Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 *
  3 * Copyright (c) 2009, Microsoft Corporation.
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms and conditions of the GNU General Public License,
  7 * version 2, as published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope it will be useful, but WITHOUT
 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 12 * more details.
 13 *
 14 * You should have received a copy of the GNU General Public License along with
 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 16 * Place - Suite 330, Boston, MA 02111-1307 USA.
 17 *
 18 * Authors:
 19 *   Haiyang Zhang <haiyangz@microsoft.com>
 20 *   Hank Janssen  <hjanssen@microsoft.com>
 21 *   K. Y. Srinivasan <kys@microsoft.com>
 22 *
 23 */
 24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 25
 26#include <linux/kernel.h>
 27#include <linux/mm.h>
 28#include <linux/hyperv.h>
 29#include <linux/uio.h>
 
 
 
 30
 31#include "hyperv_vmbus.h"
 32
 33void hv_begin_read(struct hv_ring_buffer_info *rbi)
 34{
 35	rbi->ring_buffer->interrupt_mask = 1;
 36	mb();
 37}
 38
 39u32 hv_end_read(struct hv_ring_buffer_info *rbi)
 40{
 41	u32 read;
 42	u32 write;
 43
 44	rbi->ring_buffer->interrupt_mask = 0;
 45	mb();
 46
 47	/*
 48	 * Now check to see if the ring buffer is still empty.
 49	 * If it is not, we raced and we need to process new
 50	 * incoming messages.
 51	 */
 52	hv_get_ringbuffer_availbytes(rbi, &read, &write);
 53
 54	return read;
 55}
 56
 57/*
 58 * When we write to the ring buffer, check if the host needs to
 59 * be signaled. Here is the details of this protocol:
 60 *
 61 *	1. The host guarantees that while it is draining the
 62 *	   ring buffer, it will set the interrupt_mask to
 63 *	   indicate it does not need to be interrupted when
 64 *	   new data is placed.
 65 *
 66 *	2. The host guarantees that it will completely drain
 67 *	   the ring buffer before exiting the read loop. Further,
 68 *	   once the ring buffer is empty, it will clear the
 69 *	   interrupt_mask and re-check to see if new data has
 70 *	   arrived.
 
 
 
 
 
 
 
 
 
 71 */
 72
 73static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
 74{
 75	mb();
 76	if (rbi->ring_buffer->interrupt_mask)
 77		return false;
 
 
 78
 79	/* check interrupt_mask before read_index */
 80	rmb();
 81	/*
 82	 * This is the only case we need to signal when the
 83	 * ring transitions from being empty to non-empty.
 84	 */
 85	if (old_write == rbi->ring_buffer->read_index)
 86		return true;
 87
 88	return false;
 89}
 90
 91/*
 92 * To optimize the flow management on the send-side,
 93 * when the sender is blocked because of lack of
 94 * sufficient space in the ring buffer, potential the
 95 * consumer of the ring buffer can signal the producer.
 96 * This is controlled by the following parameters:
 97 *
 98 * 1. pending_send_sz: This is the size in bytes that the
 99 *    producer is trying to send.
100 * 2. The feature bit feat_pending_send_sz set to indicate if
101 *    the consumer of the ring will signal when the ring
102 *    state transitions from being full to a state where
103 *    there is room for the producer to send the pending packet.
104 */
105
106static bool hv_need_to_signal_on_read(struct hv_ring_buffer_info *rbi)
107{
108	u32 cur_write_sz;
109	u32 r_size;
110	u32 write_loc;
111	u32 read_loc = rbi->ring_buffer->read_index;
112	u32 pending_sz;
113
114	/*
115	 * Issue a full memory barrier before making the signaling decision.
116	 * Here is the reason for having this barrier:
117	 * If the reading of the pend_sz (in this function)
118	 * were to be reordered and read before we commit the new read
119	 * index (in the calling function)  we could
120	 * have a problem. If the host were to set the pending_sz after we
121	 * have sampled pending_sz and go to sleep before we commit the
122	 * read index, we could miss sending the interrupt. Issue a full
123	 * memory barrier to address this.
124	 */
125	mb();
126
127	pending_sz = rbi->ring_buffer->pending_send_sz;
128	write_loc = rbi->ring_buffer->write_index;
129	/* If the other end is not blocked on write don't bother. */
130	if (pending_sz == 0)
131		return false;
132
133	r_size = rbi->ring_datasize;
134	cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
135			read_loc - write_loc;
136
137	if (cur_write_sz >= pending_sz)
138		return true;
139
140	return false;
141}
142
143/* Get the next write location for the specified ring buffer. */
144static inline u32
145hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
146{
147	u32 next = ring_info->ring_buffer->write_index;
148
149	return next;
150}
151
152/* Set the next write location for the specified ring buffer. */
153static inline void
154hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
155		     u32 next_write_location)
156{
157	ring_info->ring_buffer->write_index = next_write_location;
158}
159
160/* Get the next read location for the specified ring buffer. */
161static inline u32
162hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
163{
164	u32 next = ring_info->ring_buffer->read_index;
165
166	return next;
167}
168
169/*
170 * Get the next read location + offset for the specified ring buffer.
171 * This allows the caller to skip.
172 */
173static inline u32
174hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
175				 u32 offset)
176{
177	u32 next = ring_info->ring_buffer->read_index;
178
179	next += offset;
180	next %= ring_info->ring_datasize;
181
182	return next;
183}
184
185/* Set the next read location for the specified ring buffer. */
186static inline void
187hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
188		    u32 next_read_location)
189{
190	ring_info->ring_buffer->read_index = next_read_location;
 
