Loading...
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55static umode_t udf_convert_permissions(struct fileEntry *);
56static int udf_update_inode(struct inode *, int);
57static int udf_sync_inode(struct inode *inode);
58static int udf_alloc_i_data(struct inode *inode, size_t size);
59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 struct kernel_lb_addr, uint32_t);
62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 struct kernel_long_ad *, int *);
64static void udf_prealloc_extents(struct inode *, int, int,
65 struct kernel_long_ad *, int *);
66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 int, struct extent_position *);
69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71static void __udf_clear_extent_cache(struct inode *inode)
72{
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79}
80
81/* Invalidate extent cache */
82static void udf_clear_extent_cache(struct inode *inode)
83{
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89}
90
91/* Return contents of extent cache */
92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94{
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111}
112
113/* Add extent to extent cache */
114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos)
116{
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 iinfo->cached_extent.lstart = estart;
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 break;
130 case ICBTAG_FLAG_AD_LONG:
131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 break;
133 }
134 spin_unlock(&iinfo->i_extent_cache_lock);
135}
136
137void udf_evict_inode(struct inode *inode)
138{
139 struct udf_inode_info *iinfo = UDF_I(inode);
140 int want_delete = 0;
141
142 if (!is_bad_inode(inode)) {
143 if (!inode->i_nlink) {
144 want_delete = 1;
145 udf_setsize(inode, 0);
146 udf_update_inode(inode, IS_SYNC(inode));
147 }
148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 inode->i_size != iinfo->i_lenExtents) {
150 udf_warn(inode->i_sb,
151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 inode->i_ino, inode->i_mode,
153 (unsigned long long)inode->i_size,
154 (unsigned long long)iinfo->i_lenExtents);
155 }
156 }
157 truncate_inode_pages_final(&inode->i_data);
158 invalidate_inode_buffers(inode);
159 clear_inode(inode);
160 kfree(iinfo->i_data);
161 iinfo->i_data = NULL;
162 udf_clear_extent_cache(inode);
163 if (want_delete) {
164 udf_free_inode(inode);
165 }
166}
167
168static void udf_write_failed(struct address_space *mapping, loff_t to)
169{
170 struct inode *inode = mapping->host;
171 struct udf_inode_info *iinfo = UDF_I(inode);
172 loff_t isize = inode->i_size;
173
174 if (to > isize) {
175 truncate_pagecache(inode, isize);
176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 down_write(&iinfo->i_data_sem);
178 udf_clear_extent_cache(inode);
179 udf_truncate_extents(inode);
180 up_write(&iinfo->i_data_sem);
181 }
182 }
183}
184
185static int udf_writepage(struct page *page, struct writeback_control *wbc)
186{
187 return block_write_full_page(page, udf_get_block, wbc);
188}
189
190static int udf_writepages(struct address_space *mapping,
191 struct writeback_control *wbc)
192{
193 return mpage_writepages(mapping, wbc, udf_get_block);
194}
195
196static int udf_readpage(struct file *file, struct page *page)
197{
198 return mpage_readpage(page, udf_get_block);
199}
200
201static void udf_readahead(struct readahead_control *rac)
202{
203 mpage_readahead(rac, udf_get_block);
204}
205
206static int udf_write_begin(struct file *file, struct address_space *mapping,
207 loff_t pos, unsigned len, unsigned flags,
208 struct page **pagep, void **fsdata)
209{
210 int ret;
211
212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 if (unlikely(ret))
214 udf_write_failed(mapping, pos + len);
215 return ret;
216}
217
218static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219{
220 struct file *file = iocb->ki_filp;
221 struct address_space *mapping = file->f_mapping;
222 struct inode *inode = mapping->host;
223 size_t count = iov_iter_count(iter);
224 ssize_t ret;
225
226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 udf_write_failed(mapping, iocb->ki_pos + count);
229 return ret;
230}
231
232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233{
234 return generic_block_bmap(mapping, block, udf_get_block);
235}
236
237const struct address_space_operations udf_aops = {
238 .set_page_dirty = __set_page_dirty_buffers,
239 .readpage = udf_readpage,
240 .readahead = udf_readahead,
241 .writepage = udf_writepage,
242 .writepages = udf_writepages,
243 .write_begin = udf_write_begin,
244 .write_end = generic_write_end,
245 .direct_IO = udf_direct_IO,
246 .bmap = udf_bmap,
247};
248
249/*
250 * Expand file stored in ICB to a normal one-block-file
251 *
252 * This function requires i_data_sem for writing and releases it.
253 * This function requires i_mutex held
254 */
255int udf_expand_file_adinicb(struct inode *inode)
256{
257 struct page *page;
258 char *kaddr;
259 struct udf_inode_info *iinfo = UDF_I(inode);
260 int err;
261 struct writeback_control udf_wbc = {
262 .sync_mode = WB_SYNC_NONE,
263 .nr_to_write = 1,
264 };
265
266 WARN_ON_ONCE(!inode_is_locked(inode));
267 if (!iinfo->i_lenAlloc) {
268 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
269 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
270 else
271 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
272 /* from now on we have normal address_space methods */
273 inode->i_data.a_ops = &udf_aops;
274 up_write(&iinfo->i_data_sem);
275 mark_inode_dirty(inode);
276 return 0;
277 }
278 /*
279 * Release i_data_sem so that we can lock a page - page lock ranks
280 * above i_data_sem. i_mutex still protects us against file changes.
281 */
282 up_write(&iinfo->i_data_sem);
283
284 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
285 if (!page)
286 return -ENOMEM;
287
288 if (!PageUptodate(page)) {
289 kaddr = kmap_atomic(page);
290 memset(kaddr + iinfo->i_lenAlloc, 0x00,
291 PAGE_SIZE - iinfo->i_lenAlloc);
292 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
293 iinfo->i_lenAlloc);
294 flush_dcache_page(page);
295 SetPageUptodate(page);
296 kunmap_atomic(kaddr);
297 }
298 down_write(&iinfo->i_data_sem);
299 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
300 iinfo->i_lenAlloc);
301 iinfo->i_lenAlloc = 0;
302 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
303 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
304 else
305 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
306 /* from now on we have normal address_space methods */
307 inode->i_data.a_ops = &udf_aops;
308 up_write(&iinfo->i_data_sem);
309 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
310 if (err) {
311 /* Restore everything back so that we don't lose data... */
312 lock_page(page);
313 down_write(&iinfo->i_data_sem);
314 kaddr = kmap_atomic(page);
315 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
316 kunmap_atomic(kaddr);
317 unlock_page(page);
318 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319 inode->i_data.a_ops = &udf_adinicb_aops;
320 up_write(&iinfo->i_data_sem);
321 }
322 put_page(page);
323 mark_inode_dirty(inode);
324
325 return err;
326}
327
328struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
329 udf_pblk_t *block, int *err)
330{
331 udf_pblk_t newblock;
332 struct buffer_head *dbh = NULL;
333 struct kernel_lb_addr eloc;
334 uint8_t alloctype;
335 struct extent_position epos;
336
337 struct udf_fileident_bh sfibh, dfibh;
338 loff_t f_pos = udf_ext0_offset(inode);
339 int size = udf_ext0_offset(inode) + inode->i_size;
340 struct fileIdentDesc cfi, *sfi, *dfi;
341 struct udf_inode_info *iinfo = UDF_I(inode);
342
343 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344 alloctype = ICBTAG_FLAG_AD_SHORT;
345 else
346 alloctype = ICBTAG_FLAG_AD_LONG;
347
348 if (!inode->i_size) {
349 iinfo->i_alloc_type = alloctype;
350 mark_inode_dirty(inode);
351 return NULL;
352 }
353
354 /* alloc block, and copy data to it */
355 *block = udf_new_block(inode->i_sb, inode,
356 iinfo->i_location.partitionReferenceNum,
357 iinfo->i_location.logicalBlockNum, err);
358 if (!(*block))
359 return NULL;
360 newblock = udf_get_pblock(inode->i_sb, *block,
361 iinfo->i_location.partitionReferenceNum,
362 0);
363 if (!newblock)
364 return NULL;
365 dbh = udf_tgetblk(inode->i_sb, newblock);
366 if (!dbh)
367 return NULL;
368 lock_buffer(dbh);
369 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370 set_buffer_uptodate(dbh);
371 unlock_buffer(dbh);
372 mark_buffer_dirty_inode(dbh, inode);
373
374 sfibh.soffset = sfibh.eoffset =
375 f_pos & (inode->i_sb->s_blocksize - 1);
376 sfibh.sbh = sfibh.ebh = NULL;
377 dfibh.soffset = dfibh.eoffset = 0;
378 dfibh.sbh = dfibh.ebh = dbh;
379 while (f_pos < size) {
380 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382 NULL, NULL, NULL);
383 if (!sfi) {
384 brelse(dbh);
385 return NULL;
386 }
387 iinfo->i_alloc_type = alloctype;
388 sfi->descTag.tagLocation = cpu_to_le32(*block);
389 dfibh.soffset = dfibh.eoffset;
390 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393 sfi->fileIdent +
394 le16_to_cpu(sfi->lengthOfImpUse))) {
395 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
396 brelse(dbh);
397 return NULL;
398 }
399 }
400 mark_buffer_dirty_inode(dbh, inode);
401
402 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
403 iinfo->i_lenAlloc = 0;
404 eloc.logicalBlockNum = *block;
405 eloc.partitionReferenceNum =
406 iinfo->i_location.partitionReferenceNum;
407 iinfo->i_lenExtents = inode->i_size;
408 epos.bh = NULL;
409 epos.block = iinfo->i_location;
410 epos.offset = udf_file_entry_alloc_offset(inode);
411 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
412 /* UniqueID stuff */
413
414 brelse(epos.bh);
415 mark_inode_dirty(inode);
416 return dbh;
417}
418
419static int udf_get_block(struct inode *inode, sector_t block,
420 struct buffer_head *bh_result, int create)
421{
422 int err, new;
423 sector_t phys = 0;
424 struct udf_inode_info *iinfo;
425
426 if (!create) {
427 phys = udf_block_map(inode, block);
428 if (phys)
429 map_bh(bh_result, inode->i_sb, phys);
430 return 0;
431 }
432
433 err = -EIO;
434 new = 0;
435 iinfo = UDF_I(inode);
436
437 down_write(&iinfo->i_data_sem);
438 if (block == iinfo->i_next_alloc_block + 1) {
439 iinfo->i_next_alloc_block++;
440 iinfo->i_next_alloc_goal++;
441 }
442
443 udf_clear_extent_cache(inode);
444 phys = inode_getblk(inode, block, &err, &new);
445 if (!phys)
446 goto abort;
447
448 if (new)
449 set_buffer_new(bh_result);
450 map_bh(bh_result, inode->i_sb, phys);
451
452abort:
453 up_write(&iinfo->i_data_sem);
454 return err;
455}
456
457static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
458 int create, int *err)
459{
460 struct buffer_head *bh;
461 struct buffer_head dummy;
462
463 dummy.b_state = 0;
464 dummy.b_blocknr = -1000;
465 *err = udf_get_block(inode, block, &dummy, create);
466 if (!*err && buffer_mapped(&dummy)) {
467 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
468 if (buffer_new(&dummy)) {
469 lock_buffer(bh);
470 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
471 set_buffer_uptodate(bh);
472 unlock_buffer(bh);
473 mark_buffer_dirty_inode(bh, inode);
474 }
475 return bh;
476 }
477
478 return NULL;
479}
480
481/* Extend the file with new blocks totaling 'new_block_bytes',
482 * return the number of extents added
483 */
484static int udf_do_extend_file(struct inode *inode,
485 struct extent_position *last_pos,
486 struct kernel_long_ad *last_ext,
487 loff_t new_block_bytes)
488{
489 uint32_t add;
490 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
491 struct super_block *sb = inode->i_sb;
492 struct kernel_lb_addr prealloc_loc = {};
493 uint32_t prealloc_len = 0;
494 struct udf_inode_info *iinfo;
495 int err;
496
497 /* The previous extent is fake and we should not extend by anything
498 * - there's nothing to do... */
499 if (!new_block_bytes && fake)
500 return 0;
501
502 iinfo = UDF_I(inode);
503 /* Round the last extent up to a multiple of block size */
504 if (last_ext->extLength & (sb->s_blocksize - 1)) {
505 last_ext->extLength =
506 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
507 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
508 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
509 iinfo->i_lenExtents =
510 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
511 ~(sb->s_blocksize - 1);
512 }
513
514 /* Last extent are just preallocated blocks? */
515 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
516 EXT_NOT_RECORDED_ALLOCATED) {
517 /* Save the extent so that we can reattach it to the end */
518 prealloc_loc = last_ext->extLocation;
519 prealloc_len = last_ext->extLength;
520 /* Mark the extent as a hole */
521 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
522 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
523 last_ext->extLocation.logicalBlockNum = 0;
524 last_ext->extLocation.partitionReferenceNum = 0;
525 }
526
527 /* Can we merge with the previous extent? */
528 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
529 EXT_NOT_RECORDED_NOT_ALLOCATED) {
530 add = (1 << 30) - sb->s_blocksize -
531 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
532 if (add > new_block_bytes)
533 add = new_block_bytes;
534 new_block_bytes -= add;
535 last_ext->extLength += add;
536 }
537
538 if (fake) {
539 udf_add_aext(inode, last_pos, &last_ext->extLocation,
540 last_ext->extLength, 1);
541 count++;
542 } else {
543 struct kernel_lb_addr tmploc;
544 uint32_t tmplen;
545
546 udf_write_aext(inode, last_pos, &last_ext->extLocation,
547 last_ext->extLength, 1);
548
549 /*
550 * We've rewritten the last extent. If we are going to add
551 * more extents, we may need to enter possible following
552 * empty indirect extent.
553 */
554 if (new_block_bytes || prealloc_len)
555 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
556 }
557
558 /* Managed to do everything necessary? */
559 if (!new_block_bytes)
560 goto out;
561
562 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
563 last_ext->extLocation.logicalBlockNum = 0;
564 last_ext->extLocation.partitionReferenceNum = 0;
565 add = (1 << 30) - sb->s_blocksize;
566 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
567
568 /* Create enough extents to cover the whole hole */
569 while (new_block_bytes > add) {
570 new_block_bytes -= add;
571 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
572 last_ext->extLength, 1);
573 if (err)
574 return err;
575 count++;
576 }
577 if (new_block_bytes) {
578 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
579 new_block_bytes;
580 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
581 last_ext->extLength, 1);
582 if (err)
583 return err;
584 count++;
585 }
586
587out:
588 /* Do we have some preallocated blocks saved? */
589 if (prealloc_len) {
590 err = udf_add_aext(inode, last_pos, &prealloc_loc,
591 prealloc_len, 1);
592 if (err)
593 return err;
594 last_ext->extLocation = prealloc_loc;
595 last_ext->extLength = prealloc_len;
596 count++;
597 }
598
599 /* last_pos should point to the last written extent... */
600 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
601 last_pos->offset -= sizeof(struct short_ad);
602 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
603 last_pos->offset -= sizeof(struct long_ad);
604 else
605 return -EIO;
606
607 return count;
608}
609
610/* Extend the final block of the file to final_block_len bytes */
611static void udf_do_extend_final_block(struct inode *inode,
612 struct extent_position *last_pos,
613 struct kernel_long_ad *last_ext,
614 uint32_t final_block_len)
615{
616 struct super_block *sb = inode->i_sb;
617 uint32_t added_bytes;
618
619 added_bytes = final_block_len -
620 (last_ext->extLength & (sb->s_blocksize - 1));
621 last_ext->extLength += added_bytes;
622 UDF_I(inode)->i_lenExtents += added_bytes;
623
624 udf_write_aext(inode, last_pos, &last_ext->extLocation,
625 last_ext->extLength, 1);
626}
627
628static int udf_extend_file(struct inode *inode, loff_t newsize)
629{
630
631 struct extent_position epos;
632 struct kernel_lb_addr eloc;
633 uint32_t elen;
634 int8_t etype;
635 struct super_block *sb = inode->i_sb;
636 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
637 unsigned long partial_final_block;
638 int adsize;
639 struct udf_inode_info *iinfo = UDF_I(inode);
640 struct kernel_long_ad extent;
641 int err = 0;
642 int within_final_block;
643
644 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
645 adsize = sizeof(struct short_ad);
646 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
647 adsize = sizeof(struct long_ad);
648 else
649 BUG();
650
651 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
652 within_final_block = (etype != -1);
653
654 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
655 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
656 /* File has no extents at all or has empty last
657 * indirect extent! Create a fake extent... */
658 extent.extLocation.logicalBlockNum = 0;
659 extent.extLocation.partitionReferenceNum = 0;
660 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
661 } else {
662 epos.offset -= adsize;
663 etype = udf_next_aext(inode, &epos, &extent.extLocation,
664 &extent.extLength, 0);
665 extent.extLength |= etype << 30;
666 }
667
668 partial_final_block = newsize & (sb->s_blocksize - 1);
669
670 /* File has extent covering the new size (could happen when extending
671 * inside a block)?
