Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *
  3 * Copyright (c) 2009, Microsoft Corporation.
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms and conditions of the GNU General Public License,
  7 * version 2, as published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope it will be useful, but WITHOUT
 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 12 * more details.
 13 *
 14 * You should have received a copy of the GNU General Public License along with
 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 16 * Place - Suite 330, Boston, MA 02111-1307 USA.
 17 *
 18 * Authors:
 19 *   Haiyang Zhang <haiyangz@microsoft.com>
 20 *   Hank Janssen  <hjanssen@microsoft.com>
 21 *   K. Y. Srinivasan <kys@microsoft.com>
 22 *
 23 */
 24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 25
 26#include <linux/kernel.h>
 27#include <linux/mm.h>
 28#include <linux/hyperv.h>
 29#include <linux/uio.h>
 
 
 
 30
 31#include "hyperv_vmbus.h"
 32
 33void hv_begin_read(struct hv_ring_buffer_info *rbi)
 34{
 35	rbi->ring_buffer->interrupt_mask = 1;
 36	mb();
 37}
 38
 39u32 hv_end_read(struct hv_ring_buffer_info *rbi)
 40{
 41	u32 read;
 42	u32 write;
 43
 44	rbi->ring_buffer->interrupt_mask = 0;
 45	mb();
 46
 47	/*
 48	 * Now check to see if the ring buffer is still empty.
 49	 * If it is not, we raced and we need to process new
 50	 * incoming messages.
 51	 */
 52	hv_get_ringbuffer_availbytes(rbi, &read, &write);
 53
 54	return read;
 55}
 56
 57/*
 58 * When we write to the ring buffer, check if the host needs to
 59 * be signaled. Here is the details of this protocol:
 60 *
 61 *	1. The host guarantees that while it is draining the
 62 *	   ring buffer, it will set the interrupt_mask to
 63 *	   indicate it does not need to be interrupted when
 64 *	   new data is placed.
 65 *
 66 *	2. The host guarantees that it will completely drain
 67 *	   the ring buffer before exiting the read loop. Further,
 68 *	   once the ring buffer is empty, it will clear the
 69 *	   interrupt_mask and re-check to see if new data has
 70 *	   arrived.
 
 
 
 
 
 
 
 
 
 71 */
 72
 73static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
 74{
 75	mb();
 76	if (rbi->ring_buffer->interrupt_mask)
 77		return false;
 
