Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/of.h>
  19#include <linux/rbtree.h>
  20#include <linux/sched.h>
  21#include <linux/delay.h>
  22#include <linux/log2.h>
 
 
  23
  24#define CREATE_TRACE_POINTS
  25#include "trace.h"
  26
  27#include "internal.h"
  28
  29/*
  30 * Sometimes for failures during very early init the trace
  31 * infrastructure isn't available early enough to be used.  For this
  32 * sort of problem defining LOG_DEVICE will add printks for basic
  33 * register I/O on a specific device.
  34 */
  35#undef LOG_DEVICE
  36
 
 
 
 
 
 
 
 
 
 
  37static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  38			       unsigned int mask, unsigned int val,
  39			       bool *change, bool force_write);
  40
  41static int _regmap_bus_reg_read(void *context, unsigned int reg,
  42				unsigned int *val);
  43static int _regmap_bus_read(void *context, unsigned int reg,
  44			    unsigned int *val);
  45static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  46				       unsigned int val);
  47static int _regmap_bus_reg_write(void *context, unsigned int reg,
  48				 unsigned int val);
  49static int _regmap_bus_raw_write(void *context, unsigned int reg,
  50				 unsigned int val);
  51
  52bool regmap_reg_in_ranges(unsigned int reg,
  53			  const struct regmap_range *ranges,
  54			  unsigned int nranges)
  55{
  56	const struct regmap_range *r;
  57	int i;
  58
  59	for (i = 0, r = ranges; i < nranges; i++, r++)
  60		if (regmap_reg_in_range(reg, r))
  61			return true;
  62	return false;
  63}
  64EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  65
  66bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  67			      const struct regmap_access_table *table)
  68{
  69	/* Check "no ranges" first */
  70	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  71		return false;
  72
  73	/* In case zero "yes ranges" are supplied, any reg is OK */
  74	if (!table->n_yes_ranges)
  75		return true;
  76
  77	return regmap_reg_in_ranges(reg, table->yes_ranges,
  78				    table->n_yes_ranges);
  79}
  80EXPORT_SYMBOL_GPL(regmap_check_range_table);
  81
  82bool regmap_writeable(struct regmap *map, unsigned int reg)
  83{
  84	if (map->max_register && reg > map->max_register)
  85		return false;
  86
  87	if (map->writeable_reg)
  88		return map->writeable_reg(map->dev, reg);
  89
  90	if (map->wr_table)
  91		return regmap_check_range_table(map, reg, map->wr_table);
  92
  93	return true;
  94}
  95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96bool regmap_readable(struct regmap *map, unsigned int reg)
  97{
  98	if (!map->reg_read)
  99		return false;
 100
 101	if (map->max_register && reg > map->max_register)
 102		return false;
 103
 104	if (map->format.format_write)
 105		return false;
 106
 107	if (map->readable_reg)
 108		return map->readable_reg(map->dev, reg);
 109
 110	if (map->rd_table)
 111		return regmap_check_range_table(map, reg, map->rd_table);
 112
 113	return true;
 114}
 115
 116bool regmap_volatile(struct regmap *map, unsigned int reg)
 117{
 118	if (!map->format.format_write && !regmap_readable(map, reg))
 119		return false;
 120
 121	if (map->volatile_reg)
 122		return map->volatile_reg(map->dev, reg);
 123
 124	if (map->volatile_table)
 125		return regmap_check_range_table(map, reg, map->volatile_table);
 126
 127	if (map->cache_ops)
 128		return false;
 129	else
 130		return true;
 131}
 132
 133bool regmap_precious(struct regmap *map, unsigned int reg)
 134{
 135	if (!regmap_readable(map, reg))
 136		return false;
 137
 138	if (map->precious_reg)
 139		return map->precious_reg(map->dev, reg);
 140
 141	if (map->precious_table)
 142		return regmap_check_range_table(map, reg, map->precious_table);
 143
 144	return false;
 145}
 146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 148	size_t num)
 149{
 150	unsigned int i;
 151
 152	for (i = 0; i < num; i++)
 153		if (!regmap_volatile(map, reg + i))
 154			return false;
 155
 156	return true;
 157}
 158
 
 
 
 
 
 
 
 
 
 
 
 
 159static void regmap_format_2_6_write(struct regmap *map,
 160				     unsigned int reg, unsigned int val)
 161{
 162	u8 *out = map->work_buf;
 163
 164	*out = (reg << 6) | val;
 165}
 166
 167static void regmap_format_4_12_write(struct regmap *map,
 168				     unsigned int reg, unsigned int val)
 169{
 170	__be16 *out = map->work_buf;
 171	*out = cpu_to_be16((reg << 12) | val);
 172}
 173
 174static void regmap_format_7_9_write(struct regmap *map,
 175				    unsigned int reg, unsigned int val)
 176{
 177	__be16 *out = map->work_buf;
 178	*out = cpu_to_be16((reg << 9) | val);
 179}
 180
 
 
 
 
 
 
 
 
 
 
 181static void regmap_format_10_14_write(struct regmap *map,
 182				    unsigned int reg, unsigned int val)
 183{
 184	u8 *out = map->work_buf;
 185
 186	out[2] = val;
 187	out[1] = (val >> 8) | (reg << 6);
 188	out[0] = reg >> 2;
 189}
 190
 191static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 192{
 193	u8 *b = buf;
 194
 195	b[0] = val << shift;
 196}
 197
 198static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 199{
 200	__be16 *b = buf;
 201
 202	b[0] = cpu_to_be16(val << shift);
 203}
 204
 205static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 206{
 207	__le16 *b = buf;
 208
 209	b[0] = cpu_to_le16(val << shift);
 210}
 211
 212static void regmap_format_16_native(void *buf, unsigned int val,
 213				    unsigned int shift)
 214{
 215	*(u16 *)buf = val << shift;
 
 
 216}
 217
 218static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 219{
 220	u8 *b = buf;
 221
 222	val <<= shift;
 223
 224	b[0] = val >> 16;
 225	b[1] = val >> 8;
 226	b[2] = val;
 227}
 228
 229static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 230{
 231	__be32 *b = buf;
 232
 233	b[0] = cpu_to_be32(val << shift);
 234}
 235
 236static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 237{
 238	__le32 *b = buf;
 239
 240	b[0] = cpu_to_le32(val << shift);
 241}
 242
 243static void regmap_format_32_native(void *buf, unsigned int val,
 244				    unsigned int shift)
 245{
 246	*(u32 *)buf = val << shift;
 247}
 248
 249#ifdef CONFIG_64BIT
 250static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 251{
 252	__be64 *b = buf;
 253
 254	b[0] = cpu_to_be64((u64)val << shift);
 255}
 256
 257static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 258{
 259	__le64 *b = buf;
 260
 261	b[0] = cpu_to_le64((u64)val << shift);
 262}
 263
 264static void regmap_format_64_native(void *buf, unsigned int val,
 265				    unsigned int shift)
 266{
 267	*(u64 *)buf = (u64)val << shift;
 268}
 269#endif
 270
 271static void regmap_parse_inplace_noop(void *buf)
 272{
 273}
 274
 275static unsigned int regmap_parse_8(const void *buf)
 276{
 277	const u8 *b = buf;
 278
 279	return b[0];
 280}
 281
 282static unsigned int regmap_parse_16_be(const void *buf)
 283{
 284	const __be16 *b = buf;
 285
 286	return be16_to_cpu(b[0]);
 287}
 288
 289static unsigned int regmap_parse_16_le(const void *buf)
 290{
 291	const __le16 *b = buf;
 292
 293	return le16_to_cpu(b[0]);
 294}
 295
 296static void regmap_parse_16_be_inplace(void *buf)
 297{
 298	__be16 *b = buf;
 299
 300	b[0] = be16_to_cpu(b[0]);
 301}
 302
 303static void regmap_parse_16_le_inplace(void *buf)
 304{
 305	__le16 *b = buf;
 306
 307	b[0] = le16_to_cpu(b[0]);
 308}
 309
 310static unsigned int regmap_parse_16_native(const void *buf)
 311{
 312	return *(u16 *)buf;
 
 
 
 313}
 314
 315static unsigned int regmap_parse_24(const void *buf)
 316{
 317	const u8 *b = buf;
 318	unsigned int ret = b[2];
 319	ret |= ((unsigned int)b[1]) << 8;
 320	ret |= ((unsigned int)b[0]) << 16;
 321
 322	return ret;
 323}
 324
 325static unsigned int regmap_parse_32_be(const void *buf)
 326{
 327	const __be32 *b = buf;
 328
 329	return be32_to_cpu(b[0]);
 330}
 331
 332static unsigned int regmap_parse_32_le(const void *buf)
 333{
 334	const __le32 *b = buf;
 335
 336	return le32_to_cpu(b[0]);
 337}
 338
 339static void regmap_parse_32_be_inplace(void *buf)
 340{
 341	__be32 *b = buf;
 342
 343	b[0] = be32_to_cpu(b[0]);
 344}
 345
 346static void regmap_parse_32_le_inplace(void *buf)
 347{
 348	__le32 *b = buf;
 349
 350	b[0] = le32_to_cpu(b[0]);
 351}
 352
 353static unsigned int regmap_parse_32_native(const void *buf)
 354{
 355	return *(u32 *)buf;
 
 
 
 356}
 357
 358#ifdef CONFIG_64BIT
 359static unsigned int regmap_parse_64_be(const void *buf)
 360{
 361	const __be64 *b = buf;
 362
 363	return be64_to_cpu(b[0]);
 364}
 365
 366static unsigned int regmap_parse_64_le(const void *buf)
 367{
 368	const __le64 *b = buf;
 369
 370	return le64_to_cpu(b[0]);
 371}
 372
 373static void regmap_parse_64_be_inplace(void *buf)
 374{
 375	__be64 *b = buf;
 376
 377	b[0] = be64_to_cpu(b[0]);
 
 378}
 379
 380static void regmap_parse_64_le_inplace(void *buf)
 381{
 382	__le64 *b = buf;
 383
 384	b[0] = le64_to_cpu(b[0]);
 385}
 386
 387static unsigned int regmap_parse_64_native(const void *buf)
 388{
 389	return *(u64 *)buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390}
 391#endif
 392
 393static void regmap_lock_mutex(void *__map)
 394{
 395	struct regmap *map = __map;
 396	mutex_lock(&map->mutex);
 397}
 398
 399static void regmap_unlock_mutex(void *__map)
 400{
 401	struct regmap *map = __map;
 402	mutex_unlock(&map->mutex);
 403}
 404
 405static void regmap_lock_spinlock(void *__map)
 406__acquires(&map->spinlock)
 407{
 408	struct regmap *map = __map;
 409	unsigned long flags;
 410
 411	spin_lock_irqsave(&map->spinlock, flags);
 412	map->spinlock_flags = flags;
 413}
 414
 415static void regmap_unlock_spinlock(void *__map)
 416__releases(&map->spinlock)
 417{
 418	struct regmap *map = __map;
 419	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 420}
 421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422static void dev_get_regmap_release(struct device *dev, void *res)
 423{
 424	/*
 425	 * We don't actually have anything to do here; the goal here
 426	 * is not to manage the regmap but to provide a simple way to
 427	 * get the regmap back given a struct device.
 428	 */
 429}
 430
 431static bool _regmap_range_add(struct regmap *map,
 432			      struct regmap_range_node *data)
 433{
 434	struct rb_root *root = &map->range_tree;
 435	struct rb_node **new = &(root->rb_node), *parent = NULL;
 436
 437	while (*new) {
 438		struct regmap_range_node *this =
 439			container_of(*new, struct regmap_range_node, node);
 440
 441		parent = *new;
 442		if (data->range_max < this->range_min)
 443			new = &((*new)->rb_left);
 444		else if (data->range_min > this->range_max)
 445			new = &((*new)->rb_right);
 446		else
 447			return false;
 448	}
 449
 450	rb_link_node(&data->node, parent, new);
 451	rb_insert_color(&data->node, root);
 452
 453	return true;
 454}
 455
 456static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 457						      unsigned int reg)
 458{
 459	struct rb_node *node = map->range_tree.rb_node;
 460
 461	while (node) {
 462		struct regmap_range_node *this =
 463			container_of(node, struct regmap_range_node, node);
 464
 465		if (reg < this->range_min)
 466			node = node->rb_left;
 467		else if (reg > this->range_max)
 468			node = node->rb_right;
 469		else
 470			return this;
 471	}
 472
 473	return NULL;
 474}
 475
 476static void regmap_range_exit(struct regmap *map)
 477{
 478	struct rb_node *next;
 479	struct regmap_range_node *range_node;
 480
 481	next = rb_first(&map->range_tree);
 482	while (next) {
 483		range_node = rb_entry(next, struct regmap_range_node, node);
 484		next = rb_next(&range_node->node);
 485		rb_erase(&range_node->node, &map->range_tree);
 486		kfree(range_node);
 487	}
 488
 489	kfree(map->selector_work_buf);
 490}
 491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492int regmap_attach_dev(struct device *dev, struct regmap *map,
 493		      const struct regmap_config *config)
 494{
 495	struct regmap **m;
 
 496
 497	map->dev = dev;
 498
 499	regmap_debugfs_init(map, config->name);
 
 
 
 
 
 500
 501	/* Add a devres resource for dev_get_regmap() */
 502	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 503	if (!m) {
 504		regmap_debugfs_exit(map);
 505		return -ENOMEM;
 506	}
 507	*m = map;
 508	devres_add(dev, m);
 509
 510	return 0;
 511}
 512EXPORT_SYMBOL_GPL(regmap_attach_dev);
 513
 
 
 
 
 
 
 
 
 
 
 
 514static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 515					const struct regmap_config *config)
 516{
 517	enum regmap_endian endian;
 518
 519	/* Retrieve the endianness specification from the regmap config */
 520	endian = config->reg_format_endian;
 521
 522	/* If the regmap config specified a non-default value, use that */
 523	if (endian != REGMAP_ENDIAN_DEFAULT)
 524		return endian;
 525
 526	/* Retrieve the endianness specification from the bus config */
 527	if (bus && bus->reg_format_endian_default)
 528		endian = bus->reg_format_endian_default;
 529
 530	/* If the bus specified a non-default value, use that */
 531	if (endian != REGMAP_ENDIAN_DEFAULT)
 532		return endian;
 533
 534	/* Use this if no other value was found */
 535	return REGMAP_ENDIAN_BIG;
 536}
 537
 538enum regmap_endian regmap_get_val_endian(struct device *dev,
 539					 const struct regmap_bus *bus,
 540					 const struct regmap_config *config)
 541{
 542	struct device_node *np;
 543	enum regmap_endian endian;
 544
 545	/* Retrieve the endianness specification from the regmap config */
 546	endian = config->val_format_endian;
 547
 548	/* If the regmap config specified a non-default value, use that */
 549	if (endian != REGMAP_ENDIAN_DEFAULT)
 550		return endian;
 551
 552	/* If the dev and dev->of_node exist try to get endianness from DT */
 553	if (dev && dev->of_node) {
 554		np = dev->of_node;
 555
 556		/* Parse the device's DT node for an endianness specification */
 557		if (of_property_read_bool(np, "big-endian"))
 558			endian = REGMAP_ENDIAN_BIG;
 559		else if (of_property_read_bool(np, "little-endian"))
 560			endian = REGMAP_ENDIAN_LITTLE;
 561		else if (of_property_read_bool(np, "native-endian"))
 562			endian = REGMAP_ENDIAN_NATIVE;
 563
 564		/* If the endianness was specified in DT, use that */
 565		if (endian != REGMAP_ENDIAN_DEFAULT)
 566			return endian;
 567	}
 568
 569	/* Retrieve the endianness specification from the bus config */
 570	if (bus && bus->val_format_endian_default)
 571		endian = bus->val_format_endian_default;
 572
 573	/* If the bus specified a non-default value, use that */
 574	if (endian != REGMAP_ENDIAN_DEFAULT)
 575		return endian;
 576
 577	/* Use this if no other value was found */
 578	return REGMAP_ENDIAN_BIG;
 579}
 580EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 581
 582struct regmap *__regmap_init(struct device *dev,
 583			     const struct regmap_bus *bus,
 584			     void *bus_context,
 585			     const struct regmap_config *config,
 586			     struct lock_class_key *lock_key,
 587			     const char *lock_name)
 588{
 589	struct regmap *map;
 590	int ret = -EINVAL;
 591	enum regmap_endian reg_endian, val_endian;
 592	int i, j;
 593
 594	if (!config)
 595		goto err;
 596
 597	map = kzalloc(sizeof(*map), GFP_KERNEL);
 598	if (map == NULL) {
 599		ret = -ENOMEM;
 600		goto err;
 601	}
 602
 603	if (config->lock && config->unlock) {
 
 
 
 
 
 
 
 
 
 
 604		map->lock = config->lock;
 605		map->unlock = config->unlock;
 606		map->lock_arg = config->lock_arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607	} else {
 608		if ((bus && bus->fast_io) ||
 609		    config->fast_io) {
 610			spin_lock_init(&map->spinlock);
 611			map->lock = regmap_lock_spinlock;
 612			map->unlock = regmap_unlock_spinlock;
 613			lockdep_set_class_and_name(&map->spinlock,
 614						   lock_key, lock_name);
 
 
 
 
 
 
 
 
 615		} else {
 616			mutex_init(&map->mutex);
 617			map->lock = regmap_lock_mutex;
 618			map->unlock = regmap_unlock_mutex;
 
 619			lockdep_set_class_and_name(&map->mutex,
 620						   lock_key, lock_name);
 621		}
 622		map->lock_arg = map;
 
 623	}
 624
 625	/*
 626	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 627	 * scratch buffers with sleeping allocations.
 628	 */
 629	if ((bus && bus->fast_io) || config->fast_io)
 630		map->alloc_flags = GFP_ATOMIC;
 631	else
 632		map->alloc_flags = GFP_KERNEL;
 633
 
 
 634	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 635	map->format.pad_bytes = config->pad_bits / 8;
 
 636	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 637	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 638			config->val_bits + config->pad_bits, 8);
 639	map->reg_shift = config->pad_bits % 8;
 640	if (config->reg_stride)
 641		map->reg_stride = config->reg_stride;
 642	else
 643		map->reg_stride = 1;
 644	if (is_power_of_2(map->reg_stride))
 645		map->reg_stride_order = ilog2(map->reg_stride);
 646	else
 647		map->reg_stride_order = -1;
 648	map->use_single_read = config->use_single_rw || !bus || !bus->read;
 649	map->use_single_write = config->use_single_rw || !bus || !bus->write;
 650	map->can_multi_write = config->can_multi_write && bus && bus->write;
 651	if (bus) {
 652		map->max_raw_read = bus->max_raw_read;
 653		map->max_raw_write = bus->max_raw_write;
 
 
 
 654	}
 655	map->dev = dev;
 656	map->bus = bus;
 657	map->bus_context = bus_context;
 658	map->max_register = config->max_register;
 
 659	map->wr_table = config->wr_table;
 660	map->rd_table = config->rd_table;
 661	map->volatile_table = config->volatile_table;
 662	map->precious_table = config->precious_table;
 
 
 663	map->writeable_reg = config->writeable_reg;
 664	map->readable_reg = config->readable_reg;
 665	map->volatile_reg = config->volatile_reg;
 666	map->precious_reg = config->precious_reg;
 
 
 667	map->cache_type = config->cache_type;
 668	map->name = config->name;
 669
 670	spin_lock_init(&map->async_lock);
 671	INIT_LIST_HEAD(&map->async_list);
 672	INIT_LIST_HEAD(&map->async_free);
 673	init_waitqueue_head(&map->async_waitq);
 674
 675	if (config->read_flag_mask || config->write_flag_mask) {
 
 
 676		map->read_flag_mask = config->read_flag_mask;
 677		map->write_flag_mask = config->write_flag_mask;
 678	} else if (bus) {
 679		map->read_flag_mask = bus->read_flag_mask;
 680	}
 681
 682	if (!bus) {
 
 
 
 
 
 
 
 
 
 
 
 683		map->reg_read  = config->reg_read;
 684		map->reg_write = config->reg_write;
 
 685
 686		map->defer_caching = false;
 687		goto skip_format_initialization;
 688	} else if (!bus->read || !bus->write) {
 689		map->reg_read = _regmap_bus_reg_read;
 690		map->reg_write = _regmap_bus_reg_write;
 
 691
 692		map->defer_caching = false;
 693		goto skip_format_initialization;
 694	} else {
 695		map->reg_read  = _regmap_bus_read;
 696		map->reg_update_bits = bus->reg_update_bits;
 697	}
 
 
 698
 699	reg_endian = regmap_get_reg_endian(bus, config);
 700	val_endian = regmap_get_val_endian(dev, bus, config);
 
 701
 702	switch (config->reg_bits + map->reg_shift) {
 703	case 2:
 704		switch (config->val_bits) {
 705		case 6:
 706			map->format.format_write = regmap_format_2_6_write;
 707			break;
 708		default:
 709			goto err_map;
 710		}
 711		break;
 712
 713	case 4:
 714		switch (config->val_bits) {
 715		case 12:
 716			map->format.format_write = regmap_format_4_12_write;
 717			break;
 718		default:
 719			goto err_map;
 720		}
 721		break;
 722
 723	case 7:
 724		switch (config->val_bits) {
 725		case 9:
 726			map->format.format_write = regmap_format_7_9_write;
 727			break;
 
 
 
 728		default:
 729			goto err_map;
 730		}
 731		break;
 732
 733	case 10:
 734		switch (config->val_bits) {
 735		case 14:
 736			map->format.format_write = regmap_format_10_14_write;
 737			break;
 738		default:
 739			goto err_map;
 
 
 
 
 
 
 
 
 
 
 740		}
 741		break;
 742
 743	case 8:
 744		map->format.format_reg = regmap_format_8;
 745		break;
 746
 747	case 16:
 748		switch (reg_endian) {
 749		case REGMAP_ENDIAN_BIG:
 750			map->format.format_reg = regmap_format_16_be;
 751			break;
 
 
 
 752		case REGMAP_ENDIAN_NATIVE:
 753			map->format.format_reg = regmap_format_16_native;
 754			break;
 755		default:
 756			goto err_map;
 757		}
 758		break;
 759
 760	case 24:
 761		if (reg_endian != REGMAP_ENDIAN_BIG)
 762			goto err_map;
 763		map->format.format_reg = regmap_format_24;
 764		break;
 765
 766	case 32:
 767		switch (reg_endian) {
 768		case REGMAP_ENDIAN_BIG:
 769			map->format.format_reg = regmap_format_32_be;
 770			break;
 771		case REGMAP_ENDIAN_NATIVE:
 772			map->format.format_reg = regmap_format_32_native;
 773			break;
 774		default:
 775			goto err_map;
 776		}
 777		break;
 778
 779#ifdef CONFIG_64BIT
 780	case 64:
 781		switch (reg_endian) {
 782		case REGMAP_ENDIAN_BIG:
 783			map->format.format_reg = regmap_format_64_be;
 
