Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *
  3 * Copyright (c) 2009, Microsoft Corporation.
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms and conditions of the GNU General Public License,
  7 * version 2, as published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope it will be useful, but WITHOUT
 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 12 * more details.
 13 *
 14 * You should have received a copy of the GNU General Public License along with
 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 16 * Place - Suite 330, Boston, MA 02111-1307 USA.
 17 *
 18 * Authors:
 19 *   Haiyang Zhang <haiyangz@microsoft.com>
 20 *   Hank Janssen  <hjanssen@microsoft.com>
 21 *   K. Y. Srinivasan <kys@microsoft.com>
 22 *
 23 */
 24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 25
 26#include <linux/kernel.h>
 27#include <linux/mm.h>
 28#include <linux/hyperv.h>
 29#include <linux/uio.h>
 
 
 
 30
 31#include "hyperv_vmbus.h"
 32
 33void hv_begin_read(struct hv_ring_buffer_info *rbi)
 34{
 35	rbi->ring_buffer->interrupt_mask = 1;
 36	mb();
 37}
 38
 39u32 hv_end_read(struct hv_ring_buffer_info *rbi)
 40{
 41	u32 read;
 42	u32 write;
 43
 44	rbi->ring_buffer->interrupt_mask = 0;
 45	mb();
 46
 47	/*
 48	 * Now check to see if the ring buffer is still empty.
 49	 * If it is not, we raced and we need to process new
 50	 * incoming messages.
 51	 */
 52	hv_get_ringbuffer_availbytes(rbi, &read, &write);
 53
 54	return read;
 55}
 56
 57/*
 58 * When we write to the ring buffer, check if the host needs to
 59 * be signaled. Here is the details of this protocol:
 60 *
 61 *	1. The host guarantees that while it is draining the
 62 *	   ring buffer, it will set the interrupt_mask to
 63 *	   indicate it does not need to be interrupted when
 64 *	   new data is placed.
 65 *
 66 *	2. The host guarantees that it will completely drain
 67 *	   the ring buffer before exiting the read loop. Further,
 68 *	   once the ring buffer is empty, it will clear the
 69 *	   interrupt_mask and re-check to see if new data has
 70 *	   arrived.
 
 
 
 
 
 
 
 
 
 71 */
 72
 73static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
 74{
 75	mb();
 76	if (rbi->ring_buffer->interrupt_mask)
 77		return false;
 
