Loading...
1/*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/mutex.h>
17#include <linux/err.h>
18#include <linux/of.h>
19#include <linux/rbtree.h>
20#include <linux/sched.h>
21#include <linux/delay.h>
22#include <linux/log2.h>
23
24#define CREATE_TRACE_POINTS
25#include "trace.h"
26
27#include "internal.h"
28
29/*
30 * Sometimes for failures during very early init the trace
31 * infrastructure isn't available early enough to be used. For this
32 * sort of problem defining LOG_DEVICE will add printks for basic
33 * register I/O on a specific device.
34 */
35#undef LOG_DEVICE
36
37static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38 unsigned int mask, unsigned int val,
39 bool *change, bool force_write);
40
41static int _regmap_bus_reg_read(void *context, unsigned int reg,
42 unsigned int *val);
43static int _regmap_bus_read(void *context, unsigned int reg,
44 unsigned int *val);
45static int _regmap_bus_formatted_write(void *context, unsigned int reg,
46 unsigned int val);
47static int _regmap_bus_reg_write(void *context, unsigned int reg,
48 unsigned int val);
49static int _regmap_bus_raw_write(void *context, unsigned int reg,
50 unsigned int val);
51
52bool regmap_reg_in_ranges(unsigned int reg,
53 const struct regmap_range *ranges,
54 unsigned int nranges)
55{
56 const struct regmap_range *r;
57 int i;
58
59 for (i = 0, r = ranges; i < nranges; i++, r++)
60 if (regmap_reg_in_range(reg, r))
61 return true;
62 return false;
63}
64EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
65
66bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67 const struct regmap_access_table *table)
68{
69 /* Check "no ranges" first */
70 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
71 return false;
72
73 /* In case zero "yes ranges" are supplied, any reg is OK */
74 if (!table->n_yes_ranges)
75 return true;
76
77 return regmap_reg_in_ranges(reg, table->yes_ranges,
78 table->n_yes_ranges);
79}
80EXPORT_SYMBOL_GPL(regmap_check_range_table);
81
82bool regmap_writeable(struct regmap *map, unsigned int reg)
83{
84 if (map->max_register && reg > map->max_register)
85 return false;
86
87 if (map->writeable_reg)
88 return map->writeable_reg(map->dev, reg);
89
90 if (map->wr_table)
91 return regmap_check_range_table(map, reg, map->wr_table);
92
93 return true;
94}
95
96bool regmap_readable(struct regmap *map, unsigned int reg)
97{
98 if (!map->reg_read)
99 return false;
100
101 if (map->max_register && reg > map->max_register)
102 return false;
103
104 if (map->format.format_write)
105 return false;
106
107 if (map->readable_reg)
108 return map->readable_reg(map->dev, reg);
109
110 if (map->rd_table)
111 return regmap_check_range_table(map, reg, map->rd_table);
112
113 return true;
114}
115
116bool regmap_volatile(struct regmap *map, unsigned int reg)
117{
118 if (!map->format.format_write && !regmap_readable(map, reg))
119 return false;
120
121 if (map->volatile_reg)
122 return map->volatile_reg(map->dev, reg);
123
124 if (map->volatile_table)
125 return regmap_check_range_table(map, reg, map->volatile_table);
126
127 if (map->cache_ops)
128 return false;
129 else
130 return true;
131}
132
133bool regmap_precious(struct regmap *map, unsigned int reg)
134{
135 if (!regmap_readable(map, reg))
136 return false;
137
138 if (map->precious_reg)
139 return map->precious_reg(map->dev, reg);
140
141 if (map->precious_table)
142 return regmap_check_range_table(map, reg, map->precious_table);
143
144 return false;
145}
146
147static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
148 size_t num)
149{
150 unsigned int i;
151
152 for (i = 0; i < num; i++)
153 if (!regmap_volatile(map, reg + i))
154 return false;
155
156 return true;
157}
158
159static void regmap_format_2_6_write(struct regmap *map,
160 unsigned int reg, unsigned int val)
161{
162 u8 *out = map->work_buf;
163
164 *out = (reg << 6) | val;
165}
166
167static void regmap_format_4_12_write(struct regmap *map,
168 unsigned int reg, unsigned int val)
169{
170 __be16 *out = map->work_buf;
171 *out = cpu_to_be16((reg << 12) | val);
172}
173
174static void regmap_format_7_9_write(struct regmap *map,
175 unsigned int reg, unsigned int val)
176{
177 __be16 *out = map->work_buf;
178 *out = cpu_to_be16((reg << 9) | val);
179}
180
181static void regmap_format_10_14_write(struct regmap *map,
182 unsigned int reg, unsigned int val)
183{
184 u8 *out = map->work_buf;
185
186 out[2] = val;
187 out[1] = (val >> 8) | (reg << 6);
188 out[0] = reg >> 2;
189}
190
191static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
192{
193 u8 *b = buf;
194
195 b[0] = val << shift;
196}
197
198static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
199{
200 __be16 *b = buf;
201
202 b[0] = cpu_to_be16(val << shift);
203}
204
205static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
206{
207 __le16 *b = buf;
208
209 b[0] = cpu_to_le16(val << shift);
210}
211
212static void regmap_format_16_native(void *buf, unsigned int val,
213 unsigned int shift)
214{
215 *(u16 *)buf = val << shift;
216}
217
218static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
219{
220 u8 *b = buf;
221
222 val <<= shift;
223
224 b[0] = val >> 16;
225 b[1] = val >> 8;
226 b[2] = val;
227}
228
229static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
230{
231 __be32 *b = buf;
232
233 b[0] = cpu_to_be32(val << shift);
234}
235
236static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
237{
238 __le32 *b = buf;
239
240 b[0] = cpu_to_le32(val << shift);
241}
242
243static void regmap_format_32_native(void *buf, unsigned int val,
244 unsigned int shift)
245{
246 *(u32 *)buf = val << shift;
247}
248
249#ifdef CONFIG_64BIT
250static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
251{
252 __be64 *b = buf;
253
254 b[0] = cpu_to_be64((u64)val << shift);
255}
256
257static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
258{
259 __le64 *b = buf;
260
261 b[0] = cpu_to_le64((u64)val << shift);
262}
263
264static void regmap_format_64_native(void *buf, unsigned int val,
265 unsigned int shift)
266{
267 *(u64 *)buf = (u64)val << shift;
268}
269#endif
270
271static void regmap_parse_inplace_noop(void *buf)
272{
273}
274
275static unsigned int regmap_parse_8(const void *buf)
276{
277 const u8 *b = buf;
278
279 return b[0];
280}
281
282static unsigned int regmap_parse_16_be(const void *buf)
283{
284 const __be16 *b = buf;
285
286 return be16_to_cpu(b[0]);
287}
288
289static unsigned int regmap_parse_16_le(const void *buf)
290{
291 const __le16 *b = buf;
292
293 return le16_to_cpu(b[0]);
294}
295
296static void regmap_parse_16_be_inplace(void *buf)
297{
298 __be16 *b = buf;
299
300 b[0] = be16_to_cpu(b[0]);
301}
302
303static void regmap_parse_16_le_inplace(void *buf)
304{
305 __le16 *b = buf;
306
307 b[0] = le16_to_cpu(b[0]);
308}
309
310static unsigned int regmap_parse_16_native(const void *buf)
311{
312 return *(u16 *)buf;
313}
314
315static unsigned int regmap_parse_24(const void *buf)
316{
317 const u8 *b = buf;
318 unsigned int ret = b[2];
319 ret |= ((unsigned int)b[1]) << 8;
320 ret |= ((unsigned int)b[0]) << 16;
321
322 return ret;
323}
324
325static unsigned int regmap_parse_32_be(const void *buf)
326{
327 const __be32 *b = buf;
328
329 return be32_to_cpu(b[0]);
330}
331
332static unsigned int regmap_parse_32_le(const void *buf)
333{
334 const __le32 *b = buf;
335
336 return le32_to_cpu(b[0]);
337}
338
339static void regmap_parse_32_be_inplace(void *buf)
340{
341 __be32 *b = buf;
342
343 b[0] = be32_to_cpu(b[0]);
344}
345
346static void regmap_parse_32_le_inplace(void *buf)
347{
348 __le32 *b = buf;
349
350 b[0] = le32_to_cpu(b[0]);
351}
352
353static unsigned int regmap_parse_32_native(const void *buf)
354{
355 return *(u32 *)buf;
356}
357
358#ifdef CONFIG_64BIT
359static unsigned int regmap_parse_64_be(const void *buf)
360{
361 const __be64 *b = buf;
362
363 return be64_to_cpu(b[0]);
364}
365
366static unsigned int regmap_parse_64_le(const void *buf)
367{
368 const __le64 *b = buf;
369
370 return le64_to_cpu(b[0]);
371}
372
373static void regmap_parse_64_be_inplace(void *buf)
374{
375 __be64 *b = buf;
376
377 b[0] = be64_to_cpu(b[0]);
378}
379
380static void regmap_parse_64_le_inplace(void *buf)
381{
382 __le64 *b = buf;
383
384 b[0] = le64_to_cpu(b[0]);
385}
386
387static unsigned int regmap_parse_64_native(const void *buf)
388{
389 return *(u64 *)buf;
390}
391#endif
392
393static void regmap_lock_mutex(void *__map)
394{
395 struct regmap *map = __map;
396 mutex_lock(&map->mutex);
397}
398
399static void regmap_unlock_mutex(void *__map)
400{
401 struct regmap *map = __map;
402 mutex_unlock(&map->mutex);
403}
404
405static void regmap_lock_spinlock(void *__map)
406__acquires(&map->spinlock)
407{
408 struct regmap *map = __map;
409 unsigned long flags;
410
411 spin_lock_irqsave(&map->spinlock, flags);
412 map->spinlock_flags = flags;
413}
414
415static void regmap_unlock_spinlock(void *__map)
416__releases(&map->spinlock)
417{
418 struct regmap *map = __map;
419 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
420}
421
422static void dev_get_regmap_release(struct device *dev, void *res)
423{
424 /*
425 * We don't actually have anything to do here; the goal here
426 * is not to manage the regmap but to provide a simple way to
427 * get the regmap back given a struct device.
428 */
429}
430
431static bool _regmap_range_add(struct regmap *map,
432 struct regmap_range_node *data)
433{
434 struct rb_root *root = &map->range_tree;
435 struct rb_node **new = &(root->rb_node), *parent = NULL;
436
437 while (*new) {
438 struct regmap_range_node *this =
439 container_of(*new, struct regmap_range_node, node);
440
441 parent = *new;
442 if (data->range_max < this->range_min)
443 new = &((*new)->rb_left);
444 else if (data->range_min > this->range_max)
445 new = &((*new)->rb_right);
446 else
447 return false;
448 }
449
450 rb_link_node(&data->node, parent, new);
451 rb_insert_color(&data->node, root);
452
453 return true;
454}
455
456static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
457 unsigned int reg)
458{
459 struct rb_node *node = map->range_tree.rb_node;
460
461 while (node) {
462 struct regmap_range_node *this =
463 container_of(node, struct regmap_range_node, node);
464
465 if (reg < this->range_min)
466 node = node->rb_left;
467 else if (reg > this->range_max)
468 node = node->rb_right;
469 else
470 return this;
471 }
472
473 return NULL;
474}
475
476static void regmap_range_exit(struct regmap *map)
477{
478 struct rb_node *next;
479 struct regmap_range_node *range_node;
480
481 next = rb_first(&map->range_tree);
482 while (next) {
483 range_node = rb_entry(next, struct regmap_range_node, node);
484 next = rb_next(&range_node->node);
485 rb_erase(&range_node->node, &map->range_tree);
486 kfree(range_node);
487 }
488
489 kfree(map->selector_work_buf);
490}
491
492int regmap_attach_dev(struct device *dev, struct regmap *map,
493 const struct regmap_config *config)
494{
495 struct regmap **m;
496
497 map->dev = dev;
498
499 regmap_debugfs_init(map, config->name);
500
501 /* Add a devres resource for dev_get_regmap() */
502 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
503 if (!m) {
504 regmap_debugfs_exit(map);
505 return -ENOMEM;
506 }
507 *m = map;
508 devres_add(dev, m);
509
510 return 0;
511}
512EXPORT_SYMBOL_GPL(regmap_attach_dev);
513
514static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
515 const struct regmap_config *config)
516{
517 enum regmap_endian endian;
518
519 /* Retrieve the endianness specification from the regmap config */
520 endian = config->reg_format_endian;
521
522 /* If the regmap config specified a non-default value, use that */
523 if (endian != REGMAP_ENDIAN_DEFAULT)
524 return endian;
525
526 /* Retrieve the endianness specification from the bus config */
527 if (bus && bus->reg_format_endian_default)
528 endian = bus->reg_format_endian_default;
529
530 /* If the bus specified a non-default value, use that */
531 if (endian != REGMAP_ENDIAN_DEFAULT)
532 return endian;
533
534 /* Use this if no other value was found */
535 return REGMAP_ENDIAN_BIG;
536}
537
538enum regmap_endian regmap_get_val_endian(struct device *dev,
539 const struct regmap_bus *bus,
540 const struct regmap_config *config)
541{
542 struct device_node *np;
543 enum regmap_endian endian;
544
545 /* Retrieve the endianness specification from the regmap config */
546 endian = config->val_format_endian;
547
548 /* If the regmap config specified a non-default value, use that */
549 if (endian != REGMAP_ENDIAN_DEFAULT)
550 return endian;
551
552 /* If the dev and dev->of_node exist try to get endianness from DT */
553 if (dev && dev->of_node) {
554 np = dev->of_node;
555
556 /* Parse the device's DT node for an endianness specification */
557 if (of_property_read_bool(np, "big-endian"))
558 endian = REGMAP_ENDIAN_BIG;
559 else if (of_property_read_bool(np, "little-endian"))
560 endian = REGMAP_ENDIAN_LITTLE;
561 else if (of_property_read_bool(np, "native-endian"))
562 endian = REGMAP_ENDIAN_NATIVE;
563
564 /* If the endianness was specified in DT, use that */
565 if (endian != REGMAP_ENDIAN_DEFAULT)
566 return endian;
567 }
568
569 /* Retrieve the endianness specification from the bus config */
570 if (bus && bus->val_format_endian_default)
571 endian = bus->val_format_endian_default;
572
573 /* If the bus specified a non-default value, use that */
574 if (endian != REGMAP_ENDIAN_DEFAULT)
575 return endian;
576
577 /* Use this if no other value was found */
578 return REGMAP_ENDIAN_BIG;
579}
580EXPORT_SYMBOL_GPL(regmap_get_val_endian);
581
582struct regmap *__regmap_init(struct device *dev,
583 const struct regmap_bus *bus,
584 void *bus_context,
585 const struct regmap_config *config,
586 struct lock_class_key *lock_key,
587 const char *lock_name)
588{
589 struct regmap *map;
590 int ret = -EINVAL;
591 enum regmap_endian reg_endian, val_endian;
592 int i, j;
593
594 if (!config)
595 goto err;
596
597 map = kzalloc(sizeof(*map), GFP_KERNEL);
598 if (map == NULL) {
599 ret = -ENOMEM;
600 goto err;
601 }
602
603 if (config->lock && config->unlock) {
604 map->lock = config->lock;
605 map->unlock = config->unlock;
606 map->lock_arg = config->lock_arg;
607 } else {
608 if ((bus && bus->fast_io) ||
609 config->fast_io) {
610 spin_lock_init(&map->spinlock);
611 map->lock = regmap_lock_spinlock;
612 map->unlock = regmap_unlock_spinlock;
613 lockdep_set_class_and_name(&map->spinlock,
614 lock_key, lock_name);
615 } else {
616 mutex_init(&map->mutex);
617 map->lock = regmap_lock_mutex;
618 map->unlock = regmap_unlock_mutex;
619 lockdep_set_class_and_name(&map->mutex,
620 lock_key, lock_name);
621 }
622 map->lock_arg = map;
623 }
624
625 /*
626 * When we write in fast-paths with regmap_bulk_write() don't allocate
627 * scratch buffers with sleeping allocations.
