Loading...
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55static umode_t udf_convert_permissions(struct fileEntry *);
56static int udf_update_inode(struct inode *, int);
57static int udf_sync_inode(struct inode *inode);
58static int udf_alloc_i_data(struct inode *inode, size_t size);
59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 struct kernel_lb_addr, uint32_t);
62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 struct kernel_long_ad *, int *);
64static void udf_prealloc_extents(struct inode *, int, int,
65 struct kernel_long_ad *, int *);
66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 int, struct extent_position *);
69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71static void __udf_clear_extent_cache(struct inode *inode)
72{
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79}
80
81/* Invalidate extent cache */
82static void udf_clear_extent_cache(struct inode *inode)
83{
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89}
90
91/* Return contents of extent cache */
92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94{
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111}
112
113/* Add extent to extent cache */
114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos)
116{
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 iinfo->cached_extent.lstart = estart;
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 break;
130 case ICBTAG_FLAG_AD_LONG:
131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 break;
133 }
134 spin_unlock(&iinfo->i_extent_cache_lock);
135}
136
137void udf_evict_inode(struct inode *inode)
138{
139 struct udf_inode_info *iinfo = UDF_I(inode);
140 int want_delete = 0;
141
142 if (!is_bad_inode(inode)) {
143 if (!inode->i_nlink) {
144 want_delete = 1;
145 udf_setsize(inode, 0);
146 udf_update_inode(inode, IS_SYNC(inode));
147 }
148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 inode->i_size != iinfo->i_lenExtents) {
150 udf_warn(inode->i_sb,
151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 inode->i_ino, inode->i_mode,
153 (unsigned long long)inode->i_size,
154 (unsigned long long)iinfo->i_lenExtents);
155 }
156 }
157 truncate_inode_pages_final(&inode->i_data);
158 invalidate_inode_buffers(inode);
159 clear_inode(inode);
160 kfree(iinfo->i_data);
161 iinfo->i_data = NULL;
162 udf_clear_extent_cache(inode);
163 if (want_delete) {
164 udf_free_inode(inode);
165 }
166}
167
168static void udf_write_failed(struct address_space *mapping, loff_t to)
169{
170 struct inode *inode = mapping->host;
171 struct udf_inode_info *iinfo = UDF_I(inode);
172 loff_t isize = inode->i_size;
173
174 if (to > isize) {
175 truncate_pagecache(inode, isize);
176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 down_write(&iinfo->i_data_sem);
178 udf_clear_extent_cache(inode);
179 udf_truncate_extents(inode);
180 up_write(&iinfo->i_data_sem);
181 }
182 }
183}
184
185static int udf_writepage(struct page *page, struct writeback_control *wbc)
186{
187 return block_write_full_page(page, udf_get_block, wbc);
188}
189
190static int udf_writepages(struct address_space *mapping,
191 struct writeback_control *wbc)
192{
193 return mpage_writepages(mapping, wbc, udf_get_block);
194}
195
196static int udf_readpage(struct file *file, struct page *page)
197{
198 return mpage_readpage(page, udf_get_block);
199}
200
201static void udf_readahead(struct readahead_control *rac)
202{
203 mpage_readahead(rac, udf_get_block);
204}
205
206static int udf_write_begin(struct file *file, struct address_space *mapping,
207 loff_t pos, unsigned len, unsigned flags,
208 struct page **pagep, void **fsdata)
209{
210 int ret;
211
212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 if (unlikely(ret))
214 udf_write_failed(mapping, pos + len);
215 return ret;
216}
217
218static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219{
220 struct file *file = iocb->ki_filp;
221 struct address_space *mapping = file->f_mapping;
222 struct inode *inode = mapping->host;
223 size_t count = iov_iter_count(iter);
224 ssize_t ret;
225
226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 udf_write_failed(mapping, iocb->ki_pos + count);
229 return ret;
230}
231
232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233{
234 return generic_block_bmap(mapping, block, udf_get_block);
235}
236
237const struct address_space_operations udf_aops = {
238 .set_page_dirty = __set_page_dirty_buffers,
239 .readpage = udf_readpage,
240 .readahead = udf_readahead,
241 .writepage = udf_writepage,
242 .writepages = udf_writepages,
243 .write_begin = udf_write_begin,
244 .write_end = generic_write_end,
245 .direct_IO = udf_direct_IO,
246 .bmap = udf_bmap,
247};
248
249/*
250 * Expand file stored in ICB to a normal one-block-file
251 *
252 * This function requires i_data_sem for writing and releases it.
253 * This function requires i_mutex held
254 */
255int udf_expand_file_adinicb(struct inode *inode)
256{
257 struct page *page;
258 char *kaddr;
259 struct udf_inode_info *iinfo = UDF_I(inode);
260 int err;
261 struct writeback_control udf_wbc = {
262 .sync_mode = WB_SYNC_NONE,
263 .nr_to_write = 1,
264 };
265
266 WARN_ON_ONCE(!inode_is_locked(inode));
267 if (!iinfo->i_lenAlloc) {
268 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
269 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
270 else
271 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
272 /* from now on we have normal address_space methods */
273 inode->i_data.a_ops = &udf_aops;
274 up_write(&iinfo->i_data_sem);
275 mark_inode_dirty(inode);
276 return 0;
277 }
278 /*
279 * Release i_data_sem so that we can lock a page - page lock ranks
280 * above i_data_sem. i_mutex still protects us against file changes.
281 */
282 up_write(&iinfo->i_data_sem);
283
284 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
285 if (!page)
286 return -ENOMEM;
287
288 if (!PageUptodate(page)) {
289 kaddr = kmap_atomic(page);
290 memset(kaddr + iinfo->i_lenAlloc, 0x00,
291 PAGE_SIZE - iinfo->i_lenAlloc);
292 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
293 iinfo->i_lenAlloc);
294 flush_dcache_page(page);
295 SetPageUptodate(page);
296 kunmap_atomic(kaddr);
297 }
298 down_write(&iinfo->i_data_sem);
299 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
300 iinfo->i_lenAlloc);
301 iinfo->i_lenAlloc = 0;
302 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
303 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
304 else
305 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
306 /* from now on we have normal address_space methods */
307 inode->i_data.a_ops = &udf_aops;
308 up_write(&iinfo->i_data_sem);
309 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
310 if (err) {
311 /* Restore everything back so that we don't lose data... */
312 lock_page(page);
313 down_write(&iinfo->i_data_sem);
314 kaddr = kmap_atomic(page);
315 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
316 kunmap_atomic(kaddr);
317 unlock_page(page);
318 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319 inode->i_data.a_ops = &udf_adinicb_aops;
320 up_write(&iinfo->i_data_sem);
321 }
322 put_page(page);
323 mark_inode_dirty(inode);
324
325 return err;
326}
327
328struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
329 udf_pblk_t *block, int *err)
330{
331 udf_pblk_t newblock;
332 struct buffer_head *dbh = NULL;
333 struct kernel_lb_addr eloc;
334 uint8_t alloctype;
335 struct extent_position epos;
336
337 struct udf_fileident_bh sfibh, dfibh;
338 loff_t f_pos = udf_ext0_offset(inode);
339 int size = udf_ext0_offset(inode) + inode->i_size;
340 struct fileIdentDesc cfi, *sfi, *dfi;
341 struct udf_inode_info *iinfo = UDF_I(inode);
342
343 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344 alloctype = ICBTAG_FLAG_AD_SHORT;
345 else
346 alloctype = ICBTAG_FLAG_AD_LONG;
347
348 if (!inode->i_size) {
349 iinfo->i_alloc_type = alloctype;
350 mark_inode_dirty(inode);
351 return NULL;
352 }
353
354 /* alloc block, and copy data to it */
355 *block = udf_new_block(inode->i_sb, inode,
356 iinfo->i_location.partitionReferenceNum,
357 iinfo->i_location.logicalBlockNum, err);
358 if (!(*block))
359 return NULL;
360 newblock = udf_get_pblock(inode->i_sb, *block,
361 iinfo->i_location.partitionReferenceNum,
362 0);
363 if (!newblock)
364 return NULL;
365 dbh = udf_tgetblk(inode->i_sb, newblock);
366 if (!dbh)
367 return NULL;
368 lock_buffer(dbh);
369 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370 set_buffer_uptodate(dbh);
371 unlock_buffer(dbh);
372 mark_buffer_dirty_inode(dbh, inode);
373
374 sfibh.soffset = sfibh.eoffset =
375 f_pos & (inode->i_sb->s_blocksize - 1);
376 sfibh.sbh = sfibh.ebh = NULL;
377 dfibh.soffset = dfibh.eoffset = 0;
378 dfibh.sbh = dfibh.ebh = dbh;
379 while (f_pos < size) {
380 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382 NULL, NULL, NULL);
383 if (!sfi) {
384 brelse(dbh);
385 return NULL;
386 }
387 iinfo->i_alloc_type = alloctype;
388 sfi->descTag.tagLocation = cpu_to_le32(*block);
389 dfibh.soffset = dfibh.eoffset;
390 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393 sfi->fileIdent +
394 le16_to_cpu(sfi->lengthOfImpUse))) {
395 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
396 brelse(dbh);
397 return NULL;
398 }
399 }
400 mark_buffer_dirty_inode(dbh, inode);
401
402 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
403 iinfo->i_lenAlloc = 0;
404 eloc.logicalBlockNum = *block;
405 eloc.partitionReferenceNum =
406 iinfo->i_location.partitionReferenceNum;
407 iinfo->i_lenExtents = inode->i_size;
408 epos.bh = NULL;
409 epos.block = iinfo->i_location;
410 epos.offset = udf_file_entry_alloc_offset(inode);
411 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
412 /* UniqueID stuff */
413
414 brelse(epos.bh);
415 mark_inode_dirty(inode);
416 return dbh;
417}
418
419static int udf_get_block(struct inode *inode, sector_t block,
420 struct buffer_head *bh_result, int create)
421{
422 int err, new;
423 sector_t phys = 0;
424 struct udf_inode_info *iinfo;
425
426 if (!create) {
427 phys = udf_block_map(inode, block);
428 if (phys)
429 map_bh(bh_result, inode->i_sb, phys);
430 return 0;
431 }
432
433 err = -EIO;
434 new = 0;
435 iinfo = UDF_I(inode);
436
437 down_write(&iinfo->i_data_sem);
438 if (block == iinfo->i_next_alloc_block + 1) {
439 iinfo->i_next_alloc_block++;
440 iinfo->i_next_alloc_goal++;
441 }
442
443 udf_clear_extent_cache(inode);
444 phys = inode_getblk(inode, block, &err, &new);
445 if (!phys)
446 goto abort;
447
448 if (new)
449 set_buffer_new(bh_result);
450 map_bh(bh_result, inode->i_sb, phys);
451
452abort:
453 up_write(&iinfo->i_data_sem);
454 return err;
455}
456
457static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
458 int create, int *err)
459{
460 struct buffer_head *bh;
461 struct buffer_head dummy;
462
463 dummy.b_state = 0;
464 dummy.b_blocknr = -1000;
465 *err = udf_get_block(inode, block, &dummy, create);
466 if (!*err && buffer_mapped(&dummy)) {
467 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
468 if (buffer_new(&dummy)) {
469 lock_buffer(bh);
470 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
471 set_buffer_uptodate(bh);
472 unlock_buffer(bh);
473 mark_buffer_dirty_inode(bh, inode);
474 }
475 return bh;
476 }
477
478 return NULL;
479}
480
481/* Extend the file with new blocks totaling 'new_block_bytes',
482 * return the number of extents added
483 */
484static int udf_do_extend_file(struct inode *inode,
485 struct extent_position *last_pos,
486 struct kernel_long_ad *last_ext,
487 loff_t new_block_bytes)
488{
489 uint32_t add;
490 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
491 struct super_block *sb = inode->i_sb;
492 struct kernel_lb_addr prealloc_loc = {};
493 uint32_t prealloc_len = 0;
494 struct udf_inode_info *iinfo;
495 int err;
496
497 /* The previous extent is fake and we should not extend by anything
498 * - there's nothing to do... */
499 if (!new_block_bytes && fake)
500 return 0;
501
502 iinfo = UDF_I(inode);
503 /* Round the last extent up to a multiple of block size */
504 if (last_ext->extLength & (sb->s_blocksize - 1)) {
505 last_ext->extLength =
506 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
507 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
508 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
509 iinfo->i_lenExtents =
510 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
511 ~(sb->s_blocksize - 1);
512 }
513
514 /* Last extent are just preallocated blocks? */
515 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
516 EXT_NOT_RECORDED_ALLOCATED) {
517 /* Save the extent so that we can reattach it to the end */
518 prealloc_loc = last_ext->extLocation;
519 prealloc_len = last_ext->extLength;
520 /* Mark the extent as a hole */
521 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
522 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
523 last_ext->extLocation.logicalBlockNum = 0;
524 last_ext->extLocation.partitionReferenceNum = 0;
525 }
526
527 /* Can we merge with the previous extent? */
528 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
529 EXT_NOT_RECORDED_NOT_ALLOCATED) {
530 add = (1 << 30) - sb->s_blocksize -
531 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
532 if (add > new_block_bytes)
533 add = new_block_bytes;
534 new_block_bytes -= add;
535 last_ext->extLength += add;
536 }
537
538 if (fake) {
539 udf_add_aext(inode, last_pos, &last_ext->extLocation,
540 last_ext->extLength, 1);
541 count++;
542 } else {
543 struct kernel_lb_addr tmploc;
544 uint32_t tmplen;
545
546 udf_write_aext(inode, last_pos, &last_ext->extLocation,
547 last_ext->extLength, 1);
548
549 /*
550 * We've rewritten the last extent. If we are going to add
551 * more extents, we may need to enter possible following
552 * empty indirect extent.
553 */
554 if (new_block_bytes || prealloc_len)
555 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
556 }
557
558 /* Managed to do everything necessary? */
559 if (!new_block_bytes)
560 goto out;
561
562 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
563 last_ext->extLocation.logicalBlockNum = 0;
564 last_ext->extLocation.partitionReferenceNum = 0;
565 add = (1 << 30) - sb->s_blocksize;
566 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
567
568 /* Create enough extents to cover the whole hole */
569 while (new_block_bytes > add) {
570 new_block_bytes -= add;
571 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
572 last_ext->extLength, 1);
573 if (err)
574 return err;
575 count++;
576 }
577 if (new_block_bytes) {
578 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
579 new_block_bytes;
580 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
581 last_ext->extLength, 1);
582 if (err)
583 return err;
584 count++;
585 }
586
587out:
588 /* Do we have some preallocated blocks saved? */
589 if (prealloc_len) {
590 err = udf_add_aext(inode, last_pos, &prealloc_loc,
591 prealloc_len, 1);
592 if (err)
593 return err;
594 last_ext->extLocation = prealloc_loc;
595 last_ext->extLength = prealloc_len;
596 count++;
597 }
598
599 /* last_pos should point to the last written extent... */
600 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
601 last_pos->offset -= sizeof(struct short_ad);
602 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
603 last_pos->offset -= sizeof(struct long_ad);
604 else
605 return -EIO;
606
607 return count;
608}
609
610/* Extend the final block of the file to final_block_len bytes */
611static void udf_do_extend_final_block(struct inode *inode,
612 struct extent_position *last_pos,
613 struct kernel_long_ad *last_ext,
614 uint32_t final_block_len)
615{
616 struct super_block *sb = inode->i_sb;
617 uint32_t added_bytes;
618
619 added_bytes = final_block_len -
620 (last_ext->extLength & (sb->s_blocksize - 1));
621 last_ext->extLength += added_bytes;
622 UDF_I(inode)->i_lenExtents += added_bytes;
623
624 udf_write_aext(inode, last_pos, &last_ext->extLocation,
625 last_ext->extLength, 1);
626}
627
628static int udf_extend_file(struct inode *inode, loff_t newsize)
629{
630
631 struct extent_position epos;
632 struct kernel_lb_addr eloc;
633 uint32_t elen;
634 int8_t etype;
635 struct super_block *sb = inode->i_sb;
636 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
637 unsigned long partial_final_block;
638 int adsize;
639 struct udf_inode_info *iinfo = UDF_I(inode);
640 struct kernel_long_ad extent;
641 int err = 0;
642 int within_final_block;
643
644 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
645 adsize = sizeof(struct short_ad);
646 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
647 adsize = sizeof(struct long_ad);
648 else
649 BUG();
650
651 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
652 within_final_block = (etype != -1);
653
654 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
655 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
656 /* File has no extents at all or has empty last
657 * indirect extent! Create a fake extent... */
658 extent.extLocation.logicalBlockNum = 0;
659 extent.extLocation.partitionReferenceNum = 0;
660 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
661 } else {
662 epos.offset -= adsize;
663 etype = udf_next_aext(inode, &epos, &extent.extLocation,
664 &extent.extLength, 0);
665 extent.extLength |= etype << 30;
666 }
667
668 partial_final_block = newsize & (sb->s_blocksize - 1);
669
670 /* File has extent covering the new size (could happen when extending
671 * inside a block)?
