Loading...
1/*
2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18#include <linux/bitmap.h>
19#include <linux/cpu.h>
20#include <linux/delay.h>
21#include <linux/interrupt.h>
22#include <linux/log2.h>
23#include <linux/mm.h>
24#include <linux/msi.h>
25#include <linux/of.h>
26#include <linux/of_address.h>
27#include <linux/of_irq.h>
28#include <linux/of_pci.h>
29#include <linux/of_platform.h>
30#include <linux/percpu.h>
31#include <linux/slab.h>
32
33#include <linux/irqchip.h>
34#include <linux/irqchip/arm-gic-v3.h>
35
36#include <asm/cacheflush.h>
37#include <asm/cputype.h>
38#include <asm/exception.h>
39
40#include "irq-gic-common.h"
41
42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44
45#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
46
47/*
48 * Collection structure - just an ID, and a redistributor address to
49 * ping. We use one per CPU as a bag of interrupts assigned to this
50 * CPU.
51 */
52struct its_collection {
53 u64 target_address;
54 u16 col_id;
55};
56
57/*
58 * The ITS structure - contains most of the infrastructure, with the
59 * top-level MSI domain, the command queue, the collections, and the
60 * list of devices writing to it.
61 */
62struct its_node {
63 raw_spinlock_t lock;
64 struct list_head entry;
65 void __iomem *base;
66 unsigned long phys_base;
67 struct its_cmd_block *cmd_base;
68 struct its_cmd_block *cmd_write;
69 struct {
70 void *base;
71 u32 order;
72 } tables[GITS_BASER_NR_REGS];
73 struct its_collection *collections;
74 struct list_head its_device_list;
75 u64 flags;
76 u32 ite_size;
77};
78
79#define ITS_ITT_ALIGN SZ_256
80
81/* Convert page order to size in bytes */
82#define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
83
84struct event_lpi_map {
85 unsigned long *lpi_map;
86 u16 *col_map;
87 irq_hw_number_t lpi_base;
88 int nr_lpis;
89};
90
91/*
92 * The ITS view of a device - belongs to an ITS, a collection, owns an
93 * interrupt translation table, and a list of interrupts.
94 */
95struct its_device {
96 struct list_head entry;
97 struct its_node *its;
98 struct event_lpi_map event_map;
99 void *itt;
100 u32 nr_ites;
101 u32 device_id;
102};
103
104static LIST_HEAD(its_nodes);
105static DEFINE_SPINLOCK(its_lock);
106static struct rdists *gic_rdists;
107
108#define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
109#define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
110
111static struct its_collection *dev_event_to_col(struct its_device *its_dev,
112 u32 event)
113{
114 struct its_node *its = its_dev->its;
115
116 return its->collections + its_dev->event_map.col_map[event];
117}
118
119/*
120 * ITS command descriptors - parameters to be encoded in a command
121 * block.
122 */
123struct its_cmd_desc {
124 union {
125 struct {
126 struct its_device *dev;
127 u32 event_id;
128 } its_inv_cmd;
129
130 struct {
131 struct its_device *dev;
132 u32 event_id;
133 } its_int_cmd;
134
135 struct {
136 struct its_device *dev;
137 int valid;
138 } its_mapd_cmd;
139
140 struct {
141 struct its_collection *col;
142 int valid;
143 } its_mapc_cmd;
144
145 struct {
146 struct its_device *dev;
147 u32 phys_id;
148 u32 event_id;
149 } its_mapvi_cmd;
150
151 struct {
152 struct its_device *dev;
153 struct its_collection *col;
154 u32 event_id;
155 } its_movi_cmd;
156
157 struct {
158 struct its_device *dev;
159 u32 event_id;
160 } its_discard_cmd;
161
162 struct {
163 struct its_collection *col;
164 } its_invall_cmd;
165 };
166};
167
168/*
169 * The ITS command block, which is what the ITS actually parses.
170 */
171struct its_cmd_block {
172 u64 raw_cmd[4];
173};
174
175#define ITS_CMD_QUEUE_SZ SZ_64K
176#define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
177
178typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
179 struct its_cmd_desc *);
180
181static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
182{
183 cmd->raw_cmd[0] &= ~0xffUL;
184 cmd->raw_cmd[0] |= cmd_nr;
185}
186
187static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
188{
189 cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
190 cmd->raw_cmd[0] |= ((u64)devid) << 32;
191}
192
193static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
194{
195 cmd->raw_cmd[1] &= ~0xffffffffUL;
196 cmd->raw_cmd[1] |= id;
197}
198
199static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
200{
201 cmd->raw_cmd[1] &= 0xffffffffUL;
202 cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
203}
204
205static void its_encode_size(struct its_cmd_block *cmd, u8 size)
206{
207 cmd->raw_cmd[1] &= ~0x1fUL;
208 cmd->raw_cmd[1] |= size & 0x1f;
209}
210
211static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
212{
213 cmd->raw_cmd[2] &= ~0xffffffffffffUL;
214 cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
215}
216
217static void its_encode_valid(struct its_cmd_block *cmd, int valid)
218{
219 cmd->raw_cmd[2] &= ~(1UL << 63);
220 cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
221}
222
223static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
224{
225 cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
226 cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
227}
228
229static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
230{
231 cmd->raw_cmd[2] &= ~0xffffUL;
232 cmd->raw_cmd[2] |= col;
233}
234
235static inline void its_fixup_cmd(struct its_cmd_block *cmd)
236{
237 /* Let's fixup BE commands */
238 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
239 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
240 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
241 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
242}
243
244static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
245 struct its_cmd_desc *desc)
246{
247 unsigned long itt_addr;
248 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
249
250 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
251 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
252
253 its_encode_cmd(cmd, GITS_CMD_MAPD);
254 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
255 its_encode_size(cmd, size - 1);
256 its_encode_itt(cmd, itt_addr);
257 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
258
259 its_fixup_cmd(cmd);
260
261 return NULL;
262}
263
264static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
265 struct its_cmd_desc *desc)
266{
267 its_encode_cmd(cmd, GITS_CMD_MAPC);
268 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
269 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
270 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
271
272 its_fixup_cmd(cmd);
273
274 return desc->its_mapc_cmd.col;
275}
276
277static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
278 struct its_cmd_desc *desc)
279{
280 struct its_collection *col;
281
282 col = dev_event_to_col(desc->its_mapvi_cmd.dev,
283 desc->its_mapvi_cmd.event_id);
284
285 its_encode_cmd(cmd, GITS_CMD_MAPVI);
286 its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
287 its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
288 its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
289 its_encode_collection(cmd, col->col_id);
290
291 its_fixup_cmd(cmd);
292
293 return col;
294}
295
296static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
297 struct its_cmd_desc *desc)
298{
299 struct its_collection *col;
300
301 col = dev_event_to_col(desc->its_movi_cmd.dev,
302 desc->its_movi_cmd.event_id);
303
304 its_encode_cmd(cmd, GITS_CMD_MOVI);
305 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
306 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
307 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
308
309 its_fixup_cmd(cmd);
310
311 return col;
312}
313
314static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
315 struct its_cmd_desc *desc)
316{
317 struct its_collection *col;
318
319 col = dev_event_to_col(desc->its_discard_cmd.dev,
320 desc->its_discard_cmd.event_id);
321
322 its_encode_cmd(cmd, GITS_CMD_DISCARD);
323 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
324 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
325
326 its_fixup_cmd(cmd);
327
328 return col;
329}
330
331static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
332 struct its_cmd_desc *desc)
333{
334 struct its_collection *col;
335
336 col = dev_event_to_col(desc->its_inv_cmd.dev,
337 desc->its_inv_cmd.event_id);
338
339 its_encode_cmd(cmd, GITS_CMD_INV);
340 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
341 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
342
343 its_fixup_cmd(cmd);
344
345 return col;
346}
347
348static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
349 struct its_cmd_desc *desc)
350{
351 its_encode_cmd(cmd, GITS_CMD_INVALL);
352 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
353
354 its_fixup_cmd(cmd);
355
356 return NULL;
357}
358
359static u64 its_cmd_ptr_to_offset(struct its_node *its,
360 struct its_cmd_block *ptr)
361{
362 return (ptr - its->cmd_base) * sizeof(*ptr);
363}
364
365static int its_queue_full(struct its_node *its)
366{
367 int widx;
368 int ridx;
369
370 widx = its->cmd_write - its->cmd_base;
371 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
372
373 /* This is incredibly unlikely to happen, unless the ITS locks up. */
374 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
375 return 1;
376
377 return 0;
378}
379
380static struct its_cmd_block *its_allocate_entry(struct its_node *its)
381{
382 struct its_cmd_block *cmd;
383 u32 count = 1000000; /* 1s! */
384
385 while (its_queue_full(its)) {
386 count--;
387 if (!count) {
388 pr_err_ratelimited("ITS queue not draining\n");
389 return NULL;
390 }
391 cpu_relax();
392 udelay(1);
393 }
394
395 cmd = its->cmd_write++;
396
397 /* Handle queue wrapping */
398 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
399 its->cmd_write = its->cmd_base;
400
401 return cmd;
402}
403
404static struct its_cmd_block *its_post_commands(struct its_node *its)
405{
406 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
407
408 writel_relaxed(wr, its->base + GITS_CWRITER);
409
410 return its->cmd_write;
411}
412
413static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
414{
415 /*
416 * Make sure the commands written to memory are observable by
417 * the ITS.
418 */
419 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
420 __flush_dcache_area(cmd, sizeof(*cmd));
421 else
422 dsb(ishst);
423}
424
425static void its_wait_for_range_completion(struct its_node *its,
426 struct its_cmd_block *from,
427 struct its_cmd_block *to)
428{
429 u64 rd_idx, from_idx, to_idx;
430 u32 count = 1000000; /* 1s! */
431
432 from_idx = its_cmd_ptr_to_offset(its, from);
433 to_idx = its_cmd_ptr_to_offset(its, to);
434
435 while (1) {
436 rd_idx = readl_relaxed(its->base + GITS_CREADR);
437 if (rd_idx >= to_idx || rd_idx < from_idx)
438 break;
439
440 count--;
441 if (!count) {
442 pr_err_ratelimited("ITS queue timeout\n");
443 return;
444 }
445 cpu_relax();
446 udelay(1);
447 }
448}
449
450static void its_send_single_command(struct its_node *its,
451 its_cmd_builder_t builder,
452 struct its_cmd_desc *desc)
453{
454 struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
455 struct its_collection *sync_col;
456 unsigned long flags;
457
458 raw_spin_lock_irqsave(&its->lock, flags);
459
460 cmd = its_allocate_entry(its);
461 if (!cmd) { /* We're soooooo screewed... */
462 pr_err_ratelimited("ITS can't allocate, dropping command\n");
463 raw_spin_unlock_irqrestore(&its->lock, flags);
464 return;
465 }
466 sync_col = builder(cmd, desc);
467 its_flush_cmd(its, cmd);
468
469 if (sync_col) {
470 sync_cmd = its_allocate_entry(its);
471 if (!sync_cmd) {
472 pr_err_ratelimited("ITS can't SYNC, skipping\n");
473 goto post;
474 }
475 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
476 its_encode_target(sync_cmd, sync_col->target_address);
477 its_fixup_cmd(sync_cmd);
478 its_flush_cmd(its, sync_cmd);
479 }
480
481post:
482 next_cmd = its_post_commands(its);
483 raw_spin_unlock_irqrestore(&its->lock, flags);
484
485 its_wait_for_range_completion(its, cmd, next_cmd);
486}
487
488static void its_send_inv(struct its_device *dev, u32 event_id)
489{
490 struct its_cmd_desc desc;
491
492 desc.its_inv_cmd.dev = dev;
493 desc.its_inv_cmd.event_id = event_id;
494
495 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
496}
497
498static void its_send_mapd(struct its_device *dev, int valid)
499{
500 struct its_cmd_desc desc;
501
502 desc.its_mapd_cmd.dev = dev;
503 desc.its_mapd_cmd.valid = !!valid;
504
505 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
506}
507
508static void its_send_mapc(struct its_node *its, struct its_collection *col,
509 int valid)
510{
511 struct its_cmd_desc desc;
512
513 desc.its_mapc_cmd.col = col;
514 desc.its_mapc_cmd.valid = !!valid;
515
516 its_send_single_command(its, its_build_mapc_cmd, &desc);
517}
518
519static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
520{
521 struct its_cmd_desc desc;
522
523 desc.its_mapvi_cmd.dev = dev;
524 desc.its_mapvi_cmd.phys_id = irq_id;
525 desc.its_mapvi_cmd.event_id = id;
526
527 its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
528}
529
530static void its_send_movi(struct its_device *dev,
531 struct its_collection *col, u32 id)
532{
533 struct its_cmd_desc desc;
534
535 desc.its_movi_cmd.dev = dev;
536 desc.its_movi_cmd.col = col;
537 desc.its_movi_cmd.event_id = id;
538
539 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
540}
541
542static void its_send_discard(struct its_device *dev, u32 id)
543{
544 struct its_cmd_desc desc;
545
546 desc.its_discard_cmd.dev = dev;
547 desc.its_discard_cmd.event_id = id;
548
549 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
550}
551
552static void its_send_invall(struct its_node *its, struct its_collection *col)
553{
554 struct its_cmd_desc desc;
555
556 desc.its_invall_cmd.col = col;
557
558 its_send_single_command(its, its_build_invall_cmd, &desc);
559}
560
561/*
562 * irqchip functions - assumes MSI, mostly.
563 */
564
565static inline u32 its_get_event_id(struct irq_data *d)
566{
567 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
568 return d->hwirq - its_dev->event_map.lpi_base;
569}
570
571static void lpi_set_config(struct irq_data *d, bool enable)
572{
573 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
574 irq_hw_number_t hwirq = d->hwirq;
575 u32 id = its_get_event_id(d);
576 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
577
578 if (enable)
579 *cfg |= LPI_PROP_ENABLED;
580 else
581 *cfg &= ~LPI_PROP_ENABLED;
582
583 /*
584 * Make the above write visible to the redistributors.
585 * And yes, we're flushing exactly: One. Single. Byte.
586 * Humpf...
587 */
588 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
589 __flush_dcache_area(cfg, sizeof(*cfg));
590 else
591 dsb(ishst);
592 its_send_inv(its_dev, id);
593}
594
595static void its_mask_irq(struct irq_data *d)
596{
597 lpi_set_config(d, false);
598}
599
600static void its_unmask_irq(struct irq_data *d)
601{
602 lpi_set_config(d, true);
603}
604
605static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
606 bool force)
607{
608 unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
609 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
610 struct its_collection *target_col;
611 u32 id = its_get_event_id(d);
612
613 if (cpu >= nr_cpu_ids)
614 return -EINVAL;
615
616 target_col = &its_dev->its->collections[cpu];
617 its_send_movi(its_dev, target_col, id);
618 its_dev->event_map.col_map[id] = cpu;
619
620 return IRQ_SET_MASK_OK_DONE;
621}
622
623static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
624{
625 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
626 struct its_node *its;
627 u64 addr;
628
629 its = its_dev->its;
630 addr = its->phys_base + GITS_TRANSLATER;
631
632 msg->address_lo = addr & ((1UL << 32) - 1);
633 msg->address_hi = addr >> 32;
634 msg->data = its_get_event_id(d);
635}
636
637static struct irq_chip its_irq_chip = {
638 .name = "ITS",
639 .irq_mask = its_mask_irq,
640 .irq_unmask = its_unmask_irq,
641 .irq_eoi = irq_chip_eoi_parent,
642 .irq_set_affinity = its_set_affinity,
643 .irq_compose_msi_msg = its_irq_compose_msi_msg,
644};
645
646/*
647 * How we allocate LPIs:
648 *
649 * The GIC has id_bits bits for interrupt identifiers. From there, we
650 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
651 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
652 * bits to the right.
653 *
654 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
655 */
656#define IRQS_PER_CHUNK_SHIFT 5
657#define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
658
659static unsigned long *lpi_bitmap;
660static u32 lpi_chunks;
661static DEFINE_SPINLOCK(lpi_lock);
662
663static int its_lpi_to_chunk(int lpi)
664{
665 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
666}
667
668static int its_chunk_to_lpi(int chunk)
669{
670 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
671}
672
673static int __init its_lpi_init(u32 id_bits)
674{
675 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
676
677 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
678 GFP_KERNEL);
679 if (!lpi_bitmap) {
680 lpi_chunks = 0;
681 return -ENOMEM;
682 }
683
684 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
685 return 0;
686}
687
688static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
689{
690 unsigned long *bitmap = NULL;
691 int chunk_id;
692 int nr_chunks;
693 int i;
694
695 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
696
697 spin_lock(&lpi_lock);
698
699 do {
700 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
701 0, nr_chunks, 0);
702 if (chunk_id < lpi_chunks)
703 break;
704
705 nr_chunks--;
706 } while (nr_chunks > 0);
707
708 if (!nr_chunks)
709 goto out;
710
711 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
712 GFP_ATOMIC);
713 if (!bitmap)
714 goto out;
715
716 for (i = 0; i < nr_chunks; i++)
717 set_bit(chunk_id + i, lpi_bitmap);
718
719 *base = its_chunk_to_lpi(chunk_id);
720 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
721
722out:
723 spin_unlock(&lpi_lock);
724
725 if (!bitmap)
726 *base = *nr_ids = 0;
727
728 return bitmap;
729}
730
731static void its_lpi_free(struct event_lpi_map *map)
732{
733 int base = map->lpi_base;
734 int nr_ids = map->nr_lpis;
735 int lpi;
736
737 spin_lock(&lpi_lock);
738
739 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
740 int chunk = its_lpi_to_chunk(lpi);
741 BUG_ON(chunk > lpi_chunks);
742 if (test_bit(chunk, lpi_bitmap)) {
743 clear_bit(chunk, lpi_bitmap);
744 } else {
745 pr_err("Bad LPI chunk %d\n", chunk);
746 }
747 }
748
749 spin_unlock(&lpi_lock);
750
751 kfree(map->lpi_map);
752 kfree(map->col_map);
753}
754
755/*
756 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
757 * deal with (one configuration byte per interrupt). PENDBASE has to
758 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
759 */
760#define LPI_PROPBASE_SZ SZ_64K
761#define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K)
762
763/*
764 * This is how many bits of ID we need, including the useless ones.
765 */
766#define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K)
767
768#define LPI_PROP_DEFAULT_PRIO 0xa0
769
770static int __init its_alloc_lpi_tables(void)
771{
772 phys_addr_t paddr;
773
774 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
775 get_order(LPI_PROPBASE_SZ));
776 if (!gic_rdists->prop_page) {
777 pr_err("Failed to allocate PROPBASE\n");
778 return -ENOMEM;
779 }
780
781 paddr = page_to_phys(gic_rdists->prop_page);
782 pr_info("GIC: using LPI property table @%pa\n", &paddr);
783
784 /* Priority 0xa0, Group-1, disabled */
785 memset(page_address(gic_rdists->prop_page),
786 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
787 LPI_PROPBASE_SZ);
788
789 /* Make sure the GIC will observe the written configuration */
790 __flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
791
792 return 0;
793}
794
795static const char *its_base_type_string[] = {
796 [GITS_BASER_TYPE_DEVICE] = "Devices",
797 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
798 [GITS_BASER_TYPE_CPU] = "Physical CPUs",
799 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
800 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
801 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
802 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
803};
804
805static void its_free_tables(struct its_node *its)
806{
807 int i;
808
809 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
810 if (its->tables[i].base) {
811 free_pages((unsigned long)its->tables[i].base,
812 its->tables[i].order);
813 its->tables[i].base = NULL;
814 }
815 }
816}
817
818static int its_alloc_tables(const char *node_name, struct its_node *its)
819{
820 int err;
821 int i;
822 int psz = SZ_64K;
823 u64 shr = GITS_BASER_InnerShareable;
824 u64 cache;
825 u64 typer;
826 u32 ids;
827
828 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
829 /*
830 * erratum 22375: only alloc 8MB table size
831 * erratum 24313: ignore memory access type
832 */
833 cache = 0;
834 ids = 0x14; /* 20 bits, 8MB */
835 } else {
836 cache = GITS_BASER_WaWb;
837 typer = readq_relaxed(its->base + GITS_TYPER);
838 ids = GITS_TYPER_DEVBITS(typer);
839 }
840
841 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
842 u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
843 u64 type = GITS_BASER_TYPE(val);
844 u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
845 int order = get_order(psz);
846 int alloc_pages;
847 u64 tmp;
848 void *base;
849
850 if (type == GITS_BASER_TYPE_NONE)
851 continue;
852
853 /*
854 * Allocate as many entries as required to fit the
855 * range of device IDs that the ITS can grok... The ID
856 * space being incredibly sparse, this results in a
857 * massive waste of memory.
858 *
859 * For other tables, only allocate a single page.
860 */
861 if (type == GITS_BASER_TYPE_DEVICE) {
862 /*
863 * 'order' was initialized earlier to the default page
864 * granule of the the ITS. We can't have an allocation
865 * smaller than that. If the requested allocation
866 * is smaller, round up to the default page granule.
867 */
868 order = max(get_order((1UL << ids) * entry_size),
869 order);
870 if (order >= MAX_ORDER) {
871 order = MAX_ORDER - 1;
872 pr_warn("%s: Device Table too large, reduce its page order to %u\n",
873 node_name, order);
874 }
875 }
876
877retry_alloc_baser:
878 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
879 if (alloc_pages > GITS_BASER_PAGES_MAX) {
880 alloc_pages = GITS_BASER_PAGES_MAX;
881 order = get_order(GITS_BASER_PAGES_MAX * psz);
882 pr_warn("%s: Device Table too large, reduce its page order to %u (%u pages)\n",
883 node_name, order, alloc_pages);
884 }
885
886 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
887 if (!base) {
888 err = -ENOMEM;
889 goto out_free;
890 }
891
892 its->tables[i].base = base;
893 its->tables[i].order = order;
894
895retry_baser:
896 val = (virt_to_phys(base) |
897 (type << GITS_BASER_TYPE_SHIFT) |
898 ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
899 cache |
900 shr |
901 GITS_BASER_VALID);
902
903 switch (psz) {
904 case SZ_4K:
905 val |= GITS_BASER_PAGE_SIZE_4K;
906 break;
907 case SZ_16K:
908 val |= GITS_BASER_PAGE_SIZE_16K;
909 break;
910 case SZ_64K:
911 val |= GITS_BASER_PAGE_SIZE_64K;
912 break;
913 }
914
915 val |= alloc_pages - 1;
916
917 writeq_relaxed(val, its->base + GITS_BASER + i * 8);
918 tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
919
920 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
921 /*
922 * Shareability didn't stick. Just use
923 * whatever the read reported, which is likely
924 * to be the only thing this redistributor
925 * supports. If that's zero, make it
926 * non-cacheable as well.