191}
192
193
194/* Get the start of the ring buffer. */
195static inline void *
196hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
197{
198	return (void *)ring_info->ring_buffer->buffer;
199}
200
201
202/* Get the size of the ring buffer. */
203static inline u32
204hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
205{
206	return ring_info->ring_datasize;
207}
208
209/* Get the read and write indices as u64 of the specified ring buffer. */
210static inline u64
211hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
212{
213	return (u64)ring_info->ring_buffer->write_index << 32;
214}
215
216/*
217 * Helper routine to copy to source from ring buffer.
218 * Assume there is enough room. Handles wrap-around in src case only!!
219 */
220static u32 hv_copyfrom_ringbuffer(
221	struct hv_ring_buffer_info	*ring_info,
222	void				*dest,
223	u32				destlen,
224	u32				start_read_offset)
225{
226	void *ring_buffer = hv_get_ring_buffer(ring_info);
227	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
228
229	u32 frag_len;
230
231	/* wrap-around detected at the src */
232	if (destlen > ring_buffer_size - start_read_offset) {
233		frag_len = ring_buffer_size - start_read_offset;
234
235		memcpy(dest, ring_buffer + start_read_offset, frag_len);
236		memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
237	} else
238
239		memcpy(dest, ring_buffer + start_read_offset, destlen);
240
241
242	start_read_offset += destlen;
243	start_read_offset %= ring_buffer_size;
244
245	return start_read_offset;
246}
247
248
249/*
250 * Helper routine to copy from source to ring buffer.
251 * Assume there is enough room. Handles wrap-around in dest case only!!
252 */
253static u32 hv_copyto_ringbuffer(
254	struct hv_ring_buffer_info	*ring_info,
255	u32				start_write_offset,
256	void				*src,
257	u32				srclen)
258{
259	void *ring_buffer = hv_get_ring_buffer(ring_info);
260	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
261	u32 frag_len;
262
263	/* wrap-around detected! */
264	if (srclen > ring_buffer_size - start_write_offset) {
265		frag_len = ring_buffer_size - start_write_offset;
266		memcpy(ring_buffer + start_write_offset, src, frag_len);
267		memcpy(ring_buffer, src + frag_len, srclen - frag_len);
268	} else
269		memcpy(ring_buffer + start_write_offset, src, srclen);
270
271	start_write_offset += srclen;
272	start_write_offset %= ring_buffer_size;
 