672 */
673 if (within_final_block) {
674 /* Extending file within the last file block */
675 udf_do_extend_final_block(inode, &epos, &extent,
676 partial_final_block);
677 } else {
678 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
679 partial_final_block;
680 err = udf_do_extend_file(inode, &epos, &extent, add);
681 }
682
683 if (err < 0)
684 goto out;
685 err = 0;
686 iinfo->i_lenExtents = newsize;
687out:
688 brelse(epos.bh);
689 return err;
690}
691
692static sector_t inode_getblk(struct inode *inode, sector_t block,
693 int *err, int *new)
694{
695 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
696 struct extent_position prev_epos, cur_epos, next_epos;
697 int count = 0, startnum = 0, endnum = 0;
698 uint32_t elen = 0, tmpelen;
699 struct kernel_lb_addr eloc, tmpeloc;
700 int c = 1;
701 loff_t lbcount = 0, b_off = 0;
702 udf_pblk_t newblocknum, newblock;
703 sector_t offset = 0;
704 int8_t etype;
705 struct udf_inode_info *iinfo = UDF_I(inode);
706 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
707 int lastblock = 0;
708 bool isBeyondEOF;
709
710 *err = 0;
711 *new = 0;
712 prev_epos.offset = udf_file_entry_alloc_offset(inode);
713 prev_epos.block = iinfo->i_location;
714 prev_epos.bh = NULL;
715 cur_epos = next_epos = prev_epos;
716 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
717
718 /* find the extent which contains the block we are looking for.
719 alternate between laarr[0] and laarr[1] for locations of the
720 current extent, and the previous extent */
721 do {
722 if (prev_epos.bh != cur_epos.bh) {
723 brelse(prev_epos.bh);
724 get_bh(cur_epos.bh);
725 prev_epos.bh = cur_epos.bh;
726 }
727 if (cur_epos.bh != next_epos.bh) {
728 brelse(cur_epos.bh);
729 get_bh(next_epos.bh);
730 cur_epos.bh = next_epos.bh;
731 }
732
733 lbcount += elen;
734
735 prev_epos.block = cur_epos.block;
736 cur_epos.block = next_epos.block;
737
738 prev_epos.offset = cur_epos.offset;
739 cur_epos.offset = next_epos.offset;
740
741 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
742 if (etype == -1)
743 break;
744
745 c = !c;
746
747 laarr[c].extLength = (etype << 30) | elen;
748 laarr[c].extLocation = eloc;
749
750 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
751 pgoal = eloc.logicalBlockNum +
752 ((elen + inode->i_sb->s_blocksize - 1) >>
753 inode->i_sb->s_blocksize_bits);
754
755 count++;
756 } while (lbcount + elen <= b_off);
757
758 b_off -= lbcount;
759 offset = b_off >> inode->i_sb->s_blocksize_bits;
760 /*
761 * Move prev_epos and cur_epos into indirect extent if we are at
762 * the pointer to it
763 */
764 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
765 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
766
767 /* if the extent is allocated and recorded, return the block
768 if the extent is not a multiple of the blocksize, round up */
769
770 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
771 if (elen & (inode->i_sb->s_blocksize - 1)) {
772 elen = EXT_RECORDED_ALLOCATED |
773 ((elen + inode->i_sb->s_blocksize - 1) &
774 ~(inode->i_sb->s_blocksize - 1));
775 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
776 }
777 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
778 goto out_free;
779 }
780
781 /* Are we beyond EOF? */
782 if (etype == -1) {
783 int ret;
784 loff_t hole_len;
785 isBeyondEOF = true;
786 if (count) {
787 if (c)
788 laarr[0] = laarr[1];
789 startnum = 1;
790 } else {
791 /* Create a fake extent when there's not one */
792 memset(&laarr[0].extLocation, 0x00,
793 sizeof(struct kernel_lb_addr));
794 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
795 /* Will udf_do_extend_file() create real extent from
796 a fake one? */
797 startnum = (offset > 0);
798 }
799 /* Create extents for the hole between EOF and offset */
800 hole_len = (loff_t)offset << inode->i_blkbits;
801 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
802 if (ret < 0) {
803 *err = ret;
804 newblock = 0;
805 goto out_free;
806 }
807 c = 0;
808 offset = 0;
809 count += ret;
810 /* We are not covered by a preallocated extent? */
811 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
812 EXT_NOT_RECORDED_ALLOCATED) {
813 /* Is there any real extent? - otherwise we overwrite
814 * the fake one... */
815 if (count)
816 c = !c;
817 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
818 inode->i_sb->s_blocksize;
819 memset(&laarr[c].extLocation, 0x00,
820 sizeof(struct kernel_lb_addr));
821 count++;
822 }
823 endnum = c + 1;
824 lastblock = 1;
825 } else {
826 isBeyondEOF = false;
827 endnum = startnum = ((count > 2) ? 2 : count);
828
829 /* if the current extent is in position 0,
830 swap it with the previous */
831 if (!c && count != 1) {
832 laarr[2] = laarr[0];
833 laarr[0] = laarr[1];
834 laarr[1] = laarr[2];
835 c = 1;
836 }
837
838 /* if the current block is located in an extent,
839 read the next extent */
840 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
841 if (etype != -1) {
842 laarr[c + 1].extLength = (etype << 30) | elen;
843 laarr[c + 1].extLocation = eloc;
844 count++;
845 startnum++;
846 endnum++;
847 } else
848 lastblock = 1;
849 }
850
851 /* if the current extent is not recorded but allocated, get the
852 * block in the extent corresponding to the requested block */
853 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
854 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
855 else { /* otherwise, allocate a new block */
856 if (iinfo->i_next_alloc_block == block)
857 goal = iinfo->i_next_alloc_goal;
858
859 if (!goal) {
860 if (!(goal = pgoal)) /* XXX: what was intended here? */
861 goal = iinfo->i_location.logicalBlockNum + 1;
862 }
863
864 newblocknum = udf_new_block(inode->i_sb, inode,
865 iinfo->i_location.partitionReferenceNum,
866 goal, err);
867 if (!newblocknum) {
868 *err = -ENOSPC;
869 newblock = 0;
870 goto out_free;
871 }
872 if (isBeyondEOF)
873 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
874 }
875
876 /* if the extent the requsted block is located in contains multiple
877 * blocks, split the extent into at most three extents. blocks prior
878 * to requested block, requested block, and blocks after requested
879 * block */
880 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
881
882 /* We preallocate blocks only for regular files. It also makes sense
883 * for directories but there's a problem when to drop the
884 * preallocation. We might use some delayed work for that but I feel
885 * it's overengineering for a filesystem like UDF. */
886 if (S_ISREG(inode->i_mode))
887 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
888
889 /* merge any continuous blocks in laarr */
890 udf_merge_extents(inode, laarr, &endnum);
891
892 /* write back the new extents, inserting new extents if the new number
893 * of extents is greater than the old number, and deleting extents if
894 * the new number of extents is less than the old number */
895 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
896
897 newblock = udf_get_pblock(inode->i_sb, newblocknum,
898 iinfo->i_location.partitionReferenceNum, 0);
899 if (!newblock) {
900 *err = -EIO;
901 goto out_free;
902 }
903 *new = 1;
904 iinfo->i_next_alloc_block = block;
905 iinfo->i_next_alloc_goal = newblocknum;
906 inode->i_ctime = current_time(inode);
907
908 if (IS_SYNC(inode))
909 udf_sync_inode(inode);
910 else
911 mark_inode_dirty(inode);
912out_free:
913 brelse(prev_epos.bh);
914 brelse(cur_epos.bh);
915 brelse(next_epos.bh);
916 return newblock;
917}
918
919static void udf_split_extents(struct inode *inode, int *c, int offset,
920 udf_pblk_t newblocknum,
921 struct kernel_long_ad *laarr, int *endnum)
922{
923 unsigned long blocksize = inode->i_sb->s_blocksize;
924 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
925
926 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
927 (laarr[*c].extLength >> 30) ==
928 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
929 int curr = *c;
930 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
931 blocksize - 1) >> blocksize_bits;
932 int8_t etype = (laarr[curr].extLength >> 30);
933
934 if (blen == 1)
935 ;
936 else if (!offset || blen == offset + 1) {
937 laarr[curr + 2] = laarr[curr + 1];
938 laarr[curr + 1] = laarr[curr];
939 } else {
940 laarr[curr + 3] = laarr[curr + 1];
941 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
942 }
943
944 if (offset) {
945 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
946 udf_free_blocks(inode->i_sb, inode,
947 &laarr[curr].extLocation,
948 0, offset);
949 laarr[curr].extLength =
950 EXT_NOT_RECORDED_NOT_ALLOCATED |
951 (offset << blocksize_bits);
952 laarr[curr].extLocation.logicalBlockNum = 0;
953 laarr[curr].extLocation.
954 partitionReferenceNum = 0;
955 } else
956 laarr[curr].extLength = (etype << 30) |
957 (offset << blocksize_bits);
958 curr++;
959 (*c)++;
960 (*endnum)++;
961 }
962
963 laarr[curr].extLocation.logicalBlockNum = newblocknum;
964 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
965 laarr[curr].extLocation.partitionReferenceNum =
966 UDF_I(inode)->i_location.partitionReferenceNum;
967 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
968 blocksize;
969 curr++;
970
971 if (blen != offset + 1) {
972 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
973 laarr[curr].extLocation.logicalBlockNum +=
974 offset + 1;
975 laarr[curr].extLength = (etype << 30) |
976 ((blen - (offset + 1)) << blocksize_bits);
977 curr++;
978 (*endnum)++;
979 }
980 }
981}
982
983static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
984 struct kernel_long_ad *laarr,
985 int *endnum)
986{
987 int start, length = 0, currlength = 0, i;
988
989 if (*endnum >= (c + 1)) {
990 if (!lastblock)
991 return;
992 else
993 start = c;
994 } else {
995 if ((laarr[c + 1].extLength >> 30) ==
996 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
997 start = c + 1;
998 length = currlength =
999 (((laarr[c + 1].extLength &
1000 UDF_EXTENT_LENGTH_MASK) +
1001 inode->i_sb->s_blocksize - 1) >>
1002 inode->i_sb->s_blocksize_bits);
1003 } else
1004 start = c;
1005 }
1006
1007 for (i = start + 1; i <= *endnum; i++) {
1008 if (i == *endnum) {
1009 if (lastblock)
1010 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1011 } else if ((laarr[i].extLength >> 30) ==
1012 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1013 length += (((laarr[i].extLength &
1014 UDF_EXTENT_LENGTH_MASK) +
1015 inode->i_sb->s_blocksize - 1) >>
1016 inode->i_sb->s_blocksize_bits);
1017 } else
1018 break;
1019 }
1020
1021 if (length) {
1022 int next = laarr[start].extLocation.logicalBlockNum +
1023 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1024 inode->i_sb->s_blocksize - 1) >>
1025 inode->i_sb->s_blocksize_bits);
1026 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1027 laarr[start].extLocation.partitionReferenceNum,
1028 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1029 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1030 currlength);
1031 if (numalloc) {
1032 if (start == (c + 1))
1033 laarr[start].extLength +=
1034 (numalloc <<
1035 inode->i_sb->s_blocksize_bits);
1036 else {
1037 memmove(&laarr[c + 2], &laarr[c + 1],
1038 sizeof(struct long_ad) * (*endnum - (c + 1)));
1039 (*endnum)++;
1040 laarr[c + 1].extLocation.logicalBlockNum = next;
1041 laarr[c + 1].extLocation.partitionReferenceNum =
1042 laarr[c].extLocation.
1043 partitionReferenceNum;
1044 laarr[c + 1].extLength =
1045 EXT_NOT_RECORDED_ALLOCATED |
1046 (numalloc <<
1047 inode->i_sb->s_blocksize_bits);
1048 start = c + 1;
1049 }
1050
1051 for (i = start + 1; numalloc && i < *endnum; i++) {
1052 int elen = ((laarr[i].extLength &
1053 UDF_EXTENT_LENGTH_MASK) +
1054 inode->i_sb->s_blocksize - 1) >>
1055 inode->i_sb->s_blocksize_bits;
1056
1057 if (elen > numalloc) {
1058 laarr[i].extLength -=
1059 (numalloc <<
1060 inode->i_sb->s_blocksize_bits);
1061 numalloc = 0;
1062 } else {
1063 numalloc -= elen;
1064 if (*endnum > (i + 1))
1065 memmove(&laarr[i],
1066 &laarr[i + 1],
1067 sizeof(struct long_ad) *
1068 (*endnum - (i + 1)));
1069 i--;
1070 (*endnum)--;
1071 }
1072 }
1073 UDF_I(inode)->i_lenExtents +=
1074 numalloc << inode->i_sb->s_blocksize_bits;
1075 }
1076 }
1077}
1078
1079static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1080 int *endnum)
1081{
1082 int i;
1083 unsigned long blocksize = inode->i_sb->s_blocksize;
1084 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1085
1086 for (i = 0; i < (*endnum - 1); i++) {
1087 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1088 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1089
1090 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1091 (((li->extLength >> 30) ==
1092 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1093 ((lip1->extLocation.logicalBlockNum -
1094 li->extLocation.logicalBlockNum) ==
1095 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1096 blocksize - 1) >> blocksize_bits)))) {
1097
1098 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1099 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1100 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1101 lip1->extLength = (lip1->extLength -
1102 (li->extLength &
1103 UDF_EXTENT_LENGTH_MASK) +
1104 UDF_EXTENT_LENGTH_MASK) &
1105 ~(blocksize - 1);
1106 li->extLength = (li->extLength &
1107 UDF_EXTENT_FLAG_MASK) +
1108 (UDF_EXTENT_LENGTH_MASK + 1) -
1109 blocksize;
1110 lip1->extLocation.logicalBlockNum =
1111 li->extLocation.logicalBlockNum +
1112 ((li->extLength &
1113 UDF_EXTENT_LENGTH_MASK) >>
1114 blocksize_bits);
1115 } else {
1116 li->extLength = lip1->extLength +
1117 (((li->extLength &
1118 UDF_EXTENT_LENGTH_MASK) +
1119 blocksize - 1) & ~(blocksize - 1));
1120 if (*endnum > (i + 2))
1121 memmove(&laarr[i + 1], &laarr[i + 2],
1122 sizeof(struct long_ad) *
1123 (*endnum - (i + 2)));
1124 i--;
1125 (*endnum)--;
1126 }
1127 } else if (((li->extLength >> 30) ==
1128 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1129 ((lip1->extLength >> 30) ==
1130 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1131 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1132 ((li->extLength &
1133 UDF_EXTENT_LENGTH_MASK) +
1134 blocksize - 1) >> blocksize_bits);
1135 li->extLocation.logicalBlockNum = 0;
1136 li->extLocation.partitionReferenceNum = 0;
1137
1138 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1139 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1140 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1141 lip1->extLength = (lip1->extLength -
1142 (li->extLength &
1143 UDF_EXTENT_LENGTH_MASK) +
1144 UDF_EXTENT_LENGTH_MASK) &
1145 ~(blocksize - 1);
1146 li->extLength = (li->extLength &
1147 UDF_EXTENT_FLAG_MASK) +
1148 (UDF_EXTENT_LENGTH_MASK + 1) -
1149 blocksize;
1150 } else {
1151 li->extLength = lip1->extLength +
1152 (((li->extLength &
1153 UDF_EXTENT_LENGTH_MASK) +
1154 blocksize - 1) & ~(blocksize - 1));
1155 if (*endnum > (i + 2))
1156 memmove(&laarr[i + 1], &laarr[i + 2],
1157 sizeof(struct long_ad) *
1158 (*endnum - (i + 2)));
1159 i--;
1160 (*endnum)--;
1161 }
1162 } else if ((li->extLength >> 30) ==
1163 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1164 udf_free_blocks(inode->i_sb, inode,
1165 &li->extLocation, 0,
1166 ((li->extLength &
1167 UDF_EXTENT_LENGTH_MASK) +
1168 blocksize - 1) >> blocksize_bits);
1169 li->extLocation.logicalBlockNum = 0;
1170 li->extLocation.partitionReferenceNum = 0;
1171 li->extLength = (li->extLength &
1172 UDF_EXTENT_LENGTH_MASK) |
1173 EXT_NOT_RECORDED_NOT_ALLOCATED;
1174 }
1175 }
1176}
1177
1178static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1179 int startnum, int endnum,
1180 struct extent_position *epos)
1181{
1182 int start = 0, i;
1183 struct kernel_lb_addr tmploc;
1184 uint32_t tmplen;
1185
1186 if (startnum > endnum) {
1187 for (i = 0; i < (startnum - endnum); i++)
1188 udf_delete_aext(inode, *epos);
1189 } else if (startnum < endnum) {
1190 for (i = 0; i < (endnum - startnum); i++) {
1191 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1192 laarr[i].extLength);
1193 udf_next_aext(inode, epos, &laarr[i].extLocation,
1194 &laarr[i].extLength, 1);
1195 start++;
1196 }
1197 }
1198
1199 for (i = start; i < endnum; i++) {
1200 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1201 udf_write_aext(inode, epos, &laarr[i].extLocation,
1202 laarr[i].extLength, 1);
1203 }
1204}
1205
1206struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1207 int create, int *err)
1208{
1209 struct buffer_head *bh = NULL;
1210
1211 bh = udf_getblk(inode, block, create, err);
1212 if (!bh)
1213 return NULL;
1214
1215 if (buffer_uptodate(bh))
1216 return bh;
1217
1218 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219
1220 wait_on_buffer(bh);
1221 if (buffer_uptodate(bh))
1222 return bh;
1223
1224 brelse(bh);
1225 *err = -EIO;
1226 return NULL;
1227}
1228
1229int udf_setsize(struct inode *inode, loff_t newsize)
1230{
1231 int err;
1232 struct udf_inode_info *iinfo;
1233 unsigned int bsize = i_blocksize(inode);
1234
1235 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1236 S_ISLNK(inode->i_mode)))
1237 return -EINVAL;
1238 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1239 return -EPERM;
1240
1241 iinfo = UDF_I(inode);
1242 if (newsize > inode->i_size) {
1243 down_write(&iinfo->i_data_sem);
1244 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1245 if (bsize <
1246 (udf_file_entry_alloc_offset(inode) + newsize)) {
1247 err = udf_expand_file_adinicb(inode);
1248 if (err)
1249 return err;
1250 down_write(&iinfo->i_data_sem);
1251 } else {
1252 iinfo->i_lenAlloc = newsize;
1253 goto set_size;
1254 }
1255 }
1256 err = udf_extend_file(inode, newsize);
1257 if (err) {
1258 up_write(&iinfo->i_data_sem);
1259 return err;
1260 }
1261set_size:
1262 up_write(&iinfo->i_data_sem);
1263 truncate_setsize(inode, newsize);
1264 } else {
1265 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1266 down_write(&iinfo->i_data_sem);
1267 udf_clear_extent_cache(inode);
1268 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1269 0x00, bsize - newsize -
1270 udf_file_entry_alloc_offset(inode));
1271 iinfo->i_lenAlloc = newsize;
1272 truncate_setsize(inode, newsize);
1273 up_write(&iinfo->i_data_sem);
1274 goto update_time;
1275 }
1276 err = block_truncate_page(inode->i_mapping, newsize,
1277 udf_get_block);
1278 if (err)
1279 return err;
1280 truncate_setsize(inode, newsize);
1281 down_write(&iinfo->i_data_sem);
1282 udf_clear_extent_cache(inode);
1283 err = udf_truncate_extents(inode);
1284 up_write(&iinfo->i_data_sem);
1285 if (err)
1286 return err;
1287 }
1288update_time:
1289 inode->i_mtime = inode->i_ctime = current_time(inode);
1290 if (IS_SYNC(inode))
1291 udf_sync_inode(inode);
1292 else
1293 mark_inode_dirty(inode);
1294 return 0;
1295}
1296
1297/*
1298 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1299 * arbitrary - just that we hopefully don't limit any real use of rewritten
1300 * inode on write-once media but avoid looping for too long on corrupted media.
