb(iinfo->i_locStreamdir);
1789 icb_lad->extLength =
1790 cpu_to_le32(inode->i_sb->s_blocksize);
1791 }
1792
1793 udf_adjust_time(iinfo, inode->i_atime);
1794 udf_adjust_time(iinfo, inode->i_mtime);
1795 udf_adjust_time(iinfo, inode->i_ctime);
1796
1797 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1798 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1799 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1800 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1801
1802 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1803 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1804 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1805 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1806 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1807 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1808 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1809 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1810 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1811 crclen = sizeof(struct extendedFileEntry);
1812 }
1813
1814finish:
1815 if (iinfo->i_strat4096) {
1816 fe->icbTag.strategyType = cpu_to_le16(4096);
1817 fe->icbTag.strategyParameter = cpu_to_le16(1);
1818 fe->icbTag.numEntries = cpu_to_le16(2);
1819 } else {
1820 fe->icbTag.strategyType = cpu_to_le16(4);
1821 fe->icbTag.numEntries = cpu_to_le16(1);
1822 }
1823
1824 if (iinfo->i_use)
1825 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1826 else if (S_ISDIR(inode->i_mode))
1827 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1828 else if (S_ISREG(inode->i_mode))
1829 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1830 else if (S_ISLNK(inode->i_mode))
1831 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1832 else if (S_ISBLK(inode->i_mode))
1833 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1834 else if (S_ISCHR(inode->i_mode))
1835 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1836 else if (S_ISFIFO(inode->i_mode))
1837 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1838 else if (S_ISSOCK(inode->i_mode))
1839 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1840
1841 icbflags = iinfo->i_alloc_type |
1842 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1843 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1844 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1845 (le16_to_cpu(fe->icbTag.flags) &
1846 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1847 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1848
1849 fe->icbTag.flags = cpu_to_le16(icbflags);
1850 if (sbi->s_udfrev >= 0x0200)
1851 fe->descTag.descVersion = cpu_to_le16(3);
1852 else
1853 fe->descTag.descVersion = cpu_to_le16(2);
1854 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1855 fe->descTag.tagLocation = cpu_to_le32(
1856 iinfo->i_location.logicalBlockNum);
1857 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1858 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1859 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1860 crclen));
1861 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1862
1863 set_buffer_uptodate(bh);
1864 unlock_buffer(bh);
1865
1866 /* write the data blocks */
1867 mark_buffer_dirty(bh);
1868 if (do_sync) {
1869 sync_dirty_buffer(bh);
1870 if (buffer_write_io_error(bh)) {
1871 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1872 inode->i_ino);
1873 err = -EIO;
1874 }
1875 }
1876 brelse(bh);
1877
1878 return err;
1879}
1880
1881struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1882 bool hidden_inode)
1883{
1884 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1885 struct inode *inode = iget_locked(sb, block);
1886 int err;
1887
1888 if (!inode)
1889 return ERR_PTR(-ENOMEM);
1890
1891 if (!(inode->i_state & I_NEW))
1892 return inode;
1893
1894 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1895 err = udf_read_inode(inode, hidden_inode);
1896 if (err < 0) {
1897 iget_failed(inode);
1898 return ERR_PTR(err);
1899 }
1900 unlock_new_inode(inode);
1901
1902 return inode;
1903}
1904
1905int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1906 struct extent_position *epos)
1907{
1908 struct super_block *sb = inode->i_sb;
1909 struct buffer_head *bh;
1910 struct allocExtDesc *aed;
1911 struct extent_position nepos;
1912 struct kernel_lb_addr neloc;
1913 int ver, adsize;
1914
1915 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1916 adsize = sizeof(struct short_ad);
1917 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1918 adsize = sizeof(struct long_ad);
1919 else
1920 return -EIO;
1921
1922 neloc.logicalBlockNum = block;
1923 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1924
1925 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1926 if (!bh)
1927 return -EIO;
1928 lock_buffer(bh);
1929 memset(bh->b_data, 0x00, sb->s_blocksize);
1930 set_buffer_uptodate(bh);
1931 unlock_buffer(bh);
1932 mark_buffer_dirty_inode(bh, inode);
1933
1934 aed = (struct allocExtDesc *)(bh->b_data);
1935 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1936 aed->previousAllocExtLocation =
1937 cpu_to_le32(epos->block.logicalBlockNum);
1938 }
1939 aed->lengthAllocDescs = cpu_to_le32(0);
1940 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1941 ver = 3;
1942 else
1943 ver = 2;
1944 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1945 sizeof(struct tag));
1946
1947 nepos.block = neloc;
1948 nepos.offset = sizeof(struct allocExtDesc);
1949 nepos.bh = bh;
1950
1951 /*
1952 * Do we have to copy current last extent to make space for indirect
1953 * one?
