Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
   3 * Author: Marc Zyngier <marc.zyngier@arm.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  16 */
  17
 
 
 
  18#include <linux/bitmap.h>
  19#include <linux/cpu.h>
 
  20#include <linux/delay.h>
 
 
  21#include <linux/interrupt.h>
 
 
 
 
  22#include <linux/log2.h>
 
 
  23#include <linux/mm.h>
  24#include <linux/msi.h>
  25#include <linux/of.h>
  26#include <linux/of_address.h>
  27#include <linux/of_irq.h>
  28#include <linux/of_pci.h>
  29#include <linux/of_platform.h>
  30#include <linux/percpu.h>
 
  31#include <linux/slab.h>
 
  32
  33#include <linux/irqchip.h>
  34#include <linux/irqchip/arm-gic-v3.h>
 
  35
  36#include <asm/cacheflush.h>
  37#include <asm/cputype.h>
  38#include <asm/exception.h>
  39
  40#include "irq-gic-common.h"
 
  41
  42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
  43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  44
  45#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
 
  46
  47/*
  48 * Collection structure - just an ID, and a redistributor address to
  49 * ping. We use one per CPU as a bag of interrupts assigned to this
  50 * CPU.
  51 */
  52struct its_collection {
  53	u64			target_address;
  54	u16			col_id;
  55};
  56
  57/*
 
 
 
 
 
 
 
 
 
 
 
 
 
  58 * The ITS structure - contains most of the infrastructure, with the
  59 * top-level MSI domain, the command queue, the collections, and the
  60 * list of devices writing to it.
 
 
 
 
  61 */
  62struct its_node {
  63	raw_spinlock_t		lock;
 
  64	struct list_head	entry;
  65	void __iomem		*base;
  66	unsigned long		phys_base;
 
  67	struct its_cmd_block	*cmd_base;
  68	struct its_cmd_block	*cmd_write;
  69	struct {
  70		void		*base;
  71		u32		order;
  72	} tables[GITS_BASER_NR_REGS];
  73	struct its_collection	*collections;
 
 
 
 
 
 
  74	struct list_head	its_device_list;
  75	u64			flags;
  76	u32			ite_size;
 
 
 
 
  77};
  78
 
 
 
 
  79#define ITS_ITT_ALIGN		SZ_256
  80
 
 
 
 
 
 
 
 
 
 
 
 
 
  81/* Convert page order to size in bytes */
  82#define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
  83
  84struct event_lpi_map {
  85	unsigned long		*lpi_map;
  86	u16			*col_map;
  87	irq_hw_number_t		lpi_base;
  88	int			nr_lpis;
 
 
 
 
  89};
  90
  91/*
  92 * The ITS view of a device - belongs to an ITS, a collection, owns an
  93 * interrupt translation table, and a list of interrupts.
 
 
  94 */
  95struct its_device {
  96	struct list_head	entry;
  97	struct its_node		*its;
  98	struct event_lpi_map	event_map;
  99	void			*itt;
 
 100	u32			nr_ites;
 101	u32			device_id;
 
 102};
 103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104static LIST_HEAD(its_nodes);
 105static DEFINE_SPINLOCK(its_lock);
 106static struct rdists *gic_rdists;
 
 
 
 
 
 
 
 107
 108#define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
 
 109#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110
 111static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 112					       u32 event)
 113{
 114	struct its_node *its = its_dev->its;
 115
 116	return its->collections + its_dev->event_map.col_map[event];
 117}
 118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119/*
 120 * ITS command descriptors - parameters to be encoded in a command
 121 * block.
 122 */
 123struct its_cmd_desc {
 124	union {
 125		struct {
 126			struct its_device *dev;
 127			u32 event_id;
 128		} its_inv_cmd;
 129
 130		struct {
 131			struct its_device *dev;
 132			u32 event_id;
 
 
 
 
 
 133		} its_int_cmd;
 134
 135		struct {
 136			struct its_device *dev;
 137			int valid;
 138		} its_mapd_cmd;
 139
 140		struct {
 141			struct its_collection *col;
 142			int valid;
 143		} its_mapc_cmd;
 144
 145		struct {
 146			struct its_device *dev;
 147			u32 phys_id;
 148			u32 event_id;
 149		} its_mapvi_cmd;
 150
 151		struct {
 152			struct its_device *dev;
 153			struct its_collection *col;
 154			u32 event_id;
 155		} its_movi_cmd;
 156
 157		struct {
 158			struct its_device *dev;
 159			u32 event_id;
 160		} its_discard_cmd;
 161
 162		struct {
 163			struct its_collection *col;
 164		} its_invall_cmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165	};
 166};
 167
 168/*
 169 * The ITS command block, which is what the ITS actually parses.
 170 */
 171struct its_cmd_block {
 172	u64	raw_cmd[4];
 
 
 
 173};
 174
 175#define ITS_CMD_QUEUE_SZ		SZ_64K
 176#define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 177
 178typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
 
 179						    struct its_cmd_desc *);
 180
 
 
 
 
 
 
 
 
 
 
 
 181static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 182{
 183	cmd->raw_cmd[0] &= ~0xffUL;
 184	cmd->raw_cmd[0] |= cmd_nr;
 185}
 186
 187static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 188{
 189	cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
 190	cmd->raw_cmd[0] |= ((u64)devid) << 32;
 191}
 192
 193static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 194{
 195	cmd->raw_cmd[1] &= ~0xffffffffUL;
 196	cmd->raw_cmd[1] |= id;
 197}
 198
 199static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 200{
 201	cmd->raw_cmd[1] &= 0xffffffffUL;
 202	cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
 203}
 204
 205static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 206{
 207	cmd->raw_cmd[1] &= ~0x1fUL;
 208	cmd->raw_cmd[1] |= size & 0x1f;
 209}
 210
 211static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 212{
 213	cmd->raw_cmd[2] &= ~0xffffffffffffUL;
 214	cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
 215}
 216
 217static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 218{
 219	cmd->raw_cmd[2] &= ~(1UL << 63);
 220	cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
 221}
 222
 223static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 224{
 225	cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
 226	cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
 227}
 228
 229static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 230{
 231	cmd->raw_cmd[2] &= ~0xffffUL;
 232	cmd->raw_cmd[2] |= col;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233}
 234
 235static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 236{
 237	/* Let's fixup BE commands */
 238	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
 239	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
 240	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
 241	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
 242}
 243
 244static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
 
 245						 struct its_cmd_desc *desc)
 246{
 247	unsigned long itt_addr;
 248	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 249
 250	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 251	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 252
 253	its_encode_cmd(cmd, GITS_CMD_MAPD);
 254	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 255	its_encode_size(cmd, size - 1);
 256	its_encode_itt(cmd, itt_addr);
 257	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 258
 259	its_fixup_cmd(cmd);
 260
 261	return NULL;
 262}
 263
 264static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
 
 265						 struct its_cmd_desc *desc)
 266{
 267	its_encode_cmd(cmd, GITS_CMD_MAPC);
 268	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 269	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 270	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 271
 272	its_fixup_cmd(cmd);
 273
 274	return desc->its_mapc_cmd.col;
 275}
 276
 277static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
 
 278						  struct its_cmd_desc *desc)
 279{
 280	struct its_collection *col;
 281
 282	col = dev_event_to_col(desc->its_mapvi_cmd.dev,
 283			       desc->its_mapvi_cmd.event_id);
 284
 285	its_encode_cmd(cmd, GITS_CMD_MAPVI);
 286	its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
 287	its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
 288	its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
 289	its_encode_collection(cmd, col->col_id);
 290
 291	its_fixup_cmd(cmd);
 292
 293	return col;
 294}
 295
 296static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
 
 297						 struct its_cmd_desc *desc)
 298{
 299	struct its_collection *col;
 300
 301	col = dev_event_to_col(desc->its_movi_cmd.dev,
 302			       desc->its_movi_cmd.event_id);
 303
 304	its_encode_cmd(cmd, GITS_CMD_MOVI);
 305	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 306	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 307	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 308
 309	its_fixup_cmd(cmd);
 310
 311	return col;
 312}
 313
 314static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
 
 315						    struct its_cmd_desc *desc)
 316{
 317	struct its_collection *col;
 318
 319	col = dev_event_to_col(desc->its_discard_cmd.dev,
 320			       desc->its_discard_cmd.event_id);
 321
 322	its_encode_cmd(cmd, GITS_CMD_DISCARD);
 323	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 324	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 325
 326	its_fixup_cmd(cmd);
 327
 328	return col;
 329}
 330
 331static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
 
 332						struct its_cmd_desc *desc)
 333{
 334	struct its_collection *col;
 335
 336	col = dev_event_to_col(desc->its_inv_cmd.dev,
 337			       desc->its_inv_cmd.event_id);
 338
 339	its_encode_cmd(cmd, GITS_CMD_INV);
 340	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 341	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 342
 343	its_fixup_cmd(cmd);
 344
 345	return col;
 346}
 347
 348static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349						   struct its_cmd_desc *desc)
 350{
 351	its_encode_cmd(cmd, GITS_CMD_INVALL);
 352	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 353
 354	its_fixup_cmd(cmd);
 355
 356	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357}
 358
 359static u64 its_cmd_ptr_to_offset(struct its_node *its,
 360				 struct its_cmd_block *ptr)
 361{
 362	return (ptr - its->cmd_base) * sizeof(*ptr);
 363}
 364
 365static int its_queue_full(struct its_node *its)
 366{
 367	int widx;
 368	int ridx;
 369
 370	widx = its->cmd_write - its->cmd_base;
 371	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
 372
 373	/* This is incredibly unlikely to happen, unless the ITS locks up. */
 374	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
 375		return 1;
 376
 377	return 0;
 378}
 379
 380static struct its_cmd_block *its_allocate_entry(struct its_node *its)
 381{
 382	struct its_cmd_block *cmd;
 383	u32 count = 1000000;	/* 1s! */
 384
 385	while (its_queue_full(its)) {
 386		count--;
 387		if (!count) {
 388			pr_err_ratelimited("ITS queue not draining\n");
 389			return NULL;
 390		}
 391		cpu_relax();
 392		udelay(1);
 393	}
 394
 395	cmd = its->cmd_write++;
 396
 397	/* Handle queue wrapping */
 398	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
 399		its->cmd_write = its->cmd_base;
 400
 
 
 
 
 
 
 401	return cmd;
 402}
 403
 404static struct its_cmd_block *its_post_commands(struct its_node *its)
 405{
 406	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
 407
 408	writel_relaxed(wr, its->base + GITS_CWRITER);
 409
 410	return its->cmd_write;
 411}
 412
 413static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
 414{
 415	/*
 416	 * Make sure the commands written to memory are observable by
 417	 * the ITS.
 418	 */
 419	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
 420		__flush_dcache_area(cmd, sizeof(*cmd));
 421	else
 422		dsb(ishst);
 423}
 424
 425static void its_wait_for_range_completion(struct its_node *its,
 426					  struct its_cmd_block *from,
 427					  struct its_cmd_block *to)
 428{
 429	u64 rd_idx, from_idx, to_idx;
 430	u32 count = 1000000;	/* 1s! */
 431
 432	from_idx = its_cmd_ptr_to_offset(its, from);
 433	to_idx = its_cmd_ptr_to_offset(its, to);
 
 
 
 
 434
 435	while (1) {
 
 
 436		rd_idx = readl_relaxed(its->base + GITS_CREADR);
 437		if (rd_idx >= to_idx || rd_idx < from_idx)
 
 
 
 
 
 
 
 
 
 
 438			break;
 439
 440		count--;
 441		if (!count) {
 442			pr_err_ratelimited("ITS queue timeout\n");
 443			return;
 
 444		}
 
 445		cpu_relax();
 446		udelay(1);
 447	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448}
 449
 450static void its_send_single_command(struct its_node *its,
 451				    its_cmd_builder_t builder,
 452				    struct its_cmd_desc *desc)
 
 453{
 454	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
 455	struct its_collection *sync_col;
 456	unsigned long flags;
 457
 458	raw_spin_lock_irqsave(&its->lock, flags);
 
 459
 460	cmd = its_allocate_entry(its);
 461	if (!cmd) {		/* We're soooooo screewed... */
 462		pr_err_ratelimited("ITS can't allocate, dropping command\n");
 463		raw_spin_unlock_irqrestore(&its->lock, flags);
 464		return;
 465	}
 466	sync_col = builder(cmd, desc);
 467	its_flush_cmd(its, cmd);
 468
 469	if (sync_col) {
 470		sync_cmd = its_allocate_entry(its);
 471		if (!sync_cmd) {
 472			pr_err_ratelimited("ITS can't SYNC, skipping\n");
 473			goto post;
 474		}
 475		its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
 476		its_encode_target(sync_cmd, sync_col->target_address);
 477		its_fixup_cmd(sync_cmd);
 478		its_flush_cmd(its, sync_cmd);
 479	}
 480
 481post:
 482	next_cmd = its_post_commands(its);
 483	raw_spin_unlock_irqrestore(&its->lock, flags);
 484
 485	its_wait_for_range_completion(its, cmd, next_cmd);
 486}
 487
 488static void its_send_inv(struct its_device *dev, u32 event_id)
 489{
 490	struct its_cmd_desc desc;
 491
 492	desc.its_inv_cmd.dev = dev;
 493	desc.its_inv_cmd.event_id = event_id;
 494
 495	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
 496}
 497
 498static void its_send_mapd(struct its_device *dev, int valid)
 499{
 500	struct its_cmd_desc desc;
 501
 502	desc.its_mapd_cmd.dev = dev;
 503	desc.its_mapd_cmd.valid = !!valid;
 504
 505	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
 506}
 507
 508static void its_send_mapc(struct its_node *its, struct its_collection *col,
 509			  int valid)
 510{
 511	struct its_cmd_desc desc;
 512
 513	desc.its_mapc_cmd.col = col;
 514	desc.its_mapc_cmd.valid = !!valid;
 515
 516	its_send_single_command(its, its_build_mapc_cmd, &desc);
 517}
 518
 519static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
 520{
 521	struct its_cmd_desc desc;
 522
 523	desc.its_mapvi_cmd.dev = dev;
 524	desc.its_mapvi_cmd.phys_id = irq_id;
 525	desc.its_mapvi_cmd.event_id = id;
 526
 527	its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
 528}
 529
 530static void its_send_movi(struct its_device *dev,
 531			  struct its_collection *col, u32 id)
 532{
 533	struct its_cmd_desc desc;
 534
 535	desc.its_movi_cmd.dev = dev;
 536	desc.its_movi_cmd.col = col;
 537	desc.its_movi_cmd.event_id = id;
 538
 539	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
 540}
 541
 542static void its_send_discard(struct its_device *dev, u32 id)
 543{
 544	struct its_cmd_desc desc;
 545
 546	desc.its_discard_cmd.dev = dev;
 547	desc.its_discard_cmd.event_id = id;
 548
 549	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
 550}
 551
 552static void its_send_invall(struct its_node *its, struct its_collection *col)
 553{
 554	struct its_cmd_desc desc;
 555
 556	desc.its_invall_cmd.col = col;
 557
 558	its_send_single_command(its, its_build_invall_cmd, &desc);
 559}
 560
 561/*
 562 * irqchip functions - assumes MSI, mostly.
 563 */
 
 564
 565static inline u32 its_get_event_id(struct irq_data *d)
 
 
 
 
 
 
 
 
 
 566{
 567	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 568	return d->hwirq - its_dev->event_map.lpi_base;
 
 
 
 
 
 
 
 569}
 570
 571static void lpi_set_config(struct irq_data *d, bool enable)
 
 572{
 573	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 574	irq_hw_number_t hwirq = d->hwirq;
 575	u32 id = its_get_event_id(d);
 576	u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
 577
 578	if (enable)
 579		*cfg |= LPI_PROP_ENABLED;
 580	else
 581		*cfg &= ~LPI_PROP_ENABLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582
 583	/*
 584	 * Make the above write visible to the redistributors.
 585	 * And yes, we're flushing exactly: One. Single. Byte.
 586	 * Humpf...
 587	 */
 588	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
 589		__flush_dcache_area(cfg, sizeof(*cfg));
 590	else
 591		dsb(ishst);
 592	its_send_inv(its_dev, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593}
 594
 595static void its_mask_irq(struct irq_data *d)
 596{
 597	lpi_set_config(d, false);
 
 
 
 598}
 599
 600static void its_unmask_irq(struct irq_data *d)
 601{
 602	lpi_set_config(d, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603}
 604
 605static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
 606			    bool force)
 607{
 608	unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
 609	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 610	struct its_collection *target_col;
 611	u32 id = its_get_event_id(d);
 
 612
 613	if (cpu >= nr_cpu_ids)
 
 614		return -EINVAL;
 615
 616	target_col = &its_dev->its->collections[cpu];
 617	its_send_movi(its_dev, target_col, id);
 618	its_dev->event_map.col_map[id] = cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619
 620	return IRQ_SET_MASK_OK_DONE;
 
 
 
 
 
 
 
 
 
 
 
 621}
 622
 623static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
 624{
 625	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 626	struct its_node *its;
 627	u64 addr;
 628
 629	its = its_dev->its;
 630	addr = its->phys_base + GITS_TRANSLATER;
 631
 632	msg->address_lo		= addr & ((1UL << 32) - 1);
 633	msg->address_hi		= addr >> 32;
 634	msg->data		= its_get_event_id(d);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635}
 636
 637static struct irq_chip its_irq_chip = {
 638	.name			= "ITS",
 639	.irq_mask		= its_mask_irq,
 640	.irq_unmask		= its_unmask_irq,
 641	.irq_eoi		= irq_chip_eoi_parent,
 642	.irq_set_affinity	= its_set_affinity,
 643	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
 
 
 
 644};
 645
 
 646/*
 647 * How we allocate LPIs:
 648 *
 649 * The GIC has id_bits bits for interrupt identifiers. From there, we
 650 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
 651 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
 652 * bits to the right.
 
 
 
 
 653 *
 654 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
 
 655 */
 656#define IRQS_PER_CHUNK_SHIFT	5
 657#define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 658
 659static unsigned long *lpi_bitmap;
 660static u32 lpi_chunks;
 661static DEFINE_SPINLOCK(lpi_lock);
 
 
 
 
 
 662
 663static int its_lpi_to_chunk(int lpi)
 664{
 665	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666}
 667
 668static int its_chunk_to_lpi(int chunk)
 669{
 670	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
 
 
 
 
 
 
 
 671}
 672
 673static int __init its_lpi_init(u32 id_bits)
 674{
 675	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
 676
 677	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
 678			     GFP_KERNEL);
 679	if (!lpi_bitmap) {
 680		lpi_chunks = 0;
 681		return -ENOMEM;
 
 
 
 
 
 
 682	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683
 684	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
 685	return 0;
 686}
 687
 688static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
 689{
 690	unsigned long *bitmap = NULL;
 691	int chunk_id;
 692	int nr_chunks;
 693	int i;
 694
 695	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696
 697	spin_lock(&lpi_lock);
 
 
 
 698
 699	do {
 700		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
 701						      0, nr_chunks, 0);
 702		if (chunk_id < lpi_chunks)
 703			break;
 704
 705		nr_chunks--;
 706	} while (nr_chunks > 0);
 
 
 
 707
 708	if (!nr_chunks)
 709		goto out;
 710
 711	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
 712			 GFP_ATOMIC);
 713	if (!bitmap)
 714		goto out;
 715
 716	for (i = 0; i < nr_chunks; i++)
 717		set_bit(chunk_id + i, lpi_bitmap);
 718
 719	*base = its_chunk_to_lpi(chunk_id);
 720	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
 721
 722out:
 723	spin_unlock(&lpi_lock);
 724
 725	if (!bitmap)
 726		*base = *nr_ids = 0;
 727
 728	return bitmap;
 729}
 730
 731static void its_lpi_free(struct event_lpi_map *map)
 732{
 733	int base = map->lpi_base;
 734	int nr_ids = map->nr_lpis;
 735	int lpi;
 736
 737	spin_lock(&lpi_lock);
 738
 739	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
 740		int chunk = its_lpi_to_chunk(lpi);
 741		BUG_ON(chunk > lpi_chunks);
 742		if (test_bit(chunk, lpi_bitmap)) {
 743			clear_bit(chunk, lpi_bitmap);
 744		} else {
 745			pr_err("Bad LPI chunk %d\n", chunk);
 746		}
 747	}
 748
 749	spin_unlock(&lpi_lock);
 
 
 
 750
 751	kfree(map->lpi_map);
 752	kfree(map->col_map);
 753}
 754
 755/*
 756 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
 757 * deal with (one configuration byte per interrupt). PENDBASE has to
 758 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
 759 */
 760#define LPI_PROPBASE_SZ		SZ_64K
 761#define LPI_PENDBASE_SZ		(LPI_PROPBASE_SZ / 8 + SZ_1K)
 762
 763/*
 764 * This is how many bits of ID we need, including the useless ones.
 765 */
 766#define LPI_NRBITS		ilog2(LPI_PROPBASE_SZ + SZ_8K)
 
 
 767
 768#define LPI_PROP_DEFAULT_PRIO	0xa0
 
 769
 770static int __init its_alloc_lpi_tables(void)
 771{
 772	phys_addr_t paddr;
 
 773
 774	gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
 775					   get_order(LPI_PROPBASE_SZ));
 776	if (!gic_rdists->prop_page) {
 777		pr_err("Failed to allocate PROPBASE\n");
 778		return -ENOMEM;
 779	}
 
 
 
 
 
 
 780
 781	paddr = page_to_phys(gic_rdists->prop_page);
 782	pr_info("GIC: using LPI property table @%pa\n", &paddr);
 783
 784	/* Priority 0xa0, Group-1, disabled */
 785	memset(page_address(gic_rdists->prop_page),
 786	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
 787	       LPI_PROPBASE_SZ);
 788
 789	/* Make sure the GIC will observe the written configuration */
 790	__flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
 
 
 
 
 
 
 
 
 
 791
 792	return 0;
 793}
 794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795static const char *its_base_type_string[] = {
 796	[GITS_BASER_TYPE_DEVICE]	= "Devices",
 797	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
 798	[GITS_BASER_TYPE_CPU]		= "Physical CPUs",
 799	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
 800	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
 801	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
 802	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
 803};
 804
 805static void its_free_tables(struct its_node *its)
 806{
 807	int i;
 808
 809	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
 810		if (its->tables[i].base) {
 811			free_pages((unsigned long)its->tables[i].base,
 812				   its->tables[i].order);
 813			its->tables[i].base = NULL;
 814		}
 815	}
 816}
 817
 818static int its_alloc_tables(const char *node_name, struct its_node *its)
 
 819{
 820	int err;
 821	int i;
 822	int psz = SZ_64K;
 823	u64 shr = GITS_BASER_InnerShareable;
 824	u64 cache;
 825	u64 typer;
 826	u32 ids;
 
 
 
 
 
 
 
 
 
 827
 828	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829		/*
 830		 * erratum 22375: only alloc 8MB table size
 831		 * erratum 24313: ignore memory access type
 
 
 
 832		 */
 833		cache	= 0;
 834		ids	= 0x14;			/* 20 bits, 8MB */
 835	} else {
 836		cache	= GITS_BASER_WaWb;
 837		typer	= readq_relaxed(its->base + GITS_TYPER);
 838		ids	= GITS_TYPER_DEVBITS(typer);
 839	}
 840
 841	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
 842		u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
 843		u64 type = GITS_BASER_TYPE(val);
 844		u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
 845		int order = get_order(psz);
 846		int alloc_pages;
 847		u64 tmp;
 848		void *base;
 849
 850		if (type == GITS_BASER_TYPE_NONE)
 851			continue;
 
 
 
 
 
 
 
 
 
 852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853		/*
 854		 * Allocate as many entries as required to fit the
 855		 * range of device IDs that the ITS can grok... The ID
 856		 * space being incredibly sparse, this results in a
 857		 * massive waste of memory.
 858		 *
 859		 * For other tables, only allocate a single page.
 860		 */
 861		if (type == GITS_BASER_TYPE_DEVICE) {
 
 
 
 862			/*
 863			 * 'order' was initialized earlier to the default page
 864			 * granule of the the ITS.  We can't have an allocation
 865			 * smaller than that.  If the requested allocation
 866			 * is smaller, round up to the default page granule.
 