 
 
 784			break;
 785		case REGMAP_ENDIAN_NATIVE:
 786			map->format.format_reg = regmap_format_64_native;
 787			break;
 788		default:
 789			goto err_map;
 790		}
 791		break;
 792#endif
 793
 794	default:
 795		goto err_map;
 796	}
 797
 798	if (val_endian == REGMAP_ENDIAN_NATIVE)
 799		map->format.parse_inplace = regmap_parse_inplace_noop;
 800
 801	switch (config->val_bits) {
 802	case 8:
 803		map->format.format_val = regmap_format_8;
 804		map->format.parse_val = regmap_parse_8;
 805		map->format.parse_inplace = regmap_parse_inplace_noop;
 806		break;
 807	case 16:
 808		switch (val_endian) {
 809		case REGMAP_ENDIAN_BIG:
 810			map->format.format_val = regmap_format_16_be;
 811			map->format.parse_val = regmap_parse_16_be;
 812			map->format.parse_inplace = regmap_parse_16_be_inplace;
 813			break;
 814		case REGMAP_ENDIAN_LITTLE:
 815			map->format.format_val = regmap_format_16_le;
 816			map->format.parse_val = regmap_parse_16_le;
 817			map->format.parse_inplace = regmap_parse_16_le_inplace;
 818			break;
 819		case REGMAP_ENDIAN_NATIVE:
 820			map->format.format_val = regmap_format_16_native;
 821			map->format.parse_val = regmap_parse_16_native;
 822			break;
 823		default:
 824			goto err_map;
 825		}
 826		break;
 827	case 24:
 828		if (val_endian != REGMAP_ENDIAN_BIG)
 829			goto err_map;
 830		map->format.format_val = regmap_format_24;
 831		map->format.parse_val = regmap_parse_24;
 
 
 
 
 832		break;
 833	case 32:
 834		switch (val_endian) {
 835		case REGMAP_ENDIAN_BIG:
 836			map->format.format_val = regmap_format_32_be;
 837			map->format.parse_val = regmap_parse_32_be;
 838			map->format.parse_inplace = regmap_parse_32_be_inplace;
 839			break;
 840		case REGMAP_ENDIAN_LITTLE:
 841			map->format.format_val = regmap_format_32_le;
 842			map->format.parse_val = regmap_parse_32_le;
 843			map->format.parse_inplace = regmap_parse_32_le_inplace;
 844			break;
 845		case REGMAP_ENDIAN_NATIVE:
 846			map->format.format_val = regmap_format_32_native;
 847			map->format.parse_val = regmap_parse_32_native;
 848			break;
 849		default:
 850			goto err_map;
 851		}
 852		break;
 853#ifdef CONFIG_64BIT
 854	case 64:
 855		switch (val_endian) {
 856		case REGMAP_ENDIAN_BIG:
 857			map->format.format_val = regmap_format_64_be;
 858			map->format.parse_val = regmap_parse_64_be;
 859			map->format.parse_inplace = regmap_parse_64_be_inplace;
 860			break;
 861		case REGMAP_ENDIAN_LITTLE:
 862			map->format.format_val = regmap_format_64_le;
 863			map->format.parse_val = regmap_parse_64_le;
 864			map->format.parse_inplace = regmap_parse_64_le_inplace;
 865			break;
 866		case REGMAP_ENDIAN_NATIVE:
 867			map->format.format_val = regmap_format_64_native;
 868			map->format.parse_val = regmap_parse_64_native;
 869			break;
 870		default:
 871			goto err_map;
 872		}
 873		break;
 874#endif
 875	}
 876
 877	if (map->format.format_write) {
 878		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 879		    (val_endian != REGMAP_ENDIAN_BIG))
 880			goto err_map;
 881		map->use_single_write = true;
 882	}
 883
 884	if (!map->format.format_write &&
 885	    !(map->format.format_reg && map->format.format_val))
 886		goto err_map;
 887
 888	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 889	if (map->work_buf == NULL) {
 890		ret = -ENOMEM;
 891		goto err_map;
 892	}
 893
 894	if (map->format.format_write) {
 895		map->defer_caching = false;
 896		map->reg_write = _regmap_bus_formatted_write;
 897	} else if (map->format.format_val) {
 898		map->defer_caching = true;
 899		map->reg_write = _regmap_bus_raw_write;
 900	}
 901
 902skip_format_initialization:
 903
 904	map->range_tree = RB_ROOT;
 905	for (i = 0; i < config->num_ranges; i++) {
 906		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 907		struct regmap_range_node *new;
 908
 909		/* Sanity check */
 910		if (range_cfg->range_max < range_cfg->range_min) {
 911			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 912				range_cfg->range_max, range_cfg->range_min);
 913			goto err_range;
 914		}
 915
 916		if (range_cfg->range_max > map->max_register) {
 917			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 918				range_cfg->range_max, map->max_register);
 919			goto err_range;
 920		}
 921
 922		if (range_cfg->selector_reg > map->max_register) {
 923			dev_err(map->dev,
 924				"Invalid range %d: selector out of map\n", i);
 925			goto err_range;
 926		}
 927
 928		if (range_cfg->window_len == 0) {
 929			dev_err(map->dev, "Invalid range %d: window_len 0\n",
 930				i);
 931			goto err_range;
 932		}
 933
 934		/* Make sure, that this register range has no selector
 935		   or data window within its boundary */
 936		for (j = 0; j < config->num_ranges; j++) {
 937			unsigned sel_reg = config->ranges[j].selector_reg;
 938			unsigned win_min = config->ranges[j].window_start;
 939			unsigned win_max = win_min +
 940					   config->ranges[j].window_len - 1;
 941
 942			/* Allow data window inside its own virtual range */
 943			if (j == i)
 944				continue;
 945
 946			if (range_cfg->range_min <= sel_reg &&
 947			    sel_reg <= range_cfg->range_max) {
 948				dev_err(map->dev,
 949					"Range %d: selector for %d in window\n",
 950					i, j);
 951				goto err_range;
 952			}
 953
 954			if (!(win_max < range_cfg->range_min ||
 955			      win_min > range_cfg->range_max)) {
 956				dev_err(map->dev,
 957					"Range %d: window for %d in window\n",
 958					i, j);
 959				goto err_range;
 960			}
 961		}
 962
 963		new = kzalloc(sizeof(*new), GFP_KERNEL);
 964		if (new == NULL) {
 965			ret = -ENOMEM;
 966			goto err_range;
 967		}
 968
 969		new->map = map;
 970		new->name = range_cfg->name;
 971		new->range_min = range_cfg->range_min;
 972		new->range_max = range_cfg->range_max;
 973		new->selector_reg = range_cfg->selector_reg;
 974		new->selector_mask = range_cfg->selector_mask;
 975		new->selector_shift = range_cfg->selector_shift;
 976		new->window_start = range_cfg->window_start;
 977		new->window_len = range_cfg->window_len;
 978
 979		if (!_regmap_range_add(map, new)) {
 980			dev_err(map->dev, "Failed to add range %d\n", i);
 981			kfree(new);
 982			goto err_range;
 983		}
 984
 985		if (map->selector_work_buf == NULL) {
 986			map->selector_work_buf =
 987				kzalloc(map->format.buf_size, GFP_KERNEL);
 988			if (map->selector_work_buf == NULL) {
 989				ret = -ENOMEM;
 990				goto err_range;
 991			}
 992		}
 993	}
 994
 995	ret = regcache_init(map, config);
 996	if (ret != 0)
 997		goto err_range;
 998
 999	if (dev) {
1000		ret = regmap_attach_dev(dev, map, config);
1001		if (ret != 0)
1002			goto err_regcache;
 
 
1003	}
1004
1005	return map;
1006
1007err_regcache:
1008	regcache_exit(map);
1009err_range:
1010	regmap_range_exit(map);
1011	kfree(map->work_buf);
 
 
 
 
 
1012err_map:
1013	kfree(map);
1014err:
1015	return ERR_PTR(ret);
1016}
1017EXPORT_SYMBOL_GPL(__regmap_init);
1018
1019static void devm_regmap_release(struct device *dev, void *res)
1020{
1021	regmap_exit(*(struct regmap **)res);
1022}
1023
1024struct regmap *__devm_regmap_init(struct device *dev,
1025				  const struct regmap_bus *bus,
1026				  void *bus_context,
1027				  const struct regmap_config *config,
1028				  struct lock_class_key *lock_key,
1029				  const char *lock_name)
1030{
1031	struct regmap **ptr, *regmap;
1032
1033	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1034	if (!ptr)
1035		return ERR_PTR(-ENOMEM);
1036
1037	regmap = __regmap_init(dev, bus, bus_context, config,
1038			       lock_key, lock_name);
1039	if (!IS_ERR(regmap)) {
1040		*ptr = regmap;
1041		devres_add(dev, ptr);
1042	} else {
1043		devres_free(ptr);
1044	}
1045
1046	return regmap;
1047}
1048EXPORT_SYMBOL_GPL(__devm_regmap_init);
1049
1050static void regmap_field_init(struct regmap_field *rm_field,
1051	struct regmap *regmap, struct reg_field reg_field)
1052{
1053	rm_field->regmap = regmap;
1054	rm_field->reg = reg_field.reg;
1055	rm_field->shift = reg_field.lsb;
1056	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
 
 
 
1057	rm_field->id_size = reg_field.id_size;
1058	rm_field->id_offset = reg_field.id_offset;
1059}
1060
1061/**
1062 * devm_regmap_field_alloc(): Allocate and initialise a register field
1063 * in a register map.
1064 *
1065 * @dev: Device that will be interacted with
1066 * @regmap: regmap bank in which this register field is located.
1067 * @reg_field: Register field with in the bank.
1068 *
1069 * The return value will be an ERR_PTR() on error or a valid pointer
1070 * to a struct regmap_field. The regmap_field will be automatically freed
1071 * by the device management code.
1072 */
1073struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1074		struct regmap *regmap, struct reg_field reg_field)
1075{
1076	struct regmap_field *rm_field = devm_kzalloc(dev,
1077					sizeof(*rm_field), GFP_KERNEL);
1078	if (!rm_field)
1079		return ERR_PTR(-ENOMEM);
1080
1081	regmap_field_init(rm_field, regmap, reg_field);
1082
1083	return rm_field;
1084
1085}
1086EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088/**
1089 * devm_regmap_field_free(): Free register field allocated using
1090 * devm_regmap_field_alloc. Usally drivers need not call this function,
1091 * as the memory allocated via devm will be freed as per device-driver
1092 * life-cyle.
1093 *
1094 * @dev: Device that will be interacted with
1095 * @field: regmap field which should be freed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096 */
1097void devm_regmap_field_free(struct device *dev,
1098	struct regmap_field *field)
1099{
1100	devm_kfree(dev, field);
1101}
1102EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1103
1104/**
1105 * regmap_field_alloc(): Allocate and initialise a register field
1106 * in a register map.
1107 *
1108 * @regmap: regmap bank in which this register field is located.
1109 * @reg_field: Register field with in the bank.
1110 *
1111 * The return value will be an ERR_PTR() on error or a valid pointer
1112 * to a struct regmap_field. The regmap_field should be freed by the
1113 * user once its finished working with it using regmap_field_free().
1114 */
1115struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1116		struct reg_field reg_field)
1117{
1118	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1119
1120	if (!rm_field)
1121		return ERR_PTR(-ENOMEM);
1122
1123	regmap_field_init(rm_field, regmap, reg_field);
1124
1125	return rm_field;
1126}
1127EXPORT_SYMBOL_GPL(regmap_field_alloc);
1128
1129/**
1130 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 
1131 *
1132 * @field: regmap field which should be freed.
1133 */
1134void regmap_field_free(struct regmap_field *field)
1135{
1136	kfree(field);
1137}
1138EXPORT_SYMBOL_GPL(regmap_field_free);
1139
1140/**
1141 * regmap_reinit_cache(): Reinitialise the current register cache
1142 *
1143 * @map: Register map to operate on.
1144 * @config: New configuration.  Only the cache data will be used.
1145 *
1146 * Discard any existing register cache for the map and initialize a
1147 * new cache.  This can be used to restore the cache to defaults or to
1148 * update the cache configuration to reflect runtime discovery of the
1149 * hardware.
1150 *
1151 * No explicit locking is done here, the user needs to ensure that
1152 * this function will not race with other calls to regmap.
1153 */
1154int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1155{
 
 
1156	regcache_exit(map);
1157	regmap_debugfs_exit(map);
1158
1159	map->max_register = config->max_register;
 
1160	map->writeable_reg = config->writeable_reg;
1161	map->readable_reg = config->readable_reg;
1162	map->volatile_reg = config->volatile_reg;
1163	map->precious_reg = config->precious_reg;
 
 
1164	map->cache_type = config->cache_type;
1165
1166	regmap_debugfs_init(map, config->name);
 
 
 
 
1167
1168	map->cache_bypass = false;
1169	map->cache_only = false;
1170
1171	return regcache_init(map, config);
1172}
1173EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1174
1175/**
1176 * regmap_exit(): Free a previously allocated register map
 
 
1177 */
1178void regmap_exit(struct regmap *map)
1179{
1180	struct regmap_async *async;
1181
 
1182	regcache_exit(map);
 
1183	regmap_debugfs_exit(map);
1184	regmap_range_exit(map);
1185	if (map->bus && map->bus->free_context)
1186		map->bus->free_context(map->bus_context);
1187	kfree(map->work_buf);
1188	while (!list_empty(&map->async_free)) {
1189		async = list_first_entry_or_null(&map->async_free,
1190						 struct regmap_async,
1191						 list);
1192		list_del(&async->list);
1193		kfree(async->work_buf);
1194		kfree(async);
1195	}
 
 
 
 
 
 
 
 
1196	kfree(map);
1197}
1198EXPORT_SYMBOL_GPL(regmap_exit);
1199
1200static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1201{
1202	struct regmap **r = res;
1203	if (!r || !*r) {
1204		WARN_ON(!r || !*r);
1205		return 0;
1206	}
1207
1208	/* If the user didn't specify a name match any */
1209	if (data)
1210		return (*r)->name == data;
1211	else
1212		return 1;
1213}
1214
1215/**
1216 * dev_get_regmap(): Obtain the regmap (if any) for a device
1217 *
1218 * @dev: Device to retrieve the map for
1219 * @name: Optional name for the register map, usually NULL.
1220 *
1221 * Returns the regmap for the device if one is present, or NULL.  If
1222 * name is specified then it must match the name specified when
1223 * registering the device, if it is NULL then the first regmap found
1224 * will be used.  Devices with multiple register maps are very rare,
1225 * generic code should normally not need to specify a name.
1226 */
1227struct regmap *dev_get_regmap(struct device *dev, const char *name)
1228{
1229	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1230					dev_get_regmap_match, (void *)name);
1231
1232	if (!r)
1233		return NULL;
1234	return *r;
1235}
1236EXPORT_SYMBOL_GPL(dev_get_regmap);
1237
1238/**
1239 * regmap_get_device(): Obtain the device from a regmap
1240 *
1241 * @map: Register map to operate on.
1242 *
1243 * Returns the underlying device that the regmap has been created for.
1244 */
1245struct device *regmap_get_device(struct regmap *map)
1246{
1247	return map->dev;
1248}
1249EXPORT_SYMBOL_GPL(regmap_get_device);
1250
1251static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1252			       struct regmap_range_node *range,
1253			       unsigned int val_num)
1254{
1255	void *orig_work_buf;
1256	unsigned int win_offset;
1257	unsigned int win_page;
1258	bool page_chg;
1259	int ret;
1260
1261	win_offset = (*reg - range->range_min) % range->window_len;
1262	win_page = (*reg - range->range_min) / range->window_len;
1263
1264	if (val_num > 1) {
1265		/* Bulk write shouldn't cross range boundary */
1266		if (*reg + val_num - 1 > range->range_max)
1267			return -EINVAL;
1268
1269		/* ... or single page boundary */
1270		if (val_num > range->window_len - win_offset)
1271			return -EINVAL;
1272	}
1273
1274	/* It is possible to have selector register inside data window.
1275	   In that case, selector register is located on every page and
1276	   it needs no page switching, when accessed alone. */
1277	if (val_num > 1 ||
1278	    range->window_start + win_offset != range->selector_reg) {
1279		/* Use separate work_buf during page switching */
1280		orig_work_buf = map->work_buf;
1281		map->work_buf = map->selector_work_buf;
1282
1283		ret = _regmap_update_bits(map, range->selector_reg,
1284					  range->selector_mask,
1285					  win_page << range->selector_shift,
1286					  &page_chg, false);
1287
1288		map->work_buf = orig_work_buf;
1289
1290		if (ret != 0)
1291			return ret;
1292	}
1293
1294	*reg = range->window_start + win_offset;
1295
1296	return 0;
1297}
1298
1299int _regmap_raw_write(struct regmap *map, unsigned int reg,
1300		      const void *val, size_t val_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301{
1302	struct regmap_range_node *range;
1303	unsigned long flags;
1304	u8 *u8 = map->work_buf;
1305	void *work_val = map->work_buf + map->format.reg_bytes +
1306		map->format.pad_bytes;
1307	void *buf;
1308	int ret = -ENOTSUPP;
1309	size_t len;
1310	int i;
1311
1312	WARN_ON(!map->bus);
1313
1314	/* Check for unwritable registers before we start */
1315	if (map->writeable_reg)
1316		for (i = 0; i < val_len / map->format.val_bytes; i++)
1317			if (!map->writeable_reg(map->dev,
1318					       reg + regmap_get_offset(map, i)))
 
 
1319				return -EINVAL;
 
 
1320
1321	if (!map->cache_bypass && map->format.parse_val) {
1322		unsigned int ival;
1323		int val_bytes = map->format.val_bytes;
1324		for (i = 0; i < val_len / val_bytes; i++) {
1325			ival = map->format.parse_val(val + (i * val_bytes));
1326			ret = regcache_write(map,
1327					     reg + regmap_get_offset(map, i),
1328					     ival);
 
 
1329			if (ret) {
1330				dev_err(map->dev,
1331					"Error in caching of register: %x ret: %d\n",
1332					reg + i, ret);
1333				return ret;
1334			}
1335		}
1336		if (map->cache_only) {
1337			map->cache_dirty = true;
1338			return 0;
1339		}
1340	}
1341
1342	range = _regmap_range_lookup(map, reg);
1343	if (range) {
1344		int val_num = val_len / map->format.val_bytes;
1345		int win_offset = (reg - range->range_min) % range->window_len;
1346		int win_residue = range->window_len - win_offset;
1347
1348		/* If the write goes beyond the end of the window split it */
1349		while (val_num > win_residue) {
1350			dev_dbg(map->dev, "Writing window %d/%zu\n",
1351				win_residue, val_len / map->format.val_bytes);
1352			ret = _regmap_raw_write(map, reg, val, win_residue *
1353						map->format.val_bytes);
 
1354			if (ret != 0)
1355				return ret;
1356
1357			reg += win_residue;
1358			val_num -= win_residue;
1359			val += win_residue * map->format.val_bytes;
1360			val_len -= win_residue * map->format.val_bytes;
1361
1362			win_offset = (reg - range->range_min) %
1363				range->window_len;
1364			win_residue = range->window_len - win_offset;
1365		}
1366
1367		ret = _regmap_select_page(map, &reg, range, val_num);
1368		if (ret != 0)
1369			return ret;
1370	}
1371
 
1372	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1373
1374	u8[0] |= map->write_flag_mask;
1375
1376	/*
1377	 * Essentially all I/O mechanisms will be faster with a single
1378	 * buffer to write.  Since register syncs often generate raw
1379	 * writes of single registers optimise that case.
1380	 */
1381	if (val != work_val && val_len == map->format.val_bytes) {
1382		memcpy(work_val, val, map->format.val_bytes);
1383		val = work_val;
1384	}
1385
1386	if (map->async && map->bus->async_write) {
1387		struct regmap_async *async;
1388
1389		trace_regmap_async_write_start(map, reg, val_len);
1390
1391		spin_lock_irqsave(&map->async_lock, flags);
1392		async = list_first_entry_or_null(&map->async_free,
1393						 struct regmap_async,
1394						 list);
1395		if (async)
1396			list_del(&async->list);
1397		spin_unlock_irqrestore(&map->async_lock, flags);
1398
1399		if (!async) {
1400			async = map->bus->async_alloc();
1401			if (!async)
1402				return -ENOMEM;
1403
1404			async->work_buf = kzalloc(map->format.buf_size,
1405						  GFP_KERNEL | GFP_DMA);
1406			if (!async->work_buf) {
1407				kfree(async);
1408				return -ENOMEM;
1409			}
1410		}
1411
1412		async->map = map;
1413
1414		/* If the caller supplied the value we can use it safely. */
1415		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1416		       map->format.reg_bytes + map->format.val_bytes);
1417
1418		spin_lock_irqsave(&map->async_lock, flags);
1419		list_add_tail(&async->list, &map->async_list);
1420		spin_unlock_irqrestore(&map->async_lock, flags);
1421
1422		if (val != work_val)
1423			ret = map->bus->async_write(map->bus_context,
1424						    async->work_buf,
1425						    map->format.reg_bytes +
1426						    map->format.pad_bytes,
1427						    val, val_len, async);
1428		else
1429			ret = map->bus->async_write(map->bus_context,
1430						    async->work_buf,
1431						    map->format.reg_bytes +
1432						    map->format.pad_bytes +
1433						    val_len, NULL, 0, async);
1434
1435		if (ret != 0) {
1436			dev_err(map->dev, "Failed to schedule write: %d\n",
1437				ret);
1438
1439			spin_lock_irqsave(&map->async_lock, flags);
1440			list_move(&async->list, &map->async_free);
1441			spin_unlock_irqrestore(&map->async_lock, flags);
1442		}
1443
1444		return ret;
1445	}
1446
1447	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1448
1449	/* If we're doing a single register write we can probably just
1450	 * send the work_buf directly, otherwise try to do a gather
1451	 * write.
1452	 */
1453	if (val == work_val)
1454		ret = map->bus->write(map->bus_context, map->work_buf,
1455				      map->format.reg_bytes +
1456				      map->format.pad_bytes +
1457				      val_len);
1458	else if (map->bus->gather_write)
1459		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1460					     map->format.reg_bytes +
1461					     map->format.pad_bytes,
1462					     val, val_len);
 
 
1463
1464	/* If that didn't work fall back on linearising by hand. */
1465	if (ret == -ENOTSUPP) {
1466		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1467		buf = kzalloc(len, GFP_KERNEL);
1468		if (!buf)
1469			return -ENOMEM;
1470
1471		memcpy(buf, map->work_buf, map->format.reg_bytes);
1472		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1473		       val, val_len);
1474		ret = map->bus->write(map->bus_context, buf, len);
1475
1476		kfree(buf);
 
 
 
 
 