 
 78
 79	/* check interrupt_mask before read_index */
 80	rmb();
 81	/*
 82	 * This is the only case we need to signal when the
 83	 * ring transitions from being empty to non-empty.
 84	 */
 85	if (old_write == rbi->ring_buffer->read_index)
 86		return true;
 87
 88	return false;
 89}
 90
 91/*
 92 * To optimize the flow management on the send-side,
 93 * when the sender is blocked because of lack of
 94 * sufficient space in the ring buffer, potential the
 95 * consumer of the ring buffer can signal the producer.
 96 * This is controlled by the following parameters:
 97 *
 98 * 1. pending_send_sz: This is the size in bytes that the
 99 *    producer is trying to send.
100 * 2. The feature bit feat_pending_send_sz set to indicate if
101 *    the consumer of the ring will signal when the ring
102 *    state transitions from being full to a state where
103 *    there is room for the producer to send the pending packet.
104 */
105
106static bool hv_need_to_signal_on_read(struct hv_ring_buffer_info *rbi)
107{
108	u32 cur_write_sz;
109	u32 r_size;
110	u32 write_loc;
111	u32 read_loc = rbi->ring_buffer->read_index;
112	u32 pending_sz;
113
114	/*
115	 * Issue a full memory barrier before making the signaling decision.
116	 * Here is the reason for having this barrier:
117	 * If the reading of the pend_sz (in this function)
118	 * were to be reordered and read before we commit the new read
119	 * index (in the calling function)  we could
120	 * have a problem. If the host were to set the pending_sz after we
121	 * have sampled pending_sz and go to sleep before we commit the
122	 * read index, we could miss sending the interrupt. Issue a full
123	 * memory barrier to address this.
124	 */
125	mb();
126
127	pending_sz = rbi->ring_buffer->pending_send_sz;
128	write_loc = rbi->ring_buffer->write_index;
129	/* If the other end is not blocked on write don't bother. */
130	if (pending_sz == 0)
131		return false;
132
133	r_size = rbi->ring_datasize;
134	cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
135			read_loc - write_loc;
136
137	if (cur_write_sz >= pending_sz)
138		return true;
139
140	return false;
141}
142
143/* Get the next write location for the specified ring buffer. */
144static inline u32
145hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
146{
147	u32 next = ring_info->ring_buffer->write_index;
148
149	return next;
150}
151
152/* Set the next write location for the specified ring buffer. */
153static inline void
154hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
155		     u32 next_write_location)
156{
157	ring_info->ring_buffer->write_index = next_write_location;
158}
159
160/* Get the next read location for the specified ring buffer. */
161static inline u32
162hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
163{
164	u32 next = ring_info->ring_buffer->read_index;
165
166	return next;
167}
168
169/*
170 * Get the next read location + offset for the specified ring buffer.
171 * This allows the caller to skip.
172 */
173static inline u32
174hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
175				 u32 offset)
176{
177	u32 next = ring_info->ring_buffer->read_index;
178
179	next += offset;
180	next %= ring_info->ring_datasize;
181
182	return next;
183}
184
185/* Set the next read location for the specified ring buffer. */
186static inline void
187hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
188		    u32 next_read_location)
189{
190	ring_info->ring_buffer->read_index = next_read_location;
 
191}
192
193
194/* Get the start of the ring buffer. */
195static inline void *
196hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
197{
198	return (void *)ring_info->ring_buffer->buffer;
199}
200
201
202/* Get the size of the ring buffer. */
203static inline u32
204hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
205{
206	return ring_info->ring_datasize;
207}
208
209/* Get the read and write indices as u64 of the specified ring buffer. */
210static inline u64
211hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
212{
213	return (u64)ring_info->ring_buffer->write_index << 32;
214}
215
216/*
217 * Helper routine to copy to source from ring buffer.
218 * Assume there is enough room. Handles wrap-around in src case only!!
219 */
220static u32 hv_copyfrom_ringbuffer(
221	struct hv_ring_buffer_info	*ring_info,
222	void				*dest,
223	u32				destlen,
224	u32				start_read_offset)
225{
226	void *ring_buffer = hv_get_ring_buffer(ring_info);
227	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
228
229	u32 frag_len;
230
231	/* wrap-around detected at the src */
232	if (destlen > ring_buffer_size - start_read_offset) {
233		frag_len = ring_buffer_size - start_read_offset;
234
235		memcpy(dest, ring_buffer + start_read_offset, frag_len);
236		memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
237	} else
238
239		memcpy(dest, ring_buffer + start_read_offset, destlen);
240
241
242	start_read_offset += destlen;
243	start_read_offset %= ring_buffer_size;
244
245	return start_read_offset;
246}
247
248
249/*
250 * Helper routine to copy from source to ring buffer.
251 * Assume there is enough room. Handles wrap-around in dest case only!!
252 */
253static u32 hv_copyto_ringbuffer(
254	struct hv_ring_buffer_info	*ring_info,
255	u32				start_write_offset,
256	void				*src,
257	u32				srclen)
258{
259	void *ring_buffer = hv_get_ring_buffer(ring_info);
260	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
261	u32 frag_len;
262
263	/* wrap-around detected! */
264	if (srclen > ring_buffer_size - start_write_offset) {
265		frag_len = ring_buffer_size - start_write_offset;
266		memcpy(ring_buffer + start_write_offset, src, frag_len);
267		memcpy(ring_buffer, src + frag_len, srclen - frag_len);
268	} else
269		memcpy(ring_buffer + start_write_offset, src, srclen);
270
271	start_write_offset += srclen;
272	start_write_offset %= ring_buffer_size;
 