 867			 */
 868			order = max(get_order((1UL << ids) * entry_size),
 869				    order);
 870			if (order >= MAX_ORDER) {
 871				order = MAX_ORDER - 1;
 872				pr_warn("%s: Device Table too large, reduce its page order to %u\n",
 873					node_name, order);
 874			}
 875		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876
 877retry_alloc_baser:
 878		alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
 879		if (alloc_pages > GITS_BASER_PAGES_MAX) {
 880			alloc_pages = GITS_BASER_PAGES_MAX;
 881			order = get_order(GITS_BASER_PAGES_MAX * psz);
 882			pr_warn("%s: Device Table too large, reduce its page order to %u (%u pages)\n",
 883				node_name, order, alloc_pages);
 884		}
 885
 886		base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
 887		if (!base) {
 888			err = -ENOMEM;
 889			goto out_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 890		}
 
 
 891
 892		its->tables[i].base = base;
 893		its->tables[i].order = order;
 
 894
 895retry_baser:
 896		val = (virt_to_phys(base) 				 |
 897		       (type << GITS_BASER_TYPE_SHIFT)			 |
 898		       ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
 899		       cache						 |
 900		       shr						 |
 901		       GITS_BASER_VALID);
 902
 903		switch (psz) {
 904		case SZ_4K:
 905			val |= GITS_BASER_PAGE_SIZE_4K;
 906			break;
 907		case SZ_16K:
 908			val |= GITS_BASER_PAGE_SIZE_16K;
 
 
 
 
 
 
 
 
 
 
 
 
 
 909			break;
 
 
 910		case SZ_64K:
 911			val |= GITS_BASER_PAGE_SIZE_64K;
 
 
 
 912			break;
 
 
 
 913		}
 
 914
 915		val |= alloc_pages - 1;
 
 
 916
 917		writeq_relaxed(val, its->base + GITS_BASER + i * 8);
 918		tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
 
 
 
 919
 920		if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
 921			/*
 922			 * Shareability didn't stick. Just use
 923			 * whatever the read reported, which is likely
 924			 * to be the only thing this redistributor
 925			 * supports. If that's zero, make it
 926			 * non-cacheable as well.
 927			 */
 928			shr = tmp & GITS_BASER_SHAREABILITY_MASK;
 929			if (!shr) {
 930				cache = GITS_BASER_nC;
 931				__flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order));
 932			}
 933			goto retry_baser;
 
 
 
 
 
 
 
 
 934		}
 935
 936		if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
 937			/*
 938			 * Page size didn't stick. Let's try a smaller
 939			 * size and retry. If we reach 4K, then
 940			 * something is horribly wrong...
 941			 */
 942			free_pages((unsigned long)base, order);
 943			its->tables[i].base = NULL;
 944
 945			switch (psz) {
 946			case SZ_16K:
 947				psz = SZ_4K;
 948				goto retry_alloc_baser;
 949			case SZ_64K:
 950				psz = SZ_16K;
 951				goto retry_alloc_baser;
 
 
 
 952			}
 
 
 
 
 953		}
 954
 955		if (val != tmp) {
 956			pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
 957			       node_name, i,
 958			       (unsigned long) val, (unsigned long) tmp);
 959			err = -ENXIO;
 960			goto out_free;
 961		}
 962
 963		pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
 964			(int)(PAGE_ORDER_TO_SIZE(order) / entry_size),
 965			its_base_type_string[type],
 966			(unsigned long)virt_to_phys(base),
 967			psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
 968	}
 969
 970	return 0;
 
 971
 972out_free:
 973	its_free_tables(its);
 
 
 
 974
 975	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976}
 977
 978static int its_alloc_collections(struct its_node *its)
 979{
 980	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
 
 
 981				   GFP_KERNEL);
 982	if (!its->collections)
 983		return -ENOMEM;
 984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985	return 0;
 986}
 987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988static void its_cpu_init_lpis(void)
 989{
 990	void __iomem *rbase = gic_data_rdist_rd_base();
 991	struct page *pend_page;
 
 992	u64 val, tmp;
 993
 994	/* If we didn't allocate the pending table yet, do it now */
 995	pend_page = gic_data_rdist()->pend_page;
 996	if (!pend_page) {
 997		phys_addr_t paddr;
 
 
 998		/*
 999		 * The pending pages have to be at least 64kB aligned,
1000		 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1001		 */
1002		pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1003					get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1004		if (!pend_page) {
1005			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1006			       smp_processor_id());
1007			return;
1008		}
1009
1010		/* Make sure the GIC will observe the zero-ed page */
1011		__flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1012
1013		paddr = page_to_phys(pend_page);
1014		pr_info("CPU%d: using LPI pending table @%pa\n",
1015			smp_processor_id(), &paddr);
1016		gic_data_rdist()->pend_page = pend_page;
1017	}
1018
1019	/* Disable LPIs */
1020	val = readl_relaxed(rbase + GICR_CTLR);
1021	val &= ~GICR_CTLR_ENABLE_LPIS;
1022	writel_relaxed(val, rbase + GICR_CTLR);
1023
1024	/*
1025	 * Make sure any change to the table is observable by the GIC.
1026	 */
1027	dsb(sy);
1028
1029	/* set PROPBASE */
1030	val = (page_to_phys(gic_rdists->prop_page) |
1031	       GICR_PROPBASER_InnerShareable |
1032	       GICR_PROPBASER_WaWb |
1033	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1034
1035	writeq_relaxed(val, rbase + GICR_PROPBASER);
1036	tmp = readq_relaxed(rbase + GICR_PROPBASER);
 
 
 
1037
1038	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1039		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1040			/*
1041			 * The HW reports non-shareable, we must
1042			 * remove the cacheability attributes as
1043			 * well.
1044			 */
1045			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1046				 GICR_PROPBASER_CACHEABILITY_MASK);
1047			val |= GICR_PROPBASER_nC;
1048			writeq_relaxed(val, rbase + GICR_PROPBASER);
1049		}
1050		pr_info_once("GIC: using cache flushing for LPI property table\n");
1051		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1052	}
1053
1054	/* set PENDBASE */
1055	val = (page_to_phys(pend_page) |
1056	       GICR_PENDBASER_InnerShareable |
1057	       GICR_PENDBASER_WaWb);
 
 
 
1058
1059	writeq_relaxed(val, rbase + GICR_PENDBASER);
1060	tmp = readq_relaxed(rbase + GICR_PENDBASER);
1061
1062	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1063		/*
1064		 * The HW reports non-shareable, we must remove the
1065		 * cacheability attributes as well.
1066		 */
1067		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1068			 GICR_PENDBASER_CACHEABILITY_MASK);
1069		val |= GICR_PENDBASER_nC;
1070		writeq_relaxed(val, rbase + GICR_PENDBASER);
1071	}
1072
1073	/* Enable LPIs */
1074	val = readl_relaxed(rbase + GICR_CTLR);
1075	val |= GICR_CTLR_ENABLE_LPIS;
1076	writel_relaxed(val, rbase + GICR_CTLR);
1077
1078	/* Make sure the GIC has seen the above */
1079	dsb(sy);
1080}
1081
1082static void its_cpu_init_collection(void)
1083{
1084	struct its_node *its;
1085	int cpu;
 
 
 
 
 
 
 
1086
1087	spin_lock(&its_lock);
1088	cpu = smp_processor_id();
 
 
 
 
 
1089
1090	list_for_each_entry(its, &its_nodes, entry) {
1091		u64 target;
 
 
 
 
 
 
 
1092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093		/*
1094		 * We now have to bind each collection to its target
1095		 * redistributor.
1096		 */
1097		if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1098			/*
1099			 * This ITS wants the physical address of the
1100			 * redistributor.
1101			 */
1102			target = gic_data_rdist()->phys_base;
1103		} else {
1104			/*
1105			 * This ITS wants a linear CPU number.
1106			 */
1107			target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1108			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1109		}
1110
1111		/* Perform collection mapping */
1112		its->collections[cpu].target_address = target;
1113		its->collections[cpu].col_id = cpu;
1114
1115		its_send_mapc(its, &its->collections[cpu], 1);
1116		its_send_invall(its, &its->collections[cpu]);
1117	}
1118
1119	spin_unlock(&its_lock);
 
 
 
 
 
 
 
 
 
1120}
1121
1122static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1123{
1124	struct its_device *its_dev = NULL, *tmp;
1125	unsigned long flags;
1126
1127	raw_spin_lock_irqsave(&its->lock, flags);
1128
1129	list_for_each_entry(tmp, &its->its_device_list, entry) {
1130		if (tmp->device_id == dev_id) {
1131			its_dev = tmp;
1132			break;
1133		}
1134	}
1135
1136	raw_spin_unlock_irqrestore(&its->lock, flags);
1137
1138	return its_dev;
1139}
1140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1142					    int nvecs)
1143{
1144	struct its_device *dev;
1145	unsigned long *lpi_map;
1146	unsigned long flags;
1147	u16 *col_map = NULL;
1148	void *itt;
1149	int lpi_base;
1150	int nr_lpis;
1151	int nr_ites;
1152	int sz;
1153
1154	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 
 
 
 
 
1155	/*
1156	 * At least one bit of EventID is being used, hence a minimum
1157	 * of two entries. No, the architecture doesn't let you
1158	 * express an ITT with a single entry.
1159	 */
1160	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1161	sz = nr_ites * its->ite_size;
1162	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1163	itt = kzalloc(sz, GFP_KERNEL);
1164	lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1165	if (lpi_map)
1166		col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1167
1168	if (!dev || !itt || !lpi_map || !col_map) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1169		kfree(dev);
1170		kfree(itt);
1171		kfree(lpi_map);
1172		kfree(col_map);
1173		return NULL;
1174	}
1175
1176	__flush_dcache_area(itt, sz);
1177
1178	dev->its = its;
1179	dev->itt = itt;
 
1180	dev->nr_ites = nr_ites;
1181	dev->event_map.lpi_map = lpi_map;
1182	dev->event_map.col_map = col_map;
1183	dev->event_map.lpi_base = lpi_base;
1184	dev->event_map.nr_lpis = nr_lpis;
 
1185	dev->device_id = dev_id;
1186	INIT_LIST_HEAD(&dev->entry);
1187
1188	raw_spin_lock_irqsave(&its->lock, flags);
1189	list_add(&dev->entry, &its->its_device_list);
1190	raw_spin_unlock_irqrestore(&its->lock, flags);
1191
1192	/* Map device to its ITT */
1193	its_send_mapd(dev, 1);
1194
1195	return dev;
1196}
1197
1198static void its_free_device(struct its_device *its_dev)
1199{
1200	unsigned long flags;
1201
1202	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1203	list_del(&its_dev->entry);
1204	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1205	kfree(its_dev->itt);
 
1206	kfree(its_dev);
1207}
1208
1209static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1210{
1211	int idx;
1212
1213	idx = find_first_zero_bit(dev->event_map.lpi_map,
1214				  dev->event_map.nr_lpis);
1215	if (idx == dev->event_map.nr_lpis)
 
 
1216		return -ENOSPC;
1217
1218	*hwirq = dev->event_map.lpi_base + idx;
1219	set_bit(idx, dev->event_map.lpi_map);
1220
1221	return 0;
1222}
1223
1224static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1225			   int nvec, msi_alloc_info_t *info)
1226{
1227	struct its_node *its;
1228	struct its_device *its_dev;
1229	struct msi_domain_info *msi_info;
1230	u32 dev_id;
 
1231
1232	/*
1233	 * We ignore "dev" entierely, and rely on the dev_id that has
1234	 * been passed via the scratchpad. This limits this domain's
1235	 * usefulness to upper layers that definitely know that they
1236	 * are built on top of the ITS.
1237	 */
1238	dev_id = info->scratchpad[0].ul;
1239
1240	msi_info = msi_get_domain_info(domain);
1241	its = msi_info->data;
1242
 
 
 
 
 
 
 
 
 
 
 
1243	its_dev = its_find_device(its, dev_id);
1244	if (its_dev) {
1245		/*
1246		 * We already have seen this ID, probably through
1247		 * another alias (PCI bridge of some sort). No need to
1248		 * create the device.
1249		 */
 
1250		pr_debug("Reusing ITT for devID %x\n", dev_id);
1251		goto out;
1252	}
1253
1254	its_dev = its_create_device(its, dev_id, nvec);
1255	if (!its_dev)
1256		return -ENOMEM;
 
 
 
 
 
1257
1258	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1259out:
 
1260	info->scratchpad[0].ptr = its_dev;
1261	return 0;
1262}
1263
1264static struct msi_domain_ops its_msi_domain_ops = {
1265	.msi_prepare	= its_msi_prepare,
1266};
1267
1268static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1269				    unsigned int virq,
1270				    irq_hw_number_t hwirq)
1271{
1272	struct irq_fwspec fwspec;
1273
1274	if (irq_domain_get_of_node(domain->parent)) {
1275		fwspec.fwnode = domain->parent->fwnode;
1276		fwspec.param_count = 3;
1277		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1278		fwspec.param[1] = hwirq;
1279		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
 
 
 
 
 
1280	} else {
1281		return -EINVAL;
1282	}
1283
1284	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1285}
1286
1287static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1288				unsigned int nr_irqs, void *args)
1289{
1290	msi_alloc_info_t *info = args;
1291	struct its_device *its_dev = info->scratchpad[0].ptr;
 
 
1292	irq_hw_number_t hwirq;
1293	int err;
1294	int i;
1295
1296	for (i = 0; i < nr_irqs; i++) {
1297		err = its_alloc_device_irq(its_dev, &hwirq);
1298		if (err)
1299			return err;
1300
1301		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
 
 
 
 
 
1302		if (err)
1303			return err;
1304
1305		irq_domain_set_hwirq_and_chip(domain, virq + i,
1306					      hwirq, &its_irq_chip, its_dev);
 
 
 
 
1307		pr_debug("ID:%d pID:%d vID:%d\n",
1308			 (int)(hwirq - its_dev->event_map.lpi_base),
1309			 (int) hwirq, virq + i);
1310	}
1311
1312	return 0;
1313}
1314
1315static void its_irq_domain_activate(struct irq_domain *domain,
1316				    struct irq_data *d)
1317{
1318	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1319	u32 event = its_get_event_id(d);
 
1320
1321	/* Bind the LPI to the first possible CPU */
1322	its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask);
 
 
 
 
 
1323
1324	/* Map the GIC IRQ and event to the device */
1325	its_send_mapvi(its_dev, d->hwirq, event);
 
1326}
1327
1328static void its_irq_domain_deactivate(struct irq_domain *domain,
1329				      struct irq_data *d)
1330{
1331	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1332	u32 event = its_get_event_id(d);
1333
 
1334	/* Stop the delivery of interrupts */
1335	its_send_discard(its_dev, event);
1336}
1337
1338static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1339				unsigned int nr_irqs)
1340{
1341	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1342	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 
1343	int i;
1344
 
 
 
 
1345	for (i = 0; i < nr_irqs; i++) {
1346		struct irq_data *data = irq_domain_get_irq_data(domain,
1347								virq + i);
1348		u32 event = its_get_event_id(data);
1349
1350		/* Mark interrupt index as unused */
1351		clear_bit(event, its_dev->event_map.lpi_map);
1352
1353		/* Nuke the entry in the domain */
1354		irq_domain_reset_irq_data(data);
1355	}
1356
1357	/* If all interrupts have been freed, start mopping the floor */
1358	if (bitmap_empty(its_dev->event_map.lpi_map,
 
 
 
 
 
 
1359			 its_dev->event_map.nr_lpis)) {
1360		its_lpi_free(&its_dev->event_map);
 
 
1361
1362		/* Unmap device/itt */
1363		its_send_mapd(its_dev, 0);
1364		its_free_device(its_dev);
1365	}
1366
 
 
1367	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1368}
1369
1370static const struct irq_domain_ops its_domain_ops = {
 
1371	.alloc			= its_irq_domain_alloc,
1372	.free			= its_irq_domain_free,
1373	.activate		= its_irq_domain_activate,
1374	.deactivate		= its_irq_domain_deactivate,
1375};
1376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377static int its_force_quiescent(void __iomem *base)
1378{
1379	u32 count = 1000000;	/* 1s */
1380	u32 val;
1381
1382	val = readl_relaxed(base + GITS_CTLR);
1383	if (val & GITS_CTLR_QUIESCENT)
 
 
 
 
 
1384		return 0;
1385
1386	/* Disable the generation of all interrupts to this ITS */
1387	val &= ~GITS_CTLR_ENABLE;
1388	writel_relaxed(val, base + GITS_CTLR);
1389
1390	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
1391	while (1) {
1392		val = readl_relaxed(base + GITS_CTLR);
1393		if (val & GITS_CTLR_QUIESCENT)
1394			return 0;
1395
1396		count--;
1397		if (!count)
1398			return -EBUSY;
1399
1400		cpu_relax();
1401		udelay(1);
1402	}
1403}
1404
1405static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1406{
1407	struct its_node *its = data;
1408
 
 
 
1409	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1410}
1411
1412static const struct gic_quirk its_quirks[] = {
1413#ifdef CONFIG_CAVIUM_ERRATUM_22375
1414	{
1415		.desc	= "ITS: Cavium errata 22375, 24313",
1416		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1417		.mask	= 0xffff0fff,
1418		.init	= its_enable_quirk_cavium_22375,
1419	},
1420#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421	{
1422	}
1423};
1424
1425static void its_enable_quirks(struct its_node *its)
1426{
1427	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1428
1429	gic_enable_quirks(iidr, its_quirks, its);
 
 
 
 
1430}
1431
1432static int __init its_probe(struct device_node *node,
1433			    struct irq_domain *parent)
1434{
1435	struct resource res;
1436	struct its_node *its;
1437	void __iomem *its_base;
1438	struct irq_domain *inner_domain;
1439	u32 val;
1440	u64 baser, tmp;
1441	int err;
 
 
 
 
 
 
 
 
 
 
1442
1443	err = of_address_to_resource(node, 0, &res);
 
 
 
1444	if (err) {
1445		pr_warn("%s: no regs?\n", node->full_name);
1446		return -ENXIO;
 
 
 
 
1447	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1448
1449	its_base = ioremap(res.start, resource_size(&res));
1450	if (!its_base) {
1451		pr_warn("%s: unable to map registers\n", node->full_name);
1452		return -ENOMEM;
 
1453	}
1454
1455	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1456	if (val != 0x30 && val != 0x40) {
1457		pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1458		err = -ENODEV;
1459		goto out_unmap;
1460	}
1461
1462	err = its_force_quiescent(its_base);
1463	if (err) {
1464		pr_warn("%s: failed to quiesce, giving up\n",
1465			node->full_name);
1466		goto out_unmap;
1467	}
1468
1469	pr_info("ITS: %s\n", node->full_name);
1470
1471	its = kzalloc(sizeof(*its), GFP_KERNEL);
1472	if (!its) {
1473		err = -ENOMEM;
1474		goto out_unmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475	}
1476
1477	raw_spin_lock_init(&its->lock);
1478	INIT_LIST_HEAD(&its->entry);
1479	INIT_LIST_HEAD(&its->its_device_list);
1480	its->base = its_base;
1481	its->phys_base = res.start;
1482	its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1483
1484	its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1485	if (!its->cmd_base) {
1486		err = -ENOMEM;
1487		goto out_free_its;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1488	}
1489	its->cmd_write = its->cmd_base;
 
 
 
 
 
 
 
 
 
1490
1491	its_enable_quirks(its);
1492
1493	err = its_alloc_tables(node->full_name, its);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1494	if (err)
1495		goto out_free_cmd;
1496
1497	err = its_alloc_collections(its);
1498	if (err)
1499		goto out_free_tables;
1500
1501	baser = (virt_to_phys(its->cmd_base)	|
1502		 GITS_CBASER_WaWb		|
1503		 GITS_CBASER_InnerShareable	|
1504		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
1505		 GITS_CBASER_VALID);
1506
1507	writeq_relaxed(baser, its->base + GITS_CBASER);
1508	tmp = readq_relaxed(its->base + GITS_CBASER);
 
 
 
1509
1510	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1511		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1512			/*
1513			 * The HW reports non-shareable, we must
1514			 * remove the cacheability attributes as
1515			 * well.
1516			 */
1517			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1518				   GITS_CBASER_CACHEABILITY_MASK);
1519			baser |= GITS_CBASER_nC;
1520			writeq_relaxed(baser, its->base + GITS_CBASER);
1521		}
1522		pr_info("ITS: using cache flushing for cmd queue\n");
1523		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1524	}
1525
1526	writeq_relaxed(0, its->base + GITS_CWRITER);
1527	writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
 
 
 
 
1528
1529	if (of_property_read_bool(node, "msi-controller")) {
1530		struct msi_domain_info *info;
1531
1532		info = kzalloc(sizeof(*info), GFP_KERNEL);
1533		if (!info) {
1534			err = -ENOMEM;
1535			goto out_free_tables;
1536		}
1537
1538		inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1539		if (!inner_domain) {
1540			err = -ENOMEM;
1541			kfree(info);
1542			goto out_free_tables;
1543		}
1544
1545		inner_domain->parent = parent;
1546		inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1547		info->ops = &its_msi_domain_ops;
1548		info->data = its;
1549		inner_domain->host_data = info;
1550	}
1551
1552	spin_lock(&its_lock);
1553	list_add(&its->entry, &its_nodes);
1554	spin_unlock(&its_lock);
1555
1556	return 0;
1557
1558out_free_tables:
1559	its_free_tables(its);
1560out_free_cmd:
1561	kfree(its->cmd_base);
1562out_free_its:
1563	kfree(its);
1564out_unmap:
1565	iounmap(its_base);
1566	pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1567	return err;
1568}
1569
1570static bool gic_rdists_supports_plpis(void)
1571{
1572	return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573}
1574
1575int its_cpu_init(void)
1576{
1577	if (!list_empty(&its_nodes)) {
1578		if (!gic_rdists_supports_plpis()) {
1579			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1580			return -ENXIO;
1581		}
 
 
1582		its_cpu_init_lpis();
1583		its_cpu_init_collection();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584	}
1585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586	return 0;
1587}
1588
1589static struct of_device_id its_device_id[] = {
1590	{	.compatible	= "arm,gic-v3-its",	},
1591	{},
1592};
1593
1594int __init its_init(struct device_node *node, struct rdists *rdists,
1595	     struct irq_domain *parent_domain)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1596{
1597	struct device_node *np;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1598
1599	for (np = of_find_matching_node(node, its_device_id); np;
1600	     np = of_find_matching_node(np, its_device_id)) {
1601		its_probe(np, parent_domain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1603
1604	if (list_empty(&its_nodes)) {
1605		pr_warn("ITS: No ITS available, not enabling LPIs\n");
1606		return -ENXIO;
1607	}
1608
1609	gic_rdists = rdists;
1610	its_alloc_lpi_tables();
1611	its_lpi_init(rdists->id_bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1612
1613	return 0;
1614}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/acpi_iort.h>
   9#include <linux/bitfield.h>
  10#include <linux/bitmap.h>
  11#include <linux/cpu.h>
  12#include <linux/crash_dump.h>
  13#include <linux/delay.h>
  14#include <linux/efi.h>
  15#include <linux/genalloc.h>
  16#include <linux/interrupt.h>
  17#include <linux/iommu.h>
  18#include <linux/iopoll.h>
  19#include <linux/irqdomain.h>
  20#include <linux/list.h>
  21#include <linux/log2.h>
  22#include <linux/mem_encrypt.h>
  23#include <linux/memblock.h>
  24#include <linux/mm.h>
  25#include <linux/msi.h>
  26#include <linux/of.h>
  27#include <linux/of_address.h>
  28#include <linux/of_irq.h>
  29#include <linux/of_pci.h>
  30#include <linux/of_platform.h>
  31#include <linux/percpu.h>
  32#include <linux/set_memory.h>
  33#include <linux/slab.h>
  34#include <linux/syscore_ops.h>
  35
  36#include <linux/irqchip.h>
  37#include <linux/irqchip/arm-gic-v3.h>
  38#include <linux/irqchip/arm-gic-v4.h>
  39
 
  40#include <asm/cputype.h>
  41#include <asm/exception.h>
  42
  43#include "irq-gic-common.h"
  44#include "irq-msi-lib.h"
  45
  46#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
  47#define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
  48#define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
  49#define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
  50#define ITS_FLAGS_WORKAROUND_HISILICON_162100801	(1ULL << 4)
  51
  52#define RD_LOCAL_LPI_ENABLED                    BIT(0)
  53#define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
  54#define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
  55
  56static u32 lpi_id_bits;
  57
  58/*
  59 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
  60 * deal with (one configuration byte per interrupt). PENDBASE has to
  61 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
  62 */
  63#define LPI_NRBITS		lpi_id_bits
  64#define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
  65#define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
  66
  67static u8 __ro_after_init lpi_prop_prio;
  68static struct its_node *find_4_1_its(void);
  69
  70/*
  71 * Collection structure - just an ID, and a redistributor address to
  72 * ping. We use one per CPU as a bag of interrupts assigned to this
  73 * CPU.
  74 */
  75struct its_collection {
  76	u64			target_address;
  77	u16			col_id;
  78};
  79
  80/*
  81 * The ITS_BASER structure - contains memory information, cached
  82 * value of BASER register configuration and ITS page size.
  83 */
  84struct its_baser {
  85	void		*base;
  86	u64		val;
  87	u32		order;
  88	u32		psz;
  89};
  90
  91struct its_device;
  92
  93/*
  94 * The ITS structure - contains most of the infrastructure, with the
  95 * top-level MSI domain, the command queue, the collections, and the
  96 * list of devices writing to it.
  97 *
  98 * dev_alloc_lock has to be taken for device allocations, while the
  99 * spinlock must be taken to parse data structures such as the device
 100 * list.
 101 */
 102struct its_node {
 103	raw_spinlock_t		lock;
 104	struct mutex		dev_alloc_lock;
 105	struct list_head	entry;
 106	void __iomem		*base;
 107	void __iomem		*sgir_base;
 108	phys_addr_t		phys_base;
 109	struct its_cmd_block	*cmd_base;
 110	struct its_cmd_block	*cmd_write;
 111	struct its_baser	tables[GITS_BASER_NR_REGS];
 
 
 
