Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *
  3 * Copyright (c) 2009, Microsoft Corporation.
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms and conditions of the GNU General Public License,
  7 * version 2, as published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope it will be useful, but WITHOUT
 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 12 * more details.
 13 *
 14 * You should have received a copy of the GNU General Public License along with
 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 16 * Place - Suite 330, Boston, MA 02111-1307 USA.
 17 *
 18 * Authors:
 19 *   Haiyang Zhang <haiyangz@microsoft.com>
 20 *   Hank Janssen  <hjanssen@microsoft.com>
 21 *   K. Y. Srinivasan <kys@microsoft.com>
 22 *
 23 */
 24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 25
 26#include <linux/kernel.h>
 27#include <linux/mm.h>
 28#include <linux/hyperv.h>
 29#include <linux/uio.h>
 
 
 
 
 
 30
 31#include "hyperv_vmbus.h"
 32
 33void hv_begin_read(struct hv_ring_buffer_info *rbi)
 34{
 35	rbi->ring_buffer->interrupt_mask = 1;
 36	mb();
 37}
 38
 39u32 hv_end_read(struct hv_ring_buffer_info *rbi)
 40{
 41	u32 read;
 42	u32 write;
 43
 44	rbi->ring_buffer->interrupt_mask = 0;
 45	mb();
 46
 47	/*
 48	 * Now check to see if the ring buffer is still empty.
 49	 * If it is not, we raced and we need to process new
 50	 * incoming messages.
 51	 */
 52	hv_get_ringbuffer_availbytes(rbi, &read, &write);
 53
 54	return read;
 55}
 56
 57/*
 58 * When we write to the ring buffer, check if the host needs to
 59 * be signaled. Here is the details of this protocol:
 60 *
 61 *	1. The host guarantees that while it is draining the
 62 *	   ring buffer, it will set the interrupt_mask to
 63 *	   indicate it does not need to be interrupted when
 64 *	   new data is placed.
 65 *
 66 *	2. The host guarantees that it will completely drain
 67 *	   the ring buffer before exiting the read loop. Further,
 68 *	   once the ring buffer is empty, it will clear the
 69 *	   interrupt_mask and re-check to see if new data has
 70 *	   arrived.
 
 
 
 
 
 
 
 
 
 71 */
 72
 73static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
 74{
 75	mb();
 76	if (rbi->ring_buffer->interrupt_mask)
 77		return false;
 
