Linux Audio

Check our new training course

Loading...
v5.14.15
   1/*
   2 * inode.c
   3 *
   4 * PURPOSE
   5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *  This file is distributed under the terms of the GNU General Public
   9 *  License (GPL). Copies of the GPL can be obtained from:
  10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *  Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1998 Dave Boynton
  14 *  (C) 1998-2004 Ben Fennema
  15 *  (C) 1999-2000 Stelias Computing Inc
  16 *
  17 * HISTORY
  18 *
  19 *  10/04/98 dgb  Added rudimentary directory functions
  20 *  10/07/98      Fully working udf_block_map! It works!
  21 *  11/25/98      bmap altered to better support extents
  22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23 *                and udf_read_inode
  24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25 *                block boundaries (which is not actually allowed)
  26 *  12/20/98      added support for strategy 4096
  27 *  03/07/99      rewrote udf_block_map (again)
  28 *                New funcs, inode_bmap, udf_next_aext
  29 *  04/19/99      Support for writing device EA's for major/minor #
  30 */
  31
  32#include "udfdecl.h"
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/pagemap.h>
 
  36#include <linux/writeback.h>
  37#include <linux/slab.h>
  38#include <linux/crc-itu-t.h>
  39#include <linux/mpage.h>
  40#include <linux/uio.h>
  41#include <linux/bio.h>
  42
  43#include "udf_i.h"
  44#include "udf_sb.h"
  45
  46#define EXTENT_MERGE_SIZE 5
  47
  48#define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
  49			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
  50			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
  51
  52#define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
  53			 FE_PERM_O_DELETE)
  54
  55static umode_t udf_convert_permissions(struct fileEntry *);
  56static int udf_update_inode(struct inode *, int);
 
  57static int udf_sync_inode(struct inode *inode);
  58static int udf_alloc_i_data(struct inode *inode, size_t size);
  59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
 
  60static int8_t udf_insert_aext(struct inode *, struct extent_position,
  61			      struct kernel_lb_addr, uint32_t);
  62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
  63			      struct kernel_long_ad *, int *);
  64static void udf_prealloc_extents(struct inode *, int, int,
  65				 struct kernel_long_ad *, int *);
  66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
  67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
  68			       int, struct extent_position *);
 
 
  69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
  70
  71static void __udf_clear_extent_cache(struct inode *inode)
  72{
  73	struct udf_inode_info *iinfo = UDF_I(inode);
  74
  75	if (iinfo->cached_extent.lstart != -1) {
  76		brelse(iinfo->cached_extent.epos.bh);
  77		iinfo->cached_extent.lstart = -1;
  78	}
  79}
  80
  81/* Invalidate extent cache */
  82static void udf_clear_extent_cache(struct inode *inode)
  83{
  84	struct udf_inode_info *iinfo = UDF_I(inode);
  85
  86	spin_lock(&iinfo->i_extent_cache_lock);
  87	__udf_clear_extent_cache(inode);
  88	spin_unlock(&iinfo->i_extent_cache_lock);
  89}
  90
  91/* Return contents of extent cache */
  92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  93				 loff_t *lbcount, struct extent_position *pos)
  94{
  95	struct udf_inode_info *iinfo = UDF_I(inode);
  96	int ret = 0;
  97
  98	spin_lock(&iinfo->i_extent_cache_lock);
  99	if ((iinfo->cached_extent.lstart <= bcount) &&
 100	    (iinfo->cached_extent.lstart != -1)) {
 101		/* Cache hit */
 102		*lbcount = iinfo->cached_extent.lstart;
 103		memcpy(pos, &iinfo->cached_extent.epos,
 104		       sizeof(struct extent_position));
 105		if (pos->bh)
 106			get_bh(pos->bh);
 107		ret = 1;
 108	}
 109	spin_unlock(&iinfo->i_extent_cache_lock);
 110	return ret;
 111}
 112
 113/* Add extent to extent cache */
 114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 115				    struct extent_position *pos)
 116{
 117	struct udf_inode_info *iinfo = UDF_I(inode);
 118
 119	spin_lock(&iinfo->i_extent_cache_lock);
 120	/* Invalidate previously cached extent */
 121	__udf_clear_extent_cache(inode);
 122	if (pos->bh)
 123		get_bh(pos->bh);
 124	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
 125	iinfo->cached_extent.lstart = estart;
 126	switch (iinfo->i_alloc_type) {
 127	case ICBTAG_FLAG_AD_SHORT:
 128		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
 129		break;
 130	case ICBTAG_FLAG_AD_LONG:
 131		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
 132		break;
 133	}
 134	spin_unlock(&iinfo->i_extent_cache_lock);
 135}
 136
 137void udf_evict_inode(struct inode *inode)
 138{
 139	struct udf_inode_info *iinfo = UDF_I(inode);
 140	int want_delete = 0;
 141
 142	if (!is_bad_inode(inode)) {
 143		if (!inode->i_nlink) {
 144			want_delete = 1;
 145			udf_setsize(inode, 0);
 146			udf_update_inode(inode, IS_SYNC(inode));
 147		}
 148		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 149		    inode->i_size != iinfo->i_lenExtents) {
 150			udf_warn(inode->i_sb,
 151				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 152				 inode->i_ino, inode->i_mode,
 153				 (unsigned long long)inode->i_size,
 154				 (unsigned long long)iinfo->i_lenExtents);
 155		}
 156	}
 157	truncate_inode_pages_final(&inode->i_data);
 158	invalidate_inode_buffers(inode);
 159	clear_inode(inode);
 160	kfree(iinfo->i_data);
 161	iinfo->i_data = NULL;
 162	udf_clear_extent_cache(inode);
 
 
 
 
 
 
 
 
 163	if (want_delete) {
 164		udf_free_inode(inode);
 165	}
 166}
 167
 168static void udf_write_failed(struct address_space *mapping, loff_t to)
 169{
 170	struct inode *inode = mapping->host;
 171	struct udf_inode_info *iinfo = UDF_I(inode);
 172	loff_t isize = inode->i_size;
 173
 174	if (to > isize) {
 175		truncate_pagecache(inode, isize);
 176		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 177			down_write(&iinfo->i_data_sem);
 178			udf_clear_extent_cache(inode);
 179			udf_truncate_extents(inode);
 180			up_write(&iinfo->i_data_sem);
 181		}
 182	}
 183}
 184
 185static int udf_writepage(struct page *page, struct writeback_control *wbc)
 186{
 187	return block_write_full_page(page, udf_get_block, wbc);
 188}
 189
 190static int udf_writepages(struct address_space *mapping,
 191			struct writeback_control *wbc)
 192{
 193	return mpage_writepages(mapping, wbc, udf_get_block);
 194}
 195
 196static int udf_readpage(struct file *file, struct page *page)
 197{
 198	return mpage_readpage(page, udf_get_block);
 199}
 200
 201static void udf_readahead(struct readahead_control *rac)
 202{
 203	mpage_readahead(rac, udf_get_block);
 204}
 205
 206static int udf_write_begin(struct file *file, struct address_space *mapping,
 207			loff_t pos, unsigned len, unsigned flags,
 208			struct page **pagep, void **fsdata)
 209{
 210	int ret;
 211
 212	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
 213	if (unlikely(ret))
 214		udf_write_failed(mapping, pos + len);
 215	return ret;
 216}
 
 
 
 
 
 
 
 
 
 
 217
 218static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 219{
 220	struct file *file = iocb->ki_filp;
 221	struct address_space *mapping = file->f_mapping;
 222	struct inode *inode = mapping->host;
 223	size_t count = iov_iter_count(iter);
 224	ssize_t ret;
 225
 226	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 227	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 228		udf_write_failed(mapping, iocb->ki_pos + count);
 229	return ret;
 230}
 231
 232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 233{
 234	return generic_block_bmap(mapping, block, udf_get_block);
 235}
 236
 237const struct address_space_operations udf_aops = {
 238	.set_page_dirty	= __set_page_dirty_buffers,
 239	.readpage	= udf_readpage,
 240	.readahead	= udf_readahead,
 241	.writepage	= udf_writepage,
 242	.writepages	= udf_writepages,
 243	.write_begin	= udf_write_begin,
 244	.write_end	= generic_write_end,
 245	.direct_IO	= udf_direct_IO,
 246	.bmap		= udf_bmap,
 247};
 248
 249/*
 250 * Expand file stored in ICB to a normal one-block-file
 251 *
 252 * This function requires i_data_sem for writing and releases it.
 253 * This function requires i_mutex held
 254 */
 255int udf_expand_file_adinicb(struct inode *inode)
 256{
 257	struct page *page;
 258	char *kaddr;
 259	struct udf_inode_info *iinfo = UDF_I(inode);
 260	int err;
 261	struct writeback_control udf_wbc = {
 262		.sync_mode = WB_SYNC_NONE,
 263		.nr_to_write = 1,
 264	};
 265
 266	WARN_ON_ONCE(!inode_is_locked(inode));
 267	if (!iinfo->i_lenAlloc) {
 268		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 269			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 270		else
 271			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 272		/* from now on we have normal address_space methods */
 273		inode->i_data.a_ops = &udf_aops;
 274		up_write(&iinfo->i_data_sem);
 275		mark_inode_dirty(inode);
 276		return 0;
 277	}
 278	/*
 279	 * Release i_data_sem so that we can lock a page - page lock ranks
 280	 * above i_data_sem. i_mutex still protects us against file changes.
 281	 */
 282	up_write(&iinfo->i_data_sem);
 283
 284	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 285	if (!page)
 286		return -ENOMEM;
 287
 288	if (!PageUptodate(page)) {
 289		kaddr = kmap_atomic(page);
 290		memset(kaddr + iinfo->i_lenAlloc, 0x00,
 291		       PAGE_SIZE - iinfo->i_lenAlloc);
 292		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
 293			iinfo->i_lenAlloc);
 294		flush_dcache_page(page);
 295		SetPageUptodate(page);
 296		kunmap_atomic(kaddr);
 297	}
 298	down_write(&iinfo->i_data_sem);
 299	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
 300	       iinfo->i_lenAlloc);
 301	iinfo->i_lenAlloc = 0;
 302	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 303		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 304	else
 305		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 306	/* from now on we have normal address_space methods */
 307	inode->i_data.a_ops = &udf_aops;
 308	up_write(&iinfo->i_data_sem);
 309	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
 310	if (err) {
 311		/* Restore everything back so that we don't lose data... */
 312		lock_page(page);
 313		down_write(&iinfo->i_data_sem);
 314		kaddr = kmap_atomic(page);
 315		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
 316		kunmap_atomic(kaddr);
 317		unlock_page(page);
 318		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 319		inode->i_data.a_ops = &udf_adinicb_aops;
 320		up_write(&iinfo->i_data_sem);
 321	}
 322	put_page(page);
 323	mark_inode_dirty(inode);
 324
 325	return err;
 326}
 327
 328struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
 329					    udf_pblk_t *block, int *err)
 330{
 331	udf_pblk_t newblock;
 332	struct buffer_head *dbh = NULL;
 333	struct kernel_lb_addr eloc;
 334	uint8_t alloctype;
 335	struct extent_position epos;
 336
 337	struct udf_fileident_bh sfibh, dfibh;
 338	loff_t f_pos = udf_ext0_offset(inode);
 339	int size = udf_ext0_offset(inode) + inode->i_size;
 340	struct fileIdentDesc cfi, *sfi, *dfi;
 341	struct udf_inode_info *iinfo = UDF_I(inode);
 342
 343	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 344		alloctype = ICBTAG_FLAG_AD_SHORT;
 345	else
 346		alloctype = ICBTAG_FLAG_AD_LONG;
 347
 348	if (!inode->i_size) {
 349		iinfo->i_alloc_type = alloctype;
 350		mark_inode_dirty(inode);
 351		return NULL;
 352	}
 353
 354	/* alloc block, and copy data to it */
 355	*block = udf_new_block(inode->i_sb, inode,
 356			       iinfo->i_location.partitionReferenceNum,
 357			       iinfo->i_location.logicalBlockNum, err);
 358	if (!(*block))
 359		return NULL;
 360	newblock = udf_get_pblock(inode->i_sb, *block,
 361				  iinfo->i_location.partitionReferenceNum,
 362				0);
 363	if (!newblock)
 364		return NULL;
 365	dbh = udf_tgetblk(inode->i_sb, newblock);
 366	if (!dbh)
 367		return NULL;
 368	lock_buffer(dbh);
 369	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 370	set_buffer_uptodate(dbh);
 371	unlock_buffer(dbh);
 372	mark_buffer_dirty_inode(dbh, inode);
 373
 374	sfibh.soffset = sfibh.eoffset =
 375			f_pos & (inode->i_sb->s_blocksize - 1);
 376	sfibh.sbh = sfibh.ebh = NULL;
 377	dfibh.soffset = dfibh.eoffset = 0;
 378	dfibh.sbh = dfibh.ebh = dbh;
 379	while (f_pos < size) {
 380		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 381		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 382					 NULL, NULL, NULL);
 383		if (!sfi) {
 384			brelse(dbh);
 385			return NULL;
 386		}
 387		iinfo->i_alloc_type = alloctype;
 388		sfi->descTag.tagLocation = cpu_to_le32(*block);
 389		dfibh.soffset = dfibh.eoffset;
 390		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 391		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 392		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 393				 sfi->fileIdent +
 394					le16_to_cpu(sfi->lengthOfImpUse))) {
 395			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 396			brelse(dbh);
 397			return NULL;
 398		}
 399	}
 400	mark_buffer_dirty_inode(dbh, inode);
 401
 402	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
 
 403	iinfo->i_lenAlloc = 0;
 404	eloc.logicalBlockNum = *block;
 405	eloc.partitionReferenceNum =
 406				iinfo->i_location.partitionReferenceNum;
 407	iinfo->i_lenExtents = inode->i_size;
 408	epos.bh = NULL;
 409	epos.block = iinfo->i_location;
 410	epos.offset = udf_file_entry_alloc_offset(inode);
 411	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 412	/* UniqueID stuff */
 413
 414	brelse(epos.bh);
 415	mark_inode_dirty(inode);
 416	return dbh;
 417}
 418
 419static int udf_get_block(struct inode *inode, sector_t block,
 420			 struct buffer_head *bh_result, int create)
 421{
 422	int err, new;
 
 423	sector_t phys = 0;
 424	struct udf_inode_info *iinfo;
 425
 426	if (!create) {
 427		phys = udf_block_map(inode, block);
 428		if (phys)
 429			map_bh(bh_result, inode->i_sb, phys);
 430		return 0;
 431	}
 432
 433	err = -EIO;
 434	new = 0;
 
 435	iinfo = UDF_I(inode);
 436
 437	down_write(&iinfo->i_data_sem);
 438	if (block == iinfo->i_next_alloc_block + 1) {
 439		iinfo->i_next_alloc_block++;
 440		iinfo->i_next_alloc_goal++;
 441	}
 442
 443	udf_clear_extent_cache(inode);
 444	phys = inode_getblk(inode, block, &err, &new);
 445	if (!phys)
 
 
 446		goto abort;
 
 447
 448	if (new)
 449		set_buffer_new(bh_result);
 450	map_bh(bh_result, inode->i_sb, phys);
 451
 452abort:
 453	up_write(&iinfo->i_data_sem);
 454	return err;
 455}
 456
 457static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
 458				      int create, int *err)
 459{
 460	struct buffer_head *bh;
 461	struct buffer_head dummy;
 462
 463	dummy.b_state = 0;
 464	dummy.b_blocknr = -1000;
 465	*err = udf_get_block(inode, block, &dummy, create);
 466	if (!*err && buffer_mapped(&dummy)) {
 467		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 468		if (buffer_new(&dummy)) {
 469			lock_buffer(bh);
 470			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 471			set_buffer_uptodate(bh);
 472			unlock_buffer(bh);
 473			mark_buffer_dirty_inode(bh, inode);
 474		}
 475		return bh;
 476	}
 477
 478	return NULL;
 479}
 480
 481/* Extend the file with new blocks totaling 'new_block_bytes',
 482 * return the number of extents added
 483 */
 484static int udf_do_extend_file(struct inode *inode,
 485			      struct extent_position *last_pos,
 486			      struct kernel_long_ad *last_ext,
 487			      loff_t new_block_bytes)
 488{
 489	uint32_t add;
 490	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 491	struct super_block *sb = inode->i_sb;
 492	struct kernel_lb_addr prealloc_loc = {};
 493	uint32_t prealloc_len = 0;
 494	struct udf_inode_info *iinfo;
 495	int err;
 496
 497	/* The previous extent is fake and we should not extend by anything
 498	 * - there's nothing to do... */
 499	if (!new_block_bytes && fake)
 500		return 0;
 501
 502	iinfo = UDF_I(inode);
 503	/* Round the last extent up to a multiple of block size */
 504	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 505		last_ext->extLength =
 506			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 507			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 508			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 509		iinfo->i_lenExtents =
 510			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 511			~(sb->s_blocksize - 1);
 512	}
 513
 514	/* Last extent are just preallocated blocks? */
 515	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 516						EXT_NOT_RECORDED_ALLOCATED) {
 517		/* Save the extent so that we can reattach it to the end */
 518		prealloc_loc = last_ext->extLocation;
 519		prealloc_len = last_ext->extLength;
 520		/* Mark the extent as a hole */
 521		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 522			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 523		last_ext->extLocation.logicalBlockNum = 0;
 524		last_ext->extLocation.partitionReferenceNum = 0;
 525	}
 526
 527	/* Can we merge with the previous extent? */
 528	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 529					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 530		add = (1 << 30) - sb->s_blocksize -
 531			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 532		if (add > new_block_bytes)
 533			add = new_block_bytes;
 534		new_block_bytes -= add;
 535		last_ext->extLength += add;
 
