Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
   3 * Author: Marc Zyngier <marc.zyngier@arm.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  16 */
  17
 
 
  18#include <linux/bitmap.h>
  19#include <linux/cpu.h>
 
  20#include <linux/delay.h>
 
 
  21#include <linux/interrupt.h>
 
 
  22#include <linux/log2.h>
 
  23#include <linux/mm.h>
  24#include <linux/msi.h>
  25#include <linux/of.h>
  26#include <linux/of_address.h>
  27#include <linux/of_irq.h>
  28#include <linux/of_pci.h>
  29#include <linux/of_platform.h>
  30#include <linux/percpu.h>
  31#include <linux/slab.h>
 
  32
  33#include <linux/irqchip.h>
  34#include <linux/irqchip/arm-gic-v3.h>
 
  35
  36#include <asm/cacheflush.h>
  37#include <asm/cputype.h>
  38#include <asm/exception.h>
  39
  40#include "irq-gic-common.h"
  41
  42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
  43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
 
 
  44
  45#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46
  47/*
  48 * Collection structure - just an ID, and a redistributor address to
  49 * ping. We use one per CPU as a bag of interrupts assigned to this
  50 * CPU.
  51 */
  52struct its_collection {
  53	u64			target_address;
  54	u16			col_id;
  55};
  56
  57/*
 
 
 
 
 
 
 
 
 
 
 
 
 
  58 * The ITS structure - contains most of the infrastructure, with the
  59 * top-level MSI domain, the command queue, the collections, and the
  60 * list of devices writing to it.
 
 
 
 
  61 */
  62struct its_node {
  63	raw_spinlock_t		lock;
 
  64	struct list_head	entry;
  65	void __iomem		*base;
  66	unsigned long		phys_base;
  67	struct its_cmd_block	*cmd_base;
  68	struct its_cmd_block	*cmd_write;
  69	struct {
  70		void		*base;
  71		u32		order;
  72	} tables[GITS_BASER_NR_REGS];
  73	struct its_collection	*collections;
 
 
 
 
  74	struct list_head	its_device_list;
  75	u64			flags;
 
  76	u32			ite_size;
 
 
 
 
 
 
  77};
  78
  79#define ITS_ITT_ALIGN		SZ_256
  80
 
 
 
 
  81/* Convert page order to size in bytes */
  82#define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
  83
  84struct event_lpi_map {
  85	unsigned long		*lpi_map;
  86	u16			*col_map;
  87	irq_hw_number_t		lpi_base;
  88	int			nr_lpis;
 
 
 
 
  89};
  90
  91/*
  92 * The ITS view of a device - belongs to an ITS, a collection, owns an
  93 * interrupt translation table, and a list of interrupts.
 
 
  94 */
  95struct its_device {
  96	struct list_head	entry;
  97	struct its_node		*its;
  98	struct event_lpi_map	event_map;
  99	void			*itt;
 100	u32			nr_ites;
 101	u32			device_id;
 
 102};
 103
 
 
 
 
 
 
 
 104static LIST_HEAD(its_nodes);
 105static DEFINE_SPINLOCK(its_lock);
 106static struct rdists *gic_rdists;
 
 
 
 
 
 
 
 107
 108#define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
 
 109#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110
 111static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 112					       u32 event)
 113{
 114	struct its_node *its = its_dev->its;
 115
 116	return its->collections + its_dev->event_map.col_map[event];
 117}
 118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119/*
 120 * ITS command descriptors - parameters to be encoded in a command
 121 * block.
 122 */
 123struct its_cmd_desc {
 124	union {
 125		struct {
 126			struct its_device *dev;
 127			u32 event_id;
 128		} its_inv_cmd;
 129
 130		struct {
 131			struct its_device *dev;
 132			u32 event_id;
 
 
 
 
 
 133		} its_int_cmd;
 134
 135		struct {
 136			struct its_device *dev;
 137			int valid;
 138		} its_mapd_cmd;
 139
 140		struct {
 141			struct its_collection *col;
 142			int valid;
 143		} its_mapc_cmd;
 144
 145		struct {
 146			struct its_device *dev;
 147			u32 phys_id;
 148			u32 event_id;
 149		} its_mapvi_cmd;
 150
 151		struct {
 152			struct its_device *dev;
 153			struct its_collection *col;
 154			u32 event_id;
 155		} its_movi_cmd;
 156
 157		struct {
 158			struct its_device *dev;
 159			u32 event_id;
 160		} its_discard_cmd;
 161
 162		struct {
 163			struct its_collection *col;
 164		} its_invall_cmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165	};
 166};
 167
 168/*
 169 * The ITS command block, which is what the ITS actually parses.
 170 */
 171struct its_cmd_block {
 172	u64	raw_cmd[4];
 173};
 174
 175#define ITS_CMD_QUEUE_SZ		SZ_64K
 176#define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 177
 178typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
 
 179						    struct its_cmd_desc *);
 180
 
 
 
 
 
 
 
 
 
 
 
 181static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 182{
 183	cmd->raw_cmd[0] &= ~0xffUL;
 184	cmd->raw_cmd[0] |= cmd_nr;
 185}
 186
 187static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 188{
 189	cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
 190	cmd->raw_cmd[0] |= ((u64)devid) << 32;
 191}
 192
 193static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 194{
 195	cmd->raw_cmd[1] &= ~0xffffffffUL;
 196	cmd->raw_cmd[1] |= id;
 197}
 198
 199static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 200{
 201	cmd->raw_cmd[1] &= 0xffffffffUL;
 202	cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
 203}
 204
 205static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 206{
 207	cmd->raw_cmd[1] &= ~0x1fUL;
 208	cmd->raw_cmd[1] |= size & 0x1f;
 209}
 210
 211static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 212{
 213	cmd->raw_cmd[2] &= ~0xffffffffffffUL;
 214	cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
 215}
 216
 217static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 218{
 219	cmd->raw_cmd[2] &= ~(1UL << 63);
 220	cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
 221}
 222
 223static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 224{
 225	cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
 226	cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
 227}
 228
 229static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 230{
 231	cmd->raw_cmd[2] &= ~0xffffUL;
 232	cmd->raw_cmd[2] |= col;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233}
 234
 235static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 236{
 237	/* Let's fixup BE commands */
 238	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
 239	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
 240	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
 241	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
 242}
 243
 244static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
 
 245						 struct its_cmd_desc *desc)
 246{
 247	unsigned long itt_addr;
 248	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 249
 250	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 251	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 252
 253	its_encode_cmd(cmd, GITS_CMD_MAPD);
 254	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 255	its_encode_size(cmd, size - 1);
 256	its_encode_itt(cmd, itt_addr);
 257	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 258
 259	its_fixup_cmd(cmd);
 260
 261	return NULL;
 262}
 263
 264static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
 
 265						 struct its_cmd_desc *desc)
 266{
 267	its_encode_cmd(cmd, GITS_CMD_MAPC);
 268	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 269	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 270	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 271
 272	its_fixup_cmd(cmd);
 273
 274	return desc->its_mapc_cmd.col;
 275}
 276
 277static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
 
 278						  struct its_cmd_desc *desc)
 279{
 280	struct its_collection *col;
 281
 282	col = dev_event_to_col(desc->its_mapvi_cmd.dev,
 283			       desc->its_mapvi_cmd.event_id);
 284
 285	its_encode_cmd(cmd, GITS_CMD_MAPVI);
 286	its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
 287	its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
 288	its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
 289	its_encode_collection(cmd, col->col_id);
 290
 291	its_fixup_cmd(cmd);
 292
 293	return col;
 294}
 295
 296static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
 
 297						 struct its_cmd_desc *desc)
 298{
 299	struct its_collection *col;
 300
 301	col = dev_event_to_col(desc->its_movi_cmd.dev,
 302			       desc->its_movi_cmd.event_id);
 303
 304	its_encode_cmd(cmd, GITS_CMD_MOVI);
 305	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 306	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 307	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 308
 309	its_fixup_cmd(cmd);
 310
 311	return col;
 312}
 313
 314static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
 
 315						    struct its_cmd_desc *desc)
 316{
 317	struct its_collection *col;
 318
 319	col = dev_event_to_col(desc->its_discard_cmd.dev,
 320			       desc->its_discard_cmd.event_id);
 321
 322	its_encode_cmd(cmd, GITS_CMD_DISCARD);
 323	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 324	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 325
 326	its_fixup_cmd(cmd);
 327
 328	return col;
 329}
 330
 331static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
 
 332						struct its_cmd_desc *desc)
 333{
 334	struct its_collection *col;
 335
 336	col = dev_event_to_col(desc->its_inv_cmd.dev,
 337			       desc->its_inv_cmd.event_id);
 338
 339	its_encode_cmd(cmd, GITS_CMD_INV);
 340	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 341	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 342
 343	its_fixup_cmd(cmd);
 344
 345	return col;
 346}
 347
 348static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349						   struct its_cmd_desc *desc)
 350{
 351	its_encode_cmd(cmd, GITS_CMD_INVALL);
 352	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 353
 354	its_fixup_cmd(cmd);
 355
 356	return NULL;
 357}
 358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359static u64 its_cmd_ptr_to_offset(struct its_node *its,
 360				 struct its_cmd_block *ptr)
 361{
 362	return (ptr - its->cmd_base) * sizeof(*ptr);
 363}
 364
 365static int its_queue_full(struct its_node *its)
 366{
 367	int widx;
 368	int ridx;
 369
 370	widx = its->cmd_write - its->cmd_base;
 371	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
 372
 373	/* This is incredibly unlikely to happen, unless the ITS locks up. */
 374	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
 375		return 1;
 376
 377	return 0;
 378}
 379
 380static struct its_cmd_block *its_allocate_entry(struct its_node *its)
 381{
 382	struct its_cmd_block *cmd;
 383	u32 count = 1000000;	/* 1s! */
 384
 385	while (its_queue_full(its)) {
 386		count--;
 387		if (!count) {
 388			pr_err_ratelimited("ITS queue not draining\n");
 389			return NULL;
 390		}
 391		cpu_relax();
 392		udelay(1);
 393	}
 394
 395	cmd = its->cmd_write++;
 396
 397	/* Handle queue wrapping */
 398	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
 399		its->cmd_write = its->cmd_base;
 400
 
 
 
 
 
 
 401	return cmd;
 402}
 403
 404static struct its_cmd_block *its_post_commands(struct its_node *its)
 405{
 406	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
 407
 408	writel_relaxed(wr, its->base + GITS_CWRITER);
 409
 410	return its->cmd_write;
 411}
 412
 413static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
 414{
 415	/*
 416	 * Make sure the commands written to memory are observable by
 417	 * the ITS.
 418	 */
 419	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
 420		__flush_dcache_area(cmd, sizeof(*cmd));
 421	else
 422		dsb(ishst);
 423}
 424
 425static void its_wait_for_range_completion(struct its_node *its,
 426					  struct its_cmd_block *from,
 427					  struct its_cmd_block *to)
 428{
 429	u64 rd_idx, from_idx, to_idx;
 430	u32 count = 1000000;	/* 1s! */
 431
 432	from_idx = its_cmd_ptr_to_offset(its, from);
 433	to_idx = its_cmd_ptr_to_offset(its, to);
 
 
 
 
 434
 435	while (1) {
 
 
 436		rd_idx = readl_relaxed(its->base + GITS_CREADR);
 437		if (rd_idx >= to_idx || rd_idx < from_idx)
 
 
 
 
 
 
 
 
 
 
 438			break;
 439
 440		count--;
 441		if (!count) {
 442			pr_err_ratelimited("ITS queue timeout\n");
 443			return;
 
 444		}
 
 445		cpu_relax();
 446		udelay(1);
 447	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448}
 449
 450static void its_send_single_command(struct its_node *its,
 451				    its_cmd_builder_t builder,
 452				    struct its_cmd_desc *desc)
 
 453{
 454	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
 455	struct its_collection *sync_col;
 456	unsigned long flags;
 457
 458	raw_spin_lock_irqsave(&its->lock, flags);
 
 459
 460	cmd = its_allocate_entry(its);
 461	if (!cmd) {		/* We're soooooo screewed... */
 462		pr_err_ratelimited("ITS can't allocate, dropping command\n");
 463		raw_spin_unlock_irqrestore(&its->lock, flags);
 464		return;
 465	}
 466	sync_col = builder(cmd, desc);
 467	its_flush_cmd(its, cmd);
 468
 469	if (sync_col) {
 470		sync_cmd = its_allocate_entry(its);
 471		if (!sync_cmd) {
 472			pr_err_ratelimited("ITS can't SYNC, skipping\n");
 473			goto post;
 474		}
 475		its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
 476		its_encode_target(sync_cmd, sync_col->target_address);
 477		its_fixup_cmd(sync_cmd);
 478		its_flush_cmd(its, sync_cmd);
 479	}
 480
 481post:
 482	next_cmd = its_post_commands(its);
 483	raw_spin_unlock_irqrestore(&its->lock, flags);
 484
 485	its_wait_for_range_completion(its, cmd, next_cmd);
 486}
 487
 488static void its_send_inv(struct its_device *dev, u32 event_id)
 489{
 490	struct its_cmd_desc desc;
 491
 492	desc.its_inv_cmd.dev = dev;
 493	desc.its_inv_cmd.event_id = event_id;
 494
 495	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
 496}
 497
 498static void its_send_mapd(struct its_device *dev, int valid)
 499{
 500	struct its_cmd_desc desc;
 501
 502	desc.its_mapd_cmd.dev = dev;
 503	desc.its_mapd_cmd.valid = !!valid;
 504
 505	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
 506}
 507
 508static void its_send_mapc(struct its_node *its, struct its_collection *col,
 509			  int valid)
 510{
 511	struct its_cmd_desc desc;
 512
 513	desc.its_mapc_cmd.col = col;
 514	desc.its_mapc_cmd.valid = !!valid;
 515
 516	its_send_single_command(its, its_build_mapc_cmd, &desc);
 517}
 518
 519static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
 520{
 521	struct its_cmd_desc desc;
 522
 523	desc.its_mapvi_cmd.dev = dev;
 524	desc.its_mapvi_cmd.phys_id = irq_id;
 525	desc.its_mapvi_cmd.event_id = id;
 526
 527	its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
 528}
 529
 530static void its_send_movi(struct its_device *dev,
 531			  struct its_collection *col, u32 id)
 532{
 533	struct its_cmd_desc desc;
 534
 535	desc.its_movi_cmd.dev = dev;
 536	desc.its_movi_cmd.col = col;
 537	desc.its_movi_cmd.event_id = id;
 538
 539	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
 540}
 541
 542static void its_send_discard(struct its_device *dev, u32 id)
 543{
 544	struct its_cmd_desc desc;
 545
 546	desc.its_discard_cmd.dev = dev;
 547	desc.its_discard_cmd.event_id = id;
 548
 549	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
 550}
 551
 552static void its_send_invall(struct its_node *its, struct its_collection *col)
 553{
 554	struct its_cmd_desc desc;
 555
 556	desc.its_invall_cmd.col = col;
 557
 558	its_send_single_command(its, its_build_invall_cmd, &desc);
 559}
 560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 561/*
 562 * irqchip functions - assumes MSI, mostly.
 563 */
 564
 565static inline u32 its_get_event_id(struct irq_data *d)
 566{
 567	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 568	return d->hwirq - its_dev->event_map.lpi_base;
 569}
 570
 571static void lpi_set_config(struct irq_data *d, bool enable)
 572{
 573	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 574	irq_hw_number_t hwirq = d->hwirq;
 575	u32 id = its_get_event_id(d);
 576	u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
 577
 578	if (enable)
 579		*cfg |= LPI_PROP_ENABLED;
 580	else
 581		*cfg &= ~LPI_PROP_ENABLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582
 583	/*
 584	 * Make the above write visible to the redistributors.
 585	 * And yes, we're flushing exactly: One. Single. Byte.
 586	 * Humpf...
 587	 */
 588	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
 589		__flush_dcache_area(cfg, sizeof(*cfg));
 590	else
 591		dsb(ishst);
 592	its_send_inv(its_dev, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593}
 594
 595static void its_mask_irq(struct irq_data *d)
 596{
 597	lpi_set_config(d, false);
 
 
 
 598}
 599
 600static void its_unmask_irq(struct irq_data *d)
 601{
 602	lpi_set_config(d, true);
 
 
 
 603}
 604
 605static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
 606			    bool force)
 607{
 608	unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
 
 609	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 610	struct its_collection *target_col;
 611	u32 id = its_get_event_id(d);
 612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613	if (cpu >= nr_cpu_ids)
 614		return -EINVAL;
 615
 616	target_col = &its_dev->its->collections[cpu];
 617	its_send_movi(its_dev, target_col, id);
 618	its_dev->event_map.col_map[id] = cpu;
 
 
 
 
 619
 620	return IRQ_SET_MASK_OK_DONE;
 621}
 622
 
 
 
 
 
 
 
 623static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
 624{
 625	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 626	struct its_node *its;
 627	u64 addr;
 628
 629	its = its_dev->its;
 630	addr = its->phys_base + GITS_TRANSLATER;
 631
 632	msg->address_lo		= addr & ((1UL << 32) - 1);
 633	msg->address_hi		= addr >> 32;
 634	msg->data		= its_get_event_id(d);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635}
 636
 637static struct irq_chip its_irq_chip = {
 638	.name			= "ITS",
 639	.irq_mask		= its_mask_irq,
 640	.irq_unmask		= its_unmask_irq,
 641	.irq_eoi		= irq_chip_eoi_parent,
 642	.irq_set_affinity	= its_set_affinity,
 643	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
 
 
 644};
 645
 
 646/*
 647 * How we allocate LPIs:
 648 *
 649 * The GIC has id_bits bits for interrupt identifiers. From there, we
 650 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
 651 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
 652 * bits to the right.
 