672 */
673 if (within_final_block) {
674 /* Extending file within the last file block */
675 udf_do_extend_final_block(inode, &epos, &extent,
676 partial_final_block);
677 } else {
678 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
679 partial_final_block;
680 err = udf_do_extend_file(inode, &epos, &extent, add);
681 }
682
683 if (err < 0)
684 goto out;
685 err = 0;
686 iinfo->i_lenExtents = newsize;
687out:
688 brelse(epos.bh);
689 return err;
690}
691
692static sector_t inode_getblk(struct inode *inode, sector_t block,
693 int *err, int *new)
694{
695 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
696 struct extent_position prev_epos, cur_epos, next_epos;
697 int count = 0, startnum = 0, endnum = 0;
698 uint32_t elen = 0, tmpelen;
699 struct kernel_lb_addr eloc, tmpeloc;
700 int c = 1;
701 loff_t lbcount = 0, b_off = 0;
702 udf_pblk_t newblocknum, newblock;
703 sector_t offset = 0;
704 int8_t etype;
705 struct udf_inode_info *iinfo = UDF_I(inode);
706 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
707 int lastblock = 0;
708 bool isBeyondEOF;
709
710 *err = 0;
711 *new = 0;
712 prev_epos.offset = udf_file_entry_alloc_offset(inode);
713 prev_epos.block = iinfo->i_location;
714 prev_epos.bh = NULL;
715 cur_epos = next_epos = prev_epos;
716 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
717
718 /* find the extent which contains the block we are looking for.
719 alternate between laarr[0] and laarr[1] for locations of the
720 current extent, and the previous extent */
721 do {
722 if (prev_epos.bh != cur_epos.bh) {
723 brelse(prev_epos.bh);
724 get_bh(cur_epos.bh);
725 prev_epos.bh = cur_epos.bh;
726 }
727 if (cur_epos.bh != next_epos.bh) {
728 brelse(cur_epos.bh);
729 get_bh(next_epos.bh);
730 cur_epos.bh = next_epos.bh;
731 }
732
733 lbcount += elen;
734
735 prev_epos.block = cur_epos.block;
736 cur_epos.block = next_epos.block;
737
738 prev_epos.offset = cur_epos.offset;
739 cur_epos.offset = next_epos.offset;
740
741 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
742 if (etype == -1)
743 break;
744
745 c = !c;
746
747 laarr[c].extLength = (etype << 30) | elen;
748 laarr[c].extLocation = eloc;
749
750 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
751 pgoal = eloc.logicalBlockNum +
752 ((elen + inode->i_sb->s_blocksize - 1) >>
753 inode->i_sb->s_blocksize_bits);
754
755 count++;
756 } while (lbcount + elen <= b_off);
757
758 b_off -= lbcount;
759 offset = b_off >> inode->i_sb->s_blocksize_bits;
760 /*
761 * Move prev_epos and cur_epos into indirect extent if we are at
762 * the pointer to it
763 */
764 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
765 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
766
767 /* if the extent is allocated and recorded, return the block
768 if the extent is not a multiple of the blocksize, round up */
769
770 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
771 if (elen & (inode->i_sb->s_blocksize - 1)) {
772 elen = EXT_RECORDED_ALLOCATED |
773 ((elen + inode->i_sb->s_blocksize - 1) &
774 ~(inode->i_sb->s_blocksize - 1));
775 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
776 }
777 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
778 goto out_free;
779 }
780
781 /* Are we beyond EOF? */
782 if (etype == -1) {
783 int ret;
784 loff_t hole_len;
785 isBeyondEOF = true;
786 if (count) {
787 if (c)
788 laarr[0] = laarr[1];
789 startnum = 1;
790 } else {
791 /* Create a fake extent when there's not one */
792 memset(&laarr[0].extLocation, 0x00,
793 sizeof(struct kernel_lb_addr));
794 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
795 /* Will udf_do_extend_file() create real extent from
796 a fake one? */
797 startnum = (offset > 0);
798 }
799 /* Create extents for the hole between EOF and offset */
800 hole_len = (loff_t)offset << inode->i_blkbits;
801 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
802 if (ret < 0) {
803 *err = ret;
804 newblock = 0;
805 goto out_free;
806 }
807 c = 0;
808 offset = 0;
809 count += ret;
810 /* We are not covered by a preallocated extent? */
811 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
812 EXT_NOT_RECORDED_ALLOCATED) {
813 /* Is there any real extent? - otherwise we overwrite
814 * the fake one... */
815 if (count)
816 c = !c;
817 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
818 inode->i_sb->s_blocksize;
819 memset(&laarr[c].extLocation, 0x00,
820 sizeof(struct kernel_lb_addr));
821 count++;
822 }
823 endnum = c + 1;
824 lastblock = 1;
825 } else {
826 isBeyondEOF = false;
827 endnum = startnum = ((count > 2) ? 2 : count);
828
829 /* if the current extent is in position 0,
830 swap it with the previous */
831 if (!c && count != 1) {
832 laarr[2] = laarr[0];
833 laarr[0] = laarr[1];
834 laarr[1] = laarr[2];
835 c = 1;
836 }
837
838 /* if the current block is located in an extent,
839 read the next extent */
840 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
841 if (etype != -1) {
842 laarr[c + 1].extLength = (etype << 30) | elen;
843 laarr[c + 1].extLocation = eloc;
844 count++;
845 startnum++;
846 endnum++;
847 } else
848 lastblock = 1;
849 }
850
851 /* if the current extent is not recorded but allocated, get the
852 * block in the extent corresponding to the requested block */
853 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
854 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
855 else { /* otherwise, allocate a new block */
856 if (iinfo->i_next_alloc_block == block)
857 goal = iinfo->i_next_alloc_goal;
858
859 if (!goal) {
860 if (!(goal = pgoal)) /* XXX: what was intended here? */
861 goal = iinfo->i_location.logicalBlockNum + 1;
862 }
863
864 newblocknum = udf_new_block(inode->i_sb, inode,
865 iinfo->i_location.partitionReferenceNum,
866 goal, err);
867 if (!newblocknum) {
868 *err = -ENOSPC;
869 newblock = 0;
870 goto out_free;
871 }
872 if (isBeyondEOF)
873 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
874 }
875
876 /* if the extent the requsted block is located in contains multiple
877 * blocks, split the extent into at most three extents. blocks prior
878 * to requested block, requested block, and blocks after requested
879 * block */
880 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
881
882 /* We preallocate blocks only for regular files. It also makes sense
883 * for directories but there's a problem when to drop the
884 * preallocation. We might use some delayed work for that but I feel
885 * it's overengineering for a filesystem like UDF. */
886 if (S_ISREG(inode->i_mode))
887 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
888
889 /* merge any continuous blocks in laarr */
890 udf_merge_extents(inode, laarr, &endnum);
891
892 /* write back the new extents, inserting new extents if the new number
893 * of extents is greater than the old number, and deleting extents if
894 * the new number of extents is less than the old number */
895 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
896
897 newblock = udf_get_pblock(inode->i_sb, newblocknum,
898 iinfo->i_location.partitionReferenceNum, 0);
899 if (!newblock) {
900 *err = -EIO;
901 goto out_free;
902 }
903 *new = 1;
904 iinfo->i_next_alloc_block = block;
905 iinfo->i_next_alloc_goal = newblocknum;
906 inode->i_ctime = current_time(inode);
907
908 if (IS_SYNC(inode))
909 udf_sync_inode(inode);
910 else
911 mark_inode_dirty(inode);
912out_free:
913 brelse(prev_epos.bh);
914 brelse(cur_epos.bh);
915 brelse(next_epos.bh);
916 return newblock;
917}
918
919static void udf_split_extents(struct inode *inode, int *c, int offset,
920 udf_pblk_t newblocknum,
921 struct kernel_long_ad *laarr, int *endnum)
922{
923 unsigned long blocksize = inode->i_sb->s_blocksize;
924 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
925
926 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
927 (laarr[*c].extLength >> 30) ==
928 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
929 int curr = *c;
930 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
931 blocksize - 1) >> blocksize_bits;
932 int8_t etype = (laarr[curr].extLength >> 30);
933
934 if (blen == 1)
935 ;
936 else if (!offset || blen == offset + 1) {
937 laarr[curr + 2] = laarr[curr + 1];
938 laarr[curr + 1] = laarr[curr];
939 } else {
940 laarr[curr + 3] = laarr[curr + 1];
941 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
942 }
943
944 if (offset) {
945 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
946 udf_free_blocks(inode->i_sb, inode,
947 &laarr[curr].extLocation,
948 0, offset);
949 laarr[curr].extLength =
950 EXT_NOT_RECORDED_NOT_ALLOCATED |
951 (offset << blocksize_bits);
952 laarr[curr].extLocation.logicalBlockNum = 0;
953 laarr[curr].extLocation.
954 partitionReferenceNum = 0;
955 } else
956 laarr[curr].extLength = (etype << 30) |
957 (offset << blocksize_bits);
958 curr++;
959 (*c)++;
960 (*endnum)++;
961 }
962
963 laarr[curr].extLocation.logicalBlockNum = newblocknum;
964 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
965 laarr[curr].extLocation.partitionReferenceNum =
966 UDF_I(inode)->i_location.partitionReferenceNum;
967 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
968 blocksize;
969 curr++;
970
971 if (blen != offset + 1) {
972 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
973 laarr[curr].extLocation.logicalBlockNum +=
974 offset + 1;
975 laarr[curr].extLength = (etype << 30) |
976 ((blen - (offset + 1)) << blocksize_bits);
977 curr++;
978 (*endnum)++;
979 }
980 }
981}
982
983static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
984 struct kernel_long_ad *laarr,
985 int *endnum)
986{
987 int start, length = 0, currlength = 0, i;
988
989 if (*endnum >= (c + 1)) {
990 if (!lastblock)
991 return;
992 else
993 start = c;
994 } else {
995 if ((laarr[c + 1].extLength >> 30) ==
996 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
997 start = c + 1;
998 length = currlength =
999 (((laarr[c + 1].extLength &
1000 UDF_EXTENT_LENGTH_MASK) +
1001 inode->i_sb->s_blocksize - 1) >>
1002 inode->i_sb->s_blocksize_bits);
1003 } else
1004 start = c;
1005 }
1006
1007 for (i = start + 1; i <= *endnum; i++) {
1008 if (i == *endnum) {
1009 if (lastblock)
1010 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1011 } else if ((laarr[i].extLength >> 30) ==
1012 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1013 length += (((laarr[i].extLength &
1014 UDF_EXTENT_LENGTH_MASK) +
1015 inode->i_sb->s_blocksize - 1) >>
1016 inode->i_sb->s_blocksize_bits);
1017 } else
1018 break;
1019 }
1020
1021 if (length) {
1022 int next = laarr[start].extLocation.logicalBlockNum +
1023 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1024 inode->i_sb->s_blocksize - 1) >>
1025 inode->i_sb->s_blocksize_bits);
1026 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1027 laarr[start].extLocation.partitionReferenceNum,
1028 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1029 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1030 currlength);
1031 if (numalloc) {
1032 if (start == (c + 1))
1033 laarr[start].extLength +=
1034 (numalloc <<
1035 inode->i_sb->s_blocksize_bits);
1036 else {
1037 memmove(&laarr[c + 2], &laarr[c + 1],
1038 sizeof(struct long_ad) * (*endnum - (c + 1)));
1039 (*endnum)++;
1040 laarr[c + 1].extLocation.logicalBlockNum = next;
1041 laarr[c + 1].extLocation.partitionReferenceNum =
1042 laarr[c].extLocation.
1043 partitionReferenceNum;
1044 laarr[c + 1].extLength =
1045 EXT_NOT_RECORDED_ALLOCATED |
1046 (numalloc <<
1047 inode->i_sb->s_blocksize_bits);
1048 start = c + 1;
1049 }
1050
1051 for (i = start + 1; numalloc && i < *endnum; i++) {
1052 int elen = ((laarr[i].extLength &
1053 UDF_EXTENT_LENGTH_MASK) +
1054 inode->i_sb->s_blocksize - 1) >>
1055 inode->i_sb->s_blocksize_bits;
1056
1057 if (elen > numalloc) {
1058 laarr[i].extLength -=
1059 (numalloc <<
1060 inode->i_sb->s_blocksize_bits);
1061 numalloc = 0;
1062 } else {
1063 numalloc -= elen;
1064 if (*endnum > (i + 1))
1065 memmove(&laarr[i],
1066 &laarr[i + 1],
1067 sizeof(struct long_ad) *
1068 (*endnum - (i + 1)));
1069 i--;
1070 (*endnum)--;
1071 }
1072 }
1073 UDF_I(inode)->i_lenExtents +=
1074 numalloc << inode->i_sb->s_blocksize_bits;
1075 }
1076 }
1077}
1078
1079static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1080 int *endnum)
1081{
1082 int i;
1083 unsigned long blocksize = inode->i_sb->s_blocksize;
1084 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1085
1086 for (i = 0; i < (*endnum - 1); i++) {
1087 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1088 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1089
1090 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1091 (((li->extLength >> 30) ==
1092 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1093 ((lip1->extLocation.logicalBlockNum -
1094 li->extLocation.logicalBlockNum) ==
1095 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1096 blocksize - 1) >> blocksize_bits)))) {
1097
1098 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1099 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1100 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1101 lip1->extLength = (lip1->extLength -
1102 (li->extLength &
1103 UDF_EXTENT_LENGTH_MASK) +
1104 UDF_EXTENT_LENGTH_MASK) &
1105 ~(blocksize - 1);
1106 li->extLength = (li->extLength &
1107 UDF_EXTENT_FLAG_MASK) +
1108 (UDF_EXTENT_LENGTH_MASK + 1) -
1109 blocksize;
1110 lip1->extLocation.logicalBlockNum =
1111 li->extLocation.logicalBlockNum +
1112 ((li->extLength &
1113 UDF_EXTENT_LENGTH_MASK) >>
1114 blocksize_bits);
1115 } else {
1116 li->extLength = lip1->extLength +
1117 (((li->extLength &
1118 UDF_EXTENT_LENGTH_MASK) +
1119 blocksize - 1) & ~(blocksize - 1));
1120 if (*endnum > (i + 2))
1121 memmove(&laarr[i + 1], &laarr[i + 2],
1122 sizeof(struct long_ad) *
1123 (*endnum - (i + 2)));
1124 i--;
1125 (*endnum)--;
1126 }
1127 } else if (((li->extLength >> 30) ==
1128 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1129 ((lip1->extLength >> 30) ==
1130 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1131 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1132 ((li->extLength &
1133 UDF_EXTENT_LENGTH_MASK) +
1134 blocksize - 1) >> blocksize_bits);
1135 li->extLocation.logicalBlockNum = 0;
1136 li->extLocation.partitionReferenceNum = 0;
1137
1138 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1139 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1140 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1141 lip1->extLength = (lip1->extLength -
1142 (li->extLength &
1143 UDF_EXTENT_LENGTH_MASK) +
1144 UDF_EXTENT_LENGTH_MASK) &
1145 ~(blocksize - 1);
1146 li->extLength = (li->extLength &
1147 UDF_EXTENT_FLAG_MASK) +
1148 (UDF_EXTENT_LENGTH_MASK + 1) -
1149 blocksize;
1150 } else {
1151 li->extLength = lip1->extLength +
1152 (((li->extLength &
1153 UDF_EXTENT_LENGTH_MASK) +
1154 blocksize - 1) & ~(blocksize - 1));
1155 if (*endnum > (i + 2))
1156 memmove(&laarr[i + 1], &laarr[i + 2],
1157 sizeof(struct long_ad) *
1158 (*endnum - (i + 2)));
1159 i--;
1160 (*endnum)--;
1161 }
1162 } else if ((li->extLength >> 30) ==
1163 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1164 udf_free_blocks(inode->i_sb, inode,
1165 &li->extLocation, 0,
1166 ((li->extLength &
1167 UDF_EXTENT_LENGTH_MASK) +
1168 blocksize - 1) >> blocksize_bits);
1169 li->extLocation.logicalBlockNum = 0;
1170 li->extLocation.partitionReferenceNum = 0;
1171 li->extLength = (li->extLength &
1172 UDF_EXTENT_LENGTH_MASK) |
1173 EXT_NOT_RECORDED_NOT_ALLOCATED;
1174 }
1175 }
1176}
1177
1178static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1179 int startnum, int endnum,
1180 struct extent_position *epos)
1181{
1182 int start = 0, i;
1183 struct kernel_lb_addr tmploc;
1184 uint32_t tmplen;
1185
1186 if (startnum > endnum) {
1187 for (i = 0; i < (startnum - endnum); i++)
1188 udf_delete_aext(inode, *epos);
1189 } else if (startnum < endnum) {
1190 for (i = 0; i < (endnum - startnum); i++) {
1191 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1192 laarr[i].extLength);
1193 udf_next_aext(inode, epos, &laarr[i].extLocation,
1194 &laarr[i].extLength, 1);
1195 start++;
1196 }
1197 }
1198
1199 for (i = start; i < endnum; i++) {
1200 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1201 udf_write_aext(inode, epos, &laarr[i].extLocation,
1202 laarr[i].extLength, 1);
1203 }
1204}
1205
1206struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1207 int create, int *err)
1208{
1209 struct buffer_head *bh = NULL;
1210
1211 bh = udf_getblk(inode, block, create, err);
1212 if (!bh)
1213 return NULL;
1214
1215 if (buffer_uptodate(bh))
1216 return bh;
1217
1218 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219
1220 wait_on_buffer(bh);
1221 if (buffer_uptodate(bh))
1222 return bh;
1223
1224 brelse(bh);
1225 *err = -EIO;
1226 return NULL;
1227}
1228
1229int udf_setsize(struct inode *inode, loff_t newsize)
1230{
1231 int err;
1232 struct udf_inode_info *iinfo;
1233 unsigned int bsize = i_blocksize(inode);
1234
1235 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1236 S_ISLNK(inode->i_mode)))
1237 return -EINVAL;
1238 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1239 return -EPERM;
1240
1241 iinfo = UDF_I(inode);
1242 if (newsize > inode->i_size) {
1243 down_write(&iinfo->i_data_sem);
1244 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1245 if (bsize <
1246 (udf_file_entry_alloc_offset(inode) + newsize)) {
1247 err = udf_expand_file_adinicb(inode);
1248 if (err)
1249 return err;
1250 down_write(&iinfo->i_data_sem);
1251 } else {
1252 iinfo->i_lenAlloc = newsize;
1253 goto set_size;
1254 }
1255 }
1256 err = udf_extend_file(inode, newsize);
1257 if (err) {
1258 up_write(&iinfo->i_data_sem);
1259 return err;
1260 }
1261set_size:
1262 up_write(&iinfo->i_data_sem);
1263 truncate_setsize(inode, newsize);
1264 } else {
1265 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1266 down_write(&iinfo->i_data_sem);
1267 udf_clear_extent_cache(inode);
1268 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1269 0x00, bsize - newsize -
1270 udf_file_entry_alloc_offset(inode));
1271 iinfo->i_lenAlloc = newsize;
1272 truncate_setsize(inode, newsize);
1273 up_write(&iinfo->i_data_sem);
1274 goto update_time;
1275 }
1276 err = block_truncate_page(inode->i_mapping, newsize,
1277 udf_get_block);
1278 if (err)
1279 return err;
1280 truncate_setsize(inode, newsize);
1281 down_write(&iinfo->i_data_sem);
1282 udf_clear_extent_cache(inode);
1283 err = udf_truncate_extents(inode);
1284 up_write(&iinfo->i_data_sem);
1285 if (err)
1286 return err;
1287 }
1288update_time:
1289 inode->i_mtime = inode->i_ctime = current_time(inode);
1290 if (IS_SYNC(inode))
1291 udf_sync_inode(inode);
1292 else
1293 mark_inode_dirty(inode);
1294 return 0;
1295}
1296
1297/*
1298 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1299 * arbitrary - just that we hopefully don't limit any real use of rewritten
1300 * inode on write-once media but avoid looping for too long on corrupted media.