 112	struct its_collection	*collections;
 113	struct fwnode_handle	*fwnode_handle;
 114	u64			(*get_msi_base)(struct its_device *its_dev);
 115	u64			typer;
 116	u64			cbaser_save;
 117	u32			ctlr_save;
 118	u32			mpidr;
 119	struct list_head	its_device_list;
 120	u64			flags;
 121	unsigned long		list_nr;
 122	int			numa_node;
 123	unsigned int		msi_domain_flags;
 124	u32			pre_its_base; /* for Socionext Synquacer */
 125	int			vlpi_redist_offset;
 126};
 127
 128#define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
 129#define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
 130#define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
 131
 132#define ITS_ITT_ALIGN		SZ_256
 133
 134/* The maximum number of VPEID bits supported by VLPI commands */
 135#define ITS_MAX_VPEID_BITS						\
 136	({								\
 137		int nvpeid = 16;					\
 138		if (gic_rdists->has_rvpeid &&				\
 139		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
 140			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
 141				      GICD_TYPER2_VID);			\
 142									\
 143		nvpeid;							\
 144	})
 145#define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
 146
 147/* Convert page order to size in bytes */
 148#define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
 149
 150struct event_lpi_map {
 151	unsigned long		*lpi_map;
 152	u16			*col_map;
 153	irq_hw_number_t		lpi_base;
 154	int			nr_lpis;
 155	raw_spinlock_t		vlpi_lock;
 156	struct its_vm		*vm;
 157	struct its_vlpi_map	*vlpi_maps;
 158	int			nr_vlpis;
 159};
 160
 161/*
 162 * The ITS view of a device - belongs to an ITS, owns an interrupt
 163 * translation table, and a list of interrupts.  If it some of its
 164 * LPIs are injected into a guest (GICv4), the event_map.vm field
 165 * indicates which one.
 166 */
 167struct its_device {
 168	struct list_head	entry;
 169	struct its_node		*its;
 170	struct event_lpi_map	event_map;
 171	void			*itt;
 172	u32			itt_sz;
 173	u32			nr_ites;
 174	u32			device_id;
 175	bool			shared;
 176};
 177
 178static struct {
 179	raw_spinlock_t		lock;
 180	struct its_device	*dev;
 181	struct its_vpe		**vpes;
 182	int			next_victim;
 183} vpe_proxy;
 184
 185struct cpu_lpi_count {
 186	atomic_t	managed;
 187	atomic_t	unmanaged;
 188};
 189
 190static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
 191
 192static LIST_HEAD(its_nodes);
 193static DEFINE_RAW_SPINLOCK(its_lock);
 194static struct rdists *gic_rdists;
 195static struct irq_domain *its_parent;
 196
 197static unsigned long its_list_map;
 198static u16 vmovp_seq_num;
 199static DEFINE_RAW_SPINLOCK(vmovp_lock);
 200
 201static DEFINE_IDA(its_vpeid_ida);
 202
 203#define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
 204#define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
 205#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
 206#define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
 207
 208static struct page *its_alloc_pages_node(int node, gfp_t gfp,
 209					 unsigned int order)
 210{
 211	struct page *page;
 212	int ret = 0;
 213
 214	page = alloc_pages_node(node, gfp, order);
 215
 216	if (!page)
 217		return NULL;
 218
 219	ret = set_memory_decrypted((unsigned long)page_address(page),
 220				   1 << order);
 221	/*
 222	 * If set_memory_decrypted() fails then we don't know what state the
 223	 * page is in, so we can't free it. Instead we leak it.
 224	 * set_memory_decrypted() will already have WARNed.
 225	 */
 226	if (ret)
 227		return NULL;
 228
 229	return page;
 230}
 231
 232static struct page *its_alloc_pages(gfp_t gfp, unsigned int order)
 233{
 234	return its_alloc_pages_node(NUMA_NO_NODE, gfp, order);
 235}
 236
 237static void its_free_pages(void *addr, unsigned int order)
 238{
 239	/*
 240	 * If the memory cannot be encrypted again then we must leak the pages.
 241	 * set_memory_encrypted() will already have WARNed.
 242	 */
 243	if (set_memory_encrypted((unsigned long)addr, 1 << order))
 244		return;
 245	free_pages((unsigned long)addr, order);
 246}
 247
 248static struct gen_pool *itt_pool;
 249
 250static void *itt_alloc_pool(int node, int size)
 251{
 252	unsigned long addr;
 253	struct page *page;
 254
 255	if (size >= PAGE_SIZE) {
 256		page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size));
 257
 258		return page ? page_address(page) : NULL;
 259	}
 260
 261	do {
 262		addr = gen_pool_alloc(itt_pool, size);
 263		if (addr)
 264			break;
 265
 266		page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
 267		if (!page)
 268			break;
 269
 270		gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node);
 271	} while (!addr);
 272
 273	return (void *)addr;
 274}
 275
 276static void itt_free_pool(void *addr, int size)
 277{
 278	if (!addr)
 279		return;
 280
 281	if (size >= PAGE_SIZE) {
 282		its_free_pages(addr, get_order(size));
 283		return;
 284	}
 285
 286	gen_pool_free(itt_pool, (unsigned long)addr, size);
 287}
 288
 289/*
 290 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
 291 * always have vSGIs mapped.
 292 */
 293static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
 294{
 295	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
 296}
 297
 298static bool rdists_support_shareable(void)
 299{
 300	return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
 301}
 302
 303static u16 get_its_list(struct its_vm *vm)
 304{
 305	struct its_node *its;
 306	unsigned long its_list = 0;
 307
 308	list_for_each_entry(its, &its_nodes, entry) {
 309		if (!is_v4(its))
 310			continue;
 311
 312		if (require_its_list_vmovp(vm, its))
 313			__set_bit(its->list_nr, &its_list);
 314	}
 315
 316	return (u16)its_list;
 317}
 318
 319static inline u32 its_get_event_id(struct irq_data *d)
 320{
 321	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 322	return d->hwirq - its_dev->event_map.lpi_base;
 323}
 324
 325static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 326					       u32 event)
 327{
 328	struct its_node *its = its_dev->its;
 329
 330	return its->collections + its_dev->event_map.col_map[event];
 331}
 332
 333static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
 334					       u32 event)
 335{
 336	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
 337		return NULL;
 338
 339	return &its_dev->event_map.vlpi_maps[event];
 340}
 341
 342static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
 343{
 344	if (irqd_is_forwarded_to_vcpu(d)) {
 345		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 346		u32 event = its_get_event_id(d);
 347
 348		return dev_event_to_vlpi_map(its_dev, event);
 349	}
 350
 351	return NULL;
 352}
 353
 354static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
 355{
 356	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
 357	return vpe->col_idx;
 358}
 359
 360static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
 361{
 362	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
 363}
 364
 365static struct irq_chip its_vpe_irq_chip;
 366
 367static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
 368{
 369	struct its_vpe *vpe = NULL;
 370	int cpu;
 371
 372	if (d->chip == &its_vpe_irq_chip) {
 373		vpe = irq_data_get_irq_chip_data(d);
 374	} else {
 375		struct its_vlpi_map *map = get_vlpi_map(d);
 376		if (map)
 377			vpe = map->vpe;
 378	}
 379
 380	if (vpe) {
 381		cpu = vpe_to_cpuid_lock(vpe, flags);
 382	} else {
 383		/* Physical LPIs are already locked via the irq_desc lock */
 384		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 385		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
 386		/* Keep GCC quiet... */
 387		*flags = 0;
 388	}
 389
 390	return cpu;
 391}
 392
 393static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
 394{
 395	struct its_vpe *vpe = NULL;
 396
 397	if (d->chip == &its_vpe_irq_chip) {
 398		vpe = irq_data_get_irq_chip_data(d);
 399	} else {
 400		struct its_vlpi_map *map = get_vlpi_map(d);
 401		if (map)
 402			vpe = map->vpe;
 403	}
 404
 405	if (vpe)
 406		vpe_to_cpuid_unlock(vpe, flags);
 407}
 408
 409static struct its_collection *valid_col(struct its_collection *col)
 410{
 411	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
 412		return NULL;
 413
 414	return col;
 415}
 416
 417static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
 418{
 419	if (valid_col(its->collections + vpe->col_idx))
 420		return vpe;
 421
 422	return NULL;
 423}
 424
 425/*
 426 * ITS command descriptors - parameters to be encoded in a command
 427 * block.
 428 */
 429struct its_cmd_desc {
 430	union {
 431		struct {
 432			struct its_device *dev;
 433			u32 event_id;
 434		} its_inv_cmd;
 435
 436		struct {
 437			struct its_device *dev;
 438			u32 event_id;
 439		} its_clear_cmd;
 440
 441		struct {
 442			struct its_device *dev;
 443			u32 event_id;
 444		} its_int_cmd;
 445
 446		struct {
 447			struct its_device *dev;
 448			int valid;
 449		} its_mapd_cmd;
 450
 451		struct {
 452			struct its_collection *col;
 453			int valid;
 454		} its_mapc_cmd;
 455
 456		struct {
 457			struct its_device *dev;
 458			u32 phys_id;
 459			u32 event_id;
 460		} its_mapti_cmd;
 461
 462		struct {
 463			struct its_device *dev;
 464			struct its_collection *col;
 465			u32 event_id;
 466		} its_movi_cmd;
 467
 468		struct {
 469			struct its_device *dev;
 470			u32 event_id;
 471		} its_discard_cmd;
 472
 473		struct {
 474			struct its_collection *col;
 475		} its_invall_cmd;
 476
 477		struct {
 478			struct its_vpe *vpe;
 479		} its_vinvall_cmd;
 480
 481		struct {
 482			struct its_vpe *vpe;
 483			struct its_collection *col;
 484			bool valid;
 485		} its_vmapp_cmd;
 486
 487		struct {
 488			struct its_vpe *vpe;
 489			struct its_device *dev;
 490			u32 virt_id;
 491			u32 event_id;
 492			bool db_enabled;
 493		} its_vmapti_cmd;
 494
 495		struct {
 496			struct its_vpe *vpe;
 497			struct its_device *dev;
 498			u32 event_id;
 499			bool db_enabled;
 500		} its_vmovi_cmd;
 501
 502		struct {
 503			struct its_vpe *vpe;
 504			struct its_collection *col;
 505			u16 seq_num;
 506			u16 its_list;
 507		} its_vmovp_cmd;
 508
 509		struct {
 510			struct its_vpe *vpe;
 511		} its_invdb_cmd;
 512
 513		struct {
 514			struct its_vpe *vpe;
 515			u8 sgi;
 516			u8 priority;
 517			bool enable;
 518			bool group;
 519			bool clear;
 520		} its_vsgi_cmd;
 521	};
 522};
 523
 524/*
 525 * The ITS command block, which is what the ITS actually parses.
 526 */
 527struct its_cmd_block {
 528	union {
 529		u64	raw_cmd[4];
 530		__le64	raw_cmd_le[4];
 531	};
 532};
 533
 534#define ITS_CMD_QUEUE_SZ		SZ_64K
 535#define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 536
 537typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
 538						    struct its_cmd_block *,
 539						    struct its_cmd_desc *);
 540
 541typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
 542					      struct its_cmd_block *,
 543					      struct its_cmd_desc *);
 544
 545static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
 546{
 547	u64 mask = GENMASK_ULL(h, l);
 548	*raw_cmd &= ~mask;
 549	*raw_cmd |= (val << l) & mask;
 550}
 551
 552static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 553{
 554	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
 
 555}
 556
 557static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 558{
 559	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
 
 560}
 561
 562static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 563{
 564	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
 
 565}
 566
 567static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 568{
 569	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
 
 570}
 571
 572static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 573{
 574	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
 
 575}
 576
 577static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 578{
 579	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
 
 580}
 581
 582static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 583{
 584	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
 
 585}
 586
 587static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 588{
 589	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
 
 590}
 591
 592static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 593{
 594	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
 595}
 596
 597static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
 598{
 599	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
 600}
 601
 602static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
 603{
 604	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
 605}
 606
 607static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
 608{
 609	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
 610}
 611
 612static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
 613{
 614	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
 615}
 616
 617static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
 618{
 619	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
 620}
 621
 622static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
 623{
 624	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
 625}
 626
 627static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
 628{
 629	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
 630}
 631
 632static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
 633{
 634	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
 635}
 636
 637static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
 638{
 639	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
 640}
 641
 642static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
 643{
 644	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
 645}
 646
 647static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
 648{
 649	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
 650}
 651
 652static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
 653					u32 vpe_db_lpi)
 654{
 655	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
 656}
 657
 658static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
 659					u32 vpe_db_lpi)
 660{
 661	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
 662}
 663
 664static void its_encode_db(struct its_cmd_block *cmd, bool db)
 665{
 666	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
 667}
 668
 669static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
 670{
 671	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
 672}
 673
 674static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
 675{
 676	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
 677}
 678
 679static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
 680{
 681	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
 682}
 683
 684static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
 685{
 686	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
 687}
 688
 689static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
 690{
 691	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
 692}
 693
 694static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 695{
 696	/* Let's fixup BE commands */
 697	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
 698	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
 699	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
 700	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
 701}
 702
 703static struct its_collection *its_build_mapd_cmd(struct its_node *its,
 704						 struct its_cmd_block *cmd,
 705						 struct its_cmd_desc *desc)
 706{
 707	unsigned long itt_addr;
 708	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 709
 710	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 
 711
 712	its_encode_cmd(cmd, GITS_CMD_MAPD);
 713	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 714	its_encode_size(cmd, size - 1);
 715	its_encode_itt(cmd, itt_addr);
 716	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 717
 718	its_fixup_cmd(cmd);
 719
 720	return NULL;
 721}
 722
 723static struct its_collection *its_build_mapc_cmd(struct its_node *its,
 724						 struct its_cmd_block *cmd,
 725						 struct its_cmd_desc *desc)
 726{
 727	its_encode_cmd(cmd, GITS_CMD_MAPC);
 728	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 729	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 730	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 731
 732	its_fixup_cmd(cmd);
 733
 734	return desc->its_mapc_cmd.col;
 735}
 736
 737static struct its_collection *its_build_mapti_cmd(struct its_node *its,
 738						  struct its_cmd_block *cmd,
 739						  struct its_cmd_desc *desc)
 740{
 741	struct its_collection *col;
 742
 743	col = dev_event_to_col(desc->its_mapti_cmd.dev,
 744			       desc->its_mapti_cmd.event_id);
 745
 746	its_encode_cmd(cmd, GITS_CMD_MAPTI);
 747	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
 748	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
 749	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
 750	its_encode_collection(cmd, col->col_id);
 751
 752	its_fixup_cmd(cmd);
 753
 754	return valid_col(col);
 755}
 756
 757static struct its_collection *its_build_movi_cmd(struct its_node *its,
 758						 struct its_cmd_block *cmd,
 759						 struct its_cmd_desc *desc)
 760{
 761	struct its_collection *col;
 762
 763	col = dev_event_to_col(desc->its_movi_cmd.dev,
 764			       desc->its_movi_cmd.event_id);
 765
 766	its_encode_cmd(cmd, GITS_CMD_MOVI);
 767	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 768	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 769	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 770
 771	its_fixup_cmd(cmd);
 772
 773	return valid_col(col);
 774}
 775
 776static struct its_collection *its_build_discard_cmd(struct its_node *its,
 777						    struct its_cmd_block *cmd,
 778						    struct its_cmd_desc *desc)
 779{
 780	struct its_collection *col;
 781
 782	col = dev_event_to_col(desc->its_discard_cmd.dev,
 783			       desc->its_discard_cmd.event_id);
 784
 785	its_encode_cmd(cmd, GITS_CMD_DISCARD);
 786	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 787	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 788
 789	its_fixup_cmd(cmd);
 790
 791	return valid_col(col);
 792}
 793
 794static struct its_collection *its_build_inv_cmd(struct its_node *its,
 795						struct its_cmd_block *cmd,
 796						struct its_cmd_desc *desc)
 797{
 798	struct its_collection *col;
 799
 800	col = dev_event_to_col(desc->its_inv_cmd.dev,
 801			       desc->its_inv_cmd.event_id);
 802
 803	its_encode_cmd(cmd, GITS_CMD_INV);
 804	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 805	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 806
 807	its_fixup_cmd(cmd);
 808
 809	return valid_col(col);
 810}
 811
 812static struct its_collection *its_build_int_cmd(struct its_node *its,
 813						struct its_cmd_block *cmd,
 814						struct its_cmd_desc *desc)
 815{
 816	struct its_collection *col;
 817
 818	col = dev_event_to_col(desc->its_int_cmd.dev,
 819			       desc->its_int_cmd.event_id);
 820
 821	its_encode_cmd(cmd, GITS_CMD_INT);
 822	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 823	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 824
 825	its_fixup_cmd(cmd);
 826
 827	return valid_col(col);
 828}
 829
 830static struct its_collection *its_build_clear_cmd(struct its_node *its,
 831						  struct its_cmd_block *cmd,
 832						  struct its_cmd_desc *desc)
 833{
 834	struct its_collection *col;
 835
 836	col = dev_event_to_col(desc->its_clear_cmd.dev,
 837			       desc->its_clear_cmd.event_id);
 838
 839	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 840	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 841	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 842
 843	its_fixup_cmd(cmd);
 844
 845	return valid_col(col);
 846}
 847
 848static struct its_collection *its_build_invall_cmd(struct its_node *its,
 849						   struct its_cmd_block *cmd,
 850						   struct its_cmd_desc *desc)
 851{
 852	its_encode_cmd(cmd, GITS_CMD_INVALL);
 853	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
 854
 855	its_fixup_cmd(cmd);
 856
 857	return desc->its_invall_cmd.col;
 858}
 859
 860static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
 861					     struct its_cmd_block *cmd,
 862					     struct its_cmd_desc *desc)
 863{
 864	its_encode_cmd(cmd, GITS_CMD_VINVALL);
 865	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
 866
 867	its_fixup_cmd(cmd);
 868
 869	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
 870}
 871
 872static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
 873					   struct its_cmd_block *cmd,
 874					   struct its_cmd_desc *desc)
 875{
 876	struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
 877	unsigned long vpt_addr, vconf_addr;
 878	u64 target;
 879	bool alloc;
 880
 881	its_encode_cmd(cmd, GITS_CMD_VMAPP);
 882	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
 883	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
 884
 885	if (!desc->its_vmapp_cmd.valid) {
 886		alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
 887		if (is_v4_1(its)) {
 888			its_encode_alloc(cmd, alloc);
 889			/*
 890			 * Unmapping a VPE is self-synchronizing on GICv4.1,
 891			 * no need to issue a VSYNC.
 892			 */
 893			vpe = NULL;
 894		}
 895
 896		goto out;
 897	}
 898
 899	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
 900	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
 901
 902	its_encode_target(cmd, target);
 903	its_encode_vpt_addr(cmd, vpt_addr);
 904	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
 905
 906	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
 907
 908	if (!is_v4_1(its))
 909		goto out;
 910
 911	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
 912
 913	its_encode_alloc(cmd, alloc);
 914
 915	/*
 916	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
 917	 * to be unmapped first, and in this case, we may remap the vPE
 918	 * back while the VPT is not empty. So we can't assume that the
 919	 * VPT is empty on map. This is why we never advertise PTZ.
 920	 */
 921	its_encode_ptz(cmd, false);
 922	its_encode_vconf_addr(cmd, vconf_addr);
 923	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
 924
 925out:
 926	its_fixup_cmd(cmd);
 927
 928	return vpe;
 929}
 930
 931static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
 932					    struct its_cmd_block *cmd,
 933					    struct its_cmd_desc *desc)
 934{
 935	u32 db;
 936
 937	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
 938		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
 939	else
 940		db = 1023;
 941
 942	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
 943	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
 944	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
 945	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
 946	its_encode_db_phys_id(cmd, db);
 947	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
 948
 949	its_fixup_cmd(cmd);
 950
 951	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
 952}
 953
 954static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
 955					   struct its_cmd_block *cmd,
 956					   struct its_cmd_desc *desc)
 957{
 958	u32 db;
 959
 960	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
 961		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
 962	else
 963		db = 1023;
 964
 965	its_encode_cmd(cmd, GITS_CMD_VMOVI);
 966	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
 967	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
 968	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
 969	its_encode_db_phys_id(cmd, db);
 970	its_encode_db_valid(cmd, true);
 971
 972	its_fixup_cmd(cmd);
 973
 974	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
 975}
 976
 977static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
 978					   struct its_cmd_block *cmd,
 979					   struct its_cmd_desc *desc)
 980{
 981	u64 target;
 982
 983	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
 984	its_encode_cmd(cmd, GITS_CMD_VMOVP);
 985	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
 986	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
 987	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
 988	its_encode_target(cmd, target);
 989
 990	if (is_v4_1(its)) {
 991		its_encode_db(cmd, true);
 992		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
 993	}
 994
 995	its_fixup_cmd(cmd);
 996
 997	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
 998}
 999
1000static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
1001					  struct its_cmd_block *cmd,
1002					  struct its_cmd_desc *desc)
1003{
1004	struct its_vlpi_map *map;
1005
1006	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
1007				    desc->its_inv_cmd.event_id);
1008
1009	its_encode_cmd(cmd, GITS_CMD_INV);
1010	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
1011	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
1012
1013	its_fixup_cmd(cmd);
1014
1015	return valid_vpe(its, map->vpe);
1016}
1017
1018static struct its_vpe *its_build_vint_cmd(struct its_node *its,
1019					  struct its_cmd_block *cmd,
1020					  struct its_cmd_desc *desc)
1021{
1022	struct its_vlpi_map *map;
1023
1024	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
1025				    desc->its_int_cmd.event_id);
1026
1027	its_encode_cmd(cmd, GITS_CMD_INT);
1028	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
1029	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
1030
1031	its_fixup_cmd(cmd);
1032
1033	return valid_vpe(its, map->vpe);
1034}
1035
1036static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
1037					    struct its_cmd_block *cmd,
1038					    struct its_cmd_desc *desc)
1039{
1040	struct its_vlpi_map *map;
1041
1042	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
1043				    desc->its_clear_cmd.event_id);
1044
1045	its_encode_cmd(cmd, GITS_CMD_CLEAR);
1046	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
1047	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
1048
1049	its_fixup_cmd(cmd);
1050
1051	return valid_vpe(its, map->vpe);
1052}
1053
1054static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
1055					   struct its_cmd_block *cmd,
1056					   struct its_cmd_desc *desc)
1057{
1058	if (WARN_ON(!is_v4_1(its)))
1059		return NULL;
1060
1061	its_encode_cmd(cmd, GITS_CMD_INVDB);
1062	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
1063
1064	its_fixup_cmd(cmd);
1065
1066	return valid_vpe(its, desc->its_invdb_cmd.vpe);
1067}
1068
1069static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
1070					  struct its_cmd_block *cmd,
1071					  struct its_cmd_desc *desc)
1072{
1073	if (WARN_ON(!is_v4_1(its)))
1074		return NULL;
1075
1076	its_encode_cmd(cmd, GITS_CMD_VSGI);
1077	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
1078	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
1079	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
1080	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
1081	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
1082	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
1083
1084	its_fixup_cmd(cmd);
1085
1086	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1087}
1088
1089static u64 its_cmd_ptr_to_offset(struct its_node *its,
1090				 struct its_cmd_block *ptr)
1091{
1092	return (ptr - its->cmd_base) * sizeof(*ptr);
1093}
1094
1095static int its_queue_full(struct its_node *its)
1096{
1097	int widx;
1098	int ridx;
1099
1100	widx = its->cmd_write - its->cmd_base;
1101	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1102
1103	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1104	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1105		return 1;
1106
1107	return 0;
1108}
1109
1110static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1111{
1112	struct its_cmd_block *cmd;
1113	u32 count = 1000000;	/* 1s! */
1114
1115	while (its_queue_full(its)) {
1116		count--;
1117		if (!count) {
1118			pr_err_ratelimited("ITS queue not draining\n");
1119			return NULL;
1120		}
1121		cpu_relax();
1122		udelay(1);
1123	}
1124
1125	cmd = its->cmd_write++;
1126
1127	/* Handle queue wrapping */
1128	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1129		its->cmd_write = its->cmd_base;
1130
1131	/* Clear command  */
1132	cmd->raw_cmd[0] = 0;
1133	cmd->raw_cmd[1] = 0;
1134	cmd->raw_cmd[2] = 0;
1135	cmd->raw_cmd[3] = 0;
1136
1137	return cmd;
1138}
1139
1140static struct its_cmd_block *its_post_commands(struct its_node *its)
1141{
1142	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1143
1144	writel_relaxed(wr, its->base + GITS_CWRITER);
1145
1146	return its->cmd_write;
1147}
1148
1149static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1150{
1151	/*
1152	 * Make sure the commands written to memory are observable by
1153	 * the ITS.
1154	 */
1155	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1156		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1157	else
1158		dsb(ishst);
1159}
1160
1161static int its_wait_for_range_completion(struct its_node *its,
1162					 u64	prev_idx,
1163					 struct its_cmd_block *to)
1164{
1165	u64 rd_idx, to_idx, linear_idx;
1166	u32 count = 1000000;	/* 1s! */
1167
1168	/* Linearize to_idx if the command set has wrapped around */
1169	to_idx = its_cmd_ptr_to_offset(its, to);
1170	if (to_idx < prev_idx)
1171		to_idx += ITS_CMD_QUEUE_SZ;
1172
1173	linear_idx = prev_idx;
1174
1175	while (1) {
1176		s64 delta;
1177
1178		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1179
1180		/*
1181		 * Compute the read pointer progress, taking the
1182		 * potential wrap-around into account.
1183		 */
1184		delta = rd_idx - prev_idx;
1185		if (rd_idx < prev_idx)
1186			delta += ITS_CMD_QUEUE_SZ;
1187
1188		linear_idx += delta;
1189		if (linear_idx >= to_idx)
1190			break;
1191
1192		count--;
1193		if (!count) {
1194			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1195					   to_idx, linear_idx);
1196			return -1;
1197		}
1198		prev_idx = rd_idx;
1199		cpu_relax();
1200		udelay(1);
1201	}
1202
1203	return 0;
1204}
1205
1206/* Warning, macro hell follows */
1207#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1208void name(struct its_node *its,						\
1209	  buildtype builder,						\
1210	  struct its_cmd_desc *desc)					\
1211{									\
1212	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1213	synctype *sync_obj;						\
1214	unsigned long flags;						\
1215	u64 rd_idx;							\
1216									\
1217	raw_spin_lock_irqsave(&its->lock, flags);			\
1218									\
1219	cmd = its_allocate_entry(its);					\
1220	if (!cmd) {		/* We're soooooo screewed... */		\
1221		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1222		return;							\
1223	}								\
1224	sync_obj = builder(its, cmd, desc);				\
1225	its_flush_cmd(its, cmd);					\
1226									\
1227	if (sync_obj) {							\
1228		sync_cmd = its_allocate_entry(its);			\
1229		if (!sync_cmd)						\
1230			goto post;					\
1231									\
1232		buildfn(its, sync_cmd, sync_obj);			\
1233		its_flush_cmd(its, sync_cmd);				\
1234	}								\
1235									\
1236post:									\
1237	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1238	next_cmd = its_post_commands(its);				\
1239	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1240									\
1241	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1242		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1243}
1244
1245static void its_build_sync_cmd(struct its_node *its,
1246			       struct its_cmd_block *sync_cmd,
1247			       struct its_collection *sync_col)
1248{
1249	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1250	its_encode_target(sync_cmd, sync_col->target_address);
1251
1252	its_fixup_cmd(sync_cmd);
1253}
1254
1255static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1256			     struct its_collection, its_build_sync_cmd)
1257
1258static void its_build_vsync_cmd(struct its_node *its,
1259				struct its_cmd_block *sync_cmd,
1260				struct its_vpe *sync_vpe)
1261{
1262	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1263	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1264
1265	its_fixup_cmd(sync_cmd);
1266}
1267
1268static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1269			     struct its_vpe, its_build_vsync_cmd)
1270
1271static void its_send_int(struct its_device *dev, u32 event_id)
1272{
1273	struct its_cmd_desc desc;
 