 
 78
 79	/* check interrupt_mask before read_index */
 80	rmb();
 81	/*
 82	 * This is the only case we need to signal when the
 83	 * ring transitions from being empty to non-empty.
 84	 */
 85	if (old_write == rbi->ring_buffer->read_index)
 86		return true;
 87
 88	return false;
 89}
 90
 91/*
 92 * To optimize the flow management on the send-side,
 93 * when the sender is blocked because of lack of
 94 * sufficient space in the ring buffer, potential the
 95 * consumer of the ring buffer can signal the producer.
 96 * This is controlled by the following parameters:
 97 *
 98 * 1. pending_send_sz: This is the size in bytes that the
 99 *    producer is trying to send.
100 * 2. The feature bit feat_pending_send_sz set to indicate if
101 *    the consumer of the ring will signal when the ring
102 *    state transitions from being full to a state where
103 *    there is room for the producer to send the pending packet.
104 */
105
106static bool hv_need_to_signal_on_read(struct hv_ring_buffer_info *rbi)
107{
108	u32 cur_write_sz;
109	u32 r_size;
110	u32 write_loc;
111	u32 read_loc = rbi->ring_buffer->read_index;
112	u32 pending_sz;
113
114	/*
115	 * Issue a full memory barrier before making the signaling decision.
116	 * Here is the reason for having this barrier:
117	 * If the reading of the pend_sz (in this function)
118	 * were to be reordered and read before we commit the new read
119	 * index (in the calling function)  we could
120	 * have a problem. If the host were to set the pending_sz after we
121	 * have sampled pending_sz and go to sleep before we commit the
122	 * read index, we could miss sending the interrupt. Issue a full
123	 * memory barrier to address this.
124	 */
125	mb();
126
127	pending_sz = rbi->ring_buffer->pending_send_sz;
128	write_loc = rbi->ring_buffer->write_index;
129	/* If the other end is not blocked on write don't bother. */
130	if (pending_sz == 0)
131		return false;
132
133	r_size = rbi->ring_datasize;
134	cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
135			read_loc - write_loc;
136
137	if (cur_write_sz >= pending_sz)
138		return true;
139
140	return false;
141}
142
143/* Get the next write location for the specified ring buffer. */
144static inline u32
145hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
146{
147	u32 next = ring_info->ring_buffer->write_index;
148
149	return next;
150}
151
152/* Set the next write location for the specified ring buffer. */
153static inline void
154hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
155		     u32 next_write_location)
156{
157	ring_info->ring_buffer->write_index = next_write_location;
158}
159
160/* Get the next read location for the specified ring buffer. */
161static inline u32
162hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
163{
164	u32 next = ring_info->ring_buffer->read_index;
165
166	return next;
167}
168
169/*
170 * Get the next read location + offset for the specified ring buffer.
171 * This allows the caller to skip.
172 */
173static inline u32
174hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
175				 u32 offset)
176{
177	u32 next = ring_info->ring_buffer->read_index;
178
179	next += offset;
180	next %= ring_info->ring_datasize;
181
182	return next;
183}
184
185/* Set the next read location for the specified ring buffer. */
186static inline void
187hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
188		    u32 next_read_location)
189{
190	ring_info->ring_buffer->read_index = next_read_location;
191}
192
193
194/* Get the start of the ring buffer. */
195static inline void *
196hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
197{
198	return (void *)ring_info->ring_buffer->buffer;
199}
200
201
202/* Get the size of the ring buffer. */
203static inline u32
204hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
205{
206	return ring_info->ring_datasize;
207}
208
209/* Get the read and write indices as u64 of the specified ring buffer. */
210static inline u64
211hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
212{
213	return (u64)ring_info->ring_buffer->write_index << 32;
214}
215
216/*
217 * Helper routine to copy to source from ring buffer.
218 * Assume there is enough room. Handles wrap-around in src case only!!
219 */
220static u32 hv_copyfrom_ringbuffer(
221	struct hv_ring_buffer_info	*ring_info,
222	void				*dest,
223	u32				destlen,
224	u32				start_read_offset)
225{
226	void *ring_buffer = hv_get_ring_buffer(ring_info);
227	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
228
229	u32 frag_len;
230
231	/* wrap-around detected at the src */
232	if (destlen > ring_buffer_size - start_read_offset) {
233		frag_len = ring_buffer_size - start_read_offset;
234
235		memcpy(dest, ring_buffer + start_read_offset, frag_len);
236		memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
237	} else
238
239		memcpy(dest, ring_buffer + start_read_offset, destlen);
240
241
242	start_read_offset += destlen;
243	start_read_offset %= ring_buffer_size;
244
245	return start_read_offset;
246}
247
248
249/*
250 * Helper routine to copy from source to ring buffer.
251 * Assume there is enough room. Handles wrap-around in dest case only!!
252 */
253static u32 hv_copyto_ringbuffer(
254	struct hv_ring_buffer_info	*ring_info,
255	u32				start_write_offset,
256	void				*src,
257	u32				srclen)
258{
259	void *ring_buffer = hv_get_ring_buffer(ring_info);
260	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
261	u32 frag_len;
262
263	/* wrap-around detected! */
264	if (srclen > ring_buffer_size - start_write_offset) {
265		frag_len = ring_buffer_size - start_write_offset;
266		memcpy(ring_buffer + start_write_offset, src, frag_len);
267		memcpy(ring_buffer, src + frag_len, srclen - frag_len);
268	} else
269		memcpy(ring_buffer + start_write_offset, src, srclen);
270
271	start_write_offset += srclen;
272	start_write_offset %= ring_buffer_size;
 
273
274	return start_write_offset;
275}
276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277/* Get various debug metrics for the specified ring buffer. */
278void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
279			    struct hv_ring_buffer_debug_info *debug_info)
280{
281	u32 bytes_avail_towrite;
282	u32 bytes_avail_toread;
283
284	if (ring_info->ring_buffer) {
285		hv_get_ringbuffer_availbytes(ring_info,
286					&bytes_avail_toread,
287					&bytes_avail_towrite);
288
289		debug_info->bytes_avail_toread = bytes_avail_toread;
290		debug_info->bytes_avail_towrite = bytes_avail_towrite;
291		debug_info->current_read_index =
292			ring_info->ring_buffer->read_index;
293		debug_info->current_write_index =
294			ring_info->ring_buffer->write_index;
295		debug_info->current_interrupt_mask =
296			ring_info->ring_buffer->interrupt_mask;
297	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298}
299
300/* Initialize the ring buffer. */
301int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
302		   void *buffer, u32 buflen)
303{
304	if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
305		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306
307	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
308
309	ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
310	ring_info->ring_buffer->read_index =
311		ring_info->ring_buffer->write_index = 0;
312
313	/* Set the feature bit for enabling flow control. */
314	ring_info->ring_buffer->feature_bits.value = 1;
315
316	ring_info->ring_size = buflen;
317	ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
318
319	spin_lock_init(&ring_info->ring_lock);
320
321	return 0;
322}
323
324/* Cleanup the ring buffer. */
325void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
326{
 
