Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
   3 * Author: Marc Zyngier <marc.zyngier@arm.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  16 */
  17
 
 
 
  18#include <linux/bitmap.h>
  19#include <linux/cpu.h>
 
  20#include <linux/delay.h>
 
  21#include <linux/interrupt.h>
 
 
 
 
  22#include <linux/log2.h>
 
  23#include <linux/mm.h>
  24#include <linux/msi.h>
  25#include <linux/of.h>
  26#include <linux/of_address.h>
  27#include <linux/of_irq.h>
  28#include <linux/of_pci.h>
  29#include <linux/of_platform.h>
  30#include <linux/percpu.h>
  31#include <linux/slab.h>
 
  32
  33#include <linux/irqchip.h>
  34#include <linux/irqchip/arm-gic-v3.h>
 
  35
  36#include <asm/cacheflush.h>
  37#include <asm/cputype.h>
  38#include <asm/exception.h>
  39
  40#include "irq-gic-common.h"
  41
  42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
  43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
 
  44
  45#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46
  47/*
  48 * Collection structure - just an ID, and a redistributor address to
  49 * ping. We use one per CPU as a bag of interrupts assigned to this
  50 * CPU.
  51 */
  52struct its_collection {
  53	u64			target_address;
  54	u16			col_id;
  55};
  56
  57/*
 
 
 
 
 
 
 
 
 
 
 
 
 
  58 * The ITS structure - contains most of the infrastructure, with the
  59 * top-level MSI domain, the command queue, the collections, and the
  60 * list of devices writing to it.
 
 
 
 
  61 */
  62struct its_node {
  63	raw_spinlock_t		lock;
 
  64	struct list_head	entry;
  65	void __iomem		*base;
  66	unsigned long		phys_base;
 
  67	struct its_cmd_block	*cmd_base;
  68	struct its_cmd_block	*cmd_write;
  69	struct {
  70		void		*base;
  71		u32		order;
  72	} tables[GITS_BASER_NR_REGS];
  73	struct its_collection	*collections;
 
 
 
 
 
 
  74	struct list_head	its_device_list;
  75	u64			flags;
  76	u32			ite_size;
 
 
 
 
  77};
  78
 
 
 
 
  79#define ITS_ITT_ALIGN		SZ_256
  80
 
 
 
 
 
 
 
 
 
 
 
 
 
  81/* Convert page order to size in bytes */
  82#define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
  83
  84struct event_lpi_map {
  85	unsigned long		*lpi_map;
  86	u16			*col_map;
  87	irq_hw_number_t		lpi_base;
  88	int			nr_lpis;
 
 
 
 
  89};
  90
  91/*
  92 * The ITS view of a device - belongs to an ITS, a collection, owns an
  93 * interrupt translation table, and a list of interrupts.
 
 
  94 */
  95struct its_device {
  96	struct list_head	entry;
  97	struct its_node		*its;
  98	struct event_lpi_map	event_map;
  99	void			*itt;
 100	u32			nr_ites;
 101	u32			device_id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 102};
 103
 
 
 104static LIST_HEAD(its_nodes);
 105static DEFINE_SPINLOCK(its_lock);
 106static struct rdists *gic_rdists;
 
 
 
 
 
 
 
 107
 108#define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
 
 109#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110
 111static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 112					       u32 event)
 113{
 114	struct its_node *its = its_dev->its;
 115
 116	return its->collections + its_dev->event_map.col_map[event];
 117}
 118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119/*
 120 * ITS command descriptors - parameters to be encoded in a command
 121 * block.
 122 */
 123struct its_cmd_desc {
 124	union {
 125		struct {
 126			struct its_device *dev;
 127			u32 event_id;
 128		} its_inv_cmd;
 129
 130		struct {
 131			struct its_device *dev;
 132			u32 event_id;
 
 
 
 
 
 133		} its_int_cmd;
 134
 135		struct {
 136			struct its_device *dev;
 137			int valid;
 138		} its_mapd_cmd;
 139
 140		struct {
 141			struct its_collection *col;
 142			int valid;
 143		} its_mapc_cmd;
 144
 145		struct {
 146			struct its_device *dev;
 147			u32 phys_id;
 148			u32 event_id;
 149		} its_mapvi_cmd;
 150
 151		struct {
 152			struct its_device *dev;
 153			struct its_collection *col;
 154			u32 event_id;
 155		} its_movi_cmd;
 156
 157		struct {
 158			struct its_device *dev;
 159			u32 event_id;
 160		} its_discard_cmd;
 161
 162		struct {
 163			struct its_collection *col;
 164		} its_invall_cmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165	};
 166};
 167
 168/*
 169 * The ITS command block, which is what the ITS actually parses.
 170 */
 171struct its_cmd_block {
 172	u64	raw_cmd[4];
 
 
 
 173};
 174
 175#define ITS_CMD_QUEUE_SZ		SZ_64K
 176#define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 177
 178typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
 
 179						    struct its_cmd_desc *);
 180
 
 
 
 
 
 
 
 
 
 
 
 181static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 182{
 183	cmd->raw_cmd[0] &= ~0xffUL;
 184	cmd->raw_cmd[0] |= cmd_nr;
 185}
 186
 187static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 188{
 189	cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
 190	cmd->raw_cmd[0] |= ((u64)devid) << 32;
 191}
 192
 193static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 194{
 195	cmd->raw_cmd[1] &= ~0xffffffffUL;
 196	cmd->raw_cmd[1] |= id;
 197}
 198
 199static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 200{
 201	cmd->raw_cmd[1] &= 0xffffffffUL;
 202	cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
 203}
 204
 205static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 206{
 207	cmd->raw_cmd[1] &= ~0x1fUL;
 208	cmd->raw_cmd[1] |= size & 0x1f;
 209}
 210
 211static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 212{
 213	cmd->raw_cmd[2] &= ~0xffffffffffffUL;
 214	cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
 215}
 216
 217static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 218{
 219	cmd->raw_cmd[2] &= ~(1UL << 63);
 220	cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
 221}
 222
 223static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 224{
 225	cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
 226	cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
 227}
 228
 229static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 230{
 231	cmd->raw_cmd[2] &= ~0xffffUL;
 232	cmd->raw_cmd[2] |= col;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233}
 234
 235static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 236{
 237	/* Let's fixup BE commands */
 238	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
 239	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
 240	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
 241	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
 242}
 243
 244static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
 
 245						 struct its_cmd_desc *desc)
 246{
 247	unsigned long itt_addr;
 248	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 249
 250	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 251	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 252
 253	its_encode_cmd(cmd, GITS_CMD_MAPD);
 254	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 255	its_encode_size(cmd, size - 1);
 256	its_encode_itt(cmd, itt_addr);
 257	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 258
 259	its_fixup_cmd(cmd);
 260
 261	return NULL;
 262}
 263
 264static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
 
 265						 struct its_cmd_desc *desc)
 266{
 267	its_encode_cmd(cmd, GITS_CMD_MAPC);
 268	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 269	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 270	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 271
 272	its_fixup_cmd(cmd);
 273
 274	return desc->its_mapc_cmd.col;
 275}
 276
 277static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
 
 278						  struct its_cmd_desc *desc)
 279{
 280	struct its_collection *col;
 281
 282	col = dev_event_to_col(desc->its_mapvi_cmd.dev,
 283			       desc->its_mapvi_cmd.event_id);
 284
 285	its_encode_cmd(cmd, GITS_CMD_MAPVI);
 286	its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
 287	its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
 288	its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
 289	its_encode_collection(cmd, col->col_id);
 290
 291	its_fixup_cmd(cmd);
 292
 293	return col;
 294}
 295
 296static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
 
 297						 struct its_cmd_desc *desc)
 298{
 299	struct its_collection *col;
 300
 301	col = dev_event_to_col(desc->its_movi_cmd.dev,
 302			       desc->its_movi_cmd.event_id);
 303
 304	its_encode_cmd(cmd, GITS_CMD_MOVI);
 305	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 306	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 307	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 308
 309	its_fixup_cmd(cmd);
 310
 311	return col;
 312}
 313
 314static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
 
 315						    struct its_cmd_desc *desc)
 316{
 317	struct its_collection *col;
 318
 319	col = dev_event_to_col(desc->its_discard_cmd.dev,
 320			       desc->its_discard_cmd.event_id);
 321
 322	its_encode_cmd(cmd, GITS_CMD_DISCARD);
 323	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 324	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 325
 326	its_fixup_cmd(cmd);
 327
 328	return col;
 329}
 330
 331static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
 
 332						struct its_cmd_desc *desc)
 333{
 334	struct its_collection *col;
 335
 336	col = dev_event_to_col(desc->its_inv_cmd.dev,
 337			       desc->its_inv_cmd.event_id);
 338
 339	its_encode_cmd(cmd, GITS_CMD_INV);
 340	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 341	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 342
 343	its_fixup_cmd(cmd);
 344
 345	return col;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346}
 347
 348static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
 
 349						   struct its_cmd_desc *desc)
 350{
 351	its_encode_cmd(cmd, GITS_CMD_INVALL);
 352	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 353
 354	its_fixup_cmd(cmd);
 355
 356	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357}
 358
 359static u64 its_cmd_ptr_to_offset(struct its_node *its,
 360				 struct its_cmd_block *ptr)
 361{
 362	return (ptr - its->cmd_base) * sizeof(*ptr);
 363}
 364
 365static int its_queue_full(struct its_node *its)
 366{
 367	int widx;
 368	int ridx;
 369
 370	widx = its->cmd_write - its->cmd_base;
 371	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
 372
 373	/* This is incredibly unlikely to happen, unless the ITS locks up. */
 374	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
 375		return 1;
 376
 377	return 0;
 378}
 379
 380static struct its_cmd_block *its_allocate_entry(struct its_node *its)
 381{
 382	struct its_cmd_block *cmd;
 383	u32 count = 1000000;	/* 1s! */
 384
 385	while (its_queue_full(its)) {
 386		count--;
 387		if (!count) {
 388			pr_err_ratelimited("ITS queue not draining\n");
 389			return NULL;
 390		}
 391		cpu_relax();
 392		udelay(1);
 393	}
 394
 395	cmd = its->cmd_write++;
 396
 397	/* Handle queue wrapping */
 398	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
 399		its->cmd_write = its->cmd_base;
 400
 
 
 
 
 
 
 401	return cmd;
 402}
 403
 404static struct its_cmd_block *its_post_commands(struct its_node *its)
 405{
 406	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
 407
 408	writel_relaxed(wr, its->base + GITS_CWRITER);
 409
 410	return its->cmd_write;
 411}
 412
 413static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
 414{
 415	/*
 416	 * Make sure the commands written to memory are observable by
 417	 * the ITS.
 418	 */
 419	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
 420		__flush_dcache_area(cmd, sizeof(*cmd));
 421	else
 422		dsb(ishst);
 423}
 424
 425static void its_wait_for_range_completion(struct its_node *its,
 426					  struct its_cmd_block *from,
 427					  struct its_cmd_block *to)
 428{
 429	u64 rd_idx, from_idx, to_idx;
 430	u32 count = 1000000;	/* 1s! */
 431
 432	from_idx = its_cmd_ptr_to_offset(its, from);
 433	to_idx = its_cmd_ptr_to_offset(its, to);
 
 
 
 
 434
 435	while (1) {
 
 
 436		rd_idx = readl_relaxed(its->base + GITS_CREADR);
 437		if (rd_idx >= to_idx || rd_idx < from_idx)
 
 
 
 
 
 
 
 
 
 
 438			break;
 439
 440		count--;
 441		if (!count) {
 442			pr_err_ratelimited("ITS queue timeout\n");
 443			return;
 
 444		}
 
 445		cpu_relax();
 446		udelay(1);
 447	}
 
 
 448}
 449
 450static void its_send_single_command(struct its_node *its,
 451				    its_cmd_builder_t builder,
 452				    struct its_cmd_desc *desc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453{
 454	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
 455	struct its_collection *sync_col;
 456	unsigned long flags;
 457
 458	raw_spin_lock_irqsave(&its->lock, flags);
 
 459
 460	cmd = its_allocate_entry(its);
 461	if (!cmd) {		/* We're soooooo screewed... */
 462		pr_err_ratelimited("ITS can't allocate, dropping command\n");
 463		raw_spin_unlock_irqrestore(&its->lock, flags);
 464		return;
 465	}
 466	sync_col = builder(cmd, desc);
 467	its_flush_cmd(its, cmd);
 468
 469	if (sync_col) {
 470		sync_cmd = its_allocate_entry(its);
 471		if (!sync_cmd) {
 472			pr_err_ratelimited("ITS can't SYNC, skipping\n");
 473			goto post;
 474		}
 475		its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
 476		its_encode_target(sync_cmd, sync_col->target_address);
 477		its_fixup_cmd(sync_cmd);
 478		its_flush_cmd(its, sync_cmd);
 479	}
 480
 481post:
 482	next_cmd = its_post_commands(its);
 483	raw_spin_unlock_irqrestore(&its->lock, flags);
 484
 485	its_wait_for_range_completion(its, cmd, next_cmd);
 486}
 487
 488static void its_send_inv(struct its_device *dev, u32 event_id)
 489{
 490	struct its_cmd_desc desc;
 491
 492	desc.its_inv_cmd.dev = dev;
 493	desc.its_inv_cmd.event_id = event_id;
 494
 495	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
 496}
 497
 498static void its_send_mapd(struct its_device *dev, int valid)
 499{
 500	struct its_cmd_desc desc;
 501
 502	desc.its_mapd_cmd.dev = dev;
 503	desc.its_mapd_cmd.valid = !!valid;
 504
 505	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
 506}
 507
 508static void its_send_mapc(struct its_node *its, struct its_collection *col,
 509			  int valid)
 510{
 511	struct its_cmd_desc desc;
 512
 513	desc.its_mapc_cmd.col = col;
 514	desc.its_mapc_cmd.valid = !!valid;
 515
 516	its_send_single_command(its, its_build_mapc_cmd, &desc);
 517}
 518
 519static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
 520{
 521	struct its_cmd_desc desc;
 522
 523	desc.its_mapvi_cmd.dev = dev;
 524	desc.its_mapvi_cmd.phys_id = irq_id;
 525	desc.its_mapvi_cmd.event_id = id;
 526
 527	its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
 528}
 529
 530static void its_send_movi(struct its_device *dev,
 531			  struct its_collection *col, u32 id)
 532{
 533	struct its_cmd_desc desc;
 534
 535	desc.its_movi_cmd.dev = dev;
 536	desc.its_movi_cmd.col = col;
 537	desc.its_movi_cmd.event_id = id;
 538
 539	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
 540}
 541
 542static void its_send_discard(struct its_device *dev, u32 id)
 543{
 544	struct its_cmd_desc desc;
 545
 546	desc.its_discard_cmd.dev = dev;
 547	desc.its_discard_cmd.event_id = id;
 548
 549	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
 550}
 551
 552static void its_send_invall(struct its_node *its, struct its_collection *col)
 553{
 554	struct its_cmd_desc desc;
 555
 556	desc.its_invall_cmd.col = col;
 557
 558	its_send_single_command(its, its_build_invall_cmd, &desc);
 559}
 560
 561/*
 562 * irqchip functions - assumes MSI, mostly.
 563 */
 
 564
 565static inline u32 its_get_event_id(struct irq_data *d)
 
 
 
 
 
 
 
 
 
 566{
 567	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 568	return d->hwirq - its_dev->event_map.lpi_base;
 
 
 
 
 
 
 
 569}
 570
 571static void lpi_set_config(struct irq_data *d, bool enable)
 
 572{
 573	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 574	irq_hw_number_t hwirq = d->hwirq;
 575	u32 id = its_get_event_id(d);
 576	u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
 577
 578	if (enable)
 579		*cfg |= LPI_PROP_ENABLED;
 580	else
 581		*cfg &= ~LPI_PROP_ENABLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582
 583	/*
 584	 * Make the above write visible to the redistributors.
 585	 * And yes, we're flushing exactly: One. Single. Byte.
 586	 * Humpf...
 587	 */
 588	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
 589		__flush_dcache_area(cfg, sizeof(*cfg));
 590	else
 591		dsb(ishst);
 592	its_send_inv(its_dev, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593}
 594
 595static void its_mask_irq(struct irq_data *d)
 596{
 597	lpi_set_config(d, false);
 
 
 
 598}
 599
 600static void its_unmask_irq(struct irq_data *d)
 601{
 602	lpi_set_config(d, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603}
 604
 605static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
 606			    bool force)
 607{
 608	unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
 609	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 610	struct its_collection *target_col;
 611	u32 id = its_get_event_id(d);
 
 612
 613	if (cpu >= nr_cpu_ids)
 
 614		return -EINVAL;
 615
 616	target_col = &its_dev->its->collections[cpu];
 617	its_send_movi(its_dev, target_col, id);
 618	its_dev->event_map.col_map[id] = cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619
 620	return IRQ_SET_MASK_OK_DONE;
 
 
 
 
 
 
 
 
 
 
 
 621}
 622
 623static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
 624{
 625	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 626	struct its_node *its;
 627	u64 addr;
 628
 629	its = its_dev->its;
 630	addr = its->phys_base + GITS_TRANSLATER;
 631
 632	msg->address_lo		= addr & ((1UL << 32) - 1);
 633	msg->address_hi		= addr >> 32;
 634	msg->data		= its_get_event_id(d);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635}
 636
 637static struct irq_chip its_irq_chip = {
 638	.name			= "ITS",
 639	.irq_mask		= its_mask_irq,
 640	.irq_unmask		= its_unmask_irq,
 641	.irq_eoi		= irq_chip_eoi_parent,
 642	.irq_set_affinity	= its_set_affinity,
 643	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
 
 
 
 644};
 645
 
 646/*
 647 * How we allocate LPIs:
 648 *
 649 * The GIC has id_bits bits for interrupt identifiers. From there, we
 650 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
 651 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
 652 * bits to the right.
 653 *
 654 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
 
 
 
 
 
 655 */
 656#define IRQS_PER_CHUNK_SHIFT	5
 657#define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
 
 
 658
 659static unsigned long *lpi_bitmap;
 660static u32 lpi_chunks;
 661static DEFINE_SPINLOCK(lpi_lock);
 
 
 662
 663static int its_lpi_to_chunk(int lpi)
 664{
 665	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666}
 667
 668static int its_chunk_to_lpi(int chunk)
 669{
 670	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
 
 
 
 
 
 
 
 671}
 672
 673static int __init its_lpi_init(u32 id_bits)
 674{
 675	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
 676
 677	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
 678			     GFP_KERNEL);
 679	if (!lpi_bitmap) {
 680		lpi_chunks = 0;
 681		return -ENOMEM;
 
 
 
 
 
 
 682	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683
 684	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
 685	return 0;
 686}
 687
 688static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
 689{
 690	unsigned long *bitmap = NULL;
 691	int chunk_id;
 692	int nr_chunks;
 693	int i;
 694
 695	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
 696
 697	spin_lock(&lpi_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698
 699	do {
 700		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
 701						      0, nr_chunks, 0);
 702		if (chunk_id < lpi_chunks)
 703			break;
 704
 705		nr_chunks--;
 706	} while (nr_chunks > 0);
 
 
 
 707
 708	if (!nr_chunks)
 709		goto out;
 710
 711	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
 712			 GFP_ATOMIC);
 713	if (!bitmap)
 714		goto out;
 715
 716	for (i = 0; i < nr_chunks; i++)
 717		set_bit(chunk_id + i, lpi_bitmap);
 718
 719	*base = its_chunk_to_lpi(chunk_id);
 720	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
 721
 722out:
 723	spin_unlock(&lpi_lock);
 724
 725	if (!bitmap)
 726		*base = *nr_ids = 0;
 727
 728	return bitmap;
 729}
 730
 731static void its_lpi_free(struct event_lpi_map *map)
 732{
 733	int base = map->lpi_base;
 734	int nr_ids = map->nr_lpis;
 735	int lpi;
 736
 737	spin_lock(&lpi_lock);
 738
 739	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
 740		int chunk = its_lpi_to_chunk(lpi);
 741		BUG_ON(chunk > lpi_chunks);
 742		if (test_bit(chunk, lpi_bitmap)) {
 743			clear_bit(chunk, lpi_bitmap);
 744		} else {
 745			pr_err("Bad LPI chunk %d\n", chunk);
 746		}
 747	}
 748
 749	spin_unlock(&lpi_lock);
 
 
 
 750
 751	kfree(map->lpi_map);
 752	kfree(map->col_map);
 753}
 754
 755/*
 756 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
 757 * deal with (one configuration byte per interrupt). PENDBASE has to
 758 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
 759 */
 760#define LPI_PROPBASE_SZ		SZ_64K
 761#define LPI_PENDBASE_SZ		(LPI_PROPBASE_SZ / 8 + SZ_1K)
 762
 763/*
 764 * This is how many bits of ID we need, including the useless ones.
 765 */
 766#define LPI_NRBITS		ilog2(LPI_PROPBASE_SZ + SZ_8K)
 
 767
 768#define LPI_PROP_DEFAULT_PRIO	0xa0
 
 769
 770static int __init its_alloc_lpi_tables(void)
 771{
 772	phys_addr_t paddr;
 
 
 773
 774	gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
 775					   get_order(LPI_PROPBASE_SZ));
 776	if (!gic_rdists->prop_page) {
 777		pr_err("Failed to allocate PROPBASE\n");
 778		return -ENOMEM;
 779	}
 780
 781	paddr = page_to_phys(gic_rdists->prop_page);
 782	pr_info("GIC: using LPI property table @%pa\n", &paddr);
 
 
 
 
 
 783
 784	/* Priority 0xa0, Group-1, disabled */
 785	memset(page_address(gic_rdists->prop_page),
 786	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
 787	       LPI_PROPBASE_SZ);
 788
 789	/* Make sure the GIC will observe the written configuration */
 790	__flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791
 792	return 0;
 793}
 794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795static const char *its_base_type_string[] = {
 796	[GITS_BASER_TYPE_DEVICE]	= "Devices",
 797	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
 798	[GITS_BASER_TYPE_CPU]		= "Physical CPUs",
 799	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
 800	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
 801	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
 802	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
 803};
 804
 805static void its_free_tables(struct its_node *its)
 806{
 807	int i;
 808
 809	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
 810		if (its->tables[i].base) {
 811			free_pages((unsigned long)its->tables[i].base,
 812				   its->tables[i].order);
 813			its->tables[i].base = NULL;
 814		}
 815	}
 816}
 817
 818static int its_alloc_tables(const char *node_name, struct its_node *its)
 
 819{
 820	int err;
 821	int i;
 822	int psz = SZ_64K;
 823	u64 shr = GITS_BASER_InnerShareable;
 824	u64 cache;
 825	u64 typer;
 826	u32 ids;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827
 828	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829		/*
 830		 * erratum 22375: only alloc 8MB table size
 831		 * erratum 24313: ignore memory access type
 
 
 
 832		 */
 833		cache	= 0;
 834		ids	= 0x14;			/* 20 bits, 8MB */
 835	} else {
 836		cache	= GITS_BASER_WaWb;
 837		typer	= readq_relaxed(its->base + GITS_TYPER);
 838		ids	= GITS_TYPER_DEVBITS(typer);
 839	}
 840
 841	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
 842		u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
 843		u64 type = GITS_BASER_TYPE(val);
 844		u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
 845		int order = get_order(psz);
 846		int alloc_pages;
 847		u64 tmp;
 848		void *base;
 849
 850		if (type == GITS_BASER_TYPE_NONE)
 851			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853		/*
 854		 * Allocate as many entries as required to fit the
 855		 * range of device IDs that the ITS can grok... The ID
 856		 * space being incredibly sparse, this results in a
 857		 * massive waste of memory.
 858		 *
 859		 * For other tables, only allocate a single page.
 860		 */
 861		if (type == GITS_BASER_TYPE_DEVICE) {
 
 
 
 862			/*
 863			 * 'order' was initialized earlier to the default page
 864			 * granule of the the ITS.  We can't have an allocation
 865			 * smaller than that.  If the requested allocation
 866			 * is smaller, round up to the default page granule.
 
