Linux Audio

Check our new training course

Loading...
v5.14.15
   1/*
   2 * inode.c
   3 *
   4 * PURPOSE
   5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *  This file is distributed under the terms of the GNU General Public
   9 *  License (GPL). Copies of the GPL can be obtained from:
  10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *  Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1998 Dave Boynton
  14 *  (C) 1998-2004 Ben Fennema
  15 *  (C) 1999-2000 Stelias Computing Inc
  16 *
  17 * HISTORY
  18 *
  19 *  10/04/98 dgb  Added rudimentary directory functions
  20 *  10/07/98      Fully working udf_block_map! It works!
  21 *  11/25/98      bmap altered to better support extents
  22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23 *                and udf_read_inode
  24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25 *                block boundaries (which is not actually allowed)
  26 *  12/20/98      added support for strategy 4096
  27 *  03/07/99      rewrote udf_block_map (again)
  28 *                New funcs, inode_bmap, udf_next_aext
  29 *  04/19/99      Support for writing device EA's for major/minor #
  30 */
  31
  32#include "udfdecl.h"
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/pagemap.h>
 
  36#include <linux/writeback.h>
  37#include <linux/slab.h>
  38#include <linux/crc-itu-t.h>
  39#include <linux/mpage.h>
  40#include <linux/uio.h>
  41#include <linux/bio.h>
  42
  43#include "udf_i.h"
  44#include "udf_sb.h"
  45
  46#define EXTENT_MERGE_SIZE 5
  47
  48#define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
  49			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
  50			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
  51
  52#define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
  53			 FE_PERM_O_DELETE)
  54
  55static umode_t udf_convert_permissions(struct fileEntry *);
  56static int udf_update_inode(struct inode *, int);
 
  57static int udf_sync_inode(struct inode *inode);
  58static int udf_alloc_i_data(struct inode *inode, size_t size);
  59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
  60static int8_t udf_insert_aext(struct inode *, struct extent_position,
  61			      struct kernel_lb_addr, uint32_t);
  62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
  63			      struct kernel_long_ad *, int *);
  64static void udf_prealloc_extents(struct inode *, int, int,
  65				 struct kernel_long_ad *, int *);
  66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
  67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
  68			       int, struct extent_position *);
 
 
  69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
  70
  71static void __udf_clear_extent_cache(struct inode *inode)
  72{
  73	struct udf_inode_info *iinfo = UDF_I(inode);
  74
  75	if (iinfo->cached_extent.lstart != -1) {
  76		brelse(iinfo->cached_extent.epos.bh);
  77		iinfo->cached_extent.lstart = -1;
  78	}
  79}
  80
  81/* Invalidate extent cache */
  82static void udf_clear_extent_cache(struct inode *inode)
  83{
  84	struct udf_inode_info *iinfo = UDF_I(inode);
  85
  86	spin_lock(&iinfo->i_extent_cache_lock);
  87	__udf_clear_extent_cache(inode);
  88	spin_unlock(&iinfo->i_extent_cache_lock);
  89}
  90
  91/* Return contents of extent cache */
  92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  93				 loff_t *lbcount, struct extent_position *pos)
  94{
  95	struct udf_inode_info *iinfo = UDF_I(inode);
  96	int ret = 0;
  97
  98	spin_lock(&iinfo->i_extent_cache_lock);
  99	if ((iinfo->cached_extent.lstart <= bcount) &&
 100	    (iinfo->cached_extent.lstart != -1)) {
 101		/* Cache hit */
 102		*lbcount = iinfo->cached_extent.lstart;
 103		memcpy(pos, &iinfo->cached_extent.epos,
 104		       sizeof(struct extent_position));
 105		if (pos->bh)
 106			get_bh(pos->bh);
 107		ret = 1;
 108	}
 109	spin_unlock(&iinfo->i_extent_cache_lock);
 110	return ret;
 111}
 112
 113/* Add extent to extent cache */
 114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 115				    struct extent_position *pos)
 116{
 117	struct udf_inode_info *iinfo = UDF_I(inode);
 118
 119	spin_lock(&iinfo->i_extent_cache_lock);
 120	/* Invalidate previously cached extent */
 121	__udf_clear_extent_cache(inode);
 122	if (pos->bh)
 123		get_bh(pos->bh);
 124	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
 
 125	iinfo->cached_extent.lstart = estart;
 126	switch (iinfo->i_alloc_type) {
 127	case ICBTAG_FLAG_AD_SHORT:
 128		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
 129		break;
 130	case ICBTAG_FLAG_AD_LONG:
 131		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
 132		break;
 133	}
 
 
 134	spin_unlock(&iinfo->i_extent_cache_lock);
 135}
 136
 137void udf_evict_inode(struct inode *inode)
 138{
 139	struct udf_inode_info *iinfo = UDF_I(inode);
 140	int want_delete = 0;
 141
 142	if (!is_bad_inode(inode)) {
 143		if (!inode->i_nlink) {
 144			want_delete = 1;
 145			udf_setsize(inode, 0);
 146			udf_update_inode(inode, IS_SYNC(inode));
 147		}
 148		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 149		    inode->i_size != iinfo->i_lenExtents) {
 150			udf_warn(inode->i_sb,
 151				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 152				 inode->i_ino, inode->i_mode,
 153				 (unsigned long long)inode->i_size,
 154				 (unsigned long long)iinfo->i_lenExtents);
 155		}
 156	}
 157	truncate_inode_pages_final(&inode->i_data);
 158	invalidate_inode_buffers(inode);
 159	clear_inode(inode);
 160	kfree(iinfo->i_data);
 161	iinfo->i_data = NULL;
 
 
 
 
 
 
 
 162	udf_clear_extent_cache(inode);
 163	if (want_delete) {
 164		udf_free_inode(inode);
 165	}
 166}
 167
 168static void udf_write_failed(struct address_space *mapping, loff_t to)
 169{
 170	struct inode *inode = mapping->host;
 171	struct udf_inode_info *iinfo = UDF_I(inode);
 172	loff_t isize = inode->i_size;
 173
 174	if (to > isize) {
 175		truncate_pagecache(inode, isize);
 176		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 177			down_write(&iinfo->i_data_sem);
 178			udf_clear_extent_cache(inode);
 179			udf_truncate_extents(inode);
 180			up_write(&iinfo->i_data_sem);
 181		}
 182	}
 183}
 184
 185static int udf_writepage(struct page *page, struct writeback_control *wbc)
 186{
 187	return block_write_full_page(page, udf_get_block, wbc);
 188}
 189
 190static int udf_writepages(struct address_space *mapping,
 191			struct writeback_control *wbc)
 192{
 193	return mpage_writepages(mapping, wbc, udf_get_block);
 194}
 195
 196static int udf_readpage(struct file *file, struct page *page)
 197{
 198	return mpage_readpage(page, udf_get_block);
 199}
 200
 201static void udf_readahead(struct readahead_control *rac)
 
 202{
 203	mpage_readahead(rac, udf_get_block);
 204}
 205
 206static int udf_write_begin(struct file *file, struct address_space *mapping,
 207			loff_t pos, unsigned len, unsigned flags,
 208			struct page **pagep, void **fsdata)
 209{
 210	int ret;
 211
 212	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
 213	if (unlikely(ret))
 214		udf_write_failed(mapping, pos + len);
 215	return ret;
 216}
 217
 218static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 
 
 219{
 220	struct file *file = iocb->ki_filp;
 221	struct address_space *mapping = file->f_mapping;
 222	struct inode *inode = mapping->host;
 223	size_t count = iov_iter_count(iter);
 224	ssize_t ret;
 225
 226	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 227	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 228		udf_write_failed(mapping, iocb->ki_pos + count);
 
 229	return ret;
 230}
 231
 232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 233{
 234	return generic_block_bmap(mapping, block, udf_get_block);
 235}
 236
 237const struct address_space_operations udf_aops = {
 238	.set_page_dirty	= __set_page_dirty_buffers,
 239	.readpage	= udf_readpage,
 240	.readahead	= udf_readahead,
 241	.writepage	= udf_writepage,
 242	.writepages	= udf_writepages,
 243	.write_begin	= udf_write_begin,
 244	.write_end	= generic_write_end,
 245	.direct_IO	= udf_direct_IO,
 246	.bmap		= udf_bmap,
 247};
 248
 249/*
 250 * Expand file stored in ICB to a normal one-block-file
 251 *
 252 * This function requires i_data_sem for writing and releases it.
 253 * This function requires i_mutex held
 254 */
 255int udf_expand_file_adinicb(struct inode *inode)
 256{
 257	struct page *page;
 258	char *kaddr;
 259	struct udf_inode_info *iinfo = UDF_I(inode);
 260	int err;
 261	struct writeback_control udf_wbc = {
 262		.sync_mode = WB_SYNC_NONE,
 263		.nr_to_write = 1,
 264	};
 265
 266	WARN_ON_ONCE(!inode_is_locked(inode));
 267	if (!iinfo->i_lenAlloc) {
 268		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 269			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 270		else
 271			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 272		/* from now on we have normal address_space methods */
 273		inode->i_data.a_ops = &udf_aops;
 274		up_write(&iinfo->i_data_sem);
 275		mark_inode_dirty(inode);
 276		return 0;
 277	}
 278	/*
 279	 * Release i_data_sem so that we can lock a page - page lock ranks
 280	 * above i_data_sem. i_mutex still protects us against file changes.
 281	 */
 282	up_write(&iinfo->i_data_sem);
 283
 284	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 285	if (!page)
 286		return -ENOMEM;
 287
 288	if (!PageUptodate(page)) {
 289		kaddr = kmap_atomic(page);
 290		memset(kaddr + iinfo->i_lenAlloc, 0x00,
 291		       PAGE_SIZE - iinfo->i_lenAlloc);
 292		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
 293			iinfo->i_lenAlloc);
 294		flush_dcache_page(page);
 295		SetPageUptodate(page);
 296		kunmap_atomic(kaddr);
 297	}
 298	down_write(&iinfo->i_data_sem);
 299	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
 300	       iinfo->i_lenAlloc);
 301	iinfo->i_lenAlloc = 0;
 302	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 303		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 304	else
 305		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 306	/* from now on we have normal address_space methods */
 307	inode->i_data.a_ops = &udf_aops;
 308	up_write(&iinfo->i_data_sem);
 309	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
 310	if (err) {
 311		/* Restore everything back so that we don't lose data... */
 312		lock_page(page);
 
 313		down_write(&iinfo->i_data_sem);
 314		kaddr = kmap_atomic(page);
 315		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
 316		kunmap_atomic(kaddr);
 317		unlock_page(page);
 318		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 319		inode->i_data.a_ops = &udf_adinicb_aops;
 320		up_write(&iinfo->i_data_sem);
 321	}
 322	put_page(page);
 323	mark_inode_dirty(inode);
 324
 325	return err;
 326}
 327
 328struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
 329					    udf_pblk_t *block, int *err)
 330{
 331	udf_pblk_t newblock;
 332	struct buffer_head *dbh = NULL;
 333	struct kernel_lb_addr eloc;
 334	uint8_t alloctype;
 335	struct extent_position epos;
 336
 337	struct udf_fileident_bh sfibh, dfibh;
 338	loff_t f_pos = udf_ext0_offset(inode);
 339	int size = udf_ext0_offset(inode) + inode->i_size;
 340	struct fileIdentDesc cfi, *sfi, *dfi;
 341	struct udf_inode_info *iinfo = UDF_I(inode);
 342
 343	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 344		alloctype = ICBTAG_FLAG_AD_SHORT;
 345	else
 346		alloctype = ICBTAG_FLAG_AD_LONG;
 347
 348	if (!inode->i_size) {
 349		iinfo->i_alloc_type = alloctype;
 350		mark_inode_dirty(inode);
 351		return NULL;
 352	}
 353
 354	/* alloc block, and copy data to it */
 355	*block = udf_new_block(inode->i_sb, inode,
 356			       iinfo->i_location.partitionReferenceNum,
 357			       iinfo->i_location.logicalBlockNum, err);
 358	if (!(*block))
 359		return NULL;
 360	newblock = udf_get_pblock(inode->i_sb, *block,
 361				  iinfo->i_location.partitionReferenceNum,
 362				0);
 363	if (!newblock)
 364		return NULL;
 365	dbh = udf_tgetblk(inode->i_sb, newblock);
 366	if (!dbh)
 367		return NULL;
 368	lock_buffer(dbh);
 369	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 370	set_buffer_uptodate(dbh);
 371	unlock_buffer(dbh);
 372	mark_buffer_dirty_inode(dbh, inode);
 373
 374	sfibh.soffset = sfibh.eoffset =
 375			f_pos & (inode->i_sb->s_blocksize - 1);
 376	sfibh.sbh = sfibh.ebh = NULL;
 377	dfibh.soffset = dfibh.eoffset = 0;
 378	dfibh.sbh = dfibh.ebh = dbh;
 379	while (f_pos < size) {
 380		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 381		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 382					 NULL, NULL, NULL);
 383		if (!sfi) {
 384			brelse(dbh);
 385			return NULL;
 386		}
 387		iinfo->i_alloc_type = alloctype;
 388		sfi->descTag.tagLocation = cpu_to_le32(*block);
 389		dfibh.soffset = dfibh.eoffset;
 390		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 391		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 392		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 393				 sfi->fileIdent +
 394					le16_to_cpu(sfi->lengthOfImpUse))) {
 395			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 396			brelse(dbh);
 397			return NULL;
 398		}
 399	}
 400	mark_buffer_dirty_inode(dbh, inode);
 401
 402	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
 
 403	iinfo->i_lenAlloc = 0;
 404	eloc.logicalBlockNum = *block;
 405	eloc.partitionReferenceNum =
 406				iinfo->i_location.partitionReferenceNum;
 407	iinfo->i_lenExtents = inode->i_size;
 408	epos.bh = NULL;
 409	epos.block = iinfo->i_location;
 410	epos.offset = udf_file_entry_alloc_offset(inode);
 411	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 412	/* UniqueID stuff */
 413
 414	brelse(epos.bh);
 415	mark_inode_dirty(inode);
 416	return dbh;
 417}
 418
 419static int udf_get_block(struct inode *inode, sector_t block,
 420			 struct buffer_head *bh_result, int create)
 421{
 422	int err, new;
 423	sector_t phys = 0;
 424	struct udf_inode_info *iinfo;
 425
 426	if (!create) {
 427		phys = udf_block_map(inode, block);
 428		if (phys)
 429			map_bh(bh_result, inode->i_sb, phys);
 430		return 0;
 431	}
 432
 433	err = -EIO;
 434	new = 0;
 435	iinfo = UDF_I(inode);
 436
 437	down_write(&iinfo->i_data_sem);
 438	if (block == iinfo->i_next_alloc_block + 1) {
 439		iinfo->i_next_alloc_block++;
 440		iinfo->i_next_alloc_goal++;
 441	}
 442
 443	udf_clear_extent_cache(inode);
 444	phys = inode_getblk(inode, block, &err, &new);
 445	if (!phys)
 446		goto abort;
 447
 448	if (new)
 449		set_buffer_new(bh_result);
 450	map_bh(bh_result, inode->i_sb, phys);
 451
 452abort:
 453	up_write(&iinfo->i_data_sem);
 454	return err;
 455}
 456
 457static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
 458				      int create, int *err)
 459{
 460	struct buffer_head *bh;
 461	struct buffer_head dummy;
 462
 463	dummy.b_state = 0;
 464	dummy.b_blocknr = -1000;
 465	*err = udf_get_block(inode, block, &dummy, create);
 466	if (!*err && buffer_mapped(&dummy)) {
 467		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 468		if (buffer_new(&dummy)) {
 469			lock_buffer(bh);
 470			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 471			set_buffer_uptodate(bh);
 472			unlock_buffer(bh);
 473			mark_buffer_dirty_inode(bh, inode);
 474		}
 475		return bh;
 476	}
 477
 478	return NULL;
 479}
 480
 481/* Extend the file with new blocks totaling 'new_block_bytes',
 482 * return the number of extents added
 483 */
 484static int udf_do_extend_file(struct inode *inode,
 485			      struct extent_position *last_pos,
 486			      struct kernel_long_ad *last_ext,
 487			      loff_t new_block_bytes)
 488{
 489	uint32_t add;
 490	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 491	struct super_block *sb = inode->i_sb;
 492	struct kernel_lb_addr prealloc_loc = {};
 493	uint32_t prealloc_len = 0;
 494	struct udf_inode_info *iinfo;
 495	int err;
 496
 497	/* The previous extent is fake and we should not extend by anything
 498	 * - there's nothing to do... */
 499	if (!new_block_bytes && fake)
 500		return 0;
 501
 502	iinfo = UDF_I(inode);
 503	/* Round the last extent up to a multiple of block size */
 504	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 505		last_ext->extLength =
 506			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 507			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 508			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 509		iinfo->i_lenExtents =
 510			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 511			~(sb->s_blocksize - 1);
 512	}
 513
 514	/* Last extent are just preallocated blocks? */
 515	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 516						EXT_NOT_RECORDED_ALLOCATED) {
 517		/* Save the extent so that we can reattach it to the end */
 518		prealloc_loc = last_ext->extLocation;
 519		prealloc_len = last_ext->extLength;
 520		/* Mark the extent as a hole */
 521		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 522			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 523		last_ext->extLocation.logicalBlockNum = 0;
 524		last_ext->extLocation.partitionReferenceNum = 0;
 525	}
 526
 527	/* Can we merge with the previous extent? */
 528	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 529					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 530		add = (1 << 30) - sb->s_blocksize -
 531			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 532		if (add > new_block_bytes)
 533			add = new_block_bytes;
 534		new_block_bytes -= add;
 535		last_ext->extLength += add;
 
 536	}
 537
 538	if (fake) {
 539		udf_add_aext(inode, last_pos, &last_ext->extLocation,
 540			     last_ext->extLength, 1);
 541		count++;
 542	} else {
 543		struct kernel_lb_addr tmploc;
 544		uint32_t tmplen;
 545
 546		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 547				last_ext->extLength, 1);
 548
 549		/*
 550		 * We've rewritten the last extent. If we are going to add
 551		 * more extents, we may need to enter possible following
 552		 * empty indirect extent.
 553		 */
 554		if (new_block_bytes || prealloc_len)
 555			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
 556	}
 557
 558	/* Managed to do everything necessary? */
 559	if (!new_block_bytes)
 560		goto out;
 561
 562	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 563	last_ext->extLocation.logicalBlockNum = 0;
 564	last_ext->extLocation.partitionReferenceNum = 0;
 565	add = (1 << 30) - sb->s_blocksize;
 566	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
 