273
274	return start_write_offset;
275}
276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277/* Get various debug metrics for the specified ring buffer. */
278void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
279			    struct hv_ring_buffer_debug_info *debug_info)
280{
281	u32 bytes_avail_towrite;
282	u32 bytes_avail_toread;
283
284	if (ring_info->ring_buffer) {
285		hv_get_ringbuffer_availbytes(ring_info,
286					&bytes_avail_toread,
287					&bytes_avail_towrite);
288
289		debug_info->bytes_avail_toread = bytes_avail_toread;
290		debug_info->bytes_avail_towrite = bytes_avail_towrite;
291		debug_info->current_read_index =
292			ring_info->ring_buffer->read_index;
293		debug_info->current_write_index =
294			ring_info->ring_buffer->write_index;
295		debug_info->current_interrupt_mask =
296			ring_info->ring_buffer->interrupt_mask;
297	}
298}
 
299
300/* Initialize the ring buffer. */
301int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
302		   void *buffer, u32 buflen)
303{
304	if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
305		return -EINVAL;
 
 
306
307	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
308
309	ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310	ring_info->ring_buffer->read_index =
311		ring_info->ring_buffer->write_index = 0;
312
313	/* Set the feature bit for enabling flow control. */
314	ring_info->ring_buffer->feature_bits.value = 1;
315
316	ring_info->ring_size = buflen;
317	ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
 
318
319	spin_lock_init(&ring_info->ring_lock);
320
321	return 0;
322}
323
324/* Cleanup the ring buffer. */
325void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
326{
 
327}
328
329/* Write to the ring buffer. */
330int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
331		    struct kvec *kv_list, u32 kv_count, bool *signal, bool lock)
332{
333	int i = 0;
334	u32 bytes_avail_towrite;
335	u32 bytes_avail_toread;
336	u32 totalbytes_towrite = 0;
337
338	u32 next_write_location;
339	u32 old_write;
340	u64 prev_indices = 0;
341	unsigned long flags = 0;
 
 
 
 
342
343	for (i = 0; i < kv_count; i++)
344		totalbytes_towrite += kv_list[i].iov_len;
345
346	totalbytes_towrite += sizeof(u64);
347
348	if (lock)
349		spin_lock_irqsave(&outring_info->ring_lock, flags);
350
351	hv_get_ringbuffer_availbytes(outring_info,
352				&bytes_avail_toread,
353				&bytes_avail_towrite);
354
355	/*
356	 * If there is only room for the packet, assume it is full.
357	 * Otherwise, the next time around, we think the ring buffer
358	 * is empty since the read index == write index.
359	 */
360	if (bytes_avail_towrite <= totalbytes_towrite) {
361		if (lock)
362			spin_unlock_irqrestore(&outring_info->ring_lock, flags);
363		return -EAGAIN;
364	}
365
366	/* Write to the ring buffer */
367	next_write_location = hv_get_next_write_location(outring_info);
368
369	old_write = next_write_location;
370
371	for (i = 0; i < kv_count; i++) {
372		next_write_location = hv_copyto_ringbuffer(outring_info,
373						     next_write_location,
374						     kv_list[i].iov_base,
375						     kv_list[i].iov_len);
376	}
377
378	/* Set previous packet start */
379	prev_indices = hv_get_ring_bufferindices(outring_info);
380
381	next_write_location = hv_copyto_ringbuffer(outring_info,
382					     next_write_location,
383					     &prev_indices,
384					     sizeof(u64));
385
386	/* Issue a full memory barrier before updating the write index */
387	mb();
388
389	/* Now, update the write location */
390	hv_set_next_write_location(outring_info, next_write_location);
391
392
393	if (lock)
394		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 
 
 
 
395
396	*signal = hv_need_to_signal(old_write, outring_info);
397	return 0;
398}
399
400int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info,
401		       void *buffer, u32 buflen, u32 *buffer_actual_len,
402		       u64 *requestid, bool *signal, bool raw)
403{
404	u32 bytes_avail_towrite;
405	u32 bytes_avail_toread;
406	u32 next_read_location = 0;
407	u64 prev_indices = 0;
408	struct vmpacket_descriptor desc;
409	u32 offset;
410	u32 packetlen;
411	int ret = 0;
412
413	if (buflen <= 0)
414		return -EINVAL;
415
416
417	*buffer_actual_len = 0;
418	*requestid = 0;
419
420	hv_get_ringbuffer_availbytes(inring_info,
421				&bytes_avail_toread,
422				&bytes_avail_towrite);
423
424	/* Make sure there is something to read */
425	if (bytes_avail_toread < sizeof(desc)) {
 