 
1477	}
1478
1479	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1480
1481	return ret;
1482}
1483
1484/**
1485 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1486 *
1487 * @map: Map to check.
1488 */
1489bool regmap_can_raw_write(struct regmap *map)
1490{
1491	return map->bus && map->bus->write && map->format.format_val &&
1492		map->format.format_reg;
1493}
1494EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1495
1496/**
1497 * regmap_get_raw_read_max - Get the maximum size we can read
1498 *
1499 * @map: Map to check.
1500 */
1501size_t regmap_get_raw_read_max(struct regmap *map)
1502{
1503	return map->max_raw_read;
1504}
1505EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1506
1507/**
1508 * regmap_get_raw_write_max - Get the maximum size we can read
1509 *
1510 * @map: Map to check.
1511 */
1512size_t regmap_get_raw_write_max(struct regmap *map)
1513{
1514	return map->max_raw_write;
1515}
1516EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1517
1518static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1519				       unsigned int val)
1520{
1521	int ret;
1522	struct regmap_range_node *range;
1523	struct regmap *map = context;
1524
1525	WARN_ON(!map->bus || !map->format.format_write);
1526
1527	range = _regmap_range_lookup(map, reg);
1528	if (range) {
1529		ret = _regmap_select_page(map, &reg, range, 1);
1530		if (ret != 0)
1531			return ret;
1532	}
1533
 
1534	map->format.format_write(map, reg, val);
1535
1536	trace_regmap_hw_write_start(map, reg, 1);
1537
1538	ret = map->bus->write(map->bus_context, map->work_buf,
1539			      map->format.buf_size);
1540
1541	trace_regmap_hw_write_done(map, reg, 1);
1542
1543	return ret;
1544}
1545
1546static int _regmap_bus_reg_write(void *context, unsigned int reg,
1547				 unsigned int val)
1548{
1549	struct regmap *map = context;
 
 
1550
 
 
 
 
 
 
 
 
1551	return map->bus->reg_write(map->bus_context, reg, val);
1552}
1553
1554static int _regmap_bus_raw_write(void *context, unsigned int reg,
1555				 unsigned int val)
1556{
1557	struct regmap *map = context;
1558
1559	WARN_ON(!map->bus || !map->format.format_val);
1560
1561	map->format.format_val(map->work_buf + map->format.reg_bytes
1562			       + map->format.pad_bytes, val, 0);
1563	return _regmap_raw_write(map, reg,
1564				 map->work_buf +
1565				 map->format.reg_bytes +
1566				 map->format.pad_bytes,
1567				 map->format.val_bytes);
 
1568}
1569
1570static inline void *_regmap_map_get_context(struct regmap *map)
1571{
1572	return (map->bus) ? map : map->bus_context;
1573}
1574
1575int _regmap_write(struct regmap *map, unsigned int reg,
1576		  unsigned int val)
1577{
1578	int ret;
1579	void *context = _regmap_map_get_context(map);
1580
1581	if (!regmap_writeable(map, reg))
1582		return -EIO;
1583
1584	if (!map->cache_bypass && !map->defer_caching) {
1585		ret = regcache_write(map, reg, val);
1586		if (ret != 0)
1587			return ret;
1588		if (map->cache_only) {
1589			map->cache_dirty = true;
1590			return 0;
1591		}
1592	}
1593
1594#ifdef LOG_DEVICE
1595	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1596		dev_info(map->dev, "%x <= %x\n", reg, val);
1597#endif
1598
1599	trace_regmap_reg_write(map, reg, val);
 
1600
1601	return map->reg_write(context, reg, val);
1602}
1603
1604/**
1605 * regmap_write(): Write a value to a single register
1606 *
1607 * @map: Register map to write to
1608 * @reg: Register to write to
1609 * @val: Value to be written
1610 *
1611 * A value of zero will be returned on success, a negative errno will
1612 * be returned in error cases.
1613 */
1614int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1615{
1616	int ret;
1617
1618	if (!IS_ALIGNED(reg, map->reg_stride))
1619		return -EINVAL;
1620
1621	map->lock(map->lock_arg);
1622
1623	ret = _regmap_write(map, reg, val);
1624
1625	map->unlock(map->lock_arg);
1626
1627	return ret;
1628}
1629EXPORT_SYMBOL_GPL(regmap_write);
1630
1631/**
1632 * regmap_write_async(): Write a value to a single register asynchronously
1633 *
1634 * @map: Register map to write to
1635 * @reg: Register to write to
1636 * @val: Value to be written
1637 *
1638 * A value of zero will be returned on success, a negative errno will
1639 * be returned in error cases.
1640 */
1641int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1642{
1643	int ret;
1644
1645	if (!IS_ALIGNED(reg, map->reg_stride))
1646		return -EINVAL;
1647
1648	map->lock(map->lock_arg);
1649
1650	map->async = true;
1651
1652	ret = _regmap_write(map, reg, val);
1653
1654	map->async = false;
1655
1656	map->unlock(map->lock_arg);
1657
1658	return ret;
1659}
1660EXPORT_SYMBOL_GPL(regmap_write_async);
1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662/**
1663 * regmap_raw_write(): Write raw values to one or more registers
1664 *
1665 * @map: Register map to write to
1666 * @reg: Initial register to write to
1667 * @val: Block of data to be written, laid out for direct transmission to the
1668 *       device
1669 * @val_len: Length of data pointed to by val.
1670 *
1671 * This function is intended to be used for things like firmware
1672 * download where a large block of data needs to be transferred to the
1673 * device.  No formatting will be done on the data provided.
1674 *
1675 * A value of zero will be returned on success, a negative errno will
1676 * be returned in error cases.
1677 */
1678int regmap_raw_write(struct regmap *map, unsigned int reg,
1679		     const void *val, size_t val_len)
1680{
1681	int ret;
1682
1683	if (!regmap_can_raw_write(map))
1684		return -EINVAL;
1685	if (val_len % map->format.val_bytes)
1686		return -EINVAL;
1687	if (map->max_raw_write && map->max_raw_write > val_len)
1688		return -E2BIG;
1689
1690	map->lock(map->lock_arg);
1691
1692	ret = _regmap_raw_write(map, reg, val, val_len);
1693
1694	map->unlock(map->lock_arg);
1695
1696	return ret;
1697}
1698EXPORT_SYMBOL_GPL(regmap_raw_write);
1699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700/**
1701 * regmap_field_update_bits_base():
1702 *	Perform a read/modify/write cycle on the register field
1703 *	with change, async, force option
1704 *
1705 * @field: Register field to write to
1706 * @mask: Bitmask to change
1707 * @val: Value to be written
1708 * @change: Boolean indicating if a write was done
1709 * @async: Boolean indicating asynchronously
1710 * @force: Boolean indicating use force update
1711 *
 
 
 
1712 * A value of zero will be returned on success, a negative errno will
1713 * be returned in error cases.
1714 */
1715int regmap_field_update_bits_base(struct regmap_field *field,
1716				  unsigned int mask, unsigned int val,
1717				  bool *change, bool async, bool force)
1718{
1719	mask = (mask << field->shift) & field->mask;
1720
1721	return regmap_update_bits_base(field->regmap, field->reg,
1722				       mask, val << field->shift,
1723				       change, async, force);
1724}
1725EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1726
1727/**
1728 * regmap_fields_update_bits_base():
1729 *	Perform a read/modify/write cycle on the register field
1730 *	with change, async, force option
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1731 *
1732 * @field: Register field to write to
1733 * @id: port ID
1734 * @mask: Bitmask to change
1735 * @val: Value to be written
1736 * @change: Boolean indicating if a write was done
1737 * @async: Boolean indicating asynchronously
1738 * @force: Boolean indicating use force update
1739 *
1740 * A value of zero will be returned on success, a negative errno will
1741 * be returned in error cases.
1742 */
1743int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1744				   unsigned int mask, unsigned int val,
1745				   bool *change, bool async, bool force)
1746{
1747	if (id >= field->id_size)
1748		return -EINVAL;
1749
1750	mask = (mask << field->shift) & field->mask;
1751
1752	return regmap_update_bits_base(field->regmap,
1753				       field->reg + (field->id_offset * id),
1754				       mask, val << field->shift,
1755				       change, async, force);
1756}
1757EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1758
1759/*
1760 * regmap_bulk_write(): Write multiple registers to the device
1761 *
1762 * @map: Register map to write to
1763 * @reg: First register to be write from
1764 * @val: Block of data to be written, in native register size for device
1765 * @val_count: Number of registers to write
1766 *
1767 * This function is intended to be used for writing a large block of
1768 * data to the device either in single transfer or multiple transfer.
1769 *
1770 * A value of zero will be returned on success, a negative errno will
1771 * be returned in error cases.
1772 */
1773int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1774		     size_t val_count)
1775{
1776	int ret = 0, i;
1777	size_t val_bytes = map->format.val_bytes;
1778	size_t total_size = val_bytes * val_count;
1779
1780	if (map->bus && !map->format.parse_inplace)
1781		return -EINVAL;
1782	if (!IS_ALIGNED(reg, map->reg_stride))
1783		return -EINVAL;
1784
1785	/*
1786	 * Some devices don't support bulk write, for
1787	 * them we have a series of single write operations in the first two if
1788	 * blocks.
1789	 *
1790	 * The first if block is used for memory mapped io. It does not allow
1791	 * val_bytes of 3 for example.
1792	 * The second one is used for busses which do not have this limitation
1793	 * and can write arbitrary value lengths.
1794	 */
1795	if (!map->bus) {
1796		map->lock(map->lock_arg);
1797		for (i = 0; i < val_count; i++) {
1798			unsigned int ival;
1799
1800			switch (val_bytes) {
1801			case 1:
1802				ival = *(u8 *)(val + (i * val_bytes));
1803				break;
1804			case 2:
1805				ival = *(u16 *)(val + (i * val_bytes));
1806				break;
1807			case 4:
1808				ival = *(u32 *)(val + (i * val_bytes));
1809				break;
1810#ifdef CONFIG_64BIT
1811			case 8:
1812				ival = *(u64 *)(val + (i * val_bytes));
1813				break;
1814#endif
1815			default:
1816				ret = -EINVAL;
1817				goto out;
1818			}
1819
1820			ret = _regmap_write(map,
1821					    reg + regmap_get_offset(map, i),
1822					    ival);
1823			if (ret != 0)
1824				goto out;
1825		}
1826out:
1827		map->unlock(map->lock_arg);
1828	} else if (map->use_single_write ||
1829		   (map->max_raw_write && map->max_raw_write < total_size)) {
1830		int chunk_stride = map->reg_stride;
1831		size_t chunk_size = val_bytes;
1832		size_t chunk_count = val_count;
1833
1834		if (!map->use_single_write) {
1835			chunk_size = map->max_raw_write;
1836			if (chunk_size % val_bytes)
1837				chunk_size -= chunk_size % val_bytes;
1838			chunk_count = total_size / chunk_size;
1839			chunk_stride *= chunk_size / val_bytes;
1840		}
1841
1842		map->lock(map->lock_arg);
1843		/* Write as many bytes as possible with chunk_size */
1844		for (i = 0; i < chunk_count; i++) {
1845			ret = _regmap_raw_write(map,
1846						reg + (i * chunk_stride),
1847						val + (i * chunk_size),
1848						chunk_size);
1849			if (ret)
1850				break;
1851		}
1852
1853		/* Write remaining bytes */
1854		if (!ret && chunk_size * i < total_size) {
1855			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1856						val + (i * chunk_size),
1857						total_size - i * chunk_size);
1858		}
1859		map->unlock(map->lock_arg);
1860	} else {
1861		void *wval;
1862
1863		if (!val_count)
1864			return -EINVAL;
1865
1866		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1867		if (!wval) {
1868			dev_err(map->dev, "Error in memory allocation\n");
1869			return -ENOMEM;
1870		}
1871		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1872			map->format.parse_inplace(wval + i);
1873
1874		map->lock(map->lock_arg);
1875		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1876		map->unlock(map->lock_arg);
1877
1878		kfree(wval);
1879	}
 
 
 
 
1880	return ret;
1881}
1882EXPORT_SYMBOL_GPL(regmap_bulk_write);
1883
1884/*
1885 * _regmap_raw_multi_reg_write()
1886 *
1887 * the (register,newvalue) pairs in regs have not been formatted, but
1888 * they are all in the same page and have been changed to being page
1889 * relative. The page register has been written if that was necessary.
1890 */
1891static int _regmap_raw_multi_reg_write(struct regmap *map,
1892				       const struct reg_sequence *regs,
1893				       size_t num_regs)
1894{
1895	int ret;
1896	void *buf;
1897	int i;
1898	u8 *u8;
1899	size_t val_bytes = map->format.val_bytes;
1900	size_t reg_bytes = map->format.reg_bytes;
1901	size_t pad_bytes = map->format.pad_bytes;
1902	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1903	size_t len = pair_size * num_regs;
1904
1905	if (!len)
1906		return -EINVAL;
1907
1908	buf = kzalloc(len, GFP_KERNEL);
1909	if (!buf)
1910		return -ENOMEM;
1911
1912	/* We have to linearise by hand. */
1913
1914	u8 = buf;
1915
1916	for (i = 0; i < num_regs; i++) {
1917		unsigned int reg = regs[i].reg;
1918		unsigned int val = regs[i].def;
1919		trace_regmap_hw_write_start(map, reg, 1);
 
1920		map->format.format_reg(u8, reg, map->reg_shift);
1921		u8 += reg_bytes + pad_bytes;
1922		map->format.format_val(u8, val, 0);
1923		u8 += val_bytes;
1924	}
1925	u8 = buf;
1926	*u8 |= map->write_flag_mask;
1927
1928	ret = map->bus->write(map->bus_context, buf, len);
1929
1930	kfree(buf);
1931
1932	for (i = 0; i < num_regs; i++) {
1933		int reg = regs[i].reg;
1934		trace_regmap_hw_write_done(map, reg, 1);
1935	}
1936	return ret;
1937}
1938
1939static unsigned int _regmap_register_page(struct regmap *map,
1940					  unsigned int reg,
1941					  struct regmap_range_node *range)
1942{
1943	unsigned int win_page = (reg - range->range_min) / range->window_len;
1944
1945	return win_page;
1946}
1947
1948static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1949					       struct reg_sequence *regs,
1950					       size_t num_regs)
1951{
1952	int ret;
1953	int i, n;
1954	struct reg_sequence *base;
1955	unsigned int this_page = 0;
1956	unsigned int page_change = 0;
1957	/*
1958	 * the set of registers are not neccessarily in order, but
1959	 * since the order of write must be preserved this algorithm
1960	 * chops the set each time the page changes. This also applies
1961	 * if there is a delay required at any point in the sequence.
1962	 */
1963	base = regs;
1964	for (i = 0, n = 0; i < num_regs; i++, n++) {
1965		unsigned int reg = regs[i].reg;
1966		struct regmap_range_node *range;
1967
1968		range = _regmap_range_lookup(map, reg);
1969		if (range) {
1970			unsigned int win_page = _regmap_register_page(map, reg,
1971								      range);
1972
1973			if (i == 0)
1974				this_page = win_page;
1975			if (win_page != this_page) {
1976				this_page = win_page;
1977				page_change = 1;
1978			}
1979		}
1980
1981		/* If we have both a page change and a delay make sure to
1982		 * write the regs and apply the delay before we change the
1983		 * page.
1984		 */
1985
1986		if (page_change || regs[i].delay_us) {
1987
1988				/* For situations where the first write requires
1989				 * a delay we need to make sure we don't call
1990				 * raw_multi_reg_write with n=0
1991				 * This can't occur with page breaks as we
1992				 * never write on the first iteration
1993				 */
1994				if (regs[i].delay_us && i == 0)
1995					n = 1;
1996
1997				ret = _regmap_raw_multi_reg_write(map, base, n);
1998				if (ret != 0)
1999					return ret;
2000
2001				if (regs[i].delay_us)
2002					udelay(regs[i].delay_us);
 
 
 
 
2003
2004				base += n;
2005				n = 0;
2006
2007				if (page_change) {
2008					ret = _regmap_select_page(map,
2009								  &base[n].reg,
2010								  range, 1);
2011					if (ret != 0)
2012						return ret;
2013
2014					page_change = 0;
2015				}
2016
2017		}
2018
2019	}
2020	if (n > 0)
2021		return _regmap_raw_multi_reg_write(map, base, n);
2022	return 0;
2023}
2024
2025static int _regmap_multi_reg_write(struct regmap *map,
2026				   const struct reg_sequence *regs,
2027				   size_t num_regs)
2028{
2029	int i;
2030	int ret;
2031
2032	if (!map->can_multi_write) {
2033		for (i = 0; i < num_regs; i++) {
2034			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2035			if (ret != 0)
2036				return ret;
2037
2038			if (regs[i].delay_us)
2039				udelay(regs[i].delay_us);
 
 
 
 
2040		}
2041		return 0;
2042	}
2043
2044	if (!map->format.parse_inplace)
2045		return -EINVAL;
2046
2047	if (map->writeable_reg)
2048		for (i = 0; i < num_regs; i++) {
2049			int reg = regs[i].reg;
2050			if (!map->writeable_reg(map->dev, reg))
2051				return -EINVAL;
2052			if (!IS_ALIGNED(reg, map->reg_stride))
2053				return -EINVAL;
2054		}
2055
2056	if (!map->cache_bypass) {
2057		for (i = 0; i < num_regs; i++) {
2058			unsigned int val = regs[i].def;
2059			unsigned int reg = regs[i].reg;
2060			ret = regcache_write(map, reg, val);
2061			if (ret) {
2062				dev_err(map->dev,
2063				"Error in caching of register: %x ret: %d\n",
2064								reg, ret);
2065				return ret;
2066			}
2067		}
2068		if (map->cache_only) {
2069			map->cache_dirty = true;
2070			return 0;
2071		}
2072	}
2073
2074	WARN_ON(!map->bus);
2075
2076	for (i = 0; i < num_regs; i++) {
2077		unsigned int reg = regs[i].reg;
2078		struct regmap_range_node *range;
2079
2080		/* Coalesce all the writes between a page break or a delay
2081		 * in a sequence
2082		 */
2083		range = _regmap_range_lookup(map, reg);
2084		if (range || regs[i].delay_us) {
2085			size_t len = sizeof(struct reg_sequence)*num_regs;
2086			struct reg_sequence *base = kmemdup(regs, len,
2087							   GFP_KERNEL);
2088			if (!base)
2089				return -ENOMEM;
2090			ret = _regmap_range_multi_paged_reg_write(map, base,
2091								  num_regs);
2092			kfree(base);
2093
2094			return ret;
2095		}
2096	}
2097	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2098}
2099
2100/*
2101 * regmap_multi_reg_write(): Write multiple registers to the device
2102 *
2103 * where the set of register,value pairs are supplied in any order,
2104 * possibly not all in a single range.
2105 *
2106 * @map: Register map to write to
2107 * @regs: Array of structures containing register,value to be written
2108 * @num_regs: Number of registers to write
2109 *
 
 
 
2110 * The 'normal' block write mode will send ultimately send data on the
2111 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2112 * addressed. However, this alternative block multi write mode will send
2113 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2114 * must of course support the mode.
2115 *
2116 * A value of zero will be returned on success, a negative errno will be
2117 * returned in error cases.
2118 */
2119int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2120			   int num_regs)
2121{
2122	int ret;
2123
2124	map->lock(map->lock_arg);
2125
2126	ret = _regmap_multi_reg_write(map, regs, num_regs);
2127
2128	map->unlock(map->lock_arg);
2129
2130	return ret;
2131}
2132EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2133
2134/*
2135 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2136 *                                    device but not the cache
2137 *
2138 * where the set of register are supplied in any order
2139 *
2140 * @map: Register map to write to
2141 * @regs: Array of structures containing register,value to be written
2142 * @num_regs: Number of registers to write
2143 *
 
 
 
2144 * This function is intended to be used for writing a large block of data
2145 * atomically to the device in single transfer for those I2C client devices
2146 * that implement this alternative block write mode.
2147 *
2148 * A value of zero will be returned on success, a negative errno will
2149 * be returned in error cases.
2150 */
2151int regmap_multi_reg_write_bypassed(struct regmap *map,
2152				    const struct reg_sequence *regs,
2153				    int num_regs)
2154{
2155	int ret;
2156	bool bypass;
2157
2158	map->lock(map->lock_arg);
2159
2160	bypass = map->cache_bypass;
2161	map->cache_bypass = true;
2162
2163	ret = _regmap_multi_reg_write(map, regs, num_regs);
2164
2165	map->cache_bypass = bypass;
2166
2167	map->unlock(map->lock_arg);
2168
2169	return ret;
2170}
2171EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2172
2173/**
2174 * regmap_raw_write_async(): Write raw values to one or more registers
2175 *                           asynchronously
2176 *
2177 * @map: Register map to write to
2178 * @reg: Initial register to write to
2179 * @val: Block of data to be written, laid out for direct transmission to the
2180 *       device.  Must be valid until regmap_async_complete() is called.
2181 * @val_len: Length of data pointed to by val.
2182 *
2183 * This function is intended to be used for things like firmware
2184 * download where a large block of data needs to be transferred to the
2185 * device.  No formatting will be done on the data provided.
2186 *
2187 * If supported by the underlying bus the write will be scheduled
2188 * asynchronously, helping maximise I/O speed on higher speed buses
2189 * like SPI.  regmap_async_complete() can be called to ensure that all
2190 * asynchrnous writes have been completed.
2191 *
2192 * A value of zero will be returned on success, a negative errno will
2193 * be returned in error cases.
2194 */
2195int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2196			   const void *val, size_t val_len)
2197{
2198	int ret;
2199
2200	if (val_len % map->format.val_bytes)
2201		return -EINVAL;
2202	if (!IS_ALIGNED(reg, map->reg_stride))
2203		return -EINVAL;
2204
2205	map->lock(map->lock_arg);
2206
2207	map->async = true;
2208
2209	ret = _regmap_raw_write(map, reg, val, val_len);
2210
2211	map->async = false;
2212
2213	map->unlock(map->lock_arg);
2214
2215	return ret;
2216}
2217EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2218
2219static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2220			    unsigned int val_len)
2221{
2222	struct regmap_range_node *range;
2223	u8 *u8 = map->work_buf;
2224	int ret;
2225
2226	WARN_ON(!map->bus);
2227
2228	if (!map->bus || !map->bus->read)
2229		return -EINVAL;
2230
2231	range = _regmap_range_lookup(map, reg);
2232	if (range) {
2233		ret = _regmap_select_page(map, &reg, range,
2234					  val_len / map->format.val_bytes);
2235		if (ret != 0)
2236			return ret;
2237	}
2238
 
2239	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2240
2241	/*
2242	 * Some buses or devices flag reads by setting the high bits in the
2243	 * register address; since it's always the high bits for all
2244	 * current formats we can do this here rather than in
2245	 * formatting.  This may break if we get interesting formats.
2246	 */
2247	u8[0] |= map->read_flag_mask;
2248
2249	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2250
2251	ret = map->bus->read(map->bus_context, map->work_buf,
2252			     map->format.reg_bytes + map->format.pad_bytes,
2253			     val, val_len);
2254
2255	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2256
2257	return ret;
2258}
2259
2260static int _regmap_bus_reg_read(void *context, unsigned int reg,
2261				unsigned int *val)
2262{
2263	struct regmap *map = context;
 