 536	}
 537
 538	if (fake) {
 539		udf_add_aext(inode, last_pos, &last_ext->extLocation,
 540			     last_ext->extLength, 1);
 541		count++;
 542	} else {
 543		struct kernel_lb_addr tmploc;
 544		uint32_t tmplen;
 545
 546		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 547				last_ext->extLength, 1);
 548
 549		/*
 550		 * We've rewritten the last extent. If we are going to add
 551		 * more extents, we may need to enter possible following
 552		 * empty indirect extent.
 553		 */
 554		if (new_block_bytes || prealloc_len)
 555			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
 556	}
 557
 558	/* Managed to do everything necessary? */
 559	if (!new_block_bytes)
 560		goto out;
 561
 562	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 563	last_ext->extLocation.logicalBlockNum = 0;
 564	last_ext->extLocation.partitionReferenceNum = 0;
 565	add = (1 << 30) - sb->s_blocksize;
 566	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
 
 567
 568	/* Create enough extents to cover the whole hole */
 569	while (new_block_bytes > add) {
 570		new_block_bytes -= add;
 571		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 572				   last_ext->extLength, 1);
 573		if (err)
 574			return err;
 575		count++;
 576	}
 577	if (new_block_bytes) {
 578		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 579			new_block_bytes;
 580		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 581				   last_ext->extLength, 1);
 582		if (err)
 583			return err;
 584		count++;
 585	}
 586
 587out:
 588	/* Do we have some preallocated blocks saved? */
 589	if (prealloc_len) {
 590		err = udf_add_aext(inode, last_pos, &prealloc_loc,
 591				   prealloc_len, 1);
 592		if (err)
 593			return err;
 594		last_ext->extLocation = prealloc_loc;
 595		last_ext->extLength = prealloc_len;
 596		count++;
 597	}
 598
 599	/* last_pos should point to the last written extent... */
 600	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 601		last_pos->offset -= sizeof(struct short_ad);
 602	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 603		last_pos->offset -= sizeof(struct long_ad);
 604	else
 605		return -EIO;
 606
 607	return count;
 608}
 609
 610/* Extend the final block of the file to final_block_len bytes */
 611static void udf_do_extend_final_block(struct inode *inode,
 612				      struct extent_position *last_pos,
 613				      struct kernel_long_ad *last_ext,
 614				      uint32_t final_block_len)
 615{
 616	struct super_block *sb = inode->i_sb;
 617	uint32_t added_bytes;
 618
 619	added_bytes = final_block_len -
 620		      (last_ext->extLength & (sb->s_blocksize - 1));
 621	last_ext->extLength += added_bytes;
 622	UDF_I(inode)->i_lenExtents += added_bytes;
 623
 624	udf_write_aext(inode, last_pos, &last_ext->extLocation,
 625			last_ext->extLength, 1);
 626}
 627
 628static int udf_extend_file(struct inode *inode, loff_t newsize)
 629{
 630
 631	struct extent_position epos;
 632	struct kernel_lb_addr eloc;
 633	uint32_t elen;
 634	int8_t etype;
 635	struct super_block *sb = inode->i_sb;
 636	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 637	unsigned long partial_final_block;
 638	int adsize;
 639	struct udf_inode_info *iinfo = UDF_I(inode);
 640	struct kernel_long_ad extent;
 641	int err = 0;
 642	int within_final_block;
 643
 644	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 645		adsize = sizeof(struct short_ad);
 646	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 647		adsize = sizeof(struct long_ad);
 648	else
 649		BUG();
 650
 651	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 652	within_final_block = (etype != -1);
 653
 
 
 
 
 
 
 
 
 
 
 
 654	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 655	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 656		/* File has no extents at all or has empty last
 657		 * indirect extent! Create a fake extent... */
 658		extent.extLocation.logicalBlockNum = 0;
 659		extent.extLocation.partitionReferenceNum = 0;
 660		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 661	} else {
 662		epos.offset -= adsize;
 663		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 664				      &extent.extLength, 0);
 665		extent.extLength |= etype << 30;
 666	}
 667
 668	partial_final_block = newsize & (sb->s_blocksize - 1);
 669
 670	/* File has extent covering the new size (could happen when extending
 671	 * inside a block)?
 672	 */
 673	if (within_final_block) {
 674		/* Extending file within the last file block */
 675		udf_do_extend_final_block(inode, &epos, &extent,
 676					  partial_final_block);
 677	} else {
 678		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
 679			     partial_final_block;
 680		err = udf_do_extend_file(inode, &epos, &extent, add);
 681	}
 682
 683	if (err < 0)
 684		goto out;
 685	err = 0;
 686	iinfo->i_lenExtents = newsize;
 687out:
 688	brelse(epos.bh);
 689	return err;
 690}
 691
 692static sector_t inode_getblk(struct inode *inode, sector_t block,
 693			     int *err, int *new)
 694{
 
 
 695	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 696	struct extent_position prev_epos, cur_epos, next_epos;
 697	int count = 0, startnum = 0, endnum = 0;
 698	uint32_t elen = 0, tmpelen;
 699	struct kernel_lb_addr eloc, tmpeloc;
 700	int c = 1;
 701	loff_t lbcount = 0, b_off = 0;
 702	udf_pblk_t newblocknum, newblock;
 703	sector_t offset = 0;
 704	int8_t etype;
 705	struct udf_inode_info *iinfo = UDF_I(inode);
 706	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 707	int lastblock = 0;
 708	bool isBeyondEOF;
 709
 710	*err = 0;
 711	*new = 0;
 712	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 713	prev_epos.block = iinfo->i_location;
 714	prev_epos.bh = NULL;
 715	cur_epos = next_epos = prev_epos;
 716	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 717
 718	/* find the extent which contains the block we are looking for.
 719	   alternate between laarr[0] and laarr[1] for locations of the
 720	   current extent, and the previous extent */
 721	do {
 722		if (prev_epos.bh != cur_epos.bh) {
 723			brelse(prev_epos.bh);
 724			get_bh(cur_epos.bh);
 725			prev_epos.bh = cur_epos.bh;
 726		}
 727		if (cur_epos.bh != next_epos.bh) {
 728			brelse(cur_epos.bh);
 729			get_bh(next_epos.bh);
 730			cur_epos.bh = next_epos.bh;
 731		}
 732
 733		lbcount += elen;
 734
 735		prev_epos.block = cur_epos.block;
 736		cur_epos.block = next_epos.block;
 737
 738		prev_epos.offset = cur_epos.offset;
 739		cur_epos.offset = next_epos.offset;
 740
 741		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 742		if (etype == -1)
 743			break;
 744
 745		c = !c;
 746
 747		laarr[c].extLength = (etype << 30) | elen;
 748		laarr[c].extLocation = eloc;
 749
 750		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 751			pgoal = eloc.logicalBlockNum +
 752				((elen + inode->i_sb->s_blocksize - 1) >>
 753				 inode->i_sb->s_blocksize_bits);
 754
 755		count++;
 756	} while (lbcount + elen <= b_off);
 757
 758	b_off -= lbcount;
 759	offset = b_off >> inode->i_sb->s_blocksize_bits;
 760	/*
 761	 * Move prev_epos and cur_epos into indirect extent if we are at
 762	 * the pointer to it
 763	 */
 764	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 765	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 766
 767	/* if the extent is allocated and recorded, return the block
 768	   if the extent is not a multiple of the blocksize, round up */
 769
 770	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 771		if (elen & (inode->i_sb->s_blocksize - 1)) {
 772			elen = EXT_RECORDED_ALLOCATED |
 773				((elen + inode->i_sb->s_blocksize - 1) &
 774				 ~(inode->i_sb->s_blocksize - 1));
 775			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 776		}
 
 
 
 777		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 778		goto out_free;
 
 779	}
 780
 
 781	/* Are we beyond EOF? */
 782	if (etype == -1) {
 783		int ret;
 784		loff_t hole_len;
 785		isBeyondEOF = true;
 786		if (count) {
 787			if (c)
 788				laarr[0] = laarr[1];
 789			startnum = 1;
 790		} else {
 791			/* Create a fake extent when there's not one */
 792			memset(&laarr[0].extLocation, 0x00,
 793				sizeof(struct kernel_lb_addr));
 794			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 795			/* Will udf_do_extend_file() create real extent from
 796			   a fake one? */
 797			startnum = (offset > 0);
 798		}
 799		/* Create extents for the hole between EOF and offset */
 800		hole_len = (loff_t)offset << inode->i_blkbits;
 801		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
 802		if (ret < 0) {
 
 
 
 803			*err = ret;
 804			newblock = 0;
 805			goto out_free;
 806		}
 807		c = 0;
 808		offset = 0;
 809		count += ret;
 810		/* We are not covered by a preallocated extent? */
 811		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 812						EXT_NOT_RECORDED_ALLOCATED) {
 813			/* Is there any real extent? - otherwise we overwrite
 814			 * the fake one... */
 815			if (count)
 816				c = !c;
 817			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 818				inode->i_sb->s_blocksize;
 819			memset(&laarr[c].extLocation, 0x00,
 820				sizeof(struct kernel_lb_addr));
 821			count++;
 
 822		}
 823		endnum = c + 1;
 824		lastblock = 1;
 825	} else {
 826		isBeyondEOF = false;
 827		endnum = startnum = ((count > 2) ? 2 : count);
 828
 829		/* if the current extent is in position 0,
 830		   swap it with the previous */
 831		if (!c && count != 1) {
 832			laarr[2] = laarr[0];
 833			laarr[0] = laarr[1];
 834			laarr[1] = laarr[2];
 835			c = 1;
 836		}
 837
 838		/* if the current block is located in an extent,
 839		   read the next extent */
 840		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 841		if (etype != -1) {
 842			laarr[c + 1].extLength = (etype << 30) | elen;
 843			laarr[c + 1].extLocation = eloc;
 844			count++;
 845			startnum++;
 846			endnum++;
 847		} else
 848			lastblock = 1;
 849	}
 850
 851	/* if the current extent is not recorded but allocated, get the
 852	 * block in the extent corresponding to the requested block */
 853	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 854		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 855	else { /* otherwise, allocate a new block */
 856		if (iinfo->i_next_alloc_block == block)
 857			goal = iinfo->i_next_alloc_goal;
 858
 859		if (!goal) {
 860			if (!(goal = pgoal)) /* XXX: what was intended here? */
 861				goal = iinfo->i_location.logicalBlockNum + 1;
 862		}
 863
 864		newblocknum = udf_new_block(inode->i_sb, inode,
 865				iinfo->i_location.partitionReferenceNum,
 866				goal, err);
 867		if (!newblocknum) {
 
 868			*err = -ENOSPC;
 869			newblock = 0;
 870			goto out_free;
 871		}
 872		if (isBeyondEOF)
 873			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 874	}
 875
 876	/* if the extent the requsted block is located in contains multiple
 877	 * blocks, split the extent into at most three extents. blocks prior
 878	 * to requested block, requested block, and blocks after requested
 879	 * block */
 880	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 881
 
 882	/* We preallocate blocks only for regular files. It also makes sense
 883	 * for directories but there's a problem when to drop the
 884	 * preallocation. We might use some delayed work for that but I feel
 885	 * it's overengineering for a filesystem like UDF. */
 886	if (S_ISREG(inode->i_mode))
 887		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 
 888
 889	/* merge any continuous blocks in laarr */
 890	udf_merge_extents(inode, laarr, &endnum);
 891
 892	/* write back the new extents, inserting new extents if the new number
 893	 * of extents is greater than the old number, and deleting extents if
 894	 * the new number of extents is less than the old number */
 895	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 896
 
 
 897	newblock = udf_get_pblock(inode->i_sb, newblocknum,
 898				iinfo->i_location.partitionReferenceNum, 0);
 899	if (!newblock) {
 900		*err = -EIO;
 901		goto out_free;
 902	}
 903	*new = 1;
 904	iinfo->i_next_alloc_block = block;
 905	iinfo->i_next_alloc_goal = newblocknum;
 906	inode->i_ctime = current_time(inode);
 907
 908	if (IS_SYNC(inode))
 909		udf_sync_inode(inode);
 910	else
 911		mark_inode_dirty(inode);
 912out_free:
 913	brelse(prev_epos.bh);
 914	brelse(cur_epos.bh);
 915	brelse(next_epos.bh);
 916	return newblock;
 917}
 918
 919static void udf_split_extents(struct inode *inode, int *c, int offset,
 920			       udf_pblk_t newblocknum,
 921			       struct kernel_long_ad *laarr, int *endnum)
 
 922{
 923	unsigned long blocksize = inode->i_sb->s_blocksize;
 924	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 925
 926	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 927	    (laarr[*c].extLength >> 30) ==
 928				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 929		int curr = *c;
 930		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 931			    blocksize - 1) >> blocksize_bits;
 932		int8_t etype = (laarr[curr].extLength >> 30);
 933
 934		if (blen == 1)
 935			;
 936		else if (!offset || blen == offset + 1) {
 937			laarr[curr + 2] = laarr[curr + 1];
 938			laarr[curr + 1] = laarr[curr];
 939		} else {
 940			laarr[curr + 3] = laarr[curr + 1];
 941			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 942		}
 943
 944		if (offset) {
 945			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 946				udf_free_blocks(inode->i_sb, inode,
 947						&laarr[curr].extLocation,
 948						0, offset);
 949				laarr[curr].extLength =
 950					EXT_NOT_RECORDED_NOT_ALLOCATED |
 951					(offset << blocksize_bits);
 952				laarr[curr].extLocation.logicalBlockNum = 0;
 953				laarr[curr].extLocation.
 954						partitionReferenceNum = 0;
 955			} else
 956				laarr[curr].extLength = (etype << 30) |
 957					(offset << blocksize_bits);
 958			curr++;
 959			(*c)++;
 960			(*endnum)++;
 961		}
 962
 963		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 964		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 965			laarr[curr].extLocation.partitionReferenceNum =
 966				UDF_I(inode)->i_location.partitionReferenceNum;
 967		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 968			blocksize;
 969		curr++;
 970
 971		if (blen != offset + 1) {
 972			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 973				laarr[curr].extLocation.logicalBlockNum +=
 974								offset + 1;
 975			laarr[curr].extLength = (etype << 30) |
 976				((blen - (offset + 1)) << blocksize_bits);
 977			curr++;
 978			(*endnum)++;
 979		}
 980	}
 981}
 982
 983static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 984				 struct kernel_long_ad *laarr,
 985				 int *endnum)
 986{
 987	int start, length = 0, currlength = 0, i;
 988
 989	if (*endnum >= (c + 1)) {
 990		if (!lastblock)
 991			return;
 992		else
 993			start = c;
 994	} else {
 995		if ((laarr[c + 1].extLength >> 30) ==
 996					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 997			start = c + 1;
 998			length = currlength =
 999				(((laarr[c + 1].extLength &
1000					UDF_EXTENT_LENGTH_MASK) +
1001				inode->i_sb->s_blocksize - 1) >>
1002				inode->i_sb->s_blocksize_bits);
1003		} else
1004			start = c;
1005	}
1006
1007	for (i = start + 1; i <= *endnum; i++) {
1008		if (i == *endnum) {
1009			if (lastblock)
1010				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1011		} else if ((laarr[i].extLength >> 30) ==
1012				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1013			length += (((laarr[i].extLength &
1014						UDF_EXTENT_LENGTH_MASK) +
1015				    inode->i_sb->s_blocksize - 1) >>
1016				    inode->i_sb->s_blocksize_bits);
1017		} else
1018			break;
1019	}
1020
1021	if (length) {
1022		int next = laarr[start].extLocation.logicalBlockNum +
1023			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1024			  inode->i_sb->s_blocksize - 1) >>
1025			  inode->i_sb->s_blocksize_bits);
1026		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1027				laarr[start].extLocation.partitionReferenceNum,
1028				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1029				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1030				currlength);
1031		if (numalloc) 	{
1032			if (start == (c + 1))
1033				laarr[start].extLength +=
1034					(numalloc <<
1035					 inode->i_sb->s_blocksize_bits);
1036			else {
1037				memmove(&laarr[c + 2], &laarr[c + 1],
1038					sizeof(struct long_ad) * (*endnum - (c + 1)));
1039				(*endnum)++;
1040				laarr[c + 1].extLocation.logicalBlockNum = next;
1041				laarr[c + 1].extLocation.partitionReferenceNum =
1042					laarr[c].extLocation.
1043							partitionReferenceNum;
1044				laarr[c + 1].extLength =
1045					EXT_NOT_RECORDED_ALLOCATED |
1046					(numalloc <<
1047					 inode->i_sb->s_blocksize_bits);
1048				start = c + 1;
1049			}
1050
1051			for (i = start + 1; numalloc && i < *endnum; i++) {
1052				int elen = ((laarr[i].extLength &
1053						UDF_EXTENT_LENGTH_MASK) +
1054					    inode->i_sb->s_blocksize - 1) >>
1055					    inode->i_sb->s_blocksize_bits;
1056
1057				if (elen > numalloc) {
1058					laarr[i].extLength -=
1059						(numalloc <<
1060						 inode->i_sb->s_blocksize_bits);
1061					numalloc = 0;
1062				} else {
1063					numalloc -= elen;
1064					if (*endnum > (i + 1))
1065						memmove(&laarr[i],
1066							&laarr[i + 1],
1067							sizeof(struct long_ad) *
1068							(*endnum - (i + 1)));
1069					i--;
1070					(*endnum)--;
1071				}
1072			}
1073			UDF_I(inode)->i_lenExtents +=
1074				numalloc << inode->i_sb->s_blocksize_bits;
1075		}
1076	}
1077}
1078
1079static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
 