628 */
629 if ((bus && bus->fast_io) || config->fast_io)
630 map->alloc_flags = GFP_ATOMIC;
631 else
632 map->alloc_flags = GFP_KERNEL;
633
634 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
635 map->format.pad_bytes = config->pad_bits / 8;
636 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
637 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
638 config->val_bits + config->pad_bits, 8);
639 map->reg_shift = config->pad_bits % 8;
640 if (config->reg_stride)
641 map->reg_stride = config->reg_stride;
642 else
643 map->reg_stride = 1;
644 if (is_power_of_2(map->reg_stride))
645 map->reg_stride_order = ilog2(map->reg_stride);
646 else
647 map->reg_stride_order = -1;
648 map->use_single_read = config->use_single_rw || !bus || !bus->read;
649 map->use_single_write = config->use_single_rw || !bus || !bus->write;
650 map->can_multi_write = config->can_multi_write && bus && bus->write;
651 if (bus) {
652 map->max_raw_read = bus->max_raw_read;
653 map->max_raw_write = bus->max_raw_write;
654 }
655 map->dev = dev;
656 map->bus = bus;
657 map->bus_context = bus_context;
658 map->max_register = config->max_register;
659 map->wr_table = config->wr_table;
660 map->rd_table = config->rd_table;
661 map->volatile_table = config->volatile_table;
662 map->precious_table = config->precious_table;
663 map->writeable_reg = config->writeable_reg;
664 map->readable_reg = config->readable_reg;
665 map->volatile_reg = config->volatile_reg;
666 map->precious_reg = config->precious_reg;
667 map->cache_type = config->cache_type;
668 map->name = config->name;
669
670 spin_lock_init(&map->async_lock);
671 INIT_LIST_HEAD(&map->async_list);
672 INIT_LIST_HEAD(&map->async_free);
673 init_waitqueue_head(&map->async_waitq);
674
675 if (config->read_flag_mask || config->write_flag_mask) {
676 map->read_flag_mask = config->read_flag_mask;
677 map->write_flag_mask = config->write_flag_mask;
678 } else if (bus) {
679 map->read_flag_mask = bus->read_flag_mask;
680 }
681
682 if (!bus) {
683 map->reg_read = config->reg_read;
684 map->reg_write = config->reg_write;
685
686 map->defer_caching = false;
687 goto skip_format_initialization;
688 } else if (!bus->read || !bus->write) {
689 map->reg_read = _regmap_bus_reg_read;
690 map->reg_write = _regmap_bus_reg_write;
691
692 map->defer_caching = false;
693 goto skip_format_initialization;
694 } else {
695 map->reg_read = _regmap_bus_read;
696 map->reg_update_bits = bus->reg_update_bits;
697 }
698
699 reg_endian = regmap_get_reg_endian(bus, config);
700 val_endian = regmap_get_val_endian(dev, bus, config);
701
702 switch (config->reg_bits + map->reg_shift) {
703 case 2:
704 switch (config->val_bits) {
705 case 6:
706 map->format.format_write = regmap_format_2_6_write;
707 break;
708 default:
709 goto err_map;
710 }
711 break;
712
713 case 4:
714 switch (config->val_bits) {
715 case 12:
716 map->format.format_write = regmap_format_4_12_write;
717 break;
718 default:
719 goto err_map;
720 }
721 break;
722
723 case 7:
724 switch (config->val_bits) {
725 case 9:
726 map->format.format_write = regmap_format_7_9_write;
727 break;
728 default:
729 goto err_map;
730 }
731 break;
732
733 case 10:
734 switch (config->val_bits) {
735 case 14:
736 map->format.format_write = regmap_format_10_14_write;
737 break;
738 default:
739 goto err_map;
740 }
741 break;
742
743 case 8:
744 map->format.format_reg = regmap_format_8;
745 break;
746
747 case 16:
748 switch (reg_endian) {
749 case REGMAP_ENDIAN_BIG:
750 map->format.format_reg = regmap_format_16_be;
751 break;
752 case REGMAP_ENDIAN_NATIVE:
753 map->format.format_reg = regmap_format_16_native;
754 break;
755 default:
756 goto err_map;
757 }
758 break;
759
760 case 24:
761 if (reg_endian != REGMAP_ENDIAN_BIG)
762 goto err_map;
763 map->format.format_reg = regmap_format_24;
764 break;
765
766 case 32:
767 switch (reg_endian) {
768 case REGMAP_ENDIAN_BIG:
769 map->format.format_reg = regmap_format_32_be;
770 break;
771 case REGMAP_ENDIAN_NATIVE:
772 map->format.format_reg = regmap_format_32_native;
773 break;
774 default:
775 goto err_map;
776 }
777 break;
778
779#ifdef CONFIG_64BIT
780 case 64:
781 switch (reg_endian) {
782 case REGMAP_ENDIAN_BIG:
783 map->format.format_reg = regmap_format_64_be;
784 break;
785 case REGMAP_ENDIAN_NATIVE:
786 map->format.format_reg = regmap_format_64_native;
787 break;
788 default:
789 goto err_map;
790 }
791 break;
792#endif
793
794 default:
795 goto err_map;
796 }
797
798 if (val_endian == REGMAP_ENDIAN_NATIVE)
799 map->format.parse_inplace = regmap_parse_inplace_noop;
800
801 switch (config->val_bits) {
802 case 8:
803 map->format.format_val = regmap_format_8;
804 map->format.parse_val = regmap_parse_8;
805 map->format.parse_inplace = regmap_parse_inplace_noop;
806 break;
807 case 16:
808 switch (val_endian) {
809 case REGMAP_ENDIAN_BIG:
810 map->format.format_val = regmap_format_16_be;
811 map->format.parse_val = regmap_parse_16_be;
812 map->format.parse_inplace = regmap_parse_16_be_inplace;
813 break;
814 case REGMAP_ENDIAN_LITTLE:
815 map->format.format_val = regmap_format_16_le;
816 map->format.parse_val = regmap_parse_16_le;
817 map->format.parse_inplace = regmap_parse_16_le_inplace;
818 break;
819 case REGMAP_ENDIAN_NATIVE:
820 map->format.format_val = regmap_format_16_native;
821 map->format.parse_val = regmap_parse_16_native;
822 break;
823 default:
824 goto err_map;
825 }
826 break;
827 case 24:
828 if (val_endian != REGMAP_ENDIAN_BIG)
829 goto err_map;
830 map->format.format_val = regmap_format_24;
831 map->format.parse_val = regmap_parse_24;
832 break;
833 case 32:
834 switch (val_endian) {
835 case REGMAP_ENDIAN_BIG:
836 map->format.format_val = regmap_format_32_be;
837 map->format.parse_val = regmap_parse_32_be;
838 map->format.parse_inplace = regmap_parse_32_be_inplace;
839 break;
840 case REGMAP_ENDIAN_LITTLE:
841 map->format.format_val = regmap_format_32_le;
842 map->format.parse_val = regmap_parse_32_le;
843 map->format.parse_inplace = regmap_parse_32_le_inplace;
844 break;
845 case REGMAP_ENDIAN_NATIVE:
846 map->format.format_val = regmap_format_32_native;
847 map->format.parse_val = regmap_parse_32_native;
848 break;
849 default:
850 goto err_map;
851 }
852 break;
853#ifdef CONFIG_64BIT
854 case 64:
855 switch (val_endian) {
856 case REGMAP_ENDIAN_BIG:
857 map->format.format_val = regmap_format_64_be;
858 map->format.parse_val = regmap_parse_64_be;
859 map->format.parse_inplace = regmap_parse_64_be_inplace;
860 break;
861 case REGMAP_ENDIAN_LITTLE:
862 map->format.format_val = regmap_format_64_le;
863 map->format.parse_val = regmap_parse_64_le;
864 map->format.parse_inplace = regmap_parse_64_le_inplace;
865 break;
866 case REGMAP_ENDIAN_NATIVE:
867 map->format.format_val = regmap_format_64_native;
868 map->format.parse_val = regmap_parse_64_native;
869 break;
870 default:
871 goto err_map;
872 }
873 break;
874#endif
875 }
876
877 if (map->format.format_write) {
878 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
879 (val_endian != REGMAP_ENDIAN_BIG))
880 goto err_map;
881 map->use_single_write = true;
882 }
883
884 if (!map->format.format_write &&
885 !(map->format.format_reg && map->format.format_val))
886 goto err_map;
887
888 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
889 if (map->work_buf == NULL) {
890 ret = -ENOMEM;
891 goto err_map;
892 }
893
894 if (map->format.format_write) {
895 map->defer_caching = false;
896 map->reg_write = _regmap_bus_formatted_write;
897 } else if (map->format.format_val) {
898 map->defer_caching = true;
899 map->reg_write = _regmap_bus_raw_write;
900 }
901
902skip_format_initialization:
903
904 map->range_tree = RB_ROOT;
905 for (i = 0; i < config->num_ranges; i++) {
906 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
907 struct regmap_range_node *new;
908
909 /* Sanity check */
910 if (range_cfg->range_max < range_cfg->range_min) {
911 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
912 range_cfg->range_max, range_cfg->range_min);
913 goto err_range;
914 }
915
916 if (range_cfg->range_max > map->max_register) {
917 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
918 range_cfg->range_max, map->max_register);
919 goto err_range;
920 }
921
922 if (range_cfg->selector_reg > map->max_register) {
923 dev_err(map->dev,
924 "Invalid range %d: selector out of map\n", i);
925 goto err_range;
926 }
927
928 if (range_cfg->window_len == 0) {
929 dev_err(map->dev, "Invalid range %d: window_len 0\n",
930 i);
931 goto err_range;
932 }
933
934 /* Make sure, that this register range has no selector
935 or data window within its boundary */
936 for (j = 0; j < config->num_ranges; j++) {
937 unsigned sel_reg = config->ranges[j].selector_reg;
938 unsigned win_min = config->ranges[j].window_start;
939 unsigned win_max = win_min +
940 config->ranges[j].window_len - 1;
941
942 /* Allow data window inside its own virtual range */
943 if (j == i)
944 continue;
945
946 if (range_cfg->range_min <= sel_reg &&
947 sel_reg <= range_cfg->range_max) {
948 dev_err(map->dev,
949 "Range %d: selector for %d in window\n",
950 i, j);
951 goto err_range;
952 }
953
954 if (!(win_max < range_cfg->range_min ||
955 win_min > range_cfg->range_max)) {
956 dev_err(map->dev,
957 "Range %d: window for %d in window\n",
958 i, j);
959 goto err_range;
960 }
961 }
962
963 new = kzalloc(sizeof(*new), GFP_KERNEL);
964 if (new == NULL) {
965 ret = -ENOMEM;
966 goto err_range;
967 }
968
969 new->map = map;
970 new->name = range_cfg->name;
971 new->range_min = range_cfg->range_min;
972 new->range_max = range_cfg->range_max;
973 new->selector_reg = range_cfg->selector_reg;
974 new->selector_mask = range_cfg->selector_mask;
975 new->selector_shift = range_cfg->selector_shift;
976 new->window_start = range_cfg->window_start;
977 new->window_len = range_cfg->window_len;
978
979 if (!_regmap_range_add(map, new)) {
980 dev_err(map->dev, "Failed to add range %d\n", i);
981 kfree(new);
982 goto err_range;
983 }
984
985 if (map->selector_work_buf == NULL) {
986 map->selector_work_buf =
987 kzalloc(map->format.buf_size, GFP_KERNEL);
988 if (map->selector_work_buf == NULL) {
989 ret = -ENOMEM;
990 goto err_range;
991 }
992 }
993 }
994
995 ret = regcache_init(map, config);
996 if (ret != 0)
997 goto err_range;
998
999 if (dev) {
1000 ret = regmap_attach_dev(dev, map, config);
1001 if (ret != 0)
1002 goto err_regcache;
1003 }
1004
1005 return map;
1006
1007err_regcache:
1008 regcache_exit(map);
1009err_range:
1010 regmap_range_exit(map);
1011 kfree(map->work_buf);
1012err_map:
1013 kfree(map);
1014err:
1015 return ERR_PTR(ret);
1016}
1017EXPORT_SYMBOL_GPL(__regmap_init);
1018
1019static void devm_regmap_release(struct device *dev, void *res)
1020{
1021 regmap_exit(*(struct regmap **)res);
1022}
1023
1024struct regmap *__devm_regmap_init(struct device *dev,
1025 const struct regmap_bus *bus,
1026 void *bus_context,
1027 const struct regmap_config *config,
1028 struct lock_class_key *lock_key,
1029 const char *lock_name)
1030{
1031 struct regmap **ptr, *regmap;
1032
1033 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1034 if (!ptr)
1035 return ERR_PTR(-ENOMEM);
1036
1037 regmap = __regmap_init(dev, bus, bus_context, config,
1038 lock_key, lock_name);
1039 if (!IS_ERR(regmap)) {
1040 *ptr = regmap;
1041 devres_add(dev, ptr);
1042 } else {
1043 devres_free(ptr);
1044 }
1045
1046 return regmap;
1047}
1048EXPORT_SYMBOL_GPL(__devm_regmap_init);
1049
1050static void regmap_field_init(struct regmap_field *rm_field,
1051 struct regmap *regmap, struct reg_field reg_field)
1052{
1053 rm_field->regmap = regmap;
1054 rm_field->reg = reg_field.reg;
1055 rm_field->shift = reg_field.lsb;
1056 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1057 rm_field->id_size = reg_field.id_size;
1058 rm_field->id_offset = reg_field.id_offset;
1059}
1060
1061/**
1062 * devm_regmap_field_alloc(): Allocate and initialise a register field
1063 * in a register map.
1064 *
1065 * @dev: Device that will be interacted with
1066 * @regmap: regmap bank in which this register field is located.
1067 * @reg_field: Register field with in the bank.
1068 *
1069 * The return value will be an ERR_PTR() on error or a valid pointer
1070 * to a struct regmap_field. The regmap_field will be automatically freed
1071 * by the device management code.
1072 */
1073struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1074 struct regmap *regmap, struct reg_field reg_field)
1075{
1076 struct regmap_field *rm_field = devm_kzalloc(dev,
1077 sizeof(*rm_field), GFP_KERNEL);
1078 if (!rm_field)
1079 return ERR_PTR(-ENOMEM);
1080
1081 regmap_field_init(rm_field, regmap, reg_field);
1082
1083 return rm_field;
1084
1085}
1086EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1087
1088/**
1089 * devm_regmap_field_free(): Free register field allocated using
1090 * devm_regmap_field_alloc. Usally drivers need not call this function,
1091 * as the memory allocated via devm will be freed as per device-driver
1092 * life-cyle.
1093 *
1094 * @dev: Device that will be interacted with
1095 * @field: regmap field which should be freed.
1096 */
1097void devm_regmap_field_free(struct device *dev,
1098 struct regmap_field *field)
1099{
1100 devm_kfree(dev, field);
1101}
1102EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1103
1104/**
1105 * regmap_field_alloc(): Allocate and initialise a register field
1106 * in a register map.
1107 *
1108 * @regmap: regmap bank in which this register field is located.
1109 * @reg_field: Register field with in the bank.
1110 *
1111 * The return value will be an ERR_PTR() on error or a valid pointer
1112 * to a struct regmap_field. The regmap_field should be freed by the
1113 * user once its finished working with it using regmap_field_free().
1114 */
1115struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1116 struct reg_field reg_field)
1117{
1118 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1119
1120 if (!rm_field)
1121 return ERR_PTR(-ENOMEM);
1122
1123 regmap_field_init(rm_field, regmap, reg_field);
1124
1125 return rm_field;
1126}
1127EXPORT_SYMBOL_GPL(regmap_field_alloc);
1128
1129/**
1130 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1131 *
1132 * @field: regmap field which should be freed.
1133 */
1134void regmap_field_free(struct regmap_field *field)
1135{
1136 kfree(field);
1137}
1138EXPORT_SYMBOL_GPL(regmap_field_free);
1139
1140/**
1141 * regmap_reinit_cache(): Reinitialise the current register cache
1142 *
1143 * @map: Register map to operate on.
1144 * @config: New configuration. Only the cache data will be used.
1145 *
1146 * Discard any existing register cache for the map and initialize a
1147 * new cache. This can be used to restore the cache to defaults or to
1148 * update the cache configuration to reflect runtime discovery of the
1149 * hardware.
1150 *
1151 * No explicit locking is done here, the user needs to ensure that
1152 * this function will not race with other calls to regmap.
1153 */
1154int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1155{
1156 regcache_exit(map);
1157 regmap_debugfs_exit(map);
1158
1159 map->max_register = config->max_register;
1160 map->writeable_reg = config->writeable_reg;
1161 map->readable_reg = config->readable_reg;
1162 map->volatile_reg = config->volatile_reg;
1163 map->precious_reg = config->precious_reg;
1164 map->cache_type = config->cache_type;
1165
1166 regmap_debugfs_init(map, config->name);
1167
1168 map->cache_bypass = false;
1169 map->cache_only = false;
1170
1171 return regcache_init(map, config);
1172}
1173EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1174
1175/**
1176 * regmap_exit(): Free a previously allocated register map
1177 */
1178void regmap_exit(struct regmap *map)
1179{
1180 struct regmap_async *async;
1181
1182 regcache_exit(map);
1183 regmap_debugfs_exit(map);
1184 regmap_range_exit(map);
1185 if (map->bus && map->bus->free_context)
1186 map->bus->free_context(map->bus_context);
1187 kfree(map->work_buf);
1188 while (!list_empty(&map->async_free)) {
1189 async = list_first_entry_or_null(&map->async_free,
1190 struct regmap_async,
1191 list);
1192 list_del(&async->list);
1193 kfree(async->work_buf);
1194 kfree(async);
1195 }
1196 kfree(map);
1197}
1198EXPORT_SYMBOL_GPL(regmap_exit);
1199
1200static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1201{
1202 struct regmap **r = res;
1203 if (!r || !*r) {
1204 WARN_ON(!r || !*r);
1205 return 0;
1206 }
1207
1208 /* If the user didn't specify a name match any */
1209 if (data)
1210 return (*r)->name == data;
1211 else
1212 return 1;
1213}
1214
1215/**
1216 * dev_get_regmap(): Obtain the regmap (if any) for a device
1217 *
1218 * @dev: Device to retrieve the map for
1219 * @name: Optional name for the register map, usually NULL.
1220 *
1221 * Returns the regmap for the device if one is present, or NULL. If
1222 * name is specified then it must match the name specified when
1223 * registering the device, if it is NULL then the first regmap found
1224 * will be used. Devices with multiple register maps are very rare,
1225 * generic code should normally not need to specify a name.
1226 */
1227struct regmap *dev_get_regmap(struct device *dev, const char *name)
1228{
1229 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1230 dev_get_regmap_match, (void *)name);
1231
1232 if (!r)
1233 return NULL;
1234 return *r;
1235}
1236EXPORT_SYMBOL_GPL(dev_get_regmap);
1237
1238/**
1239 * regmap_get_device(): Obtain the device from a regmap
1240 *
1241 * @map: Register map to operate on.
1242 *
1243 * Returns the underlying device that the regmap has been created for.
1244 */
1245struct device *regmap_get_device(struct regmap *map)
1246{
1247 return map->dev;
1248}
1249EXPORT_SYMBOL_GPL(regmap_get_device);
1250
1251static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1252 struct regmap_range_node *range,
1253 unsigned int val_num)
1254{
1255 void *orig_work_buf;
1256 unsigned int win_offset;
1257 unsigned int win_page;
1258 bool page_chg;
1259 int ret;
1260
1261 win_offset = (*reg - range->range_min) % range->window_len;
1262 win_page = (*reg - range->range_min) / range->window_len;
1263
1264 if (val_num > 1) {
1265 /* Bulk write shouldn't cross range boundary */
1266 if (*reg + val_num - 1 > range->range_max)
1267 return -EINVAL;
1268
1269 /* ... or single page boundary */
1270 if (val_num > range->window_len - win_offset)
1271 return -EINVAL;
1272 }
1273
1274 /* It is possible to have selector register inside data window.
1275 In that case, selector register is located on every page and
1276 it needs no page switching, when accessed alone. */
1277 if (val_num > 1 ||
1278 range->window_start + win_offset != range->selector_reg) {
1279 /* Use separate work_buf during page switching */
1280 orig_work_buf = map->work_buf;
1281 map->work_buf = map->selector_work_buf;
1282
1283 ret = _regmap_update_bits(map, range->selector_reg,
1284 range->selector_mask,
1285 win_page << range->selector_shift,
1286 &page_chg, false);
1287
1288 map->work_buf = orig_work_buf;
1289
1290 if (ret != 0)
1291 return ret;
1292 }
1293
1294 *reg = range->window_start + win_offset;
1295
1296 return 0;
1297}
1298
1299int _regmap_raw_write(struct regmap *map, unsigned int reg,
1300 const void *val, size_t val_len)
1301{
1302 struct regmap_range_node *range;
1303 unsigned long flags;
1304 u8 *u8 = map->work_buf;
1305 void *work_val = map->work_buf + map->format.reg_bytes +
1306 map->format.pad_bytes;
1307 void *buf;
1308 int ret = -ENOTSUPP;
1309 size_t len;
1310 int i;
1311
1312 WARN_ON(!map->bus);
1313
1314 /* Check for unwritable registers before we start */
1315 if (map->writeable_reg)
1316 for (i = 0; i < val_len / map->format.val_bytes; i++)
1317 if (!map->writeable_reg(map->dev,
1318 reg + regmap_get_offset(map, i)))
1319 return -EINVAL;
1320
1321 if (!map->cache_bypass && map->format.parse_val) {
1322 unsigned int ival;
1323 int val_bytes = map->format.val_bytes;
1324 for (i = 0; i < val_len / val_bytes; i++) {
1325 ival = map->format.parse_val(val + (i * val_bytes));
1326 ret = regcache_write(map,
1327 reg + regmap_get_offset(map, i),
1328 ival);
1329 if (ret) {
1330 dev_err(map->dev,
1331 "Error in caching of register: %x ret: %d\n",
1332 reg + i, ret);
1333 return ret;
1334 }
1335 }
1336 if (map->cache_only) {
1337 map->cache_dirty = true;
1338 return 0;
1339 }
1340 }
1341
1342 range = _regmap_range_lookup(map, reg);
1343 if (range) {
1344 int val_num = val_len / map->format.val_bytes;
1345 int win_offset = (reg - range->range_min) % range->window_len;
1346 int win_residue = range->window_len - win_offset;
1347
1348 /* If the write goes beyond the end of the window split it */
1349 while (val_num > win_residue) {
1350 dev_dbg(map->dev, "Writing window %d/%zu\n",
1351 win_residue, val_len / map->format.val_bytes);
1352 ret = _regmap_raw_write(map, reg, val, win_residue *
1353 map->format.val_bytes);
1354 if (ret != 0)
1355 return ret;
1356
1357 reg += win_residue;
1358 val_num -= win_residue;
1359 val += win_residue * map->format.val_bytes;
1360 val_len -= win_residue * map->format.val_bytes;
1361
1362 win_offset = (reg - range->range_min) %
1363 range->window_len;
1364 win_residue = range->window_len - win_offset;
1365 }
1366
1367 ret = _regmap_select_page(map, ®, range, val_num);
1368 if (ret != 0)
1369 return ret;
1370 }
1371
1372 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1373
1374 u8[0] |= map->write_flag_mask;
1375
1376 /*
1377 * Essentially all I/O mechanisms will be faster with a single
1378 * buffer to write. Since register syncs often generate raw
1379 * writes of single registers optimise that case.