 
 78
 79	/* check interrupt_mask before read_index */
 80	rmb();
 81	/*
 82	 * This is the only case we need to signal when the
 83	 * ring transitions from being empty to non-empty.
 84	 */
 85	if (old_write == rbi->ring_buffer->read_index)
 86		return true;
 87
 88	return false;
 89}
 90
 91/*
 92 * To optimize the flow management on the send-side,
 93 * when the sender is blocked because of lack of
 94 * sufficient space in the ring buffer, potential the
 95 * consumer of the ring buffer can signal the producer.
 96 * This is controlled by the following parameters:
 97 *
 98 * 1. pending_send_sz: This is the size in bytes that the
 99 *    producer is trying to send.
100 * 2. The feature bit feat_pending_send_sz set to indicate if
101 *    the consumer of the ring will signal when the ring
102 *    state transitions from being full to a state where
103 *    there is room for the producer to send the pending packet.
104 */
105
106static bool hv_need_to_signal_on_read(struct hv_ring_buffer_info *rbi)
107{
108	u32 cur_write_sz;
109	u32 r_size;
110	u32 write_loc;
111	u32 read_loc = rbi->ring_buffer->read_index;
112	u32 pending_sz;
113
114	/*
115	 * Issue a full memory barrier before making the signaling decision.
116	 * Here is the reason for having this barrier:
117	 * If the reading of the pend_sz (in this function)
118	 * were to be reordered and read before we commit the new read
119	 * index (in the calling function)  we could
120	 * have a problem. If the host were to set the pending_sz after we
121	 * have sampled pending_sz and go to sleep before we commit the
122	 * read index, we could miss sending the interrupt. Issue a full
123	 * memory barrier to address this.
124	 */
125	mb();
126
127	pending_sz = rbi->ring_buffer->pending_send_sz;
128	write_loc = rbi->ring_buffer->write_index;
129	/* If the other end is not blocked on write don't bother. */
130	if (pending_sz == 0)
131		return false;
132
133	r_size = rbi->ring_datasize;
134	cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
135			read_loc - write_loc;
136
137	if (cur_write_sz >= pending_sz)
138		return true;
139
140	return false;
141}
142
143/* Get the next write location for the specified ring buffer. */
144static inline u32
145hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
146{
147	u32 next = ring_info->ring_buffer->write_index;
148
149	return next;
150}
151
152/* Set the next write location for the specified ring buffer. */
153static inline void
154hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
155		     u32 next_write_location)
156{
157	ring_info->ring_buffer->write_index = next_write_location;
158}
159
160/* Get the next read location for the specified ring buffer. */
161static inline u32
162hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
163{
164	u32 next = ring_info->ring_buffer->read_index;
165
166	return next;
167}
168
169/*
170 * Get the next read location + offset for the specified ring buffer.
171 * This allows the caller to skip.
172 */
173static inline u32
174hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
175				 u32 offset)
176{
177	u32 next = ring_info->ring_buffer->read_index;
178
179	next += offset;
180	next %= ring_info->ring_datasize;
181
182	return next;
183}
184
185/* Set the next read location for the specified ring buffer. */
186static inline void
187hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
188		    u32 next_read_location)
189{
190	ring_info->ring_buffer->read_index = next_read_location;
191}
192
193
194/* Get the start of the ring buffer. */
195static inline void *
196hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
197{
198	return (void *)ring_info->ring_buffer->buffer;
199}
200
201
202/* Get the size of the ring buffer. */
203static inline u32
204hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
205{
206	return ring_info->ring_datasize;
207}
208
209/* Get the read and write indices as u64 of the specified ring buffer. */
210static inline u64
211hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
212{
213	return (u64)ring_info->ring_buffer->write_index << 32;
214}
215
216/*
217 * Helper routine to copy to source from ring buffer.
218 * Assume there is enough room. Handles wrap-around in src case only!!
219 */
220static u32 hv_copyfrom_ringbuffer(
221	struct hv_ring_buffer_info	*ring_info,
222	void				*dest,
223	u32				destlen,
224	u32				start_read_offset)
225{
226	void *ring_buffer = hv_get_ring_buffer(ring_info);
227	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
228
229	u32 frag_len;
230
231	/* wrap-around detected at the src */
232	if (destlen > ring_buffer_size - start_read_offset) {
233		frag_len = ring_buffer_size - start_read_offset;
234
235		memcpy(dest, ring_buffer + start_read_offset, frag_len);
236		memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
237	} else
238
239		memcpy(dest, ring_buffer + start_read_offset, destlen);
240
241
242	start_read_offset += destlen;
243	start_read_offset %= ring_buffer_size;
244
245	return start_read_offset;
246}
247
248
249/*
250 * Helper routine to copy from source to ring buffer.
251 * Assume there is enough room. Handles wrap-around in dest case only!!
252 */
253static u32 hv_copyto_ringbuffer(
254	struct hv_ring_buffer_info	*ring_info,
255	u32				start_write_offset,
256	void				*src,
257	u32				srclen)
258{
259	void *ring_buffer = hv_get_ring_buffer(ring_info);
260	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
261	u32 frag_len;
262
263	/* wrap-around detected! */
264	if (srclen > ring_buffer_size - start_write_offset) {
265		frag_len = ring_buffer_size - start_write_offset;
266		memcpy(ring_buffer + start_write_offset, src, frag_len);
267		memcpy(ring_buffer, src + frag_len, srclen - frag_len);
268	} else
269		memcpy(ring_buffer + start_write_offset, src, srclen);
270
271	start_write_offset += srclen;
272	start_write_offset %= ring_buffer_size;
 
273
274	return start_write_offset;
275}
276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277/* Get various debug metrics for the specified ring buffer. */
278void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
279			    struct hv_ring_buffer_debug_info *debug_info)
280{
281	u32 bytes_avail_towrite;
282	u32 bytes_avail_toread;
283
284	if (ring_info->ring_buffer) {
285		hv_get_ringbuffer_availbytes(ring_info,
286					&bytes_avail_toread,
287					&bytes_avail_towrite);
288
289		debug_info->bytes_avail_toread = bytes_avail_toread;
290		debug_info->bytes_avail_towrite = bytes_avail_towrite;
291		debug_info->current_read_index =
292			ring_info->ring_buffer->read_index;
293		debug_info->current_write_index =
294			ring_info->ring_buffer->write_index;
295		debug_info->current_interrupt_mask =
296			ring_info->ring_buffer->interrupt_mask;
297	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298}
299
300/* Initialize the ring buffer. */
301int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
302		   void *buffer, u32 buflen)
303{
304	if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
305		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
306
307	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
 