1301 */
1302#define UDF_MAX_ICB_NESTING 1024
1303
1304static int udf_read_inode(struct inode *inode, bool hidden_inode)
1305{
1306 struct buffer_head *bh = NULL;
1307 struct fileEntry *fe;
1308 struct extendedFileEntry *efe;
1309 uint16_t ident;
1310 struct udf_inode_info *iinfo = UDF_I(inode);
1311 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1312 struct kernel_lb_addr *iloc = &iinfo->i_location;
1313 unsigned int link_count;
1314 unsigned int indirections = 0;
1315 int bs = inode->i_sb->s_blocksize;
1316 int ret = -EIO;
1317 uint32_t uid, gid;
1318
1319reread:
1320 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1321 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1322 iloc->partitionReferenceNum, sbi->s_partitions);
1323 return -EIO;
1324 }
1325
1326 if (iloc->logicalBlockNum >=
1327 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1328 udf_debug("block=%u, partition=%u out of range\n",
1329 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1330 return -EIO;
1331 }
1332
1333 /*
1334 * Set defaults, but the inode is still incomplete!
1335 * Note: get_new_inode() sets the following on a new inode:
1336 * i_sb = sb
1337 * i_no = ino
1338 * i_flags = sb->s_flags
1339 * i_state = 0
1340 * clean_inode(): zero fills and sets
1341 * i_count = 1
1342 * i_nlink = 1
1343 * i_op = NULL;
1344 */
1345 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1346 if (!bh) {
1347 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1348 return -EIO;
1349 }
1350
1351 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1352 ident != TAG_IDENT_USE) {
1353 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1354 inode->i_ino, ident);
1355 goto out;
1356 }
1357
1358 fe = (struct fileEntry *)bh->b_data;
1359 efe = (struct extendedFileEntry *)bh->b_data;
1360
1361 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1362 struct buffer_head *ibh;
1363
1364 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1365 if (ident == TAG_IDENT_IE && ibh) {
1366 struct kernel_lb_addr loc;
1367 struct indirectEntry *ie;
1368
1369 ie = (struct indirectEntry *)ibh->b_data;
1370 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1371
1372 if (ie->indirectICB.extLength) {
1373 brelse(ibh);
1374 memcpy(&iinfo->i_location, &loc,
1375 sizeof(struct kernel_lb_addr));
1376 if (++indirections > UDF_MAX_ICB_NESTING) {
1377 udf_err(inode->i_sb,
1378 "too many ICBs in ICB hierarchy"
1379 " (max %d supported)\n",
1380 UDF_MAX_ICB_NESTING);
1381 goto out;
1382 }
1383 brelse(bh);
1384 goto reread;
1385 }
1386 }
1387 brelse(ibh);
1388 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1389 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1390 le16_to_cpu(fe->icbTag.strategyType));
1391 goto out;
1392 }
1393 if (fe->icbTag.strategyType == cpu_to_le16(4))
1394 iinfo->i_strat4096 = 0;
1395 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1396 iinfo->i_strat4096 = 1;
1397
1398 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1399 ICBTAG_FLAG_AD_MASK;
1400 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1401 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1402 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1403 ret = -EIO;
1404 goto out;
1405 }
1406 iinfo->i_unique = 0;
1407 iinfo->i_lenEAttr = 0;
1408 iinfo->i_lenExtents = 0;
1409 iinfo->i_lenAlloc = 0;
1410 iinfo->i_next_alloc_block = 0;
1411 iinfo->i_next_alloc_goal = 0;
1412 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1413 iinfo->i_efe = 1;
1414 iinfo->i_use = 0;
1415 ret = udf_alloc_i_data(inode, bs -
1416 sizeof(struct extendedFileEntry));
1417 if (ret)
1418 goto out;
1419 memcpy(iinfo->i_data,
1420 bh->b_data + sizeof(struct extendedFileEntry),
1421 bs - sizeof(struct extendedFileEntry));
1422 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1423 iinfo->i_efe = 0;
1424 iinfo->i_use = 0;
1425 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1426 if (ret)
1427 goto out;
1428 memcpy(iinfo->i_data,
1429 bh->b_data + sizeof(struct fileEntry),
1430 bs - sizeof(struct fileEntry));
1431 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1432 iinfo->i_efe = 0;
1433 iinfo->i_use = 1;
1434 iinfo->i_lenAlloc = le32_to_cpu(
1435 ((struct unallocSpaceEntry *)bh->b_data)->
1436 lengthAllocDescs);
1437 ret = udf_alloc_i_data(inode, bs -
1438 sizeof(struct unallocSpaceEntry));
1439 if (ret)
1440 goto out;
1441 memcpy(iinfo->i_data,
1442 bh->b_data + sizeof(struct unallocSpaceEntry),
1443 bs - sizeof(struct unallocSpaceEntry));
1444 return 0;
1445 }
1446
1447 ret = -EIO;
1448 read_lock(&sbi->s_cred_lock);
1449 uid = le32_to_cpu(fe->uid);
1450 if (uid == UDF_INVALID_ID ||
1451 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1452 inode->i_uid = sbi->s_uid;
1453 else
1454 i_uid_write(inode, uid);
1455
1456 gid = le32_to_cpu(fe->gid);
1457 if (gid == UDF_INVALID_ID ||
1458 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1459 inode->i_gid = sbi->s_gid;
1460 else
1461 i_gid_write(inode, gid);
1462
1463 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1464 sbi->s_fmode != UDF_INVALID_MODE)
1465 inode->i_mode = sbi->s_fmode;
1466 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1467 sbi->s_dmode != UDF_INVALID_MODE)
1468 inode->i_mode = sbi->s_dmode;
1469 else
1470 inode->i_mode = udf_convert_permissions(fe);
1471 inode->i_mode &= ~sbi->s_umask;
1472 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1473
1474 read_unlock(&sbi->s_cred_lock);
1475
1476 link_count = le16_to_cpu(fe->fileLinkCount);
1477 if (!link_count) {
1478 if (!hidden_inode) {
1479 ret = -ESTALE;
1480 goto out;
1481 }
1482 link_count = 1;
1483 }
1484 set_nlink(inode, link_count);
1485
1486 inode->i_size = le64_to_cpu(fe->informationLength);
1487 iinfo->i_lenExtents = inode->i_size;
1488
1489 if (iinfo->i_efe == 0) {
1490 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1491 (inode->i_sb->s_blocksize_bits - 9);
1492
1493 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1494 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1495 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1496
1497 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1498 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1499 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1500 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1501 iinfo->i_streamdir = 0;
1502 iinfo->i_lenStreams = 0;
1503 } else {
1504 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1505 (inode->i_sb->s_blocksize_bits - 9);
1506
1507 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1508 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1509 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1510 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1511
1512 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1513 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1514 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1515 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1516
1517 /* Named streams */
1518 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1519 iinfo->i_locStreamdir =
1520 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1521 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1522 if (iinfo->i_lenStreams >= inode->i_size)
1523 iinfo->i_lenStreams -= inode->i_size;
1524 else
1525 iinfo->i_lenStreams = 0;
1526 }
1527 inode->i_generation = iinfo->i_unique;
1528
1529 /*
1530 * Sanity check length of allocation descriptors and extended attrs to
1531 * avoid integer overflows
1532 */
1533 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1534 goto out;
1535 /* Now do exact checks */
1536 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1537 goto out;
1538 /* Sanity checks for files in ICB so that we don't get confused later */
1539 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1540 /*
1541 * For file in ICB data is stored in allocation descriptor
1542 * so sizes should match
1543 */
1544 if (iinfo->i_lenAlloc != inode->i_size)
1545 goto out;
1546 /* File in ICB has to fit in there... */
1547 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1548 goto out;
1549 }
1550
1551 switch (fe->icbTag.fileType) {
1552 case ICBTAG_FILE_TYPE_DIRECTORY:
1553 inode->i_op = &udf_dir_inode_operations;
1554 inode->i_fop = &udf_dir_operations;
1555 inode->i_mode |= S_IFDIR;
1556 inc_nlink(inode);
1557 break;
1558 case ICBTAG_FILE_TYPE_REALTIME:
1559 case ICBTAG_FILE_TYPE_REGULAR:
1560 case ICBTAG_FILE_TYPE_UNDEF:
1561 case ICBTAG_FILE_TYPE_VAT20:
1562 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1563 inode->i_data.a_ops = &udf_adinicb_aops;
1564 else
1565 inode->i_data.a_ops = &udf_aops;
1566 inode->i_op = &udf_file_inode_operations;
1567 inode->i_fop = &udf_file_operations;
1568 inode->i_mode |= S_IFREG;
1569 break;
1570 case ICBTAG_FILE_TYPE_BLOCK:
1571 inode->i_mode |= S_IFBLK;
1572 break;
1573 case ICBTAG_FILE_TYPE_CHAR:
1574 inode->i_mode |= S_IFCHR;
1575 break;
1576 case ICBTAG_FILE_TYPE_FIFO:
1577 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1578 break;
1579 case ICBTAG_FILE_TYPE_SOCKET:
1580 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1581 break;
1582 case ICBTAG_FILE_TYPE_SYMLINK:
1583 inode->i_data.a_ops = &udf_symlink_aops;
1584 inode->i_op = &udf_symlink_inode_operations;
1585 inode_nohighmem(inode);
1586 inode->i_mode = S_IFLNK | 0777;
1587 break;
1588 case ICBTAG_FILE_TYPE_MAIN:
1589 udf_debug("METADATA FILE-----\n");
1590 break;
1591 case ICBTAG_FILE_TYPE_MIRROR:
1592 udf_debug("METADATA MIRROR FILE-----\n");
1593 break;
1594 case ICBTAG_FILE_TYPE_BITMAP:
1595 udf_debug("METADATA BITMAP FILE-----\n");
1596 break;
1597 default:
1598 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1599 inode->i_ino, fe->icbTag.fileType);
1600 goto out;
1601 }
1602 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1603 struct deviceSpec *dsea =
1604 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1605 if (dsea) {
1606 init_special_inode(inode, inode->i_mode,
1607 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1608 le32_to_cpu(dsea->minorDeviceIdent)));
1609 /* Developer ID ??? */
1610 } else
1611 goto out;
1612 }
1613 ret = 0;
1614out:
1615 brelse(bh);
1616 return ret;
1617}
1618
1619static int udf_alloc_i_data(struct inode *inode, size_t size)
1620{
1621 struct udf_inode_info *iinfo = UDF_I(inode);
1622 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1623 if (!iinfo->i_data)
1624 return -ENOMEM;
1625 return 0;
1626}
1627
1628static umode_t udf_convert_permissions(struct fileEntry *fe)
1629{
1630 umode_t mode;
1631 uint32_t permissions;
1632 uint32_t flags;
1633
1634 permissions = le32_to_cpu(fe->permissions);
1635 flags = le16_to_cpu(fe->icbTag.flags);
1636
1637 mode = ((permissions) & 0007) |
1638 ((permissions >> 2) & 0070) |
1639 ((permissions >> 4) & 0700) |
1640 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1641 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1642 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1643
1644 return mode;
1645}
1646
1647void udf_update_extra_perms(struct inode *inode, umode_t mode)
1648{
1649 struct udf_inode_info *iinfo = UDF_I(inode);
1650
1651 /*
1652 * UDF 2.01 sec. 3.3.3.3 Note 2:
1653 * In Unix, delete permission tracks write
1654 */
1655 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1656 if (mode & 0200)
1657 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1658 if (mode & 0020)
1659 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1660 if (mode & 0002)
1661 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1662}
1663
1664int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1665{
1666 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1667}
1668
1669static int udf_sync_inode(struct inode *inode)
1670{
1671 return udf_update_inode(inode, 1);
1672}
1673
1674static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1675{
1676 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1677 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1678 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1679 iinfo->i_crtime = time;
1680}
1681
1682static int udf_update_inode(struct inode *inode, int do_sync)
1683{
1684 struct buffer_head *bh = NULL;
1685 struct fileEntry *fe;
1686 struct extendedFileEntry *efe;
1687 uint64_t lb_recorded;
1688 uint32_t udfperms;
1689 uint16_t icbflags;
1690 uint16_t crclen;
1691 int err = 0;
1692 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1693 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1694 struct udf_inode_info *iinfo = UDF_I(inode);
1695
1696 bh = udf_tgetblk(inode->i_sb,
1697 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1698 if (!bh) {
1699 udf_debug("getblk failure\n");
1700 return -EIO;
1701 }
1702
1703 lock_buffer(bh);
1704 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1705 fe = (struct fileEntry *)bh->b_data;
1706 efe = (struct extendedFileEntry *)bh->b_data;
1707
1708 if (iinfo->i_use) {
1709 struct unallocSpaceEntry *use =
1710 (struct unallocSpaceEntry *)bh->b_data;
1711
1712 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1713 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1714 iinfo->i_data, inode->i_sb->s_blocksize -
1715 sizeof(struct unallocSpaceEntry));
1716 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1717 crclen = sizeof(struct unallocSpaceEntry);
1718
1719 goto finish;
1720 }
1721
1722 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1723 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1724 else
1725 fe->uid = cpu_to_le32(i_uid_read(inode));
1726
1727 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1728 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1729 else
1730 fe->gid = cpu_to_le32(i_gid_read(inode));
1731
1732 udfperms = ((inode->i_mode & 0007)) |
1733 ((inode->i_mode & 0070) << 2) |
1734 ((inode->i_mode & 0700) << 4);
1735
1736 udfperms |= iinfo->i_extraPerms;
1737 fe->permissions = cpu_to_le32(udfperms);
1738
1739 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1740 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1741 else
1742 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1743
1744 fe->informationLength = cpu_to_le64(inode->i_size);
1745
1746 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1747 struct regid *eid;
1748 struct deviceSpec *dsea =
1749 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1750 if (!dsea) {
1751 dsea = (struct deviceSpec *)
1752 udf_add_extendedattr(inode,
1753 sizeof(struct deviceSpec) +
1754 sizeof(struct regid), 12, 0x3);
1755 dsea->attrType = cpu_to_le32(12);
1756 dsea->attrSubtype = 1;
1757 dsea->attrLength = cpu_to_le32(
1758 sizeof(struct deviceSpec) +
1759 sizeof(struct regid));
1760 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1761 }
1762 eid = (struct regid *)dsea->impUse;
1763 memset(eid, 0, sizeof(*eid));
1764 strcpy(eid->ident, UDF_ID_DEVELOPER);
1765 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1766 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1767 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1768 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1769 }
1770
1771 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1772 lb_recorded = 0; /* No extents => no blocks! */
1773 else
1774 lb_recorded =
1775 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1776 (blocksize_bits - 9);
1777
1778 if (iinfo->i_efe == 0) {
1779 memcpy(bh->b_data + sizeof(struct fileEntry),
1780 iinfo->i_data,
1781 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1782 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1783
1784 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1785 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1786 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1787 memset(&(fe->impIdent), 0, sizeof(struct regid));
1788 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1789 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1790 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1791 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1792 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1793 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1794 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1795 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1796 crclen = sizeof(struct fileEntry);
1797 } else {
1798 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1799 iinfo->i_data,
1800 inode->i_sb->s_blocksize -
1801 sizeof(struct extendedFileEntry));
1802 efe->objectSize =
1803 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1804 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1805
1806 if (iinfo->i_streamdir) {