 
1274
1275	desc.its_int_cmd.dev = dev;
1276	desc.its_int_cmd.event_id = event_id;
1277
1278	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1279}
 
 
 
 
 
 
1280
1281static void its_send_clear(struct its_device *dev, u32 event_id)
1282{
1283	struct its_cmd_desc desc;
 
 
 
 
 
 
 
 
1284
1285	desc.its_clear_cmd.dev = dev;
1286	desc.its_clear_cmd.event_id = event_id;
 
1287
1288	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1289}
1290
1291static void its_send_inv(struct its_device *dev, u32 event_id)
1292{
1293	struct its_cmd_desc desc;
1294
1295	desc.its_inv_cmd.dev = dev;
1296	desc.its_inv_cmd.event_id = event_id;
1297
1298	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1299}
1300
1301static void its_send_mapd(struct its_device *dev, int valid)
1302{
1303	struct its_cmd_desc desc;
1304
1305	desc.its_mapd_cmd.dev = dev;
1306	desc.its_mapd_cmd.valid = !!valid;
1307
1308	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1309}
1310
1311static void its_send_mapc(struct its_node *its, struct its_collection *col,
1312			  int valid)
1313{
1314	struct its_cmd_desc desc;
1315
1316	desc.its_mapc_cmd.col = col;
1317	desc.its_mapc_cmd.valid = !!valid;
1318
1319	its_send_single_command(its, its_build_mapc_cmd, &desc);
1320}
1321
1322static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1323{
1324	struct its_cmd_desc desc;
1325
1326	desc.its_mapti_cmd.dev = dev;
1327	desc.its_mapti_cmd.phys_id = irq_id;
1328	desc.its_mapti_cmd.event_id = id;
1329
1330	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1331}
1332
1333static void its_send_movi(struct its_device *dev,
1334			  struct its_collection *col, u32 id)
1335{
1336	struct its_cmd_desc desc;
1337
1338	desc.its_movi_cmd.dev = dev;
1339	desc.its_movi_cmd.col = col;
1340	desc.its_movi_cmd.event_id = id;
1341
1342	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1343}
1344
1345static void its_send_discard(struct its_device *dev, u32 id)
1346{
1347	struct its_cmd_desc desc;
1348
1349	desc.its_discard_cmd.dev = dev;
1350	desc.its_discard_cmd.event_id = id;
1351
1352	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1353}
1354
1355static void its_send_invall(struct its_node *its, struct its_collection *col)
1356{
1357	struct its_cmd_desc desc;
1358
1359	desc.its_invall_cmd.col = col;
1360
1361	its_send_single_command(its, its_build_invall_cmd, &desc);
1362}
1363
1364static void its_send_vmapti(struct its_device *dev, u32 id)
1365{
1366	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1367	struct its_cmd_desc desc;
1368
1369	desc.its_vmapti_cmd.vpe = map->vpe;
1370	desc.its_vmapti_cmd.dev = dev;
1371	desc.its_vmapti_cmd.virt_id = map->vintid;
1372	desc.its_vmapti_cmd.event_id = id;
1373	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1374
1375	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1376}
1377
1378static void its_send_vmovi(struct its_device *dev, u32 id)
1379{
1380	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1381	struct its_cmd_desc desc;
1382
1383	desc.its_vmovi_cmd.vpe = map->vpe;
1384	desc.its_vmovi_cmd.dev = dev;
1385	desc.its_vmovi_cmd.event_id = id;
1386	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1387
1388	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1389}
1390
1391static void its_send_vmapp(struct its_node *its,
1392			   struct its_vpe *vpe, bool valid)
1393{
1394	struct its_cmd_desc desc;
 
 
 
1395
1396	desc.its_vmapp_cmd.vpe = vpe;
1397	desc.its_vmapp_cmd.valid = valid;
1398	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1399
1400	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1401}
1402
1403static void its_send_vmovp(struct its_vpe *vpe)
1404{
1405	struct its_cmd_desc desc = {};
1406	struct its_node *its;
1407	int col_id = vpe->col_idx;
1408
1409	desc.its_vmovp_cmd.vpe = vpe;
1410
1411	if (!its_list_map) {
1412		its = list_first_entry(&its_nodes, struct its_node, entry);
1413		desc.its_vmovp_cmd.col = &its->collections[col_id];
1414		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1415		return;
1416	}
1417
1418	/*
1419	 * Yet another marvel of the architecture. If using the
1420	 * its_list "feature", we need to make sure that all ITSs
1421	 * receive all VMOVP commands in the same order. The only way
1422	 * to guarantee this is to make vmovp a serialization point.
1423	 *
1424	 * Wall <-- Head.
1425	 */
1426	guard(raw_spinlock)(&vmovp_lock);
1427	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1428	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1429
1430	/* Emit VMOVPs */
1431	list_for_each_entry(its, &its_nodes, entry) {
1432		if (!is_v4(its))
1433			continue;
1434
1435		if (!require_its_list_vmovp(vpe->its_vm, its))
1436			continue;
1437
1438		desc.its_vmovp_cmd.col = &its->collections[col_id];
1439		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1440	}
1441}
1442
1443static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1444{
1445	struct its_cmd_desc desc;
1446
1447	desc.its_vinvall_cmd.vpe = vpe;
1448	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1449}
1450
1451static void its_send_vinv(struct its_device *dev, u32 event_id)
1452{
1453	struct its_cmd_desc desc;
1454
1455	/*
1456	 * There is no real VINV command. This is just a normal INV,
1457	 * with a VSYNC instead of a SYNC.
1458	 */
1459	desc.its_inv_cmd.dev = dev;
1460	desc.its_inv_cmd.event_id = event_id;
1461
1462	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1463}
1464
1465static void its_send_vint(struct its_device *dev, u32 event_id)
1466{
1467	struct its_cmd_desc desc;
1468
1469	/*
1470	 * There is no real VINT command. This is just a normal INT,
1471	 * with a VSYNC instead of a SYNC.
1472	 */
1473	desc.its_int_cmd.dev = dev;
1474	desc.its_int_cmd.event_id = event_id;
1475
1476	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1477}
1478
1479static void its_send_vclear(struct its_device *dev, u32 event_id)
1480{
1481	struct its_cmd_desc desc;
1482
1483	/*
1484	 * There is no real VCLEAR command. This is just a normal CLEAR,
1485	 * with a VSYNC instead of a SYNC.
1486	 */
1487	desc.its_clear_cmd.dev = dev;
1488	desc.its_clear_cmd.event_id = event_id;
1489
1490	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1491}
1492
1493static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1494{
1495	struct its_cmd_desc desc;
1496
1497	desc.its_invdb_cmd.vpe = vpe;
1498	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1499}
1500
1501/*
1502 * irqchip functions - assumes MSI, mostly.
1503 */
1504static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1505{
1506	struct its_vlpi_map *map = get_vlpi_map(d);
1507	irq_hw_number_t hwirq;
1508	void *va;
1509	u8 *cfg;
1510
1511	if (map) {
1512		va = page_address(map->vm->vprop_page);
1513		hwirq = map->vintid;
1514
1515		/* Remember the updated property */
1516		map->properties &= ~clr;
1517		map->properties |= set | LPI_PROP_GROUP1;
1518	} else {
1519		va = gic_rdists->prop_table_va;
1520		hwirq = d->hwirq;
1521	}
1522
1523	cfg = va + hwirq - 8192;
1524	*cfg &= ~clr;
1525	*cfg |= set | LPI_PROP_GROUP1;
1526
1527	/*
1528	 * Make the above write visible to the redistributors.
1529	 * And yes, we're flushing exactly: One. Single. Byte.
1530	 * Humpf...
1531	 */
1532	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1533		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1534	else
1535		dsb(ishst);
1536}
1537
1538static void wait_for_syncr(void __iomem *rdbase)
1539{
1540	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1541		cpu_relax();
1542}
1543
1544static void __direct_lpi_inv(struct irq_data *d, u64 val)
1545{
1546	void __iomem *rdbase;
1547	unsigned long flags;
1548	int cpu;
1549
1550	/* Target the redistributor this LPI is currently routed to */
1551	cpu = irq_to_cpuid_lock(d, &flags);
1552	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1553
1554	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1555	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1556	wait_for_syncr(rdbase);
1557
1558	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1559	irq_to_cpuid_unlock(d, flags);
1560}
1561
1562static void direct_lpi_inv(struct irq_data *d)
1563{
1564	struct its_vlpi_map *map = get_vlpi_map(d);
1565	u64 val;
1566
1567	if (map) {
1568		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1569
1570		WARN_ON(!is_v4_1(its_dev->its));
1571
1572		val  = GICR_INVLPIR_V;
1573		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1574		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1575	} else {
1576		val = d->hwirq;
1577	}
1578
1579	__direct_lpi_inv(d, val);
1580}
1581
1582static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1583{
1584	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1585
1586	lpi_write_config(d, clr, set);
1587	if (gic_rdists->has_direct_lpi &&
1588	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1589		direct_lpi_inv(d);
1590	else if (!irqd_is_forwarded_to_vcpu(d))
1591		its_send_inv(its_dev, its_get_event_id(d));
1592	else
1593		its_send_vinv(its_dev, its_get_event_id(d));
1594}
1595
1596static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1597{
1598	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1599	u32 event = its_get_event_id(d);
1600	struct its_vlpi_map *map;
1601
1602	/*
1603	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1604	 * here.
1605	 */
1606	if (is_v4_1(its_dev->its))
1607		return;
1608
1609	map = dev_event_to_vlpi_map(its_dev, event);
1610
1611	if (map->db_enabled == enable)
1612		return;
1613
1614	map->db_enabled = enable;
1615
1616	/*
1617	 * More fun with the architecture:
1618	 *
1619	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1620	 * value or to 1023, depending on the enable bit. But that
1621	 * would be issuing a mapping for an /existing/ DevID+EventID
1622	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1623	 * to the /same/ vPE, using this opportunity to adjust the
1624	 * doorbell. Mouahahahaha. We loves it, Precious.
1625	 */
1626	its_send_vmovi(its_dev, event);
1627}
1628
1629static void its_mask_irq(struct irq_data *d)
1630{
1631	if (irqd_is_forwarded_to_vcpu(d))
1632		its_vlpi_set_doorbell(d, false);
1633
1634	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1635}
1636
1637static void its_unmask_irq(struct irq_data *d)
1638{
1639	if (irqd_is_forwarded_to_vcpu(d))
1640		its_vlpi_set_doorbell(d, true);
1641
1642	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1643}
1644
1645static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1646{
1647	if (irqd_affinity_is_managed(d))
1648		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1649
1650	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1651}
1652
1653static void its_inc_lpi_count(struct irq_data *d, int cpu)
1654{
1655	if (irqd_affinity_is_managed(d))
1656		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1657	else
1658		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1659}
1660
1661static void its_dec_lpi_count(struct irq_data *d, int cpu)
1662{
1663	if (irqd_affinity_is_managed(d))
1664		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1665	else
1666		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1667}
1668
1669static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1670					      const struct cpumask *cpu_mask)
1671{
1672	unsigned int cpu = nr_cpu_ids, tmp;
1673	int count = S32_MAX;
1674
1675	for_each_cpu(tmp, cpu_mask) {
1676		int this_count = its_read_lpi_count(d, tmp);
1677		if (this_count < count) {
1678			cpu = tmp;
1679		        count = this_count;
1680		}
1681	}
1682
1683	return cpu;
1684}
1685
1686/*
1687 * As suggested by Thomas Gleixner in:
1688 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1689 */
1690static int its_select_cpu(struct irq_data *d,
1691			  const struct cpumask *aff_mask)
1692{
1693	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1694	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1695	static struct cpumask __tmpmask;
1696	struct cpumask *tmpmask;
1697	unsigned long flags;
1698	int cpu, node;
1699	node = its_dev->its->numa_node;
1700	tmpmask = &__tmpmask;
1701
1702	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1703
1704	if (!irqd_affinity_is_managed(d)) {
1705		/* First try the NUMA node */
1706		if (node != NUMA_NO_NODE) {
1707			/*
1708			 * Try the intersection of the affinity mask and the
1709			 * node mask (and the online mask, just to be safe).
1710			 */
1711			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1712			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1713
1714			/*
1715			 * Ideally, we would check if the mask is empty, and
1716			 * try again on the full node here.
1717			 *
1718			 * But it turns out that the way ACPI describes the
1719			 * affinity for ITSs only deals about memory, and
1720			 * not target CPUs, so it cannot describe a single
1721			 * ITS placed next to two NUMA nodes.
1722			 *
1723			 * Instead, just fallback on the online mask. This
1724			 * diverges from Thomas' suggestion above.
1725			 */
1726			cpu = cpumask_pick_least_loaded(d, tmpmask);
1727			if (cpu < nr_cpu_ids)
1728				goto out;
1729
1730			/* If we can't cross sockets, give up */
1731			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1732				goto out;
1733
1734			/* If the above failed, expand the search */
1735		}
1736
1737		/* Try the intersection of the affinity and online masks */
1738		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1739
1740		/* If that doesn't fly, the online mask is the last resort */
1741		if (cpumask_empty(tmpmask))
1742			cpumask_copy(tmpmask, cpu_online_mask);
1743
1744		cpu = cpumask_pick_least_loaded(d, tmpmask);
1745	} else {
1746		cpumask_copy(tmpmask, aff_mask);
1747
1748		/* If we cannot cross sockets, limit the search to that node */
1749		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1750		    node != NUMA_NO_NODE)
1751			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1752
1753		cpu = cpumask_pick_least_loaded(d, tmpmask);
1754	}
1755out:
1756	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1757
1758	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1759	return cpu;
1760}
1761
1762static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1763			    bool force)
1764{
 
1765	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1766	struct its_collection *target_col;
1767	u32 id = its_get_event_id(d);
1768	int cpu, prev_cpu;
1769
1770	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1771	if (irqd_is_forwarded_to_vcpu(d))
1772		return -EINVAL;
1773
1774	prev_cpu = its_dev->event_map.col_map[id];
1775	its_dec_lpi_count(d, prev_cpu);
1776
1777	if (!force)
1778		cpu = its_select_cpu(d, mask_val);
1779	else
1780		cpu = cpumask_pick_least_loaded(d, mask_val);
1781
1782	if (cpu < 0 || cpu >= nr_cpu_ids)
1783		goto err;
1784
1785	/* don't set the affinity when the target cpu is same as current one */
1786	if (cpu != prev_cpu) {
1787		target_col = &its_dev->its->collections[cpu];
1788		its_send_movi(its_dev, target_col, id);
1789		its_dev->event_map.col_map[id] = cpu;
1790		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1791	}
1792
1793	its_inc_lpi_count(d, cpu);
1794
1795	return IRQ_SET_MASK_OK_DONE;
1796
1797err:
1798	its_inc_lpi_count(d, prev_cpu);
1799	return -EINVAL;
1800}
1801
1802static u64 its_irq_get_msi_base(struct its_device *its_dev)
1803{
1804	struct its_node *its = its_dev->its;
1805
1806	return its->phys_base + GITS_TRANSLATER;
1807}
1808
1809static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1810{
1811	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1812	struct its_node *its;
1813	u64 addr;
1814
1815	its = its_dev->its;
1816	addr = its->get_msi_base(its_dev);
1817
1818	msg->address_lo		= lower_32_bits(addr);
1819	msg->address_hi		= upper_32_bits(addr);
1820	msg->data		= its_get_event_id(d);
1821
1822	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1823}
1824
1825static int its_irq_set_irqchip_state(struct irq_data *d,
1826				     enum irqchip_irq_state which,
1827				     bool state)
1828{
1829	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1830	u32 event = its_get_event_id(d);
1831
1832	if (which != IRQCHIP_STATE_PENDING)
1833		return -EINVAL;
1834
1835	if (irqd_is_forwarded_to_vcpu(d)) {
1836		if (state)
1837			its_send_vint(its_dev, event);
1838		else
1839			its_send_vclear(its_dev, event);
1840	} else {
1841		if (state)
1842			its_send_int(its_dev, event);
1843		else
1844			its_send_clear(its_dev, event);
1845	}
1846
1847	return 0;
1848}
1849
1850static int its_irq_retrigger(struct irq_data *d)
1851{
1852	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1853}
1854
1855/*
1856 * Two favourable cases:
1857 *
1858 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1859 *     for vSGI delivery
1860 *
1861 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1862 *     and we're better off mapping all VPEs always
1863 *
1864 * If neither (a) nor (b) is true, then we map vPEs on demand.
1865 *
1866 */
1867static bool gic_requires_eager_mapping(void)
1868{
1869	if (!its_list_map || gic_rdists->has_rvpeid)
1870		return true;
1871
1872	return false;
1873}
1874
1875static void its_map_vm(struct its_node *its, struct its_vm *vm)
1876{
1877	if (gic_requires_eager_mapping())
1878		return;
1879
1880	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1881
1882	/*
1883	 * If the VM wasn't mapped yet, iterate over the vpes and get
1884	 * them mapped now.
1885	 */
1886	vm->vlpi_count[its->list_nr]++;
1887
1888	if (vm->vlpi_count[its->list_nr] == 1) {
1889		int i;
1890
1891		for (i = 0; i < vm->nr_vpes; i++) {
1892			struct its_vpe *vpe = vm->vpes[i];
1893
1894			scoped_guard(raw_spinlock, &vpe->vpe_lock)
1895				its_send_vmapp(its, vpe, true);
1896
1897			its_send_vinvall(its, vpe);
1898		}
1899	}
1900}
1901
1902static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1903{
1904	/* Not using the ITS list? Everything is always mapped. */
1905	if (gic_requires_eager_mapping())
1906		return;
1907
1908	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1909
1910	if (!--vm->vlpi_count[its->list_nr]) {
1911		int i;
1912
1913		for (i = 0; i < vm->nr_vpes; i++) {
1914			guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1915			its_send_vmapp(its, vm->vpes[i], false);
1916		}
1917	}
1918}
1919
1920static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1921{
1922	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1923	u32 event = its_get_event_id(d);
1924
1925	if (!info->map)
1926		return -EINVAL;
1927
1928	if (!its_dev->event_map.vm) {
1929		struct its_vlpi_map *maps;
1930
1931		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1932			       GFP_ATOMIC);
1933		if (!maps)
1934			return -ENOMEM;
1935
1936		its_dev->event_map.vm = info->map->vm;
1937		its_dev->event_map.vlpi_maps = maps;
1938	} else if (its_dev->event_map.vm != info->map->vm) {
1939		return -EINVAL;
1940	}
1941
1942	/* Get our private copy of the mapping information */
1943	its_dev->event_map.vlpi_maps[event] = *info->map;
1944
1945	if (irqd_is_forwarded_to_vcpu(d)) {
1946		/* Already mapped, move it around */
1947		its_send_vmovi(its_dev, event);
1948	} else {
1949		/* Ensure all the VPEs are mapped on this ITS */
1950		its_map_vm(its_dev->its, info->map->vm);
1951
1952		/*
1953		 * Flag the interrupt as forwarded so that we can
1954		 * start poking the virtual property table.
1955		 */
1956		irqd_set_forwarded_to_vcpu(d);
1957
1958		/* Write out the property to the prop table */
1959		lpi_write_config(d, 0xff, info->map->properties);
1960
1961		/* Drop the physical mapping */
1962		its_send_discard(its_dev, event);
1963
1964		/* and install the virtual one */
1965		its_send_vmapti(its_dev, event);
1966
1967		/* Increment the number of VLPIs */
1968		its_dev->event_map.nr_vlpis++;
1969	}
1970
1971	return 0;
1972}
1973
1974static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1975{
1976	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1977	struct its_vlpi_map *map;
1978
1979	map = get_vlpi_map(d);
1980
1981	if (!its_dev->event_map.vm || !map)
1982		return -EINVAL;
1983
1984	/* Copy our mapping information to the incoming request */
1985	*info->map = *map;
1986
1987	return 0;
1988}
1989
1990static int its_vlpi_unmap(struct irq_data *d)
1991{
1992	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1993	u32 event = its_get_event_id(d);
1994
1995	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1996		return -EINVAL;
1997
1998	/* Drop the virtual mapping */
1999	its_send_discard(its_dev, event);
2000
2001	/* and restore the physical one */
2002	irqd_clr_forwarded_to_vcpu(d);
2003	its_send_mapti(its_dev, d->hwirq, event);
2004	lpi_update_config(d, 0xff, (lpi_prop_prio |
2005				    LPI_PROP_ENABLED |
2006				    LPI_PROP_GROUP1));
2007
2008	/* Potentially unmap the VM from this ITS */
2009	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
2010
2011	/*
2012	 * Drop the refcount and make the device available again if
2013	 * this was the last VLPI.
2014	 */
2015	if (!--its_dev->event_map.nr_vlpis) {
2016		its_dev->event_map.vm = NULL;
2017		kfree(its_dev->event_map.vlpi_maps);
2018	}
2019
2020	return 0;
2021}
2022
2023static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
2024{
2025	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2026
2027	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
2028		return -EINVAL;
2029
2030	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
2031		lpi_update_config(d, 0xff, info->config);
2032	else
2033		lpi_write_config(d, 0xff, info->config);
2034	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
2035
2036	return 0;
2037}
2038
2039static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2040{
2041	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2042	struct its_cmd_info *info = vcpu_info;
2043
2044	/* Need a v4 ITS */
2045	if (!is_v4(its_dev->its))
2046		return -EINVAL;
2047
2048	guard(raw_spinlock)(&its_dev->event_map.vlpi_lock);
2049
2050	/* Unmap request? */
2051	if (!info)
2052		return its_vlpi_unmap(d);
2053
2054	switch (info->cmd_type) {
2055	case MAP_VLPI:
2056		return its_vlpi_map(d, info);
2057
2058	case GET_VLPI:
2059		return its_vlpi_get(d, info);
2060
2061	case PROP_UPDATE_VLPI:
2062	case PROP_UPDATE_AND_INV_VLPI:
2063		return its_vlpi_prop_update(d, info);
2064
2065	default:
2066		return -EINVAL;
2067	}
2068}
2069
2070static struct irq_chip its_irq_chip = {
2071	.name			= "ITS",
2072	.irq_mask		= its_mask_irq,
2073	.irq_unmask		= its_unmask_irq,
2074	.irq_eoi		= irq_chip_eoi_parent,
2075	.irq_set_affinity	= its_set_affinity,
2076	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2077	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2078	.irq_retrigger		= its_irq_retrigger,
2079	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2080};
2081
2082
2083/*
2084 * How we allocate LPIs:
2085 *
2086 * lpi_range_list contains ranges of LPIs that are to available to
2087 * allocate from. To allocate LPIs, just pick the first range that
2088 * fits the required allocation, and reduce it by the required
2089 * amount. Once empty, remove the range from the list.
2090 *
2091 * To free a range of LPIs, add a free range to the list, sort it and
2092 * merge the result if the new range happens to be adjacent to an
2093 * already free block.
2094 *
2095 * The consequence of the above is that allocation is cost is low, but
2096 * freeing is expensive. We assumes that freeing rarely occurs.
2097 */
2098#define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2099
2100static DEFINE_MUTEX(lpi_range_lock);
2101static LIST_HEAD(lpi_range_list);
2102
2103struct lpi_range {
2104	struct list_head	entry;
2105	u32			base_id;
2106	u32			span;
2107};
2108
2109static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2110{
2111	struct lpi_range *range;
2112
2113	range = kmalloc(sizeof(*range), GFP_KERNEL);
2114	if (range) {
2115		range->base_id = base;
2116		range->span = span;
2117	}
2118
2119	return range;
2120}
2121
2122static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2123{
2124	struct lpi_range *range, *tmp;
2125	int err = -ENOSPC;
2126
2127	mutex_lock(&lpi_range_lock);
2128
2129	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2130		if (range->span >= nr_lpis) {
2131			*base = range->base_id;
2132			range->base_id += nr_lpis;
2133			range->span -= nr_lpis;
2134
2135			if (range->span == 0) {
2136				list_del(&range->entry);
2137				kfree(range);
2138			}
2139
2140			err = 0;
2141			break;
2142		}
2143	}
2144
2145	mutex_unlock(&lpi_range_lock);
2146
2147	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2148	return err;
2149}
2150
2151static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2152{
2153	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2154		return;
2155	if (a->base_id + a->span != b->base_id)
2156		return;
2157	b->base_id = a->base_id;
2158	b->span += a->span;
2159	list_del(&a->entry);
2160	kfree(a);
2161}
2162
2163static int free_lpi_range(u32 base, u32 nr_lpis)
2164{
2165	struct lpi_range *new, *old;
2166
2167	new = mk_lpi_range(base, nr_lpis);
2168	if (!new)
 