927 */
928 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
929 if (!shr) {
930 cache = GITS_BASER_nC;
931 __flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order));
932 }
933 goto retry_baser;
934 }
935
936 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
937 /*
938 * Page size didn't stick. Let's try a smaller
939 * size and retry. If we reach 4K, then
940 * something is horribly wrong...
941 */
942 free_pages((unsigned long)base, order);
943 its->tables[i].base = NULL;
944
945 switch (psz) {
946 case SZ_16K:
947 psz = SZ_4K;
948 goto retry_alloc_baser;
949 case SZ_64K:
950 psz = SZ_16K;
951 goto retry_alloc_baser;
952 }
953 }
954
955 if (val != tmp) {
956 pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
957 node_name, i,
958 (unsigned long) val, (unsigned long) tmp);
959 err = -ENXIO;
960 goto out_free;
961 }
962
963 pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
964 (int)(PAGE_ORDER_TO_SIZE(order) / entry_size),
965 its_base_type_string[type],
966 (unsigned long)virt_to_phys(base),
967 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
968 }
969
970 return 0;
971
972out_free:
973 its_free_tables(its);
974
975 return err;
976}
977
978static int its_alloc_collections(struct its_node *its)
979{
980 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
981 GFP_KERNEL);
982 if (!its->collections)
983 return -ENOMEM;
984
985 return 0;
986}
987
988static void its_cpu_init_lpis(void)
989{
990 void __iomem *rbase = gic_data_rdist_rd_base();
991 struct page *pend_page;
992 u64 val, tmp;
993
994 /* If we didn't allocate the pending table yet, do it now */
995 pend_page = gic_data_rdist()->pend_page;
996 if (!pend_page) {
997 phys_addr_t paddr;
998 /*
999 * The pending pages have to be at least 64kB aligned,
1000 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1001 */
1002 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1003 get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1004 if (!pend_page) {
1005 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1006 smp_processor_id());
1007 return;
1008 }
1009
1010 /* Make sure the GIC will observe the zero-ed page */
1011 __flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1012
1013 paddr = page_to_phys(pend_page);
1014 pr_info("CPU%d: using LPI pending table @%pa\n",
1015 smp_processor_id(), &paddr);
1016 gic_data_rdist()->pend_page = pend_page;
1017 }
1018
1019 /* Disable LPIs */
1020 val = readl_relaxed(rbase + GICR_CTLR);
1021 val &= ~GICR_CTLR_ENABLE_LPIS;
1022 writel_relaxed(val, rbase + GICR_CTLR);
1023
1024 /*
1025 * Make sure any change to the table is observable by the GIC.
1026 */
1027 dsb(sy);
1028
1029 /* set PROPBASE */
1030 val = (page_to_phys(gic_rdists->prop_page) |
1031 GICR_PROPBASER_InnerShareable |
1032 GICR_PROPBASER_WaWb |
1033 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1034
1035 writeq_relaxed(val, rbase + GICR_PROPBASER);
1036 tmp = readq_relaxed(rbase + GICR_PROPBASER);
1037
1038 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1039 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1040 /*
1041 * The HW reports non-shareable, we must
1042 * remove the cacheability attributes as
1043 * well.
1044 */
1045 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1046 GICR_PROPBASER_CACHEABILITY_MASK);
1047 val |= GICR_PROPBASER_nC;
1048 writeq_relaxed(val, rbase + GICR_PROPBASER);
1049 }
1050 pr_info_once("GIC: using cache flushing for LPI property table\n");
1051 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1052 }
1053
1054 /* set PENDBASE */
1055 val = (page_to_phys(pend_page) |
1056 GICR_PENDBASER_InnerShareable |
1057 GICR_PENDBASER_WaWb);
1058
1059 writeq_relaxed(val, rbase + GICR_PENDBASER);
1060 tmp = readq_relaxed(rbase + GICR_PENDBASER);
1061
1062 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1063 /*
1064 * The HW reports non-shareable, we must remove the
1065 * cacheability attributes as well.
1066 */
1067 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1068 GICR_PENDBASER_CACHEABILITY_MASK);
1069 val |= GICR_PENDBASER_nC;
1070 writeq_relaxed(val, rbase + GICR_PENDBASER);
1071 }
1072
1073 /* Enable LPIs */
1074 val = readl_relaxed(rbase + GICR_CTLR);
1075 val |= GICR_CTLR_ENABLE_LPIS;
1076 writel_relaxed(val, rbase + GICR_CTLR);
1077
1078 /* Make sure the GIC has seen the above */
1079 dsb(sy);
1080}
1081
1082static void its_cpu_init_collection(void)
1083{
1084 struct its_node *its;
1085 int cpu;
1086
1087 spin_lock(&its_lock);
1088 cpu = smp_processor_id();
1089
1090 list_for_each_entry(its, &its_nodes, entry) {
1091 u64 target;
1092
1093 /*
1094 * We now have to bind each collection to its target
1095 * redistributor.
1096 */
1097 if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1098 /*
1099 * This ITS wants the physical address of the
1100 * redistributor.
1101 */
1102 target = gic_data_rdist()->phys_base;
1103 } else {
1104 /*
1105 * This ITS wants a linear CPU number.
1106 */
1107 target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1108 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1109 }
1110
1111 /* Perform collection mapping */
1112 its->collections[cpu].target_address = target;
1113 its->collections[cpu].col_id = cpu;
1114
1115 its_send_mapc(its, &its->collections[cpu], 1);
1116 its_send_invall(its, &its->collections[cpu]);
1117 }
1118
1119 spin_unlock(&its_lock);
1120}
1121
1122static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1123{
1124 struct its_device *its_dev = NULL, *tmp;
1125 unsigned long flags;
1126
1127 raw_spin_lock_irqsave(&its->lock, flags);
1128
1129 list_for_each_entry(tmp, &its->its_device_list, entry) {
1130 if (tmp->device_id == dev_id) {
1131 its_dev = tmp;
1132 break;
1133 }
1134 }
1135
1136 raw_spin_unlock_irqrestore(&its->lock, flags);
1137
1138 return its_dev;
1139}
1140
1141static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1142 int nvecs)
1143{
1144 struct its_device *dev;
1145 unsigned long *lpi_map;
1146 unsigned long flags;
1147 u16 *col_map = NULL;
1148 void *itt;
1149 int lpi_base;
1150 int nr_lpis;
1151 int nr_ites;
1152 int sz;
1153
1154 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1155 /*
1156 * At least one bit of EventID is being used, hence a minimum
1157 * of two entries. No, the architecture doesn't let you
1158 * express an ITT with a single entry.
1159 */
1160 nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1161 sz = nr_ites * its->ite_size;
1162 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1163 itt = kzalloc(sz, GFP_KERNEL);
1164 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1165 if (lpi_map)
1166 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1167
1168 if (!dev || !itt || !lpi_map || !col_map) {
1169 kfree(dev);
1170 kfree(itt);
1171 kfree(lpi_map);
1172 kfree(col_map);
1173 return NULL;
1174 }
1175
1176 __flush_dcache_area(itt, sz);
1177
1178 dev->its = its;
1179 dev->itt = itt;
1180 dev->nr_ites = nr_ites;
1181 dev->event_map.lpi_map = lpi_map;
1182 dev->event_map.col_map = col_map;
1183 dev->event_map.lpi_base = lpi_base;
1184 dev->event_map.nr_lpis = nr_lpis;
1185 dev->device_id = dev_id;
1186 INIT_LIST_HEAD(&dev->entry);
1187
1188 raw_spin_lock_irqsave(&its->lock, flags);
1189 list_add(&dev->entry, &its->its_device_list);
1190 raw_spin_unlock_irqrestore(&its->lock, flags);
1191
1192 /* Map device to its ITT */
1193 its_send_mapd(dev, 1);
1194
1195 return dev;
1196}
1197
1198static void its_free_device(struct its_device *its_dev)
1199{
1200 unsigned long flags;
1201
1202 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1203 list_del(&its_dev->entry);
1204 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1205 kfree(its_dev->itt);
1206 kfree(its_dev);
1207}
1208
1209static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1210{
1211 int idx;
1212
1213 idx = find_first_zero_bit(dev->event_map.lpi_map,
1214 dev->event_map.nr_lpis);
1215 if (idx == dev->event_map.nr_lpis)
1216 return -ENOSPC;
1217
1218 *hwirq = dev->event_map.lpi_base + idx;
1219 set_bit(idx, dev->event_map.lpi_map);
1220
1221 return 0;
1222}
1223
1224static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1225 int nvec, msi_alloc_info_t *info)
1226{
1227 struct its_node *its;
1228 struct its_device *its_dev;
1229 struct msi_domain_info *msi_info;
1230 u32 dev_id;
1231
1232 /*
1233 * We ignore "dev" entierely, and rely on the dev_id that has
1234 * been passed via the scratchpad. This limits this domain's
1235 * usefulness to upper layers that definitely know that they
1236 * are built on top of the ITS.
1237 */
1238 dev_id = info->scratchpad[0].ul;
1239
1240 msi_info = msi_get_domain_info(domain);
1241 its = msi_info->data;
1242
1243 its_dev = its_find_device(its, dev_id);
1244 if (its_dev) {
1245 /*
1246 * We already have seen this ID, probably through
1247 * another alias (PCI bridge of some sort). No need to
1248 * create the device.
1249 */
1250 pr_debug("Reusing ITT for devID %x\n", dev_id);
1251 goto out;
1252 }
1253
1254 its_dev = its_create_device(its, dev_id, nvec);
1255 if (!its_dev)
1256 return -ENOMEM;
1257
1258 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1259out:
1260 info->scratchpad[0].ptr = its_dev;
1261 return 0;
1262}
1263
1264static struct msi_domain_ops its_msi_domain_ops = {
1265 .msi_prepare = its_msi_prepare,
1266};
1267
1268static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1269 unsigned int virq,
1270 irq_hw_number_t hwirq)
1271{
1272 struct irq_fwspec fwspec;
1273
1274 if (irq_domain_get_of_node(domain->parent)) {
1275 fwspec.fwnode = domain->parent->fwnode;
1276 fwspec.param_count = 3;
1277 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1278 fwspec.param[1] = hwirq;
1279 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1280 } else {
1281 return -EINVAL;
1282 }
1283
1284 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1285}
1286
1287static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1288 unsigned int nr_irqs, void *args)
1289{
1290 msi_alloc_info_t *info = args;
1291 struct its_device *its_dev = info->scratchpad[0].ptr;
1292 irq_hw_number_t hwirq;
1293 int err;
1294 int i;
1295
1296 for (i = 0; i < nr_irqs; i++) {
1297 err = its_alloc_device_irq(its_dev, &hwirq);
1298 if (err)
1299 return err;
1300
1301 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1302 if (err)
1303 return err;
1304
1305 irq_domain_set_hwirq_and_chip(domain, virq + i,
1306 hwirq, &its_irq_chip, its_dev);
1307 pr_debug("ID:%d pID:%d vID:%d\n",
1308 (int)(hwirq - its_dev->event_map.lpi_base),
1309 (int) hwirq, virq + i);
1310 }
1311
1312 return 0;
1313}
1314
1315static void its_irq_domain_activate(struct irq_domain *domain,
1316 struct irq_data *d)
1317{
1318 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1319 u32 event = its_get_event_id(d);
1320
1321 /* Bind the LPI to the first possible CPU */
1322 its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask);
1323
1324 /* Map the GIC IRQ and event to the device */
1325 its_send_mapvi(its_dev, d->hwirq, event);
1326}
1327
1328static void its_irq_domain_deactivate(struct irq_domain *domain,
1329 struct irq_data *d)
1330{
1331 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1332 u32 event = its_get_event_id(d);
1333
1334 /* Stop the delivery of interrupts */
1335 its_send_discard(its_dev, event);
1336}
1337
1338static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1339 unsigned int nr_irqs)
1340{
1341 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1342 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1343 int i;
1344
1345 for (i = 0; i < nr_irqs; i++) {
1346 struct irq_data *data = irq_domain_get_irq_data(domain,
1347 virq + i);
1348 u32 event = its_get_event_id(data);
1349
1350 /* Mark interrupt index as unused */
1351 clear_bit(event, its_dev->event_map.lpi_map);
1352
1353 /* Nuke the entry in the domain */
1354 irq_domain_reset_irq_data(data);
1355 }
1356
1357 /* If all interrupts have been freed, start mopping the floor */
1358 if (bitmap_empty(its_dev->event_map.lpi_map,
1359 its_dev->event_map.nr_lpis)) {
1360 its_lpi_free(&its_dev->event_map);
1361
1362 /* Unmap device/itt */
1363 its_send_mapd(its_dev, 0);
1364 its_free_device(its_dev);
1365 }
1366
1367 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1368}
1369
1370static const struct irq_domain_ops its_domain_ops = {
1371 .alloc = its_irq_domain_alloc,
1372 .free = its_irq_domain_free,
1373 .activate = its_irq_domain_activate,
1374 .deactivate = its_irq_domain_deactivate,
1375};
1376
1377static int its_force_quiescent(void __iomem *base)
1378{
1379 u32 count = 1000000; /* 1s */
1380 u32 val;
1381
1382 val = readl_relaxed(base + GITS_CTLR);
1383 if (val & GITS_CTLR_QUIESCENT)
1384 return 0;
1385
1386 /* Disable the generation of all interrupts to this ITS */
1387 val &= ~GITS_CTLR_ENABLE;
1388 writel_relaxed(val, base + GITS_CTLR);
1389
1390 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
1391 while (1) {
1392 val = readl_relaxed(base + GITS_CTLR);
1393 if (val & GITS_CTLR_QUIESCENT)
1394 return 0;
1395
1396 count--;
1397 if (!count)
1398 return -EBUSY;
1399
1400 cpu_relax();
1401 udelay(1);
1402 }
1403}
1404
1405static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1406{
1407 struct its_node *its = data;
1408
1409 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1410}
1411
1412static const struct gic_quirk its_quirks[] = {
1413#ifdef CONFIG_CAVIUM_ERRATUM_22375
1414 {
1415 .desc = "ITS: Cavium errata 22375, 24313",
1416 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1417 .mask = 0xffff0fff,
1418 .init = its_enable_quirk_cavium_22375,
1419 },
1420#endif
1421 {
1422 }
1423};
1424
1425static void its_enable_quirks(struct its_node *its)
1426{
1427 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1428
1429 gic_enable_quirks(iidr, its_quirks, its);
1430}
1431
1432static int __init its_probe(struct device_node *node,
1433 struct irq_domain *parent)
1434{
1435 struct resource res;
1436 struct its_node *its;
1437 void __iomem *its_base;
1438 struct irq_domain *inner_domain;
1439 u32 val;
1440 u64 baser, tmp;
1441 int err;
1442
1443 err = of_address_to_resource(node, 0, &res);
1444 if (err) {
1445 pr_warn("%s: no regs?\n", node->full_name);
1446 return -ENXIO;
1447 }
1448
1449 its_base = ioremap(res.start, resource_size(&res));
1450 if (!its_base) {
1451 pr_warn("%s: unable to map registers\n", node->full_name);
1452 return -ENOMEM;
1453 }
1454
1455 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1456 if (val != 0x30 && val != 0x40) {
1457 pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1458 err = -ENODEV;
1459 goto out_unmap;
1460 }
1461
1462 err = its_force_quiescent(its_base);
1463 if (err) {
1464 pr_warn("%s: failed to quiesce, giving up\n",
1465 node->full_name);
1466 goto out_unmap;
1467 }
1468
1469 pr_info("ITS: %s\n", node->full_name);
1470
1471 its = kzalloc(sizeof(*its), GFP_KERNEL);
1472 if (!its) {
1473 err = -ENOMEM;
1474 goto out_unmap;
1475 }
1476
1477 raw_spin_lock_init(&its->lock);
1478 INIT_LIST_HEAD(&its->entry);
1479 INIT_LIST_HEAD(&its->its_device_list);
1480 its->base = its_base;
1481 its->phys_base = res.start;
1482 its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1483
1484 its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1485 if (!its->cmd_base) {
1486 err = -ENOMEM;
1487 goto out_free_its;
1488 }
1489 its->cmd_write = its->cmd_base;
1490
1491 its_enable_quirks(its);
1492
1493 err = its_alloc_tables(node->full_name, its);
1494 if (err)
1495 goto out_free_cmd;
1496
1497 err = its_alloc_collections(its);
1498 if (err)
1499 goto out_free_tables;
1500
1501 baser = (virt_to_phys(its->cmd_base) |
1502 GITS_CBASER_WaWb |
1503 GITS_CBASER_InnerShareable |
1504 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
1505 GITS_CBASER_VALID);
1506
1507 writeq_relaxed(baser, its->base + GITS_CBASER);
1508 tmp = readq_relaxed(its->base + GITS_CBASER);
1509
1510 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1511 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1512 /*
1513 * The HW reports non-shareable, we must
1514 * remove the cacheability attributes as
1515 * well.
1516 */
1517 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1518 GITS_CBASER_CACHEABILITY_MASK);
1519 baser |= GITS_CBASER_nC;
1520 writeq_relaxed(baser, its->base + GITS_CBASER);
1521 }
1522 pr_info("ITS: using cache flushing for cmd queue\n");
1523 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1524 }
1525
1526 writeq_relaxed(0, its->base + GITS_CWRITER);
1527 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1528
1529 if (of_property_read_bool(node, "msi-controller")) {
1530 struct msi_domain_info *info;
1531
1532 info = kzalloc(sizeof(*info), GFP_KERNEL);
1533 if (!info) {
1534 err = -ENOMEM;
1535 goto out_free_tables;
1536 }
1537
1538 inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1539 if (!inner_domain) {
1540 err = -ENOMEM;
1541 kfree(info);
1542 goto out_free_tables;
1543 }
1544
1545 inner_domain->parent = parent;
1546 inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1547 info->ops = &its_msi_domain_ops;
1548 info->data = its;
1549 inner_domain->host_data = info;
1550 }
1551
1552 spin_lock(&its_lock);
1553 list_add(&its->entry, &its_nodes);
1554 spin_unlock(&its_lock);
1555
1556 return 0;
1557
1558out_free_tables:
1559 its_free_tables(its);
1560out_free_cmd:
1561 kfree(its->cmd_base);
1562out_free_its:
1563 kfree(its);
1564out_unmap:
1565 iounmap(its_base);
1566 pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1567 return err;
1568}
1569
1570static bool gic_rdists_supports_plpis(void)
1571{
1572 return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1573}
1574
1575int its_cpu_init(void)
1576{
1577 if (!list_empty(&its_nodes)) {
1578 if (!gic_rdists_supports_plpis()) {
1579 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1580 return -ENXIO;
1581 }
1582 its_cpu_init_lpis();
1583 its_cpu_init_collection();
1584 }
1585
1586 return 0;
1587}
1588
1589static struct of_device_id its_device_id[] = {
1590 { .compatible = "arm,gic-v3-its", },
1591 {},
1592};
1593
1594int __init its_init(struct device_node *node, struct rdists *rdists,
1595 struct irq_domain *parent_domain)
1596{
1597 struct device_node *np;
1598
1599 for (np = of_find_matching_node(node, its_device_id); np;
1600 np = of_find_matching_node(np, its_device_id)) {
1601 its_probe(np, parent_domain);
1602 }
1603
1604 if (list_empty(&its_nodes)) {
1605 pr_warn("ITS: No ITS available, not enabling LPIs\n");
1606 return -ENXIO;
1607 }
1608
1609 gic_rdists = rdists;
1610 its_alloc_lpi_tables();
1611 its_lpi_init(rdists->id_bits);
1612
1613 return 0;
1614}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7#include <linux/acpi.h>
8#include <linux/acpi_iort.h>
9#include <linux/bitfield.h>
10#include <linux/bitmap.h>
11#include <linux/cpu.h>
12#include <linux/crash_dump.h>
13#include <linux/delay.h>
14#include <linux/dma-iommu.h>
15#include <linux/efi.h>
16#include <linux/interrupt.h>
17#include <linux/iopoll.h>
18#include <linux/irqdomain.h>
19#include <linux/list.h>
20#include <linux/log2.h>
21#include <linux/memblock.h>
22#include <linux/mm.h>
23#include <linux/msi.h>
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
27#include <linux/of_pci.h>
28#include <linux/of_platform.h>
29#include <linux/percpu.h>
30#include <linux/slab.h>
31#include <linux/syscore_ops.h>
32
33#include <linux/irqchip.h>
34#include <linux/irqchip/arm-gic-v3.h>
35#include <linux/irqchip/arm-gic-v4.h>
36
37#include <asm/cputype.h>
38#include <asm/exception.h>
39
40#include "irq-gic-common.h"
41
42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44#define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
45#define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3)
46
47#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
48#define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
49
50static u32 lpi_id_bits;
51
52/*
53 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
54 * deal with (one configuration byte per interrupt). PENDBASE has to
55 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
56 */
57#define LPI_NRBITS lpi_id_bits
58#define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
59#define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
60
61#define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
62
63/*
64 * Collection structure - just an ID, and a redistributor address to
65 * ping. We use one per CPU as a bag of interrupts assigned to this
66 * CPU.
67 */
68struct its_collection {
69 u64 target_address;
70 u16 col_id;
71};
72
73/*
74 * The ITS_BASER structure - contains memory information, cached
75 * value of BASER register configuration and ITS page size.
76 */
77struct its_baser {
78 void *base;
79 u64 val;
80 u32 order;
81 u32 psz;
82};
83
84struct its_device;
85
86/*
87 * The ITS structure - contains most of the infrastructure, with the
88 * top-level MSI domain, the command queue, the collections, and the
89 * list of devices writing to it.
90 *
91 * dev_alloc_lock has to be taken for device allocations, while the
92 * spinlock must be taken to parse data structures such as the device
93 * list.
94 */
95struct its_node {
96 raw_spinlock_t lock;
97 struct mutex dev_alloc_lock;
98 struct list_head entry;
99 void __iomem *base;
100 void __iomem *sgir_base;
101 phys_addr_t phys_base;
102 struct its_cmd_block *cmd_base;
103 struct its_cmd_block *cmd_write;
104 struct its_baser tables[GITS_BASER_NR_REGS];
105 struct its_collection *collections;
106 struct fwnode_handle *fwnode_handle;
107 u64 (*get_msi_base)(struct its_device *its_dev);
108 u64 typer;
109 u64 cbaser_save;
110 u32 ctlr_save;
111 u32 mpidr;
112 struct list_head its_device_list;
113 u64 flags;
114 unsigned long list_nr;
115 int numa_node;
116 unsigned int msi_domain_flags;
117 u32 pre_its_base; /* for Socionext Synquacer */
118 int vlpi_redist_offset;
119};
120
121#define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
122#define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
123#define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
124
125#define ITS_ITT_ALIGN SZ_256
126
127/* The maximum number of VPEID bits supported by VLPI commands */
128#define ITS_MAX_VPEID_BITS \
129 ({ \
130 int nvpeid = 16; \
131 if (gic_rdists->has_rvpeid && \
132 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
133 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
134 GICD_TYPER2_VID); \
135 \
136 nvpeid; \
137 })
138#define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
139
140/* Convert page order to size in bytes */
141#define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
142
143struct event_lpi_map {
144 unsigned long *lpi_map;
145 u16 *col_map;
146 irq_hw_number_t lpi_base;
147 int nr_lpis;
148 raw_spinlock_t vlpi_lock;
149 struct its_vm *vm;
150 struct its_vlpi_map *vlpi_maps;
151 int nr_vlpis;
152};
153
154/*
155 * The ITS view of a device - belongs to an ITS, owns an interrupt
156 * translation table, and a list of interrupts. If it some of its
157 * LPIs are injected into a guest (GICv4), the event_map.vm field
158 * indicates which one.