 567
 568	/* Create enough extents to cover the whole hole */
 569	while (new_block_bytes > add) {
 570		new_block_bytes -= add;
 571		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 572				   last_ext->extLength, 1);
 573		if (err)
 574			return err;
 575		count++;
 576	}
 577	if (new_block_bytes) {
 578		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 579			new_block_bytes;
 580		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 581				   last_ext->extLength, 1);
 582		if (err)
 583			return err;
 584		count++;
 585	}
 586
 587out:
 588	/* Do we have some preallocated blocks saved? */
 589	if (prealloc_len) {
 590		err = udf_add_aext(inode, last_pos, &prealloc_loc,
 591				   prealloc_len, 1);
 592		if (err)
 593			return err;
 594		last_ext->extLocation = prealloc_loc;
 595		last_ext->extLength = prealloc_len;
 596		count++;
 597	}
 598
 599	/* last_pos should point to the last written extent... */
 600	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 601		last_pos->offset -= sizeof(struct short_ad);
 602	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 603		last_pos->offset -= sizeof(struct long_ad);
 604	else
 605		return -EIO;
 606
 607	return count;
 608}
 609
 610/* Extend the final block of the file to final_block_len bytes */
 611static void udf_do_extend_final_block(struct inode *inode,
 612				      struct extent_position *last_pos,
 613				      struct kernel_long_ad *last_ext,
 614				      uint32_t final_block_len)
 615{
 616	struct super_block *sb = inode->i_sb;
 617	uint32_t added_bytes;
 618
 619	added_bytes = final_block_len -
 620		      (last_ext->extLength & (sb->s_blocksize - 1));
 621	last_ext->extLength += added_bytes;
 622	UDF_I(inode)->i_lenExtents += added_bytes;
 623
 624	udf_write_aext(inode, last_pos, &last_ext->extLocation,
 625			last_ext->extLength, 1);
 626}
 627
 628static int udf_extend_file(struct inode *inode, loff_t newsize)
 629{
 630
 631	struct extent_position epos;
 632	struct kernel_lb_addr eloc;
 633	uint32_t elen;
 634	int8_t etype;
 635	struct super_block *sb = inode->i_sb;
 636	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 637	unsigned long partial_final_block;
 638	int adsize;
 639	struct udf_inode_info *iinfo = UDF_I(inode);
 640	struct kernel_long_ad extent;
 641	int err = 0;
 642	int within_final_block;
 643
 644	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 645		adsize = sizeof(struct short_ad);
 646	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 647		adsize = sizeof(struct long_ad);
 648	else
 649		BUG();
 650
 651	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 652	within_final_block = (etype != -1);
 653
 
 
 
 
 
 
 
 
 
 
 
 654	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 655	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 656		/* File has no extents at all or has empty last
 657		 * indirect extent! Create a fake extent... */
 658		extent.extLocation.logicalBlockNum = 0;
 659		extent.extLocation.partitionReferenceNum = 0;
 660		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 661	} else {
 662		epos.offset -= adsize;
 663		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 664				      &extent.extLength, 0);
 665		extent.extLength |= etype << 30;
 666	}
 667
 668	partial_final_block = newsize & (sb->s_blocksize - 1);
 669
 670	/* File has extent covering the new size (could happen when extending
 671	 * inside a block)?
 672	 */
 673	if (within_final_block) {
 674		/* Extending file within the last file block */
 675		udf_do_extend_final_block(inode, &epos, &extent,
 676					  partial_final_block);
 677	} else {
 678		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
 679			     partial_final_block;
 680		err = udf_do_extend_file(inode, &epos, &extent, add);
 681	}
 682
 683	if (err < 0)
 684		goto out;
 685	err = 0;
 686	iinfo->i_lenExtents = newsize;
 687out:
 688	brelse(epos.bh);
 689	return err;
 690}
 691
 692static sector_t inode_getblk(struct inode *inode, sector_t block,
 693			     int *err, int *new)
 694{
 695	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 696	struct extent_position prev_epos, cur_epos, next_epos;
 697	int count = 0, startnum = 0, endnum = 0;
 698	uint32_t elen = 0, tmpelen;
 699	struct kernel_lb_addr eloc, tmpeloc;
 700	int c = 1;
 701	loff_t lbcount = 0, b_off = 0;
 702	udf_pblk_t newblocknum, newblock;
 703	sector_t offset = 0;
 704	int8_t etype;
 705	struct udf_inode_info *iinfo = UDF_I(inode);
 706	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 707	int lastblock = 0;
 708	bool isBeyondEOF;
 709
 710	*err = 0;
 711	*new = 0;
 712	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 713	prev_epos.block = iinfo->i_location;
 714	prev_epos.bh = NULL;
 715	cur_epos = next_epos = prev_epos;
 716	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 717
 718	/* find the extent which contains the block we are looking for.
 719	   alternate between laarr[0] and laarr[1] for locations of the
 720	   current extent, and the previous extent */
 721	do {
 722		if (prev_epos.bh != cur_epos.bh) {
 723			brelse(prev_epos.bh);
 724			get_bh(cur_epos.bh);
 725			prev_epos.bh = cur_epos.bh;
 726		}
 727		if (cur_epos.bh != next_epos.bh) {
 728			brelse(cur_epos.bh);
 729			get_bh(next_epos.bh);
 730			cur_epos.bh = next_epos.bh;
 731		}
 732
 733		lbcount += elen;
 734
 735		prev_epos.block = cur_epos.block;
 736		cur_epos.block = next_epos.block;
 737
 738		prev_epos.offset = cur_epos.offset;
 739		cur_epos.offset = next_epos.offset;
 740
 741		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 742		if (etype == -1)
 743			break;
 744
 745		c = !c;
 746
 747		laarr[c].extLength = (etype << 30) | elen;
 748		laarr[c].extLocation = eloc;
 749
 750		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 751			pgoal = eloc.logicalBlockNum +
 752				((elen + inode->i_sb->s_blocksize - 1) >>
 753				 inode->i_sb->s_blocksize_bits);
 754
 755		count++;
 756	} while (lbcount + elen <= b_off);
 757
 758	b_off -= lbcount;
 759	offset = b_off >> inode->i_sb->s_blocksize_bits;
 760	/*
 761	 * Move prev_epos and cur_epos into indirect extent if we are at
 762	 * the pointer to it
 763	 */
 764	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 765	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 766
 767	/* if the extent is allocated and recorded, return the block
 768	   if the extent is not a multiple of the blocksize, round up */
 769
 770	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 771		if (elen & (inode->i_sb->s_blocksize - 1)) {
 772			elen = EXT_RECORDED_ALLOCATED |
 773				((elen + inode->i_sb->s_blocksize - 1) &
 774				 ~(inode->i_sb->s_blocksize - 1));
 775			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 776		}
 
 
 
 777		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 778		goto out_free;
 779	}
 780
 781	/* Are we beyond EOF? */
 782	if (etype == -1) {
 783		int ret;
 784		loff_t hole_len;
 785		isBeyondEOF = true;
 786		if (count) {
 787			if (c)
 788				laarr[0] = laarr[1];
 789			startnum = 1;
 790		} else {
 791			/* Create a fake extent when there's not one */
 792			memset(&laarr[0].extLocation, 0x00,
 793				sizeof(struct kernel_lb_addr));
 794			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 795			/* Will udf_do_extend_file() create real extent from
 796			   a fake one? */
 797			startnum = (offset > 0);
 798		}
 799		/* Create extents for the hole between EOF and offset */
 800		hole_len = (loff_t)offset << inode->i_blkbits;
 801		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
 802		if (ret < 0) {
 
 
 
 803			*err = ret;
 804			newblock = 0;
 805			goto out_free;
 806		}
 807		c = 0;
 808		offset = 0;
 809		count += ret;
 810		/* We are not covered by a preallocated extent? */
 811		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 812						EXT_NOT_RECORDED_ALLOCATED) {
 813			/* Is there any real extent? - otherwise we overwrite
 814			 * the fake one... */
 815			if (count)
 816				c = !c;
 817			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 818				inode->i_sb->s_blocksize;
 819			memset(&laarr[c].extLocation, 0x00,
 820				sizeof(struct kernel_lb_addr));
 821			count++;
 822		}
 823		endnum = c + 1;
 824		lastblock = 1;
 825	} else {
 826		isBeyondEOF = false;
 827		endnum = startnum = ((count > 2) ? 2 : count);
 828
 829		/* if the current extent is in position 0,
 830		   swap it with the previous */
 831		if (!c && count != 1) {
 832			laarr[2] = laarr[0];
 833			laarr[0] = laarr[1];
 834			laarr[1] = laarr[2];
 835			c = 1;
 836		}
 837
 838		/* if the current block is located in an extent,
 839		   read the next extent */
 840		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 841		if (etype != -1) {
 842			laarr[c + 1].extLength = (etype << 30) | elen;
 843			laarr[c + 1].extLocation = eloc;
 844			count++;
 845			startnum++;
 846			endnum++;
 847		} else
 848			lastblock = 1;
 849	}
 850
 851	/* if the current extent is not recorded but allocated, get the
 852	 * block in the extent corresponding to the requested block */
 853	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 854		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 855	else { /* otherwise, allocate a new block */
 856		if (iinfo->i_next_alloc_block == block)
 857			goal = iinfo->i_next_alloc_goal;
 858
 859		if (!goal) {
 860			if (!(goal = pgoal)) /* XXX: what was intended here? */
 861				goal = iinfo->i_location.logicalBlockNum + 1;
 862		}
 863
 864		newblocknum = udf_new_block(inode->i_sb, inode,
 865				iinfo->i_location.partitionReferenceNum,
 866				goal, err);
 867		if (!newblocknum) {
 
 
 
 868			*err = -ENOSPC;
 869			newblock = 0;
 870			goto out_free;
 871		}
 872		if (isBeyondEOF)
 873			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 874	}
 875
 876	/* if the extent the requsted block is located in contains multiple
 877	 * blocks, split the extent into at most three extents. blocks prior
 878	 * to requested block, requested block, and blocks after requested
 879	 * block */
 880	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 881
 
 882	/* We preallocate blocks only for regular files. It also makes sense
 883	 * for directories but there's a problem when to drop the
 884	 * preallocation. We might use some delayed work for that but I feel
 885	 * it's overengineering for a filesystem like UDF. */
 886	if (S_ISREG(inode->i_mode))
 887		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 
 888
 889	/* merge any continuous blocks in laarr */
 890	udf_merge_extents(inode, laarr, &endnum);
 891
 892	/* write back the new extents, inserting new extents if the new number
 893	 * of extents is greater than the old number, and deleting extents if
 894	 * the new number of extents is less than the old number */
 895	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 896
 
 
 
 
 897	newblock = udf_get_pblock(inode->i_sb, newblocknum,
 898				iinfo->i_location.partitionReferenceNum, 0);
 899	if (!newblock) {
 900		*err = -EIO;
 901		goto out_free;
 902	}
 903	*new = 1;
 904	iinfo->i_next_alloc_block = block;
 905	iinfo->i_next_alloc_goal = newblocknum;
 906	inode->i_ctime = current_time(inode);
 907
 908	if (IS_SYNC(inode))
 909		udf_sync_inode(inode);
 910	else
 911		mark_inode_dirty(inode);
 912out_free:
 913	brelse(prev_epos.bh);
 914	brelse(cur_epos.bh);
 915	brelse(next_epos.bh);
 916	return newblock;
 917}
 918
 919static void udf_split_extents(struct inode *inode, int *c, int offset,
 920			       udf_pblk_t newblocknum,
 921			       struct kernel_long_ad *laarr, int *endnum)
 
 922{
 923	unsigned long blocksize = inode->i_sb->s_blocksize;
 924	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 925
 926	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 927	    (laarr[*c].extLength >> 30) ==
 928				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 929		int curr = *c;
 930		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 931			    blocksize - 1) >> blocksize_bits;
 932		int8_t etype = (laarr[curr].extLength >> 30);
 933
 934		if (blen == 1)
 935			;
 936		else if (!offset || blen == offset + 1) {
 937			laarr[curr + 2] = laarr[curr + 1];
 938			laarr[curr + 1] = laarr[curr];
 939		} else {
 940			laarr[curr + 3] = laarr[curr + 1];
 941			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 942		}
 943
 944		if (offset) {
 945			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 946				udf_free_blocks(inode->i_sb, inode,
 947						&laarr[curr].extLocation,
 948						0, offset);
 949				laarr[curr].extLength =
 950					EXT_NOT_RECORDED_NOT_ALLOCATED |
 951					(offset << blocksize_bits);
 952				laarr[curr].extLocation.logicalBlockNum = 0;
 953				laarr[curr].extLocation.
 954						partitionReferenceNum = 0;
 955			} else
 956				laarr[curr].extLength = (etype << 30) |
 957					(offset << blocksize_bits);
 958			curr++;
 959			(*c)++;
 960			(*endnum)++;
 961		}
 962
 963		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 964		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 965			laarr[curr].extLocation.partitionReferenceNum =
 966				UDF_I(inode)->i_location.partitionReferenceNum;
 967		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 968			blocksize;
 969		curr++;
 970
 971		if (blen != offset + 1) {
 972			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 973				laarr[curr].extLocation.logicalBlockNum +=
 974								offset + 1;
 975			laarr[curr].extLength = (etype << 30) |
 976				((blen - (offset + 1)) << blocksize_bits);
 977			curr++;
 978			(*endnum)++;
 979		}
 980	}
 981}
 982
 983static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 984				 struct kernel_long_ad *laarr,
 985				 int *endnum)
 986{
 987	int start, length = 0, currlength = 0, i;
 988
 989	if (*endnum >= (c + 1)) {
 990		if (!lastblock)
 991			return;
 992		else
 993			start = c;
 994	} else {
 995		if ((laarr[c + 1].extLength >> 30) ==
 996					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 997			start = c + 1;
 998			length = currlength =
 999				(((laarr[c + 1].extLength &
1000					UDF_EXTENT_LENGTH_MASK) +
1001				inode->i_sb->s_blocksize - 1) >>
1002				inode->i_sb->s_blocksize_bits);
1003		} else
1004			start = c;
1005	}
1006
1007	for (i = start + 1; i <= *endnum; i++) {
1008		if (i == *endnum) {
1009			if (lastblock)
1010				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1011		} else if ((laarr[i].extLength >> 30) ==
1012				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1013			length += (((laarr[i].extLength &
1014						UDF_EXTENT_LENGTH_MASK) +
1015				    inode->i_sb->s_blocksize - 1) >>
1016				    inode->i_sb->s_blocksize_bits);
1017		} else
1018			break;
1019	}
1020
1021	if (length) {
1022		int next = laarr[start].extLocation.logicalBlockNum +
1023			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1024			  inode->i_sb->s_blocksize - 1) >>
1025			  inode->i_sb->s_blocksize_bits);
1026		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1027				laarr[start].extLocation.partitionReferenceNum,
1028				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1029				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1030				currlength);
1031		if (numalloc) 	{
1032			if (start == (c + 1))
1033				laarr[start].extLength +=
1034					(numalloc <<
1035					 inode->i_sb->s_blocksize_bits);
1036			else {
1037				memmove(&laarr[c + 2], &laarr[c + 1],
1038					sizeof(struct long_ad) * (*endnum - (c + 1)));
1039				(*endnum)++;
1040				laarr[c + 1].extLocation.logicalBlockNum = next;
1041				laarr[c + 1].extLocation.partitionReferenceNum =
1042					laarr[c].extLocation.
1043							partitionReferenceNum;
1044				laarr[c + 1].extLength =
1045					EXT_NOT_RECORDED_ALLOCATED |
1046					(numalloc <<
1047					 inode->i_sb->s_blocksize_bits);
1048				start = c + 1;
1049			}
1050
1051			for (i = start + 1; numalloc && i < *endnum; i++) {
1052				int elen = ((laarr[i].extLength &
1053						UDF_EXTENT_LENGTH_MASK) +
1054					    inode->i_sb->s_blocksize - 1) >>
1055					    inode->i_sb->s_blocksize_bits;
1056
1057				if (elen > numalloc) {
1058					laarr[i].extLength -=
1059						(numalloc <<
1060						 inode->i_sb->s_blocksize_bits);
1061					numalloc = 0;
1062				} else {
1063					numalloc -= elen;
1064					if (*endnum > (i + 1))
1065						memmove(&laarr[i],
1066							&laarr[i + 1],
1067							sizeof(struct long_ad) *
1068							(*endnum - (i + 1)));
1069					i--;
1070					(*endnum)--;
1071				}
1072			}
1073			UDF_I(inode)->i_lenExtents +=
1074				numalloc << inode->i_sb->s_blocksize_bits;
1075		}
1076	}
1077}
1078
1079static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
 