1301 */
1302#define UDF_MAX_ICB_NESTING 1024
1303
1304static int udf_read_inode(struct inode *inode, bool hidden_inode)
1305{
1306 struct buffer_head *bh = NULL;
1307 struct fileEntry *fe;
1308 struct extendedFileEntry *efe;
1309 uint16_t ident;
1310 struct udf_inode_info *iinfo = UDF_I(inode);
1311 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1312 struct kernel_lb_addr *iloc = &iinfo->i_location;
1313 unsigned int link_count;
1314 unsigned int indirections = 0;
1315 int bs = inode->i_sb->s_blocksize;
1316 int ret = -EIO;
1317 uint32_t uid, gid;
1318
1319reread:
1320 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1321 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1322 iloc->partitionReferenceNum, sbi->s_partitions);
1323 return -EIO;
1324 }
1325
1326 if (iloc->logicalBlockNum >=
1327 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1328 udf_debug("block=%u, partition=%u out of range\n",
1329 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1330 return -EIO;
1331 }
1332
1333 /*
1334 * Set defaults, but the inode is still incomplete!
1335 * Note: get_new_inode() sets the following on a new inode:
1336 * i_sb = sb
1337 * i_no = ino
1338 * i_flags = sb->s_flags
1339 * i_state = 0
1340 * clean_inode(): zero fills and sets
1341 * i_count = 1
1342 * i_nlink = 1
1343 * i_op = NULL;
1344 */
1345 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1346 if (!bh) {
1347 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1348 return -EIO;
1349 }
1350
1351 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1352 ident != TAG_IDENT_USE) {
1353 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1354 inode->i_ino, ident);
1355 goto out;
1356 }
1357
1358 fe = (struct fileEntry *)bh->b_data;
1359 efe = (struct extendedFileEntry *)bh->b_data;
1360
1361 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1362 struct buffer_head *ibh;
1363
1364 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1365 if (ident == TAG_IDENT_IE && ibh) {
1366 struct kernel_lb_addr loc;
1367 struct indirectEntry *ie;
1368
1369 ie = (struct indirectEntry *)ibh->b_data;
1370 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1371
1372 if (ie->indirectICB.extLength) {
1373 brelse(ibh);
1374 memcpy(&iinfo->i_location, &loc,
1375 sizeof(struct kernel_lb_addr));
1376 if (++indirections > UDF_MAX_ICB_NESTING) {
1377 udf_err(inode->i_sb,
1378 "too many ICBs in ICB hierarchy"
1379 " (max %d supported)\n",
1380 UDF_MAX_ICB_NESTING);
1381 goto out;
1382 }
1383 brelse(bh);
1384 goto reread;
1385 }
1386 }
1387 brelse(ibh);
1388 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1389 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1390 le16_to_cpu(fe->icbTag.strategyType));
1391 goto out;
1392 }
1393 if (fe->icbTag.strategyType == cpu_to_le16(4))
1394 iinfo->i_strat4096 = 0;
1395 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1396 iinfo->i_strat4096 = 1;
1397
1398 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1399 ICBTAG_FLAG_AD_MASK;
1400 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1401 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1402 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1403 ret = -EIO;
1404 goto out;
1405 }
1406 iinfo->i_unique = 0;
1407 iinfo->i_lenEAttr = 0;
1408 iinfo->i_lenExtents = 0;
1409 iinfo->i_lenAlloc = 0;
1410 iinfo->i_next_alloc_block = 0;
1411 iinfo->i_next_alloc_goal = 0;
1412 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1413 iinfo->i_efe = 1;
1414 iinfo->i_use = 0;
1415 ret = udf_alloc_i_data(inode, bs -
1416 sizeof(struct extendedFileEntry));
1417 if (ret)
1418 goto out;
1419 memcpy(iinfo->i_data,
1420 bh->b_data + sizeof(struct extendedFileEntry),
1421 bs - sizeof(struct extendedFileEntry));
1422 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1423 iinfo->i_efe = 0;
1424 iinfo->i_use = 0;
1425 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1426 if (ret)
1427 goto out;
1428 memcpy(iinfo->i_data,
1429 bh->b_data + sizeof(struct fileEntry),
1430 bs - sizeof(struct fileEntry));
1431 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1432 iinfo->i_efe = 0;
1433 iinfo->i_use = 1;
1434 iinfo->i_lenAlloc = le32_to_cpu(
1435 ((struct unallocSpaceEntry *)bh->b_data)->
1436 lengthAllocDescs);
1437 ret = udf_alloc_i_data(inode, bs -
1438 sizeof(struct unallocSpaceEntry));
1439 if (ret)
1440 goto out;
1441 memcpy(iinfo->i_data,
1442 bh->b_data + sizeof(struct unallocSpaceEntry),
1443 bs - sizeof(struct unallocSpaceEntry));
1444 return 0;
1445 }
1446
1447 ret = -EIO;
1448 read_lock(&sbi->s_cred_lock);
1449 uid = le32_to_cpu(fe->uid);
1450 if (uid == UDF_INVALID_ID ||
1451 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1452 inode->i_uid = sbi->s_uid;
1453 else
1454 i_uid_write(inode, uid);
1455
1456 gid = le32_to_cpu(fe->gid);
1457 if (gid == UDF_INVALID_ID ||
1458 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1459 inode->i_gid = sbi->s_gid;
1460 else
1461 i_gid_write(inode, gid);
1462
1463 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1464 sbi->s_fmode != UDF_INVALID_MODE)
1465 inode->i_mode = sbi->s_fmode;
1466 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1467 sbi->s_dmode != UDF_INVALID_MODE)
1468 inode->i_mode = sbi->s_dmode;
1469 else
1470 inode->i_mode = udf_convert_permissions(fe);
1471 inode->i_mode &= ~sbi->s_umask;
1472 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1473
1474 read_unlock(&sbi->s_cred_lock);
1475
1476 link_count = le16_to_cpu(fe->fileLinkCount);
1477 if (!link_count) {
1478 if (!hidden_inode) {
1479 ret = -ESTALE;
1480 goto out;
1481 }
1482 link_count = 1;
1483 }
1484 set_nlink(inode, link_count);
1485
1486 inode->i_size = le64_to_cpu(fe->informationLength);
1487 iinfo->i_lenExtents = inode->i_size;
1488
1489 if (iinfo->i_efe == 0) {
1490 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1491 (inode->i_sb->s_blocksize_bits - 9);
1492
1493 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1494 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1495 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1496
1497 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1498 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1499 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1500 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1501 iinfo->i_streamdir = 0;
1502 iinfo->i_lenStreams = 0;
1503 } else {
1504 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1505 (inode->i_sb->s_blocksize_bits - 9);
1506
1507 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1508 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1509 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1510 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1511
1512 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1513 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1514 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1515 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1516
1517 /* Named streams */
1518 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1519 iinfo->i_locStreamdir =
1520 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1521 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1522 if (iinfo->i_lenStreams >= inode->i_size)
1523 iinfo->i_lenStreams -= inode->i_size;
1524 else
1525 iinfo->i_lenStreams = 0;
1526 }
1527 inode->i_generation = iinfo->i_unique;
1528
1529 /*
1530 * Sanity check length of allocation descriptors and extended attrs to
1531 * avoid integer overflows
1532 */
1533 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1534 goto out;
1535 /* Now do exact checks */
1536 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1537 goto out;
1538 /* Sanity checks for files in ICB so that we don't get confused later */
1539 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1540 /*
1541 * For file in ICB data is stored in allocation descriptor
1542 * so sizes should match
1543 */
1544 if (iinfo->i_lenAlloc != inode->i_size)
1545 goto out;
1546 /* File in ICB has to fit in there... */
1547 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1548 goto out;
1549 }
1550
1551 switch (fe->icbTag.fileType) {
1552 case ICBTAG_FILE_TYPE_DIRECTORY:
1553 inode->i_op = &udf_dir_inode_operations;
1554 inode->i_fop = &udf_dir_operations;
1555 inode->i_mode |= S_IFDIR;
1556 inc_nlink(inode);
1557 break;
1558 case ICBTAG_FILE_TYPE_REALTIME:
1559 case ICBTAG_FILE_TYPE_REGULAR:
1560 case ICBTAG_FILE_TYPE_UNDEF:
1561 case ICBTAG_FILE_TYPE_VAT20:
1562 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1563 inode->i_data.a_ops = &udf_adinicb_aops;
1564 else
1565 inode->i_data.a_ops = &udf_aops;
1566 inode->i_op = &udf_file_inode_operations;
1567 inode->i_fop = &udf_file_operations;
1568 inode->i_mode |= S_IFREG;
1569 break;
1570 case ICBTAG_FILE_TYPE_BLOCK:
1571 inode->i_mode |= S_IFBLK;
1572 break;
1573 case ICBTAG_FILE_TYPE_CHAR:
1574 inode->i_mode |= S_IFCHR;
1575 break;
1576 case ICBTAG_FILE_TYPE_FIFO:
1577 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1578 break;
1579 case ICBTAG_FILE_TYPE_SOCKET:
1580 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1581 break;
1582 case ICBTAG_FILE_TYPE_SYMLINK:
1583 inode->i_data.a_ops = &udf_symlink_aops;
1584 inode->i_op = &udf_symlink_inode_operations;
1585 inode_nohighmem(inode);
1586 inode->i_mode = S_IFLNK | 0777;
1587 break;
1588 case ICBTAG_FILE_TYPE_MAIN:
1589 udf_debug("METADATA FILE-----\n");
1590 break;
1591 case ICBTAG_FILE_TYPE_MIRROR:
1592 udf_debug("METADATA MIRROR FILE-----\n");
1593 break;
1594 case ICBTAG_FILE_TYPE_BITMAP:
1595 udf_debug("METADATA BITMAP FILE-----\n");
1596 break;
1597 default:
1598 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1599 inode->i_ino, fe->icbTag.fileType);
1600 goto out;
1601 }
1602 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1603 struct deviceSpec *dsea =
1604 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1605 if (dsea) {
1606 init_special_inode(inode, inode->i_mode,
1607 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1608 le32_to_cpu(dsea->minorDeviceIdent)));
1609 /* Developer ID ??? */
1610 } else
1611 goto out;
1612 }
1613 ret = 0;
1614out:
1615 brelse(bh);
1616 return ret;
1617}
1618
1619static int udf_alloc_i_data(struct inode *inode, size_t size)
1620{
1621 struct udf_inode_info *iinfo = UDF_I(inode);
1622 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1623 if (!iinfo->i_data)
1624 return -ENOMEM;
1625 return 0;
1626}
1627
1628static umode_t udf_convert_permissions(struct fileEntry *fe)
1629{
1630 umode_t mode;
1631 uint32_t permissions;
1632 uint32_t flags;
1633
1634 permissions = le32_to_cpu(fe->permissions);
1635 flags = le16_to_cpu(fe->icbTag.flags);
1636
1637 mode = ((permissions) & 0007) |
1638 ((permissions >> 2) & 0070) |
1639 ((permissions >> 4) & 0700) |
1640 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1641 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1642 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1643
1644 return mode;
1645}
1646
1647void udf_update_extra_perms(struct inode *inode, umode_t mode)
1648{
1649 struct udf_inode_info *iinfo = UDF_I(inode);
1650
1651 /*
1652 * UDF 2.01 sec. 3.3.3.3 Note 2:
1653 * In Unix, delete permission tracks write
1654 */
1655 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1656 if (mode & 0200)
1657 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1658 if (mode & 0020)
1659 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1660 if (mode & 0002)
1661 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1662}
1663
1664int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1665{
1666 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1667}
1668
1669static int udf_sync_inode(struct inode *inode)
1670{
1671 return udf_update_inode(inode, 1);
1672}
1673
1674static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1675{
1676 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1677 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1678 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1679 iinfo->i_crtime = time;
1680}
1681
1682static int udf_update_inode(struct inode *inode, int do_sync)
1683{
1684 struct buffer_head *bh = NULL;
1685 struct fileEntry *fe;
1686 struct extendedFileEntry *efe;
1687 uint64_t lb_recorded;
1688 uint32_t udfperms;
1689 uint16_t icbflags;
1690 uint16_t crclen;
1691 int err = 0;
1692 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1693 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1694 struct udf_inode_info *iinfo = UDF_I(inode);
1695
1696 bh = udf_tgetblk(inode->i_sb,
1697 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1698 if (!bh) {
1699 udf_debug("getblk failure\n");
1700 return -EIO;
1701 }
1702
1703 lock_buffer(bh);
1704 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1705 fe = (struct fileEntry *)bh->b_data;
1706 efe = (struct extendedFileEntry *)bh->b_data;
1707
1708 if (iinfo->i_use) {
1709 struct unallocSpaceEntry *use =
1710 (struct unallocSpaceEntry *)bh->b_data;
1711
1712 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1713 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1714 iinfo->i_data, inode->i_sb->s_blocksize -
1715 sizeof(struct unallocSpaceEntry));
1716 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1717 crclen = sizeof(struct unallocSpaceEntry);
1718
1719 goto finish;
1720 }
1721
1722 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1723 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1724 else
1725 fe->uid = cpu_to_le32(i_uid_read(inode));
1726
1727 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1728 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1729 else