 
 
 
 653 *
 654 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
 
 655 */
 656#define IRQS_PER_CHUNK_SHIFT	5
 657#define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
 658
 659static unsigned long *lpi_bitmap;
 660static u32 lpi_chunks;
 661static DEFINE_SPINLOCK(lpi_lock);
 662
 663static int its_lpi_to_chunk(int lpi)
 
 
 
 
 
 
 664{
 665	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
 
 
 
 
 
 
 
 
 666}
 667
 668static int its_chunk_to_lpi(int chunk)
 669{
 670	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671}
 672
 673static int __init its_lpi_init(u32 id_bits)
 674{
 675	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
 
 
 
 
 
 
 
 
 676
 677	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
 678			     GFP_KERNEL);
 679	if (!lpi_bitmap) {
 680		lpi_chunks = 0;
 
 
 681		return -ENOMEM;
 
 
 
 
 
 
 682	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683
 684	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
 685	return 0;
 686}
 687
 688static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
 689{
 690	unsigned long *bitmap = NULL;
 691	int chunk_id;
 692	int nr_chunks;
 693	int i;
 694
 695	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
 696
 697	spin_lock(&lpi_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698
 699	do {
 700		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
 701						      0, nr_chunks, 0);
 702		if (chunk_id < lpi_chunks)
 703			break;
 704
 705		nr_chunks--;
 706	} while (nr_chunks > 0);
 
 
 
 707
 708	if (!nr_chunks)
 709		goto out;
 710
 711	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
 712			 GFP_ATOMIC);
 713	if (!bitmap)
 714		goto out;
 715
 716	for (i = 0; i < nr_chunks; i++)
 717		set_bit(chunk_id + i, lpi_bitmap);
 718
 719	*base = its_chunk_to_lpi(chunk_id);
 720	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
 721
 722out:
 723	spin_unlock(&lpi_lock);
 724
 725	if (!bitmap)
 726		*base = *nr_ids = 0;
 727
 728	return bitmap;
 729}
 730
 731static void its_lpi_free(struct event_lpi_map *map)
 732{
 733	int base = map->lpi_base;
 734	int nr_ids = map->nr_lpis;
 735	int lpi;
 736
 737	spin_lock(&lpi_lock);
 738
 739	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
 740		int chunk = its_lpi_to_chunk(lpi);
 741		BUG_ON(chunk > lpi_chunks);
 742		if (test_bit(chunk, lpi_bitmap)) {
 743			clear_bit(chunk, lpi_bitmap);
 744		} else {
 745			pr_err("Bad LPI chunk %d\n", chunk);
 746		}
 747	}
 748
 749	spin_unlock(&lpi_lock);
 
 
 
 750
 751	kfree(map->lpi_map);
 752	kfree(map->col_map);
 753}
 754
 755/*
 756 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
 757 * deal with (one configuration byte per interrupt). PENDBASE has to
 758 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
 759 */
 760#define LPI_PROPBASE_SZ		SZ_64K
 761#define LPI_PENDBASE_SZ		(LPI_PROPBASE_SZ / 8 + SZ_1K)
 762
 763/*
 764 * This is how many bits of ID we need, including the useless ones.
 765 */
 766#define LPI_NRBITS		ilog2(LPI_PROPBASE_SZ + SZ_8K)
 
 767
 768#define LPI_PROP_DEFAULT_PRIO	0xa0
 
 769
 770static int __init its_alloc_lpi_tables(void)
 771{
 772	phys_addr_t paddr;
 
 
 773
 774	gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
 775					   get_order(LPI_PROPBASE_SZ));
 776	if (!gic_rdists->prop_page) {
 777		pr_err("Failed to allocate PROPBASE\n");
 778		return -ENOMEM;
 779	}
 780
 781	paddr = page_to_phys(gic_rdists->prop_page);
 782	pr_info("GIC: using LPI property table @%pa\n", &paddr);
 
 
 
 
 
 783
 784	/* Priority 0xa0, Group-1, disabled */
 785	memset(page_address(gic_rdists->prop_page),
 786	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
 787	       LPI_PROPBASE_SZ);
 788
 789	/* Make sure the GIC will observe the written configuration */
 790	__flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791
 792	return 0;
 793}
 794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795static const char *its_base_type_string[] = {
 796	[GITS_BASER_TYPE_DEVICE]	= "Devices",
 797	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
 798	[GITS_BASER_TYPE_CPU]		= "Physical CPUs",
 799	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
 800	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
 801	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
 802	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
 803};
 804
 805static void its_free_tables(struct its_node *its)
 806{
 807	int i;
 808
 809	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
 810		if (its->tables[i].base) {
 811			free_pages((unsigned long)its->tables[i].base,
 812				   its->tables[i].order);
 813			its->tables[i].base = NULL;
 814		}
 815	}
 816}
 817
 818static int its_alloc_tables(const char *node_name, struct its_node *its)
 
 819{
 820	int err;
 821	int i;
 822	int psz = SZ_64K;
 823	u64 shr = GITS_BASER_InnerShareable;
 824	u64 cache;
 825	u64 typer;
 826	u32 ids;
 827
 828	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
 829		/*
 830		 * erratum 22375: only alloc 8MB table size
 831		 * erratum 24313: ignore memory access type
 832		 */
 833		cache	= 0;
 834		ids	= 0x14;			/* 20 bits, 8MB */
 835	} else {
 836		cache	= GITS_BASER_WaWb;
 837		typer	= readq_relaxed(its->base + GITS_TYPER);
 838		ids	= GITS_TYPER_DEVBITS(typer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 839	}
 840
 841	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
 842		u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
 843		u64 type = GITS_BASER_TYPE(val);
 844		u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
 845		int order = get_order(psz);
 846		int alloc_pages;
 847		u64 tmp;
 848		void *base;
 849
 850		if (type == GITS_BASER_TYPE_NONE)
 851			continue;
 852
 853		/*
 854		 * Allocate as many entries as required to fit the
 855		 * range of device IDs that the ITS can grok... The ID
 856		 * space being incredibly sparse, this results in a
 857		 * massive waste of memory.
 858		 *
 859		 * For other tables, only allocate a single page.
 860		 */
 861		if (type == GITS_BASER_TYPE_DEVICE) {
 862			/*
 863			 * 'order' was initialized earlier to the default page
 864			 * granule of the the ITS.  We can't have an allocation
 865			 * smaller than that.  If the requested allocation
 866			 * is smaller, round up to the default page granule.
 867			 */
 868			order = max(get_order((1UL << ids) * entry_size),
 869				    order);
 870			if (order >= MAX_ORDER) {
 871				order = MAX_ORDER - 1;
 872				pr_warn("%s: Device Table too large, reduce its page order to %u\n",
 873					node_name, order);
 874			}
 875		}
 876
 877retry_alloc_baser:
 878		alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
 879		if (alloc_pages > GITS_BASER_PAGES_MAX) {
 880			alloc_pages = GITS_BASER_PAGES_MAX;
 881			order = get_order(GITS_BASER_PAGES_MAX * psz);
 882			pr_warn("%s: Device Table too large, reduce its page order to %u (%u pages)\n",
 883				node_name, order, alloc_pages);
 884		}
 885
 886		base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
 887		if (!base) {
 888			err = -ENOMEM;
 889			goto out_free;
 890		}
 891
 892		its->tables[i].base = base;
 893		its->tables[i].order = order;
 
 894
 895retry_baser:
 896		val = (virt_to_phys(base) 				 |
 897		       (type << GITS_BASER_TYPE_SHIFT)			 |
 898		       ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
 899		       cache						 |
 900		       shr						 |
 901		       GITS_BASER_VALID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902
 903		switch (psz) {
 904		case SZ_4K:
 905			val |= GITS_BASER_PAGE_SIZE_4K;
 906			break;
 907		case SZ_16K:
 908			val |= GITS_BASER_PAGE_SIZE_16K;
 909			break;
 910		case SZ_64K:
 911			val |= GITS_BASER_PAGE_SIZE_64K;
 912			break;
 913		}
 
 
 
 
 
 
 
 
 
 914
 915		val |= alloc_pages - 1;
 
 
 
 
 
 
 
 
 
 
 916
 917		writeq_relaxed(val, its->base + GITS_BASER + i * 8);
 918		tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919
 920		if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
 921			/*
 922			 * Shareability didn't stick. Just use
 923			 * whatever the read reported, which is likely
 924			 * to be the only thing this redistributor
 925			 * supports. If that's zero, make it
 926			 * non-cacheable as well.
 927			 */
 928			shr = tmp & GITS_BASER_SHAREABILITY_MASK;
 929			if (!shr) {
 930				cache = GITS_BASER_nC;
 931				__flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order));
 932			}
 933			goto retry_baser;
 934		}
 
 935
 936		if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
 937			/*
 938			 * Page size didn't stick. Let's try a smaller
 939			 * size and retry. If we reach 4K, then
 940			 * something is horribly wrong...
 941			 */
 942			free_pages((unsigned long)base, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943			its->tables[i].base = NULL;
 
 
 
 944
 945			switch (psz) {
 946			case SZ_16K:
 947				psz = SZ_4K;
 948				goto retry_alloc_baser;
 949			case SZ_64K:
 950				psz = SZ_16K;
 951				goto retry_alloc_baser;
 952			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953		}
 954
 955		if (val != tmp) {
 956			pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
 957			       node_name, i,
 958			       (unsigned long) val, (unsigned long) tmp);
 959			err = -ENXIO;
 960			goto out_free;
 961		}
 962
 963		pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
 964			(int)(PAGE_ORDER_TO_SIZE(order) / entry_size),
 965			its_base_type_string[type],
 966			(unsigned long)virt_to_phys(base),
 967			psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
 968	}
 969
 970	return 0;
 971
 972out_free:
 973	its_free_tables(its);
 974
 975	return err;
 976}
 977
 978static int its_alloc_collections(struct its_node *its)
 979{
 980	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
 
 
 981				   GFP_KERNEL);
 982	if (!its->collections)
 983		return -ENOMEM;
 984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985	return 0;
 986}
 987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988static void its_cpu_init_lpis(void)
 989{
 990	void __iomem *rbase = gic_data_rdist_rd_base();
 991	struct page *pend_page;
 
 992	u64 val, tmp;
 993
 994	/* If we didn't allocate the pending table yet, do it now */
 995	pend_page = gic_data_rdist()->pend_page;
 996	if (!pend_page) {
 997		phys_addr_t paddr;
 
 
 998		/*
 999		 * The pending pages have to be at least 64kB aligned,
1000		 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1001		 */
1002		pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1003					get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1004		if (!pend_page) {
1005			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1006			       smp_processor_id());
1007			return;
1008		}
1009
1010		/* Make sure the GIC will observe the zero-ed page */
1011		__flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
 
1012
1013		paddr = page_to_phys(pend_page);
1014		pr_info("CPU%d: using LPI pending table @%pa\n",
1015			smp_processor_id(), &paddr);
1016		gic_data_rdist()->pend_page = pend_page;
1017	}
1018
1019	/* Disable LPIs */
1020	val = readl_relaxed(rbase + GICR_CTLR);
1021	val &= ~GICR_CTLR_ENABLE_LPIS;
1022	writel_relaxed(val, rbase + GICR_CTLR);
1023
1024	/*
1025	 * Make sure any change to the table is observable by the GIC.
1026	 */
1027	dsb(sy);
1028
1029	/* set PROPBASE */
1030	val = (page_to_phys(gic_rdists->prop_page) |
1031	       GICR_PROPBASER_InnerShareable |
1032	       GICR_PROPBASER_WaWb |
1033	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1034
1035	writeq_relaxed(val, rbase + GICR_PROPBASER);
1036	tmp = readq_relaxed(rbase + GICR_PROPBASER);
1037
1038	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1039		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1040			/*
1041			 * The HW reports non-shareable, we must
1042			 * remove the cacheability attributes as
1043			 * well.
1044			 */
1045			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1046				 GICR_PROPBASER_CACHEABILITY_MASK);
1047			val |= GICR_PROPBASER_nC;
1048			writeq_relaxed(val, rbase + GICR_PROPBASER);
1049		}
1050		pr_info_once("GIC: using cache flushing for LPI property table\n");
1051		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1052	}
1053
1054	/* set PENDBASE */
1055	val = (page_to_phys(pend_page) |
1056	       GICR_PENDBASER_InnerShareable |
1057	       GICR_PENDBASER_WaWb);
1058
1059	writeq_relaxed(val, rbase + GICR_PENDBASER);
1060	tmp = readq_relaxed(rbase + GICR_PENDBASER);
1061
1062	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1063		/*
1064		 * The HW reports non-shareable, we must remove the
1065		 * cacheability attributes as well.
1066		 */
1067		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1068			 GICR_PENDBASER_CACHEABILITY_MASK);
1069		val |= GICR_PENDBASER_nC;
1070		writeq_relaxed(val, rbase + GICR_PENDBASER);
1071	}
1072
1073	/* Enable LPIs */
1074	val = readl_relaxed(rbase + GICR_CTLR);
1075	val |= GICR_CTLR_ENABLE_LPIS;
1076	writel_relaxed(val, rbase + GICR_CTLR);
1077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078	/* Make sure the GIC has seen the above */
1079	dsb(sy);
 
 
 
 
 
 
1080}
1081
1082static void its_cpu_init_collection(void)
1083{
1084	struct its_node *its;
1085	int cpu;
1086
1087	spin_lock(&its_lock);
1088	cpu = smp_processor_id();
 
1089
1090	list_for_each_entry(its, &its_nodes, entry) {
1091		u64 target;
 
 
 
1092
 
 
 
 
 
1093		/*
1094		 * We now have to bind each collection to its target
1095		 * redistributor.
1096		 */
1097		if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1098			/*
1099			 * This ITS wants the physical address of the
1100			 * redistributor.
1101			 */
1102			target = gic_data_rdist()->phys_base;
1103		} else {
1104			/*
1105			 * This ITS wants a linear CPU number.
1106			 */
1107			target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1108			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1109		}
1110
1111		/* Perform collection mapping */
1112		its->collections[cpu].target_address = target;
1113		its->collections[cpu].col_id = cpu;
1114
1115		its_send_mapc(its, &its->collections[cpu], 1);
1116		its_send_invall(its, &its->collections[cpu]);
1117	}
 
 
 
 
 
 
1118
1119	spin_unlock(&its_lock);
 
 
 
1120}
1121
1122static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1123{
1124	struct its_device *its_dev = NULL, *tmp;
1125	unsigned long flags;
1126
1127	raw_spin_lock_irqsave(&its->lock, flags);
1128
1129	list_for_each_entry(tmp, &its->its_device_list, entry) {
1130		if (tmp->device_id == dev_id) {
1131			its_dev = tmp;
1132			break;
1133		}
1134	}
1135
1136	raw_spin_unlock_irqrestore(&its->lock, flags);
1137
1138	return its_dev;
1139}
1140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1142					    int nvecs)
1143{
1144	struct its_device *dev;
1145	unsigned long *lpi_map;
1146	unsigned long flags;
1147	u16 *col_map = NULL;
1148	void *itt;
1149	int lpi_base;
1150	int nr_lpis;
1151	int nr_ites;
1152	int sz;
1153
 
 
 
 
 
 
1154	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1155	/*
1156	 * At least one bit of EventID is being used, hence a minimum
1157	 * of two entries. No, the architecture doesn't let you
1158	 * express an ITT with a single entry.
1159	 */
1160	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1161	sz = nr_ites * its->ite_size;
1162	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1163	itt = kzalloc(sz, GFP_KERNEL);
1164	lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1165	if (lpi_map)
1166		col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
 
 
 
 
 
 
 
1167
1168	if (!dev || !itt || !lpi_map || !col_map) {
1169		kfree(dev);
1170		kfree(itt);
1171		kfree(lpi_map);
1172		kfree(col_map);
1173		return NULL;
1174	}
1175
1176	__flush_dcache_area(itt, sz);
1177
1178	dev->its = its;
1179	dev->itt = itt;
1180	dev->nr_ites = nr_ites;
1181	dev->event_map.lpi_map = lpi_map;
1182	dev->event_map.col_map = col_map;
1183	dev->event_map.lpi_base = lpi_base;
1184	dev->event_map.nr_lpis = nr_lpis;
 
1185	dev->device_id = dev_id;
1186	INIT_LIST_HEAD(&dev->entry);
1187
1188	raw_spin_lock_irqsave(&its->lock, flags);
1189	list_add(&dev->entry, &its->its_device_list);
1190	raw_spin_unlock_irqrestore(&its->lock, flags);
1191
1192	/* Map device to its ITT */
1193	its_send_mapd(dev, 1);
1194
1195	return dev;
1196}
1197
1198static void its_free_device(struct its_device *its_dev)
1199{
1200	unsigned long flags;
1201
1202	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1203	list_del(&its_dev->entry);
1204	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1205	kfree(its_dev->itt);
1206	kfree(its_dev);
1207}
1208
1209static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1210{
1211	int idx;
1212
1213	idx = find_first_zero_bit(dev->event_map.lpi_map,
1214				  dev->event_map.nr_lpis);
1215	if (idx == dev->event_map.nr_lpis)
 
 
1216		return -ENOSPC;
1217
1218	*hwirq = dev->event_map.lpi_base + idx;
1219	set_bit(idx, dev->event_map.lpi_map);
1220
1221	return 0;
1222}
1223
1224static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1225			   int nvec, msi_alloc_info_t *info)
1226{
1227	struct its_node *its;
1228	struct its_device *its_dev;
1229	struct msi_domain_info *msi_info;
1230	u32 dev_id;
 
1231
1232	/*
1233	 * We ignore "dev" entierely, and rely on the dev_id that has
1234	 * been passed via the scratchpad. This limits this domain's
1235	 * usefulness to upper layers that definitely know that they
1236	 * are built on top of the ITS.
1237	 */
1238	dev_id = info->scratchpad[0].ul;
1239
1240	msi_info = msi_get_domain_info(domain);
1241	its = msi_info->data;
1242
 
 
 
 
 
 
 
 
 
 
 
1243	its_dev = its_find_device(its, dev_id);
1244	if (its_dev) {
1245		/*
1246		 * We already have seen this ID, probably through
1247		 * another alias (PCI bridge of some sort). No need to
1248		 * create the device.
1249		 */
 
1250		pr_debug("Reusing ITT for devID %x\n", dev_id);
1251		goto out;
1252	}
1253
1254	its_dev = its_create_device(its, dev_id, nvec);
1255	if (!its_dev)
1256		return -ENOMEM;
 
 
1257
1258	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1259out:
 
1260	info->scratchpad[0].ptr = its_dev;
1261	return 0;
1262}
1263
1264static struct msi_domain_ops its_msi_domain_ops = {
1265	.msi_prepare	= its_msi_prepare,
1266};
1267
1268static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1269				    unsigned int virq,
1270				    irq_hw_number_t hwirq)
1271{
1272	struct irq_fwspec fwspec;
1273
1274	if (irq_domain_get_of_node(domain->parent)) {
1275		fwspec.fwnode = domain->parent->fwnode;
1276		fwspec.param_count = 3;
1277		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1278		fwspec.param[1] = hwirq;
1279		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
 
 
 
 
 
1280	} else {
1281		return -EINVAL;
1282	}
1283
1284	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1285}
1286
1287static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1288				unsigned int nr_irqs, void *args)
1289{
1290	msi_alloc_info_t *info = args;
1291	struct its_device *its_dev = info->scratchpad[0].ptr;
 
1292	irq_hw_number_t hwirq;
1293	int err;
1294	int i;
1295
1296	for (i = 0; i < nr_irqs; i++) {
1297		err = its_alloc_device_irq(its_dev, &hwirq);
1298		if (err)
1299			return err;
1300
1301		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
 
 
 
 
 
1302		if (err)
1303			return err;
1304
1305		irq_domain_set_hwirq_and_chip(domain, virq + i,
1306					      hwirq, &its_irq_chip, its_dev);
 
1307		pr_debug("ID:%d pID:%d vID:%d\n",
1308			 (int)(hwirq - its_dev->event_map.lpi_base),
1309			 (int) hwirq, virq + i);
1310	}
1311
1312	return 0;
1313}
1314
1315static void its_irq_domain_activate(struct irq_domain *domain,
1316				    struct irq_data *d)
1317{
1318	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1319	u32 event = its_get_event_id(d);
 
 
 
 
 
 
1320
1321	/* Bind the LPI to the first possible CPU */
1322	its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask);
 
 
 
 
 
 
 
 
 
1323
1324	/* Map the GIC IRQ and event to the device */
1325	its_send_mapvi(its_dev, d->hwirq, event);
 
1326}
1327
1328static void its_irq_domain_deactivate(struct irq_domain *domain,
1329				      struct irq_data *d)
1330{
1331	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1332	u32 event = its_get_event_id(d);
1333
1334	/* Stop the delivery of interrupts */
1335	its_send_discard(its_dev, event);
1336}
1337
1338static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1339				unsigned int nr_irqs)
1340{
1341	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1342	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 
1343	int i;
1344
 
 
 