 
2169		return -ENOMEM;
2170
2171	mutex_lock(&lpi_range_lock);
2172
2173	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2174		if (old->base_id < base)
2175			break;
2176	}
2177	/*
2178	 * old is the last element with ->base_id smaller than base,
2179	 * so new goes right after it. If there are no elements with
2180	 * ->base_id smaller than base, &old->entry ends up pointing
2181	 * at the head of the list, and inserting new it the start of
2182	 * the list is the right thing to do in that case as well.
2183	 */
2184	list_add(&new->entry, &old->entry);
2185	/*
2186	 * Now check if we can merge with the preceding and/or
2187	 * following ranges.
2188	 */
2189	merge_lpi_ranges(old, new);
2190	merge_lpi_ranges(new, list_next_entry(new, entry));
2191
2192	mutex_unlock(&lpi_range_lock);
2193	return 0;
2194}
2195
2196static int __init its_lpi_init(u32 id_bits)
2197{
2198	u32 lpis = (1UL << id_bits) - 8192;
2199	u32 numlpis;
2200	int err;
 
2201
2202	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2203
2204	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2205		lpis = numlpis;
2206		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2207			lpis);
2208	}
2209
2210	/*
2211	 * Initializing the allocator is just the same as freeing the
2212	 * full range of LPIs.
2213	 */
2214	err = free_lpi_range(8192, lpis);
2215	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2216	return err;
2217}
2218
2219static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2220{
2221	unsigned long *bitmap = NULL;
2222	int err = 0;
2223
2224	do {
2225		err = alloc_lpi_range(nr_irqs, base);
2226		if (!err)
 
2227			break;
2228
2229		nr_irqs /= 2;
2230	} while (nr_irqs > 0);
2231
2232	if (!nr_irqs)
2233		err = -ENOSPC;
2234
2235	if (err)
2236		goto out;
2237
2238	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
 
2239	if (!bitmap)
2240		goto out;
2241
2242	*nr_ids = nr_irqs;
 
 
 
 
2243
2244out:
 
 
2245	if (!bitmap)
2246		*base = *nr_ids = 0;
2247
2248	return bitmap;
2249}
2250
2251static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2252{
2253	WARN_ON(free_lpi_range(base, nr_ids));
2254	bitmap_free(bitmap);
2255}
 
 
 
 
 
 
 
 
 
 
 
 
2256
2257static void gic_reset_prop_table(void *va)
2258{
2259	/* Regular IRQ priority, Group-1, disabled */
2260	memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2261
2262	/* Make sure the GIC will observe the written configuration */
2263	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2264}
2265
2266static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2267{
2268	struct page *prop_page;
 
 
 
 
2269
2270	prop_page = its_alloc_pages(gfp_flags,
2271				    get_order(LPI_PROPBASE_SZ));
2272	if (!prop_page)
2273		return NULL;
2274
2275	gic_reset_prop_table(page_address(prop_page));
2276
2277	return prop_page;
2278}
2279
2280static void its_free_prop_table(struct page *prop_page)
2281{
2282	its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ));
2283}
2284
2285static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2286{
2287	phys_addr_t start, end, addr_end;
2288	u64 i;
2289
2290	/*
2291	 * We don't bother checking for a kdump kernel as by
2292	 * construction, the LPI tables are out of this kernel's
2293	 * memory map.
2294	 */
2295	if (is_kdump_kernel())
2296		return true;
2297
2298	addr_end = addr + size - 1;
 
2299
2300	for_each_reserved_mem_range(i, &start, &end) {
2301		if (addr >= start && addr_end <= end)
2302			return true;
2303	}
2304
2305	/* Not found, not a good sign... */
2306	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2307		&addr, &addr_end);
2308	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2309	return false;
2310}
2311
2312static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2313{
2314	if (efi_enabled(EFI_CONFIG_TABLES))
2315		return efi_mem_reserve_persistent(addr, size);
2316
2317	return 0;
2318}
2319
2320static int __init its_setup_lpi_prop_table(void)
2321{
2322	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2323		u64 val;
2324
2325		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2326		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2327
2328		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2329		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2330						     LPI_PROPBASE_SZ,
2331						     MEMREMAP_WB);
2332		gic_reset_prop_table(gic_rdists->prop_table_va);
2333	} else {
2334		struct page *page;
2335
2336		lpi_id_bits = min_t(u32,
2337				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2338				    ITS_MAX_LPI_NRBITS);
2339		page = its_allocate_prop_table(GFP_NOWAIT);
2340		if (!page) {
2341			pr_err("Failed to allocate PROPBASE\n");
2342			return -ENOMEM;
2343		}
2344
2345		gic_rdists->prop_table_pa = page_to_phys(page);
2346		gic_rdists->prop_table_va = page_address(page);
2347		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2348					  LPI_PROPBASE_SZ));
2349	}
2350
2351	pr_info("GICv3: using LPI property table @%pa\n",
2352		&gic_rdists->prop_table_pa);
2353
2354	return its_lpi_init(lpi_id_bits);
2355}
2356
2357static const char *its_base_type_string[] = {
2358	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2359	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2360	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2361	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2362	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2363	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2364	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2365};
2366
2367static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2368{
2369	u32 idx = baser - its->tables;
2370
2371	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
 
 
 
 
 
 
2372}
2373
2374static void its_write_baser(struct its_node *its, struct its_baser *baser,
2375			    u64 val)
2376{
2377	u32 idx = baser - its->tables;
2378
2379	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2380	baser->val = its_read_baser(its, baser);
2381}
2382
2383static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2384			   u64 cache, u64 shr, u32 order, bool indirect)
2385{
2386	u64 val = its_read_baser(its, baser);
2387	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2388	u64 type = GITS_BASER_TYPE(val);
2389	u64 baser_phys, tmp;
2390	u32 alloc_pages, psz;
2391	struct page *page;
2392	void *base;
2393
2394	psz = baser->psz;
2395	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2396	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2397		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2398			&its->phys_base, its_base_type_string[type],
2399			alloc_pages, GITS_BASER_PAGES_MAX);
2400		alloc_pages = GITS_BASER_PAGES_MAX;
2401		order = get_order(GITS_BASER_PAGES_MAX * psz);
2402	}
2403
2404	page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2405	if (!page)
2406		return -ENOMEM;
2407
2408	base = (void *)page_address(page);
2409	baser_phys = virt_to_phys(base);
2410
2411	/* Check if the physical address of the memory is above 48bits */
2412	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2413
2414		/* 52bit PA is supported only when PageSize=64K */
2415		if (psz != SZ_64K) {
2416			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2417			its_free_pages(base, order);
2418			return -ENXIO;
2419		}
2420
2421		/* Convert 52bit PA to 48bit field */
2422		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2423	}
2424
2425retry_baser:
2426	val = (baser_phys					 |
2427		(type << GITS_BASER_TYPE_SHIFT)			 |
2428		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2429		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2430		cache						 |
2431		shr						 |
2432		GITS_BASER_VALID);
2433
2434	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2435
2436	switch (psz) {
2437	case SZ_4K:
2438		val |= GITS_BASER_PAGE_SIZE_4K;
2439		break;
2440	case SZ_16K:
2441		val |= GITS_BASER_PAGE_SIZE_16K;
2442		break;
2443	case SZ_64K:
2444		val |= GITS_BASER_PAGE_SIZE_64K;
2445		break;
2446	}
2447
2448	if (!shr)
2449		gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2450
2451	its_write_baser(its, baser, val);
2452	tmp = baser->val;
2453
2454	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2455		/*
2456		 * Shareability didn't stick. Just use
2457		 * whatever the read reported, which is likely
2458		 * to be the only thing this redistributor
2459		 * supports. If that's zero, make it
2460		 * non-cacheable as well.
2461		 */
2462		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2463		if (!shr)
2464			cache = GITS_BASER_nC;
2465
2466		goto retry_baser;
 
2467	}
2468
2469	if (val != tmp) {
2470		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2471		       &its->phys_base, its_base_type_string[type],
2472		       val, tmp);
2473		its_free_pages(base, order);
2474		return -ENXIO;
2475	}
 
2476
2477	baser->order = order;
2478	baser->base = base;
2479	baser->psz = psz;
2480	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2481
2482	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2483		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2484		its_base_type_string[type],
2485		(unsigned long)virt_to_phys(base),
2486		indirect ? "indirect" : "flat", (int)esz,
2487		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2488
2489	return 0;
2490}
2491
2492static bool its_parse_indirect_baser(struct its_node *its,
2493				     struct its_baser *baser,
2494				     u32 *order, u32 ids)
2495{
2496	u64 tmp = its_read_baser(its, baser);
2497	u64 type = GITS_BASER_TYPE(tmp);
2498	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2499	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2500	u32 new_order = *order;
2501	u32 psz = baser->psz;
2502	bool indirect = false;
2503
2504	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2505	if ((esz << ids) > (psz * 2)) {
2506		/*
2507		 * Find out whether hw supports a single or two-level table by
2508		 * table by reading bit at offset '62' after writing '1' to it.
 
 
 
 
2509		 */
2510		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2511		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2512
2513		if (indirect) {
2514			/*
2515			 * The size of the lvl2 table is equal to ITS page size
2516			 * which is 'psz'. For computing lvl1 table size,
2517			 * subtract ID bits that sparse lvl2 table from 'ids'
2518			 * which is reported by ITS hardware times lvl1 table
2519			 * entry size.
2520			 */
2521			ids -= ilog2(psz / (int)esz);
2522			esz = GITS_LVL1_ENTRY_SIZE;
 
 
 
 
 
2523		}
2524	}
2525
2526	/*
2527	 * Allocate as many entries as required to fit the
2528	 * range of device IDs that the ITS can grok... The ID
2529	 * space being incredibly sparse, this results in a
2530	 * massive waste of memory if two-level device table
2531	 * feature is not supported by hardware.
2532	 */
2533	new_order = max_t(u32, get_order(esz << ids), new_order);
2534	if (new_order > MAX_PAGE_ORDER) {
2535		new_order = MAX_PAGE_ORDER;
2536		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2537		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2538			&its->phys_base, its_base_type_string[type],
2539			device_ids(its), ids);
2540	}
2541
2542	*order = new_order;
2543
2544	return indirect;
2545}
2546
2547static u32 compute_common_aff(u64 val)
2548{
2549	u32 aff, clpiaff;
2550
2551	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2552	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2553
2554	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2555}
2556
2557static u32 compute_its_aff(struct its_node *its)
2558{
2559	u64 val;
2560	u32 svpet;
2561
2562	/*
2563	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2564	 * the resulting affinity. We then use that to see if this match
2565	 * our own affinity.
2566	 */
2567	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2568	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2569	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2570	return compute_common_aff(val);
2571}
2572
2573static struct its_node *find_sibling_its(struct its_node *cur_its)
2574{
2575	struct its_node *its;
2576	u32 aff;
2577
2578	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2579		return NULL;
2580
2581	aff = compute_its_aff(cur_its);
2582
2583	list_for_each_entry(its, &its_nodes, entry) {
2584		u64 baser;
2585
2586		if (!is_v4_1(its) || its == cur_its)
2587			continue;
2588
2589		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2590			continue;
2591
2592		if (aff != compute_its_aff(its))
2593			continue;
2594
2595		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2596		baser = its->tables[2].val;
2597		if (!(baser & GITS_BASER_VALID))
2598			continue;
2599
2600		return its;
2601	}
2602
2603	return NULL;
2604}
2605
2606static void its_free_tables(struct its_node *its)
2607{
2608	int i;
2609
2610	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2611		if (its->tables[i].base) {
2612			its_free_pages(its->tables[i].base, its->tables[i].order);
2613			its->tables[i].base = NULL;
2614		}
2615	}
2616}
2617
2618static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2619{
2620	u64 psz = SZ_64K;
2621
2622	while (psz) {
2623		u64 val, gpsz;
2624
2625		val = its_read_baser(its, baser);
2626		val &= ~GITS_BASER_PAGE_SIZE_MASK;
 
 
2627
2628		switch (psz) {
2629		case SZ_64K:
2630			gpsz = GITS_BASER_PAGE_SIZE_64K;
2631			break;
2632		case SZ_16K:
2633			gpsz = GITS_BASER_PAGE_SIZE_16K;
2634			break;
2635		case SZ_4K:
2636		default:
2637			gpsz = GITS_BASER_PAGE_SIZE_4K;
2638			break;
2639		}
2640
2641		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2642
2643		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2644		its_write_baser(its, baser, val);
2645
2646		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2647			break;
2648
2649		switch (psz) {
2650		case SZ_64K:
2651			psz = SZ_16K;
2652			break;
2653		case SZ_16K:
2654			psz = SZ_4K;
2655			break;
2656		case SZ_4K:
2657		default:
2658			return -1;
2659		}
2660	}
2661
2662	baser->psz = psz;
2663	return 0;
2664}
2665
2666static int its_alloc_tables(struct its_node *its)
2667{
2668	u64 shr = GITS_BASER_InnerShareable;
2669	u64 cache = GITS_BASER_RaWaWb;
2670	int err, i;
2671
2672	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2673		/* erratum 24313: ignore memory access type */
2674		cache = GITS_BASER_nCnB;
2675
2676	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2677		cache = GITS_BASER_nC;
2678		shr = 0;
2679	}
2680
2681	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2682		struct its_baser *baser = its->tables + i;
2683		u64 val = its_read_baser(its, baser);
2684		u64 type = GITS_BASER_TYPE(val);
2685		bool indirect = false;
2686		u32 order;
2687
2688		if (type == GITS_BASER_TYPE_NONE)
2689			continue;
2690
2691		if (its_probe_baser_psz(its, baser)) {
2692			its_free_tables(its);
2693			return -ENXIO;
2694		}
2695
2696		order = get_order(baser->psz);
2697
2698		switch (type) {
2699		case GITS_BASER_TYPE_DEVICE:
2700			indirect = its_parse_indirect_baser(its, baser, &order,
2701							    device_ids(its));
2702			break;
 
2703
2704		case GITS_BASER_TYPE_VCPU:
2705			if (is_v4_1(its)) {
2706				struct its_node *sibling;
2707
2708				WARN_ON(i != 2);
2709				if ((sibling = find_sibling_its(its))) {
2710					*baser = sibling->tables[2];
2711					its_write_baser(its, baser, baser->val);
2712					continue;
2713				}
2714			}
2715
2716			indirect = its_parse_indirect_baser(its, baser, &order,
2717							    ITS_MAX_VPEID_BITS);
2718			break;
2719		}
2720
2721		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2722		if (err < 0) {
2723			its_free_tables(its);
2724			return err;
 
 
2725		}
2726
2727		/* Update settings which will be used for next BASERn */
2728		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2729		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
 
 
2730	}
2731
2732	return 0;
2733}
2734
2735static u64 inherit_vpe_l1_table_from_its(void)
2736{
2737	struct its_node *its;
2738	u64 val;
2739	u32 aff;
2740
2741	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2742	aff = compute_common_aff(val);
2743
2744	list_for_each_entry(its, &its_nodes, entry) {
2745		u64 baser, addr;
2746
2747		if (!is_v4_1(its))
2748			continue;
2749
2750		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2751			continue;
2752
2753		if (aff != compute_its_aff(its))
2754			continue;
2755
2756		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2757		baser = its->tables[2].val;
2758		if (!(baser & GITS_BASER_VALID))
2759			continue;
2760
2761		/* We have a winner! */
2762		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2763
2764		val  = GICR_VPROPBASER_4_1_VALID;
2765		if (baser & GITS_BASER_INDIRECT)
2766			val |= GICR_VPROPBASER_4_1_INDIRECT;
2767		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2768				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2769		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2770		case GIC_PAGE_SIZE_64K:
2771			addr = GITS_BASER_ADDR_48_to_52(baser);
2772			break;
2773		default:
2774			addr = baser & GENMASK_ULL(47, 12);
2775			break;
2776		}
2777		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2778		if (rdists_support_shareable()) {
2779			val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2780					  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2781			val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2782					  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2783		}
2784		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2785
2786		return val;
2787	}
2788
2789	return 0;
2790}
2791
2792static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2793{
2794	u32 aff;
2795	u64 val;
2796	int cpu;
2797
2798	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2799	aff = compute_common_aff(val);
2800
2801	for_each_possible_cpu(cpu) {
2802		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2803
2804		if (!base || cpu == smp_processor_id())
2805			continue;
2806
2807		val = gic_read_typer(base + GICR_TYPER);
2808		if (aff != compute_common_aff(val))
2809			continue;
2810
2811		/*
2812		 * At this point, we have a victim. This particular CPU
2813		 * has already booted, and has an affinity that matches
2814		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2815		 * Make sure we don't write the Z bit in that case.
2816		 */
2817		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2818		val &= ~GICR_VPROPBASER_4_1_Z;
2819
2820		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2821		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2822
2823		return val;
2824	}
2825
2826	return 0;
2827}
2828
2829static bool allocate_vpe_l2_table(int cpu, u32 id)
2830{
2831	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2832	unsigned int psz, esz, idx, npg, gpsz;
2833	u64 val;
2834	struct page *page;
2835	__le64 *table;
2836
2837	if (!gic_rdists->has_rvpeid)
2838		return true;
2839
2840	/* Skip non-present CPUs */
2841	if (!base)
2842		return true;
2843
2844	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2845
2846	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2847	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2848	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2849
2850	switch (gpsz) {
2851	default:
2852		WARN_ON(1);
2853		fallthrough;
2854	case GIC_PAGE_SIZE_4K:
2855		psz = SZ_4K;
2856		break;
2857	case GIC_PAGE_SIZE_16K:
2858		psz = SZ_16K;
2859		break;
2860	case GIC_PAGE_SIZE_64K:
2861		psz = SZ_64K;
2862		break;
2863	}
2864
2865	/* Don't allow vpe_id that exceeds single, flat table limit */
2866	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2867		return (id < (npg * psz / (esz * SZ_8)));
2868
2869	/* Compute 1st level table index & check if that exceeds table limit */
2870	idx = id >> ilog2(psz / (esz * SZ_8));
2871	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2872		return false;
2873
2874	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2875
2876	/* Allocate memory for 2nd level table */
2877	if (!table[idx]) {
2878		page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2879		if (!page)
2880			return false;
2881
2882		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2883		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2884			gic_flush_dcache_to_poc(page_address(page), psz);
2885
2886		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2887
2888		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2889		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2890			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2891
2892		/* Ensure updated table contents are visible to RD hardware */
2893		dsb(sy);
2894	}
2895
2896	return true;
2897}
2898
2899static int allocate_vpe_l1_table(void)
2900{
2901	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2902	u64 val, gpsz, npg, pa;
2903	unsigned int psz = SZ_64K;
2904	unsigned int np, epp, esz;
2905	struct page *page;
2906
2907	if (!gic_rdists->has_rvpeid)
2908		return 0;
2909
2910	/*
2911	 * if VPENDBASER.Valid is set, disable any previously programmed
2912	 * VPE by setting PendingLast while clearing Valid. This has the
2913	 * effect of making sure no doorbell will be generated and we can
2914	 * then safely clear VPROPBASER.Valid.
2915	 */
2916	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2917		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2918				      vlpi_base + GICR_VPENDBASER);
2919
2920	/*
2921	 * If we can inherit the configuration from another RD, let's do
2922	 * so. Otherwise, we have to go through the allocation process. We
2923	 * assume that all RDs have the exact same requirements, as
2924	 * nothing will work otherwise.
2925	 */
2926	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2927	if (val & GICR_VPROPBASER_4_1_VALID)
2928		goto out;
2929
2930	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2931	if (!gic_data_rdist()->vpe_table_mask)
2932		return -ENOMEM;
2933
2934	val = inherit_vpe_l1_table_from_its();
2935	if (val & GICR_VPROPBASER_4_1_VALID)
2936		goto out;
2937
2938	/* First probe the page size */
2939	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2940	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2941	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2942	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2943	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2944
2945	switch (gpsz) {
2946	default:
2947		gpsz = GIC_PAGE_SIZE_4K;
2948		fallthrough;
2949	case GIC_PAGE_SIZE_4K:
2950		psz = SZ_4K;
2951		break;
2952	case GIC_PAGE_SIZE_16K:
2953		psz = SZ_16K;
2954		break;
2955	case GIC_PAGE_SIZE_64K:
2956		psz = SZ_64K;
2957		break;
2958	}
2959
2960	/*
2961	 * Start populating the register from scratch, including RO fields
2962	 * (which we want to print in debug cases...)
2963	 */
2964	val = 0;
2965	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2966	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2967
2968	/* How many entries per GIC page? */
2969	esz++;
2970	epp = psz / (esz * SZ_8);
2971
2972	/*
2973	 * If we need more than just a single L1 page, flag the table
2974	 * as indirect and compute the number of required L1 pages.
2975	 */
2976	if (epp < ITS_MAX_VPEID) {
2977		int nl2;
2978
2979		val |= GICR_VPROPBASER_4_1_INDIRECT;
2980
2981		/* Number of L2 pages required to cover the VPEID space */
2982		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2983
2984		/* Number of L1 pages to point to the L2 pages */
2985		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2986	} else {
2987		npg = 1;
2988	}
2989
2990	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2991
2992	/* Right, that's the number of CPU pages we need for L1 */
2993	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2994
2995	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2996		 np, npg, psz, epp, esz);
2997	page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2998	if (!page)
2999		return -ENOMEM;
3000
3001	gic_data_rdist()->vpe_l1_base = page_address(page);
3002	pa = virt_to_phys(page_address(page));
3003	WARN_ON(!IS_ALIGNED(pa, psz));
3004
3005	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
3006	if (rdists_support_shareable()) {
3007		val |= GICR_VPROPBASER_RaWb;
3008		val |= GICR_VPROPBASER_InnerShareable;
3009	}
3010	val |= GICR_VPROPBASER_4_1_Z;
3011	val |= GICR_VPROPBASER_4_1_VALID;
3012
3013out:
3014	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3015	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
3016
3017	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
3018		 smp_processor_id(), val,
3019		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
3020
3021	return 0;
3022}
3023
3024static int its_alloc_collections(struct its_node *its)
3025{
3026	int i;
3027
3028	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
3029				   GFP_KERNEL);
3030	if (!its->collections)
3031		return -ENOMEM;
3032
3033	for (i = 0; i < nr_cpu_ids; i++)
3034		its->collections[i].target_address = ~0ULL;
3035
3036	return 0;
3037}
3038
3039static struct page *its_allocate_pending_table(gfp_t gfp_flags)
3040{
3041	struct page *pend_page;
3042
3043	pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ));
3044	if (!pend_page)
3045		return NULL;
3046
3047	/* Make sure the GIC will observe the zero-ed page */
3048	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
3049
3050	return pend_page;
3051}
3052
3053static void its_free_pending_table(struct page *pt)
3054{
3055	its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ));
3056}
3057
3058/*
3059 * Booting with kdump and LPIs enabled is generally fine. Any other
3060 * case is wrong in the absence of firmware/EFI support.
3061 */
3062static bool enabled_lpis_allowed(void)
3063{
3064	phys_addr_t addr;
3065	u64 val;
3066
3067	/* Check whether the property table is in a reserved region */
3068	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3069	addr = val & GENMASK_ULL(51, 12);
3070
3071	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3072}
3073
3074static int __init allocate_lpi_tables(void)
3075{
3076	u64 val;
3077	int err, cpu;
3078
3079	/*
3080	 * If LPIs are enabled while we run this from the boot CPU,
3081	 * flag the RD tables as pre-allocated if the stars do align.
3082	 */
3083	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3084	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3085		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3086				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3087		pr_info("GICv3: Using preallocated redistributor tables\n");
3088	}
3089
3090	err = its_setup_lpi_prop_table();
3091	if (err)
3092		return err;
3093
3094	/*
3095	 * We allocate all the pending tables anyway, as we may have a
3096	 * mix of RDs that have had LPIs enabled, and some that
3097	 * don't. We'll free the unused ones as each CPU comes online.
3098	 */
3099	for_each_possible_cpu(cpu) {
3100		struct page *pend_page;
3101
3102		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3103		if (!pend_page) {
3104			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3105			return -ENOMEM;
3106		}
3107
3108		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3109	}
3110
3111	return 0;
3112}
3113
3114static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3115{
3116	u32 count = 1000000;	/* 1s! */
3117	bool clean;
3118	u64 val;
3119
3120	do {
3121		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3122		clean = !(val & GICR_VPENDBASER_Dirty);
3123		if (!clean) {
3124			count--;
3125			cpu_relax();
3126			udelay(1);
3127		}
3128	} while (!clean && count);
3129
3130	if (unlikely(!clean))
3131		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3132
3133	return val;
3134}
3135
3136static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3137{
3138	u64 val;
3139
3140	/* Make sure we wait until the RD is done with the initial scan */
3141	val = read_vpend_dirty_clear(vlpi_base);
3142	val &= ~GICR_VPENDBASER_Valid;
3143	val &= ~clr;
3144	val |= set;
3145	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3146
3147	val = read_vpend_dirty_clear(vlpi_base);
3148	if (unlikely(val & GICR_VPENDBASER_Dirty))
3149		val |= GICR_VPENDBASER_PendingLast;
3150
3151	return val;
3152}
3153
3154static void its_cpu_init_lpis(void)
3155{
3156	void __iomem *rbase = gic_data_rdist_rd_base();
3157	struct page *pend_page;
3158	phys_addr_t paddr;
3159	u64 val, tmp;
3160
3161	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3162		return;
3163
3164	val = readl_relaxed(rbase + GICR_CTLR);
3165	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3166	    (val & GICR_CTLR_ENABLE_LPIS)) {
3167		/*
3168		 * Check that we get the same property table on all
3169		 * RDs. If we don't, this is hopeless.
3170		 */
3171		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3172		paddr &= GENMASK_ULL(51, 12);
3173		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3174			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
 