1080			      int *endnum)
1081{
1082	int i;
1083	unsigned long blocksize = inode->i_sb->s_blocksize;
1084	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1085
1086	for (i = 0; i < (*endnum - 1); i++) {
1087		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1088		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1089
1090		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1091			(((li->extLength >> 30) ==
1092				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1093			((lip1->extLocation.logicalBlockNum -
1094			  li->extLocation.logicalBlockNum) ==
1095			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1096			blocksize - 1) >> blocksize_bits)))) {
1097
1098			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1099				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1100				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1101				lip1->extLength = (lip1->extLength -
1102						  (li->extLength &
1103						   UDF_EXTENT_LENGTH_MASK) +
1104						   UDF_EXTENT_LENGTH_MASK) &
1105							~(blocksize - 1);
1106				li->extLength = (li->extLength &
1107						 UDF_EXTENT_FLAG_MASK) +
1108						(UDF_EXTENT_LENGTH_MASK + 1) -
1109						blocksize;
1110				lip1->extLocation.logicalBlockNum =
1111					li->extLocation.logicalBlockNum +
1112					((li->extLength &
1113						UDF_EXTENT_LENGTH_MASK) >>
1114						blocksize_bits);
1115			} else {
1116				li->extLength = lip1->extLength +
1117					(((li->extLength &
1118						UDF_EXTENT_LENGTH_MASK) +
1119					 blocksize - 1) & ~(blocksize - 1));
1120				if (*endnum > (i + 2))
1121					memmove(&laarr[i + 1], &laarr[i + 2],
1122						sizeof(struct long_ad) *
1123						(*endnum - (i + 2)));
1124				i--;
1125				(*endnum)--;
1126			}
1127		} else if (((li->extLength >> 30) ==
1128				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1129			   ((lip1->extLength >> 30) ==
1130				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1131			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1132					((li->extLength &
1133					  UDF_EXTENT_LENGTH_MASK) +
1134					 blocksize - 1) >> blocksize_bits);
1135			li->extLocation.logicalBlockNum = 0;
1136			li->extLocation.partitionReferenceNum = 0;
1137
1138			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1139			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1140			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1141				lip1->extLength = (lip1->extLength -
1142						   (li->extLength &
1143						   UDF_EXTENT_LENGTH_MASK) +
1144						   UDF_EXTENT_LENGTH_MASK) &
1145						   ~(blocksize - 1);
1146				li->extLength = (li->extLength &
1147						 UDF_EXTENT_FLAG_MASK) +
1148						(UDF_EXTENT_LENGTH_MASK + 1) -
1149						blocksize;
1150			} else {
1151				li->extLength = lip1->extLength +
1152					(((li->extLength &
1153						UDF_EXTENT_LENGTH_MASK) +
1154					  blocksize - 1) & ~(blocksize - 1));
1155				if (*endnum > (i + 2))
1156					memmove(&laarr[i + 1], &laarr[i + 2],
1157						sizeof(struct long_ad) *
1158						(*endnum - (i + 2)));
1159				i--;
1160				(*endnum)--;
1161			}
1162		} else if ((li->extLength >> 30) ==
1163					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1164			udf_free_blocks(inode->i_sb, inode,
1165					&li->extLocation, 0,
1166					((li->extLength &
1167						UDF_EXTENT_LENGTH_MASK) +
1168					 blocksize - 1) >> blocksize_bits);
1169			li->extLocation.logicalBlockNum = 0;
1170			li->extLocation.partitionReferenceNum = 0;
1171			li->extLength = (li->extLength &
1172						UDF_EXTENT_LENGTH_MASK) |
1173						EXT_NOT_RECORDED_NOT_ALLOCATED;
1174		}
1175	}
1176}
1177
1178static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
 
1179			       int startnum, int endnum,
1180			       struct extent_position *epos)
1181{
1182	int start = 0, i;
1183	struct kernel_lb_addr tmploc;
1184	uint32_t tmplen;
1185
1186	if (startnum > endnum) {
1187		for (i = 0; i < (startnum - endnum); i++)
1188			udf_delete_aext(inode, *epos);
 
1189	} else if (startnum < endnum) {
1190		for (i = 0; i < (endnum - startnum); i++) {
1191			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1192					laarr[i].extLength);
1193			udf_next_aext(inode, epos, &laarr[i].extLocation,
1194				      &laarr[i].extLength, 1);
1195			start++;
1196		}
1197	}
1198
1199	for (i = start; i < endnum; i++) {
1200		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1201		udf_write_aext(inode, epos, &laarr[i].extLocation,
1202			       laarr[i].extLength, 1);
1203	}
1204}
1205
1206struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1207			      int create, int *err)
1208{
1209	struct buffer_head *bh = NULL;
1210
1211	bh = udf_getblk(inode, block, create, err);
1212	if (!bh)
1213		return NULL;
1214
1215	if (buffer_uptodate(bh))
1216		return bh;
1217
1218	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219
1220	wait_on_buffer(bh);
1221	if (buffer_uptodate(bh))
1222		return bh;
1223
1224	brelse(bh);
1225	*err = -EIO;
1226	return NULL;
1227}
1228
1229int udf_setsize(struct inode *inode, loff_t newsize)
1230{
1231	int err;
1232	struct udf_inode_info *iinfo;
1233	unsigned int bsize = i_blocksize(inode);
1234
1235	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1236	      S_ISLNK(inode->i_mode)))
1237		return -EINVAL;
1238	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1239		return -EPERM;
1240
1241	iinfo = UDF_I(inode);
1242	if (newsize > inode->i_size) {
1243		down_write(&iinfo->i_data_sem);
1244		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1245			if (bsize <
1246			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1247				err = udf_expand_file_adinicb(inode);
1248				if (err)
1249					return err;
1250				down_write(&iinfo->i_data_sem);
1251			} else {
1252				iinfo->i_lenAlloc = newsize;
1253				goto set_size;
1254			}
1255		}
1256		err = udf_extend_file(inode, newsize);
1257		if (err) {
1258			up_write(&iinfo->i_data_sem);
1259			return err;
1260		}
1261set_size:
1262		up_write(&iinfo->i_data_sem);
1263		truncate_setsize(inode, newsize);
 
1264	} else {
1265		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1266			down_write(&iinfo->i_data_sem);
1267			udf_clear_extent_cache(inode);
1268			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1269			       0x00, bsize - newsize -
1270			       udf_file_entry_alloc_offset(inode));
1271			iinfo->i_lenAlloc = newsize;
1272			truncate_setsize(inode, newsize);
1273			up_write(&iinfo->i_data_sem);
1274			goto update_time;
1275		}
1276		err = block_truncate_page(inode->i_mapping, newsize,
1277					  udf_get_block);
1278		if (err)
1279			return err;
1280		truncate_setsize(inode, newsize);
1281		down_write(&iinfo->i_data_sem);
1282		udf_clear_extent_cache(inode);
1283		err = udf_truncate_extents(inode);
 
1284		up_write(&iinfo->i_data_sem);
1285		if (err)
1286			return err;
1287	}
1288update_time:
1289	inode->i_mtime = inode->i_ctime = current_time(inode);
1290	if (IS_SYNC(inode))
1291		udf_sync_inode(inode);
1292	else
1293		mark_inode_dirty(inode);
1294	return 0;
1295}
1296
1297/*
1298 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1299 * arbitrary - just that we hopefully don't limit any real use of rewritten
1300 * inode on write-once media but avoid looping for too long on corrupted media.
1301 */
1302#define UDF_MAX_ICB_NESTING 1024
1303
1304static int udf_read_inode(struct inode *inode, bool hidden_inode)
1305{
1306	struct buffer_head *bh = NULL;
1307	struct fileEntry *fe;
1308	struct extendedFileEntry *efe;
1309	uint16_t ident;
1310	struct udf_inode_info *iinfo = UDF_I(inode);
1311	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1312	struct kernel_lb_addr *iloc = &iinfo->i_location;
1313	unsigned int link_count;
1314	unsigned int indirections = 0;
1315	int bs = inode->i_sb->s_blocksize;
1316	int ret = -EIO;
1317	uint32_t uid, gid;
1318
1319reread:
1320	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1321		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1322			  iloc->partitionReferenceNum, sbi->s_partitions);
1323		return -EIO;
1324	}
1325
1326	if (iloc->logicalBlockNum >=
1327	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1328		udf_debug("block=%u, partition=%u out of range\n",
1329			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1330		return -EIO;
1331	}
1332
1333	/*
1334	 * Set defaults, but the inode is still incomplete!
1335	 * Note: get_new_inode() sets the following on a new inode:
1336	 *      i_sb = sb
1337	 *      i_no = ino
1338	 *      i_flags = sb->s_flags
1339	 *      i_state = 0
1340	 * clean_inode(): zero fills and sets
1341	 *      i_count = 1
1342	 *      i_nlink = 1
1343	 *      i_op = NULL;
1344	 */
1345	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1346	if (!bh) {
1347		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1348		return -EIO;
 
1349	}
1350
1351	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1352	    ident != TAG_IDENT_USE) {
1353		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1354			inode->i_ino, ident);
1355		goto out;
 
 
1356	}
1357
1358	fe = (struct fileEntry *)bh->b_data;
1359	efe = (struct extendedFileEntry *)bh->b_data;
1360
1361	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1362		struct buffer_head *ibh;
1363
1364		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
 
1365		if (ident == TAG_IDENT_IE && ibh) {
 
1366			struct kernel_lb_addr loc;
1367			struct indirectEntry *ie;
1368
1369			ie = (struct indirectEntry *)ibh->b_data;
1370			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1371
1372			if (ie->indirectICB.extLength) {
1373				brelse(ibh);
1374				memcpy(&iinfo->i_location, &loc,
1375				       sizeof(struct kernel_lb_addr));
1376				if (++indirections > UDF_MAX_ICB_NESTING) {
1377					udf_err(inode->i_sb,
1378						"too many ICBs in ICB hierarchy"
1379						" (max %d supported)\n",
1380						UDF_MAX_ICB_NESTING);
1381					goto out;
 
 
 
1382				}
1383				brelse(bh);
1384				goto reread;
1385			}
1386		}
1387		brelse(ibh);
1388	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1389		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1390			le16_to_cpu(fe->icbTag.strategyType));
1391		goto out;
 
 
1392	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1393	if (fe->icbTag.strategyType == cpu_to_le16(4))
1394		iinfo->i_strat4096 = 0;
1395	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1396		iinfo->i_strat4096 = 1;
1397
1398	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1399							ICBTAG_FLAG_AD_MASK;
1400	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1401	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1402	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1403		ret = -EIO;
1404		goto out;
1405	}
1406	iinfo->i_unique = 0;
1407	iinfo->i_lenEAttr = 0;
1408	iinfo->i_lenExtents = 0;
1409	iinfo->i_lenAlloc = 0;
1410	iinfo->i_next_alloc_block = 0;
1411	iinfo->i_next_alloc_goal = 0;
1412	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1413		iinfo->i_efe = 1;
1414		iinfo->i_use = 0;
1415		ret = udf_alloc_i_data(inode, bs -
1416					sizeof(struct extendedFileEntry));
1417		if (ret)
1418			goto out;
1419		memcpy(iinfo->i_data,
 
1420		       bh->b_data + sizeof(struct extendedFileEntry),
1421		       bs - sizeof(struct extendedFileEntry));
 
1422	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1423		iinfo->i_efe = 0;
1424		iinfo->i_use = 0;
1425		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1426		if (ret)
1427			goto out;
1428		memcpy(iinfo->i_data,
 
 
1429		       bh->b_data + sizeof(struct fileEntry),
1430		       bs - sizeof(struct fileEntry));
1431	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1432		iinfo->i_efe = 0;
1433		iinfo->i_use = 1;
1434		iinfo->i_lenAlloc = le32_to_cpu(
1435				((struct unallocSpaceEntry *)bh->b_data)->
1436				 lengthAllocDescs);
1437		ret = udf_alloc_i_data(inode, bs -
1438					sizeof(struct unallocSpaceEntry));
1439		if (ret)
1440			goto out;
1441		memcpy(iinfo->i_data,
 
1442		       bh->b_data + sizeof(struct unallocSpaceEntry),
1443		       bs - sizeof(struct unallocSpaceEntry));
1444		return 0;
 
1445	}
1446
1447	ret = -EIO;
1448	read_lock(&sbi->s_cred_lock);
1449	uid = le32_to_cpu(fe->uid);
1450	if (uid == UDF_INVALID_ID ||
 
1451	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1452		inode->i_uid = sbi->s_uid;
1453	else
1454		i_uid_write(inode, uid);
1455
1456	gid = le32_to_cpu(fe->gid);
1457	if (gid == UDF_INVALID_ID ||
 
1458	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1459		inode->i_gid = sbi->s_gid;
1460	else
1461		i_gid_write(inode, gid);
1462
1463	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1464			sbi->s_fmode != UDF_INVALID_MODE)
1465		inode->i_mode = sbi->s_fmode;
1466	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1467			sbi->s_dmode != UDF_INVALID_MODE)
1468		inode->i_mode = sbi->s_dmode;
1469	else
1470		inode->i_mode = udf_convert_permissions(fe);
1471	inode->i_mode &= ~sbi->s_umask;
1472	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1473
1474	read_unlock(&sbi->s_cred_lock);
1475
1476	link_count = le16_to_cpu(fe->fileLinkCount);
1477	if (!link_count) {
1478		if (!hidden_inode) {
1479			ret = -ESTALE;
1480			goto out;
1481		}
1482		link_count = 1;
1483	}
1484	set_nlink(inode, link_count);
1485
1486	inode->i_size = le64_to_cpu(fe->informationLength);
1487	iinfo->i_lenExtents = inode->i_size;
1488
1489	if (iinfo->i_efe == 0) {
1490		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1491			(inode->i_sb->s_blocksize_bits - 9);
1492
1493		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1494		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1495		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
 
 
 
 
 
 
1496
1497		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1498		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1499		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1500		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1501		iinfo->i_streamdir = 0;
1502		iinfo->i_lenStreams = 0;
1503	} else {
1504		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1505		    (inode->i_sb->s_blocksize_bits - 9);
1506
1507		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1508		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1509		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1510		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
 
 
 
 
 
 
 
 
1511
1512		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1513		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1514		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1515		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1516
1517		/* Named streams */
1518		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1519		iinfo->i_locStreamdir =
1520			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1521		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1522		if (iinfo->i_lenStreams >= inode->i_size)
1523			iinfo->i_lenStreams -= inode->i_size;
1524		else
1525			iinfo->i_lenStreams = 0;
1526	}
1527	inode->i_generation = iinfo->i_unique;
1528
1529	/*
1530	 * Sanity check length of allocation descriptors and extended attrs to
1531	 * avoid integer overflows
1532	 */
1533	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1534		goto out;
1535	/* Now do exact checks */
1536	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1537		goto out;
1538	/* Sanity checks for files in ICB so that we don't get confused later */
1539	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1540		/*
1541		 * For file in ICB data is stored in allocation descriptor
1542		 * so sizes should match
1543		 */
1544		if (iinfo->i_lenAlloc != inode->i_size)
1545			goto out;
1546		/* File in ICB has to fit in there... */
1547		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1548			goto out;
1549	}
1550
1551	switch (fe->icbTag.fileType) {
1552	case ICBTAG_FILE_TYPE_DIRECTORY:
1553		inode->i_op = &udf_dir_inode_operations;
1554		inode->i_fop = &udf_dir_operations;
1555		inode->i_mode |= S_IFDIR;
1556		inc_nlink(inode);
1557		break;
1558	case ICBTAG_FILE_TYPE_REALTIME:
1559	case ICBTAG_FILE_TYPE_REGULAR:
1560	case ICBTAG_FILE_TYPE_UNDEF:
1561	case ICBTAG_FILE_TYPE_VAT20:
1562		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1563			inode->i_data.a_ops = &udf_adinicb_aops;
1564		else
1565			inode->i_data.a_ops = &udf_aops;
1566		inode->i_op = &udf_file_inode_operations;
1567		inode->i_fop = &udf_file_operations;
1568		inode->i_mode |= S_IFREG;
1569		break;
1570	case ICBTAG_FILE_TYPE_BLOCK:
1571		inode->i_mode |= S_IFBLK;
1572		break;
1573	case ICBTAG_FILE_TYPE_CHAR:
1574		inode->i_mode |= S_IFCHR;
1575		break;
1576	case ICBTAG_FILE_TYPE_FIFO:
1577		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1578		break;
1579	case ICBTAG_FILE_TYPE_SOCKET:
1580		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1581		break;
1582	case ICBTAG_FILE_TYPE_SYMLINK:
1583		inode->i_data.a_ops = &udf_symlink_aops;
1584		inode->i_op = &udf_symlink_inode_operations;
1585		inode_nohighmem(inode);
1586		inode->i_mode = S_IFLNK | 0777;
1587		break;
1588	case ICBTAG_FILE_TYPE_MAIN:
1589		udf_debug("METADATA FILE-----\n");
1590		break;
1591	case ICBTAG_FILE_TYPE_MIRROR:
1592		udf_debug("METADATA MIRROR FILE-----\n");
1593		break;
1594	case ICBTAG_FILE_TYPE_BITMAP:
1595		udf_debug("METADATA BITMAP FILE-----\n");
1596		break;
1597	default:
1598		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1599			inode->i_ino, fe->icbTag.fileType);
1600		goto out;
 
1601	}
1602	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1603		struct deviceSpec *dsea =
1604			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1605		if (dsea) {
1606			init_special_inode(inode, inode->i_mode,
1607				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1608				      le32_to_cpu(dsea->minorDeviceIdent)));
1609			/* Developer ID ??? */
1610		} else
1611			goto out;
1612	}
1613	ret = 0;
1614out:
1615	brelse(bh);
1616	return ret;
1617}
1618
1619static int udf_alloc_i_data(struct inode *inode, size_t size)
1620{
1621	struct udf_inode_info *iinfo = UDF_I(inode);
1622	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1623	if (!iinfo->i_data)
 
 
 
1624		return -ENOMEM;
 
 
1625	return 0;
1626}
1627
1628static umode_t udf_convert_permissions(struct fileEntry *fe)
1629{
1630	umode_t mode;
1631	uint32_t permissions;
1632	uint32_t flags;
1633
1634	permissions = le32_to_cpu(fe->permissions);
1635	flags = le16_to_cpu(fe->icbTag.flags);
1636
1637	mode =	((permissions) & 0007) |
1638		((permissions >> 2) & 0070) |
1639		((permissions >> 4) & 0700) |
1640		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1641		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1642		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1643
1644	return mode;
1645}
1646
1647void udf_update_extra_perms(struct inode *inode, umode_t mode)
1648{
1649	struct udf_inode_info *iinfo = UDF_I(inode);
1650
1651	/*
1652	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1653	 * In Unix, delete permission tracks write
1654	 */
1655	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1656	if (mode & 0200)
1657		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1658	if (mode & 0020)
1659		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1660	if (mode & 0002)
1661		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1662}
1663
1664int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1665{
1666	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1667}
1668
1669static int udf_sync_inode(struct inode *inode)
1670{
1671	return udf_update_inode(inode, 1);
1672}
1673
1674static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1675{
1676	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1677	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1678	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1679		iinfo->i_crtime = time;
1680}
1681
1682static int udf_update_inode(struct inode *inode, int do_sync)
1683{
1684	struct buffer_head *bh = NULL;
1685	struct fileEntry *fe;
1686	struct extendedFileEntry *efe;
1687	uint64_t lb_recorded;
1688	uint32_t udfperms;
1689	uint16_t icbflags;
1690	uint16_t crclen;
1691	int err = 0;
1692	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1693	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1694	struct udf_inode_info *iinfo = UDF_I(inode);
1695
1696	bh = udf_tgetblk(inode->i_sb,
1697			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1698	if (!bh) {
1699		udf_debug("getblk failure\n");
1700		return -EIO;
1701	}
1702
1703	lock_buffer(bh);
1704	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1705	fe = (struct fileEntry *)bh->b_data;
1706	efe = (struct extendedFileEntry *)bh->b_data;
1707
1708	if (iinfo->i_use) {
1709		struct unallocSpaceEntry *use =
1710			(struct unallocSpaceEntry *)bh->b_data;
1711
1712		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1713		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1714		       iinfo->i_data, inode->i_sb->s_blocksize -
1715					sizeof(struct unallocSpaceEntry));
1716		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1717		crclen = sizeof(struct unallocSpaceEntry);
 