1080			      int *endnum)
1081{
1082	int i;
1083	unsigned long blocksize = inode->i_sb->s_blocksize;
1084	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1085
1086	for (i = 0; i < (*endnum - 1); i++) {
1087		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1088		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1089
1090		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1091			(((li->extLength >> 30) ==
1092				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1093			((lip1->extLocation.logicalBlockNum -
1094			  li->extLocation.logicalBlockNum) ==
1095			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1096			blocksize - 1) >> blocksize_bits)))) {
1097
1098			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1099				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1100				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1101				lip1->extLength = (lip1->extLength -
1102						  (li->extLength &
1103						   UDF_EXTENT_LENGTH_MASK) +
1104						   UDF_EXTENT_LENGTH_MASK) &
1105							~(blocksize - 1);
1106				li->extLength = (li->extLength &
1107						 UDF_EXTENT_FLAG_MASK) +
1108						(UDF_EXTENT_LENGTH_MASK + 1) -
1109						blocksize;
1110				lip1->extLocation.logicalBlockNum =
1111					li->extLocation.logicalBlockNum +
1112					((li->extLength &
1113						UDF_EXTENT_LENGTH_MASK) >>
1114						blocksize_bits);
1115			} else {
1116				li->extLength = lip1->extLength +
1117					(((li->extLength &
1118						UDF_EXTENT_LENGTH_MASK) +
1119					 blocksize - 1) & ~(blocksize - 1));
1120				if (*endnum > (i + 2))
1121					memmove(&laarr[i + 1], &laarr[i + 2],
1122						sizeof(struct long_ad) *
1123						(*endnum - (i + 2)));
1124				i--;
1125				(*endnum)--;
1126			}
1127		} else if (((li->extLength >> 30) ==
1128				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1129			   ((lip1->extLength >> 30) ==
1130				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1131			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1132					((li->extLength &
1133					  UDF_EXTENT_LENGTH_MASK) +
1134					 blocksize - 1) >> blocksize_bits);
1135			li->extLocation.logicalBlockNum = 0;
1136			li->extLocation.partitionReferenceNum = 0;
1137
1138			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1139			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1140			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1141				lip1->extLength = (lip1->extLength -
1142						   (li->extLength &
1143						   UDF_EXTENT_LENGTH_MASK) +
1144						   UDF_EXTENT_LENGTH_MASK) &
1145						   ~(blocksize - 1);
1146				li->extLength = (li->extLength &
1147						 UDF_EXTENT_FLAG_MASK) +
1148						(UDF_EXTENT_LENGTH_MASK + 1) -
1149						blocksize;
1150			} else {
1151				li->extLength = lip1->extLength +
1152					(((li->extLength &
1153						UDF_EXTENT_LENGTH_MASK) +
1154					  blocksize - 1) & ~(blocksize - 1));
1155				if (*endnum > (i + 2))
1156					memmove(&laarr[i + 1], &laarr[i + 2],
1157						sizeof(struct long_ad) *
1158						(*endnum - (i + 2)));
1159				i--;
1160				(*endnum)--;
1161			}
1162		} else if ((li->extLength >> 30) ==
1163					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1164			udf_free_blocks(inode->i_sb, inode,
1165					&li->extLocation, 0,
1166					((li->extLength &
1167						UDF_EXTENT_LENGTH_MASK) +
1168					 blocksize - 1) >> blocksize_bits);
1169			li->extLocation.logicalBlockNum = 0;
1170			li->extLocation.partitionReferenceNum = 0;
1171			li->extLength = (li->extLength &
1172						UDF_EXTENT_LENGTH_MASK) |
1173						EXT_NOT_RECORDED_NOT_ALLOCATED;
1174		}
1175	}
1176}
1177
1178static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
 
1179			       int startnum, int endnum,
1180			       struct extent_position *epos)
1181{
1182	int start = 0, i;
1183	struct kernel_lb_addr tmploc;
1184	uint32_t tmplen;
1185
1186	if (startnum > endnum) {
1187		for (i = 0; i < (startnum - endnum); i++)
1188			udf_delete_aext(inode, *epos);
 
1189	} else if (startnum < endnum) {
1190		for (i = 0; i < (endnum - startnum); i++) {
1191			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1192					laarr[i].extLength);
1193			udf_next_aext(inode, epos, &laarr[i].extLocation,
1194				      &laarr[i].extLength, 1);
1195			start++;
1196		}
1197	}
1198
1199	for (i = start; i < endnum; i++) {
1200		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1201		udf_write_aext(inode, epos, &laarr[i].extLocation,
1202			       laarr[i].extLength, 1);
1203	}
1204}
1205
1206struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1207			      int create, int *err)
1208{
1209	struct buffer_head *bh = NULL;
1210
1211	bh = udf_getblk(inode, block, create, err);
1212	if (!bh)
1213		return NULL;
1214
1215	if (buffer_uptodate(bh))
1216		return bh;
1217
1218	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219
1220	wait_on_buffer(bh);
1221	if (buffer_uptodate(bh))
1222		return bh;
1223
1224	brelse(bh);
1225	*err = -EIO;
1226	return NULL;
1227}
1228
1229int udf_setsize(struct inode *inode, loff_t newsize)
1230{
1231	int err;
1232	struct udf_inode_info *iinfo;
1233	unsigned int bsize = i_blocksize(inode);
1234
1235	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1236	      S_ISLNK(inode->i_mode)))
1237		return -EINVAL;
1238	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1239		return -EPERM;
1240
1241	iinfo = UDF_I(inode);
1242	if (newsize > inode->i_size) {
1243		down_write(&iinfo->i_data_sem);
1244		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1245			if (bsize <
1246			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1247				err = udf_expand_file_adinicb(inode);
1248				if (err)
 
1249					return err;
1250				down_write(&iinfo->i_data_sem);
1251			} else {
1252				iinfo->i_lenAlloc = newsize;
1253				goto set_size;
1254			}
1255		}
1256		err = udf_extend_file(inode, newsize);
1257		if (err) {
1258			up_write(&iinfo->i_data_sem);
1259			return err;
1260		}
1261set_size:
1262		up_write(&iinfo->i_data_sem);
1263		truncate_setsize(inode, newsize);
 
1264	} else {
1265		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1266			down_write(&iinfo->i_data_sem);
1267			udf_clear_extent_cache(inode);
1268			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1269			       0x00, bsize - newsize -
1270			       udf_file_entry_alloc_offset(inode));
1271			iinfo->i_lenAlloc = newsize;
1272			truncate_setsize(inode, newsize);
1273			up_write(&iinfo->i_data_sem);
1274			goto update_time;
1275		}
1276		err = block_truncate_page(inode->i_mapping, newsize,
1277					  udf_get_block);
1278		if (err)
1279			return err;
1280		truncate_setsize(inode, newsize);
1281		down_write(&iinfo->i_data_sem);
1282		udf_clear_extent_cache(inode);
1283		err = udf_truncate_extents(inode);
1284		up_write(&iinfo->i_data_sem);
1285		if (err)
1286			return err;
1287	}
1288update_time:
1289	inode->i_mtime = inode->i_ctime = current_time(inode);
1290	if (IS_SYNC(inode))
1291		udf_sync_inode(inode);
1292	else
1293		mark_inode_dirty(inode);
1294	return 0;
1295}
1296
1297/*
1298 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1299 * arbitrary - just that we hopefully don't limit any real use of rewritten
1300 * inode on write-once media but avoid looping for too long on corrupted media.
1301 */
1302#define UDF_MAX_ICB_NESTING 1024
1303
1304static int udf_read_inode(struct inode *inode, bool hidden_inode)
1305{
1306	struct buffer_head *bh = NULL;
1307	struct fileEntry *fe;
1308	struct extendedFileEntry *efe;
1309	uint16_t ident;
1310	struct udf_inode_info *iinfo = UDF_I(inode);
1311	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1312	struct kernel_lb_addr *iloc = &iinfo->i_location;
1313	unsigned int link_count;
1314	unsigned int indirections = 0;
1315	int bs = inode->i_sb->s_blocksize;
1316	int ret = -EIO;
1317	uint32_t uid, gid;
1318
1319reread:
1320	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1321		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1322			  iloc->partitionReferenceNum, sbi->s_partitions);
1323		return -EIO;
1324	}
1325
1326	if (iloc->logicalBlockNum >=
1327	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1328		udf_debug("block=%u, partition=%u out of range\n",
1329			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1330		return -EIO;
1331	}
1332
1333	/*
1334	 * Set defaults, but the inode is still incomplete!
1335	 * Note: get_new_inode() sets the following on a new inode:
1336	 *      i_sb = sb
1337	 *      i_no = ino
1338	 *      i_flags = sb->s_flags
1339	 *      i_state = 0
1340	 * clean_inode(): zero fills and sets
1341	 *      i_count = 1
1342	 *      i_nlink = 1
1343	 *      i_op = NULL;
1344	 */
1345	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1346	if (!bh) {
1347		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1348		return -EIO;
 
 
1349	}
1350
1351	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1352	    ident != TAG_IDENT_USE) {
1353		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1354			inode->i_ino, ident);
1355		goto out;
 
 
1356	}
1357
1358	fe = (struct fileEntry *)bh->b_data;
1359	efe = (struct extendedFileEntry *)bh->b_data;
1360
1361	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1362		struct buffer_head *ibh;
1363
1364		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
 
1365		if (ident == TAG_IDENT_IE && ibh) {
 
1366			struct kernel_lb_addr loc;
1367			struct indirectEntry *ie;
1368
1369			ie = (struct indirectEntry *)ibh->b_data;
1370			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1371
1372			if (ie->indirectICB.extLength) {
1373				brelse(ibh);
1374				memcpy(&iinfo->i_location, &loc,
1375				       sizeof(struct kernel_lb_addr));
1376				if (++indirections > UDF_MAX_ICB_NESTING) {
1377					udf_err(inode->i_sb,
1378						"too many ICBs in ICB hierarchy"
1379						" (max %d supported)\n",
1380						UDF_MAX_ICB_NESTING);
1381					goto out;
 
 
 
1382				}
1383				brelse(bh);
1384				goto reread;
1385			}
1386		}
1387		brelse(ibh);
1388	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1389		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1390			le16_to_cpu(fe->icbTag.strategyType));
1391		goto out;
 
 
1392	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1393	if (fe->icbTag.strategyType == cpu_to_le16(4))
1394		iinfo->i_strat4096 = 0;
1395	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1396		iinfo->i_strat4096 = 1;
1397
1398	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1399							ICBTAG_FLAG_AD_MASK;
1400	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1401	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1402	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1403		ret = -EIO;
1404		goto out;
1405	}
1406	iinfo->i_unique = 0;
1407	iinfo->i_lenEAttr = 0;
1408	iinfo->i_lenExtents = 0;
1409	iinfo->i_lenAlloc = 0;
1410	iinfo->i_next_alloc_block = 0;
1411	iinfo->i_next_alloc_goal = 0;
1412	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1413		iinfo->i_efe = 1;
1414		iinfo->i_use = 0;
1415		ret = udf_alloc_i_data(inode, bs -
1416					sizeof(struct extendedFileEntry));
1417		if (ret)
1418			goto out;
1419		memcpy(iinfo->i_data,
 
1420		       bh->b_data + sizeof(struct extendedFileEntry),
1421		       bs - sizeof(struct extendedFileEntry));
 
1422	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1423		iinfo->i_efe = 0;
1424		iinfo->i_use = 0;
1425		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1426		if (ret)
1427			goto out;
1428		memcpy(iinfo->i_data,
 
 
1429		       bh->b_data + sizeof(struct fileEntry),
1430		       bs - sizeof(struct fileEntry));
1431	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1432		iinfo->i_efe = 0;
1433		iinfo->i_use = 1;
1434		iinfo->i_lenAlloc = le32_to_cpu(
1435				((struct unallocSpaceEntry *)bh->b_data)->
1436				 lengthAllocDescs);
1437		ret = udf_alloc_i_data(inode, bs -
1438					sizeof(struct unallocSpaceEntry));
1439		if (ret)
1440			goto out;
1441		memcpy(iinfo->i_data,
 
1442		       bh->b_data + sizeof(struct unallocSpaceEntry),
1443		       bs - sizeof(struct unallocSpaceEntry));
1444		return 0;
 
1445	}
1446
1447	ret = -EIO;
1448	read_lock(&sbi->s_cred_lock);
1449	uid = le32_to_cpu(fe->uid);
1450	if (uid == UDF_INVALID_ID ||
 
1451	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1452		inode->i_uid = sbi->s_uid;
1453	else
1454		i_uid_write(inode, uid);
1455
1456	gid = le32_to_cpu(fe->gid);
1457	if (gid == UDF_INVALID_ID ||
 
1458	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1459		inode->i_gid = sbi->s_gid;
1460	else
1461		i_gid_write(inode, gid);
1462
1463	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1464			sbi->s_fmode != UDF_INVALID_MODE)
1465		inode->i_mode = sbi->s_fmode;
1466	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1467			sbi->s_dmode != UDF_INVALID_MODE)
1468		inode->i_mode = sbi->s_dmode;
1469	else
1470		inode->i_mode = udf_convert_permissions(fe);
1471	inode->i_mode &= ~sbi->s_umask;
1472	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1473
1474	read_unlock(&sbi->s_cred_lock);
1475
1476	link_count = le16_to_cpu(fe->fileLinkCount);
1477	if (!link_count) {
1478		if (!hidden_inode) {
1479			ret = -ESTALE;
1480			goto out;
1481		}
1482		link_count = 1;
1483	}
1484	set_nlink(inode, link_count);
1485
1486	inode->i_size = le64_to_cpu(fe->informationLength);
1487	iinfo->i_lenExtents = inode->i_size;
1488
1489	if (iinfo->i_efe == 0) {
1490		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1491			(inode->i_sb->s_blocksize_bits - 9);
1492
1493		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1494		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1495		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
 
 
 
 
 
 
1496
1497		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1498		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1499		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1500		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1501		iinfo->i_streamdir = 0;
1502		iinfo->i_lenStreams = 0;
1503	} else {
1504		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1505		    (inode->i_sb->s_blocksize_bits - 9);
1506
1507		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1508		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1509		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1510		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
 
 
 
 
 
 
 
 
1511
1512		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1513		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1514		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1515		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1516
1517		/* Named streams */
1518		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1519		iinfo->i_locStreamdir =
1520			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1521		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1522		if (iinfo->i_lenStreams >= inode->i_size)
1523			iinfo->i_lenStreams -= inode->i_size;
1524		else
1525			iinfo->i_lenStreams = 0;
1526	}
1527	inode->i_generation = iinfo->i_unique;
1528
1529	/*
1530	 * Sanity check length of allocation descriptors and extended attrs to
1531	 * avoid integer overflows
1532	 */
1533	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1534		goto out;
1535	/* Now do exact checks */
1536	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1537		goto out;
1538	/* Sanity checks for files in ICB so that we don't get confused later */
1539	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1540		/*
1541		 * For file in ICB data is stored in allocation descriptor
1542		 * so sizes should match
1543		 */
1544		if (iinfo->i_lenAlloc != inode->i_size)
1545			goto out;
1546		/* File in ICB has to fit in there... */
1547		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1548			goto out;
1549	}
1550
1551	switch (fe->icbTag.fileType) {
1552	case ICBTAG_FILE_TYPE_DIRECTORY:
1553		inode->i_op = &udf_dir_inode_operations;
1554		inode->i_fop = &udf_dir_operations;
1555		inode->i_mode |= S_IFDIR;
1556		inc_nlink(inode);
1557		break;
1558	case ICBTAG_FILE_TYPE_REALTIME:
1559	case ICBTAG_FILE_TYPE_REGULAR:
1560	case ICBTAG_FILE_TYPE_UNDEF:
1561	case ICBTAG_FILE_TYPE_VAT20:
1562		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1563			inode->i_data.a_ops = &udf_adinicb_aops;
1564		else
1565			inode->i_data.a_ops = &udf_aops;
1566		inode->i_op = &udf_file_inode_operations;
1567		inode->i_fop = &udf_file_operations;
1568		inode->i_mode |= S_IFREG;
1569		break;
1570	case ICBTAG_FILE_TYPE_BLOCK:
1571		inode->i_mode |= S_IFBLK;
1572		break;
1573	case ICBTAG_FILE_TYPE_CHAR:
1574		inode->i_mode |= S_IFCHR;
1575		break;
1576	case ICBTAG_FILE_TYPE_FIFO:
1577		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1578		break;
1579	case ICBTAG_FILE_TYPE_SOCKET:
1580		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1581		break;
1582	case ICBTAG_FILE_TYPE_SYMLINK:
1583		inode->i_data.a_ops = &udf_symlink_aops;
1584		inode->i_op = &udf_symlink_inode_operations;
1585		inode_nohighmem(inode);
1586		inode->i_mode = S_IFLNK | 0777;
1587		break;
1588	case ICBTAG_FILE_TYPE_MAIN:
1589		udf_debug("METADATA FILE-----\n");
1590		break;
1591	case ICBTAG_FILE_TYPE_MIRROR:
1592		udf_debug("METADATA MIRROR FILE-----\n");
1593		break;
1594	case ICBTAG_FILE_TYPE_BITMAP:
1595		udf_debug("METADATA BITMAP FILE-----\n");
1596		break;
1597	default:
1598		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1599			inode->i_ino, fe->icbTag.fileType);
1600		goto out;
 
 
1601	}
1602	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1603		struct deviceSpec *dsea =
1604			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1605		if (dsea) {
1606			init_special_inode(inode, inode->i_mode,
1607				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1608				      le32_to_cpu(dsea->minorDeviceIdent)));
1609			/* Developer ID ??? */
1610		} else
1611			goto out;
1612	}
1613	ret = 0;
1614out:
1615	brelse(bh);
1616	return ret;
1617}
1618
1619static int udf_alloc_i_data(struct inode *inode, size_t size)
1620{
1621	struct udf_inode_info *iinfo = UDF_I(inode);
1622	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1623	if (!iinfo->i_data)
 
 
 
1624		return -ENOMEM;
 