426		/*
427		 * No error is set when there is even no header, drivers are
428		 * supposed to analyze buffer_actual_len.
429		 */
430		return ret;
431	}
432
433	next_read_location = hv_get_next_read_location(inring_info);
434	next_read_location = hv_copyfrom_ringbuffer(inring_info, &desc,
435						    sizeof(desc),
436						    next_read_location);
437
438	offset = raw ? 0 : (desc.offset8 << 3);
439	packetlen = (desc.len8 << 3) - offset;
440	*buffer_actual_len = packetlen;
441	*requestid = desc.trans_id;
442
443	if (bytes_avail_toread < packetlen + offset)
444		return -EAGAIN;
445
446	if (packetlen > buflen)
447		return -ENOBUFS;
448
449	next_read_location =
450		hv_get_next_readlocation_withoffset(inring_info, offset);
 
 
 
451
452	next_read_location = hv_copyfrom_ringbuffer(inring_info,
453						buffer,
454						packetlen,
455						next_read_location);
456
457	next_read_location = hv_copyfrom_ringbuffer(inring_info,
458						&prev_indices,
459						sizeof(u64),
460						next_read_location);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461
462	/*
463	 * Make sure all reads are done before we update the read index since
464	 * the writer may start writing to the read area once the read index
465	 * is updated.
466	 */
467	mb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468
469	/* Update the read index */
470	hv_set_next_read_location(inring_info, next_read_location);
471
472	*signal = hv_need_to_signal_on_read(inring_info);
 
 
473
474	return ret;
475}
v4.17
  1/*
  2 *
  3 * Copyright (c) 2009, Microsoft Corporation.
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms and conditions of the GNU General Public License,
  7 * version 2, as published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope it will be useful, but WITHOUT
 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 12 * more details.
 13 *
 14 * You should have received a copy of the GNU General Public License along with
 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 16 * Place - Suite 330, Boston, MA 02111-1307 USA.
 17 *
 18 * Authors:
 19 *   Haiyang Zhang <haiyangz@microsoft.com>
 20 *   Hank Janssen  <hjanssen@microsoft.com>
 21 *   K. Y. Srinivasan <kys@microsoft.com>
 22 *
 23 */
 24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 25
 26#include <linux/kernel.h>
 27#include <linux/mm.h>
 28#include <linux/hyperv.h>
 29#include <linux/uio.h>
 30#include <linux/vmalloc.h>
 31#include <linux/slab.h>
 32#include <linux/prefetch.h>
 33
 34#include "hyperv_vmbus.h"
 35
 36#define VMBUS_PKT_TRAILER	8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 37
 38/*
 39 * When we write to the ring buffer, check if the host needs to
 40 * be signaled. Here is the details of this protocol:
 41 *
 42 *	1. The host guarantees that while it is draining the
 43 *	   ring buffer, it will set the interrupt_mask to
 44 *	   indicate it does not need to be interrupted when
 45 *	   new data is placed.
 46 *
 47 *	2. The host guarantees that it will completely drain
 48 *	   the ring buffer before exiting the read loop. Further,
 49 *	   once the ring buffer is empty, it will clear the
 50 *	   interrupt_mask and re-check to see if new data has
 51 *	   arrived.
 52 *
 53 * KYS: Oct. 30, 2016:
 54 * It looks like Windows hosts have logic to deal with DOS attacks that
 55 * can be triggered if it receives interrupts when it is not expecting
 56 * the interrupt. The host expects interrupts only when the ring
 57 * transitions from empty to non-empty (or full to non full on the guest
 58 * to host ring).
 59 * So, base the signaling decision solely on the ring state until the
 60 * host logic is fixed.
 61 */
 62
 63static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
 64{
 65	struct hv_ring_buffer_info *rbi = &channel->outbound;
 66
 67	virt_mb();
 68	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
 69		return;
 70
 71	/* check interrupt_mask before read_index */
 72	virt_rmb();
 73	/*
 74	 * This is the only case we need to signal when the
 75	 * ring transitions from being empty to non-empty.
 76	 */
 77	if (old_write == READ_ONCE(rbi->ring_buffer->read_index))
 78		vmbus_setevent(channel);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79}
 80
 81/* Get the next write location for the specified ring buffer. */
 82static inline u32
 83hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
 84{
 85	u32 next = ring_info->ring_buffer->write_index;
 86
 87	return next;
 88}
 89
 90/* Set the next write location for the specified ring buffer. */
 91static inline void
 92hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
 93		     u32 next_write_location)
 94{
 95	ring_info->ring_buffer->write_index = next_write_location;
 96}
 97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 98/* Set the next read location for the specified ring buffer. */
 99static inline void
100hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
101		    u32 next_read_location)
102{
103	ring_info->ring_buffer->read_index = next_read_location;
104	ring_info->priv_read_index = next_read_location;
105}
106
 