1380 */
1381 if (val != work_val && val_len == map->format.val_bytes) {
1382 memcpy(work_val, val, map->format.val_bytes);
1383 val = work_val;
1384 }
1385
1386 if (map->async && map->bus->async_write) {
1387 struct regmap_async *async;
1388
1389 trace_regmap_async_write_start(map, reg, val_len);
1390
1391 spin_lock_irqsave(&map->async_lock, flags);
1392 async = list_first_entry_or_null(&map->async_free,
1393 struct regmap_async,
1394 list);
1395 if (async)
1396 list_del(&async->list);
1397 spin_unlock_irqrestore(&map->async_lock, flags);
1398
1399 if (!async) {
1400 async = map->bus->async_alloc();
1401 if (!async)
1402 return -ENOMEM;
1403
1404 async->work_buf = kzalloc(map->format.buf_size,
1405 GFP_KERNEL | GFP_DMA);
1406 if (!async->work_buf) {
1407 kfree(async);
1408 return -ENOMEM;
1409 }
1410 }
1411
1412 async->map = map;
1413
1414 /* If the caller supplied the value we can use it safely. */
1415 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1416 map->format.reg_bytes + map->format.val_bytes);
1417
1418 spin_lock_irqsave(&map->async_lock, flags);
1419 list_add_tail(&async->list, &map->async_list);
1420 spin_unlock_irqrestore(&map->async_lock, flags);
1421
1422 if (val != work_val)
1423 ret = map->bus->async_write(map->bus_context,
1424 async->work_buf,
1425 map->format.reg_bytes +
1426 map->format.pad_bytes,
1427 val, val_len, async);
1428 else
1429 ret = map->bus->async_write(map->bus_context,
1430 async->work_buf,
1431 map->format.reg_bytes +
1432 map->format.pad_bytes +
1433 val_len, NULL, 0, async);
1434
1435 if (ret != 0) {
1436 dev_err(map->dev, "Failed to schedule write: %d\n",
1437 ret);
1438
1439 spin_lock_irqsave(&map->async_lock, flags);
1440 list_move(&async->list, &map->async_free);
1441 spin_unlock_irqrestore(&map->async_lock, flags);
1442 }
1443
1444 return ret;
1445 }
1446
1447 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1448
1449 /* If we're doing a single register write we can probably just
1450 * send the work_buf directly, otherwise try to do a gather
1451 * write.
1452 */
1453 if (val == work_val)
1454 ret = map->bus->write(map->bus_context, map->work_buf,
1455 map->format.reg_bytes +
1456 map->format.pad_bytes +
1457 val_len);
1458 else if (map->bus->gather_write)
1459 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1460 map->format.reg_bytes +
1461 map->format.pad_bytes,
1462 val, val_len);
1463
1464 /* If that didn't work fall back on linearising by hand. */
1465 if (ret == -ENOTSUPP) {
1466 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1467 buf = kzalloc(len, GFP_KERNEL);
1468 if (!buf)
1469 return -ENOMEM;
1470
1471 memcpy(buf, map->work_buf, map->format.reg_bytes);
1472 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1473 val, val_len);
1474 ret = map->bus->write(map->bus_context, buf, len);
1475
1476 kfree(buf);
1477 }
1478
1479 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1480
1481 return ret;
1482}
1483
1484/**
1485 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1486 *
1487 * @map: Map to check.
1488 */
1489bool regmap_can_raw_write(struct regmap *map)
1490{
1491 return map->bus && map->bus->write && map->format.format_val &&
1492 map->format.format_reg;
1493}
1494EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1495
1496/**
1497 * regmap_get_raw_read_max - Get the maximum size we can read
1498 *
1499 * @map: Map to check.
1500 */
1501size_t regmap_get_raw_read_max(struct regmap *map)
1502{
1503 return map->max_raw_read;
1504}
1505EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1506
1507/**
1508 * regmap_get_raw_write_max - Get the maximum size we can read
1509 *
1510 * @map: Map to check.
1511 */
1512size_t regmap_get_raw_write_max(struct regmap *map)
1513{
1514 return map->max_raw_write;
1515}
1516EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1517
1518static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1519 unsigned int val)
1520{
1521 int ret;
1522 struct regmap_range_node *range;
1523 struct regmap *map = context;
1524
1525 WARN_ON(!map->bus || !map->format.format_write);
1526
1527 range = _regmap_range_lookup(map, reg);
1528 if (range) {
1529 ret = _regmap_select_page(map, ®, range, 1);
1530 if (ret != 0)
1531 return ret;
1532 }
1533
1534 map->format.format_write(map, reg, val);
1535
1536 trace_regmap_hw_write_start(map, reg, 1);
1537
1538 ret = map->bus->write(map->bus_context, map->work_buf,
1539 map->format.buf_size);
1540
1541 trace_regmap_hw_write_done(map, reg, 1);
1542
1543 return ret;
1544}
1545
1546static int _regmap_bus_reg_write(void *context, unsigned int reg,
1547 unsigned int val)
1548{
1549 struct regmap *map = context;
1550
1551 return map->bus->reg_write(map->bus_context, reg, val);
1552}
1553
1554static int _regmap_bus_raw_write(void *context, unsigned int reg,
1555 unsigned int val)
1556{
1557 struct regmap *map = context;
1558
1559 WARN_ON(!map->bus || !map->format.format_val);
1560
1561 map->format.format_val(map->work_buf + map->format.reg_bytes
1562 + map->format.pad_bytes, val, 0);
1563 return _regmap_raw_write(map, reg,
1564 map->work_buf +
1565 map->format.reg_bytes +
1566 map->format.pad_bytes,
1567 map->format.val_bytes);
1568}
1569
1570static inline void *_regmap_map_get_context(struct regmap *map)
1571{
1572 return (map->bus) ? map : map->bus_context;
1573}
1574
1575int _regmap_write(struct regmap *map, unsigned int reg,
1576 unsigned int val)
1577{
1578 int ret;
1579 void *context = _regmap_map_get_context(map);
1580
1581 if (!regmap_writeable(map, reg))
1582 return -EIO;
1583
1584 if (!map->cache_bypass && !map->defer_caching) {
1585 ret = regcache_write(map, reg, val);
1586 if (ret != 0)
1587 return ret;
1588 if (map->cache_only) {
1589 map->cache_dirty = true;
1590 return 0;
1591 }
1592 }
1593
1594#ifdef LOG_DEVICE
1595 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1596 dev_info(map->dev, "%x <= %x\n", reg, val);
1597#endif
1598
1599 trace_regmap_reg_write(map, reg, val);
1600
1601 return map->reg_write(context, reg, val);
1602}
1603
1604/**
1605 * regmap_write(): Write a value to a single register
1606 *
1607 * @map: Register map to write to
1608 * @reg: Register to write to
1609 * @val: Value to be written
1610 *
1611 * A value of zero will be returned on success, a negative errno will
1612 * be returned in error cases.
1613 */
1614int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1615{
1616 int ret;
1617
1618 if (!IS_ALIGNED(reg, map->reg_stride))
1619 return -EINVAL;
1620
1621 map->lock(map->lock_arg);
1622
1623 ret = _regmap_write(map, reg, val);
1624
1625 map->unlock(map->lock_arg);
1626
1627 return ret;
1628}
1629EXPORT_SYMBOL_GPL(regmap_write);
1630
1631/**
1632 * regmap_write_async(): Write a value to a single register asynchronously
1633 *
1634 * @map: Register map to write to
1635 * @reg: Register to write to
1636 * @val: Value to be written
1637 *
1638 * A value of zero will be returned on success, a negative errno will
1639 * be returned in error cases.
1640 */
1641int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1642{
1643 int ret;
1644
1645 if (!IS_ALIGNED(reg, map->reg_stride))
1646 return -EINVAL;
1647
1648 map->lock(map->lock_arg);
1649
1650 map->async = true;
1651
1652 ret = _regmap_write(map, reg, val);
1653
1654 map->async = false;
1655
1656 map->unlock(map->lock_arg);
1657
1658 return ret;
1659}
1660EXPORT_SYMBOL_GPL(regmap_write_async);
1661
1662/**
1663 * regmap_raw_write(): Write raw values to one or more registers
1664 *
1665 * @map: Register map to write to
1666 * @reg: Initial register to write to
1667 * @val: Block of data to be written, laid out for direct transmission to the
1668 * device
1669 * @val_len: Length of data pointed to by val.
1670 *
1671 * This function is intended to be used for things like firmware
1672 * download where a large block of data needs to be transferred to the
1673 * device. No formatting will be done on the data provided.
1674 *
1675 * A value of zero will be returned on success, a negative errno will
1676 * be returned in error cases.
1677 */
1678int regmap_raw_write(struct regmap *map, unsigned int reg,
1679 const void *val, size_t val_len)
1680{
1681 int ret;
1682
1683 if (!regmap_can_raw_write(map))
1684 return -EINVAL;
1685 if (val_len % map->format.val_bytes)
1686 return -EINVAL;
1687 if (map->max_raw_write && map->max_raw_write > val_len)
1688 return -E2BIG;
1689
1690 map->lock(map->lock_arg);
1691
1692 ret = _regmap_raw_write(map, reg, val, val_len);
1693
1694 map->unlock(map->lock_arg);
1695
1696 return ret;
1697}
1698EXPORT_SYMBOL_GPL(regmap_raw_write);
1699
1700/**
1701 * regmap_field_update_bits_base():
1702 * Perform a read/modify/write cycle on the register field
1703 * with change, async, force option
1704 *
1705 * @field: Register field to write to
1706 * @mask: Bitmask to change
1707 * @val: Value to be written
1708 * @change: Boolean indicating if a write was done
1709 * @async: Boolean indicating asynchronously
1710 * @force: Boolean indicating use force update
1711 *
1712 * A value of zero will be returned on success, a negative errno will
1713 * be returned in error cases.
1714 */
1715int regmap_field_update_bits_base(struct regmap_field *field,
1716 unsigned int mask, unsigned int val,
1717 bool *change, bool async, bool force)
1718{
1719 mask = (mask << field->shift) & field->mask;
1720
1721 return regmap_update_bits_base(field->regmap, field->reg,
1722 mask, val << field->shift,
1723 change, async, force);
1724}
1725EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1726
1727/**
1728 * regmap_fields_update_bits_base():
1729 * Perform a read/modify/write cycle on the register field
1730 * with change, async, force option
1731 *
1732 * @field: Register field to write to
1733 * @id: port ID
1734 * @mask: Bitmask to change
1735 * @val: Value to be written
1736 * @change: Boolean indicating if a write was done
1737 * @async: Boolean indicating asynchronously
1738 * @force: Boolean indicating use force update
1739 *
1740 * A value of zero will be returned on success, a negative errno will
1741 * be returned in error cases.
1742 */
1743int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
1744 unsigned int mask, unsigned int val,
1745 bool *change, bool async, bool force)
1746{
1747 if (id >= field->id_size)
1748 return -EINVAL;
1749
1750 mask = (mask << field->shift) & field->mask;
1751
1752 return regmap_update_bits_base(field->regmap,
1753 field->reg + (field->id_offset * id),
1754 mask, val << field->shift,
1755 change, async, force);
1756}
1757EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1758
1759/*
1760 * regmap_bulk_write(): Write multiple registers to the device
1761 *
1762 * @map: Register map to write to
1763 * @reg: First register to be write from
1764 * @val: Block of data to be written, in native register size for device
1765 * @val_count: Number of registers to write
1766 *
1767 * This function is intended to be used for writing a large block of
1768 * data to the device either in single transfer or multiple transfer.
1769 *
1770 * A value of zero will be returned on success, a negative errno will
1771 * be returned in error cases.
1772 */
1773int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1774 size_t val_count)
1775{
1776 int ret = 0, i;
1777 size_t val_bytes = map->format.val_bytes;
1778 size_t total_size = val_bytes * val_count;
1779
1780 if (map->bus && !map->format.parse_inplace)
1781 return -EINVAL;
1782 if (!IS_ALIGNED(reg, map->reg_stride))
1783 return -EINVAL;
1784
1785 /*
1786 * Some devices don't support bulk write, for
1787 * them we have a series of single write operations in the first two if
1788 * blocks.
1789 *
1790 * The first if block is used for memory mapped io. It does not allow
1791 * val_bytes of 3 for example.
1792 * The second one is used for busses which do not have this limitation
1793 * and can write arbitrary value lengths.
1794 */
1795 if (!map->bus) {
1796 map->lock(map->lock_arg);
1797 for (i = 0; i < val_count; i++) {
1798 unsigned int ival;
1799
1800 switch (val_bytes) {
1801 case 1:
1802 ival = *(u8 *)(val + (i * val_bytes));
1803 break;
1804 case 2:
1805 ival = *(u16 *)(val + (i * val_bytes));
1806 break;
1807 case 4:
1808 ival = *(u32 *)(val + (i * val_bytes));
1809 break;
1810#ifdef CONFIG_64BIT
1811 case 8:
1812 ival = *(u64 *)(val + (i * val_bytes));
1813 break;
1814#endif
1815 default:
1816 ret = -EINVAL;
1817 goto out;
1818 }
1819
1820 ret = _regmap_write(map,
1821 reg + regmap_get_offset(map, i),
1822 ival);
1823 if (ret != 0)
1824 goto out;
1825 }
1826out:
1827 map->unlock(map->lock_arg);
1828 } else if (map->use_single_write ||
1829 (map->max_raw_write && map->max_raw_write < total_size)) {
1830 int chunk_stride = map->reg_stride;
1831 size_t chunk_size = val_bytes;
1832 size_t chunk_count = val_count;
1833
1834 if (!map->use_single_write) {
1835 chunk_size = map->max_raw_write;
1836 if (chunk_size % val_bytes)
1837 chunk_size -= chunk_size % val_bytes;
1838 chunk_count = total_size / chunk_size;
1839 chunk_stride *= chunk_size / val_bytes;
1840 }
1841
1842 map->lock(map->lock_arg);
1843 /* Write as many bytes as possible with chunk_size */
1844 for (i = 0; i < chunk_count; i++) {
1845 ret = _regmap_raw_write(map,
1846 reg + (i * chunk_stride),
1847 val + (i * chunk_size),
1848 chunk_size);
1849 if (ret)
1850 break;
1851 }
1852
1853 /* Write remaining bytes */
1854 if (!ret && chunk_size * i < total_size) {
1855 ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1856 val + (i * chunk_size),
1857 total_size - i * chunk_size);
1858 }
1859 map->unlock(map->lock_arg);
1860 } else {
1861 void *wval;
1862
1863 if (!val_count)
1864 return -EINVAL;
1865
1866 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1867 if (!wval) {
1868 dev_err(map->dev, "Error in memory allocation\n");
1869 return -ENOMEM;
1870 }
1871 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1872 map->format.parse_inplace(wval + i);
1873
1874 map->lock(map->lock_arg);
1875 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1876 map->unlock(map->lock_arg);
1877
1878 kfree(wval);
1879 }
1880 return ret;
1881}
1882EXPORT_SYMBOL_GPL(regmap_bulk_write);
1883
1884/*
1885 * _regmap_raw_multi_reg_write()
1886 *
1887 * the (register,newvalue) pairs in regs have not been formatted, but
1888 * they are all in the same page and have been changed to being page
1889 * relative. The page register has been written if that was necessary.
1890 */
1891static int _regmap_raw_multi_reg_write(struct regmap *map,
1892 const struct reg_sequence *regs,
1893 size_t num_regs)
1894{
1895 int ret;
1896 void *buf;
1897 int i;
1898 u8 *u8;
1899 size_t val_bytes = map->format.val_bytes;
1900 size_t reg_bytes = map->format.reg_bytes;
1901 size_t pad_bytes = map->format.pad_bytes;
1902 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1903 size_t len = pair_size * num_regs;
1904
1905 if (!len)
1906 return -EINVAL;
1907
1908 buf = kzalloc(len, GFP_KERNEL);
1909 if (!buf)
1910 return -ENOMEM;
1911
1912 /* We have to linearise by hand. */
1913
1914 u8 = buf;
1915
1916 for (i = 0; i < num_regs; i++) {
1917 unsigned int reg = regs[i].reg;
1918 unsigned int val = regs[i].def;
1919 trace_regmap_hw_write_start(map, reg, 1);
1920 map->format.format_reg(u8, reg, map->reg_shift);
1921 u8 += reg_bytes + pad_bytes;
1922 map->format.format_val(u8, val, 0);
1923 u8 += val_bytes;
1924 }
1925 u8 = buf;
1926 *u8 |= map->write_flag_mask;
1927
1928 ret = map->bus->write(map->bus_context, buf, len);
1929
1930 kfree(buf);
1931
1932 for (i = 0; i < num_regs; i++) {
1933 int reg = regs[i].reg;
1934 trace_regmap_hw_write_done(map, reg, 1);
1935 }
1936 return ret;
1937}
1938
1939static unsigned int _regmap_register_page(struct regmap *map,
1940 unsigned int reg,
1941 struct regmap_range_node *range)
1942{
1943 unsigned int win_page = (reg - range->range_min) / range->window_len;
1944
1945 return win_page;
1946}
1947
1948static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1949 struct reg_sequence *regs,
1950 size_t num_regs)
1951{
1952 int ret;
1953 int i, n;
1954 struct reg_sequence *base;
1955 unsigned int this_page = 0;
1956 unsigned int page_change = 0;
1957 /*
1958 * the set of registers are not neccessarily in order, but
1959 * since the order of write must be preserved this algorithm
1960 * chops the set each time the page changes. This also applies
1961 * if there is a delay required at any point in the sequence.
1962 */
1963 base = regs;
1964 for (i = 0, n = 0; i < num_regs; i++, n++) {
1965 unsigned int reg = regs[i].reg;
1966 struct regmap_range_node *range;
1967
1968 range = _regmap_range_lookup(map, reg);
1969 if (range) {
1970 unsigned int win_page = _regmap_register_page(map, reg,
1971 range);
1972
1973 if (i == 0)
1974 this_page = win_page;
1975 if (win_page != this_page) {
1976 this_page = win_page;
1977 page_change = 1;
1978 }
1979 }
1980
1981 /* If we have both a page change and a delay make sure to
1982 * write the regs and apply the delay before we change the
1983 * page.