273
274	return start_write_offset;
275}
276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277/* Get various debug metrics for the specified ring buffer. */
278void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
279			    struct hv_ring_buffer_debug_info *debug_info)
280{
281	u32 bytes_avail_towrite;
282	u32 bytes_avail_toread;
283
284	if (ring_info->ring_buffer) {
285		hv_get_ringbuffer_availbytes(ring_info,
286					&bytes_avail_toread,
287					&bytes_avail_towrite);
288
289		debug_info->bytes_avail_toread = bytes_avail_toread;
290		debug_info->bytes_avail_towrite = bytes_avail_towrite;
291		debug_info->current_read_index =
292			ring_info->ring_buffer->read_index;
293		debug_info->current_write_index =
294			ring_info->ring_buffer->write_index;
295		debug_info->current_interrupt_mask =
296			ring_info->ring_buffer->interrupt_mask;
297	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298}
299
300/* Initialize the ring buffer. */
301int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
302		   void *buffer, u32 buflen)
303{
304	if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
305		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306
307	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
 
308
309	ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
310	ring_info->ring_buffer->read_index =
311		ring_info->ring_buffer->write_index = 0;
312
313	/* Set the feature bit for enabling flow control. */
314	ring_info->ring_buffer->feature_bits.value = 1;
315
316	ring_info->ring_size = buflen;
317	ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
 
 
 
 
318
319	spin_lock_init(&ring_info->ring_lock);
320
321	return 0;
322}
323
324/* Cleanup the ring buffer. */
325void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
326{
 
 
 
 
327}
328
329/* Write to the ring buffer. */
330int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
331		    struct kvec *kv_list, u32 kv_count, bool *signal, bool lock)
332{
333	int i = 0;
334	u32 bytes_avail_towrite;
335	u32 bytes_avail_toread;
336	u32 totalbytes_towrite = 0;
337
338	u32 next_write_location;
339	u32 old_write;
340	u64 prev_indices = 0;
341	unsigned long flags = 0;
 
 
 
 
342
343	for (i = 0; i < kv_count; i++)
344		totalbytes_towrite += kv_list[i].iov_len;
345
346	totalbytes_towrite += sizeof(u64);
347
348	if (lock)
349		spin_lock_irqsave(&outring_info->ring_lock, flags);
350
351	hv_get_ringbuffer_availbytes(outring_info,
352				&bytes_avail_toread,
353				&bytes_avail_towrite);
354
355	/*
356	 * If there is only room for the packet, assume it is full.
357	 * Otherwise, the next time around, we think the ring buffer
358	 * is empty since the read index == write index.
359	 */
360	if (bytes_avail_towrite <= totalbytes_towrite) {
361		if (lock)
362			spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 
 
 
 
 
 
363		return -EAGAIN;
364	}
365
 
 
366	/* Write to the ring buffer */
367	next_write_location = hv_get_next_write_location(outring_info);
368
369	old_write = next_write_location;
370
371	for (i = 0; i < kv_count; i++) {
372		next_write_location = hv_copyto_ringbuffer(outring_info,
373						     next_write_location,
374						     kv_list[i].iov_base,
375						     kv_list[i].iov_len);
376	}
377
378	/* Set previous packet start */
379	prev_indices = hv_get_ring_bufferindices(outring_info);
380
381	next_write_location = hv_copyto_ringbuffer(outring_info,
382					     next_write_location,
383					     &prev_indices,
384					     sizeof(u64));
385
386	/* Issue a full memory barrier before updating the write index */
387	mb();
388
389	/* Now, update the write location */
390	hv_set_next_write_location(outring_info, next_write_location);
391
392
393	if (lock)
394		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 
 
 
 