 
 
 
 
 
 
 
 
107/* Get the size of the ring buffer. */
108static inline u32
109hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
110{
111	return ring_info->ring_datasize;
112}
113
114/* Get the read and write indices as u64 of the specified ring buffer. */
115static inline u64
116hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
117{
118	return (u64)ring_info->ring_buffer->write_index << 32;
119}
120
121/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122 * Helper routine to copy from source to ring buffer.
123 * Assume there is enough room. Handles wrap-around in dest case only!!
124 */
125static u32 hv_copyto_ringbuffer(
126	struct hv_ring_buffer_info	*ring_info,
127	u32				start_write_offset,
128	const void			*src,
129	u32				srclen)
130{
131	void *ring_buffer = hv_get_ring_buffer(ring_info);
132	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
 
133
134	memcpy(ring_buffer + start_write_offset, src, srclen);
 
 
 
 
 
 
135
136	start_write_offset += srclen;
137	if (start_write_offset >= ring_buffer_size)
138		start_write_offset -= ring_buffer_size;
139
140	return start_write_offset;
141}
142
143/*
144 *
145 * hv_get_ringbuffer_availbytes()
146 *
147 * Get number of bytes available to read and to write to
148 * for the specified ring buffer
149 */
150static void
151hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
152			     u32 *read, u32 *write)
153{
154	u32 read_loc, write_loc, dsize;
155
156	/* Capture the read/write indices before they changed */
157	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
158	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
159	dsize = rbi->ring_datasize;
160
161	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
162		read_loc - write_loc;
163	*read = dsize - *write;
164}
165
166/* Get various debug metrics for the specified ring buffer. */
167void hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info,
168				 struct hv_ring_buffer_debug_info *debug_info)
169{
170	u32 bytes_avail_towrite;
171	u32 bytes_avail_toread;
172
173	if (ring_info->ring_buffer) {
174		hv_get_ringbuffer_availbytes(ring_info,
175					&bytes_avail_toread,
176					&bytes_avail_towrite);
177
178		debug_info->bytes_avail_toread = bytes_avail_toread;
179		debug_info->bytes_avail_towrite = bytes_avail_towrite;
180		debug_info->current_read_index =
181			ring_info->ring_buffer->read_index;
182		debug_info->current_write_index =
183			ring_info->ring_buffer->write_index;
184		debug_info->current_interrupt_mask =
185			ring_info->ring_buffer->interrupt_mask;
186	}
187}
188EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
189
190/* Initialize the ring buffer. */
191int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
192		       struct page *pages, u32 page_cnt)
193{
194	int i;
195	struct page **pages_wraparound;
196
197	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
198
199	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
200
201	/*
202	 * First page holds struct hv_ring_buffer, do wraparound mapping for
203	 * the rest.
204	 */
205	pages_wraparound = kzalloc(sizeof(struct page *) * (page_cnt * 2 - 1),
206				   GFP_KERNEL);
207	if (!pages_wraparound)
208		return -ENOMEM;
209
210	pages_wraparound[0] = pages;
211	for (i = 0; i < 2 * (page_cnt - 1); i++)
212		pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
213
214	ring_info->ring_buffer = (struct hv_ring_buffer *)
215		vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
216
217	kfree(pages_wraparound);
218
219
220	if (!ring_info->ring_buffer)
221		return -ENOMEM;
222
223	ring_info->ring_buffer->read_index =
224		ring_info->ring_buffer->write_index = 0;
225
226	/* Set the feature bit for enabling flow control. */
227	ring_info->ring_buffer->feature_bits.value = 1;
228
229	ring_info->ring_size = page_cnt << PAGE_SHIFT;
230	ring_info->ring_datasize = ring_info->ring_size -
231		sizeof(struct hv_ring_buffer);
232
233	spin_lock_init(&ring_info->ring_lock);
234
235	return 0;
236}
237
238/* Cleanup the ring buffer. */
239void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
240{
241	vunmap(ring_info->ring_buffer);
242}
243
244/* Write to the ring buffer. */
245int hv_ringbuffer_write(struct vmbus_channel *channel,
246			const struct kvec *kv_list, u32 kv_count)
247{
248	int i;
249	u32 bytes_avail_towrite;
250	u32 totalbytes_towrite = sizeof(u64);
 