1807 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1808
1809 icb_lad->extLocation =
1810 cpu_to_lelb(iinfo->i_locStreamdir);
1811 icb_lad->extLength =
1812 cpu_to_le32(inode->i_sb->s_blocksize);
1813 }
1814
1815 udf_adjust_time(iinfo, inode->i_atime);
1816 udf_adjust_time(iinfo, inode->i_mtime);
1817 udf_adjust_time(iinfo, inode->i_ctime);
1818
1819 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1820 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1821 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1822 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1823
1824 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1825 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1826 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1827 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1828 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1829 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1830 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1831 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1832 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1833 crclen = sizeof(struct extendedFileEntry);
1834 }
1835
1836finish:
1837 if (iinfo->i_strat4096) {
1838 fe->icbTag.strategyType = cpu_to_le16(4096);
1839 fe->icbTag.strategyParameter = cpu_to_le16(1);
1840 fe->icbTag.numEntries = cpu_to_le16(2);
1841 } else {
1842 fe->icbTag.strategyType = cpu_to_le16(4);
1843 fe->icbTag.numEntries = cpu_to_le16(1);
1844 }
1845
1846 if (iinfo->i_use)
1847 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1848 else if (S_ISDIR(inode->i_mode))
1849 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1850 else if (S_ISREG(inode->i_mode))
1851 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1852 else if (S_ISLNK(inode->i_mode))
1853 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1854 else if (S_ISBLK(inode->i_mode))
1855 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1856 else if (S_ISCHR(inode->i_mode))
1857 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1858 else if (S_ISFIFO(inode->i_mode))
1859 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1860 else if (S_ISSOCK(inode->i_mode))
1861 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1862
1863 icbflags = iinfo->i_alloc_type |
1864 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1865 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1866 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1867 (le16_to_cpu(fe->icbTag.flags) &
1868 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1869 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1870
1871 fe->icbTag.flags = cpu_to_le16(icbflags);
1872 if (sbi->s_udfrev >= 0x0200)
1873 fe->descTag.descVersion = cpu_to_le16(3);
1874 else
1875 fe->descTag.descVersion = cpu_to_le16(2);
1876 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1877 fe->descTag.tagLocation = cpu_to_le32(
1878 iinfo->i_location.logicalBlockNum);
1879 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1880 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1881 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1882 crclen));
1883 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1884
1885 set_buffer_uptodate(bh);
1886 unlock_buffer(bh);
1887
1888 /* write the data blocks */
1889 mark_buffer_dirty(bh);
1890 if (do_sync) {
1891 sync_dirty_buffer(bh);
1892 if (buffer_write_io_error(bh)) {
1893 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1894 inode->i_ino);
1895 err = -EIO;
1896 }
1897 }
1898 brelse(bh);
1899
1900 return err;
1901}
1902
1903struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1904 bool hidden_inode)
1905{
1906 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1907 struct inode *inode = iget_locked(sb, block);
1908 int err;
1909
1910 if (!inode)
1911 return ERR_PTR(-ENOMEM);
1912
1913 if (!(inode->i_state & I_NEW))
1914 return inode;
1915
1916 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1917 err = udf_read_inode(inode, hidden_inode);
1918 if (err < 0) {
1919 iget_failed(inode);
1920 return ERR_PTR(err);
1921 }
1922 unlock_new_inode(inode);
1923
1924 return inode;
1925}
1926
1927int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1928 struct extent_position *epos)
1929{
1930 struct super_block *sb = inode->i_sb;
1931 struct buffer_head *bh;
1932 struct allocExtDesc *aed;
1933 struct extent_position nepos;
1934 struct kernel_lb_addr neloc;
1935 int ver, adsize;
1936
1937 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938 adsize = sizeof(struct short_ad);
1939 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940 adsize = sizeof(struct long_ad);
1941 else
1942 return -EIO;
1943
1944 neloc.logicalBlockNum = block;
1945 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1946
1947 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1948 if (!bh)
1949 return -EIO;
1950 lock_buffer(bh);
1951 memset(bh->b_data, 0x00, sb->s_blocksize);
1952 set_buffer_uptodate(bh);
1953 unlock_buffer(bh);
1954 mark_buffer_dirty_inode(bh, inode);
1955
1956 aed = (struct allocExtDesc *)(bh->b_data);
1957 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1958 aed->previousAllocExtLocation =
1959 cpu_to_le32(epos->block.logicalBlockNum);
1960 }
1961 aed->lengthAllocDescs = cpu_to_le32(0);
1962 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1963 ver = 3;
1964 else
1965 ver = 2;
1966 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1967 sizeof(struct tag));
1968
1969 nepos.block = neloc;
1970 nepos.offset = sizeof(struct allocExtDesc);
1971 nepos.bh = bh;
1972
1973 /*
1974 * Do we have to copy current last extent to make space for indirect
1975 * one?
1976 */
1977 if (epos->offset + adsize > sb->s_blocksize) {
1978 struct kernel_lb_addr cp_loc;
1979 uint32_t cp_len;
1980 int cp_type;
1981
1982 epos->offset -= adsize;
1983 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1984 cp_len |= ((uint32_t)cp_type) << 30;
1985
1986 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1987 udf_write_aext(inode, epos, &nepos.block,
1988 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1989 } else {
1990 __udf_add_aext(inode, epos, &nepos.block,
1991 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1992 }
1993
1994 brelse(epos->bh);
1995 *epos = nepos;
1996
1997 return 0;
1998}
1999
2000/*
2001 * Append extent at the given position - should be the first free one in inode
2002 * / indirect extent. This function assumes there is enough space in the inode
2003 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2004 */
2005int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2006 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007{
2008 struct udf_inode_info *iinfo = UDF_I(inode);
2009 struct allocExtDesc *aed;
2010 int adsize;
2011
2012 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013 adsize = sizeof(struct short_ad);
2014 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015 adsize = sizeof(struct long_ad);
2016 else
2017 return -EIO;
2018
2019 if (!epos->bh) {
2020 WARN_ON(iinfo->i_lenAlloc !=
2021 epos->offset - udf_file_entry_alloc_offset(inode));
2022 } else {
2023 aed = (struct allocExtDesc *)epos->bh->b_data;
2024 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2025 epos->offset - sizeof(struct allocExtDesc));
2026 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2027 }
2028
2029 udf_write_aext(inode, epos, eloc, elen, inc);
2030
2031 if (!epos->bh) {
2032 iinfo->i_lenAlloc += adsize;
2033 mark_inode_dirty(inode);
2034 } else {
2035 aed = (struct allocExtDesc *)epos->bh->b_data;
2036 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2037 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2038 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2039 udf_update_tag(epos->bh->b_data,
2040 epos->offset + (inc ? 0 : adsize));
2041 else
2042 udf_update_tag(epos->bh->b_data,
2043 sizeof(struct allocExtDesc));
2044 mark_buffer_dirty_inode(epos->bh, inode);
2045 }
2046
2047 return 0;
2048}
2049
2050/*
2051 * Append extent at given position - should be the first free one in inode
2052 * / indirect extent. Takes care of allocating and linking indirect blocks.
2053 */
2054int udf_add_aext(struct inode *inode, struct extent_position *epos,
2055 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2056{
2057 int adsize;
2058 struct super_block *sb = inode->i_sb;
2059
2060 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2061 adsize = sizeof(struct short_ad);
2062 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2063 adsize = sizeof(struct long_ad);
2064 else
2065 return -EIO;
2066
2067 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2068 int err;
2069 udf_pblk_t new_block;
2070
2071 new_block = udf_new_block(sb, NULL,
2072 epos->block.partitionReferenceNum,
2073 epos->block.logicalBlockNum, &err);
2074 if (!new_block)
2075 return -ENOSPC;
2076
2077 err = udf_setup_indirect_aext(inode, new_block, epos);
2078 if (err)
2079 return err;
2080 }
2081
2082 return __udf_add_aext(inode, epos, eloc, elen, inc);
2083}
2084
2085void udf_write_aext(struct inode *inode, struct extent_position *epos,
2086 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2087{
2088 int adsize;
2089 uint8_t *ptr;
2090 struct short_ad *sad;
2091 struct long_ad *lad;
2092 struct udf_inode_info *iinfo = UDF_I(inode);
2093
2094 if (!epos->bh)
2095 ptr = iinfo->i_data + epos->offset -
2096 udf_file_entry_alloc_offset(inode) +
2097 iinfo->i_lenEAttr;
2098 else
2099 ptr = epos->bh->b_data + epos->offset;
2100
2101 switch (iinfo->i_alloc_type) {
2102 case ICBTAG_FLAG_AD_SHORT:
2103 sad = (struct short_ad *)ptr;
2104 sad->extLength = cpu_to_le32(elen);
2105 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2106 adsize = sizeof(struct short_ad);
2107 break;
2108 case ICBTAG_FLAG_AD_LONG:
2109 lad = (struct long_ad *)ptr;
2110 lad->extLength = cpu_to_le32(elen);
2111 lad->extLocation = cpu_to_lelb(*eloc);
2112 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2113 adsize = sizeof(struct long_ad);
2114 break;
2115 default:
2116 return;
2117 }
2118
2119 if (epos->bh) {
2120 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2121 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2122 struct allocExtDesc *aed =
2123 (struct allocExtDesc *)epos->bh->b_data;
2124 udf_update_tag(epos->bh->b_data,
2125 le32_to_cpu(aed->lengthAllocDescs) +
2126 sizeof(struct allocExtDesc));
2127 }
2128 mark_buffer_dirty_inode(epos->bh, inode);
2129 } else {
2130 mark_inode_dirty(inode);
2131 }
2132
2133 if (inc)
2134 epos->offset += adsize;
2135}
2136
2137/*
2138 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2139 * someone does some weird stuff.
2140 */
2141#define UDF_MAX_INDIR_EXTS 16
2142
2143int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2144 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2145{
2146 int8_t etype;
2147 unsigned int indirections = 0;
2148
2149 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2150 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2151 udf_pblk_t block;
2152
2153 if (++indirections > UDF_MAX_INDIR_EXTS) {
2154 udf_err(inode->i_sb,
2155 "too many indirect extents in inode %lu\n",
2156 inode->i_ino);
2157 return -1;
2158 }
2159
2160 epos->block = *eloc;
2161 epos->offset = sizeof(struct allocExtDesc);
2162 brelse(epos->bh);
2163 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2164 epos->bh = udf_tread(inode->i_sb, block);
2165 if (!epos->bh) {
2166 udf_debug("reading block %u failed!\n", block);
2167 return -1;
2168 }
2169 }
2170
2171 return etype;
2172}
2173
2174int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2175 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2176{
2177 int alen;
2178 int8_t etype;
2179 uint8_t *ptr;
2180 struct short_ad *sad;
2181 struct long_ad *lad;
2182 struct udf_inode_info *iinfo = UDF_I(inode);
2183
2184 if (!epos->bh) {
2185 if (!epos->offset)
2186 epos->offset = udf_file_entry_alloc_offset(inode);
2187 ptr = iinfo->i_data + epos->offset -
2188 udf_file_entry_alloc_offset(inode) +
2189 iinfo->i_lenEAttr;
2190 alen = udf_file_entry_alloc_offset(inode) +
2191 iinfo->i_lenAlloc;
2192 } else {
2193 if (!epos->offset)
2194 epos->offset = sizeof(struct allocExtDesc);
2195 ptr = epos->bh->b_data + epos->offset;
2196 alen = sizeof(struct allocExtDesc) +
2197 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2198 lengthAllocDescs);
2199 }
2200
2201 switch (iinfo->i_alloc_type) {
2202 case ICBTAG_FLAG_AD_SHORT:
2203 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2204 if (!sad)
2205 return -1;
2206 etype = le32_to_cpu(sad->extLength) >> 30;
2207 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2208 eloc->partitionReferenceNum =
2209 iinfo->i_location.partitionReferenceNum;
2210 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2211 break;
2212 case ICBTAG_FLAG_AD_LONG:
2213 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2214 if (!lad)
2215 return -1;
2216 etype = le32_to_cpu(lad->extLength) >> 30;
2217 *eloc = lelb_to_cpu(lad->extLocation);
2218 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2219 break;
2220 default:
2221 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2222 return -1;
2223 }
2224
2225 return etype;
2226}
2227
2228static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2229 struct kernel_lb_addr neloc, uint32_t nelen)
2230{
2231 struct kernel_lb_addr oeloc;
2232 uint32_t oelen;
2233 int8_t etype;
2234
2235 if (epos.bh)
2236 get_bh(epos.bh);
2237
2238 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2239 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2240 neloc = oeloc;
2241 nelen = (etype << 30) | oelen;
2242 }
2243 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2244 brelse(epos.bh);
2245
2246 return (nelen >> 30);
2247}
2248
2249int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2250{
2251 struct extent_position oepos;
2252 int adsize;
2253 int8_t etype;
2254 struct allocExtDesc *aed;
2255 struct udf_inode_info *iinfo;
2256 struct kernel_lb_addr eloc;
2257 uint32_t elen;
2258
2259 if (epos.bh) {
2260 get_bh(epos.bh);
2261 get_bh(epos.bh);
2262 }
2263
2264 iinfo = UDF_I(inode);
2265 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2266 adsize = sizeof(struct short_ad);
2267 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2268 adsize = sizeof(struct long_ad);
2269 else
2270 adsize = 0;
2271
2272 oepos = epos;
2273 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2274 return -1;
2275
2276 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2277 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2278 if (oepos.bh != epos.bh) {
2279 oepos.block = epos.block;
2280 brelse(oepos.bh);
2281 get_bh(epos.bh);
2282 oepos.bh = epos.bh;
2283 oepos.offset = epos.offset - adsize;
2284 }
2285 }
2286 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2287 elen = 0;
2288
2289 if (epos.bh != oepos.bh) {
2290 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2291 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2292 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2293 if (!oepos.bh) {
2294 iinfo->i_lenAlloc -= (adsize * 2);
2295 mark_inode_dirty(inode);
2296 } else {
2297 aed = (struct allocExtDesc *)oepos.bh->b_data;
2298 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2299 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2300 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2301 udf_update_tag(oepos.bh->b_data,
2302 oepos.offset - (2 * adsize));
2303 else
2304 udf_update_tag(oepos.bh->b_data,
2305 sizeof(struct allocExtDesc));
2306 mark_buffer_dirty_inode(oepos.bh, inode);
2307 }
2308 } else {
2309 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2310 if (!oepos.bh) {
2311 iinfo->i_lenAlloc -= adsize;
2312 mark_inode_dirty(inode);
2313 } else {
2314 aed = (struct allocExtDesc *)oepos.bh->b_data;
2315 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2316 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2317 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2318 udf_update_tag(oepos.bh->b_data,
2319 epos.offset - adsize);
2320 else
2321 udf_update_tag(oepos.bh->b_data,
2322 sizeof(struct allocExtDesc));
2323 mark_buffer_dirty_inode(oepos.bh, inode);
2324 }
2325 }
2326
2327 brelse(epos.bh);
2328 brelse(oepos.bh);
2329
2330 return (elen >> 30);
2331}
2332
2333int8_t inode_bmap(struct inode *inode, sector_t block,
2334 struct extent_position *pos, struct kernel_lb_addr *eloc,
2335 uint32_t *elen, sector_t *offset)
2336{
2337 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2338 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2339 int8_t etype;