1954 */
1955 if (epos->offset + adsize > sb->s_blocksize) {
1956 struct kernel_lb_addr cp_loc;
1957 uint32_t cp_len;
1958 int cp_type;
1959
1960 epos->offset -= adsize;
1961 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1962 cp_len |= ((uint32_t)cp_type) << 30;
1963
1964 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1965 udf_write_aext(inode, epos, &nepos.block,
1966 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1967 } else {
1968 __udf_add_aext(inode, epos, &nepos.block,
1969 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1970 }
1971
1972 brelse(epos->bh);
1973 *epos = nepos;
1974
1975 return 0;
1976}
1977
1978/*
1979 * Append extent at the given position - should be the first free one in inode
1980 * / indirect extent. This function assumes there is enough space in the inode
1981 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1982 */
1983int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1984 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1985{
1986 struct udf_inode_info *iinfo = UDF_I(inode);
1987 struct allocExtDesc *aed;
1988 int adsize;
1989
1990 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1991 adsize = sizeof(struct short_ad);
1992 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1993 adsize = sizeof(struct long_ad);
1994 else
1995 return -EIO;
1996
1997 if (!epos->bh) {
1998 WARN_ON(iinfo->i_lenAlloc !=
1999 epos->offset - udf_file_entry_alloc_offset(inode));
2000 } else {
2001 aed = (struct allocExtDesc *)epos->bh->b_data;
2002 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2003 epos->offset - sizeof(struct allocExtDesc));
2004 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2005 }
2006
2007 udf_write_aext(inode, epos, eloc, elen, inc);
2008
2009 if (!epos->bh) {
2010 iinfo->i_lenAlloc += adsize;
2011 mark_inode_dirty(inode);
2012 } else {
2013 aed = (struct allocExtDesc *)epos->bh->b_data;
2014 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2015 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2016 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2017 udf_update_tag(epos->bh->b_data,
2018 epos->offset + (inc ? 0 : adsize));
2019 else
2020 udf_update_tag(epos->bh->b_data,
2021 sizeof(struct allocExtDesc));
2022 mark_buffer_dirty_inode(epos->bh, inode);
2023 }
2024
2025 return 0;
2026}
2027
2028/*
2029 * Append extent at given position - should be the first free one in inode
2030 * / indirect extent. Takes care of allocating and linking indirect blocks.
2031 */
2032int udf_add_aext(struct inode *inode, struct extent_position *epos,
2033 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2034{
2035 int adsize;
2036 struct super_block *sb = inode->i_sb;
2037
2038 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2039 adsize = sizeof(struct short_ad);
2040 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2041 adsize = sizeof(struct long_ad);
2042 else
2043 return -EIO;
2044
2045 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2046 int err;
2047 udf_pblk_t new_block;
2048
2049 new_block = udf_new_block(sb, NULL,
2050 epos->block.partitionReferenceNum,
2051 epos->block.logicalBlockNum, &err);
2052 if (!new_block)
2053 return -ENOSPC;
2054
2055 err = udf_setup_indirect_aext(inode, new_block, epos);
2056 if (err)
2057 return err;
2058 }
2059
2060 return __udf_add_aext(inode, epos, eloc, elen, inc);
2061}
2062
2063void udf_write_aext(struct inode *inode, struct extent_position *epos,
2064 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2065{
2066 int adsize;
2067 uint8_t *ptr;
2068 struct short_ad *sad;
2069 struct long_ad *lad;
2070 struct udf_inode_info *iinfo = UDF_I(inode);
2071
2072 if (!epos->bh)
2073 ptr = iinfo->i_data + epos->offset -
2074 udf_file_entry_alloc_offset(inode) +
2075 iinfo->i_lenEAttr;
2076 else
2077 ptr = epos->bh->b_data + epos->offset;
2078
2079 switch (iinfo->i_alloc_type) {
2080 case ICBTAG_FLAG_AD_SHORT:
2081 sad = (struct short_ad *)ptr;
2082 sad->extLength = cpu_to_le32(elen);
2083 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2084 adsize = sizeof(struct short_ad);