 
 
 
 
 
 
 
327}
328
 
 
 
 
 
 
 
 
 
 
 
 
 
329/* Write to the ring buffer. */
330int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
331		    struct kvec *kv_list, u32 kv_count, bool *signal, bool lock)
 
332{
333	int i = 0;
334	u32 bytes_avail_towrite;
335	u32 bytes_avail_toread;
336	u32 totalbytes_towrite = 0;
337
338	u32 next_write_location;
339	u32 old_write;
340	u64 prev_indices = 0;
341	unsigned long flags = 0;
 
 
 
 
 
 
342
343	for (i = 0; i < kv_count; i++)
344		totalbytes_towrite += kv_list[i].iov_len;
345
346	totalbytes_towrite += sizeof(u64);
347
348	if (lock)
349		spin_lock_irqsave(&outring_info->ring_lock, flags);
350
351	hv_get_ringbuffer_availbytes(outring_info,
352				&bytes_avail_toread,
353				&bytes_avail_towrite);
354
355	/*
356	 * If there is only room for the packet, assume it is full.
357	 * Otherwise, the next time around, we think the ring buffer
358	 * is empty since the read index == write index.
359	 */
360	if (bytes_avail_towrite <= totalbytes_towrite) {
361		if (lock)
362			spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 
 
 
 
 
 
363		return -EAGAIN;
364	}
365
 
 
366	/* Write to the ring buffer */
367	next_write_location = hv_get_next_write_location(outring_info);
368
369	old_write = next_write_location;
370
371	for (i = 0; i < kv_count; i++) {
372		next_write_location = hv_copyto_ringbuffer(outring_info,
373						     next_write_location,
374						     kv_list[i].iov_base,
375						     kv_list[i].iov_len);
376	}
377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378	/* Set previous packet start */
379	prev_indices = hv_get_ring_bufferindices(outring_info);
380
381	next_write_location = hv_copyto_ringbuffer(outring_info,
382					     next_write_location,
383					     &prev_indices,
384					     sizeof(u64));
385
386	/* Issue a full memory barrier before updating the write index */
387	mb();
388
389	/* Now, update the write location */
390	hv_set_next_write_location(outring_info, next_write_location);
391
392
393	if (lock)
394		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 
 
 
 
 
 
 
 
 
 
395
396	*signal = hv_need_to_signal(old_write, outring_info);
397	return 0;
398}
399
400int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info,
401		       void *buffer, u32 buflen, u32 *buffer_actual_len,
402		       u64 *requestid, bool *signal, bool raw)
403{
404	u32 bytes_avail_towrite;
405	u32 bytes_avail_toread;
406	u32 next_read_location = 0;
407	u64 prev_indices = 0;
408	struct vmpacket_descriptor desc;
409	u32 offset;
410	u32 packetlen;
411	int ret = 0;
412
413	if (buflen <= 0)
414		return -EINVAL;
415
416
417	*buffer_actual_len = 0;
418	*requestid = 0;
419
420	hv_get_ringbuffer_availbytes(inring_info,
421				&bytes_avail_toread,
422				&bytes_avail_towrite);
423
424	/* Make sure there is something to read */
425	if (bytes_avail_toread < sizeof(desc)) {
 
426		/*
427		 * No error is set when there is even no header, drivers are
428		 * supposed to analyze buffer_actual_len.
429		 */
430		return ret;
431	}
432
433	next_read_location = hv_get_next_read_location(inring_info);
434	next_read_location = hv_copyfrom_ringbuffer(inring_info, &desc,
435						    sizeof(desc),
436						    next_read_location);
437
438	offset = raw ? 0 : (desc.offset8 << 3);
439	packetlen = (desc.len8 << 3) - offset;
440	*buffer_actual_len = packetlen;
441	*requestid = desc.trans_id;
442
443	if (bytes_avail_toread < packetlen + offset)
444		return -EAGAIN;
445
446	if (packetlen > buflen)
447		return -ENOBUFS;
448
449	next_read_location =
450		hv_get_next_readlocation_withoffset(inring_info, offset);
 
 
 
 
 
 
 
 
 