 
 
3175
3176		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3177		paddr &= GENMASK_ULL(51, 16);
3178
3179		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3180		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
 
 
 
3181
3182		goto out;
3183	}
 
 
3184
3185	pend_page = gic_data_rdist()->pend_page;
3186	paddr = page_to_phys(pend_page);
 
 
3187
3188	/* set PROPBASE */
3189	val = (gic_rdists->prop_table_pa |
3190	       GICR_PROPBASER_InnerShareable |
3191	       GICR_PROPBASER_RaWaWb |
3192	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3193
3194	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3195	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3196
3197	if (!rdists_support_shareable())
3198		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3199
3200	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3201		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3202			/*
3203			 * The HW reports non-shareable, we must
3204			 * remove the cacheability attributes as
3205			 * well.
3206			 */
3207			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3208				 GICR_PROPBASER_CACHEABILITY_MASK);
3209			val |= GICR_PROPBASER_nC;
3210			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3211		}
3212		pr_info_once("GIC: using cache flushing for LPI property table\n");
3213		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3214	}
3215
3216	/* set PENDBASE */
3217	val = (page_to_phys(pend_page) |
3218	       GICR_PENDBASER_InnerShareable |
3219	       GICR_PENDBASER_RaWaWb);
3220
3221	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3222	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3223
3224	if (!rdists_support_shareable())
3225		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3226
3227	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3228		/*
3229		 * The HW reports non-shareable, we must remove the
3230		 * cacheability attributes as well.
3231		 */
3232		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3233			 GICR_PENDBASER_CACHEABILITY_MASK);
3234		val |= GICR_PENDBASER_nC;
3235		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3236	}
3237
3238	/* Enable LPIs */
3239	val = readl_relaxed(rbase + GICR_CTLR);
3240	val |= GICR_CTLR_ENABLE_LPIS;
3241	writel_relaxed(val, rbase + GICR_CTLR);
3242
3243out:
3244	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3245		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3246
3247		/*
3248		 * It's possible for CPU to receive VLPIs before it is
3249		 * scheduled as a vPE, especially for the first CPU, and the
3250		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3251		 * as out of range and dropped by GIC.
3252		 * So we initialize IDbits to known value to avoid VLPI drop.
3253		 */
3254		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3255		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3256			smp_processor_id(), val);
3257		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3258
3259		/*
3260		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3261		 * ancient programming gets left in and has possibility of
3262		 * corrupting memory.
3263		 */
3264		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3265	}
3266
3267	if (allocate_vpe_l1_table()) {
3268		/*
3269		 * If the allocation has failed, we're in massive trouble.
3270		 * Disable direct injection, and pray that no VM was
3271		 * already running...
3272		 */
3273		gic_rdists->has_rvpeid = false;
3274		gic_rdists->has_vlpis = false;
3275	}
3276
3277	/* Make sure the GIC has seen the above */
3278	dsb(sy);
3279	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3280	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3281		smp_processor_id(),
3282		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3283		"reserved" : "allocated",
3284		&paddr);
3285}
3286
3287static void its_cpu_init_collection(struct its_node *its)
3288{
3289	int cpu = smp_processor_id();
3290	u64 target;
3291
3292	/* avoid cross node collections and its mapping */
3293	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3294		struct device_node *cpu_node;
3295
3296		cpu_node = of_get_cpu_node(cpu, NULL);
3297		if (its->numa_node != NUMA_NO_NODE &&
3298			its->numa_node != of_node_to_nid(cpu_node))
3299			return;
3300	}
3301
3302	/*
3303	 * We now have to bind each collection to its target
3304	 * redistributor.
3305	 */
3306	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3307		/*
3308		 * This ITS wants the physical address of the
3309		 * redistributor.
3310		 */
3311		target = gic_data_rdist()->phys_base;
3312	} else {
3313		/* This ITS wants a linear CPU number. */
3314		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3315		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3316	}
 
 
 
 
 
 
 
3317
3318	/* Perform collection mapping */
3319	its->collections[cpu].target_address = target;
3320	its->collections[cpu].col_id = cpu;
3321
3322	its_send_mapc(its, &its->collections[cpu], 1);
3323	its_send_invall(its, &its->collections[cpu]);
3324}
3325
3326static void its_cpu_init_collections(void)
3327{
3328	struct its_node *its;
3329
3330	raw_spin_lock(&its_lock);
3331
3332	list_for_each_entry(its, &its_nodes, entry)
3333		its_cpu_init_collection(its);
3334
3335	raw_spin_unlock(&its_lock);
3336}
3337
3338static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3339{
3340	struct its_device *its_dev = NULL, *tmp;
3341	unsigned long flags;
3342
3343	raw_spin_lock_irqsave(&its->lock, flags);
3344
3345	list_for_each_entry(tmp, &its->its_device_list, entry) {
3346		if (tmp->device_id == dev_id) {
3347			its_dev = tmp;
3348			break;
3349		}
3350	}
3351
3352	raw_spin_unlock_irqrestore(&its->lock, flags);
3353
3354	return its_dev;
3355}
3356
3357static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3358{
3359	int i;
3360
3361	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3362		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3363			return &its->tables[i];
3364	}
3365
3366	return NULL;
3367}
3368
3369static bool its_alloc_table_entry(struct its_node *its,
3370				  struct its_baser *baser, u32 id)
3371{
3372	struct page *page;
3373	u32 esz, idx;
3374	__le64 *table;
3375
3376	/* Don't allow device id that exceeds single, flat table limit */
3377	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3378	if (!(baser->val & GITS_BASER_INDIRECT))
3379		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3380
3381	/* Compute 1st level table index & check if that exceeds table limit */
3382	idx = id >> ilog2(baser->psz / esz);
3383	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3384		return false;
3385
3386	table = baser->base;
3387
3388	/* Allocate memory for 2nd level table */
3389	if (!table[idx]) {
3390		page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3391					    get_order(baser->psz));
3392		if (!page)
3393			return false;
3394
3395		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3396		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3397			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3398
3399		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3400
3401		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3402		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3403			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3404
3405		/* Ensure updated table contents are visible to ITS hardware */
3406		dsb(sy);
3407	}
3408
3409	return true;
3410}
3411
3412static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3413{
3414	struct its_baser *baser;
3415
3416	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3417
3418	/* Don't allow device id that exceeds ITS hardware limit */
3419	if (!baser)
3420		return (ilog2(dev_id) < device_ids(its));
3421
3422	return its_alloc_table_entry(its, baser, dev_id);
3423}
3424
3425static bool its_alloc_vpe_table(u32 vpe_id)
3426{
3427	struct its_node *its;
3428	int cpu;
3429
3430	/*
3431	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3432	 * could try and only do it on ITSs corresponding to devices
3433	 * that have interrupts targeted at this VPE, but the
3434	 * complexity becomes crazy (and you have tons of memory
3435	 * anyway, right?).
3436	 */
3437	list_for_each_entry(its, &its_nodes, entry) {
3438		struct its_baser *baser;
3439
3440		if (!is_v4(its))
3441			continue;
3442
3443		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3444		if (!baser)
3445			return false;
3446
3447		if (!its_alloc_table_entry(its, baser, vpe_id))
3448			return false;
3449	}
3450
3451	/* Non v4.1? No need to iterate RDs and go back early. */
3452	if (!gic_rdists->has_rvpeid)
3453		return true;
3454
3455	/*
3456	 * Make sure the L2 tables are allocated for all copies of
3457	 * the L1 table on *all* v4.1 RDs.
3458	 */
3459	for_each_possible_cpu(cpu) {
3460		if (!allocate_vpe_l2_table(cpu, vpe_id))
3461			return false;
3462	}
3463
3464	return true;
3465}
3466
3467static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3468					    int nvecs, bool alloc_lpis)
3469{
3470	struct its_device *dev;
3471	unsigned long *lpi_map = NULL;
3472	unsigned long flags;
3473	u16 *col_map = NULL;
3474	void *itt;
3475	int lpi_base;
3476	int nr_lpis;
3477	int nr_ites;
3478	int sz;
3479
3480	if (!its_alloc_device_table(its, dev_id))
3481		return NULL;
3482
3483	if (WARN_ON(!is_power_of_2(nvecs)))
3484		nvecs = roundup_pow_of_two(nvecs);
3485
3486	/*
3487	 * Even if the device wants a single LPI, the ITT must be
3488	 * sized as a power of two (and you need at least one bit...).
3489	 */
3490	nr_ites = max(2, nvecs);
3491	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3492	sz = max(sz, ITS_ITT_ALIGN);
3493
3494	itt = itt_alloc_pool(its->numa_node, sz);
 
 
 
3495
3496	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3497
3498	if (alloc_lpis) {
3499		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3500		if (lpi_map)
3501			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3502					  GFP_KERNEL);
3503	} else {
3504		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3505		nr_lpis = 0;
3506		lpi_base = 0;
3507	}
3508
3509	if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3510		kfree(dev);
3511		itt_free_pool(itt, sz);
3512		bitmap_free(lpi_map);
3513		kfree(col_map);
3514		return NULL;
3515	}
3516
3517	gic_flush_dcache_to_poc(itt, sz);
3518
3519	dev->its = its;
3520	dev->itt = itt;
3521	dev->itt_sz = sz;
3522	dev->nr_ites = nr_ites;
3523	dev->event_map.lpi_map = lpi_map;
3524	dev->event_map.col_map = col_map;
3525	dev->event_map.lpi_base = lpi_base;
3526	dev->event_map.nr_lpis = nr_lpis;
3527	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3528	dev->device_id = dev_id;
3529	INIT_LIST_HEAD(&dev->entry);
3530
3531	raw_spin_lock_irqsave(&its->lock, flags);
3532	list_add(&dev->entry, &its->its_device_list);
3533	raw_spin_unlock_irqrestore(&its->lock, flags);
3534
3535	/* Map device to its ITT */
3536	its_send_mapd(dev, 1);
3537
3538	return dev;
3539}
3540
3541static void its_free_device(struct its_device *its_dev)
3542{
3543	unsigned long flags;
3544
3545	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3546	list_del(&its_dev->entry);
3547	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3548	kfree(its_dev->event_map.col_map);
3549	itt_free_pool(its_dev->itt, its_dev->itt_sz);
3550	kfree(its_dev);
3551}
3552
3553static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3554{
3555	int idx;
3556
3557	/* Find a free LPI region in lpi_map and allocate them. */
3558	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3559				      dev->event_map.nr_lpis,
3560				      get_count_order(nvecs));
3561	if (idx < 0)
3562		return -ENOSPC;
3563
3564	*hwirq = dev->event_map.lpi_base + idx;
 
3565
3566	return 0;
3567}
3568
3569static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3570			   int nvec, msi_alloc_info_t *info)
3571{
3572	struct its_node *its;
3573	struct its_device *its_dev;
3574	struct msi_domain_info *msi_info;
3575	u32 dev_id;
3576	int err = 0;
3577
3578	/*
3579	 * We ignore "dev" entirely, and rely on the dev_id that has
3580	 * been passed via the scratchpad. This limits this domain's
3581	 * usefulness to upper layers that definitely know that they
3582	 * are built on top of the ITS.
3583	 */
3584	dev_id = info->scratchpad[0].ul;
3585
3586	msi_info = msi_get_domain_info(domain);
3587	its = msi_info->data;
3588
3589	if (!gic_rdists->has_direct_lpi &&
3590	    vpe_proxy.dev &&
3591	    vpe_proxy.dev->its == its &&
3592	    dev_id == vpe_proxy.dev->device_id) {
3593		/* Bad luck. Get yourself a better implementation */
3594		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3595			  dev_id);
3596		return -EINVAL;
3597	}
3598
3599	mutex_lock(&its->dev_alloc_lock);
3600	its_dev = its_find_device(its, dev_id);
3601	if (its_dev) {
3602		/*
3603		 * We already have seen this ID, probably through
3604		 * another alias (PCI bridge of some sort). No need to
3605		 * create the device.
3606		 */
3607		its_dev->shared = true;
3608		pr_debug("Reusing ITT for devID %x\n", dev_id);
3609		goto out;
3610	}
3611
3612	its_dev = its_create_device(its, dev_id, nvec, true);
3613	if (!its_dev) {
3614		err = -ENOMEM;
3615		goto out;
3616	}
3617
3618	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3619		its_dev->shared = true;
3620
3621	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3622out:
3623	mutex_unlock(&its->dev_alloc_lock);
3624	info->scratchpad[0].ptr = its_dev;
3625	return err;
3626}
3627
3628static struct msi_domain_ops its_msi_domain_ops = {
3629	.msi_prepare	= its_msi_prepare,
3630};
3631
3632static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3633				    unsigned int virq,
3634				    irq_hw_number_t hwirq)
3635{
3636	struct irq_fwspec fwspec;
3637
3638	if (irq_domain_get_of_node(domain->parent)) {
3639		fwspec.fwnode = domain->parent->fwnode;
3640		fwspec.param_count = 3;
3641		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3642		fwspec.param[1] = hwirq;
3643		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3644	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3645		fwspec.fwnode = domain->parent->fwnode;
3646		fwspec.param_count = 2;
3647		fwspec.param[0] = hwirq;
3648		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3649	} else {
3650		return -EINVAL;
3651	}
3652
3653	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3654}
3655
3656static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3657				unsigned int nr_irqs, void *args)
3658{
3659	msi_alloc_info_t *info = args;
3660	struct its_device *its_dev = info->scratchpad[0].ptr;
3661	struct its_node *its = its_dev->its;
3662	struct irq_data *irqd;
3663	irq_hw_number_t hwirq;
3664	int err;
3665	int i;
3666
3667	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3668	if (err)
3669		return err;
 
3670
3671	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3672	if (err)
3673		return err;
3674
3675	for (i = 0; i < nr_irqs; i++) {
3676		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3677		if (err)
3678			return err;
3679
3680		irq_domain_set_hwirq_and_chip(domain, virq + i,
3681					      hwirq + i, &its_irq_chip, its_dev);
3682		irqd = irq_get_irq_data(virq + i);
3683		irqd_set_single_target(irqd);
3684		irqd_set_affinity_on_activate(irqd);
3685		irqd_set_resend_when_in_progress(irqd);
3686		pr_debug("ID:%d pID:%d vID:%d\n",
3687			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3688			 (int)(hwirq + i), virq + i);
3689	}
3690
3691	return 0;
3692}
3693
3694static int its_irq_domain_activate(struct irq_domain *domain,
3695				   struct irq_data *d, bool reserve)
3696{
3697	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3698	u32 event = its_get_event_id(d);
3699	int cpu;
3700
3701	cpu = its_select_cpu(d, cpu_online_mask);
3702	if (cpu < 0 || cpu >= nr_cpu_ids)
3703		return -EINVAL;
3704
3705	its_inc_lpi_count(d, cpu);
3706	its_dev->event_map.col_map[event] = cpu;
3707	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3708
3709	/* Map the GIC IRQ and event to the device */
3710	its_send_mapti(its_dev, d->hwirq, event);
3711	return 0;
3712}
3713
3714static void its_irq_domain_deactivate(struct irq_domain *domain,
3715				      struct irq_data *d)
3716{
3717	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3718	u32 event = its_get_event_id(d);
3719
3720	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3721	/* Stop the delivery of interrupts */
3722	its_send_discard(its_dev, event);
3723}
3724
3725static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3726				unsigned int nr_irqs)
3727{
3728	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3729	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3730	struct its_node *its = its_dev->its;
3731	int i;
3732
3733	bitmap_release_region(its_dev->event_map.lpi_map,
3734			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3735			      get_count_order(nr_irqs));
3736
3737	for (i = 0; i < nr_irqs; i++) {
3738		struct irq_data *data = irq_domain_get_irq_data(domain,
3739								virq + i);
 
 
 
 
 