 
 
 
 
 
 
 
 
2264
 
2265	return map->bus->reg_read(map->bus_context, reg, val);
2266}
2267
2268static int _regmap_bus_read(void *context, unsigned int reg,
2269			    unsigned int *val)
2270{
2271	int ret;
2272	struct regmap *map = context;
 
 
2273
2274	if (!map->format.parse_val)
2275		return -EINVAL;
2276
2277	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2278	if (ret == 0)
2279		*val = map->format.parse_val(map->work_buf);
2280
2281	return ret;
2282}
2283
2284static int _regmap_read(struct regmap *map, unsigned int reg,
2285			unsigned int *val)
2286{
2287	int ret;
2288	void *context = _regmap_map_get_context(map);
2289
2290	if (!map->cache_bypass) {
2291		ret = regcache_read(map, reg, val);
2292		if (ret == 0)
2293			return 0;
2294	}
2295
2296	if (map->cache_only)
2297		return -EBUSY;
2298
2299	if (!regmap_readable(map, reg))
2300		return -EIO;
2301
2302	ret = map->reg_read(context, reg, val);
2303	if (ret == 0) {
2304#ifdef LOG_DEVICE
2305		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2306			dev_info(map->dev, "%x => %x\n", reg, *val);
2307#endif
2308
2309		trace_regmap_reg_read(map, reg, *val);
2310
2311		if (!map->cache_bypass)
2312			regcache_write(map, reg, *val);
2313	}
2314
2315	return ret;
2316}
2317
2318/**
2319 * regmap_read(): Read a value from a single register
2320 *
2321 * @map: Register map to read from
2322 * @reg: Register to be read from
2323 * @val: Pointer to store read value
2324 *
2325 * A value of zero will be returned on success, a negative errno will
2326 * be returned in error cases.
2327 */
2328int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2329{
2330	int ret;
2331
2332	if (!IS_ALIGNED(reg, map->reg_stride))
2333		return -EINVAL;
2334
2335	map->lock(map->lock_arg);
2336
2337	ret = _regmap_read(map, reg, val);
2338
2339	map->unlock(map->lock_arg);
2340
2341	return ret;
2342}
2343EXPORT_SYMBOL_GPL(regmap_read);
2344
2345/**
2346 * regmap_raw_read(): Read raw data from the device
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2347 *
2348 * @map: Register map to read from
2349 * @reg: First register to be read from
2350 * @val: Pointer to store read value
2351 * @val_len: Size of data to read
2352 *
2353 * A value of zero will be returned on success, a negative errno will
2354 * be returned in error cases.
2355 */
2356int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2357		    size_t val_len)
2358{
2359	size_t val_bytes = map->format.val_bytes;
2360	size_t val_count = val_len / val_bytes;
2361	unsigned int v;
2362	int ret, i;
2363
2364	if (!map->bus)
2365		return -EINVAL;
2366	if (val_len % map->format.val_bytes)
2367		return -EINVAL;
2368	if (!IS_ALIGNED(reg, map->reg_stride))
2369		return -EINVAL;
2370	if (val_count == 0)
2371		return -EINVAL;
2372
2373	map->lock(map->lock_arg);
2374
2375	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2376	    map->cache_type == REGCACHE_NONE) {
2377		if (!map->bus->read) {
2378			ret = -ENOTSUPP;
 
 
 
2379			goto out;
2380		}
2381		if (map->max_raw_read && map->max_raw_read < val_len) {
2382			ret = -E2BIG;
 
2383			goto out;
2384		}
2385
2386		/* Physical block read if there's no cache involved */
2387		ret = _regmap_raw_read(map, reg, val, val_len);
 
 
 
 
 
2388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2389	} else {
2390		/* Otherwise go word by word for the cache; should be low
2391		 * cost as we expect to hit the cache.
2392		 */
2393		for (i = 0; i < val_count; i++) {
2394			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2395					   &v);
2396			if (ret != 0)
2397				goto out;
2398
2399			map->format.format_val(val + (i * val_bytes), v, 0);
2400		}
2401	}
2402
2403 out:
2404	map->unlock(map->lock_arg);
2405
2406	return ret;
2407}
2408EXPORT_SYMBOL_GPL(regmap_raw_read);
2409
2410/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411 * regmap_field_read(): Read a value to a single register field
2412 *
2413 * @field: Register field to read from
2414 * @val: Pointer to store read value
2415 *
2416 * A value of zero will be returned on success, a negative errno will
2417 * be returned in error cases.
2418 */
2419int regmap_field_read(struct regmap_field *field, unsigned int *val)
2420{
2421	int ret;
2422	unsigned int reg_val;
2423	ret = regmap_read(field->regmap, field->reg, &reg_val);
2424	if (ret != 0)
2425		return ret;
2426
2427	reg_val &= field->mask;
2428	reg_val >>= field->shift;
2429	*val = reg_val;
2430
2431	return ret;
2432}
2433EXPORT_SYMBOL_GPL(regmap_field_read);
2434
2435/**
2436 * regmap_fields_read(): Read a value to a single register field with port ID
2437 *
2438 * @field: Register field to read from
2439 * @id: port ID
2440 * @val: Pointer to store read value
2441 *
2442 * A value of zero will be returned on success, a negative errno will
2443 * be returned in error cases.
2444 */
2445int regmap_fields_read(struct regmap_field *field, unsigned int id,
2446		       unsigned int *val)
2447{
2448	int ret;
2449	unsigned int reg_val;
2450
2451	if (id >= field->id_size)
2452		return -EINVAL;
2453
2454	ret = regmap_read(field->regmap,
2455			  field->reg + (field->id_offset * id),
2456			  &reg_val);
2457	if (ret != 0)
2458		return ret;
2459
2460	reg_val &= field->mask;
2461	reg_val >>= field->shift;
2462	*val = reg_val;
2463
2464	return ret;
2465}
2466EXPORT_SYMBOL_GPL(regmap_fields_read);
2467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2468/**
2469 * regmap_bulk_read(): Read multiple registers from the device
2470 *
2471 * @map: Register map to read from
2472 * @reg: First register to be read from
2473 * @val: Pointer to store read value, in native register size for device
2474 * @val_count: Number of registers to read
2475 *
2476 * A value of zero will be returned on success, a negative errno will
2477 * be returned in error cases.
2478 */
2479int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2480		     size_t val_count)
2481{
2482	int ret, i;
2483	size_t val_bytes = map->format.val_bytes;
2484	bool vol = regmap_volatile_range(map, reg, val_count);
2485
2486	if (!IS_ALIGNED(reg, map->reg_stride))
2487		return -EINVAL;
 
 
2488
2489	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2490		/*
2491		 * Some devices does not support bulk read, for
2492		 * them we have a series of single read operations.
2493		 */
2494		size_t total_size = val_bytes * val_count;
2495
2496		if (!map->use_single_read &&
2497		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2498			ret = regmap_raw_read(map, reg, val,
2499					      val_bytes * val_count);
2500			if (ret != 0)
2501				return ret;
2502		} else {
2503			/*
2504			 * Some devices do not support bulk read or do not
2505			 * support large bulk reads, for them we have a series
2506			 * of read operations.
2507			 */
2508			int chunk_stride = map->reg_stride;
2509			size_t chunk_size = val_bytes;
2510			size_t chunk_count = val_count;
2511
2512			if (!map->use_single_read) {
2513				chunk_size = map->max_raw_read;
2514				if (chunk_size % val_bytes)
2515					chunk_size -= chunk_size % val_bytes;
2516				chunk_count = total_size / chunk_size;
2517				chunk_stride *= chunk_size / val_bytes;
2518			}
2519
2520			/* Read bytes that fit into a multiple of chunk_size */
2521			for (i = 0; i < chunk_count; i++) {
2522				ret = regmap_raw_read(map,
2523						      reg + (i * chunk_stride),
2524						      val + (i * chunk_size),
2525						      chunk_size);
2526				if (ret != 0)
2527					return ret;
2528			}
2529
2530			/* Read remaining bytes */
2531			if (chunk_size * i < total_size) {
2532				ret = regmap_raw_read(map,
2533						      reg + (i * chunk_stride),
2534						      val + (i * chunk_size),
2535						      total_size - i * chunk_size);
2536				if (ret != 0)
2537					return ret;
2538			}
2539		}
2540
2541		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2542			map->format.parse_inplace(val + i);
2543	} else {
2544		for (i = 0; i < val_count; i++) {
2545			unsigned int ival;
2546			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2547					  &ival);
2548			if (ret != 0)
2549				return ret;
2550
2551			if (map->format.format_val) {
2552				map->format.format_val(val + (i * val_bytes), ival, 0);
2553			} else {
2554				/* Devices providing read and write
2555				 * operations can use the bulk I/O
2556				 * functions if they define a val_bytes,
2557				 * we assume that the values are native
2558				 * endian.
2559				 */
2560#ifdef CONFIG_64BIT
2561				u64 *u64 = val;
2562#endif
2563				u32 *u32 = val;
2564				u16 *u16 = val;
2565				u8 *u8 = val;
2566
2567				switch (map->format.val_bytes) {
2568#ifdef CONFIG_64BIT
2569				case 8:
2570					u64[i] = ival;
2571					break;
2572#endif
2573				case 4:
2574					u32[i] = ival;
2575					break;
2576				case 2:
2577					u16[i] = ival;
2578					break;
2579				case 1:
2580					u8[i] = ival;
2581					break;
2582				default:
2583					return -EINVAL;
2584				}
2585			}
2586		}
2587	}
2588
2589	return 0;
 
2590}
2591EXPORT_SYMBOL_GPL(regmap_bulk_read);
2592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2593static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2594			       unsigned int mask, unsigned int val,
2595			       bool *change, bool force_write)
2596{
2597	int ret;
2598	unsigned int tmp, orig;
2599
2600	if (change)
2601		*change = false;
2602
2603	if (regmap_volatile(map, reg) && map->reg_update_bits) {
 
2604		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2605		if (ret == 0 && change)
2606			*change = true;
2607	} else {
2608		ret = _regmap_read(map, reg, &orig);
2609		if (ret != 0)
2610			return ret;
2611
2612		tmp = orig & ~mask;
2613		tmp |= val & mask;
2614
2615		if (force_write || (tmp != orig)) {
2616			ret = _regmap_write(map, reg, tmp);
2617			if (ret == 0 && change)
2618				*change = true;
2619		}
2620	}
2621
2622	return ret;
2623}
2624
2625/**
2626 * regmap_update_bits_base:
2627 *	Perform a read/modify/write cycle on the
2628 *	register map with change, async, force option
2629 *
2630 * @map: Register map to update
2631 * @reg: Register to update
2632 * @mask: Bitmask to change
2633 * @val: New value for bitmask
2634 * @change: Boolean indicating if a write was done
2635 * @async: Boolean indicating asynchronously
2636 * @force: Boolean indicating use force update
2637 *
2638 * if async was true,
2639 * With most buses the read must be done synchronously so this is most
2640 * useful for devices with a cache which do not need to interact with
2641 * the hardware to determine the current register value.
 
 
 
 
2642 *
2643 * Returns zero for success, a negative number on error.
2644 */
2645int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2646			    unsigned int mask, unsigned int val,
2647			    bool *change, bool async, bool force)
2648{
2649	int ret;
2650
2651	map->lock(map->lock_arg);
2652
2653	map->async = async;
2654
2655	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2656
2657	map->async = false;
2658
2659	map->unlock(map->lock_arg);
2660
2661	return ret;
2662}
2663EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2665void regmap_async_complete_cb(struct regmap_async *async, int ret)
2666{
2667	struct regmap *map = async->map;
2668	bool wake;
2669
2670	trace_regmap_async_io_complete(map);
2671
2672	spin_lock(&map->async_lock);
2673	list_move(&async->list, &map->async_free);
2674	wake = list_empty(&map->async_list);
2675
2676	if (ret != 0)
2677		map->async_ret = ret;
2678
2679	spin_unlock(&map->async_lock);
2680
2681	if (wake)
2682		wake_up(&map->async_waitq);
2683}
2684EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2685
2686static int regmap_async_is_done(struct regmap *map)
2687{
2688	unsigned long flags;
2689	int ret;
2690
2691	spin_lock_irqsave(&map->async_lock, flags);
2692	ret = list_empty(&map->async_list);
2693	spin_unlock_irqrestore(&map->async_lock, flags);
2694
2695	return ret;
2696}
2697
2698/**
2699 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2700 *
2701 * @map: Map to operate on.
2702 *
2703 * Blocks until any pending asynchronous I/O has completed.  Returns
2704 * an error code for any failed I/O operations.
2705 */
2706int regmap_async_complete(struct regmap *map)
2707{
2708	unsigned long flags;
2709	int ret;
2710
2711	/* Nothing to do with no async support */
2712	if (!map->bus || !map->bus->async_write)
2713		return 0;
2714
2715	trace_regmap_async_complete_start(map);
2716
2717	wait_event(map->async_waitq, regmap_async_is_done(map));
2718
2719	spin_lock_irqsave(&map->async_lock, flags);
2720	ret = map->async_ret;
2721	map->async_ret = 0;
2722	spin_unlock_irqrestore(&map->async_lock, flags);
2723
2724	trace_regmap_async_complete_done(map);
2725
2726	return ret;
2727}
2728EXPORT_SYMBOL_GPL(regmap_async_complete);
2729
2730/**
2731 * regmap_register_patch: Register and apply register updates to be applied
2732 *                        on device initialistion
2733 *
2734 * @map: Register map to apply updates to.
2735 * @regs: Values to update.
2736 * @num_regs: Number of entries in regs.
2737 *
2738 * Register a set of register updates to be applied to the device
2739 * whenever the device registers are synchronised with the cache and
2740 * apply them immediately.  Typically this is used to apply
2741 * corrections to be applied to the device defaults on startup, such
2742 * as the updates some vendors provide to undocumented registers.
2743 *
2744 * The caller must ensure that this function cannot be called
2745 * concurrently with either itself or regcache_sync().
2746 */
2747int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2748			  int num_regs)
2749{
2750	struct reg_sequence *p;
2751	int ret;
2752	bool bypass;
2753
2754	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2755	    num_regs))
2756		return 0;
2757
2758	p = krealloc(map->patch,
2759		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2760		     GFP_KERNEL);
2761	if (p) {
2762		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2763		map->patch = p;
2764		map->patch_regs += num_regs;
2765	} else {
2766		return -ENOMEM;
2767	}
2768
2769	map->lock(map->lock_arg);
2770
2771	bypass = map->cache_bypass;
2772
2773	map->cache_bypass = true;
2774	map->async = true;
2775
2776	ret = _regmap_multi_reg_write(map, regs, num_regs);
2777
2778	map->async = false;
2779	map->cache_bypass = bypass;
2780
2781	map->unlock(map->lock_arg);
2782
2783	regmap_async_complete(map);
2784
2785	return ret;
2786}
2787EXPORT_SYMBOL_GPL(regmap_register_patch);
2788
2789/*
2790 * regmap_get_val_bytes(): Report the size of a register value
 
 
2791 *
2792 * Report the size of a register value, mainly intended to for use by
2793 * generic infrastructure built on top of regmap.
2794 */
2795int regmap_get_val_bytes(struct regmap *map)
2796{
2797	if (map->format.format_write)
2798		return -EINVAL;
2799
2800	return map->format.val_bytes;
2801}
2802EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2803
2804/**
2805 * regmap_get_max_register(): Report the max register value
 
 
2806 *
2807 * Report the max register value, mainly intended to for use by
2808 * generic infrastructure built on top of regmap.
2809 */
2810int regmap_get_max_register(struct regmap *map)
2811{
2812	return map->max_register ? map->max_register : -EINVAL;
2813}
2814EXPORT_SYMBOL_GPL(regmap_get_max_register);
2815
2816/**
2817 * regmap_get_reg_stride(): Report the register address stride
 
 
2818 *
2819 * Report the register address stride, mainly intended to for use by
2820 * generic infrastructure built on top of regmap.
2821 */
2822int regmap_get_reg_stride(struct regmap *map)
2823{
2824	return map->reg_stride;
2825}
2826EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
 
 
 
 
 
 
 
 
 
 
 
 
 
2827
2828int regmap_parse_val(struct regmap *map, const void *buf,
2829			unsigned int *val)
2830{
2831	if (!map->format.parse_val)
2832		return -EINVAL;
2833
2834	*val = map->format.parse_val(buf);
2835
2836	return 0;
2837}
2838EXPORT_SYMBOL_GPL(regmap_parse_val);
2839
2840static int __init regmap_initcall(void)
2841{
2842	regmap_debugfs_initcall();
2843
2844	return 0;
2845}
2846postcore_initcall(regmap_initcall);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 
 
 
 
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <linux/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register_is_set && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register_is_set && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register_is_set && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 212static void regmap_format_12_20_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	out[0] = reg >> 4;
 218	out[1] = (reg << 4) | (val >> 16);
 219	out[2] = val >> 8;
 220	out[3] = val;
 221}
 222
 223
 224static void regmap_format_2_6_write(struct regmap *map,
 225				     unsigned int reg, unsigned int val)
 226{
 227	u8 *out = map->work_buf;
 228
 229	*out = (reg << 6) | val;
 230}
 231
 232static void regmap_format_4_12_write(struct regmap *map,
 233				     unsigned int reg, unsigned int val)
 234{
 235	__be16 *out = map->work_buf;
 236	*out = cpu_to_be16((reg << 12) | val);
 237}
 238
 239static void regmap_format_7_9_write(struct regmap *map,
 240				    unsigned int reg, unsigned int val)
 241{
 242	__be16 *out = map->work_buf;
 243	*out = cpu_to_be16((reg << 9) | val);
 244}
 245
 246static void regmap_format_7_17_write(struct regmap *map,
 247				    unsigned int reg, unsigned int val)
 248{
 249	u8 *out = map->work_buf;
 250
 251	out[2] = val;
 252	out[1] = val >> 8;
 253	out[0] = (val >> 16) | (reg << 1);
 254}
 255
 256static void regmap_format_10_14_write(struct regmap *map,
 257				    unsigned int reg, unsigned int val)
 258{
 259	u8 *out = map->work_buf;
 260
 261	out[2] = val;
 262	out[1] = (val >> 8) | (reg << 6);
 263	out[0] = reg >> 2;
 264}
 265
 266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 267{
 268	u8 *b = buf;
 269
 270	b[0] = val << shift;
 271}
 272
 273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	put_unaligned_be16(val << shift, buf);
 
 
 276}
 277
 278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 279{
 280	put_unaligned_le16(val << shift, buf);
 
 
 281}
 282
 283static void regmap_format_16_native(void *buf, unsigned int val,
 284				    unsigned int shift)
 285{
 286	u16 v = val << shift;
 287
 288	memcpy(buf, &v, sizeof(v));
 289}
 290
 291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
 292{
 293	put_unaligned_be24(val << shift, buf);
 
 
 
 
 
 
 294}
 295
 296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 297{
 298	put_unaligned_be32(val << shift, buf);
 
 
 299}
 300
 301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 302{
 303	put_unaligned_le32(val << shift, buf);
 
 
 304}
 305
 306static void regmap_format_32_native(void *buf, unsigned int val,
 307				    unsigned int shift)
 308{
 309	u32 v = val << shift;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310
 311	memcpy(buf, &v, sizeof(v));
 
 
 
 312}
 
 313
 314static void regmap_parse_inplace_noop(void *buf)
 315{
 316}
 317
 318static unsigned int regmap_parse_8(const void *buf)
 319{
 320	const u8 *b = buf;
 321
 322	return b[0];
 323}
 324
 325static unsigned int regmap_parse_16_be(const void *buf)
 326{
 327	return get_unaligned_be16(buf);
 
 
 328}
 329
 330static unsigned int regmap_parse_16_le(const void *buf)
 331{
 332	return get_unaligned_le16(buf);
 
 
 333}
 334
 335static void regmap_parse_16_be_inplace(void *buf)
 336{
 337	u16 v = get_unaligned_be16(buf);
 338
 339	memcpy(buf, &v, sizeof(v));
 340}
 341
 342static void regmap_parse_16_le_inplace(void *buf)
 343{
 344	u16 v = get_unaligned_le16(buf);
 345
 346	memcpy(buf, &v, sizeof(v));
 347}
 348
 349static unsigned int regmap_parse_16_native(const void *buf)
 350{
 351	u16 v;
 352
 353	memcpy(&v, buf, sizeof(v));
 354	return v;
 355}
 356
 357static unsigned int regmap_parse_24_be(const void *buf)
 358{
 359	return get_unaligned_be24(buf);
 
 
 
 
 
 360}
 361
 362static unsigned int regmap_parse_32_be(const void *buf)
 363{
 364	return get_unaligned_be32(buf);
 
 
 365}
 366
 367static unsigned int regmap_parse_32_le(const void *buf)
 368{
 369	return get_unaligned_le32(buf);
 
 
 370}
 371
 372static void regmap_parse_32_be_inplace(void *buf)
 373{
 374	u32 v = get_unaligned_be32(buf);
 375
 376	memcpy(buf, &v, sizeof(v));
 377}
 378
 379static void regmap_parse_32_le_inplace(void *buf)
 380{
 381	u32 v = get_unaligned_le32(buf);
 382
 383	memcpy(buf, &v, sizeof(v));
 384}
 385
 386static unsigned int regmap_parse_32_native(const void *buf)
 387{
 388	u32 v;
 389
 390	memcpy(&v, buf, sizeof(v));
 391	return v;
 392}
 393
 394static void regmap_lock_hwlock(void *__map)
 
 395{
 396	struct regmap *map = __map;
 397
 398	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 399}
 400
 401static void regmap_lock_hwlock_irq(void *__map)
 402{
 403	struct regmap *map = __map;
 404
 405	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 406}
 407
 408static void regmap_lock_hwlock_irqsave(void *__map)
 409{
 410	struct regmap *map = __map;
 411
 412	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 413				    &map->spinlock_flags);
 414}
 415
 416static void regmap_unlock_hwlock(void *__map)
 417{
 418	struct regmap *map = __map;
 419
 420	hwspin_unlock(map->hwlock);
 421}
 422
 423static void regmap_unlock_hwlock_irq(void *__map)
 424{
 425	struct regmap *map = __map;
 426
 427	hwspin_unlock_irq(map->hwlock);
 428}
 429
 430static void regmap_unlock_hwlock_irqrestore(void *__map)
 431{
 432	struct regmap *map = __map;
 433
 434	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 435}
 436
 437static void regmap_lock_unlock_none(void *__map)
 438{
 439
 440}
 