451
452	next_read_location = hv_copyfrom_ringbuffer(inring_info,
453						buffer,
454						packetlen,
455						next_read_location);
456
457	next_read_location = hv_copyfrom_ringbuffer(inring_info,
458						&prev_indices,
459						sizeof(u64),
460						next_read_location);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461
462	/*
463	 * Make sure all reads are done before we update the read index since
464	 * the writer may start writing to the read area once the read index
465	 * is updated.
466	 */
467	mb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468
469	/* Update the read index */
470	hv_set_next_read_location(inring_info, next_read_location);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471
472	*signal = hv_need_to_signal_on_read(inring_info);
 
 
 
 
 
473
474	return ret;
 
475}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *
  4 * Copyright (c) 2009, Microsoft Corporation.
  5 *
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 * Authors:
  7 *   Haiyang Zhang <haiyangz@microsoft.com>
  8 *   Hank Janssen  <hjanssen@microsoft.com>
  9 *   K. Y. Srinivasan <kys@microsoft.com>
 
 10 */
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/kernel.h>
 14#include <linux/mm.h>
 15#include <linux/hyperv.h>
 16#include <linux/uio.h>
 17#include <linux/vmalloc.h>
 18#include <linux/slab.h>
 19#include <linux/prefetch.h>
 20#include <linux/io.h>
 21#include <asm/mshyperv.h>
 22
 23#include "hyperv_vmbus.h"
 24
 25#define VMBUS_PKT_TRAILER	8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 26
 27/*
 28 * When we write to the ring buffer, check if the host needs to
 29 * be signaled. Here is the details of this protocol:
 30 *
 31 *	1. The host guarantees that while it is draining the
 32 *	   ring buffer, it will set the interrupt_mask to
 33 *	   indicate it does not need to be interrupted when
 34 *	   new data is placed.
 35 *
 36 *	2. The host guarantees that it will completely drain
 37 *	   the ring buffer before exiting the read loop. Further,
 38 *	   once the ring buffer is empty, it will clear the
 39 *	   interrupt_mask and re-check to see if new data has
 40 *	   arrived.
 41 *
 42 * KYS: Oct. 30, 2016:
 43 * It looks like Windows hosts have logic to deal with DOS attacks that
 44 * can be triggered if it receives interrupts when it is not expecting
 45 * the interrupt. The host expects interrupts only when the ring
 46 * transitions from empty to non-empty (or full to non full on the guest
 47 * to host ring).
 48 * So, base the signaling decision solely on the ring state until the
 49 * host logic is fixed.
 50 */
 51
 52static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
 53{
 54	struct hv_ring_buffer_info *rbi = &channel->outbound;
 55
 56	virt_mb();
 57	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
 58		return;
 59
 60	/* check interrupt_mask before read_index */
 61	virt_rmb();
 62	/*
 63	 * This is the only case we need to signal when the
 64	 * ring transitions from being empty to non-empty.
 65	 */
 66	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
 67		++channel->intr_out_empty;
 68		vmbus_setevent(channel);
 69	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 70}
 71
 72/* Get the next write location for the specified ring buffer. */
 73static inline u32
 74hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
 75{
 76	u32 next = ring_info->ring_buffer->write_index;
 77
 78	return next;
 79}
 80
 81/* Set the next write location for the specified ring buffer. */
 82static inline void
 83hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
 84		     u32 next_write_location)
 85{
 86	ring_info->ring_buffer->write_index = next_write_location;
 87}
 88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 89/* Get the size of the ring buffer. */
 90static inline u32
 91hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
 92{
 93	return ring_info->ring_datasize;
 94}
 95
 96/* Get the read and write indices as u64 of the specified ring buffer. */
 97static inline u64
 98hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
 99{
100	return (u64)ring_info->ring_buffer->write_index << 32;
101}
102
103/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104 * Helper routine to copy from source to ring buffer.
105 * Assume there is enough room. Handles wrap-around in dest case only!!
106 */
107static u32 hv_copyto_ringbuffer(
108	struct hv_ring_buffer_info	*ring_info,
109	u32				start_write_offset,
110	const void			*src,
111	u32				srclen)
112{
113	void *ring_buffer = hv_get_ring_buffer(ring_info);
114	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
 
115
116	memcpy(ring_buffer + start_write_offset, src, srclen);
 
 
 
 
 