 
1625	return 0;
1626}
1627
1628static umode_t udf_convert_permissions(struct fileEntry *fe)
1629{
1630	umode_t mode;
1631	uint32_t permissions;
1632	uint32_t flags;
1633
1634	permissions = le32_to_cpu(fe->permissions);
1635	flags = le16_to_cpu(fe->icbTag.flags);
1636
1637	mode =	((permissions) & 0007) |
1638		((permissions >> 2) & 0070) |
1639		((permissions >> 4) & 0700) |
1640		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1641		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1642		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1643
1644	return mode;
1645}
1646
1647void udf_update_extra_perms(struct inode *inode, umode_t mode)
1648{
1649	struct udf_inode_info *iinfo = UDF_I(inode);
1650
1651	/*
1652	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1653	 * In Unix, delete permission tracks write
1654	 */
1655	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1656	if (mode & 0200)
1657		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1658	if (mode & 0020)
1659		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1660	if (mode & 0002)
1661		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1662}
1663
1664int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1665{
1666	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1667}
1668
1669static int udf_sync_inode(struct inode *inode)
1670{
1671	return udf_update_inode(inode, 1);
1672}
1673
1674static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1675{
1676	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1677	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1678	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1679		iinfo->i_crtime = time;
1680}
1681
1682static int udf_update_inode(struct inode *inode, int do_sync)
1683{
1684	struct buffer_head *bh = NULL;
1685	struct fileEntry *fe;
1686	struct extendedFileEntry *efe;
1687	uint64_t lb_recorded;
1688	uint32_t udfperms;
1689	uint16_t icbflags;
1690	uint16_t crclen;
1691	int err = 0;
1692	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1693	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1694	struct udf_inode_info *iinfo = UDF_I(inode);
1695
1696	bh = udf_tgetblk(inode->i_sb,
1697			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1698	if (!bh) {
1699		udf_debug("getblk failure\n");
1700		return -EIO;
1701	}
1702
1703	lock_buffer(bh);
1704	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1705	fe = (struct fileEntry *)bh->b_data;
1706	efe = (struct extendedFileEntry *)bh->b_data;
1707
1708	if (iinfo->i_use) {
1709		struct unallocSpaceEntry *use =
1710			(struct unallocSpaceEntry *)bh->b_data;
1711
1712		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1713		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1714		       iinfo->i_data, inode->i_sb->s_blocksize -
1715					sizeof(struct unallocSpaceEntry));
1716		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1717		crclen = sizeof(struct unallocSpaceEntry);
 
 
 
 
 
 
 
 
1718
1719		goto finish;
1720	}
1721
1722	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1723		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1724	else
1725		fe->uid = cpu_to_le32(i_uid_read(inode));
1726
1727	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1728		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1729	else
1730		fe->gid = cpu_to_le32(i_gid_read(inode));
1731
1732	udfperms = ((inode->i_mode & 0007)) |
1733		   ((inode->i_mode & 0070) << 2) |
1734		   ((inode->i_mode & 0700) << 4);
1735
1736	udfperms |= iinfo->i_extraPerms;
 
 
 
1737	fe->permissions = cpu_to_le32(udfperms);
1738
1739	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1740		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1741	else
1742		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1743
1744	fe->informationLength = cpu_to_le64(inode->i_size);
1745
1746	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1747		struct regid *eid;
1748		struct deviceSpec *dsea =
1749			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1750		if (!dsea) {
1751			dsea = (struct deviceSpec *)
1752				udf_add_extendedattr(inode,
1753						     sizeof(struct deviceSpec) +
1754						     sizeof(struct regid), 12, 0x3);
1755			dsea->attrType = cpu_to_le32(12);
1756			dsea->attrSubtype = 1;
1757			dsea->attrLength = cpu_to_le32(
1758						sizeof(struct deviceSpec) +
1759						sizeof(struct regid));
1760			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1761		}
1762		eid = (struct regid *)dsea->impUse;
1763		memset(eid, 0, sizeof(*eid));
1764		strcpy(eid->ident, UDF_ID_DEVELOPER);
1765		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1766		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1767		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1768		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1769	}
1770
1771	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1772		lb_recorded = 0; /* No extents => no blocks! */
1773	else
1774		lb_recorded =
1775			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1776			(blocksize_bits - 9);
1777
1778	if (iinfo->i_efe == 0) {
1779		memcpy(bh->b_data + sizeof(struct fileEntry),
1780		       iinfo->i_data,
1781		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1782		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
 
 
1783
1784		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1785		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1786		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1787		memset(&(fe->impIdent), 0, sizeof(struct regid));
1788		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1789		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1790		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1791		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1792		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1793		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1794		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1795		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1796		crclen = sizeof(struct fileEntry);
1797	} else {
1798		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1799		       iinfo->i_data,
1800		       inode->i_sb->s_blocksize -
1801					sizeof(struct extendedFileEntry));
1802		efe->objectSize =
1803			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1804		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1805
1806		if (iinfo->i_streamdir) {
1807			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1808
1809			icb_lad->extLocation =
1810				cpu_to_lelb(iinfo->i_locStreamdir);
1811			icb_lad->extLength =
1812				cpu_to_le32(inode->i_sb->s_blocksize);
1813		}
1814
1815		udf_adjust_time(iinfo, inode->i_atime);
1816		udf_adjust_time(iinfo, inode->i_mtime);
1817		udf_adjust_time(iinfo, inode->i_ctime);
 
 
 
1818
1819		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1820		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1821		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1822		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1823
1824		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1825		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1826		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1827		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1828		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1829		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1830		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1831		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1832		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1833		crclen = sizeof(struct extendedFileEntry);
1834	}
1835
1836finish:
1837	if (iinfo->i_strat4096) {
1838		fe->icbTag.strategyType = cpu_to_le16(4096);
1839		fe->icbTag.strategyParameter = cpu_to_le16(1);
1840		fe->icbTag.numEntries = cpu_to_le16(2);
1841	} else {
1842		fe->icbTag.strategyType = cpu_to_le16(4);
1843		fe->icbTag.numEntries = cpu_to_le16(1);
1844	}
1845
1846	if (iinfo->i_use)
1847		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1848	else if (S_ISDIR(inode->i_mode))
1849		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1850	else if (S_ISREG(inode->i_mode))
1851		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1852	else if (S_ISLNK(inode->i_mode))
1853		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1854	else if (S_ISBLK(inode->i_mode))
1855		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1856	else if (S_ISCHR(inode->i_mode))
1857		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1858	else if (S_ISFIFO(inode->i_mode))
1859		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1860	else if (S_ISSOCK(inode->i_mode))
1861		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1862
1863	icbflags =	iinfo->i_alloc_type |
1864			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1865			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1866			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1867			(le16_to_cpu(fe->icbTag.flags) &
1868				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1869				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1870
1871	fe->icbTag.flags = cpu_to_le16(icbflags);
1872	if (sbi->s_udfrev >= 0x0200)
1873		fe->descTag.descVersion = cpu_to_le16(3);
1874	else
1875		fe->descTag.descVersion = cpu_to_le16(2);
1876	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1877	fe->descTag.tagLocation = cpu_to_le32(
1878					iinfo->i_location.logicalBlockNum);
1879	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1880	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1881	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1882						  crclen));
1883	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1884
 
1885	set_buffer_uptodate(bh);
1886	unlock_buffer(bh);
1887
1888	/* write the data blocks */
1889	mark_buffer_dirty(bh);
1890	if (do_sync) {
1891		sync_dirty_buffer(bh);
1892		if (buffer_write_io_error(bh)) {
1893			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1894				 inode->i_ino);
 
1895			err = -EIO;
1896		}
1897	}
1898	brelse(bh);
1899
1900	return err;
1901}
1902
1903struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1904			 bool hidden_inode)
1905{
1906	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1907	struct inode *inode = iget_locked(sb, block);
1908	int err;
1909
1910	if (!inode)
1911		return ERR_PTR(-ENOMEM);
1912
1913	if (!(inode->i_state & I_NEW))
1914		return inode;
 
 
 
1915
1916	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1917	err = udf_read_inode(inode, hidden_inode);
1918	if (err < 0) {
1919		iget_failed(inode);
1920		return ERR_PTR(err);
 
 
 
 
1921	}
1922	unlock_new_inode(inode);
1923
1924	return inode;
 
 
 
 
1925}
1926
1927int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1928			    struct extent_position *epos)
1929{
1930	struct super_block *sb = inode->i_sb;
1931	struct buffer_head *bh;
 
1932	struct allocExtDesc *aed;
1933	struct extent_position nepos;
1934	struct kernel_lb_addr neloc;
1935	int ver, adsize;
1936
1937	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938		adsize = sizeof(struct short_ad);
1939	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940		adsize = sizeof(struct long_ad);
1941	else
1942		return -EIO;
1943
1944	neloc.logicalBlockNum = block;
1945	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1946
1947	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1948	if (!bh)
1949		return -EIO;
1950	lock_buffer(bh);
1951	memset(bh->b_data, 0x00, sb->s_blocksize);
1952	set_buffer_uptodate(bh);
1953	unlock_buffer(bh);
1954	mark_buffer_dirty_inode(bh, inode);
1955
1956	aed = (struct allocExtDesc *)(bh->b_data);
1957	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1958		aed->previousAllocExtLocation =
1959				cpu_to_le32(epos->block.logicalBlockNum);
1960	}
1961	aed->lengthAllocDescs = cpu_to_le32(0);
1962	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1963		ver = 3;
1964	else
1965		ver = 2;
1966	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1967		    sizeof(struct tag));
1968
1969	nepos.block = neloc;
1970	nepos.offset = sizeof(struct allocExtDesc);
1971	nepos.bh = bh;
1972
1973	/*
1974	 * Do we have to copy current last extent to make space for indirect
1975	 * one?
1976	 */
1977	if (epos->offset + adsize > sb->s_blocksize) {
1978		struct kernel_lb_addr cp_loc;
1979		uint32_t cp_len;
1980		int cp_type;
1981
1982		epos->offset -= adsize;
1983		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1984		cp_len |= ((uint32_t)cp_type) << 30;
1985
1986		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1987		udf_write_aext(inode, epos, &nepos.block,
1988			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1989	} else {
1990		__udf_add_aext(inode, epos, &nepos.block,
1991			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1992	}
1993
1994	brelse(epos->bh);
1995	*epos = nepos;
1996
1997	return 0;
1998}
1999
2000/*
2001 * Append extent at the given position - should be the first free one in inode
2002 * / indirect extent. This function assumes there is enough space in the inode
2003 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2004 */
2005int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2006		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007{
2008	struct udf_inode_info *iinfo = UDF_I(inode);
2009	struct allocExtDesc *aed;
2010	int adsize;
2011
2012	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013		adsize = sizeof(struct short_ad);
2014	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015		adsize = sizeof(struct long_ad);
2016	else
2017		return -EIO;
2018
2019	if (!epos->bh) {
2020		WARN_ON(iinfo->i_lenAlloc !=
2021			epos->offset - udf_file_entry_alloc_offset(inode));
2022	} else {
2023		aed = (struct allocExtDesc *)epos->bh->b_data;
2024		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2025			epos->offset - sizeof(struct allocExtDesc));
2026		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2027	}
2028
2029	udf_write_aext(inode, epos, eloc, elen, inc);
2030
2031	if (!epos->bh) {
2032		iinfo->i_lenAlloc += adsize;
2033		mark_inode_dirty(inode);
2034	} else {
2035		aed = (struct allocExtDesc *)epos->bh->b_data;
2036		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2037		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2038				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2039			udf_update_tag(epos->bh->b_data,
2040					epos->offset + (inc ? 0 : adsize));
2041		else
2042			udf_update_tag(epos->bh->b_data,
2043					sizeof(struct allocExtDesc));
2044		mark_buffer_dirty_inode(epos->bh, inode);
2045	}
2046
2047	return 0;
2048}
2049
2050/*
2051 * Append extent at given position - should be the first free one in inode
2052 * / indirect extent. Takes care of allocating and linking indirect blocks.
2053 */
2054int udf_add_aext(struct inode *inode, struct extent_position *epos,
2055		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2056{
2057	int adsize;
2058	struct super_block *sb = inode->i_sb;
2059
2060	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2061		adsize = sizeof(struct short_ad);
2062	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2063		adsize = sizeof(struct long_ad);
2064	else
2065		return -EIO;
2066
2067	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2068		int err;
2069		udf_pblk_t new_block;
2070
2071		new_block = udf_new_block(sb, NULL,
2072					  epos->block.partitionReferenceNum,
2073					  epos->block.logicalBlockNum, &err);
2074		if (!new_block)
2075			return -ENOSPC;
2076
2077		err = udf_setup_indirect_aext(inode, new_block, epos);
2078		if (err)
2079			return err;
2080	}
2081
2082	return __udf_add_aext(inode, epos, eloc, elen, inc);
2083}
2084
2085void udf_write_aext(struct inode *inode, struct extent_position *epos,
2086		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2087{
2088	int adsize;
2089	uint8_t *ptr;
2090	struct short_ad *sad;
2091	struct long_ad *lad;
2092	struct udf_inode_info *iinfo = UDF_I(inode);
2093
2094	if (!epos->bh)
2095		ptr = iinfo->i_data + epos->offset -
2096			udf_file_entry_alloc_offset(inode) +
2097			iinfo->i_lenEAttr;
2098	else
2099		ptr = epos->bh->b_data + epos->offset;
2100
2101	switch (iinfo->i_alloc_type) {
2102	case ICBTAG_FLAG_AD_SHORT:
2103		sad = (struct short_ad *)ptr;
2104		sad->extLength = cpu_to_le32(elen);
2105		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2106		adsize = sizeof(struct short_ad);
2107		break;
2108	case ICBTAG_FLAG_AD_LONG:
2109		lad = (struct long_ad *)ptr;
2110		lad->extLength = cpu_to_le32(elen);
2111		lad->extLocation = cpu_to_lelb(*eloc);
2112		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2113		adsize = sizeof(struct long_ad);
2114		break;
2115	default:
2116		return;
2117	}
2118
2119	if (epos->bh) {
2120		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2121		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2122			struct allocExtDesc *aed =
2123				(struct allocExtDesc *)epos->bh->b_data;
2124			udf_update_tag(epos->bh->b_data,
2125				       le32_to_cpu(aed->lengthAllocDescs) +
2126				       sizeof(struct allocExtDesc));
2127		}
2128		mark_buffer_dirty_inode(epos->bh, inode);
2129	} else {
2130		mark_inode_dirty(inode);
2131	}
2132
2133	if (inc)
2134		epos->offset += adsize;
2135}
2136
2137/*
2138 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2139 * someone does some weird stuff.
2140 */
2141#define UDF_MAX_INDIR_EXTS 16
2142
2143int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2144		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2145{
2146	int8_t etype;
2147	unsigned int indirections = 0;
2148
2149	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2150	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2151		udf_pblk_t block;
2152
2153		if (++indirections > UDF_MAX_INDIR_EXTS) {
2154			udf_err(inode->i_sb,
2155				"too many indirect extents in inode %lu\n",
2156				inode->i_ino);
2157			return -1;
2158		}
2159
2160		epos->block = *eloc;
2161		epos->offset = sizeof(struct allocExtDesc);
2162		brelse(epos->bh);
2163		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2164		epos->bh = udf_tread(inode->i_sb, block);
2165		if (!epos->bh) {
2166			udf_debug("reading block %u failed!\n", block);
2167			return -1;
2168		}
2169	}
2170
2171	return etype;
2172}
2173
2174int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2175			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2176{
2177	int alen;
2178	int8_t etype;
2179	uint8_t *ptr;
2180	struct short_ad *sad;
2181	struct long_ad *lad;
2182	struct udf_inode_info *iinfo = UDF_I(inode);
2183
2184	if (!epos->bh) {
2185		if (!epos->offset)
2186			epos->offset = udf_file_entry_alloc_offset(inode);
2187		ptr = iinfo->i_data + epos->offset -
2188			udf_file_entry_alloc_offset(inode) +
2189			iinfo->i_lenEAttr;
2190		alen = udf_file_entry_alloc_offset(inode) +
2191							iinfo->i_lenAlloc;
2192	} else {
2193		if (!epos->offset)
2194			epos->offset = sizeof(struct allocExtDesc);
2195		ptr = epos->bh->b_data + epos->offset;
2196		alen = sizeof(struct allocExtDesc) +
2197			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2198							lengthAllocDescs);
2199	}
2200
2201	switch (iinfo->i_alloc_type) {
2202	case ICBTAG_FLAG_AD_SHORT:
2203		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2204		if (!sad)
2205			return -1;
2206		etype = le32_to_cpu(sad->extLength) >> 30;
2207		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2208		eloc->partitionReferenceNum =
2209				iinfo->i_location.partitionReferenceNum;
2210		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2211		break;
2212	case ICBTAG_FLAG_AD_LONG:
2213		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2214		if (!lad)
2215			return -1;
2216		etype = le32_to_cpu(lad->extLength) >> 30;
2217		*eloc = lelb_to_cpu(lad->extLocation);
2218		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2219		break;
2220	default:
2221		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
 
2222		return -1;
2223	}
2224
2225	return etype;
2226}
2227
2228static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2229			      struct kernel_lb_addr neloc, uint32_t nelen)
2230{
2231	struct kernel_lb_addr oeloc;
2232	uint32_t oelen;
2233	int8_t etype;
2234
2235	if (epos.bh)
2236		get_bh(epos.bh);
2237
2238	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2239		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2240		neloc = oeloc;
2241		nelen = (etype << 30) | oelen;
2242	}
2243	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2244	brelse(epos.bh);
2245
2246	return (nelen >> 30);
2247}
2248
2249int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
 