 
 
 
 
 
 
 
 
 
 
308
309	ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
310	ring_info->ring_buffer->read_index =
311		ring_info->ring_buffer->write_index = 0;
312
313	/* Set the feature bit for enabling flow control. */
314	ring_info->ring_buffer->feature_bits.value = 1;
315
316	ring_info->ring_size = buflen;
317	ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
318
319	spin_lock_init(&ring_info->ring_lock);
320
321	return 0;
322}
323
324/* Cleanup the ring buffer. */
325void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
326{
 
 
 
 
 
 
 
 
327}
328
329/* Write to the ring buffer. */
330int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
331		    struct kvec *kv_list, u32 kv_count, bool *signal, bool lock)
 
332{
333	int i = 0;
334	u32 bytes_avail_towrite;
335	u32 bytes_avail_toread;
336	u32 totalbytes_towrite = 0;
337
338	u32 next_write_location;
339	u32 old_write;
340	u64 prev_indices = 0;
341	unsigned long flags = 0;
 
 
 
 
 
 
342
343	for (i = 0; i < kv_count; i++)
344		totalbytes_towrite += kv_list[i].iov_len;
345
346	totalbytes_towrite += sizeof(u64);
347
348	if (lock)
349		spin_lock_irqsave(&outring_info->ring_lock, flags);
350
351	hv_get_ringbuffer_availbytes(outring_info,
352				&bytes_avail_toread,
353				&bytes_avail_towrite);
354
355	/*
356	 * If there is only room for the packet, assume it is full.
357	 * Otherwise, the next time around, we think the ring buffer
358	 * is empty since the read index == write index.
359	 */
360	if (bytes_avail_towrite <= totalbytes_towrite) {
361		if (lock)
362			spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 
 
 
 
 
 
363		return -EAGAIN;
364	}
365
 
 
366	/* Write to the ring buffer */
367	next_write_location = hv_get_next_write_location(outring_info);
368
369	old_write = next_write_location;
370
371	for (i = 0; i < kv_count; i++) {
372		next_write_location = hv_copyto_ringbuffer(outring_info,
373						     next_write_location,
374						     kv_list[i].iov_base,
375						     kv_list[i].iov_len);
376	}
377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378	/* Set previous packet start */
379	prev_indices = hv_get_ring_bufferindices(outring_info);
380
381	next_write_location = hv_copyto_ringbuffer(outring_info,
382					     next_write_location,
383					     &prev_indices,
384					     sizeof(u64));
385
386	/* Issue a full memory barrier before updating the write index */
387	mb();
388
389	/* Now, update the write location */
390	hv_set_next_write_location(outring_info, next_write_location);
391
392
393	if (lock)
394		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 
 
 
 
 
 
 
 
 
 
395
396	*signal = hv_need_to_signal(old_write, outring_info);
397	return 0;
398}
399
400int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info,
401		       void *buffer, u32 buflen, u32 *buffer_actual_len,
402		       u64 *requestid, bool *signal, bool raw)
403{
404	u32 bytes_avail_towrite;
405	u32 bytes_avail_toread;
406	u32 next_read_location = 0;
407	u64 prev_indices = 0;
408	struct vmpacket_descriptor desc;
409	u32 offset;
410	u32 packetlen;
411	int ret = 0;
412
413	if (buflen <= 0)
414		return -EINVAL;
415
416
417	*buffer_actual_len = 0;
418	*requestid = 0;
419
420	hv_get_ringbuffer_availbytes(inring_info,
421				&bytes_avail_toread,
422				&bytes_avail_towrite);
423
424	/* Make sure there is something to read */
425	if (bytes_avail_toread < sizeof(desc)) {
 