395
396	*signal = hv_need_to_signal(old_write, outring_info);
397	return 0;
398}
399
400int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info,
401		       void *buffer, u32 buflen, u32 *buffer_actual_len,
402		       u64 *requestid, bool *signal, bool raw)
403{
404	u32 bytes_avail_towrite;
405	u32 bytes_avail_toread;
406	u32 next_read_location = 0;
407	u64 prev_indices = 0;
408	struct vmpacket_descriptor desc;
409	u32 offset;
410	u32 packetlen;
411	int ret = 0;
412
413	if (buflen <= 0)
414		return -EINVAL;
415
416
417	*buffer_actual_len = 0;
418	*requestid = 0;
419
420	hv_get_ringbuffer_availbytes(inring_info,
421				&bytes_avail_toread,
422				&bytes_avail_towrite);
423
424	/* Make sure there is something to read */
425	if (bytes_avail_toread < sizeof(desc)) {
 
426		/*
427		 * No error is set when there is even no header, drivers are
428		 * supposed to analyze buffer_actual_len.
429		 */
430		return ret;
431	}
432
433	next_read_location = hv_get_next_read_location(inring_info);
434	next_read_location = hv_copyfrom_ringbuffer(inring_info, &desc,
435						    sizeof(desc),
436						    next_read_location);
437
438	offset = raw ? 0 : (desc.offset8 << 3);
439	packetlen = (desc.len8 << 3) - offset;
440	*buffer_actual_len = packetlen;
441	*requestid = desc.trans_id;
442
443	if (bytes_avail_toread < packetlen + offset)
444		return -EAGAIN;
445
446	if (packetlen > buflen)
447		return -ENOBUFS;
448
449	next_read_location =
450		hv_get_next_readlocation_withoffset(inring_info, offset);
 
 
 
 
 
 
451
452	next_read_location = hv_copyfrom_ringbuffer(inring_info,
453						buffer,
454						packetlen,
455						next_read_location);
456
457	next_read_location = hv_copyfrom_ringbuffer(inring_info,
458						&prev_indices,
459						sizeof(u64),
460						next_read_location);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461
462	/*
463	 * Make sure all reads are done before we update the read index since
464	 * the writer may start writing to the read area once the read index
465	 * is updated.
466	 */
467	mb();
 
 
468
469	/* Update the read index */
470	hv_set_next_read_location(inring_info, next_read_location);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471
472	*signal = hv_need_to_signal_on_read(inring_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473
474	return ret;
 
475}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *
  4 * Copyright (c) 2009, Microsoft Corporation.
  5 *
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 * Authors:
  7 *   Haiyang Zhang <haiyangz@microsoft.com>
  8 *   Hank Janssen  <hjanssen@microsoft.com>
  9 *   K. Y. Srinivasan <kys@microsoft.com>
 
 10 */
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/kernel.h>
 14#include <linux/mm.h>
 15#include <linux/hyperv.h>
 16#include <linux/uio.h>
 17#include <linux/vmalloc.h>
 18#include <linux/slab.h>
 19#include <linux/prefetch.h>
 20
 21#include "hyperv_vmbus.h"
 22
 23#define VMBUS_PKT_TRAILER	8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24
 25/*
 26 * When we write to the ring buffer, check if the host needs to
 27 * be signaled. Here is the details of this protocol:
 28 *
 29 *	1. The host guarantees that while it is draining the
 30 *	   ring buffer, it will set the interrupt_mask to
 31 *	   indicate it does not need to be interrupted when
 32 *	   new data is placed.
 33 *
 34 *	2. The host guarantees that it will completely drain
 35 *	   the ring buffer before exiting the read loop. Further,
 36 *	   once the ring buffer is empty, it will clear the
 37 *	   interrupt_mask and re-check to see if new data has
 38 *	   arrived.
 39 *
 40 * KYS: Oct. 30, 2016:
 41 * It looks like Windows hosts have logic to deal with DOS attacks that
 42 * can be triggered if it receives interrupts when it is not expecting
 43 * the interrupt. The host expects interrupts only when the ring
 44 * transitions from empty to non-empty (or full to non full on the guest
 45 * to host ring).
 46 * So, base the signaling decision solely on the ring state until the
 47 * host logic is fixed.
 48 */
 49
 50static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
 51{
 52	struct hv_ring_buffer_info *rbi = &channel->outbound;
 53
 54	virt_mb();
 55	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
 56		return;
 57
 58	/* check interrupt_mask before read_index */
 59	virt_rmb();
 60	/*
 61	 * This is the only case we need to signal when the
 62	 * ring transitions from being empty to non-empty.
 63	 */
 64	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
 65		++channel->intr_out_empty;
 66		vmbus_setevent(channel);
 67	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68}
 69
 70/* Get the next write location for the specified ring buffer. */
 71static inline u32
 72hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
 73{
 74	u32 next = ring_info->ring_buffer->write_index;
 75
 76	return next;
 77}
 78
 79/* Set the next write location for the specified ring buffer. */
 80static inline void
 81hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
 82		     u32 next_write_location)
 83{
 84	ring_info->ring_buffer->write_index = next_write_location;
 85}
 86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87/* Set the next read location for the specified ring buffer. */
 88static inline void
 89hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
 90		    u32 next_read_location)
 91{
 92	ring_info->ring_buffer->read_index = next_read_location;
 93	ring_info->priv_read_index = next_read_location;
 94}
 95
 