 867			 */
 868			order = max(get_order((1UL << ids) * entry_size),
 869				    order);
 870			if (order >= MAX_ORDER) {
 871				order = MAX_ORDER - 1;
 872				pr_warn("%s: Device Table too large, reduce its page order to %u\n",
 873					node_name, order);
 874			}
 875		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876
 877retry_alloc_baser:
 878		alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
 879		if (alloc_pages > GITS_BASER_PAGES_MAX) {
 880			alloc_pages = GITS_BASER_PAGES_MAX;
 881			order = get_order(GITS_BASER_PAGES_MAX * psz);
 882			pr_warn("%s: Device Table too large, reduce its page order to %u (%u pages)\n",
 883				node_name, order, alloc_pages);
 884		}
 885
 886		base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
 887		if (!base) {
 888			err = -ENOMEM;
 889			goto out_free;
 890		}
 
 
 891
 892		its->tables[i].base = base;
 893		its->tables[i].order = order;
 
 894
 895retry_baser:
 896		val = (virt_to_phys(base) 				 |
 897		       (type << GITS_BASER_TYPE_SHIFT)			 |
 898		       ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
 899		       cache						 |
 900		       shr						 |
 901		       GITS_BASER_VALID);
 902
 903		switch (psz) {
 904		case SZ_4K:
 905			val |= GITS_BASER_PAGE_SIZE_4K;
 906			break;
 907		case SZ_16K:
 908			val |= GITS_BASER_PAGE_SIZE_16K;
 
 
 
 
 909			break;
 
 
 
 
 
 
 
 
 
 
 
 910		case SZ_64K:
 911			val |= GITS_BASER_PAGE_SIZE_64K;
 912			break;
 
 
 
 
 
 
 913		}
 
 914
 915		val |= alloc_pages - 1;
 
 
 
 
 
 
 
 
 916
 917		writeq_relaxed(val, its->base + GITS_BASER + i * 8);
 918		tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
 
 919
 920		if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
 921			/*
 922			 * Shareability didn't stick. Just use
 923			 * whatever the read reported, which is likely
 924			 * to be the only thing this redistributor
 925			 * supports. If that's zero, make it
 926			 * non-cacheable as well.
 927			 */
 928			shr = tmp & GITS_BASER_SHAREABILITY_MASK;
 929			if (!shr) {
 930				cache = GITS_BASER_nC;
 931				__flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order));
 932			}
 933			goto retry_baser;
 934		}
 935
 936		if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
 937			/*
 938			 * Page size didn't stick. Let's try a smaller
 939			 * size and retry. If we reach 4K, then
 940			 * something is horribly wrong...
 941			 */
 942			free_pages((unsigned long)base, order);
 943			its->tables[i].base = NULL;
 944
 945			switch (psz) {
 946			case SZ_16K:
 947				psz = SZ_4K;
 948				goto retry_alloc_baser;
 949			case SZ_64K:
 950				psz = SZ_16K;
 951				goto retry_alloc_baser;
 
 
 
 
 
 
 
 
 
 952			}
 
 
 
 
 953		}
 954
 955		if (val != tmp) {
 956			pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
 957			       node_name, i,
 958			       (unsigned long) val, (unsigned long) tmp);
 959			err = -ENXIO;
 960			goto out_free;
 961		}
 962
 963		pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
 964			(int)(PAGE_ORDER_TO_SIZE(order) / entry_size),
 965			its_base_type_string[type],
 966			(unsigned long)virt_to_phys(base),
 967			psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
 968	}
 969
 970	return 0;
 
 971
 972out_free:
 973	its_free_tables(its);
 
 
 
 974
 975	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976}
 977
 978static int its_alloc_collections(struct its_node *its)
 979{
 980	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
 
 
 981				   GFP_KERNEL);
 982	if (!its->collections)
 983		return -ENOMEM;
 984
 
 
 
 985	return 0;
 986}
 987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988static void its_cpu_init_lpis(void)
 989{
 990	void __iomem *rbase = gic_data_rdist_rd_base();
 991	struct page *pend_page;
 
 992	u64 val, tmp;
 993
 994	/* If we didn't allocate the pending table yet, do it now */
 995	pend_page = gic_data_rdist()->pend_page;
 996	if (!pend_page) {
 997		phys_addr_t paddr;
 
 
 998		/*
 999		 * The pending pages have to be at least 64kB aligned,
1000		 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1001		 */
1002		pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1003					get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1004		if (!pend_page) {
1005			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1006			       smp_processor_id());
1007			return;
1008		}
1009
1010		/* Make sure the GIC will observe the zero-ed page */
1011		__flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1012
1013		paddr = page_to_phys(pend_page);
1014		pr_info("CPU%d: using LPI pending table @%pa\n",
1015			smp_processor_id(), &paddr);
1016		gic_data_rdist()->pend_page = pend_page;
1017	}
1018
1019	/* Disable LPIs */
1020	val = readl_relaxed(rbase + GICR_CTLR);
1021	val &= ~GICR_CTLR_ENABLE_LPIS;
1022	writel_relaxed(val, rbase + GICR_CTLR);
1023
1024	/*
1025	 * Make sure any change to the table is observable by the GIC.
1026	 */
1027	dsb(sy);
1028
1029	/* set PROPBASE */
1030	val = (page_to_phys(gic_rdists->prop_page) |
1031	       GICR_PROPBASER_InnerShareable |
1032	       GICR_PROPBASER_WaWb |
1033	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1034
1035	writeq_relaxed(val, rbase + GICR_PROPBASER);
1036	tmp = readq_relaxed(rbase + GICR_PROPBASER);
1037
1038	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1039		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1040			/*
1041			 * The HW reports non-shareable, we must
1042			 * remove the cacheability attributes as
1043			 * well.
1044			 */
1045			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1046				 GICR_PROPBASER_CACHEABILITY_MASK);
1047			val |= GICR_PROPBASER_nC;
1048			writeq_relaxed(val, rbase + GICR_PROPBASER);
1049		}
1050		pr_info_once("GIC: using cache flushing for LPI property table\n");
1051		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1052	}
1053
1054	/* set PENDBASE */
1055	val = (page_to_phys(pend_page) |
1056	       GICR_PENDBASER_InnerShareable |
1057	       GICR_PENDBASER_WaWb);
1058
1059	writeq_relaxed(val, rbase + GICR_PENDBASER);
1060	tmp = readq_relaxed(rbase + GICR_PENDBASER);
1061
1062	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1063		/*
1064		 * The HW reports non-shareable, we must remove the
1065		 * cacheability attributes as well.
1066		 */
1067		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1068			 GICR_PENDBASER_CACHEABILITY_MASK);
1069		val |= GICR_PENDBASER_nC;
1070		writeq_relaxed(val, rbase + GICR_PENDBASER);
1071	}
1072
1073	/* Enable LPIs */
1074	val = readl_relaxed(rbase + GICR_CTLR);
1075	val |= GICR_CTLR_ENABLE_LPIS;
1076	writel_relaxed(val, rbase + GICR_CTLR);
1077
1078	/* Make sure the GIC has seen the above */
1079	dsb(sy);
1080}
1081
1082static void its_cpu_init_collection(void)
1083{
1084	struct its_node *its;
1085	int cpu;
 
 
 
 
 
 
 
1086
1087	spin_lock(&its_lock);
1088	cpu = smp_processor_id();
 
 
 
 
 
1089
1090	list_for_each_entry(its, &its_nodes, entry) {
1091		u64 target;
 
 
 
 
 
 
 
1092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093		/*
1094		 * We now have to bind each collection to its target
1095		 * redistributor.
1096		 */
1097		if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1098			/*
1099			 * This ITS wants the physical address of the
1100			 * redistributor.
1101			 */
1102			target = gic_data_rdist()->phys_base;
1103		} else {
1104			/*
1105			 * This ITS wants a linear CPU number.
1106			 */
1107			target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1108			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1109		}
1110
1111		/* Perform collection mapping */
1112		its->collections[cpu].target_address = target;
1113		its->collections[cpu].col_id = cpu;
1114
1115		its_send_mapc(its, &its->collections[cpu], 1);
1116		its_send_invall(its, &its->collections[cpu]);
1117	}
 
 
 
 
 
 
1118
1119	spin_unlock(&its_lock);
 
 
 
1120}
1121
1122static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1123{
1124	struct its_device *its_dev = NULL, *tmp;
1125	unsigned long flags;
1126
1127	raw_spin_lock_irqsave(&its->lock, flags);
1128
1129	list_for_each_entry(tmp, &its->its_device_list, entry) {
1130		if (tmp->device_id == dev_id) {
1131			its_dev = tmp;
1132			break;
1133		}
1134	}
1135
1136	raw_spin_unlock_irqrestore(&its->lock, flags);
1137
1138	return its_dev;
1139}
1140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1142					    int nvecs)
1143{
1144	struct its_device *dev;
1145	unsigned long *lpi_map;
1146	unsigned long flags;
1147	u16 *col_map = NULL;
1148	void *itt;
1149	int lpi_base;
1150	int nr_lpis;
1151	int nr_ites;
1152	int sz;
1153
 
 
 
 
 
 
1154	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1155	/*
1156	 * At least one bit of EventID is being used, hence a minimum
1157	 * of two entries. No, the architecture doesn't let you
1158	 * express an ITT with a single entry.
1159	 */
1160	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1161	sz = nr_ites * its->ite_size;
1162	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1163	itt = kzalloc(sz, GFP_KERNEL);
1164	lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1165	if (lpi_map)
1166		col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
 
 
 
 
 
 
 
1167
1168	if (!dev || !itt || !lpi_map || !col_map) {
1169		kfree(dev);
1170		kfree(itt);
1171		kfree(lpi_map);
1172		kfree(col_map);
1173		return NULL;
1174	}
1175
1176	__flush_dcache_area(itt, sz);
1177
1178	dev->its = its;
1179	dev->itt = itt;
1180	dev->nr_ites = nr_ites;
1181	dev->event_map.lpi_map = lpi_map;
1182	dev->event_map.col_map = col_map;
1183	dev->event_map.lpi_base = lpi_base;
1184	dev->event_map.nr_lpis = nr_lpis;
 
1185	dev->device_id = dev_id;
1186	INIT_LIST_HEAD(&dev->entry);
1187
1188	raw_spin_lock_irqsave(&its->lock, flags);
1189	list_add(&dev->entry, &its->its_device_list);
1190	raw_spin_unlock_irqrestore(&its->lock, flags);
1191
1192	/* Map device to its ITT */
1193	its_send_mapd(dev, 1);
1194
1195	return dev;
1196}
1197
1198static void its_free_device(struct its_device *its_dev)
1199{
1200	unsigned long flags;
1201
1202	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1203	list_del(&its_dev->entry);
1204	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
 
1205	kfree(its_dev->itt);
1206	kfree(its_dev);
1207}
1208
1209static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1210{
1211	int idx;
1212
1213	idx = find_first_zero_bit(dev->event_map.lpi_map,
1214				  dev->event_map.nr_lpis);
1215	if (idx == dev->event_map.nr_lpis)
 
 
1216		return -ENOSPC;
1217
1218	*hwirq = dev->event_map.lpi_base + idx;
1219	set_bit(idx, dev->event_map.lpi_map);
1220
1221	return 0;
1222}
1223
1224static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1225			   int nvec, msi_alloc_info_t *info)
1226{
1227	struct its_node *its;
1228	struct its_device *its_dev;
1229	struct msi_domain_info *msi_info;
1230	u32 dev_id;
 
1231
1232	/*
1233	 * We ignore "dev" entierely, and rely on the dev_id that has
1234	 * been passed via the scratchpad. This limits this domain's
1235	 * usefulness to upper layers that definitely know that they
1236	 * are built on top of the ITS.
1237	 */
1238	dev_id = info->scratchpad[0].ul;
1239
1240	msi_info = msi_get_domain_info(domain);
1241	its = msi_info->data;
1242
 
 
 
 
 
 
 
 
 
 
 
1243	its_dev = its_find_device(its, dev_id);
1244	if (its_dev) {
1245		/*
1246		 * We already have seen this ID, probably through
1247		 * another alias (PCI bridge of some sort). No need to
1248		 * create the device.
1249		 */
 
1250		pr_debug("Reusing ITT for devID %x\n", dev_id);
1251		goto out;
1252	}
1253
1254	its_dev = its_create_device(its, dev_id, nvec);
1255	if (!its_dev)
1256		return -ENOMEM;
 
 
 
 
 
1257
1258	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1259out:
 
1260	info->scratchpad[0].ptr = its_dev;
1261	return 0;
1262}
1263
1264static struct msi_domain_ops its_msi_domain_ops = {
1265	.msi_prepare	= its_msi_prepare,
1266};
1267
1268static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1269				    unsigned int virq,
1270				    irq_hw_number_t hwirq)
1271{
1272	struct irq_fwspec fwspec;
1273
1274	if (irq_domain_get_of_node(domain->parent)) {
1275		fwspec.fwnode = domain->parent->fwnode;
1276		fwspec.param_count = 3;
1277		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1278		fwspec.param[1] = hwirq;
1279		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
 
 
 
 
 
1280	} else {
1281		return -EINVAL;
1282	}
1283
1284	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1285}
1286
1287static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1288				unsigned int nr_irqs, void *args)
1289{
1290	msi_alloc_info_t *info = args;
1291	struct its_device *its_dev = info->scratchpad[0].ptr;
 
 
1292	irq_hw_number_t hwirq;
1293	int err;
1294	int i;
1295
1296	for (i = 0; i < nr_irqs; i++) {
1297		err = its_alloc_device_irq(its_dev, &hwirq);
1298		if (err)
1299			return err;
 
 
 
1300
1301		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
 
1302		if (err)
1303			return err;
1304
1305		irq_domain_set_hwirq_and_chip(domain, virq + i,
1306					      hwirq, &its_irq_chip, its_dev);
 
 
 
1307		pr_debug("ID:%d pID:%d vID:%d\n",
1308			 (int)(hwirq - its_dev->event_map.lpi_base),
1309			 (int) hwirq, virq + i);
1310	}
1311
1312	return 0;
1313}
1314
1315static void its_irq_domain_activate(struct irq_domain *domain,
1316				    struct irq_data *d)
1317{
1318	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1319	u32 event = its_get_event_id(d);
 
1320
1321	/* Bind the LPI to the first possible CPU */
1322	its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask);
 
 
 
 
 
1323
1324	/* Map the GIC IRQ and event to the device */
1325	its_send_mapvi(its_dev, d->hwirq, event);
 
1326}
1327
1328static void its_irq_domain_deactivate(struct irq_domain *domain,
1329				      struct irq_data *d)
1330{
1331	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1332	u32 event = its_get_event_id(d);
1333
 
1334	/* Stop the delivery of interrupts */
1335	its_send_discard(its_dev, event);
1336}
1337
1338static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1339				unsigned int nr_irqs)
1340{
1341	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1342	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 
1343	int i;
1344
 
 
 
 
1345	for (i = 0; i < nr_irqs; i++) {
1346		struct irq_data *data = irq_domain_get_irq_data(domain,
1347								virq + i);
1348		u32 event = its_get_event_id(data);
1349
1350		/* Mark interrupt index as unused */
1351		clear_bit(event, its_dev->event_map.lpi_map);
1352
1353		/* Nuke the entry in the domain */
1354		irq_domain_reset_irq_data(data);
1355	}
1356
1357	/* If all interrupts have been freed, start mopping the floor */
1358	if (bitmap_empty(its_dev->event_map.lpi_map,
 
 
 
 
 
 
1359			 its_dev->event_map.nr_lpis)) {
1360		its_lpi_free(&its_dev->event_map);
 
 
1361
1362		/* Unmap device/itt */
1363		its_send_mapd(its_dev, 0);
1364		its_free_device(its_dev);
1365	}
1366
 
 
1367	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1368}
1369
1370static const struct irq_domain_ops its_domain_ops = {
1371	.alloc			= its_irq_domain_alloc,
1372	.free			= its_irq_domain_free,
1373	.activate		= its_irq_domain_activate,
1374	.deactivate		= its_irq_domain_deactivate,
1375};
1376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377static int its_force_quiescent(void __iomem *base)
1378{
1379	u32 count = 1000000;	/* 1s */
1380	u32 val;
1381
1382	val = readl_relaxed(base + GITS_CTLR);
1383	if (val & GITS_CTLR_QUIESCENT)
 
 
 
 
 
1384		return 0;
1385
1386	/* Disable the generation of all interrupts to this ITS */
1387	val &= ~GITS_CTLR_ENABLE;
1388	writel_relaxed(val, base + GITS_CTLR);
1389
1390	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
1391	while (1) {
1392		val = readl_relaxed(base + GITS_CTLR);
1393		if (val & GITS_CTLR_QUIESCENT)
1394			return 0;
1395
1396		count--;
1397		if (!count)
1398			return -EBUSY;
1399
1400		cpu_relax();
1401		udelay(1);
1402	}
1403}
1404
1405static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1406{
1407	struct its_node *its = data;
1408
 
 
 
1409	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1410}
1411
1412static const struct gic_quirk its_quirks[] = {
1413#ifdef CONFIG_CAVIUM_ERRATUM_22375
1414	{
1415		.desc	= "ITS: Cavium errata 22375, 24313",
1416		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1417		.mask	= 0xffff0fff,
1418		.init	= its_enable_quirk_cavium_22375,
1419	},
1420#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421	{
1422	}
1423};
1424
1425static void its_enable_quirks(struct its_node *its)
1426{
1427	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1428
1429	gic_enable_quirks(iidr, its_quirks, its);
1430}
1431
1432static int __init its_probe(struct device_node *node,
1433			    struct irq_domain *parent)
1434{
1435	struct resource res;
1436	struct its_node *its;
1437	void __iomem *its_base;
1438	struct irq_domain *inner_domain;
1439	u32 val;
1440	u64 baser, tmp;
1441	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
1442
1443	err = of_address_to_resource(node, 0, &res);
1444	if (err) {
1445		pr_warn("%s: no regs?\n", node->full_name);
1446		return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447	}
 
 
 
 
 
 
 
 
 
 
 
 
1448
1449	its_base = ioremap(res.start, resource_size(&res));
1450	if (!its_base) {
1451		pr_warn("%s: unable to map registers\n", node->full_name);
1452		return -ENOMEM;
 
1453	}
1454
1455	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1456	if (val != 0x30 && val != 0x40) {
1457		pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1458		err = -ENODEV;
1459		goto out_unmap;
1460	}
1461
1462	err = its_force_quiescent(its_base);
1463	if (err) {
1464		pr_warn("%s: failed to quiesce, giving up\n",
1465			node->full_name);
1466		goto out_unmap;
1467	}
1468
1469	pr_info("ITS: %s\n", node->full_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470
1471	its = kzalloc(sizeof(*its), GFP_KERNEL);
1472	if (!its) {
1473		err = -ENOMEM;
1474		goto out_unmap;
1475	}
1476
1477	raw_spin_lock_init(&its->lock);
 
1478	INIT_LIST_HEAD(&its->entry);
1479	INIT_LIST_HEAD(&its->its_device_list);
 
 
1480	its->base = its_base;
1481	its->phys_base = res.start;
1482	its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
 
 
 
 
 
 
1483
1484	its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1485	if (!its->cmd_base) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486		err = -ENOMEM;
1487		goto out_free_its;
1488	}
 
1489	its->cmd_write = its->cmd_base;
 
 
 
1490
1491	its_enable_quirks(its);
1492
1493	err = its_alloc_tables(node->full_name, its);
1494	if (err)
1495		goto out_free_cmd;
1496
1497	err = its_alloc_collections(its);
1498	if (err)
1499		goto out_free_tables;
1500
1501	baser = (virt_to_phys(its->cmd_base)	|
1502		 GITS_CBASER_WaWb		|
1503		 GITS_CBASER_InnerShareable	|
1504		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
1505		 GITS_CBASER_VALID);
1506
1507	writeq_relaxed(baser, its->base + GITS_CBASER);
1508	tmp = readq_relaxed(its->base + GITS_CBASER);
1509
1510	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1511		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1512			/*
1513			 * The HW reports non-shareable, we must
1514			 * remove the cacheability attributes as
1515			 * well.
1516			 */
1517			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1518				   GITS_CBASER_CACHEABILITY_MASK);
1519			baser |= GITS_CBASER_nC;
1520			writeq_relaxed(baser, its->base + GITS_CBASER);
1521		}
1522		pr_info("ITS: using cache flushing for cmd queue\n");
1523		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1524	}
1525
1526	writeq_relaxed(0, its->base + GITS_CWRITER);
1527	writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1528
1529	if (of_property_read_bool(node, "msi-controller")) {
1530		struct msi_domain_info *info;
1531
1532		info = kzalloc(sizeof(*info), GFP_KERNEL);
1533		if (!info) {
1534			err = -ENOMEM;
1535			goto out_free_tables;
1536		}
1537
1538		inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1539		if (!inner_domain) {
1540			err = -ENOMEM;
1541			kfree(info);
1542			goto out_free_tables;
1543		}
1544
1545		inner_domain->parent = parent;
1546		inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1547		info->ops = &its_msi_domain_ops;
1548		info->data = its;
1549		inner_domain->host_data = info;
1550	}
1551
1552	spin_lock(&its_lock);
1553	list_add(&its->entry, &its_nodes);
1554	spin_unlock(&its_lock);
1555
1556	return 0;
1557
1558out_free_tables:
1559	its_free_tables(its);
1560out_free_cmd:
1561	kfree(its->cmd_base);
 
 
 
1562out_free_its:
1563	kfree(its);
1564out_unmap:
1565	iounmap(its_base);
1566	pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1567	return err;
1568}
1569
1570static bool gic_rdists_supports_plpis(void)
1571{
1572	return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573}
1574
1575int its_cpu_init(void)
1576{
1577	if (!list_empty(&its_nodes)) {
1578		if (!gic_rdists_supports_plpis()) {
1579			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1580			return -ENXIO;
1581		}
 
 
1582		its_cpu_init_lpis();
1583		its_cpu_init_collection();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586	return 0;
1587}
1588
1589static struct of_device_id its_device_id[] = {
1590	{	.compatible	= "arm,gic-v3-its",	},
1591	{},
1592};
1593
1594int __init its_init(struct device_node *node, struct rdists *rdists,
1595	     struct irq_domain *parent_domain)
1596{
1597	struct device_node *np;
 
1598
 
 
 
 
 
 
1599	for (np = of_find_matching_node(node, its_device_id); np;
1600	     np = of_find_matching_node(np, its_device_id)) {
1601		its_probe(np, parent_domain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602	}
1603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1604	if (list_empty(&its_nodes)) {
1605		pr_warn("ITS: No ITS available, not enabling LPIs\n");
1606		return -ENXIO;
1607	}
1608
1609	gic_rdists = rdists;
1610	its_alloc_lpi_tables();
1611	its_lpi_init(rdists->id_bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1612
1613	return 0;
1614}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/acpi_iort.h>
   9#include <linux/bitfield.h>
  10#include <linux/bitmap.h>
  11#include <linux/cpu.h>
  12#include <linux/crash_dump.h>
  13#include <linux/delay.h>
  14#include <linux/efi.h>
  15#include <linux/interrupt.h>
  16#include <linux/iommu.h>
  17#include <linux/iopoll.h>
  18#include <linux/irqdomain.h>
  19#include <linux/list.h>
  20#include <linux/log2.h>
  21#include <linux/memblock.h>
  22#include <linux/mm.h>
  23#include <linux/msi.h>
  24#include <linux/of.h>
  25#include <linux/of_address.h>
  26#include <linux/of_irq.h>
  27#include <linux/of_pci.h>
  28#include <linux/of_platform.h>
  29#include <linux/percpu.h>
  30#include <linux/slab.h>
  31#include <linux/syscore_ops.h>
  32
  33#include <linux/irqchip.h>
  34#include <linux/irqchip/arm-gic-v3.h>
  35#include <linux/irqchip/arm-gic-v4.h>
  36
 