2250{
2251	struct extent_position oepos;
2252	int adsize;
2253	int8_t etype;
2254	struct allocExtDesc *aed;
2255	struct udf_inode_info *iinfo;
2256	struct kernel_lb_addr eloc;
2257	uint32_t elen;
2258
2259	if (epos.bh) {
2260		get_bh(epos.bh);
2261		get_bh(epos.bh);
2262	}
2263
2264	iinfo = UDF_I(inode);
2265	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2266		adsize = sizeof(struct short_ad);
2267	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2268		adsize = sizeof(struct long_ad);
2269	else
2270		adsize = 0;
2271
2272	oepos = epos;
2273	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2274		return -1;
2275
2276	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2277		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2278		if (oepos.bh != epos.bh) {
2279			oepos.block = epos.block;
2280			brelse(oepos.bh);
2281			get_bh(epos.bh);
2282			oepos.bh = epos.bh;
2283			oepos.offset = epos.offset - adsize;
2284		}
2285	}
2286	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2287	elen = 0;
2288
2289	if (epos.bh != oepos.bh) {
2290		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2291		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2292		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2293		if (!oepos.bh) {
2294			iinfo->i_lenAlloc -= (adsize * 2);
2295			mark_inode_dirty(inode);
2296		} else {
2297			aed = (struct allocExtDesc *)oepos.bh->b_data;
2298			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2299			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2300			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2301				udf_update_tag(oepos.bh->b_data,
2302						oepos.offset - (2 * adsize));
2303			else
2304				udf_update_tag(oepos.bh->b_data,
2305						sizeof(struct allocExtDesc));
2306			mark_buffer_dirty_inode(oepos.bh, inode);
2307		}
2308	} else {
2309		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2310		if (!oepos.bh) {
2311			iinfo->i_lenAlloc -= adsize;
2312			mark_inode_dirty(inode);
2313		} else {
2314			aed = (struct allocExtDesc *)oepos.bh->b_data;
2315			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2316			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2317			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2318				udf_update_tag(oepos.bh->b_data,
2319						epos.offset - adsize);
2320			else
2321				udf_update_tag(oepos.bh->b_data,
2322						sizeof(struct allocExtDesc));
2323			mark_buffer_dirty_inode(oepos.bh, inode);
2324		}
2325	}
2326
2327	brelse(epos.bh);
2328	brelse(oepos.bh);
2329
2330	return (elen >> 30);
2331}
2332
2333int8_t inode_bmap(struct inode *inode, sector_t block,
2334		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2335		  uint32_t *elen, sector_t *offset)
2336{
2337	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2338	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
 
2339	int8_t etype;
2340	struct udf_inode_info *iinfo;
2341
2342	iinfo = UDF_I(inode);
2343	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2344		pos->offset = 0;
2345		pos->block = iinfo->i_location;
2346		pos->bh = NULL;
2347	}
2348	*elen = 0;
 
2349	do {
2350		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2351		if (etype == -1) {
2352			*offset = (bcount - lbcount) >> blocksize_bits;
2353			iinfo->i_lenExtents = lbcount;
2354			return -1;
2355		}
2356		lbcount += *elen;
2357	} while (lbcount <= bcount);
2358	/* update extent cache */
2359	udf_update_extent_cache(inode, lbcount - *elen, pos);
2360	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2361
2362	return etype;
2363}
2364
2365udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2366{
2367	struct kernel_lb_addr eloc;
2368	uint32_t elen;
2369	sector_t offset;
2370	struct extent_position epos = {};
2371	udf_pblk_t ret;
2372
2373	down_read(&UDF_I(inode)->i_data_sem);
2374
2375	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2376						(EXT_RECORDED_ALLOCATED >> 30))
2377		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2378	else
2379		ret = 0;
2380
2381	up_read(&UDF_I(inode)->i_data_sem);
2382	brelse(epos.bh);
2383
2384	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2385		return udf_fixed_to_variable(ret);
2386	else
2387		return ret;
2388}
v3.1
   1/*
   2 * inode.c
   3 *
   4 * PURPOSE
   5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *  This file is distributed under the terms of the GNU General Public
   9 *  License (GPL). Copies of the GPL can be obtained from:
  10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *  Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1998 Dave Boynton
  14 *  (C) 1998-2004 Ben Fennema
  15 *  (C) 1999-2000 Stelias Computing Inc
  16 *
  17 * HISTORY
  18 *
  19 *  10/04/98 dgb  Added rudimentary directory functions
  20 *  10/07/98      Fully working udf_block_map! It works!
  21 *  11/25/98      bmap altered to better support extents
  22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23 *                and udf_read_inode
  24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25 *                block boundaries (which is not actually allowed)
  26 *  12/20/98      added support for strategy 4096
  27 *  03/07/99      rewrote udf_block_map (again)
  28 *                New funcs, inode_bmap, udf_next_aext
  29 *  04/19/99      Support for writing device EA's for major/minor #
  30 */
  31
  32#include "udfdecl.h"
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/pagemap.h>
  36#include <linux/buffer_head.h>
  37#include <linux/writeback.h>
  38#include <linux/slab.h>
  39#include <linux/crc-itu-t.h>
 
 
 
  40
  41#include "udf_i.h"
  42#include "udf_sb.h"
  43
  44MODULE_AUTHOR("Ben Fennema");
  45MODULE_DESCRIPTION("Universal Disk Format Filesystem");
  46MODULE_LICENSE("GPL");
 
 
  47
  48#define EXTENT_MERGE_SIZE 5
 
  49
  50static mode_t udf_convert_permissions(struct fileEntry *);
  51static int udf_update_inode(struct inode *, int);
  52static void udf_fill_inode(struct inode *, struct buffer_head *);
  53static int udf_sync_inode(struct inode *inode);
  54static int udf_alloc_i_data(struct inode *inode, size_t size);
  55static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
  56					sector_t *, int *);
  57static int8_t udf_insert_aext(struct inode *, struct extent_position,
  58			      struct kernel_lb_addr, uint32_t);
  59static void udf_split_extents(struct inode *, int *, int, int,
  60			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
  61static void udf_prealloc_extents(struct inode *, int, int,
  62				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
  63static void udf_merge_extents(struct inode *,
  64			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
  65static void udf_update_extents(struct inode *,
  66			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
  67			       struct extent_position *);
  68static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
  69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70
  71void udf_evict_inode(struct inode *inode)
  72{
  73	struct udf_inode_info *iinfo = UDF_I(inode);
  74	int want_delete = 0;
  75
  76	if (!inode->i_nlink && !is_bad_inode(inode)) {
  77		want_delete = 1;
  78		udf_setsize(inode, 0);
  79		udf_update_inode(inode, IS_SYNC(inode));
  80	} else
  81		truncate_inode_pages(&inode->i_data, 0);
 
 
 
 
 
 
 
 
 
 
  82	invalidate_inode_buffers(inode);
  83	end_writeback(inode);
  84	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
  85	    inode->i_size != iinfo->i_lenExtents) {
  86		printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has "
  87			"inode size %llu different from extent length %llu. "
  88			"Filesystem need not be standards compliant.\n",
  89			inode->i_sb->s_id, inode->i_ino, inode->i_mode,
  90			(unsigned long long)inode->i_size,
  91			(unsigned long long)iinfo->i_lenExtents);
  92	}
  93	kfree(iinfo->i_ext.i_data);
  94	iinfo->i_ext.i_data = NULL;
  95	if (want_delete) {
  96		udf_free_inode(inode);
  97	}
  98}
  99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100static int udf_writepage(struct page *page, struct writeback_control *wbc)
 101{
 102	return block_write_full_page(page, udf_get_block, wbc);
 103}
 104
 
 
 
 
 
 
 105static int udf_readpage(struct file *file, struct page *page)
 106{
 107	return block_read_full_page(page, udf_get_block);
 
 
 
 
 
 108}
 109
 110static int udf_write_begin(struct file *file, struct address_space *mapping,
 111			loff_t pos, unsigned len, unsigned flags,
 112			struct page **pagep, void **fsdata)
 113{
 114	int ret;
 115
 116	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
 117	if (unlikely(ret)) {
 118		struct inode *inode = mapping->host;
 119		struct udf_inode_info *iinfo = UDF_I(inode);
 120		loff_t isize = inode->i_size;
 121
 122		if (pos + len > isize) {
 123			truncate_pagecache(inode, pos + len, isize);
 124			if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 125				down_write(&iinfo->i_data_sem);
 126				udf_truncate_extents(inode);
 127				up_write(&iinfo->i_data_sem);
 128			}
 129		}
 130	}
 131
 
 
 
 
 
 
 
 
 
 
 
 132	return ret;
 133}
 134
 135static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 136{
 137	return generic_block_bmap(mapping, block, udf_get_block);
 138}
 139
 140const struct address_space_operations udf_aops = {
 
 141	.readpage	= udf_readpage,
 
 142	.writepage	= udf_writepage,
 143	.write_begin		= udf_write_begin,
 144	.write_end		= generic_write_end,
 
 
 145	.bmap		= udf_bmap,
 146};
 147
 
 
 
 
 
 
 148int udf_expand_file_adinicb(struct inode *inode)
 149{
 150	struct page *page;
 151	char *kaddr;
 152	struct udf_inode_info *iinfo = UDF_I(inode);
 153	int err;
 154	struct writeback_control udf_wbc = {
 155		.sync_mode = WB_SYNC_NONE,
 156		.nr_to_write = 1,
 157	};
 158
 
 159	if (!iinfo->i_lenAlloc) {
 160		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 161			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 162		else
 163			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 164		/* from now on we have normal address_space methods */
 165		inode->i_data.a_ops = &udf_aops;
 
 166		mark_inode_dirty(inode);
 167		return 0;
 168	}
 
 
 
 
 
 169
 170	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 171	if (!page)
 172		return -ENOMEM;
 173
 174	if (!PageUptodate(page)) {
 175		kaddr = kmap(page);
 176		memset(kaddr + iinfo->i_lenAlloc, 0x00,
 177		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
 178		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
 179			iinfo->i_lenAlloc);
 180		flush_dcache_page(page);
 181		SetPageUptodate(page);
 182		kunmap(page);
 183	}
 184	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
 
 185	       iinfo->i_lenAlloc);
 186	iinfo->i_lenAlloc = 0;
 187	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 188		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 189	else
 190		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 191	/* from now on we have normal address_space methods */
 192	inode->i_data.a_ops = &udf_aops;
 
 193	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
 194	if (err) {
 195		/* Restore everything back so that we don't lose data... */
 196		lock_page(page);
 197		kaddr = kmap(page);
 198		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
 199		       inode->i_size);
 200		kunmap(page);
 201		unlock_page(page);
 202		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 203		inode->i_data.a_ops = &udf_adinicb_aops;
 
 204	}
 205	page_cache_release(page);
 206	mark_inode_dirty(inode);
 207
 208	return err;
 209}
 210
 211struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
 212					   int *err)
 213{
 214	int newblock;
 215	struct buffer_head *dbh = NULL;
 216	struct kernel_lb_addr eloc;
 217	uint8_t alloctype;
 218	struct extent_position epos;
 219
 220	struct udf_fileident_bh sfibh, dfibh;
 221	loff_t f_pos = udf_ext0_offset(inode);
 222	int size = udf_ext0_offset(inode) + inode->i_size;
 223	struct fileIdentDesc cfi, *sfi, *dfi;
 224	struct udf_inode_info *iinfo = UDF_I(inode);
 225
 226	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 227		alloctype = ICBTAG_FLAG_AD_SHORT;
 228	else
 229		alloctype = ICBTAG_FLAG_AD_LONG;
 230
 231	if (!inode->i_size) {
 232		iinfo->i_alloc_type = alloctype;
 233		mark_inode_dirty(inode);
 234		return NULL;
 235	}
 236
 237	/* alloc block, and copy data to it */
 238	*block = udf_new_block(inode->i_sb, inode,
 239			       iinfo->i_location.partitionReferenceNum,
 240			       iinfo->i_location.logicalBlockNum, err);
 241	if (!(*block))
 242		return NULL;
 243	newblock = udf_get_pblock(inode->i_sb, *block,
 244				  iinfo->i_location.partitionReferenceNum,
 245				0);
 246	if (!newblock)
 247		return NULL;
 248	dbh = udf_tgetblk(inode->i_sb, newblock);
 249	if (!dbh)
 250		return NULL;
 251	lock_buffer(dbh);
 252	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 253	set_buffer_uptodate(dbh);
 254	unlock_buffer(dbh);
 255	mark_buffer_dirty_inode(dbh, inode);
 256
 257	sfibh.soffset = sfibh.eoffset =
 258			f_pos & (inode->i_sb->s_blocksize - 1);
 259	sfibh.sbh = sfibh.ebh = NULL;
 260	dfibh.soffset = dfibh.eoffset = 0;
 261	dfibh.sbh = dfibh.ebh = dbh;
 262	while (f_pos < size) {
 263		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 264		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 265					 NULL, NULL, NULL);
 266		if (!sfi) {
 267			brelse(dbh);
 268			return NULL;
 269		}
 270		iinfo->i_alloc_type = alloctype;
 271		sfi->descTag.tagLocation = cpu_to_le32(*block);
 272		dfibh.soffset = dfibh.eoffset;
 273		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 274		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 275		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 276				 sfi->fileIdent +
 277					le16_to_cpu(sfi->lengthOfImpUse))) {
 278			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 279			brelse(dbh);
 280			return NULL;
 281		}
 282	}
 283	mark_buffer_dirty_inode(dbh, inode);
 284
 285	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
 286		iinfo->i_lenAlloc);
 287	iinfo->i_lenAlloc = 0;
 288	eloc.logicalBlockNum = *block;
 289	eloc.partitionReferenceNum =
 290				iinfo->i_location.partitionReferenceNum;
 291	iinfo->i_lenExtents = inode->i_size;
 292	epos.bh = NULL;
 293	epos.block = iinfo->i_location;
 294	epos.offset = udf_file_entry_alloc_offset(inode);
 295	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 296	/* UniqueID stuff */
 297
 298	brelse(epos.bh);
 299	mark_inode_dirty(inode);
 300	return dbh;
 301}
 302
 303static int udf_get_block(struct inode *inode, sector_t block,
 304			 struct buffer_head *bh_result, int create)
 305{
 306	int err, new;
 307	struct buffer_head *bh;
 308	sector_t phys = 0;
 309	struct udf_inode_info *iinfo;
 310
 311	if (!create) {
 312		phys = udf_block_map(inode, block);
 313		if (phys)
 314			map_bh(bh_result, inode->i_sb, phys);
 315		return 0;
 316	}
 317
 318	err = -EIO;
 319	new = 0;
 320	bh = NULL;
 321	iinfo = UDF_I(inode);
 322
 323	down_write(&iinfo->i_data_sem);
 324	if (block == iinfo->i_next_alloc_block + 1) {
 325		iinfo->i_next_alloc_block++;
 326		iinfo->i_next_alloc_goal++;
 327	}
 328
 329	err = 0;
 330
 331	bh = inode_getblk(inode, block, &err, &phys, &new);
 332	BUG_ON(bh);
 333	if (err)
 334		goto abort;
 335	BUG_ON(!phys);
 336
 337	if (new)
 338		set_buffer_new(bh_result);
 339	map_bh(bh_result, inode->i_sb, phys);
 340
 341abort:
 342	up_write(&iinfo->i_data_sem);
 343	return err;
 344}
 345
 346static struct buffer_head *udf_getblk(struct inode *inode, long block,
 347				      int create, int *err)
 348{
 349	struct buffer_head *bh;
 350	struct buffer_head dummy;
 351
 352	dummy.b_state = 0;
 353	dummy.b_blocknr = -1000;
 354	*err = udf_get_block(inode, block, &dummy, create);
 355	if (!*err && buffer_mapped(&dummy)) {
 356		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 357		if (buffer_new(&dummy)) {
 358			lock_buffer(bh);
 359			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 360			set_buffer_uptodate(bh);
 361			unlock_buffer(bh);
 362			mark_buffer_dirty_inode(bh, inode);
 363		}
 364		return bh;
 365	}
 366
 367	return NULL;
 368}
 369
 370/* Extend the file by 'blocks' blocks, return the number of extents added */
 
 
 371static int udf_do_extend_file(struct inode *inode,
 372			      struct extent_position *last_pos,
 373			      struct kernel_long_ad *last_ext,
 374			      sector_t blocks)
 375{
 376	sector_t add;
 377	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 378	struct super_block *sb = inode->i_sb;
 379	struct kernel_lb_addr prealloc_loc = {};
 380	int prealloc_len = 0;
 381	struct udf_inode_info *iinfo;
 382	int err;
 383
 384	/* The previous extent is fake and we should not extend by anything
 385	 * - there's nothing to do... */
 386	if (!blocks && fake)
 387		return 0;
 388
 389	iinfo = UDF_I(inode);
 390	/* Round the last extent up to a multiple of block size */
 391	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 392		last_ext->extLength =
 393			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 394			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 395			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 396		iinfo->i_lenExtents =
 397			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 398			~(sb->s_blocksize - 1);
 399	}
 400
 401	/* Last extent are just preallocated blocks? */
 402	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 403						EXT_NOT_RECORDED_ALLOCATED) {
 404		/* Save the extent so that we can reattach it to the end */
 405		prealloc_loc = last_ext->extLocation;
 406		prealloc_len = last_ext->extLength;
 407		/* Mark the extent as a hole */
 408		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 409			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 410		last_ext->extLocation.logicalBlockNum = 0;
 411		last_ext->extLocation.partitionReferenceNum = 0;
 412	}
 413
 414	/* Can we merge with the previous extent? */
 415	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 416					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 417		add = ((1 << 30) - sb->s_blocksize -
 418			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
 419			sb->s_blocksize_bits;
 420		if (add > blocks)
 421			add = blocks;
 422		blocks -= add;
 423		last_ext->extLength += add << sb->s_blocksize_bits;
 424	}
 425
 426	if (fake) {
 427		udf_add_aext(inode, last_pos, &last_ext->extLocation,
 428			     last_ext->extLength, 1);
 429		count++;
 430	} else
 
 
 
 431		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 432				last_ext->extLength, 1);
 433
 
 
 
 
 
 
 
 
 