 
 
 
 
 
 
 
 
 96/* Get the size of the ring buffer. */
 97static inline u32
 98hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
 99{
100	return ring_info->ring_datasize;
101}
102
103/* Get the read and write indices as u64 of the specified ring buffer. */
104static inline u64
105hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
106{
107	return (u64)ring_info->ring_buffer->write_index << 32;
108}
109
110/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111 * Helper routine to copy from source to ring buffer.
112 * Assume there is enough room. Handles wrap-around in dest case only!!
113 */
114static u32 hv_copyto_ringbuffer(
115	struct hv_ring_buffer_info	*ring_info,
116	u32				start_write_offset,
117	const void			*src,
118	u32				srclen)
119{
120	void *ring_buffer = hv_get_ring_buffer(ring_info);
121	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
 
122
123	memcpy(ring_buffer + start_write_offset, src, srclen);
 
 
 
 
 
 
124
125	start_write_offset += srclen;
126	if (start_write_offset >= ring_buffer_size)
127		start_write_offset -= ring_buffer_size;
128
129	return start_write_offset;
130}
131
132/*
133 *
134 * hv_get_ringbuffer_availbytes()
135 *
136 * Get number of bytes available to read and to write to
137 * for the specified ring buffer
138 */
139static void
140hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
141			     u32 *read, u32 *write)
142{
143	u32 read_loc, write_loc, dsize;
144
145	/* Capture the read/write indices before they changed */
146	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
147	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
148	dsize = rbi->ring_datasize;
149
150	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
151		read_loc - write_loc;
152	*read = dsize - *write;
153}
154
155/* Get various debug metrics for the specified ring buffer. */
156int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
157				struct hv_ring_buffer_debug_info *debug_info)
158{
159	u32 bytes_avail_towrite;
160	u32 bytes_avail_toread;
161
162	mutex_lock(&ring_info->ring_buffer_mutex);
163
164	if (!ring_info->ring_buffer) {
165		mutex_unlock(&ring_info->ring_buffer_mutex);
166		return -EINVAL;
 
 
 
 
 
 
 