 
251	u32 next_write_location;
252	u32 old_write;
253	u64 prev_indices;
254	unsigned long flags;
255	struct hv_ring_buffer_info *outring_info = &channel->outbound;
256
257	if (channel->rescind)
258		return -ENODEV;
259
260	for (i = 0; i < kv_count; i++)
261		totalbytes_towrite += kv_list[i].iov_len;
262
263	spin_lock_irqsave(&outring_info->ring_lock, flags);
 
 
 
264
265	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
 
 
266
267	/*
268	 * If there is only room for the packet, assume it is full.
269	 * Otherwise, the next time around, we think the ring buffer
270	 * is empty since the read index == write index.
271	 */
272	if (bytes_avail_towrite <= totalbytes_towrite) {
273		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 
274		return -EAGAIN;
275	}
276
277	/* Write to the ring buffer */
278	next_write_location = hv_get_next_write_location(outring_info);
279
280	old_write = next_write_location;
281
282	for (i = 0; i < kv_count; i++) {
283		next_write_location = hv_copyto_ringbuffer(outring_info,
284						     next_write_location,
285						     kv_list[i].iov_base,
286						     kv_list[i].iov_len);
287	}
288
289	/* Set previous packet start */
290	prev_indices = hv_get_ring_bufferindices(outring_info);
291
292	next_write_location = hv_copyto_ringbuffer(outring_info,
293					     next_write_location,
294					     &prev_indices,
295					     sizeof(u64));
296
297	/* Issue a full memory barrier before updating the write index */
298	virt_mb();
299
300	/* Now, update the write location */
301	hv_set_next_write_location(outring_info, next_write_location);
302
303
304	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
305
306	hv_signal_on_write(old_write, channel);
307
308	if (channel->rescind)
309		return -ENODEV;
310
 
311	return 0;
312}
313
314int hv_ringbuffer_read(struct vmbus_channel *channel,
315		       void *buffer, u32 buflen, u32 *buffer_actual_len,
316		       u64 *requestid, bool raw)
317{
318	struct vmpacket_descriptor *desc;
319	u32 packetlen, offset;
 
 
 
 
 
 
320
321	if (unlikely(buflen == 0))
322		return -EINVAL;
323
 
324	*buffer_actual_len = 0;
325	*requestid = 0;
326
 
 
 
 
327	/* Make sure there is something to read */
328	desc = hv_pkt_iter_first(channel);
329	if (desc == NULL) {
330		/*
331		 * No error is set when there is even no header, drivers are
332		 * supposed to analyze buffer_actual_len.
333		 */
334		return 0;
335	}
336
337	offset = raw ? 0 : (desc->offset8 << 3);
338	packetlen = (desc->len8 << 3) - offset;
 
 
 
 
 
339	*buffer_actual_len = packetlen;
340	*requestid = desc->trans_id;
341
342	if (unlikely(packetlen > buflen))
 
 
 