  37#include <asm/cputype.h>
  38#include <asm/exception.h>
  39
  40#include "irq-gic-common.h"
  41
  42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
  43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
  44#define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
  45
  46#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
  47#define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
  48
  49#define RD_LOCAL_LPI_ENABLED                    BIT(0)
  50#define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
  51#define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
  52
  53static u32 lpi_id_bits;
  54
  55/*
  56 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
  57 * deal with (one configuration byte per interrupt). PENDBASE has to
  58 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
  59 */
  60#define LPI_NRBITS		lpi_id_bits
  61#define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
  62#define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
  63
  64#define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
  65
  66/*
  67 * Collection structure - just an ID, and a redistributor address to
  68 * ping. We use one per CPU as a bag of interrupts assigned to this
  69 * CPU.
  70 */
  71struct its_collection {
  72	u64			target_address;
  73	u16			col_id;
  74};
  75
  76/*
  77 * The ITS_BASER structure - contains memory information, cached
  78 * value of BASER register configuration and ITS page size.
  79 */
  80struct its_baser {
  81	void		*base;
  82	u64		val;
  83	u32		order;
  84	u32		psz;
  85};
  86
  87struct its_device;
  88
  89/*
  90 * The ITS structure - contains most of the infrastructure, with the
  91 * top-level MSI domain, the command queue, the collections, and the
  92 * list of devices writing to it.
  93 *
  94 * dev_alloc_lock has to be taken for device allocations, while the
  95 * spinlock must be taken to parse data structures such as the device
  96 * list.
  97 */
  98struct its_node {
  99	raw_spinlock_t		lock;
 100	struct mutex		dev_alloc_lock;
 101	struct list_head	entry;
 102	void __iomem		*base;
 103	void __iomem		*sgir_base;
 104	phys_addr_t		phys_base;
 105	struct its_cmd_block	*cmd_base;
 106	struct its_cmd_block	*cmd_write;
 107	struct its_baser	tables[GITS_BASER_NR_REGS];
 
 
 
 108	struct its_collection	*collections;
 109	struct fwnode_handle	*fwnode_handle;
 110	u64			(*get_msi_base)(struct its_device *its_dev);
 111	u64			typer;
 112	u64			cbaser_save;
 113	u32			ctlr_save;
 114	u32			mpidr;
 115	struct list_head	its_device_list;
 116	u64			flags;
 117	unsigned long		list_nr;
 118	int			numa_node;
 119	unsigned int		msi_domain_flags;
 120	u32			pre_its_base; /* for Socionext Synquacer */
 121	int			vlpi_redist_offset;
 122};
 123
 124#define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
 125#define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
 126#define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
 127
 128#define ITS_ITT_ALIGN		SZ_256
 129
 130/* The maximum number of VPEID bits supported by VLPI commands */
 131#define ITS_MAX_VPEID_BITS						\
 132	({								\
 133		int nvpeid = 16;					\
 134		if (gic_rdists->has_rvpeid &&				\
 135		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
 136			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
 137				      GICD_TYPER2_VID);			\
 138									\
 139		nvpeid;							\
 140	})
 141#define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
 142
 143/* Convert page order to size in bytes */
 144#define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
 145
 146struct event_lpi_map {
 147	unsigned long		*lpi_map;
 148	u16			*col_map;
 149	irq_hw_number_t		lpi_base;
 150	int			nr_lpis;
 151	raw_spinlock_t		vlpi_lock;
 152	struct its_vm		*vm;
 153	struct its_vlpi_map	*vlpi_maps;
 154	int			nr_vlpis;
 155};
 156
 157/*
 158 * The ITS view of a device - belongs to an ITS, owns an interrupt
 159 * translation table, and a list of interrupts.  If it some of its
 160 * LPIs are injected into a guest (GICv4), the event_map.vm field
 161 * indicates which one.
 162 */
 163struct its_device {
 164	struct list_head	entry;
 165	struct its_node		*its;
 166	struct event_lpi_map	event_map;
 167	void			*itt;
 168	u32			nr_ites;
 169	u32			device_id;
 170	bool			shared;
 171};
 172
 173static struct {
 174	raw_spinlock_t		lock;
 175	struct its_device	*dev;
 176	struct its_vpe		**vpes;
 177	int			next_victim;
 178} vpe_proxy;
 179
 180struct cpu_lpi_count {
 181	atomic_t	managed;
 182	atomic_t	unmanaged;
 183};
 184
 185static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
 186
 187static LIST_HEAD(its_nodes);
 188static DEFINE_RAW_SPINLOCK(its_lock);
 189static struct rdists *gic_rdists;
 190static struct irq_domain *its_parent;
 191
 192static unsigned long its_list_map;
 193static u16 vmovp_seq_num;
 194static DEFINE_RAW_SPINLOCK(vmovp_lock);
 195
 196static DEFINE_IDA(its_vpeid_ida);
 197
 198#define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
 199#define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
 200#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
 201#define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
 202
 203/*
 204 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
 205 * always have vSGIs mapped.
 206 */
 207static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
 208{
 209	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
 210}
 211
 212static u16 get_its_list(struct its_vm *vm)
 213{
 214	struct its_node *its;
 215	unsigned long its_list = 0;
 216
 217	list_for_each_entry(its, &its_nodes, entry) {
 218		if (!is_v4(its))
 219			continue;
 220
 221		if (require_its_list_vmovp(vm, its))
 222			__set_bit(its->list_nr, &its_list);
 223	}
 224
 225	return (u16)its_list;
 226}
 227
 228static inline u32 its_get_event_id(struct irq_data *d)
 229{
 230	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 231	return d->hwirq - its_dev->event_map.lpi_base;
 232}
 233
 234static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 235					       u32 event)
 236{
 237	struct its_node *its = its_dev->its;
 238
 239	return its->collections + its_dev->event_map.col_map[event];
 240}
 241
 242static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
 243					       u32 event)
 244{
 245	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
 246		return NULL;
 247
 248	return &its_dev->event_map.vlpi_maps[event];
 249}
 250
 251static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
 252{
 253	if (irqd_is_forwarded_to_vcpu(d)) {
 254		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 255		u32 event = its_get_event_id(d);
 256
 257		return dev_event_to_vlpi_map(its_dev, event);
 258	}
 259
 260	return NULL;
 261}
 262
 263static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
 264{
 265	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
 266	return vpe->col_idx;
 267}
 268
 269static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
 270{
 271	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
 272}
 273
 274static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
 275{
 276	struct its_vlpi_map *map = get_vlpi_map(d);
 277	int cpu;
 278
 279	if (map) {
 280		cpu = vpe_to_cpuid_lock(map->vpe, flags);
 281	} else {
 282		/* Physical LPIs are already locked via the irq_desc lock */
 283		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 284		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
 285		/* Keep GCC quiet... */
 286		*flags = 0;
 287	}
 288
 289	return cpu;
 290}
 291
 292static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
 293{
 294	struct its_vlpi_map *map = get_vlpi_map(d);
 295
 296	if (map)
 297		vpe_to_cpuid_unlock(map->vpe, flags);
 298}
 299
 300static struct its_collection *valid_col(struct its_collection *col)
 301{
 302	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
 303		return NULL;
 304
 305	return col;
 306}
 307
 308static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
 309{
 310	if (valid_col(its->collections + vpe->col_idx))
 311		return vpe;
 312
 313	return NULL;
 314}
 315
 316/*
 317 * ITS command descriptors - parameters to be encoded in a command
 318 * block.
 319 */
 320struct its_cmd_desc {
 321	union {
 322		struct {
 323			struct its_device *dev;
 324			u32 event_id;
 325		} its_inv_cmd;
 326
 327		struct {
 328			struct its_device *dev;
 329			u32 event_id;
 330		} its_clear_cmd;
 331
 332		struct {
 333			struct its_device *dev;
 334			u32 event_id;
 335		} its_int_cmd;
 336
 337		struct {
 338			struct its_device *dev;
 339			int valid;
 340		} its_mapd_cmd;
 341
 342		struct {
 343			struct its_collection *col;
 344			int valid;
 345		} its_mapc_cmd;
 346
 347		struct {
 348			struct its_device *dev;
 349			u32 phys_id;
 350			u32 event_id;
 351		} its_mapti_cmd;
 352
 353		struct {
 354			struct its_device *dev;
 355			struct its_collection *col;
 356			u32 event_id;
 357		} its_movi_cmd;
 358
 359		struct {
 360			struct its_device *dev;
 361			u32 event_id;
 362		} its_discard_cmd;
 363
 364		struct {
 365			struct its_collection *col;
 366		} its_invall_cmd;
 367
 368		struct {
 369			struct its_vpe *vpe;
 370		} its_vinvall_cmd;
 371
 372		struct {
 373			struct its_vpe *vpe;
 374			struct its_collection *col;
 375			bool valid;
 376		} its_vmapp_cmd;
 377
 378		struct {
 379			struct its_vpe *vpe;
 380			struct its_device *dev;
 381			u32 virt_id;
 382			u32 event_id;
 383			bool db_enabled;
 384		} its_vmapti_cmd;
 385
 386		struct {
 387			struct its_vpe *vpe;
 388			struct its_device *dev;
 389			u32 event_id;
 390			bool db_enabled;
 391		} its_vmovi_cmd;
 392
 393		struct {
 394			struct its_vpe *vpe;
 395			struct its_collection *col;
 396			u16 seq_num;
 397			u16 its_list;
 398		} its_vmovp_cmd;
 399
 400		struct {
 401			struct its_vpe *vpe;
 402		} its_invdb_cmd;
 403
 404		struct {
 405			struct its_vpe *vpe;
 406			u8 sgi;
 407			u8 priority;
 408			bool enable;
 409			bool group;
 410			bool clear;
 411		} its_vsgi_cmd;
 412	};
 413};
 414
 415/*
 416 * The ITS command block, which is what the ITS actually parses.
 417 */
 418struct its_cmd_block {
 419	union {
 420		u64	raw_cmd[4];
 421		__le64	raw_cmd_le[4];
 422	};
 423};
 424
 425#define ITS_CMD_QUEUE_SZ		SZ_64K
 426#define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 427
 428typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
 429						    struct its_cmd_block *,
 430						    struct its_cmd_desc *);
 431
 432typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
 433					      struct its_cmd_block *,
 434					      struct its_cmd_desc *);
 435
 436static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
 437{
 438	u64 mask = GENMASK_ULL(h, l);
 439	*raw_cmd &= ~mask;
 440	*raw_cmd |= (val << l) & mask;
 441}
 442
 443static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 444{
 445	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
 
 446}
 447
 448static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 449{
 450	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
 
 451}
 452
 453static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 454{
 455	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
 
 456}
 457
 458static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 459{
 460	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
 
 461}
 462
 463static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 464{
 465	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
 
 466}
 467
 468static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 469{
 470	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
 
 471}
 472
 473static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 474{
 475	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
 
 476}
 477
 478static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 479{
 480	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
 
 481}
 482
 483static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 484{
 485	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
 486}
 487
 488static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
 489{
 490	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
 491}
 492
 493static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
 494{
 495	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
 496}
 497
 498static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
 499{
 500	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
 501}
 502
 503static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
 504{
 505	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
 506}
 507
 508static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
 509{
 510	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
 511}
 512
 513static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
 514{
 515	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
 516}
 517
 518static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
 519{
 520	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
 521}
 522
 523static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
 524{
 525	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
 526}
 527
 528static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
 529{
 530	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
 531}
 532
 533static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
 534{
 535	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
 536}
 537
 538static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
 539{
 540	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
 541}
 542
 543static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
 544					u32 vpe_db_lpi)
 545{
 546	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
 547}
 548
 549static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
 550					u32 vpe_db_lpi)
 551{
 552	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
 553}
 554
 555static void its_encode_db(struct its_cmd_block *cmd, bool db)
 556{
 557	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
 558}
 559
 560static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
 561{
 562	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
 563}
 564
 565static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
 566{
 567	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
 568}
 569
 570static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
 571{
 572	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
 573}
 574
 575static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
 576{
 577	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
 578}
 579
 580static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
 581{
 582	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
 583}
 584
 585static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 586{
 587	/* Let's fixup BE commands */
 588	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
 589	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
 590	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
 591	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
 592}
 593
 594static struct its_collection *its_build_mapd_cmd(struct its_node *its,
 595						 struct its_cmd_block *cmd,
 596						 struct its_cmd_desc *desc)
 597{
 598	unsigned long itt_addr;
 599	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 600
 601	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 602	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 603
 604	its_encode_cmd(cmd, GITS_CMD_MAPD);
 605	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 606	its_encode_size(cmd, size - 1);
 607	its_encode_itt(cmd, itt_addr);
 608	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 609
 610	its_fixup_cmd(cmd);
 611
 612	return NULL;
 613}
 614
 615static struct its_collection *its_build_mapc_cmd(struct its_node *its,
 616						 struct its_cmd_block *cmd,
 617						 struct its_cmd_desc *desc)
 618{
 619	its_encode_cmd(cmd, GITS_CMD_MAPC);
 620	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 621	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 622	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 623
 624	its_fixup_cmd(cmd);
 625
 626	return desc->its_mapc_cmd.col;
 627}
 628
 629static struct its_collection *its_build_mapti_cmd(struct its_node *its,
 630						  struct its_cmd_block *cmd,
 631						  struct its_cmd_desc *desc)
 632{
 633	struct its_collection *col;
 634
 635	col = dev_event_to_col(desc->its_mapti_cmd.dev,
 636			       desc->its_mapti_cmd.event_id);
 637
 638	its_encode_cmd(cmd, GITS_CMD_MAPTI);
 639	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
 640	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
 641	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
 642	its_encode_collection(cmd, col->col_id);
 643
 644	its_fixup_cmd(cmd);
 645
 646	return valid_col(col);
 647}
 648
 649static struct its_collection *its_build_movi_cmd(struct its_node *its,
 650						 struct its_cmd_block *cmd,
 651						 struct its_cmd_desc *desc)
 652{
 653	struct its_collection *col;
 654
 655	col = dev_event_to_col(desc->its_movi_cmd.dev,
 656			       desc->its_movi_cmd.event_id);
 657
 658	its_encode_cmd(cmd, GITS_CMD_MOVI);
 659	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 660	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 661	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 662
 663	its_fixup_cmd(cmd);
 664
 665	return valid_col(col);
 666}
 667
 668static struct its_collection *its_build_discard_cmd(struct its_node *its,
 669						    struct its_cmd_block *cmd,
 670						    struct its_cmd_desc *desc)
 671{
 672	struct its_collection *col;
 673
 674	col = dev_event_to_col(desc->its_discard_cmd.dev,
 675			       desc->its_discard_cmd.event_id);
 676
 677	its_encode_cmd(cmd, GITS_CMD_DISCARD);
 678	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 679	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 680
 681	its_fixup_cmd(cmd);
 682
 683	return valid_col(col);
 684}
 685
 686static struct its_collection *its_build_inv_cmd(struct its_node *its,
 687						struct its_cmd_block *cmd,
 688						struct its_cmd_desc *desc)
 689{
 690	struct its_collection *col;
 691
 692	col = dev_event_to_col(desc->its_inv_cmd.dev,
 693			       desc->its_inv_cmd.event_id);
 694
 695	its_encode_cmd(cmd, GITS_CMD_INV);
 696	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 697	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 698
 699	its_fixup_cmd(cmd);
 700
 701	return valid_col(col);
 702}
 703
 704static struct its_collection *its_build_int_cmd(struct its_node *its,
 705						struct its_cmd_block *cmd,
 706						struct its_cmd_desc *desc)
 707{
 708	struct its_collection *col;
 709
 710	col = dev_event_to_col(desc->its_int_cmd.dev,
 711			       desc->its_int_cmd.event_id);
 712
 713	its_encode_cmd(cmd, GITS_CMD_INT);
 714	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 715	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 716
 717	its_fixup_cmd(cmd);
 718
 719	return valid_col(col);
 720}
 721
 722static struct its_collection *its_build_clear_cmd(struct its_node *its,
 723						  struct its_cmd_block *cmd,
 724						  struct its_cmd_desc *desc)
 725{
 726	struct its_collection *col;
 727
 728	col = dev_event_to_col(desc->its_clear_cmd.dev,
 729			       desc->its_clear_cmd.event_id);
 730
 731	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 732	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 733	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 734
 735	its_fixup_cmd(cmd);
 736
 737	return valid_col(col);
 738}
 739
 740static struct its_collection *its_build_invall_cmd(struct its_node *its,
 741						   struct its_cmd_block *cmd,
 742						   struct its_cmd_desc *desc)
 743{
 744	its_encode_cmd(cmd, GITS_CMD_INVALL);
 745	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
 746
 747	its_fixup_cmd(cmd);
 748
 749	return desc->its_invall_cmd.col;
 750}
 751
 752static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
 753					     struct its_cmd_block *cmd,
 754					     struct its_cmd_desc *desc)
 755{
 756	its_encode_cmd(cmd, GITS_CMD_VINVALL);
 757	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
 758
 759	its_fixup_cmd(cmd);
 760
 761	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
 762}
 763
 764static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
 765					   struct its_cmd_block *cmd,
 766					   struct its_cmd_desc *desc)
 767{
 768	unsigned long vpt_addr, vconf_addr;
 769	u64 target;
 770	bool alloc;
 771
 772	its_encode_cmd(cmd, GITS_CMD_VMAPP);
 773	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
 774	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
 775
 776	if (!desc->its_vmapp_cmd.valid) {
 777		if (is_v4_1(its)) {
 778			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
 779			its_encode_alloc(cmd, alloc);
 780		}
 781
 782		goto out;
 783	}
 784
 785	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
 786	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
 787
 788	its_encode_target(cmd, target);
 789	its_encode_vpt_addr(cmd, vpt_addr);
 790	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
 791
 792	if (!is_v4_1(its))
 793		goto out;
 794
 795	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
 796
 797	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
 798
 799	its_encode_alloc(cmd, alloc);
 800
 801	/*
 802	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
 803	 * to be unmapped first, and in this case, we may remap the vPE
 804	 * back while the VPT is not empty. So we can't assume that the
 805	 * VPT is empty on map. This is why we never advertise PTZ.
 806	 */
 807	its_encode_ptz(cmd, false);
 808	its_encode_vconf_addr(cmd, vconf_addr);
 809	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
 810
 811out:
 812	its_fixup_cmd(cmd);
 813
 814	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
 815}
 816
 817static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
 818					    struct its_cmd_block *cmd,
 819					    struct its_cmd_desc *desc)
 820{
 821	u32 db;
 822
 823	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
 824		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
 825	else
 826		db = 1023;
 827
 828	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
 829	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
 830	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
 831	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
 832	its_encode_db_phys_id(cmd, db);
 833	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
 834
 835	its_fixup_cmd(cmd);
 836
 837	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
 838}
 839
 840static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
 841					   struct its_cmd_block *cmd,
 842					   struct its_cmd_desc *desc)
 843{
 844	u32 db;
 845
 846	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
 847		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
 848	else
 849		db = 1023;
 850
 851	its_encode_cmd(cmd, GITS_CMD_VMOVI);
 852	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
 853	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
 854	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
 855	its_encode_db_phys_id(cmd, db);
 856	its_encode_db_valid(cmd, true);
 857
 858	its_fixup_cmd(cmd);
 859
 860	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
 861}
 862
 863static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
 864					   struct its_cmd_block *cmd,
 865					   struct its_cmd_desc *desc)
 866{
 867	u64 target;
 868
 869	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
 870	its_encode_cmd(cmd, GITS_CMD_VMOVP);
 871	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
 872	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
 873	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
 874	its_encode_target(cmd, target);
 875
 876	if (is_v4_1(its)) {
 877		its_encode_db(cmd, true);
 878		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
 879	}
 880
 881	its_fixup_cmd(cmd);
 882
 883	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
 884}
 885
 886static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
 887					  struct its_cmd_block *cmd,
 888					  struct its_cmd_desc *desc)
 889{
 890	struct its_vlpi_map *map;
 891
 892	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
 893				    desc->its_inv_cmd.event_id);
 894
 895	its_encode_cmd(cmd, GITS_CMD_INV);
 896	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 897	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 898
 899	its_fixup_cmd(cmd);
 900
 901	return valid_vpe(its, map->vpe);
 902}
 903
 904static struct its_vpe *its_build_vint_cmd(struct its_node *its,
 905					  struct its_cmd_block *cmd,
 906					  struct its_cmd_desc *desc)
 907{
 908	struct its_vlpi_map *map;
 909
 910	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
 911				    desc->its_int_cmd.event_id);
 912
 913	its_encode_cmd(cmd, GITS_CMD_INT);
 914	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 915	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 916
 917	its_fixup_cmd(cmd);
 918
 919	return valid_vpe(its, map->vpe);
 920}
 921
 922static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
 923					    struct its_cmd_block *cmd,
 924					    struct its_cmd_desc *desc)
 925{
 926	struct its_vlpi_map *map;
 927
 928	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
 929				    desc->its_clear_cmd.event_id);
 930
 931	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 932	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 933	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 934
 935	its_fixup_cmd(cmd);
 936
 937	return valid_vpe(its, map->vpe);
 938}
 939
 940static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
 941					   struct its_cmd_block *cmd,
 942					   struct its_cmd_desc *desc)
 943{
 944	if (WARN_ON(!is_v4_1(its)))
 945		return NULL;
 946
 947	its_encode_cmd(cmd, GITS_CMD_INVDB);
 948	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
 949
 950	its_fixup_cmd(cmd);
 951
 952	return valid_vpe(its, desc->its_invdb_cmd.vpe);
 953}
 954
 955static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
 956					  struct its_cmd_block *cmd,
 957					  struct its_cmd_desc *desc)
 958{
 959	if (WARN_ON(!is_v4_1(its)))
 960		return NULL;
 961
 962	its_encode_cmd(cmd, GITS_CMD_VSGI);
 963	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
 964	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
 965	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
 966	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
 967	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
 968	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
 969
 970	its_fixup_cmd(cmd);
 971
 972	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
 973}
 974
 975static u64 its_cmd_ptr_to_offset(struct its_node *its,
 976				 struct its_cmd_block *ptr)
 977{
 978	return (ptr - its->cmd_base) * sizeof(*ptr);
 979}
 980
 981static int its_queue_full(struct its_node *its)
 982{
 983	int widx;
 984	int ridx;
 985
 986	widx = its->cmd_write - its->cmd_base;
 987	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
 988
 989	/* This is incredibly unlikely to happen, unless the ITS locks up. */
 990	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
 991		return 1;
 992
 993	return 0;
 994}
 995
 996static struct its_cmd_block *its_allocate_entry(struct its_node *its)
 997{
 998	struct its_cmd_block *cmd;
 999	u32 count = 1000000;	/* 1s! */
1000
1001	while (its_queue_full(its)) {
1002		count--;
1003		if (!count) {
1004			pr_err_ratelimited("ITS queue not draining\n");
1005			return NULL;
1006		}
1007		cpu_relax();
1008		udelay(1);
1009	}
1010
1011	cmd = its->cmd_write++;
1012
1013	/* Handle queue wrapping */
1014	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1015		its->cmd_write = its->cmd_base;
1016
1017	/* Clear command  */
1018	cmd->raw_cmd[0] = 0;
1019	cmd->raw_cmd[1] = 0;
1020	cmd->raw_cmd[2] = 0;
1021	cmd->raw_cmd[3] = 0;
1022
1023	return cmd;
1024}
1025
1026static struct its_cmd_block *its_post_commands(struct its_node *its)
1027{
1028	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1029
1030	writel_relaxed(wr, its->base + GITS_CWRITER);
1031
1032	return its->cmd_write;
1033}
1034
1035static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1036{
1037	/*
1038	 * Make sure the commands written to memory are observable by
1039	 * the ITS.
1040	 */
1041	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1042		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1043	else
1044		dsb(ishst);
1045}
1046
1047static int its_wait_for_range_completion(struct its_node *its,
1048					 u64	prev_idx,
1049					 struct its_cmd_block *to)
1050{
1051	u64 rd_idx, to_idx, linear_idx;
1052	u32 count = 1000000;	/* 1s! */
1053
1054	/* Linearize to_idx if the command set has wrapped around */
1055	to_idx = its_cmd_ptr_to_offset(its, to);
1056	if (to_idx < prev_idx)
1057		to_idx += ITS_CMD_QUEUE_SZ;
1058
1059	linear_idx = prev_idx;
1060
1061	while (1) {
1062		s64 delta;
1063
1064		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1065
1066		/*
1067		 * Compute the read pointer progress, taking the
1068		 * potential wrap-around into account.
1069		 */
1070		delta = rd_idx - prev_idx;
1071		if (rd_idx < prev_idx)
1072			delta += ITS_CMD_QUEUE_SZ;
1073
1074		linear_idx += delta;
1075		if (linear_idx >= to_idx)
1076			break;
1077
1078		count--;
1079		if (!count) {
1080			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1081					   to_idx, linear_idx);
1082			return -1;
1083		}
1084		prev_idx = rd_idx;
1085		cpu_relax();
1086		udelay(1);
1087	}
1088
1089	return 0;
1090}
1091
1092/* Warning, macro hell follows */
1093#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1094void name(struct its_node *its,						\
1095	  buildtype builder,						\
1096	  struct its_cmd_desc *desc)					\
1097{									\
1098	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1099	synctype *sync_obj;						\
1100	unsigned long flags;						\
1101	u64 rd_idx;							\
1102									\
1103	raw_spin_lock_irqsave(&its->lock, flags);			\
1104									\
1105	cmd = its_allocate_entry(its);					\
1106	if (!cmd) {		/* We're soooooo screewed... */		\
1107		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1108		return;							\
1109	}								\
1110	sync_obj = builder(its, cmd, desc);				\
1111	its_flush_cmd(its, cmd);					\
1112									\
1113	if (sync_obj) {							\
1114		sync_cmd = its_allocate_entry(its);			\
1115		if (!sync_cmd)						\
1116			goto post;					\
1117									\
1118		buildfn(its, sync_cmd, sync_obj);			\
1119		its_flush_cmd(its, sync_cmd);				\
1120	}								\
1121									\
1122post:									\
1123	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1124	next_cmd = its_post_commands(its);				\
1125	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1126									\
1127	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1128		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1129}
1130
1131static void its_build_sync_cmd(struct its_node *its,
1132			       struct its_cmd_block *sync_cmd,
1133			       struct its_collection *sync_col)
1134{
1135	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1136	its_encode_target(sync_cmd, sync_col->target_address);
1137
1138	its_fixup_cmd(sync_cmd);
1139}
1140
1141static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1142			     struct its_collection, its_build_sync_cmd)
1143
1144static void its_build_vsync_cmd(struct its_node *its,
1145				struct its_cmd_block *sync_cmd,
1146				struct its_vpe *sync_vpe)
1147{
1148	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1149	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1150
1151	its_fixup_cmd(sync_cmd);
1152}
1153
1154static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1155			     struct its_vpe, its_build_vsync_cmd)
1156
1157static void its_send_int(struct its_device *dev, u32 event_id)
1158{
1159	struct its_cmd_desc desc;
 