1984 */
1985
1986 if (page_change || regs[i].delay_us) {
1987
1988 /* For situations where the first write requires
1989 * a delay we need to make sure we don't call
1990 * raw_multi_reg_write with n=0
1991 * This can't occur with page breaks as we
1992 * never write on the first iteration
1993 */
1994 if (regs[i].delay_us && i == 0)
1995 n = 1;
1996
1997 ret = _regmap_raw_multi_reg_write(map, base, n);
1998 if (ret != 0)
1999 return ret;
2000
2001 if (regs[i].delay_us)
2002 udelay(regs[i].delay_us);
2003
2004 base += n;
2005 n = 0;
2006
2007 if (page_change) {
2008 ret = _regmap_select_page(map,
2009 &base[n].reg,
2010 range, 1);
2011 if (ret != 0)
2012 return ret;
2013
2014 page_change = 0;
2015 }
2016
2017 }
2018
2019 }
2020 if (n > 0)
2021 return _regmap_raw_multi_reg_write(map, base, n);
2022 return 0;
2023}
2024
2025static int _regmap_multi_reg_write(struct regmap *map,
2026 const struct reg_sequence *regs,
2027 size_t num_regs)
2028{
2029 int i;
2030 int ret;
2031
2032 if (!map->can_multi_write) {
2033 for (i = 0; i < num_regs; i++) {
2034 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2035 if (ret != 0)
2036 return ret;
2037
2038 if (regs[i].delay_us)
2039 udelay(regs[i].delay_us);
2040 }
2041 return 0;
2042 }
2043
2044 if (!map->format.parse_inplace)
2045 return -EINVAL;
2046
2047 if (map->writeable_reg)
2048 for (i = 0; i < num_regs; i++) {
2049 int reg = regs[i].reg;
2050 if (!map->writeable_reg(map->dev, reg))
2051 return -EINVAL;
2052 if (!IS_ALIGNED(reg, map->reg_stride))
2053 return -EINVAL;
2054 }
2055
2056 if (!map->cache_bypass) {
2057 for (i = 0; i < num_regs; i++) {
2058 unsigned int val = regs[i].def;
2059 unsigned int reg = regs[i].reg;
2060 ret = regcache_write(map, reg, val);
2061 if (ret) {
2062 dev_err(map->dev,
2063 "Error in caching of register: %x ret: %d\n",
2064 reg, ret);
2065 return ret;
2066 }
2067 }
2068 if (map->cache_only) {
2069 map->cache_dirty = true;
2070 return 0;
2071 }
2072 }
2073
2074 WARN_ON(!map->bus);
2075
2076 for (i = 0; i < num_regs; i++) {
2077 unsigned int reg = regs[i].reg;
2078 struct regmap_range_node *range;
2079
2080 /* Coalesce all the writes between a page break or a delay
2081 * in a sequence
2082 */
2083 range = _regmap_range_lookup(map, reg);
2084 if (range || regs[i].delay_us) {
2085 size_t len = sizeof(struct reg_sequence)*num_regs;
2086 struct reg_sequence *base = kmemdup(regs, len,
2087 GFP_KERNEL);
2088 if (!base)
2089 return -ENOMEM;
2090 ret = _regmap_range_multi_paged_reg_write(map, base,
2091 num_regs);
2092 kfree(base);
2093
2094 return ret;
2095 }
2096 }
2097 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2098}
2099
2100/*
2101 * regmap_multi_reg_write(): Write multiple registers to the device
2102 *
2103 * where the set of register,value pairs are supplied in any order,
2104 * possibly not all in a single range.
2105 *
2106 * @map: Register map to write to
2107 * @regs: Array of structures containing register,value to be written
2108 * @num_regs: Number of registers to write
2109 *
2110 * The 'normal' block write mode will send ultimately send data on the
2111 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2112 * addressed. However, this alternative block multi write mode will send
2113 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2114 * must of course support the mode.
2115 *
2116 * A value of zero will be returned on success, a negative errno will be
2117 * returned in error cases.
2118 */
2119int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2120 int num_regs)
2121{
2122 int ret;
2123
2124 map->lock(map->lock_arg);
2125
2126 ret = _regmap_multi_reg_write(map, regs, num_regs);
2127
2128 map->unlock(map->lock_arg);
2129
2130 return ret;
2131}
2132EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2133
2134/*
2135 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2136 * device but not the cache
2137 *
2138 * where the set of register are supplied in any order
2139 *
2140 * @map: Register map to write to
2141 * @regs: Array of structures containing register,value to be written
2142 * @num_regs: Number of registers to write
2143 *
2144 * This function is intended to be used for writing a large block of data
2145 * atomically to the device in single transfer for those I2C client devices
2146 * that implement this alternative block write mode.
2147 *
2148 * A value of zero will be returned on success, a negative errno will
2149 * be returned in error cases.
2150 */
2151int regmap_multi_reg_write_bypassed(struct regmap *map,
2152 const struct reg_sequence *regs,
2153 int num_regs)
2154{
2155 int ret;
2156 bool bypass;
2157
2158 map->lock(map->lock_arg);
2159
2160 bypass = map->cache_bypass;
2161 map->cache_bypass = true;
2162
2163 ret = _regmap_multi_reg_write(map, regs, num_regs);
2164
2165 map->cache_bypass = bypass;
2166
2167 map->unlock(map->lock_arg);
2168
2169 return ret;
2170}
2171EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2172
2173/**
2174 * regmap_raw_write_async(): Write raw values to one or more registers
2175 * asynchronously
2176 *
2177 * @map: Register map to write to
2178 * @reg: Initial register to write to
2179 * @val: Block of data to be written, laid out for direct transmission to the
2180 * device. Must be valid until regmap_async_complete() is called.
2181 * @val_len: Length of data pointed to by val.
2182 *
2183 * This function is intended to be used for things like firmware
2184 * download where a large block of data needs to be transferred to the
2185 * device. No formatting will be done on the data provided.
2186 *
2187 * If supported by the underlying bus the write will be scheduled
2188 * asynchronously, helping maximise I/O speed on higher speed buses
2189 * like SPI. regmap_async_complete() can be called to ensure that all
2190 * asynchrnous writes have been completed.
2191 *
2192 * A value of zero will be returned on success, a negative errno will
2193 * be returned in error cases.
2194 */
2195int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2196 const void *val, size_t val_len)
2197{
2198 int ret;
2199
2200 if (val_len % map->format.val_bytes)
2201 return -EINVAL;
2202 if (!IS_ALIGNED(reg, map->reg_stride))
2203 return -EINVAL;
2204
2205 map->lock(map->lock_arg);
2206
2207 map->async = true;
2208
2209 ret = _regmap_raw_write(map, reg, val, val_len);
2210
2211 map->async = false;
2212
2213 map->unlock(map->lock_arg);
2214
2215 return ret;
2216}
2217EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2218
2219static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2220 unsigned int val_len)
2221{
2222 struct regmap_range_node *range;
2223 u8 *u8 = map->work_buf;
2224 int ret;
2225
2226 WARN_ON(!map->bus);
2227
2228 if (!map->bus || !map->bus->read)
2229 return -EINVAL;
2230
2231 range = _regmap_range_lookup(map, reg);
2232 if (range) {
2233 ret = _regmap_select_page(map, ®, range,
2234 val_len / map->format.val_bytes);
2235 if (ret != 0)
2236 return ret;
2237 }
2238
2239 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2240
2241 /*
2242 * Some buses or devices flag reads by setting the high bits in the
2243 * register address; since it's always the high bits for all
2244 * current formats we can do this here rather than in
2245 * formatting. This may break if we get interesting formats.
2246 */
2247 u8[0] |= map->read_flag_mask;
2248
2249 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2250
2251 ret = map->bus->read(map->bus_context, map->work_buf,
2252 map->format.reg_bytes + map->format.pad_bytes,
2253 val, val_len);
2254
2255 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2256
2257 return ret;
2258}
2259
2260static int _regmap_bus_reg_read(void *context, unsigned int reg,
2261 unsigned int *val)
2262{
2263 struct regmap *map = context;
2264
2265 return map->bus->reg_read(map->bus_context, reg, val);
2266}
2267
2268static int _regmap_bus_read(void *context, unsigned int reg,
2269 unsigned int *val)
2270{
2271 int ret;
2272 struct regmap *map = context;
2273
2274 if (!map->format.parse_val)
2275 return -EINVAL;
2276
2277 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2278 if (ret == 0)
2279 *val = map->format.parse_val(map->work_buf);
2280
2281 return ret;
2282}
2283
2284static int _regmap_read(struct regmap *map, unsigned int reg,
2285 unsigned int *val)
2286{
2287 int ret;
2288 void *context = _regmap_map_get_context(map);
2289
2290 if (!map->cache_bypass) {
2291 ret = regcache_read(map, reg, val);
2292 if (ret == 0)
2293 return 0;
2294 }
2295
2296 if (map->cache_only)
2297 return -EBUSY;
2298
2299 if (!regmap_readable(map, reg))
2300 return -EIO;
2301
2302 ret = map->reg_read(context, reg, val);
2303 if (ret == 0) {
2304#ifdef LOG_DEVICE
2305 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2306 dev_info(map->dev, "%x => %x\n", reg, *val);
2307#endif
2308
2309 trace_regmap_reg_read(map, reg, *val);
2310
2311 if (!map->cache_bypass)
2312 regcache_write(map, reg, *val);
2313 }
2314
2315 return ret;
2316}
2317
2318/**
2319 * regmap_read(): Read a value from a single register
2320 *
2321 * @map: Register map to read from
2322 * @reg: Register to be read from
2323 * @val: Pointer to store read value
2324 *
2325 * A value of zero will be returned on success, a negative errno will
2326 * be returned in error cases.
2327 */
2328int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2329{
2330 int ret;
2331
2332 if (!IS_ALIGNED(reg, map->reg_stride))
2333 return -EINVAL;
2334
2335 map->lock(map->lock_arg);
2336
2337 ret = _regmap_read(map, reg, val);
2338
2339 map->unlock(map->lock_arg);
2340
2341 return ret;
2342}
2343EXPORT_SYMBOL_GPL(regmap_read);
2344
2345/**
2346 * regmap_raw_read(): Read raw data from the device
2347 *
2348 * @map: Register map to read from
2349 * @reg: First register to be read from
2350 * @val: Pointer to store read value
2351 * @val_len: Size of data to read
2352 *
2353 * A value of zero will be returned on success, a negative errno will
2354 * be returned in error cases.
2355 */
2356int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2357 size_t val_len)
2358{
2359 size_t val_bytes = map->format.val_bytes;
2360 size_t val_count = val_len / val_bytes;
2361 unsigned int v;
2362 int ret, i;
2363
2364 if (!map->bus)
2365 return -EINVAL;
2366 if (val_len % map->format.val_bytes)
2367 return -EINVAL;
2368 if (!IS_ALIGNED(reg, map->reg_stride))
2369 return -EINVAL;
2370 if (val_count == 0)
2371 return -EINVAL;
2372
2373 map->lock(map->lock_arg);
2374
2375 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2376 map->cache_type == REGCACHE_NONE) {
2377 if (!map->bus->read) {
2378 ret = -ENOTSUPP;
2379 goto out;
2380 }
2381 if (map->max_raw_read && map->max_raw_read < val_len) {
2382 ret = -E2BIG;
2383 goto out;
2384 }
2385
2386 /* Physical block read if there's no cache involved */
2387 ret = _regmap_raw_read(map, reg, val, val_len);
2388
2389 } else {
2390 /* Otherwise go word by word for the cache; should be low
2391 * cost as we expect to hit the cache.
2392 */
2393 for (i = 0; i < val_count; i++) {
2394 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2395 &v);
2396 if (ret != 0)
2397 goto out;
2398
2399 map->format.format_val(val + (i * val_bytes), v, 0);
2400 }
2401 }
2402
2403 out:
2404 map->unlock(map->lock_arg);
2405
2406 return ret;
2407}
2408EXPORT_SYMBOL_GPL(regmap_raw_read);
2409
2410/**
2411 * regmap_field_read(): Read a value to a single register field
2412 *
2413 * @field: Register field to read from
2414 * @val: Pointer to store read value
2415 *
2416 * A value of zero will be returned on success, a negative errno will
2417 * be returned in error cases.
2418 */
2419int regmap_field_read(struct regmap_field *field, unsigned int *val)
2420{
2421 int ret;
2422 unsigned int reg_val;
2423 ret = regmap_read(field->regmap, field->reg, ®_val);
2424 if (ret != 0)
2425 return ret;
2426
2427 reg_val &= field->mask;
2428 reg_val >>= field->shift;
2429 *val = reg_val;
2430
2431 return ret;
2432}
2433EXPORT_SYMBOL_GPL(regmap_field_read);
2434
2435/**
2436 * regmap_fields_read(): Read a value to a single register field with port ID
2437 *
2438 * @field: Register field to read from
2439 * @id: port ID
2440 * @val: Pointer to store read value
2441 *
2442 * A value of zero will be returned on success, a negative errno will
2443 * be returned in error cases.
2444 */
2445int regmap_fields_read(struct regmap_field *field, unsigned int id,
2446 unsigned int *val)
2447{
2448 int ret;
2449 unsigned int reg_val;
2450
2451 if (id >= field->id_size)
2452 return -EINVAL;
2453
2454 ret = regmap_read(field->regmap,
2455 field->reg + (field->id_offset * id),
2456 ®_val);
2457 if (ret != 0)
2458 return ret;
2459
2460 reg_val &= field->mask;
2461 reg_val >>= field->shift;
2462 *val = reg_val;
2463
2464 return ret;
2465}
2466EXPORT_SYMBOL_GPL(regmap_fields_read);
2467
2468/**
2469 * regmap_bulk_read(): Read multiple registers from the device
2470 *
2471 * @map: Register map to read from
2472 * @reg: First register to be read from
2473 * @val: Pointer to store read value, in native register size for device
2474 * @val_count: Number of registers to read
2475 *
2476 * A value of zero will be returned on success, a negative errno will
2477 * be returned in error cases.
2478 */
2479int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2480 size_t val_count)
2481{
2482 int ret, i;
2483 size_t val_bytes = map->format.val_bytes;
2484 bool vol = regmap_volatile_range(map, reg, val_count);
2485
2486 if (!IS_ALIGNED(reg, map->reg_stride))
2487 return -EINVAL;
2488
2489 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2490 /*
2491 * Some devices does not support bulk read, for
2492 * them we have a series of single read operations.
2493 */
2494 size_t total_size = val_bytes * val_count;
2495
2496 if (!map->use_single_read &&
2497 (!map->max_raw_read || map->max_raw_read > total_size)) {
2498 ret = regmap_raw_read(map, reg, val,
2499 val_bytes * val_count);
2500 if (ret != 0)
2501 return ret;
2502 } else {
2503 /*
2504 * Some devices do not support bulk read or do not
2505 * support large bulk reads, for them we have a series
2506 * of read operations.
2507 */
2508 int chunk_stride = map->reg_stride;
2509 size_t chunk_size = val_bytes;
2510 size_t chunk_count = val_count;
2511
2512 if (!map->use_single_read) {
2513 chunk_size = map->max_raw_read;
2514 if (chunk_size % val_bytes)
2515 chunk_size -= chunk_size % val_bytes;
2516 chunk_count = total_size / chunk_size;
2517 chunk_stride *= chunk_size / val_bytes;
2518 }
2519
2520 /* Read bytes that fit into a multiple of chunk_size */
2521 for (i = 0; i < chunk_count; i++) {
2522 ret = regmap_raw_read(map,
2523 reg + (i * chunk_stride),
2524 val + (i * chunk_size),
2525 chunk_size);
2526 if (ret != 0)
2527 return ret;
2528 }
2529
2530 /* Read remaining bytes */
2531 if (chunk_size * i < total_size) {
2532 ret = regmap_raw_read(map,
2533 reg + (i * chunk_stride),
2534 val + (i * chunk_size),
2535 total_size - i * chunk_size);
2536 if (ret != 0)
2537 return ret;
2538 }
2539 }
2540
2541 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2542 map->format.parse_inplace(val + i);
2543 } else {
2544 for (i = 0; i < val_count; i++) {
2545 unsigned int ival;
2546 ret = regmap_read(map, reg + regmap_get_offset(map, i),
2547 &ival);
2548 if (ret != 0)
2549 return ret;
2550
2551 if (map->format.format_val) {
2552 map->format.format_val(val + (i * val_bytes), ival, 0);
2553 } else {
2554 /* Devices providing read and write
2555 * operations can use the bulk I/O
2556 * functions if they define a val_bytes,
2557 * we assume that the values are native
2558 * endian.
2559 */
2560#ifdef CONFIG_64BIT
2561 u64 *u64 = val;
2562#endif
2563 u32 *u32 = val;
2564 u16 *u16 = val;
2565 u8 *u8 = val;
2566
2567 switch (map->format.val_bytes) {
2568#ifdef CONFIG_64BIT
2569 case 8:
2570 u64[i] = ival;
2571 break;
2572#endif
2573 case 4:
2574 u32[i] = ival;
2575 break;
2576 case 2:
2577 u16[i] = ival;
2578 break;
2579 case 1:
2580 u8[i] = ival;
2581 break;
2582 default:
2583 return -EINVAL;
2584 }
2585 }
2586 }
2587 }
2588
2589 return 0;
2590}
2591EXPORT_SYMBOL_GPL(regmap_bulk_read);
2592
2593static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2594 unsigned int mask, unsigned int val,
2595 bool *change, bool force_write)
2596{
2597 int ret;
2598 unsigned int tmp, orig;
2599
2600 if (change)
2601 *change = false;
2602
2603 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2604 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2605 if (ret == 0 && change)
2606 *change = true;
2607 } else {
2608 ret = _regmap_read(map, reg, &orig);
2609 if (ret != 0)
2610 return ret;
2611
2612 tmp = orig & ~mask;
2613 tmp |= val & mask;
2614
2615 if (force_write || (tmp != orig)) {
2616 ret = _regmap_write(map, reg, tmp);
2617 if (ret == 0 && change)
2618 *change = true;
2619 }
2620 }
2621
2622 return ret;
2623}
2624
2625/**
2626 * regmap_update_bits_base:
2627 * Perform a read/modify/write cycle on the
2628 * register map with change, async, force option
2629 *
2630 * @map: Register map to update
2631 * @reg: Register to update
2632 * @mask: Bitmask to change
2633 * @val: New value for bitmask
2634 * @change: Boolean indicating if a write was done
2635 * @async: Boolean indicating asynchronously
2636 * @force: Boolean indicating use force update
2637 *
2638 * if async was true,
2639 * With most buses the read must be done synchronously so this is most
2640 * useful for devices with a cache which do not need to interact with
2641 * the hardware to determine the current register value.
2642 *
2643 * Returns zero for success, a negative number on error.
2644 */
2645int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2646 unsigned int mask, unsigned int val,
2647 bool *change, bool async, bool force)
2648{
2649 int ret;
2650
2651 map->lock(map->lock_arg);
2652
2653 map->async = async;
2654
2655 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2656
2657 map->async = false;
2658
2659 map->unlock(map->lock_arg);
2660
2661 return ret;
2662}
2663EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2664
2665void regmap_async_complete_cb(struct regmap_async *async, int ret)
2666{
2667 struct regmap *map = async->map;
2668 bool wake;
2669
2670 trace_regmap_async_io_complete(map);
2671
2672 spin_lock(&map->async_lock);
2673 list_move(&async->list, &map->async_free);
2674 wake = list_empty(&map->async_list);
2675
2676 if (ret != 0)
2677 map->async_ret = ret;
2678
2679 spin_unlock(&map->async_lock);
2680
2681 if (wake)
2682 wake_up(&map->async_waitq);
2683}
2684EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2685
2686static int regmap_async_is_done(struct regmap *map)
2687{
2688 unsigned long flags;
2689 int ret;
2690
2691 spin_lock_irqsave(&map->async_lock, flags);
2692 ret = list_empty(&map->async_list);
2693 spin_unlock_irqrestore(&map->async_lock, flags);
2694
2695 return ret;
2696}
2697
2698/**
2699 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2700 *
2701 * @map: Map to operate on.