 434	/* Managed to do everything necessary? */
 435	if (!blocks)
 436		goto out;
 437
 438	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 439	last_ext->extLocation.logicalBlockNum = 0;
 440	last_ext->extLocation.partitionReferenceNum = 0;
 441	add = (1 << (30-sb->s_blocksize_bits)) - 1;
 442	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 443				(add << sb->s_blocksize_bits);
 444
 445	/* Create enough extents to cover the whole hole */
 446	while (blocks > add) {
 447		blocks -= add;
 448		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 449				   last_ext->extLength, 1);
 450		if (err)
 451			return err;
 452		count++;
 453	}
 454	if (blocks) {
 455		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 456			(blocks << sb->s_blocksize_bits);
 457		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 458				   last_ext->extLength, 1);
 459		if (err)
 460			return err;
 461		count++;
 462	}
 463
 464out:
 465	/* Do we have some preallocated blocks saved? */
 466	if (prealloc_len) {
 467		err = udf_add_aext(inode, last_pos, &prealloc_loc,
 468				   prealloc_len, 1);
 469		if (err)
 470			return err;
 471		last_ext->extLocation = prealloc_loc;
 472		last_ext->extLength = prealloc_len;
 473		count++;
 474	}
 475
 476	/* last_pos should point to the last written extent... */
 477	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 478		last_pos->offset -= sizeof(struct short_ad);
 479	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 480		last_pos->offset -= sizeof(struct long_ad);
 481	else
 482		return -EIO;
 483
 484	return count;
 485}
 486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487static int udf_extend_file(struct inode *inode, loff_t newsize)
 488{
 489
 490	struct extent_position epos;
 491	struct kernel_lb_addr eloc;
 492	uint32_t elen;
 493	int8_t etype;
 494	struct super_block *sb = inode->i_sb;
 495	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 
 496	int adsize;
 497	struct udf_inode_info *iinfo = UDF_I(inode);
 498	struct kernel_long_ad extent;
 499	int err;
 
 500
 501	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 502		adsize = sizeof(struct short_ad);
 503	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 504		adsize = sizeof(struct long_ad);
 505	else
 506		BUG();
 507
 508	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 
 509
 510	/* File has extent covering the new size (could happen when extending
 511	 * inside a block)? */
 512	if (etype != -1)
 513		return 0;
 514	if (newsize & (sb->s_blocksize - 1))
 515		offset++;
 516	/* Extended file just to the boundary of the last file block? */
 517	if (offset == 0)
 518		return 0;
 519
 520	/* Truncate is extending the file by 'offset' blocks */
 521	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 522	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 523		/* File has no extents at all or has empty last
 524		 * indirect extent! Create a fake extent... */
 525		extent.extLocation.logicalBlockNum = 0;
 526		extent.extLocation.partitionReferenceNum = 0;
 527		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 528	} else {
 529		epos.offset -= adsize;
 530		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 531				      &extent.extLength, 0);
 532		extent.extLength |= etype << 30;
 533	}
 534	err = udf_do_extend_file(inode, &epos, &extent, offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535	if (err < 0)
 536		goto out;
 537	err = 0;
 538	iinfo->i_lenExtents = newsize;
 539out:
 540	brelse(epos.bh);
 541	return err;
 542}
 543
 544static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
 545					int *err, sector_t *phys, int *new)
 546{
 547	static sector_t last_block;
 548	struct buffer_head *result = NULL;
 549	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 550	struct extent_position prev_epos, cur_epos, next_epos;
 551	int count = 0, startnum = 0, endnum = 0;
 552	uint32_t elen = 0, tmpelen;
 553	struct kernel_lb_addr eloc, tmpeloc;
 554	int c = 1;
 555	loff_t lbcount = 0, b_off = 0;
 556	uint32_t newblocknum, newblock;
 557	sector_t offset = 0;
 558	int8_t etype;
 559	struct udf_inode_info *iinfo = UDF_I(inode);
 560	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 561	int lastblock = 0;
 
 562
 
 
 563	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 564	prev_epos.block = iinfo->i_location;
 565	prev_epos.bh = NULL;
 566	cur_epos = next_epos = prev_epos;
 567	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 568
 569	/* find the extent which contains the block we are looking for.
 570	   alternate between laarr[0] and laarr[1] for locations of the
 571	   current extent, and the previous extent */
 572	do {
 573		if (prev_epos.bh != cur_epos.bh) {
 574			brelse(prev_epos.bh);
 575			get_bh(cur_epos.bh);
 576			prev_epos.bh = cur_epos.bh;
 577		}
 578		if (cur_epos.bh != next_epos.bh) {
 579			brelse(cur_epos.bh);
 580			get_bh(next_epos.bh);
 581			cur_epos.bh = next_epos.bh;
 582		}
 583
 584		lbcount += elen;
 585
 586		prev_epos.block = cur_epos.block;
 587		cur_epos.block = next_epos.block;
 588
 589		prev_epos.offset = cur_epos.offset;
 590		cur_epos.offset = next_epos.offset;
 591
 592		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 593		if (etype == -1)
 594			break;
 595
 596		c = !c;
 597
 598		laarr[c].extLength = (etype << 30) | elen;
 599		laarr[c].extLocation = eloc;
 600
 601		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 602			pgoal = eloc.logicalBlockNum +
 603				((elen + inode->i_sb->s_blocksize - 1) >>
 604				 inode->i_sb->s_blocksize_bits);
 605
 606		count++;
 607	} while (lbcount + elen <= b_off);
 608
 609	b_off -= lbcount;
 610	offset = b_off >> inode->i_sb->s_blocksize_bits;
 611	/*
 612	 * Move prev_epos and cur_epos into indirect extent if we are at
 613	 * the pointer to it
 614	 */
 615	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 616	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 617
 618	/* if the extent is allocated and recorded, return the block
 619	   if the extent is not a multiple of the blocksize, round up */
 620
 621	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 622		if (elen & (inode->i_sb->s_blocksize - 1)) {
 623			elen = EXT_RECORDED_ALLOCATED |
 624				((elen + inode->i_sb->s_blocksize - 1) &
 625				 ~(inode->i_sb->s_blocksize - 1));
 626			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 627		}
 628		brelse(prev_epos.bh);
 629		brelse(cur_epos.bh);
 630		brelse(next_epos.bh);
 631		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 632		*phys = newblock;
 633		return NULL;
 634	}
 635
 636	last_block = block;
 637	/* Are we beyond EOF? */
 638	if (etype == -1) {
 639		int ret;
 640
 
 641		if (count) {
 642			if (c)
 643				laarr[0] = laarr[1];
 644			startnum = 1;
 645		} else {
 646			/* Create a fake extent when there's not one */
 647			memset(&laarr[0].extLocation, 0x00,
 648				sizeof(struct kernel_lb_addr));
 649			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 650			/* Will udf_do_extend_file() create real extent from
 651			   a fake one? */
 652			startnum = (offset > 0);
 653		}
 654		/* Create extents for the hole between EOF and offset */
 655		ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
 
 656		if (ret < 0) {
 657			brelse(prev_epos.bh);
 658			brelse(cur_epos.bh);
 659			brelse(next_epos.bh);
 660			*err = ret;
 661			return NULL;
 
 662		}
 663		c = 0;
 664		offset = 0;
 665		count += ret;
 666		/* We are not covered by a preallocated extent? */
 667		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 668						EXT_NOT_RECORDED_ALLOCATED) {
 669			/* Is there any real extent? - otherwise we overwrite
 670			 * the fake one... */
 671			if (count)
 672				c = !c;
 673			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 674				inode->i_sb->s_blocksize;
 675			memset(&laarr[c].extLocation, 0x00,
 676				sizeof(struct kernel_lb_addr));
 677			count++;
 678			endnum++;
 679		}
 680		endnum = c + 1;
 681		lastblock = 1;
 682	} else {
 
 683		endnum = startnum = ((count > 2) ? 2 : count);
 684
 685		/* if the current extent is in position 0,
 686		   swap it with the previous */
 687		if (!c && count != 1) {
 688			laarr[2] = laarr[0];
 689			laarr[0] = laarr[1];
 690			laarr[1] = laarr[2];
 691			c = 1;
 692		}
 693
 694		/* if the current block is located in an extent,
 695		   read the next extent */
 696		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 697		if (etype != -1) {
 698			laarr[c + 1].extLength = (etype << 30) | elen;
 699			laarr[c + 1].extLocation = eloc;
 700			count++;
 701			startnum++;
 702			endnum++;
 703		} else
 704			lastblock = 1;
 705	}
 706
 707	/* if the current extent is not recorded but allocated, get the
 708	 * block in the extent corresponding to the requested block */
 709	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 710		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 711	else { /* otherwise, allocate a new block */
 712		if (iinfo->i_next_alloc_block == block)
 713			goal = iinfo->i_next_alloc_goal;
 714
 715		if (!goal) {
 716			if (!(goal = pgoal)) /* XXX: what was intended here? */
 717				goal = iinfo->i_location.logicalBlockNum + 1;
 718		}
 719
 720		newblocknum = udf_new_block(inode->i_sb, inode,
 721				iinfo->i_location.partitionReferenceNum,
 722				goal, err);
 723		if (!newblocknum) {
 724			brelse(prev_epos.bh);
 725			*err = -ENOSPC;
 726			return NULL;
 
 727		}
 728		iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 
 729	}
 730
 731	/* if the extent the requsted block is located in contains multiple
 732	 * blocks, split the extent into at most three extents. blocks prior
 733	 * to requested block, requested block, and blocks after requested
 734	 * block */
 735	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 736
 737#ifdef UDF_PREALLOCATE
 738	/* We preallocate blocks only for regular files. It also makes sense
 739	 * for directories but there's a problem when to drop the
 740	 * preallocation. We might use some delayed work for that but I feel
 741	 * it's overengineering for a filesystem like UDF. */
 742	if (S_ISREG(inode->i_mode))
 743		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 744#endif
 745
 746	/* merge any continuous blocks in laarr */
 747	udf_merge_extents(inode, laarr, &endnum);
 748
 749	/* write back the new extents, inserting new extents if the new number
 750	 * of extents is greater than the old number, and deleting extents if
 751	 * the new number of extents is less than the old number */
 752	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 753
 754	brelse(prev_epos.bh);
 755
 756	newblock = udf_get_pblock(inode->i_sb, newblocknum,
 757				iinfo->i_location.partitionReferenceNum, 0);
 758	if (!newblock)
 759		return NULL;
 760	*phys = newblock;
 761	*err = 0;
 762	*new = 1;
 763	iinfo->i_next_alloc_block = block;
 764	iinfo->i_next_alloc_goal = newblocknum;
 765	inode->i_ctime = current_fs_time(inode->i_sb);
 766
 767	if (IS_SYNC(inode))
 768		udf_sync_inode(inode);
 769	else
 770		mark_inode_dirty(inode);
 771
 772	return result;
 
 
 
 773}
 774
 775static void udf_split_extents(struct inode *inode, int *c, int offset,
 776			      int newblocknum,
 777			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
 778			      int *endnum)
 779{
 780	unsigned long blocksize = inode->i_sb->s_blocksize;
 781	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 782
 783	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 784	    (laarr[*c].extLength >> 30) ==
 785				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 786		int curr = *c;
 787		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 788			    blocksize - 1) >> blocksize_bits;
 789		int8_t etype = (laarr[curr].extLength >> 30);
 790
 791		if (blen == 1)
 792			;
 793		else if (!offset || blen == offset + 1) {
 794			laarr[curr + 2] = laarr[curr + 1];
 795			laarr[curr + 1] = laarr[curr];
 796		} else {
 797			laarr[curr + 3] = laarr[curr + 1];
 798			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 799		}
 800
 801		if (offset) {
 802			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 803				udf_free_blocks(inode->i_sb, inode,
 804						&laarr[curr].extLocation,
 805						0, offset);
 806				laarr[curr].extLength =
 807					EXT_NOT_RECORDED_NOT_ALLOCATED |
 808					(offset << blocksize_bits);
 809				laarr[curr].extLocation.logicalBlockNum = 0;
 810				laarr[curr].extLocation.
 811						partitionReferenceNum = 0;
 812			} else
 813				laarr[curr].extLength = (etype << 30) |
 814					(offset << blocksize_bits);
 815			curr++;
 816			(*c)++;
 817			(*endnum)++;
 818		}
 819
 820		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 821		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 822			laarr[curr].extLocation.partitionReferenceNum =
 823				UDF_I(inode)->i_location.partitionReferenceNum;
 824		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 825			blocksize;
 826		curr++;
 827
 828		if (blen != offset + 1) {
 829			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 830				laarr[curr].extLocation.logicalBlockNum +=
 831								offset + 1;
 832			laarr[curr].extLength = (etype << 30) |
 833				((blen - (offset + 1)) << blocksize_bits);
 834			curr++;
 835			(*endnum)++;
 836		}
 837	}
 838}
 839
 840static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 841				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
 842				 int *endnum)
 843{
 844	int start, length = 0, currlength = 0, i;
 845
 846	if (*endnum >= (c + 1)) {
 847		if (!lastblock)
 848			return;
 849		else
 850			start = c;
 851	} else {
 852		if ((laarr[c + 1].extLength >> 30) ==
 853					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 854			start = c + 1;
 855			length = currlength =
 856				(((laarr[c + 1].extLength &
 857					UDF_EXTENT_LENGTH_MASK) +
 858				inode->i_sb->s_blocksize - 1) >>
 859				inode->i_sb->s_blocksize_bits);
 860		} else
 861			start = c;
 862	}
 863
 864	for (i = start + 1; i <= *endnum; i++) {
 865		if (i == *endnum) {
 866			if (lastblock)
 867				length += UDF_DEFAULT_PREALLOC_BLOCKS;
 868		} else if ((laarr[i].extLength >> 30) ==
 869				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 870			length += (((laarr[i].extLength &
 871						UDF_EXTENT_LENGTH_MASK) +
 872				    inode->i_sb->s_blocksize - 1) >>
 873				    inode->i_sb->s_blocksize_bits);
 874		} else
 875			break;
 876	}
 877
 878	if (length) {
 879		int next = laarr[start].extLocation.logicalBlockNum +
 880			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
 881			  inode->i_sb->s_blocksize - 1) >>
 882			  inode->i_sb->s_blocksize_bits);
 883		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
 884				laarr[start].extLocation.partitionReferenceNum,
 885				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
 886				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
 887				currlength);
 888		if (numalloc) 	{
 889			if (start == (c + 1))
 890				laarr[start].extLength +=
 891					(numalloc <<
 892					 inode->i_sb->s_blocksize_bits);
 893			else {
 894				memmove(&laarr[c + 2], &laarr[c + 1],
 895					sizeof(struct long_ad) * (*endnum - (c + 1)));
 896				(*endnum)++;
 897				laarr[c + 1].extLocation.logicalBlockNum = next;
 898				laarr[c + 1].extLocation.partitionReferenceNum =
 899					laarr[c].extLocation.
 900							partitionReferenceNum;
 901				laarr[c + 1].extLength =
 902					EXT_NOT_RECORDED_ALLOCATED |
 903					(numalloc <<
 904					 inode->i_sb->s_blocksize_bits);
 905				start = c + 1;
 906			}
 907
 908			for (i = start + 1; numalloc && i < *endnum; i++) {
 909				int elen = ((laarr[i].extLength &
 910						UDF_EXTENT_LENGTH_MASK) +
 911					    inode->i_sb->s_blocksize - 1) >>
 912					    inode->i_sb->s_blocksize_bits;
 913
 914				if (elen > numalloc) {
 915					laarr[i].extLength -=
 916						(numalloc <<
 917						 inode->i_sb->s_blocksize_bits);
 918					numalloc = 0;
 919				} else {
 920					numalloc -= elen;
 921					if (*endnum > (i + 1))
 922						memmove(&laarr[i],
 923							&laarr[i + 1],
 924							sizeof(struct long_ad) *
 925							(*endnum - (i + 1)));
 926					i--;
 927					(*endnum)--;
 928				}
 929			}
 930			UDF_I(inode)->i_lenExtents +=
 931				numalloc << inode->i_sb->s_blocksize_bits;
 932		}
 933	}
 934}
 935
 936static void udf_merge_extents(struct inode *inode,
 937			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
 938			      int *endnum)
 939{
 940	int i;
 941	unsigned long blocksize = inode->i_sb->s_blocksize;
 942	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 943
 944	for (i = 0; i < (*endnum - 1); i++) {
 945		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
 946		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
 947
 948		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
 949			(((li->extLength >> 30) ==
 950				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
 951			((lip1->extLocation.logicalBlockNum -
 952			  li->extLocation.logicalBlockNum) ==
 953			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
 954			blocksize - 1) >> blocksize_bits)))) {
 955
 956			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
 957				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
 958				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
 959				lip1->extLength = (lip1->extLength -
 960						  (li->extLength &
 961						   UDF_EXTENT_LENGTH_MASK) +
 962						   UDF_EXTENT_LENGTH_MASK) &
 963							~(blocksize - 1);
 964				li->extLength = (li->extLength &
 965						 UDF_EXTENT_FLAG_MASK) +
 966						(UDF_EXTENT_LENGTH_MASK + 1) -
 967						blocksize;
 968				lip1->extLocation.logicalBlockNum =
 969					li->extLocation.logicalBlockNum +
 970					((li->extLength &
 971						UDF_EXTENT_LENGTH_MASK) >>
 972						blocksize_bits);
 973			} else {
 974				li->extLength = lip1->extLength +
 975					(((li->extLength &
 976						UDF_EXTENT_LENGTH_MASK) +
 977					 blocksize - 1) & ~(blocksize - 1));
 978				if (*endnum > (i + 2))
 979					memmove(&laarr[i + 1], &laarr[i + 2],
 980						sizeof(struct long_ad) *
 981						(*endnum - (i + 2)));
 982				i--;
 983				(*endnum)--;
 984			}
 985		} else if (((li->extLength >> 30) ==
 986				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
 987			   ((lip1->extLength >> 30) ==
 988				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
 989			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
 990					((li->extLength &
 991					  UDF_EXTENT_LENGTH_MASK) +
 992					 blocksize - 1) >> blocksize_bits);
 993			li->extLocation.logicalBlockNum = 0;
 994			li->extLocation.partitionReferenceNum = 0;
 995
 996			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
 997			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
 998			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
 999				lip1->extLength = (lip1->extLength -
1000						   (li->extLength &
1001						   UDF_EXTENT_LENGTH_MASK) +
1002						   UDF_EXTENT_LENGTH_MASK) &
1003						   ~(blocksize - 1);
1004				li->extLength = (li->extLength &
1005						 UDF_EXTENT_FLAG_MASK) +
1006						(UDF_EXTENT_LENGTH_MASK + 1) -
1007						blocksize;
1008			} else {
1009				li->extLength = lip1->extLength +
1010					(((li->extLength &
1011						UDF_EXTENT_LENGTH_MASK) +
1012					  blocksize - 1) & ~(blocksize - 1));
1013				if (*endnum > (i + 2))
1014					memmove(&laarr[i + 1], &laarr[i + 2],
1015						sizeof(struct long_ad) *
1016						(*endnum - (i + 2)));
1017				i--;
1018				(*endnum)--;
1019			}
1020		} else if ((li->extLength >> 30) ==
1021					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1022			udf_free_blocks(inode->i_sb, inode,
1023					&li->extLocation, 0,
1024					((li->extLength &
1025						UDF_EXTENT_LENGTH_MASK) +
1026					 blocksize - 1) >> blocksize_bits);
1027			li->extLocation.logicalBlockNum = 0;
1028			li->extLocation.partitionReferenceNum = 0;
1029			li->extLength = (li->extLength &
1030						UDF_EXTENT_LENGTH_MASK) |
1031						EXT_NOT_RECORDED_NOT_ALLOCATED;
1032		}
1033	}
1034}
1035
1036static void udf_update_extents(struct inode *inode,
1037			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1038			       int startnum, int endnum,
1039			       struct extent_position *epos)
1040{
1041	int start = 0, i;
1042	struct kernel_lb_addr tmploc;
1043	uint32_t tmplen;
1044
1045	if (startnum > endnum) {
1046		for (i = 0; i < (startnum - endnum); i++)
1047			udf_delete_aext(inode, *epos, laarr[i].extLocation,
1048					laarr[i].extLength);
1049	} else if (startnum < endnum) {
1050		for (i = 0; i < (endnum - startnum); i++) {
1051			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1052					laarr[i].extLength);
1053			udf_next_aext(inode, epos, &laarr[i].extLocation,
1054				      &laarr[i].extLength, 1);
1055			start++;
1056		}
1057	}
1058
1059	for (i = start; i < endnum; i++) {
1060		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1061		udf_write_aext(inode, epos, &laarr[i].extLocation,
1062			       laarr[i].extLength, 1);
1063	}
1064}
1065
1066struct buffer_head *udf_bread(struct inode *inode, int block,
1067			      int create, int *err)
1068{
1069	struct buffer_head *bh = NULL;
1070
1071	bh = udf_getblk(inode, block, create, err);
1072	if (!bh)
1073		return NULL;
1074
1075	if (buffer_uptodate(bh))
1076		return bh;
1077
1078	ll_rw_block(READ, 1, &bh);
1079
1080	wait_on_buffer(bh);
1081	if (buffer_uptodate(bh))
1082		return bh;
1083
1084	brelse(bh);
1085	*err = -EIO;
1086	return NULL;
1087}
1088
1089int udf_setsize(struct inode *inode, loff_t newsize)
1090{
1091	int err;
1092	struct udf_inode_info *iinfo;
1093	int bsize = 1 << inode->i_blkbits;
1094
1095	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1096	      S_ISLNK(inode->i_mode)))
1097		return -EINVAL;
1098	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1099		return -EPERM;
1100
1101	iinfo = UDF_I(inode);
1102	if (newsize > inode->i_size) {
1103		down_write(&iinfo->i_data_sem);
1104		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1105			if (bsize <
1106			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1107				err = udf_expand_file_adinicb(inode);
1108				if (err) {
1109					up_write(&iinfo->i_data_sem);
1110					return err;
1111				}
1112			} else
1113				iinfo->i_lenAlloc = newsize;
 