 441
 442static void regmap_lock_mutex(void *__map)
 443{
 444	struct regmap *map = __map;
 445	mutex_lock(&map->mutex);
 446}
 447
 448static void regmap_unlock_mutex(void *__map)
 449{
 450	struct regmap *map = __map;
 451	mutex_unlock(&map->mutex);
 452}
 453
 454static void regmap_lock_spinlock(void *__map)
 455__acquires(&map->spinlock)
 456{
 457	struct regmap *map = __map;
 458	unsigned long flags;
 459
 460	spin_lock_irqsave(&map->spinlock, flags);
 461	map->spinlock_flags = flags;
 462}
 463
 464static void regmap_unlock_spinlock(void *__map)
 465__releases(&map->spinlock)
 466{
 467	struct regmap *map = __map;
 468	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 469}
 470
 471static void regmap_lock_raw_spinlock(void *__map)
 472__acquires(&map->raw_spinlock)
 473{
 474	struct regmap *map = __map;
 475	unsigned long flags;
 476
 477	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
 478	map->raw_spinlock_flags = flags;
 479}
 480
 481static void regmap_unlock_raw_spinlock(void *__map)
 482__releases(&map->raw_spinlock)
 483{
 484	struct regmap *map = __map;
 485	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
 486}
 487
 488static void dev_get_regmap_release(struct device *dev, void *res)
 489{
 490	/*
 491	 * We don't actually have anything to do here; the goal here
 492	 * is not to manage the regmap but to provide a simple way to
 493	 * get the regmap back given a struct device.
 494	 */
 495}
 496
 497static bool _regmap_range_add(struct regmap *map,
 498			      struct regmap_range_node *data)
 499{
 500	struct rb_root *root = &map->range_tree;
 501	struct rb_node **new = &(root->rb_node), *parent = NULL;
 502
 503	while (*new) {
 504		struct regmap_range_node *this =
 505			rb_entry(*new, struct regmap_range_node, node);
 506
 507		parent = *new;
 508		if (data->range_max < this->range_min)
 509			new = &((*new)->rb_left);
 510		else if (data->range_min > this->range_max)
 511			new = &((*new)->rb_right);
 512		else
 513			return false;
 514	}
 515
 516	rb_link_node(&data->node, parent, new);
 517	rb_insert_color(&data->node, root);
 518
 519	return true;
 520}
 521
 522static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 523						      unsigned int reg)
 524{
 525	struct rb_node *node = map->range_tree.rb_node;
 526
 527	while (node) {
 528		struct regmap_range_node *this =
 529			rb_entry(node, struct regmap_range_node, node);
 530
 531		if (reg < this->range_min)
 532			node = node->rb_left;
 533		else if (reg > this->range_max)
 534			node = node->rb_right;
 535		else
 536			return this;
 537	}
 538
 539	return NULL;
 540}
 541
 542static void regmap_range_exit(struct regmap *map)
 543{
 544	struct rb_node *next;
 545	struct regmap_range_node *range_node;
 546
 547	next = rb_first(&map->range_tree);
 548	while (next) {
 549		range_node = rb_entry(next, struct regmap_range_node, node);
 550		next = rb_next(&range_node->node);
 551		rb_erase(&range_node->node, &map->range_tree);
 552		kfree(range_node);
 553	}
 554
 555	kfree(map->selector_work_buf);
 556}
 557
 558static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 559{
 560	if (config->name) {
 561		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 562
 563		if (!name)
 564			return -ENOMEM;
 565
 566		kfree_const(map->name);
 567		map->name = name;
 568	}
 569
 570	return 0;
 571}
 572
 573int regmap_attach_dev(struct device *dev, struct regmap *map,
 574		      const struct regmap_config *config)
 575{
 576	struct regmap **m;
 577	int ret;
 578
 579	map->dev = dev;
 580
 581	ret = regmap_set_name(map, config);
 582	if (ret)
 583		return ret;
 584
 585	regmap_debugfs_exit(map);
 586	regmap_debugfs_init(map);
 587
 588	/* Add a devres resource for dev_get_regmap() */
 589	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 590	if (!m) {
 591		regmap_debugfs_exit(map);
 592		return -ENOMEM;
 593	}
 594	*m = map;
 595	devres_add(dev, m);
 596
 597	return 0;
 598}
 599EXPORT_SYMBOL_GPL(regmap_attach_dev);
 600
 601static int dev_get_regmap_match(struct device *dev, void *res, void *data);
 602
 603static int regmap_detach_dev(struct device *dev, struct regmap *map)
 604{
 605	if (!dev)
 606		return 0;
 607
 608	return devres_release(dev, dev_get_regmap_release,
 609			      dev_get_regmap_match, (void *)map->name);
 610}
 611
 612static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 613					const struct regmap_config *config)
 614{
 615	enum regmap_endian endian;
 616
 617	/* Retrieve the endianness specification from the regmap config */
 618	endian = config->reg_format_endian;
 619
 620	/* If the regmap config specified a non-default value, use that */
 621	if (endian != REGMAP_ENDIAN_DEFAULT)
 622		return endian;
 623
 624	/* Retrieve the endianness specification from the bus config */
 625	if (bus && bus->reg_format_endian_default)
 626		endian = bus->reg_format_endian_default;
 627
 628	/* If the bus specified a non-default value, use that */
 629	if (endian != REGMAP_ENDIAN_DEFAULT)
 630		return endian;
 631
 632	/* Use this if no other value was found */
 633	return REGMAP_ENDIAN_BIG;
 634}
 635
 636enum regmap_endian regmap_get_val_endian(struct device *dev,
 637					 const struct regmap_bus *bus,
 638					 const struct regmap_config *config)
 639{
 640	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 641	enum regmap_endian endian;
 642
 643	/* Retrieve the endianness specification from the regmap config */
 644	endian = config->val_format_endian;
 645
 646	/* If the regmap config specified a non-default value, use that */
 647	if (endian != REGMAP_ENDIAN_DEFAULT)
 648		return endian;
 649
 650	/* If the firmware node exist try to get endianness from it */
 651	if (fwnode_property_read_bool(fwnode, "big-endian"))
 652		endian = REGMAP_ENDIAN_BIG;
 653	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 654		endian = REGMAP_ENDIAN_LITTLE;
 655	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 656		endian = REGMAP_ENDIAN_NATIVE;
 657
 658	/* If the endianness was specified in fwnode, use that */
 659	if (endian != REGMAP_ENDIAN_DEFAULT)
 660		return endian;
 
 
 
 
 
 661
 662	/* Retrieve the endianness specification from the bus config */
 663	if (bus && bus->val_format_endian_default)
 664		endian = bus->val_format_endian_default;
 665
 666	/* If the bus specified a non-default value, use that */
 667	if (endian != REGMAP_ENDIAN_DEFAULT)
 668		return endian;
 669
 670	/* Use this if no other value was found */
 671	return REGMAP_ENDIAN_BIG;
 672}
 673EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 674
 675struct regmap *__regmap_init(struct device *dev,
 676			     const struct regmap_bus *bus,
 677			     void *bus_context,
 678			     const struct regmap_config *config,
 679			     struct lock_class_key *lock_key,
 680			     const char *lock_name)
 681{
 682	struct regmap *map;
 683	int ret = -EINVAL;
 684	enum regmap_endian reg_endian, val_endian;
 685	int i, j;
 686
 687	if (!config)
 688		goto err;
 689
 690	map = kzalloc(sizeof(*map), GFP_KERNEL);
 691	if (map == NULL) {
 692		ret = -ENOMEM;
 693		goto err;
 694	}
 695
 696	ret = regmap_set_name(map, config);
 697	if (ret)
 698		goto err_map;
 699
 700	ret = -EINVAL; /* Later error paths rely on this */
 701
 702	if (config->disable_locking) {
 703		map->lock = map->unlock = regmap_lock_unlock_none;
 704		map->can_sleep = config->can_sleep;
 705		regmap_debugfs_disable(map);
 706	} else if (config->lock && config->unlock) {
 707		map->lock = config->lock;
 708		map->unlock = config->unlock;
 709		map->lock_arg = config->lock_arg;
 710		map->can_sleep = config->can_sleep;
 711	} else if (config->use_hwlock) {
 712		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 713		if (!map->hwlock) {
 714			ret = -ENXIO;
 715			goto err_name;
 716		}
 717
 718		switch (config->hwlock_mode) {
 719		case HWLOCK_IRQSTATE:
 720			map->lock = regmap_lock_hwlock_irqsave;
 721			map->unlock = regmap_unlock_hwlock_irqrestore;
 722			break;
 723		case HWLOCK_IRQ:
 724			map->lock = regmap_lock_hwlock_irq;
 725			map->unlock = regmap_unlock_hwlock_irq;
 726			break;
 727		default:
 728			map->lock = regmap_lock_hwlock;
 729			map->unlock = regmap_unlock_hwlock;
 730			break;
 731		}
 732
 733		map->lock_arg = map;
 734	} else {
 735		if ((bus && bus->fast_io) ||
 736		    config->fast_io) {
 737			if (config->use_raw_spinlock) {
 738				raw_spin_lock_init(&map->raw_spinlock);
 739				map->lock = regmap_lock_raw_spinlock;
 740				map->unlock = regmap_unlock_raw_spinlock;
 741				lockdep_set_class_and_name(&map->raw_spinlock,
 742							   lock_key, lock_name);
 743			} else {
 744				spin_lock_init(&map->spinlock);
 745				map->lock = regmap_lock_spinlock;
 746				map->unlock = regmap_unlock_spinlock;
 747				lockdep_set_class_and_name(&map->spinlock,
 748							   lock_key, lock_name);
 749			}
 750		} else {
 751			mutex_init(&map->mutex);
 752			map->lock = regmap_lock_mutex;
 753			map->unlock = regmap_unlock_mutex;
 754			map->can_sleep = true;
 755			lockdep_set_class_and_name(&map->mutex,
 756						   lock_key, lock_name);
 757		}
 758		map->lock_arg = map;
 759		map->lock_key = lock_key;
 760	}
 761
 762	/*
 763	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 764	 * scratch buffers with sleeping allocations.
 765	 */
 766	if ((bus && bus->fast_io) || config->fast_io)
 767		map->alloc_flags = GFP_ATOMIC;
 768	else
 769		map->alloc_flags = GFP_KERNEL;
 770
 771	map->reg_base = config->reg_base;
 772
 773	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 774	map->format.pad_bytes = config->pad_bits / 8;
 775	map->format.reg_shift = config->reg_shift;
 776	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 777	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 778			config->val_bits + config->pad_bits, 8);
 779	map->reg_shift = config->pad_bits % 8;
 780	if (config->reg_stride)
 781		map->reg_stride = config->reg_stride;
 782	else
 783		map->reg_stride = 1;
 784	if (is_power_of_2(map->reg_stride))
 785		map->reg_stride_order = ilog2(map->reg_stride);
 786	else
 787		map->reg_stride_order = -1;
 788	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
 789	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
 790	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
 791	if (bus) {
 792		map->max_raw_read = bus->max_raw_read;
 793		map->max_raw_write = bus->max_raw_write;
 794	} else if (config->max_raw_read && config->max_raw_write) {
 795		map->max_raw_read = config->max_raw_read;
 796		map->max_raw_write = config->max_raw_write;
 797	}
 798	map->dev = dev;
 799	map->bus = bus;
 800	map->bus_context = bus_context;
 801	map->max_register = config->max_register;
 802	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
 803	map->wr_table = config->wr_table;
 804	map->rd_table = config->rd_table;
 805	map->volatile_table = config->volatile_table;
 806	map->precious_table = config->precious_table;
 807	map->wr_noinc_table = config->wr_noinc_table;
 808	map->rd_noinc_table = config->rd_noinc_table;
 809	map->writeable_reg = config->writeable_reg;
 810	map->readable_reg = config->readable_reg;
 811	map->volatile_reg = config->volatile_reg;
 812	map->precious_reg = config->precious_reg;
 813	map->writeable_noinc_reg = config->writeable_noinc_reg;
 814	map->readable_noinc_reg = config->readable_noinc_reg;
 815	map->cache_type = config->cache_type;
 
 816
 817	spin_lock_init(&map->async_lock);
 818	INIT_LIST_HEAD(&map->async_list);
 819	INIT_LIST_HEAD(&map->async_free);
 820	init_waitqueue_head(&map->async_waitq);
 821
 822	if (config->read_flag_mask ||
 823	    config->write_flag_mask ||
 824	    config->zero_flag_mask) {
 825		map->read_flag_mask = config->read_flag_mask;
 826		map->write_flag_mask = config->write_flag_mask;
 827	} else if (bus) {
 828		map->read_flag_mask = bus->read_flag_mask;
 829	}
 830
 831	if (config && config->read && config->write) {
 832		map->reg_read  = _regmap_bus_read;
 833		if (config->reg_update_bits)
 834			map->reg_update_bits = config->reg_update_bits;
 835
 836		/* Bulk read/write */
 837		map->read = config->read;
 838		map->write = config->write;
 839
 840		reg_endian = REGMAP_ENDIAN_NATIVE;
 841		val_endian = REGMAP_ENDIAN_NATIVE;
 842	} else if (!bus) {
 843		map->reg_read  = config->reg_read;
 844		map->reg_write = config->reg_write;
 845		map->reg_update_bits = config->reg_update_bits;
 846
 847		map->defer_caching = false;
 848		goto skip_format_initialization;
 849	} else if (!bus->read || !bus->write) {
 850		map->reg_read = _regmap_bus_reg_read;
 851		map->reg_write = _regmap_bus_reg_write;
 852		map->reg_update_bits = bus->reg_update_bits;
 853
 854		map->defer_caching = false;
 855		goto skip_format_initialization;
 856	} else {
 857		map->reg_read  = _regmap_bus_read;
 858		map->reg_update_bits = bus->reg_update_bits;
 859		/* Bulk read/write */
 860		map->read = bus->read;
 861		map->write = bus->write;
 862
 863		reg_endian = regmap_get_reg_endian(bus, config);
 864		val_endian = regmap_get_val_endian(dev, bus, config);
 865	}
 866
 867	switch (config->reg_bits + map->reg_shift) {
 868	case 2:
 869		switch (config->val_bits) {
 870		case 6:
 871			map->format.format_write = regmap_format_2_6_write;
 872			break;
 873		default:
 874			goto err_hwlock;
 875		}
 876		break;
 877
 878	case 4:
 879		switch (config->val_bits) {
 880		case 12:
 881			map->format.format_write = regmap_format_4_12_write;
 882			break;
 883		default:
 884			goto err_hwlock;
 885		}
 886		break;
 887
 888	case 7:
 889		switch (config->val_bits) {
 890		case 9:
 891			map->format.format_write = regmap_format_7_9_write;
 892			break;
 893		case 17:
 894			map->format.format_write = regmap_format_7_17_write;
 895			break;
 896		default:
 897			goto err_hwlock;
 898		}
 899		break;
 900
 901	case 10:
 902		switch (config->val_bits) {
 903		case 14:
 904			map->format.format_write = regmap_format_10_14_write;
 905			break;
 906		default:
 907			goto err_hwlock;
 908		}
 909		break;
 910
 911	case 12:
 912		switch (config->val_bits) {
 913		case 20:
 914			map->format.format_write = regmap_format_12_20_write;
 915			break;
 916		default:
 917			goto err_hwlock;
 918		}
 919		break;
 920
 921	case 8:
 922		map->format.format_reg = regmap_format_8;
 923		break;
 924
 925	case 16:
 926		switch (reg_endian) {
 927		case REGMAP_ENDIAN_BIG:
 928			map->format.format_reg = regmap_format_16_be;
 929			break;
 930		case REGMAP_ENDIAN_LITTLE:
 931			map->format.format_reg = regmap_format_16_le;
 932			break;
 933		case REGMAP_ENDIAN_NATIVE:
 934			map->format.format_reg = regmap_format_16_native;
 935			break;
 936		default:
 937			goto err_hwlock;
 938		}
 939		break;
 940
 941	case 24:
 
 
 
 
 
 
 942		switch (reg_endian) {
 943		case REGMAP_ENDIAN_BIG:
 944			map->format.format_reg = regmap_format_24_be;
 
 
 
 945			break;
 946		default:
 947			goto err_hwlock;
 948		}
 949		break;
 950
 951	case 32:
 
 952		switch (reg_endian) {
 953		case REGMAP_ENDIAN_BIG:
 954			map->format.format_reg = regmap_format_32_be;
 955			break;
 956		case REGMAP_ENDIAN_LITTLE:
 957			map->format.format_reg = regmap_format_32_le;
 958			break;
 959		case REGMAP_ENDIAN_NATIVE:
 960			map->format.format_reg = regmap_format_32_native;
 961			break;
 962		default:
 963			goto err_hwlock;
 964		}
 965		break;
 
 966
 967	default:
 968		goto err_hwlock;
 969	}
 970
 971	if (val_endian == REGMAP_ENDIAN_NATIVE)
 972		map->format.parse_inplace = regmap_parse_inplace_noop;
 973
 974	switch (config->val_bits) {
 975	case 8:
 976		map->format.format_val = regmap_format_8;
 977		map->format.parse_val = regmap_parse_8;
 978		map->format.parse_inplace = regmap_parse_inplace_noop;
 979		break;
 980	case 16:
 981		switch (val_endian) {
 982		case REGMAP_ENDIAN_BIG:
 983			map->format.format_val = regmap_format_16_be;
 984			map->format.parse_val = regmap_parse_16_be;
 985			map->format.parse_inplace = regmap_parse_16_be_inplace;
 986			break;
 987		case REGMAP_ENDIAN_LITTLE:
 988			map->format.format_val = regmap_format_16_le;
 989			map->format.parse_val = regmap_parse_16_le;
 990			map->format.parse_inplace = regmap_parse_16_le_inplace;
 991			break;
 992		case REGMAP_ENDIAN_NATIVE:
 993			map->format.format_val = regmap_format_16_native;
 994			map->format.parse_val = regmap_parse_16_native;
 995			break;
 996		default:
 997			goto err_hwlock;
 998		}
 999		break;
1000	case 24:
1001		switch (val_endian) {
1002		case REGMAP_ENDIAN_BIG:
1003			map->format.format_val = regmap_format_24_be;
1004			map->format.parse_val = regmap_parse_24_be;
1005			break;
1006		default:
1007			goto err_hwlock;
1008		}
1009		break;
1010	case 32:
1011		switch (val_endian) {
1012		case REGMAP_ENDIAN_BIG:
1013			map->format.format_val = regmap_format_32_be;
1014			map->format.parse_val = regmap_parse_32_be;
1015			map->format.parse_inplace = regmap_parse_32_be_inplace;
1016			break;
1017		case REGMAP_ENDIAN_LITTLE:
1018			map->format.format_val = regmap_format_32_le;
1019			map->format.parse_val = regmap_parse_32_le;
1020			map->format.parse_inplace = regmap_parse_32_le_inplace;
1021			break;
1022		case REGMAP_ENDIAN_NATIVE:
1023			map->format.format_val = regmap_format_32_native;
1024			map->format.parse_val = regmap_parse_32_native;
1025			break;
1026		default:
1027			goto err_hwlock;
1028		}
1029		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1030	}
1031
1032	if (map->format.format_write) {
1033		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1034		    (val_endian != REGMAP_ENDIAN_BIG))
1035			goto err_hwlock;
1036		map->use_single_write = true;
1037	}
1038
1039	if (!map->format.format_write &&
1040	    !(map->format.format_reg && map->format.format_val))
1041		goto err_hwlock;
1042
1043	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1044	if (map->work_buf == NULL) {
1045		ret = -ENOMEM;
1046		goto err_hwlock;
1047	}
1048
1049	if (map->format.format_write) {
1050		map->defer_caching = false;
1051		map->reg_write = _regmap_bus_formatted_write;
1052	} else if (map->format.format_val) {
1053		map->defer_caching = true;
1054		map->reg_write = _regmap_bus_raw_write;
1055	}
1056
1057skip_format_initialization:
1058
1059	map->range_tree = RB_ROOT;
1060	for (i = 0; i < config->num_ranges; i++) {
1061		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1062		struct regmap_range_node *new;
1063
1064		/* Sanity check */
1065		if (range_cfg->range_max < range_cfg->range_min) {
1066			dev_err(map->dev, "Invalid range %d: %u < %u\n", i,
1067				range_cfg->range_max, range_cfg->range_min);
1068			goto err_range;
1069		}
1070
1071		if (range_cfg->range_max > map->max_register) {
1072			dev_err(map->dev, "Invalid range %d: %u > %u\n", i,
1073				range_cfg->range_max, map->max_register);
1074			goto err_range;
1075		}
1076
1077		if (range_cfg->selector_reg > map->max_register) {
1078			dev_err(map->dev,
1079				"Invalid range %d: selector out of map\n", i);
1080			goto err_range;
1081		}
1082
1083		if (range_cfg->window_len == 0) {
1084			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1085				i);
1086			goto err_range;
1087		}
1088
1089		/* Make sure, that this register range has no selector
1090		   or data window within its boundary */
1091		for (j = 0; j < config->num_ranges; j++) {
1092			unsigned int sel_reg = config->ranges[j].selector_reg;
1093			unsigned int win_min = config->ranges[j].window_start;
1094			unsigned int win_max = win_min +
1095					       config->ranges[j].window_len - 1;
1096
1097			/* Allow data window inside its own virtual range */
1098			if (j == i)
1099				continue;
1100
1101			if (range_cfg->range_min <= sel_reg &&
1102			    sel_reg <= range_cfg->range_max) {
1103				dev_err(map->dev,
1104					"Range %d: selector for %d in window\n",
1105					i, j);
1106				goto err_range;
1107			}
1108
1109			if (!(win_max < range_cfg->range_min ||
1110			      win_min > range_cfg->range_max)) {
1111				dev_err(map->dev,
1112					"Range %d: window for %d in window\n",
1113					i, j);
1114				goto err_range;
1115			}
1116		}
1117
1118		new = kzalloc(sizeof(*new), GFP_KERNEL);
1119		if (new == NULL) {
1120			ret = -ENOMEM;
1121			goto err_range;
1122		}
1123
1124		new->map = map;
1125		new->name = range_cfg->name;
1126		new->range_min = range_cfg->range_min;
1127		new->range_max = range_cfg->range_max;
1128		new->selector_reg = range_cfg->selector_reg;
1129		new->selector_mask = range_cfg->selector_mask;
1130		new->selector_shift = range_cfg->selector_shift;
1131		new->window_start = range_cfg->window_start;
1132		new->window_len = range_cfg->window_len;
1133
1134		if (!_regmap_range_add(map, new)) {
1135			dev_err(map->dev, "Failed to add range %d\n", i);
1136			kfree(new);
1137			goto err_range;
1138		}
1139
1140		if (map->selector_work_buf == NULL) {
1141			map->selector_work_buf =
1142				kzalloc(map->format.buf_size, GFP_KERNEL);
1143			if (map->selector_work_buf == NULL) {
1144				ret = -ENOMEM;
1145				goto err_range;
1146			}
1147		}
1148	}
1149
1150	ret = regcache_init(map, config);
1151	if (ret != 0)
1152		goto err_range;
1153
1154	if (dev) {
1155		ret = regmap_attach_dev(dev, map, config);
1156		if (ret != 0)
1157			goto err_regcache;
1158	} else {
1159		regmap_debugfs_init(map);
1160	}
1161
1162	return map;
1163
1164err_regcache:
1165	regcache_exit(map);
1166err_range:
1167	regmap_range_exit(map);
1168	kfree(map->work_buf);
1169err_hwlock:
1170	if (map->hwlock)
1171		hwspin_lock_free(map->hwlock);
1172err_name:
1173	kfree_const(map->name);
1174err_map:
1175	kfree(map);
1176err:
1177	return ERR_PTR(ret);
1178}
1179EXPORT_SYMBOL_GPL(__regmap_init);
1180
1181static void devm_regmap_release(struct device *dev, void *res)
1182{
1183	regmap_exit(*(struct regmap **)res);
1184}
1185
1186struct regmap *__devm_regmap_init(struct device *dev,
1187				  const struct regmap_bus *bus,
1188				  void *bus_context,
1189				  const struct regmap_config *config,
1190				  struct lock_class_key *lock_key,
1191				  const char *lock_name)
1192{
1193	struct regmap **ptr, *regmap;
1194
1195	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1196	if (!ptr)
1197		return ERR_PTR(-ENOMEM);
1198
1199	regmap = __regmap_init(dev, bus, bus_context, config,
1200			       lock_key, lock_name);
1201	if (!IS_ERR(regmap)) {
1202		*ptr = regmap;
1203		devres_add(dev, ptr);
1204	} else {
1205		devres_free(ptr);
1206	}
1207
1208	return regmap;
1209}
1210EXPORT_SYMBOL_GPL(__devm_regmap_init);
1211
1212static void regmap_field_init(struct regmap_field *rm_field,
1213	struct regmap *regmap, struct reg_field reg_field)
1214{
1215	rm_field->regmap = regmap;
1216	rm_field->reg = reg_field.reg;
1217	rm_field->shift = reg_field.lsb;
1218	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1219
1220	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1221
1222	rm_field->id_size = reg_field.id_size;
1223	rm_field->id_offset = reg_field.id_offset;
1224}
1225
1226/**
1227 * devm_regmap_field_alloc() - Allocate and initialise a register field.
 