2702 *
2703 * Blocks until any pending asynchronous I/O has completed. Returns
2704 * an error code for any failed I/O operations.
2705 */
2706int regmap_async_complete(struct regmap *map)
2707{
2708 unsigned long flags;
2709 int ret;
2710
2711 /* Nothing to do with no async support */
2712 if (!map->bus || !map->bus->async_write)
2713 return 0;
2714
2715 trace_regmap_async_complete_start(map);
2716
2717 wait_event(map->async_waitq, regmap_async_is_done(map));
2718
2719 spin_lock_irqsave(&map->async_lock, flags);
2720 ret = map->async_ret;
2721 map->async_ret = 0;
2722 spin_unlock_irqrestore(&map->async_lock, flags);
2723
2724 trace_regmap_async_complete_done(map);
2725
2726 return ret;
2727}
2728EXPORT_SYMBOL_GPL(regmap_async_complete);
2729
2730/**
2731 * regmap_register_patch: Register and apply register updates to be applied
2732 * on device initialistion
2733 *
2734 * @map: Register map to apply updates to.
2735 * @regs: Values to update.
2736 * @num_regs: Number of entries in regs.
2737 *
2738 * Register a set of register updates to be applied to the device
2739 * whenever the device registers are synchronised with the cache and
2740 * apply them immediately. Typically this is used to apply
2741 * corrections to be applied to the device defaults on startup, such
2742 * as the updates some vendors provide to undocumented registers.
2743 *
2744 * The caller must ensure that this function cannot be called
2745 * concurrently with either itself or regcache_sync().
2746 */
2747int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2748 int num_regs)
2749{
2750 struct reg_sequence *p;
2751 int ret;
2752 bool bypass;
2753
2754 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2755 num_regs))
2756 return 0;
2757
2758 p = krealloc(map->patch,
2759 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2760 GFP_KERNEL);
2761 if (p) {
2762 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2763 map->patch = p;
2764 map->patch_regs += num_regs;
2765 } else {
2766 return -ENOMEM;
2767 }
2768
2769 map->lock(map->lock_arg);
2770
2771 bypass = map->cache_bypass;
2772
2773 map->cache_bypass = true;
2774 map->async = true;
2775
2776 ret = _regmap_multi_reg_write(map, regs, num_regs);
2777
2778 map->async = false;
2779 map->cache_bypass = bypass;
2780
2781 map->unlock(map->lock_arg);
2782
2783 regmap_async_complete(map);
2784
2785 return ret;
2786}
2787EXPORT_SYMBOL_GPL(regmap_register_patch);
2788
2789/*
2790 * regmap_get_val_bytes(): Report the size of a register value
2791 *
2792 * Report the size of a register value, mainly intended to for use by
2793 * generic infrastructure built on top of regmap.
2794 */
2795int regmap_get_val_bytes(struct regmap *map)
2796{
2797 if (map->format.format_write)
2798 return -EINVAL;
2799
2800 return map->format.val_bytes;
2801}
2802EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2803
2804/**
2805 * regmap_get_max_register(): Report the max register value
2806 *
2807 * Report the max register value, mainly intended to for use by
2808 * generic infrastructure built on top of regmap.
2809 */
2810int regmap_get_max_register(struct regmap *map)
2811{
2812 return map->max_register ? map->max_register : -EINVAL;
2813}
2814EXPORT_SYMBOL_GPL(regmap_get_max_register);
2815
2816/**
2817 * regmap_get_reg_stride(): Report the register address stride
2818 *
2819 * Report the register address stride, mainly intended to for use by
2820 * generic infrastructure built on top of regmap.
2821 */
2822int regmap_get_reg_stride(struct regmap *map)
2823{
2824 return map->reg_stride;
2825}
2826EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2827
2828int regmap_parse_val(struct regmap *map, const void *buf,
2829 unsigned int *val)
2830{
2831 if (!map->format.parse_val)
2832 return -EINVAL;
2833
2834 *val = map->format.parse_val(buf);
2835
2836 return 0;
2837}
2838EXPORT_SYMBOL_GPL(regmap_parse_val);
2839
2840static int __init regmap_initcall(void)
2841{
2842 regmap_debugfs_initcall();
2843
2844 return 0;
2845}
2846postcore_initcall(regmap_initcall);
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/property.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <linux/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92 if (map->max_register_is_set && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register_is_set && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register_is_set && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210}
211
212static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221}
222
223
224static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226{
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230}
231
232static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234{
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241{
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244}
245
246static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248{
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254}
255
256static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258{
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264}
265
266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267{
268 u8 *b = buf;
269
270 b[0] = val << shift;
271}
272
273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274{
275 put_unaligned_be16(val << shift, buf);
276}
277
278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279{
280 put_unaligned_le16(val << shift, buf);
281}
282
283static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285{
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289}
290
291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292{
293 put_unaligned_be24(val << shift, buf);
294}
295
296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297{
298 put_unaligned_be32(val << shift, buf);
299}
300
301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302{
303 put_unaligned_le32(val << shift, buf);
304}
305
306static void regmap_format_32_native(void *buf, unsigned int val,
307 unsigned int shift)
308{
309 u32 v = val << shift;
310
311 memcpy(buf, &v, sizeof(v));
312}
313
314static void regmap_parse_inplace_noop(void *buf)
315{
316}
317
318static unsigned int regmap_parse_8(const void *buf)
319{
320 const u8 *b = buf;
321
322 return b[0];
323}
324
325static unsigned int regmap_parse_16_be(const void *buf)
326{
327 return get_unaligned_be16(buf);
328}
329
330static unsigned int regmap_parse_16_le(const void *buf)
331{
332 return get_unaligned_le16(buf);
333}
334
335static void regmap_parse_16_be_inplace(void *buf)
336{
337 u16 v = get_unaligned_be16(buf);
338
339 memcpy(buf, &v, sizeof(v));
340}
341
342static void regmap_parse_16_le_inplace(void *buf)
343{
344 u16 v = get_unaligned_le16(buf);
345
346 memcpy(buf, &v, sizeof(v));
347}
348
349static unsigned int regmap_parse_16_native(const void *buf)
350{
351 u16 v;
352
353 memcpy(&v, buf, sizeof(v));
354 return v;
355}
356
357static unsigned int regmap_parse_24_be(const void *buf)
358{
359 return get_unaligned_be24(buf);
360}
361
362static unsigned int regmap_parse_32_be(const void *buf)
363{
364 return get_unaligned_be32(buf);
365}
366
367static unsigned int regmap_parse_32_le(const void *buf)
368{
369 return get_unaligned_le32(buf);
370}
371
372static void regmap_parse_32_be_inplace(void *buf)
373{
374 u32 v = get_unaligned_be32(buf);
375
376 memcpy(buf, &v, sizeof(v));
377}
378
379static void regmap_parse_32_le_inplace(void *buf)
380{
381 u32 v = get_unaligned_le32(buf);
382
383 memcpy(buf, &v, sizeof(v));
384}
385
386static unsigned int regmap_parse_32_native(const void *buf)
387{
388 u32 v;
389
390 memcpy(&v, buf, sizeof(v));
391 return v;
392}
393
394static void regmap_lock_hwlock(void *__map)
395{
396 struct regmap *map = __map;
397
398 hwspin_lock_timeout(map->hwlock, UINT_MAX);
399}
400
401static void regmap_lock_hwlock_irq(void *__map)
402{
403 struct regmap *map = __map;
404
405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406}
407
408static void regmap_lock_hwlock_irqsave(void *__map)
409{
410 struct regmap *map = __map;
411
412 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 &map->spinlock_flags);
414}
415
416static void regmap_unlock_hwlock(void *__map)
417{
418 struct regmap *map = __map;
419
420 hwspin_unlock(map->hwlock);
421}
422
423static void regmap_unlock_hwlock_irq(void *__map)
424{
425 struct regmap *map = __map;
426
427 hwspin_unlock_irq(map->hwlock);
428}
429
430static void regmap_unlock_hwlock_irqrestore(void *__map)
431{
432 struct regmap *map = __map;
433
434 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435}
436
437static void regmap_lock_unlock_none(void *__map)
438{
439
440}
441
442static void regmap_lock_mutex(void *__map)
443{
444 struct regmap *map = __map;
445 mutex_lock(&map->mutex);
446}
447
448static void regmap_unlock_mutex(void *__map)
449{
450 struct regmap *map = __map;
451 mutex_unlock(&map->mutex);
452}
453
454static void regmap_lock_spinlock(void *__map)
455__acquires(&map->spinlock)
456{
457 struct regmap *map = __map;
458 unsigned long flags;
459
460 spin_lock_irqsave(&map->spinlock, flags);
461 map->spinlock_flags = flags;
462}
463
464static void regmap_unlock_spinlock(void *__map)
465__releases(&map->spinlock)
466{
467 struct regmap *map = __map;
468 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
469}
470
471static void regmap_lock_raw_spinlock(void *__map)
472__acquires(&map->raw_spinlock)
473{
474 struct regmap *map = __map;
475 unsigned long flags;
476
477 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 map->raw_spinlock_flags = flags;
479}
480
481static void regmap_unlock_raw_spinlock(void *__map)
482__releases(&map->raw_spinlock)
483{
484 struct regmap *map = __map;
485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486}
487
488static void dev_get_regmap_release(struct device *dev, void *res)
489{
490 /*
491 * We don't actually have anything to do here; the goal here
492 * is not to manage the regmap but to provide a simple way to
493 * get the regmap back given a struct device.
494 */
495}
496
497static bool _regmap_range_add(struct regmap *map,
498 struct regmap_range_node *data)
499{
500 struct rb_root *root = &map->range_tree;
501 struct rb_node **new = &(root->rb_node), *parent = NULL;
502
503 while (*new) {
504 struct regmap_range_node *this =
505 rb_entry(*new, struct regmap_range_node, node);
506
507 parent = *new;
508 if (data->range_max < this->range_min)
509 new = &((*new)->rb_left);
510 else if (data->range_min > this->range_max)
511 new = &((*new)->rb_right);
512 else
513 return false;
514 }
515
516 rb_link_node(&data->node, parent, new);
517 rb_insert_color(&data->node, root);
518
519 return true;
520}
521
522static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 unsigned int reg)
524{
525 struct rb_node *node = map->range_tree.rb_node;
526
527 while (node) {
528 struct regmap_range_node *this =
529 rb_entry(node, struct regmap_range_node, node);
530
531 if (reg < this->range_min)
532 node = node->rb_left;
533 else if (reg > this->range_max)
534 node = node->rb_right;
535 else
536 return this;
537 }
538
539 return NULL;
540}
541
542static void regmap_range_exit(struct regmap *map)
543{
544 struct rb_node *next;
545 struct regmap_range_node *range_node;
546
547 next = rb_first(&map->range_tree);
548 while (next) {
549 range_node = rb_entry(next, struct regmap_range_node, node);
550 next = rb_next(&range_node->node);
551 rb_erase(&range_node->node, &map->range_tree);
552 kfree(range_node);
553 }
554
555 kfree(map->selector_work_buf);
556}
557
558static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559{
560 if (config->name) {
561 const char *name = kstrdup_const(config->name, GFP_KERNEL);
562
563 if (!name)
564 return -ENOMEM;
565
566 kfree_const(map->name);
567 map->name = name;
568 }
569
570 return 0;
571}
572
573int regmap_attach_dev(struct device *dev, struct regmap *map,
574 const struct regmap_config *config)
575{
576 struct regmap **m;
577 int ret;
578
579 map->dev = dev;
580
581 ret = regmap_set_name(map, config);
582 if (ret)
583 return ret;
584
585 regmap_debugfs_exit(map);
586 regmap_debugfs_init(map);
587
588 /* Add a devres resource for dev_get_regmap() */
589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 if (!m) {
591 regmap_debugfs_exit(map);
592 return -ENOMEM;
593 }
594 *m = map;
595 devres_add(dev, m);
596
597 return 0;
598}
599EXPORT_SYMBOL_GPL(regmap_attach_dev);
600
601static int dev_get_regmap_match(struct device *dev, void *res, void *data);
602
603static int regmap_detach_dev(struct device *dev, struct regmap *map)
604{
605 if (!dev)
606 return 0;
607
608 return devres_release(dev, dev_get_regmap_release,
609 dev_get_regmap_match, (void *)map->name);
610}
611
612static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
613 const struct regmap_config *config)
614{
615 enum regmap_endian endian;
616
617 /* Retrieve the endianness specification from the regmap config */
618 endian = config->reg_format_endian;
619
620 /* If the regmap config specified a non-default value, use that */
621 if (endian != REGMAP_ENDIAN_DEFAULT)
622 return endian;
623
624 /* Retrieve the endianness specification from the bus config */
625 if (bus && bus->reg_format_endian_default)
626 endian = bus->reg_format_endian_default;
627
628 /* If the bus specified a non-default value, use that */
629 if (endian != REGMAP_ENDIAN_DEFAULT)
630 return endian;
631
632 /* Use this if no other value was found */
633 return REGMAP_ENDIAN_BIG;
634}
635
636enum regmap_endian regmap_get_val_endian(struct device *dev,
637 const struct regmap_bus *bus,
638 const struct regmap_config *config)
639{
640 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
641 enum regmap_endian endian;
642
643 /* Retrieve the endianness specification from the regmap config */
644 endian = config->val_format_endian;
645
646 /* If the regmap config specified a non-default value, use that */
647 if (endian != REGMAP_ENDIAN_DEFAULT)
648 return endian;
649
650 /* If the firmware node exist try to get endianness from it */
651 if (fwnode_property_read_bool(fwnode, "big-endian"))
652 endian = REGMAP_ENDIAN_BIG;
653 else if (fwnode_property_read_bool(fwnode, "little-endian"))
654 endian = REGMAP_ENDIAN_LITTLE;
655 else if (fwnode_property_read_bool(fwnode, "native-endian"))
656 endian = REGMAP_ENDIAN_NATIVE;
657
658 /* If the endianness was specified in fwnode, use that */
659 if (endian != REGMAP_ENDIAN_DEFAULT)
660 return endian;
661
662 /* Retrieve the endianness specification from the bus config */
663 if (bus && bus->val_format_endian_default)
664 endian = bus->val_format_endian_default;
665
666 /* If the bus specified a non-default value, use that */
667 if (endian != REGMAP_ENDIAN_DEFAULT)
668 return endian;
669
670 /* Use this if no other value was found */
671 return REGMAP_ENDIAN_BIG;
672}
673EXPORT_SYMBOL_GPL(regmap_get_val_endian);
674
675struct regmap *__regmap_init(struct device *dev,
676 const struct regmap_bus *bus,
677 void *bus_context,
678 const struct regmap_config *config,
679 struct lock_class_key *lock_key,
680 const char *lock_name)
681{
682 struct regmap *map;
683 int ret = -EINVAL;
684 enum regmap_endian reg_endian, val_endian;
685 int i, j;
686
687 if (!config)
688 goto err;
689
690 map = kzalloc(sizeof(*map), GFP_KERNEL);
691 if (map == NULL) {
692 ret = -ENOMEM;
693 goto err;
694 }
695
696 ret = regmap_set_name(map, config);
697 if (ret)
698 goto err_map;
699
700 ret = -EINVAL; /* Later error paths rely on this */
701
702 if (config->disable_locking) {
703 map->lock = map->unlock = regmap_lock_unlock_none;
704 map->can_sleep = config->can_sleep;
705 regmap_debugfs_disable(map);
706 } else if (config->lock && config->unlock) {
707 map->lock = config->lock;
708 map->unlock = config->unlock;
709 map->lock_arg = config->lock_arg;
710 map->can_sleep = config->can_sleep;
711 } else if (config->use_hwlock) {
712 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
713 if (!map->hwlock) {
714 ret = -ENXIO;
715 goto err_name;
716 }
717
718 switch (config->hwlock_mode) {
719 case HWLOCK_IRQSTATE:
720 map->lock = regmap_lock_hwlock_irqsave;
721 map->unlock = regmap_unlock_hwlock_irqrestore;
722 break;
723 case HWLOCK_IRQ:
724 map->lock = regmap_lock_hwlock_irq;
725 map->unlock = regmap_unlock_hwlock_irq;
726 break;
727 default:
728 map->lock = regmap_lock_hwlock;
729 map->unlock = regmap_unlock_hwlock;
730 break;
731 }
732
733 map->lock_arg = map;
734 } else {
735 if ((bus && bus->fast_io) ||
736 config->fast_io) {
737 if (config->use_raw_spinlock) {
738 raw_spin_lock_init(&map->raw_spinlock);
739 map->lock = regmap_lock_raw_spinlock;
740 map->unlock = regmap_unlock_raw_spinlock;
741 lockdep_set_class_and_name(&map->raw_spinlock,
742 lock_key, lock_name);
743 } else {
744 spin_lock_init(&map->spinlock);
745 map->lock = regmap_lock_spinlock;
746 map->unlock = regmap_unlock_spinlock;
747 lockdep_set_class_and_name(&map->spinlock,
748 lock_key, lock_name);
749 }
750 } else {
751 mutex_init(&map->mutex);
752 map->lock = regmap_lock_mutex;
753 map->unlock = regmap_unlock_mutex;
754 map->can_sleep = true;
755 lockdep_set_class_and_name(&map->mutex,
756 lock_key, lock_name);
757 }
758 map->lock_arg = map;
759 map->lock_key = lock_key;
760 }
761
762 /*
763 * When we write in fast-paths with regmap_bulk_write() don't allocate
764 * scratch buffers with sleeping allocations.