 
1160
1161	desc.its_int_cmd.dev = dev;
1162	desc.its_int_cmd.event_id = event_id;
1163
1164	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1165}
 
 
 
 
 
 
1166
1167static void its_send_clear(struct its_device *dev, u32 event_id)
1168{
1169	struct its_cmd_desc desc;
 
 
 
 
 
 
 
 
1170
1171	desc.its_clear_cmd.dev = dev;
1172	desc.its_clear_cmd.event_id = event_id;
 
1173
1174	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1175}
1176
1177static void its_send_inv(struct its_device *dev, u32 event_id)
1178{
1179	struct its_cmd_desc desc;
1180
1181	desc.its_inv_cmd.dev = dev;
1182	desc.its_inv_cmd.event_id = event_id;
1183
1184	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1185}
1186
1187static void its_send_mapd(struct its_device *dev, int valid)
1188{
1189	struct its_cmd_desc desc;
1190
1191	desc.its_mapd_cmd.dev = dev;
1192	desc.its_mapd_cmd.valid = !!valid;
1193
1194	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1195}
1196
1197static void its_send_mapc(struct its_node *its, struct its_collection *col,
1198			  int valid)
1199{
1200	struct its_cmd_desc desc;
1201
1202	desc.its_mapc_cmd.col = col;
1203	desc.its_mapc_cmd.valid = !!valid;
1204
1205	its_send_single_command(its, its_build_mapc_cmd, &desc);
1206}
1207
1208static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1209{
1210	struct its_cmd_desc desc;
1211
1212	desc.its_mapti_cmd.dev = dev;
1213	desc.its_mapti_cmd.phys_id = irq_id;
1214	desc.its_mapti_cmd.event_id = id;
1215
1216	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1217}
1218
1219static void its_send_movi(struct its_device *dev,
1220			  struct its_collection *col, u32 id)
1221{
1222	struct its_cmd_desc desc;
1223
1224	desc.its_movi_cmd.dev = dev;
1225	desc.its_movi_cmd.col = col;
1226	desc.its_movi_cmd.event_id = id;
1227
1228	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1229}
1230
1231static void its_send_discard(struct its_device *dev, u32 id)
1232{
1233	struct its_cmd_desc desc;
1234
1235	desc.its_discard_cmd.dev = dev;
1236	desc.its_discard_cmd.event_id = id;
1237
1238	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1239}
1240
1241static void its_send_invall(struct its_node *its, struct its_collection *col)
1242{
1243	struct its_cmd_desc desc;
1244
1245	desc.its_invall_cmd.col = col;
1246
1247	its_send_single_command(its, its_build_invall_cmd, &desc);
1248}
1249
1250static void its_send_vmapti(struct its_device *dev, u32 id)
1251{
1252	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1253	struct its_cmd_desc desc;
1254
1255	desc.its_vmapti_cmd.vpe = map->vpe;
1256	desc.its_vmapti_cmd.dev = dev;
1257	desc.its_vmapti_cmd.virt_id = map->vintid;
1258	desc.its_vmapti_cmd.event_id = id;
1259	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1260
1261	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1262}
1263
1264static void its_send_vmovi(struct its_device *dev, u32 id)
1265{
1266	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1267	struct its_cmd_desc desc;
1268
1269	desc.its_vmovi_cmd.vpe = map->vpe;
1270	desc.its_vmovi_cmd.dev = dev;
1271	desc.its_vmovi_cmd.event_id = id;
1272	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1273
1274	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1275}
1276
1277static void its_send_vmapp(struct its_node *its,
1278			   struct its_vpe *vpe, bool valid)
1279{
1280	struct its_cmd_desc desc;
 
 
 
1281
1282	desc.its_vmapp_cmd.vpe = vpe;
1283	desc.its_vmapp_cmd.valid = valid;
1284	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1285
1286	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1287}
1288
1289static void its_send_vmovp(struct its_vpe *vpe)
1290{
1291	struct its_cmd_desc desc = {};
1292	struct its_node *its;
1293	unsigned long flags;
1294	int col_id = vpe->col_idx;
1295
1296	desc.its_vmovp_cmd.vpe = vpe;
1297
1298	if (!its_list_map) {
1299		its = list_first_entry(&its_nodes, struct its_node, entry);
1300		desc.its_vmovp_cmd.col = &its->collections[col_id];
1301		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1302		return;
1303	}
1304
1305	/*
1306	 * Yet another marvel of the architecture. If using the
1307	 * its_list "feature", we need to make sure that all ITSs
1308	 * receive all VMOVP commands in the same order. The only way
1309	 * to guarantee this is to make vmovp a serialization point.
1310	 *
1311	 * Wall <-- Head.
1312	 */
1313	raw_spin_lock_irqsave(&vmovp_lock, flags);
1314
1315	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1316	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1317
1318	/* Emit VMOVPs */
1319	list_for_each_entry(its, &its_nodes, entry) {
1320		if (!is_v4(its))
1321			continue;
1322
1323		if (!require_its_list_vmovp(vpe->its_vm, its))
1324			continue;
1325
1326		desc.its_vmovp_cmd.col = &its->collections[col_id];
1327		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1328	}
1329
1330	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1331}
1332
1333static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1334{
1335	struct its_cmd_desc desc;
1336
1337	desc.its_vinvall_cmd.vpe = vpe;
1338	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1339}
1340
1341static void its_send_vinv(struct its_device *dev, u32 event_id)
1342{
1343	struct its_cmd_desc desc;
1344
1345	/*
1346	 * There is no real VINV command. This is just a normal INV,
1347	 * with a VSYNC instead of a SYNC.
1348	 */
1349	desc.its_inv_cmd.dev = dev;
1350	desc.its_inv_cmd.event_id = event_id;
1351
1352	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1353}
1354
1355static void its_send_vint(struct its_device *dev, u32 event_id)
1356{
1357	struct its_cmd_desc desc;
1358
1359	/*
1360	 * There is no real VINT command. This is just a normal INT,
1361	 * with a VSYNC instead of a SYNC.
1362	 */
1363	desc.its_int_cmd.dev = dev;
1364	desc.its_int_cmd.event_id = event_id;
1365
1366	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1367}
1368
1369static void its_send_vclear(struct its_device *dev, u32 event_id)
1370{
1371	struct its_cmd_desc desc;
1372
1373	/*
1374	 * There is no real VCLEAR command. This is just a normal CLEAR,
1375	 * with a VSYNC instead of a SYNC.
1376	 */
1377	desc.its_clear_cmd.dev = dev;
1378	desc.its_clear_cmd.event_id = event_id;
1379
1380	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1381}
1382
1383static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1384{
1385	struct its_cmd_desc desc;
1386
1387	desc.its_invdb_cmd.vpe = vpe;
1388	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1389}
1390
1391/*
1392 * irqchip functions - assumes MSI, mostly.
1393 */
1394static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1395{
1396	struct its_vlpi_map *map = get_vlpi_map(d);
1397	irq_hw_number_t hwirq;
1398	void *va;
1399	u8 *cfg;
1400
1401	if (map) {
1402		va = page_address(map->vm->vprop_page);
1403		hwirq = map->vintid;
1404
1405		/* Remember the updated property */
1406		map->properties &= ~clr;
1407		map->properties |= set | LPI_PROP_GROUP1;
1408	} else {
1409		va = gic_rdists->prop_table_va;
1410		hwirq = d->hwirq;
1411	}
1412
1413	cfg = va + hwirq - 8192;
1414	*cfg &= ~clr;
1415	*cfg |= set | LPI_PROP_GROUP1;
1416
1417	/*
1418	 * Make the above write visible to the redistributors.
1419	 * And yes, we're flushing exactly: One. Single. Byte.
1420	 * Humpf...
1421	 */
1422	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1423		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1424	else
1425		dsb(ishst);
1426}
1427
1428static void wait_for_syncr(void __iomem *rdbase)
1429{
1430	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1431		cpu_relax();
1432}
1433
1434static void direct_lpi_inv(struct irq_data *d)
1435{
1436	struct its_vlpi_map *map = get_vlpi_map(d);
1437	void __iomem *rdbase;
1438	unsigned long flags;
1439	u64 val;
1440	int cpu;
1441
1442	if (map) {
1443		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1444
1445		WARN_ON(!is_v4_1(its_dev->its));
1446
1447		val  = GICR_INVLPIR_V;
1448		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1449		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1450	} else {
1451		val = d->hwirq;
1452	}
1453
1454	/* Target the redistributor this LPI is currently routed to */
1455	cpu = irq_to_cpuid_lock(d, &flags);
1456	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1457	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1458	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1459
1460	wait_for_syncr(rdbase);
1461	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1462	irq_to_cpuid_unlock(d, flags);
1463}
1464
1465static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1466{
1467	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1468
1469	lpi_write_config(d, clr, set);
1470	if (gic_rdists->has_direct_lpi &&
1471	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1472		direct_lpi_inv(d);
1473	else if (!irqd_is_forwarded_to_vcpu(d))
1474		its_send_inv(its_dev, its_get_event_id(d));
1475	else
1476		its_send_vinv(its_dev, its_get_event_id(d));
1477}
1478
1479static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1480{
1481	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1482	u32 event = its_get_event_id(d);
1483	struct its_vlpi_map *map;
1484
1485	/*
1486	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1487	 * here.
1488	 */
1489	if (is_v4_1(its_dev->its))
1490		return;
1491
1492	map = dev_event_to_vlpi_map(its_dev, event);
1493
1494	if (map->db_enabled == enable)
1495		return;
1496
1497	map->db_enabled = enable;
1498
1499	/*
1500	 * More fun with the architecture:
1501	 *
1502	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1503	 * value or to 1023, depending on the enable bit. But that
1504	 * would be issuing a mapping for an /existing/ DevID+EventID
1505	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1506	 * to the /same/ vPE, using this opportunity to adjust the
1507	 * doorbell. Mouahahahaha. We loves it, Precious.
1508	 */
1509	its_send_vmovi(its_dev, event);
1510}
1511
1512static void its_mask_irq(struct irq_data *d)
1513{
1514	if (irqd_is_forwarded_to_vcpu(d))
1515		its_vlpi_set_doorbell(d, false);
1516
1517	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1518}
1519
1520static void its_unmask_irq(struct irq_data *d)
1521{
1522	if (irqd_is_forwarded_to_vcpu(d))
1523		its_vlpi_set_doorbell(d, true);
1524
1525	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1526}
1527
1528static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1529{
1530	if (irqd_affinity_is_managed(d))
1531		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1532
1533	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1534}
1535
1536static void its_inc_lpi_count(struct irq_data *d, int cpu)
1537{
1538	if (irqd_affinity_is_managed(d))
1539		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1540	else
1541		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1542}
1543
1544static void its_dec_lpi_count(struct irq_data *d, int cpu)
1545{
1546	if (irqd_affinity_is_managed(d))
1547		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1548	else
1549		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1550}
1551
1552static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1553					      const struct cpumask *cpu_mask)
1554{
1555	unsigned int cpu = nr_cpu_ids, tmp;
1556	int count = S32_MAX;
1557
1558	for_each_cpu(tmp, cpu_mask) {
1559		int this_count = its_read_lpi_count(d, tmp);
1560		if (this_count < count) {
1561			cpu = tmp;
1562		        count = this_count;
1563		}
1564	}
1565
1566	return cpu;
1567}
1568
1569/*
1570 * As suggested by Thomas Gleixner in:
1571 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1572 */
1573static int its_select_cpu(struct irq_data *d,
1574			  const struct cpumask *aff_mask)
1575{
1576	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1577	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1578	static struct cpumask __tmpmask;
1579	struct cpumask *tmpmask;
1580	unsigned long flags;
1581	int cpu, node;
1582	node = its_dev->its->numa_node;
1583	tmpmask = &__tmpmask;
1584
1585	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1586
1587	if (!irqd_affinity_is_managed(d)) {
1588		/* First try the NUMA node */
1589		if (node != NUMA_NO_NODE) {
1590			/*
1591			 * Try the intersection of the affinity mask and the
1592			 * node mask (and the online mask, just to be safe).
1593			 */
1594			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1595			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1596
1597			/*
1598			 * Ideally, we would check if the mask is empty, and
1599			 * try again on the full node here.
1600			 *
1601			 * But it turns out that the way ACPI describes the
1602			 * affinity for ITSs only deals about memory, and
1603			 * not target CPUs, so it cannot describe a single
1604			 * ITS placed next to two NUMA nodes.
1605			 *
1606			 * Instead, just fallback on the online mask. This
1607			 * diverges from Thomas' suggestion above.
1608			 */
1609			cpu = cpumask_pick_least_loaded(d, tmpmask);
1610			if (cpu < nr_cpu_ids)
1611				goto out;
1612
1613			/* If we can't cross sockets, give up */
1614			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1615				goto out;
1616
1617			/* If the above failed, expand the search */
1618		}
1619
1620		/* Try the intersection of the affinity and online masks */
1621		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1622
1623		/* If that doesn't fly, the online mask is the last resort */
1624		if (cpumask_empty(tmpmask))
1625			cpumask_copy(tmpmask, cpu_online_mask);
1626
1627		cpu = cpumask_pick_least_loaded(d, tmpmask);
1628	} else {
1629		cpumask_copy(tmpmask, aff_mask);
1630
1631		/* If we cannot cross sockets, limit the search to that node */
1632		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1633		    node != NUMA_NO_NODE)
1634			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1635
1636		cpu = cpumask_pick_least_loaded(d, tmpmask);
1637	}
1638out:
1639	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1640
1641	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1642	return cpu;
1643}
1644
1645static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1646			    bool force)
1647{
 
1648	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1649	struct its_collection *target_col;
1650	u32 id = its_get_event_id(d);
1651	int cpu, prev_cpu;
1652
1653	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1654	if (irqd_is_forwarded_to_vcpu(d))
1655		return -EINVAL;
1656
1657	prev_cpu = its_dev->event_map.col_map[id];
1658	its_dec_lpi_count(d, prev_cpu);
1659
1660	if (!force)
1661		cpu = its_select_cpu(d, mask_val);
1662	else
1663		cpu = cpumask_pick_least_loaded(d, mask_val);
1664
1665	if (cpu < 0 || cpu >= nr_cpu_ids)
1666		goto err;
1667
1668	/* don't set the affinity when the target cpu is same as current one */
1669	if (cpu != prev_cpu) {
1670		target_col = &its_dev->its->collections[cpu];
1671		its_send_movi(its_dev, target_col, id);
1672		its_dev->event_map.col_map[id] = cpu;
1673		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1674	}
1675
1676	its_inc_lpi_count(d, cpu);
1677
1678	return IRQ_SET_MASK_OK_DONE;
1679
1680err:
1681	its_inc_lpi_count(d, prev_cpu);
1682	return -EINVAL;
1683}
1684
1685static u64 its_irq_get_msi_base(struct its_device *its_dev)
1686{
1687	struct its_node *its = its_dev->its;
1688
1689	return its->phys_base + GITS_TRANSLATER;
1690}
1691
1692static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1693{
1694	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1695	struct its_node *its;
1696	u64 addr;
1697
1698	its = its_dev->its;
1699	addr = its->get_msi_base(its_dev);
1700
1701	msg->address_lo		= lower_32_bits(addr);
1702	msg->address_hi		= upper_32_bits(addr);
1703	msg->data		= its_get_event_id(d);
1704
1705	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1706}
1707
1708static int its_irq_set_irqchip_state(struct irq_data *d,
1709				     enum irqchip_irq_state which,
1710				     bool state)
1711{
1712	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1713	u32 event = its_get_event_id(d);
1714
1715	if (which != IRQCHIP_STATE_PENDING)
1716		return -EINVAL;
1717
1718	if (irqd_is_forwarded_to_vcpu(d)) {
1719		if (state)
1720			its_send_vint(its_dev, event);
1721		else
1722			its_send_vclear(its_dev, event);
1723	} else {
1724		if (state)
1725			its_send_int(its_dev, event);
1726		else
1727			its_send_clear(its_dev, event);
1728	}
1729
1730	return 0;
1731}
1732
1733static int its_irq_retrigger(struct irq_data *d)
1734{
1735	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1736}
1737
1738/*
1739 * Two favourable cases:
1740 *
1741 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1742 *     for vSGI delivery
1743 *
1744 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1745 *     and we're better off mapping all VPEs always
1746 *
1747 * If neither (a) nor (b) is true, then we map vPEs on demand.
1748 *
1749 */
1750static bool gic_requires_eager_mapping(void)
1751{
1752	if (!its_list_map || gic_rdists->has_rvpeid)
1753		return true;
1754
1755	return false;
1756}
1757
1758static void its_map_vm(struct its_node *its, struct its_vm *vm)
1759{
1760	unsigned long flags;
1761
1762	if (gic_requires_eager_mapping())
1763		return;
1764
1765	raw_spin_lock_irqsave(&vmovp_lock, flags);
1766
1767	/*
1768	 * If the VM wasn't mapped yet, iterate over the vpes and get
1769	 * them mapped now.
1770	 */
1771	vm->vlpi_count[its->list_nr]++;
1772
1773	if (vm->vlpi_count[its->list_nr] == 1) {
1774		int i;
1775
1776		for (i = 0; i < vm->nr_vpes; i++) {
1777			struct its_vpe *vpe = vm->vpes[i];
1778			struct irq_data *d = irq_get_irq_data(vpe->irq);
1779
1780			/* Map the VPE to the first possible CPU */
1781			vpe->col_idx = cpumask_first(cpu_online_mask);
1782			its_send_vmapp(its, vpe, true);
1783			its_send_vinvall(its, vpe);
1784			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1785		}
1786	}
1787
1788	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1789}
1790
1791static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1792{
1793	unsigned long flags;
1794
1795	/* Not using the ITS list? Everything is always mapped. */
1796	if (gic_requires_eager_mapping())
1797		return;
1798
1799	raw_spin_lock_irqsave(&vmovp_lock, flags);
1800
1801	if (!--vm->vlpi_count[its->list_nr]) {
1802		int i;
1803
1804		for (i = 0; i < vm->nr_vpes; i++)
1805			its_send_vmapp(its, vm->vpes[i], false);
1806	}
1807
1808	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1809}
1810
1811static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1812{
1813	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1814	u32 event = its_get_event_id(d);
1815	int ret = 0;
1816
1817	if (!info->map)
1818		return -EINVAL;
1819
1820	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1821
1822	if (!its_dev->event_map.vm) {
1823		struct its_vlpi_map *maps;
1824
1825		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1826			       GFP_ATOMIC);
1827		if (!maps) {
1828			ret = -ENOMEM;
1829			goto out;
1830		}
1831
1832		its_dev->event_map.vm = info->map->vm;
1833		its_dev->event_map.vlpi_maps = maps;
1834	} else if (its_dev->event_map.vm != info->map->vm) {
1835		ret = -EINVAL;
1836		goto out;
1837	}
1838
1839	/* Get our private copy of the mapping information */
1840	its_dev->event_map.vlpi_maps[event] = *info->map;
1841
1842	if (irqd_is_forwarded_to_vcpu(d)) {
1843		/* Already mapped, move it around */
1844		its_send_vmovi(its_dev, event);
1845	} else {
1846		/* Ensure all the VPEs are mapped on this ITS */
1847		its_map_vm(its_dev->its, info->map->vm);
1848
1849		/*
1850		 * Flag the interrupt as forwarded so that we can
1851		 * start poking the virtual property table.
1852		 */
1853		irqd_set_forwarded_to_vcpu(d);
1854
1855		/* Write out the property to the prop table */
1856		lpi_write_config(d, 0xff, info->map->properties);
1857
1858		/* Drop the physical mapping */
1859		its_send_discard(its_dev, event);
1860
1861		/* and install the virtual one */
1862		its_send_vmapti(its_dev, event);
1863
1864		/* Increment the number of VLPIs */
1865		its_dev->event_map.nr_vlpis++;
1866	}
1867
1868out:
1869	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1870	return ret;
1871}
1872
1873static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1874{
1875	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1876	struct its_vlpi_map *map;
1877	int ret = 0;
1878
1879	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1880
1881	map = get_vlpi_map(d);
1882
1883	if (!its_dev->event_map.vm || !map) {
1884		ret = -EINVAL;
1885		goto out;
1886	}
1887
1888	/* Copy our mapping information to the incoming request */
1889	*info->map = *map;
1890
1891out:
1892	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1893	return ret;
1894}
1895
1896static int its_vlpi_unmap(struct irq_data *d)
1897{
1898	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1899	u32 event = its_get_event_id(d);
1900	int ret = 0;
1901
1902	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1903
1904	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1905		ret = -EINVAL;
1906		goto out;
1907	}
1908
1909	/* Drop the virtual mapping */
1910	its_send_discard(its_dev, event);
1911
1912	/* and restore the physical one */
1913	irqd_clr_forwarded_to_vcpu(d);
1914	its_send_mapti(its_dev, d->hwirq, event);
1915	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1916				    LPI_PROP_ENABLED |
1917				    LPI_PROP_GROUP1));
1918
1919	/* Potentially unmap the VM from this ITS */
1920	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1921
1922	/*
1923	 * Drop the refcount and make the device available again if
1924	 * this was the last VLPI.
1925	 */
1926	if (!--its_dev->event_map.nr_vlpis) {
1927		its_dev->event_map.vm = NULL;
1928		kfree(its_dev->event_map.vlpi_maps);
1929	}
1930
1931out:
1932	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1933	return ret;
1934}
1935
1936static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1937{
1938	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1939
1940	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1941		return -EINVAL;
1942
1943	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1944		lpi_update_config(d, 0xff, info->config);
1945	else
1946		lpi_write_config(d, 0xff, info->config);
1947	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1948
1949	return 0;
1950}
1951
1952static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1953{
1954	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1955	struct its_cmd_info *info = vcpu_info;
1956
1957	/* Need a v4 ITS */
1958	if (!is_v4(its_dev->its))
1959		return -EINVAL;
1960
1961	/* Unmap request? */
1962	if (!info)
1963		return its_vlpi_unmap(d);
1964
1965	switch (info->cmd_type) {
1966	case MAP_VLPI:
1967		return its_vlpi_map(d, info);
1968
1969	case GET_VLPI:
1970		return its_vlpi_get(d, info);
1971
1972	case PROP_UPDATE_VLPI:
1973	case PROP_UPDATE_AND_INV_VLPI:
1974		return its_vlpi_prop_update(d, info);
1975
1976	default:
1977		return -EINVAL;
1978	}
1979}
1980
1981static struct irq_chip its_irq_chip = {
1982	.name			= "ITS",
1983	.irq_mask		= its_mask_irq,
1984	.irq_unmask		= its_unmask_irq,
1985	.irq_eoi		= irq_chip_eoi_parent,
1986	.irq_set_affinity	= its_set_affinity,
1987	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1988	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1989	.irq_retrigger		= its_irq_retrigger,
1990	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1991};
1992
1993
1994/*
1995 * How we allocate LPIs:
1996 *
1997 * lpi_range_list contains ranges of LPIs that are to available to
1998 * allocate from. To allocate LPIs, just pick the first range that
1999 * fits the required allocation, and reduce it by the required
2000 * amount. Once empty, remove the range from the list.
2001 *
2002 * To free a range of LPIs, add a free range to the list, sort it and
2003 * merge the result if the new range happens to be adjacent to an
2004 * already free block.
2005 *
2006 * The consequence of the above is that allocation is cost is low, but
2007 * freeing is expensive. We assumes that freeing rarely occurs.
2008 */
2009#define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2010
2011static DEFINE_MUTEX(lpi_range_lock);
2012static LIST_HEAD(lpi_range_list);
2013
2014struct lpi_range {
2015	struct list_head	entry;
2016	u32			base_id;
2017	u32			span;
2018};
2019
2020static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2021{
2022	struct lpi_range *range;
2023
2024	range = kmalloc(sizeof(*range), GFP_KERNEL);
2025	if (range) {
2026		range->base_id = base;
2027		range->span = span;
2028	}
2029
2030	return range;
2031}
2032
2033static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2034{
2035	struct lpi_range *range, *tmp;
2036	int err = -ENOSPC;
2037
2038	mutex_lock(&lpi_range_lock);
2039
2040	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2041		if (range->span >= nr_lpis) {
2042			*base = range->base_id;
2043			range->base_id += nr_lpis;
2044			range->span -= nr_lpis;
2045
2046			if (range->span == 0) {
2047				list_del(&range->entry);
2048				kfree(range);
2049			}
2050
2051			err = 0;
2052			break;
2053		}
2054	}
2055
2056	mutex_unlock(&lpi_range_lock);
2057
2058	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2059	return err;
2060}
2061
2062static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2063{
2064	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2065		return;
2066	if (a->base_id + a->span != b->base_id)
2067		return;
2068	b->base_id = a->base_id;
2069	b->span += a->span;
2070	list_del(&a->entry);
2071	kfree(a);
2072}
2073
2074static int free_lpi_range(u32 base, u32 nr_lpis)
2075{
2076	struct lpi_range *new, *old;
2077
2078	new = mk_lpi_range(base, nr_lpis);
2079	if (!new)
 