 
117
118	start_write_offset += srclen;
119	if (start_write_offset >= ring_buffer_size)
120		start_write_offset -= ring_buffer_size;
121
122	return start_write_offset;
123}
124
125/*
126 *
127 * hv_get_ringbuffer_availbytes()
128 *
129 * Get number of bytes available to read and to write to
130 * for the specified ring buffer
131 */
132static void
133hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
134			     u32 *read, u32 *write)
135{
136	u32 read_loc, write_loc, dsize;
137
138	/* Capture the read/write indices before they changed */
139	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
140	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
141	dsize = rbi->ring_datasize;
142
143	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
144		read_loc - write_loc;
145	*read = dsize - *write;
146}
147
148/* Get various debug metrics for the specified ring buffer. */
149int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
150				struct hv_ring_buffer_debug_info *debug_info)
151{
152	u32 bytes_avail_towrite;
153	u32 bytes_avail_toread;
154
155	mutex_lock(&ring_info->ring_buffer_mutex);
156
157	if (!ring_info->ring_buffer) {
158		mutex_unlock(&ring_info->ring_buffer_mutex);
159		return -EINVAL;
 
 
 
 
 
 
 
 
160	}
161
162	hv_get_ringbuffer_availbytes(ring_info,
163				     &bytes_avail_toread,
164				     &bytes_avail_towrite);
165	debug_info->bytes_avail_toread = bytes_avail_toread;
166	debug_info->bytes_avail_towrite = bytes_avail_towrite;
167	debug_info->current_read_index = ring_info->ring_buffer->read_index;
168	debug_info->current_write_index = ring_info->ring_buffer->write_index;
169	debug_info->current_interrupt_mask
170		= ring_info->ring_buffer->interrupt_mask;
171	mutex_unlock(&ring_info->ring_buffer_mutex);
172
173	return 0;
174}
175EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
176
177/* Initialize a channel's ring buffer info mutex locks */
178void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
179{
180	mutex_init(&channel->inbound.ring_buffer_mutex);
181	mutex_init(&channel->outbound.ring_buffer_mutex);
182}
183
184/* Initialize the ring buffer. */
185int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
186		       struct page *pages, u32 page_cnt, u32 max_pkt_size)
187{
188	struct page **pages_wraparound;
189	unsigned long *pfns_wraparound;
190	u64 pfn;
191	int i;
192
193	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
194
195	/*
196	 * First page holds struct hv_ring_buffer, do wraparound mapping for
197	 * the rest.
198	 */
199	if (hv_isolation_type_snp()) {
200		pfn = page_to_pfn(pages) +
201			PFN_DOWN(ms_hyperv.shared_gpa_boundary);
202
203		pfns_wraparound = kcalloc(page_cnt * 2 - 1,
204			sizeof(unsigned long), GFP_KERNEL);
205		if (!pfns_wraparound)
206			return -ENOMEM;
207
208		pfns_wraparound[0] = pfn;
209		for (i = 0; i < 2 * (page_cnt - 1); i++)
210			pfns_wraparound[i + 1] = pfn + i % (page_cnt - 1) + 1;
211
212		ring_info->ring_buffer = (struct hv_ring_buffer *)
213			vmap_pfn(pfns_wraparound, page_cnt * 2 - 1,
214				 PAGE_KERNEL);
215		kfree(pfns_wraparound);
216
217		if (!ring_info->ring_buffer)
218			return -ENOMEM;
219
220		/* Zero ring buffer after setting memory host visibility. */
221		memset(ring_info->ring_buffer, 0x00, PAGE_SIZE * page_cnt);
222	} else {
223		pages_wraparound = kcalloc(page_cnt * 2 - 1,
224					   sizeof(struct page *),
225					   GFP_KERNEL);
226		if (!pages_wraparound)
227			return -ENOMEM;
228
229		pages_wraparound[0] = pages;
230		for (i = 0; i < 2 * (page_cnt - 1); i++)
231			pages_wraparound[i + 1] =
232				&pages[i % (page_cnt - 1) + 1];
233
234		ring_info->ring_buffer = (struct hv_ring_buffer *)
235			vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP,
236				PAGE_KERNEL);
237
238		kfree(pages_wraparound);
239		if (!ring_info->ring_buffer)
240			return -ENOMEM;
241	}
242
 