 
 
 
 
 
 
 
1718
1719		goto finish;
1720	}
1721
1722	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1723		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1724	else
1725		fe->uid = cpu_to_le32(i_uid_read(inode));
1726
1727	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1728		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1729	else
1730		fe->gid = cpu_to_le32(i_gid_read(inode));
1731
1732	udfperms = ((inode->i_mode & 0007)) |
1733		   ((inode->i_mode & 0070) << 2) |
1734		   ((inode->i_mode & 0700) << 4);
1735
1736	udfperms |= iinfo->i_extraPerms;
 
 
 
1737	fe->permissions = cpu_to_le32(udfperms);
1738
1739	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1740		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1741	else
1742		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1743
1744	fe->informationLength = cpu_to_le64(inode->i_size);
1745
1746	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1747		struct regid *eid;
1748		struct deviceSpec *dsea =
1749			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1750		if (!dsea) {
1751			dsea = (struct deviceSpec *)
1752				udf_add_extendedattr(inode,
1753						     sizeof(struct deviceSpec) +
1754						     sizeof(struct regid), 12, 0x3);
1755			dsea->attrType = cpu_to_le32(12);
1756			dsea->attrSubtype = 1;
1757			dsea->attrLength = cpu_to_le32(
1758						sizeof(struct deviceSpec) +
1759						sizeof(struct regid));
1760			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1761		}
1762		eid = (struct regid *)dsea->impUse;
1763		memset(eid, 0, sizeof(*eid));
1764		strcpy(eid->ident, UDF_ID_DEVELOPER);
1765		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1766		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1767		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1768		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1769	}
1770
1771	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1772		lb_recorded = 0; /* No extents => no blocks! */
1773	else
1774		lb_recorded =
1775			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1776			(blocksize_bits - 9);
1777
1778	if (iinfo->i_efe == 0) {
1779		memcpy(bh->b_data + sizeof(struct fileEntry),
1780		       iinfo->i_data,
1781		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1782		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1783
1784		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1785		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1786		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1787		memset(&(fe->impIdent), 0, sizeof(struct regid));
1788		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1789		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1790		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1791		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1792		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1793		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1794		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1795		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1796		crclen = sizeof(struct fileEntry);
1797	} else {
1798		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1799		       iinfo->i_data,
1800		       inode->i_sb->s_blocksize -
1801					sizeof(struct extendedFileEntry));
1802		efe->objectSize =
1803			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1804		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1805
1806		if (iinfo->i_streamdir) {
1807			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1808
1809			icb_lad->extLocation =
1810				cpu_to_lelb(iinfo->i_locStreamdir);
1811			icb_lad->extLength =
1812				cpu_to_le32(inode->i_sb->s_blocksize);
1813		}
1814
1815		udf_adjust_time(iinfo, inode->i_atime);
1816		udf_adjust_time(iinfo, inode->i_mtime);
1817		udf_adjust_time(iinfo, inode->i_ctime);
 
 
1818
1819		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1820		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1821		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1822		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1823
1824		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1825		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1826		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1827		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1828		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1829		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1830		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1831		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1832		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1833		crclen = sizeof(struct extendedFileEntry);
1834	}
1835
1836finish:
1837	if (iinfo->i_strat4096) {
1838		fe->icbTag.strategyType = cpu_to_le16(4096);
1839		fe->icbTag.strategyParameter = cpu_to_le16(1);
1840		fe->icbTag.numEntries = cpu_to_le16(2);
1841	} else {
1842		fe->icbTag.strategyType = cpu_to_le16(4);
1843		fe->icbTag.numEntries = cpu_to_le16(1);
1844	}
1845
1846	if (iinfo->i_use)
1847		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1848	else if (S_ISDIR(inode->i_mode))
1849		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1850	else if (S_ISREG(inode->i_mode))
1851		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1852	else if (S_ISLNK(inode->i_mode))
1853		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1854	else if (S_ISBLK(inode->i_mode))
1855		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1856	else if (S_ISCHR(inode->i_mode))
1857		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1858	else if (S_ISFIFO(inode->i_mode))
1859		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1860	else if (S_ISSOCK(inode->i_mode))
1861		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1862
1863	icbflags =	iinfo->i_alloc_type |
1864			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1865			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1866			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1867			(le16_to_cpu(fe->icbTag.flags) &
1868				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1869				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1870
1871	fe->icbTag.flags = cpu_to_le16(icbflags);
1872	if (sbi->s_udfrev >= 0x0200)
1873		fe->descTag.descVersion = cpu_to_le16(3);
1874	else
1875		fe->descTag.descVersion = cpu_to_le16(2);
1876	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1877	fe->descTag.tagLocation = cpu_to_le32(
1878					iinfo->i_location.logicalBlockNum);
1879	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1880	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1881	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1882						  crclen));
1883	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1884
 
1885	set_buffer_uptodate(bh);
1886	unlock_buffer(bh);
1887
1888	/* write the data blocks */
1889	mark_buffer_dirty(bh);
1890	if (do_sync) {
1891		sync_dirty_buffer(bh);
1892		if (buffer_write_io_error(bh)) {
1893			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1894				 inode->i_ino);
1895			err = -EIO;
1896		}
1897	}
1898	brelse(bh);
1899
1900	return err;
1901}
1902
1903struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1904			 bool hidden_inode)
1905{
1906	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1907	struct inode *inode = iget_locked(sb, block);
1908	int err;
1909
1910	if (!inode)
1911		return ERR_PTR(-ENOMEM);
1912
1913	if (!(inode->i_state & I_NEW))
1914		return inode;
 
 
 
1915
1916	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1917	err = udf_read_inode(inode, hidden_inode);
1918	if (err < 0) {
1919		iget_failed(inode);
1920		return ERR_PTR(err);
 
 
 
 
1921	}
1922	unlock_new_inode(inode);
1923
1924	return inode;
 
 
 
 
1925}
1926
1927int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1928			    struct extent_position *epos)
1929{
1930	struct super_block *sb = inode->i_sb;
1931	struct buffer_head *bh;
 
1932	struct allocExtDesc *aed;
1933	struct extent_position nepos;
1934	struct kernel_lb_addr neloc;
1935	int ver, adsize;
1936
1937	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938		adsize = sizeof(struct short_ad);
1939	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940		adsize = sizeof(struct long_ad);
1941	else
1942		return -EIO;
1943
1944	neloc.logicalBlockNum = block;
1945	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1946
1947	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1948	if (!bh)
1949		return -EIO;
1950	lock_buffer(bh);
1951	memset(bh->b_data, 0x00, sb->s_blocksize);
1952	set_buffer_uptodate(bh);
1953	unlock_buffer(bh);
1954	mark_buffer_dirty_inode(bh, inode);
1955
1956	aed = (struct allocExtDesc *)(bh->b_data);
1957	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1958		aed->previousAllocExtLocation =
1959				cpu_to_le32(epos->block.logicalBlockNum);
1960	}
1961	aed->lengthAllocDescs = cpu_to_le32(0);
1962	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1963		ver = 3;
1964	else
1965		ver = 2;
1966	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1967		    sizeof(struct tag));
1968
1969	nepos.block = neloc;
1970	nepos.offset = sizeof(struct allocExtDesc);
1971	nepos.bh = bh;
1972
1973	/*
1974	 * Do we have to copy current last extent to make space for indirect
1975	 * one?
1976	 */
1977	if (epos->offset + adsize > sb->s_blocksize) {
1978		struct kernel_lb_addr cp_loc;
1979		uint32_t cp_len;
1980		int cp_type;
1981
1982		epos->offset -= adsize;
1983		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1984		cp_len |= ((uint32_t)cp_type) << 30;
1985
1986		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1987		udf_write_aext(inode, epos, &nepos.block,
1988			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1989	} else {
1990		__udf_add_aext(inode, epos, &nepos.block,
1991			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1992	}
1993
1994	brelse(epos->bh);
1995	*epos = nepos;
1996
1997	return 0;
1998}
1999
2000/*
2001 * Append extent at the given position - should be the first free one in inode
2002 * / indirect extent. This function assumes there is enough space in the inode
2003 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2004 */
2005int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2006		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007{
2008	struct udf_inode_info *iinfo = UDF_I(inode);
2009	struct allocExtDesc *aed;
2010	int adsize;
2011
2012	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013		adsize = sizeof(struct short_ad);
2014	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015		adsize = sizeof(struct long_ad);
2016	else
2017		return -EIO;
2018
2019	if (!epos->bh) {
2020		WARN_ON(iinfo->i_lenAlloc !=
2021			epos->offset - udf_file_entry_alloc_offset(inode));
2022	} else {
2023		aed = (struct allocExtDesc *)epos->bh->b_data;
2024		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2025			epos->offset - sizeof(struct allocExtDesc));
2026		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2027	}
2028
2029	udf_write_aext(inode, epos, eloc, elen, inc);
2030
2031	if (!epos->bh) {
2032		iinfo->i_lenAlloc += adsize;
2033		mark_inode_dirty(inode);
2034	} else {
2035		aed = (struct allocExtDesc *)epos->bh->b_data;
2036		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2037		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2038				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2039			udf_update_tag(epos->bh->b_data,
2040					epos->offset + (inc ? 0 : adsize));
2041		else
2042			udf_update_tag(epos->bh->b_data,
2043					sizeof(struct allocExtDesc));
2044		mark_buffer_dirty_inode(epos->bh, inode);
2045	}
2046
2047	return 0;
2048}
2049
2050/*
2051 * Append extent at given position - should be the first free one in inode
2052 * / indirect extent. Takes care of allocating and linking indirect blocks.
2053 */
2054int udf_add_aext(struct inode *inode, struct extent_position *epos,
2055		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2056{
2057	int adsize;
2058	struct super_block *sb = inode->i_sb;
2059
2060	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2061		adsize = sizeof(struct short_ad);
2062	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2063		adsize = sizeof(struct long_ad);
2064	else
2065		return -EIO;
2066
2067	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2068		int err;
2069		udf_pblk_t new_block;
2070
2071		new_block = udf_new_block(sb, NULL,
2072					  epos->block.partitionReferenceNum,
2073					  epos->block.logicalBlockNum, &err);
2074		if (!new_block)
2075			return -ENOSPC;
2076
2077		err = udf_setup_indirect_aext(inode, new_block, epos);
2078		if (err)
2079			return err;
2080	}
2081
2082	return __udf_add_aext(inode, epos, eloc, elen, inc);
2083}
2084
2085void udf_write_aext(struct inode *inode, struct extent_position *epos,
2086		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2087{
2088	int adsize;
2089	uint8_t *ptr;
2090	struct short_ad *sad;
2091	struct long_ad *lad;
2092	struct udf_inode_info *iinfo = UDF_I(inode);
2093
2094	if (!epos->bh)
2095		ptr = iinfo->i_data + epos->offset -
2096			udf_file_entry_alloc_offset(inode) +
2097			iinfo->i_lenEAttr;
2098	else
2099		ptr = epos->bh->b_data + epos->offset;
2100
2101	switch (iinfo->i_alloc_type) {
2102	case ICBTAG_FLAG_AD_SHORT:
2103		sad = (struct short_ad *)ptr;
2104		sad->extLength = cpu_to_le32(elen);
2105		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2106		adsize = sizeof(struct short_ad);
2107		break;
2108	case ICBTAG_FLAG_AD_LONG:
2109		lad = (struct long_ad *)ptr;
2110		lad->extLength = cpu_to_le32(elen);
2111		lad->extLocation = cpu_to_lelb(*eloc);
2112		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2113		adsize = sizeof(struct long_ad);
2114		break;
2115	default:
2116		return;
2117	}
2118
2119	if (epos->bh) {
2120		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2121		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2122			struct allocExtDesc *aed =
2123				(struct allocExtDesc *)epos->bh->b_data;
2124			udf_update_tag(epos->bh->b_data,
2125				       le32_to_cpu(aed->lengthAllocDescs) +
2126				       sizeof(struct allocExtDesc));
2127		}
2128		mark_buffer_dirty_inode(epos->bh, inode);
2129	} else {
2130		mark_inode_dirty(inode);
2131	}
2132
2133	if (inc)
2134		epos->offset += adsize;
2135}
2136
2137/*
2138 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2139 * someone does some weird stuff.
2140 */
2141#define UDF_MAX_INDIR_EXTS 16
2142
2143int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2144		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2145{
2146	int8_t etype;
2147	unsigned int indirections = 0;
2148
2149	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2150	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2151		udf_pblk_t block;
2152
2153		if (++indirections > UDF_MAX_INDIR_EXTS) {
2154			udf_err(inode->i_sb,
2155				"too many indirect extents in inode %lu\n",
2156				inode->i_ino);
2157			return -1;
2158		}
2159
2160		epos->block = *eloc;
2161		epos->offset = sizeof(struct allocExtDesc);
2162		brelse(epos->bh);
2163		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2164		epos->bh = udf_tread(inode->i_sb, block);
2165		if (!epos->bh) {
2166			udf_debug("reading block %u failed!\n", block);
2167			return -1;
2168		}
2169	}
2170
2171	return etype;
2172}
2173
2174int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2175			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2176{
2177	int alen;
2178	int8_t etype;
2179	uint8_t *ptr;
2180	struct short_ad *sad;
2181	struct long_ad *lad;
2182	struct udf_inode_info *iinfo = UDF_I(inode);
2183
2184	if (!epos->bh) {
2185		if (!epos->offset)
2186			epos->offset = udf_file_entry_alloc_offset(inode);
2187		ptr = iinfo->i_data + epos->offset -
2188			udf_file_entry_alloc_offset(inode) +
2189			iinfo->i_lenEAttr;
2190		alen = udf_file_entry_alloc_offset(inode) +
2191							iinfo->i_lenAlloc;
2192	} else {
2193		if (!epos->offset)
2194			epos->offset = sizeof(struct allocExtDesc);
2195		ptr = epos->bh->b_data + epos->offset;
2196		alen = sizeof(struct allocExtDesc) +
2197			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2198							lengthAllocDescs);
2199	}
2200
2201	switch (iinfo->i_alloc_type) {
2202	case ICBTAG_FLAG_AD_SHORT:
2203		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2204		if (!sad)
2205			return -1;
2206		etype = le32_to_cpu(sad->extLength) >> 30;
2207		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2208		eloc->partitionReferenceNum =
2209				iinfo->i_location.partitionReferenceNum;
2210		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2211		break;
2212	case ICBTAG_FLAG_AD_LONG:
2213		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2214		if (!lad)
2215			return -1;
2216		etype = le32_to_cpu(lad->extLength) >> 30;
2217		*eloc = lelb_to_cpu(lad->extLocation);
2218		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2219		break;
2220	default:
2221		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2222		return -1;
2223	}
2224
2225	return etype;
2226}
2227
2228static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2229			      struct kernel_lb_addr neloc, uint32_t nelen)
2230{
2231	struct kernel_lb_addr oeloc;
2232	uint32_t oelen;
2233	int8_t etype;
2234
2235	if (epos.bh)
2236		get_bh(epos.bh);
2237
2238	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2239		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2240		neloc = oeloc;
2241		nelen = (etype << 30) | oelen;
2242	}
2243	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2244	brelse(epos.bh);
2245
2246	return (nelen >> 30);
2247}
2248
2249int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
 
2250{
2251	struct extent_position oepos;
2252	int adsize;
2253	int8_t etype;
2254	struct allocExtDesc *aed;
2255	struct udf_inode_info *iinfo;
2256	struct kernel_lb_addr eloc;
2257	uint32_t elen;
2258
2259	if (epos.bh) {
2260		get_bh(epos.bh);
2261		get_bh(epos.bh);
2262	}
2263
2264	iinfo = UDF_I(inode);
2265	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2266		adsize = sizeof(struct short_ad);
2267	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2268		adsize = sizeof(struct long_ad);
2269	else
2270		adsize = 0;
2271
2272	oepos = epos;
2273	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2274		return -1;
2275
2276	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2277		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2278		if (oepos.bh != epos.bh) {
2279			oepos.block = epos.block;
2280			brelse(oepos.bh);
2281			get_bh(epos.bh);
2282			oepos.bh = epos.bh;
2283			oepos.offset = epos.offset - adsize;
2284		}
2285	}
2286	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2287	elen = 0;
2288
2289	if (epos.bh != oepos.bh) {
2290		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2291		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2292		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2293		if (!oepos.bh) {
2294			iinfo->i_lenAlloc -= (adsize * 2);
2295			mark_inode_dirty(inode);
2296		} else {
2297			aed = (struct allocExtDesc *)oepos.bh->b_data;
2298			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2299			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2300			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2301				udf_update_tag(oepos.bh->b_data,
2302						oepos.offset - (2 * adsize));
2303			else
2304				udf_update_tag(oepos.bh->b_data,
2305						sizeof(struct allocExtDesc));
2306			mark_buffer_dirty_inode(oepos.bh, inode);
2307		}
2308	} else {
2309		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2310		if (!oepos.bh) {
2311			iinfo->i_lenAlloc -= adsize;
2312			mark_inode_dirty(inode);
2313		} else {
2314			aed = (struct allocExtDesc *)oepos.bh->b_data;
2315			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2316			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2317			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2318				udf_update_tag(oepos.bh->b_data,
2319						epos.offset - adsize);
2320			else
2321				udf_update_tag(oepos.bh->b_data,
2322						sizeof(struct allocExtDesc));
2323			mark_buffer_dirty_inode(oepos.bh, inode);
2324		}
2325	}
2326
2327	brelse(epos.bh);
2328	brelse(oepos.bh);
2329
2330	return (elen >> 30);
2331}
2332
2333int8_t inode_bmap(struct inode *inode, sector_t block,
2334		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2335		  uint32_t *elen, sector_t *offset)
2336{
2337	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2338	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
 