765 */
766 if ((bus && bus->fast_io) || config->fast_io)
767 map->alloc_flags = GFP_ATOMIC;
768 else
769 map->alloc_flags = GFP_KERNEL;
770
771 map->reg_base = config->reg_base;
772
773 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
774 map->format.pad_bytes = config->pad_bits / 8;
775 map->format.reg_shift = config->reg_shift;
776 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
777 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
778 config->val_bits + config->pad_bits, 8);
779 map->reg_shift = config->pad_bits % 8;
780 if (config->reg_stride)
781 map->reg_stride = config->reg_stride;
782 else
783 map->reg_stride = 1;
784 if (is_power_of_2(map->reg_stride))
785 map->reg_stride_order = ilog2(map->reg_stride);
786 else
787 map->reg_stride_order = -1;
788 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
789 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
790 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
791 if (bus) {
792 map->max_raw_read = bus->max_raw_read;
793 map->max_raw_write = bus->max_raw_write;
794 } else if (config->max_raw_read && config->max_raw_write) {
795 map->max_raw_read = config->max_raw_read;
796 map->max_raw_write = config->max_raw_write;
797 }
798 map->dev = dev;
799 map->bus = bus;
800 map->bus_context = bus_context;
801 map->max_register = config->max_register;
802 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
803 map->wr_table = config->wr_table;
804 map->rd_table = config->rd_table;
805 map->volatile_table = config->volatile_table;
806 map->precious_table = config->precious_table;
807 map->wr_noinc_table = config->wr_noinc_table;
808 map->rd_noinc_table = config->rd_noinc_table;
809 map->writeable_reg = config->writeable_reg;
810 map->readable_reg = config->readable_reg;
811 map->volatile_reg = config->volatile_reg;
812 map->precious_reg = config->precious_reg;
813 map->writeable_noinc_reg = config->writeable_noinc_reg;
814 map->readable_noinc_reg = config->readable_noinc_reg;
815 map->cache_type = config->cache_type;
816
817 spin_lock_init(&map->async_lock);
818 INIT_LIST_HEAD(&map->async_list);
819 INIT_LIST_HEAD(&map->async_free);
820 init_waitqueue_head(&map->async_waitq);
821
822 if (config->read_flag_mask ||
823 config->write_flag_mask ||
824 config->zero_flag_mask) {
825 map->read_flag_mask = config->read_flag_mask;
826 map->write_flag_mask = config->write_flag_mask;
827 } else if (bus) {
828 map->read_flag_mask = bus->read_flag_mask;
829 }
830
831 if (config && config->read && config->write) {
832 map->reg_read = _regmap_bus_read;
833 if (config->reg_update_bits)
834 map->reg_update_bits = config->reg_update_bits;
835
836 /* Bulk read/write */
837 map->read = config->read;
838 map->write = config->write;
839
840 reg_endian = REGMAP_ENDIAN_NATIVE;
841 val_endian = REGMAP_ENDIAN_NATIVE;
842 } else if (!bus) {
843 map->reg_read = config->reg_read;
844 map->reg_write = config->reg_write;
845 map->reg_update_bits = config->reg_update_bits;
846
847 map->defer_caching = false;
848 goto skip_format_initialization;
849 } else if (!bus->read || !bus->write) {
850 map->reg_read = _regmap_bus_reg_read;
851 map->reg_write = _regmap_bus_reg_write;
852 map->reg_update_bits = bus->reg_update_bits;
853
854 map->defer_caching = false;
855 goto skip_format_initialization;
856 } else {
857 map->reg_read = _regmap_bus_read;
858 map->reg_update_bits = bus->reg_update_bits;
859 /* Bulk read/write */
860 map->read = bus->read;
861 map->write = bus->write;
862
863 reg_endian = regmap_get_reg_endian(bus, config);
864 val_endian = regmap_get_val_endian(dev, bus, config);
865 }
866
867 switch (config->reg_bits + map->reg_shift) {
868 case 2:
869 switch (config->val_bits) {
870 case 6:
871 map->format.format_write = regmap_format_2_6_write;
872 break;
873 default:
874 goto err_hwlock;
875 }
876 break;
877
878 case 4:
879 switch (config->val_bits) {
880 case 12:
881 map->format.format_write = regmap_format_4_12_write;
882 break;
883 default:
884 goto err_hwlock;
885 }
886 break;
887
888 case 7:
889 switch (config->val_bits) {
890 case 9:
891 map->format.format_write = regmap_format_7_9_write;
892 break;
893 case 17:
894 map->format.format_write = regmap_format_7_17_write;
895 break;
896 default:
897 goto err_hwlock;
898 }
899 break;
900
901 case 10:
902 switch (config->val_bits) {
903 case 14:
904 map->format.format_write = regmap_format_10_14_write;
905 break;
906 default:
907 goto err_hwlock;
908 }
909 break;
910
911 case 12:
912 switch (config->val_bits) {
913 case 20:
914 map->format.format_write = regmap_format_12_20_write;
915 break;
916 default:
917 goto err_hwlock;
918 }
919 break;
920
921 case 8:
922 map->format.format_reg = regmap_format_8;
923 break;
924
925 case 16:
926 switch (reg_endian) {
927 case REGMAP_ENDIAN_BIG:
928 map->format.format_reg = regmap_format_16_be;
929 break;
930 case REGMAP_ENDIAN_LITTLE:
931 map->format.format_reg = regmap_format_16_le;
932 break;
933 case REGMAP_ENDIAN_NATIVE:
934 map->format.format_reg = regmap_format_16_native;
935 break;
936 default:
937 goto err_hwlock;
938 }
939 break;
940
941 case 24:
942 switch (reg_endian) {
943 case REGMAP_ENDIAN_BIG:
944 map->format.format_reg = regmap_format_24_be;
945 break;
946 default:
947 goto err_hwlock;
948 }
949 break;
950
951 case 32:
952 switch (reg_endian) {
953 case REGMAP_ENDIAN_BIG:
954 map->format.format_reg = regmap_format_32_be;
955 break;
956 case REGMAP_ENDIAN_LITTLE:
957 map->format.format_reg = regmap_format_32_le;
958 break;
959 case REGMAP_ENDIAN_NATIVE:
960 map->format.format_reg = regmap_format_32_native;
961 break;
962 default:
963 goto err_hwlock;
964 }
965 break;
966
967 default:
968 goto err_hwlock;
969 }
970
971 if (val_endian == REGMAP_ENDIAN_NATIVE)
972 map->format.parse_inplace = regmap_parse_inplace_noop;
973
974 switch (config->val_bits) {
975 case 8:
976 map->format.format_val = regmap_format_8;
977 map->format.parse_val = regmap_parse_8;
978 map->format.parse_inplace = regmap_parse_inplace_noop;
979 break;
980 case 16:
981 switch (val_endian) {
982 case REGMAP_ENDIAN_BIG:
983 map->format.format_val = regmap_format_16_be;
984 map->format.parse_val = regmap_parse_16_be;
985 map->format.parse_inplace = regmap_parse_16_be_inplace;
986 break;
987 case REGMAP_ENDIAN_LITTLE:
988 map->format.format_val = regmap_format_16_le;
989 map->format.parse_val = regmap_parse_16_le;
990 map->format.parse_inplace = regmap_parse_16_le_inplace;
991 break;
992 case REGMAP_ENDIAN_NATIVE:
993 map->format.format_val = regmap_format_16_native;
994 map->format.parse_val = regmap_parse_16_native;
995 break;
996 default:
997 goto err_hwlock;
998 }
999 break;
1000 case 24:
1001 switch (val_endian) {
1002 case REGMAP_ENDIAN_BIG:
1003 map->format.format_val = regmap_format_24_be;
1004 map->format.parse_val = regmap_parse_24_be;
1005 break;
1006 default:
1007 goto err_hwlock;
1008 }
1009 break;
1010 case 32:
1011 switch (val_endian) {
1012 case REGMAP_ENDIAN_BIG:
1013 map->format.format_val = regmap_format_32_be;
1014 map->format.parse_val = regmap_parse_32_be;
1015 map->format.parse_inplace = regmap_parse_32_be_inplace;
1016 break;
1017 case REGMAP_ENDIAN_LITTLE:
1018 map->format.format_val = regmap_format_32_le;
1019 map->format.parse_val = regmap_parse_32_le;
1020 map->format.parse_inplace = regmap_parse_32_le_inplace;
1021 break;
1022 case REGMAP_ENDIAN_NATIVE:
1023 map->format.format_val = regmap_format_32_native;
1024 map->format.parse_val = regmap_parse_32_native;
1025 break;
1026 default:
1027 goto err_hwlock;
1028 }
1029 break;
1030 }
1031
1032 if (map->format.format_write) {
1033 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1034 (val_endian != REGMAP_ENDIAN_BIG))
1035 goto err_hwlock;
1036 map->use_single_write = true;
1037 }
1038
1039 if (!map->format.format_write &&
1040 !(map->format.format_reg && map->format.format_val))
1041 goto err_hwlock;
1042
1043 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1044 if (map->work_buf == NULL) {
1045 ret = -ENOMEM;
1046 goto err_hwlock;
1047 }
1048
1049 if (map->format.format_write) {
1050 map->defer_caching = false;
1051 map->reg_write = _regmap_bus_formatted_write;
1052 } else if (map->format.format_val) {
1053 map->defer_caching = true;
1054 map->reg_write = _regmap_bus_raw_write;
1055 }
1056
1057skip_format_initialization:
1058
1059 map->range_tree = RB_ROOT;
1060 for (i = 0; i < config->num_ranges; i++) {
1061 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1062 struct regmap_range_node *new;
1063
1064 /* Sanity check */
1065 if (range_cfg->range_max < range_cfg->range_min) {
1066 dev_err(map->dev, "Invalid range %d: %u < %u\n", i,
1067 range_cfg->range_max, range_cfg->range_min);
1068 goto err_range;
1069 }
1070
1071 if (range_cfg->range_max > map->max_register) {
1072 dev_err(map->dev, "Invalid range %d: %u > %u\n", i,
1073 range_cfg->range_max, map->max_register);
1074 goto err_range;
1075 }
1076
1077 if (range_cfg->selector_reg > map->max_register) {
1078 dev_err(map->dev,
1079 "Invalid range %d: selector out of map\n", i);
1080 goto err_range;
1081 }
1082
1083 if (range_cfg->window_len == 0) {
1084 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1085 i);
1086 goto err_range;
1087 }
1088
1089 /* Make sure, that this register range has no selector
1090 or data window within its boundary */
1091 for (j = 0; j < config->num_ranges; j++) {
1092 unsigned int sel_reg = config->ranges[j].selector_reg;
1093 unsigned int win_min = config->ranges[j].window_start;
1094 unsigned int win_max = win_min +
1095 config->ranges[j].window_len - 1;
1096
1097 /* Allow data window inside its own virtual range */
1098 if (j == i)
1099 continue;
1100
1101 if (range_cfg->range_min <= sel_reg &&
1102 sel_reg <= range_cfg->range_max) {
1103 dev_err(map->dev,
1104 "Range %d: selector for %d in window\n",
1105 i, j);
1106 goto err_range;
1107 }
1108
1109 if (!(win_max < range_cfg->range_min ||
1110 win_min > range_cfg->range_max)) {
1111 dev_err(map->dev,
1112 "Range %d: window for %d in window\n",
1113 i, j);
1114 goto err_range;
1115 }
1116 }
1117
1118 new = kzalloc(sizeof(*new), GFP_KERNEL);
1119 if (new == NULL) {
1120 ret = -ENOMEM;
1121 goto err_range;
1122 }
1123
1124 new->map = map;
1125 new->name = range_cfg->name;
1126 new->range_min = range_cfg->range_min;
1127 new->range_max = range_cfg->range_max;
1128 new->selector_reg = range_cfg->selector_reg;
1129 new->selector_mask = range_cfg->selector_mask;
1130 new->selector_shift = range_cfg->selector_shift;
1131 new->window_start = range_cfg->window_start;
1132 new->window_len = range_cfg->window_len;
1133
1134 if (!_regmap_range_add(map, new)) {
1135 dev_err(map->dev, "Failed to add range %d\n", i);
1136 kfree(new);
1137 goto err_range;
1138 }
1139
1140 if (map->selector_work_buf == NULL) {
1141 map->selector_work_buf =
1142 kzalloc(map->format.buf_size, GFP_KERNEL);
1143 if (map->selector_work_buf == NULL) {
1144 ret = -ENOMEM;
1145 goto err_range;
1146 }
1147 }
1148 }
1149
1150 ret = regcache_init(map, config);
1151 if (ret != 0)
1152 goto err_range;
1153
1154 if (dev) {
1155 ret = regmap_attach_dev(dev, map, config);
1156 if (ret != 0)
1157 goto err_regcache;
1158 } else {
1159 regmap_debugfs_init(map);
1160 }
1161
1162 return map;
1163
1164err_regcache:
1165 regcache_exit(map);
1166err_range:
1167 regmap_range_exit(map);
1168 kfree(map->work_buf);
1169err_hwlock:
1170 if (map->hwlock)
1171 hwspin_lock_free(map->hwlock);
1172err_name:
1173 kfree_const(map->name);
1174err_map:
1175 kfree(map);
1176err:
1177 return ERR_PTR(ret);
1178}
1179EXPORT_SYMBOL_GPL(__regmap_init);
1180
1181static void devm_regmap_release(struct device *dev, void *res)
1182{
1183 regmap_exit(*(struct regmap **)res);
1184}
1185
1186struct regmap *__devm_regmap_init(struct device *dev,
1187 const struct regmap_bus *bus,
1188 void *bus_context,
1189 const struct regmap_config *config,
1190 struct lock_class_key *lock_key,
1191 const char *lock_name)
1192{
1193 struct regmap **ptr, *regmap;
1194
1195 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1196 if (!ptr)
1197 return ERR_PTR(-ENOMEM);
1198
1199 regmap = __regmap_init(dev, bus, bus_context, config,
1200 lock_key, lock_name);
1201 if (!IS_ERR(regmap)) {
1202 *ptr = regmap;
1203 devres_add(dev, ptr);
1204 } else {
1205 devres_free(ptr);
1206 }
1207
1208 return regmap;
1209}
1210EXPORT_SYMBOL_GPL(__devm_regmap_init);
1211
1212static void regmap_field_init(struct regmap_field *rm_field,
1213 struct regmap *regmap, struct reg_field reg_field)
1214{
1215 rm_field->regmap = regmap;
1216 rm_field->reg = reg_field.reg;
1217 rm_field->shift = reg_field.lsb;
1218 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1219
1220 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1221
1222 rm_field->id_size = reg_field.id_size;
1223 rm_field->id_offset = reg_field.id_offset;
1224}
1225
1226/**
1227 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1228 *
1229 * @dev: Device that will be interacted with
1230 * @regmap: regmap bank in which this register field is located.
1231 * @reg_field: Register field with in the bank.
1232 *
1233 * The return value will be an ERR_PTR() on error or a valid pointer
1234 * to a struct regmap_field. The regmap_field will be automatically freed
1235 * by the device management code.
1236 */
1237struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1238 struct regmap *regmap, struct reg_field reg_field)
1239{
1240 struct regmap_field *rm_field = devm_kzalloc(dev,
1241 sizeof(*rm_field), GFP_KERNEL);
1242 if (!rm_field)
1243 return ERR_PTR(-ENOMEM);
1244
1245 regmap_field_init(rm_field, regmap, reg_field);
1246
1247 return rm_field;
1248
1249}
1250EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1251
1252
1253/**
1254 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1255 *
1256 * @regmap: regmap bank in which this register field is located.
1257 * @rm_field: regmap register fields within the bank.
1258 * @reg_field: Register fields within the bank.
1259 * @num_fields: Number of register fields.
1260 *
1261 * The return value will be an -ENOMEM on error or zero for success.
1262 * Newly allocated regmap_fields should be freed by calling
1263 * regmap_field_bulk_free()
1264 */
1265int regmap_field_bulk_alloc(struct regmap *regmap,
1266 struct regmap_field **rm_field,
1267 const struct reg_field *reg_field,
1268 int num_fields)
1269{
1270 struct regmap_field *rf;
1271 int i;
1272
1273 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1274 if (!rf)
1275 return -ENOMEM;
1276
1277 for (i = 0; i < num_fields; i++) {
1278 regmap_field_init(&rf[i], regmap, reg_field[i]);
1279 rm_field[i] = &rf[i];
1280 }
1281
1282 return 0;
1283}
1284EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1285
1286/**
1287 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1288 * fields.
1289 *
1290 * @dev: Device that will be interacted with
1291 * @regmap: regmap bank in which this register field is located.
1292 * @rm_field: regmap register fields within the bank.
1293 * @reg_field: Register fields within the bank.
1294 * @num_fields: Number of register fields.
1295 *
1296 * The return value will be an -ENOMEM on error or zero for success.
1297 * Newly allocated regmap_fields will be automatically freed by the
1298 * device management code.
1299 */
1300int devm_regmap_field_bulk_alloc(struct device *dev,
1301 struct regmap *regmap,
1302 struct regmap_field **rm_field,
1303 const struct reg_field *reg_field,
1304 int num_fields)
1305{
1306 struct regmap_field *rf;
1307 int i;
1308
1309 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1310 if (!rf)
1311 return -ENOMEM;
1312
1313 for (i = 0; i < num_fields; i++) {
1314 regmap_field_init(&rf[i], regmap, reg_field[i]);
1315 rm_field[i] = &rf[i];
1316 }
1317
1318 return 0;
1319}
1320EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1321
1322/**
1323 * regmap_field_bulk_free() - Free register field allocated using
1324 * regmap_field_bulk_alloc.
1325 *
1326 * @field: regmap fields which should be freed.
1327 */
1328void regmap_field_bulk_free(struct regmap_field *field)
1329{
1330 kfree(field);
1331}
1332EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1333
1334/**
1335 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1336 * devm_regmap_field_bulk_alloc.
1337 *
1338 * @dev: Device that will be interacted with
1339 * @field: regmap field which should be freed.
1340 *
1341 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1342 * drivers need not call this function, as the memory allocated via devm
1343 * will be freed as per device-driver life-cycle.
1344 */
1345void devm_regmap_field_bulk_free(struct device *dev,
1346 struct regmap_field *field)
1347{
1348 devm_kfree(dev, field);
1349}
1350EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1351
1352/**
1353 * devm_regmap_field_free() - Free a register field allocated using
1354 * devm_regmap_field_alloc.
1355 *
1356 * @dev: Device that will be interacted with
1357 * @field: regmap field which should be freed.
1358 *
1359 * Free register field allocated using devm_regmap_field_alloc(). Usually
1360 * drivers need not call this function, as the memory allocated via devm
1361 * will be freed as per device-driver life-cyle.
1362 */
1363void devm_regmap_field_free(struct device *dev,
1364 struct regmap_field *field)
1365{
1366 devm_kfree(dev, field);
1367}
1368EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1369
1370/**
1371 * regmap_field_alloc() - Allocate and initialise a register field.
1372 *
1373 * @regmap: regmap bank in which this register field is located.
1374 * @reg_field: Register field with in the bank.
1375 *
1376 * The return value will be an ERR_PTR() on error or a valid pointer
1377 * to a struct regmap_field. The regmap_field should be freed by the
1378 * user once its finished working with it using regmap_field_free().
1379 */
1380struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1381 struct reg_field reg_field)
1382{
1383 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1384
1385 if (!rm_field)
1386 return ERR_PTR(-ENOMEM);
1387
1388 regmap_field_init(rm_field, regmap, reg_field);
1389
1390 return rm_field;
1391}
1392EXPORT_SYMBOL_GPL(regmap_field_alloc);
1393
1394/**
1395 * regmap_field_free() - Free register field allocated using
1396 * regmap_field_alloc.
1397 *
1398 * @field: regmap field which should be freed.
1399 */
1400void regmap_field_free(struct regmap_field *field)
1401{
1402 kfree(field);
1403}
1404EXPORT_SYMBOL_GPL(regmap_field_free);
1405
1406/**
1407 * regmap_reinit_cache() - Reinitialise the current register cache
1408 *
1409 * @map: Register map to operate on.
1410 * @config: New configuration. Only the cache data will be used.
1411 *
1412 * Discard any existing register cache for the map and initialize a
1413 * new cache. This can be used to restore the cache to defaults or to
1414 * update the cache configuration to reflect runtime discovery of the
1415 * hardware.
1416 *
1417 * No explicit locking is done here, the user needs to ensure that
1418 * this function will not race with other calls to regmap.