243
 
244	ring_info->ring_buffer->read_index =
245		ring_info->ring_buffer->write_index = 0;
246
247	/* Set the feature bit for enabling flow control. */
248	ring_info->ring_buffer->feature_bits.value = 1;
249
250	ring_info->ring_size = page_cnt << PAGE_SHIFT;
251	ring_info->ring_size_div10_reciprocal =
252		reciprocal_value(ring_info->ring_size / 10);
253	ring_info->ring_datasize = ring_info->ring_size -
254		sizeof(struct hv_ring_buffer);
255	ring_info->priv_read_index = 0;
256
257	/* Initialize buffer that holds copies of incoming packets */
258	if (max_pkt_size) {
259		ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
260		if (!ring_info->pkt_buffer)
261			return -ENOMEM;
262		ring_info->pkt_buffer_size = max_pkt_size;
263	}
264
265	spin_lock_init(&ring_info->ring_lock);
266
267	return 0;
268}
269
270/* Cleanup the ring buffer. */
271void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
272{
273	mutex_lock(&ring_info->ring_buffer_mutex);
274	vunmap(ring_info->ring_buffer);
275	ring_info->ring_buffer = NULL;
276	mutex_unlock(&ring_info->ring_buffer_mutex);
277
278	kfree(ring_info->pkt_buffer);
279	ring_info->pkt_buffer = NULL;
280	ring_info->pkt_buffer_size = 0;
281}
282
283/*
284 * Check if the ring buffer spinlock is available to take or not; used on
285 * atomic contexts, like panic path (see the Hyper-V framebuffer driver).
286 */
287
288bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel)
289{
290	struct hv_ring_buffer_info *rinfo = &channel->outbound;
291
292	return spin_is_locked(&rinfo->ring_lock);
293}
294EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy);
295
296/* Write to the ring buffer. */
297int hv_ringbuffer_write(struct vmbus_channel *channel,
298			const struct kvec *kv_list, u32 kv_count,
299			u64 requestid, u64 *trans_id)
300{
301	int i;
302	u32 bytes_avail_towrite;
303	u32 totalbytes_towrite = sizeof(u64);
 
 
304	u32 next_write_location;
305	u32 old_write;
306	u64 prev_indices;
307	unsigned long flags;
308	struct hv_ring_buffer_info *outring_info = &channel->outbound;
309	struct vmpacket_descriptor *desc = kv_list[0].iov_base;
310	u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR;
311
312	if (channel->rescind)
313		return -ENODEV;
314
315	for (i = 0; i < kv_count; i++)
316		totalbytes_towrite += kv_list[i].iov_len;
317
318	spin_lock_irqsave(&outring_info->ring_lock, flags);
 
 
 
319
320	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
 
 
321
322	/*
323	 * If there is only room for the packet, assume it is full.
324	 * Otherwise, the next time around, we think the ring buffer
325	 * is empty since the read index == write index.
326	 */
327	if (bytes_avail_towrite <= totalbytes_towrite) {
328		++channel->out_full_total;
329
330		if (!channel->out_full_flag) {
331			++channel->out_full_first;
332			channel->out_full_flag = true;
333		}
334
335		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
336		return -EAGAIN;
337	}
338
339	channel->out_full_flag = false;
340
341	/* Write to the ring buffer */
342	next_write_location = hv_get_next_write_location(outring_info);
343
344	old_write = next_write_location;
345
346	for (i = 0; i < kv_count; i++) {
347		next_write_location = hv_copyto_ringbuffer(outring_info,
348						     next_write_location,
349						     kv_list[i].iov_base,
350						     kv_list[i].iov_len);
351	}
352
353	/*
354	 * Allocate the request ID after the data has been copied into the
355	 * ring buffer.  Once this request ID is allocated, the completion
356	 * path could find the data and free it.
357	 */
358
359	if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
360		if (channel->next_request_id_callback != NULL) {
361			rqst_id = channel->next_request_id_callback(channel, requestid);
362			if (rqst_id == VMBUS_RQST_ERROR) {
363				spin_unlock_irqrestore(&outring_info->ring_lock, flags);
364				return -EAGAIN;
365			}
366		}
367	}
368	desc = hv_get_ring_buffer(outring_info) + old_write;
369	__trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
370	/*
371	 * Ensure the compiler doesn't generate code that reads the value of
372	 * the transaction ID from the ring buffer, which is shared with the
373	 * Hyper-V host and subject to being changed at any time.
374	 */
375	WRITE_ONCE(desc->trans_id, __trans_id);
376	if (trans_id)
377		*trans_id = __trans_id;
378
379	/* Set previous packet start */
380	prev_indices = hv_get_ring_bufferindices(outring_info);
381
382	next_write_location = hv_copyto_ringbuffer(outring_info,
383					     next_write_location,
384					     &prev_indices,
385					     sizeof(u64));
386
387	/* Issue a full memory barrier before updating the write index */
388	virt_mb();
389
390	/* Now, update the write location */
391	hv_set_next_write_location(outring_info, next_write_location);
392
393
394	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
395
396	hv_signal_on_write(old_write, channel);
397
398	if (channel->rescind) {
399		if (rqst_id != VMBUS_NO_RQSTOR) {
400			/* Reclaim request ID to avoid leak of IDs */
401			if (channel->request_addr_callback != NULL)
402				channel->request_addr_callback(channel, rqst_id);
403		}
404		return -ENODEV;
405	}
406
 