2339	int8_t etype;
2340	struct udf_inode_info *iinfo;
2341
2342	iinfo = UDF_I(inode);
2343	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2344		pos->offset = 0;
2345		pos->block = iinfo->i_location;
2346		pos->bh = NULL;
2347	}
2348	*elen = 0;
2349	do {
2350		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2351		if (etype == -1) {
2352			*offset = (bcount - lbcount) >> blocksize_bits;
2353			iinfo->i_lenExtents = lbcount;
2354			return -1;
2355		}
2356		lbcount += *elen;
2357	} while (lbcount <= bcount);
2358	/* update extent cache */
2359	udf_update_extent_cache(inode, lbcount - *elen, pos);
2360	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2361
2362	return etype;
2363}
2364
2365udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2366{
2367	struct kernel_lb_addr eloc;
2368	uint32_t elen;
2369	sector_t offset;
2370	struct extent_position epos = {};
2371	udf_pblk_t ret;
2372
2373	down_read(&UDF_I(inode)->i_data_sem);
2374
2375	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2376						(EXT_RECORDED_ALLOCATED >> 30))
2377		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2378	else
2379		ret = 0;
2380
2381	up_read(&UDF_I(inode)->i_data_sem);
2382	brelse(epos.bh);
2383
2384	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2385		return udf_fixed_to_variable(ret);
2386	else
2387		return ret;
2388}
v3.15
   1/*
   2 * inode.c
   3 *
   4 * PURPOSE
   5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *  This file is distributed under the terms of the GNU General Public
   9 *  License (GPL). Copies of the GPL can be obtained from:
  10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *  Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1998 Dave Boynton
  14 *  (C) 1998-2004 Ben Fennema
  15 *  (C) 1999-2000 Stelias Computing Inc
  16 *
  17 * HISTORY
  18 *
  19 *  10/04/98 dgb  Added rudimentary directory functions
  20 *  10/07/98      Fully working udf_block_map! It works!
  21 *  11/25/98      bmap altered to better support extents
  22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23 *                and udf_read_inode
  24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25 *                block boundaries (which is not actually allowed)
  26 *  12/20/98      added support for strategy 4096
  27 *  03/07/99      rewrote udf_block_map (again)
  28 *                New funcs, inode_bmap, udf_next_aext
  29 *  04/19/99      Support for writing device EA's for major/minor #
  30 */
  31
  32#include "udfdecl.h"
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/pagemap.h>
  36#include <linux/buffer_head.h>
  37#include <linux/writeback.h>
  38#include <linux/slab.h>
  39#include <linux/crc-itu-t.h>
  40#include <linux/mpage.h>
  41#include <linux/aio.h>
 
  42
  43#include "udf_i.h"
  44#include "udf_sb.h"
  45
  46MODULE_AUTHOR("Ben Fennema");
  47MODULE_DESCRIPTION("Universal Disk Format Filesystem");
  48MODULE_LICENSE("GPL");
 
 
  49
  50#define EXTENT_MERGE_SIZE 5
 
  51
  52static umode_t udf_convert_permissions(struct fileEntry *);
  53static int udf_update_inode(struct inode *, int);
  54static void udf_fill_inode(struct inode *, struct buffer_head *);
  55static int udf_sync_inode(struct inode *inode);
  56static int udf_alloc_i_data(struct inode *inode, size_t size);
  57static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
  58static int8_t udf_insert_aext(struct inode *, struct extent_position,
  59			      struct kernel_lb_addr, uint32_t);
  60static void udf_split_extents(struct inode *, int *, int, int,
  61			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
  62static void udf_prealloc_extents(struct inode *, int, int,
  63				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
  64static void udf_merge_extents(struct inode *,
  65			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
  66static void udf_update_extents(struct inode *,
  67			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
  68			       struct extent_position *);
  69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
  70
  71static void __udf_clear_extent_cache(struct inode *inode)
  72{
  73	struct udf_inode_info *iinfo = UDF_I(inode);
  74
  75	if (iinfo->cached_extent.lstart != -1) {
  76		brelse(iinfo->cached_extent.epos.bh);
  77		iinfo->cached_extent.lstart = -1;
  78	}
  79}
  80
  81/* Invalidate extent cache */
  82static void udf_clear_extent_cache(struct inode *inode)
  83{
  84	struct udf_inode_info *iinfo = UDF_I(inode);
  85
  86	spin_lock(&iinfo->i_extent_cache_lock);
  87	__udf_clear_extent_cache(inode);
  88	spin_unlock(&iinfo->i_extent_cache_lock);
  89}
  90
  91/* Return contents of extent cache */
  92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  93				 loff_t *lbcount, struct extent_position *pos)
  94{
  95	struct udf_inode_info *iinfo = UDF_I(inode);
  96	int ret = 0;
  97
  98	spin_lock(&iinfo->i_extent_cache_lock);
  99	if ((iinfo->cached_extent.lstart <= bcount) &&
 100	    (iinfo->cached_extent.lstart != -1)) {
 101		/* Cache hit */
 102		*lbcount = iinfo->cached_extent.lstart;
 103		memcpy(pos, &iinfo->cached_extent.epos,
 104		       sizeof(struct extent_position));
 105		if (pos->bh)
 106			get_bh(pos->bh);
 107		ret = 1;
 108	}
 109	spin_unlock(&iinfo->i_extent_cache_lock);
 110	return ret;
 111}
 112
 113/* Add extent to extent cache */
 114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 115				    struct extent_position *pos, int next_epos)
 116{
 117	struct udf_inode_info *iinfo = UDF_I(inode);
 118
 119	spin_lock(&iinfo->i_extent_cache_lock);
 120	/* Invalidate previously cached extent */
 121	__udf_clear_extent_cache(inode);
 122	if (pos->bh)
 123		get_bh(pos->bh);
 124	memcpy(&iinfo->cached_extent.epos, pos,
 125	       sizeof(struct extent_position));
 126	iinfo->cached_extent.lstart = estart;
 127	if (next_epos)
 128		switch (iinfo->i_alloc_type) {
 129		case ICBTAG_FLAG_AD_SHORT:
 130			iinfo->cached_extent.epos.offset -=
 131			sizeof(struct short_ad);
 132			break;
 133		case ICBTAG_FLAG_AD_LONG:
 134			iinfo->cached_extent.epos.offset -=
 135			sizeof(struct long_ad);
 136		}
 137	spin_unlock(&iinfo->i_extent_cache_lock);
 138}
 139
 140void udf_evict_inode(struct inode *inode)
 141{
 142	struct udf_inode_info *iinfo = UDF_I(inode);
 143	int want_delete = 0;
 144
 145	if (!inode->i_nlink && !is_bad_inode(inode)) {
 146		want_delete = 1;
 147		udf_setsize(inode, 0);
 148		udf_update_inode(inode, IS_SYNC(inode));
 
 
 
 
 
 
 
 
 
 
 149	}
 150	truncate_inode_pages_final(&inode->i_data);
 151	invalidate_inode_buffers(inode);
 152	clear_inode(inode);
 153	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 154	    inode->i_size != iinfo->i_lenExtents) {
 155		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 156			 inode->i_ino, inode->i_mode,
 157			 (unsigned long long)inode->i_size,
 158			 (unsigned long long)iinfo->i_lenExtents);
 159	}
 160	kfree(iinfo->i_ext.i_data);
 161	iinfo->i_ext.i_data = NULL;
 162	udf_clear_extent_cache(inode);
 163	if (want_delete) {
 164		udf_free_inode(inode);
 165	}
 166}
 167
 168static void udf_write_failed(struct address_space *mapping, loff_t to)
 169{
 170	struct inode *inode = mapping->host;
 171	struct udf_inode_info *iinfo = UDF_I(inode);
 172	loff_t isize = inode->i_size;
 173
 174	if (to > isize) {
 175		truncate_pagecache(inode, isize);
 176		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 177			down_write(&iinfo->i_data_sem);
 178			udf_clear_extent_cache(inode);
 179			udf_truncate_extents(inode);
 180			up_write(&iinfo->i_data_sem);
 181		}
 182	}
 183}
 184
 185static int udf_writepage(struct page *page, struct writeback_control *wbc)
 186{
 187	return block_write_full_page(page, udf_get_block, wbc);
 188}
 189
 190static int udf_writepages(struct address_space *mapping,
 191			struct writeback_control *wbc)
 192{
 193	return mpage_writepages(mapping, wbc, udf_get_block);
 194}
 195
 196static int udf_readpage(struct file *file, struct page *page)
 197{
 198	return mpage_readpage(page, udf_get_block);
 199}
 200
 201static int udf_readpages(struct file *file, struct address_space *mapping,
 202			struct list_head *pages, unsigned nr_pages)
 203{
 204	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
 205}
 206
 207static int udf_write_begin(struct file *file, struct address_space *mapping,
 208			loff_t pos, unsigned len, unsigned flags,
 209			struct page **pagep, void **fsdata)
 210{
 211	int ret;
 212
 213	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
 214	if (unlikely(ret))
 215		udf_write_failed(mapping, pos + len);
 216	return ret;
 217}
 218
 219static ssize_t udf_direct_IO(int rw, struct kiocb *iocb,
 220			     const struct iovec *iov,
 221			     loff_t offset, unsigned long nr_segs)
 222{
 223	struct file *file = iocb->ki_filp;
 224	struct address_space *mapping = file->f_mapping;
 225	struct inode *inode = mapping->host;
 
 226	ssize_t ret;
 227
 228	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
 229				  udf_get_block);
 230	if (unlikely(ret < 0 && (rw & WRITE)))
 231		udf_write_failed(mapping, offset + iov_length(iov, nr_segs));
 232	return ret;
 233}
 234
 235static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 236{
 237	return generic_block_bmap(mapping, block, udf_get_block);
 238}
 239
 240const struct address_space_operations udf_aops = {
 
 241	.readpage	= udf_readpage,
 242	.readpages	= udf_readpages,
 243	.writepage	= udf_writepage,
 244	.writepages	= udf_writepages,
 245	.write_begin	= udf_write_begin,
 246	.write_end	= generic_write_end,
 247	.direct_IO	= udf_direct_IO,
 248	.bmap		= udf_bmap,
 249};
 250
 251/*
 252 * Expand file stored in ICB to a normal one-block-file
 253 *
 254 * This function requires i_data_sem for writing and releases it.
 255 * This function requires i_mutex held
 256 */
 257int udf_expand_file_adinicb(struct inode *inode)
 258{
 259	struct page *page;
 260	char *kaddr;
 261	struct udf_inode_info *iinfo = UDF_I(inode);
 262	int err;
 263	struct writeback_control udf_wbc = {
 264		.sync_mode = WB_SYNC_NONE,
 265		.nr_to_write = 1,
 266	};
 267
 268	WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex));
 269	if (!iinfo->i_lenAlloc) {
 270		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 271			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 272		else
 273			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 274		/* from now on we have normal address_space methods */
 275		inode->i_data.a_ops = &udf_aops;
 276		up_write(&iinfo->i_data_sem);
 277		mark_inode_dirty(inode);
 278		return 0;
 279	}
 280	/*
 281	 * Release i_data_sem so that we can lock a page - page lock ranks
 282	 * above i_data_sem. i_mutex still protects us against file changes.
 283	 */
 284	up_write(&iinfo->i_data_sem);
 285
 286	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 287	if (!page)
 288		return -ENOMEM;
 289
 290	if (!PageUptodate(page)) {
 291		kaddr = kmap(page);
 292		memset(kaddr + iinfo->i_lenAlloc, 0x00,
 293		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
 294		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
 295			iinfo->i_lenAlloc);
 296		flush_dcache_page(page);
 297		SetPageUptodate(page);
 298		kunmap(page);
 299	}
 300	down_write(&iinfo->i_data_sem);
 301	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
 302	       iinfo->i_lenAlloc);
 303	iinfo->i_lenAlloc = 0;
 304	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 305		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 306	else
 307		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 308	/* from now on we have normal address_space methods */
 309	inode->i_data.a_ops = &udf_aops;
 310	up_write(&iinfo->i_data_sem);
 311	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
 312	if (err) {
 313		/* Restore everything back so that we don't lose data... */
 314		lock_page(page);
 315		kaddr = kmap(page);
 316		down_write(&iinfo->i_data_sem);
 317		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
 318		       inode->i_size);
 319		kunmap(page);
 320		unlock_page(page);
 321		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 322		inode->i_data.a_ops = &udf_adinicb_aops;
 323		up_write(&iinfo->i_data_sem);
 324	}
 325	page_cache_release(page);
 326	mark_inode_dirty(inode);
 327
 328	return err;
 329}
 330
 331struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
 332					   int *err)
 333{
 334	int newblock;
 335	struct buffer_head *dbh = NULL;
 336	struct kernel_lb_addr eloc;
 337	uint8_t alloctype;
 338	struct extent_position epos;
 339
 340	struct udf_fileident_bh sfibh, dfibh;
 341	loff_t f_pos = udf_ext0_offset(inode);
 342	int size = udf_ext0_offset(inode) + inode->i_size;
 343	struct fileIdentDesc cfi, *sfi, *dfi;
 344	struct udf_inode_info *iinfo = UDF_I(inode);
 345
 346	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 347		alloctype = ICBTAG_FLAG_AD_SHORT;
 348	else
 349		alloctype = ICBTAG_FLAG_AD_LONG;
 350
 351	if (!inode->i_size) {
 352		iinfo->i_alloc_type = alloctype;
 353		mark_inode_dirty(inode);
 354		return NULL;
 355	}
 356
 357	/* alloc block, and copy data to it */
 358	*block = udf_new_block(inode->i_sb, inode,
 359			       iinfo->i_location.partitionReferenceNum,
 360			       iinfo->i_location.logicalBlockNum, err);
 361	if (!(*block))
 362		return NULL;
 363	newblock = udf_get_pblock(inode->i_sb, *block,
 364				  iinfo->i_location.partitionReferenceNum,
 365				0);
 366	if (!newblock)
 367		return NULL;
 368	dbh = udf_tgetblk(inode->i_sb, newblock);
 369	if (!dbh)
 370		return NULL;
 371	lock_buffer(dbh);
 372	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 373	set_buffer_uptodate(dbh);
 374	unlock_buffer(dbh);
 375	mark_buffer_dirty_inode(dbh, inode);
 376
 377	sfibh.soffset = sfibh.eoffset =
 378			f_pos & (inode->i_sb->s_blocksize - 1);
 379	sfibh.sbh = sfibh.ebh = NULL;
 380	dfibh.soffset = dfibh.eoffset = 0;
 381	dfibh.sbh = dfibh.ebh = dbh;
 382	while (f_pos < size) {
 383		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 384		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 385					 NULL, NULL, NULL);
 386		if (!sfi) {
 387			brelse(dbh);
 388			return NULL;
 389		}
 390		iinfo->i_alloc_type = alloctype;
 391		sfi->descTag.tagLocation = cpu_to_le32(*block);
 392		dfibh.soffset = dfibh.eoffset;
 393		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 394		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 395		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 396				 sfi->fileIdent +
 397					le16_to_cpu(sfi->lengthOfImpUse))) {
 398			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 399			brelse(dbh);
 400			return NULL;
 401		}
 402	}
 403	mark_buffer_dirty_inode(dbh, inode);
 404
 405	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
 406		iinfo->i_lenAlloc);
 407	iinfo->i_lenAlloc = 0;
 408	eloc.logicalBlockNum = *block;
 409	eloc.partitionReferenceNum =
 410				iinfo->i_location.partitionReferenceNum;
 411	iinfo->i_lenExtents = inode->i_size;
 412	epos.bh = NULL;
 413	epos.block = iinfo->i_location;
 414	epos.offset = udf_file_entry_alloc_offset(inode);
 415	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 416	/* UniqueID stuff */
 417
 418	brelse(epos.bh);
 419	mark_inode_dirty(inode);
 420	return dbh;
 421}
 422
 423static int udf_get_block(struct inode *inode, sector_t block,
 424			 struct buffer_head *bh_result, int create)
 425{
 426	int err, new;
 427	sector_t phys = 0;
 428	struct udf_inode_info *iinfo;
 429
 430	if (!create) {
 431		phys = udf_block_map(inode, block);
 432		if (phys)
 433			map_bh(bh_result, inode->i_sb, phys);
 434		return 0;
 435	}
 436
 437	err = -EIO;
 438	new = 0;
 439	iinfo = UDF_I(inode);
 440
 441	down_write(&iinfo->i_data_sem);
 442	if (block == iinfo->i_next_alloc_block + 1) {
 443		iinfo->i_next_alloc_block++;
 444		iinfo->i_next_alloc_goal++;
 445	}
 446
 447	udf_clear_extent_cache(inode);
 448	phys = inode_getblk(inode, block, &err, &new);
 449	if (!phys)
 450		goto abort;
 451
 452	if (new)
 453		set_buffer_new(bh_result);
 454	map_bh(bh_result, inode->i_sb, phys);
 455
 456abort:
 457	up_write(&iinfo->i_data_sem);
 458	return err;
 459}
 460
 461static struct buffer_head *udf_getblk(struct inode *inode, long block,
 462				      int create, int *err)
 463{
 464	struct buffer_head *bh;
 465	struct buffer_head dummy;
 466
 467	dummy.b_state = 0;
 468	dummy.b_blocknr = -1000;
 469	*err = udf_get_block(inode, block, &dummy, create);
 470	if (!*err && buffer_mapped(&dummy)) {
 471		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 472		if (buffer_new(&dummy)) {
 473			lock_buffer(bh);
 474			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 475			set_buffer_uptodate(bh);
 476			unlock_buffer(bh);
 477			mark_buffer_dirty_inode(bh, inode);
 478		}
 479		return bh;
 480	}
 481
 482	return NULL;
 483}
 484
 485/* Extend the file by 'blocks' blocks, return the number of extents added */
 
 
 486static int udf_do_extend_file(struct inode *inode,
 487			      struct extent_position *last_pos,
 488			      struct kernel_long_ad *last_ext,
 489			      sector_t blocks)
 490{
 491	sector_t add;
 492	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 493	struct super_block *sb = inode->i_sb;
 494	struct kernel_lb_addr prealloc_loc = {};
 495	int prealloc_len = 0;
 496	struct udf_inode_info *iinfo;
 497	int err;
 498
 499	/* The previous extent is fake and we should not extend by anything
 500	 * - there's nothing to do... */
 501	if (!blocks && fake)
 502		return 0;
 503
 504	iinfo = UDF_I(inode);
 505	/* Round the last extent up to a multiple of block size */
 506	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 507		last_ext->extLength =
 508			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 509			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 510			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 511		iinfo->i_lenExtents =
 512			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 513			~(sb->s_blocksize - 1);
 514	}
 515
 516	/* Last extent are just preallocated blocks? */
 517	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 518						EXT_NOT_RECORDED_ALLOCATED) {
 519		/* Save the extent so that we can reattach it to the end */
 520		prealloc_loc = last_ext->extLocation;
 521		prealloc_len = last_ext->extLength;
 522		/* Mark the extent as a hole */
 523		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 524			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 525		last_ext->extLocation.logicalBlockNum = 0;
 526		last_ext->extLocation.partitionReferenceNum = 0;
 527	}
 528
 529	/* Can we merge with the previous extent? */
 530	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 531					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 532		add = ((1 << 30) - sb->s_blocksize -
 533			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
 534			sb->s_blocksize_bits;
 535		if (add > blocks)
 536			add = blocks;
 537		blocks -= add;
 538		last_ext->extLength += add << sb->s_blocksize_bits;
 539	}
 540
 541	if (fake) {
 542		udf_add_aext(inode, last_pos, &last_ext->extLocation,
 543			     last_ext->extLength, 1);
 544		count++;
 545	} else
 