 
1114		}
1115		err = udf_extend_file(inode, newsize);
1116		if (err) {
1117			up_write(&iinfo->i_data_sem);
1118			return err;
1119		}
 
 
1120		truncate_setsize(inode, newsize);
1121		up_write(&iinfo->i_data_sem);
1122	} else {
1123		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1124			down_write(&iinfo->i_data_sem);
1125			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
 
1126			       0x00, bsize - newsize -
1127			       udf_file_entry_alloc_offset(inode));
1128			iinfo->i_lenAlloc = newsize;
1129			truncate_setsize(inode, newsize);
1130			up_write(&iinfo->i_data_sem);
1131			goto update_time;
1132		}
1133		err = block_truncate_page(inode->i_mapping, newsize,
1134					  udf_get_block);
1135		if (err)
1136			return err;
 
1137		down_write(&iinfo->i_data_sem);
1138		truncate_setsize(inode, newsize);
1139		udf_truncate_extents(inode);
1140		up_write(&iinfo->i_data_sem);
 
 
1141	}
1142update_time:
1143	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1144	if (IS_SYNC(inode))
1145		udf_sync_inode(inode);
1146	else
1147		mark_inode_dirty(inode);
1148	return 0;
1149}
1150
1151static void __udf_read_inode(struct inode *inode)
 
 
 
 
 
 
 
1152{
1153	struct buffer_head *bh = NULL;
1154	struct fileEntry *fe;
 
1155	uint16_t ident;
1156	struct udf_inode_info *iinfo = UDF_I(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157
1158	/*
1159	 * Set defaults, but the inode is still incomplete!
1160	 * Note: get_new_inode() sets the following on a new inode:
1161	 *      i_sb = sb
1162	 *      i_no = ino
1163	 *      i_flags = sb->s_flags
1164	 *      i_state = 0
1165	 * clean_inode(): zero fills and sets
1166	 *      i_count = 1
1167	 *      i_nlink = 1
1168	 *      i_op = NULL;
1169	 */
1170	bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1171	if (!bh) {
1172		printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1173		       inode->i_ino);
1174		make_bad_inode(inode);
1175		return;
1176	}
1177
1178	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1179	    ident != TAG_IDENT_USE) {
1180		printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1181				"failed ident=%d\n", inode->i_ino, ident);
1182		brelse(bh);
1183		make_bad_inode(inode);
1184		return;
1185	}
1186
1187	fe = (struct fileEntry *)bh->b_data;
 
1188
1189	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1190		struct buffer_head *ibh;
1191
1192		ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1193					&ident);
1194		if (ident == TAG_IDENT_IE && ibh) {
1195			struct buffer_head *nbh = NULL;
1196			struct kernel_lb_addr loc;
1197			struct indirectEntry *ie;
1198
1199			ie = (struct indirectEntry *)ibh->b_data;
1200			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1201
1202			if (ie->indirectICB.extLength &&
1203				(nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1204							&ident))) {
1205				if (ident == TAG_IDENT_FE ||
1206					ident == TAG_IDENT_EFE) {
1207					memcpy(&iinfo->i_location,
1208						&loc,
1209						sizeof(struct kernel_lb_addr));
1210					brelse(bh);
1211					brelse(ibh);
1212					brelse(nbh);
1213					__udf_read_inode(inode);
1214					return;
1215				}
1216				brelse(nbh);
 
1217			}
1218		}
1219		brelse(ibh);
1220	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1221		printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1222		       le16_to_cpu(fe->icbTag.strategyType));
1223		brelse(bh);
1224		make_bad_inode(inode);
1225		return;
1226	}
1227	udf_fill_inode(inode, bh);
1228
1229	brelse(bh);
1230}
1231
1232static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1233{
1234	struct fileEntry *fe;
1235	struct extendedFileEntry *efe;
1236	int offset;
1237	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1238	struct udf_inode_info *iinfo = UDF_I(inode);
1239
1240	fe = (struct fileEntry *)bh->b_data;
1241	efe = (struct extendedFileEntry *)bh->b_data;
1242
1243	if (fe->icbTag.strategyType == cpu_to_le16(4))
1244		iinfo->i_strat4096 = 0;
1245	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1246		iinfo->i_strat4096 = 1;
1247
1248	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1249							ICBTAG_FLAG_AD_MASK;
 
 
 
 
 
 
1250	iinfo->i_unique = 0;
1251	iinfo->i_lenEAttr = 0;
1252	iinfo->i_lenExtents = 0;
1253	iinfo->i_lenAlloc = 0;
1254	iinfo->i_next_alloc_block = 0;
1255	iinfo->i_next_alloc_goal = 0;
1256	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1257		iinfo->i_efe = 1;
1258		iinfo->i_use = 0;
1259		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1260					sizeof(struct extendedFileEntry))) {
1261			make_bad_inode(inode);
1262			return;
1263		}
1264		memcpy(iinfo->i_ext.i_data,
1265		       bh->b_data + sizeof(struct extendedFileEntry),
1266		       inode->i_sb->s_blocksize -
1267					sizeof(struct extendedFileEntry));
1268	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1269		iinfo->i_efe = 0;
1270		iinfo->i_use = 0;
1271		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1272						sizeof(struct fileEntry))) {
1273			make_bad_inode(inode);
1274			return;
1275		}
1276		memcpy(iinfo->i_ext.i_data,
1277		       bh->b_data + sizeof(struct fileEntry),
1278		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1279	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1280		iinfo->i_efe = 0;
1281		iinfo->i_use = 1;
1282		iinfo->i_lenAlloc = le32_to_cpu(
1283				((struct unallocSpaceEntry *)bh->b_data)->
1284				 lengthAllocDescs);
1285		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1286					sizeof(struct unallocSpaceEntry))) {
1287			make_bad_inode(inode);
1288			return;
1289		}
1290		memcpy(iinfo->i_ext.i_data,
1291		       bh->b_data + sizeof(struct unallocSpaceEntry),
1292		       inode->i_sb->s_blocksize -
1293					sizeof(struct unallocSpaceEntry));
1294		return;
1295	}
1296
 
1297	read_lock(&sbi->s_cred_lock);
1298	inode->i_uid = le32_to_cpu(fe->uid);
1299	if (inode->i_uid == -1 ||
1300	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1301	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1302		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
 
 
1303
1304	inode->i_gid = le32_to_cpu(fe->gid);
1305	if (inode->i_gid == -1 ||
1306	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1307	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1308		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
 
 
1309
1310	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1311			sbi->s_fmode != UDF_INVALID_MODE)
1312		inode->i_mode = sbi->s_fmode;
1313	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1314			sbi->s_dmode != UDF_INVALID_MODE)
1315		inode->i_mode = sbi->s_dmode;
1316	else
1317		inode->i_mode = udf_convert_permissions(fe);
1318	inode->i_mode &= ~sbi->s_umask;
 
 
1319	read_unlock(&sbi->s_cred_lock);
1320
1321	inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1322	if (!inode->i_nlink)
1323		inode->i_nlink = 1;
 
 
 
 
 
 
1324
1325	inode->i_size = le64_to_cpu(fe->informationLength);
1326	iinfo->i_lenExtents = inode->i_size;
1327
1328	if (iinfo->i_efe == 0) {
1329		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1330			(inode->i_sb->s_blocksize_bits - 9);
1331
1332		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1333			inode->i_atime = sbi->s_record_time;
1334
1335		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1336					    fe->modificationTime))
1337			inode->i_mtime = sbi->s_record_time;
1338
1339		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1340			inode->i_ctime = sbi->s_record_time;
1341
1342		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1343		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1344		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1345		offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
 
 
1346	} else {
1347		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1348		    (inode->i_sb->s_blocksize_bits - 9);
1349
1350		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1351			inode->i_atime = sbi->s_record_time;
1352
1353		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1354					    efe->modificationTime))
1355			inode->i_mtime = sbi->s_record_time;
1356
1357		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1358			iinfo->i_crtime = sbi->s_record_time;
1359
1360		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1361			inode->i_ctime = sbi->s_record_time;
1362
1363		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1364		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1365		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1366		offset = sizeof(struct extendedFileEntry) +
1367							iinfo->i_lenEAttr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1368	}
1369
1370	switch (fe->icbTag.fileType) {
1371	case ICBTAG_FILE_TYPE_DIRECTORY:
1372		inode->i_op = &udf_dir_inode_operations;
1373		inode->i_fop = &udf_dir_operations;
1374		inode->i_mode |= S_IFDIR;
1375		inc_nlink(inode);
1376		break;
1377	case ICBTAG_FILE_TYPE_REALTIME:
1378	case ICBTAG_FILE_TYPE_REGULAR:
1379	case ICBTAG_FILE_TYPE_UNDEF:
1380	case ICBTAG_FILE_TYPE_VAT20:
1381		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1382			inode->i_data.a_ops = &udf_adinicb_aops;
1383		else
1384			inode->i_data.a_ops = &udf_aops;
1385		inode->i_op = &udf_file_inode_operations;
1386		inode->i_fop = &udf_file_operations;
1387		inode->i_mode |= S_IFREG;
1388		break;
1389	case ICBTAG_FILE_TYPE_BLOCK:
1390		inode->i_mode |= S_IFBLK;
1391		break;
1392	case ICBTAG_FILE_TYPE_CHAR:
1393		inode->i_mode |= S_IFCHR;
1394		break;
1395	case ICBTAG_FILE_TYPE_FIFO:
1396		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1397		break;
1398	case ICBTAG_FILE_TYPE_SOCKET:
1399		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1400		break;
1401	case ICBTAG_FILE_TYPE_SYMLINK:
1402		inode->i_data.a_ops = &udf_symlink_aops;
1403		inode->i_op = &udf_symlink_inode_operations;
1404		inode->i_mode = S_IFLNK | S_IRWXUGO;
 
1405		break;
1406	case ICBTAG_FILE_TYPE_MAIN:
1407		udf_debug("METADATA FILE-----\n");
1408		break;
1409	case ICBTAG_FILE_TYPE_MIRROR:
1410		udf_debug("METADATA MIRROR FILE-----\n");
1411		break;
1412	case ICBTAG_FILE_TYPE_BITMAP:
1413		udf_debug("METADATA BITMAP FILE-----\n");
1414		break;
1415	default:
1416		printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1417				"file type=%d\n", inode->i_ino,
1418				fe->icbTag.fileType);
1419		make_bad_inode(inode);
1420		return;
1421	}
1422	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1423		struct deviceSpec *dsea =
1424			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1425		if (dsea) {
1426			init_special_inode(inode, inode->i_mode,
1427				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1428				      le32_to_cpu(dsea->minorDeviceIdent)));
1429			/* Developer ID ??? */
1430		} else
1431			make_bad_inode(inode);
1432	}
 
 
 
 
1433}
1434
1435static int udf_alloc_i_data(struct inode *inode, size_t size)
1436{
1437	struct udf_inode_info *iinfo = UDF_I(inode);
1438	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1439
1440	if (!iinfo->i_ext.i_data) {
1441		printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1442				"no free memory\n", inode->i_ino);
1443		return -ENOMEM;
1444	}
1445
1446	return 0;
1447}
1448
1449static mode_t udf_convert_permissions(struct fileEntry *fe)
1450{
1451	mode_t mode;
1452	uint32_t permissions;
1453	uint32_t flags;
1454
1455	permissions = le32_to_cpu(fe->permissions);
1456	flags = le16_to_cpu(fe->icbTag.flags);
1457
1458	mode =	((permissions) & S_IRWXO) |
1459		((permissions >> 2) & S_IRWXG) |
1460		((permissions >> 4) & S_IRWXU) |
1461		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1462		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1463		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1464
1465	return mode;
1466}
1467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1468int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1469{
1470	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1471}
1472
1473static int udf_sync_inode(struct inode *inode)
1474{
1475	return udf_update_inode(inode, 1);
1476}
1477
 
 
 
 
 
 
 
 
1478static int udf_update_inode(struct inode *inode, int do_sync)
1479{
1480	struct buffer_head *bh = NULL;
1481	struct fileEntry *fe;
1482	struct extendedFileEntry *efe;
 
1483	uint32_t udfperms;
1484	uint16_t icbflags;
1485	uint16_t crclen;
1486	int err = 0;
1487	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1488	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1489	struct udf_inode_info *iinfo = UDF_I(inode);
1490
1491	bh = udf_tgetblk(inode->i_sb,
1492			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1493	if (!bh) {
1494		udf_debug("getblk failure\n");
1495		return -ENOMEM;
1496	}
1497
1498	lock_buffer(bh);
1499	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1500	fe = (struct fileEntry *)bh->b_data;
1501	efe = (struct extendedFileEntry *)bh->b_data;
1502
1503	if (iinfo->i_use) {
1504		struct unallocSpaceEntry *use =
1505			(struct unallocSpaceEntry *)bh->b_data;
1506
1507		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1508		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1509		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1510					sizeof(struct unallocSpaceEntry));
1511		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1512		use->descTag.tagLocation =
1513				cpu_to_le32(iinfo->i_location.logicalBlockNum);
1514		crclen = sizeof(struct unallocSpaceEntry) +
1515				iinfo->i_lenAlloc - sizeof(struct tag);
1516		use->descTag.descCRCLength = cpu_to_le16(crclen);
1517		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1518							   sizeof(struct tag),
1519							   crclen));
1520		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1521
1522		goto out;
1523	}
1524
1525	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1526		fe->uid = cpu_to_le32(-1);
1527	else
1528		fe->uid = cpu_to_le32(inode->i_uid);
1529
1530	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1531		fe->gid = cpu_to_le32(-1);
1532	else
1533		fe->gid = cpu_to_le32(inode->i_gid);
1534
1535	udfperms = ((inode->i_mode & S_IRWXO)) |
1536		   ((inode->i_mode & S_IRWXG) << 2) |
1537		   ((inode->i_mode & S_IRWXU) << 4);
1538
1539	udfperms |= (le32_to_cpu(fe->permissions) &
1540		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1541		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1542		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1543	fe->permissions = cpu_to_le32(udfperms);
1544
1545	if (S_ISDIR(inode->i_mode))
1546		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1547	else
1548		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1549
1550	fe->informationLength = cpu_to_le64(inode->i_size);
1551
1552	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1553		struct regid *eid;
1554		struct deviceSpec *dsea =
1555			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1556		if (!dsea) {
1557			dsea = (struct deviceSpec *)
1558				udf_add_extendedattr(inode,
1559						     sizeof(struct deviceSpec) +
1560						     sizeof(struct regid), 12, 0x3);
1561			dsea->attrType = cpu_to_le32(12);
1562			dsea->attrSubtype = 1;
1563			dsea->attrLength = cpu_to_le32(
1564						sizeof(struct deviceSpec) +
1565						sizeof(struct regid));
1566			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1567		}
1568		eid = (struct regid *)dsea->impUse;
1569		memset(eid, 0, sizeof(struct regid));
1570		strcpy(eid->ident, UDF_ID_DEVELOPER);
1571		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1572		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1573		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1574		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1575	}
1576
 