2085 break;
2086 case ICBTAG_FLAG_AD_LONG:
2087 lad = (struct long_ad *)ptr;
2088 lad->extLength = cpu_to_le32(elen);
2089 lad->extLocation = cpu_to_lelb(*eloc);
2090 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2091 adsize = sizeof(struct long_ad);
2092 break;
2093 default:
2094 return;
2095 }
2096
2097 if (epos->bh) {
2098 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2099 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2100 struct allocExtDesc *aed =
2101 (struct allocExtDesc *)epos->bh->b_data;
2102 udf_update_tag(epos->bh->b_data,
2103 le32_to_cpu(aed->lengthAllocDescs) +
2104 sizeof(struct allocExtDesc));
2105 }
2106 mark_buffer_dirty_inode(epos->bh, inode);
2107 } else {
2108 mark_inode_dirty(inode);
2109 }
2110
2111 if (inc)
2112 epos->offset += adsize;
2113}
2114
2115/*
2116 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2117 * someone does some weird stuff.
2118 */
2119#define UDF_MAX_INDIR_EXTS 16
2120
2121int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2122 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2123{
2124 int8_t etype;
2125 unsigned int indirections = 0;
2126
2127 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2128 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2129 udf_pblk_t block;
2130
2131 if (++indirections > UDF_MAX_INDIR_EXTS) {
2132 udf_err(inode->i_sb,
2133 "too many indirect extents in inode %lu\n",
2134 inode->i_ino);
2135 return -1;
2136 }
2137
2138 epos->block = *eloc;
2139 epos->offset = sizeof(struct allocExtDesc);
2140 brelse(epos->bh);
2141 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2142 epos->bh = udf_tread(inode->i_sb, block);
2143 if (!epos->bh) {
2144 udf_debug("reading block %u failed!\n", block);
2145 return -1;
2146 }
2147 }
2148
2149 return etype;
2150}
2151
2152int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2153 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2154{
2155 int alen;
2156 int8_t etype;
2157 uint8_t *ptr;
2158 struct short_ad *sad;
2159 struct long_ad *lad;
2160 struct udf_inode_info *iinfo = UDF_I(inode);
2161
2162 if (!epos->bh) {
2163 if (!epos->offset)
2164 epos->offset = udf_file_entry_alloc_offset(inode);
2165 ptr = iinfo->i_data + epos->offset -
2166 udf_file_entry_alloc_offset(inode) +
2167 iinfo->i_lenEAttr;
2168 alen = udf_file_entry_alloc_offset(inode) +
2169 iinfo->i_lenAlloc;
2170 } else {
2171 if (!epos->offset)
2172 epos->offset = sizeof(struct allocExtDesc);
2173 ptr = epos->bh->b_data + epos->offset;
2174 alen = sizeof(struct allocExtDesc) +
2175 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2176 lengthAllocDescs);
2177 }
2178
2179 switch (iinfo->i_alloc_type) {
2180 case ICBTAG_FLAG_AD_SHORT:
2181 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2182 if (!sad)
2183 return -1;
2184 etype = le32_to_cpu(sad->extLength) >> 30;
2185 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2186 eloc->partitionReferenceNum =
2187 iinfo->i_location.partitionReferenceNum;
2188 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2189 break;
2190 case ICBTAG_FLAG_AD_LONG:
2191 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2192 if (!lad)
2193 return -1;
2194 etype = le32_to_cpu(lad->extLength) >> 30;
2195 *eloc = lelb_to_cpu(lad->extLocation);
2196 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2197 break;
2198 default:
2199 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2200 return -1;
2201 }
2202
2203 return etype;
2204}
2205
2206static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2207 struct kernel_lb_addr neloc, uint32_t nelen)
2208{
2209 struct kernel_lb_addr oeloc;
2210 uint32_t oelen;
2211 int8_t etype;
2212
2213 if (epos.bh)
2214 get_bh(epos.bh);
2215
2216 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2217 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2218 neloc = oeloc;
2219 nelen = (etype << 30) | oelen;
2220 }
2221 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2222 brelse(epos.bh);
2223
2224 return (nelen >> 30);
2225}
2226
2227int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2228{