1228 *
1229 * @dev: Device that will be interacted with
1230 * @regmap: regmap bank in which this register field is located.
1231 * @reg_field: Register field with in the bank.
1232 *
1233 * The return value will be an ERR_PTR() on error or a valid pointer
1234 * to a struct regmap_field. The regmap_field will be automatically freed
1235 * by the device management code.
1236 */
1237struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1238		struct regmap *regmap, struct reg_field reg_field)
1239{
1240	struct regmap_field *rm_field = devm_kzalloc(dev,
1241					sizeof(*rm_field), GFP_KERNEL);
1242	if (!rm_field)
1243		return ERR_PTR(-ENOMEM);
1244
1245	regmap_field_init(rm_field, regmap, reg_field);
1246
1247	return rm_field;
1248
1249}
1250EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1251
1252
1253/**
1254 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1255 *
1256 * @regmap: regmap bank in which this register field is located.
1257 * @rm_field: regmap register fields within the bank.
1258 * @reg_field: Register fields within the bank.
1259 * @num_fields: Number of register fields.
1260 *
1261 * The return value will be an -ENOMEM on error or zero for success.
1262 * Newly allocated regmap_fields should be freed by calling
1263 * regmap_field_bulk_free()
1264 */
1265int regmap_field_bulk_alloc(struct regmap *regmap,
1266			    struct regmap_field **rm_field,
1267			    const struct reg_field *reg_field,
1268			    int num_fields)
1269{
1270	struct regmap_field *rf;
1271	int i;
1272
1273	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1274	if (!rf)
1275		return -ENOMEM;
1276
1277	for (i = 0; i < num_fields; i++) {
1278		regmap_field_init(&rf[i], regmap, reg_field[i]);
1279		rm_field[i] = &rf[i];
1280	}
1281
1282	return 0;
1283}
1284EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1285
1286/**
1287 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1288 * fields.
1289 *
1290 * @dev: Device that will be interacted with
1291 * @regmap: regmap bank in which this register field is located.
1292 * @rm_field: regmap register fields within the bank.
1293 * @reg_field: Register fields within the bank.
1294 * @num_fields: Number of register fields.
1295 *
1296 * The return value will be an -ENOMEM on error or zero for success.
1297 * Newly allocated regmap_fields will be automatically freed by the
1298 * device management code.
1299 */
1300int devm_regmap_field_bulk_alloc(struct device *dev,
1301				 struct regmap *regmap,
1302				 struct regmap_field **rm_field,
1303				 const struct reg_field *reg_field,
1304				 int num_fields)
1305{
1306	struct regmap_field *rf;
1307	int i;
1308
1309	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1310	if (!rf)
1311		return -ENOMEM;
1312
1313	for (i = 0; i < num_fields; i++) {
1314		regmap_field_init(&rf[i], regmap, reg_field[i]);
1315		rm_field[i] = &rf[i];
1316	}
1317
1318	return 0;
1319}
1320EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1321
1322/**
1323 * regmap_field_bulk_free() - Free register field allocated using
1324 *                       regmap_field_bulk_alloc.
1325 *
1326 * @field: regmap fields which should be freed.
1327 */
1328void regmap_field_bulk_free(struct regmap_field *field)
1329{
1330	kfree(field);
1331}
1332EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1333
1334/**
1335 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1336 *                            devm_regmap_field_bulk_alloc.
 
 
1337 *
1338 * @dev: Device that will be interacted with
1339 * @field: regmap field which should be freed.
1340 *
1341 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1342 * drivers need not call this function, as the memory allocated via devm
1343 * will be freed as per device-driver life-cycle.
1344 */
1345void devm_regmap_field_bulk_free(struct device *dev,
1346				 struct regmap_field *field)
1347{
1348	devm_kfree(dev, field);
1349}
1350EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1351
1352/**
1353 * devm_regmap_field_free() - Free a register field allocated using
1354 *                            devm_regmap_field_alloc.
1355 *
1356 * @dev: Device that will be interacted with
1357 * @field: regmap field which should be freed.
1358 *
1359 * Free register field allocated using devm_regmap_field_alloc(). Usually
1360 * drivers need not call this function, as the memory allocated via devm
1361 * will be freed as per device-driver life-cyle.
1362 */
1363void devm_regmap_field_free(struct device *dev,
1364	struct regmap_field *field)
1365{
1366	devm_kfree(dev, field);
1367}
1368EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1369
1370/**
1371 * regmap_field_alloc() - Allocate and initialise a register field.
 
1372 *
1373 * @regmap: regmap bank in which this register field is located.
1374 * @reg_field: Register field with in the bank.
1375 *
1376 * The return value will be an ERR_PTR() on error or a valid pointer
1377 * to a struct regmap_field. The regmap_field should be freed by the
1378 * user once its finished working with it using regmap_field_free().
1379 */
1380struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1381		struct reg_field reg_field)
1382{
1383	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1384
1385	if (!rm_field)
1386		return ERR_PTR(-ENOMEM);
1387
1388	regmap_field_init(rm_field, regmap, reg_field);
1389
1390	return rm_field;
1391}
1392EXPORT_SYMBOL_GPL(regmap_field_alloc);
1393
1394/**
1395 * regmap_field_free() - Free register field allocated using
1396 *                       regmap_field_alloc.
1397 *
1398 * @field: regmap field which should be freed.
1399 */
1400void regmap_field_free(struct regmap_field *field)
1401{
1402	kfree(field);
1403}
1404EXPORT_SYMBOL_GPL(regmap_field_free);
1405
1406/**
1407 * regmap_reinit_cache() - Reinitialise the current register cache
1408 *
1409 * @map: Register map to operate on.
1410 * @config: New configuration.  Only the cache data will be used.
1411 *
1412 * Discard any existing register cache for the map and initialize a
1413 * new cache.  This can be used to restore the cache to defaults or to
1414 * update the cache configuration to reflect runtime discovery of the
1415 * hardware.
1416 *
1417 * No explicit locking is done here, the user needs to ensure that
1418 * this function will not race with other calls to regmap.
1419 */
1420int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1421{
1422	int ret;
1423
1424	regcache_exit(map);
1425	regmap_debugfs_exit(map);
1426
1427	map->max_register = config->max_register;
1428	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1429	map->writeable_reg = config->writeable_reg;
1430	map->readable_reg = config->readable_reg;
1431	map->volatile_reg = config->volatile_reg;
1432	map->precious_reg = config->precious_reg;
1433	map->writeable_noinc_reg = config->writeable_noinc_reg;
1434	map->readable_noinc_reg = config->readable_noinc_reg;
1435	map->cache_type = config->cache_type;
1436
1437	ret = regmap_set_name(map, config);
1438	if (ret)
1439		return ret;
1440
1441	regmap_debugfs_init(map);
1442
1443	map->cache_bypass = false;
1444	map->cache_only = false;
1445
1446	return regcache_init(map, config);
1447}
1448EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1449
1450/**
1451 * regmap_exit() - Free a previously allocated register map
1452 *
1453 * @map: Register map to operate on.
1454 */
1455void regmap_exit(struct regmap *map)
1456{
1457	struct regmap_async *async;
1458
1459	regmap_detach_dev(map->dev, map);
1460	regcache_exit(map);
1461
1462	regmap_debugfs_exit(map);
1463	regmap_range_exit(map);
1464	if (map->bus && map->bus->free_context)
1465		map->bus->free_context(map->bus_context);
1466	kfree(map->work_buf);
1467	while (!list_empty(&map->async_free)) {
1468		async = list_first_entry_or_null(&map->async_free,
1469						 struct regmap_async,
1470						 list);
1471		list_del(&async->list);
1472		kfree(async->work_buf);
1473		kfree(async);
1474	}
1475	if (map->hwlock)
1476		hwspin_lock_free(map->hwlock);
1477	if (map->lock == regmap_lock_mutex)
1478		mutex_destroy(&map->mutex);
1479	kfree_const(map->name);
1480	kfree(map->patch);
1481	if (map->bus && map->bus->free_on_exit)
1482		kfree(map->bus);
1483	kfree(map);
1484}
1485EXPORT_SYMBOL_GPL(regmap_exit);
1486
1487static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1488{
1489	struct regmap **r = res;
1490	if (!r || !*r) {
1491		WARN_ON(!r || !*r);
1492		return 0;
1493	}
1494
1495	/* If the user didn't specify a name match any */
1496	if (data)
1497		return (*r)->name && !strcmp((*r)->name, data);
1498	else
1499		return 1;
1500}
1501
1502/**
1503 * dev_get_regmap() - Obtain the regmap (if any) for a device
1504 *
1505 * @dev: Device to retrieve the map for
1506 * @name: Optional name for the register map, usually NULL.
1507 *
1508 * Returns the regmap for the device if one is present, or NULL.  If
1509 * name is specified then it must match the name specified when
1510 * registering the device, if it is NULL then the first regmap found
1511 * will be used.  Devices with multiple register maps are very rare,
1512 * generic code should normally not need to specify a name.
1513 */
1514struct regmap *dev_get_regmap(struct device *dev, const char *name)
1515{
1516	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1517					dev_get_regmap_match, (void *)name);
1518
1519	if (!r)
1520		return NULL;
1521	return *r;
1522}
1523EXPORT_SYMBOL_GPL(dev_get_regmap);
1524
1525/**
1526 * regmap_get_device() - Obtain the device from a regmap
1527 *
1528 * @map: Register map to operate on.
1529 *
1530 * Returns the underlying device that the regmap has been created for.
1531 */
1532struct device *regmap_get_device(struct regmap *map)
1533{
1534	return map->dev;
1535}
1536EXPORT_SYMBOL_GPL(regmap_get_device);
1537
1538static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1539			       struct regmap_range_node *range,
1540			       unsigned int val_num)
1541{
1542	void *orig_work_buf;
1543	unsigned int win_offset;
1544	unsigned int win_page;
1545	bool page_chg;
1546	int ret;
1547
1548	win_offset = (*reg - range->range_min) % range->window_len;
1549	win_page = (*reg - range->range_min) / range->window_len;
1550
1551	if (val_num > 1) {
1552		/* Bulk write shouldn't cross range boundary */
1553		if (*reg + val_num - 1 > range->range_max)
1554			return -EINVAL;
1555
1556		/* ... or single page boundary */
1557		if (val_num > range->window_len - win_offset)
1558			return -EINVAL;
1559	}
1560
1561	/* It is possible to have selector register inside data window.
1562	   In that case, selector register is located on every page and
1563	   it needs no page switching, when accessed alone. */
1564	if (val_num > 1 ||
1565	    range->window_start + win_offset != range->selector_reg) {
1566		/* Use separate work_buf during page switching */
1567		orig_work_buf = map->work_buf;
1568		map->work_buf = map->selector_work_buf;
1569
1570		ret = _regmap_update_bits(map, range->selector_reg,
1571					  range->selector_mask,
1572					  win_page << range->selector_shift,
1573					  &page_chg, false);
1574
1575		map->work_buf = orig_work_buf;
1576
1577		if (ret != 0)
1578			return ret;
1579	}
1580
1581	*reg = range->window_start + win_offset;
1582
1583	return 0;
1584}
1585
1586static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1587					  unsigned long mask)
1588{
1589	u8 *buf;
1590	int i;
1591
1592	if (!mask || !map->work_buf)
1593		return;
1594
1595	buf = map->work_buf;
1596
1597	for (i = 0; i < max_bytes; i++)
1598		buf[i] |= (mask >> (8 * i)) & 0xff;
1599}
1600
1601static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1602{
1603	reg += map->reg_base;
1604
1605	if (map->format.reg_shift > 0)
1606		reg >>= map->format.reg_shift;
1607	else if (map->format.reg_shift < 0)
1608		reg <<= -(map->format.reg_shift);
1609
1610	return reg;
1611}
1612
1613static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1614				  const void *val, size_t val_len, bool noinc)
1615{
1616	struct regmap_range_node *range;
1617	unsigned long flags;
 
1618	void *work_val = map->work_buf + map->format.reg_bytes +
1619		map->format.pad_bytes;
1620	void *buf;
1621	int ret = -ENOTSUPP;
1622	size_t len;
1623	int i;
1624
1625	/* Check for unwritable or noinc registers in range
1626	 * before we start
1627	 */
1628	if (!regmap_writeable_noinc(map, reg)) {
1629		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1630			unsigned int element =
1631				reg + regmap_get_offset(map, i);
1632			if (!regmap_writeable(map, element) ||
1633				regmap_writeable_noinc(map, element))
1634				return -EINVAL;
1635		}
1636	}
1637
1638	if (!map->cache_bypass && map->format.parse_val) {
1639		unsigned int ival, offset;
1640		int val_bytes = map->format.val_bytes;
1641
1642		/* Cache the last written value for noinc writes */
1643		i = noinc ? val_len - val_bytes : 0;
1644		for (; i < val_len; i += val_bytes) {
1645			ival = map->format.parse_val(val + i);
1646			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1647			ret = regcache_write(map, reg + offset, ival);
1648			if (ret) {
1649				dev_err(map->dev,
1650					"Error in caching of register: %x ret: %d\n",
1651					reg + offset, ret);
1652				return ret;
1653			}
1654		}
1655		if (map->cache_only) {
1656			map->cache_dirty = true;
1657			return 0;
1658		}
1659	}
1660
1661	range = _regmap_range_lookup(map, reg);
1662	if (range) {
1663		int val_num = val_len / map->format.val_bytes;
1664		int win_offset = (reg - range->range_min) % range->window_len;
1665		int win_residue = range->window_len - win_offset;
1666
1667		/* If the write goes beyond the end of the window split it */
1668		while (val_num > win_residue) {
1669			dev_dbg(map->dev, "Writing window %d/%zu\n",
1670				win_residue, val_len / map->format.val_bytes);
1671			ret = _regmap_raw_write_impl(map, reg, val,
1672						     win_residue *
1673						     map->format.val_bytes, noinc);
1674			if (ret != 0)
1675				return ret;
1676
1677			reg += win_residue;
1678			val_num -= win_residue;
1679			val += win_residue * map->format.val_bytes;
1680			val_len -= win_residue * map->format.val_bytes;
1681
1682			win_offset = (reg - range->range_min) %
1683				range->window_len;
1684			win_residue = range->window_len - win_offset;
1685		}
1686
1687		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1688		if (ret != 0)
1689			return ret;
1690	}
1691
1692	reg = regmap_reg_addr(map, reg);
1693	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1694	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1695				      map->write_flag_mask);
1696
1697	/*
1698	 * Essentially all I/O mechanisms will be faster with a single
1699	 * buffer to write.  Since register syncs often generate raw
1700	 * writes of single registers optimise that case.
1701	 */
1702	if (val != work_val && val_len == map->format.val_bytes) {
1703		memcpy(work_val, val, map->format.val_bytes);
1704		val = work_val;
1705	}
1706
1707	if (map->async && map->bus && map->bus->async_write) {
1708		struct regmap_async *async;
1709
1710		trace_regmap_async_write_start(map, reg, val_len);
1711
1712		spin_lock_irqsave(&map->async_lock, flags);
1713		async = list_first_entry_or_null(&map->async_free,
1714						 struct regmap_async,
1715						 list);
1716		if (async)
1717			list_del(&async->list);
1718		spin_unlock_irqrestore(&map->async_lock, flags);
1719
1720		if (!async) {
1721			async = map->bus->async_alloc();
1722			if (!async)
1723				return -ENOMEM;
1724
1725			async->work_buf = kzalloc(map->format.buf_size,
1726						  GFP_KERNEL | GFP_DMA);
1727			if (!async->work_buf) {
1728				kfree(async);
1729				return -ENOMEM;
1730			}
1731		}
1732
1733		async->map = map;
1734
1735		/* If the caller supplied the value we can use it safely. */
1736		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1737		       map->format.reg_bytes + map->format.val_bytes);
1738
1739		spin_lock_irqsave(&map->async_lock, flags);
1740		list_add_tail(&async->list, &map->async_list);
1741		spin_unlock_irqrestore(&map->async_lock, flags);
1742
1743		if (val != work_val)
1744			ret = map->bus->async_write(map->bus_context,
1745						    async->work_buf,
1746						    map->format.reg_bytes +
1747						    map->format.pad_bytes,
1748						    val, val_len, async);
1749		else
1750			ret = map->bus->async_write(map->bus_context,
1751						    async->work_buf,
1752						    map->format.reg_bytes +
1753						    map->format.pad_bytes +
1754						    val_len, NULL, 0, async);
1755
1756		if (ret != 0) {
1757			dev_err(map->dev, "Failed to schedule write: %d\n",
1758				ret);
1759
1760			spin_lock_irqsave(&map->async_lock, flags);
1761			list_move(&async->list, &map->async_free);
1762			spin_unlock_irqrestore(&map->async_lock, flags);
1763		}
1764
1765		return ret;
1766	}
1767
1768	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1769
1770	/* If we're doing a single register write we can probably just
1771	 * send the work_buf directly, otherwise try to do a gather
1772	 * write.
1773	 */
1774	if (val == work_val)
1775		ret = map->write(map->bus_context, map->work_buf,
1776				 map->format.reg_bytes +
1777				 map->format.pad_bytes +
1778				 val_len);
1779	else if (map->bus && map->bus->gather_write)
1780		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1781					     map->format.reg_bytes +
1782					     map->format.pad_bytes,
1783					     val, val_len);
1784	else
1785		ret = -ENOTSUPP;
1786
1787	/* If that didn't work fall back on linearising by hand. */
1788	if (ret == -ENOTSUPP) {
1789		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1790		buf = kzalloc(len, GFP_KERNEL);
1791		if (!buf)
1792			return -ENOMEM;
1793
1794		memcpy(buf, map->work_buf, map->format.reg_bytes);
1795		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1796		       val, val_len);
1797		ret = map->write(map->bus_context, buf, len);
1798
1799		kfree(buf);
1800	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1801		/* regcache_drop_region() takes lock that we already have,
1802		 * thus call map->cache_ops->drop() directly
1803		 */
1804		if (map->cache_ops && map->cache_ops->drop)
1805			map->cache_ops->drop(map, reg, reg + 1);
1806	}
1807
1808	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1809
1810	return ret;
1811}
1812
1813/**
1814 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1815 *
1816 * @map: Map to check.
1817 */
1818bool regmap_can_raw_write(struct regmap *map)
1819{
1820	return map->write && map->format.format_val && map->format.format_reg;
 
1821}
1822EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1823
1824/**
1825 * regmap_get_raw_read_max - Get the maximum size we can read
1826 *
1827 * @map: Map to check.
1828 */
1829size_t regmap_get_raw_read_max(struct regmap *map)
1830{
1831	return map->max_raw_read;
1832}
1833EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1834
1835/**
1836 * regmap_get_raw_write_max - Get the maximum size we can read
1837 *
1838 * @map: Map to check.
1839 */
1840size_t regmap_get_raw_write_max(struct regmap *map)
1841{
1842	return map->max_raw_write;
1843}
1844EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1845
1846static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1847				       unsigned int val)
1848{
1849	int ret;
1850	struct regmap_range_node *range;
1851	struct regmap *map = context;
1852
1853	WARN_ON(!map->format.format_write);
1854
1855	range = _regmap_range_lookup(map, reg);
1856	if (range) {
1857		ret = _regmap_select_page(map, &reg, range, 1);
1858		if (ret != 0)
1859			return ret;
1860	}
1861
1862	reg = regmap_reg_addr(map, reg);
1863	map->format.format_write(map, reg, val);
1864
1865	trace_regmap_hw_write_start(map, reg, 1);
1866
1867	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
 