426		/*
427		 * No error is set when there is even no header, drivers are
428		 * supposed to analyze buffer_actual_len.
429		 */
430		return ret;
431	}
432
433	next_read_location = hv_get_next_read_location(inring_info);
434	next_read_location = hv_copyfrom_ringbuffer(inring_info, &desc,
435						    sizeof(desc),
436						    next_read_location);
437
438	offset = raw ? 0 : (desc.offset8 << 3);
439	packetlen = (desc.len8 << 3) - offset;
440	*buffer_actual_len = packetlen;
441	*requestid = desc.trans_id;
442
443	if (bytes_avail_toread < packetlen + offset)
444		return -EAGAIN;
445
446	if (packetlen > buflen)
447		return -ENOBUFS;
448
449	next_read_location =
450		hv_get_next_readlocation_withoffset(inring_info, offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
451
452	next_read_location = hv_copyfrom_ringbuffer(inring_info,
453						buffer,
454						packetlen,
455						next_read_location);
456
457	next_read_location = hv_copyfrom_ringbuffer(inring_info,
458						&prev_indices,
459						sizeof(u64),
460						next_read_location);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461
462	/*
463	 * Make sure all reads are done before we update the read index since
464	 * the writer may start writing to the read area once the read index
465	 * is updated.
466	 */
467	mb();
 
 
 
 
 
 
 
 
 
 
468
469	/* Update the read index */
470	hv_set_next_read_location(inring_info, next_read_location);
 
 
 
 
 
 
 
 
471
472	*signal = hv_need_to_signal_on_read(inring_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473
474	return ret;
 
475}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *
  4 * Copyright (c) 2009, Microsoft Corporation.
  5 *
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 * Authors:
  7 *   Haiyang Zhang <haiyangz@microsoft.com>
  8 *   Hank Janssen  <hjanssen@microsoft.com>
  9 *   K. Y. Srinivasan <kys@microsoft.com>
 
 10 */
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/kernel.h>
 14#include <linux/mm.h>
 15#include <linux/hyperv.h>
 16#include <linux/uio.h>
 17#include <linux/vmalloc.h>
 18#include <linux/slab.h>
 19#include <linux/prefetch.h>
 20
 21#include "hyperv_vmbus.h"
 22
 23#define VMBUS_PKT_TRAILER	8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24
 25/*
 26 * When we write to the ring buffer, check if the host needs to
 27 * be signaled. Here is the details of this protocol:
 28 *
 29 *	1. The host guarantees that while it is draining the
 30 *	   ring buffer, it will set the interrupt_mask to
 31 *	   indicate it does not need to be interrupted when
 32 *	   new data is placed.
 33 *
 34 *	2. The host guarantees that it will completely drain
 35 *	   the ring buffer before exiting the read loop. Further,
 36 *	   once the ring buffer is empty, it will clear the
 37 *	   interrupt_mask and re-check to see if new data has
 38 *	   arrived.
 39 *
 40 * KYS: Oct. 30, 2016:
 41 * It looks like Windows hosts have logic to deal with DOS attacks that
 42 * can be triggered if it receives interrupts when it is not expecting
 43 * the interrupt. The host expects interrupts only when the ring
 44 * transitions from empty to non-empty (or full to non full on the guest
 45 * to host ring).
 46 * So, base the signaling decision solely on the ring state until the
 47 * host logic is fixed.
 48 */
 49
 50static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
 51{
 52	struct hv_ring_buffer_info *rbi = &channel->outbound;
 53
 54	virt_mb();
 55	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
 56		return;
 57
 58	/* check interrupt_mask before read_index */
 59	virt_rmb();
 60	/*
 61	 * This is the only case we need to signal when the
 62	 * ring transitions from being empty to non-empty.
 63	 */
 64	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
 65		++channel->intr_out_empty;
 66		vmbus_setevent(channel);
 67	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68}
 69
 70/* Get the next write location for the specified ring buffer. */
 71static inline u32
 72hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
 73{
 74	u32 next = ring_info->ring_buffer->write_index;
 75
 76	return next;
 77}
 78
 79/* Set the next write location for the specified ring buffer. */
 80static inline void
 81hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
 82		     u32 next_write_location)
 83{
 84	ring_info->ring_buffer->write_index = next_write_location;
 85}
 86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87/* Get the size of the ring buffer. */
 88static inline u32
 89hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
 90{
 91	return ring_info->ring_datasize;
 92}
 93
 94/* Get the read and write indices as u64 of the specified ring buffer. */
 95static inline u64
 96hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
 97{
 98	return (u64)ring_info->ring_buffer->write_index << 32;
 99}
100
101/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102 * Helper routine to copy from source to ring buffer.
103 * Assume there is enough room. Handles wrap-around in dest case only!!
104 */
105static u32 hv_copyto_ringbuffer(
106	struct hv_ring_buffer_info	*ring_info,
107	u32				start_write_offset,
108	const void			*src,
109	u32				srclen)
110{
111	void *ring_buffer = hv_get_ring_buffer(ring_info);
112	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
 