159 */
160struct its_device {
161 struct list_head entry;
162 struct its_node *its;
163 struct event_lpi_map event_map;
164 void *itt;
165 u32 nr_ites;
166 u32 device_id;
167 bool shared;
168};
169
170static struct {
171 raw_spinlock_t lock;
172 struct its_device *dev;
173 struct its_vpe **vpes;
174 int next_victim;
175} vpe_proxy;
176
177struct cpu_lpi_count {
178 atomic_t managed;
179 atomic_t unmanaged;
180};
181
182static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
183
184static LIST_HEAD(its_nodes);
185static DEFINE_RAW_SPINLOCK(its_lock);
186static struct rdists *gic_rdists;
187static struct irq_domain *its_parent;
188
189static unsigned long its_list_map;
190static u16 vmovp_seq_num;
191static DEFINE_RAW_SPINLOCK(vmovp_lock);
192
193static DEFINE_IDA(its_vpeid_ida);
194
195#define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
196#define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
197#define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
198#define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
199
200/*
201 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
202 * always have vSGIs mapped.
203 */
204static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
205{
206 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
207}
208
209static u16 get_its_list(struct its_vm *vm)
210{
211 struct its_node *its;
212 unsigned long its_list = 0;
213
214 list_for_each_entry(its, &its_nodes, entry) {
215 if (!is_v4(its))
216 continue;
217
218 if (require_its_list_vmovp(vm, its))
219 __set_bit(its->list_nr, &its_list);
220 }
221
222 return (u16)its_list;
223}
224
225static inline u32 its_get_event_id(struct irq_data *d)
226{
227 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
228 return d->hwirq - its_dev->event_map.lpi_base;
229}
230
231static struct its_collection *dev_event_to_col(struct its_device *its_dev,
232 u32 event)
233{
234 struct its_node *its = its_dev->its;
235
236 return its->collections + its_dev->event_map.col_map[event];
237}
238
239static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
240 u32 event)
241{
242 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
243 return NULL;
244
245 return &its_dev->event_map.vlpi_maps[event];
246}
247
248static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
249{
250 if (irqd_is_forwarded_to_vcpu(d)) {
251 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
252 u32 event = its_get_event_id(d);
253
254 return dev_event_to_vlpi_map(its_dev, event);
255 }
256
257 return NULL;
258}
259
260static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
261{
262 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
263 return vpe->col_idx;
264}
265
266static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
267{
268 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
269}
270
271static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
272{
273 struct its_vlpi_map *map = get_vlpi_map(d);
274 int cpu;
275
276 if (map) {
277 cpu = vpe_to_cpuid_lock(map->vpe, flags);
278 } else {
279 /* Physical LPIs are already locked via the irq_desc lock */
280 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
281 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
282 /* Keep GCC quiet... */
283 *flags = 0;
284 }
285
286 return cpu;
287}
288
289static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
290{
291 struct its_vlpi_map *map = get_vlpi_map(d);
292
293 if (map)
294 vpe_to_cpuid_unlock(map->vpe, flags);
295}
296
297static struct its_collection *valid_col(struct its_collection *col)
298{
299 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
300 return NULL;
301
302 return col;
303}
304
305static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
306{
307 if (valid_col(its->collections + vpe->col_idx))
308 return vpe;
309
310 return NULL;
311}
312
313/*
314 * ITS command descriptors - parameters to be encoded in a command
315 * block.
316 */
317struct its_cmd_desc {
318 union {
319 struct {
320 struct its_device *dev;
321 u32 event_id;
322 } its_inv_cmd;
323
324 struct {
325 struct its_device *dev;
326 u32 event_id;
327 } its_clear_cmd;
328
329 struct {
330 struct its_device *dev;
331 u32 event_id;
332 } its_int_cmd;
333
334 struct {
335 struct its_device *dev;
336 int valid;
337 } its_mapd_cmd;
338
339 struct {
340 struct its_collection *col;
341 int valid;
342 } its_mapc_cmd;
343
344 struct {
345 struct its_device *dev;
346 u32 phys_id;
347 u32 event_id;
348 } its_mapti_cmd;
349
350 struct {
351 struct its_device *dev;
352 struct its_collection *col;
353 u32 event_id;
354 } its_movi_cmd;
355
356 struct {
357 struct its_device *dev;
358 u32 event_id;
359 } its_discard_cmd;
360
361 struct {
362 struct its_collection *col;
363 } its_invall_cmd;
364
365 struct {
366 struct its_vpe *vpe;
367 } its_vinvall_cmd;
368
369 struct {
370 struct its_vpe *vpe;
371 struct its_collection *col;
372 bool valid;
373 } its_vmapp_cmd;
374
375 struct {
376 struct its_vpe *vpe;
377 struct its_device *dev;
378 u32 virt_id;
379 u32 event_id;
380 bool db_enabled;
381 } its_vmapti_cmd;
382
383 struct {
384 struct its_vpe *vpe;
385 struct its_device *dev;
386 u32 event_id;
387 bool db_enabled;
388 } its_vmovi_cmd;
389
390 struct {
391 struct its_vpe *vpe;
392 struct its_collection *col;
393 u16 seq_num;
394 u16 its_list;
395 } its_vmovp_cmd;
396
397 struct {
398 struct its_vpe *vpe;
399 } its_invdb_cmd;
400
401 struct {
402 struct its_vpe *vpe;
403 u8 sgi;
404 u8 priority;
405 bool enable;
406 bool group;
407 bool clear;
408 } its_vsgi_cmd;
409 };
410};
411
412/*
413 * The ITS command block, which is what the ITS actually parses.
414 */
415struct its_cmd_block {
416 union {
417 u64 raw_cmd[4];
418 __le64 raw_cmd_le[4];
419 };
420};
421
422#define ITS_CMD_QUEUE_SZ SZ_64K
423#define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
424
425typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
426 struct its_cmd_block *,
427 struct its_cmd_desc *);
428
429typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
430 struct its_cmd_block *,
431 struct its_cmd_desc *);
432
433static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
434{
435 u64 mask = GENMASK_ULL(h, l);
436 *raw_cmd &= ~mask;
437 *raw_cmd |= (val << l) & mask;
438}
439
440static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
441{
442 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
443}
444
445static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
446{
447 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
448}
449
450static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
451{
452 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
453}
454
455static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
456{
457 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
458}
459
460static void its_encode_size(struct its_cmd_block *cmd, u8 size)
461{
462 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
463}
464
465static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
466{
467 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
468}
469
470static void its_encode_valid(struct its_cmd_block *cmd, int valid)
471{
472 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
473}
474
475static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
476{
477 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
478}
479
480static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
481{
482 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
483}
484
485static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
486{
487 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
488}
489
490static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
491{
492 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
493}
494
495static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
496{
497 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
498}
499
500static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
501{
502 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
503}
504
505static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
506{
507 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
508}
509
510static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
511{
512 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
513}
514
515static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
516{
517 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
518}
519
520static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
521{
522 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
523}
524
525static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
526{
527 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
528}
529
530static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
531{
532 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
533}
534
535static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
536{
537 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
538}
539
540static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
541 u32 vpe_db_lpi)
542{
543 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
544}
545
546static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
547 u32 vpe_db_lpi)
548{
549 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
550}
551
552static void its_encode_db(struct its_cmd_block *cmd, bool db)
553{
554 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
555}
556
557static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
558{
559 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
560}
561
562static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
563{
564 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
565}
566
567static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
568{
569 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
570}
571
572static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
573{
574 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
575}
576
577static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
578{
579 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
580}
581
582static inline void its_fixup_cmd(struct its_cmd_block *cmd)
583{
584 /* Let's fixup BE commands */
585 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
586 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
587 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
588 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
589}
590
591static struct its_collection *its_build_mapd_cmd(struct its_node *its,
592 struct its_cmd_block *cmd,
593 struct its_cmd_desc *desc)
594{
595 unsigned long itt_addr;
596 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
597
598 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
599 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
600
601 its_encode_cmd(cmd, GITS_CMD_MAPD);
602 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
603 its_encode_size(cmd, size - 1);
604 its_encode_itt(cmd, itt_addr);
605 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
606
607 its_fixup_cmd(cmd);
608
609 return NULL;
610}
611
612static struct its_collection *its_build_mapc_cmd(struct its_node *its,
613 struct its_cmd_block *cmd,
614 struct its_cmd_desc *desc)
615{
616 its_encode_cmd(cmd, GITS_CMD_MAPC);
617 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
618 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
619 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
620
621 its_fixup_cmd(cmd);
622
623 return desc->its_mapc_cmd.col;
624}
625
626static struct its_collection *its_build_mapti_cmd(struct its_node *its,
627 struct its_cmd_block *cmd,
628 struct its_cmd_desc *desc)
629{
630 struct its_collection *col;
631
632 col = dev_event_to_col(desc->its_mapti_cmd.dev,
633 desc->its_mapti_cmd.event_id);
634
635 its_encode_cmd(cmd, GITS_CMD_MAPTI);
636 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
637 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
638 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
639 its_encode_collection(cmd, col->col_id);
640
641 its_fixup_cmd(cmd);
642
643 return valid_col(col);
644}
645
646static struct its_collection *its_build_movi_cmd(struct its_node *its,
647 struct its_cmd_block *cmd,
648 struct its_cmd_desc *desc)
649{
650 struct its_collection *col;
651
652 col = dev_event_to_col(desc->its_movi_cmd.dev,
653 desc->its_movi_cmd.event_id);
654
655 its_encode_cmd(cmd, GITS_CMD_MOVI);
656 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
657 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
658 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
659
660 its_fixup_cmd(cmd);
661
662 return valid_col(col);
663}
664
665static struct its_collection *its_build_discard_cmd(struct its_node *its,
666 struct its_cmd_block *cmd,
667 struct its_cmd_desc *desc)
668{
669 struct its_collection *col;
670
671 col = dev_event_to_col(desc->its_discard_cmd.dev,
672 desc->its_discard_cmd.event_id);
673
674 its_encode_cmd(cmd, GITS_CMD_DISCARD);
675 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
676 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
677
678 its_fixup_cmd(cmd);
679
680 return valid_col(col);
681}
682
683static struct its_collection *its_build_inv_cmd(struct its_node *its,
684 struct its_cmd_block *cmd,
685 struct its_cmd_desc *desc)
686{
687 struct its_collection *col;
688
689 col = dev_event_to_col(desc->its_inv_cmd.dev,
690 desc->its_inv_cmd.event_id);
691
692 its_encode_cmd(cmd, GITS_CMD_INV);
693 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
694 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
695
696 its_fixup_cmd(cmd);
697
698 return valid_col(col);
699}
700
701static struct its_collection *its_build_int_cmd(struct its_node *its,
702 struct its_cmd_block *cmd,
703 struct its_cmd_desc *desc)
704{
705 struct its_collection *col;
706
707 col = dev_event_to_col(desc->its_int_cmd.dev,
708 desc->its_int_cmd.event_id);
709
710 its_encode_cmd(cmd, GITS_CMD_INT);
711 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
712 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
713
714 its_fixup_cmd(cmd);
715
716 return valid_col(col);
717}
718
719static struct its_collection *its_build_clear_cmd(struct its_node *its,
720 struct its_cmd_block *cmd,
721 struct its_cmd_desc *desc)
722{
723 struct its_collection *col;
724
725 col = dev_event_to_col(desc->its_clear_cmd.dev,
726 desc->its_clear_cmd.event_id);
727
728 its_encode_cmd(cmd, GITS_CMD_CLEAR);
729 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
730 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
731
732 its_fixup_cmd(cmd);
733
734 return valid_col(col);
735}
736
737static struct its_collection *its_build_invall_cmd(struct its_node *its,
738 struct its_cmd_block *cmd,
739 struct its_cmd_desc *desc)
740{
741 its_encode_cmd(cmd, GITS_CMD_INVALL);
742 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
743
744 its_fixup_cmd(cmd);
745
746 return NULL;
747}
748
749static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
750 struct its_cmd_block *cmd,
751 struct its_cmd_desc *desc)
752{
753 its_encode_cmd(cmd, GITS_CMD_VINVALL);
754 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
755
756 its_fixup_cmd(cmd);
757
758 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
759}
760
761static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
762 struct its_cmd_block *cmd,
763 struct its_cmd_desc *desc)
764{
765 unsigned long vpt_addr, vconf_addr;
766 u64 target;
767 bool alloc;
768
769 its_encode_cmd(cmd, GITS_CMD_VMAPP);
770 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
771 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
772
773 if (!desc->its_vmapp_cmd.valid) {
774 if (is_v4_1(its)) {
775 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
776 its_encode_alloc(cmd, alloc);
777 }
778
779 goto out;
780 }
781
782 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
783 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
784
785 its_encode_target(cmd, target);
786 its_encode_vpt_addr(cmd, vpt_addr);
787 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
788
789 if (!is_v4_1(its))
790 goto out;
791
792 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
793
794 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
795
796 its_encode_alloc(cmd, alloc);
797
798 /* We can only signal PTZ when alloc==1. Why do we have two bits? */
799 its_encode_ptz(cmd, alloc);
800 its_encode_vconf_addr(cmd, vconf_addr);
801 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
802
803out:
804 its_fixup_cmd(cmd);
805
806 return valid_vpe(its, desc->its_vmapp_cmd.vpe);
807}
808
809static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
810 struct its_cmd_block *cmd,
811 struct its_cmd_desc *desc)
812{
813 u32 db;
814
815 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
816 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
817 else
818 db = 1023;
819
820 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
821 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
822 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
823 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
824 its_encode_db_phys_id(cmd, db);
825 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
826
827 its_fixup_cmd(cmd);
828
829 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
830}
831
832static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
833 struct its_cmd_block *cmd,
834 struct its_cmd_desc *desc)
835{
836 u32 db;
837
838 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
839 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
840 else
841 db = 1023;
842
843 its_encode_cmd(cmd, GITS_CMD_VMOVI);
844 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
845 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
846 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
847 its_encode_db_phys_id(cmd, db);
848 its_encode_db_valid(cmd, true);
849
850 its_fixup_cmd(cmd);
851
852 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
853}
854
855static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
856 struct its_cmd_block *cmd,
857 struct its_cmd_desc *desc)
858{
859 u64 target;
860
861 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
862 its_encode_cmd(cmd, GITS_CMD_VMOVP);
863 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
864 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
865 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
866 its_encode_target(cmd, target);
867
868 if (is_v4_1(its)) {
869 its_encode_db(cmd, true);
870 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
871 }
872
873 its_fixup_cmd(cmd);
874
875 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
876}
877
878static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
879 struct its_cmd_block *cmd,
880 struct its_cmd_desc *desc)
881{
882 struct its_vlpi_map *map;
883
884 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
885 desc->its_inv_cmd.event_id);
886
887 its_encode_cmd(cmd, GITS_CMD_INV);
888 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
889 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
890
891 its_fixup_cmd(cmd);
892
893 return valid_vpe(its, map->vpe);
894}
895
896static struct its_vpe *its_build_vint_cmd(struct its_node *its,
897 struct its_cmd_block *cmd,
898 struct its_cmd_desc *desc)
899{
900 struct its_vlpi_map *map;
901
902 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
903 desc->its_int_cmd.event_id);
904
905 its_encode_cmd(cmd, GITS_CMD_INT);
906 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
907 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
908
909 its_fixup_cmd(cmd);
910
911 return valid_vpe(its, map->vpe);
912}
913
914static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
915 struct its_cmd_block *cmd,
916 struct its_cmd_desc *desc)
917{
918 struct its_vlpi_map *map;
919
920 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
921 desc->its_clear_cmd.event_id);
922
923 its_encode_cmd(cmd, GITS_CMD_CLEAR);
924 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
925 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
926
927 its_fixup_cmd(cmd);
928
929 return valid_vpe(its, map->vpe);
930}
931
932static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
933 struct its_cmd_block *cmd,
934 struct its_cmd_desc *desc)
935{
936 if (WARN_ON(!is_v4_1(its)))
937 return NULL;
938
939 its_encode_cmd(cmd, GITS_CMD_INVDB);
940 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
941
942 its_fixup_cmd(cmd);
943
944 return valid_vpe(its, desc->its_invdb_cmd.vpe);
945}
946
947static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
948 struct its_cmd_block *cmd,
949 struct its_cmd_desc *desc)
950{
951 if (WARN_ON(!is_v4_1(its)))
952 return NULL;
953
954 its_encode_cmd(cmd, GITS_CMD_VSGI);
955 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
956 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
957 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
958 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
959 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
960 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
961
962 its_fixup_cmd(cmd);
963
964 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
965}
966
967static u64 its_cmd_ptr_to_offset(struct its_node *its,
968 struct its_cmd_block *ptr)
969{
970 return (ptr - its->cmd_base) * sizeof(*ptr);
971}
972
973static int its_queue_full(struct its_node *its)
974{
975 int widx;
976 int ridx;
977
978 widx = its->cmd_write - its->cmd_base;
979 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
980
981 /* This is incredibly unlikely to happen, unless the ITS locks up. */
982 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
983 return 1;
984
985 return 0;
986}
987
988static struct its_cmd_block *its_allocate_entry(struct its_node *its)
989{
990 struct its_cmd_block *cmd;
991 u32 count = 1000000; /* 1s! */
992
993 while (its_queue_full(its)) {
994 count--;
995 if (!count) {
996 pr_err_ratelimited("ITS queue not draining\n");
997 return NULL;
998 }
999 cpu_relax();
1000 udelay(1);
1001 }
1002
1003 cmd = its->cmd_write++;
1004
1005 /* Handle queue wrapping */
1006 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1007 its->cmd_write = its->cmd_base;
1008
1009 /* Clear command */
1010 cmd->raw_cmd[0] = 0;
1011 cmd->raw_cmd[1] = 0;
1012 cmd->raw_cmd[2] = 0;
1013 cmd->raw_cmd[3] = 0;
1014
1015 return cmd;
1016}
1017
1018static struct its_cmd_block *its_post_commands(struct its_node *its)
1019{
1020 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1021
1022 writel_relaxed(wr, its->base + GITS_CWRITER);
1023
1024 return its->cmd_write;
1025}
1026
1027static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1028{
1029 /*
1030 * Make sure the commands written to memory are observable by
1031 * the ITS.
1032 */
1033 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1034 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1035 else
1036 dsb(ishst);
1037}
1038
1039static int its_wait_for_range_completion(struct its_node *its,
1040 u64 prev_idx,
1041 struct its_cmd_block *to)
1042{
1043 u64 rd_idx, to_idx, linear_idx;
1044 u32 count = 1000000; /* 1s! */
1045
1046 /* Linearize to_idx if the command set has wrapped around */
1047 to_idx = its_cmd_ptr_to_offset(its, to);
1048 if (to_idx < prev_idx)
1049 to_idx += ITS_CMD_QUEUE_SZ;
1050
1051 linear_idx = prev_idx;
1052
1053 while (1) {
1054 s64 delta;
1055
1056 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1057
1058 /*
1059 * Compute the read pointer progress, taking the
1060 * potential wrap-around into account.