1419 */
1420int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1421{
1422 int ret;
1423
1424 regcache_exit(map);
1425 regmap_debugfs_exit(map);
1426
1427 map->max_register = config->max_register;
1428 map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1429 map->writeable_reg = config->writeable_reg;
1430 map->readable_reg = config->readable_reg;
1431 map->volatile_reg = config->volatile_reg;
1432 map->precious_reg = config->precious_reg;
1433 map->writeable_noinc_reg = config->writeable_noinc_reg;
1434 map->readable_noinc_reg = config->readable_noinc_reg;
1435 map->cache_type = config->cache_type;
1436
1437 ret = regmap_set_name(map, config);
1438 if (ret)
1439 return ret;
1440
1441 regmap_debugfs_init(map);
1442
1443 map->cache_bypass = false;
1444 map->cache_only = false;
1445
1446 return regcache_init(map, config);
1447}
1448EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1449
1450/**
1451 * regmap_exit() - Free a previously allocated register map
1452 *
1453 * @map: Register map to operate on.
1454 */
1455void regmap_exit(struct regmap *map)
1456{
1457 struct regmap_async *async;
1458
1459 regmap_detach_dev(map->dev, map);
1460 regcache_exit(map);
1461
1462 regmap_debugfs_exit(map);
1463 regmap_range_exit(map);
1464 if (map->bus && map->bus->free_context)
1465 map->bus->free_context(map->bus_context);
1466 kfree(map->work_buf);
1467 while (!list_empty(&map->async_free)) {
1468 async = list_first_entry_or_null(&map->async_free,
1469 struct regmap_async,
1470 list);
1471 list_del(&async->list);
1472 kfree(async->work_buf);
1473 kfree(async);
1474 }
1475 if (map->hwlock)
1476 hwspin_lock_free(map->hwlock);
1477 if (map->lock == regmap_lock_mutex)
1478 mutex_destroy(&map->mutex);
1479 kfree_const(map->name);
1480 kfree(map->patch);
1481 if (map->bus && map->bus->free_on_exit)
1482 kfree(map->bus);
1483 kfree(map);
1484}
1485EXPORT_SYMBOL_GPL(regmap_exit);
1486
1487static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1488{
1489 struct regmap **r = res;
1490 if (!r || !*r) {
1491 WARN_ON(!r || !*r);
1492 return 0;
1493 }
1494
1495 /* If the user didn't specify a name match any */
1496 if (data)
1497 return (*r)->name && !strcmp((*r)->name, data);
1498 else
1499 return 1;
1500}
1501
1502/**
1503 * dev_get_regmap() - Obtain the regmap (if any) for a device
1504 *
1505 * @dev: Device to retrieve the map for
1506 * @name: Optional name for the register map, usually NULL.
1507 *
1508 * Returns the regmap for the device if one is present, or NULL. If
1509 * name is specified then it must match the name specified when
1510 * registering the device, if it is NULL then the first regmap found
1511 * will be used. Devices with multiple register maps are very rare,
1512 * generic code should normally not need to specify a name.
1513 */
1514struct regmap *dev_get_regmap(struct device *dev, const char *name)
1515{
1516 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1517 dev_get_regmap_match, (void *)name);
1518
1519 if (!r)
1520 return NULL;
1521 return *r;
1522}
1523EXPORT_SYMBOL_GPL(dev_get_regmap);
1524
1525/**
1526 * regmap_get_device() - Obtain the device from a regmap
1527 *
1528 * @map: Register map to operate on.
1529 *
1530 * Returns the underlying device that the regmap has been created for.
1531 */
1532struct device *regmap_get_device(struct regmap *map)
1533{
1534 return map->dev;
1535}
1536EXPORT_SYMBOL_GPL(regmap_get_device);
1537
1538static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1539 struct regmap_range_node *range,
1540 unsigned int val_num)
1541{
1542 void *orig_work_buf;
1543 unsigned int win_offset;
1544 unsigned int win_page;
1545 bool page_chg;
1546 int ret;
1547
1548 win_offset = (*reg - range->range_min) % range->window_len;
1549 win_page = (*reg - range->range_min) / range->window_len;
1550
1551 if (val_num > 1) {
1552 /* Bulk write shouldn't cross range boundary */
1553 if (*reg + val_num - 1 > range->range_max)
1554 return -EINVAL;
1555
1556 /* ... or single page boundary */
1557 if (val_num > range->window_len - win_offset)
1558 return -EINVAL;
1559 }
1560
1561 /* It is possible to have selector register inside data window.
1562 In that case, selector register is located on every page and
1563 it needs no page switching, when accessed alone. */
1564 if (val_num > 1 ||
1565 range->window_start + win_offset != range->selector_reg) {
1566 /* Use separate work_buf during page switching */
1567 orig_work_buf = map->work_buf;
1568 map->work_buf = map->selector_work_buf;
1569
1570 ret = _regmap_update_bits(map, range->selector_reg,
1571 range->selector_mask,
1572 win_page << range->selector_shift,
1573 &page_chg, false);
1574
1575 map->work_buf = orig_work_buf;
1576
1577 if (ret != 0)
1578 return ret;
1579 }
1580
1581 *reg = range->window_start + win_offset;
1582
1583 return 0;
1584}
1585
1586static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1587 unsigned long mask)
1588{
1589 u8 *buf;
1590 int i;
1591
1592 if (!mask || !map->work_buf)
1593 return;
1594
1595 buf = map->work_buf;
1596
1597 for (i = 0; i < max_bytes; i++)
1598 buf[i] |= (mask >> (8 * i)) & 0xff;
1599}
1600
1601static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1602{
1603 reg += map->reg_base;
1604
1605 if (map->format.reg_shift > 0)
1606 reg >>= map->format.reg_shift;
1607 else if (map->format.reg_shift < 0)
1608 reg <<= -(map->format.reg_shift);
1609
1610 return reg;
1611}
1612
1613static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1614 const void *val, size_t val_len, bool noinc)
1615{
1616 struct regmap_range_node *range;
1617 unsigned long flags;
1618 void *work_val = map->work_buf + map->format.reg_bytes +
1619 map->format.pad_bytes;
1620 void *buf;
1621 int ret = -ENOTSUPP;
1622 size_t len;
1623 int i;
1624
1625 /* Check for unwritable or noinc registers in range
1626 * before we start
1627 */
1628 if (!regmap_writeable_noinc(map, reg)) {
1629 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1630 unsigned int element =
1631 reg + regmap_get_offset(map, i);
1632 if (!regmap_writeable(map, element) ||
1633 regmap_writeable_noinc(map, element))
1634 return -EINVAL;
1635 }
1636 }
1637
1638 if (!map->cache_bypass && map->format.parse_val) {
1639 unsigned int ival, offset;
1640 int val_bytes = map->format.val_bytes;
1641
1642 /* Cache the last written value for noinc writes */
1643 i = noinc ? val_len - val_bytes : 0;
1644 for (; i < val_len; i += val_bytes) {
1645 ival = map->format.parse_val(val + i);
1646 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1647 ret = regcache_write(map, reg + offset, ival);
1648 if (ret) {
1649 dev_err(map->dev,
1650 "Error in caching of register: %x ret: %d\n",
1651 reg + offset, ret);
1652 return ret;
1653 }
1654 }
1655 if (map->cache_only) {
1656 map->cache_dirty = true;
1657 return 0;
1658 }
1659 }
1660
1661 range = _regmap_range_lookup(map, reg);
1662 if (range) {
1663 int val_num = val_len / map->format.val_bytes;
1664 int win_offset = (reg - range->range_min) % range->window_len;
1665 int win_residue = range->window_len - win_offset;
1666
1667 /* If the write goes beyond the end of the window split it */
1668 while (val_num > win_residue) {
1669 dev_dbg(map->dev, "Writing window %d/%zu\n",
1670 win_residue, val_len / map->format.val_bytes);
1671 ret = _regmap_raw_write_impl(map, reg, val,
1672 win_residue *
1673 map->format.val_bytes, noinc);
1674 if (ret != 0)
1675 return ret;
1676
1677 reg += win_residue;
1678 val_num -= win_residue;
1679 val += win_residue * map->format.val_bytes;
1680 val_len -= win_residue * map->format.val_bytes;
1681
1682 win_offset = (reg - range->range_min) %
1683 range->window_len;
1684 win_residue = range->window_len - win_offset;
1685 }
1686
1687 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1688 if (ret != 0)
1689 return ret;
1690 }
1691
1692 reg = regmap_reg_addr(map, reg);
1693 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1694 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1695 map->write_flag_mask);
1696
1697 /*
1698 * Essentially all I/O mechanisms will be faster with a single
1699 * buffer to write. Since register syncs often generate raw
1700 * writes of single registers optimise that case.
1701 */
1702 if (val != work_val && val_len == map->format.val_bytes) {
1703 memcpy(work_val, val, map->format.val_bytes);
1704 val = work_val;
1705 }
1706
1707 if (map->async && map->bus && map->bus->async_write) {
1708 struct regmap_async *async;
1709
1710 trace_regmap_async_write_start(map, reg, val_len);
1711
1712 spin_lock_irqsave(&map->async_lock, flags);
1713 async = list_first_entry_or_null(&map->async_free,
1714 struct regmap_async,
1715 list);
1716 if (async)
1717 list_del(&async->list);
1718 spin_unlock_irqrestore(&map->async_lock, flags);
1719
1720 if (!async) {
1721 async = map->bus->async_alloc();
1722 if (!async)
1723 return -ENOMEM;
1724
1725 async->work_buf = kzalloc(map->format.buf_size,
1726 GFP_KERNEL | GFP_DMA);
1727 if (!async->work_buf) {
1728 kfree(async);
1729 return -ENOMEM;
1730 }
1731 }
1732
1733 async->map = map;
1734
1735 /* If the caller supplied the value we can use it safely. */
1736 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1737 map->format.reg_bytes + map->format.val_bytes);
1738
1739 spin_lock_irqsave(&map->async_lock, flags);
1740 list_add_tail(&async->list, &map->async_list);
1741 spin_unlock_irqrestore(&map->async_lock, flags);
1742
1743 if (val != work_val)
1744 ret = map->bus->async_write(map->bus_context,
1745 async->work_buf,
1746 map->format.reg_bytes +
1747 map->format.pad_bytes,
1748 val, val_len, async);
1749 else
1750 ret = map->bus->async_write(map->bus_context,
1751 async->work_buf,
1752 map->format.reg_bytes +
1753 map->format.pad_bytes +
1754 val_len, NULL, 0, async);
1755
1756 if (ret != 0) {
1757 dev_err(map->dev, "Failed to schedule write: %d\n",
1758 ret);
1759
1760 spin_lock_irqsave(&map->async_lock, flags);
1761 list_move(&async->list, &map->async_free);
1762 spin_unlock_irqrestore(&map->async_lock, flags);
1763 }
1764
1765 return ret;
1766 }
1767
1768 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1769
1770 /* If we're doing a single register write we can probably just
1771 * send the work_buf directly, otherwise try to do a gather
1772 * write.
1773 */
1774 if (val == work_val)
1775 ret = map->write(map->bus_context, map->work_buf,
1776 map->format.reg_bytes +
1777 map->format.pad_bytes +
1778 val_len);
1779 else if (map->bus && map->bus->gather_write)
1780 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1781 map->format.reg_bytes +
1782 map->format.pad_bytes,
1783 val, val_len);
1784 else
1785 ret = -ENOTSUPP;
1786
1787 /* If that didn't work fall back on linearising by hand. */
1788 if (ret == -ENOTSUPP) {
1789 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1790 buf = kzalloc(len, GFP_KERNEL);
1791 if (!buf)
1792 return -ENOMEM;
1793
1794 memcpy(buf, map->work_buf, map->format.reg_bytes);
1795 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1796 val, val_len);
1797 ret = map->write(map->bus_context, buf, len);
1798
1799 kfree(buf);
1800 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1801 /* regcache_drop_region() takes lock that we already have,
1802 * thus call map->cache_ops->drop() directly
1803 */
1804 if (map->cache_ops && map->cache_ops->drop)
1805 map->cache_ops->drop(map, reg, reg + 1);
1806 }
1807
1808 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1809
1810 return ret;
1811}
1812
1813/**
1814 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1815 *
1816 * @map: Map to check.
1817 */
1818bool regmap_can_raw_write(struct regmap *map)
1819{
1820 return map->write && map->format.format_val && map->format.format_reg;
1821}
1822EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1823
1824/**
1825 * regmap_get_raw_read_max - Get the maximum size we can read
1826 *
1827 * @map: Map to check.
1828 */
1829size_t regmap_get_raw_read_max(struct regmap *map)
1830{
1831 return map->max_raw_read;
1832}
1833EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1834
1835/**
1836 * regmap_get_raw_write_max - Get the maximum size we can read
1837 *
1838 * @map: Map to check.
1839 */
1840size_t regmap_get_raw_write_max(struct regmap *map)
1841{
1842 return map->max_raw_write;
1843}
1844EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1845
1846static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1847 unsigned int val)
1848{
1849 int ret;
1850 struct regmap_range_node *range;
1851 struct regmap *map = context;
1852
1853 WARN_ON(!map->format.format_write);
1854
1855 range = _regmap_range_lookup(map, reg);
1856 if (range) {
1857 ret = _regmap_select_page(map, ®, range, 1);
1858 if (ret != 0)
1859 return ret;
1860 }
1861
1862 reg = regmap_reg_addr(map, reg);
1863 map->format.format_write(map, reg, val);
1864
1865 trace_regmap_hw_write_start(map, reg, 1);
1866
1867 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1868
1869 trace_regmap_hw_write_done(map, reg, 1);
1870
1871 return ret;
1872}
1873
1874static int _regmap_bus_reg_write(void *context, unsigned int reg,
1875 unsigned int val)
1876{
1877 struct regmap *map = context;
1878 struct regmap_range_node *range;
1879 int ret;
1880
1881 range = _regmap_range_lookup(map, reg);
1882 if (range) {
1883 ret = _regmap_select_page(map, ®, range, 1);
1884 if (ret != 0)
1885 return ret;
1886 }
1887
1888 reg = regmap_reg_addr(map, reg);
1889 return map->bus->reg_write(map->bus_context, reg, val);
1890}
1891
1892static int _regmap_bus_raw_write(void *context, unsigned int reg,
1893 unsigned int val)
1894{
1895 struct regmap *map = context;
1896
1897 WARN_ON(!map->format.format_val);
1898
1899 map->format.format_val(map->work_buf + map->format.reg_bytes
1900 + map->format.pad_bytes, val, 0);
1901 return _regmap_raw_write_impl(map, reg,
1902 map->work_buf +
1903 map->format.reg_bytes +
1904 map->format.pad_bytes,
1905 map->format.val_bytes,
1906 false);
1907}
1908
1909static inline void *_regmap_map_get_context(struct regmap *map)
1910{
1911 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1912}
1913
1914int _regmap_write(struct regmap *map, unsigned int reg,
1915 unsigned int val)
1916{
1917 int ret;
1918 void *context = _regmap_map_get_context(map);
1919
1920 if (!regmap_writeable(map, reg))
1921 return -EIO;
1922
1923 if (!map->cache_bypass && !map->defer_caching) {
1924 ret = regcache_write(map, reg, val);
1925 if (ret != 0)
1926 return ret;
1927 if (map->cache_only) {
1928 map->cache_dirty = true;
1929 return 0;
1930 }
1931 }
1932
1933 ret = map->reg_write(context, reg, val);
1934 if (ret == 0) {
1935 if (regmap_should_log(map))
1936 dev_info(map->dev, "%x <= %x\n", reg, val);
1937
1938 trace_regmap_reg_write(map, reg, val);
1939 }
1940
1941 return ret;
1942}
1943
1944/**
1945 * regmap_write() - Write a value to a single register
1946 *
1947 * @map: Register map to write to
1948 * @reg: Register to write to
1949 * @val: Value to be written
1950 *
1951 * A value of zero will be returned on success, a negative errno will
1952 * be returned in error cases.
1953 */
1954int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1955{
1956 int ret;
1957
1958 if (!IS_ALIGNED(reg, map->reg_stride))
1959 return -EINVAL;
1960
1961 map->lock(map->lock_arg);
1962
1963 ret = _regmap_write(map, reg, val);
1964
1965 map->unlock(map->lock_arg);
1966
1967 return ret;
1968}
1969EXPORT_SYMBOL_GPL(regmap_write);
1970
1971/**
1972 * regmap_write_async() - Write a value to a single register asynchronously
1973 *
1974 * @map: Register map to write to
1975 * @reg: Register to write to
1976 * @val: Value to be written
1977 *
1978 * A value of zero will be returned on success, a negative errno will
1979 * be returned in error cases.
1980 */
1981int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1982{
1983 int ret;
1984
1985 if (!IS_ALIGNED(reg, map->reg_stride))
1986 return -EINVAL;
1987
1988 map->lock(map->lock_arg);
1989
1990 map->async = true;
1991
1992 ret = _regmap_write(map, reg, val);
1993
1994 map->async = false;
1995
1996 map->unlock(map->lock_arg);
1997
1998 return ret;
1999}
2000EXPORT_SYMBOL_GPL(regmap_write_async);
2001
2002int _regmap_raw_write(struct regmap *map, unsigned int reg,
2003 const void *val, size_t val_len, bool noinc)
2004{
2005 size_t val_bytes = map->format.val_bytes;
2006 size_t val_count = val_len / val_bytes;
2007 size_t chunk_count, chunk_bytes;
2008 size_t chunk_regs = val_count;
2009 int ret, i;
2010
2011 if (!val_count)
2012 return -EINVAL;
2013
2014 if (map->use_single_write)
2015 chunk_regs = 1;
2016 else if (map->max_raw_write && val_len > map->max_raw_write)
2017 chunk_regs = map->max_raw_write / val_bytes;
2018
2019 chunk_count = val_count / chunk_regs;
2020 chunk_bytes = chunk_regs * val_bytes;
2021
2022 /* Write as many bytes as possible with chunk_size */
2023 for (i = 0; i < chunk_count; i++) {
2024 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2025 if (ret)
2026 return ret;
2027
2028 reg += regmap_get_offset(map, chunk_regs);
2029 val += chunk_bytes;
2030 val_len -= chunk_bytes;
2031 }
2032
2033 /* Write remaining bytes */
2034 if (val_len)
2035 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2036
2037 return ret;
2038}
2039
2040/**
2041 * regmap_raw_write() - Write raw values to one or more registers
2042 *
2043 * @map: Register map to write to
2044 * @reg: Initial register to write to
2045 * @val: Block of data to be written, laid out for direct transmission to the
2046 * device
2047 * @val_len: Length of data pointed to by val.
2048 *
2049 * This function is intended to be used for things like firmware
2050 * download where a large block of data needs to be transferred to the
2051 * device. No formatting will be done on the data provided.
2052 *
2053 * A value of zero will be returned on success, a negative errno will
2054 * be returned in error cases.