 
 
 546		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 547				last_ext->extLength, 1);
 548
 
 
 
 
 
 
 
 
 
 549	/* Managed to do everything necessary? */
 550	if (!blocks)
 551		goto out;
 552
 553	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 554	last_ext->extLocation.logicalBlockNum = 0;
 555	last_ext->extLocation.partitionReferenceNum = 0;
 556	add = (1 << (30-sb->s_blocksize_bits)) - 1;
 557	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 558				(add << sb->s_blocksize_bits);
 559
 560	/* Create enough extents to cover the whole hole */
 561	while (blocks > add) {
 562		blocks -= add;
 563		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 564				   last_ext->extLength, 1);
 565		if (err)
 566			return err;
 567		count++;
 568	}
 569	if (blocks) {
 570		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 571			(blocks << sb->s_blocksize_bits);
 572		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 573				   last_ext->extLength, 1);
 574		if (err)
 575			return err;
 576		count++;
 577	}
 578
 579out:
 580	/* Do we have some preallocated blocks saved? */
 581	if (prealloc_len) {
 582		err = udf_add_aext(inode, last_pos, &prealloc_loc,
 583				   prealloc_len, 1);
 584		if (err)
 585			return err;
 586		last_ext->extLocation = prealloc_loc;
 587		last_ext->extLength = prealloc_len;
 588		count++;
 589	}
 590
 591	/* last_pos should point to the last written extent... */
 592	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 593		last_pos->offset -= sizeof(struct short_ad);
 594	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 595		last_pos->offset -= sizeof(struct long_ad);
 596	else
 597		return -EIO;
 598
 599	return count;
 600}
 601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602static int udf_extend_file(struct inode *inode, loff_t newsize)
 603{
 604
 605	struct extent_position epos;
 606	struct kernel_lb_addr eloc;
 607	uint32_t elen;
 608	int8_t etype;
 609	struct super_block *sb = inode->i_sb;
 610	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 
 611	int adsize;
 612	struct udf_inode_info *iinfo = UDF_I(inode);
 613	struct kernel_long_ad extent;
 614	int err;
 
 615
 616	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 617		adsize = sizeof(struct short_ad);
 618	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 619		adsize = sizeof(struct long_ad);
 620	else
 621		BUG();
 622
 623	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 
 624
 625	/* File has extent covering the new size (could happen when extending
 626	 * inside a block)? */
 627	if (etype != -1)
 628		return 0;
 629	if (newsize & (sb->s_blocksize - 1))
 630		offset++;
 631	/* Extended file just to the boundary of the last file block? */
 632	if (offset == 0)
 633		return 0;
 634
 635	/* Truncate is extending the file by 'offset' blocks */
 636	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 637	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 638		/* File has no extents at all or has empty last
 639		 * indirect extent! Create a fake extent... */
 640		extent.extLocation.logicalBlockNum = 0;
 641		extent.extLocation.partitionReferenceNum = 0;
 642		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 643	} else {
 644		epos.offset -= adsize;
 645		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 646				      &extent.extLength, 0);
 647		extent.extLength |= etype << 30;
 648	}
 649	err = udf_do_extend_file(inode, &epos, &extent, offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 650	if (err < 0)
 651		goto out;
 652	err = 0;
 653	iinfo->i_lenExtents = newsize;
 654out:
 655	brelse(epos.bh);
 656	return err;
 657}
 658
 659static sector_t inode_getblk(struct inode *inode, sector_t block,
 660			     int *err, int *new)
 661{
 662	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 663	struct extent_position prev_epos, cur_epos, next_epos;
 664	int count = 0, startnum = 0, endnum = 0;
 665	uint32_t elen = 0, tmpelen;
 666	struct kernel_lb_addr eloc, tmpeloc;
 667	int c = 1;
 668	loff_t lbcount = 0, b_off = 0;
 669	uint32_t newblocknum, newblock;
 670	sector_t offset = 0;
 671	int8_t etype;
 672	struct udf_inode_info *iinfo = UDF_I(inode);
 673	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 674	int lastblock = 0;
 675	bool isBeyondEOF;
 676
 677	*err = 0;
 678	*new = 0;
 679	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 680	prev_epos.block = iinfo->i_location;
 681	prev_epos.bh = NULL;
 682	cur_epos = next_epos = prev_epos;
 683	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 684
 685	/* find the extent which contains the block we are looking for.
 686	   alternate between laarr[0] and laarr[1] for locations of the
 687	   current extent, and the previous extent */
 688	do {
 689		if (prev_epos.bh != cur_epos.bh) {
 690			brelse(prev_epos.bh);
 691			get_bh(cur_epos.bh);
 692			prev_epos.bh = cur_epos.bh;
 693		}
 694		if (cur_epos.bh != next_epos.bh) {
 695			brelse(cur_epos.bh);
 696			get_bh(next_epos.bh);
 697			cur_epos.bh = next_epos.bh;
 698		}
 699
 700		lbcount += elen;
 701
 702		prev_epos.block = cur_epos.block;
 703		cur_epos.block = next_epos.block;
 704
 705		prev_epos.offset = cur_epos.offset;
 706		cur_epos.offset = next_epos.offset;
 707
 708		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 709		if (etype == -1)
 710			break;
 711
 712		c = !c;
 713
 714		laarr[c].extLength = (etype << 30) | elen;
 715		laarr[c].extLocation = eloc;
 716
 717		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 718			pgoal = eloc.logicalBlockNum +
 719				((elen + inode->i_sb->s_blocksize - 1) >>
 720				 inode->i_sb->s_blocksize_bits);
 721
 722		count++;
 723	} while (lbcount + elen <= b_off);
 724
 725	b_off -= lbcount;
 726	offset = b_off >> inode->i_sb->s_blocksize_bits;
 727	/*
 728	 * Move prev_epos and cur_epos into indirect extent if we are at
 729	 * the pointer to it
 730	 */
 731	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 732	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 733
 734	/* if the extent is allocated and recorded, return the block
 735	   if the extent is not a multiple of the blocksize, round up */
 736
 737	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 738		if (elen & (inode->i_sb->s_blocksize - 1)) {
 739			elen = EXT_RECORDED_ALLOCATED |
 740				((elen + inode->i_sb->s_blocksize - 1) &
 741				 ~(inode->i_sb->s_blocksize - 1));
 742			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 743		}
 744		brelse(prev_epos.bh);
 745		brelse(cur_epos.bh);
 746		brelse(next_epos.bh);
 747		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 748		return newblock;
 749	}
 750
 751	/* Are we beyond EOF? */
 752	if (etype == -1) {
 753		int ret;
 754		isBeyondEOF = 1;
 
 755		if (count) {
 756			if (c)
 757				laarr[0] = laarr[1];
 758			startnum = 1;
 759		} else {
 760			/* Create a fake extent when there's not one */
 761			memset(&laarr[0].extLocation, 0x00,
 762				sizeof(struct kernel_lb_addr));
 763			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 764			/* Will udf_do_extend_file() create real extent from
 765			   a fake one? */
 766			startnum = (offset > 0);
 767		}
 768		/* Create extents for the hole between EOF and offset */
 769		ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
 
 770		if (ret < 0) {
 771			brelse(prev_epos.bh);
 772			brelse(cur_epos.bh);
 773			brelse(next_epos.bh);
 774			*err = ret;
 775			return 0;
 
 776		}
 777		c = 0;
 778		offset = 0;
 779		count += ret;
 780		/* We are not covered by a preallocated extent? */
 781		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 782						EXT_NOT_RECORDED_ALLOCATED) {
 783			/* Is there any real extent? - otherwise we overwrite
 784			 * the fake one... */
 785			if (count)
 786				c = !c;
 787			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 788				inode->i_sb->s_blocksize;
 789			memset(&laarr[c].extLocation, 0x00,
 790				sizeof(struct kernel_lb_addr));
 791			count++;
 792		}
 793		endnum = c + 1;
 794		lastblock = 1;
 795	} else {
 796		isBeyondEOF = 0;
 797		endnum = startnum = ((count > 2) ? 2 : count);
 798
 799		/* if the current extent is in position 0,
 800		   swap it with the previous */
 801		if (!c && count != 1) {
 802			laarr[2] = laarr[0];
 803			laarr[0] = laarr[1];
 804			laarr[1] = laarr[2];
 805			c = 1;
 806		}
 807
 808		/* if the current block is located in an extent,
 809		   read the next extent */
 810		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 811		if (etype != -1) {
 812			laarr[c + 1].extLength = (etype << 30) | elen;
 813			laarr[c + 1].extLocation = eloc;
 814			count++;
 815			startnum++;
 816			endnum++;
 817		} else
 818			lastblock = 1;
 819	}
 820
 821	/* if the current extent is not recorded but allocated, get the
 822	 * block in the extent corresponding to the requested block */
 823	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 824		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 825	else { /* otherwise, allocate a new block */
 826		if (iinfo->i_next_alloc_block == block)
 827			goal = iinfo->i_next_alloc_goal;
 828
 829		if (!goal) {
 830			if (!(goal = pgoal)) /* XXX: what was intended here? */
 831				goal = iinfo->i_location.logicalBlockNum + 1;
 832		}
 833
 834		newblocknum = udf_new_block(inode->i_sb, inode,
 835				iinfo->i_location.partitionReferenceNum,
 836				goal, err);
 837		if (!newblocknum) {
 838			brelse(prev_epos.bh);
 839			brelse(cur_epos.bh);
 840			brelse(next_epos.bh);
 841			*err = -ENOSPC;
 842			return 0;
 
 843		}
 844		if (isBeyondEOF)
 845			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 846	}
 847
 848	/* if the extent the requsted block is located in contains multiple
 849	 * blocks, split the extent into at most three extents. blocks prior
 850	 * to requested block, requested block, and blocks after requested
 851	 * block */
 852	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 853
 854#ifdef UDF_PREALLOCATE
 855	/* We preallocate blocks only for regular files. It also makes sense
 856	 * for directories but there's a problem when to drop the
 857	 * preallocation. We might use some delayed work for that but I feel
 858	 * it's overengineering for a filesystem like UDF. */
 859	if (S_ISREG(inode->i_mode))
 860		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 861#endif
 862
 863	/* merge any continuous blocks in laarr */
 864	udf_merge_extents(inode, laarr, &endnum);
 865
 866	/* write back the new extents, inserting new extents if the new number
 867	 * of extents is greater than the old number, and deleting extents if
 868	 * the new number of extents is less than the old number */
 869	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 870
 871	brelse(prev_epos.bh);
 872	brelse(cur_epos.bh);
 873	brelse(next_epos.bh);
 874
 875	newblock = udf_get_pblock(inode->i_sb, newblocknum,
 876				iinfo->i_location.partitionReferenceNum, 0);
 877	if (!newblock) {
 878		*err = -EIO;
 879		return 0;
 880	}
 881	*new = 1;
 882	iinfo->i_next_alloc_block = block;
 883	iinfo->i_next_alloc_goal = newblocknum;
 884	inode->i_ctime = current_fs_time(inode->i_sb);
 885
 886	if (IS_SYNC(inode))
 887		udf_sync_inode(inode);
 888	else
 889		mark_inode_dirty(inode);
 890
 
 
 
 891	return newblock;
 892}
 893
 894static void udf_split_extents(struct inode *inode, int *c, int offset,
 895			      int newblocknum,
 896			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
 897			      int *endnum)
 898{
 899	unsigned long blocksize = inode->i_sb->s_blocksize;
 900	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 901
 902	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 903	    (laarr[*c].extLength >> 30) ==
 904				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 905		int curr = *c;
 906		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 907			    blocksize - 1) >> blocksize_bits;
 908		int8_t etype = (laarr[curr].extLength >> 30);
 909
 910		if (blen == 1)
 911			;
 912		else if (!offset || blen == offset + 1) {
 913			laarr[curr + 2] = laarr[curr + 1];
 914			laarr[curr + 1] = laarr[curr];
 915		} else {
 916			laarr[curr + 3] = laarr[curr + 1];
 917			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 918		}
 919
 920		if (offset) {
 921			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 922				udf_free_blocks(inode->i_sb, inode,
 923						&laarr[curr].extLocation,
 924						0, offset);
 925				laarr[curr].extLength =
 926					EXT_NOT_RECORDED_NOT_ALLOCATED |
 927					(offset << blocksize_bits);
 928				laarr[curr].extLocation.logicalBlockNum = 0;
 929				laarr[curr].extLocation.
 930						partitionReferenceNum = 0;
 931			} else
 932				laarr[curr].extLength = (etype << 30) |
 933					(offset << blocksize_bits);
 934			curr++;
 935			(*c)++;
 936			(*endnum)++;
 937		}
 938
 939		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 940		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 941			laarr[curr].extLocation.partitionReferenceNum =
 942				UDF_I(inode)->i_location.partitionReferenceNum;
 943		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 944			blocksize;
 945		curr++;
 946
 947		if (blen != offset + 1) {
 948			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 949				laarr[curr].extLocation.logicalBlockNum +=
 950								offset + 1;
 951			laarr[curr].extLength = (etype << 30) |
 952				((blen - (offset + 1)) << blocksize_bits);
 953			curr++;
 954			(*endnum)++;
 955		}
 956	}
 957}
 958
 959static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 960				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
 961				 int *endnum)
 962{
 963	int start, length = 0, currlength = 0, i;
 964
 965	if (*endnum >= (c + 1)) {
 966		if (!lastblock)
 967			return;
 968		else
 969			start = c;
 970	} else {
 971		if ((laarr[c + 1].extLength >> 30) ==
 972					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 973			start = c + 1;
 974			length = currlength =
 975				(((laarr[c + 1].extLength &
 976					UDF_EXTENT_LENGTH_MASK) +
 977				inode->i_sb->s_blocksize - 1) >>
 978				inode->i_sb->s_blocksize_bits);
 979		} else
 980			start = c;
 981	}
 982
 983	for (i = start + 1; i <= *endnum; i++) {
 984		if (i == *endnum) {
 985			if (lastblock)
 986				length += UDF_DEFAULT_PREALLOC_BLOCKS;
 987		} else if ((laarr[i].extLength >> 30) ==
 988				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 989			length += (((laarr[i].extLength &
 990						UDF_EXTENT_LENGTH_MASK) +
 991				    inode->i_sb->s_blocksize - 1) >>
 992				    inode->i_sb->s_blocksize_bits);
 993		} else
 994			break;
 995	}
 996
 997	if (length) {
 998		int next = laarr[start].extLocation.logicalBlockNum +
 999			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1000			  inode->i_sb->s_blocksize - 1) >>
1001			  inode->i_sb->s_blocksize_bits);
1002		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1003				laarr[start].extLocation.partitionReferenceNum,
1004				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1005				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1006				currlength);
1007		if (numalloc) 	{
1008			if (start == (c + 1))
1009				laarr[start].extLength +=
1010					(numalloc <<
1011					 inode->i_sb->s_blocksize_bits);
1012			else {
1013				memmove(&laarr[c + 2], &laarr[c + 1],
1014					sizeof(struct long_ad) * (*endnum - (c + 1)));
1015				(*endnum)++;
1016				laarr[c + 1].extLocation.logicalBlockNum = next;
1017				laarr[c + 1].extLocation.partitionReferenceNum =
1018					laarr[c].extLocation.
1019							partitionReferenceNum;
1020				laarr[c + 1].extLength =
1021					EXT_NOT_RECORDED_ALLOCATED |
1022					(numalloc <<
1023					 inode->i_sb->s_blocksize_bits);
1024				start = c + 1;
1025			}
1026
1027			for (i = start + 1; numalloc && i < *endnum; i++) {
1028				int elen = ((laarr[i].extLength &
1029						UDF_EXTENT_LENGTH_MASK) +
1030					    inode->i_sb->s_blocksize - 1) >>
1031					    inode->i_sb->s_blocksize_bits;
1032
1033				if (elen > numalloc) {
1034					laarr[i].extLength -=
1035						(numalloc <<
1036						 inode->i_sb->s_blocksize_bits);
1037					numalloc = 0;
1038				} else {
1039					numalloc -= elen;
1040					if (*endnum > (i + 1))
1041						memmove(&laarr[i],
1042							&laarr[i + 1],
1043							sizeof(struct long_ad) *
1044							(*endnum - (i + 1)));
1045					i--;
1046					(*endnum)--;
1047				}
1048			}
1049			UDF_I(inode)->i_lenExtents +=
1050				numalloc << inode->i_sb->s_blocksize_bits;
1051		}
1052	}
1053}
1054
1055static void udf_merge_extents(struct inode *inode,
1056			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1057			      int *endnum)
1058{
1059	int i;
1060	unsigned long blocksize = inode->i_sb->s_blocksize;
1061	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1062
1063	for (i = 0; i < (*endnum - 1); i++) {
1064		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1065		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1066
1067		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1068			(((li->extLength >> 30) ==
1069				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1070			((lip1->extLocation.logicalBlockNum -
1071			  li->extLocation.logicalBlockNum) ==
1072			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1073			blocksize - 1) >> blocksize_bits)))) {
1074
1075			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1076				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1077				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1078				lip1->extLength = (lip1->extLength -
1079						  (li->extLength &
1080						   UDF_EXTENT_LENGTH_MASK) +
1081						   UDF_EXTENT_LENGTH_MASK) &
1082							~(blocksize - 1);
1083				li->extLength = (li->extLength &
1084						 UDF_EXTENT_FLAG_MASK) +
1085						(UDF_EXTENT_LENGTH_MASK + 1) -
1086						blocksize;
1087				lip1->extLocation.logicalBlockNum =
1088					li->extLocation.logicalBlockNum +
1089					((li->extLength &
1090						UDF_EXTENT_LENGTH_MASK) >>
1091						blocksize_bits);
1092			} else {
1093				li->extLength = lip1->extLength +
1094					(((li->extLength &
1095						UDF_EXTENT_LENGTH_MASK) +
1096					 blocksize - 1) & ~(blocksize - 1));
1097				if (*endnum > (i + 2))
1098					memmove(&laarr[i + 1], &laarr[i + 2],
1099						sizeof(struct long_ad) *
1100						(*endnum - (i + 2)));
1101				i--;
1102				(*endnum)--;
1103			}
1104		} else if (((li->extLength >> 30) ==
1105				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1106			   ((lip1->extLength >> 30) ==
1107				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1108			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1109					((li->extLength &
1110					  UDF_EXTENT_LENGTH_MASK) +
1111					 blocksize - 1) >> blocksize_bits);
1112			li->extLocation.logicalBlockNum = 0;
1113			li->extLocation.partitionReferenceNum = 0;
1114
1115			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1116			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1117			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1118				lip1->extLength = (lip1->extLength -
1119						   (li->extLength &
1120						   UDF_EXTENT_LENGTH_MASK) +
1121						   UDF_EXTENT_LENGTH_MASK) &
1122						   ~(blocksize - 1);
1123				li->extLength = (li->extLength &
1124						 UDF_EXTENT_FLAG_MASK) +
1125						(UDF_EXTENT_LENGTH_MASK + 1) -
1126						blocksize;
1127			} else {
1128				li->extLength = lip1->extLength +
1129					(((li->extLength &
1130						UDF_EXTENT_LENGTH_MASK) +
1131					  blocksize - 1) & ~(blocksize - 1));
1132				if (*endnum > (i + 2))
1133					memmove(&laarr[i + 1], &laarr[i + 2],
1134						sizeof(struct long_ad) *
1135						(*endnum - (i + 2)));
1136				i--;
1137				(*endnum)--;
1138			}
1139		} else if ((li->extLength >> 30) ==
1140					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1141			udf_free_blocks(inode->i_sb, inode,
1142					&li->extLocation, 0,
1143					((li->extLength &
1144						UDF_EXTENT_LENGTH_MASK) +
1145					 blocksize - 1) >> blocksize_bits);
1146			li->extLocation.logicalBlockNum = 0;
1147			li->extLocation.partitionReferenceNum = 0;
1148			li->extLength = (li->extLength &
1149						UDF_EXTENT_LENGTH_MASK) |
1150						EXT_NOT_RECORDED_NOT_ALLOCATED;
1151		}
1152	}
1153}
1154
1155static void udf_update_extents(struct inode *inode,
1156			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1157			       int startnum, int endnum,
1158			       struct extent_position *epos)
1159{
1160	int start = 0, i;
1161	struct kernel_lb_addr tmploc;
1162	uint32_t tmplen;
1163
1164	if (startnum > endnum) {
1165		for (i = 0; i < (startnum - endnum); i++)
1166			udf_delete_aext(inode, *epos, laarr[i].extLocation,
1167					laarr[i].extLength);
1168	} else if (startnum < endnum) {
1169		for (i = 0; i < (endnum - startnum); i++) {
1170			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1171					laarr[i].extLength);
1172			udf_next_aext(inode, epos, &laarr[i].extLocation,
1173				      &laarr[i].extLength, 1);
1174			start++;
1175		}
1176	}
1177
1178	for (i = start; i < endnum; i++) {
1179		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1180		udf_write_aext(inode, epos, &laarr[i].extLocation,
1181			       laarr[i].extLength, 1);
1182	}
1183}
1184
1185struct buffer_head *udf_bread(struct inode *inode, int block,
1186			      int create, int *err)
1187{
1188	struct buffer_head *bh = NULL;
1189
1190	bh = udf_getblk(inode, block, create, err);
1191	if (!bh)
1192		return NULL;
1193
1194	if (buffer_uptodate(bh))
1195		return bh;
1196
1197	ll_rw_block(READ, 1, &bh);
1198
1199	wait_on_buffer(bh);
1200	if (buffer_uptodate(bh))
1201		return bh;
1202
1203	brelse(bh);
1204	*err = -EIO;
1205	return NULL;
1206}
1207
1208int udf_setsize(struct inode *inode, loff_t newsize)
1209{
1210	int err;
1211	struct udf_inode_info *iinfo;
1212	int bsize = 1 << inode->i_blkbits;
1213
1214	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1215	      S_ISLNK(inode->i_mode)))
1216		return -EINVAL;
1217	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1218		return -EPERM;
1219
1220	iinfo = UDF_I(inode);
1221	if (newsize > inode->i_size) {
1222		down_write(&iinfo->i_data_sem);
1223		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1224			if (bsize <
1225			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1226				err = udf_expand_file_adinicb(inode);
1227				if (err)
1228					return err;
1229				down_write(&iinfo->i_data_sem);
1230			} else {
1231				iinfo->i_lenAlloc = newsize;
1232				goto set_size;
1233			}
1234		}
1235		err = udf_extend_file(inode, newsize);
1236		if (err) {
1237			up_write(&iinfo->i_data_sem);
1238			return err;
1239		}
1240set_size:
 