1061 */
1062 delta = rd_idx - prev_idx;
1063 if (rd_idx < prev_idx)
1064 delta += ITS_CMD_QUEUE_SZ;
1065
1066 linear_idx += delta;
1067 if (linear_idx >= to_idx)
1068 break;
1069
1070 count--;
1071 if (!count) {
1072 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1073 to_idx, linear_idx);
1074 return -1;
1075 }
1076 prev_idx = rd_idx;
1077 cpu_relax();
1078 udelay(1);
1079 }
1080
1081 return 0;
1082}
1083
1084/* Warning, macro hell follows */
1085#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1086void name(struct its_node *its, \
1087 buildtype builder, \
1088 struct its_cmd_desc *desc) \
1089{ \
1090 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1091 synctype *sync_obj; \
1092 unsigned long flags; \
1093 u64 rd_idx; \
1094 \
1095 raw_spin_lock_irqsave(&its->lock, flags); \
1096 \
1097 cmd = its_allocate_entry(its); \
1098 if (!cmd) { /* We're soooooo screewed... */ \
1099 raw_spin_unlock_irqrestore(&its->lock, flags); \
1100 return; \
1101 } \
1102 sync_obj = builder(its, cmd, desc); \
1103 its_flush_cmd(its, cmd); \
1104 \
1105 if (sync_obj) { \
1106 sync_cmd = its_allocate_entry(its); \
1107 if (!sync_cmd) \
1108 goto post; \
1109 \
1110 buildfn(its, sync_cmd, sync_obj); \
1111 its_flush_cmd(its, sync_cmd); \
1112 } \
1113 \
1114post: \
1115 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1116 next_cmd = its_post_commands(its); \
1117 raw_spin_unlock_irqrestore(&its->lock, flags); \
1118 \
1119 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1120 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1121}
1122
1123static void its_build_sync_cmd(struct its_node *its,
1124 struct its_cmd_block *sync_cmd,
1125 struct its_collection *sync_col)
1126{
1127 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1128 its_encode_target(sync_cmd, sync_col->target_address);
1129
1130 its_fixup_cmd(sync_cmd);
1131}
1132
1133static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1134 struct its_collection, its_build_sync_cmd)
1135
1136static void its_build_vsync_cmd(struct its_node *its,
1137 struct its_cmd_block *sync_cmd,
1138 struct its_vpe *sync_vpe)
1139{
1140 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1141 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1142
1143 its_fixup_cmd(sync_cmd);
1144}
1145
1146static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1147 struct its_vpe, its_build_vsync_cmd)
1148
1149static void its_send_int(struct its_device *dev, u32 event_id)
1150{
1151 struct its_cmd_desc desc;
1152
1153 desc.its_int_cmd.dev = dev;
1154 desc.its_int_cmd.event_id = event_id;
1155
1156 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1157}
1158
1159static void its_send_clear(struct its_device *dev, u32 event_id)
1160{
1161 struct its_cmd_desc desc;
1162
1163 desc.its_clear_cmd.dev = dev;
1164 desc.its_clear_cmd.event_id = event_id;
1165
1166 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1167}
1168
1169static void its_send_inv(struct its_device *dev, u32 event_id)
1170{
1171 struct its_cmd_desc desc;
1172
1173 desc.its_inv_cmd.dev = dev;
1174 desc.its_inv_cmd.event_id = event_id;
1175
1176 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1177}
1178
1179static void its_send_mapd(struct its_device *dev, int valid)
1180{
1181 struct its_cmd_desc desc;
1182
1183 desc.its_mapd_cmd.dev = dev;
1184 desc.its_mapd_cmd.valid = !!valid;
1185
1186 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1187}
1188
1189static void its_send_mapc(struct its_node *its, struct its_collection *col,
1190 int valid)
1191{
1192 struct its_cmd_desc desc;
1193
1194 desc.its_mapc_cmd.col = col;
1195 desc.its_mapc_cmd.valid = !!valid;
1196
1197 its_send_single_command(its, its_build_mapc_cmd, &desc);
1198}
1199
1200static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1201{
1202 struct its_cmd_desc desc;
1203
1204 desc.its_mapti_cmd.dev = dev;
1205 desc.its_mapti_cmd.phys_id = irq_id;
1206 desc.its_mapti_cmd.event_id = id;
1207
1208 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1209}
1210
1211static void its_send_movi(struct its_device *dev,
1212 struct its_collection *col, u32 id)
1213{
1214 struct its_cmd_desc desc;
1215
1216 desc.its_movi_cmd.dev = dev;
1217 desc.its_movi_cmd.col = col;
1218 desc.its_movi_cmd.event_id = id;
1219
1220 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1221}
1222
1223static void its_send_discard(struct its_device *dev, u32 id)
1224{
1225 struct its_cmd_desc desc;
1226
1227 desc.its_discard_cmd.dev = dev;
1228 desc.its_discard_cmd.event_id = id;
1229
1230 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1231}
1232
1233static void its_send_invall(struct its_node *its, struct its_collection *col)
1234{
1235 struct its_cmd_desc desc;
1236
1237 desc.its_invall_cmd.col = col;
1238
1239 its_send_single_command(its, its_build_invall_cmd, &desc);
1240}
1241
1242static void its_send_vmapti(struct its_device *dev, u32 id)
1243{
1244 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1245 struct its_cmd_desc desc;
1246
1247 desc.its_vmapti_cmd.vpe = map->vpe;
1248 desc.its_vmapti_cmd.dev = dev;
1249 desc.its_vmapti_cmd.virt_id = map->vintid;
1250 desc.its_vmapti_cmd.event_id = id;
1251 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1252
1253 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1254}
1255
1256static void its_send_vmovi(struct its_device *dev, u32 id)
1257{
1258 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1259 struct its_cmd_desc desc;
1260
1261 desc.its_vmovi_cmd.vpe = map->vpe;
1262 desc.its_vmovi_cmd.dev = dev;
1263 desc.its_vmovi_cmd.event_id = id;
1264 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1265
1266 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1267}
1268
1269static void its_send_vmapp(struct its_node *its,
1270 struct its_vpe *vpe, bool valid)
1271{
1272 struct its_cmd_desc desc;
1273
1274 desc.its_vmapp_cmd.vpe = vpe;
1275 desc.its_vmapp_cmd.valid = valid;
1276 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1277
1278 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1279}
1280
1281static void its_send_vmovp(struct its_vpe *vpe)
1282{
1283 struct its_cmd_desc desc = {};
1284 struct its_node *its;
1285 unsigned long flags;
1286 int col_id = vpe->col_idx;
1287
1288 desc.its_vmovp_cmd.vpe = vpe;
1289
1290 if (!its_list_map) {
1291 its = list_first_entry(&its_nodes, struct its_node, entry);
1292 desc.its_vmovp_cmd.col = &its->collections[col_id];
1293 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1294 return;
1295 }
1296
1297 /*
1298 * Yet another marvel of the architecture. If using the
1299 * its_list "feature", we need to make sure that all ITSs
1300 * receive all VMOVP commands in the same order. The only way
1301 * to guarantee this is to make vmovp a serialization point.
1302 *
1303 * Wall <-- Head.
1304 */
1305 raw_spin_lock_irqsave(&vmovp_lock, flags);
1306
1307 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1308 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1309
1310 /* Emit VMOVPs */
1311 list_for_each_entry(its, &its_nodes, entry) {
1312 if (!is_v4(its))
1313 continue;
1314
1315 if (!require_its_list_vmovp(vpe->its_vm, its))
1316 continue;
1317
1318 desc.its_vmovp_cmd.col = &its->collections[col_id];
1319 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1320 }
1321
1322 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1323}
1324
1325static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1326{
1327 struct its_cmd_desc desc;
1328
1329 desc.its_vinvall_cmd.vpe = vpe;
1330 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1331}
1332
1333static void its_send_vinv(struct its_device *dev, u32 event_id)
1334{
1335 struct its_cmd_desc desc;
1336
1337 /*
1338 * There is no real VINV command. This is just a normal INV,
1339 * with a VSYNC instead of a SYNC.
1340 */
1341 desc.its_inv_cmd.dev = dev;
1342 desc.its_inv_cmd.event_id = event_id;
1343
1344 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1345}
1346
1347static void its_send_vint(struct its_device *dev, u32 event_id)
1348{
1349 struct its_cmd_desc desc;
1350
1351 /*
1352 * There is no real VINT command. This is just a normal INT,
1353 * with a VSYNC instead of a SYNC.
1354 */
1355 desc.its_int_cmd.dev = dev;
1356 desc.its_int_cmd.event_id = event_id;
1357
1358 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1359}
1360
1361static void its_send_vclear(struct its_device *dev, u32 event_id)
1362{
1363 struct its_cmd_desc desc;
1364
1365 /*
1366 * There is no real VCLEAR command. This is just a normal CLEAR,
1367 * with a VSYNC instead of a SYNC.
1368 */
1369 desc.its_clear_cmd.dev = dev;
1370 desc.its_clear_cmd.event_id = event_id;
1371
1372 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1373}
1374
1375static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1376{
1377 struct its_cmd_desc desc;
1378
1379 desc.its_invdb_cmd.vpe = vpe;
1380 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1381}
1382
1383/*
1384 * irqchip functions - assumes MSI, mostly.
1385 */
1386static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1387{
1388 struct its_vlpi_map *map = get_vlpi_map(d);
1389 irq_hw_number_t hwirq;
1390 void *va;
1391 u8 *cfg;
1392
1393 if (map) {
1394 va = page_address(map->vm->vprop_page);
1395 hwirq = map->vintid;
1396
1397 /* Remember the updated property */
1398 map->properties &= ~clr;
1399 map->properties |= set | LPI_PROP_GROUP1;
1400 } else {
1401 va = gic_rdists->prop_table_va;
1402 hwirq = d->hwirq;
1403 }
1404
1405 cfg = va + hwirq - 8192;
1406 *cfg &= ~clr;
1407 *cfg |= set | LPI_PROP_GROUP1;
1408
1409 /*
1410 * Make the above write visible to the redistributors.
1411 * And yes, we're flushing exactly: One. Single. Byte.
1412 * Humpf...
1413 */
1414 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1415 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1416 else
1417 dsb(ishst);
1418}
1419
1420static void wait_for_syncr(void __iomem *rdbase)
1421{
1422 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1423 cpu_relax();
1424}
1425
1426static void direct_lpi_inv(struct irq_data *d)
1427{
1428 struct its_vlpi_map *map = get_vlpi_map(d);
1429 void __iomem *rdbase;
1430 unsigned long flags;
1431 u64 val;
1432 int cpu;
1433
1434 if (map) {
1435 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1436
1437 WARN_ON(!is_v4_1(its_dev->its));
1438
1439 val = GICR_INVLPIR_V;
1440 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1441 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1442 } else {
1443 val = d->hwirq;
1444 }
1445
1446 /* Target the redistributor this LPI is currently routed to */
1447 cpu = irq_to_cpuid_lock(d, &flags);
1448 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1449 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1450 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1451
1452 wait_for_syncr(rdbase);
1453 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1454 irq_to_cpuid_unlock(d, flags);
1455}
1456
1457static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1458{
1459 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1460
1461 lpi_write_config(d, clr, set);
1462 if (gic_rdists->has_direct_lpi &&
1463 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1464 direct_lpi_inv(d);
1465 else if (!irqd_is_forwarded_to_vcpu(d))
1466 its_send_inv(its_dev, its_get_event_id(d));
1467 else
1468 its_send_vinv(its_dev, its_get_event_id(d));
1469}
1470
1471static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1472{
1473 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1474 u32 event = its_get_event_id(d);
1475 struct its_vlpi_map *map;
1476
1477 /*
1478 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1479 * here.
1480 */
1481 if (is_v4_1(its_dev->its))
1482 return;
1483
1484 map = dev_event_to_vlpi_map(its_dev, event);
1485
1486 if (map->db_enabled == enable)
1487 return;
1488
1489 map->db_enabled = enable;
1490
1491 /*
1492 * More fun with the architecture:
1493 *
1494 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1495 * value or to 1023, depending on the enable bit. But that
1496 * would be issueing a mapping for an /existing/ DevID+EventID
1497 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1498 * to the /same/ vPE, using this opportunity to adjust the
1499 * doorbell. Mouahahahaha. We loves it, Precious.
1500 */
1501 its_send_vmovi(its_dev, event);
1502}
1503
1504static void its_mask_irq(struct irq_data *d)
1505{
1506 if (irqd_is_forwarded_to_vcpu(d))
1507 its_vlpi_set_doorbell(d, false);
1508
1509 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1510}
1511
1512static void its_unmask_irq(struct irq_data *d)
1513{
1514 if (irqd_is_forwarded_to_vcpu(d))
1515 its_vlpi_set_doorbell(d, true);
1516
1517 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1518}
1519
1520static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1521{
1522 if (irqd_affinity_is_managed(d))
1523 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1524
1525 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1526}
1527
1528static void its_inc_lpi_count(struct irq_data *d, int cpu)
1529{
1530 if (irqd_affinity_is_managed(d))
1531 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1532 else
1533 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1534}
1535
1536static void its_dec_lpi_count(struct irq_data *d, int cpu)
1537{
1538 if (irqd_affinity_is_managed(d))
1539 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1540 else
1541 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1542}
1543
1544static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1545 const struct cpumask *cpu_mask)
1546{
1547 unsigned int cpu = nr_cpu_ids, tmp;
1548 int count = S32_MAX;
1549
1550 for_each_cpu(tmp, cpu_mask) {
1551 int this_count = its_read_lpi_count(d, tmp);
1552 if (this_count < count) {
1553 cpu = tmp;
1554 count = this_count;
1555 }
1556 }
1557
1558 return cpu;
1559}
1560
1561/*
1562 * As suggested by Thomas Gleixner in:
1563 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1564 */
1565static int its_select_cpu(struct irq_data *d,
1566 const struct cpumask *aff_mask)
1567{
1568 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1569 cpumask_var_t tmpmask;
1570 int cpu, node;
1571
1572 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1573 return -ENOMEM;
1574
1575 node = its_dev->its->numa_node;
1576
1577 if (!irqd_affinity_is_managed(d)) {
1578 /* First try the NUMA node */
1579 if (node != NUMA_NO_NODE) {
1580 /*
1581 * Try the intersection of the affinity mask and the
1582 * node mask (and the online mask, just to be safe).
1583 */
1584 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1585 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1586
1587 /*
1588 * Ideally, we would check if the mask is empty, and
1589 * try again on the full node here.
1590 *
1591 * But it turns out that the way ACPI describes the
1592 * affinity for ITSs only deals about memory, and
1593 * not target CPUs, so it cannot describe a single
1594 * ITS placed next to two NUMA nodes.
1595 *
1596 * Instead, just fallback on the online mask. This
1597 * diverges from Thomas' suggestion above.
1598 */
1599 cpu = cpumask_pick_least_loaded(d, tmpmask);
1600 if (cpu < nr_cpu_ids)
1601 goto out;
1602
1603 /* If we can't cross sockets, give up */
1604 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1605 goto out;
1606
1607 /* If the above failed, expand the search */
1608 }
1609
1610 /* Try the intersection of the affinity and online masks */
1611 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1612
1613 /* If that doesn't fly, the online mask is the last resort */
1614 if (cpumask_empty(tmpmask))
1615 cpumask_copy(tmpmask, cpu_online_mask);
1616
1617 cpu = cpumask_pick_least_loaded(d, tmpmask);
1618 } else {
1619 cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask);
1620
1621 /* If we cannot cross sockets, limit the search to that node */
1622 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1623 node != NUMA_NO_NODE)
1624 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1625
1626 cpu = cpumask_pick_least_loaded(d, tmpmask);
1627 }
1628out:
1629 free_cpumask_var(tmpmask);
1630
1631 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1632 return cpu;
1633}
1634
1635static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1636 bool force)
1637{
1638 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1639 struct its_collection *target_col;
1640 u32 id = its_get_event_id(d);
1641 int cpu, prev_cpu;
1642
1643 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1644 if (irqd_is_forwarded_to_vcpu(d))
1645 return -EINVAL;
1646
1647 prev_cpu = its_dev->event_map.col_map[id];
1648 its_dec_lpi_count(d, prev_cpu);
1649
1650 if (!force)
1651 cpu = its_select_cpu(d, mask_val);
1652 else
1653 cpu = cpumask_pick_least_loaded(d, mask_val);
1654
1655 if (cpu < 0 || cpu >= nr_cpu_ids)
1656 goto err;
1657
1658 /* don't set the affinity when the target cpu is same as current one */
1659 if (cpu != prev_cpu) {
1660 target_col = &its_dev->its->collections[cpu];
1661 its_send_movi(its_dev, target_col, id);
1662 its_dev->event_map.col_map[id] = cpu;
1663 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1664 }
1665
1666 its_inc_lpi_count(d, cpu);
1667
1668 return IRQ_SET_MASK_OK_DONE;
1669
1670err:
1671 its_inc_lpi_count(d, prev_cpu);
1672 return -EINVAL;
1673}
1674
1675static u64 its_irq_get_msi_base(struct its_device *its_dev)
1676{
1677 struct its_node *its = its_dev->its;
1678
1679 return its->phys_base + GITS_TRANSLATER;
1680}
1681
1682static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1683{
1684 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1685 struct its_node *its;
1686 u64 addr;
1687
1688 its = its_dev->its;
1689 addr = its->get_msi_base(its_dev);
1690
1691 msg->address_lo = lower_32_bits(addr);
1692 msg->address_hi = upper_32_bits(addr);
1693 msg->data = its_get_event_id(d);
1694
1695 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1696}
1697
1698static int its_irq_set_irqchip_state(struct irq_data *d,
1699 enum irqchip_irq_state which,
1700 bool state)
1701{
1702 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1703 u32 event = its_get_event_id(d);
1704
1705 if (which != IRQCHIP_STATE_PENDING)
1706 return -EINVAL;
1707
1708 if (irqd_is_forwarded_to_vcpu(d)) {
1709 if (state)
1710 its_send_vint(its_dev, event);
1711 else
1712 its_send_vclear(its_dev, event);
1713 } else {
1714 if (state)
1715 its_send_int(its_dev, event);
1716 else
1717 its_send_clear(its_dev, event);
1718 }
1719
1720 return 0;
1721}
1722
1723/*
1724 * Two favourable cases:
1725 *
1726 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1727 * for vSGI delivery
1728 *
1729 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1730 * and we're better off mapping all VPEs always
1731 *
1732 * If neither (a) nor (b) is true, then we map vPEs on demand.
1733 *
1734 */
1735static bool gic_requires_eager_mapping(void)
1736{
1737 if (!its_list_map || gic_rdists->has_rvpeid)
1738 return true;
1739
1740 return false;
1741}
1742
1743static void its_map_vm(struct its_node *its, struct its_vm *vm)
1744{
1745 unsigned long flags;
1746
1747 if (gic_requires_eager_mapping())
1748 return;
1749
1750 raw_spin_lock_irqsave(&vmovp_lock, flags);
1751
1752 /*
1753 * If the VM wasn't mapped yet, iterate over the vpes and get
1754 * them mapped now.
1755 */
1756 vm->vlpi_count[its->list_nr]++;
1757
1758 if (vm->vlpi_count[its->list_nr] == 1) {
1759 int i;
1760
1761 for (i = 0; i < vm->nr_vpes; i++) {
1762 struct its_vpe *vpe = vm->vpes[i];
1763 struct irq_data *d = irq_get_irq_data(vpe->irq);
1764
1765 /* Map the VPE to the first possible CPU */
1766 vpe->col_idx = cpumask_first(cpu_online_mask);
1767 its_send_vmapp(its, vpe, true);
1768 its_send_vinvall(its, vpe);
1769 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1770 }
1771 }
1772
1773 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1774}
1775
1776static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1777{
1778 unsigned long flags;
1779
1780 /* Not using the ITS list? Everything is always mapped. */
1781 if (gic_requires_eager_mapping())
1782 return;
1783
1784 raw_spin_lock_irqsave(&vmovp_lock, flags);
1785
1786 if (!--vm->vlpi_count[its->list_nr]) {
1787 int i;
1788
1789 for (i = 0; i < vm->nr_vpes; i++)
1790 its_send_vmapp(its, vm->vpes[i], false);
1791 }
1792
1793 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1794}
1795
1796static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1797{
1798 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1799 u32 event = its_get_event_id(d);
1800 int ret = 0;
1801
1802 if (!info->map)
1803 return -EINVAL;
1804
1805 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1806
1807 if (!its_dev->event_map.vm) {
1808 struct its_vlpi_map *maps;
1809
1810 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1811 GFP_ATOMIC);
1812 if (!maps) {
1813 ret = -ENOMEM;
1814 goto out;
1815 }
1816
1817 its_dev->event_map.vm = info->map->vm;
1818 its_dev->event_map.vlpi_maps = maps;
1819 } else if (its_dev->event_map.vm != info->map->vm) {
1820 ret = -EINVAL;
1821 goto out;
1822 }
1823
1824 /* Get our private copy of the mapping information */
1825 its_dev->event_map.vlpi_maps[event] = *info->map;
1826
1827 if (irqd_is_forwarded_to_vcpu(d)) {
1828 /* Already mapped, move it around */
1829 its_send_vmovi(its_dev, event);
1830 } else {
1831 /* Ensure all the VPEs are mapped on this ITS */
1832 its_map_vm(its_dev->its, info->map->vm);
1833
1834 /*
1835 * Flag the interrupt as forwarded so that we can
1836 * start poking the virtual property table.
1837 */
1838 irqd_set_forwarded_to_vcpu(d);
1839
1840 /* Write out the property to the prop table */
1841 lpi_write_config(d, 0xff, info->map->properties);
1842
1843 /* Drop the physical mapping */
1844 its_send_discard(its_dev, event);
1845
1846 /* and install the virtual one */
1847 its_send_vmapti(its_dev, event);
1848
1849 /* Increment the number of VLPIs */
1850 its_dev->event_map.nr_vlpis++;
1851 }
1852
1853out:
1854 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1855 return ret;
1856}
1857
1858static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1859{
1860 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1861 struct its_vlpi_map *map;
1862 int ret = 0;
1863
1864 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1865
1866 map = get_vlpi_map(d);
1867
1868 if (!its_dev->event_map.vm || !map) {
1869 ret = -EINVAL;
1870 goto out;
1871 }
1872
1873 /* Copy our mapping information to the incoming request */
1874 *info->map = *map;
1875
1876out:
1877 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1878 return ret;
1879}
1880
1881static int its_vlpi_unmap(struct irq_data *d)
1882{
1883 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1884 u32 event = its_get_event_id(d);
1885 int ret = 0;
1886
1887 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1888
1889 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1890 ret = -EINVAL;
1891 goto out;
1892 }
1893
1894 /* Drop the virtual mapping */
1895 its_send_discard(its_dev, event);
1896
1897 /* and restore the physical one */
1898 irqd_clr_forwarded_to_vcpu(d);
1899 its_send_mapti(its_dev, d->hwirq, event);
1900 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1901 LPI_PROP_ENABLED |
1902 LPI_PROP_GROUP1));
1903
1904 /* Potentially unmap the VM from this ITS */
1905 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1906
1907 /*
1908 * Drop the refcount and make the device available again if
1909 * this was the last VLPI.
1910 */
1911 if (!--its_dev->event_map.nr_vlpis) {
1912 its_dev->event_map.vm = NULL;
1913 kfree(its_dev->event_map.vlpi_maps);
1914 }
1915
1916out:
1917 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1918 return ret;
1919}
1920
1921static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1922{
1923 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1924
1925 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1926 return -EINVAL;
1927
1928 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1929 lpi_update_config(d, 0xff, info->config);
1930 else
1931 lpi_write_config(d, 0xff, info->config);
1932 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1933
1934 return 0;
1935}
1936
1937static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1938{
1939 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1940 struct its_cmd_info *info = vcpu_info;
1941
1942 /* Need a v4 ITS */
1943 if (!is_v4(its_dev->its))
1944 return -EINVAL;
1945
1946 /* Unmap request? */
1947 if (!info)
1948 return its_vlpi_unmap(d);
1949
1950 switch (info->cmd_type) {
1951 case MAP_VLPI:
1952 return its_vlpi_map(d, info);
1953
1954 case GET_VLPI:
1955 return its_vlpi_get(d, info);
1956
1957 case PROP_UPDATE_VLPI:
1958 case PROP_UPDATE_AND_INV_VLPI:
1959 return its_vlpi_prop_update(d, info);
1960
1961 default:
1962 return -EINVAL;
1963 }
1964}
1965
1966static struct irq_chip its_irq_chip = {
1967 .name = "ITS",
1968 .irq_mask = its_mask_irq,
1969 .irq_unmask = its_unmask_irq,
1970 .irq_eoi = irq_chip_eoi_parent,
1971 .irq_set_affinity = its_set_affinity,
1972 .irq_compose_msi_msg = its_irq_compose_msi_msg,
1973 .irq_set_irqchip_state = its_irq_set_irqchip_state,
1974 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
1975};
1976
1977
1978/*
1979 * How we allocate LPIs:
1980 *
1981 * lpi_range_list contains ranges of LPIs that are to available to
1982 * allocate from. To allocate LPIs, just pick the first range that
1983 * fits the required allocation, and reduce it by the required
1984 * amount. Once empty, remove the range from the list.
1985 *
1986 * To free a range of LPIs, add a free range to the list, sort it and
1987 * merge the result if the new range happens to be adjacent to an
1988 * already free block.
1989 *
1990 * The consequence of the above is that allocation is cost is low, but
1991 * freeing is expensive. We assumes that freeing rarely occurs.