 
2080		return -ENOMEM;
2081
2082	mutex_lock(&lpi_range_lock);
2083
2084	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2085		if (old->base_id < base)
2086			break;
2087	}
2088	/*
2089	 * old is the last element with ->base_id smaller than base,
2090	 * so new goes right after it. If there are no elements with
2091	 * ->base_id smaller than base, &old->entry ends up pointing
2092	 * at the head of the list, and inserting new it the start of
2093	 * the list is the right thing to do in that case as well.
2094	 */
2095	list_add(&new->entry, &old->entry);
2096	/*
2097	 * Now check if we can merge with the preceding and/or
2098	 * following ranges.
2099	 */
2100	merge_lpi_ranges(old, new);
2101	merge_lpi_ranges(new, list_next_entry(new, entry));
2102
2103	mutex_unlock(&lpi_range_lock);
2104	return 0;
2105}
2106
2107static int __init its_lpi_init(u32 id_bits)
2108{
2109	u32 lpis = (1UL << id_bits) - 8192;
2110	u32 numlpis;
2111	int err;
 
2112
2113	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2114
2115	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2116		lpis = numlpis;
2117		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2118			lpis);
2119	}
2120
2121	/*
2122	 * Initializing the allocator is just the same as freeing the
2123	 * full range of LPIs.
2124	 */
2125	err = free_lpi_range(8192, lpis);
2126	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2127	return err;
2128}
2129
2130static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2131{
2132	unsigned long *bitmap = NULL;
2133	int err = 0;
2134
2135	do {
2136		err = alloc_lpi_range(nr_irqs, base);
2137		if (!err)
 
2138			break;
2139
2140		nr_irqs /= 2;
2141	} while (nr_irqs > 0);
2142
2143	if (!nr_irqs)
2144		err = -ENOSPC;
2145
2146	if (err)
2147		goto out;
2148
2149	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
 
2150	if (!bitmap)
2151		goto out;
2152
2153	*nr_ids = nr_irqs;
 
 
 
 
2154
2155out:
 
 
2156	if (!bitmap)
2157		*base = *nr_ids = 0;
2158
2159	return bitmap;
2160}
2161
2162static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2163{
2164	WARN_ON(free_lpi_range(base, nr_ids));
2165	bitmap_free(bitmap);
2166}
 
 
 
 
 
 
 
 
 
 
 
 
2167
2168static void gic_reset_prop_table(void *va)
2169{
2170	/* Priority 0xa0, Group-1, disabled */
2171	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2172
2173	/* Make sure the GIC will observe the written configuration */
2174	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2175}
2176
2177static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2178{
2179	struct page *prop_page;
 
 
 
 
2180
2181	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2182	if (!prop_page)
2183		return NULL;
2184
2185	gic_reset_prop_table(page_address(prop_page));
2186
2187	return prop_page;
2188}
2189
2190static void its_free_prop_table(struct page *prop_page)
2191{
2192	free_pages((unsigned long)page_address(prop_page),
2193		   get_order(LPI_PROPBASE_SZ));
2194}
2195
2196static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2197{
2198	phys_addr_t start, end, addr_end;
2199	u64 i;
 
 
2200
2201	/*
2202	 * We don't bother checking for a kdump kernel as by
2203	 * construction, the LPI tables are out of this kernel's
2204	 * memory map.
2205	 */
2206	if (is_kdump_kernel())
2207		return true;
2208
2209	addr_end = addr + size - 1;
 
 
 
2210
2211	for_each_reserved_mem_range(i, &start, &end) {
2212		if (addr >= start && addr_end <= end)
2213			return true;
2214	}
2215
2216	/* Not found, not a good sign... */
2217	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2218		&addr, &addr_end);
2219	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2220	return false;
2221}
2222
2223static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2224{
2225	if (efi_enabled(EFI_CONFIG_TABLES))
2226		return efi_mem_reserve_persistent(addr, size);
2227
2228	return 0;
2229}
2230
2231static int __init its_setup_lpi_prop_table(void)
2232{
2233	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2234		u64 val;
2235
2236		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2237		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2238
2239		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2240		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2241						     LPI_PROPBASE_SZ,
2242						     MEMREMAP_WB);
2243		gic_reset_prop_table(gic_rdists->prop_table_va);
2244	} else {
2245		struct page *page;
2246
2247		lpi_id_bits = min_t(u32,
2248				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2249				    ITS_MAX_LPI_NRBITS);
2250		page = its_allocate_prop_table(GFP_NOWAIT);
2251		if (!page) {
2252			pr_err("Failed to allocate PROPBASE\n");
2253			return -ENOMEM;
2254		}
2255
2256		gic_rdists->prop_table_pa = page_to_phys(page);
2257		gic_rdists->prop_table_va = page_address(page);
2258		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2259					  LPI_PROPBASE_SZ));
2260	}
2261
2262	pr_info("GICv3: using LPI property table @%pa\n",
2263		&gic_rdists->prop_table_pa);
2264
2265	return its_lpi_init(lpi_id_bits);
2266}
2267
2268static const char *its_base_type_string[] = {
2269	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2270	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2271	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2272	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2273	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2274	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2275	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2276};
2277
2278static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2279{
2280	u32 idx = baser - its->tables;
2281
2282	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
 
 
 
 
 
 
2283}
2284
2285static void its_write_baser(struct its_node *its, struct its_baser *baser,
2286			    u64 val)
2287{
2288	u32 idx = baser - its->tables;
2289
2290	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2291	baser->val = its_read_baser(its, baser);
2292}
2293
2294static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2295			   u64 cache, u64 shr, u32 order, bool indirect)
2296{
2297	u64 val = its_read_baser(its, baser);
2298	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2299	u64 type = GITS_BASER_TYPE(val);
2300	u64 baser_phys, tmp;
2301	u32 alloc_pages, psz;
2302	struct page *page;
2303	void *base;
2304
2305	psz = baser->psz;
2306	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2307	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2308		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2309			&its->phys_base, its_base_type_string[type],
2310			alloc_pages, GITS_BASER_PAGES_MAX);
2311		alloc_pages = GITS_BASER_PAGES_MAX;
2312		order = get_order(GITS_BASER_PAGES_MAX * psz);
2313	}
2314
2315	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2316	if (!page)
2317		return -ENOMEM;
2318
2319	base = (void *)page_address(page);
2320	baser_phys = virt_to_phys(base);
2321
2322	/* Check if the physical address of the memory is above 48bits */
2323	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2324
2325		/* 52bit PA is supported only when PageSize=64K */
2326		if (psz != SZ_64K) {
2327			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2328			free_pages((unsigned long)base, order);
2329			return -ENXIO;
2330		}
2331
2332		/* Convert 52bit PA to 48bit field */
2333		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2334	}
2335
2336retry_baser:
2337	val = (baser_phys					 |
2338		(type << GITS_BASER_TYPE_SHIFT)			 |
2339		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2340		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2341		cache						 |
2342		shr						 |
2343		GITS_BASER_VALID);
2344
2345	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2346
2347	switch (psz) {
2348	case SZ_4K:
2349		val |= GITS_BASER_PAGE_SIZE_4K;
2350		break;
2351	case SZ_16K:
2352		val |= GITS_BASER_PAGE_SIZE_16K;
2353		break;
2354	case SZ_64K:
2355		val |= GITS_BASER_PAGE_SIZE_64K;
2356		break;
2357	}
2358
2359	its_write_baser(its, baser, val);
2360	tmp = baser->val;
2361
2362	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2363		/*
2364		 * Shareability didn't stick. Just use
2365		 * whatever the read reported, which is likely
2366		 * to be the only thing this redistributor
2367		 * supports. If that's zero, make it
2368		 * non-cacheable as well.
2369		 */
2370		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2371		if (!shr) {
2372			cache = GITS_BASER_nC;
2373			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2374		}
2375		goto retry_baser;
2376	}
2377
2378	if (val != tmp) {
2379		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2380		       &its->phys_base, its_base_type_string[type],
2381		       val, tmp);
2382		free_pages((unsigned long)base, order);
2383		return -ENXIO;
2384	}
 
2385
2386	baser->order = order;
2387	baser->base = base;
2388	baser->psz = psz;
2389	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2390
2391	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2392		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2393		its_base_type_string[type],
2394		(unsigned long)virt_to_phys(base),
2395		indirect ? "indirect" : "flat", (int)esz,
2396		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2397
2398	return 0;
2399}
2400
2401static bool its_parse_indirect_baser(struct its_node *its,
2402				     struct its_baser *baser,
2403				     u32 *order, u32 ids)
2404{
2405	u64 tmp = its_read_baser(its, baser);
2406	u64 type = GITS_BASER_TYPE(tmp);
2407	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2408	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2409	u32 new_order = *order;
2410	u32 psz = baser->psz;
2411	bool indirect = false;
2412
2413	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2414	if ((esz << ids) > (psz * 2)) {
2415		/*
2416		 * Find out whether hw supports a single or two-level table by
2417		 * table by reading bit at offset '62' after writing '1' to it.
 
 
 
 
2418		 */
2419		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2420		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2421
2422		if (indirect) {
2423			/*
2424			 * The size of the lvl2 table is equal to ITS page size
2425			 * which is 'psz'. For computing lvl1 table size,
2426			 * subtract ID bits that sparse lvl2 table from 'ids'
2427			 * which is reported by ITS hardware times lvl1 table
2428			 * entry size.
2429			 */
2430			ids -= ilog2(psz / (int)esz);
2431			esz = GITS_LVL1_ENTRY_SIZE;
 
 
 
 
 
2432		}
2433	}
2434
2435	/*
2436	 * Allocate as many entries as required to fit the
2437	 * range of device IDs that the ITS can grok... The ID
2438	 * space being incredibly sparse, this results in a
2439	 * massive waste of memory if two-level device table
2440	 * feature is not supported by hardware.
2441	 */
2442	new_order = max_t(u32, get_order(esz << ids), new_order);
2443	if (new_order >= MAX_ORDER) {
2444		new_order = MAX_ORDER - 1;
2445		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2446		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2447			&its->phys_base, its_base_type_string[type],
2448			device_ids(its), ids);
2449	}
2450
2451	*order = new_order;
2452
2453	return indirect;
2454}
2455
2456static u32 compute_common_aff(u64 val)
2457{
2458	u32 aff, clpiaff;
2459
2460	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2461	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2462
2463	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2464}
2465
2466static u32 compute_its_aff(struct its_node *its)
2467{
2468	u64 val;
2469	u32 svpet;
2470
2471	/*
2472	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2473	 * the resulting affinity. We then use that to see if this match
2474	 * our own affinity.
2475	 */
2476	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2477	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2478	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2479	return compute_common_aff(val);
2480}
2481
2482static struct its_node *find_sibling_its(struct its_node *cur_its)
2483{
2484	struct its_node *its;
2485	u32 aff;
2486
2487	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2488		return NULL;
2489
2490	aff = compute_its_aff(cur_its);
2491
2492	list_for_each_entry(its, &its_nodes, entry) {
2493		u64 baser;
2494
2495		if (!is_v4_1(its) || its == cur_its)
2496			continue;
2497
2498		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2499			continue;
2500
2501		if (aff != compute_its_aff(its))
2502			continue;
2503
2504		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2505		baser = its->tables[2].val;
2506		if (!(baser & GITS_BASER_VALID))
2507			continue;
2508
2509		return its;
2510	}
2511
2512	return NULL;
2513}
2514
2515static void its_free_tables(struct its_node *its)
2516{
2517	int i;
2518
2519	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2520		if (its->tables[i].base) {
2521			free_pages((unsigned long)its->tables[i].base,
2522				   its->tables[i].order);
2523			its->tables[i].base = NULL;
 
 
 
 
 
 
 
 
2524		}
2525	}
2526}
2527
2528static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2529{
2530	u64 psz = SZ_64K;
2531
2532	while (psz) {
2533		u64 val, gpsz;
2534
2535		val = its_read_baser(its, baser);
2536		val &= ~GITS_BASER_PAGE_SIZE_MASK;
 
 
2537
2538		switch (psz) {
2539		case SZ_64K:
2540			gpsz = GITS_BASER_PAGE_SIZE_64K;
2541			break;
2542		case SZ_16K:
2543			gpsz = GITS_BASER_PAGE_SIZE_16K;
2544			break;
2545		case SZ_4K:
2546		default:
2547			gpsz = GITS_BASER_PAGE_SIZE_4K;
2548			break;
2549		}
2550
2551		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2552
2553		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2554		its_write_baser(its, baser, val);
2555
2556		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2557			break;
2558
2559		switch (psz) {
2560		case SZ_64K:
2561			psz = SZ_16K;
2562			break;
2563		case SZ_16K:
2564			psz = SZ_4K;
2565			break;
2566		case SZ_4K:
2567		default:
2568			return -1;
2569		}
2570	}
2571
2572	baser->psz = psz;
2573	return 0;
2574}
2575
2576static int its_alloc_tables(struct its_node *its)
2577{
2578	u64 shr = GITS_BASER_InnerShareable;
2579	u64 cache = GITS_BASER_RaWaWb;
2580	int err, i;
2581
2582	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2583		/* erratum 24313: ignore memory access type */
2584		cache = GITS_BASER_nCnB;
2585
2586	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2587		struct its_baser *baser = its->tables + i;
2588		u64 val = its_read_baser(its, baser);
2589		u64 type = GITS_BASER_TYPE(val);
2590		bool indirect = false;
2591		u32 order;
2592
2593		if (type == GITS_BASER_TYPE_NONE)
2594			continue;
2595
2596		if (its_probe_baser_psz(its, baser)) {
2597			its_free_tables(its);
2598			return -ENXIO;
 
2599		}
2600
2601		order = get_order(baser->psz);
 
 
 
 
 
 
 
2602
2603		switch (type) {
2604		case GITS_BASER_TYPE_DEVICE:
2605			indirect = its_parse_indirect_baser(its, baser, &order,
2606							    device_ids(its));
2607			break;
2608
2609		case GITS_BASER_TYPE_VCPU:
2610			if (is_v4_1(its)) {
2611				struct its_node *sibling;
2612
2613				WARN_ON(i != 2);
2614				if ((sibling = find_sibling_its(its))) {
2615					*baser = sibling->tables[2];
2616					its_write_baser(its, baser, baser->val);
2617					continue;
2618				}
2619			}
2620
2621			indirect = its_parse_indirect_baser(its, baser, &order,
2622							    ITS_MAX_VPEID_BITS);
2623			break;
2624		}
2625
2626		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2627		if (err < 0) {
2628			its_free_tables(its);
2629			return err;
 
 
2630		}
2631
2632		/* Update settings which will be used for next BASERn */
2633		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2634		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
 
 
2635	}
2636
2637	return 0;
2638}
2639
2640static u64 inherit_vpe_l1_table_from_its(void)
2641{
2642	struct its_node *its;
2643	u64 val;
2644	u32 aff;
2645
2646	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2647	aff = compute_common_aff(val);
2648
2649	list_for_each_entry(its, &its_nodes, entry) {
2650		u64 baser, addr;
2651
2652		if (!is_v4_1(its))
2653			continue;
2654
2655		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2656			continue;
2657
2658		if (aff != compute_its_aff(its))
2659			continue;
2660
2661		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2662		baser = its->tables[2].val;
2663		if (!(baser & GITS_BASER_VALID))
2664			continue;
2665
2666		/* We have a winner! */
2667		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2668
2669		val  = GICR_VPROPBASER_4_1_VALID;
2670		if (baser & GITS_BASER_INDIRECT)
2671			val |= GICR_VPROPBASER_4_1_INDIRECT;
2672		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2673				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2674		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2675		case GIC_PAGE_SIZE_64K:
2676			addr = GITS_BASER_ADDR_48_to_52(baser);
2677			break;
2678		default:
2679			addr = baser & GENMASK_ULL(47, 12);
2680			break;
2681		}
2682		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2683		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2684				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2685		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2686				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2687		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2688
2689		return val;
2690	}
2691
2692	return 0;
2693}
2694
2695static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2696{
2697	u32 aff;
2698	u64 val;
2699	int cpu;
2700
2701	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2702	aff = compute_common_aff(val);
2703
2704	for_each_possible_cpu(cpu) {
2705		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2706
2707		if (!base || cpu == smp_processor_id())
2708			continue;
2709
2710		val = gic_read_typer(base + GICR_TYPER);
2711		if (aff != compute_common_aff(val))
2712			continue;
2713
2714		/*
2715		 * At this point, we have a victim. This particular CPU
2716		 * has already booted, and has an affinity that matches
2717		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2718		 * Make sure we don't write the Z bit in that case.
2719		 */
2720		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2721		val &= ~GICR_VPROPBASER_4_1_Z;
2722
2723		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2724		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2725
2726		return val;
2727	}
2728
2729	return 0;
2730}
2731
2732static bool allocate_vpe_l2_table(int cpu, u32 id)
2733{
2734	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2735	unsigned int psz, esz, idx, npg, gpsz;
2736	u64 val;
2737	struct page *page;
2738	__le64 *table;
2739
2740	if (!gic_rdists->has_rvpeid)
2741		return true;
2742
2743	/* Skip non-present CPUs */
2744	if (!base)
2745		return true;
2746
2747	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2748
2749	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2750	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2751	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2752
2753	switch (gpsz) {
2754	default:
2755		WARN_ON(1);
2756		fallthrough;
2757	case GIC_PAGE_SIZE_4K:
2758		psz = SZ_4K;
2759		break;
2760	case GIC_PAGE_SIZE_16K:
2761		psz = SZ_16K;
2762		break;
2763	case GIC_PAGE_SIZE_64K:
2764		psz = SZ_64K;
2765		break;
2766	}
2767
2768	/* Don't allow vpe_id that exceeds single, flat table limit */
2769	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2770		return (id < (npg * psz / (esz * SZ_8)));
2771
2772	/* Compute 1st level table index & check if that exceeds table limit */
2773	idx = id >> ilog2(psz / (esz * SZ_8));
2774	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2775		return false;
2776
2777	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2778
2779	/* Allocate memory for 2nd level table */
2780	if (!table[idx]) {
2781		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2782		if (!page)
2783			return false;
2784
2785		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2786		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2787			gic_flush_dcache_to_poc(page_address(page), psz);
2788
2789		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2790
2791		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2792		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2793			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2794
2795		/* Ensure updated table contents are visible to RD hardware */
2796		dsb(sy);
2797	}
2798
2799	return true;
2800}
2801
2802static int allocate_vpe_l1_table(void)
2803{
2804	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2805	u64 val, gpsz, npg, pa;
2806	unsigned int psz = SZ_64K;
2807	unsigned int np, epp, esz;
2808	struct page *page;
2809
2810	if (!gic_rdists->has_rvpeid)
2811		return 0;
2812
2813	/*
2814	 * if VPENDBASER.Valid is set, disable any previously programmed
2815	 * VPE by setting PendingLast while clearing Valid. This has the
2816	 * effect of making sure no doorbell will be generated and we can
2817	 * then safely clear VPROPBASER.Valid.
2818	 */
2819	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2820		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2821				      vlpi_base + GICR_VPENDBASER);
2822
2823	/*
2824	 * If we can inherit the configuration from another RD, let's do
2825	 * so. Otherwise, we have to go through the allocation process. We
2826	 * assume that all RDs have the exact same requirements, as
2827	 * nothing will work otherwise.
2828	 */
2829	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2830	if (val & GICR_VPROPBASER_4_1_VALID)
2831		goto out;
2832
2833	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2834	if (!gic_data_rdist()->vpe_table_mask)
2835		return -ENOMEM;
2836
2837	val = inherit_vpe_l1_table_from_its();
2838	if (val & GICR_VPROPBASER_4_1_VALID)
2839		goto out;
2840
2841	/* First probe the page size */
2842	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2843	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2844	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2845	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2846	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2847
2848	switch (gpsz) {
2849	default:
2850		gpsz = GIC_PAGE_SIZE_4K;
2851		fallthrough;
2852	case GIC_PAGE_SIZE_4K:
2853		psz = SZ_4K;
2854		break;
2855	case GIC_PAGE_SIZE_16K:
2856		psz = SZ_16K;
2857		break;
2858	case GIC_PAGE_SIZE_64K:
2859		psz = SZ_64K;
2860		break;
2861	}
2862
2863	/*
2864	 * Start populating the register from scratch, including RO fields
2865	 * (which we want to print in debug cases...)
2866	 */
2867	val = 0;
2868	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2869	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2870
2871	/* How many entries per GIC page? */
2872	esz++;
2873	epp = psz / (esz * SZ_8);
2874
2875	/*
2876	 * If we need more than just a single L1 page, flag the table
2877	 * as indirect and compute the number of required L1 pages.
2878	 */
2879	if (epp < ITS_MAX_VPEID) {
2880		int nl2;
2881
2882		val |= GICR_VPROPBASER_4_1_INDIRECT;
2883
2884		/* Number of L2 pages required to cover the VPEID space */
2885		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2886
2887		/* Number of L1 pages to point to the L2 pages */
2888		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2889	} else {
2890		npg = 1;
2891	}
2892
2893	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2894
2895	/* Right, that's the number of CPU pages we need for L1 */
2896	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2897
2898	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2899		 np, npg, psz, epp, esz);
2900	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2901	if (!page)
2902		return -ENOMEM;
2903
2904	gic_data_rdist()->vpe_l1_base = page_address(page);
2905	pa = virt_to_phys(page_address(page));
2906	WARN_ON(!IS_ALIGNED(pa, psz));
2907
2908	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2909	val |= GICR_VPROPBASER_RaWb;
2910	val |= GICR_VPROPBASER_InnerShareable;
2911	val |= GICR_VPROPBASER_4_1_Z;
2912	val |= GICR_VPROPBASER_4_1_VALID;
2913
2914out:
2915	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2916	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2917
2918	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2919		 smp_processor_id(), val,
2920		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2921
2922	return 0;
2923}
2924
2925static int its_alloc_collections(struct its_node *its)
2926{
2927	int i;
2928
2929	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2930				   GFP_KERNEL);
2931	if (!its->collections)
2932		return -ENOMEM;
2933
2934	for (i = 0; i < nr_cpu_ids; i++)
2935		its->collections[i].target_address = ~0ULL;
2936
2937	return 0;
2938}
2939
2940static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2941{
2942	struct page *pend_page;
2943
2944	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2945				get_order(LPI_PENDBASE_SZ));
2946	if (!pend_page)
2947		return NULL;
2948
2949	/* Make sure the GIC will observe the zero-ed page */
2950	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2951
2952	return pend_page;
2953}
2954
2955static void its_free_pending_table(struct page *pt)
2956{
2957	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2958}
2959
2960/*
2961 * Booting with kdump and LPIs enabled is generally fine. Any other
2962 * case is wrong in the absence of firmware/EFI support.
2963 */
2964static bool enabled_lpis_allowed(void)
2965{
2966	phys_addr_t addr;
2967	u64 val;
2968
2969	/* Check whether the property table is in a reserved region */
2970	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2971	addr = val & GENMASK_ULL(51, 12);
2972
2973	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2974}
2975
2976static int __init allocate_lpi_tables(void)
2977{
2978	u64 val;
2979	int err, cpu;
2980
2981	/*
2982	 * If LPIs are enabled while we run this from the boot CPU,
2983	 * flag the RD tables as pre-allocated if the stars do align.
2984	 */
2985	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2986	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2987		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2988				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2989		pr_info("GICv3: Using preallocated redistributor tables\n");
2990	}
2991
2992	err = its_setup_lpi_prop_table();
2993	if (err)
2994		return err;
2995
2996	/*
2997	 * We allocate all the pending tables anyway, as we may have a
2998	 * mix of RDs that have had LPIs enabled, and some that
2999	 * don't. We'll free the unused ones as each CPU comes online.
3000	 */
3001	for_each_possible_cpu(cpu) {
3002		struct page *pend_page;
3003
3004		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3005		if (!pend_page) {
3006			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3007			return -ENOMEM;
3008		}
3009
3010		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3011	}
3012
3013	return 0;
3014}
3015
3016static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3017{
3018	u32 count = 1000000;	/* 1s! */
3019	bool clean;
3020	u64 val;
3021
3022	do {
3023		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3024		clean = !(val & GICR_VPENDBASER_Dirty);
3025		if (!clean) {
3026			count--;
3027			cpu_relax();
3028			udelay(1);
3029		}
3030	} while (!clean && count);
3031
3032	if (unlikely(!clean))
3033		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3034
3035	return val;
3036}
3037
3038static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3039{
3040	u64 val;
3041
3042	/* Make sure we wait until the RD is done with the initial scan */
3043	val = read_vpend_dirty_clear(vlpi_base);
3044	val &= ~GICR_VPENDBASER_Valid;
3045	val &= ~clr;
3046	val |= set;
3047	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3048
3049	val = read_vpend_dirty_clear(vlpi_base);
3050	if (unlikely(val & GICR_VPENDBASER_Dirty))
3051		val |= GICR_VPENDBASER_PendingLast;
3052
3053	return val;
3054}
3055
3056static void its_cpu_init_lpis(void)
3057{
3058	void __iomem *rbase = gic_data_rdist_rd_base();
3059	struct page *pend_page;
3060	phys_addr_t paddr;
3061	u64 val, tmp;
3062
3063	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3064		return;
3065
3066	val = readl_relaxed(rbase + GICR_CTLR);
3067	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3068	    (val & GICR_CTLR_ENABLE_LPIS)) {
3069		/*
3070		 * Check that we get the same property table on all
3071		 * RDs. If we don't, this is hopeless.
3072		 */
3073		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3074		paddr &= GENMASK_ULL(51, 12);
3075		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3076			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
 