 
 
 
 
 
 
1577	if (iinfo->i_efe == 0) {
1578		memcpy(bh->b_data + sizeof(struct fileEntry),
1579		       iinfo->i_ext.i_data,
1580		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1581		fe->logicalBlocksRecorded = cpu_to_le64(
1582			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1583			(blocksize_bits - 9));
1584
1585		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1586		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1587		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1588		memset(&(fe->impIdent), 0, sizeof(struct regid));
1589		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1590		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1591		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1592		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1593		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1594		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
 
1595		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1596		crclen = sizeof(struct fileEntry);
1597	} else {
1598		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1599		       iinfo->i_ext.i_data,
1600		       inode->i_sb->s_blocksize -
1601					sizeof(struct extendedFileEntry));
1602		efe->objectSize = cpu_to_le64(inode->i_size);
1603		efe->logicalBlocksRecorded = cpu_to_le64(
1604			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1605			(blocksize_bits - 9));
1606
1607		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1608		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1609		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1610			iinfo->i_crtime = inode->i_atime;
1611
1612		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1613		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1614		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1615			iinfo->i_crtime = inode->i_mtime;
1616
1617		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1618		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1619		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1620			iinfo->i_crtime = inode->i_ctime;
1621
1622		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1623		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1624		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1625		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1626
1627		memset(&(efe->impIdent), 0, sizeof(struct regid));
1628		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1629		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1630		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1631		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1632		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1633		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
 
1634		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1635		crclen = sizeof(struct extendedFileEntry);
1636	}
 
 
1637	if (iinfo->i_strat4096) {
1638		fe->icbTag.strategyType = cpu_to_le16(4096);
1639		fe->icbTag.strategyParameter = cpu_to_le16(1);
1640		fe->icbTag.numEntries = cpu_to_le16(2);
1641	} else {
1642		fe->icbTag.strategyType = cpu_to_le16(4);
1643		fe->icbTag.numEntries = cpu_to_le16(1);
1644	}
1645
1646	if (S_ISDIR(inode->i_mode))
 
 
1647		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1648	else if (S_ISREG(inode->i_mode))
1649		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1650	else if (S_ISLNK(inode->i_mode))
1651		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1652	else if (S_ISBLK(inode->i_mode))
1653		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1654	else if (S_ISCHR(inode->i_mode))
1655		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1656	else if (S_ISFIFO(inode->i_mode))
1657		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1658	else if (S_ISSOCK(inode->i_mode))
1659		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1660
1661	icbflags =	iinfo->i_alloc_type |
1662			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1663			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1664			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1665			(le16_to_cpu(fe->icbTag.flags) &
1666				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1667				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1668
1669	fe->icbTag.flags = cpu_to_le16(icbflags);
1670	if (sbi->s_udfrev >= 0x0200)
1671		fe->descTag.descVersion = cpu_to_le16(3);
1672	else
1673		fe->descTag.descVersion = cpu_to_le16(2);
1674	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1675	fe->descTag.tagLocation = cpu_to_le32(
1676					iinfo->i_location.logicalBlockNum);
1677	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1678	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1679	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1680						  crclen));
1681	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1682
1683out:
1684	set_buffer_uptodate(bh);
1685	unlock_buffer(bh);
1686
1687	/* write the data blocks */
1688	mark_buffer_dirty(bh);
1689	if (do_sync) {
1690		sync_dirty_buffer(bh);
1691		if (buffer_write_io_error(bh)) {
1692			printk(KERN_WARNING "IO error syncing udf inode "
1693				"[%s:%08lx]\n", inode->i_sb->s_id,
1694				inode->i_ino);
1695			err = -EIO;
1696		}
1697	}
1698	brelse(bh);
1699
1700	return err;
1701}
1702
1703struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
 
1704{
1705	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1706	struct inode *inode = iget_locked(sb, block);
 
1707
1708	if (!inode)
1709		return NULL;
1710
1711	if (inode->i_state & I_NEW) {
1712		memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1713		__udf_read_inode(inode);
1714		unlock_new_inode(inode);
1715	}
1716
1717	if (is_bad_inode(inode))
1718		goto out_iput;
1719
1720	if (ino->logicalBlockNum >= UDF_SB(sb)->
1721			s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1722		udf_debug("block=%d, partition=%d out of range\n",
1723			  ino->logicalBlockNum, ino->partitionReferenceNum);
1724		make_bad_inode(inode);
1725		goto out_iput;
1726	}
 
1727
1728	return inode;
1729
1730 out_iput:
1731	iput(inode);
1732	return NULL;
1733}
1734
1735int udf_add_aext(struct inode *inode, struct extent_position *epos,
1736		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1737{
1738	int adsize;
1739	struct short_ad *sad = NULL;
1740	struct long_ad *lad = NULL;
1741	struct allocExtDesc *aed;
1742	uint8_t *ptr;
1743	struct udf_inode_info *iinfo = UDF_I(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744
1745	if (!epos->bh)
1746		ptr = iinfo->i_ext.i_data + epos->offset -
1747			udf_file_entry_alloc_offset(inode) +
1748			iinfo->i_lenEAttr;
 
 
 
 
1749	else
1750		ptr = epos->bh->b_data + epos->offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751
1752	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1753		adsize = sizeof(struct short_ad);
1754	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1755		adsize = sizeof(struct long_ad);
1756	else
1757		return -EIO;
1758
1759	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1760		unsigned char *sptr, *dptr;
1761		struct buffer_head *nbh;
1762		int err, loffset;
1763		struct kernel_lb_addr obloc = epos->block;
1764
1765		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1766						obloc.partitionReferenceNum,
1767						obloc.logicalBlockNum, &err);
1768		if (!epos->block.logicalBlockNum)
1769			return -ENOSPC;
1770		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1771								 &epos->block,
1772								 0));
1773		if (!nbh)
1774			return -EIO;
1775		lock_buffer(nbh);
1776		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1777		set_buffer_uptodate(nbh);
1778		unlock_buffer(nbh);
1779		mark_buffer_dirty_inode(nbh, inode);
1780
1781		aed = (struct allocExtDesc *)(nbh->b_data);
1782		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1783			aed->previousAllocExtLocation =
1784					cpu_to_le32(obloc.logicalBlockNum);
1785		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1786			loffset = epos->offset;
1787			aed->lengthAllocDescs = cpu_to_le32(adsize);
1788			sptr = ptr - adsize;
1789			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1790			memcpy(dptr, sptr, adsize);
1791			epos->offset = sizeof(struct allocExtDesc) + adsize;
1792		} else {
1793			loffset = epos->offset + adsize;
1794			aed->lengthAllocDescs = cpu_to_le32(0);
1795			sptr = ptr;
1796			epos->offset = sizeof(struct allocExtDesc);
1797
1798			if (epos->bh) {
1799				aed = (struct allocExtDesc *)epos->bh->b_data;
1800				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1801			} else {
1802				iinfo->i_lenAlloc += adsize;
1803				mark_inode_dirty(inode);
1804			}
1805		}
1806		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1807			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1808				    epos->block.logicalBlockNum, sizeof(struct tag));
1809		else
1810			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1811				    epos->block.logicalBlockNum, sizeof(struct tag));
1812		switch (iinfo->i_alloc_type) {
1813		case ICBTAG_FLAG_AD_SHORT:
1814			sad = (struct short_ad *)sptr;
1815			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1816						     inode->i_sb->s_blocksize);
1817			sad->extPosition =
1818				cpu_to_le32(epos->block.logicalBlockNum);
1819			break;
1820		case ICBTAG_FLAG_AD_LONG:
1821			lad = (struct long_ad *)sptr;
1822			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1823						     inode->i_sb->s_blocksize);
1824			lad->extLocation = cpu_to_lelb(epos->block);
1825			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1826			break;
1827		}
1828		if (epos->bh) {
1829			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1830			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1831				udf_update_tag(epos->bh->b_data, loffset);
1832			else
1833				udf_update_tag(epos->bh->b_data,
1834						sizeof(struct allocExtDesc));
1835			mark_buffer_dirty_inode(epos->bh, inode);
1836			brelse(epos->bh);
1837		} else {
1838			mark_inode_dirty(inode);
1839		}
1840		epos->bh = nbh;
1841	}
1842
1843	udf_write_aext(inode, epos, eloc, elen, inc);
1844
1845	if (!epos->bh) {
1846		iinfo->i_lenAlloc += adsize;
1847		mark_inode_dirty(inode);
1848	} else {
1849		aed = (struct allocExtDesc *)epos->bh->b_data;
1850		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1851		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1852				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1853			udf_update_tag(epos->bh->b_data,
1854					epos->offset + (inc ? 0 : adsize));
1855		else
1856			udf_update_tag(epos->bh->b_data,
1857					sizeof(struct allocExtDesc));
1858		mark_buffer_dirty_inode(epos->bh, inode);
1859	}
1860
1861	return 0;
1862}
1863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864void udf_write_aext(struct inode *inode, struct extent_position *epos,
1865		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1866{
1867	int adsize;
1868	uint8_t *ptr;
1869	struct short_ad *sad;
1870	struct long_ad *lad;
1871	struct udf_inode_info *iinfo = UDF_I(inode);
1872
1873	if (!epos->bh)
1874		ptr = iinfo->i_ext.i_data + epos->offset -
1875			udf_file_entry_alloc_offset(inode) +
1876			iinfo->i_lenEAttr;
1877	else
1878		ptr = epos->bh->b_data + epos->offset;
1879
1880	switch (iinfo->i_alloc_type) {
1881	case ICBTAG_FLAG_AD_SHORT:
1882		sad = (struct short_ad *)ptr;
1883		sad->extLength = cpu_to_le32(elen);
1884		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1885		adsize = sizeof(struct short_ad);
1886		break;
1887	case ICBTAG_FLAG_AD_LONG:
1888		lad = (struct long_ad *)ptr;
1889		lad->extLength = cpu_to_le32(elen);
1890		lad->extLocation = cpu_to_lelb(*eloc);
1891		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1892		adsize = sizeof(struct long_ad);
1893		break;
1894	default:
1895		return;
1896	}
1897
1898	if (epos->bh) {
1899		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1900		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1901			struct allocExtDesc *aed =
1902				(struct allocExtDesc *)epos->bh->b_data;
1903			udf_update_tag(epos->bh->b_data,
1904				       le32_to_cpu(aed->lengthAllocDescs) +
1905				       sizeof(struct allocExtDesc));
1906		}
1907		mark_buffer_dirty_inode(epos->bh, inode);
1908	} else {
1909		mark_inode_dirty(inode);
1910	}
1911
1912	if (inc)
1913		epos->offset += adsize;
1914}
1915
 
 
 
 
 
 
1916int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1917		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1918{
1919	int8_t etype;
 
1920
1921	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1922	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1923		int block;
 
 
 
 
 
 
 
 
1924		epos->block = *eloc;
1925		epos->offset = sizeof(struct allocExtDesc);
1926		brelse(epos->bh);
1927		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1928		epos->bh = udf_tread(inode->i_sb, block);
1929		if (!epos->bh) {
1930			udf_debug("reading block %d failed!\n", block);
1931			return -1;
1932		}
1933	}
1934
1935	return etype;
1936}
1937
1938int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1939			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1940{
1941	int alen;
1942	int8_t etype;
1943	uint8_t *ptr;
1944	struct short_ad *sad;
1945	struct long_ad *lad;
1946	struct udf_inode_info *iinfo = UDF_I(inode);
1947
1948	if (!epos->bh) {
1949		if (!epos->offset)
1950			epos->offset = udf_file_entry_alloc_offset(inode);
1951		ptr = iinfo->i_ext.i_data + epos->offset -
1952			udf_file_entry_alloc_offset(inode) +
1953			iinfo->i_lenEAttr;
1954		alen = udf_file_entry_alloc_offset(inode) +
1955							iinfo->i_lenAlloc;
1956	} else {
1957		if (!epos->offset)
1958			epos->offset = sizeof(struct allocExtDesc);
1959		ptr = epos->bh->b_data + epos->offset;
1960		alen = sizeof(struct allocExtDesc) +
1961			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1962							lengthAllocDescs);
1963	}
1964
1965	switch (iinfo->i_alloc_type) {
1966	case ICBTAG_FLAG_AD_SHORT:
1967		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1968		if (!sad)
1969			return -1;
1970		etype = le32_to_cpu(sad->extLength) >> 30;
1971		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1972		eloc->partitionReferenceNum =
1973				iinfo->i_location.partitionReferenceNum;
1974		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1975		break;
1976	case ICBTAG_FLAG_AD_LONG:
1977		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1978		if (!lad)
1979			return -1;
1980		etype = le32_to_cpu(lad->extLength) >> 30;
1981		*eloc = lelb_to_cpu(lad->extLocation);
1982		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1983		break;
1984	default:
1985		udf_debug("alloc_type = %d unsupported\n",
1986				iinfo->i_alloc_type);
1987		return -1;
1988	}
1989
1990	return etype;
1991}
1992
1993static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1994			      struct kernel_lb_addr neloc, uint32_t nelen)
1995{
1996	struct kernel_lb_addr oeloc;
1997	uint32_t oelen;
1998	int8_t etype;
1999
2000	if (epos.bh)
2001		get_bh(epos.bh);
2002
2003	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2004		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2005		neloc = oeloc;
2006		nelen = (etype << 30) | oelen;
2007	}
2008	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2009	brelse(epos.bh);
2010
2011	return (nelen >> 30);
2012}
2013
2014int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2015		       struct kernel_lb_addr eloc, uint32_t elen)
2016{
2017	struct extent_position oepos;
2018	int adsize;
2019	int8_t etype;
2020	struct allocExtDesc *aed;
2021	struct udf_inode_info *iinfo;
 
 
2022
2023	if (epos.bh) {
2024		get_bh(epos.bh);
2025		get_bh(epos.bh);
2026	}
2027
2028	iinfo = UDF_I(inode);
2029	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2030		adsize = sizeof(struct short_ad);
2031	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2032		adsize = sizeof(struct long_ad);
2033	else
2034		adsize = 0;
2035
2036	oepos = epos;
2037	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2038		return -1;
2039
2040	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2041		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2042		if (oepos.bh != epos.bh) {
2043			oepos.block = epos.block;
2044			brelse(oepos.bh);
2045			get_bh(epos.bh);
2046			oepos.bh = epos.bh;
2047			oepos.offset = epos.offset - adsize;
2048		}
2049	}
2050	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2051	elen = 0;
2052
2053	if (epos.bh != oepos.bh) {
2054		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2055		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2056		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2057		if (!oepos.bh) {
2058			iinfo->i_lenAlloc -= (adsize * 2);
2059			mark_inode_dirty(inode);
2060		} else {
2061			aed = (struct allocExtDesc *)oepos.bh->b_data;
2062			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2063			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2064			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2065				udf_update_tag(oepos.bh->b_data,
2066						oepos.offset - (2 * adsize));
2067			else
2068				udf_update_tag(oepos.bh->b_data,
2069						sizeof(struct allocExtDesc));
2070			mark_buffer_dirty_inode(oepos.bh, inode);
2071		}
2072	} else {
2073		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2074		if (!oepos.bh) {
2075			iinfo->i_lenAlloc -= adsize;
2076			mark_inode_dirty(inode);
2077		} else {
2078			aed = (struct allocExtDesc *)oepos.bh->b_data;
2079			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2080			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2081			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2082				udf_update_tag(oepos.bh->b_data,
2083						epos.offset - adsize);
2084			else
2085				udf_update_tag(oepos.bh->b_data,
2086						sizeof(struct allocExtDesc));
2087			mark_buffer_dirty_inode(oepos.bh, inode);
2088		}
2089	}
2090
2091	brelse(epos.bh);
2092	brelse(oepos.bh);
2093
2094	return (elen >> 30);
2095}
2096
2097int8_t inode_bmap(struct inode *inode, sector_t block,
2098		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2099		  uint32_t *elen, sector_t *offset)
2100{
2101	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2102	loff_t lbcount = 0, bcount =
2103	    (loff_t) block << blocksize_bits;
2104	int8_t etype;
2105	struct udf_inode_info *iinfo;
2106
2107	iinfo = UDF_I(inode);
2108	pos->offset = 0;
2109	pos->block = iinfo->i_location;
2110	pos->bh = NULL;
 
 
2111	*elen = 0;
2112
2113	do {
2114		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2115		if (etype == -1) {
2116			*offset = (bcount - lbcount) >> blocksize_bits;
2117			iinfo->i_lenExtents = lbcount;
2118			return -1;
2119		}
2120		lbcount += *elen;
2121	} while (lbcount <= bcount);
2122
 
2123	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2124
2125	return etype;
2126}
2127
2128long udf_block_map(struct inode *inode, sector_t block)
2129{
2130	struct kernel_lb_addr eloc;
2131	uint32_t elen;
2132	sector_t offset;
2133	struct extent_position epos = {};
2134	int ret;
2135
2136	down_read(&UDF_I(inode)->i_data_sem);
2137
2138	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2139						(EXT_RECORDED_ALLOCATED >> 30))
2140		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2141	else
2142		ret = 0;
2143
2144	up_read(&UDF_I(inode)->i_data_sem);
2145	brelse(epos.bh);
2146
2147	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2148		return udf_fixed_to_variable(ret);
2149	else
2150		return ret;
2151}