1730 fe->gid = cpu_to_le32(i_gid_read(inode));
1731
1732 udfperms = ((inode->i_mode & 0007)) |
1733 ((inode->i_mode & 0070) << 2) |
1734 ((inode->i_mode & 0700) << 4);
1735
1736 udfperms |= iinfo->i_extraPerms;
1737 fe->permissions = cpu_to_le32(udfperms);
1738
1739 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1740 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1741 else
1742 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1743
1744 fe->informationLength = cpu_to_le64(inode->i_size);
1745
1746 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1747 struct regid *eid;
1748 struct deviceSpec *dsea =
1749 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1750 if (!dsea) {
1751 dsea = (struct deviceSpec *)
1752 udf_add_extendedattr(inode,
1753 sizeof(struct deviceSpec) +
1754 sizeof(struct regid), 12, 0x3);
1755 dsea->attrType = cpu_to_le32(12);
1756 dsea->attrSubtype = 1;
1757 dsea->attrLength = cpu_to_le32(
1758 sizeof(struct deviceSpec) +
1759 sizeof(struct regid));
1760 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1761 }
1762 eid = (struct regid *)dsea->impUse;
1763 memset(eid, 0, sizeof(*eid));
1764 strcpy(eid->ident, UDF_ID_DEVELOPER);
1765 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1766 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1767 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1768 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1769 }
1770
1771 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1772 lb_recorded = 0; /* No extents => no blocks! */
1773 else
1774 lb_recorded =
1775 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1776 (blocksize_bits - 9);
1777
1778 if (iinfo->i_efe == 0) {
1779 memcpy(bh->b_data + sizeof(struct fileEntry),
1780 iinfo->i_data,
1781 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1782 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1783
1784 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1785 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1786 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1787 memset(&(fe->impIdent), 0, sizeof(struct regid));
1788 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1789 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1790 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1791 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1792 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1793 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1794 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1795 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1796 crclen = sizeof(struct fileEntry);
1797 } else {
1798 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1799 iinfo->i_data,
1800 inode->i_sb->s_blocksize -
1801 sizeof(struct extendedFileEntry));
1802 efe->objectSize =
1803 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1804 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1805
1806 if (iinfo->i_streamdir) {
1807 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1808
1809 icb_lad->extLocation =
1810 cpu_to_lelb(iinfo->i_locStreamdir);
1811 icb_lad->extLength =
1812 cpu_to_le32(inode->i_sb->s_blocksize);
1813 }
1814
1815 udf_adjust_time(iinfo, inode->i_atime);
1816 udf_adjust_time(iinfo, inode->i_mtime);
1817 udf_adjust_time(iinfo, inode->i_ctime);
1818
1819 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1820 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1821 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1822 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1823
1824 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1825 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1826 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1827 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1828 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1829 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1830 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1831 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1832 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1833 crclen = sizeof(struct extendedFileEntry);
1834 }
1835
1836finish:
1837 if (iinfo->i_strat4096) {
1838 fe->icbTag.strategyType = cpu_to_le16(4096);
1839 fe->icbTag.strategyParameter = cpu_to_le16(1);
1840 fe->icbTag.numEntries = cpu_to_le16(2);
1841 } else {
1842 fe->icbTag.strategyType = cpu_to_le16(4);
1843 fe->icbTag.numEntries = cpu_to_le16(1);
1844 }
1845
1846 if (iinfo->i_use)
1847 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1848 else if (S_ISDIR(inode->i_mode))
1849 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1850 else if (S_ISREG(inode->i_mode))
1851 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1852 else if (S_ISLNK(inode->i_mode))
1853 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1854 else if (S_ISBLK(inode->i_mode))
1855 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1856 else if (S_ISCHR(inode->i_mode))
1857 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1858 else if (S_ISFIFO(inode->i_mode))
1859 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1860 else if (S_ISSOCK(inode->i_mode))
1861 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1862
1863 icbflags = iinfo->i_alloc_type |
1864 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1865 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1866 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1867 (le16_to_cpu(fe->icbTag.flags) &
1868 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1869 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1870
1871 fe->icbTag.flags = cpu_to_le16(icbflags);
1872 if (sbi->s_udfrev >= 0x0200)
1873 fe->descTag.descVersion = cpu_to_le16(3);
1874 else
1875 fe->descTag.descVersion = cpu_to_le16(2);
1876 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1877 fe->descTag.tagLocation = cpu_to_le32(
1878 iinfo->i_location.logicalBlockNum);
1879 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1880 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1881 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1882 crclen));
1883 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1884
1885 set_buffer_uptodate(bh);
1886 unlock_buffer(bh);
1887
1888 /* write the data blocks */
1889 mark_buffer_dirty(bh);
1890 if (do_sync) {
1891 sync_dirty_buffer(bh);
1892 if (buffer_write_io_error(bh)) {
1893 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1894 inode->i_ino);
1895 err = -EIO;
1896 }
1897 }
1898 brelse(bh);
1899
1900 return err;
1901}
1902
1903struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1904 bool hidden_inode)
1905{
1906 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1907 struct inode *inode = iget_locked(sb, block);
1908 int err;
1909
1910 if (!inode)
1911 return ERR_PTR(-ENOMEM);
1912
1913 if (!(inode->i_state & I_NEW))
1914 return inode;
1915
1916 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1917 err = udf_read_inode(inode, hidden_inode);
1918 if (err < 0) {
1919 iget_failed(inode);
1920 return ERR_PTR(err);
1921 }
1922 unlock_new_inode(inode);
1923
1924 return inode;
1925}
1926
1927int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1928 struct extent_position *epos)
1929{
1930 struct super_block *sb = inode->i_sb;
1931 struct buffer_head *bh;
1932 struct allocExtDesc *aed;
1933 struct extent_position nepos;
1934 struct kernel_lb_addr neloc;
1935 int ver, adsize;
1936
1937 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938 adsize = sizeof(struct short_ad);
1939 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940 adsize = sizeof(struct long_ad);
1941 else
1942 return -EIO;
1943
1944 neloc.logicalBlockNum = block;
1945 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1946
1947 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1948 if (!bh)
1949 return -EIO;
1950 lock_buffer(bh);
1951 memset(bh->b_data, 0x00, sb->s_blocksize);
1952 set_buffer_uptodate(bh);
1953 unlock_buffer(bh);
1954 mark_buffer_dirty_inode(bh, inode);
1955
1956 aed = (struct allocExtDesc *)(bh->b_data);
1957 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1958 aed->previousAllocExtLocation =
1959 cpu_to_le32(epos->block.logicalBlockNum);
1960 }
1961 aed->lengthAllocDescs = cpu_to_le32(0);
1962 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1963 ver = 3;
1964 else
1965 ver = 2;
1966 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1967 sizeof(struct tag));
1968
1969 nepos.block = neloc;
1970 nepos.offset = sizeof(struct allocExtDesc);
1971 nepos.bh = bh;
1972
1973 /*
1974 * Do we have to copy current last extent to make space for indirect
1975 * one?
1976 */
1977 if (epos->offset + adsize > sb->s_blocksize) {
1978 struct kernel_lb_addr cp_loc;
1979 uint32_t cp_len;
1980 int cp_type;
1981
1982 epos->offset -= adsize;
1983 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1984 cp_len |= ((uint32_t)cp_type) << 30;
1985
1986 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1987 udf_write_aext(inode, epos, &nepos.block,
1988 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1989 } else {
1990 __udf_add_aext(inode, epos, &nepos.block,
1991 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1992 }
1993
1994 brelse(epos->bh);
1995 *epos = nepos;
1996
1997 return 0;
1998}
1999
2000/*
2001 * Append extent at the given position - should be the first free one in inode
2002 * / indirect extent. This function assumes there is enough space in the inode
2003 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2004 */
2005int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2006 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007{
2008 struct udf_inode_info *iinfo = UDF_I(inode);
2009 struct allocExtDesc *aed;
2010 int adsize;
2011
2012 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013 adsize = sizeof(struct short_ad);
2014 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015 adsize = sizeof(struct long_ad);
2016 else
2017 return -EIO;
2018
2019 if (!epos->bh) {
2020 WARN_ON(iinfo->i_lenAlloc !=
2021 epos->offset - udf_file_entry_alloc_offset(inode));
2022 } else {
2023 aed = (struct allocExtDesc *)epos->bh->b_data;
2024 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2025 epos->offset - sizeof(struct allocExtDesc));
2026 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2027 }
2028
2029 udf_write_aext(inode, epos, eloc, elen, inc);
2030
2031 if (!epos->bh) {
2032 iinfo->i_lenAlloc += adsize;
2033 mark_inode_dirty(inode);
2034 } else {
2035 aed = (struct allocExtDesc *)epos->bh->b_data;
2036 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2037 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2038 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2039 udf_update_tag(epos->bh->b_data,
2040 epos->offset + (inc ? 0 : adsize));
2041 else
2042 udf_update_tag(epos->bh->b_data,
2043 sizeof(struct allocExtDesc));
2044 mark_buffer_dirty_inode(epos->bh, inode);
2045 }
2046
2047 return 0;
2048}
2049
2050/*
2051 * Append extent at given position - should be the first free one in inode
2052 * / indirect extent. Takes care of allocating and linking indirect blocks.
2053 */
2054int udf_add_aext(struct inode *inode, struct extent_position *epos,
2055 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2056{
2057 int adsize;
2058 struct super_block *sb = inode->i_sb;
2059
2060 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2061 adsize = sizeof(struct short_ad);
2062 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2063 adsize = sizeof(struct long_ad);
2064 else
2065 return -EIO;
2066
2067 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2068 int err;
2069 udf_pblk_t new_block;
2070
2071 new_block = udf_new_block(sb, NULL,
2072 epos->block.partitionReferenceNum,
2073 epos->block.logicalBlockNum, &err);
2074 if (!new_block)
2075 return -ENOSPC;
2076
2077 err = udf_setup_indirect_aext(inode, new_block, epos);
2078 if (err)
2079 return err;
2080 }
2081
2082 return __udf_add_aext(inode, epos, eloc, elen, inc);
2083}
2084
2085void udf_write_aext(struct inode *inode, struct extent_position *epos,
2086 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2087{
2088 int adsize;
2089 uint8_t *ptr;
2090 struct short_ad *sad;
2091 struct long_ad *lad;
2092 struct udf_inode_info *iinfo = UDF_I(inode);
2093
2094 if (!epos->bh)
2095 ptr = iinfo->i_data + epos->offset -
2096 udf_file_entry_alloc_offset(inode) +
2097 iinfo->i_lenEAttr;
2098 else
2099 ptr = epos->bh->b_data + epos->offset;
2100
2101 switch (iinfo->i_alloc_type) {
2102 case ICBTAG_FLAG_AD_SHORT:
2103 sad = (struct short_ad *)ptr;
2104 sad->extLength = cpu_to_le32(elen);
2105 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2106 adsize = sizeof(struct short_ad);
2107 break;
2108 case ICBTAG_FLAG_AD_LONG:
2109 lad = (struct long_ad *)ptr;
2110 lad->extLength = cpu_to_le32(elen);
2111 lad->extLocation = cpu_to_lelb(*eloc);
2112 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2113 adsize = sizeof(struct long_ad);
2114 break;
2115 default:
2116 return;
2117 }
2118
2119 if (epos->bh) {
2120 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2121 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2122 struct allocExtDesc *aed =
2123 (struct allocExtDesc *)epos->bh->b_data;
2124 udf_update_tag(epos->bh->b_data,
2125 le32_to_cpu(aed->lengthAllocDescs) +
2126 sizeof(struct allocExtDesc));
2127 }
2128 mark_buffer_dirty_inode(epos->bh, inode);
2129 } else {
2130 mark_inode_dirty(inode);
2131 }
2132
2133 if (inc)
2134 epos->offset += adsize;
2135}
2136
2137/*
2138 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2139 * someone does some weird stuff.