2340 struct udf_inode_info *iinfo;
2341
2342 iinfo = UDF_I(inode);
2343 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2344 pos->offset = 0;
2345 pos->block = iinfo->i_location;
2346 pos->bh = NULL;
2347 }
2348 *elen = 0;
2349 do {
2350 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2351 if (etype == -1) {
2352 *offset = (bcount - lbcount) >> blocksize_bits;
2353 iinfo->i_lenExtents = lbcount;
2354 return -1;
2355 }
2356 lbcount += *elen;
2357 } while (lbcount <= bcount);
2358 /* update extent cache */
2359 udf_update_extent_cache(inode, lbcount - *elen, pos);
2360 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2361
2362 return etype;
2363}
2364
2365udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2366{
2367 struct kernel_lb_addr eloc;
2368 uint32_t elen;
2369 sector_t offset;
2370 struct extent_position epos = {};
2371 udf_pblk_t ret;
2372
2373 down_read(&UDF_I(inode)->i_data_sem);
2374
2375 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2376 (EXT_RECORDED_ALLOCATED >> 30))
2377 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2378 else
2379 ret = 0;
2380
2381 up_read(&UDF_I(inode)->i_data_sem);
2382 brelse(epos.bh);
2383
2384 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2385 return udf_fixed_to_variable(ret);
2386 else
2387 return ret;
2388}
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48static umode_t udf_convert_permissions(struct fileEntry *);
49static int udf_update_inode(struct inode *, int);
50static int udf_sync_inode(struct inode *inode);
51static int udf_alloc_i_data(struct inode *inode, size_t size);
52static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
53static int8_t udf_insert_aext(struct inode *, struct extent_position,
54 struct kernel_lb_addr, uint32_t);
55static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
56 struct kernel_long_ad *, int *);
57static void udf_prealloc_extents(struct inode *, int, int,
58 struct kernel_long_ad *, int *);
59static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
60static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
61 int, struct extent_position *);
62static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
63
64static void __udf_clear_extent_cache(struct inode *inode)
65{
66 struct udf_inode_info *iinfo = UDF_I(inode);
67
68 if (iinfo->cached_extent.lstart != -1) {
69 brelse(iinfo->cached_extent.epos.bh);
70 iinfo->cached_extent.lstart = -1;
71 }
72}
73
74/* Invalidate extent cache */
75static void udf_clear_extent_cache(struct inode *inode)
76{
77 struct udf_inode_info *iinfo = UDF_I(inode);
78
79 spin_lock(&iinfo->i_extent_cache_lock);
80 __udf_clear_extent_cache(inode);
81 spin_unlock(&iinfo->i_extent_cache_lock);
82}
83
84/* Return contents of extent cache */
85static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
86 loff_t *lbcount, struct extent_position *pos)
87{
88 struct udf_inode_info *iinfo = UDF_I(inode);
89 int ret = 0;
90
91 spin_lock(&iinfo->i_extent_cache_lock);
92 if ((iinfo->cached_extent.lstart <= bcount) &&
93 (iinfo->cached_extent.lstart != -1)) {
94 /* Cache hit */
95 *lbcount = iinfo->cached_extent.lstart;
96 memcpy(pos, &iinfo->cached_extent.epos,
97 sizeof(struct extent_position));
98 if (pos->bh)
99 get_bh(pos->bh);
100 ret = 1;
101 }
102 spin_unlock(&iinfo->i_extent_cache_lock);
103 return ret;
104}
105
106/* Add extent to extent cache */
107static void udf_update_extent_cache(struct inode *inode, loff_t estart,
108 struct extent_position *pos)
109{
110 struct udf_inode_info *iinfo = UDF_I(inode);
111
112 spin_lock(&iinfo->i_extent_cache_lock);
113 /* Invalidate previously cached extent */
114 __udf_clear_extent_cache(inode);
115 if (pos->bh)
116 get_bh(pos->bh);
117 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
118 iinfo->cached_extent.lstart = estart;
119 switch (iinfo->i_alloc_type) {
120 case ICBTAG_FLAG_AD_SHORT:
121 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
122 break;
123 case ICBTAG_FLAG_AD_LONG:
124 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
125 break;
126 }
127 spin_unlock(&iinfo->i_extent_cache_lock);
128}
129
130void udf_evict_inode(struct inode *inode)
131{
132 struct udf_inode_info *iinfo = UDF_I(inode);
133 int want_delete = 0;
134
135 if (!inode->i_nlink && !is_bad_inode(inode)) {
136 want_delete = 1;
137 udf_setsize(inode, 0);
138 udf_update_inode(inode, IS_SYNC(inode));
139 }
140 truncate_inode_pages_final(&inode->i_data);
141 invalidate_inode_buffers(inode);
142 clear_inode(inode);
143 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
144 inode->i_size != iinfo->i_lenExtents) {
145 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
146 inode->i_ino, inode->i_mode,
147 (unsigned long long)inode->i_size,
148 (unsigned long long)iinfo->i_lenExtents);
149 }
150 kfree(iinfo->i_ext.i_data);
151 iinfo->i_ext.i_data = NULL;
152 udf_clear_extent_cache(inode);
153 if (want_delete) {
154 udf_free_inode(inode);
155 }
156}
157
158static void udf_write_failed(struct address_space *mapping, loff_t to)
159{
160 struct inode *inode = mapping->host;
161 struct udf_inode_info *iinfo = UDF_I(inode);
162 loff_t isize = inode->i_size;
163
164 if (to > isize) {
165 truncate_pagecache(inode, isize);
166 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
167 down_write(&iinfo->i_data_sem);
168 udf_clear_extent_cache(inode);
169 udf_truncate_extents(inode);
170 up_write(&iinfo->i_data_sem);
171 }
172 }
173}
174
175static int udf_writepage(struct page *page, struct writeback_control *wbc)
176{
177 return block_write_full_page(page, udf_get_block, wbc);
178}
179
180static int udf_writepages(struct address_space *mapping,
181 struct writeback_control *wbc)
182{
183 return mpage_writepages(mapping, wbc, udf_get_block);
184}
185
186static int udf_readpage(struct file *file, struct page *page)
187{
188 return mpage_readpage(page, udf_get_block);
189}
190
191static int udf_readpages(struct file *file, struct address_space *mapping,
192 struct list_head *pages, unsigned nr_pages)
193{
194 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
195}
196
197static int udf_write_begin(struct file *file, struct address_space *mapping,
198 loff_t pos, unsigned len, unsigned flags,
199 struct page **pagep, void **fsdata)
200{
201 int ret;
202
203 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
204 if (unlikely(ret))
205 udf_write_failed(mapping, pos + len);
206 return ret;
207}
208
209static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
210{
211 struct file *file = iocb->ki_filp;
212 struct address_space *mapping = file->f_mapping;
213 struct inode *inode = mapping->host;
214 size_t count = iov_iter_count(iter);
215 ssize_t ret;
216
217 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
218 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
219 udf_write_failed(mapping, iocb->ki_pos + count);
220 return ret;
221}
222
223static sector_t udf_bmap(struct address_space *mapping, sector_t block)
224{
225 return generic_block_bmap(mapping, block, udf_get_block);
226}
227
228const struct address_space_operations udf_aops = {
229 .readpage = udf_readpage,
230 .readpages = udf_readpages,
231 .writepage = udf_writepage,
232 .writepages = udf_writepages,
233 .write_begin = udf_write_begin,
234 .write_end = generic_write_end,
235 .direct_IO = udf_direct_IO,
236 .bmap = udf_bmap,
237};
238
239/*
240 * Expand file stored in ICB to a normal one-block-file
241 *
242 * This function requires i_data_sem for writing and releases it.
243 * This function requires i_mutex held
244 */
245int udf_expand_file_adinicb(struct inode *inode)
246{
247 struct page *page;
248 char *kaddr;
249 struct udf_inode_info *iinfo = UDF_I(inode);
250 int err;
251 struct writeback_control udf_wbc = {
252 .sync_mode = WB_SYNC_NONE,
253 .nr_to_write = 1,
254 };
255
256 WARN_ON_ONCE(!inode_is_locked(inode));
257 if (!iinfo->i_lenAlloc) {
258 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
259 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
260 else
261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
262 /* from now on we have normal address_space methods */
263 inode->i_data.a_ops = &udf_aops;
264 up_write(&iinfo->i_data_sem);
265 mark_inode_dirty(inode);
266 return 0;
267 }
268 /*
269 * Release i_data_sem so that we can lock a page - page lock ranks
270 * above i_data_sem. i_mutex still protects us against file changes.
271 */
272 up_write(&iinfo->i_data_sem);
273
274 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
275 if (!page)
276 return -ENOMEM;
277
278 if (!PageUptodate(page)) {
279 kaddr = kmap_atomic(page);
280 memset(kaddr + iinfo->i_lenAlloc, 0x00,
281 PAGE_SIZE - iinfo->i_lenAlloc);
282 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
283 iinfo->i_lenAlloc);
284 flush_dcache_page(page);
285 SetPageUptodate(page);
286 kunmap_atomic(kaddr);
287 }
288 down_write(&iinfo->i_data_sem);
289 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
290 iinfo->i_lenAlloc);
291 iinfo->i_lenAlloc = 0;
292 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
293 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
294 else
295 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
296 /* from now on we have normal address_space methods */
297 inode->i_data.a_ops = &udf_aops;
298 up_write(&iinfo->i_data_sem);
299 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
300 if (err) {
301 /* Restore everything back so that we don't lose data... */
302 lock_page(page);
303 down_write(&iinfo->i_data_sem);
304 kaddr = kmap_atomic(page);
305 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
306 inode->i_size);
307 kunmap_atomic(kaddr);
308 unlock_page(page);
309 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
310 inode->i_data.a_ops = &udf_adinicb_aops;
311 up_write(&iinfo->i_data_sem);
312 }
313 put_page(page);
314 mark_inode_dirty(inode);
315
316 return err;
317}
318
319struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
320 udf_pblk_t *block, int *err)
321{
322 udf_pblk_t newblock;
323 struct buffer_head *dbh = NULL;
324 struct kernel_lb_addr eloc;
325 uint8_t alloctype;
326 struct extent_position epos;
327
328 struct udf_fileident_bh sfibh, dfibh;
329 loff_t f_pos = udf_ext0_offset(inode);
330 int size = udf_ext0_offset(inode) + inode->i_size;
331 struct fileIdentDesc cfi, *sfi, *dfi;
332 struct udf_inode_info *iinfo = UDF_I(inode);
333
334 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
335 alloctype = ICBTAG_FLAG_AD_SHORT;
336 else
337 alloctype = ICBTAG_FLAG_AD_LONG;
338
339 if (!inode->i_size) {
340 iinfo->i_alloc_type = alloctype;
341 mark_inode_dirty(inode);
342 return NULL;
343 }
344
345 /* alloc block, and copy data to it */
346 *block = udf_new_block(inode->i_sb, inode,
347 iinfo->i_location.partitionReferenceNum,
348 iinfo->i_location.logicalBlockNum, err);
349 if (!(*block))
350 return NULL;
351 newblock = udf_get_pblock(inode->i_sb, *block,
352 iinfo->i_location.partitionReferenceNum,
353 0);
354 if (!newblock)
355 return NULL;
356 dbh = udf_tgetblk(inode->i_sb, newblock);
357 if (!dbh)
358 return NULL;
359 lock_buffer(dbh);
360 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
361 set_buffer_uptodate(dbh);
362 unlock_buffer(dbh);
363 mark_buffer_dirty_inode(dbh, inode);
364
365 sfibh.soffset = sfibh.eoffset =
366 f_pos & (inode->i_sb->s_blocksize - 1);
367 sfibh.sbh = sfibh.ebh = NULL;
368 dfibh.soffset = dfibh.eoffset = 0;
369 dfibh.sbh = dfibh.ebh = dbh;
370 while (f_pos < size) {
371 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
372 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
373 NULL, NULL, NULL);
374 if (!sfi) {
375 brelse(dbh);
376 return NULL;
377 }
378 iinfo->i_alloc_type = alloctype;
379 sfi->descTag.tagLocation = cpu_to_le32(*block);
380 dfibh.soffset = dfibh.eoffset;
381 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
382 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
383 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
384 sfi->fileIdent +
385 le16_to_cpu(sfi->lengthOfImpUse))) {
386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
387 brelse(dbh);
388 return NULL;
389 }
390 }
391 mark_buffer_dirty_inode(dbh, inode);
392
393 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
394 iinfo->i_lenAlloc);
395 iinfo->i_lenAlloc = 0;
396 eloc.logicalBlockNum = *block;
397 eloc.partitionReferenceNum =
398 iinfo->i_location.partitionReferenceNum;
399 iinfo->i_lenExtents = inode->i_size;
400 epos.bh = NULL;
401 epos.block = iinfo->i_location;
402 epos.offset = udf_file_entry_alloc_offset(inode);
403 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
404 /* UniqueID stuff */
405
406 brelse(epos.bh);
407 mark_inode_dirty(inode);
408 return dbh;
409}
410
411static int udf_get_block(struct inode *inode, sector_t block,
412 struct buffer_head *bh_result, int create)
413{
414 int err, new;
415 sector_t phys = 0;
416 struct udf_inode_info *iinfo;
417
418 if (!create) {
419 phys = udf_block_map(inode, block);
420 if (phys)
421 map_bh(bh_result, inode->i_sb, phys);
422 return 0;
423 }
424
425 err = -EIO;
426 new = 0;
427 iinfo = UDF_I(inode);
428
429 down_write(&iinfo->i_data_sem);
430 if (block == iinfo->i_next_alloc_block + 1) {
431 iinfo->i_next_alloc_block++;
432 iinfo->i_next_alloc_goal++;
433 }
434
435 udf_clear_extent_cache(inode);
436 phys = inode_getblk(inode, block, &err, &new);
437 if (!phys)
438 goto abort;
439
440 if (new)
441 set_buffer_new(bh_result);
442 map_bh(bh_result, inode->i_sb, phys);
443
444abort:
445 up_write(&iinfo->i_data_sem);
446 return err;
447}
448
449static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
450 int create, int *err)
451{
452 struct buffer_head *bh;
453 struct buffer_head dummy;
454
455 dummy.b_state = 0;
456 dummy.b_blocknr = -1000;
457 *err = udf_get_block(inode, block, &dummy, create);
458 if (!*err && buffer_mapped(&dummy)) {
459 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
460 if (buffer_new(&dummy)) {
461 lock_buffer(bh);
462 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
463 set_buffer_uptodate(bh);
464 unlock_buffer(bh);
465 mark_buffer_dirty_inode(bh, inode);
466 }
467 return bh;
468 }
469
470 return NULL;
471}
472
473/* Extend the file by 'blocks' blocks, return the number of extents added */
474static int udf_do_extend_file(struct inode *inode,
475 struct extent_position *last_pos,
476 struct kernel_long_ad *last_ext,
477 sector_t blocks)
478{
479 sector_t add;
480 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
481 struct super_block *sb = inode->i_sb;
482 struct kernel_lb_addr prealloc_loc = {};
483 uint32_t prealloc_len = 0;
484 struct udf_inode_info *iinfo;
485 int err;
486
487 /* The previous extent is fake and we should not extend by anything
488 * - there's nothing to do... */
489 if (!blocks && fake)
490 return 0;
491
492 iinfo = UDF_I(inode);
493 /* Round the last extent up to a multiple of block size */
494 if (last_ext->extLength & (sb->s_blocksize - 1)) {
495 last_ext->extLength =
496 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
497 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
498 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
499 iinfo->i_lenExtents =
500 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
501 ~(sb->s_blocksize - 1);
502 }
503
504 /* Last extent are just preallocated blocks? */
505 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
506 EXT_NOT_RECORDED_ALLOCATED) {
507 /* Save the extent so that we can reattach it to the end */
508 prealloc_loc = last_ext->extLocation;
509 prealloc_len = last_ext->extLength;
510 /* Mark the extent as a hole */
511 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
512 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
513 last_ext->extLocation.logicalBlockNum = 0;
514 last_ext->extLocation.partitionReferenceNum = 0;
515 }
516
517 /* Can we merge with the previous extent? */
518 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
519 EXT_NOT_RECORDED_NOT_ALLOCATED) {
520 add = ((1 << 30) - sb->s_blocksize -
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
522 sb->s_blocksize_bits;
523 if (add > blocks)
524 add = blocks;
525 blocks -= add;
526 last_ext->extLength += add << sb->s_blocksize_bits;
527 }
528
529 if (fake) {
530 udf_add_aext(inode, last_pos, &last_ext->extLocation,
531 last_ext->extLength, 1);
532 count++;
533 } else {
534 struct kernel_lb_addr tmploc;
535 uint32_t tmplen;
536
537 udf_write_aext(inode, last_pos, &last_ext->extLocation,
538 last_ext->extLength, 1);
539 /*
540 * We've rewritten the last extent but there may be empty
541 * indirect extent after it - enter it.