 
1345	for (i = 0; i < nr_irqs; i++) {
1346		struct irq_data *data = irq_domain_get_irq_data(domain,
1347								virq + i);
1348		u32 event = its_get_event_id(data);
1349
1350		/* Mark interrupt index as unused */
1351		clear_bit(event, its_dev->event_map.lpi_map);
1352
1353		/* Nuke the entry in the domain */
1354		irq_domain_reset_irq_data(data);
1355	}
1356
1357	/* If all interrupts have been freed, start mopping the floor */
1358	if (bitmap_empty(its_dev->event_map.lpi_map,
 
 
 
 
 
 
1359			 its_dev->event_map.nr_lpis)) {
1360		its_lpi_free(&its_dev->event_map);
 
 
 
1361
1362		/* Unmap device/itt */
1363		its_send_mapd(its_dev, 0);
1364		its_free_device(its_dev);
1365	}
1366
 
 
1367	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1368}
1369
1370static const struct irq_domain_ops its_domain_ops = {
1371	.alloc			= its_irq_domain_alloc,
1372	.free			= its_irq_domain_free,
1373	.activate		= its_irq_domain_activate,
1374	.deactivate		= its_irq_domain_deactivate,
1375};
1376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377static int its_force_quiescent(void __iomem *base)
1378{
1379	u32 count = 1000000;	/* 1s */
1380	u32 val;
1381
1382	val = readl_relaxed(base + GITS_CTLR);
1383	if (val & GITS_CTLR_QUIESCENT)
 
 
 
 
 
1384		return 0;
1385
1386	/* Disable the generation of all interrupts to this ITS */
1387	val &= ~GITS_CTLR_ENABLE;
1388	writel_relaxed(val, base + GITS_CTLR);
1389
1390	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
1391	while (1) {
1392		val = readl_relaxed(base + GITS_CTLR);
1393		if (val & GITS_CTLR_QUIESCENT)
1394			return 0;
1395
1396		count--;
1397		if (!count)
1398			return -EBUSY;
1399
1400		cpu_relax();
1401		udelay(1);
1402	}
1403}
1404
1405static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1406{
1407	struct its_node *its = data;
1408
 
 
1409	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1410}
1411
1412static const struct gic_quirk its_quirks[] = {
1413#ifdef CONFIG_CAVIUM_ERRATUM_22375
1414	{
1415		.desc	= "ITS: Cavium errata 22375, 24313",
1416		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1417		.mask	= 0xffff0fff,
1418		.init	= its_enable_quirk_cavium_22375,
1419	},
1420#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421	{
1422	}
1423};
1424
1425static void its_enable_quirks(struct its_node *its)
1426{
1427	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1428
1429	gic_enable_quirks(iidr, its_quirks, its);
1430}
1431
1432static int __init its_probe(struct device_node *node,
1433			    struct irq_domain *parent)
1434{
1435	struct resource res;
1436	struct its_node *its;
1437	void __iomem *its_base;
1438	struct irq_domain *inner_domain;
1439	u32 val;
1440	u64 baser, tmp;
1441	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442
1443	err = of_address_to_resource(node, 0, &res);
1444	if (err) {
1445		pr_warn("%s: no regs?\n", node->full_name);
1446		return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447	}
1448
1449	its_base = ioremap(res.start, resource_size(&res));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1450	if (!its_base) {
1451		pr_warn("%s: unable to map registers\n", node->full_name);
1452		return -ENOMEM;
1453	}
1454
1455	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1456	if (val != 0x30 && val != 0x40) {
1457		pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1458		err = -ENODEV;
1459		goto out_unmap;
1460	}
1461
1462	err = its_force_quiescent(its_base);
1463	if (err) {
1464		pr_warn("%s: failed to quiesce, giving up\n",
1465			node->full_name);
1466		goto out_unmap;
1467	}
1468
1469	pr_info("ITS: %s\n", node->full_name);
1470
1471	its = kzalloc(sizeof(*its), GFP_KERNEL);
1472	if (!its) {
1473		err = -ENOMEM;
1474		goto out_unmap;
1475	}
1476
1477	raw_spin_lock_init(&its->lock);
 
1478	INIT_LIST_HEAD(&its->entry);
1479	INIT_LIST_HEAD(&its->its_device_list);
 
1480	its->base = its_base;
1481	its->phys_base = res.start;
1482	its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
 
 
 
 
 
 
 
1483
1484	its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1485	if (!its->cmd_base) {
 
 
 
 
 
 
 
 
 
 
 
 
1486		err = -ENOMEM;
1487		goto out_free_its;
1488	}
 
1489	its->cmd_write = its->cmd_base;
 
 
 
1490
1491	its_enable_quirks(its);
1492
1493	err = its_alloc_tables(node->full_name, its);
1494	if (err)
1495		goto out_free_cmd;
1496
1497	err = its_alloc_collections(its);
1498	if (err)
1499		goto out_free_tables;
1500
1501	baser = (virt_to_phys(its->cmd_base)	|
1502		 GITS_CBASER_WaWb		|
1503		 GITS_CBASER_InnerShareable	|
1504		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
1505		 GITS_CBASER_VALID);
1506
1507	writeq_relaxed(baser, its->base + GITS_CBASER);
1508	tmp = readq_relaxed(its->base + GITS_CBASER);
1509
1510	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1511		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1512			/*
1513			 * The HW reports non-shareable, we must
1514			 * remove the cacheability attributes as
1515			 * well.
1516			 */
1517			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1518				   GITS_CBASER_CACHEABILITY_MASK);
1519			baser |= GITS_CBASER_nC;
1520			writeq_relaxed(baser, its->base + GITS_CBASER);
1521		}
1522		pr_info("ITS: using cache flushing for cmd queue\n");
1523		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1524	}
1525
1526	writeq_relaxed(0, its->base + GITS_CWRITER);
1527	writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1528
1529	if (of_property_read_bool(node, "msi-controller")) {
1530		struct msi_domain_info *info;
 
1531
1532		info = kzalloc(sizeof(*info), GFP_KERNEL);
1533		if (!info) {
1534			err = -ENOMEM;
1535			goto out_free_tables;
1536		}
1537
1538		inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1539		if (!inner_domain) {
1540			err = -ENOMEM;
1541			kfree(info);
1542			goto out_free_tables;
1543		}
1544
1545		inner_domain->parent = parent;
1546		inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1547		info->ops = &its_msi_domain_ops;
1548		info->data = its;
1549		inner_domain->host_data = info;
1550	}
1551
1552	spin_lock(&its_lock);
1553	list_add(&its->entry, &its_nodes);
1554	spin_unlock(&its_lock);
1555
1556	return 0;
1557
1558out_free_tables:
1559	its_free_tables(its);
1560out_free_cmd:
1561	kfree(its->cmd_base);
1562out_free_its:
1563	kfree(its);
1564out_unmap:
1565	iounmap(its_base);
1566	pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1567	return err;
1568}
1569
1570static bool gic_rdists_supports_plpis(void)
1571{
1572	return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573}
1574
1575int its_cpu_init(void)
1576{
1577	if (!list_empty(&its_nodes)) {
1578		if (!gic_rdists_supports_plpis()) {
1579			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1580			return -ENXIO;
1581		}
 
 
1582		its_cpu_init_lpis();
1583		its_cpu_init_collection();
1584	}
1585
1586	return 0;
1587}
1588
1589static struct of_device_id its_device_id[] = {
1590	{	.compatible	= "arm,gic-v3-its",	},
1591	{},
1592};
1593
1594int __init its_init(struct device_node *node, struct rdists *rdists,
1595	     struct irq_domain *parent_domain)
1596{
1597	struct device_node *np;
 
1598
1599	for (np = of_find_matching_node(node, its_device_id); np;
1600	     np = of_find_matching_node(np, its_device_id)) {
1601		its_probe(np, parent_domain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602	}
1603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1604	if (list_empty(&its_nodes)) {
1605		pr_warn("ITS: No ITS available, not enabling LPIs\n");
1606		return -ENXIO;
1607	}
1608
1609	gic_rdists = rdists;
1610	its_alloc_lpi_tables();
1611	its_lpi_init(rdists->id_bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1612
1613	return 0;
1614}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/acpi_iort.h>
   9#include <linux/bitmap.h>
  10#include <linux/cpu.h>
  11#include <linux/crash_dump.h>
  12#include <linux/delay.h>
  13#include <linux/dma-iommu.h>
  14#include <linux/efi.h>
  15#include <linux/interrupt.h>
  16#include <linux/irqdomain.h>
  17#include <linux/list.h>
  18#include <linux/log2.h>
  19#include <linux/memblock.h>
  20#include <linux/mm.h>
  21#include <linux/msi.h>
  22#include <linux/of.h>
  23#include <linux/of_address.h>
  24#include <linux/of_irq.h>
  25#include <linux/of_pci.h>
  26#include <linux/of_platform.h>
  27#include <linux/percpu.h>
  28#include <linux/slab.h>
  29#include <linux/syscore_ops.h>
  30
  31#include <linux/irqchip.h>
  32#include <linux/irqchip/arm-gic-v3.h>
  33#include <linux/irqchip/arm-gic-v4.h>
  34
 
  35#include <asm/cputype.h>
  36#include <asm/exception.h>
  37
  38#include "irq-gic-common.h"
  39
  40#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
  41#define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
  42#define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
  43#define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
  44
  45#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
  46#define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
  47
  48static u32 lpi_id_bits;
  49
  50/*
  51 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
  52 * deal with (one configuration byte per interrupt). PENDBASE has to
  53 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
  54 */
  55#define LPI_NRBITS		lpi_id_bits
  56#define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
  57#define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
  58
  59#define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
  60
  61/*
  62 * Collection structure - just an ID, and a redistributor address to
  63 * ping. We use one per CPU as a bag of interrupts assigned to this
  64 * CPU.
  65 */
  66struct its_collection {
  67	u64			target_address;
  68	u16			col_id;
  69};
  70
  71/*
  72 * The ITS_BASER structure - contains memory information, cached
  73 * value of BASER register configuration and ITS page size.
  74 */
  75struct its_baser {
  76	void		*base;
  77	u64		val;
  78	u32		order;
  79	u32		psz;
  80};
  81
  82struct its_device;
  83
  84/*
  85 * The ITS structure - contains most of the infrastructure, with the
  86 * top-level MSI domain, the command queue, the collections, and the
  87 * list of devices writing to it.
  88 *
  89 * dev_alloc_lock has to be taken for device allocations, while the
  90 * spinlock must be taken to parse data structures such as the device
  91 * list.
  92 */
  93struct its_node {
  94	raw_spinlock_t		lock;
  95	struct mutex		dev_alloc_lock;
  96	struct list_head	entry;
  97	void __iomem		*base;
  98	phys_addr_t		phys_base;
  99	struct its_cmd_block	*cmd_base;
 100	struct its_cmd_block	*cmd_write;
 101	struct its_baser	tables[GITS_BASER_NR_REGS];
 
 
 
 102	struct its_collection	*collections;
 103	struct fwnode_handle	*fwnode_handle;
 104	u64			(*get_msi_base)(struct its_device *its_dev);
 105	u64			cbaser_save;
 106	u32			ctlr_save;
 107	struct list_head	its_device_list;
 108	u64			flags;
 109	unsigned long		list_nr;
 110	u32			ite_size;
 111	u32			device_ids;
 112	int			numa_node;
 113	unsigned int		msi_domain_flags;
 114	u32			pre_its_base; /* for Socionext Synquacer */
 115	bool			is_v4;
 116	int			vlpi_redist_offset;
 117};
 118
 119#define ITS_ITT_ALIGN		SZ_256
 120
 121/* The maximum number of VPEID bits supported by VLPI commands */
 122#define ITS_MAX_VPEID_BITS	(16)
 123#define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
 124
 125/* Convert page order to size in bytes */
 126#define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
 127
 128struct event_lpi_map {
 129	unsigned long		*lpi_map;
 130	u16			*col_map;
 131	irq_hw_number_t		lpi_base;
 132	int			nr_lpis;
 133	struct mutex		vlpi_lock;
 134	struct its_vm		*vm;
 135	struct its_vlpi_map	*vlpi_maps;
 136	int			nr_vlpis;
 137};
 138
 139/*
 140 * The ITS view of a device - belongs to an ITS, owns an interrupt
 141 * translation table, and a list of interrupts.  If it some of its
 142 * LPIs are injected into a guest (GICv4), the event_map.vm field
 143 * indicates which one.
 144 */
 145struct its_device {
 146	struct list_head	entry;
 147	struct its_node		*its;
 148	struct event_lpi_map	event_map;
 149	void			*itt;
 150	u32			nr_ites;
 151	u32			device_id;
 152	bool			shared;
 153};
 154
 155static struct {
 156	raw_spinlock_t		lock;
 157	struct its_device	*dev;
 158	struct its_vpe		**vpes;
 159	int			next_victim;
 160} vpe_proxy;
 161
 162static LIST_HEAD(its_nodes);
 163static DEFINE_RAW_SPINLOCK(its_lock);
 164static struct rdists *gic_rdists;
 165static struct irq_domain *its_parent;
 166
 167static unsigned long its_list_map;
 168static u16 vmovp_seq_num;
 169static DEFINE_RAW_SPINLOCK(vmovp_lock);
 170
 171static DEFINE_IDA(its_vpeid_ida);
 172
 173#define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
 174#define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
 175#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
 176#define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
 177
 178static u16 get_its_list(struct its_vm *vm)
 179{
 180	struct its_node *its;
 181	unsigned long its_list = 0;
 182
 183	list_for_each_entry(its, &its_nodes, entry) {
 184		if (!its->is_v4)
 185			continue;
 186
 187		if (vm->vlpi_count[its->list_nr])
 188			__set_bit(its->list_nr, &its_list);
 189	}
 190
 191	return (u16)its_list;
 192}
 193
 194static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 195					       u32 event)
 196{
 197	struct its_node *its = its_dev->its;
 198
 199	return its->collections + its_dev->event_map.col_map[event];
 200}
 201
 202static struct its_collection *valid_col(struct its_collection *col)
 203{
 204	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
 205		return NULL;
 206
 207	return col;
 208}
 209
 210static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
 211{
 212	if (valid_col(its->collections + vpe->col_idx))
 213		return vpe;
 214
 215	return NULL;
 216}
 217
 218/*
 219 * ITS command descriptors - parameters to be encoded in a command
 220 * block.
 221 */
 222struct its_cmd_desc {
 223	union {
 224		struct {
 225			struct its_device *dev;
 226			u32 event_id;
 227		} its_inv_cmd;
 228
 229		struct {
 230			struct its_device *dev;
 231			u32 event_id;
 232		} its_clear_cmd;
 233
 234		struct {
 235			struct its_device *dev;
 236			u32 event_id;
 237		} its_int_cmd;
 238
 239		struct {
 240			struct its_device *dev;
 241			int valid;
 242		} its_mapd_cmd;
 243
 244		struct {
 245			struct its_collection *col;
 246			int valid;
 247		} its_mapc_cmd;
 248
 249		struct {
 250			struct its_device *dev;
 251			u32 phys_id;
 252			u32 event_id;
 253		} its_mapti_cmd;
 254
 255		struct {
 256			struct its_device *dev;
 257			struct its_collection *col;
 258			u32 event_id;
 259		} its_movi_cmd;
 260
 261		struct {
 262			struct its_device *dev;
 263			u32 event_id;
 264		} its_discard_cmd;
 265
 266		struct {
 267			struct its_collection *col;
 268		} its_invall_cmd;
 269
 270		struct {
 271			struct its_vpe *vpe;
 272		} its_vinvall_cmd;
 273
 274		struct {
 275			struct its_vpe *vpe;
 276			struct its_collection *col;
 277			bool valid;
 278		} its_vmapp_cmd;
 279
 280		struct {
 281			struct its_vpe *vpe;
 282			struct its_device *dev;
 283			u32 virt_id;
 284			u32 event_id;
 285			bool db_enabled;
 286		} its_vmapti_cmd;
 287
 288		struct {
 289			struct its_vpe *vpe;
 290			struct its_device *dev;
 291			u32 event_id;
 292			bool db_enabled;
 293		} its_vmovi_cmd;
 294
 295		struct {
 296			struct its_vpe *vpe;
 297			struct its_collection *col;
 298			u16 seq_num;
 299			u16 its_list;
 300		} its_vmovp_cmd;
 301	};
 302};
 303
 304/*
 305 * The ITS command block, which is what the ITS actually parses.
 306 */
 307struct its_cmd_block {
 308	u64	raw_cmd[4];
 309};
 310
 311#define ITS_CMD_QUEUE_SZ		SZ_64K
 312#define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 313
 314typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
 315						    struct its_cmd_block *,
 316						    struct its_cmd_desc *);
 317
 318typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
 319					      struct its_cmd_block *,
 320					      struct its_cmd_desc *);
 321
 322static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
 323{
 324	u64 mask = GENMASK_ULL(h, l);
 325	*raw_cmd &= ~mask;
 326	*raw_cmd |= (val << l) & mask;
 327}
 328
 329static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 330{
 331	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
 
 332}
 333
 334static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 335{
 336	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
 
 337}
 338
 339static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 340{
 341	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
 
 342}
 343
 344static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 345{
 346	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
 
 347}
 348
 349static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 350{
 351	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
 
 352}
 353
 354static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 355{
 356	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
 
 357}
 358
 359static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 360{
 361	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
 
 362}
 363
 364static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 365{
 366	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
 