 
 
3077
3078		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3079		paddr &= GENMASK_ULL(51, 16);
3080
3081		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3082		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
 
 
 
3083
3084		goto out;
3085	}
 
 
3086
3087	pend_page = gic_data_rdist()->pend_page;
3088	paddr = page_to_phys(pend_page);
 
 
3089
3090	/* set PROPBASE */
3091	val = (gic_rdists->prop_table_pa |
3092	       GICR_PROPBASER_InnerShareable |
3093	       GICR_PROPBASER_RaWaWb |
3094	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3095
3096	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3097	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3098
3099	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3100		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3101			/*
3102			 * The HW reports non-shareable, we must
3103			 * remove the cacheability attributes as
3104			 * well.
3105			 */
3106			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3107				 GICR_PROPBASER_CACHEABILITY_MASK);
3108			val |= GICR_PROPBASER_nC;
3109			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3110		}
3111		pr_info_once("GIC: using cache flushing for LPI property table\n");
3112		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3113	}
3114
3115	/* set PENDBASE */
3116	val = (page_to_phys(pend_page) |
3117	       GICR_PENDBASER_InnerShareable |
3118	       GICR_PENDBASER_RaWaWb);
3119
3120	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3121	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3122
3123	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3124		/*
3125		 * The HW reports non-shareable, we must remove the
3126		 * cacheability attributes as well.
3127		 */
3128		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3129			 GICR_PENDBASER_CACHEABILITY_MASK);
3130		val |= GICR_PENDBASER_nC;
3131		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3132	}
3133
3134	/* Enable LPIs */
3135	val = readl_relaxed(rbase + GICR_CTLR);
3136	val |= GICR_CTLR_ENABLE_LPIS;
3137	writel_relaxed(val, rbase + GICR_CTLR);
3138
3139	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3140		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
 
3141
3142		/*
3143		 * It's possible for CPU to receive VLPIs before it is
3144		 * scheduled as a vPE, especially for the first CPU, and the
3145		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3146		 * as out of range and dropped by GIC.
3147		 * So we initialize IDbits to known value to avoid VLPI drop.
3148		 */
3149		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3150		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3151			smp_processor_id(), val);
3152		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3153
3154		/*
3155		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3156		 * ancient programming gets left in and has possibility of
3157		 * corrupting memory.
3158		 */
3159		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3160	}
3161
3162	if (allocate_vpe_l1_table()) {
3163		/*
3164		 * If the allocation has failed, we're in massive trouble.
3165		 * Disable direct injection, and pray that no VM was
3166		 * already running...
3167		 */
3168		gic_rdists->has_rvpeid = false;
3169		gic_rdists->has_vlpis = false;
3170	}
3171
3172	/* Make sure the GIC has seen the above */
3173	dsb(sy);
3174out:
3175	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3176	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3177		smp_processor_id(),
3178		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3179		"reserved" : "allocated",
3180		&paddr);
3181}
3182
3183static void its_cpu_init_collection(struct its_node *its)
3184{
3185	int cpu = smp_processor_id();
3186	u64 target;
3187
3188	/* avoid cross node collections and its mapping */
3189	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3190		struct device_node *cpu_node;
3191
3192		cpu_node = of_get_cpu_node(cpu, NULL);
3193		if (its->numa_node != NUMA_NO_NODE &&
3194			its->numa_node != of_node_to_nid(cpu_node))
3195			return;
3196	}
3197
3198	/*
3199	 * We now have to bind each collection to its target
3200	 * redistributor.
3201	 */
3202	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3203		/*
3204		 * This ITS wants the physical address of the
3205		 * redistributor.
3206		 */
3207		target = gic_data_rdist()->phys_base;
3208	} else {
3209		/* This ITS wants a linear CPU number. */
3210		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3211		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3212	}
 
 
 
 
 
 
 
3213
3214	/* Perform collection mapping */
3215	its->collections[cpu].target_address = target;
3216	its->collections[cpu].col_id = cpu;
3217
3218	its_send_mapc(its, &its->collections[cpu], 1);
3219	its_send_invall(its, &its->collections[cpu]);
3220}
3221
3222static void its_cpu_init_collections(void)
3223{
3224	struct its_node *its;
3225
3226	raw_spin_lock(&its_lock);
3227
3228	list_for_each_entry(its, &its_nodes, entry)
3229		its_cpu_init_collection(its);
3230
3231	raw_spin_unlock(&its_lock);
3232}
3233
3234static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3235{
3236	struct its_device *its_dev = NULL, *tmp;
3237	unsigned long flags;
3238
3239	raw_spin_lock_irqsave(&its->lock, flags);
3240
3241	list_for_each_entry(tmp, &its->its_device_list, entry) {
3242		if (tmp->device_id == dev_id) {
3243			its_dev = tmp;
3244			break;
3245		}
3246	}
3247
3248	raw_spin_unlock_irqrestore(&its->lock, flags);
3249
3250	return its_dev;
3251}
3252
3253static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3254{
3255	int i;
3256
3257	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3258		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3259			return &its->tables[i];
3260	}
3261
3262	return NULL;
3263}
3264
3265static bool its_alloc_table_entry(struct its_node *its,
3266				  struct its_baser *baser, u32 id)
3267{
3268	struct page *page;
3269	u32 esz, idx;
3270	__le64 *table;
3271
3272	/* Don't allow device id that exceeds single, flat table limit */
3273	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3274	if (!(baser->val & GITS_BASER_INDIRECT))
3275		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3276
3277	/* Compute 1st level table index & check if that exceeds table limit */
3278	idx = id >> ilog2(baser->psz / esz);
3279	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3280		return false;
3281
3282	table = baser->base;
3283
3284	/* Allocate memory for 2nd level table */
3285	if (!table[idx]) {
3286		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3287					get_order(baser->psz));
3288		if (!page)
3289			return false;
3290
3291		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3292		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3293			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3294
3295		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3296
3297		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3298		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3299			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3300
3301		/* Ensure updated table contents are visible to ITS hardware */
3302		dsb(sy);
3303	}
3304
3305	return true;
3306}
3307
3308static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3309{
3310	struct its_baser *baser;
3311
3312	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3313
3314	/* Don't allow device id that exceeds ITS hardware limit */
3315	if (!baser)
3316		return (ilog2(dev_id) < device_ids(its));
3317
3318	return its_alloc_table_entry(its, baser, dev_id);
3319}
3320
3321static bool its_alloc_vpe_table(u32 vpe_id)
3322{
3323	struct its_node *its;
3324	int cpu;
3325
3326	/*
3327	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3328	 * could try and only do it on ITSs corresponding to devices
3329	 * that have interrupts targeted at this VPE, but the
3330	 * complexity becomes crazy (and you have tons of memory
3331	 * anyway, right?).
3332	 */
3333	list_for_each_entry(its, &its_nodes, entry) {
3334		struct its_baser *baser;
3335
3336		if (!is_v4(its))
3337			continue;
3338
3339		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3340		if (!baser)
3341			return false;
3342
3343		if (!its_alloc_table_entry(its, baser, vpe_id))
3344			return false;
3345	}
3346
3347	/* Non v4.1? No need to iterate RDs and go back early. */
3348	if (!gic_rdists->has_rvpeid)
3349		return true;
3350
3351	/*
3352	 * Make sure the L2 tables are allocated for all copies of
3353	 * the L1 table on *all* v4.1 RDs.
3354	 */
3355	for_each_possible_cpu(cpu) {
3356		if (!allocate_vpe_l2_table(cpu, vpe_id))
3357			return false;
3358	}
3359
3360	return true;
3361}
3362
3363static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3364					    int nvecs, bool alloc_lpis)
3365{
3366	struct its_device *dev;
3367	unsigned long *lpi_map = NULL;
3368	unsigned long flags;
3369	u16 *col_map = NULL;
3370	void *itt;
3371	int lpi_base;
3372	int nr_lpis;
3373	int nr_ites;
3374	int sz;
3375
3376	if (!its_alloc_device_table(its, dev_id))
3377		return NULL;
3378
3379	if (WARN_ON(!is_power_of_2(nvecs)))
3380		nvecs = roundup_pow_of_two(nvecs);
3381
3382	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3383	/*
3384	 * Even if the device wants a single LPI, the ITT must be
3385	 * sized as a power of two (and you need at least one bit...).
 
3386	 */
3387	nr_ites = max(2, nvecs);
3388	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3389	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3390	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3391	if (alloc_lpis) {
3392		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3393		if (lpi_map)
3394			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3395					  GFP_KERNEL);
3396	} else {
3397		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3398		nr_lpis = 0;
3399		lpi_base = 0;
3400	}
3401
3402	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3403		kfree(dev);
3404		kfree(itt);
3405		bitmap_free(lpi_map);
3406		kfree(col_map);
3407		return NULL;
3408	}
3409
3410	gic_flush_dcache_to_poc(itt, sz);
3411
3412	dev->its = its;
3413	dev->itt = itt;
3414	dev->nr_ites = nr_ites;
3415	dev->event_map.lpi_map = lpi_map;
3416	dev->event_map.col_map = col_map;
3417	dev->event_map.lpi_base = lpi_base;
3418	dev->event_map.nr_lpis = nr_lpis;
3419	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3420	dev->device_id = dev_id;
3421	INIT_LIST_HEAD(&dev->entry);
3422
3423	raw_spin_lock_irqsave(&its->lock, flags);
3424	list_add(&dev->entry, &its->its_device_list);
3425	raw_spin_unlock_irqrestore(&its->lock, flags);
3426
3427	/* Map device to its ITT */
3428	its_send_mapd(dev, 1);
3429
3430	return dev;
3431}
3432
3433static void its_free_device(struct its_device *its_dev)
3434{
3435	unsigned long flags;
3436
3437	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3438	list_del(&its_dev->entry);
3439	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3440	kfree(its_dev->event_map.col_map);
3441	kfree(its_dev->itt);
3442	kfree(its_dev);
3443}
3444
3445static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3446{
3447	int idx;
3448
3449	/* Find a free LPI region in lpi_map and allocate them. */
3450	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3451				      dev->event_map.nr_lpis,
3452				      get_count_order(nvecs));
3453	if (idx < 0)
3454		return -ENOSPC;
3455
3456	*hwirq = dev->event_map.lpi_base + idx;
 
3457
3458	return 0;
3459}
3460
3461static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3462			   int nvec, msi_alloc_info_t *info)
3463{
3464	struct its_node *its;
3465	struct its_device *its_dev;
3466	struct msi_domain_info *msi_info;
3467	u32 dev_id;
3468	int err = 0;
3469
3470	/*
3471	 * We ignore "dev" entirely, and rely on the dev_id that has
3472	 * been passed via the scratchpad. This limits this domain's
3473	 * usefulness to upper layers that definitely know that they
3474	 * are built on top of the ITS.
3475	 */
3476	dev_id = info->scratchpad[0].ul;
3477
3478	msi_info = msi_get_domain_info(domain);
3479	its = msi_info->data;
3480
3481	if (!gic_rdists->has_direct_lpi &&
3482	    vpe_proxy.dev &&
3483	    vpe_proxy.dev->its == its &&
3484	    dev_id == vpe_proxy.dev->device_id) {
3485		/* Bad luck. Get yourself a better implementation */
3486		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3487			  dev_id);
3488		return -EINVAL;
3489	}
3490
3491	mutex_lock(&its->dev_alloc_lock);
3492	its_dev = its_find_device(its, dev_id);
3493	if (its_dev) {
3494		/*
3495		 * We already have seen this ID, probably through
3496		 * another alias (PCI bridge of some sort). No need to
3497		 * create the device.
3498		 */
3499		its_dev->shared = true;
3500		pr_debug("Reusing ITT for devID %x\n", dev_id);
3501		goto out;
3502	}
3503
3504	its_dev = its_create_device(its, dev_id, nvec, true);
3505	if (!its_dev) {
3506		err = -ENOMEM;
3507		goto out;
3508	}
3509
3510	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3511		its_dev->shared = true;
3512
3513	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3514out:
3515	mutex_unlock(&its->dev_alloc_lock);
3516	info->scratchpad[0].ptr = its_dev;
3517	return err;
3518}
3519
3520static struct msi_domain_ops its_msi_domain_ops = {
3521	.msi_prepare	= its_msi_prepare,
3522};
3523
3524static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3525				    unsigned int virq,
3526				    irq_hw_number_t hwirq)
3527{
3528	struct irq_fwspec fwspec;
3529
3530	if (irq_domain_get_of_node(domain->parent)) {
3531		fwspec.fwnode = domain->parent->fwnode;
3532		fwspec.param_count = 3;
3533		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3534		fwspec.param[1] = hwirq;
3535		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3536	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3537		fwspec.fwnode = domain->parent->fwnode;
3538		fwspec.param_count = 2;
3539		fwspec.param[0] = hwirq;
3540		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3541	} else {
3542		return -EINVAL;
3543	}
3544
3545	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3546}
3547
3548static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3549				unsigned int nr_irqs, void *args)
3550{
3551	msi_alloc_info_t *info = args;
3552	struct its_device *its_dev = info->scratchpad[0].ptr;
3553	struct its_node *its = its_dev->its;
3554	struct irq_data *irqd;
3555	irq_hw_number_t hwirq;
3556	int err;
3557	int i;
3558
3559	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3560	if (err)
3561		return err;
3562
3563	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3564	if (err)
3565		return err;
3566
3567	for (i = 0; i < nr_irqs; i++) {
3568		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3569		if (err)
3570			return err;
3571
3572		irq_domain_set_hwirq_and_chip(domain, virq + i,
3573					      hwirq + i, &its_irq_chip, its_dev);
3574		irqd = irq_get_irq_data(virq + i);
3575		irqd_set_single_target(irqd);
3576		irqd_set_affinity_on_activate(irqd);
3577		pr_debug("ID:%d pID:%d vID:%d\n",
3578			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3579			 (int)(hwirq + i), virq + i);
3580	}
3581
3582	return 0;
3583}
3584
3585static int its_irq_domain_activate(struct irq_domain *domain,
3586				   struct irq_data *d, bool reserve)
3587{
3588	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3589	u32 event = its_get_event_id(d);
3590	int cpu;
3591
3592	cpu = its_select_cpu(d, cpu_online_mask);
3593	if (cpu < 0 || cpu >= nr_cpu_ids)
3594		return -EINVAL;
3595
3596	its_inc_lpi_count(d, cpu);
3597	its_dev->event_map.col_map[event] = cpu;
3598	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3599
3600	/* Map the GIC IRQ and event to the device */
3601	its_send_mapti(its_dev, d->hwirq, event);
3602	return 0;
3603}
3604
3605static void its_irq_domain_deactivate(struct irq_domain *domain,
3606				      struct irq_data *d)
3607{
3608	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3609	u32 event = its_get_event_id(d);
3610
3611	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3612	/* Stop the delivery of interrupts */
3613	its_send_discard(its_dev, event);
3614}
3615
3616static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3617				unsigned int nr_irqs)
3618{
3619	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3620	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3621	struct its_node *its = its_dev->its;
3622	int i;
3623
3624	bitmap_release_region(its_dev->event_map.lpi_map,
3625			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3626			      get_count_order(nr_irqs));
3627
3628	for (i = 0; i < nr_irqs; i++) {
3629		struct irq_data *data = irq_domain_get_irq_data(domain,
3630								virq + i);
 
 
 
 
 