1868
1869	trace_regmap_hw_write_done(map, reg, 1);
1870
1871	return ret;
1872}
1873
1874static int _regmap_bus_reg_write(void *context, unsigned int reg,
1875				 unsigned int val)
1876{
1877	struct regmap *map = context;
1878	struct regmap_range_node *range;
1879	int ret;
1880
1881	range = _regmap_range_lookup(map, reg);
1882	if (range) {
1883		ret = _regmap_select_page(map, &reg, range, 1);
1884		if (ret != 0)
1885			return ret;
1886	}
1887
1888	reg = regmap_reg_addr(map, reg);
1889	return map->bus->reg_write(map->bus_context, reg, val);
1890}
1891
1892static int _regmap_bus_raw_write(void *context, unsigned int reg,
1893				 unsigned int val)
1894{
1895	struct regmap *map = context;
1896
1897	WARN_ON(!map->format.format_val);
1898
1899	map->format.format_val(map->work_buf + map->format.reg_bytes
1900			       + map->format.pad_bytes, val, 0);
1901	return _regmap_raw_write_impl(map, reg,
1902				      map->work_buf +
1903				      map->format.reg_bytes +
1904				      map->format.pad_bytes,
1905				      map->format.val_bytes,
1906				      false);
1907}
1908
1909static inline void *_regmap_map_get_context(struct regmap *map)
1910{
1911	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1912}
1913
1914int _regmap_write(struct regmap *map, unsigned int reg,
1915		  unsigned int val)
1916{
1917	int ret;
1918	void *context = _regmap_map_get_context(map);
1919
1920	if (!regmap_writeable(map, reg))
1921		return -EIO;
1922
1923	if (!map->cache_bypass && !map->defer_caching) {
1924		ret = regcache_write(map, reg, val);
1925		if (ret != 0)
1926			return ret;
1927		if (map->cache_only) {
1928			map->cache_dirty = true;
1929			return 0;
1930		}
1931	}
1932
1933	ret = map->reg_write(context, reg, val);
1934	if (ret == 0) {
1935		if (regmap_should_log(map))
1936			dev_info(map->dev, "%x <= %x\n", reg, val);
1937
1938		trace_regmap_reg_write(map, reg, val);
1939	}
1940
1941	return ret;
1942}
1943
1944/**
1945 * regmap_write() - Write a value to a single register
1946 *
1947 * @map: Register map to write to
1948 * @reg: Register to write to
1949 * @val: Value to be written
1950 *
1951 * A value of zero will be returned on success, a negative errno will
1952 * be returned in error cases.
1953 */
1954int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1955{
1956	int ret;
1957
1958	if (!IS_ALIGNED(reg, map->reg_stride))
1959		return -EINVAL;
1960
1961	map->lock(map->lock_arg);
1962
1963	ret = _regmap_write(map, reg, val);
1964
1965	map->unlock(map->lock_arg);
1966
1967	return ret;
1968}
1969EXPORT_SYMBOL_GPL(regmap_write);
1970
1971/**
1972 * regmap_write_async() - Write a value to a single register asynchronously
1973 *
1974 * @map: Register map to write to
1975 * @reg: Register to write to
1976 * @val: Value to be written
1977 *
1978 * A value of zero will be returned on success, a negative errno will
1979 * be returned in error cases.
1980 */
1981int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1982{
1983	int ret;
1984
1985	if (!IS_ALIGNED(reg, map->reg_stride))
1986		return -EINVAL;
1987
1988	map->lock(map->lock_arg);
1989
1990	map->async = true;
1991
1992	ret = _regmap_write(map, reg, val);
1993
1994	map->async = false;
1995
1996	map->unlock(map->lock_arg);
1997
1998	return ret;
1999}
2000EXPORT_SYMBOL_GPL(regmap_write_async);
2001
2002int _regmap_raw_write(struct regmap *map, unsigned int reg,
2003		      const void *val, size_t val_len, bool noinc)
2004{
2005	size_t val_bytes = map->format.val_bytes;
2006	size_t val_count = val_len / val_bytes;
2007	size_t chunk_count, chunk_bytes;
2008	size_t chunk_regs = val_count;
2009	int ret, i;
2010
2011	if (!val_count)
2012		return -EINVAL;
2013
2014	if (map->use_single_write)
2015		chunk_regs = 1;
2016	else if (map->max_raw_write && val_len > map->max_raw_write)
2017		chunk_regs = map->max_raw_write / val_bytes;
2018
2019	chunk_count = val_count / chunk_regs;
2020	chunk_bytes = chunk_regs * val_bytes;
2021
2022	/* Write as many bytes as possible with chunk_size */
2023	for (i = 0; i < chunk_count; i++) {
2024		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2025		if (ret)
2026			return ret;
2027
2028		reg += regmap_get_offset(map, chunk_regs);
2029		val += chunk_bytes;
2030		val_len -= chunk_bytes;
2031	}
2032
2033	/* Write remaining bytes */
2034	if (val_len)
2035		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2036
2037	return ret;
2038}
2039
2040/**
2041 * regmap_raw_write() - Write raw values to one or more registers
2042 *
2043 * @map: Register map to write to
2044 * @reg: Initial register to write to
2045 * @val: Block of data to be written, laid out for direct transmission to the
2046 *       device
2047 * @val_len: Length of data pointed to by val.
2048 *
2049 * This function is intended to be used for things like firmware
2050 * download where a large block of data needs to be transferred to the
2051 * device.  No formatting will be done on the data provided.
2052 *
2053 * A value of zero will be returned on success, a negative errno will
2054 * be returned in error cases.
2055 */
2056int regmap_raw_write(struct regmap *map, unsigned int reg,
2057		     const void *val, size_t val_len)
2058{
2059	int ret;
2060
2061	if (!regmap_can_raw_write(map))
2062		return -EINVAL;
2063	if (val_len % map->format.val_bytes)
2064		return -EINVAL;
 
 
2065
2066	map->lock(map->lock_arg);
2067
2068	ret = _regmap_raw_write(map, reg, val, val_len, false);
2069
2070	map->unlock(map->lock_arg);
2071
2072	return ret;
2073}
2074EXPORT_SYMBOL_GPL(regmap_raw_write);
2075
2076static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2077				  void *val, unsigned int val_len, bool write)
2078{
2079	size_t val_bytes = map->format.val_bytes;
2080	size_t val_count = val_len / val_bytes;
2081	unsigned int lastval;
2082	u8 *u8p;
2083	u16 *u16p;
2084	u32 *u32p;
2085	int ret;
2086	int i;
2087
2088	switch (val_bytes) {
2089	case 1:
2090		u8p = val;
2091		if (write)
2092			lastval = (unsigned int)u8p[val_count - 1];
2093		break;
2094	case 2:
2095		u16p = val;
2096		if (write)
2097			lastval = (unsigned int)u16p[val_count - 1];
2098		break;
2099	case 4:
2100		u32p = val;
2101		if (write)
2102			lastval = (unsigned int)u32p[val_count - 1];
2103		break;
2104	default:
2105		return -EINVAL;
2106	}
2107
2108	/*
2109	 * Update the cache with the last value we write, the rest is just
2110	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2111	 * sure a single read from the cache will work.
2112	 */
2113	if (write) {
2114		if (!map->cache_bypass && !map->defer_caching) {
2115			ret = regcache_write(map, reg, lastval);
2116			if (ret != 0)
2117				return ret;
2118			if (map->cache_only) {
2119				map->cache_dirty = true;
2120				return 0;
2121			}
2122		}
2123		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2124	} else {
2125		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2126	}
2127
2128	if (!ret && regmap_should_log(map)) {
2129		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2130		for (i = 0; i < val_count; i++) {
2131			switch (val_bytes) {
2132			case 1:
2133				pr_cont("%x", u8p[i]);
2134				break;
2135			case 2:
2136				pr_cont("%x", u16p[i]);
2137				break;
2138			case 4:
2139				pr_cont("%x", u32p[i]);
2140				break;
2141			default:
2142				break;
2143			}
2144			if (i == (val_count - 1))
2145				pr_cont("]\n");
2146			else
2147				pr_cont(",");
2148		}
2149	}
2150
2151	return 0;
2152}
2153
2154/**
2155 * regmap_noinc_write(): Write data to a register without incrementing the
2156 *			register number
2157 *
2158 * @map: Register map to write to
2159 * @reg: Register to write to
2160 * @val: Pointer to data buffer
2161 * @val_len: Length of output buffer in bytes.
2162 *
2163 * The regmap API usually assumes that bulk bus write operations will write a
2164 * range of registers. Some devices have certain registers for which a write
2165 * operation can write to an internal FIFO.
2166 *
2167 * The target register must be volatile but registers after it can be
2168 * completely unrelated cacheable registers.
2169 *
2170 * This will attempt multiple writes as required to write val_len bytes.
2171 *
2172 * A value of zero will be returned on success, a negative errno will be
2173 * returned in error cases.
2174 */
2175int regmap_noinc_write(struct regmap *map, unsigned int reg,
2176		      const void *val, size_t val_len)
2177{
2178	size_t write_len;
2179	int ret;
2180
2181	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2182		return -EINVAL;
2183	if (val_len % map->format.val_bytes)
2184		return -EINVAL;
2185	if (!IS_ALIGNED(reg, map->reg_stride))
2186		return -EINVAL;
2187	if (val_len == 0)
2188		return -EINVAL;
2189
2190	map->lock(map->lock_arg);
2191
2192	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2193		ret = -EINVAL;
2194		goto out_unlock;
2195	}
2196
2197	/*
2198	 * Use the accelerated operation if we can. The val drops the const
2199	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2200	 */
2201	if (map->bus->reg_noinc_write) {
2202		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2203		goto out_unlock;
2204	}
2205
2206	while (val_len) {
2207		if (map->max_raw_write && map->max_raw_write < val_len)
2208			write_len = map->max_raw_write;
2209		else
2210			write_len = val_len;
2211		ret = _regmap_raw_write(map, reg, val, write_len, true);
2212		if (ret)
2213			goto out_unlock;
2214		val = ((u8 *)val) + write_len;
2215		val_len -= write_len;
2216	}
2217
2218out_unlock:
2219	map->unlock(map->lock_arg);
2220	return ret;
2221}
2222EXPORT_SYMBOL_GPL(regmap_noinc_write);
2223
2224/**
2225 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2226 *                                   register field.
 
2227 *
2228 * @field: Register field to write to
2229 * @mask: Bitmask to change
2230 * @val: Value to be written
2231 * @change: Boolean indicating if a write was done
2232 * @async: Boolean indicating asynchronously
2233 * @force: Boolean indicating use force update
2234 *
2235 * Perform a read/modify/write cycle on the register field with change,
2236 * async, force option.
2237 *
2238 * A value of zero will be returned on success, a negative errno will
2239 * be returned in error cases.
2240 */
2241int regmap_field_update_bits_base(struct regmap_field *field,
2242				  unsigned int mask, unsigned int val,
2243				  bool *change, bool async, bool force)
2244{
2245	mask = (mask << field->shift) & field->mask;
2246
2247	return regmap_update_bits_base(field->regmap, field->reg,
2248				       mask, val << field->shift,
2249				       change, async, force);
2250}
2251EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2252
2253/**
2254 * regmap_field_test_bits() - Check if all specified bits are set in a
2255 *                            register field.
2256 *
2257 * @field: Register field to operate on
2258 * @bits: Bits to test
2259 *
2260 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2261 * tested bits is not set and 1 if all tested bits are set.
2262 */
2263int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2264{
2265	unsigned int val, ret;
2266
2267	ret = regmap_field_read(field, &val);
2268	if (ret)
2269		return ret;
2270
2271	return (val & bits) == bits;
2272}
2273EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2274
2275/**
2276 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2277 *                                    register field with port ID
2278 *
2279 * @field: Register field to write to
2280 * @id: port ID
2281 * @mask: Bitmask to change
2282 * @val: Value to be written
2283 * @change: Boolean indicating if a write was done
2284 * @async: Boolean indicating asynchronously
2285 * @force: Boolean indicating use force update
2286 *
2287 * A value of zero will be returned on success, a negative errno will
2288 * be returned in error cases.
2289 */
2290int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2291				   unsigned int mask, unsigned int val,
2292				   bool *change, bool async, bool force)
2293{
2294	if (id >= field->id_size)
2295		return -EINVAL;
2296
2297	mask = (mask << field->shift) & field->mask;
2298
2299	return regmap_update_bits_base(field->regmap,
2300				       field->reg + (field->id_offset * id),
2301				       mask, val << field->shift,
2302				       change, async, force);
2303}
2304EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2305
2306/**
2307 * regmap_bulk_write() - Write multiple registers to the device
2308 *
2309 * @map: Register map to write to
2310 * @reg: First register to be write from
2311 * @val: Block of data to be written, in native register size for device
2312 * @val_count: Number of registers to write
2313 *
2314 * This function is intended to be used for writing a large block of
2315 * data to the device either in single transfer or multiple transfer.
2316 *
2317 * A value of zero will be returned on success, a negative errno will
2318 * be returned in error cases.
2319 */
2320int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2321		     size_t val_count)
2322{
2323	int ret = 0, i;
2324	size_t val_bytes = map->format.val_bytes;
 
2325
 
 
2326	if (!IS_ALIGNED(reg, map->reg_stride))
2327		return -EINVAL;
2328
2329	/*
2330	 * Some devices don't support bulk write, for them we have a series of
2331	 * single write operations.
 
 
 
 
 
 
2332	 */
2333	if (!map->write || !map->format.parse_inplace) {
2334		map->lock(map->lock_arg);
2335		for (i = 0; i < val_count; i++) {
2336			unsigned int ival;
2337
2338			switch (val_bytes) {
2339			case 1:
2340				ival = *(u8 *)(val + (i * val_bytes));
2341				break;
2342			case 2:
2343				ival = *(u16 *)(val + (i * val_bytes));
2344				break;
2345			case 4:
2346				ival = *(u32 *)(val + (i * val_bytes));
2347				break;
 
 
 
 
 
2348			default:
2349				ret = -EINVAL;
2350				goto out;
2351			}
2352
2353			ret = _regmap_write(map,
2354					    reg + regmap_get_offset(map, i),
2355					    ival);
2356			if (ret != 0)
2357				goto out;
2358		}
2359out:
2360		map->unlock(map->lock_arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2361	} else {
2362		void *wval;
2363
2364		wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
2365		if (!wval)
 
 
 
 
2366			return -ENOMEM;
2367
2368		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2369			map->format.parse_inplace(wval + i);
2370
2371		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
 
 
2372
2373		kfree(wval);
2374	}
2375
2376	if (!ret)
2377		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2378
2379	return ret;
2380}
2381EXPORT_SYMBOL_GPL(regmap_bulk_write);
2382
2383/*
2384 * _regmap_raw_multi_reg_write()
2385 *
2386 * the (register,newvalue) pairs in regs have not been formatted, but
2387 * they are all in the same page and have been changed to being page
2388 * relative. The page register has been written if that was necessary.
2389 */
2390static int _regmap_raw_multi_reg_write(struct regmap *map,
2391				       const struct reg_sequence *regs,
2392				       size_t num_regs)
2393{
2394	int ret;
2395	void *buf;
2396	int i;
2397	u8 *u8;
2398	size_t val_bytes = map->format.val_bytes;
2399	size_t reg_bytes = map->format.reg_bytes;
2400	size_t pad_bytes = map->format.pad_bytes;
2401	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2402	size_t len = pair_size * num_regs;
2403
2404	if (!len)
2405		return -EINVAL;
2406
2407	buf = kzalloc(len, GFP_KERNEL);
2408	if (!buf)
2409		return -ENOMEM;
2410
2411	/* We have to linearise by hand. */
2412
2413	u8 = buf;
2414
2415	for (i = 0; i < num_regs; i++) {
2416		unsigned int reg = regs[i].reg;
2417		unsigned int val = regs[i].def;
2418		trace_regmap_hw_write_start(map, reg, 1);
2419		reg = regmap_reg_addr(map, reg);
2420		map->format.format_reg(u8, reg, map->reg_shift);
2421		u8 += reg_bytes + pad_bytes;
2422		map->format.format_val(u8, val, 0);
2423		u8 += val_bytes;
2424	}
2425	u8 = buf;
2426	*u8 |= map->write_flag_mask;
2427
2428	ret = map->write(map->bus_context, buf, len);
2429
2430	kfree(buf);
2431
2432	for (i = 0; i < num_regs; i++) {
2433		int reg = regs[i].reg;
2434		trace_regmap_hw_write_done(map, reg, 1);
2435	}
2436	return ret;
2437}
2438
2439static unsigned int _regmap_register_page(struct regmap *map,
2440					  unsigned int reg,
2441					  struct regmap_range_node *range)
2442{
2443	unsigned int win_page = (reg - range->range_min) / range->window_len;
2444
2445	return win_page;
2446}
2447
2448static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2449					       struct reg_sequence *regs,
2450					       size_t num_regs)
2451{
2452	int ret;
2453	int i, n;
2454	struct reg_sequence *base;
2455	unsigned int this_page = 0;
2456	unsigned int page_change = 0;
2457	/*
2458	 * the set of registers are not neccessarily in order, but
2459	 * since the order of write must be preserved this algorithm
2460	 * chops the set each time the page changes. This also applies
2461	 * if there is a delay required at any point in the sequence.
2462	 */
2463	base = regs;
2464	for (i = 0, n = 0; i < num_regs; i++, n++) {
2465		unsigned int reg = regs[i].reg;
2466		struct regmap_range_node *range;
2467
2468		range = _regmap_range_lookup(map, reg);
2469		if (range) {
2470			unsigned int win_page = _regmap_register_page(map, reg,
2471								      range);
2472
2473			if (i == 0)
2474				this_page = win_page;
2475			if (win_page != this_page) {
2476				this_page = win_page;
2477				page_change = 1;
2478			}
2479		}
2480
2481		/* If we have both a page change and a delay make sure to
2482		 * write the regs and apply the delay before we change the
2483		 * page.
2484		 */
2485
2486		if (page_change || regs[i].delay_us) {
2487
2488				/* For situations where the first write requires
2489				 * a delay we need to make sure we don't call
2490				 * raw_multi_reg_write with n=0
2491				 * This can't occur with page breaks as we
2492				 * never write on the first iteration
2493				 */
2494				if (regs[i].delay_us && i == 0)
2495					n = 1;
2496
2497				ret = _regmap_raw_multi_reg_write(map, base, n);
2498				if (ret != 0)
2499					return ret;
2500
2501				if (regs[i].delay_us) {
2502					if (map->can_sleep)
2503						fsleep(regs[i].delay_us);
2504					else
2505						udelay(regs[i].delay_us);
2506				}
2507
2508				base += n;
2509				n = 0;
2510
2511				if (page_change) {
2512					ret = _regmap_select_page(map,
2513								  &base[n].reg,
2514								  range, 1);
2515					if (ret != 0)
2516						return ret;
2517
2518					page_change = 0;
2519				}
2520
2521		}
2522
2523	}
2524	if (n > 0)
2525		return _regmap_raw_multi_reg_write(map, base, n);
2526	return 0;
2527}
2528
2529static int _regmap_multi_reg_write(struct regmap *map,
2530				   const struct reg_sequence *regs,
2531				   size_t num_regs)
2532{
2533	int i;
2534	int ret;
2535
2536	if (!map->can_multi_write) {
2537		for (i = 0; i < num_regs; i++) {
2538			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2539			if (ret != 0)
2540				return ret;
2541
2542			if (regs[i].delay_us) {
2543				if (map->can_sleep)
2544					fsleep(regs[i].delay_us);
2545				else
2546					udelay(regs[i].delay_us);
2547			}
2548		}
2549		return 0;
2550	}
2551
2552	if (!map->format.parse_inplace)
2553		return -EINVAL;
2554
2555	if (map->writeable_reg)
2556		for (i = 0; i < num_regs; i++) {
2557			int reg = regs[i].reg;
2558			if (!map->writeable_reg(map->dev, reg))
2559				return -EINVAL;
2560			if (!IS_ALIGNED(reg, map->reg_stride))
2561				return -EINVAL;
2562		}
2563
2564	if (!map->cache_bypass) {
2565		for (i = 0; i < num_regs; i++) {
2566			unsigned int val = regs[i].def;
2567			unsigned int reg = regs[i].reg;
2568			ret = regcache_write(map, reg, val);
2569			if (ret) {
2570				dev_err(map->dev,
2571				"Error in caching of register: %x ret: %d\n",
2572								reg, ret);
2573				return ret;
2574			}
2575		}
2576		if (map->cache_only) {
2577			map->cache_dirty = true;
2578			return 0;
2579		}
2580	}
2581
2582	WARN_ON(!map->bus);
2583
2584	for (i = 0; i < num_regs; i++) {
2585		unsigned int reg = regs[i].reg;
2586		struct regmap_range_node *range;
2587
2588		/* Coalesce all the writes between a page break or a delay
2589		 * in a sequence
2590		 */
2591		range = _regmap_range_lookup(map, reg);
2592		if (range || regs[i].delay_us) {
2593			size_t len = sizeof(struct reg_sequence)*num_regs;
2594			struct reg_sequence *base = kmemdup(regs, len,
2595							   GFP_KERNEL);
2596			if (!base)
2597				return -ENOMEM;
2598			ret = _regmap_range_multi_paged_reg_write(map, base,
2599								  num_regs);
2600			kfree(base);
2601
2602			return ret;
2603		}
2604	}
2605	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2606}
2607
2608/**
2609 * regmap_multi_reg_write() - Write multiple registers to the device
 
 
 
2610 *
2611 * @map: Register map to write to
2612 * @regs: Array of structures containing register,value to be written
2613 * @num_regs: Number of registers to write
2614 *
2615 * Write multiple registers to the device where the set of register, value
2616 * pairs are supplied in any order, possibly not all in a single range.
2617 *
2618 * The 'normal' block write mode will send ultimately send data on the
2619 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2620 * addressed. However, this alternative block multi write mode will send
2621 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2622 * must of course support the mode.
2623 *
2624 * A value of zero will be returned on success, a negative errno will be
2625 * returned in error cases.
2626 */
2627int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2628			   int num_regs)
2629{
2630	int ret;
2631
2632	map->lock(map->lock_arg);
2633
2634	ret = _regmap_multi_reg_write(map, regs, num_regs);
2635
2636	map->unlock(map->lock_arg);
2637
2638	return ret;
2639}
2640EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2641
2642/**
2643 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2644 *                                     device but not the cache
 
 
2645 *
2646 * @map: Register map to write to
2647 * @regs: Array of structures containing register,value to be written
2648 * @num_regs: Number of registers to write
2649 *
2650 * Write multiple registers to the device but not the cache where the set
2651 * of register are supplied in any order.
2652 *
2653 * This function is intended to be used for writing a large block of data
2654 * atomically to the device in single transfer for those I2C client devices
2655 * that implement this alternative block write mode.
2656 *
2657 * A value of zero will be returned on success, a negative errno will
2658 * be returned in error cases.
2659 */
2660int regmap_multi_reg_write_bypassed(struct regmap *map,
2661				    const struct reg_sequence *regs,
2662				    int num_regs)
2663{
2664	int ret;
2665	bool bypass;
2666
2667	map->lock(map->lock_arg);
2668
2669	bypass = map->cache_bypass;
2670	map->cache_bypass = true;
2671
2672	ret = _regmap_multi_reg_write(map, regs, num_regs);
2673
2674	map->cache_bypass = bypass;
2675
2676	map->unlock(map->lock_arg);
2677
2678	return ret;
2679}
2680EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2681
2682/**
2683 * regmap_raw_write_async() - Write raw values to one or more registers
2684 *                            asynchronously
2685 *
2686 * @map: Register map to write to
2687 * @reg: Initial register to write to
2688 * @val: Block of data to be written, laid out for direct transmission to the
2689 *       device.  Must be valid until regmap_async_complete() is called.
2690 * @val_len: Length of data pointed to by val.
2691 *
2692 * This function is intended to be used for things like firmware
2693 * download where a large block of data needs to be transferred to the
2694 * device.  No formatting will be done on the data provided.
2695 *
2696 * If supported by the underlying bus the write will be scheduled
2697 * asynchronously, helping maximise I/O speed on higher speed buses
2698 * like SPI.  regmap_async_complete() can be called to ensure that all
2699 * asynchrnous writes have been completed.
2700 *
2701 * A value of zero will be returned on success, a negative errno will
2702 * be returned in error cases.
2703 */
2704int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2705			   const void *val, size_t val_len)
2706{
2707	int ret;
2708
2709	if (val_len % map->format.val_bytes)
2710		return -EINVAL;
2711	if (!IS_ALIGNED(reg, map->reg_stride))
2712		return -EINVAL;
2713
2714	map->lock(map->lock_arg);
2715
2716	map->async = true;
2717
2718	ret = _regmap_raw_write(map, reg, val, val_len, false);
2719
2720	map->async = false;
2721
2722	map->unlock(map->lock_arg);
2723
2724	return ret;
2725}
2726EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2727
2728static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2729			    unsigned int val_len, bool noinc)
2730{
2731	struct regmap_range_node *range;
 