 367}
 368
 369static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 370{
 371	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
 372}
 373
 374static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
 375{
 376	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
 377}
 378
 379static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
 380{
 381	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
 382}
 383
 384static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
 385{
 386	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
 387}
 388
 389static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
 390{
 391	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
 392}
 393
 394static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
 395{
 396	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
 397}
 398
 399static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
 400{
 401	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
 402}
 403
 404static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
 405{
 406	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
 407}
 408
 409static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
 410{
 411	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
 412}
 413
 414static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 415{
 416	/* Let's fixup BE commands */
 417	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
 418	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
 419	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
 420	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
 421}
 422
 423static struct its_collection *its_build_mapd_cmd(struct its_node *its,
 424						 struct its_cmd_block *cmd,
 425						 struct its_cmd_desc *desc)
 426{
 427	unsigned long itt_addr;
 428	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 429
 430	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 431	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 432
 433	its_encode_cmd(cmd, GITS_CMD_MAPD);
 434	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 435	its_encode_size(cmd, size - 1);
 436	its_encode_itt(cmd, itt_addr);
 437	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 438
 439	its_fixup_cmd(cmd);
 440
 441	return NULL;
 442}
 443
 444static struct its_collection *its_build_mapc_cmd(struct its_node *its,
 445						 struct its_cmd_block *cmd,
 446						 struct its_cmd_desc *desc)
 447{
 448	its_encode_cmd(cmd, GITS_CMD_MAPC);
 449	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 450	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 451	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 452
 453	its_fixup_cmd(cmd);
 454
 455	return desc->its_mapc_cmd.col;
 456}
 457
 458static struct its_collection *its_build_mapti_cmd(struct its_node *its,
 459						  struct its_cmd_block *cmd,
 460						  struct its_cmd_desc *desc)
 461{
 462	struct its_collection *col;
 463
 464	col = dev_event_to_col(desc->its_mapti_cmd.dev,
 465			       desc->its_mapti_cmd.event_id);
 466
 467	its_encode_cmd(cmd, GITS_CMD_MAPTI);
 468	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
 469	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
 470	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
 471	its_encode_collection(cmd, col->col_id);
 472
 473	its_fixup_cmd(cmd);
 474
 475	return valid_col(col);
 476}
 477
 478static struct its_collection *its_build_movi_cmd(struct its_node *its,
 479						 struct its_cmd_block *cmd,
 480						 struct its_cmd_desc *desc)
 481{
 482	struct its_collection *col;
 483
 484	col = dev_event_to_col(desc->its_movi_cmd.dev,
 485			       desc->its_movi_cmd.event_id);
 486
 487	its_encode_cmd(cmd, GITS_CMD_MOVI);
 488	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 489	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 490	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 491
 492	its_fixup_cmd(cmd);
 493
 494	return valid_col(col);
 495}
 496
 497static struct its_collection *its_build_discard_cmd(struct its_node *its,
 498						    struct its_cmd_block *cmd,
 499						    struct its_cmd_desc *desc)
 500{
 501	struct its_collection *col;
 502
 503	col = dev_event_to_col(desc->its_discard_cmd.dev,
 504			       desc->its_discard_cmd.event_id);
 505
 506	its_encode_cmd(cmd, GITS_CMD_DISCARD);
 507	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 508	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 509
 510	its_fixup_cmd(cmd);
 511
 512	return valid_col(col);
 513}
 514
 515static struct its_collection *its_build_inv_cmd(struct its_node *its,
 516						struct its_cmd_block *cmd,
 517						struct its_cmd_desc *desc)
 518{
 519	struct its_collection *col;
 520
 521	col = dev_event_to_col(desc->its_inv_cmd.dev,
 522			       desc->its_inv_cmd.event_id);
 523
 524	its_encode_cmd(cmd, GITS_CMD_INV);
 525	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 526	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 527
 528	its_fixup_cmd(cmd);
 529
 530	return valid_col(col);
 531}
 532
 533static struct its_collection *its_build_int_cmd(struct its_node *its,
 534						struct its_cmd_block *cmd,
 535						struct its_cmd_desc *desc)
 536{
 537	struct its_collection *col;
 538
 539	col = dev_event_to_col(desc->its_int_cmd.dev,
 540			       desc->its_int_cmd.event_id);
 541
 542	its_encode_cmd(cmd, GITS_CMD_INT);
 543	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 544	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 545
 546	its_fixup_cmd(cmd);
 547
 548	return valid_col(col);
 549}
 550
 551static struct its_collection *its_build_clear_cmd(struct its_node *its,
 552						  struct its_cmd_block *cmd,
 553						  struct its_cmd_desc *desc)
 554{
 555	struct its_collection *col;
 556
 557	col = dev_event_to_col(desc->its_clear_cmd.dev,
 558			       desc->its_clear_cmd.event_id);
 559
 560	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 561	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 562	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 563
 564	its_fixup_cmd(cmd);
 565
 566	return valid_col(col);
 567}
 568
 569static struct its_collection *its_build_invall_cmd(struct its_node *its,
 570						   struct its_cmd_block *cmd,
 571						   struct its_cmd_desc *desc)
 572{
 573	its_encode_cmd(cmd, GITS_CMD_INVALL);
 574	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 575
 576	its_fixup_cmd(cmd);
 577
 578	return NULL;
 579}
 580
 581static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
 582					     struct its_cmd_block *cmd,
 583					     struct its_cmd_desc *desc)
 584{
 585	its_encode_cmd(cmd, GITS_CMD_VINVALL);
 586	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
 587
 588	its_fixup_cmd(cmd);
 589
 590	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
 591}
 592
 593static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
 594					   struct its_cmd_block *cmd,
 595					   struct its_cmd_desc *desc)
 596{
 597	unsigned long vpt_addr;
 598	u64 target;
 599
 600	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
 601	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
 602
 603	its_encode_cmd(cmd, GITS_CMD_VMAPP);
 604	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
 605	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
 606	its_encode_target(cmd, target);
 607	its_encode_vpt_addr(cmd, vpt_addr);
 608	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
 609
 610	its_fixup_cmd(cmd);
 611
 612	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
 613}
 614
 615static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
 616					    struct its_cmd_block *cmd,
 617					    struct its_cmd_desc *desc)
 618{
 619	u32 db;
 620
 621	if (desc->its_vmapti_cmd.db_enabled)
 622		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
 623	else
 624		db = 1023;
 625
 626	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
 627	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
 628	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
 629	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
 630	its_encode_db_phys_id(cmd, db);
 631	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
 632
 633	its_fixup_cmd(cmd);
 634
 635	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
 636}
 637
 638static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
 639					   struct its_cmd_block *cmd,
 640					   struct its_cmd_desc *desc)
 641{
 642	u32 db;
 643
 644	if (desc->its_vmovi_cmd.db_enabled)
 645		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
 646	else
 647		db = 1023;
 648
 649	its_encode_cmd(cmd, GITS_CMD_VMOVI);
 650	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
 651	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
 652	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
 653	its_encode_db_phys_id(cmd, db);
 654	its_encode_db_valid(cmd, true);
 655
 656	its_fixup_cmd(cmd);
 657
 658	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
 659}
 660
 661static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
 662					   struct its_cmd_block *cmd,
 663					   struct its_cmd_desc *desc)
 664{
 665	u64 target;
 666
 667	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
 668	its_encode_cmd(cmd, GITS_CMD_VMOVP);
 669	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
 670	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
 671	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
 672	its_encode_target(cmd, target);
 673
 674	its_fixup_cmd(cmd);
 675
 676	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
 677}
 678
 679static u64 its_cmd_ptr_to_offset(struct its_node *its,
 680				 struct its_cmd_block *ptr)
 681{
 682	return (ptr - its->cmd_base) * sizeof(*ptr);
 683}
 684
 685static int its_queue_full(struct its_node *its)
 686{
 687	int widx;
 688	int ridx;
 689
 690	widx = its->cmd_write - its->cmd_base;
 691	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
 692
 693	/* This is incredibly unlikely to happen, unless the ITS locks up. */
 694	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
 695		return 1;
 696
 697	return 0;
 698}
 699
 700static struct its_cmd_block *its_allocate_entry(struct its_node *its)
 701{
 702	struct its_cmd_block *cmd;
 703	u32 count = 1000000;	/* 1s! */
 704
 705	while (its_queue_full(its)) {
 706		count--;
 707		if (!count) {
 708			pr_err_ratelimited("ITS queue not draining\n");
 709			return NULL;
 710		}
 711		cpu_relax();
 712		udelay(1);
 713	}
 714
 715	cmd = its->cmd_write++;
 716
 717	/* Handle queue wrapping */
 718	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
 719		its->cmd_write = its->cmd_base;
 720
 721	/* Clear command  */
 722	cmd->raw_cmd[0] = 0;
 723	cmd->raw_cmd[1] = 0;
 724	cmd->raw_cmd[2] = 0;
 725	cmd->raw_cmd[3] = 0;
 726
 727	return cmd;
 728}
 729
 730static struct its_cmd_block *its_post_commands(struct its_node *its)
 731{
 732	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
 733
 734	writel_relaxed(wr, its->base + GITS_CWRITER);
 735
 736	return its->cmd_write;
 737}
 738
 739static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
 740{
 741	/*
 742	 * Make sure the commands written to memory are observable by
 743	 * the ITS.
 744	 */
 745	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
 746		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
 747	else
 748		dsb(ishst);
 749}
 750
 751static int its_wait_for_range_completion(struct its_node *its,
 752					 u64	prev_idx,
 753					 struct its_cmd_block *to)
 754{
 755	u64 rd_idx, to_idx, linear_idx;
 756	u32 count = 1000000;	/* 1s! */
 757
 758	/* Linearize to_idx if the command set has wrapped around */
 759	to_idx = its_cmd_ptr_to_offset(its, to);
 760	if (to_idx < prev_idx)
 761		to_idx += ITS_CMD_QUEUE_SZ;
 762
 763	linear_idx = prev_idx;
 764
 765	while (1) {
 766		s64 delta;
 767
 768		rd_idx = readl_relaxed(its->base + GITS_CREADR);
 769
 770		/*
 771		 * Compute the read pointer progress, taking the
 772		 * potential wrap-around into account.
 773		 */
 774		delta = rd_idx - prev_idx;
 775		if (rd_idx < prev_idx)
 776			delta += ITS_CMD_QUEUE_SZ;
 777
 778		linear_idx += delta;
 779		if (linear_idx >= to_idx)
 780			break;
 781
 782		count--;
 783		if (!count) {
 784			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
 785					   to_idx, linear_idx);
 786			return -1;
 787		}
 788		prev_idx = rd_idx;
 789		cpu_relax();
 790		udelay(1);
 791	}
 792
 793	return 0;
 794}
 795
 796/* Warning, macro hell follows */
 797#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
 798void name(struct its_node *its,						\
 799	  buildtype builder,						\
 800	  struct its_cmd_desc *desc)					\
 801{									\
 802	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
 803	synctype *sync_obj;						\
 804	unsigned long flags;						\
 805	u64 rd_idx;							\
 806									\
 807	raw_spin_lock_irqsave(&its->lock, flags);			\
 808									\
 809	cmd = its_allocate_entry(its);					\
 810	if (!cmd) {		/* We're soooooo screewed... */		\
 811		raw_spin_unlock_irqrestore(&its->lock, flags);		\
 812		return;							\
 813	}								\
 814	sync_obj = builder(its, cmd, desc);				\
 815	its_flush_cmd(its, cmd);					\
 816									\
 817	if (sync_obj) {							\
 818		sync_cmd = its_allocate_entry(its);			\
 819		if (!sync_cmd)						\
 820			goto post;					\
 821									\
 822		buildfn(its, sync_cmd, sync_obj);			\
 823		its_flush_cmd(its, sync_cmd);				\
 824	}								\
 825									\
 826post:									\
 827	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
 828	next_cmd = its_post_commands(its);				\
 829	raw_spin_unlock_irqrestore(&its->lock, flags);			\
 830									\
 831	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
 832		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
 833}
 834
 835static void its_build_sync_cmd(struct its_node *its,
 836			       struct its_cmd_block *sync_cmd,
 837			       struct its_collection *sync_col)
 838{
 839	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
 840	its_encode_target(sync_cmd, sync_col->target_address);
 841
 842	its_fixup_cmd(sync_cmd);
 843}
 844
 845static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
 846			     struct its_collection, its_build_sync_cmd)
 847
 848static void its_build_vsync_cmd(struct its_node *its,
 849				struct its_cmd_block *sync_cmd,
 850				struct its_vpe *sync_vpe)
 851{
 852	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
 853	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
 854
 855	its_fixup_cmd(sync_cmd);
 856}
 857
 858static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
 859			     struct its_vpe, its_build_vsync_cmd)
 860
 861static void its_send_int(struct its_device *dev, u32 event_id)
 862{
 863	struct its_cmd_desc desc;
 
 
 864
 865	desc.its_int_cmd.dev = dev;
 866	desc.its_int_cmd.event_id = event_id;
 867
 868	its_send_single_command(dev->its, its_build_int_cmd, &desc);
 869}
 
 
 
 
 
 
 870
 871static void its_send_clear(struct its_device *dev, u32 event_id)
 872{
 873	struct its_cmd_desc desc;
 
 
 
 
 
 
 
 
 874
 875	desc.its_clear_cmd.dev = dev;
 876	desc.its_clear_cmd.event_id = event_id;
 
 877
 878	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
 879}
 880
 881static void its_send_inv(struct its_device *dev, u32 event_id)
 882{
 883	struct its_cmd_desc desc;
 884
 885	desc.its_inv_cmd.dev = dev;
 886	desc.its_inv_cmd.event_id = event_id;
 887
 888	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
 889}
 890
 891static void its_send_mapd(struct its_device *dev, int valid)
 892{
 893	struct its_cmd_desc desc;
 894
 895	desc.its_mapd_cmd.dev = dev;
 896	desc.its_mapd_cmd.valid = !!valid;
 897
 898	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
 899}
 900
 901static void its_send_mapc(struct its_node *its, struct its_collection *col,
 902			  int valid)
 903{
 904	struct its_cmd_desc desc;
 905
 906	desc.its_mapc_cmd.col = col;
 907	desc.its_mapc_cmd.valid = !!valid;
 908
 909	its_send_single_command(its, its_build_mapc_cmd, &desc);
 910}
 911
 912static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
 913{
 914	struct its_cmd_desc desc;
 915
 916	desc.its_mapti_cmd.dev = dev;
 917	desc.its_mapti_cmd.phys_id = irq_id;
 918	desc.its_mapti_cmd.event_id = id;
 919
 920	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
 921}
 922
 923static void its_send_movi(struct its_device *dev,
 924			  struct its_collection *col, u32 id)
 925{
 926	struct its_cmd_desc desc;
 927
 928	desc.its_movi_cmd.dev = dev;
 929	desc.its_movi_cmd.col = col;
 930	desc.its_movi_cmd.event_id = id;
 931
 932	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
 933}
 934
 935static void its_send_discard(struct its_device *dev, u32 id)
 936{
 937	struct its_cmd_desc desc;
 938
 939	desc.its_discard_cmd.dev = dev;
 940	desc.its_discard_cmd.event_id = id;
 941
 942	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
 943}
 944
 945static void its_send_invall(struct its_node *its, struct its_collection *col)
 946{
 947	struct its_cmd_desc desc;
 948
 949	desc.its_invall_cmd.col = col;
 950
 951	its_send_single_command(its, its_build_invall_cmd, &desc);
 952}
 953
 954static void its_send_vmapti(struct its_device *dev, u32 id)
 955{
 956	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
 957	struct its_cmd_desc desc;
 958
 959	desc.its_vmapti_cmd.vpe = map->vpe;
 960	desc.its_vmapti_cmd.dev = dev;
 961	desc.its_vmapti_cmd.virt_id = map->vintid;
 962	desc.its_vmapti_cmd.event_id = id;
 963	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
 964
 965	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
 966}
 967
 968static void its_send_vmovi(struct its_device *dev, u32 id)
 969{
 970	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
 971	struct its_cmd_desc desc;
 972
 973	desc.its_vmovi_cmd.vpe = map->vpe;
 974	desc.its_vmovi_cmd.dev = dev;
 975	desc.its_vmovi_cmd.event_id = id;
 976	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
 977
 978	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
 979}
 980
 981static void its_send_vmapp(struct its_node *its,
 982			   struct its_vpe *vpe, bool valid)
 983{
 984	struct its_cmd_desc desc;
 985
 986	desc.its_vmapp_cmd.vpe = vpe;
 987	desc.its_vmapp_cmd.valid = valid;
 988	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
 989
 990	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
 991}
 992
 993static void its_send_vmovp(struct its_vpe *vpe)
 994{
 995	struct its_cmd_desc desc = {};
 996	struct its_node *its;
 997	unsigned long flags;
 998	int col_id = vpe->col_idx;
 999
1000	desc.its_vmovp_cmd.vpe = vpe;
1001
1002	if (!its_list_map) {
1003		its = list_first_entry(&its_nodes, struct its_node, entry);
1004		desc.its_vmovp_cmd.col = &its->collections[col_id];
1005		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1006		return;
1007	}
1008
1009	/*
1010	 * Yet another marvel of the architecture. If using the
1011	 * its_list "feature", we need to make sure that all ITSs
1012	 * receive all VMOVP commands in the same order. The only way
1013	 * to guarantee this is to make vmovp a serialization point.
1014	 *
1015	 * Wall <-- Head.
1016	 */
1017	raw_spin_lock_irqsave(&vmovp_lock, flags);
1018
1019	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1020	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1021
1022	/* Emit VMOVPs */
1023	list_for_each_entry(its, &its_nodes, entry) {
1024		if (!its->is_v4)
1025			continue;
1026
1027		if (!vpe->its_vm->vlpi_count[its->list_nr])
1028			continue;
1029
1030		desc.its_vmovp_cmd.col = &its->collections[col_id];
1031		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1032	}
1033
1034	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1035}
1036
1037static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1038{
1039	struct its_cmd_desc desc;
1040
1041	desc.its_vinvall_cmd.vpe = vpe;
1042	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1043}
1044
1045/*
1046 * irqchip functions - assumes MSI, mostly.
1047 */
1048
1049static inline u32 its_get_event_id(struct irq_data *d)
1050{
1051	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1052	return d->hwirq - its_dev->event_map.lpi_base;
1053}
1054
1055static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1056{
1057	irq_hw_number_t hwirq;
1058	void *va;
1059	u8 *cfg;
 