1992 */
1993#define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
1994
1995static DEFINE_MUTEX(lpi_range_lock);
1996static LIST_HEAD(lpi_range_list);
1997
1998struct lpi_range {
1999 struct list_head entry;
2000 u32 base_id;
2001 u32 span;
2002};
2003
2004static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2005{
2006 struct lpi_range *range;
2007
2008 range = kmalloc(sizeof(*range), GFP_KERNEL);
2009 if (range) {
2010 range->base_id = base;
2011 range->span = span;
2012 }
2013
2014 return range;
2015}
2016
2017static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2018{
2019 struct lpi_range *range, *tmp;
2020 int err = -ENOSPC;
2021
2022 mutex_lock(&lpi_range_lock);
2023
2024 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2025 if (range->span >= nr_lpis) {
2026 *base = range->base_id;
2027 range->base_id += nr_lpis;
2028 range->span -= nr_lpis;
2029
2030 if (range->span == 0) {
2031 list_del(&range->entry);
2032 kfree(range);
2033 }
2034
2035 err = 0;
2036 break;
2037 }
2038 }
2039
2040 mutex_unlock(&lpi_range_lock);
2041
2042 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2043 return err;
2044}
2045
2046static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2047{
2048 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2049 return;
2050 if (a->base_id + a->span != b->base_id)
2051 return;
2052 b->base_id = a->base_id;
2053 b->span += a->span;
2054 list_del(&a->entry);
2055 kfree(a);
2056}
2057
2058static int free_lpi_range(u32 base, u32 nr_lpis)
2059{
2060 struct lpi_range *new, *old;
2061
2062 new = mk_lpi_range(base, nr_lpis);
2063 if (!new)
2064 return -ENOMEM;
2065
2066 mutex_lock(&lpi_range_lock);
2067
2068 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2069 if (old->base_id < base)
2070 break;
2071 }
2072 /*
2073 * old is the last element with ->base_id smaller than base,
2074 * so new goes right after it. If there are no elements with
2075 * ->base_id smaller than base, &old->entry ends up pointing
2076 * at the head of the list, and inserting new it the start of
2077 * the list is the right thing to do in that case as well.
2078 */
2079 list_add(&new->entry, &old->entry);
2080 /*
2081 * Now check if we can merge with the preceding and/or
2082 * following ranges.
2083 */
2084 merge_lpi_ranges(old, new);
2085 merge_lpi_ranges(new, list_next_entry(new, entry));
2086
2087 mutex_unlock(&lpi_range_lock);
2088 return 0;
2089}
2090
2091static int __init its_lpi_init(u32 id_bits)
2092{
2093 u32 lpis = (1UL << id_bits) - 8192;
2094 u32 numlpis;
2095 int err;
2096
2097 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2098
2099 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2100 lpis = numlpis;
2101 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2102 lpis);
2103 }
2104
2105 /*
2106 * Initializing the allocator is just the same as freeing the
2107 * full range of LPIs.
2108 */
2109 err = free_lpi_range(8192, lpis);
2110 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2111 return err;
2112}
2113
2114static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2115{
2116 unsigned long *bitmap = NULL;
2117 int err = 0;
2118
2119 do {
2120 err = alloc_lpi_range(nr_irqs, base);
2121 if (!err)
2122 break;
2123
2124 nr_irqs /= 2;
2125 } while (nr_irqs > 0);
2126
2127 if (!nr_irqs)
2128 err = -ENOSPC;
2129
2130 if (err)
2131 goto out;
2132
2133 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
2134 if (!bitmap)
2135 goto out;
2136
2137 *nr_ids = nr_irqs;
2138
2139out:
2140 if (!bitmap)
2141 *base = *nr_ids = 0;
2142
2143 return bitmap;
2144}
2145
2146static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2147{
2148 WARN_ON(free_lpi_range(base, nr_ids));
2149 kfree(bitmap);
2150}
2151
2152static void gic_reset_prop_table(void *va)
2153{
2154 /* Priority 0xa0, Group-1, disabled */
2155 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2156
2157 /* Make sure the GIC will observe the written configuration */
2158 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2159}
2160
2161static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2162{
2163 struct page *prop_page;
2164
2165 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2166 if (!prop_page)
2167 return NULL;
2168
2169 gic_reset_prop_table(page_address(prop_page));
2170
2171 return prop_page;
2172}
2173
2174static void its_free_prop_table(struct page *prop_page)
2175{
2176 free_pages((unsigned long)page_address(prop_page),
2177 get_order(LPI_PROPBASE_SZ));
2178}
2179
2180static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2181{
2182 phys_addr_t start, end, addr_end;
2183 u64 i;
2184
2185 /*
2186 * We don't bother checking for a kdump kernel as by
2187 * construction, the LPI tables are out of this kernel's
2188 * memory map.
2189 */
2190 if (is_kdump_kernel())
2191 return true;
2192
2193 addr_end = addr + size - 1;
2194
2195 for_each_reserved_mem_region(i, &start, &end) {
2196 if (addr >= start && addr_end <= end)
2197 return true;
2198 }
2199
2200 /* Not found, not a good sign... */
2201 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2202 &addr, &addr_end);
2203 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2204 return false;
2205}
2206
2207static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2208{
2209 if (efi_enabled(EFI_CONFIG_TABLES))
2210 return efi_mem_reserve_persistent(addr, size);
2211
2212 return 0;
2213}
2214
2215static int __init its_setup_lpi_prop_table(void)
2216{
2217 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2218 u64 val;
2219
2220 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2221 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2222
2223 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2224 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2225 LPI_PROPBASE_SZ,
2226 MEMREMAP_WB);
2227 gic_reset_prop_table(gic_rdists->prop_table_va);
2228 } else {
2229 struct page *page;
2230
2231 lpi_id_bits = min_t(u32,
2232 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2233 ITS_MAX_LPI_NRBITS);
2234 page = its_allocate_prop_table(GFP_NOWAIT);
2235 if (!page) {
2236 pr_err("Failed to allocate PROPBASE\n");
2237 return -ENOMEM;
2238 }
2239
2240 gic_rdists->prop_table_pa = page_to_phys(page);
2241 gic_rdists->prop_table_va = page_address(page);
2242 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2243 LPI_PROPBASE_SZ));
2244 }
2245
2246 pr_info("GICv3: using LPI property table @%pa\n",
2247 &gic_rdists->prop_table_pa);
2248
2249 return its_lpi_init(lpi_id_bits);
2250}
2251
2252static const char *its_base_type_string[] = {
2253 [GITS_BASER_TYPE_DEVICE] = "Devices",
2254 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2255 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2256 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2257 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2258 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2259 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2260};
2261
2262static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2263{
2264 u32 idx = baser - its->tables;
2265
2266 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2267}
2268
2269static void its_write_baser(struct its_node *its, struct its_baser *baser,
2270 u64 val)
2271{
2272 u32 idx = baser - its->tables;
2273
2274 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2275 baser->val = its_read_baser(its, baser);
2276}
2277
2278static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2279 u64 cache, u64 shr, u32 order, bool indirect)
2280{
2281 u64 val = its_read_baser(its, baser);
2282 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2283 u64 type = GITS_BASER_TYPE(val);
2284 u64 baser_phys, tmp;
2285 u32 alloc_pages, psz;
2286 struct page *page;
2287 void *base;
2288
2289 psz = baser->psz;
2290 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2291 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2292 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2293 &its->phys_base, its_base_type_string[type],
2294 alloc_pages, GITS_BASER_PAGES_MAX);
2295 alloc_pages = GITS_BASER_PAGES_MAX;
2296 order = get_order(GITS_BASER_PAGES_MAX * psz);
2297 }
2298
2299 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2300 if (!page)
2301 return -ENOMEM;
2302
2303 base = (void *)page_address(page);
2304 baser_phys = virt_to_phys(base);
2305
2306 /* Check if the physical address of the memory is above 48bits */
2307 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2308
2309 /* 52bit PA is supported only when PageSize=64K */
2310 if (psz != SZ_64K) {
2311 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2312 free_pages((unsigned long)base, order);
2313 return -ENXIO;
2314 }
2315
2316 /* Convert 52bit PA to 48bit field */
2317 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2318 }
2319
2320retry_baser:
2321 val = (baser_phys |
2322 (type << GITS_BASER_TYPE_SHIFT) |
2323 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2324 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2325 cache |
2326 shr |
2327 GITS_BASER_VALID);
2328
2329 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2330
2331 switch (psz) {
2332 case SZ_4K:
2333 val |= GITS_BASER_PAGE_SIZE_4K;
2334 break;
2335 case SZ_16K:
2336 val |= GITS_BASER_PAGE_SIZE_16K;
2337 break;
2338 case SZ_64K:
2339 val |= GITS_BASER_PAGE_SIZE_64K;
2340 break;
2341 }
2342
2343 its_write_baser(its, baser, val);
2344 tmp = baser->val;
2345
2346 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2347 /*
2348 * Shareability didn't stick. Just use
2349 * whatever the read reported, which is likely
2350 * to be the only thing this redistributor
2351 * supports. If that's zero, make it
2352 * non-cacheable as well.
2353 */
2354 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2355 if (!shr) {
2356 cache = GITS_BASER_nC;
2357 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2358 }
2359 goto retry_baser;
2360 }
2361
2362 if (val != tmp) {
2363 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2364 &its->phys_base, its_base_type_string[type],
2365 val, tmp);
2366 free_pages((unsigned long)base, order);
2367 return -ENXIO;
2368 }
2369
2370 baser->order = order;
2371 baser->base = base;
2372 baser->psz = psz;
2373 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2374
2375 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2376 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2377 its_base_type_string[type],
2378 (unsigned long)virt_to_phys(base),
2379 indirect ? "indirect" : "flat", (int)esz,
2380 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2381
2382 return 0;
2383}
2384
2385static bool its_parse_indirect_baser(struct its_node *its,
2386 struct its_baser *baser,
2387 u32 *order, u32 ids)
2388{
2389 u64 tmp = its_read_baser(its, baser);
2390 u64 type = GITS_BASER_TYPE(tmp);
2391 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2392 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2393 u32 new_order = *order;
2394 u32 psz = baser->psz;
2395 bool indirect = false;
2396
2397 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2398 if ((esz << ids) > (psz * 2)) {
2399 /*
2400 * Find out whether hw supports a single or two-level table by
2401 * table by reading bit at offset '62' after writing '1' to it.
2402 */
2403 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2404 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2405
2406 if (indirect) {
2407 /*
2408 * The size of the lvl2 table is equal to ITS page size
2409 * which is 'psz'. For computing lvl1 table size,
2410 * subtract ID bits that sparse lvl2 table from 'ids'
2411 * which is reported by ITS hardware times lvl1 table
2412 * entry size.
2413 */
2414 ids -= ilog2(psz / (int)esz);
2415 esz = GITS_LVL1_ENTRY_SIZE;
2416 }
2417 }
2418
2419 /*
2420 * Allocate as many entries as required to fit the
2421 * range of device IDs that the ITS can grok... The ID
2422 * space being incredibly sparse, this results in a
2423 * massive waste of memory if two-level device table
2424 * feature is not supported by hardware.
2425 */
2426 new_order = max_t(u32, get_order(esz << ids), new_order);
2427 if (new_order >= MAX_ORDER) {
2428 new_order = MAX_ORDER - 1;
2429 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2430 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2431 &its->phys_base, its_base_type_string[type],
2432 device_ids(its), ids);
2433 }
2434
2435 *order = new_order;
2436
2437 return indirect;
2438}
2439
2440static u32 compute_common_aff(u64 val)
2441{
2442 u32 aff, clpiaff;
2443
2444 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2445 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2446
2447 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2448}
2449
2450static u32 compute_its_aff(struct its_node *its)
2451{
2452 u64 val;
2453 u32 svpet;
2454
2455 /*
2456 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2457 * the resulting affinity. We then use that to see if this match
2458 * our own affinity.
2459 */
2460 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2461 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2462 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2463 return compute_common_aff(val);
2464}
2465
2466static struct its_node *find_sibling_its(struct its_node *cur_its)
2467{
2468 struct its_node *its;
2469 u32 aff;
2470
2471 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2472 return NULL;
2473
2474 aff = compute_its_aff(cur_its);
2475
2476 list_for_each_entry(its, &its_nodes, entry) {
2477 u64 baser;
2478
2479 if (!is_v4_1(its) || its == cur_its)
2480 continue;
2481
2482 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2483 continue;
2484
2485 if (aff != compute_its_aff(its))
2486 continue;
2487
2488 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2489 baser = its->tables[2].val;
2490 if (!(baser & GITS_BASER_VALID))
2491 continue;
2492
2493 return its;
2494 }
2495
2496 return NULL;
2497}
2498
2499static void its_free_tables(struct its_node *its)
2500{
2501 int i;
2502
2503 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2504 if (its->tables[i].base) {
2505 free_pages((unsigned long)its->tables[i].base,
2506 its->tables[i].order);
2507 its->tables[i].base = NULL;
2508 }
2509 }
2510}
2511
2512static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2513{
2514 u64 psz = SZ_64K;
2515
2516 while (psz) {
2517 u64 val, gpsz;
2518
2519 val = its_read_baser(its, baser);
2520 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2521
2522 switch (psz) {
2523 case SZ_64K:
2524 gpsz = GITS_BASER_PAGE_SIZE_64K;
2525 break;
2526 case SZ_16K:
2527 gpsz = GITS_BASER_PAGE_SIZE_16K;
2528 break;
2529 case SZ_4K:
2530 default:
2531 gpsz = GITS_BASER_PAGE_SIZE_4K;
2532 break;
2533 }
2534
2535 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2536
2537 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2538 its_write_baser(its, baser, val);
2539
2540 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2541 break;
2542
2543 switch (psz) {
2544 case SZ_64K:
2545 psz = SZ_16K;
2546 break;
2547 case SZ_16K:
2548 psz = SZ_4K;
2549 break;
2550 case SZ_4K:
2551 default:
2552 return -1;
2553 }
2554 }
2555
2556 baser->psz = psz;
2557 return 0;
2558}
2559
2560static int its_alloc_tables(struct its_node *its)
2561{
2562 u64 shr = GITS_BASER_InnerShareable;
2563 u64 cache = GITS_BASER_RaWaWb;
2564 int err, i;
2565
2566 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2567 /* erratum 24313: ignore memory access type */
2568 cache = GITS_BASER_nCnB;
2569
2570 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2571 struct its_baser *baser = its->tables + i;
2572 u64 val = its_read_baser(its, baser);
2573 u64 type = GITS_BASER_TYPE(val);
2574 bool indirect = false;
2575 u32 order;
2576
2577 if (type == GITS_BASER_TYPE_NONE)
2578 continue;
2579
2580 if (its_probe_baser_psz(its, baser)) {
2581 its_free_tables(its);
2582 return -ENXIO;
2583 }
2584
2585 order = get_order(baser->psz);
2586
2587 switch (type) {
2588 case GITS_BASER_TYPE_DEVICE:
2589 indirect = its_parse_indirect_baser(its, baser, &order,
2590 device_ids(its));
2591 break;
2592
2593 case GITS_BASER_TYPE_VCPU:
2594 if (is_v4_1(its)) {
2595 struct its_node *sibling;
2596
2597 WARN_ON(i != 2);
2598 if ((sibling = find_sibling_its(its))) {
2599 *baser = sibling->tables[2];
2600 its_write_baser(its, baser, baser->val);
2601 continue;
2602 }
2603 }
2604
2605 indirect = its_parse_indirect_baser(its, baser, &order,
2606 ITS_MAX_VPEID_BITS);
2607 break;
2608 }
2609
2610 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2611 if (err < 0) {
2612 its_free_tables(its);
2613 return err;
2614 }
2615
2616 /* Update settings which will be used for next BASERn */
2617 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2618 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2619 }
2620
2621 return 0;
2622}
2623
2624static u64 inherit_vpe_l1_table_from_its(void)
2625{
2626 struct its_node *its;
2627 u64 val;
2628 u32 aff;
2629
2630 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2631 aff = compute_common_aff(val);
2632
2633 list_for_each_entry(its, &its_nodes, entry) {
2634 u64 baser, addr;
2635
2636 if (!is_v4_1(its))
2637 continue;
2638
2639 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2640 continue;
2641
2642 if (aff != compute_its_aff(its))
2643 continue;
2644
2645 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2646 baser = its->tables[2].val;
2647 if (!(baser & GITS_BASER_VALID))
2648 continue;
2649
2650 /* We have a winner! */
2651 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2652
2653 val = GICR_VPROPBASER_4_1_VALID;
2654 if (baser & GITS_BASER_INDIRECT)
2655 val |= GICR_VPROPBASER_4_1_INDIRECT;
2656 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2657 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2658 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2659 case GIC_PAGE_SIZE_64K:
2660 addr = GITS_BASER_ADDR_48_to_52(baser);
2661 break;
2662 default:
2663 addr = baser & GENMASK_ULL(47, 12);
2664 break;
2665 }
2666 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2667 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2668 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2669 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2670 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2671 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2672
2673 return val;
2674 }
2675
2676 return 0;
2677}
2678
2679static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2680{
2681 u32 aff;
2682 u64 val;
2683 int cpu;
2684
2685 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2686 aff = compute_common_aff(val);
2687
2688 for_each_possible_cpu(cpu) {
2689 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2690
2691 if (!base || cpu == smp_processor_id())
2692 continue;
2693
2694 val = gic_read_typer(base + GICR_TYPER);
2695 if (aff != compute_common_aff(val))
2696 continue;
2697
2698 /*
2699 * At this point, we have a victim. This particular CPU
2700 * has already booted, and has an affinity that matches
2701 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2702 * Make sure we don't write the Z bit in that case.
2703 */
2704 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2705 val &= ~GICR_VPROPBASER_4_1_Z;
2706
2707 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2708 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2709
2710 return val;
2711 }
2712
2713 return 0;
2714}
2715
2716static bool allocate_vpe_l2_table(int cpu, u32 id)
2717{
2718 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2719 unsigned int psz, esz, idx, npg, gpsz;
2720 u64 val;
2721 struct page *page;
2722 __le64 *table;
2723
2724 if (!gic_rdists->has_rvpeid)
2725 return true;
2726
2727 /* Skip non-present CPUs */
2728 if (!base)
2729 return true;
2730
2731 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2732
2733 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2734 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2735 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2736
2737 switch (gpsz) {
2738 default:
2739 WARN_ON(1);
2740 fallthrough;
2741 case GIC_PAGE_SIZE_4K:
2742 psz = SZ_4K;
2743 break;
2744 case GIC_PAGE_SIZE_16K:
2745 psz = SZ_16K;
2746 break;
2747 case GIC_PAGE_SIZE_64K:
2748 psz = SZ_64K;
2749 break;
2750 }
2751
2752 /* Don't allow vpe_id that exceeds single, flat table limit */
2753 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2754 return (id < (npg * psz / (esz * SZ_8)));
2755
2756 /* Compute 1st level table index & check if that exceeds table limit */
2757 idx = id >> ilog2(psz / (esz * SZ_8));
2758 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2759 return false;
2760
2761 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2762
2763 /* Allocate memory for 2nd level table */
2764 if (!table[idx]) {
2765 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2766 if (!page)
2767 return false;
2768
2769 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2770 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2771 gic_flush_dcache_to_poc(page_address(page), psz);
2772
2773 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2774
2775 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2776 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2777 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2778
2779 /* Ensure updated table contents are visible to RD hardware */
2780 dsb(sy);
2781 }
2782
2783 return true;
2784}
2785
2786static int allocate_vpe_l1_table(void)
2787{
2788 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2789 u64 val, gpsz, npg, pa;
2790 unsigned int psz = SZ_64K;
2791 unsigned int np, epp, esz;
2792 struct page *page;
2793
2794 if (!gic_rdists->has_rvpeid)
2795 return 0;
2796
2797 /*
2798 * if VPENDBASER.Valid is set, disable any previously programmed
2799 * VPE by setting PendingLast while clearing Valid. This has the
2800 * effect of making sure no doorbell will be generated and we can
2801 * then safely clear VPROPBASER.Valid.
2802 */
2803 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2804 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2805 vlpi_base + GICR_VPENDBASER);
2806
2807 /*
2808 * If we can inherit the configuration from another RD, let's do
2809 * so. Otherwise, we have to go through the allocation process. We
2810 * assume that all RDs have the exact same requirements, as
2811 * nothing will work otherwise.
2812 */
2813 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2814 if (val & GICR_VPROPBASER_4_1_VALID)
2815 goto out;
2816
2817 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2818 if (!gic_data_rdist()->vpe_table_mask)
2819 return -ENOMEM;
2820
2821 val = inherit_vpe_l1_table_from_its();
2822 if (val & GICR_VPROPBASER_4_1_VALID)
2823 goto out;
2824
2825 /* First probe the page size */
2826 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2827 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2828 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2829 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2830 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2831
2832 switch (gpsz) {
2833 default:
2834 gpsz = GIC_PAGE_SIZE_4K;
2835 fallthrough;
2836 case GIC_PAGE_SIZE_4K:
2837 psz = SZ_4K;
2838 break;
2839 case GIC_PAGE_SIZE_16K:
2840 psz = SZ_16K;
2841 break;
2842 case GIC_PAGE_SIZE_64K:
2843 psz = SZ_64K;
2844 break;
2845 }
2846
2847 /*
2848 * Start populating the register from scratch, including RO fields
2849 * (which we want to print in debug cases...)
2850 */
2851 val = 0;
2852 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2853 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2854
2855 /* How many entries per GIC page? */
2856 esz++;
2857 epp = psz / (esz * SZ_8);
2858
2859 /*
2860 * If we need more than just a single L1 page, flag the table
2861 * as indirect and compute the number of required L1 pages.
2862 */
2863 if (epp < ITS_MAX_VPEID) {
2864 int nl2;
2865
2866 val |= GICR_VPROPBASER_4_1_INDIRECT;
2867
2868 /* Number of L2 pages required to cover the VPEID space */
2869 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2870
2871 /* Number of L1 pages to point to the L2 pages */
2872 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2873 } else {
2874 npg = 1;
2875 }
2876
2877 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2878
2879 /* Right, that's the number of CPU pages we need for L1 */
2880 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2881
2882 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2883 np, npg, psz, epp, esz);
2884 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2885 if (!page)
2886 return -ENOMEM;
2887
2888 gic_data_rdist()->vpe_l1_base = page_address(page);
2889 pa = virt_to_phys(page_address(page));
2890 WARN_ON(!IS_ALIGNED(pa, psz));
2891
2892 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2893 val |= GICR_VPROPBASER_RaWb;
2894 val |= GICR_VPROPBASER_InnerShareable;
2895 val |= GICR_VPROPBASER_4_1_Z;
2896 val |= GICR_VPROPBASER_4_1_VALID;
2897
2898out:
2899 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2900 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2901
2902 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2903 smp_processor_id(), val,
2904 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2905
2906 return 0;
2907}
2908
2909static int its_alloc_collections(struct its_node *its)
2910{
2911 int i;
2912
2913 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2914 GFP_KERNEL);
2915 if (!its->collections)
2916 return -ENOMEM;
2917
2918 for (i = 0; i < nr_cpu_ids; i++)
2919 its->collections[i].target_address = ~0ULL;
2920
2921 return 0;
2922}
2923
2924static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2925{
2926 struct page *pend_page;
2927
2928 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2929 get_order(LPI_PENDBASE_SZ));
2930 if (!pend_page)
2931 return NULL;
2932
2933 /* Make sure the GIC will observe the zero-ed page */
2934 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2935
2936 return pend_page;
2937}
2938
2939static void its_free_pending_table(struct page *pt)
2940{
2941 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2942}
2943
2944/*
2945 * Booting with kdump and LPIs enabled is generally fine. Any other
2946 * case is wrong in the absence of firmware/EFI support.