113
114	memcpy(ring_buffer + start_write_offset, src, srclen);
 
 
 
 
 
 
115
116	start_write_offset += srclen;
117	if (start_write_offset >= ring_buffer_size)
118		start_write_offset -= ring_buffer_size;
119
120	return start_write_offset;
121}
122
123/*
124 *
125 * hv_get_ringbuffer_availbytes()
126 *
127 * Get number of bytes available to read and to write to
128 * for the specified ring buffer
129 */
130static void
131hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
132			     u32 *read, u32 *write)
133{
134	u32 read_loc, write_loc, dsize;
135
136	/* Capture the read/write indices before they changed */
137	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
138	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
139	dsize = rbi->ring_datasize;
140
141	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
142		read_loc - write_loc;
143	*read = dsize - *write;
144}
145
146/* Get various debug metrics for the specified ring buffer. */
147int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
148				struct hv_ring_buffer_debug_info *debug_info)
149{
150	u32 bytes_avail_towrite;
151	u32 bytes_avail_toread;
152
153	mutex_lock(&ring_info->ring_buffer_mutex);
154
155	if (!ring_info->ring_buffer) {
156		mutex_unlock(&ring_info->ring_buffer_mutex);
157		return -EINVAL;
 
 
 
 
 
 
 
 
158	}
159
160	hv_get_ringbuffer_availbytes(ring_info,
161				     &bytes_avail_toread,
162				     &bytes_avail_towrite);
163	debug_info->bytes_avail_toread = bytes_avail_toread;
164	debug_info->bytes_avail_towrite = bytes_avail_towrite;
165	debug_info->current_read_index = ring_info->ring_buffer->read_index;
166	debug_info->current_write_index = ring_info->ring_buffer->write_index;
167	debug_info->current_interrupt_mask
168		= ring_info->ring_buffer->interrupt_mask;
169	mutex_unlock(&ring_info->ring_buffer_mutex);
170
171	return 0;
172}
173EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
174
175/* Initialize a channel's ring buffer info mutex locks */
176void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
177{
178	mutex_init(&channel->inbound.ring_buffer_mutex);
179	mutex_init(&channel->outbound.ring_buffer_mutex);
180}
181
182/* Initialize the ring buffer. */
183int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
184		       struct page *pages, u32 page_cnt, u32 max_pkt_size)
185{
186	int i;
187	struct page **pages_wraparound;
188
189	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
190
191	/*
192	 * First page holds struct hv_ring_buffer, do wraparound mapping for
193	 * the rest.
194	 */
195	pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
196				   GFP_KERNEL);
197	if (!pages_wraparound)
198		return -ENOMEM;
199
200	pages_wraparound[0] = pages;
201	for (i = 0; i < 2 * (page_cnt - 1); i++)
202		pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
203
204	ring_info->ring_buffer = (struct hv_ring_buffer *)
205		vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
206
207	kfree(pages_wraparound);
208
209
210	if (!ring_info->ring_buffer)
211		return -ENOMEM;
212
 
213	ring_info->ring_buffer->read_index =
214		ring_info->ring_buffer->write_index = 0;
215
216	/* Set the feature bit for enabling flow control. */
217	ring_info->ring_buffer->feature_bits.value = 1;
218
219	ring_info->ring_size = page_cnt << PAGE_SHIFT;
220	ring_info->ring_size_div10_reciprocal =
221		reciprocal_value(ring_info->ring_size / 10);
222	ring_info->ring_datasize = ring_info->ring_size -
223		sizeof(struct hv_ring_buffer);
224	ring_info->priv_read_index = 0;
225
226	/* Initialize buffer that holds copies of incoming packets */
227	if (max_pkt_size) {
228		ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
229		if (!ring_info->pkt_buffer)
230			return -ENOMEM;
231		ring_info->pkt_buffer_size = max_pkt_size;
232	}
233
234	spin_lock_init(&ring_info->ring_lock);
235
236	return 0;
237}
238
239/* Cleanup the ring buffer. */
240void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
241{
242	mutex_lock(&ring_info->ring_buffer_mutex);
243	vunmap(ring_info->ring_buffer);
244	ring_info->ring_buffer = NULL;
245	mutex_unlock(&ring_info->ring_buffer_mutex);
246
247	kfree(ring_info->pkt_buffer);
248	ring_info->pkt_buffer = NULL;
249	ring_info->pkt_buffer_size = 0;
250}
251
252/* Write to the ring buffer. */
253int hv_ringbuffer_write(struct vmbus_channel *channel,
254			const struct kvec *kv_list, u32 kv_count,
255			u64 requestid)
256{
257	int i;
258	u32 bytes_avail_towrite;
259	u32 totalbytes_towrite = sizeof(u64);
 