1060
1061	if (irqd_is_forwarded_to_vcpu(d)) {
1062		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1063		u32 event = its_get_event_id(d);
1064		struct its_vlpi_map *map;
1065
1066		va = page_address(its_dev->event_map.vm->vprop_page);
1067		map = &its_dev->event_map.vlpi_maps[event];
1068		hwirq = map->vintid;
1069
1070		/* Remember the updated property */
1071		map->properties &= ~clr;
1072		map->properties |= set | LPI_PROP_GROUP1;
1073	} else {
1074		va = gic_rdists->prop_table_va;
1075		hwirq = d->hwirq;
1076	}
1077
1078	cfg = va + hwirq - 8192;
1079	*cfg &= ~clr;
1080	*cfg |= set | LPI_PROP_GROUP1;
1081
1082	/*
1083	 * Make the above write visible to the redistributors.
1084	 * And yes, we're flushing exactly: One. Single. Byte.
1085	 * Humpf...
1086	 */
1087	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1088		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1089	else
1090		dsb(ishst);
1091}
1092
1093static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1094{
1095	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1096
1097	lpi_write_config(d, clr, set);
1098	its_send_inv(its_dev, its_get_event_id(d));
1099}
1100
1101static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1102{
1103	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1104	u32 event = its_get_event_id(d);
1105
1106	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1107		return;
1108
1109	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1110
1111	/*
1112	 * More fun with the architecture:
1113	 *
1114	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1115	 * value or to 1023, depending on the enable bit. But that
1116	 * would be issueing a mapping for an /existing/ DevID+EventID
1117	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1118	 * to the /same/ vPE, using this opportunity to adjust the
1119	 * doorbell. Mouahahahaha. We loves it, Precious.
1120	 */
1121	its_send_vmovi(its_dev, event);
1122}
1123
1124static void its_mask_irq(struct irq_data *d)
1125{
1126	if (irqd_is_forwarded_to_vcpu(d))
1127		its_vlpi_set_doorbell(d, false);
1128
1129	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1130}
1131
1132static void its_unmask_irq(struct irq_data *d)
1133{
1134	if (irqd_is_forwarded_to_vcpu(d))
1135		its_vlpi_set_doorbell(d, true);
1136
1137	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1138}
1139
1140static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1141			    bool force)
1142{
1143	unsigned int cpu;
1144	const struct cpumask *cpu_mask = cpu_online_mask;
1145	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1146	struct its_collection *target_col;
1147	u32 id = its_get_event_id(d);
1148
1149	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1150	if (irqd_is_forwarded_to_vcpu(d))
1151		return -EINVAL;
1152
1153       /* lpi cannot be routed to a redistributor that is on a foreign node */
1154	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1155		if (its_dev->its->numa_node >= 0) {
1156			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1157			if (!cpumask_intersects(mask_val, cpu_mask))
1158				return -EINVAL;
1159		}
1160	}
1161
1162	cpu = cpumask_any_and(mask_val, cpu_mask);
1163
1164	if (cpu >= nr_cpu_ids)
1165		return -EINVAL;
1166
1167	/* don't set the affinity when the target cpu is same as current one */
1168	if (cpu != its_dev->event_map.col_map[id]) {
1169		target_col = &its_dev->its->collections[cpu];
1170		its_send_movi(its_dev, target_col, id);
1171		its_dev->event_map.col_map[id] = cpu;
1172		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1173	}
1174
1175	return IRQ_SET_MASK_OK_DONE;
1176}
1177
1178static u64 its_irq_get_msi_base(struct its_device *its_dev)
1179{
1180	struct its_node *its = its_dev->its;
1181
1182	return its->phys_base + GITS_TRANSLATER;
1183}
1184
1185static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1186{
1187	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1188	struct its_node *its;
1189	u64 addr;
1190
1191	its = its_dev->its;
1192	addr = its->get_msi_base(its_dev);
1193
1194	msg->address_lo		= lower_32_bits(addr);
1195	msg->address_hi		= upper_32_bits(addr);
1196	msg->data		= its_get_event_id(d);
1197
1198	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1199}
1200
1201static int its_irq_set_irqchip_state(struct irq_data *d,
1202				     enum irqchip_irq_state which,
1203				     bool state)
1204{
1205	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1206	u32 event = its_get_event_id(d);
1207
1208	if (which != IRQCHIP_STATE_PENDING)
1209		return -EINVAL;
1210
1211	if (state)
1212		its_send_int(its_dev, event);
1213	else
1214		its_send_clear(its_dev, event);
1215
1216	return 0;
1217}
1218
1219static void its_map_vm(struct its_node *its, struct its_vm *vm)
1220{
1221	unsigned long flags;
1222
1223	/* Not using the ITS list? Everything is always mapped. */
1224	if (!its_list_map)
1225		return;
1226
1227	raw_spin_lock_irqsave(&vmovp_lock, flags);
1228
1229	/*
1230	 * If the VM wasn't mapped yet, iterate over the vpes and get
1231	 * them mapped now.
1232	 */
1233	vm->vlpi_count[its->list_nr]++;
1234
1235	if (vm->vlpi_count[its->list_nr] == 1) {
1236		int i;
1237
1238		for (i = 0; i < vm->nr_vpes; i++) {
1239			struct its_vpe *vpe = vm->vpes[i];
1240			struct irq_data *d = irq_get_irq_data(vpe->irq);
1241
1242			/* Map the VPE to the first possible CPU */
1243			vpe->col_idx = cpumask_first(cpu_online_mask);
1244			its_send_vmapp(its, vpe, true);
1245			its_send_vinvall(its, vpe);
1246			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1247		}
1248	}
1249
1250	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1251}
1252
1253static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1254{
1255	unsigned long flags;
1256
1257	/* Not using the ITS list? Everything is always mapped. */
1258	if (!its_list_map)
1259		return;
1260
1261	raw_spin_lock_irqsave(&vmovp_lock, flags);
1262
1263	if (!--vm->vlpi_count[its->list_nr]) {
1264		int i;
1265
1266		for (i = 0; i < vm->nr_vpes; i++)
1267			its_send_vmapp(its, vm->vpes[i], false);
1268	}
1269
1270	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1271}
1272
1273static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1274{
1275	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1276	u32 event = its_get_event_id(d);
1277	int ret = 0;
1278
1279	if (!info->map)
1280		return -EINVAL;
1281
1282	mutex_lock(&its_dev->event_map.vlpi_lock);
1283
1284	if (!its_dev->event_map.vm) {
1285		struct its_vlpi_map *maps;
1286
1287		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1288			       GFP_KERNEL);
1289		if (!maps) {
1290			ret = -ENOMEM;
1291			goto out;
1292		}
1293
1294		its_dev->event_map.vm = info->map->vm;
1295		its_dev->event_map.vlpi_maps = maps;
1296	} else if (its_dev->event_map.vm != info->map->vm) {
1297		ret = -EINVAL;
1298		goto out;
1299	}
1300
1301	/* Get our private copy of the mapping information */
1302	its_dev->event_map.vlpi_maps[event] = *info->map;
1303
1304	if (irqd_is_forwarded_to_vcpu(d)) {
1305		/* Already mapped, move it around */
1306		its_send_vmovi(its_dev, event);
1307	} else {
1308		/* Ensure all the VPEs are mapped on this ITS */
1309		its_map_vm(its_dev->its, info->map->vm);
1310
1311		/*
1312		 * Flag the interrupt as forwarded so that we can
1313		 * start poking the virtual property table.
1314		 */
1315		irqd_set_forwarded_to_vcpu(d);
1316
1317		/* Write out the property to the prop table */
1318		lpi_write_config(d, 0xff, info->map->properties);
1319
1320		/* Drop the physical mapping */
1321		its_send_discard(its_dev, event);
1322
1323		/* and install the virtual one */
1324		its_send_vmapti(its_dev, event);
1325
1326		/* Increment the number of VLPIs */
1327		its_dev->event_map.nr_vlpis++;
1328	}
1329
1330out:
1331	mutex_unlock(&its_dev->event_map.vlpi_lock);
1332	return ret;
1333}
1334
1335static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1336{
1337	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1338	u32 event = its_get_event_id(d);
1339	int ret = 0;
1340
1341	mutex_lock(&its_dev->event_map.vlpi_lock);
1342
1343	if (!its_dev->event_map.vm ||
1344	    !its_dev->event_map.vlpi_maps[event].vm) {
1345		ret = -EINVAL;
1346		goto out;
1347	}
1348
1349	/* Copy our mapping information to the incoming request */
1350	*info->map = its_dev->event_map.vlpi_maps[event];
1351
1352out:
1353	mutex_unlock(&its_dev->event_map.vlpi_lock);
1354	return ret;
1355}
1356
1357static int its_vlpi_unmap(struct irq_data *d)
1358{
1359	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1360	u32 event = its_get_event_id(d);
1361	int ret = 0;
1362
1363	mutex_lock(&its_dev->event_map.vlpi_lock);
1364
1365	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1366		ret = -EINVAL;
1367		goto out;
1368	}
1369
1370	/* Drop the virtual mapping */
1371	its_send_discard(its_dev, event);
1372
1373	/* and restore the physical one */
1374	irqd_clr_forwarded_to_vcpu(d);
1375	its_send_mapti(its_dev, d->hwirq, event);
1376	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1377				    LPI_PROP_ENABLED |
1378				    LPI_PROP_GROUP1));
1379
1380	/* Potentially unmap the VM from this ITS */
1381	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1382
1383	/*
1384	 * Drop the refcount and make the device available again if
1385	 * this was the last VLPI.
1386	 */
1387	if (!--its_dev->event_map.nr_vlpis) {
1388		its_dev->event_map.vm = NULL;
1389		kfree(its_dev->event_map.vlpi_maps);
1390	}
1391
1392out:
1393	mutex_unlock(&its_dev->event_map.vlpi_lock);
1394	return ret;
1395}
1396
1397static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1398{
1399	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1400
1401	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1402		return -EINVAL;
1403
1404	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1405		lpi_update_config(d, 0xff, info->config);
1406	else
1407		lpi_write_config(d, 0xff, info->config);
1408	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1409
1410	return 0;
1411}
1412
1413static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1414{
1415	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1416	struct its_cmd_info *info = vcpu_info;
1417
1418	/* Need a v4 ITS */
1419	if (!its_dev->its->is_v4)
1420		return -EINVAL;
1421
1422	/* Unmap request? */
1423	if (!info)
1424		return its_vlpi_unmap(d);
1425
1426	switch (info->cmd_type) {
1427	case MAP_VLPI:
1428		return its_vlpi_map(d, info);
1429
1430	case GET_VLPI:
1431		return its_vlpi_get(d, info);
1432
1433	case PROP_UPDATE_VLPI:
1434	case PROP_UPDATE_AND_INV_VLPI:
1435		return its_vlpi_prop_update(d, info);
1436
1437	default:
1438		return -EINVAL;
1439	}
1440}
1441
1442static struct irq_chip its_irq_chip = {
1443	.name			= "ITS",
1444	.irq_mask		= its_mask_irq,
1445	.irq_unmask		= its_unmask_irq,
1446	.irq_eoi		= irq_chip_eoi_parent,
1447	.irq_set_affinity	= its_set_affinity,
1448	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1449	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1450	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1451};
1452
1453
1454/*
1455 * How we allocate LPIs:
1456 *
1457 * lpi_range_list contains ranges of LPIs that are to available to
1458 * allocate from. To allocate LPIs, just pick the first range that
1459 * fits the required allocation, and reduce it by the required
1460 * amount. Once empty, remove the range from the list.
1461 *
1462 * To free a range of LPIs, add a free range to the list, sort it and
1463 * merge the result if the new range happens to be adjacent to an
1464 * already free block.
1465 *
1466 * The consequence of the above is that allocation is cost is low, but
1467 * freeing is expensive. We assumes that freeing rarely occurs.
1468 */
1469#define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
 
1470
1471static DEFINE_MUTEX(lpi_range_lock);
1472static LIST_HEAD(lpi_range_list);
 
1473
1474struct lpi_range {
1475	struct list_head	entry;
1476	u32			base_id;
1477	u32			span;
1478};
1479
1480static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1481{
1482	struct lpi_range *range;
1483
1484	range = kmalloc(sizeof(*range), GFP_KERNEL);
1485	if (range) {
1486		range->base_id = base;
1487		range->span = span;
1488	}
1489
1490	return range;
1491}
1492
1493static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1494{
1495	struct lpi_range *range, *tmp;
1496	int err = -ENOSPC;
1497
1498	mutex_lock(&lpi_range_lock);
1499
1500	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1501		if (range->span >= nr_lpis) {
1502			*base = range->base_id;
1503			range->base_id += nr_lpis;
1504			range->span -= nr_lpis;
1505
1506			if (range->span == 0) {
1507				list_del(&range->entry);
1508				kfree(range);
1509			}
1510
1511			err = 0;
1512			break;
1513		}
1514	}
1515
1516	mutex_unlock(&lpi_range_lock);
1517
1518	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1519	return err;
1520}
1521
1522static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
1523{
1524	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
1525		return;
1526	if (a->base_id + a->span != b->base_id)
1527		return;
1528	b->base_id = a->base_id;
1529	b->span += a->span;
1530	list_del(&a->entry);
1531	kfree(a);
1532}
1533
1534static int free_lpi_range(u32 base, u32 nr_lpis)
1535{
1536	struct lpi_range *new, *old;
1537
1538	new = mk_lpi_range(base, nr_lpis);
1539	if (!new)
1540		return -ENOMEM;
1541
1542	mutex_lock(&lpi_range_lock);
1543
1544	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
1545		if (old->base_id < base)
1546			break;
1547	}
1548	/*
1549	 * old is the last element with ->base_id smaller than base,
1550	 * so new goes right after it. If there are no elements with
1551	 * ->base_id smaller than base, &old->entry ends up pointing
1552	 * at the head of the list, and inserting new it the start of
1553	 * the list is the right thing to do in that case as well.
1554	 */
1555	list_add(&new->entry, &old->entry);
1556	/*
1557	 * Now check if we can merge with the preceding and/or
1558	 * following ranges.
1559	 */
1560	merge_lpi_ranges(old, new);
1561	merge_lpi_ranges(new, list_next_entry(new, entry));
1562
1563	mutex_unlock(&lpi_range_lock);
1564	return 0;
1565}
1566
1567static int __init its_lpi_init(u32 id_bits)
1568{
1569	u32 lpis = (1UL << id_bits) - 8192;
1570	u32 numlpis;
1571	int err;
 
1572
1573	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1574
1575	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1576		lpis = numlpis;
1577		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1578			lpis);
1579	}
1580
1581	/*
1582	 * Initializing the allocator is just the same as freeing the
1583	 * full range of LPIs.
1584	 */
1585	err = free_lpi_range(8192, lpis);
1586	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1587	return err;
1588}
1589
1590static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1591{
1592	unsigned long *bitmap = NULL;
1593	int err = 0;
1594
1595	do {
1596		err = alloc_lpi_range(nr_irqs, base);
1597		if (!err)
 
1598			break;
1599
1600		nr_irqs /= 2;
1601	} while (nr_irqs > 0);
1602
1603	if (!nr_irqs)
1604		err = -ENOSPC;
1605
1606	if (err)
1607		goto out;
1608
1609	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
 
1610	if (!bitmap)
1611		goto out;
1612
1613	*nr_ids = nr_irqs;
 
 
 
 
1614
1615out:
 
 
1616	if (!bitmap)
1617		*base = *nr_ids = 0;
1618
1619	return bitmap;
1620}
1621
1622static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1623{
1624	WARN_ON(free_lpi_range(base, nr_ids));
1625	kfree(bitmap);
1626}
 
 
 
 
 
 
 
 
 
 
 
 
1627
1628static void gic_reset_prop_table(void *va)
1629{
1630	/* Priority 0xa0, Group-1, disabled */
1631	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
1632
1633	/* Make sure the GIC will observe the written configuration */
1634	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
1635}
1636
1637static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1638{
1639	struct page *prop_page;
 
 
 
 
1640
1641	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1642	if (!prop_page)
1643		return NULL;
1644
1645	gic_reset_prop_table(page_address(prop_page));
1646
1647	return prop_page;
1648}
1649
1650static void its_free_prop_table(struct page *prop_page)
1651{
1652	free_pages((unsigned long)page_address(prop_page),
1653		   get_order(LPI_PROPBASE_SZ));
1654}
1655
1656static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
1657{
1658	phys_addr_t start, end, addr_end;
1659	u64 i;
 
 
1660
1661	/*
1662	 * We don't bother checking for a kdump kernel as by
1663	 * construction, the LPI tables are out of this kernel's
1664	 * memory map.
1665	 */
1666	if (is_kdump_kernel())
1667		return true;
1668
1669	addr_end = addr + size - 1;
 
 
 
1670
1671	for_each_reserved_mem_region(i, &start, &end) {
1672		if (addr >= start && addr_end <= end)
1673			return true;
1674	}
1675
1676	/* Not found, not a good sign... */
1677	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
1678		&addr, &addr_end);
1679	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
1680	return false;
1681}
1682
1683static int gic_reserve_range(phys_addr_t addr, unsigned long size)
1684{
1685	if (efi_enabled(EFI_CONFIG_TABLES))
1686		return efi_mem_reserve_persistent(addr, size);
1687
1688	return 0;
1689}
1690
1691static int __init its_setup_lpi_prop_table(void)
1692{
1693	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
1694		u64 val;
1695
1696		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
1697		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1698
1699		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
1700		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
1701						     LPI_PROPBASE_SZ,
1702						     MEMREMAP_WB);
1703		gic_reset_prop_table(gic_rdists->prop_table_va);
1704	} else {
1705		struct page *page;
1706
1707		lpi_id_bits = min_t(u32,
1708				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1709				    ITS_MAX_LPI_NRBITS);
1710		page = its_allocate_prop_table(GFP_NOWAIT);
1711		if (!page) {
1712			pr_err("Failed to allocate PROPBASE\n");
1713			return -ENOMEM;
1714		}
1715
1716		gic_rdists->prop_table_pa = page_to_phys(page);
1717		gic_rdists->prop_table_va = page_address(page);
1718		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
1719					  LPI_PROPBASE_SZ));
1720	}
1721
1722	pr_info("GICv3: using LPI property table @%pa\n",
1723		&gic_rdists->prop_table_pa);
1724
1725	return its_lpi_init(lpi_id_bits);
1726}
1727
1728static const char *its_base_type_string[] = {
1729	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1730	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1731	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1732	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1733	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1734	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1735	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1736};
1737
1738static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1739{
1740	u32 idx = baser - its->tables;
1741
1742	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
 
 
 
 
 
 
1743}
1744
1745static void its_write_baser(struct its_node *its, struct its_baser *baser,
1746			    u64 val)
1747{
1748	u32 idx = baser - its->tables;
 
 
 
 
 
 
1749
1750	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1751	baser->val = its_read_baser(its, baser);
1752}
1753
1754static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1755			   u64 cache, u64 shr, u32 psz, u32 order,
1756			   bool indirect)
1757{
1758	u64 val = its_read_baser(its, baser);
1759	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1760	u64 type = GITS_BASER_TYPE(val);
1761	u64 baser_phys, tmp;
1762	u32 alloc_pages;
1763	struct page *page;
1764	void *base;
1765
1766retry_alloc_baser:
1767	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1768	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1769		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1770			&its->phys_base, its_base_type_string[type],
1771			alloc_pages, GITS_BASER_PAGES_MAX);
1772		alloc_pages = GITS_BASER_PAGES_MAX;
1773		order = get_order(GITS_BASER_PAGES_MAX * psz);
1774	}
1775
1776	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
1777	if (!page)
1778		return -ENOMEM;
 
 
 
 
 
1779
1780	base = (void *)page_address(page);
1781	baser_phys = virt_to_phys(base);
1782
1783	/* Check if the physical address of the memory is above 48bits */
1784	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785
1786		/* 52bit PA is supported only when PageSize=64K */
1787		if (psz != SZ_64K) {
1788			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1789			free_pages((unsigned long)base, order);
1790			return -ENXIO;
 
 
 
 
 
 
 
 
1791		}
1792
1793		/* Convert 52bit PA to 48bit field */
1794		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1795	}
1796
1797retry_baser:
1798	val = (baser_phys					 |
1799		(type << GITS_BASER_TYPE_SHIFT)			 |
1800		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1801		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1802		cache						 |
1803		shr						 |
1804		GITS_BASER_VALID);
1805
1806	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1807
1808	switch (psz) {
1809	case SZ_4K:
1810		val |= GITS_BASER_PAGE_SIZE_4K;
1811		break;
1812	case SZ_16K:
1813		val |= GITS_BASER_PAGE_SIZE_16K;
1814		break;
1815	case SZ_64K:
1816		val |= GITS_BASER_PAGE_SIZE_64K;
1817		break;
1818	}
1819
1820	its_write_baser(its, baser, val);
1821	tmp = baser->val;
1822
1823	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1824		/*
1825		 * Shareability didn't stick. Just use
1826		 * whatever the read reported, which is likely
1827		 * to be the only thing this redistributor
1828		 * supports. If that's zero, make it
1829		 * non-cacheable as well.
1830		 */
1831		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1832		if (!shr) {
1833			cache = GITS_BASER_nC;
1834			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1835		}
1836		goto retry_baser;
1837	}
1838
1839	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1840		/*
1841		 * Page size didn't stick. Let's try a smaller
1842		 * size and retry. If we reach 4K, then
1843		 * something is horribly wrong...
1844		 */
1845		free_pages((unsigned long)base, order);
1846		baser->base = NULL;
1847
1848		switch (psz) {
 
 
 
1849		case SZ_16K:
1850			psz = SZ_4K;
1851			goto retry_alloc_baser;
1852		case SZ_64K:
1853			psz = SZ_16K;
1854			goto retry_alloc_baser;
1855		}
1856	}
1857
1858	if (val != tmp) {
1859		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1860		       &its->phys_base, its_base_type_string[type],
1861		       val, tmp);
1862		free_pages((unsigned long)base, order);
1863		return -ENXIO;
1864	}
1865
1866	baser->order = order;
1867	baser->base = base;
1868	baser->psz = psz;
1869	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1870
1871	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1872		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1873		its_base_type_string[type],
1874		(unsigned long)virt_to_phys(base),
1875		indirect ? "indirect" : "flat", (int)esz,
1876		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1877
1878	return 0;
1879}
1880
1881static bool its_parse_indirect_baser(struct its_node *its,
1882				     struct its_baser *baser,
1883				     u32 psz, u32 *order, u32 ids)
1884{
1885	u64 tmp = its_read_baser(its, baser);
1886	u64 type = GITS_BASER_TYPE(tmp);
1887	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1888	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1889	u32 new_order = *order;
1890	bool indirect = false;
1891
1892	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1893	if ((esz << ids) > (psz * 2)) {
1894		/*
1895		 * Find out whether hw supports a single or two-level table by
1896		 * table by reading bit at offset '62' after writing '1' to it.
1897		 */
1898		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1899		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1900
1901		if (indirect) {
1902			/*
1903			 * The size of the lvl2 table is equal to ITS page size
1904			 * which is 'psz'. For computing lvl1 table size,
1905			 * subtract ID bits that sparse lvl2 table from 'ids'
1906			 * which is reported by ITS hardware times lvl1 table
1907			 * entry size.
1908			 */
1909			ids -= ilog2(psz / (int)esz);
1910			esz = GITS_LVL1_ENTRY_SIZE;
 