3631		/* Nuke the entry in the domain */
3632		irq_domain_reset_irq_data(data);
3633	}
3634
3635	mutex_lock(&its->dev_alloc_lock);
3636
3637	/*
3638	 * If all interrupts have been freed, start mopping the
3639	 * floor. This is conditioned on the device not being shared.
3640	 */
3641	if (!its_dev->shared &&
3642	    bitmap_empty(its_dev->event_map.lpi_map,
3643			 its_dev->event_map.nr_lpis)) {
3644		its_lpi_free(its_dev->event_map.lpi_map,
3645			     its_dev->event_map.lpi_base,
3646			     its_dev->event_map.nr_lpis);
3647
3648		/* Unmap device/itt */
3649		its_send_mapd(its_dev, 0);
3650		its_free_device(its_dev);
3651	}
3652
3653	mutex_unlock(&its->dev_alloc_lock);
3654
3655	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3656}
3657
3658static const struct irq_domain_ops its_domain_ops = {
3659	.alloc			= its_irq_domain_alloc,
3660	.free			= its_irq_domain_free,
3661	.activate		= its_irq_domain_activate,
3662	.deactivate		= its_irq_domain_deactivate,
3663};
3664
3665/*
3666 * This is insane.
3667 *
3668 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3669 * likely), the only way to perform an invalidate is to use a fake
3670 * device to issue an INV command, implying that the LPI has first
3671 * been mapped to some event on that device. Since this is not exactly
3672 * cheap, we try to keep that mapping around as long as possible, and
3673 * only issue an UNMAP if we're short on available slots.
3674 *
3675 * Broken by design(tm).
3676 *
3677 * GICv4.1, on the other hand, mandates that we're able to invalidate
3678 * by writing to a MMIO register. It doesn't implement the whole of
3679 * DirectLPI, but that's good enough. And most of the time, we don't
3680 * even have to invalidate anything, as the redistributor can be told
3681 * whether to generate a doorbell or not (we thus leave it enabled,
3682 * always).
3683 */
3684static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3685{
3686	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3687	if (gic_rdists->has_rvpeid)
3688		return;
3689
3690	/* Already unmapped? */
3691	if (vpe->vpe_proxy_event == -1)
3692		return;
3693
3694	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3695	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3696
3697	/*
3698	 * We don't track empty slots at all, so let's move the
3699	 * next_victim pointer if we can quickly reuse that slot
3700	 * instead of nuking an existing entry. Not clear that this is
3701	 * always a win though, and this might just generate a ripple
3702	 * effect... Let's just hope VPEs don't migrate too often.
3703	 */
3704	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3705		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3706
3707	vpe->vpe_proxy_event = -1;
3708}
3709
3710static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3711{
3712	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3713	if (gic_rdists->has_rvpeid)
3714		return;
3715
3716	if (!gic_rdists->has_direct_lpi) {
3717		unsigned long flags;
3718
3719		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3720		its_vpe_db_proxy_unmap_locked(vpe);
3721		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3722	}
3723}
3724
3725static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3726{
3727	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3728	if (gic_rdists->has_rvpeid)
3729		return;
3730
3731	/* Already mapped? */
3732	if (vpe->vpe_proxy_event != -1)
3733		return;
3734
3735	/* This slot was already allocated. Kick the other VPE out. */
3736	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3737		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3738
3739	/* Map the new VPE instead */
3740	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3741	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3742	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3743
3744	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3745	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3746}
3747
3748static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3749{
3750	unsigned long flags;
3751	struct its_collection *target_col;
3752
3753	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3754	if (gic_rdists->has_rvpeid)
3755		return;
3756
3757	if (gic_rdists->has_direct_lpi) {
3758		void __iomem *rdbase;
3759
3760		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3761		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3762		wait_for_syncr(rdbase);
3763
3764		return;
3765	}
3766
3767	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3768
3769	its_vpe_db_proxy_map_locked(vpe);
3770
3771	target_col = &vpe_proxy.dev->its->collections[to];
3772	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3773	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3774
3775	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3776}
3777
3778static int its_vpe_set_affinity(struct irq_data *d,
3779				const struct cpumask *mask_val,
3780				bool force)
3781{
3782	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3783	int from, cpu = cpumask_first(mask_val);
3784	unsigned long flags;
3785
3786	/*
3787	 * Changing affinity is mega expensive, so let's be as lazy as
3788	 * we can and only do it if we really have to. Also, if mapped
3789	 * into the proxy device, we need to move the doorbell
3790	 * interrupt to its new location.
3791	 *
3792	 * Another thing is that changing the affinity of a vPE affects
3793	 * *other interrupts* such as all the vLPIs that are routed to
3794	 * this vPE. This means that the irq_desc lock is not enough to
3795	 * protect us, and that we must ensure nobody samples vpe->col_idx
3796	 * during the update, hence the lock below which must also be
3797	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3798	 */
3799	from = vpe_to_cpuid_lock(vpe, &flags);
3800	if (from == cpu)
3801		goto out;
3802
3803	vpe->col_idx = cpu;
3804
3805	/*
3806	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3807	 * is sharing its VPE table with the current one.
3808	 */
3809	if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3810	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3811		goto out;
3812
3813	its_send_vmovp(vpe);
3814	its_vpe_db_proxy_move(vpe, from, cpu);
3815
3816out:
3817	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3818	vpe_to_cpuid_unlock(vpe, flags);
3819
3820	return IRQ_SET_MASK_OK_DONE;
3821}
3822
3823static void its_wait_vpt_parse_complete(void)
3824{
3825	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3826	u64 val;
3827
3828	if (!gic_rdists->has_vpend_valid_dirty)
3829		return;
3830
3831	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3832						       val,
3833						       !(val & GICR_VPENDBASER_Dirty),
3834						       1, 500));
3835}
3836
3837static void its_vpe_schedule(struct its_vpe *vpe)
3838{
3839	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3840	u64 val;
3841
3842	/* Schedule the VPE */
3843	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3844		GENMASK_ULL(51, 12);
3845	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3846	val |= GICR_VPROPBASER_RaWb;
3847	val |= GICR_VPROPBASER_InnerShareable;
3848	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3849
3850	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3851		GENMASK_ULL(51, 16);
3852	val |= GICR_VPENDBASER_RaWaWb;
3853	val |= GICR_VPENDBASER_InnerShareable;
3854	/*
3855	 * There is no good way of finding out if the pending table is
3856	 * empty as we can race against the doorbell interrupt very
3857	 * easily. So in the end, vpe->pending_last is only an
3858	 * indication that the vcpu has something pending, not one
3859	 * that the pending table is empty. A good implementation
3860	 * would be able to read its coarse map pretty quickly anyway,
3861	 * making this a tolerable issue.
3862	 */
3863	val |= GICR_VPENDBASER_PendingLast;
3864	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3865	val |= GICR_VPENDBASER_Valid;
3866	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3867}
3868
3869static void its_vpe_deschedule(struct its_vpe *vpe)
3870{
3871	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3872	u64 val;
3873
3874	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3875
3876	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3877	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3878}
3879
3880static void its_vpe_invall(struct its_vpe *vpe)
3881{
3882	struct its_node *its;
3883
3884	list_for_each_entry(its, &its_nodes, entry) {
3885		if (!is_v4(its))
3886			continue;
3887
3888		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3889			continue;
3890
3891		/*
3892		 * Sending a VINVALL to a single ITS is enough, as all
3893		 * we need is to reach the redistributors.
3894		 */
3895		its_send_vinvall(its, vpe);
3896		return;
3897	}
3898}
3899
3900static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3901{
3902	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3903	struct its_cmd_info *info = vcpu_info;
3904
3905	switch (info->cmd_type) {
3906	case SCHEDULE_VPE:
3907		its_vpe_schedule(vpe);
3908		return 0;
3909
3910	case DESCHEDULE_VPE:
3911		its_vpe_deschedule(vpe);
3912		return 0;
3913
3914	case COMMIT_VPE:
3915		its_wait_vpt_parse_complete();
3916		return 0;
3917
3918	case INVALL_VPE:
3919		its_vpe_invall(vpe);
3920		return 0;
3921
3922	default:
3923		return -EINVAL;
3924	}
3925}
3926
3927static void its_vpe_send_cmd(struct its_vpe *vpe,
3928			     void (*cmd)(struct its_device *, u32))
3929{
3930	unsigned long flags;
3931
3932	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3933
3934	its_vpe_db_proxy_map_locked(vpe);
3935	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3936
3937	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3938}
3939
3940static void its_vpe_send_inv(struct irq_data *d)
3941{
3942	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3943
3944	if (gic_rdists->has_direct_lpi) {
3945		void __iomem *rdbase;
3946
3947		/* Target the redistributor this VPE is currently known on */
3948		raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3949		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3950		gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3951		wait_for_syncr(rdbase);
3952		raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3953	} else {
3954		its_vpe_send_cmd(vpe, its_send_inv);
3955	}
3956}
3957
3958static void its_vpe_mask_irq(struct irq_data *d)
3959{
3960	/*
3961	 * We need to unmask the LPI, which is described by the parent
3962	 * irq_data. Instead of calling into the parent (which won't
3963	 * exactly do the right thing, let's simply use the
3964	 * parent_data pointer. Yes, I'm naughty.
3965	 */
3966	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3967	its_vpe_send_inv(d);
3968}
3969
3970static void its_vpe_unmask_irq(struct irq_data *d)
3971{
3972	/* Same hack as above... */
3973	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3974	its_vpe_send_inv(d);
3975}
3976
3977static int its_vpe_set_irqchip_state(struct irq_data *d,
3978				     enum irqchip_irq_state which,
3979				     bool state)
3980{
3981	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3982
3983	if (which != IRQCHIP_STATE_PENDING)
3984		return -EINVAL;
3985
3986	if (gic_rdists->has_direct_lpi) {
3987		void __iomem *rdbase;
3988
3989		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3990		if (state) {
3991			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3992		} else {
3993			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3994			wait_for_syncr(rdbase);
3995		}
3996	} else {
3997		if (state)
3998			its_vpe_send_cmd(vpe, its_send_int);
3999		else
4000			its_vpe_send_cmd(vpe, its_send_clear);
4001	}
4002
4003	return 0;
4004}
4005
4006static int its_vpe_retrigger(struct irq_data *d)
4007{
4008	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4009}
4010
4011static struct irq_chip its_vpe_irq_chip = {
4012	.name			= "GICv4-vpe",
4013	.irq_mask		= its_vpe_mask_irq,
4014	.irq_unmask		= its_vpe_unmask_irq,
4015	.irq_eoi		= irq_chip_eoi_parent,
4016	.irq_set_affinity	= its_vpe_set_affinity,
4017	.irq_retrigger		= its_vpe_retrigger,
4018	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4019	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4020};
4021
4022static struct its_node *find_4_1_its(void)
4023{
4024	static struct its_node *its = NULL;
4025
4026	if (!its) {
4027		list_for_each_entry(its, &its_nodes, entry) {
4028			if (is_v4_1(its))
4029				return its;
4030		}
4031
4032		/* Oops? */
4033		its = NULL;
4034	}
4035
4036	return its;
4037}
4038
4039static void its_vpe_4_1_send_inv(struct irq_data *d)
4040{
4041	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4042	struct its_node *its;
4043
4044	/*
4045	 * GICv4.1 wants doorbells to be invalidated using the
4046	 * INVDB command in order to be broadcast to all RDs. Send
4047	 * it to the first valid ITS, and let the HW do its magic.
4048	 */
4049	its = find_4_1_its();
4050	if (its)
4051		its_send_invdb(its, vpe);
4052}
4053
4054static void its_vpe_4_1_mask_irq(struct irq_data *d)
4055{
4056	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4057	its_vpe_4_1_send_inv(d);
4058}
4059
4060static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4061{
4062	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4063	its_vpe_4_1_send_inv(d);
4064}
4065
4066static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4067				 struct its_cmd_info *info)
4068{
4069	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4070	u64 val = 0;
4071
4072	/* Schedule the VPE */
4073	val |= GICR_VPENDBASER_Valid;
4074	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4075	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4076	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4077
4078	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4079}
4080
4081static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4082				   struct its_cmd_info *info)
4083{
4084	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4085	u64 val;
4086
4087	if (info->req_db) {
4088		unsigned long flags;
4089
4090		/*
4091		 * vPE is going to block: make the vPE non-resident with
4092		 * PendingLast clear and DB set. The GIC guarantees that if
4093		 * we read-back PendingLast clear, then a doorbell will be
4094		 * delivered when an interrupt comes.
4095		 *
4096		 * Note the locking to deal with the concurrent update of
4097		 * pending_last from the doorbell interrupt handler that can
4098		 * run concurrently.
4099		 */
4100		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4101		val = its_clear_vpend_valid(vlpi_base,
4102					    GICR_VPENDBASER_PendingLast,
4103					    GICR_VPENDBASER_4_1_DB);
4104		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4105		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4106	} else {
4107		/*
4108		 * We're not blocking, so just make the vPE non-resident
4109		 * with PendingLast set, indicating that we'll be back.
4110		 */
4111		val = its_clear_vpend_valid(vlpi_base,
4112					    0,
4113					    GICR_VPENDBASER_PendingLast);
4114		vpe->pending_last = true;
4115	}
4116}
4117
4118static void its_vpe_4_1_invall(struct its_vpe *vpe)
4119{
4120	void __iomem *rdbase;
4121	unsigned long flags;
4122	u64 val;
4123	int cpu;
4124
4125	val  = GICR_INVALLR_V;
4126	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4127
4128	/* Target the redistributor this vPE is currently known on */
4129	cpu = vpe_to_cpuid_lock(vpe, &flags);
4130	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4131	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4132	gic_write_lpir(val, rdbase + GICR_INVALLR);
4133
4134	wait_for_syncr(rdbase);
4135	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4136	vpe_to_cpuid_unlock(vpe, flags);
4137}
4138
4139static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4140{
4141	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4142	struct its_cmd_info *info = vcpu_info;
4143
4144	switch (info->cmd_type) {
4145	case SCHEDULE_VPE:
4146		its_vpe_4_1_schedule(vpe, info);
4147		return 0;
4148
4149	case DESCHEDULE_VPE:
4150		its_vpe_4_1_deschedule(vpe, info);
4151		return 0;
4152
4153	case COMMIT_VPE:
4154		its_wait_vpt_parse_complete();
4155		return 0;
4156
4157	case INVALL_VPE:
4158		its_vpe_4_1_invall(vpe);
4159		return 0;
4160
4161	default:
4162		return -EINVAL;
4163	}
4164}
4165
4166static struct irq_chip its_vpe_4_1_irq_chip = {
4167	.name			= "GICv4.1-vpe",
4168	.irq_mask		= its_vpe_4_1_mask_irq,
4169	.irq_unmask		= its_vpe_4_1_unmask_irq,
4170	.irq_eoi		= irq_chip_eoi_parent,
4171	.irq_set_affinity	= its_vpe_set_affinity,
4172	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4173};
4174
4175static void its_configure_sgi(struct irq_data *d, bool clear)
4176{
4177	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4178	struct its_cmd_desc desc;
4179
4180	desc.its_vsgi_cmd.vpe = vpe;
4181	desc.its_vsgi_cmd.sgi = d->hwirq;
4182	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4183	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4184	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4185	desc.its_vsgi_cmd.clear = clear;
4186
4187	/*
4188	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4189	 * destination VPE is mapped there. Since we map them eagerly at
4190	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4191	 */
4192	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4193}
4194
4195static void its_sgi_mask_irq(struct irq_data *d)
4196{
4197	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4198
4199	vpe->sgi_config[d->hwirq].enabled = false;
4200	its_configure_sgi(d, false);
4201}
4202
4203static void its_sgi_unmask_irq(struct irq_data *d)
4204{
4205	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4206
4207	vpe->sgi_config[d->hwirq].enabled = true;
4208	its_configure_sgi(d, false);
4209}
4210
4211static int its_sgi_set_affinity(struct irq_data *d,
4212				const struct cpumask *mask_val,
4213				bool force)
4214{
4215	/*
4216	 * There is no notion of affinity for virtual SGIs, at least
4217	 * not on the host (since they can only be targeting a vPE).
4218	 * Tell the kernel we've done whatever it asked for.
4219	 */
4220	irq_data_update_effective_affinity(d, mask_val);
4221	return IRQ_SET_MASK_OK;
4222}
4223
4224static int its_sgi_set_irqchip_state(struct irq_data *d,
4225				     enum irqchip_irq_state which,
4226				     bool state)
4227{
4228	if (which != IRQCHIP_STATE_PENDING)
4229		return -EINVAL;
4230
4231	if (state) {
4232		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4233		struct its_node *its = find_4_1_its();
4234		u64 val;
4235
4236		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4237		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4238		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4239	} else {
4240		its_configure_sgi(d, true);
4241	}
4242
4243	return 0;
4244}
4245
4246static int its_sgi_get_irqchip_state(struct irq_data *d,
4247				     enum irqchip_irq_state which, bool *val)
4248{
4249	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4250	void __iomem *base;
4251	unsigned long flags;
4252	u32 count = 1000000;	/* 1s! */
4253	u32 status;
4254	int cpu;
4255
4256	if (which != IRQCHIP_STATE_PENDING)
4257		return -EINVAL;
4258
4259	/*
4260	 * Locking galore! We can race against two different events:
4261	 *
4262	 * - Concurrent vPE affinity change: we must make sure it cannot
4263	 *   happen, or we'll talk to the wrong redistributor. This is
4264	 *   identical to what happens with vLPIs.
4265	 *
4266	 * - Concurrent VSGIPENDR access: As it involves accessing two
4267	 *   MMIO registers, this must be made atomic one way or another.
4268	 */
4269	cpu = vpe_to_cpuid_lock(vpe, &flags);
4270	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4271	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4272	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4273	do {
4274		status = readl_relaxed(base + GICR_VSGIPENDR);
4275		if (!(status & GICR_VSGIPENDR_BUSY))
4276			goto out;
4277
4278		count--;
4279		if (!count) {
4280			pr_err_ratelimited("Unable to get SGI status\n");
4281			goto out;
4282		}
4283		cpu_relax();
4284		udelay(1);
4285	} while (count);
4286
4287out:
4288	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4289	vpe_to_cpuid_unlock(vpe, flags);
4290
4291	if (!count)
4292		return -ENXIO;
4293
4294	*val = !!(status & (1 << d->hwirq));
4295
4296	return 0;
4297}
4298
4299static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4300{
4301	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4302	struct its_cmd_info *info = vcpu_info;
4303
4304	switch (info->cmd_type) {
4305	case PROP_UPDATE_VSGI:
4306		vpe->sgi_config[d->hwirq].priority = info->priority;
4307		vpe->sgi_config[d->hwirq].group = info->group;
4308		its_configure_sgi(d, false);
4309		return 0;
4310
4311	default:
4312		return -EINVAL;
4313	}
4314}
4315
4316static struct irq_chip its_sgi_irq_chip = {
4317	.name			= "GICv4.1-sgi",
4318	.irq_mask		= its_sgi_mask_irq,
4319	.irq_unmask		= its_sgi_unmask_irq,
4320	.irq_set_affinity	= its_sgi_set_affinity,
4321	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4322	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4323	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4324};
4325
4326static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4327				    unsigned int virq, unsigned int nr_irqs,
4328				    void *args)
4329{
4330	struct its_vpe *vpe = args;
4331	int i;
4332
4333	/* Yes, we do want 16 SGIs */
4334	WARN_ON(nr_irqs != 16);
4335
4336	for (i = 0; i < 16; i++) {
4337		vpe->sgi_config[i].priority = 0;
4338		vpe->sgi_config[i].enabled = false;
4339		vpe->sgi_config[i].group = false;
4340
4341		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4342					      &its_sgi_irq_chip, vpe);
4343		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4344	}
4345
4346	return 0;
4347}
4348
4349static void its_sgi_irq_domain_free(struct irq_domain *domain,
4350				    unsigned int virq,
4351				    unsigned int nr_irqs)
4352{
4353	/* Nothing to do */
4354}
4355
4356static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4357				       struct irq_data *d, bool reserve)
4358{
4359	/* Write out the initial SGI configuration */
4360	its_configure_sgi(d, false);
4361	return 0;
4362}
4363
4364static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4365					  struct irq_data *d)
4366{
4367	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4368
4369	/*
4370	 * The VSGI command is awkward:
4371	 *
4372	 * - To change the configuration, CLEAR must be set to false,
4373	 *   leaving the pending bit unchanged.
4374	 * - To clear the pending bit, CLEAR must be set to true, leaving
4375	 *   the configuration unchanged.
4376	 *
4377	 * You just can't do both at once, hence the two commands below.
4378	 */
4379	vpe->sgi_config[d->hwirq].enabled = false;
4380	its_configure_sgi(d, false);
4381	its_configure_sgi(d, true);
4382}
4383
4384static const struct irq_domain_ops its_sgi_domain_ops = {
4385	.alloc		= its_sgi_irq_domain_alloc,
4386	.free		= its_sgi_irq_domain_free,
4387	.activate	= its_sgi_irq_domain_activate,
4388	.deactivate	= its_sgi_irq_domain_deactivate,
4389};
4390
4391static int its_vpe_id_alloc(void)
4392{
4393	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4394}
4395
4396static void its_vpe_id_free(u16 id)
4397{
4398	ida_simple_remove(&its_vpeid_ida, id);
4399}
4400
4401static int its_vpe_init(struct its_vpe *vpe)
4402{
4403	struct page *vpt_page;
4404	int vpe_id;
4405
4406	/* Allocate vpe_id */
4407	vpe_id = its_vpe_id_alloc();
4408	if (vpe_id < 0)
4409		return vpe_id;
4410
4411	/* Allocate VPT */
4412	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4413	if (!vpt_page) {
4414		its_vpe_id_free(vpe_id);
4415		return -ENOMEM;
4416	}
4417
4418	if (!its_alloc_vpe_table(vpe_id)) {
4419		its_vpe_id_free(vpe_id);
4420		its_free_pending_table(vpt_page);
4421		return -ENOMEM;
4422	}
4423
4424	raw_spin_lock_init(&vpe->vpe_lock);
4425	vpe->vpe_id = vpe_id;
4426	vpe->vpt_page = vpt_page;
4427	if (gic_rdists->has_rvpeid)
4428		atomic_set(&vpe->vmapp_count, 0);
4429	else
4430		vpe->vpe_proxy_event = -1;
4431
4432	return 0;
4433}
4434
4435static void its_vpe_teardown(struct its_vpe *vpe)
4436{
4437	its_vpe_db_proxy_unmap(vpe);
4438	its_vpe_id_free(vpe->vpe_id);
4439	its_free_pending_table(vpe->vpt_page);
4440}
4441
4442static void its_vpe_irq_domain_free(struct irq_domain *domain,
4443				    unsigned int virq,
4444				    unsigned int nr_irqs)
4445{
4446	struct its_vm *vm = domain->host_data;
4447	int i;
4448
4449	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4450
4451	for (i = 0; i < nr_irqs; i++) {
4452		struct irq_data *data = irq_domain_get_irq_data(domain,
4453								virq + i);
4454		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4455
4456		BUG_ON(vm != vpe->its_vm);
4457
4458		clear_bit(data->hwirq, vm->db_bitmap);
4459		its_vpe_teardown(vpe);
4460		irq_domain_reset_irq_data(data);
4461	}
4462
4463	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4464		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4465		its_free_prop_table(vm->vprop_page);
4466	}
4467}
4468
4469static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4470				    unsigned int nr_irqs, void *args)
4471{
4472	struct irq_chip *irqchip = &its_vpe_irq_chip;
4473	struct its_vm *vm = args;
4474	unsigned long *bitmap;
4475	struct page *vprop_page;
4476	int base, nr_ids, i, err = 0;
4477
4478	BUG_ON(!vm);
4479
4480	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4481	if (!bitmap)
4482		return -ENOMEM;
4483
4484	if (nr_ids < nr_irqs) {
4485		its_lpi_free(bitmap, base, nr_ids);
4486		return -ENOMEM;
4487	}
4488
4489	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4490	if (!vprop_page) {
4491		its_lpi_free(bitmap, base, nr_ids);
4492		return -ENOMEM;
4493	}
4494
4495	vm->db_bitmap = bitmap;
4496	vm->db_lpi_base = base;
4497	vm->nr_db_lpis = nr_ids;
4498	vm->vprop_page = vprop_page;
4499
4500	if (gic_rdists->has_rvpeid)
4501		irqchip = &its_vpe_4_1_irq_chip;
4502
4503	for (i = 0; i < nr_irqs; i++) {
4504		vm->vpes[i]->vpe_db_lpi = base + i;
4505		err = its_vpe_init(vm->vpes[i]);
4506		if (err)
4507			break;
4508		err = its_irq_gic_domain_alloc(domain, virq + i,
4509					       vm->vpes[i]->vpe_db_lpi);
4510		if (err)
4511			break;
4512		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4513					      irqchip, vm->vpes[i]);
4514		set_bit(i, bitmap);
4515	}
4516
4517	if (err) {
4518		if (i > 0)
4519			its_vpe_irq_domain_free(domain, virq, i);
4520
4521		its_lpi_free(bitmap, base, nr_ids);
4522		its_free_prop_table(vprop_page);
4523	}
4524
4525	return err;
4526}
4527
4528static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4529				       struct irq_data *d, bool reserve)
4530{
4531	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4532	struct its_node *its;
4533
4534	/*
4535	 * If we use the list map, we issue VMAPP on demand... Unless
4536	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4537	 * so that VSGIs can work.
4538	 */
4539	if (!gic_requires_eager_mapping())
4540		return 0;
4541
4542	/* Map the VPE to the first possible CPU */
4543	vpe->col_idx = cpumask_first(cpu_online_mask);
4544
4545	list_for_each_entry(its, &its_nodes, entry) {
4546		if (!is_v4(its))
4547			continue;
4548
4549		its_send_vmapp(its, vpe, true);
4550		its_send_vinvall(its, vpe);
4551	}
4552
4553	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4554
4555	return 0;
4556}
4557
4558static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4559					  struct irq_data *d)
4560{
4561	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4562	struct its_node *its;
4563
4564	/*
4565	 * If we use the list map on GICv4.0, we unmap the VPE once no
4566	 * VLPIs are associated with the VM.
4567	 */
4568	if (!gic_requires_eager_mapping())
4569		return;
4570
4571	list_for_each_entry(its, &its_nodes, entry) {
4572		if (!is_v4(its))
4573			continue;
4574
4575		its_send_vmapp(its, vpe, false);
4576	}
4577
4578	/*
4579	 * There may be a direct read to the VPT after unmapping the
4580	 * vPE, to guarantee the validity of this, we make the VPT
4581	 * memory coherent with the CPU caches here.
4582	 */
4583	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4584		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4585					LPI_PENDBASE_SZ);
4586}
4587
4588static const struct irq_domain_ops its_vpe_domain_ops = {
4589	.alloc			= its_vpe_irq_domain_alloc,
4590	.free			= its_vpe_irq_domain_free,
4591	.activate		= its_vpe_irq_domain_activate,
4592	.deactivate		= its_vpe_irq_domain_deactivate,
4593};
4594
4595static int its_force_quiescent(void __iomem *base)
4596{
4597	u32 count = 1000000;	/* 1s */
4598	u32 val;
4599
4600	val = readl_relaxed(base + GITS_CTLR);
4601	/*
4602	 * GIC architecture specification requires the ITS to be both
4603	 * disabled and quiescent for writes to GITS_BASER<n> or
4604	 * GITS_CBASER to not have UNPREDICTABLE results.
4605	 */
4606	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4607		return 0;
4608
4609	/* Disable the generation of all interrupts to this ITS */
4610	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4611	writel_relaxed(val, base + GITS_CTLR);
4612
4613	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4614	while (1) {
4615		val = readl_relaxed(base + GITS_CTLR);
4616		if (val & GITS_CTLR_QUIESCENT)
4617			return 0;
4618
4619		count--;
4620		if (!count)
4621			return -EBUSY;
4622
4623		cpu_relax();
4624		udelay(1);
4625	}
4626}
4627
4628static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4629{
4630	struct its_node *its = data;
4631
4632	/* erratum 22375: only alloc 8MB table size (20 bits) */
4633	its->typer &= ~GITS_TYPER_DEVBITS;
4634	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4635	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4636
4637	return true;
4638}
4639
4640static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4641{
4642	struct its_node *its = data;
4643
4644	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4645
4646	return true;
4647}
4648
4649static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4650{
4651	struct its_node *its = data;
4652
4653	/* On QDF2400, the size of the ITE is 16Bytes */
4654	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4655	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4656
4657	return true;
4658}
4659
4660static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4661{
4662	struct its_node *its = its_dev->its;
4663
4664	/*
4665	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4666	 * which maps 32-bit writes targeted at a separate window of
4667	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4668	 * with device ID taken from bits [device_id_bits + 1:2] of
4669	 * the window offset.
4670	 */
4671	return its->pre_its_base + (its_dev->device_id << 2);
4672}
4673
4674static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4675{
4676	struct its_node *its = data;
4677	u32 pre_its_window[2];
4678	u32 ids;
4679
4680	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4681					   "socionext,synquacer-pre-its",
4682					   pre_its_window,
4683					   ARRAY_SIZE(pre_its_window))) {
4684
4685		its->pre_its_base = pre_its_window[0];
4686		its->get_msi_base = its_irq_get_msi_base_pre_its;
4687
4688		ids = ilog2(pre_its_window[1]) - 2;
4689		if (device_ids(its) > ids) {
4690			its->typer &= ~GITS_TYPER_DEVBITS;
4691			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4692		}
4693
4694		/* the pre-ITS breaks isolation, so disable MSI remapping */
4695		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4696		return true;
4697	}
4698	return false;
4699}
4700
4701static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4702{
4703	struct its_node *its = data;
4704
4705	/*
4706	 * Hip07 insists on using the wrong address for the VLPI
4707	 * page. Trick it into doing the right thing...
4708	 */
4709	its->vlpi_redist_offset = SZ_128K;
4710	return true;
4711}
4712
4713static const struct gic_quirk its_quirks[] = {
4714#ifdef CONFIG_CAVIUM_ERRATUM_22375
4715	{
4716		.desc	= "ITS: Cavium errata 22375, 24313",
4717		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4718		.mask	= 0xffff0fff,
4719		.init	= its_enable_quirk_cavium_22375,
4720	},
4721#endif
4722#ifdef CONFIG_CAVIUM_ERRATUM_23144
4723	{
4724		.desc	= "ITS: Cavium erratum 23144",
4725		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4726		.mask	= 0xffff0fff,
4727		.init	= its_enable_quirk_cavium_23144,
4728	},
4729#endif
4730#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4731	{
4732		.desc	= "ITS: QDF2400 erratum 0065",
4733		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4734		.mask	= 0xffffffff,
4735		.init	= its_enable_quirk_qdf2400_e0065,
4736	},
4737#endif
4738#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4739	{
4740		/*
4741		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4742		 * implementation, but with a 'pre-ITS' added that requires
4743		 * special handling in software.
4744		 */
4745		.desc	= "ITS: Socionext Synquacer pre-ITS",
4746		.iidr	= 0x0001143b,
4747		.mask	= 0xffffffff,
4748		.init	= its_enable_quirk_socionext_synquacer,
4749	},
4750#endif
4751#ifdef CONFIG_HISILICON_ERRATUM_161600802
4752	{
4753		.desc	= "ITS: Hip07 erratum 161600802",
4754		.iidr	= 0x00000004,
4755		.mask	= 0xffffffff,
4756		.init	= its_enable_quirk_hip07_161600802,
4757	},
4758#endif
4759	{
4760	}
4761};
4762
4763static void its_enable_quirks(struct its_node *its)
4764{
4765	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4766
4767	gic_enable_quirks(iidr, its_quirks, its);
4768}
4769
4770static int its_save_disable(void)
 