2732	int ret;
2733
2734	if (!map->read)
 
 
2735		return -EINVAL;
2736
2737	range = _regmap_range_lookup(map, reg);
2738	if (range) {
2739		ret = _regmap_select_page(map, &reg, range,
2740					  noinc ? 1 : val_len / map->format.val_bytes);
2741		if (ret != 0)
2742			return ret;
2743	}
2744
2745	reg = regmap_reg_addr(map, reg);
2746	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2747	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2748				      map->read_flag_mask);
 
 
 
 
 
 
 
2749	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2750
2751	ret = map->read(map->bus_context, map->work_buf,
2752			map->format.reg_bytes + map->format.pad_bytes,
2753			val, val_len);
2754
2755	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2756
2757	return ret;
2758}
2759
2760static int _regmap_bus_reg_read(void *context, unsigned int reg,
2761				unsigned int *val)
2762{
2763	struct regmap *map = context;
2764	struct regmap_range_node *range;
2765	int ret;
2766
2767	range = _regmap_range_lookup(map, reg);
2768	if (range) {
2769		ret = _regmap_select_page(map, &reg, range, 1);
2770		if (ret != 0)
2771			return ret;
2772	}
2773
2774	reg = regmap_reg_addr(map, reg);
2775	return map->bus->reg_read(map->bus_context, reg, val);
2776}
2777
2778static int _regmap_bus_read(void *context, unsigned int reg,
2779			    unsigned int *val)
2780{
2781	int ret;
2782	struct regmap *map = context;
2783	void *work_val = map->work_buf + map->format.reg_bytes +
2784		map->format.pad_bytes;
2785
2786	if (!map->format.parse_val)
2787		return -EINVAL;
2788
2789	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2790	if (ret == 0)
2791		*val = map->format.parse_val(work_val);
2792
2793	return ret;
2794}
2795
2796static int _regmap_read(struct regmap *map, unsigned int reg,
2797			unsigned int *val)
2798{
2799	int ret;
2800	void *context = _regmap_map_get_context(map);
2801
2802	if (!map->cache_bypass) {
2803		ret = regcache_read(map, reg, val);
2804		if (ret == 0)
2805			return 0;
2806	}
2807
2808	if (map->cache_only)
2809		return -EBUSY;
2810
2811	if (!regmap_readable(map, reg))
2812		return -EIO;
2813
2814	ret = map->reg_read(context, reg, val);
2815	if (ret == 0) {
2816		if (regmap_should_log(map))
 
2817			dev_info(map->dev, "%x => %x\n", reg, *val);
 
2818
2819		trace_regmap_reg_read(map, reg, *val);
2820
2821		if (!map->cache_bypass)
2822			regcache_write(map, reg, *val);
2823	}
2824
2825	return ret;
2826}
2827
2828/**
2829 * regmap_read() - Read a value from a single register
2830 *
2831 * @map: Register map to read from
2832 * @reg: Register to be read from
2833 * @val: Pointer to store read value
2834 *
2835 * A value of zero will be returned on success, a negative errno will
2836 * be returned in error cases.
2837 */
2838int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2839{
2840	int ret;
2841
2842	if (!IS_ALIGNED(reg, map->reg_stride))
2843		return -EINVAL;
2844
2845	map->lock(map->lock_arg);
2846
2847	ret = _regmap_read(map, reg, val);
2848
2849	map->unlock(map->lock_arg);
2850
2851	return ret;
2852}
2853EXPORT_SYMBOL_GPL(regmap_read);
2854
2855/**
2856 * regmap_read_bypassed() - Read a value from a single register direct
2857 *			    from the device, bypassing the cache
2858 *
2859 * @map: Register map to read from
2860 * @reg: Register to be read from
2861 * @val: Pointer to store read value
2862 *
2863 * A value of zero will be returned on success, a negative errno will
2864 * be returned in error cases.
2865 */
2866int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2867{
2868	int ret;
2869	bool bypass, cache_only;
2870
2871	if (!IS_ALIGNED(reg, map->reg_stride))
2872		return -EINVAL;
2873
2874	map->lock(map->lock_arg);
2875
2876	bypass = map->cache_bypass;
2877	cache_only = map->cache_only;
2878	map->cache_bypass = true;
2879	map->cache_only = false;
2880
2881	ret = _regmap_read(map, reg, val);
2882
2883	map->cache_bypass = bypass;
2884	map->cache_only = cache_only;
2885
2886	map->unlock(map->lock_arg);
2887
2888	return ret;
2889}
2890EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2891
2892/**
2893 * regmap_raw_read() - Read raw data from the device
2894 *
2895 * @map: Register map to read from
2896 * @reg: First register to be read from
2897 * @val: Pointer to store read value
2898 * @val_len: Size of data to read
2899 *
2900 * A value of zero will be returned on success, a negative errno will
2901 * be returned in error cases.
2902 */
2903int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2904		    size_t val_len)
2905{
2906	size_t val_bytes = map->format.val_bytes;
2907	size_t val_count = val_len / val_bytes;
2908	unsigned int v;
2909	int ret, i;
2910
 
 
2911	if (val_len % map->format.val_bytes)
2912		return -EINVAL;
2913	if (!IS_ALIGNED(reg, map->reg_stride))
2914		return -EINVAL;
2915	if (val_count == 0)
2916		return -EINVAL;
2917
2918	map->lock(map->lock_arg);
2919
2920	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2921	    map->cache_type == REGCACHE_NONE) {
2922		size_t chunk_count, chunk_bytes;
2923		size_t chunk_regs = val_count;
2924
2925		if (!map->cache_bypass && map->cache_only) {
2926			ret = -EBUSY;
2927			goto out;
2928		}
2929
2930		if (!map->read) {
2931			ret = -ENOTSUPP;
2932			goto out;
2933		}
2934
2935		if (map->use_single_read)
2936			chunk_regs = 1;
2937		else if (map->max_raw_read && val_len > map->max_raw_read)
2938			chunk_regs = map->max_raw_read / val_bytes;
2939
2940		chunk_count = val_count / chunk_regs;
2941		chunk_bytes = chunk_regs * val_bytes;
2942
2943		/* Read bytes that fit into whole chunks */
2944		for (i = 0; i < chunk_count; i++) {
2945			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2946			if (ret != 0)
2947				goto out;
2948
2949			reg += regmap_get_offset(map, chunk_regs);
2950			val += chunk_bytes;
2951			val_len -= chunk_bytes;
2952		}
2953
2954		/* Read remaining bytes */
2955		if (val_len) {
2956			ret = _regmap_raw_read(map, reg, val, val_len, false);
2957			if (ret != 0)
2958				goto out;
2959		}
2960	} else {
2961		/* Otherwise go word by word for the cache; should be low
2962		 * cost as we expect to hit the cache.
2963		 */
2964		for (i = 0; i < val_count; i++) {
2965			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2966					   &v);
2967			if (ret != 0)
2968				goto out;
2969
2970			map->format.format_val(val + (i * val_bytes), v, 0);
2971		}
2972	}
2973
2974 out:
2975	map->unlock(map->lock_arg);
2976
2977	return ret;
2978}
2979EXPORT_SYMBOL_GPL(regmap_raw_read);
2980
2981/**
2982 * regmap_noinc_read(): Read data from a register without incrementing the
2983 *			register number
2984 *
2985 * @map: Register map to read from
2986 * @reg: Register to read from
2987 * @val: Pointer to data buffer
2988 * @val_len: Length of output buffer in bytes.
2989 *
2990 * The regmap API usually assumes that bulk read operations will read a
2991 * range of registers. Some devices have certain registers for which a read
2992 * operation read will read from an internal FIFO.
2993 *
2994 * The target register must be volatile but registers after it can be
2995 * completely unrelated cacheable registers.
2996 *
2997 * This will attempt multiple reads as required to read val_len bytes.
2998 *
2999 * A value of zero will be returned on success, a negative errno will be
3000 * returned in error cases.
3001 */
3002int regmap_noinc_read(struct regmap *map, unsigned int reg,
3003		      void *val, size_t val_len)
3004{
3005	size_t read_len;
3006	int ret;
3007
3008	if (!map->read)
3009		return -ENOTSUPP;
3010
3011	if (val_len % map->format.val_bytes)
3012		return -EINVAL;
3013	if (!IS_ALIGNED(reg, map->reg_stride))
3014		return -EINVAL;
3015	if (val_len == 0)
3016		return -EINVAL;
3017
3018	map->lock(map->lock_arg);
3019
3020	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3021		ret = -EINVAL;
3022		goto out_unlock;
3023	}
3024
3025	/*
3026	 * We have not defined the FIFO semantics for cache, as the
3027	 * cache is just one value deep. Should we return the last
3028	 * written value? Just avoid this by always reading the FIFO
3029	 * even when using cache. Cache only will not work.
3030	 */
3031	if (!map->cache_bypass && map->cache_only) {
3032		ret = -EBUSY;
3033		goto out_unlock;
3034	}
3035
3036	/* Use the accelerated operation if we can */
3037	if (map->bus->reg_noinc_read) {
3038		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3039		goto out_unlock;
3040	}
3041
3042	while (val_len) {
3043		if (map->max_raw_read && map->max_raw_read < val_len)
3044			read_len = map->max_raw_read;
3045		else
3046			read_len = val_len;
3047		ret = _regmap_raw_read(map, reg, val, read_len, true);
3048		if (ret)
3049			goto out_unlock;
3050		val = ((u8 *)val) + read_len;
3051		val_len -= read_len;
3052	}
3053
3054out_unlock:
3055	map->unlock(map->lock_arg);
3056	return ret;
3057}
3058EXPORT_SYMBOL_GPL(regmap_noinc_read);
3059
3060/**
3061 * regmap_field_read(): Read a value to a single register field
3062 *
3063 * @field: Register field to read from
3064 * @val: Pointer to store read value
3065 *
3066 * A value of zero will be returned on success, a negative errno will
3067 * be returned in error cases.
3068 */
3069int regmap_field_read(struct regmap_field *field, unsigned int *val)
3070{
3071	int ret;
3072	unsigned int reg_val;
3073	ret = regmap_read(field->regmap, field->reg, &reg_val);
3074	if (ret != 0)
3075		return ret;
3076
3077	reg_val &= field->mask;
3078	reg_val >>= field->shift;
3079	*val = reg_val;
3080
3081	return ret;
3082}
3083EXPORT_SYMBOL_GPL(regmap_field_read);
3084
3085/**
3086 * regmap_fields_read() - Read a value to a single register field with port ID
3087 *
3088 * @field: Register field to read from
3089 * @id: port ID
3090 * @val: Pointer to store read value
3091 *
3092 * A value of zero will be returned on success, a negative errno will
3093 * be returned in error cases.
3094 */
3095int regmap_fields_read(struct regmap_field *field, unsigned int id,
3096		       unsigned int *val)
3097{
3098	int ret;
3099	unsigned int reg_val;
3100
3101	if (id >= field->id_size)
3102		return -EINVAL;
3103
3104	ret = regmap_read(field->regmap,
3105			  field->reg + (field->id_offset * id),
3106			  &reg_val);
3107	if (ret != 0)
3108		return ret;
3109
3110	reg_val &= field->mask;
3111	reg_val >>= field->shift;
3112	*val = reg_val;
3113
3114	return ret;
3115}
3116EXPORT_SYMBOL_GPL(regmap_fields_read);
3117
3118static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3119			     unsigned int *regs, void *val, size_t val_count)
3120{
3121	u32 *u32 = val;
3122	u16 *u16 = val;
3123	u8 *u8 = val;
3124	int ret, i;
3125
3126	map->lock(map->lock_arg);
3127
3128	for (i = 0; i < val_count; i++) {
3129		unsigned int ival;
3130
3131		if (regs) {
3132			if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3133				ret = -EINVAL;
3134				goto out;
3135			}
3136			ret = _regmap_read(map, regs[i], &ival);
3137		} else {
3138			ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3139		}
3140		if (ret != 0)
3141			goto out;
3142
3143		switch (map->format.val_bytes) {
3144		case 4:
3145			u32[i] = ival;
3146			break;
3147		case 2:
3148			u16[i] = ival;
3149			break;
3150		case 1:
3151			u8[i] = ival;
3152			break;
3153		default:
3154			ret = -EINVAL;
3155			goto out;
3156		}
3157	}
3158out:
3159	map->unlock(map->lock_arg);
3160	return ret;
3161}
3162
3163/**
3164 * regmap_bulk_read() - Read multiple sequential registers from the device
3165 *
3166 * @map: Register map to read from
3167 * @reg: First register to be read from
3168 * @val: Pointer to store read value, in native register size for device
3169 * @val_count: Number of registers to read
3170 *
3171 * A value of zero will be returned on success, a negative errno will
3172 * be returned in error cases.
3173 */
3174int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3175		     size_t val_count)
3176{
3177	int ret, i;
3178	size_t val_bytes = map->format.val_bytes;
3179	bool vol = regmap_volatile_range(map, reg, val_count);
3180
3181	if (!IS_ALIGNED(reg, map->reg_stride))
3182		return -EINVAL;
3183	if (val_count == 0)
3184		return -EINVAL;
3185
3186	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3187		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3188		if (ret != 0)
3189			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3190
3191		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3192			map->format.parse_inplace(val + i);
3193	} else {
3194		ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3195	}
3196	if (!ret)
3197		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3198	return ret;
3199}
3200EXPORT_SYMBOL_GPL(regmap_bulk_read);
3201
3202/**
3203 * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3204 *
3205 * @map: Register map to read from
3206 * @regs: Array of registers to read from
3207 * @val: Pointer to store read value, in native register size for device
3208 * @val_count: Number of registers to read
3209 *
3210 * A value of zero will be returned on success, a negative errno will
3211 * be returned in error cases.
3212 */
3213int regmap_multi_reg_read(struct regmap *map, unsigned int *regs, void *val,
3214			  size_t val_count)
3215{
3216	if (val_count == 0)
3217		return -EINVAL;
3218
3219	return _regmap_bulk_read(map, 0, regs, val, val_count);
3220}
3221EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3222
3223static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3224			       unsigned int mask, unsigned int val,
3225			       bool *change, bool force_write)
3226{
3227	int ret;
3228	unsigned int tmp, orig;
3229
3230	if (change)
3231		*change = false;
3232
3233	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3234		reg = regmap_reg_addr(map, reg);
3235		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3236		if (ret == 0 && change)
3237			*change = true;
3238	} else {
3239		ret = _regmap_read(map, reg, &orig);
3240		if (ret != 0)
3241			return ret;
3242
3243		tmp = orig & ~mask;
3244		tmp |= val & mask;
3245
3246		if (force_write || (tmp != orig) || map->force_write_field) {
3247			ret = _regmap_write(map, reg, tmp);
3248			if (ret == 0 && change)
3249				*change = true;
3250		}
3251	}
3252
3253	return ret;
3254}
3255
3256/**
3257 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
 
 
3258 *
3259 * @map: Register map to update
3260 * @reg: Register to update
3261 * @mask: Bitmask to change
3262 * @val: New value for bitmask
3263 * @change: Boolean indicating if a write was done
3264 * @async: Boolean indicating asynchronously
3265 * @force: Boolean indicating use force update
3266 *
3267 * Perform a read/modify/write cycle on a register map with change, async, force
3268 * options.
3269 *
3270 * If async is true:
3271 *
3272 * With most buses the read must be done synchronously so this is most useful
3273 * for devices with a cache which do not need to interact with the hardware to
3274 * determine the current register value.
3275 *
3276 * Returns zero for success, a negative number on error.
3277 */
3278int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3279			    unsigned int mask, unsigned int val,
3280			    bool *change, bool async, bool force)
3281{
3282	int ret;
3283
3284	map->lock(map->lock_arg);
3285
3286	map->async = async;
3287
3288	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3289
3290	map->async = false;
3291
3292	map->unlock(map->lock_arg);
3293
3294	return ret;
3295}
3296EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3297
3298/**
3299 * regmap_test_bits() - Check if all specified bits are set in a register.
3300 *
3301 * @map: Register map to operate on
3302 * @reg: Register to read from
3303 * @bits: Bits to test
3304 *
3305 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3306 * bits are set and a negative error number if the underlying regmap_read()
3307 * fails.
3308 */
3309int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3310{
3311	unsigned int val, ret;
3312
3313	ret = regmap_read(map, reg, &val);
3314	if (ret)
3315		return ret;
3316
3317	return (val & bits) == bits;
3318}
3319EXPORT_SYMBOL_GPL(regmap_test_bits);
3320
3321void regmap_async_complete_cb(struct regmap_async *async, int ret)
3322{
3323	struct regmap *map = async->map;
3324	bool wake;
3325
3326	trace_regmap_async_io_complete(map);
3327
3328	spin_lock(&map->async_lock);
3329	list_move(&async->list, &map->async_free);
3330	wake = list_empty(&map->async_list);
3331
3332	if (ret != 0)
3333		map->async_ret = ret;
3334
3335	spin_unlock(&map->async_lock);
3336
3337	if (wake)
3338		wake_up(&map->async_waitq);
3339}
3340EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3341
3342static int regmap_async_is_done(struct regmap *map)
3343{
3344	unsigned long flags;
3345	int ret;
3346
3347	spin_lock_irqsave(&map->async_lock, flags);
3348	ret = list_empty(&map->async_list);
3349	spin_unlock_irqrestore(&map->async_lock, flags);
3350
3351	return ret;
3352}
3353
3354/**
3355 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3356 *
3357 * @map: Map to operate on.
3358 *
3359 * Blocks until any pending asynchronous I/O has completed.  Returns
3360 * an error code for any failed I/O operations.
3361 */
3362int regmap_async_complete(struct regmap *map)
3363{
3364	unsigned long flags;
3365	int ret;
3366
3367	/* Nothing to do with no async support */
3368	if (!map->bus || !map->bus->async_write)
3369		return 0;
3370
3371	trace_regmap_async_complete_start(map);
3372
3373	wait_event(map->async_waitq, regmap_async_is_done(map));
3374
3375	spin_lock_irqsave(&map->async_lock, flags);
3376	ret = map->async_ret;
3377	map->async_ret = 0;
3378	spin_unlock_irqrestore(&map->async_lock, flags);
3379
3380	trace_regmap_async_complete_done(map);
3381
3382	return ret;
3383}
3384EXPORT_SYMBOL_GPL(regmap_async_complete);
3385
3386/**
3387 * regmap_register_patch - Register and apply register updates to be applied
3388 *                         on device initialistion
3389 *
3390 * @map: Register map to apply updates to.
3391 * @regs: Values to update.
3392 * @num_regs: Number of entries in regs.
3393 *
3394 * Register a set of register updates to be applied to the device
3395 * whenever the device registers are synchronised with the cache and
3396 * apply them immediately.  Typically this is used to apply
3397 * corrections to be applied to the device defaults on startup, such
3398 * as the updates some vendors provide to undocumented registers.
3399 *
3400 * The caller must ensure that this function cannot be called
3401 * concurrently with either itself or regcache_sync().
3402 */
3403int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3404			  int num_regs)
3405{
3406	struct reg_sequence *p;
3407	int ret;
3408	bool bypass;
3409
3410	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3411	    num_regs))
3412		return 0;
3413
3414	p = krealloc(map->patch,
3415		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3416		     GFP_KERNEL);
3417	if (p) {
3418		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3419		map->patch = p;
3420		map->patch_regs += num_regs;
3421	} else {
3422		return -ENOMEM;
3423	}
3424
3425	map->lock(map->lock_arg);
3426
3427	bypass = map->cache_bypass;
3428
3429	map->cache_bypass = true;
3430	map->async = true;
3431
3432	ret = _regmap_multi_reg_write(map, regs, num_regs);
3433
3434	map->async = false;
3435	map->cache_bypass = bypass;
3436
3437	map->unlock(map->lock_arg);
3438
3439	regmap_async_complete(map);
3440
3441	return ret;
3442}
3443EXPORT_SYMBOL_GPL(regmap_register_patch);
3444
3445/**
3446 * regmap_get_val_bytes() - Report the size of a register value
3447 *
3448 * @map: Register map to operate on.
3449 *
3450 * Report the size of a register value, mainly intended to for use by
3451 * generic infrastructure built on top of regmap.
3452 */
3453int regmap_get_val_bytes(struct regmap *map)
3454{
3455	if (map->format.format_write)
3456		return -EINVAL;
3457
3458	return map->format.val_bytes;
3459}
3460EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3461
3462/**
3463 * regmap_get_max_register() - Report the max register value
3464 *
3465 * @map: Register map to operate on.
3466 *
3467 * Report the max register value, mainly intended to for use by
3468 * generic infrastructure built on top of regmap.
3469 */
3470int regmap_get_max_register(struct regmap *map)
3471{
3472	return map->max_register_is_set ? map->max_register : -EINVAL;
3473}
3474EXPORT_SYMBOL_GPL(regmap_get_max_register);
3475
3476/**
3477 * regmap_get_reg_stride() - Report the register address stride
3478 *
3479 * @map: Register map to operate on.
3480 *
3481 * Report the register address stride, mainly intended to for use by
3482 * generic infrastructure built on top of regmap.
3483 */
3484int regmap_get_reg_stride(struct regmap *map)
3485{
3486	return map->reg_stride;
3487}
3488EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3489
3490/**
3491 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3492 *
3493 * @map: Register map to operate on.
3494 *
3495 * Returns true if an access to the register might sleep, else false.
3496 */
3497bool regmap_might_sleep(struct regmap *map)
3498{
3499	return map->can_sleep;
3500}
3501EXPORT_SYMBOL_GPL(regmap_might_sleep);
3502
3503int regmap_parse_val(struct regmap *map, const void *buf,
3504			unsigned int *val)
3505{
3506	if (!map->format.parse_val)
3507		return -EINVAL;
3508
3509	*val = map->format.parse_val(buf);
3510
3511	return 0;
3512}
3513EXPORT_SYMBOL_GPL(regmap_parse_val);
3514
3515static int __init regmap_initcall(void)
3516{
3517	regmap_debugfs_initcall();
3518
3519	return 0;
3520}
3521postcore_initcall(regmap_initcall);