1241		truncate_setsize(inode, newsize);
1242		up_write(&iinfo->i_data_sem);
1243	} else {
1244		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1245			down_write(&iinfo->i_data_sem);
1246			udf_clear_extent_cache(inode);
1247			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1248			       0x00, bsize - newsize -
1249			       udf_file_entry_alloc_offset(inode));
1250			iinfo->i_lenAlloc = newsize;
1251			truncate_setsize(inode, newsize);
1252			up_write(&iinfo->i_data_sem);
1253			goto update_time;
1254		}
1255		err = block_truncate_page(inode->i_mapping, newsize,
1256					  udf_get_block);
1257		if (err)
1258			return err;
 
1259		down_write(&iinfo->i_data_sem);
1260		udf_clear_extent_cache(inode);
1261		truncate_setsize(inode, newsize);
1262		udf_truncate_extents(inode);
1263		up_write(&iinfo->i_data_sem);
 
 
1264	}
1265update_time:
1266	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1267	if (IS_SYNC(inode))
1268		udf_sync_inode(inode);
1269	else
1270		mark_inode_dirty(inode);
1271	return 0;
1272}
1273
1274static void __udf_read_inode(struct inode *inode)
 
 
 
 
 
 
 
1275{
1276	struct buffer_head *bh = NULL;
1277	struct fileEntry *fe;
 
1278	uint16_t ident;
1279	struct udf_inode_info *iinfo = UDF_I(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280
1281	/*
1282	 * Set defaults, but the inode is still incomplete!
1283	 * Note: get_new_inode() sets the following on a new inode:
1284	 *      i_sb = sb
1285	 *      i_no = ino
1286	 *      i_flags = sb->s_flags
1287	 *      i_state = 0
1288	 * clean_inode(): zero fills and sets
1289	 *      i_count = 1
1290	 *      i_nlink = 1
1291	 *      i_op = NULL;
1292	 */
1293	bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1294	if (!bh) {
1295		udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1296		make_bad_inode(inode);
1297		return;
1298	}
1299
1300	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1301	    ident != TAG_IDENT_USE) {
1302		udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1303			inode->i_ino, ident);
1304		brelse(bh);
1305		make_bad_inode(inode);
1306		return;
1307	}
1308
1309	fe = (struct fileEntry *)bh->b_data;
 
1310
1311	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1312		struct buffer_head *ibh;
1313
1314		ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1315					&ident);
1316		if (ident == TAG_IDENT_IE && ibh) {
1317			struct buffer_head *nbh = NULL;
1318			struct kernel_lb_addr loc;
1319			struct indirectEntry *ie;
1320
1321			ie = (struct indirectEntry *)ibh->b_data;
1322			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1323
1324			if (ie->indirectICB.extLength &&
1325				(nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1326							&ident))) {
1327				if (ident == TAG_IDENT_FE ||
1328					ident == TAG_IDENT_EFE) {
1329					memcpy(&iinfo->i_location,
1330						&loc,
1331						sizeof(struct kernel_lb_addr));
1332					brelse(bh);
1333					brelse(ibh);
1334					brelse(nbh);
1335					__udf_read_inode(inode);
1336					return;
1337				}
1338				brelse(nbh);
 
1339			}
1340		}
1341		brelse(ibh);
1342	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1343		udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1344			le16_to_cpu(fe->icbTag.strategyType));
1345		brelse(bh);
1346		make_bad_inode(inode);
1347		return;
1348	}
1349	udf_fill_inode(inode, bh);
1350
1351	brelse(bh);
1352}
1353
1354static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1355{
1356	struct fileEntry *fe;
1357	struct extendedFileEntry *efe;
1358	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1359	struct udf_inode_info *iinfo = UDF_I(inode);
1360	unsigned int link_count;
1361
1362	fe = (struct fileEntry *)bh->b_data;
1363	efe = (struct extendedFileEntry *)bh->b_data;
1364
1365	if (fe->icbTag.strategyType == cpu_to_le16(4))
1366		iinfo->i_strat4096 = 0;
1367	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1368		iinfo->i_strat4096 = 1;
1369
1370	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1371							ICBTAG_FLAG_AD_MASK;
 
 
 
 
 
 
1372	iinfo->i_unique = 0;
1373	iinfo->i_lenEAttr = 0;
1374	iinfo->i_lenExtents = 0;
1375	iinfo->i_lenAlloc = 0;
1376	iinfo->i_next_alloc_block = 0;
1377	iinfo->i_next_alloc_goal = 0;
1378	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1379		iinfo->i_efe = 1;
1380		iinfo->i_use = 0;
1381		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1382					sizeof(struct extendedFileEntry))) {
1383			make_bad_inode(inode);
1384			return;
1385		}
1386		memcpy(iinfo->i_ext.i_data,
1387		       bh->b_data + sizeof(struct extendedFileEntry),
1388		       inode->i_sb->s_blocksize -
1389					sizeof(struct extendedFileEntry));
1390	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1391		iinfo->i_efe = 0;
1392		iinfo->i_use = 0;
1393		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1394						sizeof(struct fileEntry))) {
1395			make_bad_inode(inode);
1396			return;
1397		}
1398		memcpy(iinfo->i_ext.i_data,
1399		       bh->b_data + sizeof(struct fileEntry),
1400		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1401	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1402		iinfo->i_efe = 0;
1403		iinfo->i_use = 1;
1404		iinfo->i_lenAlloc = le32_to_cpu(
1405				((struct unallocSpaceEntry *)bh->b_data)->
1406				 lengthAllocDescs);
1407		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1408					sizeof(struct unallocSpaceEntry))) {
1409			make_bad_inode(inode);
1410			return;
1411		}
1412		memcpy(iinfo->i_ext.i_data,
1413		       bh->b_data + sizeof(struct unallocSpaceEntry),
1414		       inode->i_sb->s_blocksize -
1415					sizeof(struct unallocSpaceEntry));
1416		return;
1417	}
1418
 
1419	read_lock(&sbi->s_cred_lock);
1420	i_uid_write(inode, le32_to_cpu(fe->uid));
1421	if (!uid_valid(inode->i_uid) ||
1422	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1423	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1424		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
 
 
1425
1426	i_gid_write(inode, le32_to_cpu(fe->gid));
1427	if (!gid_valid(inode->i_gid) ||
1428	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1429	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1430		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
 
 
1431
1432	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1433			sbi->s_fmode != UDF_INVALID_MODE)
1434		inode->i_mode = sbi->s_fmode;
1435	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1436			sbi->s_dmode != UDF_INVALID_MODE)
1437		inode->i_mode = sbi->s_dmode;
1438	else
1439		inode->i_mode = udf_convert_permissions(fe);
1440	inode->i_mode &= ~sbi->s_umask;
 
 
1441	read_unlock(&sbi->s_cred_lock);
1442
1443	link_count = le16_to_cpu(fe->fileLinkCount);
1444	if (!link_count)
 
 
 
 
1445		link_count = 1;
 
1446	set_nlink(inode, link_count);
1447
1448	inode->i_size = le64_to_cpu(fe->informationLength);
1449	iinfo->i_lenExtents = inode->i_size;
1450
1451	if (iinfo->i_efe == 0) {
1452		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1453			(inode->i_sb->s_blocksize_bits - 9);
1454
1455		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1456			inode->i_atime = sbi->s_record_time;
1457
1458		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1459					    fe->modificationTime))
1460			inode->i_mtime = sbi->s_record_time;
1461
1462		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1463			inode->i_ctime = sbi->s_record_time;
1464
1465		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1466		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1467		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1468		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
 
 
1469	} else {
1470		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1471		    (inode->i_sb->s_blocksize_bits - 9);
1472
1473		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1474			inode->i_atime = sbi->s_record_time;
1475
1476		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1477					    efe->modificationTime))
1478			inode->i_mtime = sbi->s_record_time;
1479
1480		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1481			iinfo->i_crtime = sbi->s_record_time;
1482
1483		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1484			inode->i_ctime = sbi->s_record_time;
1485
1486		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1487		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1488		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1489		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1490	}
1491
1492	switch (fe->icbTag.fileType) {
1493	case ICBTAG_FILE_TYPE_DIRECTORY:
1494		inode->i_op = &udf_dir_inode_operations;
1495		inode->i_fop = &udf_dir_operations;
1496		inode->i_mode |= S_IFDIR;
1497		inc_nlink(inode);
1498		break;
1499	case ICBTAG_FILE_TYPE_REALTIME:
1500	case ICBTAG_FILE_TYPE_REGULAR:
1501	case ICBTAG_FILE_TYPE_UNDEF:
1502	case ICBTAG_FILE_TYPE_VAT20:
1503		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1504			inode->i_data.a_ops = &udf_adinicb_aops;
1505		else
1506			inode->i_data.a_ops = &udf_aops;
1507		inode->i_op = &udf_file_inode_operations;
1508		inode->i_fop = &udf_file_operations;
1509		inode->i_mode |= S_IFREG;
1510		break;
1511	case ICBTAG_FILE_TYPE_BLOCK:
1512		inode->i_mode |= S_IFBLK;
1513		break;
1514	case ICBTAG_FILE_TYPE_CHAR:
1515		inode->i_mode |= S_IFCHR;
1516		break;
1517	case ICBTAG_FILE_TYPE_FIFO:
1518		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1519		break;
1520	case ICBTAG_FILE_TYPE_SOCKET:
1521		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1522		break;
1523	case ICBTAG_FILE_TYPE_SYMLINK:
1524		inode->i_data.a_ops = &udf_symlink_aops;
1525		inode->i_op = &udf_symlink_inode_operations;
1526		inode->i_mode = S_IFLNK | S_IRWXUGO;
 
1527		break;
1528	case ICBTAG_FILE_TYPE_MAIN:
1529		udf_debug("METADATA FILE-----\n");
1530		break;
1531	case ICBTAG_FILE_TYPE_MIRROR:
1532		udf_debug("METADATA MIRROR FILE-----\n");
1533		break;
1534	case ICBTAG_FILE_TYPE_BITMAP:
1535		udf_debug("METADATA BITMAP FILE-----\n");
1536		break;
1537	default:
1538		udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1539			inode->i_ino, fe->icbTag.fileType);
1540		make_bad_inode(inode);
1541		return;
1542	}
1543	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1544		struct deviceSpec *dsea =
1545			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1546		if (dsea) {
1547			init_special_inode(inode, inode->i_mode,
1548				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1549				      le32_to_cpu(dsea->minorDeviceIdent)));
1550			/* Developer ID ??? */
1551		} else
1552			make_bad_inode(inode);
1553	}
 
 
 
 
1554}
1555
1556static int udf_alloc_i_data(struct inode *inode, size_t size)
1557{
1558	struct udf_inode_info *iinfo = UDF_I(inode);
1559	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1560
1561	if (!iinfo->i_ext.i_data) {
1562		udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1563			inode->i_ino);
1564		return -ENOMEM;
1565	}
1566
1567	return 0;
1568}
1569
1570static umode_t udf_convert_permissions(struct fileEntry *fe)
1571{
1572	umode_t mode;
1573	uint32_t permissions;
1574	uint32_t flags;
1575
1576	permissions = le32_to_cpu(fe->permissions);
1577	flags = le16_to_cpu(fe->icbTag.flags);
1578
1579	mode =	((permissions) & S_IRWXO) |
1580		((permissions >> 2) & S_IRWXG) |
1581		((permissions >> 4) & S_IRWXU) |
1582		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1583		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1584		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1585
1586	return mode;
1587}
1588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1589int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1590{
1591	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1592}
1593
1594static int udf_sync_inode(struct inode *inode)
1595{
1596	return udf_update_inode(inode, 1);
1597}
1598
 
 
 
 
 
 
 