 
260	u32 next_write_location;
261	u32 old_write;
262	u64 prev_indices;
263	unsigned long flags;
264	struct hv_ring_buffer_info *outring_info = &channel->outbound;
265	struct vmpacket_descriptor *desc = kv_list[0].iov_base;
266	u64 rqst_id = VMBUS_NO_RQSTOR;
267
268	if (channel->rescind)
269		return -ENODEV;
270
271	for (i = 0; i < kv_count; i++)
272		totalbytes_towrite += kv_list[i].iov_len;
273
274	spin_lock_irqsave(&outring_info->ring_lock, flags);
 
 
 
275
276	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
 
 
277
278	/*
279	 * If there is only room for the packet, assume it is full.
280	 * Otherwise, the next time around, we think the ring buffer
281	 * is empty since the read index == write index.
282	 */
283	if (bytes_avail_towrite <= totalbytes_towrite) {
284		++channel->out_full_total;
285
286		if (!channel->out_full_flag) {
287			++channel->out_full_first;
288			channel->out_full_flag = true;
289		}
290
291		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
292		return -EAGAIN;
293	}
294
295	channel->out_full_flag = false;
296
297	/* Write to the ring buffer */
298	next_write_location = hv_get_next_write_location(outring_info);
299
300	old_write = next_write_location;
301
302	for (i = 0; i < kv_count; i++) {
303		next_write_location = hv_copyto_ringbuffer(outring_info,
304						     next_write_location,
305						     kv_list[i].iov_base,
306						     kv_list[i].iov_len);
307	}
308
309	/*
310	 * Allocate the request ID after the data has been copied into the
311	 * ring buffer.  Once this request ID is allocated, the completion
312	 * path could find the data and free it.
313	 */
314
315	if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
316		if (channel->next_request_id_callback != NULL) {
317			rqst_id = channel->next_request_id_callback(channel, requestid);
318			if (rqst_id == VMBUS_RQST_ERROR) {
319				spin_unlock_irqrestore(&outring_info->ring_lock, flags);
320				return -EAGAIN;
321			}
322		}
323	}
324	desc = hv_get_ring_buffer(outring_info) + old_write;
325	desc->trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
326
327	/* Set previous packet start */
328	prev_indices = hv_get_ring_bufferindices(outring_info);
329
330	next_write_location = hv_copyto_ringbuffer(outring_info,
331					     next_write_location,
332					     &prev_indices,
333					     sizeof(u64));
334
335	/* Issue a full memory barrier before updating the write index */
336	virt_mb();
337
338	/* Now, update the write location */
339	hv_set_next_write_location(outring_info, next_write_location);
340
341
342	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
343
344	hv_signal_on_write(old_write, channel);
345
346	if (channel->rescind) {
347		if (rqst_id != VMBUS_NO_RQSTOR) {
348			/* Reclaim request ID to avoid leak of IDs */
349			if (channel->request_addr_callback != NULL)
350				channel->request_addr_callback(channel, rqst_id);
351		}
352		return -ENODEV;
353	}
354
 
355	return 0;
356}
357
358int hv_ringbuffer_read(struct vmbus_channel *channel,
359		       void *buffer, u32 buflen, u32 *buffer_actual_len,
360		       u64 *requestid, bool raw)
361{
362	struct vmpacket_descriptor *desc;
363	u32 packetlen, offset;
 
 
 
 
 
 
364
365	if (unlikely(buflen == 0))
366		return -EINVAL;
367
 
368	*buffer_actual_len = 0;
369	*requestid = 0;
370
 
 
 