2947 */
2948static bool enabled_lpis_allowed(void)
2949{
2950 phys_addr_t addr;
2951 u64 val;
2952
2953 /* Check whether the property table is in a reserved region */
2954 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2955 addr = val & GENMASK_ULL(51, 12);
2956
2957 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2958}
2959
2960static int __init allocate_lpi_tables(void)
2961{
2962 u64 val;
2963 int err, cpu;
2964
2965 /*
2966 * If LPIs are enabled while we run this from the boot CPU,
2967 * flag the RD tables as pre-allocated if the stars do align.
2968 */
2969 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2970 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2971 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2972 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2973 pr_info("GICv3: Using preallocated redistributor tables\n");
2974 }
2975
2976 err = its_setup_lpi_prop_table();
2977 if (err)
2978 return err;
2979
2980 /*
2981 * We allocate all the pending tables anyway, as we may have a
2982 * mix of RDs that have had LPIs enabled, and some that
2983 * don't. We'll free the unused ones as each CPU comes online.
2984 */
2985 for_each_possible_cpu(cpu) {
2986 struct page *pend_page;
2987
2988 pend_page = its_allocate_pending_table(GFP_NOWAIT);
2989 if (!pend_page) {
2990 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2991 return -ENOMEM;
2992 }
2993
2994 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2995 }
2996
2997 return 0;
2998}
2999
3000static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3001{
3002 u32 count = 1000000; /* 1s! */
3003 bool clean;
3004 u64 val;
3005
3006 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3007 val &= ~GICR_VPENDBASER_Valid;
3008 val &= ~clr;
3009 val |= set;
3010 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3011
3012 do {
3013 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3014 clean = !(val & GICR_VPENDBASER_Dirty);
3015 if (!clean) {
3016 count--;
3017 cpu_relax();
3018 udelay(1);
3019 }
3020 } while (!clean && count);
3021
3022 if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3023 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3024 val |= GICR_VPENDBASER_PendingLast;
3025 }
3026
3027 return val;
3028}
3029
3030static void its_cpu_init_lpis(void)
3031{
3032 void __iomem *rbase = gic_data_rdist_rd_base();
3033 struct page *pend_page;
3034 phys_addr_t paddr;
3035 u64 val, tmp;
3036
3037 if (gic_data_rdist()->lpi_enabled)
3038 return;
3039
3040 val = readl_relaxed(rbase + GICR_CTLR);
3041 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3042 (val & GICR_CTLR_ENABLE_LPIS)) {
3043 /*
3044 * Check that we get the same property table on all
3045 * RDs. If we don't, this is hopeless.
3046 */
3047 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3048 paddr &= GENMASK_ULL(51, 12);
3049 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3050 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3051
3052 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3053 paddr &= GENMASK_ULL(51, 16);
3054
3055 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3056 its_free_pending_table(gic_data_rdist()->pend_page);
3057 gic_data_rdist()->pend_page = NULL;
3058
3059 goto out;
3060 }
3061
3062 pend_page = gic_data_rdist()->pend_page;
3063 paddr = page_to_phys(pend_page);
3064 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3065
3066 /* set PROPBASE */
3067 val = (gic_rdists->prop_table_pa |
3068 GICR_PROPBASER_InnerShareable |
3069 GICR_PROPBASER_RaWaWb |
3070 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3071
3072 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3073 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3074
3075 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3076 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3077 /*
3078 * The HW reports non-shareable, we must
3079 * remove the cacheability attributes as
3080 * well.
3081 */
3082 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3083 GICR_PROPBASER_CACHEABILITY_MASK);
3084 val |= GICR_PROPBASER_nC;
3085 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3086 }
3087 pr_info_once("GIC: using cache flushing for LPI property table\n");
3088 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3089 }
3090
3091 /* set PENDBASE */
3092 val = (page_to_phys(pend_page) |
3093 GICR_PENDBASER_InnerShareable |
3094 GICR_PENDBASER_RaWaWb);
3095
3096 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3097 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3098
3099 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3100 /*
3101 * The HW reports non-shareable, we must remove the
3102 * cacheability attributes as well.
3103 */
3104 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3105 GICR_PENDBASER_CACHEABILITY_MASK);
3106 val |= GICR_PENDBASER_nC;
3107 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3108 }
3109
3110 /* Enable LPIs */
3111 val = readl_relaxed(rbase + GICR_CTLR);
3112 val |= GICR_CTLR_ENABLE_LPIS;
3113 writel_relaxed(val, rbase + GICR_CTLR);
3114
3115 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3116 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3117
3118 /*
3119 * It's possible for CPU to receive VLPIs before it is
3120 * sheduled as a vPE, especially for the first CPU, and the
3121 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3122 * as out of range and dropped by GIC.
3123 * So we initialize IDbits to known value to avoid VLPI drop.
3124 */
3125 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3126 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3127 smp_processor_id(), val);
3128 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3129
3130 /*
3131 * Also clear Valid bit of GICR_VPENDBASER, in case some
3132 * ancient programming gets left in and has possibility of
3133 * corrupting memory.
3134 */
3135 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3136 }
3137
3138 if (allocate_vpe_l1_table()) {
3139 /*
3140 * If the allocation has failed, we're in massive trouble.
3141 * Disable direct injection, and pray that no VM was
3142 * already running...
3143 */
3144 gic_rdists->has_rvpeid = false;
3145 gic_rdists->has_vlpis = false;
3146 }
3147
3148 /* Make sure the GIC has seen the above */
3149 dsb(sy);
3150out:
3151 gic_data_rdist()->lpi_enabled = true;
3152 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3153 smp_processor_id(),
3154 gic_data_rdist()->pend_page ? "allocated" : "reserved",
3155 &paddr);
3156}
3157
3158static void its_cpu_init_collection(struct its_node *its)
3159{
3160 int cpu = smp_processor_id();
3161 u64 target;
3162
3163 /* avoid cross node collections and its mapping */
3164 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3165 struct device_node *cpu_node;
3166
3167 cpu_node = of_get_cpu_node(cpu, NULL);
3168 if (its->numa_node != NUMA_NO_NODE &&
3169 its->numa_node != of_node_to_nid(cpu_node))
3170 return;
3171 }
3172
3173 /*
3174 * We now have to bind each collection to its target
3175 * redistributor.
3176 */
3177 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3178 /*
3179 * This ITS wants the physical address of the
3180 * redistributor.
3181 */
3182 target = gic_data_rdist()->phys_base;
3183 } else {
3184 /* This ITS wants a linear CPU number. */
3185 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3186 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3187 }
3188
3189 /* Perform collection mapping */
3190 its->collections[cpu].target_address = target;
3191 its->collections[cpu].col_id = cpu;
3192
3193 its_send_mapc(its, &its->collections[cpu], 1);
3194 its_send_invall(its, &its->collections[cpu]);
3195}
3196
3197static void its_cpu_init_collections(void)
3198{
3199 struct its_node *its;
3200
3201 raw_spin_lock(&its_lock);
3202
3203 list_for_each_entry(its, &its_nodes, entry)
3204 its_cpu_init_collection(its);
3205
3206 raw_spin_unlock(&its_lock);
3207}
3208
3209static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3210{
3211 struct its_device *its_dev = NULL, *tmp;
3212 unsigned long flags;
3213
3214 raw_spin_lock_irqsave(&its->lock, flags);
3215
3216 list_for_each_entry(tmp, &its->its_device_list, entry) {
3217 if (tmp->device_id == dev_id) {
3218 its_dev = tmp;
3219 break;
3220 }
3221 }
3222
3223 raw_spin_unlock_irqrestore(&its->lock, flags);
3224
3225 return its_dev;
3226}
3227
3228static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3229{
3230 int i;
3231
3232 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3233 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3234 return &its->tables[i];
3235 }
3236
3237 return NULL;
3238}
3239
3240static bool its_alloc_table_entry(struct its_node *its,
3241 struct its_baser *baser, u32 id)
3242{
3243 struct page *page;
3244 u32 esz, idx;
3245 __le64 *table;
3246
3247 /* Don't allow device id that exceeds single, flat table limit */
3248 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3249 if (!(baser->val & GITS_BASER_INDIRECT))
3250 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3251
3252 /* Compute 1st level table index & check if that exceeds table limit */
3253 idx = id >> ilog2(baser->psz / esz);
3254 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3255 return false;
3256
3257 table = baser->base;
3258
3259 /* Allocate memory for 2nd level table */
3260 if (!table[idx]) {
3261 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3262 get_order(baser->psz));
3263 if (!page)
3264 return false;
3265
3266 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3267 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3268 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3269
3270 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3271
3272 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3273 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3274 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3275
3276 /* Ensure updated table contents are visible to ITS hardware */
3277 dsb(sy);
3278 }
3279
3280 return true;
3281}
3282
3283static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3284{
3285 struct its_baser *baser;
3286
3287 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3288
3289 /* Don't allow device id that exceeds ITS hardware limit */
3290 if (!baser)
3291 return (ilog2(dev_id) < device_ids(its));
3292
3293 return its_alloc_table_entry(its, baser, dev_id);
3294}
3295
3296static bool its_alloc_vpe_table(u32 vpe_id)
3297{
3298 struct its_node *its;
3299 int cpu;
3300
3301 /*
3302 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3303 * could try and only do it on ITSs corresponding to devices
3304 * that have interrupts targeted at this VPE, but the
3305 * complexity becomes crazy (and you have tons of memory
3306 * anyway, right?).
3307 */
3308 list_for_each_entry(its, &its_nodes, entry) {
3309 struct its_baser *baser;
3310
3311 if (!is_v4(its))
3312 continue;
3313
3314 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3315 if (!baser)
3316 return false;
3317
3318 if (!its_alloc_table_entry(its, baser, vpe_id))
3319 return false;
3320 }
3321
3322 /* Non v4.1? No need to iterate RDs and go back early. */
3323 if (!gic_rdists->has_rvpeid)
3324 return true;
3325
3326 /*
3327 * Make sure the L2 tables are allocated for all copies of
3328 * the L1 table on *all* v4.1 RDs.
3329 */
3330 for_each_possible_cpu(cpu) {
3331 if (!allocate_vpe_l2_table(cpu, vpe_id))
3332 return false;
3333 }
3334
3335 return true;
3336}
3337
3338static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3339 int nvecs, bool alloc_lpis)
3340{
3341 struct its_device *dev;
3342 unsigned long *lpi_map = NULL;
3343 unsigned long flags;
3344 u16 *col_map = NULL;
3345 void *itt;
3346 int lpi_base;
3347 int nr_lpis;
3348 int nr_ites;
3349 int sz;
3350
3351 if (!its_alloc_device_table(its, dev_id))
3352 return NULL;
3353
3354 if (WARN_ON(!is_power_of_2(nvecs)))
3355 nvecs = roundup_pow_of_two(nvecs);
3356
3357 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3358 /*
3359 * Even if the device wants a single LPI, the ITT must be
3360 * sized as a power of two (and you need at least one bit...).
3361 */
3362 nr_ites = max(2, nvecs);
3363 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3364 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3365 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3366 if (alloc_lpis) {
3367 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3368 if (lpi_map)
3369 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3370 GFP_KERNEL);
3371 } else {
3372 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3373 nr_lpis = 0;
3374 lpi_base = 0;
3375 }
3376
3377 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3378 kfree(dev);
3379 kfree(itt);
3380 kfree(lpi_map);
3381 kfree(col_map);
3382 return NULL;
3383 }
3384
3385 gic_flush_dcache_to_poc(itt, sz);
3386
3387 dev->its = its;
3388 dev->itt = itt;
3389 dev->nr_ites = nr_ites;
3390 dev->event_map.lpi_map = lpi_map;
3391 dev->event_map.col_map = col_map;
3392 dev->event_map.lpi_base = lpi_base;
3393 dev->event_map.nr_lpis = nr_lpis;
3394 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3395 dev->device_id = dev_id;
3396 INIT_LIST_HEAD(&dev->entry);
3397
3398 raw_spin_lock_irqsave(&its->lock, flags);
3399 list_add(&dev->entry, &its->its_device_list);
3400 raw_spin_unlock_irqrestore(&its->lock, flags);
3401
3402 /* Map device to its ITT */
3403 its_send_mapd(dev, 1);
3404
3405 return dev;
3406}
3407
3408static void its_free_device(struct its_device *its_dev)
3409{
3410 unsigned long flags;
3411
3412 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3413 list_del(&its_dev->entry);
3414 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3415 kfree(its_dev->event_map.col_map);
3416 kfree(its_dev->itt);
3417 kfree(its_dev);
3418}
3419
3420static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3421{
3422 int idx;
3423
3424 /* Find a free LPI region in lpi_map and allocate them. */
3425 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3426 dev->event_map.nr_lpis,
3427 get_count_order(nvecs));
3428 if (idx < 0)
3429 return -ENOSPC;
3430
3431 *hwirq = dev->event_map.lpi_base + idx;
3432
3433 return 0;
3434}
3435
3436static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3437 int nvec, msi_alloc_info_t *info)
3438{
3439 struct its_node *its;
3440 struct its_device *its_dev;
3441 struct msi_domain_info *msi_info;
3442 u32 dev_id;
3443 int err = 0;
3444
3445 /*
3446 * We ignore "dev" entirely, and rely on the dev_id that has
3447 * been passed via the scratchpad. This limits this domain's
3448 * usefulness to upper layers that definitely know that they
3449 * are built on top of the ITS.
3450 */
3451 dev_id = info->scratchpad[0].ul;
3452
3453 msi_info = msi_get_domain_info(domain);
3454 its = msi_info->data;
3455
3456 if (!gic_rdists->has_direct_lpi &&
3457 vpe_proxy.dev &&
3458 vpe_proxy.dev->its == its &&
3459 dev_id == vpe_proxy.dev->device_id) {
3460 /* Bad luck. Get yourself a better implementation */
3461 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3462 dev_id);
3463 return -EINVAL;
3464 }
3465
3466 mutex_lock(&its->dev_alloc_lock);
3467 its_dev = its_find_device(its, dev_id);
3468 if (its_dev) {
3469 /*
3470 * We already have seen this ID, probably through
3471 * another alias (PCI bridge of some sort). No need to
3472 * create the device.
3473 */
3474 its_dev->shared = true;
3475 pr_debug("Reusing ITT for devID %x\n", dev_id);
3476 goto out;
3477 }
3478
3479 its_dev = its_create_device(its, dev_id, nvec, true);
3480 if (!its_dev) {
3481 err = -ENOMEM;
3482 goto out;
3483 }
3484
3485 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3486out:
3487 mutex_unlock(&its->dev_alloc_lock);
3488 info->scratchpad[0].ptr = its_dev;
3489 return err;
3490}
3491
3492static struct msi_domain_ops its_msi_domain_ops = {
3493 .msi_prepare = its_msi_prepare,
3494};
3495
3496static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3497 unsigned int virq,
3498 irq_hw_number_t hwirq)
3499{
3500 struct irq_fwspec fwspec;
3501
3502 if (irq_domain_get_of_node(domain->parent)) {
3503 fwspec.fwnode = domain->parent->fwnode;
3504 fwspec.param_count = 3;
3505 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3506 fwspec.param[1] = hwirq;
3507 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3508 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3509 fwspec.fwnode = domain->parent->fwnode;
3510 fwspec.param_count = 2;
3511 fwspec.param[0] = hwirq;
3512 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3513 } else {
3514 return -EINVAL;
3515 }
3516
3517 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3518}
3519
3520static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3521 unsigned int nr_irqs, void *args)
3522{
3523 msi_alloc_info_t *info = args;
3524 struct its_device *its_dev = info->scratchpad[0].ptr;
3525 struct its_node *its = its_dev->its;
3526 struct irq_data *irqd;
3527 irq_hw_number_t hwirq;
3528 int err;
3529 int i;
3530
3531 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3532 if (err)
3533 return err;
3534
3535 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3536 if (err)
3537 return err;
3538
3539 for (i = 0; i < nr_irqs; i++) {
3540 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3541 if (err)
3542 return err;
3543
3544 irq_domain_set_hwirq_and_chip(domain, virq + i,
3545 hwirq + i, &its_irq_chip, its_dev);
3546 irqd = irq_get_irq_data(virq + i);
3547 irqd_set_single_target(irqd);
3548 irqd_set_affinity_on_activate(irqd);
3549 pr_debug("ID:%d pID:%d vID:%d\n",
3550 (int)(hwirq + i - its_dev->event_map.lpi_base),
3551 (int)(hwirq + i), virq + i);
3552 }
3553
3554 return 0;
3555}
3556
3557static int its_irq_domain_activate(struct irq_domain *domain,
3558 struct irq_data *d, bool reserve)
3559{
3560 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3561 u32 event = its_get_event_id(d);
3562 int cpu;
3563
3564 cpu = its_select_cpu(d, cpu_online_mask);
3565 if (cpu < 0 || cpu >= nr_cpu_ids)
3566 return -EINVAL;
3567
3568 its_inc_lpi_count(d, cpu);
3569 its_dev->event_map.col_map[event] = cpu;
3570 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3571
3572 /* Map the GIC IRQ and event to the device */
3573 its_send_mapti(its_dev, d->hwirq, event);
3574 return 0;
3575}
3576
3577static void its_irq_domain_deactivate(struct irq_domain *domain,
3578 struct irq_data *d)
3579{
3580 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3581 u32 event = its_get_event_id(d);
3582
3583 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3584 /* Stop the delivery of interrupts */
3585 its_send_discard(its_dev, event);
3586}
3587
3588static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3589 unsigned int nr_irqs)
3590{
3591 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3592 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3593 struct its_node *its = its_dev->its;
3594 int i;
3595
3596 bitmap_release_region(its_dev->event_map.lpi_map,
3597 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3598 get_count_order(nr_irqs));
3599
3600 for (i = 0; i < nr_irqs; i++) {
3601 struct irq_data *data = irq_domain_get_irq_data(domain,
3602 virq + i);
3603 /* Nuke the entry in the domain */
3604 irq_domain_reset_irq_data(data);
3605 }
3606
3607 mutex_lock(&its->dev_alloc_lock);
3608
3609 /*
3610 * If all interrupts have been freed, start mopping the
3611 * floor. This is conditionned on the device not being shared.
3612 */
3613 if (!its_dev->shared &&
3614 bitmap_empty(its_dev->event_map.lpi_map,
3615 its_dev->event_map.nr_lpis)) {
3616 its_lpi_free(its_dev->event_map.lpi_map,
3617 its_dev->event_map.lpi_base,
3618 its_dev->event_map.nr_lpis);
3619
3620 /* Unmap device/itt */
3621 its_send_mapd(its_dev, 0);
3622 its_free_device(its_dev);
3623 }
3624
3625 mutex_unlock(&its->dev_alloc_lock);
3626
3627 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3628}
3629
3630static const struct irq_domain_ops its_domain_ops = {
3631 .alloc = its_irq_domain_alloc,
3632 .free = its_irq_domain_free,
3633 .activate = its_irq_domain_activate,
3634 .deactivate = its_irq_domain_deactivate,
3635};
3636
3637/*
3638 * This is insane.
3639 *
3640 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3641 * likely), the only way to perform an invalidate is to use a fake
3642 * device to issue an INV command, implying that the LPI has first
3643 * been mapped to some event on that device. Since this is not exactly
3644 * cheap, we try to keep that mapping around as long as possible, and
3645 * only issue an UNMAP if we're short on available slots.
3646 *
3647 * Broken by design(tm).
3648 *
3649 * GICv4.1, on the other hand, mandates that we're able to invalidate
3650 * by writing to a MMIO register. It doesn't implement the whole of
3651 * DirectLPI, but that's good enough. And most of the time, we don't
3652 * even have to invalidate anything, as the redistributor can be told
3653 * whether to generate a doorbell or not (we thus leave it enabled,
3654 * always).
3655 */
3656static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3657{
3658 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3659 if (gic_rdists->has_rvpeid)
3660 return;
3661
3662 /* Already unmapped? */
3663 if (vpe->vpe_proxy_event == -1)
3664 return;
3665
3666 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3667 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3668
3669 /*
3670 * We don't track empty slots at all, so let's move the
3671 * next_victim pointer if we can quickly reuse that slot
3672 * instead of nuking an existing entry. Not clear that this is
3673 * always a win though, and this might just generate a ripple
3674 * effect... Let's just hope VPEs don't migrate too often.
3675 */
3676 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3677 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3678
3679 vpe->vpe_proxy_event = -1;
3680}
3681
3682static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3683{
3684 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3685 if (gic_rdists->has_rvpeid)
3686 return;
3687
3688 if (!gic_rdists->has_direct_lpi) {
3689 unsigned long flags;
3690
3691 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3692 its_vpe_db_proxy_unmap_locked(vpe);
3693 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3694 }
3695}
3696
3697static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3698{
3699 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3700 if (gic_rdists->has_rvpeid)
3701 return;
3702
3703 /* Already mapped? */
3704 if (vpe->vpe_proxy_event != -1)
3705 return;
3706
3707 /* This slot was already allocated. Kick the other VPE out. */
3708 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3709 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3710
3711 /* Map the new VPE instead */
3712 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3713 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3714 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3715
3716 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3717 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3718}
3719
3720static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3721{
3722 unsigned long flags;
3723 struct its_collection *target_col;
3724
3725 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3726 if (gic_rdists->has_rvpeid)
3727 return;
3728
3729 if (gic_rdists->has_direct_lpi) {
3730 void __iomem *rdbase;
3731
3732 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3733 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3734 wait_for_syncr(rdbase);
3735
3736 return;
3737 }
3738
3739 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3740
3741 its_vpe_db_proxy_map_locked(vpe);
3742
3743 target_col = &vpe_proxy.dev->its->collections[to];
3744 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3745 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3746
3747 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3748}
3749
3750static int its_vpe_set_affinity(struct irq_data *d,
3751 const struct cpumask *mask_val,
3752 bool force)
3753{
3754 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3755 int from, cpu = cpumask_first(mask_val);
3756 unsigned long flags;
3757
3758 /*
3759 * Changing affinity is mega expensive, so let's be as lazy as
3760 * we can and only do it if we really have to. Also, if mapped
3761 * into the proxy device, we need to move the doorbell
3762 * interrupt to its new location.