2140 */
2141#define UDF_MAX_INDIR_EXTS 16
2142
2143int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2144 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2145{
2146 int8_t etype;
2147 unsigned int indirections = 0;
2148
2149 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2150 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2151 udf_pblk_t block;
2152
2153 if (++indirections > UDF_MAX_INDIR_EXTS) {
2154 udf_err(inode->i_sb,
2155 "too many indirect extents in inode %lu\n",
2156 inode->i_ino);
2157 return -1;
2158 }
2159
2160 epos->block = *eloc;
2161 epos->offset = sizeof(struct allocExtDesc);
2162 brelse(epos->bh);
2163 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2164 epos->bh = udf_tread(inode->i_sb, block);
2165 if (!epos->bh) {
2166 udf_debug("reading block %u failed!\n", block);
2167 return -1;
2168 }
2169 }
2170
2171 return etype;
2172}
2173
2174int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2175 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2176{
2177 int alen;
2178 int8_t etype;
2179 uint8_t *ptr;
2180 struct short_ad *sad;
2181 struct long_ad *lad;
2182 struct udf_inode_info *iinfo = UDF_I(inode);
2183
2184 if (!epos->bh) {
2185 if (!epos->offset)
2186 epos->offset = udf_file_entry_alloc_offset(inode);
2187 ptr = iinfo->i_data + epos->offset -
2188 udf_file_entry_alloc_offset(inode) +
2189 iinfo->i_lenEAttr;
2190 alen = udf_file_entry_alloc_offset(inode) +
2191 iinfo->i_lenAlloc;
2192 } else {
2193 if (!epos->offset)
2194 epos->offset = sizeof(struct allocExtDesc);
2195 ptr = epos->bh->b_data + epos->offset;
2196 alen = sizeof(struct allocExtDesc) +
2197 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2198 lengthAllocDescs);
2199 }
2200
2201 switch (iinfo->i_alloc_type) {
2202 case ICBTAG_FLAG_AD_SHORT:
2203 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2204 if (!sad)
2205 return -1;
2206 etype = le32_to_cpu(sad->extLength) >> 30;
2207 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2208 eloc->partitionReferenceNum =
2209 iinfo->i_location.partitionReferenceNum;
2210 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2211 break;
2212 case ICBTAG_FLAG_AD_LONG:
2213 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2214 if (!lad)
2215 return -1;
2216 etype = le32_to_cpu(lad->extLength) >> 30;
2217 *eloc = lelb_to_cpu(lad->extLocation);
2218 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2219 break;
2220 default:
2221 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2222 return -1;
2223 }
2224
2225 return etype;
2226}
2227
2228static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2229 struct kernel_lb_addr neloc, uint32_t nelen)
2230{
2231 struct kernel_lb_addr oeloc;
2232 uint32_t oelen;
2233 int8_t etype;
2234
2235 if (epos.bh)
2236 get_bh(epos.bh);
2237
2238 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2239 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2240 neloc = oeloc;
2241 nelen = (etype << 30) | oelen;
2242 }
2243 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2244 brelse(epos.bh);
2245
2246 return (nelen >> 30);
2247}
2248
2249int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2250{
2251 struct extent_position oepos;
2252 int adsize;
2253 int8_t etype;
2254 struct allocExtDesc *aed;
2255 struct udf_inode_info *iinfo;
2256 struct kernel_lb_addr eloc;
2257 uint32_t elen;
2258
2259 if (epos.bh) {
2260 get_bh(epos.bh);
2261 get_bh(epos.bh);
2262 }
2263
2264 iinfo = UDF_I(inode);
2265 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2266 adsize = sizeof(struct short_ad);
2267 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2268 adsize = sizeof(struct long_ad);
2269 else
2270 adsize = 0;
2271
2272 oepos = epos;
2273 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2274 return -1;
2275
2276 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2277 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2278 if (oepos.bh != epos.bh) {
2279 oepos.block = epos.block;
2280 brelse(oepos.bh);
2281 get_bh(epos.bh);
2282 oepos.bh = epos.bh;
2283 oepos.offset = epos.offset - adsize;
2284 }
2285 }
2286 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2287 elen = 0;
2288
2289 if (epos.bh != oepos.bh) {
2290 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2291 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2292 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2293 if (!oepos.bh) {
2294 iinfo->i_lenAlloc -= (adsize * 2);
2295 mark_inode_dirty(inode);
2296 } else {
2297 aed = (struct allocExtDesc *)oepos.bh->b_data;
2298 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2299 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2300 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2301 udf_update_tag(oepos.bh->b_data,
2302 oepos.offset - (2 * adsize));
2303 else
2304 udf_update_tag(oepos.bh->b_data,
2305 sizeof(struct allocExtDesc));
2306 mark_buffer_dirty_inode(oepos.bh, inode);
2307 }
2308 } else {
2309 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2310 if (!oepos.bh) {
2311 iinfo->i_lenAlloc -= adsize;
2312 mark_inode_dirty(inode);
2313 } else {
2314 aed = (struct allocExtDesc *)oepos.bh->b_data;
2315 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2316 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2317 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2318 udf_update_tag(oepos.bh->b_data,
2319 epos.offset - adsize);
2320 else
2321 udf_update_tag(oepos.bh->b_data,
2322 sizeof(struct allocExtDesc));
2323 mark_buffer_dirty_inode(oepos.bh, inode);
2324 }
2325 }
2326
2327 brelse(epos.bh);
2328 brelse(oepos.bh);
2329
2330 return (elen >> 30);
2331}
2332
2333int8_t inode_bmap(struct inode *inode, sector_t block,
2334 struct extent_position *pos, struct kernel_lb_addr *eloc,
2335 uint32_t *elen, sector_t *offset)
2336{
2337 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2338 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2339 int8_t etype;
2340 struct udf_inode_info *iinfo;
2341
2342 iinfo = UDF_I(inode);
2343 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2344 pos->offset = 0;
2345 pos->block = iinfo->i_location;
2346 pos->bh = NULL;
2347 }
2348 *elen = 0;
2349 do {
2350 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2351 if (etype == -1) {
2352 *offset = (bcount - lbcount) >> blocksize_bits;
2353 iinfo->i_lenExtents = lbcount;
2354 return -1;
2355 }
2356 lbcount += *elen;
2357 } while (lbcount <= bcount);
2358 /* update extent cache */
2359 udf_update_extent_cache(inode, lbcount - *elen, pos);
2360 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2361
2362 return etype;
2363}
2364
2365udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2366{
2367 struct kernel_lb_addr eloc;
2368 uint32_t elen;
2369 sector_t offset;
2370 struct extent_position epos = {};
2371 udf_pblk_t ret;
2372
2373 down_read(&UDF_I(inode)->i_data_sem);
2374
2375 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2376 (EXT_RECORDED_ALLOCATED >> 30))
2377 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2378 else
2379 ret = 0;
2380
2381 up_read(&UDF_I(inode)->i_data_sem);
2382 brelse(epos.bh);
2383
2384 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2385 return udf_fixed_to_variable(ret);
2386 else
2387 return ret;
2388}
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/buffer_head.h>
37#include <linux/writeback.h>
38#include <linux/slab.h>
39#include <linux/crc-itu-t.h>
40
41#include "udf_i.h"
42#include "udf_sb.h"
43
44MODULE_AUTHOR("Ben Fennema");
45MODULE_DESCRIPTION("Universal Disk Format Filesystem");
46MODULE_LICENSE("GPL");
47
48#define EXTENT_MERGE_SIZE 5
49
50static mode_t udf_convert_permissions(struct fileEntry *);
51static int udf_update_inode(struct inode *, int);
52static void udf_fill_inode(struct inode *, struct buffer_head *);
53static int udf_sync_inode(struct inode *inode);
54static int udf_alloc_i_data(struct inode *inode, size_t size);
55static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
56 sector_t *, int *);
57static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 struct kernel_lb_addr, uint32_t);
59static void udf_split_extents(struct inode *, int *, int, int,
60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61static void udf_prealloc_extents(struct inode *, int, int,
62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63static void udf_merge_extents(struct inode *,
64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65static void udf_update_extents(struct inode *,
66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 struct extent_position *);
68static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69
70
71void udf_evict_inode(struct inode *inode)
72{
73 struct udf_inode_info *iinfo = UDF_I(inode);
74 int want_delete = 0;
75
76 if (!inode->i_nlink && !is_bad_inode(inode)) {
77 want_delete = 1;
78 udf_setsize(inode, 0);
79 udf_update_inode(inode, IS_SYNC(inode));
80 } else
81 truncate_inode_pages(&inode->i_data, 0);
82 invalidate_inode_buffers(inode);
83 end_writeback(inode);
84 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
85 inode->i_size != iinfo->i_lenExtents) {
86 printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has "
87 "inode size %llu different from extent length %llu. "
88 "Filesystem need not be standards compliant.\n",
89 inode->i_sb->s_id, inode->i_ino, inode->i_mode,
90 (unsigned long long)inode->i_size,
91 (unsigned long long)iinfo->i_lenExtents);
92 }
93 kfree(iinfo->i_ext.i_data);
94 iinfo->i_ext.i_data = NULL;
95 if (want_delete) {
96 udf_free_inode(inode);
97 }
98}
99
100static int udf_writepage(struct page *page, struct writeback_control *wbc)
101{
102 return block_write_full_page(page, udf_get_block, wbc);
103}
104
105static int udf_readpage(struct file *file, struct page *page)
106{
107 return block_read_full_page(page, udf_get_block);
108}
109
110static int udf_write_begin(struct file *file, struct address_space *mapping,
111 loff_t pos, unsigned len, unsigned flags,
112 struct page **pagep, void **fsdata)
113{
114 int ret;
115
116 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
117 if (unlikely(ret)) {
118 struct inode *inode = mapping->host;
119 struct udf_inode_info *iinfo = UDF_I(inode);
120 loff_t isize = inode->i_size;
121
122 if (pos + len > isize) {
123 truncate_pagecache(inode, pos + len, isize);
124 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
125 down_write(&iinfo->i_data_sem);
126 udf_truncate_extents(inode);
127 up_write(&iinfo->i_data_sem);
128 }
129 }
130 }
131
132 return ret;
133}
134
135static sector_t udf_bmap(struct address_space *mapping, sector_t block)
136{
137 return generic_block_bmap(mapping, block, udf_get_block);
138}
139
140const struct address_space_operations udf_aops = {
141 .readpage = udf_readpage,
142 .writepage = udf_writepage,
143 .write_begin = udf_write_begin,
144 .write_end = generic_write_end,
145 .bmap = udf_bmap,
146};
147
148int udf_expand_file_adinicb(struct inode *inode)
149{
150 struct page *page;
151 char *kaddr;
152 struct udf_inode_info *iinfo = UDF_I(inode);
153 int err;
154 struct writeback_control udf_wbc = {
155 .sync_mode = WB_SYNC_NONE,
156 .nr_to_write = 1,
157 };
158
159 if (!iinfo->i_lenAlloc) {
160 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
161 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
162 else
163 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
164 /* from now on we have normal address_space methods */
165 inode->i_data.a_ops = &udf_aops;
166 mark_inode_dirty(inode);
167 return 0;
168 }
169
170 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
171 if (!page)
172 return -ENOMEM;
173
174 if (!PageUptodate(page)) {
175 kaddr = kmap(page);
176 memset(kaddr + iinfo->i_lenAlloc, 0x00,
177 PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
178 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
179 iinfo->i_lenAlloc);
180 flush_dcache_page(page);
181 SetPageUptodate(page);
182 kunmap(page);
183 }
184 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
185 iinfo->i_lenAlloc);
186 iinfo->i_lenAlloc = 0;
187 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
188 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
189 else
190 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
191 /* from now on we have normal address_space methods */
192 inode->i_data.a_ops = &udf_aops;
193 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
194 if (err) {
195 /* Restore everything back so that we don't lose data... */
196 lock_page(page);
197 kaddr = kmap(page);
198 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
199 inode->i_size);
200 kunmap(page);
201 unlock_page(page);
202 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
203 inode->i_data.a_ops = &udf_adinicb_aops;
204 }
205 page_cache_release(page);
206 mark_inode_dirty(inode);
207
208 return err;
209}
210
211struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
212 int *err)
213{
214 int newblock;
215 struct buffer_head *dbh = NULL;
216 struct kernel_lb_addr eloc;
217 uint8_t alloctype;
218 struct extent_position epos;
219
220 struct udf_fileident_bh sfibh, dfibh;
221 loff_t f_pos = udf_ext0_offset(inode);
222 int size = udf_ext0_offset(inode) + inode->i_size;
223 struct fileIdentDesc cfi, *sfi, *dfi;
224 struct udf_inode_info *iinfo = UDF_I(inode);
225
226 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
227 alloctype = ICBTAG_FLAG_AD_SHORT;
228 else
229 alloctype = ICBTAG_FLAG_AD_LONG;
230
231 if (!inode->i_size) {
232 iinfo->i_alloc_type = alloctype;
233 mark_inode_dirty(inode);
234 return NULL;
235 }
236
237 /* alloc block, and copy data to it */
238 *block = udf_new_block(inode->i_sb, inode,
239 iinfo->i_location.partitionReferenceNum,
240 iinfo->i_location.logicalBlockNum, err);
241 if (!(*block))
242 return NULL;
243 newblock = udf_get_pblock(inode->i_sb, *block,
244 iinfo->i_location.partitionReferenceNum,
245 0);
246 if (!newblock)
247 return NULL;
248 dbh = udf_tgetblk(inode->i_sb, newblock);
249 if (!dbh)
250 return NULL;
251 lock_buffer(dbh);
252 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
253 set_buffer_uptodate(dbh);
254 unlock_buffer(dbh);
255 mark_buffer_dirty_inode(dbh, inode);
256
257 sfibh.soffset = sfibh.eoffset =
258 f_pos & (inode->i_sb->s_blocksize - 1);
259 sfibh.sbh = sfibh.ebh = NULL;
260 dfibh.soffset = dfibh.eoffset = 0;
261 dfibh.sbh = dfibh.ebh = dbh;
262 while (f_pos < size) {
263 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
264 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
265 NULL, NULL, NULL);
266 if (!sfi) {
267 brelse(dbh);
268 return NULL;
269 }
270 iinfo->i_alloc_type = alloctype;
271 sfi->descTag.tagLocation = cpu_to_le32(*block);
272 dfibh.soffset = dfibh.eoffset;
273 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
274 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
275 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
276 sfi->fileIdent +
277 le16_to_cpu(sfi->lengthOfImpUse))) {
278 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
279 brelse(dbh);
280 return NULL;
281 }
282 }
283 mark_buffer_dirty_inode(dbh, inode);
284
285 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
286 iinfo->i_lenAlloc);
287 iinfo->i_lenAlloc = 0;
288 eloc.logicalBlockNum = *block;
289 eloc.partitionReferenceNum =
290 iinfo->i_location.partitionReferenceNum;
291 iinfo->i_lenExtents = inode->i_size;
292 epos.bh = NULL;
293 epos.block = iinfo->i_location;
294 epos.offset = udf_file_entry_alloc_offset(inode);
295 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
296 /* UniqueID stuff */
297
298 brelse(epos.bh);
299 mark_inode_dirty(inode);
300 return dbh;
301}
302
303static int udf_get_block(struct inode *inode, sector_t block,
304 struct buffer_head *bh_result, int create)
305{
306 int err, new;
307 struct buffer_head *bh;
308 sector_t phys = 0;
309 struct udf_inode_info *iinfo;
310
311 if (!create) {
312 phys = udf_block_map(inode, block);
313 if (phys)
314 map_bh(bh_result, inode->i_sb, phys);
315 return 0;
316 }
317
318 err = -EIO;
319 new = 0;
320 bh = NULL;
321 iinfo = UDF_I(inode);
322
323 down_write(&iinfo->i_data_sem);
324 if (block == iinfo->i_next_alloc_block + 1) {
325 iinfo->i_next_alloc_block++;
326 iinfo->i_next_alloc_goal++;
327 }
328
329 err = 0;
330
331 bh = inode_getblk(inode, block, &err, &phys, &new);
332 BUG_ON(bh);
333 if (err)
334 goto abort;
335 BUG_ON(!phys);
336
337 if (new)
338 set_buffer_new(bh_result);
339 map_bh(bh_result, inode->i_sb, phys);
340
341abort:
342 up_write(&iinfo->i_data_sem);
343 return err;
344}
345
346static struct buffer_head *udf_getblk(struct inode *inode, long block,
347 int create, int *err)
348{
349 struct buffer_head *bh;
350 struct buffer_head dummy;
351
352 dummy.b_state = 0;
353 dummy.b_blocknr = -1000;
354 *err = udf_get_block(inode, block, &dummy, create);
355 if (!*err && buffer_mapped(&dummy)) {
356 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
357 if (buffer_new(&dummy)) {
358 lock_buffer(bh);
359 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
360 set_buffer_uptodate(bh);
361 unlock_buffer(bh);
362 mark_buffer_dirty_inode(bh, inode);
363 }
364 return bh;
365 }
366
367 return NULL;
368}
369
370/* Extend the file by 'blocks' blocks, return the number of extents added */
371static int udf_do_extend_file(struct inode *inode,
372 struct extent_position *last_pos,
373 struct kernel_long_ad *last_ext,
374 sector_t blocks)
375{
376 sector_t add;
377 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
378 struct super_block *sb = inode->i_sb;
379 struct kernel_lb_addr prealloc_loc = {};
380 int prealloc_len = 0;
381 struct udf_inode_info *iinfo;
382 int err;
383
384 /* The previous extent is fake and we should not extend by anything
385 * - there's nothing to do... */
386 if (!blocks && fake)
387 return 0;
388
389 iinfo = UDF_I(inode);
390 /* Round the last extent up to a multiple of block size */
391 if (last_ext->extLength & (sb->s_blocksize - 1)) {
392 last_ext->extLength =
393 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
394 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
395 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
396 iinfo->i_lenExtents =
397 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
398 ~(sb->s_blocksize - 1);
399 }
400
401 /* Last extent are just preallocated blocks? */
402 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
403 EXT_NOT_RECORDED_ALLOCATED) {
404 /* Save the extent so that we can reattach it to the end */
405 prealloc_loc = last_ext->extLocation;
406 prealloc_len = last_ext->extLength;
407 /* Mark the extent as a hole */
408 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
409 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
410 last_ext->extLocation.logicalBlockNum = 0;
411 last_ext->extLocation.partitionReferenceNum = 0;
412 }
413
414 /* Can we merge with the previous extent? */
415 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
416 EXT_NOT_RECORDED_NOT_ALLOCATED) {
417 add = ((1 << 30) - sb->s_blocksize -
418 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
419 sb->s_blocksize_bits;
420 if (add > blocks)
421 add = blocks;
422 blocks -= add;
423 last_ext->extLength += add << sb->s_blocksize_bits;
424 }
425
426 if (fake) {
427 udf_add_aext(inode, last_pos, &last_ext->extLocation,
428 last_ext->extLength, 1);
429 count++;
430 } else
431 udf_write_aext(inode, last_pos, &last_ext->extLocation,
432 last_ext->extLength, 1);
433
434 /* Managed to do everything necessary? */
435 if (!blocks)
436 goto out;
437
438 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
439 last_ext->extLocation.logicalBlockNum = 0;
440 last_ext->extLocation.partitionReferenceNum = 0;
441 add = (1 << (30-sb->s_blocksize_bits)) - 1;
442 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
443 (add << sb->s_blocksize_bits);
444
445 /* Create enough extents to cover the whole hole */
446 while (blocks > add) {
447 blocks -= add;
448 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
449 last_ext->extLength, 1);
450 if (err)
451 return err;
452 count++;
453 }
454 if (blocks) {
455 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
456 (blocks << sb->s_blocksize_bits);
457 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
458 last_ext->extLength, 1);
459 if (err)
460 return err;
461 count++;
462 }
463
464out:
465 /* Do we have some preallocated blocks saved? */
466 if (prealloc_len) {
467 err = udf_add_aext(inode, last_pos, &prealloc_loc,
468 prealloc_len, 1);
469 if (err)
470 return err;
471 last_ext->extLocation = prealloc_loc;
472 last_ext->extLength = prealloc_len;
473 count++;
474 }
475
476 /* last_pos should point to the last written extent... */
477 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
478 last_pos->offset -= sizeof(struct short_ad);
479 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
480 last_pos->offset -= sizeof(struct long_ad);
481 else
482 return -EIO;
483
484 return count;
485}
486
487static int udf_extend_file(struct inode *inode, loff_t newsize)
488{
489
490 struct extent_position epos;
491 struct kernel_lb_addr eloc;
492 uint32_t elen;
493 int8_t etype;
494 struct super_block *sb = inode->i_sb;
495 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
496 int adsize;
497 struct udf_inode_info *iinfo = UDF_I(inode);
498 struct kernel_long_ad extent;
499 int err;
500
501 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
502 adsize = sizeof(struct short_ad);
503 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
504 adsize = sizeof(struct long_ad);
505 else
506 BUG();
507
508 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
509
510 /* File has extent covering the new size (could happen when extending
511 * inside a block)? */
512 if (etype != -1)
513 return 0;
514 if (newsize & (sb->s_blocksize - 1))
515 offset++;
516 /* Extended file just to the boundary of the last file block? */
517 if (offset == 0)
518 return 0;
519
520 /* Truncate is extending the file by 'offset' blocks */
521 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
522 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
523 /* File has no extents at all or has empty last
524 * indirect extent! Create a fake extent... */
525 extent.extLocation.logicalBlockNum = 0;
526 extent.extLocation.partitionReferenceNum = 0;
527 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
528 } else {
529 epos.offset -= adsize;
530 etype = udf_next_aext(inode, &epos, &extent.extLocation,
531 &extent.extLength, 0);
532 extent.extLength |= etype << 30;
533 }
534 err = udf_do_extend_file(inode, &epos, &extent, offset);
535 if (err < 0)
536 goto out;
537 err = 0;
538 iinfo->i_lenExtents = newsize;
539out:
540 brelse(epos.bh);
541 return err;
542}
543
544static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
545 int *err, sector_t *phys, int *new)
546{
547 static sector_t last_block;
548 struct buffer_head *result = NULL;
549 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
550 struct extent_position prev_epos, cur_epos, next_epos;
551 int count = 0, startnum = 0, endnum = 0;
552 uint32_t elen = 0, tmpelen;
553 struct kernel_lb_addr eloc, tmpeloc;
554 int c = 1;
555 loff_t lbcount = 0, b_off = 0;
556 uint32_t newblocknum, newblock;
557 sector_t offset = 0;
558 int8_t etype;
559 struct udf_inode_info *iinfo = UDF_I(inode);
560 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
561 int lastblock = 0;
562
563 prev_epos.offset = udf_file_entry_alloc_offset(inode);
564 prev_epos.block = iinfo->i_location;
565 prev_epos.bh = NULL;
566 cur_epos = next_epos = prev_epos;
567 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
568
569 /* find the extent which contains the block we are looking for.