4771{
 
4772	struct its_node *its;
4773	int err = 0;
4774
4775	raw_spin_lock(&its_lock);
4776	list_for_each_entry(its, &its_nodes, entry) {
4777		void __iomem *base;
4778
4779		base = its->base;
4780		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4781		err = its_force_quiescent(base);
4782		if (err) {
4783			pr_err("ITS@%pa: failed to quiesce: %d\n",
4784			       &its->phys_base, err);
4785			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4786			goto err;
4787		}
4788
4789		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4790	}
4791
4792err:
4793	if (err) {
4794		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4795			void __iomem *base;
4796
4797			base = its->base;
4798			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4799		}
4800	}
4801	raw_spin_unlock(&its_lock);
4802
4803	return err;
4804}
4805
4806static void its_restore_enable(void)
4807{
4808	struct its_node *its;
4809	int ret;
4810
4811	raw_spin_lock(&its_lock);
4812	list_for_each_entry(its, &its_nodes, entry) {
4813		void __iomem *base;
4814		int i;
4815
4816		base = its->base;
4817
4818		/*
4819		 * Make sure that the ITS is disabled. If it fails to quiesce,
4820		 * don't restore it since writing to CBASER or BASER<n>
4821		 * registers is undefined according to the GIC v3 ITS
4822		 * Specification.
4823		 *
4824		 * Firmware resuming with the ITS enabled is terminally broken.
4825		 */
4826		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4827		ret = its_force_quiescent(base);
4828		if (ret) {
4829			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4830			       &its->phys_base, ret);
4831			continue;
4832		}
4833
4834		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4835
4836		/*
4837		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4838		 * cmd_write line up with it.
4839		 */
4840		its->cmd_write = its->cmd_base;
4841		gits_write_cwriter(0, base + GITS_CWRITER);
4842
4843		/* Restore GITS_BASER from the value cache. */
4844		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4845			struct its_baser *baser = &its->tables[i];
4846
4847			if (!(baser->val & GITS_BASER_VALID))
4848				continue;
4849
4850			its_write_baser(its, baser, baser->val);
4851		}
4852		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4853
4854		/*
4855		 * Reinit the collection if it's stored in the ITS. This is
4856		 * indicated by the col_id being less than the HCC field.
4857		 * CID < HCC as specified in the GIC v3 Documentation.
4858		 */
4859		if (its->collections[smp_processor_id()].col_id <
4860		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4861			its_cpu_init_collection(its);
4862	}
4863	raw_spin_unlock(&its_lock);
4864}
4865
4866static struct syscore_ops its_syscore_ops = {
4867	.suspend = its_save_disable,
4868	.resume = its_restore_enable,
4869};
4870
4871static void __init __iomem *its_map_one(struct resource *res, int *err)
4872{
4873	void __iomem *its_base;
4874	u32 val;
4875
4876	its_base = ioremap(res->start, SZ_64K);
4877	if (!its_base) {
4878		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4879		*err = -ENOMEM;
4880		return NULL;
4881	}
4882
4883	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4884	if (val != 0x30 && val != 0x40) {
4885		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4886		*err = -ENODEV;
4887		goto out_unmap;
4888	}
4889
4890	*err = its_force_quiescent(its_base);
4891	if (*err) {
4892		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
 
4893		goto out_unmap;
4894	}
4895
4896	return its_base;
4897
4898out_unmap:
4899	iounmap(its_base);
4900	return NULL;
4901}
4902
4903static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4904{
4905	struct irq_domain *inner_domain;
4906	struct msi_domain_info *info;
4907
4908	info = kzalloc(sizeof(*info), GFP_KERNEL);
4909	if (!info)
4910		return -ENOMEM;
4911
4912	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4913	if (!inner_domain) {
4914		kfree(info);
4915		return -ENOMEM;
4916	}
4917
4918	inner_domain->parent = its_parent;
4919	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4920	inner_domain->flags |= its->msi_domain_flags;
4921	info->ops = &its_msi_domain_ops;
4922	info->data = its;
4923	inner_domain->host_data = info;
4924
4925	return 0;
4926}
4927
4928static int its_init_vpe_domain(void)
4929{
4930	struct its_node *its;
4931	u32 devid;
4932	int entries;
4933
4934	if (gic_rdists->has_direct_lpi) {
4935		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4936		return 0;
4937	}
4938
4939	/* Any ITS will do, even if not v4 */
4940	its = list_first_entry(&its_nodes, struct its_node, entry);
4941
4942	entries = roundup_pow_of_two(nr_cpu_ids);
4943	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4944				 GFP_KERNEL);
4945	if (!vpe_proxy.vpes)
4946		return -ENOMEM;
4947
4948	/* Use the last possible DevID */
4949	devid = GENMASK(device_ids(its) - 1, 0);
4950	vpe_proxy.dev = its_create_device(its, devid, entries, false);
4951	if (!vpe_proxy.dev) {
4952		kfree(vpe_proxy.vpes);
4953		pr_err("ITS: Can't allocate GICv4 proxy device\n");
4954		return -ENOMEM;
4955	}
4956
4957	BUG_ON(entries > vpe_proxy.dev->nr_ites);
4958
4959	raw_spin_lock_init(&vpe_proxy.lock);
4960	vpe_proxy.next_victim = 0;
4961	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4962		devid, vpe_proxy.dev->nr_ites);
4963
4964	return 0;
4965}
4966
4967static int __init its_compute_its_list_map(struct resource *res,
4968					   void __iomem *its_base)
4969{
4970	int its_number;
4971	u32 ctlr;
4972
4973	/*
4974	 * This is assumed to be done early enough that we're
4975	 * guaranteed to be single-threaded, hence no
4976	 * locking. Should this change, we should address
4977	 * this.
4978	 */
4979	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4980	if (its_number >= GICv4_ITS_LIST_MAX) {
4981		pr_err("ITS@%pa: No ITSList entry available!\n",
4982		       &res->start);
4983		return -EINVAL;
4984	}
4985
4986	ctlr = readl_relaxed(its_base + GITS_CTLR);
4987	ctlr &= ~GITS_CTLR_ITS_NUMBER;
4988	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4989	writel_relaxed(ctlr, its_base + GITS_CTLR);
4990	ctlr = readl_relaxed(its_base + GITS_CTLR);
4991	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4992		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4993		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4994	}
4995
4996	if (test_and_set_bit(its_number, &its_list_map)) {
4997		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4998		       &res->start, its_number);
4999		return -EINVAL;
5000	}
5001
5002	return its_number;
5003}
5004
5005static int __init its_probe_one(struct resource *res,
5006				struct fwnode_handle *handle, int numa_node)
5007{
5008	struct its_node *its;
5009	void __iomem *its_base;
5010	u64 baser, tmp, typer;
5011	struct page *page;
5012	u32 ctlr;
5013	int err;
5014
5015	its_base = its_map_one(res, &err);
5016	if (!its_base)
5017		return err;
5018
5019	pr_info("ITS %pR\n", res);
5020
5021	its = kzalloc(sizeof(*its), GFP_KERNEL);
5022	if (!its) {
5023		err = -ENOMEM;
5024		goto out_unmap;
5025	}
5026
5027	raw_spin_lock_init(&its->lock);
5028	mutex_init(&its->dev_alloc_lock);
5029	INIT_LIST_HEAD(&its->entry);
5030	INIT_LIST_HEAD(&its->its_device_list);
5031	typer = gic_read_typer(its_base + GITS_TYPER);
5032	its->typer = typer;
5033	its->base = its_base;
5034	its->phys_base = res->start;
5035	if (is_v4(its)) {
5036		if (!(typer & GITS_TYPER_VMOVP)) {
5037			err = its_compute_its_list_map(res, its_base);
5038			if (err < 0)
5039				goto out_free_its;
5040
5041			its->list_nr = err;
5042
5043			pr_info("ITS@%pa: Using ITS number %d\n",
5044				&res->start, err);
5045		} else {
5046			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5047		}
5048
5049		if (is_v4_1(its)) {
5050			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5051
5052			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5053			if (!its->sgir_base) {
5054				err = -ENOMEM;
5055				goto out_free_its;
5056			}
5057
5058			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5059
5060			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5061				&res->start, its->mpidr, svpet);
5062		}
5063	}
5064
5065	its->numa_node = numa_node;
5066
5067	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5068				get_order(ITS_CMD_QUEUE_SZ));
5069	if (!page) {
5070		err = -ENOMEM;
5071		goto out_unmap_sgir;
5072	}
5073	its->cmd_base = (void *)page_address(page);
5074	its->cmd_write = its->cmd_base;
5075	its->fwnode_handle = handle;
5076	its->get_msi_base = its_irq_get_msi_base;
5077	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5078
5079	its_enable_quirks(its);
5080
5081	err = its_alloc_tables(its);
5082	if (err)
5083		goto out_free_cmd;
5084
5085	err = its_alloc_collections(its);
5086	if (err)
5087		goto out_free_tables;
5088
5089	baser = (virt_to_phys(its->cmd_base)	|
5090		 GITS_CBASER_RaWaWb		|
5091		 GITS_CBASER_InnerShareable	|
5092		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5093		 GITS_CBASER_VALID);
5094
5095	gits_write_cbaser(baser, its->base + GITS_CBASER);
5096	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5097
5098	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5099		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5100			/*
5101			 * The HW reports non-shareable, we must
5102			 * remove the cacheability attributes as
5103			 * well.
5104			 */
5105			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5106				   GITS_CBASER_CACHEABILITY_MASK);
5107			baser |= GITS_CBASER_nC;
5108			gits_write_cbaser(baser, its->base + GITS_CBASER);
5109		}
5110		pr_info("ITS: using cache flushing for cmd queue\n");
5111		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5112	}
5113
5114	gits_write_cwriter(0, its->base + GITS_CWRITER);
5115	ctlr = readl_relaxed(its->base + GITS_CTLR);
5116	ctlr |= GITS_CTLR_ENABLE;
5117	if (is_v4(its))
5118		ctlr |= GITS_CTLR_ImDe;
5119	writel_relaxed(ctlr, its->base + GITS_CTLR);
 
 
 
 
 
 
 
 
 
 
 
 
5120
5121	err = its_init_domain(handle, its);
5122	if (err)
5123		goto out_free_tables;
 
 
 
5124
5125	raw_spin_lock(&its_lock);
5126	list_add(&its->entry, &its_nodes);
5127	raw_spin_unlock(&its_lock);
5128
5129	return 0;
5130
5131out_free_tables:
5132	its_free_tables(its);
5133out_free_cmd:
5134	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5135out_unmap_sgir:
5136	if (its->sgir_base)
5137		iounmap(its->sgir_base);
5138out_free_its:
5139	kfree(its);
5140out_unmap:
5141	iounmap(its_base);
5142	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5143	return err;
5144}
5145
5146static bool gic_rdists_supports_plpis(void)
5147{
5148	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5149}
5150
5151static int redist_disable_lpis(void)
5152{
5153	void __iomem *rbase = gic_data_rdist_rd_base();
5154	u64 timeout = USEC_PER_SEC;
5155	u64 val;
5156
5157	if (!gic_rdists_supports_plpis()) {
5158		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5159		return -ENXIO;
5160	}
5161
5162	val = readl_relaxed(rbase + GICR_CTLR);
5163	if (!(val & GICR_CTLR_ENABLE_LPIS))
5164		return 0;
5165
5166	/*
5167	 * If coming via a CPU hotplug event, we don't need to disable
5168	 * LPIs before trying to re-enable them. They are already
5169	 * configured and all is well in the world.
5170	 *
5171	 * If running with preallocated tables, there is nothing to do.
5172	 */
5173	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5174	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5175		return 0;
5176
5177	/*
5178	 * From that point on, we only try to do some damage control.
5179	 */
5180	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5181		smp_processor_id());
5182	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5183
5184	/* Disable LPIs */
5185	val &= ~GICR_CTLR_ENABLE_LPIS;
5186	writel_relaxed(val, rbase + GICR_CTLR);
5187
5188	/* Make sure any change to GICR_CTLR is observable by the GIC */
5189	dsb(sy);
5190
5191	/*
5192	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5193	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5194	 * Error out if we time out waiting for RWP to clear.
5195	 */
5196	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5197		if (!timeout) {
5198			pr_err("CPU%d: Timeout while disabling LPIs\n",
5199			       smp_processor_id());
5200			return -ETIMEDOUT;
5201		}
5202		udelay(1);
5203		timeout--;
5204	}
5205
5206	/*
5207	 * After it has been written to 1, it is IMPLEMENTATION
5208	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5209	 * cleared to 0. Error out if clearing the bit failed.
5210	 */
5211	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5212		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5213		return -EBUSY;
5214	}
5215
5216	return 0;
5217}
5218
5219int its_cpu_init(void)
5220{
5221	if (!list_empty(&its_nodes)) {
5222		int ret;
5223
5224		ret = redist_disable_lpis();
5225		if (ret)
5226			return ret;
5227
5228		its_cpu_init_lpis();
5229		its_cpu_init_collections();
5230	}
5231
5232	return 0;
5233}
5234
5235static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5236{
5237	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5238	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5239}
5240
5241static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5242		    rdist_memreserve_cpuhp_cleanup_workfn);
5243
5244static int its_cpu_memreserve_lpi(unsigned int cpu)
5245{
5246	struct page *pend_page;
5247	int ret = 0;
5248
5249	/* This gets to run exactly once per CPU */
5250	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5251		return 0;
5252
5253	pend_page = gic_data_rdist()->pend_page;
5254	if (WARN_ON(!pend_page)) {
5255		ret = -ENOMEM;
5256		goto out;
5257	}
5258	/*
5259	 * If the pending table was pre-programmed, free the memory we
5260	 * preemptively allocated. Otherwise, reserve that memory for
5261	 * later kexecs.
5262	 */
5263	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5264		its_free_pending_table(pend_page);
5265		gic_data_rdist()->pend_page = NULL;
5266	} else {
5267		phys_addr_t paddr = page_to_phys(pend_page);
5268		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5269	}
5270
5271out:
5272	/* Last CPU being brought up gets to issue the cleanup */
5273	if (!IS_ENABLED(CONFIG_SMP) ||
5274	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5275		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5276
5277	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5278	return ret;
5279}
5280
5281/* Mark all the BASER registers as invalid before they get reprogrammed */
5282static int __init its_reset_one(struct resource *res)
5283{
5284	void __iomem *its_base;
5285	int err, i;
5286
5287	its_base = its_map_one(res, &err);
5288	if (!its_base)
5289		return err;
5290
5291	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5292		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5293
5294	iounmap(its_base);
5295	return 0;
5296}
5297
5298static const struct of_device_id its_device_id[] = {
5299	{	.compatible	= "arm,gic-v3-its",	},
5300	{},
5301};
5302
5303static int __init its_of_probe(struct device_node *node)
 
5304{
5305	struct device_node *np;
5306	struct resource res;
5307
5308	/*
5309	 * Make sure *all* the ITS are reset before we probe any, as
5310	 * they may be sharing memory. If any of the ITS fails to
5311	 * reset, don't even try to go any further, as this could
5312	 * result in something even worse.
5313	 */
5314	for (np = of_find_matching_node(node, its_device_id); np;
5315	     np = of_find_matching_node(np, its_device_id)) {
5316		int err;
5317
5318		if (!of_device_is_available(np) ||
5319		    !of_property_read_bool(np, "msi-controller") ||
5320		    of_address_to_resource(np, 0, &res))
5321			continue;
5322
5323		err = its_reset_one(&res);
5324		if (err)
5325			return err;
5326	}
5327
5328	for (np = of_find_matching_node(node, its_device_id); np;
5329	     np = of_find_matching_node(np, its_device_id)) {
5330		if (!of_device_is_available(np))
5331			continue;
5332		if (!of_property_read_bool(np, "msi-controller")) {
5333			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5334				np);
5335			continue;
5336		}
5337
5338		if (of_address_to_resource(np, 0, &res)) {
5339			pr_warn("%pOF: no regs?\n", np);
5340			continue;
5341		}
5342
5343		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5344	}
5345	return 0;
5346}
5347
5348#ifdef CONFIG_ACPI
5349
5350#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5351
5352#ifdef CONFIG_ACPI_NUMA
5353struct its_srat_map {
5354	/* numa node id */
5355	u32	numa_node;
5356	/* GIC ITS ID */
5357	u32	its_id;
5358};
5359
5360static struct its_srat_map *its_srat_maps __initdata;
5361static int its_in_srat __initdata;
5362
5363static int __init acpi_get_its_numa_node(u32 its_id)
5364{
5365	int i;
5366
5367	for (i = 0; i < its_in_srat; i++) {
5368		if (its_id == its_srat_maps[i].its_id)
5369			return its_srat_maps[i].numa_node;
5370	}
5371	return NUMA_NO_NODE;
5372}
5373
5374static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5375					  const unsigned long end)
5376{
5377	return 0;
5378}
5379
5380static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5381			 const unsigned long end)
5382{
5383	int node;
5384	struct acpi_srat_gic_its_affinity *its_affinity;
5385
5386	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5387	if (!its_affinity)
5388		return -EINVAL;
5389
5390	if (its_affinity->header.length < sizeof(*its_affinity)) {
5391		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5392			its_affinity->header.length);
5393		return -EINVAL;
5394	}
5395
5396	/*
5397	 * Note that in theory a new proximity node could be created by this
5398	 * entry as it is an SRAT resource allocation structure.
5399	 * We do not currently support doing so.
5400	 */
5401	node = pxm_to_node(its_affinity->proximity_domain);
5402
5403	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5404		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5405		return 0;
5406	}
5407
5408	its_srat_maps[its_in_srat].numa_node = node;
5409	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5410	its_in_srat++;
5411	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5412		its_affinity->proximity_domain, its_affinity->its_id, node);
5413
5414	return 0;
5415}
5416
5417static void __init acpi_table_parse_srat_its(void)
5418{
5419	int count;
5420
5421	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5422			sizeof(struct acpi_table_srat),
5423			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5424			gic_acpi_match_srat_its, 0);
5425	if (count <= 0)
5426		return;
5427
5428	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5429				      GFP_KERNEL);
5430	if (!its_srat_maps)
5431		return;
5432
5433	acpi_table_parse_entries(ACPI_SIG_SRAT,
5434			sizeof(struct acpi_table_srat),
5435			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5436			gic_acpi_parse_srat_its, 0);
5437}
5438
5439/* free the its_srat_maps after ITS probing */
5440static void __init acpi_its_srat_maps_free(void)
5441{
5442	kfree(its_srat_maps);
5443}
5444#else
5445static void __init acpi_table_parse_srat_its(void)	{ }
5446static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5447static void __init acpi_its_srat_maps_free(void) { }
5448#endif
5449
5450static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5451					  const unsigned long end)
5452{
5453	struct acpi_madt_generic_translator *its_entry;
5454	struct fwnode_handle *dom_handle;
5455	struct resource res;
5456	int err;
5457
5458	its_entry = (struct acpi_madt_generic_translator *)header;
5459	memset(&res, 0, sizeof(res));
5460	res.start = its_entry->base_address;
5461	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5462	res.flags = IORESOURCE_MEM;
5463
5464	dom_handle = irq_domain_alloc_fwnode(&res.start);
5465	if (!dom_handle) {
5466		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5467		       &res.start);
5468		return -ENOMEM;
5469	}
5470
5471	err = iort_register_domain_token(its_entry->translation_id, res.start,
5472					 dom_handle);
5473	if (err) {
5474		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5475		       &res.start, its_entry->translation_id);
5476		goto dom_err;
5477	}
5478
5479	err = its_probe_one(&res, dom_handle,
5480			acpi_get_its_numa_node(its_entry->translation_id));
5481	if (!err)
5482		return 0;
5483
5484	iort_deregister_domain_token(its_entry->translation_id);
5485dom_err:
5486	irq_domain_free_fwnode(dom_handle);
5487	return err;
5488}
5489
5490static int __init its_acpi_reset(union acpi_subtable_headers *header,
5491				 const unsigned long end)
5492{
5493	struct acpi_madt_generic_translator *its_entry;
5494	struct resource res;
5495
5496	its_entry = (struct acpi_madt_generic_translator *)header;
5497	res = (struct resource) {
5498		.start	= its_entry->base_address,
5499		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5500		.flags	= IORESOURCE_MEM,
5501	};
5502
5503	return its_reset_one(&res);
5504}
5505
5506static void __init its_acpi_probe(void)
5507{
5508	acpi_table_parse_srat_its();
5509	/*
5510	 * Make sure *all* the ITS are reset before we probe any, as
5511	 * they may be sharing memory. If any of the ITS fails to
5512	 * reset, don't even try to go any further, as this could
5513	 * result in something even worse.
5514	 */
5515	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5516				  its_acpi_reset, 0) > 0)
5517		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5518				      gic_acpi_parse_madt_its, 0);
5519	acpi_its_srat_maps_free();
5520}
5521#else
5522static void __init its_acpi_probe(void) { }
5523#endif
5524
5525int __init its_lpi_memreserve_init(void)
5526{
5527	int state;
5528
5529	if (!efi_enabled(EFI_CONFIG_TABLES))
5530		return 0;
5531
5532	if (list_empty(&its_nodes))
5533		return 0;
5534
5535	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5536	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5537				  "irqchip/arm/gicv3/memreserve:online",
5538				  its_cpu_memreserve_lpi,
5539				  NULL);
5540	if (state < 0)
5541		return state;
5542
5543	gic_rdists->cpuhp_memreserve_state = state;
5544
5545	return 0;
5546}
5547
5548int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5549		    struct irq_domain *parent_domain)
5550{
5551	struct device_node *of_node;
5552	struct its_node *its;
5553	bool has_v4 = false;
5554	bool has_v4_1 = false;
5555	int err;
5556
5557	gic_rdists = rdists;
5558
5559	its_parent = parent_domain;
5560	of_node = to_of_node(handle);
5561	if (of_node)
5562		its_of_probe(of_node);
5563	else
5564		its_acpi_probe();
5565
5566	if (list_empty(&its_nodes)) {
5567		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5568		return -ENXIO;
5569	}
5570
5571	err = allocate_lpi_tables();
5572	if (err)
5573		return err;
5574
5575	list_for_each_entry(its, &its_nodes, entry) {
5576		has_v4 |= is_v4(its);
5577		has_v4_1 |= is_v4_1(its);
5578	}
5579
5580	/* Don't bother with inconsistent systems */
5581	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5582		rdists->has_rvpeid = false;
5583
5584	if (has_v4 & rdists->has_vlpis) {
5585		const struct irq_domain_ops *sgi_ops;
5586
5587		if (has_v4_1)
5588			sgi_ops = &its_sgi_domain_ops;
5589		else
5590			sgi_ops = NULL;
5591
5592		if (its_init_vpe_domain() ||
5593		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5594			rdists->has_vlpis = false;
5595			pr_err("ITS: Disabling GICv4 support\n");
5596		}
5597	}
5598
5599	register_syscore_ops(&its_syscore_ops);
5600
5601	return 0;
5602}