 
167	}
168
169	hv_get_ringbuffer_availbytes(ring_info,
170				     &bytes_avail_toread,
171				     &bytes_avail_towrite);
172	debug_info->bytes_avail_toread = bytes_avail_toread;
173	debug_info->bytes_avail_towrite = bytes_avail_towrite;
174	debug_info->current_read_index = ring_info->ring_buffer->read_index;
175	debug_info->current_write_index = ring_info->ring_buffer->write_index;
176	debug_info->current_interrupt_mask
177		= ring_info->ring_buffer->interrupt_mask;
178	mutex_unlock(&ring_info->ring_buffer_mutex);
179
180	return 0;
181}
182EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
183
184/* Initialize a channel's ring buffer info mutex locks */
185void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
186{
187	mutex_init(&channel->inbound.ring_buffer_mutex);
188	mutex_init(&channel->outbound.ring_buffer_mutex);
189}
190
191/* Initialize the ring buffer. */
192int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
193		       struct page *pages, u32 page_cnt)
194{
195	int i;
196	struct page **pages_wraparound;
197
198	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
199
200	/*
201	 * First page holds struct hv_ring_buffer, do wraparound mapping for
202	 * the rest.
203	 */
204	pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
205				   GFP_KERNEL);
206	if (!pages_wraparound)
207		return -ENOMEM;
208
209	pages_wraparound[0] = pages;
210	for (i = 0; i < 2 * (page_cnt - 1); i++)
211		pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
212
213	ring_info->ring_buffer = (struct hv_ring_buffer *)
214		vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
215
216	kfree(pages_wraparound);
217
218
219	if (!ring_info->ring_buffer)
220		return -ENOMEM;
221
 
222	ring_info->ring_buffer->read_index =
223		ring_info->ring_buffer->write_index = 0;
224
225	/* Set the feature bit for enabling flow control. */
226	ring_info->ring_buffer->feature_bits.value = 1;
227
228	ring_info->ring_size = page_cnt << PAGE_SHIFT;
229	ring_info->ring_size_div10_reciprocal =
230		reciprocal_value(ring_info->ring_size / 10);
231	ring_info->ring_datasize = ring_info->ring_size -
232		sizeof(struct hv_ring_buffer);
233	ring_info->priv_read_index = 0;
234
235	spin_lock_init(&ring_info->ring_lock);
236
237	return 0;
238}
239
240/* Cleanup the ring buffer. */
241void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
242{
243	mutex_lock(&ring_info->ring_buffer_mutex);
244	vunmap(ring_info->ring_buffer);
245	ring_info->ring_buffer = NULL;
246	mutex_unlock(&ring_info->ring_buffer_mutex);
247}
248
249/* Write to the ring buffer. */
250int hv_ringbuffer_write(struct vmbus_channel *channel,
251			const struct kvec *kv_list, u32 kv_count)
252{
253	int i;
254	u32 bytes_avail_towrite;
255	u32 totalbytes_towrite = sizeof(u64);
 
 
256	u32 next_write_location;
257	u32 old_write;
258	u64 prev_indices;
259	unsigned long flags;
260	struct hv_ring_buffer_info *outring_info = &channel->outbound;
261
262	if (channel->rescind)
263		return -ENODEV;
264
265	for (i = 0; i < kv_count; i++)
266		totalbytes_towrite += kv_list[i].iov_len;
267
268	spin_lock_irqsave(&outring_info->ring_lock, flags);
269
270	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
 
 
 
 
 
271
272	/*
273	 * If there is only room for the packet, assume it is full.
274	 * Otherwise, the next time around, we think the ring buffer
275	 * is empty since the read index == write index.
276	 */
277	if (bytes_avail_towrite <= totalbytes_towrite) {
278		++channel->out_full_total;
279
280		if (!channel->out_full_flag) {
281			++channel->out_full_first;
282			channel->out_full_flag = true;
283		}
284
285		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
286		return -EAGAIN;
287	}
288
289	channel->out_full_flag = false;
290
291	/* Write to the ring buffer */
292	next_write_location = hv_get_next_write_location(outring_info);
293
294	old_write = next_write_location;
295
296	for (i = 0; i < kv_count; i++) {
297		next_write_location = hv_copyto_ringbuffer(outring_info,
298						     next_write_location,
299						     kv_list[i].iov_base,
300						     kv_list[i].iov_len);
301	}
302
303	/* Set previous packet start */
304	prev_indices = hv_get_ring_bufferindices(outring_info);
305
306	next_write_location = hv_copyto_ringbuffer(outring_info,
307					     next_write_location,
308					     &prev_indices,
309					     sizeof(u64));
310
311	/* Issue a full memory barrier before updating the write index */
312	virt_mb();
313
314	/* Now, update the write location */
315	hv_set_next_write_location(outring_info, next_write_location);
316
317
318	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
319
320	hv_signal_on_write(old_write, channel);
321
322	if (channel->rescind)
323		return -ENODEV;
324
 