 
1599static int udf_update_inode(struct inode *inode, int do_sync)
1600{
1601	struct buffer_head *bh = NULL;
1602	struct fileEntry *fe;
1603	struct extendedFileEntry *efe;
1604	uint64_t lb_recorded;
1605	uint32_t udfperms;
1606	uint16_t icbflags;
1607	uint16_t crclen;
1608	int err = 0;
1609	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1610	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1611	struct udf_inode_info *iinfo = UDF_I(inode);
1612
1613	bh = udf_tgetblk(inode->i_sb,
1614			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1615	if (!bh) {
1616		udf_debug("getblk failure\n");
1617		return -ENOMEM;
1618	}
1619
1620	lock_buffer(bh);
1621	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1622	fe = (struct fileEntry *)bh->b_data;
1623	efe = (struct extendedFileEntry *)bh->b_data;
1624
1625	if (iinfo->i_use) {
1626		struct unallocSpaceEntry *use =
1627			(struct unallocSpaceEntry *)bh->b_data;
1628
1629		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1630		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1631		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1632					sizeof(struct unallocSpaceEntry));
1633		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1634		use->descTag.tagLocation =
1635				cpu_to_le32(iinfo->i_location.logicalBlockNum);
1636		crclen = sizeof(struct unallocSpaceEntry) +
1637				iinfo->i_lenAlloc - sizeof(struct tag);
1638		use->descTag.descCRCLength = cpu_to_le16(crclen);
1639		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1640							   sizeof(struct tag),
1641							   crclen));
1642		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1643
1644		goto out;
1645	}
1646
1647	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1648		fe->uid = cpu_to_le32(-1);
1649	else
1650		fe->uid = cpu_to_le32(i_uid_read(inode));
1651
1652	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1653		fe->gid = cpu_to_le32(-1);
1654	else
1655		fe->gid = cpu_to_le32(i_gid_read(inode));
1656
1657	udfperms = ((inode->i_mode & S_IRWXO)) |
1658		   ((inode->i_mode & S_IRWXG) << 2) |
1659		   ((inode->i_mode & S_IRWXU) << 4);
1660
1661	udfperms |= (le32_to_cpu(fe->permissions) &
1662		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1663		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1664		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1665	fe->permissions = cpu_to_le32(udfperms);
1666
1667	if (S_ISDIR(inode->i_mode))
1668		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1669	else
1670		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1671
1672	fe->informationLength = cpu_to_le64(inode->i_size);
1673
1674	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1675		struct regid *eid;
1676		struct deviceSpec *dsea =
1677			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1678		if (!dsea) {
1679			dsea = (struct deviceSpec *)
1680				udf_add_extendedattr(inode,
1681						     sizeof(struct deviceSpec) +
1682						     sizeof(struct regid), 12, 0x3);
1683			dsea->attrType = cpu_to_le32(12);
1684			dsea->attrSubtype = 1;
1685			dsea->attrLength = cpu_to_le32(
1686						sizeof(struct deviceSpec) +
1687						sizeof(struct regid));
1688			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1689		}
1690		eid = (struct regid *)dsea->impUse;
1691		memset(eid, 0, sizeof(struct regid));
1692		strcpy(eid->ident, UDF_ID_DEVELOPER);
1693		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1694		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1695		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1696		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1697	}
1698
1699	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1700		lb_recorded = 0; /* No extents => no blocks! */
1701	else
1702		lb_recorded =
1703			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1704			(blocksize_bits - 9);
1705
1706	if (iinfo->i_efe == 0) {
1707		memcpy(bh->b_data + sizeof(struct fileEntry),
1708		       iinfo->i_ext.i_data,
1709		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1710		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1711
1712		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1713		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1714		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1715		memset(&(fe->impIdent), 0, sizeof(struct regid));
1716		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1717		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1718		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1719		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1720		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1721		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1722		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1723		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1724		crclen = sizeof(struct fileEntry);
1725	} else {
1726		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1727		       iinfo->i_ext.i_data,
1728		       inode->i_sb->s_blocksize -
1729					sizeof(struct extendedFileEntry));
1730		efe->objectSize = cpu_to_le64(inode->i_size);
 
1731		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1732
1733		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1734		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1735		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1736			iinfo->i_crtime = inode->i_atime;
1737
1738		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1739		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1740		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1741			iinfo->i_crtime = inode->i_mtime;
1742
1743		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1744		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1745		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1746			iinfo->i_crtime = inode->i_ctime;
1747
1748		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1749		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1750		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1751		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1752
1753		memset(&(efe->impIdent), 0, sizeof(struct regid));
1754		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1755		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1756		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1757		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1758		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1759		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1760		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1761		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1762		crclen = sizeof(struct extendedFileEntry);
1763	}
 
 
1764	if (iinfo->i_strat4096) {
1765		fe->icbTag.strategyType = cpu_to_le16(4096);
1766		fe->icbTag.strategyParameter = cpu_to_le16(1);
1767		fe->icbTag.numEntries = cpu_to_le16(2);
1768	} else {
1769		fe->icbTag.strategyType = cpu_to_le16(4);
1770		fe->icbTag.numEntries = cpu_to_le16(1);
1771	}
1772
1773	if (S_ISDIR(inode->i_mode))
 
 
1774		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1775	else if (S_ISREG(inode->i_mode))
1776		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1777	else if (S_ISLNK(inode->i_mode))
1778		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1779	else if (S_ISBLK(inode->i_mode))
1780		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1781	else if (S_ISCHR(inode->i_mode))
1782		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1783	else if (S_ISFIFO(inode->i_mode))
1784		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1785	else if (S_ISSOCK(inode->i_mode))
1786		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1787
1788	icbflags =	iinfo->i_alloc_type |
1789			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1790			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1791			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1792			(le16_to_cpu(fe->icbTag.flags) &
1793				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1794				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1795
1796	fe->icbTag.flags = cpu_to_le16(icbflags);
1797	if (sbi->s_udfrev >= 0x0200)
1798		fe->descTag.descVersion = cpu_to_le16(3);
1799	else
1800		fe->descTag.descVersion = cpu_to_le16(2);
1801	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1802	fe->descTag.tagLocation = cpu_to_le32(
1803					iinfo->i_location.logicalBlockNum);
1804	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1805	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1806	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1807						  crclen));
1808	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1809
1810out:
1811	set_buffer_uptodate(bh);
1812	unlock_buffer(bh);
1813
1814	/* write the data blocks */
1815	mark_buffer_dirty(bh);
1816	if (do_sync) {
1817		sync_dirty_buffer(bh);
1818		if (buffer_write_io_error(bh)) {
1819			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1820				 inode->i_ino);
1821			err = -EIO;
1822		}
1823	}
1824	brelse(bh);
1825
1826	return err;
1827}
1828
1829struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
 
1830{
1831	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1832	struct inode *inode = iget_locked(sb, block);
 
1833
1834	if (!inode)
1835		return NULL;
1836
1837	if (inode->i_state & I_NEW) {
1838		memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1839		__udf_read_inode(inode);
1840		unlock_new_inode(inode);
1841	}
1842
1843	if (is_bad_inode(inode))
1844		goto out_iput;
1845
1846	if (ino->logicalBlockNum >= UDF_SB(sb)->
1847			s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1848		udf_debug("block=%d, partition=%d out of range\n",
1849			  ino->logicalBlockNum, ino->partitionReferenceNum);
1850		make_bad_inode(inode);
1851		goto out_iput;
1852	}
 
1853
1854	return inode;
1855
1856 out_iput:
1857	iput(inode);
1858	return NULL;
1859}
1860
1861int udf_add_aext(struct inode *inode, struct extent_position *epos,
1862		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1863{
1864	int adsize;
1865	struct short_ad *sad = NULL;
1866	struct long_ad *lad = NULL;
1867	struct allocExtDesc *aed;
1868	uint8_t *ptr;
1869	struct udf_inode_info *iinfo = UDF_I(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870
1871	if (!epos->bh)
1872		ptr = iinfo->i_ext.i_data + epos->offset -
1873			udf_file_entry_alloc_offset(inode) +
1874			iinfo->i_lenEAttr;
 
 
 
 
1875	else
1876		ptr = epos->bh->b_data + epos->offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1877
1878	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1879		adsize = sizeof(struct short_ad);
1880	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1881		adsize = sizeof(struct long_ad);
1882	else
1883		return -EIO;
1884
1885	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1886		unsigned char *sptr, *dptr;
1887		struct buffer_head *nbh;
1888		int err, loffset;
1889		struct kernel_lb_addr obloc = epos->block;
1890
1891		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1892						obloc.partitionReferenceNum,
1893						obloc.logicalBlockNum, &err);
1894		if (!epos->block.logicalBlockNum)
1895			return -ENOSPC;
1896		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1897								 &epos->block,
1898								 0));
1899		if (!nbh)
1900			return -EIO;
1901		lock_buffer(nbh);
1902		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1903		set_buffer_uptodate(nbh);
1904		unlock_buffer(nbh);
1905		mark_buffer_dirty_inode(nbh, inode);
1906
1907		aed = (struct allocExtDesc *)(nbh->b_data);
1908		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1909			aed->previousAllocExtLocation =
1910					cpu_to_le32(obloc.logicalBlockNum);
1911		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1912			loffset = epos->offset;
1913			aed->lengthAllocDescs = cpu_to_le32(adsize);
1914			sptr = ptr - adsize;
1915			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1916			memcpy(dptr, sptr, adsize);
1917			epos->offset = sizeof(struct allocExtDesc) + adsize;
1918		} else {
1919			loffset = epos->offset + adsize;
1920			aed->lengthAllocDescs = cpu_to_le32(0);
1921			sptr = ptr;
1922			epos->offset = sizeof(struct allocExtDesc);
1923
1924			if (epos->bh) {
1925				aed = (struct allocExtDesc *)epos->bh->b_data;
1926				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1927			} else {
1928				iinfo->i_lenAlloc += adsize;
1929				mark_inode_dirty(inode);
1930			}
1931		}
1932		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1933			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1934				    epos->block.logicalBlockNum, sizeof(struct tag));
1935		else
1936			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1937				    epos->block.logicalBlockNum, sizeof(struct tag));
1938		switch (iinfo->i_alloc_type) {
1939		case ICBTAG_FLAG_AD_SHORT:
1940			sad = (struct short_ad *)sptr;
1941			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1942						     inode->i_sb->s_blocksize);
1943			sad->extPosition =
1944				cpu_to_le32(epos->block.logicalBlockNum);
1945			break;
1946		case ICBTAG_FLAG_AD_LONG:
1947			lad = (struct long_ad *)sptr;
1948			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1949						     inode->i_sb->s_blocksize);
1950			lad->extLocation = cpu_to_lelb(epos->block);
1951			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1952			break;
1953		}
1954		if (epos->bh) {
1955			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1956			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1957				udf_update_tag(epos->bh->b_data, loffset);
1958			else
1959				udf_update_tag(epos->bh->b_data,
1960						sizeof(struct allocExtDesc));
1961			mark_buffer_dirty_inode(epos->bh, inode);
1962			brelse(epos->bh);
1963		} else {
1964			mark_inode_dirty(inode);
1965		}
1966		epos->bh = nbh;
1967	}
1968
1969	udf_write_aext(inode, epos, eloc, elen, inc);
1970
1971	if (!epos->bh) {
1972		iinfo->i_lenAlloc += adsize;
1973		mark_inode_dirty(inode);
1974	} else {
1975		aed = (struct allocExtDesc *)epos->bh->b_data;
1976		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1977		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1978				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1979			udf_update_tag(epos->bh->b_data,
1980					epos->offset + (inc ? 0 : adsize));
1981		else
1982			udf_update_tag(epos->bh->b_data,
1983					sizeof(struct allocExtDesc));
1984		mark_buffer_dirty_inode(epos->bh, inode);
1985	}
1986
1987	return 0;
1988}
1989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1990void udf_write_aext(struct inode *inode, struct extent_position *epos,
1991		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1992{
1993	int adsize;
1994	uint8_t *ptr;
1995	struct short_ad *sad;
1996	struct long_ad *lad;
1997	struct udf_inode_info *iinfo = UDF_I(inode);
1998
1999	if (!epos->bh)
2000		ptr = iinfo->i_ext.i_data + epos->offset -
2001			udf_file_entry_alloc_offset(inode) +
2002			iinfo->i_lenEAttr;
2003	else
2004		ptr = epos->bh->b_data + epos->offset;
2005
2006	switch (iinfo->i_alloc_type) {
2007	case ICBTAG_FLAG_AD_SHORT:
2008		sad = (struct short_ad *)ptr;
2009		sad->extLength = cpu_to_le32(elen);
2010		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2011		adsize = sizeof(struct short_ad);
2012		break;
2013	case ICBTAG_FLAG_AD_LONG:
2014		lad = (struct long_ad *)ptr;
2015		lad->extLength = cpu_to_le32(elen);
2016		lad->extLocation = cpu_to_lelb(*eloc);
2017		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2018		adsize = sizeof(struct long_ad);
2019		break;
2020	default:
2021		return;
2022	}
2023
2024	if (epos->bh) {
2025		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2026		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2027			struct allocExtDesc *aed =
2028				(struct allocExtDesc *)epos->bh->b_data;
2029			udf_update_tag(epos->bh->b_data,
2030				       le32_to_cpu(aed->lengthAllocDescs) +
2031				       sizeof(struct allocExtDesc));
2032		}
2033		mark_buffer_dirty_inode(epos->bh, inode);
2034	} else {
2035		mark_inode_dirty(inode);
2036	}
2037
2038	if (inc)
2039		epos->offset += adsize;
2040}
2041
 
 
 
 
 
 
2042int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2043		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2044{
2045	int8_t etype;
 
2046
2047	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2048	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2049		int block;
 
 
 
 
 
 
 
 
2050		epos->block = *eloc;
2051		epos->offset = sizeof(struct allocExtDesc);
2052		brelse(epos->bh);
2053		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2054		epos->bh = udf_tread(inode->i_sb, block);
2055		if (!epos->bh) {
2056			udf_debug("reading block %d failed!\n", block);
2057			return -1;
2058		}
2059	}
2060
2061	return etype;
2062}
2063
2064int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2065			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2066{
2067	int alen;
2068	int8_t etype;
2069	uint8_t *ptr;
2070	struct short_ad *sad;
2071	struct long_ad *lad;
2072	struct udf_inode_info *iinfo = UDF_I(inode);
2073
2074	if (!epos->bh) {
2075		if (!epos->offset)
2076			epos->offset = udf_file_entry_alloc_offset(inode);
2077		ptr = iinfo->i_ext.i_data + epos->offset -
2078			udf_file_entry_alloc_offset(inode) +
2079			iinfo->i_lenEAttr;
2080		alen = udf_file_entry_alloc_offset(inode) +
2081							iinfo->i_lenAlloc;
2082	} else {
2083		if (!epos->offset)
2084			epos->offset = sizeof(struct allocExtDesc);
2085		ptr = epos->bh->b_data + epos->offset;
2086		alen = sizeof(struct allocExtDesc) +
2087			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2088							lengthAllocDescs);
2089	}
2090
2091	switch (iinfo->i_alloc_type) {
2092	case ICBTAG_FLAG_AD_SHORT:
2093		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2094		if (!sad)
2095			return -1;
2096		etype = le32_to_cpu(sad->extLength) >> 30;
2097		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2098		eloc->partitionReferenceNum =
2099				iinfo->i_location.partitionReferenceNum;
2100		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2101		break;
2102	case ICBTAG_FLAG_AD_LONG:
2103		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2104		if (!lad)
2105			return -1;
2106		etype = le32_to_cpu(lad->extLength) >> 30;
2107		*eloc = lelb_to_cpu(lad->extLocation);
2108		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2109		break;
2110	default:
2111		udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2112		return -1;
2113	}
2114
2115	return etype;
2116}
2117
2118static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2119			      struct kernel_lb_addr neloc, uint32_t nelen)
2120{
2121	struct kernel_lb_addr oeloc;
2122	uint32_t oelen;
2123	int8_t etype;
2124
2125	if (epos.bh)
2126		get_bh(epos.bh);
2127
2128	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2129		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2130		neloc = oeloc;
2131		nelen = (etype << 30) | oelen;
2132	}
2133	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2134	brelse(epos.bh);
2135
2136	return (nelen >> 30);
2137}
2138
2139int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2140		       struct kernel_lb_addr eloc, uint32_t elen)
2141{
2142	struct extent_position oepos;
2143	int adsize;
2144	int8_t etype;
2145	struct allocExtDesc *aed;
2146	struct udf_inode_info *iinfo;
 
 
2147
2148	if (epos.bh) {
2149		get_bh(epos.bh);
2150		get_bh(epos.bh);
2151	}
2152
2153	iinfo = UDF_I(inode);
2154	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2155		adsize = sizeof(struct short_ad);
2156	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2157		adsize = sizeof(struct long_ad);
2158	else
2159		adsize = 0;
2160
2161	oepos = epos;
2162	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2163		return -1;
2164
2165	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2166		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2167		if (oepos.bh != epos.bh) {
2168			oepos.block = epos.block;
2169			brelse(oepos.bh);
2170			get_bh(epos.bh);
2171			oepos.bh = epos.bh;
2172			oepos.offset = epos.offset - adsize;
2173		}
2174	}
2175	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2176	elen = 0;
2177
2178	if (epos.bh != oepos.bh) {
2179		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2180		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2181		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2182		if (!oepos.bh) {
2183			iinfo->i_lenAlloc -= (adsize * 2);
2184			mark_inode_dirty(inode);
2185		} else {
2186			aed = (struct allocExtDesc *)oepos.bh->b_data;
2187			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2188			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2189			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2190				udf_update_tag(oepos.bh->b_data,
2191						oepos.offset - (2 * adsize));
2192			else
2193				udf_update_tag(oepos.bh->b_data,
2194						sizeof(struct allocExtDesc));
2195			mark_buffer_dirty_inode(oepos.bh, inode);
2196		}
2197	} else {
2198		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2199		if (!oepos.bh) {
2200			iinfo->i_lenAlloc -= adsize;
2201			mark_inode_dirty(inode);
2202		} else {
2203			aed = (struct allocExtDesc *)oepos.bh->b_data;
2204			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2205			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2206			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2207				udf_update_tag(oepos.bh->b_data,
2208						epos.offset - adsize);
2209			else
2210				udf_update_tag(oepos.bh->b_data,
2211						sizeof(struct allocExtDesc));
2212			mark_buffer_dirty_inode(oepos.bh, inode);
2213		}
2214	}
2215
2216	brelse(epos.bh);
2217	brelse(oepos.bh);
2218
2219	return (elen >> 30);
2220}
2221
2222int8_t inode_bmap(struct inode *inode, sector_t block,
2223		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2224		  uint32_t *elen, sector_t *offset)
2225{
2226	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2227	loff_t lbcount = 0, bcount =
2228	    (loff_t) block << blocksize_bits;
2229	int8_t etype;
2230	struct udf_inode_info *iinfo;
2231
2232	iinfo = UDF_I(inode);
2233	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2234		pos->offset = 0;
2235		pos->block = iinfo->i_location;
2236		pos->bh = NULL;
2237	}
2238	*elen = 0;
2239	do {
2240		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2241		if (etype == -1) {
2242			*offset = (bcount - lbcount) >> blocksize_bits;
2243			iinfo->i_lenExtents = lbcount;
2244			return -1;
2245		}
2246		lbcount += *elen;
2247	} while (lbcount <= bcount);
2248	/* update extent cache */
2249	udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2250	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2251
2252	return etype;
2253}
2254
2255long udf_block_map(struct inode *inode, sector_t block)
2256{
2257	struct kernel_lb_addr eloc;
2258	uint32_t elen;
2259	sector_t offset;
2260	struct extent_position epos = {};
2261	int ret;
2262
2263	down_read(&UDF_I(inode)->i_data_sem);
2264
2265	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2266						(EXT_RECORDED_ALLOCATED >> 30))
2267		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2268	else
2269		ret = 0;
2270
2271	up_read(&UDF_I(inode)->i_data_sem);
2272	brelse(epos.bh);
2273
2274	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2275		return udf_fixed_to_variable(ret);
2276	else
2277		return ret;
2278}