3740		/* Nuke the entry in the domain */
3741		irq_domain_reset_irq_data(data);
3742	}
3743
3744	mutex_lock(&its->dev_alloc_lock);
3745
3746	/*
3747	 * If all interrupts have been freed, start mopping the
3748	 * floor. This is conditioned on the device not being shared.
3749	 */
3750	if (!its_dev->shared &&
3751	    bitmap_empty(its_dev->event_map.lpi_map,
3752			 its_dev->event_map.nr_lpis)) {
3753		its_lpi_free(its_dev->event_map.lpi_map,
3754			     its_dev->event_map.lpi_base,
3755			     its_dev->event_map.nr_lpis);
3756
3757		/* Unmap device/itt */
3758		its_send_mapd(its_dev, 0);
3759		its_free_device(its_dev);
3760	}
3761
3762	mutex_unlock(&its->dev_alloc_lock);
3763
3764	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3765}
3766
3767static const struct irq_domain_ops its_domain_ops = {
3768	.select			= msi_lib_irq_domain_select,
3769	.alloc			= its_irq_domain_alloc,
3770	.free			= its_irq_domain_free,
3771	.activate		= its_irq_domain_activate,
3772	.deactivate		= its_irq_domain_deactivate,
3773};
3774
3775/*
3776 * This is insane.
3777 *
3778 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3779 * likely), the only way to perform an invalidate is to use a fake
3780 * device to issue an INV command, implying that the LPI has first
3781 * been mapped to some event on that device. Since this is not exactly
3782 * cheap, we try to keep that mapping around as long as possible, and
3783 * only issue an UNMAP if we're short on available slots.
3784 *
3785 * Broken by design(tm).
3786 *
3787 * GICv4.1, on the other hand, mandates that we're able to invalidate
3788 * by writing to a MMIO register. It doesn't implement the whole of
3789 * DirectLPI, but that's good enough. And most of the time, we don't
3790 * even have to invalidate anything, as the redistributor can be told
3791 * whether to generate a doorbell or not (we thus leave it enabled,
3792 * always).
3793 */
3794static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3795{
3796	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3797	if (gic_rdists->has_rvpeid)
3798		return;
3799
3800	/* Already unmapped? */
3801	if (vpe->vpe_proxy_event == -1)
3802		return;
3803
3804	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3805	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3806
3807	/*
3808	 * We don't track empty slots at all, so let's move the
3809	 * next_victim pointer if we can quickly reuse that slot
3810	 * instead of nuking an existing entry. Not clear that this is
3811	 * always a win though, and this might just generate a ripple
3812	 * effect... Let's just hope VPEs don't migrate too often.
3813	 */
3814	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3815		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3816
3817	vpe->vpe_proxy_event = -1;
3818}
3819
3820static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3821{
3822	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3823	if (gic_rdists->has_rvpeid)
3824		return;
3825
3826	if (!gic_rdists->has_direct_lpi) {
3827		unsigned long flags;
3828
3829		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3830		its_vpe_db_proxy_unmap_locked(vpe);
3831		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3832	}
3833}
3834
3835static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3836{
3837	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3838	if (gic_rdists->has_rvpeid)
3839		return;
3840
3841	/* Already mapped? */
3842	if (vpe->vpe_proxy_event != -1)
3843		return;
3844
3845	/* This slot was already allocated. Kick the other VPE out. */
3846	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3847		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3848
3849	/* Map the new VPE instead */
3850	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3851	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3852	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3853
3854	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3855	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3856}
3857
3858static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3859{
3860	unsigned long flags;
3861	struct its_collection *target_col;
3862
3863	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3864	if (gic_rdists->has_rvpeid)
3865		return;
3866
3867	if (gic_rdists->has_direct_lpi) {
3868		void __iomem *rdbase;
3869
3870		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3871		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3872		wait_for_syncr(rdbase);
3873
3874		return;
3875	}
3876
3877	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3878
3879	its_vpe_db_proxy_map_locked(vpe);
3880
3881	target_col = &vpe_proxy.dev->its->collections[to];
3882	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3883	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3884
3885	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3886}
3887
3888static void its_vpe_4_1_invall_locked(int cpu, struct its_vpe *vpe)
3889{
3890	void __iomem *rdbase;
3891	u64 val;
3892
3893	val  = GICR_INVALLR_V;
3894	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
3895
3896	guard(raw_spinlock)(&gic_data_rdist_cpu(cpu)->rd_lock);
3897	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
3898	gic_write_lpir(val, rdbase + GICR_INVALLR);
3899	wait_for_syncr(rdbase);
3900}
3901
3902static int its_vpe_set_affinity(struct irq_data *d,
3903				const struct cpumask *mask_val,
3904				bool force)
3905{
3906	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3907	unsigned int from, cpu = nr_cpu_ids;
3908	struct cpumask *table_mask;
3909	struct its_node *its;
3910	unsigned long flags;
3911
3912	/*
3913	 * Check if we're racing against a VPE being destroyed, for
3914	 * which we don't want to allow a VMOVP.
3915	 */
3916	if (!atomic_read(&vpe->vmapp_count)) {
3917		if (gic_requires_eager_mapping())
3918			return -EINVAL;
3919
3920		/*
3921		 * If we lazily map the VPEs, this isn't an error and
3922		 * we can exit cleanly.
3923		 */
3924		cpu = cpumask_first(mask_val);
3925		irq_data_update_effective_affinity(d, cpumask_of(cpu));
3926		return IRQ_SET_MASK_OK_DONE;
3927	}
3928
3929	/*
3930	 * Changing affinity is mega expensive, so let's be as lazy as
3931	 * we can and only do it if we really have to. Also, if mapped
3932	 * into the proxy device, we need to move the doorbell
3933	 * interrupt to its new location.
3934	 *
3935	 * Another thing is that changing the affinity of a vPE affects
3936	 * *other interrupts* such as all the vLPIs that are routed to
3937	 * this vPE. This means that the irq_desc lock is not enough to
3938	 * protect us, and that we must ensure nobody samples vpe->col_idx
3939	 * during the update, hence the lock below which must also be
3940	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3941	 *
3942	 * Finally, we must protect ourselves against concurrent updates of
3943	 * the mapping state on this VM should the ITS list be in use (see
3944	 * the shortcut in its_send_vmovp() otherewise).
3945	 */
3946	if (its_list_map)
3947		raw_spin_lock(&vpe->its_vm->vmapp_lock);
3948
3949	from = vpe_to_cpuid_lock(vpe, &flags);
3950	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3951
3952	/*
3953	 * If we are offered another CPU in the same GICv4.1 ITS
3954	 * affinity, pick this one. Otherwise, any CPU will do.
3955	 */
3956	if (table_mask)
3957		cpu = cpumask_any_and(mask_val, table_mask);
3958	if (cpu < nr_cpu_ids) {
3959		if (cpumask_test_cpu(from, mask_val) &&
3960		    cpumask_test_cpu(from, table_mask))
3961			cpu = from;
3962	} else {
3963		cpu = cpumask_first(mask_val);
3964	}
3965
3966	if (from == cpu)
3967		goto out;
3968
3969	vpe->col_idx = cpu;
3970
3971	its_send_vmovp(vpe);
3972
3973	its = find_4_1_its();
3974	if (its && its->flags & ITS_FLAGS_WORKAROUND_HISILICON_162100801)
3975		its_vpe_4_1_invall_locked(cpu, vpe);
3976
3977	its_vpe_db_proxy_move(vpe, from, cpu);
3978
3979out:
3980	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3981	vpe_to_cpuid_unlock(vpe, flags);
3982
3983	if (its_list_map)
3984		raw_spin_unlock(&vpe->its_vm->vmapp_lock);
3985
3986	return IRQ_SET_MASK_OK_DONE;
3987}
3988
3989static void its_wait_vpt_parse_complete(void)
3990{
3991	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3992	u64 val;
3993
3994	if (!gic_rdists->has_vpend_valid_dirty)
3995		return;
3996
3997	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3998						       val,
3999						       !(val & GICR_VPENDBASER_Dirty),
4000						       1, 500));
4001}
4002
4003static void its_vpe_schedule(struct its_vpe *vpe)
4004{
4005	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4006	u64 val;
4007
4008	/* Schedule the VPE */
4009	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
4010		GENMASK_ULL(51, 12);
4011	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
4012	if (rdists_support_shareable()) {
4013		val |= GICR_VPROPBASER_RaWb;
4014		val |= GICR_VPROPBASER_InnerShareable;
4015	}
4016	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
4017
4018	val  = virt_to_phys(page_address(vpe->vpt_page)) &
4019		GENMASK_ULL(51, 16);
4020	if (rdists_support_shareable()) {
4021		val |= GICR_VPENDBASER_RaWaWb;
4022		val |= GICR_VPENDBASER_InnerShareable;
4023	}
4024	/*
4025	 * There is no good way of finding out if the pending table is
4026	 * empty as we can race against the doorbell interrupt very
4027	 * easily. So in the end, vpe->pending_last is only an
4028	 * indication that the vcpu has something pending, not one
4029	 * that the pending table is empty. A good implementation
4030	 * would be able to read its coarse map pretty quickly anyway,
4031	 * making this a tolerable issue.
4032	 */
4033	val |= GICR_VPENDBASER_PendingLast;
4034	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
4035	val |= GICR_VPENDBASER_Valid;
4036	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4037}
4038
4039static void its_vpe_deschedule(struct its_vpe *vpe)
4040{
4041	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4042	u64 val;
4043
4044	val = its_clear_vpend_valid(vlpi_base, 0, 0);
4045
4046	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
4047	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4048}
4049
4050static void its_vpe_invall(struct its_vpe *vpe)
4051{
4052	struct its_node *its;
4053
4054	guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
4055
4056	list_for_each_entry(its, &its_nodes, entry) {
4057		if (!is_v4(its))
4058			continue;
4059
4060		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
4061			continue;
4062
4063		/*
4064		 * Sending a VINVALL to a single ITS is enough, as all
4065		 * we need is to reach the redistributors.
4066		 */
4067		its_send_vinvall(its, vpe);
4068		return;
4069	}
4070}
4071
4072static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4073{
4074	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4075	struct its_cmd_info *info = vcpu_info;
4076
4077	switch (info->cmd_type) {
4078	case SCHEDULE_VPE:
4079		its_vpe_schedule(vpe);
4080		return 0;
4081
4082	case DESCHEDULE_VPE:
4083		its_vpe_deschedule(vpe);
4084		return 0;
4085
4086	case COMMIT_VPE:
4087		its_wait_vpt_parse_complete();
4088		return 0;
4089
4090	case INVALL_VPE:
4091		its_vpe_invall(vpe);
4092		return 0;
4093
4094	default:
4095		return -EINVAL;
4096	}
4097}
4098
4099static void its_vpe_send_cmd(struct its_vpe *vpe,
4100			     void (*cmd)(struct its_device *, u32))
4101{
4102	unsigned long flags;
4103
4104	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
4105
4106	its_vpe_db_proxy_map_locked(vpe);
4107	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
4108
4109	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
4110}
4111
4112static void its_vpe_send_inv(struct irq_data *d)
4113{
4114	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4115
4116	if (gic_rdists->has_direct_lpi)
4117		__direct_lpi_inv(d, d->parent_data->hwirq);
4118	else
4119		its_vpe_send_cmd(vpe, its_send_inv);
4120}
4121
4122static void its_vpe_mask_irq(struct irq_data *d)
4123{
4124	/*
4125	 * We need to unmask the LPI, which is described by the parent
4126	 * irq_data. Instead of calling into the parent (which won't
4127	 * exactly do the right thing, let's simply use the
4128	 * parent_data pointer. Yes, I'm naughty.
4129	 */
4130	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4131	its_vpe_send_inv(d);
4132}
4133
4134static void its_vpe_unmask_irq(struct irq_data *d)
4135{
4136	/* Same hack as above... */
4137	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4138	its_vpe_send_inv(d);
4139}
4140
4141static int its_vpe_set_irqchip_state(struct irq_data *d,
4142				     enum irqchip_irq_state which,
4143				     bool state)
4144{
4145	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4146
4147	if (which != IRQCHIP_STATE_PENDING)
4148		return -EINVAL;
4149
4150	if (gic_rdists->has_direct_lpi) {
4151		void __iomem *rdbase;
4152
4153		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4154		if (state) {
4155			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4156		} else {
4157			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4158			wait_for_syncr(rdbase);
4159		}
4160	} else {
4161		if (state)
4162			its_vpe_send_cmd(vpe, its_send_int);
4163		else
4164			its_vpe_send_cmd(vpe, its_send_clear);
4165	}
4166
4167	return 0;
4168}
4169
4170static int its_vpe_retrigger(struct irq_data *d)
4171{
4172	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4173}
4174
4175static struct irq_chip its_vpe_irq_chip = {
4176	.name			= "GICv4-vpe",
4177	.irq_mask		= its_vpe_mask_irq,
4178	.irq_unmask		= its_vpe_unmask_irq,
4179	.irq_eoi		= irq_chip_eoi_parent,
4180	.irq_set_affinity	= its_vpe_set_affinity,
4181	.irq_retrigger		= its_vpe_retrigger,
4182	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4183	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4184};
4185
4186static struct its_node *find_4_1_its(void)
4187{
4188	static struct its_node *its = NULL;
4189
4190	if (!its) {
4191		list_for_each_entry(its, &its_nodes, entry) {
4192			if (is_v4_1(its))
4193				return its;
4194		}
4195
4196		/* Oops? */
4197		its = NULL;
4198	}
4199
4200	return its;
4201}
4202
4203static void its_vpe_4_1_send_inv(struct irq_data *d)
4204{
4205	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4206	struct its_node *its;
4207
4208	/*
4209	 * GICv4.1 wants doorbells to be invalidated using the
4210	 * INVDB command in order to be broadcast to all RDs. Send
4211	 * it to the first valid ITS, and let the HW do its magic.
4212	 */
4213	its = find_4_1_its();
4214	if (its)
4215		its_send_invdb(its, vpe);
4216}
4217
4218static void its_vpe_4_1_mask_irq(struct irq_data *d)
4219{
4220	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4221	its_vpe_4_1_send_inv(d);
4222}
4223
4224static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4225{
4226	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4227	its_vpe_4_1_send_inv(d);
4228}
4229
4230static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4231				 struct its_cmd_info *info)
4232{
4233	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4234	u64 val = 0;
4235
4236	/* Schedule the VPE */
4237	val |= GICR_VPENDBASER_Valid;
4238	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4239	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4240	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4241
4242	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4243}
4244
4245static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4246				   struct its_cmd_info *info)
4247{
4248	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4249	u64 val;
4250
4251	if (info->req_db) {
4252		unsigned long flags;
4253
4254		/*
4255		 * vPE is going to block: make the vPE non-resident with
4256		 * PendingLast clear and DB set. The GIC guarantees that if
4257		 * we read-back PendingLast clear, then a doorbell will be
4258		 * delivered when an interrupt comes.
4259		 *
4260		 * Note the locking to deal with the concurrent update of
4261		 * pending_last from the doorbell interrupt handler that can
4262		 * run concurrently.
4263		 */
4264		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4265		val = its_clear_vpend_valid(vlpi_base,
4266					    GICR_VPENDBASER_PendingLast,
4267					    GICR_VPENDBASER_4_1_DB);
4268		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4269		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4270	} else {
4271		/*
4272		 * We're not blocking, so just make the vPE non-resident
4273		 * with PendingLast set, indicating that we'll be back.
4274		 */
4275		val = its_clear_vpend_valid(vlpi_base,
4276					    0,
4277					    GICR_VPENDBASER_PendingLast);
4278		vpe->pending_last = true;
4279	}
4280}
4281
4282static void its_vpe_4_1_invall(struct its_vpe *vpe)
4283{
4284	unsigned long flags;
4285	int cpu;
4286
4287	/* Target the redistributor this vPE is currently known on */
4288	cpu = vpe_to_cpuid_lock(vpe, &flags);
4289	its_vpe_4_1_invall_locked(cpu, vpe);
4290	vpe_to_cpuid_unlock(vpe, flags);
4291}
4292
4293static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4294{
4295	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4296	struct its_cmd_info *info = vcpu_info;
4297
4298	switch (info->cmd_type) {
4299	case SCHEDULE_VPE:
4300		its_vpe_4_1_schedule(vpe, info);
4301		return 0;
4302
4303	case DESCHEDULE_VPE:
4304		its_vpe_4_1_deschedule(vpe, info);
4305		return 0;
4306
4307	case COMMIT_VPE:
4308		its_wait_vpt_parse_complete();
4309		return 0;
4310
4311	case INVALL_VPE:
4312		its_vpe_4_1_invall(vpe);
4313		return 0;
4314
4315	default:
4316		return -EINVAL;
4317	}
4318}
4319
4320static struct irq_chip its_vpe_4_1_irq_chip = {
4321	.name			= "GICv4.1-vpe",
4322	.irq_mask		= its_vpe_4_1_mask_irq,
4323	.irq_unmask		= its_vpe_4_1_unmask_irq,
4324	.irq_eoi		= irq_chip_eoi_parent,
4325	.irq_set_affinity	= its_vpe_set_affinity,
4326	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4327};
4328
4329static void its_configure_sgi(struct irq_data *d, bool clear)
4330{
4331	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4332	struct its_cmd_desc desc;
4333
4334	desc.its_vsgi_cmd.vpe = vpe;
4335	desc.its_vsgi_cmd.sgi = d->hwirq;
4336	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4337	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4338	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4339	desc.its_vsgi_cmd.clear = clear;
4340
4341	/*
4342	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4343	 * destination VPE is mapped there. Since we map them eagerly at
4344	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4345	 */
4346	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4347}
4348
4349static void its_sgi_mask_irq(struct irq_data *d)
4350{
4351	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4352
4353	vpe->sgi_config[d->hwirq].enabled = false;
4354	its_configure_sgi(d, false);
4355}
4356
4357static void its_sgi_unmask_irq(struct irq_data *d)
4358{
4359	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4360
4361	vpe->sgi_config[d->hwirq].enabled = true;
4362	its_configure_sgi(d, false);
4363}
4364
4365static int its_sgi_set_affinity(struct irq_data *d,
4366				const struct cpumask *mask_val,
4367				bool force)
4368{
4369	/*
4370	 * There is no notion of affinity for virtual SGIs, at least
4371	 * not on the host (since they can only be targeting a vPE).
4372	 * Tell the kernel we've done whatever it asked for.
4373	 */
4374	irq_data_update_effective_affinity(d, mask_val);
4375	return IRQ_SET_MASK_OK;
4376}
4377
4378static int its_sgi_set_irqchip_state(struct irq_data *d,
4379				     enum irqchip_irq_state which,
4380				     bool state)
4381{
4382	if (which != IRQCHIP_STATE_PENDING)
4383		return -EINVAL;
4384
4385	if (state) {
4386		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4387		struct its_node *its = find_4_1_its();
4388		u64 val;
4389
4390		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4391		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4392		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4393	} else {
4394		its_configure_sgi(d, true);
4395	}
4396
4397	return 0;
4398}
4399
4400static int its_sgi_get_irqchip_state(struct irq_data *d,
4401				     enum irqchip_irq_state which, bool *val)
4402{
4403	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4404	void __iomem *base;
4405	unsigned long flags;
4406	u32 count = 1000000;	/* 1s! */
4407	u32 status;
4408	int cpu;
4409
4410	if (which != IRQCHIP_STATE_PENDING)
4411		return -EINVAL;
4412
4413	/*
4414	 * Locking galore! We can race against two different events:
4415	 *
4416	 * - Concurrent vPE affinity change: we must make sure it cannot
4417	 *   happen, or we'll talk to the wrong redistributor. This is
4418	 *   identical to what happens with vLPIs.
4419	 *
4420	 * - Concurrent VSGIPENDR access: As it involves accessing two
4421	 *   MMIO registers, this must be made atomic one way or another.
4422	 */
4423	cpu = vpe_to_cpuid_lock(vpe, &flags);
4424	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4425	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4426	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4427	do {
4428		status = readl_relaxed(base + GICR_VSGIPENDR);
4429		if (!(status & GICR_VSGIPENDR_BUSY))
4430			goto out;
4431
4432		count--;
4433		if (!count) {
4434			pr_err_ratelimited("Unable to get SGI status\n");
4435			goto out;
4436		}
4437		cpu_relax();
4438		udelay(1);
4439	} while (count);
4440
4441out:
4442	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4443	vpe_to_cpuid_unlock(vpe, flags);
4444
4445	if (!count)
4446		return -ENXIO;
4447
4448	*val = !!(status & (1 << d->hwirq));
4449
4450	return 0;
4451}
4452
4453static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4454{
4455	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4456	struct its_cmd_info *info = vcpu_info;
4457
4458	switch (info->cmd_type) {
4459	case PROP_UPDATE_VSGI:
4460		vpe->sgi_config[d->hwirq].priority = info->priority;
4461		vpe->sgi_config[d->hwirq].group = info->group;
4462		its_configure_sgi(d, false);
4463		return 0;
4464
4465	default:
4466		return -EINVAL;
4467	}
4468}
4469
4470static struct irq_chip its_sgi_irq_chip = {
4471	.name			= "GICv4.1-sgi",
4472	.irq_mask		= its_sgi_mask_irq,
4473	.irq_unmask		= its_sgi_unmask_irq,
4474	.irq_set_affinity	= its_sgi_set_affinity,
4475	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4476	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4477	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4478};
4479
4480static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4481				    unsigned int virq, unsigned int nr_irqs,
4482				    void *args)
4483{
4484	struct its_vpe *vpe = args;
4485	int i;
4486
4487	/* Yes, we do want 16 SGIs */
4488	WARN_ON(nr_irqs != 16);
4489
4490	for (i = 0; i < 16; i++) {
4491		vpe->sgi_config[i].priority = 0;
4492		vpe->sgi_config[i].enabled = false;
4493		vpe->sgi_config[i].group = false;
4494
4495		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4496					      &its_sgi_irq_chip, vpe);
4497		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4498	}
4499
4500	return 0;
4501}
4502
4503static void its_sgi_irq_domain_free(struct irq_domain *domain,
4504				    unsigned int virq,
4505				    unsigned int nr_irqs)
4506{
4507	/* Nothing to do */
4508}
4509
4510static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4511				       struct irq_data *d, bool reserve)
4512{
4513	/* Write out the initial SGI configuration */
4514	its_configure_sgi(d, false);
4515	return 0;
4516}
4517
4518static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4519					  struct irq_data *d)
4520{
4521	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4522
4523	/*
4524	 * The VSGI command is awkward:
4525	 *
4526	 * - To change the configuration, CLEAR must be set to false,
4527	 *   leaving the pending bit unchanged.
4528	 * - To clear the pending bit, CLEAR must be set to true, leaving
4529	 *   the configuration unchanged.
4530	 *
4531	 * You just can't do both at once, hence the two commands below.
4532	 */
4533	vpe->sgi_config[d->hwirq].enabled = false;
4534	its_configure_sgi(d, false);
4535	its_configure_sgi(d, true);
4536}
4537
4538static const struct irq_domain_ops its_sgi_domain_ops = {
4539	.alloc		= its_sgi_irq_domain_alloc,
4540	.free		= its_sgi_irq_domain_free,
4541	.activate	= its_sgi_irq_domain_activate,
4542	.deactivate	= its_sgi_irq_domain_deactivate,
4543};
4544
4545static int its_vpe_id_alloc(void)
4546{
4547	return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4548}
4549
4550static void its_vpe_id_free(u16 id)
4551{
4552	ida_free(&its_vpeid_ida, id);
4553}
4554
4555static int its_vpe_init(struct its_vpe *vpe)
4556{
4557	struct page *vpt_page;
4558	int vpe_id;
4559
4560	/* Allocate vpe_id */
4561	vpe_id = its_vpe_id_alloc();
4562	if (vpe_id < 0)
4563		return vpe_id;
4564
4565	/* Allocate VPT */
4566	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4567	if (!vpt_page) {
4568		its_vpe_id_free(vpe_id);
4569		return -ENOMEM;
4570	}
4571
4572	if (!its_alloc_vpe_table(vpe_id)) {
4573		its_vpe_id_free(vpe_id);
4574		its_free_pending_table(vpt_page);
4575		return -ENOMEM;
4576	}
4577
4578	raw_spin_lock_init(&vpe->vpe_lock);
4579	vpe->vpe_id = vpe_id;
4580	vpe->vpt_page = vpt_page;
4581	atomic_set(&vpe->vmapp_count, 0);
4582	if (!gic_rdists->has_rvpeid)
4583		vpe->vpe_proxy_event = -1;
4584
4585	return 0;
4586}
4587
4588static void its_vpe_teardown(struct its_vpe *vpe)
4589{
4590	its_vpe_db_proxy_unmap(vpe);
4591	its_vpe_id_free(vpe->vpe_id);
4592	its_free_pending_table(vpe->vpt_page);
4593}
4594
4595static void its_vpe_irq_domain_free(struct irq_domain *domain,
4596				    unsigned int virq,
4597				    unsigned int nr_irqs)
4598{
4599	struct its_vm *vm = domain->host_data;
4600	int i;
4601
4602	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4603
4604	for (i = 0; i < nr_irqs; i++) {
4605		struct irq_data *data = irq_domain_get_irq_data(domain,
4606								virq + i);
4607		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4608
4609		BUG_ON(vm != vpe->its_vm);
4610
4611		clear_bit(data->hwirq, vm->db_bitmap);
4612		its_vpe_teardown(vpe);
4613		irq_domain_reset_irq_data(data);
4614	}
4615
4616	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4617		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4618		its_free_prop_table(vm->vprop_page);
4619	}
4620}
4621
4622static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4623				    unsigned int nr_irqs, void *args)
4624{
4625	struct irq_chip *irqchip = &its_vpe_irq_chip;
4626	struct its_vm *vm = args;
4627	unsigned long *bitmap;
4628	struct page *vprop_page;
4629	int base, nr_ids, i, err = 0;
4630
4631	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4632	if (!bitmap)
4633		return -ENOMEM;
4634
4635	if (nr_ids < nr_irqs) {
4636		its_lpi_free(bitmap, base, nr_ids);
4637		return -ENOMEM;
4638	}
4639
4640	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4641	if (!vprop_page) {
4642		its_lpi_free(bitmap, base, nr_ids);
4643		return -ENOMEM;
4644	}
4645
4646	vm->db_bitmap = bitmap;
4647	vm->db_lpi_base = base;
4648	vm->nr_db_lpis = nr_ids;
4649	vm->vprop_page = vprop_page;
4650	raw_spin_lock_init(&vm->vmapp_lock);
4651
4652	if (gic_rdists->has_rvpeid)
4653		irqchip = &its_vpe_4_1_irq_chip;
4654
4655	for (i = 0; i < nr_irqs; i++) {
4656		vm->vpes[i]->vpe_db_lpi = base + i;
4657		err = its_vpe_init(vm->vpes[i]);
4658		if (err)
4659			break;
4660		err = its_irq_gic_domain_alloc(domain, virq + i,
4661					       vm->vpes[i]->vpe_db_lpi);
4662		if (err)
4663			break;
4664		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4665					      irqchip, vm->vpes[i]);
4666		set_bit(i, bitmap);
4667		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4668	}
4669
4670	if (err)
4671		its_vpe_irq_domain_free(domain, virq, i);
4672
4673	return err;
4674}
4675
4676static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4677				       struct irq_data *d, bool reserve)
4678{
4679	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4680	struct its_node *its;
4681
4682	/* Map the VPE to the first possible CPU */
4683	vpe->col_idx = cpumask_first(cpu_online_mask);
4684	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4685
4686	/*
4687	 * If we use the list map, we issue VMAPP on demand... Unless
4688	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4689	 * so that VSGIs can work.
4690	 */
4691	if (!gic_requires_eager_mapping())
4692		return 0;
4693
4694	list_for_each_entry(its, &its_nodes, entry) {
4695		if (!is_v4(its))
4696			continue;
4697
4698		its_send_vmapp(its, vpe, true);
4699		its_send_vinvall(its, vpe);
4700	}
4701
4702	return 0;
4703}
4704
4705static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4706					  struct irq_data *d)
4707{
4708	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4709	struct its_node *its;
4710
4711	/*
4712	 * If we use the list map on GICv4.0, we unmap the VPE once no
4713	 * VLPIs are associated with the VM.
4714	 */
4715	if (!gic_requires_eager_mapping())
4716		return;
4717
4718	list_for_each_entry(its, &its_nodes, entry) {
4719		if (!is_v4(its))
4720			continue;
4721
4722		its_send_vmapp(its, vpe, false);
4723	}
4724
4725	/*
4726	 * There may be a direct read to the VPT after unmapping the
4727	 * vPE, to guarantee the validity of this, we make the VPT
4728	 * memory coherent with the CPU caches here.
4729	 */
4730	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4731		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4732					LPI_PENDBASE_SZ);
4733}
4734
4735static const struct irq_domain_ops its_vpe_domain_ops = {
4736	.alloc			= its_vpe_irq_domain_alloc,
4737	.free			= its_vpe_irq_domain_free,
4738	.activate		= its_vpe_irq_domain_activate,
4739	.deactivate		= its_vpe_irq_domain_deactivate,
4740};
4741
4742static int its_force_quiescent(void __iomem *base)
4743{
4744	u32 count = 1000000;	/* 1s */
4745	u32 val;
4746
4747	val = readl_relaxed(base + GITS_CTLR);
4748	/*
4749	 * GIC architecture specification requires the ITS to be both
4750	 * disabled and quiescent for writes to GITS_BASER<n> or
4751	 * GITS_CBASER to not have UNPREDICTABLE results.
4752	 */
4753	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4754		return 0;
4755
4756	/* Disable the generation of all interrupts to this ITS */
4757	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4758	writel_relaxed(val, base + GITS_CTLR);
4759
4760	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4761	while (1) {
4762		val = readl_relaxed(base + GITS_CTLR);
4763		if (val & GITS_CTLR_QUIESCENT)
4764			return 0;
4765
4766		count--;
4767		if (!count)
4768			return -EBUSY;
4769
4770		cpu_relax();
4771		udelay(1);
4772	}
4773}
4774
4775static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4776{
4777	struct its_node *its = data;
4778
4779	/* erratum 22375: only alloc 8MB table size (20 bits) */
4780	its->typer &= ~GITS_TYPER_DEVBITS;
4781	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4782	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4783
4784	return true;
4785}
4786
4787static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4788{
4789	struct its_node *its = data;
4790
4791	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4792
4793	return true;
4794}
4795
4796static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4797{
4798	struct its_node *its = data;
4799
4800	/* On QDF2400, the size of the ITE is 16Bytes */
4801	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4802	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4803
4804	return true;
4805}
4806
4807static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4808{
4809	struct its_node *its = its_dev->its;
4810
4811	/*
4812	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4813	 * which maps 32-bit writes targeted at a separate window of
4814	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4815	 * with device ID taken from bits [device_id_bits + 1:2] of
4816	 * the window offset.
4817	 */
4818	return its->pre_its_base + (its_dev->device_id << 2);
4819}
4820
4821static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4822{
4823	struct its_node *its = data;
4824	u32 pre_its_window[2];
4825	u32 ids;
4826
4827	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4828					   "socionext,synquacer-pre-its",
4829					   pre_its_window,
4830					   ARRAY_SIZE(pre_its_window))) {
4831
4832		its->pre_its_base = pre_its_window[0];
4833		its->get_msi_base = its_irq_get_msi_base_pre_its;
4834
4835		ids = ilog2(pre_its_window[1]) - 2;
4836		if (device_ids(its) > ids) {
4837			its->typer &= ~GITS_TYPER_DEVBITS;
4838			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4839		}
4840
4841		/* the pre-ITS breaks isolation, so disable MSI remapping */
4842		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4843		return true;
4844	}
4845	return false;
4846}
4847
4848static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4849{
4850	struct its_node *its = data;
4851
4852	/*
4853	 * Hip07 insists on using the wrong address for the VLPI
4854	 * page. Trick it into doing the right thing...
4855	 */
4856	its->vlpi_redist_offset = SZ_128K;
4857	return true;
4858}
4859
4860static bool __maybe_unused its_enable_rk3588001(void *data)
4861{
4862	struct its_node *its = data;
4863
4864	if (!of_machine_is_compatible("rockchip,rk3588") &&
4865	    !of_machine_is_compatible("rockchip,rk3588s"))
4866		return false;
4867
4868	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4869	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4870
4871	return true;
4872}
4873
4874static bool its_set_non_coherent(void *data)
4875{
4876	struct its_node *its = data;
4877
4878	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4879	return true;
4880}
4881
4882static bool __maybe_unused its_enable_quirk_hip09_162100801(void *data)
4883{
4884	struct its_node *its = data;
4885
4886	its->flags |= ITS_FLAGS_WORKAROUND_HISILICON_162100801;
4887	return true;
4888}
4889
4890static const struct gic_quirk its_quirks[] = {
4891#ifdef CONFIG_CAVIUM_ERRATUM_22375
4892	{
4893		.desc	= "ITS: Cavium errata 22375, 24313",
4894		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4895		.mask	= 0xffff0fff,
4896		.init	= its_enable_quirk_cavium_22375,
4897	},
4898#endif
4899#ifdef CONFIG_CAVIUM_ERRATUM_23144
4900	{
4901		.desc	= "ITS: Cavium erratum 23144",
4902		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4903		.mask	= 0xffff0fff,
4904		.init	= its_enable_quirk_cavium_23144,
4905	},
4906#endif
4907#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4908	{
4909		.desc	= "ITS: QDF2400 erratum 0065",
4910		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4911		.mask	= 0xffffffff,
4912		.init	= its_enable_quirk_qdf2400_e0065,
4913	},
4914#endif
4915#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4916	{
4917		/*
4918		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4919		 * implementation, but with a 'pre-ITS' added that requires
4920		 * special handling in software.
4921		 */
4922		.desc	= "ITS: Socionext Synquacer pre-ITS",
4923		.iidr	= 0x0001143b,
4924		.mask	= 0xffffffff,
4925		.init	= its_enable_quirk_socionext_synquacer,
4926	},
4927#endif
4928#ifdef CONFIG_HISILICON_ERRATUM_161600802
4929	{
4930		.desc	= "ITS: Hip07 erratum 161600802",
4931		.iidr	= 0x00000004,
4932		.mask	= 0xffffffff,
4933		.init	= its_enable_quirk_hip07_161600802,
4934	},
4935#endif
4936#ifdef CONFIG_HISILICON_ERRATUM_162100801
4937	{
4938		.desc	= "ITS: Hip09 erratum 162100801",
4939		.iidr	= 0x00051736,
4940		.mask	= 0xffffffff,
4941		.init	= its_enable_quirk_hip09_162100801,
4942	},
4943#endif
4944#ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4945	{
4946		.desc   = "ITS: Rockchip erratum RK3588001",
4947		.iidr   = 0x0201743b,
4948		.mask   = 0xffffffff,
4949		.init   = its_enable_rk3588001,
4950	},
4951#endif
4952	{
4953		.desc   = "ITS: non-coherent attribute",
4954		.property = "dma-noncoherent",
4955		.init   = its_set_non_coherent,
4956	},
4957	{
4958	}
4959};
4960
4961static void its_enable_quirks(struct its_node *its)
4962{
4963	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4964
4965	gic_enable_quirks(iidr, its_quirks, its);
4966
4967	if (is_of_node(its->fwnode_handle))
4968		gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4969				     its_quirks, its);
4970}
4971
4972static int its_save_disable(void)
 