 
371	/* Make sure there is something to read */
372	desc = hv_pkt_iter_first(channel);
373	if (desc == NULL) {
374		/*
375		 * No error is set when there is even no header, drivers are
376		 * supposed to analyze buffer_actual_len.
377		 */
378		return 0;
379	}
380
381	offset = raw ? 0 : (desc->offset8 << 3);
382	packetlen = (desc->len8 << 3) - offset;
 
 
 
 
 
383	*buffer_actual_len = packetlen;
384	*requestid = desc->trans_id;
385
386	if (unlikely(packetlen > buflen))
 
 
 
387		return -ENOBUFS;
388
389	/* since ring is double mapped, only one copy is necessary */
390	memcpy(buffer, (const char *)desc + offset, packetlen);
391
392	/* Advance ring index to next packet descriptor */
393	__hv_pkt_iter_next(channel, desc, true);
394
395	/* Notify host of update */
396	hv_pkt_iter_close(channel);
397
398	return 0;
399}
400
401/*
402 * Determine number of bytes available in ring buffer after
403 * the current iterator (priv_read_index) location.
404 *
405 * This is similar to hv_get_bytes_to_read but with private
406 * read index instead.
407 */
408static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
409{
410	u32 priv_read_loc = rbi->priv_read_index;
411	u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
412
413	if (write_loc >= priv_read_loc)
414		return write_loc - priv_read_loc;
415	else
416		return (rbi->ring_datasize - priv_read_loc) + write_loc;
417}
418
419/*
420 * Get first vmbus packet without copying it out of the ring buffer
421 */
422struct vmpacket_descriptor *hv_pkt_iter_first_raw(struct vmbus_channel *channel)
423{
424	struct hv_ring_buffer_info *rbi = &channel->inbound;
425
426	hv_debug_delay_test(channel, MESSAGE_DELAY);
427
428	if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
429		return NULL;
430
431	return (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
432}
433EXPORT_SYMBOL_GPL(hv_pkt_iter_first_raw);
434
435/*
436 * Get first vmbus packet from ring buffer after read_index
437 *
438 * If ring buffer is empty, returns NULL and no other action needed.
439 */
440struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
441{
442	struct hv_ring_buffer_info *rbi = &channel->inbound;
443	struct vmpacket_descriptor *desc, *desc_copy;
444	u32 bytes_avail, pkt_len, pkt_offset;
445
446	desc = hv_pkt_iter_first_raw(channel);
447	if (!desc)
448		return NULL;
449
450	bytes_avail = min(rbi->pkt_buffer_size, hv_pkt_iter_avail(rbi));
451
452	/*
453	 * Ensure the compiler does not use references to incoming Hyper-V values (which
454	 * could change at any moment) when reading local variables later in the code
455	 */
456	pkt_len = READ_ONCE(desc->len8) << 3;
457	pkt_offset = READ_ONCE(desc->offset8) << 3;
458
459	/*
460	 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
461	 * rbi->pkt_buffer_size
462	 */
463	if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
464		pkt_len = bytes_avail;
465
466	/*
467	 * If pkt_offset is invalid, arbitrarily set it to
468	 * the size of vmpacket_descriptor
469	 */
470	if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
471		pkt_offset = sizeof(struct vmpacket_descriptor);
472
473	/* Copy the Hyper-V packet out of the ring buffer */
474	desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
475	memcpy(desc_copy, desc, pkt_len);
476
477	/*
478	 * Hyper-V could still change len8 and offset8 after the earlier read.
479	 * Ensure that desc_copy has legal values for len8 and offset8 that
480	 * are consistent with the copy we just made
481	 */
482	desc_copy->len8 = pkt_len >> 3;
483	desc_copy->offset8 = pkt_offset >> 3;
484
485	return desc_copy;
486}
487EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
488
489/*
490 * Get next vmbus packet from ring buffer.
491 *
492 * Advances the current location (priv_read_index) and checks for more
493 * data. If the end of the ring buffer is reached, then return NULL.
494 */
495struct vmpacket_descriptor *
496__hv_pkt_iter_next(struct vmbus_channel *channel,
497		   const struct vmpacket_descriptor *desc,
498		   bool copy)
499{
500	struct hv_ring_buffer_info *rbi = &channel->inbound;
501	u32 packetlen = desc->len8 << 3;
502	u32 dsize = rbi->ring_datasize;
503
504	hv_debug_delay_test(channel, MESSAGE_DELAY);
505	/* bump offset to next potential packet */
506	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
507	if (rbi->priv_read_index >= dsize)
508		rbi->priv_read_index -= dsize;
509
510	/* more data? */
511	return copy ? hv_pkt_iter_first(channel) : hv_pkt_iter_first_raw(channel);
512}
513EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