570 alternate between laarr[0] and laarr[1] for locations of the
571 current extent, and the previous extent */
572 do {
573 if (prev_epos.bh != cur_epos.bh) {
574 brelse(prev_epos.bh);
575 get_bh(cur_epos.bh);
576 prev_epos.bh = cur_epos.bh;
577 }
578 if (cur_epos.bh != next_epos.bh) {
579 brelse(cur_epos.bh);
580 get_bh(next_epos.bh);
581 cur_epos.bh = next_epos.bh;
582 }
583
584 lbcount += elen;
585
586 prev_epos.block = cur_epos.block;
587 cur_epos.block = next_epos.block;
588
589 prev_epos.offset = cur_epos.offset;
590 cur_epos.offset = next_epos.offset;
591
592 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
593 if (etype == -1)
594 break;
595
596 c = !c;
597
598 laarr[c].extLength = (etype << 30) | elen;
599 laarr[c].extLocation = eloc;
600
601 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
602 pgoal = eloc.logicalBlockNum +
603 ((elen + inode->i_sb->s_blocksize - 1) >>
604 inode->i_sb->s_blocksize_bits);
605
606 count++;
607 } while (lbcount + elen <= b_off);
608
609 b_off -= lbcount;
610 offset = b_off >> inode->i_sb->s_blocksize_bits;
611 /*
612 * Move prev_epos and cur_epos into indirect extent if we are at
613 * the pointer to it
614 */
615 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
616 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
617
618 /* if the extent is allocated and recorded, return the block
619 if the extent is not a multiple of the blocksize, round up */
620
621 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
622 if (elen & (inode->i_sb->s_blocksize - 1)) {
623 elen = EXT_RECORDED_ALLOCATED |
624 ((elen + inode->i_sb->s_blocksize - 1) &
625 ~(inode->i_sb->s_blocksize - 1));
626 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
627 }
628 brelse(prev_epos.bh);
629 brelse(cur_epos.bh);
630 brelse(next_epos.bh);
631 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
632 *phys = newblock;
633 return NULL;
634 }
635
636 last_block = block;
637 /* Are we beyond EOF? */
638 if (etype == -1) {
639 int ret;
640
641 if (count) {
642 if (c)
643 laarr[0] = laarr[1];
644 startnum = 1;
645 } else {
646 /* Create a fake extent when there's not one */
647 memset(&laarr[0].extLocation, 0x00,
648 sizeof(struct kernel_lb_addr));
649 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
650 /* Will udf_do_extend_file() create real extent from
651 a fake one? */
652 startnum = (offset > 0);
653 }
654 /* Create extents for the hole between EOF and offset */
655 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
656 if (ret < 0) {
657 brelse(prev_epos.bh);
658 brelse(cur_epos.bh);
659 brelse(next_epos.bh);
660 *err = ret;
661 return NULL;
662 }
663 c = 0;
664 offset = 0;
665 count += ret;
666 /* We are not covered by a preallocated extent? */
667 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
668 EXT_NOT_RECORDED_ALLOCATED) {
669 /* Is there any real extent? - otherwise we overwrite
670 * the fake one... */
671 if (count)
672 c = !c;
673 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
674 inode->i_sb->s_blocksize;
675 memset(&laarr[c].extLocation, 0x00,
676 sizeof(struct kernel_lb_addr));
677 count++;
678 endnum++;
679 }
680 endnum = c + 1;
681 lastblock = 1;
682 } else {
683 endnum = startnum = ((count > 2) ? 2 : count);
684
685 /* if the current extent is in position 0,
686 swap it with the previous */
687 if (!c && count != 1) {
688 laarr[2] = laarr[0];
689 laarr[0] = laarr[1];
690 laarr[1] = laarr[2];
691 c = 1;
692 }
693
694 /* if the current block is located in an extent,
695 read the next extent */
696 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
697 if (etype != -1) {
698 laarr[c + 1].extLength = (etype << 30) | elen;
699 laarr[c + 1].extLocation = eloc;
700 count++;
701 startnum++;
702 endnum++;
703 } else
704 lastblock = 1;
705 }
706
707 /* if the current extent is not recorded but allocated, get the
708 * block in the extent corresponding to the requested block */
709 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
710 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
711 else { /* otherwise, allocate a new block */
712 if (iinfo->i_next_alloc_block == block)
713 goal = iinfo->i_next_alloc_goal;
714
715 if (!goal) {
716 if (!(goal = pgoal)) /* XXX: what was intended here? */
717 goal = iinfo->i_location.logicalBlockNum + 1;
718 }
719
720 newblocknum = udf_new_block(inode->i_sb, inode,
721 iinfo->i_location.partitionReferenceNum,
722 goal, err);
723 if (!newblocknum) {
724 brelse(prev_epos.bh);
725 *err = -ENOSPC;
726 return NULL;
727 }
728 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
729 }
730
731 /* if the extent the requsted block is located in contains multiple
732 * blocks, split the extent into at most three extents. blocks prior
733 * to requested block, requested block, and blocks after requested
734 * block */
735 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
736
737#ifdef UDF_PREALLOCATE
738 /* We preallocate blocks only for regular files. It also makes sense
739 * for directories but there's a problem when to drop the
740 * preallocation. We might use some delayed work for that but I feel
741 * it's overengineering for a filesystem like UDF. */
742 if (S_ISREG(inode->i_mode))
743 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
744#endif
745
746 /* merge any continuous blocks in laarr */
747 udf_merge_extents(inode, laarr, &endnum);
748
749 /* write back the new extents, inserting new extents if the new number
750 * of extents is greater than the old number, and deleting extents if
751 * the new number of extents is less than the old number */
752 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
753
754 brelse(prev_epos.bh);
755
756 newblock = udf_get_pblock(inode->i_sb, newblocknum,
757 iinfo->i_location.partitionReferenceNum, 0);
758 if (!newblock)
759 return NULL;
760 *phys = newblock;
761 *err = 0;
762 *new = 1;
763 iinfo->i_next_alloc_block = block;
764 iinfo->i_next_alloc_goal = newblocknum;
765 inode->i_ctime = current_fs_time(inode->i_sb);
766
767 if (IS_SYNC(inode))
768 udf_sync_inode(inode);
769 else
770 mark_inode_dirty(inode);
771
772 return result;
773}
774
775static void udf_split_extents(struct inode *inode, int *c, int offset,
776 int newblocknum,
777 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
778 int *endnum)
779{
780 unsigned long blocksize = inode->i_sb->s_blocksize;
781 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
782
783 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
784 (laarr[*c].extLength >> 30) ==
785 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
786 int curr = *c;
787 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
788 blocksize - 1) >> blocksize_bits;
789 int8_t etype = (laarr[curr].extLength >> 30);
790
791 if (blen == 1)
792 ;
793 else if (!offset || blen == offset + 1) {
794 laarr[curr + 2] = laarr[curr + 1];
795 laarr[curr + 1] = laarr[curr];
796 } else {
797 laarr[curr + 3] = laarr[curr + 1];
798 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
799 }
800
801 if (offset) {
802 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
803 udf_free_blocks(inode->i_sb, inode,
804 &laarr[curr].extLocation,
805 0, offset);
806 laarr[curr].extLength =
807 EXT_NOT_RECORDED_NOT_ALLOCATED |
808 (offset << blocksize_bits);
809 laarr[curr].extLocation.logicalBlockNum = 0;
810 laarr[curr].extLocation.
811 partitionReferenceNum = 0;
812 } else
813 laarr[curr].extLength = (etype << 30) |
814 (offset << blocksize_bits);
815 curr++;
816 (*c)++;
817 (*endnum)++;
818 }
819
820 laarr[curr].extLocation.logicalBlockNum = newblocknum;
821 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
822 laarr[curr].extLocation.partitionReferenceNum =
823 UDF_I(inode)->i_location.partitionReferenceNum;
824 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
825 blocksize;
826 curr++;
827
828 if (blen != offset + 1) {
829 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
830 laarr[curr].extLocation.logicalBlockNum +=
831 offset + 1;
832 laarr[curr].extLength = (etype << 30) |
833 ((blen - (offset + 1)) << blocksize_bits);
834 curr++;
835 (*endnum)++;
836 }
837 }
838}
839
840static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
841 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
842 int *endnum)
843{
844 int start, length = 0, currlength = 0, i;
845
846 if (*endnum >= (c + 1)) {
847 if (!lastblock)
848 return;
849 else
850 start = c;
851 } else {
852 if ((laarr[c + 1].extLength >> 30) ==
853 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
854 start = c + 1;
855 length = currlength =
856 (((laarr[c + 1].extLength &
857 UDF_EXTENT_LENGTH_MASK) +
858 inode->i_sb->s_blocksize - 1) >>
859 inode->i_sb->s_blocksize_bits);
860 } else
861 start = c;
862 }
863
864 for (i = start + 1; i <= *endnum; i++) {
865 if (i == *endnum) {
866 if (lastblock)
867 length += UDF_DEFAULT_PREALLOC_BLOCKS;
868 } else if ((laarr[i].extLength >> 30) ==
869 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
870 length += (((laarr[i].extLength &
871 UDF_EXTENT_LENGTH_MASK) +
872 inode->i_sb->s_blocksize - 1) >>
873 inode->i_sb->s_blocksize_bits);
874 } else
875 break;
876 }
877
878 if (length) {
879 int next = laarr[start].extLocation.logicalBlockNum +
880 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
881 inode->i_sb->s_blocksize - 1) >>
882 inode->i_sb->s_blocksize_bits);
883 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
884 laarr[start].extLocation.partitionReferenceNum,
885 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
886 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
887 currlength);
888 if (numalloc) {
889 if (start == (c + 1))
890 laarr[start].extLength +=
891 (numalloc <<
892 inode->i_sb->s_blocksize_bits);
893 else {
894 memmove(&laarr[c + 2], &laarr[c + 1],
895 sizeof(struct long_ad) * (*endnum - (c + 1)));
896 (*endnum)++;
897 laarr[c + 1].extLocation.logicalBlockNum = next;
898 laarr[c + 1].extLocation.partitionReferenceNum =
899 laarr[c].extLocation.
900 partitionReferenceNum;
901 laarr[c + 1].extLength =
902 EXT_NOT_RECORDED_ALLOCATED |
903 (numalloc <<
904 inode->i_sb->s_blocksize_bits);
905 start = c + 1;
906 }
907
908 for (i = start + 1; numalloc && i < *endnum; i++) {
909 int elen = ((laarr[i].extLength &
910 UDF_EXTENT_LENGTH_MASK) +
911 inode->i_sb->s_blocksize - 1) >>
912 inode->i_sb->s_blocksize_bits;
913
914 if (elen > numalloc) {
915 laarr[i].extLength -=
916 (numalloc <<
917 inode->i_sb->s_blocksize_bits);
918 numalloc = 0;
919 } else {
920 numalloc -= elen;
921 if (*endnum > (i + 1))
922 memmove(&laarr[i],
923 &laarr[i + 1],
924 sizeof(struct long_ad) *
925 (*endnum - (i + 1)));
926 i--;
927 (*endnum)--;
928 }
929 }
930 UDF_I(inode)->i_lenExtents +=
931 numalloc << inode->i_sb->s_blocksize_bits;
932 }
933 }
934}
935
936static void udf_merge_extents(struct inode *inode,
937 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
938 int *endnum)
939{
940 int i;
941 unsigned long blocksize = inode->i_sb->s_blocksize;
942 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
943
944 for (i = 0; i < (*endnum - 1); i++) {
945 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
946 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
947
948 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
949 (((li->extLength >> 30) ==
950 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
951 ((lip1->extLocation.logicalBlockNum -
952 li->extLocation.logicalBlockNum) ==
953 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
954 blocksize - 1) >> blocksize_bits)))) {
955
956 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
957 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
958 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
959 lip1->extLength = (lip1->extLength -
960 (li->extLength &
961 UDF_EXTENT_LENGTH_MASK) +
962 UDF_EXTENT_LENGTH_MASK) &
963 ~(blocksize - 1);
964 li->extLength = (li->extLength &
965 UDF_EXTENT_FLAG_MASK) +
966 (UDF_EXTENT_LENGTH_MASK + 1) -
967 blocksize;
968 lip1->extLocation.logicalBlockNum =
969 li->extLocation.logicalBlockNum +
970 ((li->extLength &
971 UDF_EXTENT_LENGTH_MASK) >>
972 blocksize_bits);
973 } else {
974 li->extLength = lip1->extLength +
975 (((li->extLength &
976 UDF_EXTENT_LENGTH_MASK) +
977 blocksize - 1) & ~(blocksize - 1));
978 if (*endnum > (i + 2))
979 memmove(&laarr[i + 1], &laarr[i + 2],
980 sizeof(struct long_ad) *
981 (*endnum - (i + 2)));
982 i--;
983 (*endnum)--;
984 }
985 } else if (((li->extLength >> 30) ==
986 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
987 ((lip1->extLength >> 30) ==
988 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
989 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
990 ((li->extLength &
991 UDF_EXTENT_LENGTH_MASK) +
992 blocksize - 1) >> blocksize_bits);
993 li->extLocation.logicalBlockNum = 0;
994 li->extLocation.partitionReferenceNum = 0;
995
996 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
997 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
998 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
999 lip1->extLength = (lip1->extLength -
1000 (li->extLength &
1001 UDF_EXTENT_LENGTH_MASK) +
1002 UDF_EXTENT_LENGTH_MASK) &
1003 ~(blocksize - 1);
1004 li->extLength = (li->extLength &
1005 UDF_EXTENT_FLAG_MASK) +
1006 (UDF_EXTENT_LENGTH_MASK + 1) -
1007 blocksize;
1008 } else {
1009 li->extLength = lip1->extLength +
1010 (((li->extLength &
1011 UDF_EXTENT_LENGTH_MASK) +
1012 blocksize - 1) & ~(blocksize - 1));
1013 if (*endnum > (i + 2))
1014 memmove(&laarr[i + 1], &laarr[i + 2],
1015 sizeof(struct long_ad) *
1016 (*endnum - (i + 2)));
1017 i--;
1018 (*endnum)--;
1019 }
1020 } else if ((li->extLength >> 30) ==
1021 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1022 udf_free_blocks(inode->i_sb, inode,
1023 &li->extLocation, 0,
1024 ((li->extLength &
1025 UDF_EXTENT_LENGTH_MASK) +
1026 blocksize - 1) >> blocksize_bits);
1027 li->extLocation.logicalBlockNum = 0;
1028 li->extLocation.partitionReferenceNum = 0;
1029 li->extLength = (li->extLength &
1030 UDF_EXTENT_LENGTH_MASK) |
1031 EXT_NOT_RECORDED_NOT_ALLOCATED;
1032 }
1033 }
1034}
1035
1036static void udf_update_extents(struct inode *inode,
1037 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1038 int startnum, int endnum,
1039 struct extent_position *epos)
1040{
1041 int start = 0, i;
1042 struct kernel_lb_addr tmploc;
1043 uint32_t tmplen;
1044
1045 if (startnum > endnum) {
1046 for (i = 0; i < (startnum - endnum); i++)
1047 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1048 laarr[i].extLength);
1049 } else if (startnum < endnum) {
1050 for (i = 0; i < (endnum - startnum); i++) {
1051 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1052 laarr[i].extLength);
1053 udf_next_aext(inode, epos, &laarr[i].extLocation,
1054 &laarr[i].extLength, 1);
1055 start++;
1056 }
1057 }
1058
1059 for (i = start; i < endnum; i++) {
1060 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1061 udf_write_aext(inode, epos, &laarr[i].extLocation,
1062 laarr[i].extLength, 1);
1063 }
1064}
1065
1066struct buffer_head *udf_bread(struct inode *inode, int block,
1067 int create, int *err)
1068{
1069 struct buffer_head *bh = NULL;
1070
1071 bh = udf_getblk(inode, block, create, err);
1072 if (!bh)
1073 return NULL;
1074
1075 if (buffer_uptodate(bh))
1076 return bh;
1077
1078 ll_rw_block(READ, 1, &bh);
1079
1080 wait_on_buffer(bh);
1081 if (buffer_uptodate(bh))
1082 return bh;
1083
1084 brelse(bh);
1085 *err = -EIO;
1086 return NULL;
1087}
1088
1089int udf_setsize(struct inode *inode, loff_t newsize)
1090{
1091 int err;
1092 struct udf_inode_info *iinfo;
1093 int bsize = 1 << inode->i_blkbits;
1094
1095 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1096 S_ISLNK(inode->i_mode)))
1097 return -EINVAL;
1098 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1099 return -EPERM;
1100
1101 iinfo = UDF_I(inode);
1102 if (newsize > inode->i_size) {
1103 down_write(&iinfo->i_data_sem);
1104 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1105 if (bsize <
1106 (udf_file_entry_alloc_offset(inode) + newsize)) {
1107 err = udf_expand_file_adinicb(inode);
1108 if (err) {
1109 up_write(&iinfo->i_data_sem);
1110 return err;
1111 }
1112 } else
1113 iinfo->i_lenAlloc = newsize;
1114 }
1115 err = udf_extend_file(inode, newsize);
1116 if (err) {
1117 up_write(&iinfo->i_data_sem);
1118 return err;
1119 }
1120 truncate_setsize(inode, newsize);
1121 up_write(&iinfo->i_data_sem);
1122 } else {
1123 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1124 down_write(&iinfo->i_data_sem);
1125 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1126 0x00, bsize - newsize -
1127 udf_file_entry_alloc_offset(inode));
1128 iinfo->i_lenAlloc = newsize;
1129 truncate_setsize(inode, newsize);
1130 up_write(&iinfo->i_data_sem);
1131 goto update_time;
1132 }
1133 err = block_truncate_page(inode->i_mapping, newsize,
1134 udf_get_block);
1135 if (err)
1136 return err;
1137 down_write(&iinfo->i_data_sem);
1138 truncate_setsize(inode, newsize);
1139 udf_truncate_extents(inode);
1140 up_write(&iinfo->i_data_sem);
1141 }
1142update_time:
1143 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1144 if (IS_SYNC(inode))
1145 udf_sync_inode(inode);
1146 else
1147 mark_inode_dirty(inode);
1148 return 0;
1149}
1150
1151static void __udf_read_inode(struct inode *inode)
1152{
1153 struct buffer_head *bh = NULL;
1154 struct fileEntry *fe;
1155 uint16_t ident;
1156 struct udf_inode_info *iinfo = UDF_I(inode);
1157
1158 /*
1159 * Set defaults, but the inode is still incomplete!