542 */
543 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
544 }
545
546 /* Managed to do everything necessary? */
547 if (!blocks)
548 goto out;
549
550 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
551 last_ext->extLocation.logicalBlockNum = 0;
552 last_ext->extLocation.partitionReferenceNum = 0;
553 add = (1 << (30-sb->s_blocksize_bits)) - 1;
554 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
555 (add << sb->s_blocksize_bits);
556
557 /* Create enough extents to cover the whole hole */
558 while (blocks > add) {
559 blocks -= add;
560 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
561 last_ext->extLength, 1);
562 if (err)
563 return err;
564 count++;
565 }
566 if (blocks) {
567 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
568 (blocks << sb->s_blocksize_bits);
569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570 last_ext->extLength, 1);
571 if (err)
572 return err;
573 count++;
574 }
575
576out:
577 /* Do we have some preallocated blocks saved? */
578 if (prealloc_len) {
579 err = udf_add_aext(inode, last_pos, &prealloc_loc,
580 prealloc_len, 1);
581 if (err)
582 return err;
583 last_ext->extLocation = prealloc_loc;
584 last_ext->extLength = prealloc_len;
585 count++;
586 }
587
588 /* last_pos should point to the last written extent... */
589 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
590 last_pos->offset -= sizeof(struct short_ad);
591 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
592 last_pos->offset -= sizeof(struct long_ad);
593 else
594 return -EIO;
595
596 return count;
597}
598
599static int udf_extend_file(struct inode *inode, loff_t newsize)
600{
601
602 struct extent_position epos;
603 struct kernel_lb_addr eloc;
604 uint32_t elen;
605 int8_t etype;
606 struct super_block *sb = inode->i_sb;
607 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
608 int adsize;
609 struct udf_inode_info *iinfo = UDF_I(inode);
610 struct kernel_long_ad extent;
611 int err;
612
613 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
614 adsize = sizeof(struct short_ad);
615 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
616 adsize = sizeof(struct long_ad);
617 else
618 BUG();
619
620 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
621
622 /* File has extent covering the new size (could happen when extending
623 * inside a block)? */
624 if (etype != -1)
625 return 0;
626 if (newsize & (sb->s_blocksize - 1))
627 offset++;
628 /* Extended file just to the boundary of the last file block? */
629 if (offset == 0)
630 return 0;
631
632 /* Truncate is extending the file by 'offset' blocks */
633 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
634 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
635 /* File has no extents at all or has empty last
636 * indirect extent! Create a fake extent... */
637 extent.extLocation.logicalBlockNum = 0;
638 extent.extLocation.partitionReferenceNum = 0;
639 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
640 } else {
641 epos.offset -= adsize;
642 etype = udf_next_aext(inode, &epos, &extent.extLocation,
643 &extent.extLength, 0);
644 extent.extLength |= etype << 30;
645 }
646 err = udf_do_extend_file(inode, &epos, &extent, offset);
647 if (err < 0)
648 goto out;
649 err = 0;
650 iinfo->i_lenExtents = newsize;
651out:
652 brelse(epos.bh);
653 return err;
654}
655
656static sector_t inode_getblk(struct inode *inode, sector_t block,
657 int *err, int *new)
658{
659 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
660 struct extent_position prev_epos, cur_epos, next_epos;
661 int count = 0, startnum = 0, endnum = 0;
662 uint32_t elen = 0, tmpelen;
663 struct kernel_lb_addr eloc, tmpeloc;
664 int c = 1;
665 loff_t lbcount = 0, b_off = 0;
666 udf_pblk_t newblocknum, newblock;
667 sector_t offset = 0;
668 int8_t etype;
669 struct udf_inode_info *iinfo = UDF_I(inode);
670 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
671 int lastblock = 0;
672 bool isBeyondEOF;
673
674 *err = 0;
675 *new = 0;
676 prev_epos.offset = udf_file_entry_alloc_offset(inode);
677 prev_epos.block = iinfo->i_location;
678 prev_epos.bh = NULL;
679 cur_epos = next_epos = prev_epos;
680 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
681
682 /* find the extent which contains the block we are looking for.
683 alternate between laarr[0] and laarr[1] for locations of the
684 current extent, and the previous extent */
685 do {
686 if (prev_epos.bh != cur_epos.bh) {
687 brelse(prev_epos.bh);
688 get_bh(cur_epos.bh);
689 prev_epos.bh = cur_epos.bh;
690 }
691 if (cur_epos.bh != next_epos.bh) {
692 brelse(cur_epos.bh);
693 get_bh(next_epos.bh);
694 cur_epos.bh = next_epos.bh;
695 }
696
697 lbcount += elen;
698
699 prev_epos.block = cur_epos.block;
700 cur_epos.block = next_epos.block;
701
702 prev_epos.offset = cur_epos.offset;
703 cur_epos.offset = next_epos.offset;
704
705 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
706 if (etype == -1)
707 break;
708
709 c = !c;
710
711 laarr[c].extLength = (etype << 30) | elen;
712 laarr[c].extLocation = eloc;
713
714 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
715 pgoal = eloc.logicalBlockNum +
716 ((elen + inode->i_sb->s_blocksize - 1) >>
717 inode->i_sb->s_blocksize_bits);
718
719 count++;
720 } while (lbcount + elen <= b_off);
721
722 b_off -= lbcount;
723 offset = b_off >> inode->i_sb->s_blocksize_bits;
724 /*
725 * Move prev_epos and cur_epos into indirect extent if we are at
726 * the pointer to it
727 */
728 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
729 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
730
731 /* if the extent is allocated and recorded, return the block
732 if the extent is not a multiple of the blocksize, round up */
733
734 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
735 if (elen & (inode->i_sb->s_blocksize - 1)) {
736 elen = EXT_RECORDED_ALLOCATED |
737 ((elen + inode->i_sb->s_blocksize - 1) &
738 ~(inode->i_sb->s_blocksize - 1));
739 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
740 }
741 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
742 goto out_free;
743 }
744
745 /* Are we beyond EOF? */
746 if (etype == -1) {
747 int ret;
748 isBeyondEOF = true;
749 if (count) {
750 if (c)
751 laarr[0] = laarr[1];
752 startnum = 1;
753 } else {
754 /* Create a fake extent when there's not one */
755 memset(&laarr[0].extLocation, 0x00,
756 sizeof(struct kernel_lb_addr));
757 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
758 /* Will udf_do_extend_file() create real extent from
759 a fake one? */
760 startnum = (offset > 0);
761 }
762 /* Create extents for the hole between EOF and offset */
763 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
764 if (ret < 0) {
765 *err = ret;
766 newblock = 0;
767 goto out_free;
768 }
769 c = 0;
770 offset = 0;
771 count += ret;
772 /* We are not covered by a preallocated extent? */
773 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
774 EXT_NOT_RECORDED_ALLOCATED) {
775 /* Is there any real extent? - otherwise we overwrite
776 * the fake one... */
777 if (count)
778 c = !c;
779 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
780 inode->i_sb->s_blocksize;
781 memset(&laarr[c].extLocation, 0x00,
782 sizeof(struct kernel_lb_addr));
783 count++;
784 }
785 endnum = c + 1;
786 lastblock = 1;
787 } else {
788 isBeyondEOF = false;
789 endnum = startnum = ((count > 2) ? 2 : count);
790
791 /* if the current extent is in position 0,
792 swap it with the previous */
793 if (!c && count != 1) {
794 laarr[2] = laarr[0];
795 laarr[0] = laarr[1];
796 laarr[1] = laarr[2];
797 c = 1;
798 }
799
800 /* if the current block is located in an extent,
801 read the next extent */
802 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
803 if (etype != -1) {
804 laarr[c + 1].extLength = (etype << 30) | elen;
805 laarr[c + 1].extLocation = eloc;
806 count++;
807 startnum++;
808 endnum++;
809 } else
810 lastblock = 1;
811 }
812
813 /* if the current extent is not recorded but allocated, get the
814 * block in the extent corresponding to the requested block */
815 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
816 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
817 else { /* otherwise, allocate a new block */
818 if (iinfo->i_next_alloc_block == block)
819 goal = iinfo->i_next_alloc_goal;
820
821 if (!goal) {
822 if (!(goal = pgoal)) /* XXX: what was intended here? */
823 goal = iinfo->i_location.logicalBlockNum + 1;
824 }
825
826 newblocknum = udf_new_block(inode->i_sb, inode,
827 iinfo->i_location.partitionReferenceNum,
828 goal, err);
829 if (!newblocknum) {
830 *err = -ENOSPC;
831 newblock = 0;
832 goto out_free;
833 }
834 if (isBeyondEOF)
835 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
836 }
837
838 /* if the extent the requsted block is located in contains multiple
839 * blocks, split the extent into at most three extents. blocks prior
840 * to requested block, requested block, and blocks after requested
841 * block */
842 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
843
844 /* We preallocate blocks only for regular files. It also makes sense
845 * for directories but there's a problem when to drop the
846 * preallocation. We might use some delayed work for that but I feel
847 * it's overengineering for a filesystem like UDF. */
848 if (S_ISREG(inode->i_mode))
849 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
850
851 /* merge any continuous blocks in laarr */
852 udf_merge_extents(inode, laarr, &endnum);
853
854 /* write back the new extents, inserting new extents if the new number
855 * of extents is greater than the old number, and deleting extents if
856 * the new number of extents is less than the old number */
857 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
858
859 newblock = udf_get_pblock(inode->i_sb, newblocknum,
860 iinfo->i_location.partitionReferenceNum, 0);
861 if (!newblock) {
862 *err = -EIO;
863 goto out_free;
864 }
865 *new = 1;
866 iinfo->i_next_alloc_block = block;
867 iinfo->i_next_alloc_goal = newblocknum;
868 inode->i_ctime = current_time(inode);
869
870 if (IS_SYNC(inode))
871 udf_sync_inode(inode);
872 else
873 mark_inode_dirty(inode);
874out_free:
875 brelse(prev_epos.bh);
876 brelse(cur_epos.bh);
877 brelse(next_epos.bh);
878 return newblock;
879}
880
881static void udf_split_extents(struct inode *inode, int *c, int offset,
882 udf_pblk_t newblocknum,
883 struct kernel_long_ad *laarr, int *endnum)
884{
885 unsigned long blocksize = inode->i_sb->s_blocksize;
886 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
887
888 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
889 (laarr[*c].extLength >> 30) ==
890 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
891 int curr = *c;
892 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
893 blocksize - 1) >> blocksize_bits;
894 int8_t etype = (laarr[curr].extLength >> 30);
895
896 if (blen == 1)
897 ;
898 else if (!offset || blen == offset + 1) {
899 laarr[curr + 2] = laarr[curr + 1];
900 laarr[curr + 1] = laarr[curr];
901 } else {
902 laarr[curr + 3] = laarr[curr + 1];
903 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
904 }
905
906 if (offset) {
907 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
908 udf_free_blocks(inode->i_sb, inode,
909 &laarr[curr].extLocation,
910 0, offset);
911 laarr[curr].extLength =
912 EXT_NOT_RECORDED_NOT_ALLOCATED |
913 (offset << blocksize_bits);
914 laarr[curr].extLocation.logicalBlockNum = 0;
915 laarr[curr].extLocation.
916 partitionReferenceNum = 0;
917 } else
918 laarr[curr].extLength = (etype << 30) |
919 (offset << blocksize_bits);
920 curr++;
921 (*c)++;
922 (*endnum)++;
923 }
924
925 laarr[curr].extLocation.logicalBlockNum = newblocknum;
926 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
927 laarr[curr].extLocation.partitionReferenceNum =
928 UDF_I(inode)->i_location.partitionReferenceNum;
929 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
930 blocksize;
931 curr++;
932
933 if (blen != offset + 1) {
934 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
935 laarr[curr].extLocation.logicalBlockNum +=
936 offset + 1;
937 laarr[curr].extLength = (etype << 30) |
938 ((blen - (offset + 1)) << blocksize_bits);
939 curr++;
940 (*endnum)++;
941 }
942 }
943}
944
945static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
946 struct kernel_long_ad *laarr,
947 int *endnum)
948{
949 int start, length = 0, currlength = 0, i;
950
951 if (*endnum >= (c + 1)) {
952 if (!lastblock)
953 return;
954 else
955 start = c;
956 } else {
957 if ((laarr[c + 1].extLength >> 30) ==
958 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
959 start = c + 1;
960 length = currlength =
961 (((laarr[c + 1].extLength &
962 UDF_EXTENT_LENGTH_MASK) +
963 inode->i_sb->s_blocksize - 1) >>
964 inode->i_sb->s_blocksize_bits);
965 } else
966 start = c;
967 }
968
969 for (i = start + 1; i <= *endnum; i++) {
970 if (i == *endnum) {
971 if (lastblock)
972 length += UDF_DEFAULT_PREALLOC_BLOCKS;
973 } else if ((laarr[i].extLength >> 30) ==
974 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
975 length += (((laarr[i].extLength &
976 UDF_EXTENT_LENGTH_MASK) +
977 inode->i_sb->s_blocksize - 1) >>
978 inode->i_sb->s_blocksize_bits);
979 } else
980 break;
981 }
982
983 if (length) {
984 int next = laarr[start].extLocation.logicalBlockNum +
985 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
986 inode->i_sb->s_blocksize - 1) >>
987 inode->i_sb->s_blocksize_bits);
988 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
989 laarr[start].extLocation.partitionReferenceNum,
990 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
991 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
992 currlength);
993 if (numalloc) {
994 if (start == (c + 1))
995 laarr[start].extLength +=
996 (numalloc <<
997 inode->i_sb->s_blocksize_bits);
998 else {
999 memmove(&laarr[c + 2], &laarr[c + 1],
1000 sizeof(struct long_ad) * (*endnum - (c + 1)));
1001 (*endnum)++;
1002 laarr[c + 1].extLocation.logicalBlockNum = next;
1003 laarr[c + 1].extLocation.partitionReferenceNum =
1004 laarr[c].extLocation.
1005 partitionReferenceNum;
1006 laarr[c + 1].extLength =
1007 EXT_NOT_RECORDED_ALLOCATED |
1008 (numalloc <<
1009 inode->i_sb->s_blocksize_bits);
1010 start = c + 1;
1011 }
1012
1013 for (i = start + 1; numalloc && i < *endnum; i++) {
1014 int elen = ((laarr[i].extLength &
1015 UDF_EXTENT_LENGTH_MASK) +
1016 inode->i_sb->s_blocksize - 1) >>
1017 inode->i_sb->s_blocksize_bits;
1018
1019 if (elen > numalloc) {
1020 laarr[i].extLength -=
1021 (numalloc <<
1022 inode->i_sb->s_blocksize_bits);
1023 numalloc = 0;
1024 } else {
1025 numalloc -= elen;
1026 if (*endnum > (i + 1))
1027 memmove(&laarr[i],
1028 &laarr[i + 1],
1029 sizeof(struct long_ad) *
1030 (*endnum - (i + 1)));
1031 i--;
1032 (*endnum)--;
1033 }
1034 }
1035 UDF_I(inode)->i_lenExtents +=
1036 numalloc << inode->i_sb->s_blocksize_bits;
1037 }
1038 }
1039}
1040
1041static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1042 int *endnum)
1043{
1044 int i;
1045 unsigned long blocksize = inode->i_sb->s_blocksize;
1046 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1047
1048 for (i = 0; i < (*endnum - 1); i++) {
1049 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1050 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1051
1052 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1053 (((li->extLength >> 30) ==
1054 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1055 ((lip1->extLocation.logicalBlockNum -
1056 li->extLocation.logicalBlockNum) ==
1057 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1058 blocksize - 1) >> blocksize_bits)))) {
1059
1060 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1061 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1062 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1063 lip1->extLength = (lip1->extLength -
1064 (li->extLength &
1065 UDF_EXTENT_LENGTH_MASK) +
1066 UDF_EXTENT_LENGTH_MASK) &
1067 ~(blocksize - 1);
1068 li->extLength = (li->extLength &
1069 UDF_EXTENT_FLAG_MASK) +
1070 (UDF_EXTENT_LENGTH_MASK + 1) -
1071 blocksize;
1072 lip1->extLocation.logicalBlockNum =
1073 li->extLocation.logicalBlockNum +
1074 ((li->extLength &
1075 UDF_EXTENT_LENGTH_MASK) >>
1076 blocksize_bits);
1077 } else {
1078 li->extLength = lip1->extLength +
1079 (((li->extLength &
1080 UDF_EXTENT_LENGTH_MASK) +
1081 blocksize - 1) & ~(blocksize - 1));
1082 if (*endnum > (i + 2))
1083 memmove(&laarr[i + 1], &laarr[i + 2],
1084 sizeof(struct long_ad) *
1085 (*endnum - (i + 2)));
1086 i--;
1087 (*endnum)--;
1088 }
1089 } else if (((li->extLength >> 30) ==
1090 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1091 ((lip1->extLength >> 30) ==
1092 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1093 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1094 ((li->extLength &
1095 UDF_EXTENT_LENGTH_MASK) +
1096 blocksize - 1) >> blocksize_bits);
1097 li->extLocation.logicalBlockNum = 0;
1098 li->extLocation.partitionReferenceNum = 0;
1099
1100 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1101 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1102 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1103 lip1->extLength = (lip1->extLength -
1104 (li->extLength &
1105 UDF_EXTENT_LENGTH_MASK) +
1106 UDF_EXTENT_LENGTH_MASK) &
1107 ~(blocksize - 1);
1108 li->extLength = (li->extLength &
1109 UDF_EXTENT_FLAG_MASK) +
1110 (UDF_EXTENT_LENGTH_MASK + 1) -
1111 blocksize;
1112 } else {
1113 li->extLength = lip1->extLength +
1114 (((li->extLength &
1115 UDF_EXTENT_LENGTH_MASK) +
1116 blocksize - 1) & ~(blocksize - 1));
1117 if (*endnum > (i + 2))
1118 memmove(&laarr[i + 1], &laarr[i + 2],
1119 sizeof(struct long_ad) *
1120 (*endnum - (i + 2)));
1121 i--;
1122 (*endnum)--;
1123 }
1124 } else if ((li->extLength >> 30) ==
1125 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1126 udf_free_blocks(inode->i_sb, inode,
1127 &li->extLocation, 0,
1128 ((li->extLength &
1129 UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) >> blocksize_bits);
1131 li->extLocation.logicalBlockNum = 0;
1132 li->extLocation.partitionReferenceNum = 0;
1133 li->extLength = (li->extLength &
1134 UDF_EXTENT_LENGTH_MASK) |
1135 EXT_NOT_RECORDED_NOT_ALLOCATED;
1136 }
1137 }
1138}
1139
1140static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1141 int startnum, int endnum,
1142 struct extent_position *epos)
1143{
1144 int start = 0, i;
1145 struct kernel_lb_addr tmploc;
1146 uint32_t tmplen;
1147
1148 if (startnum > endnum) {
1149 for (i = 0; i < (startnum - endnum); i++)
1150 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1151 laarr[i].extLength);
1152 } else if (startnum < endnum) {
1153 for (i = 0; i < (endnum - startnum); i++) {
1154 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1155 laarr[i].extLength);
1156 udf_next_aext(inode, epos, &laarr[i].extLocation,
1157 &laarr[i].extLength, 1);
1158 start++;
1159 }
1160 }
1161
1162 for (i = start; i < endnum; i++) {
1163 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1164 udf_write_aext(inode, epos, &laarr[i].extLocation,
1165 laarr[i].extLength, 1);
1166 }
1167}
1168
1169struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1170 int create, int *err)
1171{
1172 struct buffer_head *bh = NULL;
1173
1174 bh = udf_getblk(inode, block, create, err);
1175 if (!bh)
1176 return NULL;
1177
1178 if (buffer_uptodate(bh))
1179 return bh;
1180
1181 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1182
1183 wait_on_buffer(bh);
1184 if (buffer_uptodate(bh))
1185 return bh;
1186
1187 brelse(bh);
1188 *err = -EIO;
1189 return NULL;
1190}
1191
1192int udf_setsize(struct inode *inode, loff_t newsize)
1193{
1194 int err;
1195 struct udf_inode_info *iinfo;
1196 unsigned int bsize = i_blocksize(inode);
1197
1198 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1199 S_ISLNK(inode->i_mode)))
1200 return -EINVAL;
1201 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1202 return -EPERM;
1203
1204 iinfo = UDF_I(inode);
1205 if (newsize > inode->i_size) {
1206 down_write(&iinfo->i_data_sem);
1207 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1208 if (bsize <
1209 (udf_file_entry_alloc_offset(inode) + newsize)) {
1210 err = udf_expand_file_adinicb(inode);
1211 if (err)
1212 return err;
1213 down_write(&iinfo->i_data_sem);
1214 } else {
1215 iinfo->i_lenAlloc = newsize;
1216 goto set_size;
1217 }
1218 }
1219 err = udf_extend_file(inode, newsize);
1220 if (err) {
1221 up_write(&iinfo->i_data_sem);
1222 return err;
1223 }
1224set_size:
1225 up_write(&iinfo->i_data_sem);
1226 truncate_setsize(inode, newsize);
1227 } else {
1228 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1229 down_write(&iinfo->i_data_sem);
1230 udf_clear_extent_cache(inode);
1231 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1232 0x00, bsize - newsize -
1233 udf_file_entry_alloc_offset(inode));
1234 iinfo->i_lenAlloc = newsize;
1235 truncate_setsize(inode, newsize);
1236 up_write(&iinfo->i_data_sem);
1237 goto update_time;
1238 }
1239 err = block_truncate_page(inode->i_mapping, newsize,
1240 udf_get_block);
1241 if (err)
1242 return err;
1243 truncate_setsize(inode, newsize);
1244 down_write(&iinfo->i_data_sem);
1245 udf_clear_extent_cache(inode);
1246 udf_truncate_extents(inode);
1247 up_write(&iinfo->i_data_sem);
1248 }
1249update_time:
1250 inode->i_mtime = inode->i_ctime = current_time(inode);
1251 if (IS_SYNC(inode))
1252 udf_sync_inode(inode);
1253 else
1254 mark_inode_dirty(inode);
1255 return 0;
1256}
1257
1258/*
1259 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1260 * arbitrary - just that we hopefully don't limit any real use of rewritten
1261 * inode on write-once media but avoid looping for too long on corrupted media.