3763 *
3764 * Another thing is that changing the affinity of a vPE affects
3765 * *other interrupts* such as all the vLPIs that are routed to
3766 * this vPE. This means that the irq_desc lock is not enough to
3767 * protect us, and that we must ensure nobody samples vpe->col_idx
3768 * during the update, hence the lock below which must also be
3769 * taken on any vLPI handling path that evaluates vpe->col_idx.
3770 */
3771 from = vpe_to_cpuid_lock(vpe, &flags);
3772 if (from == cpu)
3773 goto out;
3774
3775 vpe->col_idx = cpu;
3776
3777 /*
3778 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3779 * is sharing its VPE table with the current one.
3780 */
3781 if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3782 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3783 goto out;
3784
3785 its_send_vmovp(vpe);
3786 its_vpe_db_proxy_move(vpe, from, cpu);
3787
3788out:
3789 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3790 vpe_to_cpuid_unlock(vpe, flags);
3791
3792 return IRQ_SET_MASK_OK_DONE;
3793}
3794
3795static void its_wait_vpt_parse_complete(void)
3796{
3797 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3798 u64 val;
3799
3800 if (!gic_rdists->has_vpend_valid_dirty)
3801 return;
3802
3803 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3804 val,
3805 !(val & GICR_VPENDBASER_Dirty),
3806 10, 500));
3807}
3808
3809static void its_vpe_schedule(struct its_vpe *vpe)
3810{
3811 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3812 u64 val;
3813
3814 /* Schedule the VPE */
3815 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3816 GENMASK_ULL(51, 12);
3817 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3818 val |= GICR_VPROPBASER_RaWb;
3819 val |= GICR_VPROPBASER_InnerShareable;
3820 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3821
3822 val = virt_to_phys(page_address(vpe->vpt_page)) &
3823 GENMASK_ULL(51, 16);
3824 val |= GICR_VPENDBASER_RaWaWb;
3825 val |= GICR_VPENDBASER_InnerShareable;
3826 /*
3827 * There is no good way of finding out if the pending table is
3828 * empty as we can race against the doorbell interrupt very
3829 * easily. So in the end, vpe->pending_last is only an
3830 * indication that the vcpu has something pending, not one
3831 * that the pending table is empty. A good implementation
3832 * would be able to read its coarse map pretty quickly anyway,
3833 * making this a tolerable issue.
3834 */
3835 val |= GICR_VPENDBASER_PendingLast;
3836 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3837 val |= GICR_VPENDBASER_Valid;
3838 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3839
3840 its_wait_vpt_parse_complete();
3841}
3842
3843static void its_vpe_deschedule(struct its_vpe *vpe)
3844{
3845 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3846 u64 val;
3847
3848 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3849
3850 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3851 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3852}
3853
3854static void its_vpe_invall(struct its_vpe *vpe)
3855{
3856 struct its_node *its;
3857
3858 list_for_each_entry(its, &its_nodes, entry) {
3859 if (!is_v4(its))
3860 continue;
3861
3862 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3863 continue;
3864
3865 /*
3866 * Sending a VINVALL to a single ITS is enough, as all
3867 * we need is to reach the redistributors.
3868 */
3869 its_send_vinvall(its, vpe);
3870 return;
3871 }
3872}
3873
3874static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3875{
3876 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3877 struct its_cmd_info *info = vcpu_info;
3878
3879 switch (info->cmd_type) {
3880 case SCHEDULE_VPE:
3881 its_vpe_schedule(vpe);
3882 return 0;
3883
3884 case DESCHEDULE_VPE:
3885 its_vpe_deschedule(vpe);
3886 return 0;
3887
3888 case INVALL_VPE:
3889 its_vpe_invall(vpe);
3890 return 0;
3891
3892 default:
3893 return -EINVAL;
3894 }
3895}
3896
3897static void its_vpe_send_cmd(struct its_vpe *vpe,
3898 void (*cmd)(struct its_device *, u32))
3899{
3900 unsigned long flags;
3901
3902 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3903
3904 its_vpe_db_proxy_map_locked(vpe);
3905 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3906
3907 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3908}
3909
3910static void its_vpe_send_inv(struct irq_data *d)
3911{
3912 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3913
3914 if (gic_rdists->has_direct_lpi) {
3915 void __iomem *rdbase;
3916
3917 /* Target the redistributor this VPE is currently known on */
3918 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3919 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3920 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3921 wait_for_syncr(rdbase);
3922 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3923 } else {
3924 its_vpe_send_cmd(vpe, its_send_inv);
3925 }
3926}
3927
3928static void its_vpe_mask_irq(struct irq_data *d)
3929{
3930 /*
3931 * We need to unmask the LPI, which is described by the parent
3932 * irq_data. Instead of calling into the parent (which won't
3933 * exactly do the right thing, let's simply use the
3934 * parent_data pointer. Yes, I'm naughty.
3935 */
3936 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3937 its_vpe_send_inv(d);
3938}
3939
3940static void its_vpe_unmask_irq(struct irq_data *d)
3941{
3942 /* Same hack as above... */
3943 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3944 its_vpe_send_inv(d);
3945}
3946
3947static int its_vpe_set_irqchip_state(struct irq_data *d,
3948 enum irqchip_irq_state which,
3949 bool state)
3950{
3951 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3952
3953 if (which != IRQCHIP_STATE_PENDING)
3954 return -EINVAL;
3955
3956 if (gic_rdists->has_direct_lpi) {
3957 void __iomem *rdbase;
3958
3959 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3960 if (state) {
3961 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3962 } else {
3963 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3964 wait_for_syncr(rdbase);
3965 }
3966 } else {
3967 if (state)
3968 its_vpe_send_cmd(vpe, its_send_int);
3969 else
3970 its_vpe_send_cmd(vpe, its_send_clear);
3971 }
3972
3973 return 0;
3974}
3975
3976static int its_vpe_retrigger(struct irq_data *d)
3977{
3978 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
3979}
3980
3981static struct irq_chip its_vpe_irq_chip = {
3982 .name = "GICv4-vpe",
3983 .irq_mask = its_vpe_mask_irq,
3984 .irq_unmask = its_vpe_unmask_irq,
3985 .irq_eoi = irq_chip_eoi_parent,
3986 .irq_set_affinity = its_vpe_set_affinity,
3987 .irq_retrigger = its_vpe_retrigger,
3988 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
3989 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
3990};
3991
3992static struct its_node *find_4_1_its(void)
3993{
3994 static struct its_node *its = NULL;
3995
3996 if (!its) {
3997 list_for_each_entry(its, &its_nodes, entry) {
3998 if (is_v4_1(its))
3999 return its;
4000 }
4001
4002 /* Oops? */
4003 its = NULL;
4004 }
4005
4006 return its;
4007}
4008
4009static void its_vpe_4_1_send_inv(struct irq_data *d)
4010{
4011 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4012 struct its_node *its;
4013
4014 /*
4015 * GICv4.1 wants doorbells to be invalidated using the
4016 * INVDB command in order to be broadcast to all RDs. Send
4017 * it to the first valid ITS, and let the HW do its magic.
4018 */
4019 its = find_4_1_its();
4020 if (its)
4021 its_send_invdb(its, vpe);
4022}
4023
4024static void its_vpe_4_1_mask_irq(struct irq_data *d)
4025{
4026 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4027 its_vpe_4_1_send_inv(d);
4028}
4029
4030static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4031{
4032 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4033 its_vpe_4_1_send_inv(d);
4034}
4035
4036static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4037 struct its_cmd_info *info)
4038{
4039 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4040 u64 val = 0;
4041
4042 /* Schedule the VPE */
4043 val |= GICR_VPENDBASER_Valid;
4044 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4045 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4046 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4047
4048 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4049
4050 its_wait_vpt_parse_complete();
4051}
4052
4053static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4054 struct its_cmd_info *info)
4055{
4056 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4057 u64 val;
4058
4059 if (info->req_db) {
4060 unsigned long flags;
4061
4062 /*
4063 * vPE is going to block: make the vPE non-resident with
4064 * PendingLast clear and DB set. The GIC guarantees that if
4065 * we read-back PendingLast clear, then a doorbell will be
4066 * delivered when an interrupt comes.
4067 *
4068 * Note the locking to deal with the concurrent update of
4069 * pending_last from the doorbell interrupt handler that can
4070 * run concurrently.
4071 */
4072 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4073 val = its_clear_vpend_valid(vlpi_base,
4074 GICR_VPENDBASER_PendingLast,
4075 GICR_VPENDBASER_4_1_DB);
4076 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4077 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4078 } else {
4079 /*
4080 * We're not blocking, so just make the vPE non-resident
4081 * with PendingLast set, indicating that we'll be back.
4082 */
4083 val = its_clear_vpend_valid(vlpi_base,
4084 0,
4085 GICR_VPENDBASER_PendingLast);
4086 vpe->pending_last = true;
4087 }
4088}
4089
4090static void its_vpe_4_1_invall(struct its_vpe *vpe)
4091{
4092 void __iomem *rdbase;
4093 unsigned long flags;
4094 u64 val;
4095 int cpu;
4096
4097 val = GICR_INVALLR_V;
4098 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4099
4100 /* Target the redistributor this vPE is currently known on */
4101 cpu = vpe_to_cpuid_lock(vpe, &flags);
4102 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4103 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4104 gic_write_lpir(val, rdbase + GICR_INVALLR);
4105
4106 wait_for_syncr(rdbase);
4107 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4108 vpe_to_cpuid_unlock(vpe, flags);
4109}
4110
4111static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4112{
4113 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4114 struct its_cmd_info *info = vcpu_info;
4115
4116 switch (info->cmd_type) {
4117 case SCHEDULE_VPE:
4118 its_vpe_4_1_schedule(vpe, info);
4119 return 0;
4120
4121 case DESCHEDULE_VPE:
4122 its_vpe_4_1_deschedule(vpe, info);
4123 return 0;
4124
4125 case INVALL_VPE:
4126 its_vpe_4_1_invall(vpe);
4127 return 0;
4128
4129 default:
4130 return -EINVAL;
4131 }
4132}
4133
4134static struct irq_chip its_vpe_4_1_irq_chip = {
4135 .name = "GICv4.1-vpe",
4136 .irq_mask = its_vpe_4_1_mask_irq,
4137 .irq_unmask = its_vpe_4_1_unmask_irq,
4138 .irq_eoi = irq_chip_eoi_parent,
4139 .irq_set_affinity = its_vpe_set_affinity,
4140 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4141};
4142
4143static void its_configure_sgi(struct irq_data *d, bool clear)
4144{
4145 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4146 struct its_cmd_desc desc;
4147
4148 desc.its_vsgi_cmd.vpe = vpe;
4149 desc.its_vsgi_cmd.sgi = d->hwirq;
4150 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4151 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4152 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4153 desc.its_vsgi_cmd.clear = clear;
4154
4155 /*
4156 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4157 * destination VPE is mapped there. Since we map them eagerly at
4158 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4159 */
4160 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4161}
4162
4163static void its_sgi_mask_irq(struct irq_data *d)
4164{
4165 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4166
4167 vpe->sgi_config[d->hwirq].enabled = false;
4168 its_configure_sgi(d, false);
4169}
4170
4171static void its_sgi_unmask_irq(struct irq_data *d)
4172{
4173 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4174
4175 vpe->sgi_config[d->hwirq].enabled = true;
4176 its_configure_sgi(d, false);
4177}
4178
4179static int its_sgi_set_affinity(struct irq_data *d,
4180 const struct cpumask *mask_val,
4181 bool force)
4182{
4183 /*
4184 * There is no notion of affinity for virtual SGIs, at least
4185 * not on the host (since they can only be targetting a vPE).
4186 * Tell the kernel we've done whatever it asked for.
4187 */
4188 irq_data_update_effective_affinity(d, mask_val);
4189 return IRQ_SET_MASK_OK;
4190}
4191
4192static int its_sgi_set_irqchip_state(struct irq_data *d,
4193 enum irqchip_irq_state which,
4194 bool state)
4195{
4196 if (which != IRQCHIP_STATE_PENDING)
4197 return -EINVAL;
4198
4199 if (state) {
4200 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4201 struct its_node *its = find_4_1_its();
4202 u64 val;
4203
4204 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4205 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4206 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4207 } else {
4208 its_configure_sgi(d, true);
4209 }
4210
4211 return 0;
4212}
4213
4214static int its_sgi_get_irqchip_state(struct irq_data *d,
4215 enum irqchip_irq_state which, bool *val)
4216{
4217 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4218 void __iomem *base;
4219 unsigned long flags;
4220 u32 count = 1000000; /* 1s! */
4221 u32 status;
4222 int cpu;
4223
4224 if (which != IRQCHIP_STATE_PENDING)
4225 return -EINVAL;
4226
4227 /*
4228 * Locking galore! We can race against two different events:
4229 *
4230 * - Concurent vPE affinity change: we must make sure it cannot
4231 * happen, or we'll talk to the wrong redistributor. This is
4232 * identical to what happens with vLPIs.
4233 *
4234 * - Concurrent VSGIPENDR access: As it involves accessing two
4235 * MMIO registers, this must be made atomic one way or another.
4236 */
4237 cpu = vpe_to_cpuid_lock(vpe, &flags);
4238 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4239 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4240 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4241 do {
4242 status = readl_relaxed(base + GICR_VSGIPENDR);
4243 if (!(status & GICR_VSGIPENDR_BUSY))
4244 goto out;
4245
4246 count--;
4247 if (!count) {
4248 pr_err_ratelimited("Unable to get SGI status\n");
4249 goto out;
4250 }
4251 cpu_relax();
4252 udelay(1);
4253 } while (count);
4254
4255out:
4256 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4257 vpe_to_cpuid_unlock(vpe, flags);
4258
4259 if (!count)
4260 return -ENXIO;
4261
4262 *val = !!(status & (1 << d->hwirq));
4263
4264 return 0;
4265}
4266
4267static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4268{
4269 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4270 struct its_cmd_info *info = vcpu_info;
4271
4272 switch (info->cmd_type) {
4273 case PROP_UPDATE_VSGI:
4274 vpe->sgi_config[d->hwirq].priority = info->priority;
4275 vpe->sgi_config[d->hwirq].group = info->group;
4276 its_configure_sgi(d, false);
4277 return 0;
4278
4279 default:
4280 return -EINVAL;
4281 }
4282}
4283
4284static struct irq_chip its_sgi_irq_chip = {
4285 .name = "GICv4.1-sgi",
4286 .irq_mask = its_sgi_mask_irq,
4287 .irq_unmask = its_sgi_unmask_irq,
4288 .irq_set_affinity = its_sgi_set_affinity,
4289 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4290 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4291 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4292};
4293
4294static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4295 unsigned int virq, unsigned int nr_irqs,
4296 void *args)
4297{
4298 struct its_vpe *vpe = args;
4299 int i;
4300
4301 /* Yes, we do want 16 SGIs */
4302 WARN_ON(nr_irqs != 16);
4303
4304 for (i = 0; i < 16; i++) {
4305 vpe->sgi_config[i].priority = 0;
4306 vpe->sgi_config[i].enabled = false;
4307 vpe->sgi_config[i].group = false;
4308
4309 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4310 &its_sgi_irq_chip, vpe);
4311 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4312 }
4313
4314 return 0;
4315}
4316
4317static void its_sgi_irq_domain_free(struct irq_domain *domain,
4318 unsigned int virq,
4319 unsigned int nr_irqs)
4320{
4321 /* Nothing to do */
4322}
4323
4324static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4325 struct irq_data *d, bool reserve)
4326{
4327 /* Write out the initial SGI configuration */
4328 its_configure_sgi(d, false);
4329 return 0;
4330}
4331
4332static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4333 struct irq_data *d)
4334{
4335 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4336
4337 /*
4338 * The VSGI command is awkward:
4339 *
4340 * - To change the configuration, CLEAR must be set to false,
4341 * leaving the pending bit unchanged.
4342 * - To clear the pending bit, CLEAR must be set to true, leaving
4343 * the configuration unchanged.
4344 *
4345 * You just can't do both at once, hence the two commands below.
4346 */
4347 vpe->sgi_config[d->hwirq].enabled = false;
4348 its_configure_sgi(d, false);
4349 its_configure_sgi(d, true);
4350}
4351
4352static const struct irq_domain_ops its_sgi_domain_ops = {
4353 .alloc = its_sgi_irq_domain_alloc,
4354 .free = its_sgi_irq_domain_free,
4355 .activate = its_sgi_irq_domain_activate,
4356 .deactivate = its_sgi_irq_domain_deactivate,
4357};
4358
4359static int its_vpe_id_alloc(void)
4360{
4361 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4362}
4363
4364static void its_vpe_id_free(u16 id)
4365{
4366 ida_simple_remove(&its_vpeid_ida, id);
4367}
4368
4369static int its_vpe_init(struct its_vpe *vpe)
4370{
4371 struct page *vpt_page;
4372 int vpe_id;
4373
4374 /* Allocate vpe_id */
4375 vpe_id = its_vpe_id_alloc();
4376 if (vpe_id < 0)
4377 return vpe_id;
4378
4379 /* Allocate VPT */
4380 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4381 if (!vpt_page) {
4382 its_vpe_id_free(vpe_id);
4383 return -ENOMEM;
4384 }
4385
4386 if (!its_alloc_vpe_table(vpe_id)) {
4387 its_vpe_id_free(vpe_id);
4388 its_free_pending_table(vpt_page);
4389 return -ENOMEM;
4390 }
4391
4392 raw_spin_lock_init(&vpe->vpe_lock);
4393 vpe->vpe_id = vpe_id;
4394 vpe->vpt_page = vpt_page;
4395 if (gic_rdists->has_rvpeid)
4396 atomic_set(&vpe->vmapp_count, 0);
4397 else
4398 vpe->vpe_proxy_event = -1;
4399
4400 return 0;
4401}
4402
4403static void its_vpe_teardown(struct its_vpe *vpe)
4404{
4405 its_vpe_db_proxy_unmap(vpe);
4406 its_vpe_id_free(vpe->vpe_id);
4407 its_free_pending_table(vpe->vpt_page);
4408}
4409
4410static void its_vpe_irq_domain_free(struct irq_domain *domain,
4411 unsigned int virq,
4412 unsigned int nr_irqs)
4413{
4414 struct its_vm *vm = domain->host_data;
4415 int i;
4416
4417 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4418
4419 for (i = 0; i < nr_irqs; i++) {
4420 struct irq_data *data = irq_domain_get_irq_data(domain,
4421 virq + i);
4422 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4423
4424 BUG_ON(vm != vpe->its_vm);
4425
4426 clear_bit(data->hwirq, vm->db_bitmap);
4427 its_vpe_teardown(vpe);
4428 irq_domain_reset_irq_data(data);
4429 }
4430
4431 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4432 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4433 its_free_prop_table(vm->vprop_page);
4434 }
4435}
4436
4437static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4438 unsigned int nr_irqs, void *args)
4439{
4440 struct irq_chip *irqchip = &its_vpe_irq_chip;
4441 struct its_vm *vm = args;
4442 unsigned long *bitmap;
4443 struct page *vprop_page;
4444 int base, nr_ids, i, err = 0;
4445
4446 BUG_ON(!vm);
4447
4448 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4449 if (!bitmap)
4450 return -ENOMEM;
4451
4452 if (nr_ids < nr_irqs) {
4453 its_lpi_free(bitmap, base, nr_ids);
4454 return -ENOMEM;
4455 }
4456
4457 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4458 if (!vprop_page) {
4459 its_lpi_free(bitmap, base, nr_ids);
4460 return -ENOMEM;
4461 }
4462
4463 vm->db_bitmap = bitmap;
4464 vm->db_lpi_base = base;
4465 vm->nr_db_lpis = nr_ids;
4466 vm->vprop_page = vprop_page;
4467
4468 if (gic_rdists->has_rvpeid)
4469 irqchip = &its_vpe_4_1_irq_chip;
4470
4471 for (i = 0; i < nr_irqs; i++) {
4472 vm->vpes[i]->vpe_db_lpi = base + i;
4473 err = its_vpe_init(vm->vpes[i]);
4474 if (err)
4475 break;
4476 err = its_irq_gic_domain_alloc(domain, virq + i,
4477 vm->vpes[i]->vpe_db_lpi);
4478 if (err)
4479 break;
4480 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4481 irqchip, vm->vpes[i]);
4482 set_bit(i, bitmap);
4483 }
4484
4485 if (err) {
4486 if (i > 0)
4487 its_vpe_irq_domain_free(domain, virq, i - 1);
4488
4489 its_lpi_free(bitmap, base, nr_ids);
4490 its_free_prop_table(vprop_page);
4491 }
4492
4493 return err;
4494}
4495
4496static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4497 struct irq_data *d, bool reserve)
4498{
4499 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4500 struct its_node *its;
4501
4502 /*
4503 * If we use the list map, we issue VMAPP on demand... Unless
4504 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4505 * so that VSGIs can work.
4506 */
4507 if (!gic_requires_eager_mapping())
4508 return 0;
4509
4510 /* Map the VPE to the first possible CPU */
4511 vpe->col_idx = cpumask_first(cpu_online_mask);
4512
4513 list_for_each_entry(its, &its_nodes, entry) {
4514 if (!is_v4(its))
4515 continue;
4516
4517 its_send_vmapp(its, vpe, true);
4518 its_send_vinvall(its, vpe);
4519 }
4520
4521 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4522
4523 return 0;
4524}
4525
4526static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4527 struct irq_data *d)
4528{
4529 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4530 struct its_node *its;
4531
4532 /*
4533 * If we use the list map on GICv4.0, we unmap the VPE once no
4534 * VLPIs are associated with the VM.
4535 */
4536 if (!gic_requires_eager_mapping())
4537 return;
4538
4539 list_for_each_entry(its, &its_nodes, entry) {
4540 if (!is_v4(its))
4541 continue;
4542
4543 its_send_vmapp(its, vpe, false);
4544 }
4545}
4546
4547static const struct irq_domain_ops its_vpe_domain_ops = {
4548 .alloc = its_vpe_irq_domain_alloc,
4549 .free = its_vpe_irq_domain_free,
4550 .activate = its_vpe_irq_domain_activate,
4551 .deactivate = its_vpe_irq_domain_deactivate,
4552};
4553
4554static int its_force_quiescent(void __iomem *base)
4555{
4556 u32 count = 1000000; /* 1s */
4557 u32 val;
4558
4559 val = readl_relaxed(base + GITS_CTLR);
4560 /*
4561 * GIC architecture specification requires the ITS to be both
4562 * disabled and quiescent for writes to GITS_BASER<n> or
4563 * GITS_CBASER to not have UNPREDICTABLE results.