2229 struct extent_position oepos;
2230 int adsize;
2231 int8_t etype;
2232 struct allocExtDesc *aed;
2233 struct udf_inode_info *iinfo;
2234 struct kernel_lb_addr eloc;
2235 uint32_t elen;
2236
2237 if (epos.bh) {
2238 get_bh(epos.bh);
2239 get_bh(epos.bh);
2240 }
2241
2242 iinfo = UDF_I(inode);
2243 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2244 adsize = sizeof(struct short_ad);
2245 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2246 adsize = sizeof(struct long_ad);
2247 else
2248 adsize = 0;
2249
2250 oepos = epos;
2251 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2252 return -1;
2253
2254 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2255 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2256 if (oepos.bh != epos.bh) {
2257 oepos.block = epos.block;
2258 brelse(oepos.bh);
2259 get_bh(epos.bh);
2260 oepos.bh = epos.bh;
2261 oepos.offset = epos.offset - adsize;
2262 }
2263 }
2264 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2265 elen = 0;
2266
2267 if (epos.bh != oepos.bh) {
2268 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2269 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2270 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2271 if (!oepos.bh) {
2272 iinfo->i_lenAlloc -= (adsize * 2);
2273 mark_inode_dirty(inode);
2274 } else {
2275 aed = (struct allocExtDesc *)oepos.bh->b_data;
2276 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2277 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2278 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2279 udf_update_tag(oepos.bh->b_data,
2280 oepos.offset - (2 * adsize));
2281 else
2282 udf_update_tag(oepos.bh->b_data,
2283 sizeof(struct allocExtDesc));
2284 mark_buffer_dirty_inode(oepos.bh, inode);
2285 }
2286 } else {
2287 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288 if (!oepos.bh) {
2289 iinfo->i_lenAlloc -= adsize;
2290 mark_inode_dirty(inode);
2291 } else {
2292 aed = (struct allocExtDesc *)oepos.bh->b_data;
2293 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2294 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2295 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2296 udf_update_tag(oepos.bh->b_data,
2297 epos.offset - adsize);
2298 else
2299 udf_update_tag(oepos.bh->b_data,
2300 sizeof(struct allocExtDesc));
2301 mark_buffer_dirty_inode(oepos.bh, inode);
2302 }
2303 }
2304
2305 brelse(epos.bh);
2306 brelse(oepos.bh);
2307
2308 return (elen >> 30);
2309}
2310
2311int8_t inode_bmap(struct inode *inode, sector_t block,
2312 struct extent_position *pos, struct kernel_lb_addr *eloc,
2313 uint32_t *elen, sector_t *offset)
2314{
2315 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2316 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2317 int8_t etype;
2318 struct udf_inode_info *iinfo;
2319
2320 iinfo = UDF_I(inode);
2321 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2322 pos->offset = 0;
2323 pos->block = iinfo->i_location;
2324 pos->bh = NULL;
2325 }
2326 *elen = 0;
2327 do {
2328 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2329 if (etype == -1) {
2330 *offset = (bcount - lbcount) >> blocksize_bits;
2331 iinfo->i_lenExtents = lbcount;
2332 return -1;
2333 }
2334 lbcount += *elen;
2335 } while (lbcount <= bcount);
2336 /* update extent cache */
2337 udf_update_extent_cache(inode, lbcount - *elen, pos);
2338 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2339
2340 return etype;
2341}
2342
2343udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2344{
2345 struct kernel_lb_addr eloc;
2346 uint32_t elen;
2347 sector_t offset;
2348 struct extent_position epos = {};
2349 udf_pblk_t ret;
2350
2351 down_read(&UDF_I(inode)->i_data_sem);
2352
2353 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2354 (EXT_RECORDED_ALLOCATED >> 30))
2355 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2356 else
2357 ret = 0;
2358
2359 up_read(&UDF_I(inode)->i_data_sem);
2360 brelse(epos.bh);
2361
2362 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2363 return udf_fixed_to_variable(ret);
2364 else
2365 return ret;
2366}