1262 */
1263#define UDF_MAX_ICB_NESTING 1024
1264
1265static int udf_read_inode(struct inode *inode, bool hidden_inode)
1266{
1267 struct buffer_head *bh = NULL;
1268 struct fileEntry *fe;
1269 struct extendedFileEntry *efe;
1270 uint16_t ident;
1271 struct udf_inode_info *iinfo = UDF_I(inode);
1272 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1273 struct kernel_lb_addr *iloc = &iinfo->i_location;
1274 unsigned int link_count;
1275 unsigned int indirections = 0;
1276 int bs = inode->i_sb->s_blocksize;
1277 int ret = -EIO;
1278 uint32_t uid, gid;
1279
1280reread:
1281 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1282 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1283 iloc->partitionReferenceNum, sbi->s_partitions);
1284 return -EIO;
1285 }
1286
1287 if (iloc->logicalBlockNum >=
1288 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1289 udf_debug("block=%u, partition=%u out of range\n",
1290 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1291 return -EIO;
1292 }
1293
1294 /*
1295 * Set defaults, but the inode is still incomplete!
1296 * Note: get_new_inode() sets the following on a new inode:
1297 * i_sb = sb
1298 * i_no = ino
1299 * i_flags = sb->s_flags
1300 * i_state = 0
1301 * clean_inode(): zero fills and sets
1302 * i_count = 1
1303 * i_nlink = 1
1304 * i_op = NULL;
1305 */
1306 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1307 if (!bh) {
1308 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1309 return -EIO;
1310 }
1311
1312 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1313 ident != TAG_IDENT_USE) {
1314 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1315 inode->i_ino, ident);
1316 goto out;
1317 }
1318
1319 fe = (struct fileEntry *)bh->b_data;
1320 efe = (struct extendedFileEntry *)bh->b_data;
1321
1322 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1323 struct buffer_head *ibh;
1324
1325 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1326 if (ident == TAG_IDENT_IE && ibh) {
1327 struct kernel_lb_addr loc;
1328 struct indirectEntry *ie;
1329
1330 ie = (struct indirectEntry *)ibh->b_data;
1331 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1332
1333 if (ie->indirectICB.extLength) {
1334 brelse(ibh);
1335 memcpy(&iinfo->i_location, &loc,
1336 sizeof(struct kernel_lb_addr));
1337 if (++indirections > UDF_MAX_ICB_NESTING) {
1338 udf_err(inode->i_sb,
1339 "too many ICBs in ICB hierarchy"
1340 " (max %d supported)\n",
1341 UDF_MAX_ICB_NESTING);
1342 goto out;
1343 }
1344 brelse(bh);
1345 goto reread;
1346 }
1347 }
1348 brelse(ibh);
1349 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1350 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1351 le16_to_cpu(fe->icbTag.strategyType));
1352 goto out;
1353 }
1354 if (fe->icbTag.strategyType == cpu_to_le16(4))
1355 iinfo->i_strat4096 = 0;
1356 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1357 iinfo->i_strat4096 = 1;
1358
1359 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1360 ICBTAG_FLAG_AD_MASK;
1361 iinfo->i_unique = 0;
1362 iinfo->i_lenEAttr = 0;
1363 iinfo->i_lenExtents = 0;
1364 iinfo->i_lenAlloc = 0;
1365 iinfo->i_next_alloc_block = 0;
1366 iinfo->i_next_alloc_goal = 0;
1367 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1368 iinfo->i_efe = 1;
1369 iinfo->i_use = 0;
1370 ret = udf_alloc_i_data(inode, bs -
1371 sizeof(struct extendedFileEntry));
1372 if (ret)
1373 goto out;
1374 memcpy(iinfo->i_ext.i_data,
1375 bh->b_data + sizeof(struct extendedFileEntry),
1376 bs - sizeof(struct extendedFileEntry));
1377 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1378 iinfo->i_efe = 0;
1379 iinfo->i_use = 0;
1380 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1381 if (ret)
1382 goto out;
1383 memcpy(iinfo->i_ext.i_data,
1384 bh->b_data + sizeof(struct fileEntry),
1385 bs - sizeof(struct fileEntry));
1386 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1387 iinfo->i_efe = 0;
1388 iinfo->i_use = 1;
1389 iinfo->i_lenAlloc = le32_to_cpu(
1390 ((struct unallocSpaceEntry *)bh->b_data)->
1391 lengthAllocDescs);
1392 ret = udf_alloc_i_data(inode, bs -
1393 sizeof(struct unallocSpaceEntry));
1394 if (ret)
1395 goto out;
1396 memcpy(iinfo->i_ext.i_data,
1397 bh->b_data + sizeof(struct unallocSpaceEntry),
1398 bs - sizeof(struct unallocSpaceEntry));
1399 return 0;
1400 }
1401
1402 ret = -EIO;
1403 read_lock(&sbi->s_cred_lock);
1404 uid = le32_to_cpu(fe->uid);
1405 if (uid == UDF_INVALID_ID ||
1406 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1407 inode->i_uid = sbi->s_uid;
1408 else
1409 i_uid_write(inode, uid);
1410
1411 gid = le32_to_cpu(fe->gid);
1412 if (gid == UDF_INVALID_ID ||
1413 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1414 inode->i_gid = sbi->s_gid;
1415 else
1416 i_gid_write(inode, gid);
1417
1418 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1419 sbi->s_fmode != UDF_INVALID_MODE)
1420 inode->i_mode = sbi->s_fmode;
1421 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1422 sbi->s_dmode != UDF_INVALID_MODE)
1423 inode->i_mode = sbi->s_dmode;
1424 else
1425 inode->i_mode = udf_convert_permissions(fe);
1426 inode->i_mode &= ~sbi->s_umask;
1427 read_unlock(&sbi->s_cred_lock);
1428
1429 link_count = le16_to_cpu(fe->fileLinkCount);
1430 if (!link_count) {
1431 if (!hidden_inode) {
1432 ret = -ESTALE;
1433 goto out;
1434 }
1435 link_count = 1;
1436 }
1437 set_nlink(inode, link_count);
1438
1439 inode->i_size = le64_to_cpu(fe->informationLength);
1440 iinfo->i_lenExtents = inode->i_size;
1441
1442 if (iinfo->i_efe == 0) {
1443 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1444 (inode->i_sb->s_blocksize_bits - 9);
1445
1446 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1447 inode->i_atime = sbi->s_record_time;
1448
1449 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1450 fe->modificationTime))
1451 inode->i_mtime = sbi->s_record_time;
1452
1453 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1454 inode->i_ctime = sbi->s_record_time;
1455
1456 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1457 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1458 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1459 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1460 } else {
1461 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1462 (inode->i_sb->s_blocksize_bits - 9);
1463
1464 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1465 inode->i_atime = sbi->s_record_time;
1466
1467 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1468 efe->modificationTime))
1469 inode->i_mtime = sbi->s_record_time;
1470
1471 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1472 iinfo->i_crtime = sbi->s_record_time;
1473
1474 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1475 inode->i_ctime = sbi->s_record_time;
1476
1477 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1478 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1479 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1480 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1481 }
1482 inode->i_generation = iinfo->i_unique;
1483
1484 /*
1485 * Sanity check length of allocation descriptors and extended attrs to
1486 * avoid integer overflows
1487 */
1488 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1489 goto out;
1490 /* Now do exact checks */
1491 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1492 goto out;
1493 /* Sanity checks for files in ICB so that we don't get confused later */
1494 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1495 /*
1496 * For file in ICB data is stored in allocation descriptor
1497 * so sizes should match
1498 */
1499 if (iinfo->i_lenAlloc != inode->i_size)
1500 goto out;
1501 /* File in ICB has to fit in there... */
1502 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1503 goto out;
1504 }
1505
1506 switch (fe->icbTag.fileType) {
1507 case ICBTAG_FILE_TYPE_DIRECTORY:
1508 inode->i_op = &udf_dir_inode_operations;
1509 inode->i_fop = &udf_dir_operations;
1510 inode->i_mode |= S_IFDIR;
1511 inc_nlink(inode);
1512 break;
1513 case ICBTAG_FILE_TYPE_REALTIME:
1514 case ICBTAG_FILE_TYPE_REGULAR:
1515 case ICBTAG_FILE_TYPE_UNDEF:
1516 case ICBTAG_FILE_TYPE_VAT20:
1517 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1518 inode->i_data.a_ops = &udf_adinicb_aops;
1519 else
1520 inode->i_data.a_ops = &udf_aops;
1521 inode->i_op = &udf_file_inode_operations;
1522 inode->i_fop = &udf_file_operations;
1523 inode->i_mode |= S_IFREG;
1524 break;
1525 case ICBTAG_FILE_TYPE_BLOCK:
1526 inode->i_mode |= S_IFBLK;
1527 break;
1528 case ICBTAG_FILE_TYPE_CHAR:
1529 inode->i_mode |= S_IFCHR;
1530 break;
1531 case ICBTAG_FILE_TYPE_FIFO:
1532 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1533 break;
1534 case ICBTAG_FILE_TYPE_SOCKET:
1535 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1536 break;
1537 case ICBTAG_FILE_TYPE_SYMLINK:
1538 inode->i_data.a_ops = &udf_symlink_aops;
1539 inode->i_op = &udf_symlink_inode_operations;
1540 inode_nohighmem(inode);
1541 inode->i_mode = S_IFLNK | 0777;
1542 break;
1543 case ICBTAG_FILE_TYPE_MAIN:
1544 udf_debug("METADATA FILE-----\n");
1545 break;
1546 case ICBTAG_FILE_TYPE_MIRROR:
1547 udf_debug("METADATA MIRROR FILE-----\n");
1548 break;
1549 case ICBTAG_FILE_TYPE_BITMAP:
1550 udf_debug("METADATA BITMAP FILE-----\n");
1551 break;
1552 default:
1553 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1554 inode->i_ino, fe->icbTag.fileType);
1555 goto out;
1556 }
1557 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1558 struct deviceSpec *dsea =
1559 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1560 if (dsea) {
1561 init_special_inode(inode, inode->i_mode,
1562 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1563 le32_to_cpu(dsea->minorDeviceIdent)));
1564 /* Developer ID ??? */
1565 } else
1566 goto out;
1567 }
1568 ret = 0;
1569out:
1570 brelse(bh);
1571 return ret;
1572}
1573
1574static int udf_alloc_i_data(struct inode *inode, size_t size)
1575{
1576 struct udf_inode_info *iinfo = UDF_I(inode);
1577 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1578 if (!iinfo->i_ext.i_data)
1579 return -ENOMEM;
1580 return 0;
1581}
1582
1583static umode_t udf_convert_permissions(struct fileEntry *fe)
1584{
1585 umode_t mode;
1586 uint32_t permissions;
1587 uint32_t flags;
1588
1589 permissions = le32_to_cpu(fe->permissions);
1590 flags = le16_to_cpu(fe->icbTag.flags);
1591
1592 mode = ((permissions) & 0007) |
1593 ((permissions >> 2) & 0070) |
1594 ((permissions >> 4) & 0700) |
1595 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1596 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1597 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1598
1599 return mode;
1600}
1601
1602int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1603{
1604 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1605}
1606
1607static int udf_sync_inode(struct inode *inode)
1608{
1609 return udf_update_inode(inode, 1);
1610}
1611
1612static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec time)
1613{
1614 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1615 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1616 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1617 iinfo->i_crtime = time;
1618}
1619
1620static int udf_update_inode(struct inode *inode, int do_sync)
1621{
1622 struct buffer_head *bh = NULL;
1623 struct fileEntry *fe;
1624 struct extendedFileEntry *efe;
1625 uint64_t lb_recorded;
1626 uint32_t udfperms;
1627 uint16_t icbflags;
1628 uint16_t crclen;
1629 int err = 0;
1630 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1631 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1632 struct udf_inode_info *iinfo = UDF_I(inode);
1633
1634 bh = udf_tgetblk(inode->i_sb,
1635 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1636 if (!bh) {
1637 udf_debug("getblk failure\n");
1638 return -EIO;
1639 }
1640
1641 lock_buffer(bh);
1642 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1643 fe = (struct fileEntry *)bh->b_data;
1644 efe = (struct extendedFileEntry *)bh->b_data;
1645
1646 if (iinfo->i_use) {
1647 struct unallocSpaceEntry *use =
1648 (struct unallocSpaceEntry *)bh->b_data;
1649
1650 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1651 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1652 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1653 sizeof(struct unallocSpaceEntry));
1654 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1655 crclen = sizeof(struct unallocSpaceEntry);
1656
1657 goto finish;
1658 }
1659
1660 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1661 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1662 else
1663 fe->uid = cpu_to_le32(i_uid_read(inode));
1664
1665 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1666 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1667 else
1668 fe->gid = cpu_to_le32(i_gid_read(inode));
1669
1670 udfperms = ((inode->i_mode & 0007)) |
1671 ((inode->i_mode & 0070) << 2) |
1672 ((inode->i_mode & 0700) << 4);
1673
1674 udfperms |= (le32_to_cpu(fe->permissions) &
1675 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1676 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1677 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1678 fe->permissions = cpu_to_le32(udfperms);
1679
1680 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1681 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1682 else
1683 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1684
1685 fe->informationLength = cpu_to_le64(inode->i_size);
1686
1687 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1688 struct regid *eid;
1689 struct deviceSpec *dsea =
1690 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1691 if (!dsea) {
1692 dsea = (struct deviceSpec *)
1693 udf_add_extendedattr(inode,
1694 sizeof(struct deviceSpec) +
1695 sizeof(struct regid), 12, 0x3);
1696 dsea->attrType = cpu_to_le32(12);
1697 dsea->attrSubtype = 1;
1698 dsea->attrLength = cpu_to_le32(
1699 sizeof(struct deviceSpec) +
1700 sizeof(struct regid));
1701 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1702 }
1703 eid = (struct regid *)dsea->impUse;
1704 memset(eid, 0, sizeof(*eid));
1705 strcpy(eid->ident, UDF_ID_DEVELOPER);
1706 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1707 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1708 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1709 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1710 }
1711
1712 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1713 lb_recorded = 0; /* No extents => no blocks! */
1714 else
1715 lb_recorded =
1716 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1717 (blocksize_bits - 9);
1718
1719 if (iinfo->i_efe == 0) {
1720 memcpy(bh->b_data + sizeof(struct fileEntry),
1721 iinfo->i_ext.i_data,
1722 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1723 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1724
1725 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1726 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1727 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1728 memset(&(fe->impIdent), 0, sizeof(struct regid));
1729 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1730 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1731 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1732 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1733 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1734 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1735 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1736 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1737 crclen = sizeof(struct fileEntry);
1738 } else {
1739 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1740 iinfo->i_ext.i_data,
1741 inode->i_sb->s_blocksize -
1742 sizeof(struct extendedFileEntry));
1743 efe->objectSize = cpu_to_le64(inode->i_size);
1744 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1745
1746 udf_adjust_time(iinfo, inode->i_atime);
1747 udf_adjust_time(iinfo, inode->i_mtime);
1748 udf_adjust_time(iinfo, inode->i_ctime);
1749
1750 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1751 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1752 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1753 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1754
1755 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1756 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1757 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1758 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1759 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1760 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1761 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1762 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1763 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1764 crclen = sizeof(struct extendedFileEntry);