 
 
 
1911		}
1912	}
1913
1914	/*
1915	 * Allocate as many entries as required to fit the
1916	 * range of device IDs that the ITS can grok... The ID
1917	 * space being incredibly sparse, this results in a
1918	 * massive waste of memory if two-level device table
1919	 * feature is not supported by hardware.
1920	 */
1921	new_order = max_t(u32, get_order(esz << ids), new_order);
1922	if (new_order >= MAX_ORDER) {
1923		new_order = MAX_ORDER - 1;
1924		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1925		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1926			&its->phys_base, its_base_type_string[type],
1927			its->device_ids, ids);
1928	}
1929
1930	*order = new_order;
1931
1932	return indirect;
1933}
1934
1935static void its_free_tables(struct its_node *its)
1936{
1937	int i;
1938
1939	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1940		if (its->tables[i].base) {
1941			free_pages((unsigned long)its->tables[i].base,
1942				   its->tables[i].order);
1943			its->tables[i].base = NULL;
1944		}
1945	}
1946}
1947
1948static int its_alloc_tables(struct its_node *its)
1949{
1950	u64 shr = GITS_BASER_InnerShareable;
1951	u64 cache = GITS_BASER_RaWaWb;
1952	u32 psz = SZ_64K;
1953	int err, i;
1954
1955	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1956		/* erratum 24313: ignore memory access type */
1957		cache = GITS_BASER_nCnB;
1958
1959	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1960		struct its_baser *baser = its->tables + i;
1961		u64 val = its_read_baser(its, baser);
1962		u64 type = GITS_BASER_TYPE(val);
1963		u32 order = get_order(psz);
1964		bool indirect = false;
1965
1966		switch (type) {
1967		case GITS_BASER_TYPE_NONE:
1968			continue;
1969
1970		case GITS_BASER_TYPE_DEVICE:
1971			indirect = its_parse_indirect_baser(its, baser,
1972							    psz, &order,
1973							    its->device_ids);
1974			break;
1975
1976		case GITS_BASER_TYPE_VCPU:
1977			indirect = its_parse_indirect_baser(its, baser,
1978							    psz, &order,
1979							    ITS_MAX_VPEID_BITS);
1980			break;
1981		}
1982
1983		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1984		if (err < 0) {
1985			its_free_tables(its);
1986			return err;
 
 
1987		}
1988
1989		/* Update settings which will be used for next BASERn */
1990		psz = baser->psz;
1991		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1992		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
 
1993	}
1994
1995	return 0;
 
 
 
 
 
1996}
1997
1998static int its_alloc_collections(struct its_node *its)
1999{
2000	int i;
2001
2002	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2003				   GFP_KERNEL);
2004	if (!its->collections)
2005		return -ENOMEM;
2006
2007	for (i = 0; i < nr_cpu_ids; i++)
2008		its->collections[i].target_address = ~0ULL;
2009
2010	return 0;
2011}
2012
2013static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2014{
2015	struct page *pend_page;
2016
2017	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2018				get_order(LPI_PENDBASE_SZ));
2019	if (!pend_page)
2020		return NULL;
2021
2022	/* Make sure the GIC will observe the zero-ed page */
2023	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2024
2025	return pend_page;
2026}
2027
2028static void its_free_pending_table(struct page *pt)
2029{
2030	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2031}
2032
2033/*
2034 * Booting with kdump and LPIs enabled is generally fine. Any other
2035 * case is wrong in the absence of firmware/EFI support.
2036 */
2037static bool enabled_lpis_allowed(void)
2038{
2039	phys_addr_t addr;
2040	u64 val;
2041
2042	/* Check whether the property table is in a reserved region */
2043	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2044	addr = val & GENMASK_ULL(51, 12);
2045
2046	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2047}
2048
2049static int __init allocate_lpi_tables(void)
2050{
2051	u64 val;
2052	int err, cpu;
2053
2054	/*
2055	 * If LPIs are enabled while we run this from the boot CPU,
2056	 * flag the RD tables as pre-allocated if the stars do align.
2057	 */
2058	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2059	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2060		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2061				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2062		pr_info("GICv3: Using preallocated redistributor tables\n");
2063	}
2064
2065	err = its_setup_lpi_prop_table();
2066	if (err)
2067		return err;
2068
2069	/*
2070	 * We allocate all the pending tables anyway, as we may have a
2071	 * mix of RDs that have had LPIs enabled, and some that
2072	 * don't. We'll free the unused ones as each CPU comes online.
2073	 */
2074	for_each_possible_cpu(cpu) {
2075		struct page *pend_page;
2076
2077		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2078		if (!pend_page) {
2079			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2080			return -ENOMEM;
2081		}
2082
2083		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2084	}
2085
2086	return 0;
2087}
2088
2089static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
2090{
2091	u32 count = 1000000;	/* 1s! */
2092	bool clean;
2093	u64 val;
2094
2095	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2096	val &= ~GICR_VPENDBASER_Valid;
2097	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2098
2099	do {
2100		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2101		clean = !(val & GICR_VPENDBASER_Dirty);
2102		if (!clean) {
2103			count--;
2104			cpu_relax();
2105			udelay(1);
2106		}
2107	} while (!clean && count);
2108
2109	return val;
2110}
2111
2112static void its_cpu_init_lpis(void)
2113{
2114	void __iomem *rbase = gic_data_rdist_rd_base();
2115	struct page *pend_page;
2116	phys_addr_t paddr;
2117	u64 val, tmp;
2118
2119	if (gic_data_rdist()->lpi_enabled)
2120		return;
2121
2122	val = readl_relaxed(rbase + GICR_CTLR);
2123	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2124	    (val & GICR_CTLR_ENABLE_LPIS)) {
2125		/*
2126		 * Check that we get the same property table on all
2127		 * RDs. If we don't, this is hopeless.
2128		 */
2129		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2130		paddr &= GENMASK_ULL(51, 12);
2131		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2132			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2133
2134		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2135		paddr &= GENMASK_ULL(51, 16);
2136
2137		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2138		its_free_pending_table(gic_data_rdist()->pend_page);
2139		gic_data_rdist()->pend_page = NULL;
2140
2141		goto out;
 
 
 
2142	}
2143
2144	pend_page = gic_data_rdist()->pend_page;
2145	paddr = page_to_phys(pend_page);
2146	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
 
 
 
 
 
 
2147
2148	/* set PROPBASE */
2149	val = (gic_rdists->prop_table_pa |
2150	       GICR_PROPBASER_InnerShareable |
2151	       GICR_PROPBASER_RaWaWb |
2152	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2153
2154	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2155	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2156
2157	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2158		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2159			/*
2160			 * The HW reports non-shareable, we must
2161			 * remove the cacheability attributes as
2162			 * well.
2163			 */
2164			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2165				 GICR_PROPBASER_CACHEABILITY_MASK);
2166			val |= GICR_PROPBASER_nC;
2167			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2168		}
2169		pr_info_once("GIC: using cache flushing for LPI property table\n");
2170		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2171	}
2172
2173	/* set PENDBASE */
2174	val = (page_to_phys(pend_page) |
2175	       GICR_PENDBASER_InnerShareable |
2176	       GICR_PENDBASER_RaWaWb);
2177
2178	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2179	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2180
2181	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2182		/*
2183		 * The HW reports non-shareable, we must remove the
2184		 * cacheability attributes as well.
2185		 */
2186		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2187			 GICR_PENDBASER_CACHEABILITY_MASK);
2188		val |= GICR_PENDBASER_nC;
2189		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2190	}
2191
2192	/* Enable LPIs */
2193	val = readl_relaxed(rbase + GICR_CTLR);
2194	val |= GICR_CTLR_ENABLE_LPIS;
2195	writel_relaxed(val, rbase + GICR_CTLR);
2196
2197	if (gic_rdists->has_vlpis) {
2198		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2199
2200		/*
2201		 * It's possible for CPU to receive VLPIs before it is
2202		 * sheduled as a vPE, especially for the first CPU, and the
2203		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
2204		 * as out of range and dropped by GIC.
2205		 * So we initialize IDbits to known value to avoid VLPI drop.
2206		 */
2207		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2208		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2209			smp_processor_id(), val);
2210		gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2211
2212		/*
2213		 * Also clear Valid bit of GICR_VPENDBASER, in case some
2214		 * ancient programming gets left in and has possibility of
2215		 * corrupting memory.
2216		 */
2217		val = its_clear_vpend_valid(vlpi_base);
2218		WARN_ON(val & GICR_VPENDBASER_Dirty);
2219	}
2220
2221	/* Make sure the GIC has seen the above */
2222	dsb(sy);
2223out:
2224	gic_data_rdist()->lpi_enabled = true;
2225	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
2226		smp_processor_id(),
2227		gic_data_rdist()->pend_page ? "allocated" : "reserved",
2228		&paddr);
2229}
2230
2231static void its_cpu_init_collection(struct its_node *its)
2232{
2233	int cpu = smp_processor_id();
2234	u64 target;
2235
2236	/* avoid cross node collections and its mapping */
2237	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2238		struct device_node *cpu_node;
2239
2240		cpu_node = of_get_cpu_node(cpu, NULL);
2241		if (its->numa_node != NUMA_NO_NODE &&
2242			its->numa_node != of_node_to_nid(cpu_node))
2243			return;
2244	}
2245
2246	/*
2247	 * We now have to bind each collection to its target
2248	 * redistributor.
2249	 */
2250	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2251		/*
2252		 * This ITS wants the physical address of the
2253		 * redistributor.
2254		 */
2255		target = gic_data_rdist()->phys_base;
2256	} else {
2257		/* This ITS wants a linear CPU number. */
2258		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2259		target = GICR_TYPER_CPU_NUMBER(target) << 16;
2260	}
 
 
 
 
 
 
 
2261
2262	/* Perform collection mapping */
2263	its->collections[cpu].target_address = target;
2264	its->collections[cpu].col_id = cpu;
2265
2266	its_send_mapc(its, &its->collections[cpu], 1);
2267	its_send_invall(its, &its->collections[cpu]);
2268}
2269
2270static void its_cpu_init_collections(void)
2271{
2272	struct its_node *its;
2273
2274	raw_spin_lock(&its_lock);
2275
2276	list_for_each_entry(its, &its_nodes, entry)
2277		its_cpu_init_collection(its);
2278
2279	raw_spin_unlock(&its_lock);
2280}
2281
2282static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2283{
2284	struct its_device *its_dev = NULL, *tmp;
2285	unsigned long flags;
2286
2287	raw_spin_lock_irqsave(&its->lock, flags);
2288
2289	list_for_each_entry(tmp, &its->its_device_list, entry) {
2290		if (tmp->device_id == dev_id) {
2291			its_dev = tmp;
2292			break;
2293		}
2294	}
2295
2296	raw_spin_unlock_irqrestore(&its->lock, flags);
2297
2298	return its_dev;
2299}
2300
2301static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2302{
2303	int i;
2304
2305	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2306		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2307			return &its->tables[i];
2308	}
2309
2310	return NULL;
2311}
2312
2313static bool its_alloc_table_entry(struct its_node *its,
2314				  struct its_baser *baser, u32 id)
2315{
2316	struct page *page;
2317	u32 esz, idx;
2318	__le64 *table;
2319
2320	/* Don't allow device id that exceeds single, flat table limit */
2321	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2322	if (!(baser->val & GITS_BASER_INDIRECT))
2323		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2324
2325	/* Compute 1st level table index & check if that exceeds table limit */
2326	idx = id >> ilog2(baser->psz / esz);
2327	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2328		return false;
2329
2330	table = baser->base;
2331
2332	/* Allocate memory for 2nd level table */
2333	if (!table[idx]) {
2334		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
2335					get_order(baser->psz));
2336		if (!page)
2337			return false;
2338
2339		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2340		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2341			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2342
2343		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2344
2345		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2346		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2347			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2348
2349		/* Ensure updated table contents are visible to ITS hardware */
2350		dsb(sy);
2351	}
2352
2353	return true;
2354}
2355
2356static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2357{
2358	struct its_baser *baser;
2359
2360	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2361
2362	/* Don't allow device id that exceeds ITS hardware limit */
2363	if (!baser)
2364		return (ilog2(dev_id) < its->device_ids);
2365
2366	return its_alloc_table_entry(its, baser, dev_id);
2367}
2368
2369static bool its_alloc_vpe_table(u32 vpe_id)
2370{
2371	struct its_node *its;
2372
2373	/*
2374	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2375	 * could try and only do it on ITSs corresponding to devices
2376	 * that have interrupts targeted at this VPE, but the
2377	 * complexity becomes crazy (and you have tons of memory
2378	 * anyway, right?).
2379	 */
2380	list_for_each_entry(its, &its_nodes, entry) {
2381		struct its_baser *baser;
2382
2383		if (!its->is_v4)
2384			continue;
2385
2386		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2387		if (!baser)
2388			return false;
2389
2390		if (!its_alloc_table_entry(its, baser, vpe_id))
2391			return false;
2392	}
2393
2394	return true;
2395}
2396
2397static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2398					    int nvecs, bool alloc_lpis)
2399{
2400	struct its_device *dev;
2401	unsigned long *lpi_map = NULL;
2402	unsigned long flags;
2403	u16 *col_map = NULL;
2404	void *itt;
2405	int lpi_base;
2406	int nr_lpis;
2407	int nr_ites;
2408	int sz;
2409
2410	if (!its_alloc_device_table(its, dev_id))
2411		return NULL;
2412
2413	if (WARN_ON(!is_power_of_2(nvecs)))
2414		nvecs = roundup_pow_of_two(nvecs);
2415
2416	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2417	/*
2418	 * Even if the device wants a single LPI, the ITT must be
2419	 * sized as a power of two (and you need at least one bit...).
 
2420	 */
2421	nr_ites = max(2, nvecs);
2422	sz = nr_ites * its->ite_size;
2423	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2424	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
2425	if (alloc_lpis) {
2426		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2427		if (lpi_map)
2428			col_map = kcalloc(nr_lpis, sizeof(*col_map),
2429					  GFP_KERNEL);
2430	} else {
2431		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2432		nr_lpis = 0;
2433		lpi_base = 0;
2434	}
2435
2436	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2437		kfree(dev);
2438		kfree(itt);
2439		kfree(lpi_map);
2440		kfree(col_map);
2441		return NULL;
2442	}
2443
2444	gic_flush_dcache_to_poc(itt, sz);
2445
2446	dev->its = its;
2447	dev->itt = itt;
2448	dev->nr_ites = nr_ites;
2449	dev->event_map.lpi_map = lpi_map;
2450	dev->event_map.col_map = col_map;
2451	dev->event_map.lpi_base = lpi_base;
2452	dev->event_map.nr_lpis = nr_lpis;
2453	mutex_init(&dev->event_map.vlpi_lock);
2454	dev->device_id = dev_id;
2455	INIT_LIST_HEAD(&dev->entry);
2456
2457	raw_spin_lock_irqsave(&its->lock, flags);
2458	list_add(&dev->entry, &its->its_device_list);
2459	raw_spin_unlock_irqrestore(&its->lock, flags);
2460
2461	/* Map device to its ITT */
2462	its_send_mapd(dev, 1);
2463
2464	return dev;
2465}
2466
2467static void its_free_device(struct its_device *its_dev)
2468{
2469	unsigned long flags;
2470
2471	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2472	list_del(&its_dev->entry);
2473	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2474	kfree(its_dev->itt);
2475	kfree(its_dev);
2476}
2477
2478static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2479{
2480	int idx;
2481
2482	/* Find a free LPI region in lpi_map and allocate them. */
2483	idx = bitmap_find_free_region(dev->event_map.lpi_map,
2484				      dev->event_map.nr_lpis,
2485				      get_count_order(nvecs));
2486	if (idx < 0)
2487		return -ENOSPC;
2488
2489	*hwirq = dev->event_map.lpi_base + idx;
 
2490
2491	return 0;
2492}
2493
2494static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2495			   int nvec, msi_alloc_info_t *info)
2496{
2497	struct its_node *its;
2498	struct its_device *its_dev;
2499	struct msi_domain_info *msi_info;
2500	u32 dev_id;
2501	int err = 0;
2502
2503	/*
2504	 * We ignore "dev" entirely, and rely on the dev_id that has
2505	 * been passed via the scratchpad. This limits this domain's
2506	 * usefulness to upper layers that definitely know that they
2507	 * are built on top of the ITS.
2508	 */
2509	dev_id = info->scratchpad[0].ul;
2510
2511	msi_info = msi_get_domain_info(domain);
2512	its = msi_info->data;
2513
2514	if (!gic_rdists->has_direct_lpi &&
2515	    vpe_proxy.dev &&
2516	    vpe_proxy.dev->its == its &&
2517	    dev_id == vpe_proxy.dev->device_id) {
2518		/* Bad luck. Get yourself a better implementation */
2519		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2520			  dev_id);
2521		return -EINVAL;
2522	}
2523
2524	mutex_lock(&its->dev_alloc_lock);
2525	its_dev = its_find_device(its, dev_id);
2526	if (its_dev) {
2527		/*
2528		 * We already have seen this ID, probably through
2529		 * another alias (PCI bridge of some sort). No need to
2530		 * create the device.
2531		 */
2532		its_dev->shared = true;
2533		pr_debug("Reusing ITT for devID %x\n", dev_id);
2534		goto out;
2535	}
2536
2537	its_dev = its_create_device(its, dev_id, nvec, true);
2538	if (!its_dev) {
2539		err = -ENOMEM;
2540		goto out;
2541	}
2542
2543	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2544out:
2545	mutex_unlock(&its->dev_alloc_lock);
2546	info->scratchpad[0].ptr = its_dev;
2547	return err;
2548}
2549
2550static struct msi_domain_ops its_msi_domain_ops = {
2551	.msi_prepare	= its_msi_prepare,
2552};
2553
2554static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2555				    unsigned int virq,
2556				    irq_hw_number_t hwirq)
2557{
2558	struct irq_fwspec fwspec;
2559
2560	if (irq_domain_get_of_node(domain->parent)) {
2561		fwspec.fwnode = domain->parent->fwnode;
2562		fwspec.param_count = 3;
2563		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2564		fwspec.param[1] = hwirq;
2565		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2566	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2567		fwspec.fwnode = domain->parent->fwnode;
2568		fwspec.param_count = 2;
2569		fwspec.param[0] = hwirq;
2570		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2571	} else {
2572		return -EINVAL;
2573	}
2574
2575	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2576}
2577
2578static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2579				unsigned int nr_irqs, void *args)
2580{
2581	msi_alloc_info_t *info = args;
2582	struct its_device *its_dev = info->scratchpad[0].ptr;
2583	struct its_node *its = its_dev->its;
2584	irq_hw_number_t hwirq;
2585	int err;
2586	int i;
2587
2588	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2589	if (err)
2590		return err;
 