407	return 0;
408}
409
410int hv_ringbuffer_read(struct vmbus_channel *channel,
411		       void *buffer, u32 buflen, u32 *buffer_actual_len,
412		       u64 *requestid, bool raw)
413{
414	struct vmpacket_descriptor *desc;
415	u32 packetlen, offset;
 
 
 
 
 
 
416
417	if (unlikely(buflen == 0))
418		return -EINVAL;
419
 
420	*buffer_actual_len = 0;
421	*requestid = 0;
422
 
 
 
 
423	/* Make sure there is something to read */
424	desc = hv_pkt_iter_first(channel);
425	if (desc == NULL) {
426		/*
427		 * No error is set when there is even no header, drivers are
428		 * supposed to analyze buffer_actual_len.
429		 */
430		return 0;
431	}
432
433	offset = raw ? 0 : (desc->offset8 << 3);
434	packetlen = (desc->len8 << 3) - offset;
 
 
 
 
 
435	*buffer_actual_len = packetlen;
436	*requestid = desc->trans_id;
 
 
 
437
438	if (unlikely(packetlen > buflen))
439		return -ENOBUFS;
440
441	/* since ring is double mapped, only one copy is necessary */
442	memcpy(buffer, (const char *)desc + offset, packetlen);
443
444	/* Advance ring index to next packet descriptor */
445	__hv_pkt_iter_next(channel, desc);
446
447	/* Notify host of update */
448	hv_pkt_iter_close(channel);
449
450	return 0;
451}
452
453/*
454 * Determine number of bytes available in ring buffer after
455 * the current iterator (priv_read_index) location.
456 *
457 * This is similar to hv_get_bytes_to_read but with private
458 * read index instead.
459 */
460static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
461{
462	u32 priv_read_loc = rbi->priv_read_index;
463	u32 write_loc;
464
465	/*
466	 * The Hyper-V host writes the packet data, then uses
467	 * store_release() to update the write_index.  Use load_acquire()
468	 * here to prevent loads of the packet data from being re-ordered
469	 * before the read of the write_index and potentially getting
470	 * stale data.
471	 */
472	write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
473
474	if (write_loc >= priv_read_loc)
475		return write_loc - priv_read_loc;
476	else
477		return (rbi->ring_datasize - priv_read_loc) + write_loc;
478}
479
480/*
481 * Get first vmbus packet from ring buffer after read_index
482 *
483 * If ring buffer is empty, returns NULL and no other action needed.
484 */
485struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
486{
487	struct hv_ring_buffer_info *rbi = &channel->inbound;
488	struct vmpacket_descriptor *desc, *desc_copy;
489	u32 bytes_avail, pkt_len, pkt_offset;
490
491	hv_debug_delay_test(channel, MESSAGE_DELAY);
492
493	bytes_avail = hv_pkt_iter_avail(rbi);
494	if (bytes_avail < sizeof(struct vmpacket_descriptor))
495		return NULL;
496	bytes_avail = min(rbi->pkt_buffer_size, bytes_avail);
497
498	desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
499
500	/*
501	 * Ensure the compiler does not use references to incoming Hyper-V values (which
502	 * could change at any moment) when reading local variables later in the code
503	 */
504	pkt_len = READ_ONCE(desc->len8) << 3;
505	pkt_offset = READ_ONCE(desc->offset8) << 3;
506
507	/*
508	 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
509	 * rbi->pkt_buffer_size
510	 */
511	if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
512		pkt_len = bytes_avail;
513
514	/*
515	 * If pkt_offset is invalid, arbitrarily set it to
516	 * the size of vmpacket_descriptor
517	 */
518	if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
519		pkt_offset = sizeof(struct vmpacket_descriptor);
520
521	/* Copy the Hyper-V packet out of the ring buffer */
522	desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
523	memcpy(desc_copy, desc, pkt_len);
524
525	/*
526	 * Hyper-V could still change len8 and offset8 after the earlier read.
527	 * Ensure that desc_copy has legal values for len8 and offset8 that
528	 * are consistent with the copy we just made
529	 */
530	desc_copy->len8 = pkt_len >> 3;
531	desc_copy->offset8 = pkt_offset >> 3;
532
533	return desc_copy;
534}
535EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
536
537/*
538 * Get next vmbus packet from ring buffer.
539 *
540 * Advances the current location (priv_read_index) and checks for more
541 * data. If the end of the ring buffer is reached, then return NULL.
542 */
543struct vmpacket_descriptor *
544__hv_pkt_iter_next(struct vmbus_channel *channel,
545		   const struct vmpacket_descriptor *desc)
546{
547	struct hv_ring_buffer_info *rbi = &channel->inbound;
548	u32 packetlen = desc->len8 << 3;
549	u32 dsize = rbi->ring_datasize;
550
551	hv_debug_delay_test(channel, MESSAGE_DELAY);
552	/* bump offset to next potential packet */
553	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
554	if (rbi->priv_read_index >= dsize)