325	return 0;
326}
327
328int hv_ringbuffer_read(struct vmbus_channel *channel,
329		       void *buffer, u32 buflen, u32 *buffer_actual_len,
330		       u64 *requestid, bool raw)
331{
332	struct vmpacket_descriptor *desc;
333	u32 packetlen, offset;
 
 
 
 
 
 
334
335	if (unlikely(buflen == 0))
336		return -EINVAL;
337
 
338	*buffer_actual_len = 0;
339	*requestid = 0;
340
 
 
 
 
341	/* Make sure there is something to read */
342	desc = hv_pkt_iter_first(channel);
343	if (desc == NULL) {
344		/*
345		 * No error is set when there is even no header, drivers are
346		 * supposed to analyze buffer_actual_len.
347		 */
348		return 0;
349	}
350
351	offset = raw ? 0 : (desc->offset8 << 3);
352	packetlen = (desc->len8 << 3) - offset;
 
 
 
 
 
353	*buffer_actual_len = packetlen;
354	*requestid = desc->trans_id;
 
 
 
355
356	if (unlikely(packetlen > buflen))
357		return -ENOBUFS;
358
359	/* since ring is double mapped, only one copy is necessary */
360	memcpy(buffer, (const char *)desc + offset, packetlen);
361
362	/* Advance ring index to next packet descriptor */
363	__hv_pkt_iter_next(channel, desc);
364
365	/* Notify host of update */
366	hv_pkt_iter_close(channel);
367
368	return 0;
369}
370
371/*
372 * Determine number of bytes available in ring buffer after
373 * the current iterator (priv_read_index) location.
374 *
375 * This is similar to hv_get_bytes_to_read but with private
376 * read index instead.
377 */
378static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
379{
380	u32 priv_read_loc = rbi->priv_read_index;
381	u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
382
383	if (write_loc >= priv_read_loc)
384		return write_loc - priv_read_loc;
385	else
386		return (rbi->ring_datasize - priv_read_loc) + write_loc;
387}
388
389/*
390 * Get first vmbus packet from ring buffer after read_index
391 *
392 * If ring buffer is empty, returns NULL and no other action needed.
393 */
394struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
395{
396	struct hv_ring_buffer_info *rbi = &channel->inbound;
397	struct vmpacket_descriptor *desc;
398
399	hv_debug_delay_test(channel, MESSAGE_DELAY);
400	if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
401		return NULL;
402
403	desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index;
404	if (desc)
405		prefetch((char *)desc + (desc->len8 << 3));
406
407	return desc;
408}
409EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
410
411/*
412 * Get next vmbus packet from ring buffer.
413 *
414 * Advances the current location (priv_read_index) and checks for more
415 * data. If the end of the ring buffer is reached, then return NULL.
416 */
417struct vmpacket_descriptor *
418__hv_pkt_iter_next(struct vmbus_channel *channel,
419		   const struct vmpacket_descriptor *desc)
420{
421	struct hv_ring_buffer_info *rbi = &channel->inbound;
422	u32 packetlen = desc->len8 << 3;
423	u32 dsize = rbi->ring_datasize;
424
425	hv_debug_delay_test(channel, MESSAGE_DELAY);
426	/* bump offset to next potential packet */
427	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
428	if (rbi->priv_read_index >= dsize)
429		rbi->priv_read_index -= dsize;
430
431	/* more data? */
432	return hv_pkt_iter_first(channel);
433}
434EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
435
436/* How many bytes were read in this iterator cycle */
437static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
438					u32 start_read_index)
439{
440	if (rbi->priv_read_index >= start_read_index)
441		return rbi->priv_read_index - start_read_index;
442	else
443		return rbi->ring_datasize - start_read_index +
444			rbi->priv_read_index;
445}
446
447/*
448 * Update host ring buffer after iterating over packets. If the host has
449 * stopped queuing new entries because it found the ring buffer full, and
450 * sufficient space is being freed up, signal the host. But be careful to