1765 }
1766
1767finish:
1768 if (iinfo->i_strat4096) {
1769 fe->icbTag.strategyType = cpu_to_le16(4096);
1770 fe->icbTag.strategyParameter = cpu_to_le16(1);
1771 fe->icbTag.numEntries = cpu_to_le16(2);
1772 } else {
1773 fe->icbTag.strategyType = cpu_to_le16(4);
1774 fe->icbTag.numEntries = cpu_to_le16(1);
1775 }
1776
1777 if (iinfo->i_use)
1778 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1779 else if (S_ISDIR(inode->i_mode))
1780 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1781 else if (S_ISREG(inode->i_mode))
1782 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1783 else if (S_ISLNK(inode->i_mode))
1784 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1785 else if (S_ISBLK(inode->i_mode))
1786 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1787 else if (S_ISCHR(inode->i_mode))
1788 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1789 else if (S_ISFIFO(inode->i_mode))
1790 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1791 else if (S_ISSOCK(inode->i_mode))
1792 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1793
1794 icbflags = iinfo->i_alloc_type |
1795 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1796 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1797 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1798 (le16_to_cpu(fe->icbTag.flags) &
1799 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1800 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1801
1802 fe->icbTag.flags = cpu_to_le16(icbflags);
1803 if (sbi->s_udfrev >= 0x0200)
1804 fe->descTag.descVersion = cpu_to_le16(3);
1805 else
1806 fe->descTag.descVersion = cpu_to_le16(2);
1807 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1808 fe->descTag.tagLocation = cpu_to_le32(
1809 iinfo->i_location.logicalBlockNum);
1810 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1811 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1812 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1813 crclen));
1814 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1815
1816 set_buffer_uptodate(bh);
1817 unlock_buffer(bh);
1818
1819 /* write the data blocks */
1820 mark_buffer_dirty(bh);
1821 if (do_sync) {
1822 sync_dirty_buffer(bh);
1823 if (buffer_write_io_error(bh)) {
1824 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1825 inode->i_ino);
1826 err = -EIO;
1827 }
1828 }
1829 brelse(bh);
1830
1831 return err;
1832}
1833
1834struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1835 bool hidden_inode)
1836{
1837 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1838 struct inode *inode = iget_locked(sb, block);
1839 int err;
1840
1841 if (!inode)
1842 return ERR_PTR(-ENOMEM);
1843
1844 if (!(inode->i_state & I_NEW))
1845 return inode;
1846
1847 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1848 err = udf_read_inode(inode, hidden_inode);
1849 if (err < 0) {
1850 iget_failed(inode);
1851 return ERR_PTR(err);
1852 }
1853 unlock_new_inode(inode);
1854
1855 return inode;
1856}
1857
1858int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1859 struct extent_position *epos)
1860{
1861 struct super_block *sb = inode->i_sb;
1862 struct buffer_head *bh;
1863 struct allocExtDesc *aed;
1864 struct extent_position nepos;
1865 struct kernel_lb_addr neloc;
1866 int ver, adsize;
1867
1868 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1869 adsize = sizeof(struct short_ad);
1870 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1871 adsize = sizeof(struct long_ad);
1872 else
1873 return -EIO;
1874
1875 neloc.logicalBlockNum = block;
1876 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1877
1878 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1879 if (!bh)
1880 return -EIO;
1881 lock_buffer(bh);
1882 memset(bh->b_data, 0x00, sb->s_blocksize);
1883 set_buffer_uptodate(bh);
1884 unlock_buffer(bh);
1885 mark_buffer_dirty_inode(bh, inode);
1886
1887 aed = (struct allocExtDesc *)(bh->b_data);
1888 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1889 aed->previousAllocExtLocation =
1890 cpu_to_le32(epos->block.logicalBlockNum);
1891 }
1892 aed->lengthAllocDescs = cpu_to_le32(0);
1893 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1894 ver = 3;
1895 else
1896 ver = 2;
1897 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1898 sizeof(struct tag));
1899
1900 nepos.block = neloc;
1901 nepos.offset = sizeof(struct allocExtDesc);
1902 nepos.bh = bh;
1903
1904 /*
1905 * Do we have to copy current last extent to make space for indirect
1906 * one?
1907 */
1908 if (epos->offset + adsize > sb->s_blocksize) {
1909 struct kernel_lb_addr cp_loc;
1910 uint32_t cp_len;
1911 int cp_type;
1912
1913 epos->offset -= adsize;
1914 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1915 cp_len |= ((uint32_t)cp_type) << 30;
1916
1917 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1918 udf_write_aext(inode, epos, &nepos.block,
1919 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1920 } else {
1921 __udf_add_aext(inode, epos, &nepos.block,
1922 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1923 }
1924
1925 brelse(epos->bh);
1926 *epos = nepos;
1927
1928 return 0;
1929}
1930
1931/*
1932 * Append extent at the given position - should be the first free one in inode
1933 * / indirect extent. This function assumes there is enough space in the inode
1934 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1935 */
1936int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1937 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1938{
1939 struct udf_inode_info *iinfo = UDF_I(inode);
1940 struct allocExtDesc *aed;
1941 int adsize;
1942
1943 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1944 adsize = sizeof(struct short_ad);
1945 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1946 adsize = sizeof(struct long_ad);
1947 else
1948 return -EIO;
1949
1950 if (!epos->bh) {
1951 WARN_ON(iinfo->i_lenAlloc !=
1952 epos->offset - udf_file_entry_alloc_offset(inode));
1953 } else {
1954 aed = (struct allocExtDesc *)epos->bh->b_data;
1955 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1956 epos->offset - sizeof(struct allocExtDesc));
1957 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1958 }
1959
1960 udf_write_aext(inode, epos, eloc, elen, inc);
1961
1962 if (!epos->bh) {
1963 iinfo->i_lenAlloc += adsize;
1964 mark_inode_dirty(inode);
1965 } else {
1966 aed = (struct allocExtDesc *)epos->bh->b_data;
1967 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1968 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1969 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1970 udf_update_tag(epos->bh->b_data,
1971 epos->offset + (inc ? 0 : adsize));
1972 else
1973 udf_update_tag(epos->bh->b_data,
1974 sizeof(struct allocExtDesc));
1975 mark_buffer_dirty_inode(epos->bh, inode);
1976 }
1977
1978 return 0;
1979}
1980
1981/*
1982 * Append extent at given position - should be the first free one in inode
1983 * / indirect extent. Takes care of allocating and linking indirect blocks.
1984 */
1985int udf_add_aext(struct inode *inode, struct extent_position *epos,
1986 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1987{
1988 int adsize;
1989 struct super_block *sb = inode->i_sb;
1990
1991 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1992 adsize = sizeof(struct short_ad);
1993 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1994 adsize = sizeof(struct long_ad);
1995 else
1996 return -EIO;
1997
1998 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
1999 int err;
2000 udf_pblk_t new_block;
2001
2002 new_block = udf_new_block(sb, NULL,
2003 epos->block.partitionReferenceNum,
2004 epos->block.logicalBlockNum, &err);
2005 if (!new_block)
2006 return -ENOSPC;
2007
2008 err = udf_setup_indirect_aext(inode, new_block, epos);
2009 if (err)
2010 return err;
2011 }
2012
2013 return __udf_add_aext(inode, epos, eloc, elen, inc);
2014}
2015
2016void udf_write_aext(struct inode *inode, struct extent_position *epos,
2017 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2018{
2019 int adsize;
2020 uint8_t *ptr;
2021 struct short_ad *sad;
2022 struct long_ad *lad;
2023 struct udf_inode_info *iinfo = UDF_I(inode);
2024
2025 if (!epos->bh)
2026 ptr = iinfo->i_ext.i_data + epos->offset -
2027 udf_file_entry_alloc_offset(inode) +
2028 iinfo->i_lenEAttr;
2029 else
2030 ptr = epos->bh->b_data + epos->offset;
2031
2032 switch (iinfo->i_alloc_type) {
2033 case ICBTAG_FLAG_AD_SHORT:
2034 sad = (struct short_ad *)ptr;
2035 sad->extLength = cpu_to_le32(elen);
2036 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2037 adsize = sizeof(struct short_ad);
2038 break;
2039 case ICBTAG_FLAG_AD_LONG:
2040 lad = (struct long_ad *)ptr;
2041 lad->extLength = cpu_to_le32(elen);
2042 lad->extLocation = cpu_to_lelb(*eloc);
2043 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2044 adsize = sizeof(struct long_ad);
2045 break;
2046 default:
2047 return;
2048 }
2049
2050 if (epos->bh) {
2051 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2052 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2053 struct allocExtDesc *aed =
2054 (struct allocExtDesc *)epos->bh->b_data;
2055 udf_update_tag(epos->bh->b_data,
2056 le32_to_cpu(aed->lengthAllocDescs) +
2057 sizeof(struct allocExtDesc));
2058 }
2059 mark_buffer_dirty_inode(epos->bh, inode);
2060 } else {
2061 mark_inode_dirty(inode);
2062 }
2063
2064 if (inc)
2065 epos->offset += adsize;
2066}
2067
2068/*
2069 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2070 * someone does some weird stuff.
2071 */
2072#define UDF_MAX_INDIR_EXTS 16
2073
2074int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2075 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2076{
2077 int8_t etype;
2078 unsigned int indirections = 0;
2079
2080 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2081 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2082 udf_pblk_t block;
2083
2084 if (++indirections > UDF_MAX_INDIR_EXTS) {
2085 udf_err(inode->i_sb,
2086 "too many indirect extents in inode %lu\n",
2087 inode->i_ino);
2088 return -1;
2089 }
2090
2091 epos->block = *eloc;
2092 epos->offset = sizeof(struct allocExtDesc);
2093 brelse(epos->bh);
2094 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2095 epos->bh = udf_tread(inode->i_sb, block);
2096 if (!epos->bh) {
2097 udf_debug("reading block %u failed!\n", block);
2098 return -1;
2099 }
2100 }
2101
2102 return etype;
2103}
2104
2105int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2106 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2107{
2108 int alen;
2109 int8_t etype;
2110 uint8_t *ptr;
2111 struct short_ad *sad;
2112 struct long_ad *lad;
2113 struct udf_inode_info *iinfo = UDF_I(inode);
2114
2115 if (!epos->bh) {
2116 if (!epos->offset)
2117 epos->offset = udf_file_entry_alloc_offset(inode);
2118 ptr = iinfo->i_ext.i_data + epos->offset -
2119 udf_file_entry_alloc_offset(inode) +
2120 iinfo->i_lenEAttr;
2121 alen = udf_file_entry_alloc_offset(inode) +
2122 iinfo->i_lenAlloc;
2123 } else {
2124 if (!epos->offset)
2125 epos->offset = sizeof(struct allocExtDesc);
2126 ptr = epos->bh->b_data + epos->offset;
2127 alen = sizeof(struct allocExtDesc) +
2128 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2129 lengthAllocDescs);
2130 }
2131
2132 switch (iinfo->i_alloc_type) {
2133 case ICBTAG_FLAG_AD_SHORT:
2134 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2135 if (!sad)
2136 return -1;
2137 etype = le32_to_cpu(sad->extLength) >> 30;
2138 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2139 eloc->partitionReferenceNum =
2140 iinfo->i_location.partitionReferenceNum;
2141 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2142 break;
2143 case ICBTAG_FLAG_AD_LONG:
2144 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2145 if (!lad)
2146 return -1;
2147 etype = le32_to_cpu(lad->extLength) >> 30;
2148 *eloc = lelb_to_cpu(lad->extLocation);
2149 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2150 break;
2151 default:
2152 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2153 return -1;
2154 }
2155
2156 return etype;
2157}
2158
2159static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2160 struct kernel_lb_addr neloc, uint32_t nelen)
2161{
2162 struct kernel_lb_addr oeloc;
2163 uint32_t oelen;
2164 int8_t etype;
2165
2166 if (epos.bh)
2167 get_bh(epos.bh);
2168
2169 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2170 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2171 neloc = oeloc;
2172 nelen = (etype << 30) | oelen;
2173 }
2174 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2175 brelse(epos.bh);
2176
2177 return (nelen >> 30);
2178}
2179
2180int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2181 struct kernel_lb_addr eloc, uint32_t elen)
2182{
2183 struct extent_position oepos;
2184 int adsize;
2185 int8_t etype;
2186 struct allocExtDesc *aed;
2187 struct udf_inode_info *iinfo;
2188
2189 if (epos.bh) {
2190 get_bh(epos.bh);
2191 get_bh(epos.bh);
2192 }
2193
2194 iinfo = UDF_I(inode);
2195 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2196 adsize = sizeof(struct short_ad);
2197 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2198 adsize = sizeof(struct long_ad);
2199 else
2200 adsize = 0;
2201
2202 oepos = epos;
2203 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2204 return -1;
2205
2206 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2207 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2208 if (oepos.bh != epos.bh) {
2209 oepos.block = epos.block;
2210 brelse(oepos.bh);
2211 get_bh(epos.bh);
2212 oepos.bh = epos.bh;
2213 oepos.offset = epos.offset - adsize;
2214 }
2215 }
2216 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2217 elen = 0;
2218
2219 if (epos.bh != oepos.bh) {
2220 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2221 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2222 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2223 if (!oepos.bh) {
2224 iinfo->i_lenAlloc -= (adsize * 2);
2225 mark_inode_dirty(inode);
2226 } else {
2227 aed = (struct allocExtDesc *)oepos.bh->b_data;
2228 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2229 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2230 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2231 udf_update_tag(oepos.bh->b_data,
2232 oepos.offset - (2 * adsize));
2233 else
2234 udf_update_tag(oepos.bh->b_data,
2235 sizeof(struct allocExtDesc));
2236 mark_buffer_dirty_inode(oepos.bh, inode);
2237 }
2238 } else {
2239 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2240 if (!oepos.bh) {
2241 iinfo->i_lenAlloc -= adsize;
2242 mark_inode_dirty(inode);
2243 } else {
2244 aed = (struct allocExtDesc *)oepos.bh->b_data;
2245 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2246 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2247 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2248 udf_update_tag(oepos.bh->b_data,
2249 epos.offset - adsize);
2250 else
2251 udf_update_tag(oepos.bh->b_data,
2252 sizeof(struct allocExtDesc));
2253 mark_buffer_dirty_inode(oepos.bh, inode);
2254 }
2255 }
2256
2257 brelse(epos.bh);
2258 brelse(oepos.bh);
2259
2260 return (elen >> 30);
2261}
2262
2263int8_t inode_bmap(struct inode *inode, sector_t block,
2264 struct extent_position *pos, struct kernel_lb_addr *eloc,
2265 uint32_t *elen, sector_t *offset)
2266{
2267 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2268 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2269 int8_t etype;
2270 struct udf_inode_info *iinfo;
2271
2272 iinfo = UDF_I(inode);
2273 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2274 pos->offset = 0;
2275 pos->block = iinfo->i_location;
2276 pos->bh = NULL;
2277 }
2278 *elen = 0;
2279 do {
2280 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2281 if (etype == -1) {
2282 *offset = (bcount - lbcount) >> blocksize_bits;
2283 iinfo->i_lenExtents = lbcount;
2284 return -1;
2285 }
2286 lbcount += *elen;
2287 } while (lbcount <= bcount);
2288 /* update extent cache */
2289 udf_update_extent_cache(inode, lbcount - *elen, pos);
2290 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2291
2292 return etype;
2293}
2294
2295udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2296{
2297 struct kernel_lb_addr eloc;
2298 uint32_t elen;
2299 sector_t offset;
2300 struct extent_position epos = {};
2301 udf_pblk_t ret;
2302
2303 down_read(&UDF_I(inode)->i_data_sem);
2304
2305 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2306 (EXT_RECORDED_ALLOCATED >> 30))
2307 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2308 else
2309 ret = 0;
2310
2311 up_read(&UDF_I(inode)->i_data_sem);
2312 brelse(epos.bh);
2313
2314 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2315 return udf_fixed_to_variable(ret);
2316 else
2317 return ret;
2318}