2591
2592	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
2593	if (err)
2594		return err;
2595
2596	for (i = 0; i < nr_irqs; i++) {
2597		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2598		if (err)
2599			return err;
2600
2601		irq_domain_set_hwirq_and_chip(domain, virq + i,
2602					      hwirq + i, &its_irq_chip, its_dev);
2603		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2604		pr_debug("ID:%d pID:%d vID:%d\n",
2605			 (int)(hwirq + i - its_dev->event_map.lpi_base),
2606			 (int)(hwirq + i), virq + i);
2607	}
2608
2609	return 0;
2610}
2611
2612static int its_irq_domain_activate(struct irq_domain *domain,
2613				   struct irq_data *d, bool reserve)
2614{
2615	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2616	u32 event = its_get_event_id(d);
2617	const struct cpumask *cpu_mask = cpu_online_mask;
2618	int cpu;
2619
2620	/* get the cpu_mask of local node */
2621	if (its_dev->its->numa_node >= 0)
2622		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2623
2624	/* Bind the LPI to the first possible CPU */
2625	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2626	if (cpu >= nr_cpu_ids) {
2627		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2628			return -EINVAL;
2629
2630		cpu = cpumask_first(cpu_online_mask);
2631	}
2632
2633	its_dev->event_map.col_map[event] = cpu;
2634	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2635
2636	/* Map the GIC IRQ and event to the device */
2637	its_send_mapti(its_dev, d->hwirq, event);
2638	return 0;
2639}
2640
2641static void its_irq_domain_deactivate(struct irq_domain *domain,
2642				      struct irq_data *d)
2643{
2644	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2645	u32 event = its_get_event_id(d);
2646
2647	/* Stop the delivery of interrupts */
2648	its_send_discard(its_dev, event);
2649}
2650
2651static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2652				unsigned int nr_irqs)
2653{
2654	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2655	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2656	struct its_node *its = its_dev->its;
2657	int i;
2658
2659	bitmap_release_region(its_dev->event_map.lpi_map,
2660			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
2661			      get_count_order(nr_irqs));
2662
2663	for (i = 0; i < nr_irqs; i++) {
2664		struct irq_data *data = irq_domain_get_irq_data(domain,
2665								virq + i);
 
 
 
 
 
2666		/* Nuke the entry in the domain */
2667		irq_domain_reset_irq_data(data);
2668	}
2669
2670	mutex_lock(&its->dev_alloc_lock);
2671
2672	/*
2673	 * If all interrupts have been freed, start mopping the
2674	 * floor. This is conditionned on the device not being shared.
2675	 */
2676	if (!its_dev->shared &&
2677	    bitmap_empty(its_dev->event_map.lpi_map,
2678			 its_dev->event_map.nr_lpis)) {
2679		its_lpi_free(its_dev->event_map.lpi_map,
2680			     its_dev->event_map.lpi_base,
2681			     its_dev->event_map.nr_lpis);
2682		kfree(its_dev->event_map.col_map);
2683
2684		/* Unmap device/itt */
2685		its_send_mapd(its_dev, 0);
2686		its_free_device(its_dev);
2687	}
2688
2689	mutex_unlock(&its->dev_alloc_lock);
2690
2691	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2692}
2693
2694static const struct irq_domain_ops its_domain_ops = {
2695	.alloc			= its_irq_domain_alloc,
2696	.free			= its_irq_domain_free,
2697	.activate		= its_irq_domain_activate,
2698	.deactivate		= its_irq_domain_deactivate,
2699};
2700
2701/*
2702 * This is insane.
2703 *
2704 * If a GICv4 doesn't implement Direct LPIs (which is extremely
2705 * likely), the only way to perform an invalidate is to use a fake
2706 * device to issue an INV command, implying that the LPI has first
2707 * been mapped to some event on that device. Since this is not exactly
2708 * cheap, we try to keep that mapping around as long as possible, and
2709 * only issue an UNMAP if we're short on available slots.
2710 *
2711 * Broken by design(tm).
2712 */
2713static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2714{
2715	/* Already unmapped? */
2716	if (vpe->vpe_proxy_event == -1)
2717		return;
2718
2719	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2720	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2721
2722	/*
2723	 * We don't track empty slots at all, so let's move the
2724	 * next_victim pointer if we can quickly reuse that slot
2725	 * instead of nuking an existing entry. Not clear that this is
2726	 * always a win though, and this might just generate a ripple
2727	 * effect... Let's just hope VPEs don't migrate too often.
2728	 */
2729	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2730		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2731
2732	vpe->vpe_proxy_event = -1;
2733}
2734
2735static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2736{
2737	if (!gic_rdists->has_direct_lpi) {
2738		unsigned long flags;
2739
2740		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2741		its_vpe_db_proxy_unmap_locked(vpe);
2742		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2743	}
2744}
2745
2746static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2747{
2748	/* Already mapped? */
2749	if (vpe->vpe_proxy_event != -1)
2750		return;
2751
2752	/* This slot was already allocated. Kick the other VPE out. */
2753	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2754		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2755
2756	/* Map the new VPE instead */
2757	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2758	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2759	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2760
2761	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2762	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2763}
2764
2765static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2766{
2767	unsigned long flags;
2768	struct its_collection *target_col;
2769
2770	if (gic_rdists->has_direct_lpi) {
2771		void __iomem *rdbase;
2772
2773		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2774		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2775		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2776			cpu_relax();
2777
2778		return;
2779	}
2780
2781	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2782
2783	its_vpe_db_proxy_map_locked(vpe);
2784
2785	target_col = &vpe_proxy.dev->its->collections[to];
2786	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2787	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2788
2789	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2790}
2791
2792static int its_vpe_set_affinity(struct irq_data *d,
2793				const struct cpumask *mask_val,
2794				bool force)
2795{
2796	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2797	int cpu = cpumask_first(mask_val);
2798
2799	/*
2800	 * Changing affinity is mega expensive, so let's be as lazy as
2801	 * we can and only do it if we really have to. Also, if mapped
2802	 * into the proxy device, we need to move the doorbell
2803	 * interrupt to its new location.
2804	 */
2805	if (vpe->col_idx != cpu) {
2806		int from = vpe->col_idx;
2807
2808		vpe->col_idx = cpu;
2809		its_send_vmovp(vpe);
2810		its_vpe_db_proxy_move(vpe, from, cpu);
2811	}
2812
2813	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2814
2815	return IRQ_SET_MASK_OK_DONE;
2816}
2817
2818static void its_vpe_schedule(struct its_vpe *vpe)
2819{
2820	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2821	u64 val;
2822
2823	/* Schedule the VPE */
2824	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2825		GENMASK_ULL(51, 12);
2826	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2827	val |= GICR_VPROPBASER_RaWb;
2828	val |= GICR_VPROPBASER_InnerShareable;
2829	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2830
2831	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2832		GENMASK_ULL(51, 16);
2833	val |= GICR_VPENDBASER_RaWaWb;
2834	val |= GICR_VPENDBASER_NonShareable;
2835	/*
2836	 * There is no good way of finding out if the pending table is
2837	 * empty as we can race against the doorbell interrupt very
2838	 * easily. So in the end, vpe->pending_last is only an
2839	 * indication that the vcpu has something pending, not one
2840	 * that the pending table is empty. A good implementation
2841	 * would be able to read its coarse map pretty quickly anyway,
2842	 * making this a tolerable issue.
2843	 */
2844	val |= GICR_VPENDBASER_PendingLast;
2845	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2846	val |= GICR_VPENDBASER_Valid;
2847	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2848}
2849
2850static void its_vpe_deschedule(struct its_vpe *vpe)
2851{
2852	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2853	u64 val;
2854
2855	val = its_clear_vpend_valid(vlpi_base);
2856
2857	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2858		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2859		vpe->idai = false;
2860		vpe->pending_last = true;
2861	} else {
2862		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2863		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2864	}
2865}
2866
2867static void its_vpe_invall(struct its_vpe *vpe)
2868{
2869	struct its_node *its;
2870
2871	list_for_each_entry(its, &its_nodes, entry) {
2872		if (!its->is_v4)
2873			continue;
2874
2875		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2876			continue;
2877
2878		/*
2879		 * Sending a VINVALL to a single ITS is enough, as all
2880		 * we need is to reach the redistributors.
2881		 */
2882		its_send_vinvall(its, vpe);
2883		return;
2884	}
2885}
2886
2887static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2888{
2889	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2890	struct its_cmd_info *info = vcpu_info;
2891
2892	switch (info->cmd_type) {
2893	case SCHEDULE_VPE:
2894		its_vpe_schedule(vpe);
2895		return 0;
2896
2897	case DESCHEDULE_VPE:
2898		its_vpe_deschedule(vpe);
2899		return 0;
2900
2901	case INVALL_VPE:
2902		its_vpe_invall(vpe);
2903		return 0;
2904
2905	default:
2906		return -EINVAL;
2907	}
2908}
2909
2910static void its_vpe_send_cmd(struct its_vpe *vpe,
2911			     void (*cmd)(struct its_device *, u32))
2912{
2913	unsigned long flags;
2914
2915	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2916
2917	its_vpe_db_proxy_map_locked(vpe);
2918	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2919
2920	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2921}
2922
2923static void its_vpe_send_inv(struct irq_data *d)
2924{
2925	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2926
2927	if (gic_rdists->has_direct_lpi) {
2928		void __iomem *rdbase;
2929
2930		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2931		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2932		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2933			cpu_relax();
2934	} else {
2935		its_vpe_send_cmd(vpe, its_send_inv);
2936	}
2937}
2938
2939static void its_vpe_mask_irq(struct irq_data *d)
2940{
2941	/*
2942	 * We need to unmask the LPI, which is described by the parent
2943	 * irq_data. Instead of calling into the parent (which won't
2944	 * exactly do the right thing, let's simply use the
2945	 * parent_data pointer. Yes, I'm naughty.
2946	 */
2947	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2948	its_vpe_send_inv(d);
2949}
2950
2951static void its_vpe_unmask_irq(struct irq_data *d)
2952{
2953	/* Same hack as above... */
2954	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2955	its_vpe_send_inv(d);
2956}
2957
2958static int its_vpe_set_irqchip_state(struct irq_data *d,
2959				     enum irqchip_irq_state which,
2960				     bool state)
2961{
2962	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2963
2964	if (which != IRQCHIP_STATE_PENDING)
2965		return -EINVAL;
2966
2967	if (gic_rdists->has_direct_lpi) {
2968		void __iomem *rdbase;
2969
2970		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2971		if (state) {
2972			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2973		} else {
2974			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2975			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2976				cpu_relax();
2977		}
2978	} else {
2979		if (state)
2980			its_vpe_send_cmd(vpe, its_send_int);
2981		else
2982			its_vpe_send_cmd(vpe, its_send_clear);
2983	}
2984
2985	return 0;
2986}
2987
2988static struct irq_chip its_vpe_irq_chip = {
2989	.name			= "GICv4-vpe",
2990	.irq_mask		= its_vpe_mask_irq,
2991	.irq_unmask		= its_vpe_unmask_irq,
2992	.irq_eoi		= irq_chip_eoi_parent,
2993	.irq_set_affinity	= its_vpe_set_affinity,
2994	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2995	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2996};
2997
2998static int its_vpe_id_alloc(void)
2999{
3000	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
3001}
3002
3003static void its_vpe_id_free(u16 id)
3004{
3005	ida_simple_remove(&its_vpeid_ida, id);
3006}
3007
3008static int its_vpe_init(struct its_vpe *vpe)
3009{
3010	struct page *vpt_page;
3011	int vpe_id;
3012
3013	/* Allocate vpe_id */
3014	vpe_id = its_vpe_id_alloc();
3015	if (vpe_id < 0)
3016		return vpe_id;
3017
3018	/* Allocate VPT */
3019	vpt_page = its_allocate_pending_table(GFP_KERNEL);
3020	if (!vpt_page) {
3021		its_vpe_id_free(vpe_id);
3022		return -ENOMEM;
3023	}
3024
3025	if (!its_alloc_vpe_table(vpe_id)) {
3026		its_vpe_id_free(vpe_id);
3027		its_free_pending_table(vpt_page);
3028		return -ENOMEM;
3029	}
3030
3031	vpe->vpe_id = vpe_id;
3032	vpe->vpt_page = vpt_page;
3033	vpe->vpe_proxy_event = -1;
3034
3035	return 0;
3036}
3037
3038static void its_vpe_teardown(struct its_vpe *vpe)
3039{
3040	its_vpe_db_proxy_unmap(vpe);
3041	its_vpe_id_free(vpe->vpe_id);
3042	its_free_pending_table(vpe->vpt_page);
3043}
3044
3045static void its_vpe_irq_domain_free(struct irq_domain *domain,
3046				    unsigned int virq,
3047				    unsigned int nr_irqs)
3048{
3049	struct its_vm *vm = domain->host_data;
3050	int i;
3051
3052	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3053
3054	for (i = 0; i < nr_irqs; i++) {
3055		struct irq_data *data = irq_domain_get_irq_data(domain,
3056								virq + i);
3057		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
3058
3059		BUG_ON(vm != vpe->its_vm);
3060
3061		clear_bit(data->hwirq, vm->db_bitmap);
3062		its_vpe_teardown(vpe);
3063		irq_domain_reset_irq_data(data);
3064	}
3065
3066	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
3067		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
3068		its_free_prop_table(vm->vprop_page);
3069	}
3070}
3071
3072static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3073				    unsigned int nr_irqs, void *args)
3074{
3075	struct its_vm *vm = args;
3076	unsigned long *bitmap;
3077	struct page *vprop_page;
3078	int base, nr_ids, i, err = 0;
3079
3080	BUG_ON(!vm);
3081
3082	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
3083	if (!bitmap)
3084		return -ENOMEM;
3085
3086	if (nr_ids < nr_irqs) {
3087		its_lpi_free(bitmap, base, nr_ids);
3088		return -ENOMEM;
3089	}
3090
3091	vprop_page = its_allocate_prop_table(GFP_KERNEL);
3092	if (!vprop_page) {
3093		its_lpi_free(bitmap, base, nr_ids);
3094		return -ENOMEM;
3095	}
3096
3097	vm->db_bitmap = bitmap;
3098	vm->db_lpi_base = base;
3099	vm->nr_db_lpis = nr_ids;
3100	vm->vprop_page = vprop_page;
3101
3102	for (i = 0; i < nr_irqs; i++) {
3103		vm->vpes[i]->vpe_db_lpi = base + i;
3104		err = its_vpe_init(vm->vpes[i]);
3105		if (err)
3106			break;
3107		err = its_irq_gic_domain_alloc(domain, virq + i,
3108					       vm->vpes[i]->vpe_db_lpi);
3109		if (err)
3110			break;
3111		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
3112					      &its_vpe_irq_chip, vm->vpes[i]);
3113		set_bit(i, bitmap);
3114	}
3115
3116	if (err) {
3117		if (i > 0)
3118			its_vpe_irq_domain_free(domain, virq, i - 1);
3119
3120		its_lpi_free(bitmap, base, nr_ids);
3121		its_free_prop_table(vprop_page);
3122	}
3123
3124	return err;
3125}
3126
3127static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3128				       struct irq_data *d, bool reserve)
3129{
3130	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3131	struct its_node *its;
3132
3133	/* If we use the list map, we issue VMAPP on demand... */
3134	if (its_list_map)
3135		return 0;
3136
3137	/* Map the VPE to the first possible CPU */
3138	vpe->col_idx = cpumask_first(cpu_online_mask);
3139
3140	list_for_each_entry(its, &its_nodes, entry) {
3141		if (!its->is_v4)
3142			continue;
3143
3144		its_send_vmapp(its, vpe, true);
3145		its_send_vinvall(its, vpe);
3146	}
3147
3148	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3149
3150	return 0;
3151}
3152
3153static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3154					  struct irq_data *d)
3155{
3156	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3157	struct its_node *its;
3158
3159	/*
3160	 * If we use the list map, we unmap the VPE once no VLPIs are
3161	 * associated with the VM.
3162	 */
3163	if (its_list_map)
3164		return;
3165
3166	list_for_each_entry(its, &its_nodes, entry) {
3167		if (!its->is_v4)
3168			continue;
3169
3170		its_send_vmapp(its, vpe, false);
3171	}
3172}
3173
3174static const struct irq_domain_ops its_vpe_domain_ops = {
3175	.alloc			= its_vpe_irq_domain_alloc,
3176	.free			= its_vpe_irq_domain_free,
3177	.activate		= its_vpe_irq_domain_activate,
3178	.deactivate		= its_vpe_irq_domain_deactivate,
3179};
3180
3181static int its_force_quiescent(void __iomem *base)
3182{
3183	u32 count = 1000000;	/* 1s */
3184	u32 val;
3185
3186	val = readl_relaxed(base + GITS_CTLR);
3187	/*
3188	 * GIC architecture specification requires the ITS to be both
3189	 * disabled and quiescent for writes to GITS_BASER<n> or
3190	 * GITS_CBASER to not have UNPREDICTABLE results.
3191	 */
3192	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3193		return 0;
3194
3195	/* Disable the generation of all interrupts to this ITS */
3196	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3197	writel_relaxed(val, base + GITS_CTLR);
3198
3199	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
3200	while (1) {
3201		val = readl_relaxed(base + GITS_CTLR);
3202		if (val & GITS_CTLR_QUIESCENT)
3203			return 0;
3204
3205		count--;
3206		if (!count)
3207			return -EBUSY;
3208
3209		cpu_relax();
3210		udelay(1);
3211	}
3212}
3213
3214static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3215{
3216	struct its_node *its = data;
3217
3218	/* erratum 22375: only alloc 8MB table size */
3219	its->device_ids = 0x14;		/* 20 bits, 8MB */
3220	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3221
3222	return true;
3223}
3224
3225static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3226{
3227	struct its_node *its = data;
3228
3229	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3230
3231	return true;
3232}
3233
3234static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3235{
3236	struct its_node *its = data;
3237
3238	/* On QDF2400, the size of the ITE is 16Bytes */
3239	its->ite_size = 16;
3240
3241	return true;
3242}
3243
3244static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3245{
3246	struct its_node *its = its_dev->its;
3247
3248	/*
3249	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3250	 * which maps 32-bit writes targeted at a separate window of
3251	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3252	 * with device ID taken from bits [device_id_bits + 1:2] of
3253	 * the window offset.
3254	 */
3255	return its->pre_its_base + (its_dev->device_id << 2);
3256}
3257
3258static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3259{
3260	struct its_node *its = data;
3261	u32 pre_its_window[2];
3262	u32 ids;
3263
3264	if (!fwnode_property_read_u32_array(its->fwnode_handle,
3265					   "socionext,synquacer-pre-its",
3266					   pre_its_window,
3267					   ARRAY_SIZE(pre_its_window))) {
3268
3269		its->pre_its_base = pre_its_window[0];
3270		its->get_msi_base = its_irq_get_msi_base_pre_its;
3271
3272		ids = ilog2(pre_its_window[1]) - 2;
3273		if (its->device_ids > ids)
3274			its->device_ids = ids;
3275
3276		/* the pre-ITS breaks isolation, so disable MSI remapping */
3277		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3278		return true;
3279	}
3280	return false;
3281}
3282
3283static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3284{
3285	struct its_node *its = data;
3286
3287	/*
3288	 * Hip07 insists on using the wrong address for the VLPI
3289	 * page. Trick it into doing the right thing...
3290	 */
3291	its->vlpi_redist_offset = SZ_128K;
3292	return true;
3293}
3294
3295static const struct gic_quirk its_quirks[] = {
3296#ifdef CONFIG_CAVIUM_ERRATUM_22375
3297	{
3298		.desc	= "ITS: Cavium errata 22375, 24313",
3299		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3300		.mask	= 0xffff0fff,
3301		.init	= its_enable_quirk_cavium_22375,
3302	},
3303#endif
3304#ifdef CONFIG_CAVIUM_ERRATUM_23144
3305	{
3306		.desc	= "ITS: Cavium erratum 23144",
3307		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3308		.mask	= 0xffff0fff,
3309		.init	= its_enable_quirk_cavium_23144,
3310	},
3311#endif
3312#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3313	{
3314		.desc	= "ITS: QDF2400 erratum 0065",
3315		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3316		.mask	= 0xffffffff,
3317		.init	= its_enable_quirk_qdf2400_e0065,
3318	},
3319#endif
3320#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3321	{
3322		/*
3323		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3324		 * implementation, but with a 'pre-ITS' added that requires
3325		 * special handling in software.
3326		 */
3327		.desc	= "ITS: Socionext Synquacer pre-ITS",
3328		.iidr	= 0x0001143b,
3329		.mask	= 0xffffffff,
3330		.init	= its_enable_quirk_socionext_synquacer,
3331	},
3332#endif
3333#ifdef CONFIG_HISILICON_ERRATUM_161600802
3334	{
3335		.desc	= "ITS: Hip07 erratum 161600802",
3336		.iidr	= 0x00000004,
3337		.mask	= 0xffffffff,
3338		.init	= its_enable_quirk_hip07_161600802,
3339	},
3340#endif
3341	{
3342	}
3343};
3344
3345static void its_enable_quirks(struct its_node *its)
3346{
3347	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3348
3349	gic_enable_quirks(iidr, its_quirks, its);
3350}
3351
3352static int its_save_disable(void)
 