451 * only signal the host when necessary, both for performance reasons and
452 * because Hyper-V protects itself by throttling guests that signal
453 * inappropriately.
454 *
455 * Determining when to signal is tricky. There are three key data inputs
456 * that must be handled in this order to avoid race conditions:
457 *
458 * 1. Update the read_index
459 * 2. Read the pending_send_sz
460 * 3. Read the current write_index
461 *
462 * The interrupt_mask is not used to determine when to signal. The
463 * interrupt_mask is used only on the guest->host ring buffer when
464 * sending requests to the host. The host does not use it on the host->
465 * guest ring buffer to indicate whether it should be signaled.
466 */
467void hv_pkt_iter_close(struct vmbus_channel *channel)
468{
469	struct hv_ring_buffer_info *rbi = &channel->inbound;
470	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
471
472	/*
473	 * Make sure all reads are done before we update the read index since
474	 * the writer may start writing to the read area once the read index
475	 * is updated.
476	 */
477	virt_rmb();
478	start_read_index = rbi->ring_buffer->read_index;
479	rbi->ring_buffer->read_index = rbi->priv_read_index;
480
481	/*
482	 * Older versions of Hyper-V (before WS2102 and Win8) do not
483	 * implement pending_send_sz and simply poll if the host->guest
484	 * ring buffer is full.  No signaling is needed or expected.
485	 */
486	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
487		return;
488
489	/*
490	 * Issue a full memory barrier before making the signaling decision.
491	 * If reading pending_send_sz were to be reordered and happen
492	 * before we commit the new read_index, a race could occur.  If the
493	 * host were to set the pending_send_sz after we have sampled
494	 * pending_send_sz, and the ring buffer blocks before we commit the
495	 * read index, we could miss sending the interrupt. Issue a full
496	 * memory barrier to address this.
497	 */
498	virt_mb();
499
500	/*
501	 * If the pending_send_sz is zero, then the ring buffer is not
502	 * blocked and there is no need to signal.  This is far by the
503	 * most common case, so exit quickly for best performance.
504	 */
505	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
506	if (!pending_sz)
507		return;
508
509	/*
510	 * Ensure the read of write_index in hv_get_bytes_to_write()
511	 * happens after the read of pending_send_sz.
512	 */
513	virt_rmb();
514	curr_write_sz = hv_get_bytes_to_write(rbi);
515	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
516
517	/*
518	 * We want to signal the host only if we're transitioning
519	 * from a "not enough free space" state to a "enough free
520	 * space" state.  For example, it's possible that this function
521	 * could run and free up enough space to signal the host, and then
522	 * run again and free up additional space before the host has a
523	 * chance to clear the pending_send_sz.  The 2nd invocation would
524	 * be a null transition from "enough free space" to "enough free
525	 * space", which doesn't warrant a signal.
526	 *
527	 * Exactly filling the ring buffer is treated as "not enough
528	 * space". The ring buffer always must have at least one byte
529	 * empty so the empty and full conditions are distinguishable.
530	 * hv_get_bytes_to_write() doesn't fully tell the truth in
531	 * this regard.
532	 *
533	 * So first check if we were in the "enough free space" state
534	 * before we began the iteration. If so, the host was not
535	 * blocked, and there's no need to signal.
536	 */
537	if (curr_write_sz - bytes_read > pending_sz)
538		return;
539
540	/*
541	 * Similarly, if the new state is "not enough space", then
542	 * there's no need to signal.
543	 */
544	if (curr_write_sz <= pending_sz)
545		return;
546
547	++channel->intr_in_full;
548	vmbus_setevent(channel);
549}
550EXPORT_SYMBOL_GPL(hv_pkt_iter_close);