1160 * Note: get_new_inode() sets the following on a new inode:
1161 * i_sb = sb
1162 * i_no = ino
1163 * i_flags = sb->s_flags
1164 * i_state = 0
1165 * clean_inode(): zero fills and sets
1166 * i_count = 1
1167 * i_nlink = 1
1168 * i_op = NULL;
1169 */
1170 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1171 if (!bh) {
1172 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1173 inode->i_ino);
1174 make_bad_inode(inode);
1175 return;
1176 }
1177
1178 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1179 ident != TAG_IDENT_USE) {
1180 printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1181 "failed ident=%d\n", inode->i_ino, ident);
1182 brelse(bh);
1183 make_bad_inode(inode);
1184 return;
1185 }
1186
1187 fe = (struct fileEntry *)bh->b_data;
1188
1189 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1190 struct buffer_head *ibh;
1191
1192 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1193 &ident);
1194 if (ident == TAG_IDENT_IE && ibh) {
1195 struct buffer_head *nbh = NULL;
1196 struct kernel_lb_addr loc;
1197 struct indirectEntry *ie;
1198
1199 ie = (struct indirectEntry *)ibh->b_data;
1200 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1201
1202 if (ie->indirectICB.extLength &&
1203 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1204 &ident))) {
1205 if (ident == TAG_IDENT_FE ||
1206 ident == TAG_IDENT_EFE) {
1207 memcpy(&iinfo->i_location,
1208 &loc,
1209 sizeof(struct kernel_lb_addr));
1210 brelse(bh);
1211 brelse(ibh);
1212 brelse(nbh);
1213 __udf_read_inode(inode);
1214 return;
1215 }
1216 brelse(nbh);
1217 }
1218 }
1219 brelse(ibh);
1220 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1221 printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1222 le16_to_cpu(fe->icbTag.strategyType));
1223 brelse(bh);
1224 make_bad_inode(inode);
1225 return;
1226 }
1227 udf_fill_inode(inode, bh);
1228
1229 brelse(bh);
1230}
1231
1232static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1233{
1234 struct fileEntry *fe;
1235 struct extendedFileEntry *efe;
1236 int offset;
1237 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1238 struct udf_inode_info *iinfo = UDF_I(inode);
1239
1240 fe = (struct fileEntry *)bh->b_data;
1241 efe = (struct extendedFileEntry *)bh->b_data;
1242
1243 if (fe->icbTag.strategyType == cpu_to_le16(4))
1244 iinfo->i_strat4096 = 0;
1245 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1246 iinfo->i_strat4096 = 1;
1247
1248 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1249 ICBTAG_FLAG_AD_MASK;
1250 iinfo->i_unique = 0;
1251 iinfo->i_lenEAttr = 0;
1252 iinfo->i_lenExtents = 0;
1253 iinfo->i_lenAlloc = 0;
1254 iinfo->i_next_alloc_block = 0;
1255 iinfo->i_next_alloc_goal = 0;
1256 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1257 iinfo->i_efe = 1;
1258 iinfo->i_use = 0;
1259 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1260 sizeof(struct extendedFileEntry))) {
1261 make_bad_inode(inode);
1262 return;
1263 }
1264 memcpy(iinfo->i_ext.i_data,
1265 bh->b_data + sizeof(struct extendedFileEntry),
1266 inode->i_sb->s_blocksize -
1267 sizeof(struct extendedFileEntry));
1268 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1269 iinfo->i_efe = 0;
1270 iinfo->i_use = 0;
1271 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1272 sizeof(struct fileEntry))) {
1273 make_bad_inode(inode);
1274 return;
1275 }
1276 memcpy(iinfo->i_ext.i_data,
1277 bh->b_data + sizeof(struct fileEntry),
1278 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1279 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1280 iinfo->i_efe = 0;
1281 iinfo->i_use = 1;
1282 iinfo->i_lenAlloc = le32_to_cpu(
1283 ((struct unallocSpaceEntry *)bh->b_data)->
1284 lengthAllocDescs);
1285 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1286 sizeof(struct unallocSpaceEntry))) {
1287 make_bad_inode(inode);
1288 return;
1289 }
1290 memcpy(iinfo->i_ext.i_data,
1291 bh->b_data + sizeof(struct unallocSpaceEntry),
1292 inode->i_sb->s_blocksize -
1293 sizeof(struct unallocSpaceEntry));
1294 return;
1295 }
1296
1297 read_lock(&sbi->s_cred_lock);
1298 inode->i_uid = le32_to_cpu(fe->uid);
1299 if (inode->i_uid == -1 ||
1300 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1301 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1302 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1303
1304 inode->i_gid = le32_to_cpu(fe->gid);
1305 if (inode->i_gid == -1 ||
1306 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1307 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1308 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1309
1310 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1311 sbi->s_fmode != UDF_INVALID_MODE)
1312 inode->i_mode = sbi->s_fmode;
1313 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1314 sbi->s_dmode != UDF_INVALID_MODE)
1315 inode->i_mode = sbi->s_dmode;
1316 else
1317 inode->i_mode = udf_convert_permissions(fe);
1318 inode->i_mode &= ~sbi->s_umask;
1319 read_unlock(&sbi->s_cred_lock);
1320
1321 inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1322 if (!inode->i_nlink)
1323 inode->i_nlink = 1;
1324
1325 inode->i_size = le64_to_cpu(fe->informationLength);
1326 iinfo->i_lenExtents = inode->i_size;
1327
1328 if (iinfo->i_efe == 0) {
1329 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1330 (inode->i_sb->s_blocksize_bits - 9);
1331
1332 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1333 inode->i_atime = sbi->s_record_time;
1334
1335 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1336 fe->modificationTime))
1337 inode->i_mtime = sbi->s_record_time;
1338
1339 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1340 inode->i_ctime = sbi->s_record_time;
1341
1342 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1343 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1344 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1345 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1346 } else {
1347 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1348 (inode->i_sb->s_blocksize_bits - 9);
1349
1350 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1351 inode->i_atime = sbi->s_record_time;
1352
1353 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1354 efe->modificationTime))
1355 inode->i_mtime = sbi->s_record_time;
1356
1357 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1358 iinfo->i_crtime = sbi->s_record_time;
1359
1360 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1361 inode->i_ctime = sbi->s_record_time;
1362
1363 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1364 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1365 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1366 offset = sizeof(struct extendedFileEntry) +
1367 iinfo->i_lenEAttr;
1368 }
1369
1370 switch (fe->icbTag.fileType) {
1371 case ICBTAG_FILE_TYPE_DIRECTORY:
1372 inode->i_op = &udf_dir_inode_operations;
1373 inode->i_fop = &udf_dir_operations;
1374 inode->i_mode |= S_IFDIR;
1375 inc_nlink(inode);
1376 break;
1377 case ICBTAG_FILE_TYPE_REALTIME:
1378 case ICBTAG_FILE_TYPE_REGULAR:
1379 case ICBTAG_FILE_TYPE_UNDEF:
1380 case ICBTAG_FILE_TYPE_VAT20:
1381 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1382 inode->i_data.a_ops = &udf_adinicb_aops;
1383 else
1384 inode->i_data.a_ops = &udf_aops;
1385 inode->i_op = &udf_file_inode_operations;
1386 inode->i_fop = &udf_file_operations;
1387 inode->i_mode |= S_IFREG;
1388 break;
1389 case ICBTAG_FILE_TYPE_BLOCK:
1390 inode->i_mode |= S_IFBLK;
1391 break;
1392 case ICBTAG_FILE_TYPE_CHAR:
1393 inode->i_mode |= S_IFCHR;
1394 break;
1395 case ICBTAG_FILE_TYPE_FIFO:
1396 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1397 break;
1398 case ICBTAG_FILE_TYPE_SOCKET:
1399 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1400 break;
1401 case ICBTAG_FILE_TYPE_SYMLINK:
1402 inode->i_data.a_ops = &udf_symlink_aops;
1403 inode->i_op = &udf_symlink_inode_operations;
1404 inode->i_mode = S_IFLNK | S_IRWXUGO;
1405 break;
1406 case ICBTAG_FILE_TYPE_MAIN:
1407 udf_debug("METADATA FILE-----\n");
1408 break;
1409 case ICBTAG_FILE_TYPE_MIRROR:
1410 udf_debug("METADATA MIRROR FILE-----\n");
1411 break;
1412 case ICBTAG_FILE_TYPE_BITMAP:
1413 udf_debug("METADATA BITMAP FILE-----\n");
1414 break;
1415 default:
1416 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1417 "file type=%d\n", inode->i_ino,
1418 fe->icbTag.fileType);
1419 make_bad_inode(inode);
1420 return;
1421 }
1422 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1423 struct deviceSpec *dsea =
1424 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1425 if (dsea) {
1426 init_special_inode(inode, inode->i_mode,
1427 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1428 le32_to_cpu(dsea->minorDeviceIdent)));
1429 /* Developer ID ??? */
1430 } else
1431 make_bad_inode(inode);
1432 }
1433}
1434
1435static int udf_alloc_i_data(struct inode *inode, size_t size)
1436{
1437 struct udf_inode_info *iinfo = UDF_I(inode);
1438 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1439
1440 if (!iinfo->i_ext.i_data) {
1441 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1442 "no free memory\n", inode->i_ino);
1443 return -ENOMEM;
1444 }
1445
1446 return 0;
1447}
1448
1449static mode_t udf_convert_permissions(struct fileEntry *fe)
1450{
1451 mode_t mode;
1452 uint32_t permissions;
1453 uint32_t flags;
1454
1455 permissions = le32_to_cpu(fe->permissions);
1456 flags = le16_to_cpu(fe->icbTag.flags);
1457
1458 mode = ((permissions) & S_IRWXO) |
1459 ((permissions >> 2) & S_IRWXG) |
1460 ((permissions >> 4) & S_IRWXU) |
1461 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1462 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1463 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1464
1465 return mode;
1466}
1467
1468int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1469{
1470 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1471}
1472
1473static int udf_sync_inode(struct inode *inode)
1474{
1475 return udf_update_inode(inode, 1);
1476}
1477
1478static int udf_update_inode(struct inode *inode, int do_sync)
1479{
1480 struct buffer_head *bh = NULL;
1481 struct fileEntry *fe;
1482 struct extendedFileEntry *efe;
1483 uint32_t udfperms;
1484 uint16_t icbflags;
1485 uint16_t crclen;
1486 int err = 0;
1487 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1488 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1489 struct udf_inode_info *iinfo = UDF_I(inode);
1490
1491 bh = udf_tgetblk(inode->i_sb,
1492 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1493 if (!bh) {
1494 udf_debug("getblk failure\n");
1495 return -ENOMEM;
1496 }
1497
1498 lock_buffer(bh);
1499 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1500 fe = (struct fileEntry *)bh->b_data;
1501 efe = (struct extendedFileEntry *)bh->b_data;
1502
1503 if (iinfo->i_use) {
1504 struct unallocSpaceEntry *use =
1505 (struct unallocSpaceEntry *)bh->b_data;
1506
1507 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1508 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1509 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1510 sizeof(struct unallocSpaceEntry));
1511 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1512 use->descTag.tagLocation =
1513 cpu_to_le32(iinfo->i_location.logicalBlockNum);
1514 crclen = sizeof(struct unallocSpaceEntry) +
1515 iinfo->i_lenAlloc - sizeof(struct tag);
1516 use->descTag.descCRCLength = cpu_to_le16(crclen);
1517 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1518 sizeof(struct tag),
1519 crclen));
1520 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1521
1522 goto out;
1523 }
1524
1525 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1526 fe->uid = cpu_to_le32(-1);
1527 else
1528 fe->uid = cpu_to_le32(inode->i_uid);
1529
1530 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1531 fe->gid = cpu_to_le32(-1);
1532 else
1533 fe->gid = cpu_to_le32(inode->i_gid);
1534
1535 udfperms = ((inode->i_mode & S_IRWXO)) |
1536 ((inode->i_mode & S_IRWXG) << 2) |
1537 ((inode->i_mode & S_IRWXU) << 4);
1538
1539 udfperms |= (le32_to_cpu(fe->permissions) &
1540 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1541 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1542 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1543 fe->permissions = cpu_to_le32(udfperms);
1544
1545 if (S_ISDIR(inode->i_mode))
1546 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1547 else
1548 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1549
1550 fe->informationLength = cpu_to_le64(inode->i_size);
1551
1552 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1553 struct regid *eid;
1554 struct deviceSpec *dsea =
1555 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1556 if (!dsea) {
1557 dsea = (struct deviceSpec *)
1558 udf_add_extendedattr(inode,
1559 sizeof(struct deviceSpec) +
1560 sizeof(struct regid), 12, 0x3);
1561 dsea->attrType = cpu_to_le32(12);
1562 dsea->attrSubtype = 1;
1563 dsea->attrLength = cpu_to_le32(
1564 sizeof(struct deviceSpec) +
1565 sizeof(struct regid));
1566 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1567 }
1568 eid = (struct regid *)dsea->impUse;
1569 memset(eid, 0, sizeof(struct regid));
1570 strcpy(eid->ident, UDF_ID_DEVELOPER);
1571 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1572 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1573 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1574 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1575 }
1576
1577 if (iinfo->i_efe == 0) {
1578 memcpy(bh->b_data + sizeof(struct fileEntry),
1579 iinfo->i_ext.i_data,
1580 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1581 fe->logicalBlocksRecorded = cpu_to_le64(
1582 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1583 (blocksize_bits - 9));
1584
1585 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1586 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1587 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1588 memset(&(fe->impIdent), 0, sizeof(struct regid));
1589 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1590 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1591 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1592 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1593 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1594 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1595 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1596 crclen = sizeof(struct fileEntry);
1597 } else {
1598 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1599 iinfo->i_ext.i_data,
1600 inode->i_sb->s_blocksize -
1601 sizeof(struct extendedFileEntry));
1602 efe->objectSize = cpu_to_le64(inode->i_size);
1603 efe->logicalBlocksRecorded = cpu_to_le64(
1604 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1605 (blocksize_bits - 9));
1606
1607 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1608 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1609 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1610 iinfo->i_crtime = inode->i_atime;
1611
1612 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1613 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1614 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1615 iinfo->i_crtime = inode->i_mtime;
1616
1617 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1618 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1619 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1620 iinfo->i_crtime = inode->i_ctime;
1621
1622 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1623 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1624 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1625 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1626
1627 memset(&(efe->impIdent), 0, sizeof(struct regid));
1628 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1629 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1630 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1631 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1632 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1633 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1634 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1635 crclen = sizeof(struct extendedFileEntry);