3353{
 
3354	struct its_node *its;
3355	int err = 0;
3356
3357	raw_spin_lock(&its_lock);
3358	list_for_each_entry(its, &its_nodes, entry) {
3359		void __iomem *base;
3360
3361		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3362			continue;
3363
3364		base = its->base;
3365		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3366		err = its_force_quiescent(base);
3367		if (err) {
3368			pr_err("ITS@%pa: failed to quiesce: %d\n",
3369			       &its->phys_base, err);
3370			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3371			goto err;
3372		}
3373
3374		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3375	}
3376
3377err:
3378	if (err) {
3379		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3380			void __iomem *base;
3381
3382			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3383				continue;
3384
3385			base = its->base;
3386			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3387		}
3388	}
3389	raw_spin_unlock(&its_lock);
3390
3391	return err;
3392}
3393
3394static void its_restore_enable(void)
3395{
3396	struct its_node *its;
3397	int ret;
3398
3399	raw_spin_lock(&its_lock);
3400	list_for_each_entry(its, &its_nodes, entry) {
3401		void __iomem *base;
3402		int i;
3403
3404		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3405			continue;
3406
3407		base = its->base;
3408
3409		/*
3410		 * Make sure that the ITS is disabled. If it fails to quiesce,
3411		 * don't restore it since writing to CBASER or BASER<n>
3412		 * registers is undefined according to the GIC v3 ITS
3413		 * Specification.
3414		 */
3415		ret = its_force_quiescent(base);
3416		if (ret) {
3417			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3418			       &its->phys_base, ret);
3419			continue;
3420		}
3421
3422		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3423
3424		/*
3425		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3426		 * cmd_write line up with it.
3427		 */
3428		its->cmd_write = its->cmd_base;
3429		gits_write_cwriter(0, base + GITS_CWRITER);
3430
3431		/* Restore GITS_BASER from the value cache. */
3432		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3433			struct its_baser *baser = &its->tables[i];
3434
3435			if (!(baser->val & GITS_BASER_VALID))
3436				continue;
3437
3438			its_write_baser(its, baser, baser->val);
3439		}
3440		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3441
3442		/*
3443		 * Reinit the collection if it's stored in the ITS. This is
3444		 * indicated by the col_id being less than the HCC field.
3445		 * CID < HCC as specified in the GIC v3 Documentation.
3446		 */
3447		if (its->collections[smp_processor_id()].col_id <
3448		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3449			its_cpu_init_collection(its);
3450	}
3451	raw_spin_unlock(&its_lock);
3452}
3453
3454static struct syscore_ops its_syscore_ops = {
3455	.suspend = its_save_disable,
3456	.resume = its_restore_enable,
3457};
3458
3459static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3460{
3461	struct irq_domain *inner_domain;
3462	struct msi_domain_info *info;
3463
3464	info = kzalloc(sizeof(*info), GFP_KERNEL);
3465	if (!info)
3466		return -ENOMEM;
3467
3468	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3469	if (!inner_domain) {
3470		kfree(info);
3471		return -ENOMEM;
3472	}
3473
3474	inner_domain->parent = its_parent;
3475	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3476	inner_domain->flags |= its->msi_domain_flags;
3477	info->ops = &its_msi_domain_ops;
3478	info->data = its;
3479	inner_domain->host_data = info;
3480
3481	return 0;
3482}
3483
3484static int its_init_vpe_domain(void)
3485{
3486	struct its_node *its;
3487	u32 devid;
3488	int entries;
3489
3490	if (gic_rdists->has_direct_lpi) {
3491		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3492		return 0;
3493	}
3494
3495	/* Any ITS will do, even if not v4 */
3496	its = list_first_entry(&its_nodes, struct its_node, entry);
3497
3498	entries = roundup_pow_of_two(nr_cpu_ids);
3499	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3500				 GFP_KERNEL);
3501	if (!vpe_proxy.vpes) {
3502		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3503		return -ENOMEM;
3504	}
3505
3506	/* Use the last possible DevID */
3507	devid = GENMASK(its->device_ids - 1, 0);
3508	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3509	if (!vpe_proxy.dev) {
3510		kfree(vpe_proxy.vpes);
3511		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3512		return -ENOMEM;
3513	}
3514
3515	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3516
3517	raw_spin_lock_init(&vpe_proxy.lock);
3518	vpe_proxy.next_victim = 0;
3519	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3520		devid, vpe_proxy.dev->nr_ites);
3521
3522	return 0;
3523}
3524
3525static int __init its_compute_its_list_map(struct resource *res,
3526					   void __iomem *its_base)
3527{
3528	int its_number;
3529	u32 ctlr;
3530
3531	/*
3532	 * This is assumed to be done early enough that we're
3533	 * guaranteed to be single-threaded, hence no
3534	 * locking. Should this change, we should address
3535	 * this.
3536	 */
3537	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3538	if (its_number >= GICv4_ITS_LIST_MAX) {
3539		pr_err("ITS@%pa: No ITSList entry available!\n",
3540		       &res->start);
3541		return -EINVAL;
3542	}
3543
3544	ctlr = readl_relaxed(its_base + GITS_CTLR);
3545	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3546	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3547	writel_relaxed(ctlr, its_base + GITS_CTLR);
3548	ctlr = readl_relaxed(its_base + GITS_CTLR);
3549	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3550		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3551		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3552	}
3553
3554	if (test_and_set_bit(its_number, &its_list_map)) {
3555		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3556		       &res->start, its_number);
3557		return -EINVAL;
3558	}
3559
3560	return its_number;
3561}
3562
3563static int __init its_probe_one(struct resource *res,
3564				struct fwnode_handle *handle, int numa_node)
3565{
3566	struct its_node *its;
3567	void __iomem *its_base;
3568	u32 val, ctlr;
3569	u64 baser, tmp, typer;
3570	struct page *page;
3571	int err;
3572
3573	its_base = ioremap(res->start, resource_size(res));
3574	if (!its_base) {
3575		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3576		return -ENOMEM;
3577	}
3578
3579	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3580	if (val != 0x30 && val != 0x40) {
3581		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3582		err = -ENODEV;
3583		goto out_unmap;
3584	}
3585
3586	err = its_force_quiescent(its_base);
3587	if (err) {
3588		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
 
3589		goto out_unmap;
3590	}
3591
3592	pr_info("ITS %pR\n", res);
3593
3594	its = kzalloc(sizeof(*its), GFP_KERNEL);
3595	if (!its) {
3596		err = -ENOMEM;
3597		goto out_unmap;
3598	}
3599
3600	raw_spin_lock_init(&its->lock);
3601	mutex_init(&its->dev_alloc_lock);
3602	INIT_LIST_HEAD(&its->entry);
3603	INIT_LIST_HEAD(&its->its_device_list);
3604	typer = gic_read_typer(its_base + GITS_TYPER);
3605	its->base = its_base;
3606	its->phys_base = res->start;
3607	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3608	its->device_ids = GITS_TYPER_DEVBITS(typer);
3609	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3610	if (its->is_v4) {
3611		if (!(typer & GITS_TYPER_VMOVP)) {
3612			err = its_compute_its_list_map(res, its_base);
3613			if (err < 0)
3614				goto out_free_its;
3615
3616			its->list_nr = err;
3617
3618			pr_info("ITS@%pa: Using ITS number %d\n",
3619				&res->start, err);
3620		} else {
3621			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3622		}
3623	}
3624
3625	its->numa_node = numa_node;
3626
3627	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3628				get_order(ITS_CMD_QUEUE_SZ));
3629	if (!page) {
3630		err = -ENOMEM;
3631		goto out_free_its;
3632	}
3633	its->cmd_base = (void *)page_address(page);
3634	its->cmd_write = its->cmd_base;
3635	its->fwnode_handle = handle;
3636	its->get_msi_base = its_irq_get_msi_base;
3637	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3638
3639	its_enable_quirks(its);
3640
3641	err = its_alloc_tables(its);
3642	if (err)
3643		goto out_free_cmd;
3644
3645	err = its_alloc_collections(its);
3646	if (err)
3647		goto out_free_tables;
3648
3649	baser = (virt_to_phys(its->cmd_base)	|
3650		 GITS_CBASER_RaWaWb		|
3651		 GITS_CBASER_InnerShareable	|
3652		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3653		 GITS_CBASER_VALID);
3654
3655	gits_write_cbaser(baser, its->base + GITS_CBASER);
3656	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3657
3658	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3659		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3660			/*
3661			 * The HW reports non-shareable, we must
3662			 * remove the cacheability attributes as
3663			 * well.
3664			 */
3665			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3666				   GITS_CBASER_CACHEABILITY_MASK);
3667			baser |= GITS_CBASER_nC;
3668			gits_write_cbaser(baser, its->base + GITS_CBASER);
3669		}
3670		pr_info("ITS: using cache flushing for cmd queue\n");
3671		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3672	}
3673
3674	gits_write_cwriter(0, its->base + GITS_CWRITER);
3675	ctlr = readl_relaxed(its->base + GITS_CTLR);
3676	ctlr |= GITS_CTLR_ENABLE;
3677	if (its->is_v4)
3678		ctlr |= GITS_CTLR_ImDe;
3679	writel_relaxed(ctlr, its->base + GITS_CTLR);
3680
3681	if (GITS_TYPER_HCC(typer))
3682		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
 
 
 
 
 
 
 
 
 
 
3683
3684	err = its_init_domain(handle, its);
3685	if (err)
3686		goto out_free_tables;
 
 
 
3687
3688	raw_spin_lock(&its_lock);
3689	list_add(&its->entry, &its_nodes);
3690	raw_spin_unlock(&its_lock);
3691
3692	return 0;
3693
3694out_free_tables:
3695	its_free_tables(its);
3696out_free_cmd:
3697	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3698out_free_its:
3699	kfree(its);
3700out_unmap:
3701	iounmap(its_base);
3702	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3703	return err;
3704}
3705
3706static bool gic_rdists_supports_plpis(void)
3707{
3708	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3709}
3710
3711static int redist_disable_lpis(void)
3712{
3713	void __iomem *rbase = gic_data_rdist_rd_base();
3714	u64 timeout = USEC_PER_SEC;
3715	u64 val;
3716
3717	if (!gic_rdists_supports_plpis()) {
3718		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3719		return -ENXIO;
3720	}
3721
3722	val = readl_relaxed(rbase + GICR_CTLR);
3723	if (!(val & GICR_CTLR_ENABLE_LPIS))
3724		return 0;
3725
3726	/*
3727	 * If coming via a CPU hotplug event, we don't need to disable
3728	 * LPIs before trying to re-enable them. They are already
3729	 * configured and all is well in the world.
3730	 *
3731	 * If running with preallocated tables, there is nothing to do.
3732	 */
3733	if (gic_data_rdist()->lpi_enabled ||
3734	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
3735		return 0;
3736
3737	/*
3738	 * From that point on, we only try to do some damage control.
3739	 */
3740	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3741		smp_processor_id());
3742	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3743
3744	/* Disable LPIs */
3745	val &= ~GICR_CTLR_ENABLE_LPIS;
3746	writel_relaxed(val, rbase + GICR_CTLR);
3747
3748	/* Make sure any change to GICR_CTLR is observable by the GIC */
3749	dsb(sy);
3750
3751	/*
3752	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3753	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3754	 * Error out if we time out waiting for RWP to clear.
3755	 */
3756	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3757		if (!timeout) {
3758			pr_err("CPU%d: Timeout while disabling LPIs\n",
3759			       smp_processor_id());
3760			return -ETIMEDOUT;
3761		}
3762		udelay(1);
3763		timeout--;
3764	}
3765
3766	/*
3767	 * After it has been written to 1, it is IMPLEMENTATION
3768	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3769	 * cleared to 0. Error out if clearing the bit failed.
3770	 */
3771	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3772		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3773		return -EBUSY;
3774	}
3775
3776	return 0;
3777}
3778
3779int its_cpu_init(void)
3780{
3781	if (!list_empty(&its_nodes)) {
3782		int ret;
3783
3784		ret = redist_disable_lpis();
3785		if (ret)
3786			return ret;
3787
3788		its_cpu_init_lpis();
3789		its_cpu_init_collections();
3790	}
3791
3792	return 0;
3793}
3794
3795static const struct of_device_id its_device_id[] = {
3796	{	.compatible	= "arm,gic-v3-its",	},
3797	{},
3798};
3799
3800static int __init its_of_probe(struct device_node *node)
 
3801{
3802	struct device_node *np;
3803	struct resource res;
3804
3805	for (np = of_find_matching_node(node, its_device_id); np;
3806	     np = of_find_matching_node(np, its_device_id)) {
3807		if (!of_device_is_available(np))
3808			continue;
3809		if (!of_property_read_bool(np, "msi-controller")) {
3810			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3811				np);
3812			continue;
3813		}
3814
3815		if (of_address_to_resource(np, 0, &res)) {
3816			pr_warn("%pOF: no regs?\n", np);
3817			continue;
3818		}
3819
3820		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3821	}
3822	return 0;
3823}
3824
3825#ifdef CONFIG_ACPI
3826
3827#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3828
3829#ifdef CONFIG_ACPI_NUMA
3830struct its_srat_map {
3831	/* numa node id */
3832	u32	numa_node;
3833	/* GIC ITS ID */
3834	u32	its_id;
3835};
3836
3837static struct its_srat_map *its_srat_maps __initdata;
3838static int its_in_srat __initdata;
3839
3840static int __init acpi_get_its_numa_node(u32 its_id)
3841{
3842	int i;
3843
3844	for (i = 0; i < its_in_srat; i++) {
3845		if (its_id == its_srat_maps[i].its_id)
3846			return its_srat_maps[i].numa_node;
3847	}
3848	return NUMA_NO_NODE;
3849}
3850
3851static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
3852					  const unsigned long end)
3853{
3854	return 0;
3855}
3856
3857static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
3858			 const unsigned long end)
3859{
3860	int node;
3861	struct acpi_srat_gic_its_affinity *its_affinity;
3862
3863	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3864	if (!its_affinity)
3865		return -EINVAL;
3866
3867	if (its_affinity->header.length < sizeof(*its_affinity)) {
3868		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3869			its_affinity->header.length);
3870		return -EINVAL;
3871	}
3872
3873	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3874
3875	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3876		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3877		return 0;
3878	}
3879
3880	its_srat_maps[its_in_srat].numa_node = node;
3881	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3882	its_in_srat++;
3883	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3884		its_affinity->proximity_domain, its_affinity->its_id, node);
3885
3886	return 0;
3887}
3888
3889static void __init acpi_table_parse_srat_its(void)
3890{
3891	int count;
3892
3893	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3894			sizeof(struct acpi_table_srat),
3895			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3896			gic_acpi_match_srat_its, 0);
3897	if (count <= 0)
3898		return;
3899
3900	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3901				      GFP_KERNEL);
3902	if (!its_srat_maps) {
3903		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3904		return;
3905	}
3906
3907	acpi_table_parse_entries(ACPI_SIG_SRAT,
3908			sizeof(struct acpi_table_srat),
3909			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3910			gic_acpi_parse_srat_its, 0);
3911}
3912
3913/* free the its_srat_maps after ITS probing */
3914static void __init acpi_its_srat_maps_free(void)
3915{
3916	kfree(its_srat_maps);
3917}
3918#else
3919static void __init acpi_table_parse_srat_its(void)	{ }
3920static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3921static void __init acpi_its_srat_maps_free(void) { }
3922#endif
3923
3924static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
3925					  const unsigned long end)
3926{
3927	struct acpi_madt_generic_translator *its_entry;
3928	struct fwnode_handle *dom_handle;
3929	struct resource res;
3930	int err;
3931
3932	its_entry = (struct acpi_madt_generic_translator *)header;
3933	memset(&res, 0, sizeof(res));
3934	res.start = its_entry->base_address;
3935	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3936	res.flags = IORESOURCE_MEM;
3937
3938	dom_handle = irq_domain_alloc_fwnode(&res.start);
3939	if (!dom_handle) {
3940		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3941		       &res.start);
3942		return -ENOMEM;
3943	}
3944
3945	err = iort_register_domain_token(its_entry->translation_id, res.start,
3946					 dom_handle);
3947	if (err) {
3948		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3949		       &res.start, its_entry->translation_id);
3950		goto dom_err;
3951	}
3952
3953	err = its_probe_one(&res, dom_handle,
3954			acpi_get_its_numa_node(its_entry->translation_id));
3955	if (!err)
3956		return 0;
3957
3958	iort_deregister_domain_token(its_entry->translation_id);
3959dom_err:
3960	irq_domain_free_fwnode(dom_handle);
3961	return err;
3962}
3963
3964static void __init its_acpi_probe(void)
3965{
3966	acpi_table_parse_srat_its();
3967	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3968			      gic_acpi_parse_madt_its, 0);
3969	acpi_its_srat_maps_free();
3970}
3971#else
3972static void __init its_acpi_probe(void) { }
3973#endif
3974
3975int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3976		    struct irq_domain *parent_domain)
3977{
3978	struct device_node *of_node;
3979	struct its_node *its;
3980	bool has_v4 = false;
3981	int err;
3982
3983	its_parent = parent_domain;
3984	of_node = to_of_node(handle);
3985	if (of_node)
3986		its_of_probe(of_node);
3987	else
3988		its_acpi_probe();
3989
3990	if (list_empty(&its_nodes)) {
3991		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3992		return -ENXIO;
3993	}
3994
3995	gic_rdists = rdists;
3996
3997	err = allocate_lpi_tables();
3998	if (err)
3999		return err;
4000
4001	list_for_each_entry(its, &its_nodes, entry)
4002		has_v4 |= its->is_v4;
4003
4004	if (has_v4 & rdists->has_vlpis) {
4005		if (its_init_vpe_domain() ||
4006		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
4007			rdists->has_vlpis = false;
4008			pr_err("ITS: Disabling GICv4 support\n");
4009		}
4010	}
4011
4012	register_syscore_ops(&its_syscore_ops);
4013
4014	return 0;
4015}