4564 */
4565 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4566 return 0;
4567
4568 /* Disable the generation of all interrupts to this ITS */
4569 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4570 writel_relaxed(val, base + GITS_CTLR);
4571
4572 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4573 while (1) {
4574 val = readl_relaxed(base + GITS_CTLR);
4575 if (val & GITS_CTLR_QUIESCENT)
4576 return 0;
4577
4578 count--;
4579 if (!count)
4580 return -EBUSY;
4581
4582 cpu_relax();
4583 udelay(1);
4584 }
4585}
4586
4587static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4588{
4589 struct its_node *its = data;
4590
4591 /* erratum 22375: only alloc 8MB table size (20 bits) */
4592 its->typer &= ~GITS_TYPER_DEVBITS;
4593 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4594 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4595
4596 return true;
4597}
4598
4599static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4600{
4601 struct its_node *its = data;
4602
4603 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4604
4605 return true;
4606}
4607
4608static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4609{
4610 struct its_node *its = data;
4611
4612 /* On QDF2400, the size of the ITE is 16Bytes */
4613 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4614 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4615
4616 return true;
4617}
4618
4619static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4620{
4621 struct its_node *its = its_dev->its;
4622
4623 /*
4624 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4625 * which maps 32-bit writes targeted at a separate window of
4626 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4627 * with device ID taken from bits [device_id_bits + 1:2] of
4628 * the window offset.
4629 */
4630 return its->pre_its_base + (its_dev->device_id << 2);
4631}
4632
4633static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4634{
4635 struct its_node *its = data;
4636 u32 pre_its_window[2];
4637 u32 ids;
4638
4639 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4640 "socionext,synquacer-pre-its",
4641 pre_its_window,
4642 ARRAY_SIZE(pre_its_window))) {
4643
4644 its->pre_its_base = pre_its_window[0];
4645 its->get_msi_base = its_irq_get_msi_base_pre_its;
4646
4647 ids = ilog2(pre_its_window[1]) - 2;
4648 if (device_ids(its) > ids) {
4649 its->typer &= ~GITS_TYPER_DEVBITS;
4650 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4651 }
4652
4653 /* the pre-ITS breaks isolation, so disable MSI remapping */
4654 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4655 return true;
4656 }
4657 return false;
4658}
4659
4660static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4661{
4662 struct its_node *its = data;
4663
4664 /*
4665 * Hip07 insists on using the wrong address for the VLPI
4666 * page. Trick it into doing the right thing...
4667 */
4668 its->vlpi_redist_offset = SZ_128K;
4669 return true;
4670}
4671
4672static const struct gic_quirk its_quirks[] = {
4673#ifdef CONFIG_CAVIUM_ERRATUM_22375
4674 {
4675 .desc = "ITS: Cavium errata 22375, 24313",
4676 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4677 .mask = 0xffff0fff,
4678 .init = its_enable_quirk_cavium_22375,
4679 },
4680#endif
4681#ifdef CONFIG_CAVIUM_ERRATUM_23144
4682 {
4683 .desc = "ITS: Cavium erratum 23144",
4684 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4685 .mask = 0xffff0fff,
4686 .init = its_enable_quirk_cavium_23144,
4687 },
4688#endif
4689#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4690 {
4691 .desc = "ITS: QDF2400 erratum 0065",
4692 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4693 .mask = 0xffffffff,
4694 .init = its_enable_quirk_qdf2400_e0065,
4695 },
4696#endif
4697#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4698 {
4699 /*
4700 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4701 * implementation, but with a 'pre-ITS' added that requires
4702 * special handling in software.
4703 */
4704 .desc = "ITS: Socionext Synquacer pre-ITS",
4705 .iidr = 0x0001143b,
4706 .mask = 0xffffffff,
4707 .init = its_enable_quirk_socionext_synquacer,
4708 },
4709#endif
4710#ifdef CONFIG_HISILICON_ERRATUM_161600802
4711 {
4712 .desc = "ITS: Hip07 erratum 161600802",
4713 .iidr = 0x00000004,
4714 .mask = 0xffffffff,
4715 .init = its_enable_quirk_hip07_161600802,
4716 },
4717#endif
4718 {
4719 }
4720};
4721
4722static void its_enable_quirks(struct its_node *its)
4723{
4724 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4725
4726 gic_enable_quirks(iidr, its_quirks, its);
4727}
4728
4729static int its_save_disable(void)
4730{
4731 struct its_node *its;
4732 int err = 0;
4733
4734 raw_spin_lock(&its_lock);
4735 list_for_each_entry(its, &its_nodes, entry) {
4736 void __iomem *base;
4737
4738 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4739 continue;
4740
4741 base = its->base;
4742 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4743 err = its_force_quiescent(base);
4744 if (err) {
4745 pr_err("ITS@%pa: failed to quiesce: %d\n",
4746 &its->phys_base, err);
4747 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4748 goto err;
4749 }
4750
4751 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4752 }
4753
4754err:
4755 if (err) {
4756 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4757 void __iomem *base;
4758
4759 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4760 continue;
4761
4762 base = its->base;
4763 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4764 }
4765 }
4766 raw_spin_unlock(&its_lock);
4767
4768 return err;
4769}
4770
4771static void its_restore_enable(void)
4772{
4773 struct its_node *its;
4774 int ret;
4775
4776 raw_spin_lock(&its_lock);
4777 list_for_each_entry(its, &its_nodes, entry) {
4778 void __iomem *base;
4779 int i;
4780
4781 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4782 continue;
4783
4784 base = its->base;
4785
4786 /*
4787 * Make sure that the ITS is disabled. If it fails to quiesce,
4788 * don't restore it since writing to CBASER or BASER<n>
4789 * registers is undefined according to the GIC v3 ITS
4790 * Specification.
4791 */
4792 ret = its_force_quiescent(base);
4793 if (ret) {
4794 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4795 &its->phys_base, ret);
4796 continue;
4797 }
4798
4799 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4800
4801 /*
4802 * Writing CBASER resets CREADR to 0, so make CWRITER and
4803 * cmd_write line up with it.
4804 */
4805 its->cmd_write = its->cmd_base;
4806 gits_write_cwriter(0, base + GITS_CWRITER);
4807
4808 /* Restore GITS_BASER from the value cache. */
4809 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4810 struct its_baser *baser = &its->tables[i];
4811
4812 if (!(baser->val & GITS_BASER_VALID))
4813 continue;
4814
4815 its_write_baser(its, baser, baser->val);
4816 }
4817 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4818
4819 /*
4820 * Reinit the collection if it's stored in the ITS. This is
4821 * indicated by the col_id being less than the HCC field.
4822 * CID < HCC as specified in the GIC v3 Documentation.
4823 */
4824 if (its->collections[smp_processor_id()].col_id <
4825 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4826 its_cpu_init_collection(its);
4827 }
4828 raw_spin_unlock(&its_lock);
4829}
4830
4831static struct syscore_ops its_syscore_ops = {
4832 .suspend = its_save_disable,
4833 .resume = its_restore_enable,
4834};
4835
4836static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4837{
4838 struct irq_domain *inner_domain;
4839 struct msi_domain_info *info;
4840
4841 info = kzalloc(sizeof(*info), GFP_KERNEL);
4842 if (!info)
4843 return -ENOMEM;
4844
4845 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4846 if (!inner_domain) {
4847 kfree(info);
4848 return -ENOMEM;
4849 }
4850
4851 inner_domain->parent = its_parent;
4852 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4853 inner_domain->flags |= its->msi_domain_flags;
4854 info->ops = &its_msi_domain_ops;
4855 info->data = its;
4856 inner_domain->host_data = info;
4857
4858 return 0;
4859}
4860
4861static int its_init_vpe_domain(void)
4862{
4863 struct its_node *its;
4864 u32 devid;
4865 int entries;
4866
4867 if (gic_rdists->has_direct_lpi) {
4868 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4869 return 0;
4870 }
4871
4872 /* Any ITS will do, even if not v4 */
4873 its = list_first_entry(&its_nodes, struct its_node, entry);
4874
4875 entries = roundup_pow_of_two(nr_cpu_ids);
4876 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4877 GFP_KERNEL);
4878 if (!vpe_proxy.vpes) {
4879 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4880 return -ENOMEM;
4881 }
4882
4883 /* Use the last possible DevID */
4884 devid = GENMASK(device_ids(its) - 1, 0);
4885 vpe_proxy.dev = its_create_device(its, devid, entries, false);
4886 if (!vpe_proxy.dev) {
4887 kfree(vpe_proxy.vpes);
4888 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4889 return -ENOMEM;
4890 }
4891
4892 BUG_ON(entries > vpe_proxy.dev->nr_ites);
4893
4894 raw_spin_lock_init(&vpe_proxy.lock);
4895 vpe_proxy.next_victim = 0;
4896 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4897 devid, vpe_proxy.dev->nr_ites);
4898
4899 return 0;
4900}
4901
4902static int __init its_compute_its_list_map(struct resource *res,
4903 void __iomem *its_base)
4904{
4905 int its_number;
4906 u32 ctlr;
4907
4908 /*
4909 * This is assumed to be done early enough that we're
4910 * guaranteed to be single-threaded, hence no
4911 * locking. Should this change, we should address
4912 * this.
4913 */
4914 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4915 if (its_number >= GICv4_ITS_LIST_MAX) {
4916 pr_err("ITS@%pa: No ITSList entry available!\n",
4917 &res->start);
4918 return -EINVAL;
4919 }
4920
4921 ctlr = readl_relaxed(its_base + GITS_CTLR);
4922 ctlr &= ~GITS_CTLR_ITS_NUMBER;
4923 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4924 writel_relaxed(ctlr, its_base + GITS_CTLR);
4925 ctlr = readl_relaxed(its_base + GITS_CTLR);
4926 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4927 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4928 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4929 }
4930
4931 if (test_and_set_bit(its_number, &its_list_map)) {
4932 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4933 &res->start, its_number);
4934 return -EINVAL;
4935 }
4936
4937 return its_number;
4938}
4939
4940static int __init its_probe_one(struct resource *res,
4941 struct fwnode_handle *handle, int numa_node)
4942{
4943 struct its_node *its;
4944 void __iomem *its_base;
4945 u32 val, ctlr;
4946 u64 baser, tmp, typer;
4947 struct page *page;
4948 int err;
4949
4950 its_base = ioremap(res->start, SZ_64K);
4951 if (!its_base) {
4952 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4953 return -ENOMEM;
4954 }
4955
4956 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4957 if (val != 0x30 && val != 0x40) {
4958 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4959 err = -ENODEV;
4960 goto out_unmap;
4961 }
4962
4963 err = its_force_quiescent(its_base);
4964 if (err) {
4965 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4966 goto out_unmap;
4967 }
4968
4969 pr_info("ITS %pR\n", res);
4970
4971 its = kzalloc(sizeof(*its), GFP_KERNEL);
4972 if (!its) {
4973 err = -ENOMEM;
4974 goto out_unmap;
4975 }
4976
4977 raw_spin_lock_init(&its->lock);
4978 mutex_init(&its->dev_alloc_lock);
4979 INIT_LIST_HEAD(&its->entry);
4980 INIT_LIST_HEAD(&its->its_device_list);
4981 typer = gic_read_typer(its_base + GITS_TYPER);
4982 its->typer = typer;
4983 its->base = its_base;
4984 its->phys_base = res->start;
4985 if (is_v4(its)) {
4986 if (!(typer & GITS_TYPER_VMOVP)) {
4987 err = its_compute_its_list_map(res, its_base);
4988 if (err < 0)
4989 goto out_free_its;
4990
4991 its->list_nr = err;
4992
4993 pr_info("ITS@%pa: Using ITS number %d\n",
4994 &res->start, err);
4995 } else {
4996 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
4997 }
4998
4999 if (is_v4_1(its)) {
5000 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5001
5002 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5003 if (!its->sgir_base) {
5004 err = -ENOMEM;
5005 goto out_free_its;
5006 }
5007
5008 its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5009
5010 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5011 &res->start, its->mpidr, svpet);
5012 }
5013 }
5014
5015 its->numa_node = numa_node;
5016
5017 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5018 get_order(ITS_CMD_QUEUE_SZ));
5019 if (!page) {
5020 err = -ENOMEM;
5021 goto out_unmap_sgir;
5022 }
5023 its->cmd_base = (void *)page_address(page);
5024 its->cmd_write = its->cmd_base;
5025 its->fwnode_handle = handle;
5026 its->get_msi_base = its_irq_get_msi_base;
5027 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5028
5029 its_enable_quirks(its);
5030
5031 err = its_alloc_tables(its);
5032 if (err)
5033 goto out_free_cmd;
5034
5035 err = its_alloc_collections(its);
5036 if (err)
5037 goto out_free_tables;
5038
5039 baser = (virt_to_phys(its->cmd_base) |
5040 GITS_CBASER_RaWaWb |
5041 GITS_CBASER_InnerShareable |
5042 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5043 GITS_CBASER_VALID);
5044
5045 gits_write_cbaser(baser, its->base + GITS_CBASER);
5046 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5047
5048 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5049 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5050 /*
5051 * The HW reports non-shareable, we must
5052 * remove the cacheability attributes as
5053 * well.
5054 */
5055 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5056 GITS_CBASER_CACHEABILITY_MASK);
5057 baser |= GITS_CBASER_nC;
5058 gits_write_cbaser(baser, its->base + GITS_CBASER);
5059 }
5060 pr_info("ITS: using cache flushing for cmd queue\n");
5061 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5062 }
5063
5064 gits_write_cwriter(0, its->base + GITS_CWRITER);
5065 ctlr = readl_relaxed(its->base + GITS_CTLR);
5066 ctlr |= GITS_CTLR_ENABLE;
5067 if (is_v4(its))
5068 ctlr |= GITS_CTLR_ImDe;
5069 writel_relaxed(ctlr, its->base + GITS_CTLR);
5070
5071 if (GITS_TYPER_HCC(typer))
5072 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
5073
5074 err = its_init_domain(handle, its);
5075 if (err)
5076 goto out_free_tables;
5077
5078 raw_spin_lock(&its_lock);
5079 list_add(&its->entry, &its_nodes);
5080 raw_spin_unlock(&its_lock);
5081
5082 return 0;
5083
5084out_free_tables:
5085 its_free_tables(its);
5086out_free_cmd:
5087 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5088out_unmap_sgir:
5089 if (its->sgir_base)
5090 iounmap(its->sgir_base);
5091out_free_its:
5092 kfree(its);
5093out_unmap:
5094 iounmap(its_base);
5095 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5096 return err;
5097}
5098
5099static bool gic_rdists_supports_plpis(void)
5100{
5101 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5102}
5103
5104static int redist_disable_lpis(void)
5105{
5106 void __iomem *rbase = gic_data_rdist_rd_base();
5107 u64 timeout = USEC_PER_SEC;
5108 u64 val;
5109
5110 if (!gic_rdists_supports_plpis()) {
5111 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5112 return -ENXIO;
5113 }
5114
5115 val = readl_relaxed(rbase + GICR_CTLR);
5116 if (!(val & GICR_CTLR_ENABLE_LPIS))
5117 return 0;
5118
5119 /*
5120 * If coming via a CPU hotplug event, we don't need to disable
5121 * LPIs before trying to re-enable them. They are already
5122 * configured and all is well in the world.
5123 *
5124 * If running with preallocated tables, there is nothing to do.
5125 */
5126 if (gic_data_rdist()->lpi_enabled ||
5127 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5128 return 0;
5129
5130 /*
5131 * From that point on, we only try to do some damage control.
5132 */
5133 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5134 smp_processor_id());
5135 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5136
5137 /* Disable LPIs */
5138 val &= ~GICR_CTLR_ENABLE_LPIS;
5139 writel_relaxed(val, rbase + GICR_CTLR);
5140
5141 /* Make sure any change to GICR_CTLR is observable by the GIC */
5142 dsb(sy);
5143
5144 /*
5145 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5146 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5147 * Error out if we time out waiting for RWP to clear.
5148 */
5149 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5150 if (!timeout) {
5151 pr_err("CPU%d: Timeout while disabling LPIs\n",
5152 smp_processor_id());
5153 return -ETIMEDOUT;
5154 }
5155 udelay(1);
5156 timeout--;
5157 }
5158
5159 /*
5160 * After it has been written to 1, it is IMPLEMENTATION
5161 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5162 * cleared to 0. Error out if clearing the bit failed.
5163 */
5164 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5165 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5166 return -EBUSY;
5167 }
5168
5169 return 0;
5170}
5171
5172int its_cpu_init(void)
5173{
5174 if (!list_empty(&its_nodes)) {
5175 int ret;
5176
5177 ret = redist_disable_lpis();
5178 if (ret)
5179 return ret;
5180
5181 its_cpu_init_lpis();
5182 its_cpu_init_collections();
5183 }
5184
5185 return 0;
5186}
5187
5188static const struct of_device_id its_device_id[] = {
5189 { .compatible = "arm,gic-v3-its", },
5190 {},
5191};
5192
5193static int __init its_of_probe(struct device_node *node)
5194{
5195 struct device_node *np;
5196 struct resource res;
5197
5198 for (np = of_find_matching_node(node, its_device_id); np;
5199 np = of_find_matching_node(np, its_device_id)) {
5200 if (!of_device_is_available(np))
5201 continue;
5202 if (!of_property_read_bool(np, "msi-controller")) {
5203 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5204 np);
5205 continue;
5206 }
5207
5208 if (of_address_to_resource(np, 0, &res)) {
5209 pr_warn("%pOF: no regs?\n", np);
5210 continue;
5211 }
5212
5213 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5214 }
5215 return 0;
5216}
5217
5218#ifdef CONFIG_ACPI
5219
5220#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5221
5222#ifdef CONFIG_ACPI_NUMA
5223struct its_srat_map {
5224 /* numa node id */
5225 u32 numa_node;
5226 /* GIC ITS ID */
5227 u32 its_id;
5228};
5229
5230static struct its_srat_map *its_srat_maps __initdata;
5231static int its_in_srat __initdata;
5232
5233static int __init acpi_get_its_numa_node(u32 its_id)
5234{
5235 int i;
5236
5237 for (i = 0; i < its_in_srat; i++) {
5238 if (its_id == its_srat_maps[i].its_id)
5239 return its_srat_maps[i].numa_node;
5240 }
5241 return NUMA_NO_NODE;
5242}
5243
5244static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5245 const unsigned long end)
5246{
5247 return 0;
5248}
5249
5250static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5251 const unsigned long end)
5252{
5253 int node;
5254 struct acpi_srat_gic_its_affinity *its_affinity;
5255
5256 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5257 if (!its_affinity)
5258 return -EINVAL;
5259
5260 if (its_affinity->header.length < sizeof(*its_affinity)) {
5261 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5262 its_affinity->header.length);
5263 return -EINVAL;
5264 }
5265
5266 node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
5267
5268 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5269 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5270 return 0;
5271 }
5272
5273 its_srat_maps[its_in_srat].numa_node = node;
5274 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5275 its_in_srat++;
5276 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5277 its_affinity->proximity_domain, its_affinity->its_id, node);
5278
5279 return 0;
5280}
5281
5282static void __init acpi_table_parse_srat_its(void)
5283{
5284 int count;
5285
5286 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5287 sizeof(struct acpi_table_srat),
5288 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5289 gic_acpi_match_srat_its, 0);
5290 if (count <= 0)
5291 return;
5292
5293 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5294 GFP_KERNEL);
5295 if (!its_srat_maps) {
5296 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
5297 return;
5298 }
5299
5300 acpi_table_parse_entries(ACPI_SIG_SRAT,
5301 sizeof(struct acpi_table_srat),
5302 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5303 gic_acpi_parse_srat_its, 0);
5304}
5305
5306/* free the its_srat_maps after ITS probing */
5307static void __init acpi_its_srat_maps_free(void)
5308{
5309 kfree(its_srat_maps);
5310}
5311#else
5312static void __init acpi_table_parse_srat_its(void) { }
5313static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5314static void __init acpi_its_srat_maps_free(void) { }
5315#endif
5316
5317static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5318 const unsigned long end)
5319{
5320 struct acpi_madt_generic_translator *its_entry;
5321 struct fwnode_handle *dom_handle;
5322 struct resource res;
5323 int err;
5324
5325 its_entry = (struct acpi_madt_generic_translator *)header;
5326 memset(&res, 0, sizeof(res));
5327 res.start = its_entry->base_address;
5328 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5329 res.flags = IORESOURCE_MEM;
5330
5331 dom_handle = irq_domain_alloc_fwnode(&res.start);
5332 if (!dom_handle) {
5333 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5334 &res.start);
5335 return -ENOMEM;
5336 }
5337
5338 err = iort_register_domain_token(its_entry->translation_id, res.start,
5339 dom_handle);
5340 if (err) {
5341 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5342 &res.start, its_entry->translation_id);
5343 goto dom_err;
5344 }
5345
5346 err = its_probe_one(&res, dom_handle,
5347 acpi_get_its_numa_node(its_entry->translation_id));
5348 if (!err)
5349 return 0;
5350
5351 iort_deregister_domain_token(its_entry->translation_id);
5352dom_err:
5353 irq_domain_free_fwnode(dom_handle);
5354 return err;
5355}
5356
5357static void __init its_acpi_probe(void)
5358{
5359 acpi_table_parse_srat_its();
5360 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5361 gic_acpi_parse_madt_its, 0);
5362 acpi_its_srat_maps_free();
5363}
5364#else
5365static void __init its_acpi_probe(void) { }
5366#endif
5367
5368int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5369 struct irq_domain *parent_domain)
5370{
5371 struct device_node *of_node;
5372 struct its_node *its;
5373 bool has_v4 = false;
5374 bool has_v4_1 = false;
5375 int err;
5376
5377 gic_rdists = rdists;
5378
5379 its_parent = parent_domain;
5380 of_node = to_of_node(handle);
5381 if (of_node)
5382 its_of_probe(of_node);
5383 else
5384 its_acpi_probe();
5385
5386 if (list_empty(&its_nodes)) {
5387 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5388 return -ENXIO;
5389 }
5390
5391 err = allocate_lpi_tables();
5392 if (err)
5393 return err;
5394
5395 list_for_each_entry(its, &its_nodes, entry) {
5396 has_v4 |= is_v4(its);
5397 has_v4_1 |= is_v4_1(its);
5398 }
5399
5400 /* Don't bother with inconsistent systems */
5401 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5402 rdists->has_rvpeid = false;
5403
5404 if (has_v4 & rdists->has_vlpis) {
5405 const struct irq_domain_ops *sgi_ops;
5406
5407 if (has_v4_1)
5408 sgi_ops = &its_sgi_domain_ops;
5409 else
5410 sgi_ops = NULL;
5411
5412 if (its_init_vpe_domain() ||
5413 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5414 rdists->has_vlpis = false;
5415 pr_err("ITS: Disabling GICv4 support\n");
5416 }
5417 }
5418
5419 register_syscore_ops(&its_syscore_ops);
5420
5421 return 0;
5422}