1636 }
1637 if (iinfo->i_strat4096) {
1638 fe->icbTag.strategyType = cpu_to_le16(4096);
1639 fe->icbTag.strategyParameter = cpu_to_le16(1);
1640 fe->icbTag.numEntries = cpu_to_le16(2);
1641 } else {
1642 fe->icbTag.strategyType = cpu_to_le16(4);
1643 fe->icbTag.numEntries = cpu_to_le16(1);
1644 }
1645
1646 if (S_ISDIR(inode->i_mode))
1647 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1648 else if (S_ISREG(inode->i_mode))
1649 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1650 else if (S_ISLNK(inode->i_mode))
1651 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1652 else if (S_ISBLK(inode->i_mode))
1653 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1654 else if (S_ISCHR(inode->i_mode))
1655 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1656 else if (S_ISFIFO(inode->i_mode))
1657 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1658 else if (S_ISSOCK(inode->i_mode))
1659 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1660
1661 icbflags = iinfo->i_alloc_type |
1662 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1663 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1664 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1665 (le16_to_cpu(fe->icbTag.flags) &
1666 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1667 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1668
1669 fe->icbTag.flags = cpu_to_le16(icbflags);
1670 if (sbi->s_udfrev >= 0x0200)
1671 fe->descTag.descVersion = cpu_to_le16(3);
1672 else
1673 fe->descTag.descVersion = cpu_to_le16(2);
1674 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1675 fe->descTag.tagLocation = cpu_to_le32(
1676 iinfo->i_location.logicalBlockNum);
1677 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1678 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1679 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1680 crclen));
1681 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1682
1683out:
1684 set_buffer_uptodate(bh);
1685 unlock_buffer(bh);
1686
1687 /* write the data blocks */
1688 mark_buffer_dirty(bh);
1689 if (do_sync) {
1690 sync_dirty_buffer(bh);
1691 if (buffer_write_io_error(bh)) {
1692 printk(KERN_WARNING "IO error syncing udf inode "
1693 "[%s:%08lx]\n", inode->i_sb->s_id,
1694 inode->i_ino);
1695 err = -EIO;
1696 }
1697 }
1698 brelse(bh);
1699
1700 return err;
1701}
1702
1703struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1704{
1705 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1706 struct inode *inode = iget_locked(sb, block);
1707
1708 if (!inode)
1709 return NULL;
1710
1711 if (inode->i_state & I_NEW) {
1712 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1713 __udf_read_inode(inode);
1714 unlock_new_inode(inode);
1715 }
1716
1717 if (is_bad_inode(inode))
1718 goto out_iput;
1719
1720 if (ino->logicalBlockNum >= UDF_SB(sb)->
1721 s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1722 udf_debug("block=%d, partition=%d out of range\n",
1723 ino->logicalBlockNum, ino->partitionReferenceNum);
1724 make_bad_inode(inode);
1725 goto out_iput;
1726 }
1727
1728 return inode;
1729
1730 out_iput:
1731 iput(inode);
1732 return NULL;
1733}
1734
1735int udf_add_aext(struct inode *inode, struct extent_position *epos,
1736 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1737{
1738 int adsize;
1739 struct short_ad *sad = NULL;
1740 struct long_ad *lad = NULL;
1741 struct allocExtDesc *aed;
1742 uint8_t *ptr;
1743 struct udf_inode_info *iinfo = UDF_I(inode);
1744
1745 if (!epos->bh)
1746 ptr = iinfo->i_ext.i_data + epos->offset -
1747 udf_file_entry_alloc_offset(inode) +
1748 iinfo->i_lenEAttr;
1749 else
1750 ptr = epos->bh->b_data + epos->offset;
1751
1752 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1753 adsize = sizeof(struct short_ad);
1754 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1755 adsize = sizeof(struct long_ad);
1756 else
1757 return -EIO;
1758
1759 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1760 unsigned char *sptr, *dptr;
1761 struct buffer_head *nbh;
1762 int err, loffset;
1763 struct kernel_lb_addr obloc = epos->block;
1764
1765 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1766 obloc.partitionReferenceNum,
1767 obloc.logicalBlockNum, &err);
1768 if (!epos->block.logicalBlockNum)
1769 return -ENOSPC;
1770 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1771 &epos->block,
1772 0));
1773 if (!nbh)
1774 return -EIO;
1775 lock_buffer(nbh);
1776 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1777 set_buffer_uptodate(nbh);
1778 unlock_buffer(nbh);
1779 mark_buffer_dirty_inode(nbh, inode);
1780
1781 aed = (struct allocExtDesc *)(nbh->b_data);
1782 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1783 aed->previousAllocExtLocation =
1784 cpu_to_le32(obloc.logicalBlockNum);
1785 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1786 loffset = epos->offset;
1787 aed->lengthAllocDescs = cpu_to_le32(adsize);
1788 sptr = ptr - adsize;
1789 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1790 memcpy(dptr, sptr, adsize);
1791 epos->offset = sizeof(struct allocExtDesc) + adsize;
1792 } else {
1793 loffset = epos->offset + adsize;
1794 aed->lengthAllocDescs = cpu_to_le32(0);
1795 sptr = ptr;
1796 epos->offset = sizeof(struct allocExtDesc);
1797
1798 if (epos->bh) {
1799 aed = (struct allocExtDesc *)epos->bh->b_data;
1800 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1801 } else {
1802 iinfo->i_lenAlloc += adsize;
1803 mark_inode_dirty(inode);
1804 }
1805 }
1806 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1807 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1808 epos->block.logicalBlockNum, sizeof(struct tag));
1809 else
1810 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1811 epos->block.logicalBlockNum, sizeof(struct tag));
1812 switch (iinfo->i_alloc_type) {
1813 case ICBTAG_FLAG_AD_SHORT:
1814 sad = (struct short_ad *)sptr;
1815 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1816 inode->i_sb->s_blocksize);
1817 sad->extPosition =
1818 cpu_to_le32(epos->block.logicalBlockNum);
1819 break;
1820 case ICBTAG_FLAG_AD_LONG:
1821 lad = (struct long_ad *)sptr;
1822 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1823 inode->i_sb->s_blocksize);
1824 lad->extLocation = cpu_to_lelb(epos->block);
1825 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1826 break;
1827 }
1828 if (epos->bh) {
1829 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1830 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1831 udf_update_tag(epos->bh->b_data, loffset);
1832 else
1833 udf_update_tag(epos->bh->b_data,
1834 sizeof(struct allocExtDesc));
1835 mark_buffer_dirty_inode(epos->bh, inode);
1836 brelse(epos->bh);
1837 } else {
1838 mark_inode_dirty(inode);
1839 }
1840 epos->bh = nbh;
1841 }
1842
1843 udf_write_aext(inode, epos, eloc, elen, inc);
1844
1845 if (!epos->bh) {
1846 iinfo->i_lenAlloc += adsize;
1847 mark_inode_dirty(inode);
1848 } else {
1849 aed = (struct allocExtDesc *)epos->bh->b_data;
1850 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1851 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1852 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1853 udf_update_tag(epos->bh->b_data,
1854 epos->offset + (inc ? 0 : adsize));
1855 else
1856 udf_update_tag(epos->bh->b_data,
1857 sizeof(struct allocExtDesc));
1858 mark_buffer_dirty_inode(epos->bh, inode);
1859 }
1860
1861 return 0;
1862}
1863
1864void udf_write_aext(struct inode *inode, struct extent_position *epos,
1865 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1866{
1867 int adsize;
1868 uint8_t *ptr;
1869 struct short_ad *sad;
1870 struct long_ad *lad;
1871 struct udf_inode_info *iinfo = UDF_I(inode);
1872
1873 if (!epos->bh)
1874 ptr = iinfo->i_ext.i_data + epos->offset -
1875 udf_file_entry_alloc_offset(inode) +
1876 iinfo->i_lenEAttr;
1877 else
1878 ptr = epos->bh->b_data + epos->offset;
1879
1880 switch (iinfo->i_alloc_type) {
1881 case ICBTAG_FLAG_AD_SHORT:
1882 sad = (struct short_ad *)ptr;
1883 sad->extLength = cpu_to_le32(elen);
1884 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1885 adsize = sizeof(struct short_ad);
1886 break;
1887 case ICBTAG_FLAG_AD_LONG:
1888 lad = (struct long_ad *)ptr;
1889 lad->extLength = cpu_to_le32(elen);
1890 lad->extLocation = cpu_to_lelb(*eloc);
1891 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1892 adsize = sizeof(struct long_ad);
1893 break;
1894 default:
1895 return;
1896 }
1897
1898 if (epos->bh) {
1899 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1900 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1901 struct allocExtDesc *aed =
1902 (struct allocExtDesc *)epos->bh->b_data;
1903 udf_update_tag(epos->bh->b_data,
1904 le32_to_cpu(aed->lengthAllocDescs) +
1905 sizeof(struct allocExtDesc));
1906 }
1907 mark_buffer_dirty_inode(epos->bh, inode);
1908 } else {
1909 mark_inode_dirty(inode);
1910 }
1911
1912 if (inc)
1913 epos->offset += adsize;
1914}
1915
1916int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1917 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1918{
1919 int8_t etype;
1920
1921 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1922 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1923 int block;
1924 epos->block = *eloc;
1925 epos->offset = sizeof(struct allocExtDesc);
1926 brelse(epos->bh);
1927 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1928 epos->bh = udf_tread(inode->i_sb, block);
1929 if (!epos->bh) {
1930 udf_debug("reading block %d failed!\n", block);
1931 return -1;
1932 }
1933 }
1934
1935 return etype;
1936}
1937
1938int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1939 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1940{
1941 int alen;
1942 int8_t etype;
1943 uint8_t *ptr;
1944 struct short_ad *sad;
1945 struct long_ad *lad;
1946 struct udf_inode_info *iinfo = UDF_I(inode);
1947
1948 if (!epos->bh) {
1949 if (!epos->offset)
1950 epos->offset = udf_file_entry_alloc_offset(inode);
1951 ptr = iinfo->i_ext.i_data + epos->offset -
1952 udf_file_entry_alloc_offset(inode) +
1953 iinfo->i_lenEAttr;
1954 alen = udf_file_entry_alloc_offset(inode) +
1955 iinfo->i_lenAlloc;
1956 } else {
1957 if (!epos->offset)
1958 epos->offset = sizeof(struct allocExtDesc);
1959 ptr = epos->bh->b_data + epos->offset;
1960 alen = sizeof(struct allocExtDesc) +
1961 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1962 lengthAllocDescs);
1963 }
1964
1965 switch (iinfo->i_alloc_type) {
1966 case ICBTAG_FLAG_AD_SHORT:
1967 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1968 if (!sad)
1969 return -1;
1970 etype = le32_to_cpu(sad->extLength) >> 30;
1971 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1972 eloc->partitionReferenceNum =
1973 iinfo->i_location.partitionReferenceNum;
1974 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1975 break;
1976 case ICBTAG_FLAG_AD_LONG:
1977 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1978 if (!lad)
1979 return -1;
1980 etype = le32_to_cpu(lad->extLength) >> 30;
1981 *eloc = lelb_to_cpu(lad->extLocation);
1982 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1983 break;
1984 default:
1985 udf_debug("alloc_type = %d unsupported\n",
1986 iinfo->i_alloc_type);
1987 return -1;
1988 }
1989
1990 return etype;
1991}
1992
1993static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1994 struct kernel_lb_addr neloc, uint32_t nelen)
1995{
1996 struct kernel_lb_addr oeloc;
1997 uint32_t oelen;
1998 int8_t etype;
1999
2000 if (epos.bh)
2001 get_bh(epos.bh);
2002
2003 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2004 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2005 neloc = oeloc;
2006 nelen = (etype << 30) | oelen;
2007 }
2008 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2009 brelse(epos.bh);
2010
2011 return (nelen >> 30);
2012}
2013
2014int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2015 struct kernel_lb_addr eloc, uint32_t elen)
2016{
2017 struct extent_position oepos;
2018 int adsize;
2019 int8_t etype;
2020 struct allocExtDesc *aed;
2021 struct udf_inode_info *iinfo;
2022
2023 if (epos.bh) {
2024 get_bh(epos.bh);
2025 get_bh(epos.bh);
2026 }
2027
2028 iinfo = UDF_I(inode);
2029 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2030 adsize = sizeof(struct short_ad);
2031 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2032 adsize = sizeof(struct long_ad);
2033 else
2034 adsize = 0;
2035
2036 oepos = epos;
2037 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2038 return -1;
2039
2040 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2041 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2042 if (oepos.bh != epos.bh) {
2043 oepos.block = epos.block;
2044 brelse(oepos.bh);
2045 get_bh(epos.bh);
2046 oepos.bh = epos.bh;
2047 oepos.offset = epos.offset - adsize;
2048 }
2049 }
2050 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2051 elen = 0;
2052
2053 if (epos.bh != oepos.bh) {
2054 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2055 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2056 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2057 if (!oepos.bh) {
2058 iinfo->i_lenAlloc -= (adsize * 2);
2059 mark_inode_dirty(inode);
2060 } else {
2061 aed = (struct allocExtDesc *)oepos.bh->b_data;
2062 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2063 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2064 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2065 udf_update_tag(oepos.bh->b_data,
2066 oepos.offset - (2 * adsize));
2067 else
2068 udf_update_tag(oepos.bh->b_data,
2069 sizeof(struct allocExtDesc));
2070 mark_buffer_dirty_inode(oepos.bh, inode);
2071 }
2072 } else {
2073 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2074 if (!oepos.bh) {
2075 iinfo->i_lenAlloc -= adsize;
2076 mark_inode_dirty(inode);
2077 } else {
2078 aed = (struct allocExtDesc *)oepos.bh->b_data;
2079 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2080 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2081 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2082 udf_update_tag(oepos.bh->b_data,
2083 epos.offset - adsize);
2084 else
2085 udf_update_tag(oepos.bh->b_data,
2086 sizeof(struct allocExtDesc));
2087 mark_buffer_dirty_inode(oepos.bh, inode);
2088 }
2089 }
2090
2091 brelse(epos.bh);
2092 brelse(oepos.bh);
2093
2094 return (elen >> 30);
2095}
2096
2097int8_t inode_bmap(struct inode *inode, sector_t block,
2098 struct extent_position *pos, struct kernel_lb_addr *eloc,
2099 uint32_t *elen, sector_t *offset)
2100{
2101 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2102 loff_t lbcount = 0, bcount =
2103 (loff_t) block << blocksize_bits;
2104 int8_t etype;
2105 struct udf_inode_info *iinfo;
2106
2107 iinfo = UDF_I(inode);
2108 pos->offset = 0;
2109 pos->block = iinfo->i_location;
2110 pos->bh = NULL;
2111 *elen = 0;
2112
2113 do {
2114 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2115 if (etype == -1) {
2116 *offset = (bcount - lbcount) >> blocksize_bits;
2117 iinfo->i_lenExtents = lbcount;
2118 return -1;
2119 }
2120 lbcount += *elen;
2121 } while (lbcount <= bcount);
2122
2123 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2124
2125 return etype;
2126}
2127
2128long udf_block_map(struct inode *inode, sector_t block)
2129{
2130 struct kernel_lb_addr eloc;
2131 uint32_t elen;
2132 sector_t offset;
2133 struct extent_position epos = {};
2134 int ret;
2135
2136 down_read(&UDF_I(inode)->i_data_sem);
2137
2138 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2139 (EXT_RECORDED_ALLOCATED >> 30))
2140 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2141 else
2142 ret = 0;
2143
2144 up_read(&UDF_I(inode)->i_data_sem);
2145 brelse(epos.bh);
2146
2147 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2148 return udf_fixed_to_variable(ret);
2149 else
2150 return ret;
2151}