514
515/* How many bytes were read in this iterator cycle */
516static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
517					u32 start_read_index)
518{
519	if (rbi->priv_read_index >= start_read_index)
520		return rbi->priv_read_index - start_read_index;
521	else
522		return rbi->ring_datasize - start_read_index +
523			rbi->priv_read_index;
524}
525
526/*
527 * Update host ring buffer after iterating over packets. If the host has
528 * stopped queuing new entries because it found the ring buffer full, and
529 * sufficient space is being freed up, signal the host. But be careful to
530 * only signal the host when necessary, both for performance reasons and
531 * because Hyper-V protects itself by throttling guests that signal
532 * inappropriately.
533 *
534 * Determining when to signal is tricky. There are three key data inputs
535 * that must be handled in this order to avoid race conditions:
536 *
537 * 1. Update the read_index
538 * 2. Read the pending_send_sz
539 * 3. Read the current write_index
540 *
541 * The interrupt_mask is not used to determine when to signal. The
542 * interrupt_mask is used only on the guest->host ring buffer when
543 * sending requests to the host. The host does not use it on the host->
544 * guest ring buffer to indicate whether it should be signaled.
545 */
546void hv_pkt_iter_close(struct vmbus_channel *channel)
547{
548	struct hv_ring_buffer_info *rbi = &channel->inbound;
549	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
550
551	/*
552	 * Make sure all reads are done before we update the read index since
553	 * the writer may start writing to the read area once the read index
554	 * is updated.
555	 */
556	virt_rmb();
557	start_read_index = rbi->ring_buffer->read_index;
558	rbi->ring_buffer->read_index = rbi->priv_read_index;
559
560	/*
561	 * Older versions of Hyper-V (before WS2102 and Win8) do not
562	 * implement pending_send_sz and simply poll if the host->guest
563	 * ring buffer is full.  No signaling is needed or expected.
564	 */
565	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
566		return;
567
568	/*
569	 * Issue a full memory barrier before making the signaling decision.
570	 * If reading pending_send_sz were to be reordered and happen
571	 * before we commit the new read_index, a race could occur.  If the
572	 * host were to set the pending_send_sz after we have sampled
573	 * pending_send_sz, and the ring buffer blocks before we commit the
574	 * read index, we could miss sending the interrupt. Issue a full
575	 * memory barrier to address this.
576	 */
577	virt_mb();
578
579	/*
580	 * If the pending_send_sz is zero, then the ring buffer is not
581	 * blocked and there is no need to signal.  This is far by the
582	 * most common case, so exit quickly for best performance.
583	 */
584	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
585	if (!pending_sz)
586		return;
587
588	/*
589	 * Ensure the read of write_index in hv_get_bytes_to_write()
590	 * happens after the read of pending_send_sz.
591	 */
592	virt_rmb();
593	curr_write_sz = hv_get_bytes_to_write(rbi);
594	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
595
596	/*
597	 * We want to signal the host only if we're transitioning
598	 * from a "not enough free space" state to a "enough free
599	 * space" state.  For example, it's possible that this function
600	 * could run and free up enough space to signal the host, and then
601	 * run again and free up additional space before the host has a
602	 * chance to clear the pending_send_sz.  The 2nd invocation would
603	 * be a null transition from "enough free space" to "enough free
604	 * space", which doesn't warrant a signal.
605	 *
606	 * Exactly filling the ring buffer is treated as "not enough
607	 * space". The ring buffer always must have at least one byte
608	 * empty so the empty and full conditions are distinguishable.
609	 * hv_get_bytes_to_write() doesn't fully tell the truth in
610	 * this regard.
611	 *
612	 * So first check if we were in the "enough free space" state
613	 * before we began the iteration. If so, the host was not
614	 * blocked, and there's no need to signal.
615	 */
616	if (curr_write_sz - bytes_read > pending_sz)
617		return;
618
619	/*
620	 * Similarly, if the new state is "not enough space", then
621	 * there's no need to signal.
622	 */
623	if (curr_write_sz <= pending_sz)
624		return;
625
626	++channel->intr_in_full;
627	vmbus_setevent(channel);
628}
629EXPORT_SYMBOL_GPL(hv_pkt_iter_close);