555		rbi->priv_read_index -= dsize;
556
557	/* more data? */
558	return hv_pkt_iter_first(channel);
559}
560EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
561
562/* How many bytes were read in this iterator cycle */
563static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
564					u32 start_read_index)
565{
566	if (rbi->priv_read_index >= start_read_index)
567		return rbi->priv_read_index - start_read_index;
568	else
569		return rbi->ring_datasize - start_read_index +
570			rbi->priv_read_index;
571}
572
573/*
574 * Update host ring buffer after iterating over packets. If the host has
575 * stopped queuing new entries because it found the ring buffer full, and
576 * sufficient space is being freed up, signal the host. But be careful to
577 * only signal the host when necessary, both for performance reasons and
578 * because Hyper-V protects itself by throttling guests that signal
579 * inappropriately.
580 *
581 * Determining when to signal is tricky. There are three key data inputs
582 * that must be handled in this order to avoid race conditions:
583 *
584 * 1. Update the read_index
585 * 2. Read the pending_send_sz
586 * 3. Read the current write_index
587 *
588 * The interrupt_mask is not used to determine when to signal. The
589 * interrupt_mask is used only on the guest->host ring buffer when
590 * sending requests to the host. The host does not use it on the host->
591 * guest ring buffer to indicate whether it should be signaled.
592 */
593void hv_pkt_iter_close(struct vmbus_channel *channel)
594{
595	struct hv_ring_buffer_info *rbi = &channel->inbound;
596	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
597
598	/*
599	 * Make sure all reads are done before we update the read index since
600	 * the writer may start writing to the read area once the read index
601	 * is updated.
602	 */
603	virt_rmb();
604	start_read_index = rbi->ring_buffer->read_index;
605	rbi->ring_buffer->read_index = rbi->priv_read_index;
606
607	/*
608	 * Older versions of Hyper-V (before WS2102 and Win8) do not
609	 * implement pending_send_sz and simply poll if the host->guest
610	 * ring buffer is full.  No signaling is needed or expected.
611	 */
612	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
613		return;
614
615	/*
616	 * Issue a full memory barrier before making the signaling decision.
617	 * If reading pending_send_sz were to be reordered and happen
618	 * before we commit the new read_index, a race could occur.  If the
619	 * host were to set the pending_send_sz after we have sampled
620	 * pending_send_sz, and the ring buffer blocks before we commit the
621	 * read index, we could miss sending the interrupt. Issue a full
622	 * memory barrier to address this.
623	 */
624	virt_mb();
625
626	/*
627	 * If the pending_send_sz is zero, then the ring buffer is not
628	 * blocked and there is no need to signal.  This is far by the
629	 * most common case, so exit quickly for best performance.
630	 */
631	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
632	if (!pending_sz)
633		return;
634
635	/*
636	 * Ensure the read of write_index in hv_get_bytes_to_write()
637	 * happens after the read of pending_send_sz.
638	 */
639	virt_rmb();
640	curr_write_sz = hv_get_bytes_to_write(rbi);
641	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
642
643	/*
644	 * We want to signal the host only if we're transitioning
645	 * from a "not enough free space" state to a "enough free
646	 * space" state.  For example, it's possible that this function
647	 * could run and free up enough space to signal the host, and then
648	 * run again and free up additional space before the host has a
649	 * chance to clear the pending_send_sz.  The 2nd invocation would
650	 * be a null transition from "enough free space" to "enough free
651	 * space", which doesn't warrant a signal.
652	 *
653	 * Exactly filling the ring buffer is treated as "not enough
654	 * space". The ring buffer always must have at least one byte
655	 * empty so the empty and full conditions are distinguishable.
656	 * hv_get_bytes_to_write() doesn't fully tell the truth in
657	 * this regard.
658	 *
659	 * So first check if we were in the "enough free space" state
660	 * before we began the iteration. If so, the host was not
661	 * blocked, and there's no need to signal.
662	 */
663	if (curr_write_sz - bytes_read > pending_sz)
664		return;
665
666	/*
667	 * Similarly, if the new state is "not enough space", then
668	 * there's no need to signal.
669	 */
670	if (curr_write_sz <= pending_sz)
671		return;
672
673	++channel->intr_in_full;
674	vmbus_setevent(channel);
675}
676EXPORT_SYMBOL_GPL(hv_pkt_iter_close);