343		return -ENOBUFS;
344
345	/* since ring is double mapped, only one copy is necessary */
346	memcpy(buffer, (const char *)desc + offset, packetlen);
347
348	/* Advance ring index to next packet descriptor */
349	__hv_pkt_iter_next(channel, desc);
350
351	/* Notify host of update */
352	hv_pkt_iter_close(channel);
353
354	return 0;
355}
356
357/*
358 * Determine number of bytes available in ring buffer after
359 * the current iterator (priv_read_index) location.
360 *
361 * This is similar to hv_get_bytes_to_read but with private
362 * read index instead.
363 */
364static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
365{
366	u32 priv_read_loc = rbi->priv_read_index;
367	u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
368
369	if (write_loc >= priv_read_loc)
370		return write_loc - priv_read_loc;
371	else
372		return (rbi->ring_datasize - priv_read_loc) + write_loc;
373}
374
375/*
376 * Get first vmbus packet from ring buffer after read_index
377 *
378 * If ring buffer is empty, returns NULL and no other action needed.
379 */
380struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
381{
382	struct hv_ring_buffer_info *rbi = &channel->inbound;
383	struct vmpacket_descriptor *desc;
384
385	if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
386		return NULL;
387
388	desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index;
389	if (desc)
390		prefetch((char *)desc + (desc->len8 << 3));
391
392	return desc;
393}
394EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
395
396/*
397 * Get next vmbus packet from ring buffer.
398 *
399 * Advances the current location (priv_read_index) and checks for more
400 * data. If the end of the ring buffer is reached, then return NULL.
401 */
402struct vmpacket_descriptor *
403__hv_pkt_iter_next(struct vmbus_channel *channel,
404		   const struct vmpacket_descriptor *desc)
405{
406	struct hv_ring_buffer_info *rbi = &channel->inbound;
407	u32 packetlen = desc->len8 << 3;
408	u32 dsize = rbi->ring_datasize;
409
410	/* bump offset to next potential packet */
411	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
412	if (rbi->priv_read_index >= dsize)
413		rbi->priv_read_index -= dsize;
414
415	/* more data? */
416	return hv_pkt_iter_first(channel);
417}
418EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
419
420/* How many bytes were read in this iterator cycle */
421static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
422					u32 start_read_index)
423{
424	if (rbi->priv_read_index >= start_read_index)
425		return rbi->priv_read_index - start_read_index;
426	else
427		return rbi->ring_datasize - start_read_index +
428			rbi->priv_read_index;
429}
430
431/*
432 * Update host ring buffer after iterating over packets.
433 */
434void hv_pkt_iter_close(struct vmbus_channel *channel)
435{
436	struct hv_ring_buffer_info *rbi = &channel->inbound;
437	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
438
439	/*
440	 * Make sure all reads are done before we update the read index since
441	 * the writer may start writing to the read area once the read index
442	 * is updated.
443	 */
444	virt_rmb();
445	start_read_index = rbi->ring_buffer->read_index;
446	rbi->ring_buffer->read_index = rbi->priv_read_index;
447
448	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
449		return;
450
451	/*
452	 * Issue a full memory barrier before making the signaling decision.
453	 * Here is the reason for having this barrier:
454	 * If the reading of the pend_sz (in this function)
455	 * were to be reordered and read before we commit the new read
456	 * index (in the calling function)  we could
457	 * have a problem. If the host were to set the pending_sz after we
458	 * have sampled pending_sz and go to sleep before we commit the
459	 * read index, we could miss sending the interrupt. Issue a full
460	 * memory barrier to address this.
461	 */
462	virt_mb();
463
464	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
465	if (!pending_sz)
466		return;
467
468	/*
469	 * Ensure the read of write_index in hv_get_bytes_to_write()
470	 * happens after the read of pending_send_sz.
471	 */
472	virt_rmb();
473	curr_write_sz = hv_get_bytes_to_write(rbi);
474	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
475
476	/*
477	 * If there was space before we began iteration,
478	 * then host was not blocked.
479	 */
480
481	if (curr_write_sz - bytes_read > pending_sz)
482		return;
483
484	/* If pending write will not fit, don't give false hope. */
485	if (curr_write_sz <= pending_sz)
486		return;
487
488	vmbus_setevent(channel);
489}
490EXPORT_SYMBOL_GPL(hv_pkt_iter_close);