4973{
 
4974	struct its_node *its;
4975	int err = 0;
4976
4977	raw_spin_lock(&its_lock);
4978	list_for_each_entry(its, &its_nodes, entry) {
4979		void __iomem *base;
4980
4981		base = its->base;
4982		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4983		err = its_force_quiescent(base);
4984		if (err) {
4985			pr_err("ITS@%pa: failed to quiesce: %d\n",
4986			       &its->phys_base, err);
4987			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4988			goto err;
4989		}
4990
4991		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4992	}
4993
4994err:
4995	if (err) {
4996		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4997			void __iomem *base;
4998
4999			base = its->base;
5000			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5001		}
5002	}
5003	raw_spin_unlock(&its_lock);
5004
5005	return err;
5006}
5007
5008static void its_restore_enable(void)
5009{
5010	struct its_node *its;
5011	int ret;
5012
5013	raw_spin_lock(&its_lock);
5014	list_for_each_entry(its, &its_nodes, entry) {
5015		void __iomem *base;
5016		int i;
5017
5018		base = its->base;
5019
5020		/*
5021		 * Make sure that the ITS is disabled. If it fails to quiesce,
5022		 * don't restore it since writing to CBASER or BASER<n>
5023		 * registers is undefined according to the GIC v3 ITS
5024		 * Specification.
5025		 *
5026		 * Firmware resuming with the ITS enabled is terminally broken.
5027		 */
5028		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
5029		ret = its_force_quiescent(base);
5030		if (ret) {
5031			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
5032			       &its->phys_base, ret);
5033			continue;
5034		}
5035
5036		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
5037
5038		/*
5039		 * Writing CBASER resets CREADR to 0, so make CWRITER and
5040		 * cmd_write line up with it.
5041		 */
5042		its->cmd_write = its->cmd_base;
5043		gits_write_cwriter(0, base + GITS_CWRITER);
5044
5045		/* Restore GITS_BASER from the value cache. */
5046		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
5047			struct its_baser *baser = &its->tables[i];
5048
5049			if (!(baser->val & GITS_BASER_VALID))
5050				continue;
5051
5052			its_write_baser(its, baser, baser->val);
5053		}
5054		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5055
5056		/*
5057		 * Reinit the collection if it's stored in the ITS. This is
5058		 * indicated by the col_id being less than the HCC field.
5059		 * CID < HCC as specified in the GIC v3 Documentation.
5060		 */
5061		if (its->collections[smp_processor_id()].col_id <
5062		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
5063			its_cpu_init_collection(its);
5064	}
5065	raw_spin_unlock(&its_lock);
5066}
5067
5068static struct syscore_ops its_syscore_ops = {
5069	.suspend = its_save_disable,
5070	.resume = its_restore_enable,
5071};
5072
5073static void __init __iomem *its_map_one(struct resource *res, int *err)
5074{
5075	void __iomem *its_base;
5076	u32 val;
5077
5078	its_base = ioremap(res->start, SZ_64K);
5079	if (!its_base) {
5080		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
5081		*err = -ENOMEM;
5082		return NULL;
5083	}
5084
5085	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
5086	if (val != 0x30 && val != 0x40) {
5087		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
5088		*err = -ENODEV;
5089		goto out_unmap;
5090	}
5091
5092	*err = its_force_quiescent(its_base);
5093	if (*err) {
5094		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
 
5095		goto out_unmap;
5096	}
5097
5098	return its_base;
5099
5100out_unmap:
5101	iounmap(its_base);
5102	return NULL;
5103}
5104
5105static int its_init_domain(struct its_node *its)
5106{
5107	struct irq_domain *inner_domain;
5108	struct msi_domain_info *info;
5109
5110	info = kzalloc(sizeof(*info), GFP_KERNEL);
5111	if (!info)
5112		return -ENOMEM;
5113
5114	info->ops = &its_msi_domain_ops;
5115	info->data = its;
5116
5117	inner_domain = irq_domain_create_hierarchy(its_parent,
5118						   its->msi_domain_flags, 0,
5119						   its->fwnode_handle, &its_domain_ops,
5120						   info);
5121	if (!inner_domain) {
5122		kfree(info);
5123		return -ENOMEM;
5124	}
5125
5126	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
 
 
 
 
 
5127
5128	inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops;
5129	inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
5130
5131	return 0;
5132}
5133
5134static int its_init_vpe_domain(void)
5135{
5136	struct its_node *its;
5137	u32 devid;
5138	int entries;
5139
5140	if (gic_rdists->has_direct_lpi) {
5141		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5142		return 0;
5143	}
5144
5145	/* Any ITS will do, even if not v4 */
5146	its = list_first_entry(&its_nodes, struct its_node, entry);
5147
5148	entries = roundup_pow_of_two(nr_cpu_ids);
5149	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5150				 GFP_KERNEL);
5151	if (!vpe_proxy.vpes)
5152		return -ENOMEM;
5153
5154	/* Use the last possible DevID */
5155	devid = GENMASK(device_ids(its) - 1, 0);
5156	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5157	if (!vpe_proxy.dev) {
5158		kfree(vpe_proxy.vpes);
5159		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5160		return -ENOMEM;
5161	}
5162
5163	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5164
5165	raw_spin_lock_init(&vpe_proxy.lock);
5166	vpe_proxy.next_victim = 0;
5167	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5168		devid, vpe_proxy.dev->nr_ites);
5169
5170	return 0;
5171}
5172
5173static int __init its_compute_its_list_map(struct its_node *its)
5174{
5175	int its_number;
5176	u32 ctlr;
5177
5178	/*
5179	 * This is assumed to be done early enough that we're
5180	 * guaranteed to be single-threaded, hence no
5181	 * locking. Should this change, we should address
5182	 * this.
5183	 */
5184	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5185	if (its_number >= GICv4_ITS_LIST_MAX) {
5186		pr_err("ITS@%pa: No ITSList entry available!\n",
5187		       &its->phys_base);
5188		return -EINVAL;
5189	}
5190
5191	ctlr = readl_relaxed(its->base + GITS_CTLR);
5192	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5193	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5194	writel_relaxed(ctlr, its->base + GITS_CTLR);
5195	ctlr = readl_relaxed(its->base + GITS_CTLR);
5196	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5197		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5198		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5199	}
5200
5201	if (test_and_set_bit(its_number, &its_list_map)) {
5202		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5203		       &its->phys_base, its_number);
5204		return -EINVAL;
5205	}
5206
5207	return its_number;
5208}
5209
5210static int __init its_probe_one(struct its_node *its)
5211{
5212	u64 baser, tmp;
5213	struct page *page;
5214	u32 ctlr;
5215	int err;
5216
5217	its_enable_quirks(its);
5218
5219	if (is_v4(its)) {
5220		if (!(its->typer & GITS_TYPER_VMOVP)) {
5221			err = its_compute_its_list_map(its);
5222			if (err < 0)
5223				goto out;
5224
5225			its->list_nr = err;
5226
5227			pr_info("ITS@%pa: Using ITS number %d\n",
5228				&its->phys_base, err);
5229		} else {
5230			pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5231		}
5232
5233		if (is_v4_1(its)) {
5234			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5235
5236			its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5237			if (!its->sgir_base) {
5238				err = -ENOMEM;
5239				goto out;
5240			}
5241
5242			its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5243
5244			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5245				&its->phys_base, its->mpidr, svpet);
5246		}
5247	}
5248
5249	page = its_alloc_pages_node(its->numa_node,
5250				    GFP_KERNEL | __GFP_ZERO,
5251				    get_order(ITS_CMD_QUEUE_SZ));
5252	if (!page) {
5253		err = -ENOMEM;
5254		goto out_unmap_sgir;
5255	}
5256	its->cmd_base = (void *)page_address(page);
5257	its->cmd_write = its->cmd_base;
5258
5259	err = its_alloc_tables(its);
5260	if (err)
5261		goto out_free_cmd;
5262
5263	err = its_alloc_collections(its);
5264	if (err)
5265		goto out_free_tables;
5266
5267	baser = (virt_to_phys(its->cmd_base)	|
5268		 GITS_CBASER_RaWaWb		|
5269		 GITS_CBASER_InnerShareable	|
5270		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5271		 GITS_CBASER_VALID);
5272
5273	gits_write_cbaser(baser, its->base + GITS_CBASER);
5274	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5275
5276	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5277		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5278
5279	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5280		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5281			/*
5282			 * The HW reports non-shareable, we must
5283			 * remove the cacheability attributes as
5284			 * well.
5285			 */
5286			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5287				   GITS_CBASER_CACHEABILITY_MASK);
5288			baser |= GITS_CBASER_nC;
5289			gits_write_cbaser(baser, its->base + GITS_CBASER);
5290		}
5291		pr_info("ITS: using cache flushing for cmd queue\n");
5292		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5293	}
5294
5295	gits_write_cwriter(0, its->base + GITS_CWRITER);
5296	ctlr = readl_relaxed(its->base + GITS_CTLR);
5297	ctlr |= GITS_CTLR_ENABLE;
5298	if (is_v4(its))
5299		ctlr |= GITS_CTLR_ImDe;
5300	writel_relaxed(ctlr, its->base + GITS_CTLR);
5301
5302	err = its_init_domain(its);
5303	if (err)
5304		goto out_free_tables;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5305
5306	raw_spin_lock(&its_lock);
5307	list_add(&its->entry, &its_nodes);
5308	raw_spin_unlock(&its_lock);
5309
5310	return 0;
5311
5312out_free_tables:
5313	its_free_tables(its);
5314out_free_cmd:
5315	its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5316out_unmap_sgir:
5317	if (its->sgir_base)
5318		iounmap(its->sgir_base);
5319out:
5320	pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5321	return err;
5322}
5323
5324static bool gic_rdists_supports_plpis(void)
5325{
5326	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5327}
5328
5329static int redist_disable_lpis(void)
5330{
5331	void __iomem *rbase = gic_data_rdist_rd_base();
5332	u64 timeout = USEC_PER_SEC;
5333	u64 val;
5334
5335	if (!gic_rdists_supports_plpis()) {
5336		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5337		return -ENXIO;
5338	}
5339
5340	val = readl_relaxed(rbase + GICR_CTLR);
5341	if (!(val & GICR_CTLR_ENABLE_LPIS))
5342		return 0;
5343
5344	/*
5345	 * If coming via a CPU hotplug event, we don't need to disable
5346	 * LPIs before trying to re-enable them. They are already
5347	 * configured and all is well in the world.
5348	 *
5349	 * If running with preallocated tables, there is nothing to do.
5350	 */
5351	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5352	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5353		return 0;
5354
5355	/*
5356	 * From that point on, we only try to do some damage control.
5357	 */
5358	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5359		smp_processor_id());
5360	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5361
5362	/* Disable LPIs */
5363	val &= ~GICR_CTLR_ENABLE_LPIS;
5364	writel_relaxed(val, rbase + GICR_CTLR);
5365
5366	/* Make sure any change to GICR_CTLR is observable by the GIC */
5367	dsb(sy);
5368
5369	/*
5370	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5371	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5372	 * Error out if we time out waiting for RWP to clear.
5373	 */
5374	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5375		if (!timeout) {
5376			pr_err("CPU%d: Timeout while disabling LPIs\n",
5377			       smp_processor_id());
5378			return -ETIMEDOUT;
5379		}
5380		udelay(1);
5381		timeout--;
5382	}
5383
5384	/*
5385	 * After it has been written to 1, it is IMPLEMENTATION
5386	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5387	 * cleared to 0. Error out if clearing the bit failed.
5388	 */
5389	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5390		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5391		return -EBUSY;
5392	}
5393
5394	return 0;
5395}
5396
5397int its_cpu_init(void)
5398{
5399	if (!list_empty(&its_nodes)) {
5400		int ret;
5401
5402		ret = redist_disable_lpis();
5403		if (ret)
5404			return ret;
5405
5406		its_cpu_init_lpis();
5407		its_cpu_init_collections();
5408	}
5409
5410	return 0;
5411}
5412
5413static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5414{
5415	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5416	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5417}
5418
5419static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5420		    rdist_memreserve_cpuhp_cleanup_workfn);
5421
5422static int its_cpu_memreserve_lpi(unsigned int cpu)
5423{
5424	struct page *pend_page;
5425	int ret = 0;
5426
5427	/* This gets to run exactly once per CPU */
5428	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5429		return 0;
5430
5431	pend_page = gic_data_rdist()->pend_page;
5432	if (WARN_ON(!pend_page)) {
5433		ret = -ENOMEM;
5434		goto out;
5435	}
5436	/*
5437	 * If the pending table was pre-programmed, free the memory we
5438	 * preemptively allocated. Otherwise, reserve that memory for
5439	 * later kexecs.
5440	 */
5441	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5442		its_free_pending_table(pend_page);
5443		gic_data_rdist()->pend_page = NULL;
5444	} else {
5445		phys_addr_t paddr = page_to_phys(pend_page);
5446		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5447	}
5448
5449out:
5450	/* Last CPU being brought up gets to issue the cleanup */
5451	if (!IS_ENABLED(CONFIG_SMP) ||
5452	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5453		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5454
5455	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5456	return ret;
5457}
5458
5459/* Mark all the BASER registers as invalid before they get reprogrammed */
5460static int __init its_reset_one(struct resource *res)
5461{
5462	void __iomem *its_base;
5463	int err, i;
5464
5465	its_base = its_map_one(res, &err);
5466	if (!its_base)
5467		return err;
5468
5469	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5470		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5471
5472	iounmap(its_base);
5473	return 0;
5474}
5475
5476static const struct of_device_id its_device_id[] = {
5477	{	.compatible	= "arm,gic-v3-its",	},
5478	{},
5479};
5480
5481static struct its_node __init *its_node_init(struct resource *res,
5482					     struct fwnode_handle *handle, int numa_node)
5483{
5484	void __iomem *its_base;
5485	struct its_node *its;
5486	int err;
5487
5488	its_base = its_map_one(res, &err);
5489	if (!its_base)
5490		return NULL;
5491
5492	pr_info("ITS %pR\n", res);
5493
5494	its = kzalloc(sizeof(*its), GFP_KERNEL);
5495	if (!its)
5496		goto out_unmap;
5497
5498	raw_spin_lock_init(&its->lock);
5499	mutex_init(&its->dev_alloc_lock);
5500	INIT_LIST_HEAD(&its->entry);
5501	INIT_LIST_HEAD(&its->its_device_list);
5502
5503	its->typer = gic_read_typer(its_base + GITS_TYPER);
5504	its->base = its_base;
5505	its->phys_base = res->start;
5506	its->get_msi_base = its_irq_get_msi_base;
5507	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5508
5509	its->numa_node = numa_node;
5510	its->fwnode_handle = handle;
5511
5512	return its;
5513
5514out_unmap:
5515	iounmap(its_base);
5516	return NULL;
5517}
5518
5519static void its_node_destroy(struct its_node *its)
5520{
5521	iounmap(its->base);
5522	kfree(its);
5523}
5524
5525static int __init its_of_probe(struct device_node *node)
5526{
5527	struct device_node *np;
5528	struct resource res;
5529	int err;
5530
5531	/*
5532	 * Make sure *all* the ITS are reset before we probe any, as
5533	 * they may be sharing memory. If any of the ITS fails to
5534	 * reset, don't even try to go any further, as this could
5535	 * result in something even worse.
5536	 */
5537	for (np = of_find_matching_node(node, its_device_id); np;
5538	     np = of_find_matching_node(np, its_device_id)) {
5539		if (!of_device_is_available(np) ||
5540		    !of_property_read_bool(np, "msi-controller") ||
5541		    of_address_to_resource(np, 0, &res))
5542			continue;
5543
5544		err = its_reset_one(&res);
5545		if (err)
5546			return err;
5547	}
5548
5549	for (np = of_find_matching_node(node, its_device_id); np;
5550	     np = of_find_matching_node(np, its_device_id)) {
5551		struct its_node *its;
5552
5553		if (!of_device_is_available(np))
5554			continue;
5555		if (!of_property_read_bool(np, "msi-controller")) {
5556			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5557				np);
5558			continue;
5559		}
5560
5561		if (of_address_to_resource(np, 0, &res)) {
5562			pr_warn("%pOF: no regs?\n", np);
5563			continue;
5564		}
5565
5566
5567		its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5568		if (!its)
5569			return -ENOMEM;
5570
5571		err = its_probe_one(its);
5572		if (err)  {
5573			its_node_destroy(its);
5574			return err;
5575		}
5576	}
5577	return 0;
5578}
5579
5580#ifdef CONFIG_ACPI
5581
5582#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5583
5584#ifdef CONFIG_ACPI_NUMA
5585struct its_srat_map {
5586	/* numa node id */
5587	u32	numa_node;
5588	/* GIC ITS ID */
5589	u32	its_id;
5590};
5591
5592static struct its_srat_map *its_srat_maps __initdata;
5593static int its_in_srat __initdata;
5594
5595static int __init acpi_get_its_numa_node(u32 its_id)
5596{
5597	int i;
5598
5599	for (i = 0; i < its_in_srat; i++) {
5600		if (its_id == its_srat_maps[i].its_id)
5601			return its_srat_maps[i].numa_node;
5602	}
5603	return NUMA_NO_NODE;
5604}
5605
5606static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5607					  const unsigned long end)
5608{
5609	return 0;
5610}
5611
5612static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5613			 const unsigned long end)
5614{
5615	int node;
5616	struct acpi_srat_gic_its_affinity *its_affinity;
5617
5618	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5619	if (!its_affinity)
5620		return -EINVAL;
5621
5622	if (its_affinity->header.length < sizeof(*its_affinity)) {
5623		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5624			its_affinity->header.length);
5625		return -EINVAL;
5626	}
5627
5628	/*
5629	 * Note that in theory a new proximity node could be created by this
5630	 * entry as it is an SRAT resource allocation structure.
5631	 * We do not currently support doing so.
5632	 */
5633	node = pxm_to_node(its_affinity->proximity_domain);
5634
5635	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5636		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5637		return 0;
5638	}
5639
5640	its_srat_maps[its_in_srat].numa_node = node;
5641	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5642	its_in_srat++;
5643	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5644		its_affinity->proximity_domain, its_affinity->its_id, node);
5645
5646	return 0;
5647}
5648
5649static void __init acpi_table_parse_srat_its(void)
5650{
5651	int count;
5652
5653	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5654			sizeof(struct acpi_table_srat),
5655			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5656			gic_acpi_match_srat_its, 0);
5657	if (count <= 0)
5658		return;
5659
5660	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5661				      GFP_KERNEL);
5662	if (!its_srat_maps)
5663		return;
5664
5665	acpi_table_parse_entries(ACPI_SIG_SRAT,
5666			sizeof(struct acpi_table_srat),
5667			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5668			gic_acpi_parse_srat_its, 0);
5669}
5670
5671/* free the its_srat_maps after ITS probing */
5672static void __init acpi_its_srat_maps_free(void)
5673{
5674	kfree(its_srat_maps);
5675}
5676#else
5677static void __init acpi_table_parse_srat_its(void)	{ }
5678static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5679static void __init acpi_its_srat_maps_free(void) { }
5680#endif
5681
5682static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5683					  const unsigned long end)
5684{
5685	struct acpi_madt_generic_translator *its_entry;
5686	struct fwnode_handle *dom_handle;
5687	struct its_node *its;
5688	struct resource res;
5689	int err;
5690
5691	its_entry = (struct acpi_madt_generic_translator *)header;
5692	memset(&res, 0, sizeof(res));
5693	res.start = its_entry->base_address;
5694	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5695	res.flags = IORESOURCE_MEM;
5696
5697	dom_handle = irq_domain_alloc_fwnode(&res.start);
5698	if (!dom_handle) {
5699		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5700		       &res.start);
5701		return -ENOMEM;
5702	}
5703
5704	err = iort_register_domain_token(its_entry->translation_id, res.start,
5705					 dom_handle);
5706	if (err) {
5707		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5708		       &res.start, its_entry->translation_id);
5709		goto dom_err;
5710	}
5711
5712	its = its_node_init(&res, dom_handle,
5713			    acpi_get_its_numa_node(its_entry->translation_id));
5714	if (!its) {
5715		err = -ENOMEM;
5716		goto node_err;
5717	}
5718
5719	if (acpi_get_madt_revision() >= 7 &&
5720	    (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5721		its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5722
5723	err = its_probe_one(its);
5724	if (!err)
5725		return 0;
5726
5727node_err:
5728	iort_deregister_domain_token(its_entry->translation_id);
5729dom_err:
5730	irq_domain_free_fwnode(dom_handle);
5731	return err;
5732}
5733
5734static int __init its_acpi_reset(union acpi_subtable_headers *header,
5735				 const unsigned long end)
5736{
5737	struct acpi_madt_generic_translator *its_entry;
5738	struct resource res;
5739
5740	its_entry = (struct acpi_madt_generic_translator *)header;
5741	res = (struct resource) {
5742		.start	= its_entry->base_address,
5743		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5744		.flags	= IORESOURCE_MEM,
5745	};
5746
5747	return its_reset_one(&res);
5748}
5749
5750static void __init its_acpi_probe(void)
5751{
5752	acpi_table_parse_srat_its();
5753	/*
5754	 * Make sure *all* the ITS are reset before we probe any, as
5755	 * they may be sharing memory. If any of the ITS fails to
5756	 * reset, don't even try to go any further, as this could
5757	 * result in something even worse.
5758	 */
5759	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5760				  its_acpi_reset, 0) > 0)
5761		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5762				      gic_acpi_parse_madt_its, 0);
5763	acpi_its_srat_maps_free();
5764}
5765#else
5766static void __init its_acpi_probe(void) { }
5767#endif
5768
5769int __init its_lpi_memreserve_init(void)
5770{
5771	int state;
5772
5773	if (!efi_enabled(EFI_CONFIG_TABLES))
5774		return 0;
5775
5776	if (list_empty(&its_nodes))
5777		return 0;
5778
5779	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5780	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5781				  "irqchip/arm/gicv3/memreserve:online",
5782				  its_cpu_memreserve_lpi,
5783				  NULL);
5784	if (state < 0)
5785		return state;
5786
5787	gic_rdists->cpuhp_memreserve_state = state;
5788
5789	return 0;
5790}
5791
5792int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5793		    struct irq_domain *parent_domain, u8 irq_prio)
5794{
5795	struct device_node *of_node;
5796	struct its_node *its;
5797	bool has_v4 = false;
5798	bool has_v4_1 = false;
5799	int err;
5800
5801	itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1);
5802	if (!itt_pool)
5803		return -ENOMEM;
5804
5805	gic_rdists = rdists;
5806
5807	lpi_prop_prio = irq_prio;
5808	its_parent = parent_domain;
5809	of_node = to_of_node(handle);
5810	if (of_node)
5811		its_of_probe(of_node);
5812	else
5813		its_acpi_probe();
5814
5815	if (list_empty(&its_nodes)) {
5816		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5817		return -ENXIO;
5818	}
5819
5820	err = allocate_lpi_tables();
5821	if (err)
5822		return err;
5823
5824	list_for_each_entry(its, &its_nodes, entry) {
5825		has_v4 |= is_v4(its);
5826		has_v4_1 |= is_v4_1(its);
5827	}
5828
5829	/* Don't bother with inconsistent systems */
5830	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5831		rdists->has_rvpeid = false;
5832
5833	if (has_v4 & rdists->has_vlpis) {
5834		const struct irq_domain_ops *sgi_ops;
5835
5836		if (has_v4_1)
5837			sgi_ops = &its_sgi_domain_ops;
5838		else
5839			sgi_ops = NULL;
5840
5841		if (its_init_vpe_domain() ||
5842		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5843			rdists->has_vlpis = false;
5844			pr_err("ITS: Disabling GICv4 support\n");
5845		}
5846	}
5847
5848	register_syscore_ops(&its_syscore_ops);
5849
5850	return 0;
5851}