2055 */
2056int regmap_raw_write(struct regmap *map, unsigned int reg,
2057 const void *val, size_t val_len)
2058{
2059 int ret;
2060
2061 if (!regmap_can_raw_write(map))
2062 return -EINVAL;
2063 if (val_len % map->format.val_bytes)
2064 return -EINVAL;
2065
2066 map->lock(map->lock_arg);
2067
2068 ret = _regmap_raw_write(map, reg, val, val_len, false);
2069
2070 map->unlock(map->lock_arg);
2071
2072 return ret;
2073}
2074EXPORT_SYMBOL_GPL(regmap_raw_write);
2075
2076static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2077 void *val, unsigned int val_len, bool write)
2078{
2079 size_t val_bytes = map->format.val_bytes;
2080 size_t val_count = val_len / val_bytes;
2081 unsigned int lastval;
2082 u8 *u8p;
2083 u16 *u16p;
2084 u32 *u32p;
2085 int ret;
2086 int i;
2087
2088 switch (val_bytes) {
2089 case 1:
2090 u8p = val;
2091 if (write)
2092 lastval = (unsigned int)u8p[val_count - 1];
2093 break;
2094 case 2:
2095 u16p = val;
2096 if (write)
2097 lastval = (unsigned int)u16p[val_count - 1];
2098 break;
2099 case 4:
2100 u32p = val;
2101 if (write)
2102 lastval = (unsigned int)u32p[val_count - 1];
2103 break;
2104 default:
2105 return -EINVAL;
2106 }
2107
2108 /*
2109 * Update the cache with the last value we write, the rest is just
2110 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2111 * sure a single read from the cache will work.
2112 */
2113 if (write) {
2114 if (!map->cache_bypass && !map->defer_caching) {
2115 ret = regcache_write(map, reg, lastval);
2116 if (ret != 0)
2117 return ret;
2118 if (map->cache_only) {
2119 map->cache_dirty = true;
2120 return 0;
2121 }
2122 }
2123 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2124 } else {
2125 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2126 }
2127
2128 if (!ret && regmap_should_log(map)) {
2129 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2130 for (i = 0; i < val_count; i++) {
2131 switch (val_bytes) {
2132 case 1:
2133 pr_cont("%x", u8p[i]);
2134 break;
2135 case 2:
2136 pr_cont("%x", u16p[i]);
2137 break;
2138 case 4:
2139 pr_cont("%x", u32p[i]);
2140 break;
2141 default:
2142 break;
2143 }
2144 if (i == (val_count - 1))
2145 pr_cont("]\n");
2146 else
2147 pr_cont(",");
2148 }
2149 }
2150
2151 return 0;
2152}
2153
2154/**
2155 * regmap_noinc_write(): Write data to a register without incrementing the
2156 * register number
2157 *
2158 * @map: Register map to write to
2159 * @reg: Register to write to
2160 * @val: Pointer to data buffer
2161 * @val_len: Length of output buffer in bytes.
2162 *
2163 * The regmap API usually assumes that bulk bus write operations will write a
2164 * range of registers. Some devices have certain registers for which a write
2165 * operation can write to an internal FIFO.
2166 *
2167 * The target register must be volatile but registers after it can be
2168 * completely unrelated cacheable registers.
2169 *
2170 * This will attempt multiple writes as required to write val_len bytes.
2171 *
2172 * A value of zero will be returned on success, a negative errno will be
2173 * returned in error cases.
2174 */
2175int regmap_noinc_write(struct regmap *map, unsigned int reg,
2176 const void *val, size_t val_len)
2177{
2178 size_t write_len;
2179 int ret;
2180
2181 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2182 return -EINVAL;
2183 if (val_len % map->format.val_bytes)
2184 return -EINVAL;
2185 if (!IS_ALIGNED(reg, map->reg_stride))
2186 return -EINVAL;
2187 if (val_len == 0)
2188 return -EINVAL;
2189
2190 map->lock(map->lock_arg);
2191
2192 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2193 ret = -EINVAL;
2194 goto out_unlock;
2195 }
2196
2197 /*
2198 * Use the accelerated operation if we can. The val drops the const
2199 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2200 */
2201 if (map->bus->reg_noinc_write) {
2202 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2203 goto out_unlock;
2204 }
2205
2206 while (val_len) {
2207 if (map->max_raw_write && map->max_raw_write < val_len)
2208 write_len = map->max_raw_write;
2209 else
2210 write_len = val_len;
2211 ret = _regmap_raw_write(map, reg, val, write_len, true);
2212 if (ret)
2213 goto out_unlock;
2214 val = ((u8 *)val) + write_len;
2215 val_len -= write_len;
2216 }
2217
2218out_unlock:
2219 map->unlock(map->lock_arg);
2220 return ret;
2221}
2222EXPORT_SYMBOL_GPL(regmap_noinc_write);
2223
2224/**
2225 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2226 * register field.
2227 *
2228 * @field: Register field to write to
2229 * @mask: Bitmask to change
2230 * @val: Value to be written
2231 * @change: Boolean indicating if a write was done
2232 * @async: Boolean indicating asynchronously
2233 * @force: Boolean indicating use force update
2234 *
2235 * Perform a read/modify/write cycle on the register field with change,
2236 * async, force option.
2237 *
2238 * A value of zero will be returned on success, a negative errno will
2239 * be returned in error cases.
2240 */
2241int regmap_field_update_bits_base(struct regmap_field *field,
2242 unsigned int mask, unsigned int val,
2243 bool *change, bool async, bool force)
2244{
2245 mask = (mask << field->shift) & field->mask;
2246
2247 return regmap_update_bits_base(field->regmap, field->reg,
2248 mask, val << field->shift,
2249 change, async, force);
2250}
2251EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2252
2253/**
2254 * regmap_field_test_bits() - Check if all specified bits are set in a
2255 * register field.
2256 *
2257 * @field: Register field to operate on
2258 * @bits: Bits to test
2259 *
2260 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2261 * tested bits is not set and 1 if all tested bits are set.
2262 */
2263int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2264{
2265 unsigned int val, ret;
2266
2267 ret = regmap_field_read(field, &val);
2268 if (ret)
2269 return ret;
2270
2271 return (val & bits) == bits;
2272}
2273EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2274
2275/**
2276 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2277 * register field with port ID
2278 *
2279 * @field: Register field to write to
2280 * @id: port ID
2281 * @mask: Bitmask to change
2282 * @val: Value to be written
2283 * @change: Boolean indicating if a write was done
2284 * @async: Boolean indicating asynchronously
2285 * @force: Boolean indicating use force update
2286 *
2287 * A value of zero will be returned on success, a negative errno will
2288 * be returned in error cases.
2289 */
2290int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2291 unsigned int mask, unsigned int val,
2292 bool *change, bool async, bool force)
2293{
2294 if (id >= field->id_size)
2295 return -EINVAL;
2296
2297 mask = (mask << field->shift) & field->mask;
2298
2299 return regmap_update_bits_base(field->regmap,
2300 field->reg + (field->id_offset * id),
2301 mask, val << field->shift,
2302 change, async, force);
2303}
2304EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2305
2306/**
2307 * regmap_bulk_write() - Write multiple registers to the device
2308 *
2309 * @map: Register map to write to
2310 * @reg: First register to be write from
2311 * @val: Block of data to be written, in native register size for device
2312 * @val_count: Number of registers to write
2313 *
2314 * This function is intended to be used for writing a large block of
2315 * data to the device either in single transfer or multiple transfer.
2316 *
2317 * A value of zero will be returned on success, a negative errno will
2318 * be returned in error cases.
2319 */
2320int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2321 size_t val_count)
2322{
2323 int ret = 0, i;
2324 size_t val_bytes = map->format.val_bytes;
2325
2326 if (!IS_ALIGNED(reg, map->reg_stride))
2327 return -EINVAL;
2328
2329 /*
2330 * Some devices don't support bulk write, for them we have a series of
2331 * single write operations.
2332 */
2333 if (!map->write || !map->format.parse_inplace) {
2334 map->lock(map->lock_arg);
2335 for (i = 0; i < val_count; i++) {
2336 unsigned int ival;
2337
2338 switch (val_bytes) {
2339 case 1:
2340 ival = *(u8 *)(val + (i * val_bytes));
2341 break;
2342 case 2:
2343 ival = *(u16 *)(val + (i * val_bytes));
2344 break;
2345 case 4:
2346 ival = *(u32 *)(val + (i * val_bytes));
2347 break;
2348 default:
2349 ret = -EINVAL;
2350 goto out;
2351 }
2352
2353 ret = _regmap_write(map,
2354 reg + regmap_get_offset(map, i),
2355 ival);
2356 if (ret != 0)
2357 goto out;
2358 }
2359out:
2360 map->unlock(map->lock_arg);
2361 } else {
2362 void *wval;
2363
2364 wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
2365 if (!wval)
2366 return -ENOMEM;
2367
2368 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2369 map->format.parse_inplace(wval + i);
2370
2371 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2372
2373 kfree(wval);
2374 }
2375
2376 if (!ret)
2377 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2378
2379 return ret;
2380}
2381EXPORT_SYMBOL_GPL(regmap_bulk_write);
2382
2383/*
2384 * _regmap_raw_multi_reg_write()
2385 *
2386 * the (register,newvalue) pairs in regs have not been formatted, but
2387 * they are all in the same page and have been changed to being page
2388 * relative. The page register has been written if that was necessary.
2389 */
2390static int _regmap_raw_multi_reg_write(struct regmap *map,
2391 const struct reg_sequence *regs,
2392 size_t num_regs)
2393{
2394 int ret;
2395 void *buf;
2396 int i;
2397 u8 *u8;
2398 size_t val_bytes = map->format.val_bytes;
2399 size_t reg_bytes = map->format.reg_bytes;
2400 size_t pad_bytes = map->format.pad_bytes;
2401 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2402 size_t len = pair_size * num_regs;
2403
2404 if (!len)
2405 return -EINVAL;
2406
2407 buf = kzalloc(len, GFP_KERNEL);
2408 if (!buf)
2409 return -ENOMEM;
2410
2411 /* We have to linearise by hand. */
2412
2413 u8 = buf;
2414
2415 for (i = 0; i < num_regs; i++) {
2416 unsigned int reg = regs[i].reg;
2417 unsigned int val = regs[i].def;
2418 trace_regmap_hw_write_start(map, reg, 1);
2419 reg = regmap_reg_addr(map, reg);
2420 map->format.format_reg(u8, reg, map->reg_shift);
2421 u8 += reg_bytes + pad_bytes;
2422 map->format.format_val(u8, val, 0);
2423 u8 += val_bytes;
2424 }
2425 u8 = buf;
2426 *u8 |= map->write_flag_mask;
2427
2428 ret = map->write(map->bus_context, buf, len);
2429
2430 kfree(buf);
2431
2432 for (i = 0; i < num_regs; i++) {
2433 int reg = regs[i].reg;
2434 trace_regmap_hw_write_done(map, reg, 1);
2435 }
2436 return ret;
2437}
2438
2439static unsigned int _regmap_register_page(struct regmap *map,
2440 unsigned int reg,
2441 struct regmap_range_node *range)
2442{
2443 unsigned int win_page = (reg - range->range_min) / range->window_len;
2444
2445 return win_page;
2446}
2447
2448static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2449 struct reg_sequence *regs,
2450 size_t num_regs)
2451{
2452 int ret;
2453 int i, n;
2454 struct reg_sequence *base;
2455 unsigned int this_page = 0;
2456 unsigned int page_change = 0;
2457 /*
2458 * the set of registers are not neccessarily in order, but
2459 * since the order of write must be preserved this algorithm
2460 * chops the set each time the page changes. This also applies
2461 * if there is a delay required at any point in the sequence.
2462 */
2463 base = regs;
2464 for (i = 0, n = 0; i < num_regs; i++, n++) {
2465 unsigned int reg = regs[i].reg;
2466 struct regmap_range_node *range;
2467
2468 range = _regmap_range_lookup(map, reg);
2469 if (range) {
2470 unsigned int win_page = _regmap_register_page(map, reg,
2471 range);
2472
2473 if (i == 0)
2474 this_page = win_page;
2475 if (win_page != this_page) {
2476 this_page = win_page;
2477 page_change = 1;
2478 }
2479 }
2480
2481 /* If we have both a page change and a delay make sure to
2482 * write the regs and apply the delay before we change the
2483 * page.
2484 */
2485
2486 if (page_change || regs[i].delay_us) {
2487
2488 /* For situations where the first write requires
2489 * a delay we need to make sure we don't call
2490 * raw_multi_reg_write with n=0
2491 * This can't occur with page breaks as we
2492 * never write on the first iteration
2493 */
2494 if (regs[i].delay_us && i == 0)
2495 n = 1;
2496
2497 ret = _regmap_raw_multi_reg_write(map, base, n);
2498 if (ret != 0)
2499 return ret;
2500
2501 if (regs[i].delay_us) {
2502 if (map->can_sleep)
2503 fsleep(regs[i].delay_us);
2504 else
2505 udelay(regs[i].delay_us);
2506 }
2507
2508 base += n;
2509 n = 0;
2510
2511 if (page_change) {
2512 ret = _regmap_select_page(map,
2513 &base[n].reg,
2514 range, 1);
2515 if (ret != 0)
2516 return ret;
2517
2518 page_change = 0;
2519 }
2520
2521 }
2522
2523 }
2524 if (n > 0)
2525 return _regmap_raw_multi_reg_write(map, base, n);
2526 return 0;
2527}
2528
2529static int _regmap_multi_reg_write(struct regmap *map,
2530 const struct reg_sequence *regs,
2531 size_t num_regs)
2532{
2533 int i;
2534 int ret;
2535
2536 if (!map->can_multi_write) {
2537 for (i = 0; i < num_regs; i++) {
2538 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2539 if (ret != 0)
2540 return ret;
2541
2542 if (regs[i].delay_us) {
2543 if (map->can_sleep)
2544 fsleep(regs[i].delay_us);
2545 else
2546 udelay(regs[i].delay_us);
2547 }
2548 }
2549 return 0;
2550 }
2551
2552 if (!map->format.parse_inplace)
2553 return -EINVAL;
2554
2555 if (map->writeable_reg)
2556 for (i = 0; i < num_regs; i++) {
2557 int reg = regs[i].reg;
2558 if (!map->writeable_reg(map->dev, reg))
2559 return -EINVAL;
2560 if (!IS_ALIGNED(reg, map->reg_stride))
2561 return -EINVAL;
2562 }
2563
2564 if (!map->cache_bypass) {
2565 for (i = 0; i < num_regs; i++) {
2566 unsigned int val = regs[i].def;
2567 unsigned int reg = regs[i].reg;
2568 ret = regcache_write(map, reg, val);
2569 if (ret) {
2570 dev_err(map->dev,
2571 "Error in caching of register: %x ret: %d\n",
2572 reg, ret);
2573 return ret;
2574 }
2575 }
2576 if (map->cache_only) {
2577 map->cache_dirty = true;
2578 return 0;
2579 }
2580 }
2581
2582 WARN_ON(!map->bus);
2583
2584 for (i = 0; i < num_regs; i++) {
2585 unsigned int reg = regs[i].reg;
2586 struct regmap_range_node *range;
2587
2588 /* Coalesce all the writes between a page break or a delay
2589 * in a sequence
2590 */
2591 range = _regmap_range_lookup(map, reg);
2592 if (range || regs[i].delay_us) {
2593 size_t len = sizeof(struct reg_sequence)*num_regs;
2594 struct reg_sequence *base = kmemdup(regs, len,
2595 GFP_KERNEL);
2596 if (!base)
2597 return -ENOMEM;
2598 ret = _regmap_range_multi_paged_reg_write(map, base,
2599 num_regs);
2600 kfree(base);
2601
2602 return ret;
2603 }
2604 }
2605 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2606}
2607
2608/**
2609 * regmap_multi_reg_write() - Write multiple registers to the device
2610 *
2611 * @map: Register map to write to
2612 * @regs: Array of structures containing register,value to be written
2613 * @num_regs: Number of registers to write
2614 *
2615 * Write multiple registers to the device where the set of register, value
2616 * pairs are supplied in any order, possibly not all in a single range.
2617 *
2618 * The 'normal' block write mode will send ultimately send data on the
2619 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2620 * addressed. However, this alternative block multi write mode will send
2621 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2622 * must of course support the mode.
2623 *
2624 * A value of zero will be returned on success, a negative errno will be
2625 * returned in error cases.
2626 */
2627int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2628 int num_regs)
2629{
2630 int ret;
2631
2632 map->lock(map->lock_arg);
2633
2634 ret = _regmap_multi_reg_write(map, regs, num_regs);
2635
2636 map->unlock(map->lock_arg);
2637
2638 return ret;
2639}
2640EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2641
2642/**
2643 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2644 * device but not the cache
2645 *
2646 * @map: Register map to write to
2647 * @regs: Array of structures containing register,value to be written
2648 * @num_regs: Number of registers to write
2649 *
2650 * Write multiple registers to the device but not the cache where the set
2651 * of register are supplied in any order.
2652 *
2653 * This function is intended to be used for writing a large block of data
2654 * atomically to the device in single transfer for those I2C client devices
2655 * that implement this alternative block write mode.
2656 *
2657 * A value of zero will be returned on success, a negative errno will
2658 * be returned in error cases.
2659 */
2660int regmap_multi_reg_write_bypassed(struct regmap *map,
2661 const struct reg_sequence *regs,
2662 int num_regs)
2663{
2664 int ret;
2665 bool bypass;
2666
2667 map->lock(map->lock_arg);
2668
2669 bypass = map->cache_bypass;
2670 map->cache_bypass = true;
2671
2672 ret = _regmap_multi_reg_write(map, regs, num_regs);
2673
2674 map->cache_bypass = bypass;
2675
2676 map->unlock(map->lock_arg);
2677
2678 return ret;
2679}
2680EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2681
2682/**
2683 * regmap_raw_write_async() - Write raw values to one or more registers
2684 * asynchronously
2685 *
2686 * @map: Register map to write to
2687 * @reg: Initial register to write to
2688 * @val: Block of data to be written, laid out for direct transmission to the
2689 * device. Must be valid until regmap_async_complete() is called.
2690 * @val_len: Length of data pointed to by val.
2691 *
2692 * This function is intended to be used for things like firmware
2693 * download where a large block of data needs to be transferred to the
2694 * device. No formatting will be done on the data provided.
2695 *
2696 * If supported by the underlying bus the write will be scheduled
2697 * asynchronously, helping maximise I/O speed on higher speed buses
2698 * like SPI. regmap_async_complete() can be called to ensure that all
2699 * asynchrnous writes have been completed.
2700 *
2701 * A value of zero will be returned on success, a negative errno will
2702 * be returned in error cases.
2703 */
2704int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2705 const void *val, size_t val_len)
2706{
2707 int ret;
2708
2709 if (val_len % map->format.val_bytes)
2710 return -EINVAL;
2711 if (!IS_ALIGNED(reg, map->reg_stride))
2712 return -EINVAL;
2713
2714 map->lock(map->lock_arg);
2715
2716 map->async = true;
2717
2718 ret = _regmap_raw_write(map, reg, val, val_len, false);
2719
2720 map->async = false;
2721
2722 map->unlock(map->lock_arg);
2723
2724 return ret;
2725}
2726EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2727
2728static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2729 unsigned int val_len, bool noinc)
2730{
2731 struct regmap_range_node *range;
2732 int ret;
2733
2734 if (!map->read)
2735 return -EINVAL;
2736
2737 range = _regmap_range_lookup(map, reg);
2738 if (range) {
2739 ret = _regmap_select_page(map, ®, range,
2740 noinc ? 1 : val_len / map->format.val_bytes);
2741 if (ret != 0)
2742 return ret;
2743 }
2744
2745 reg = regmap_reg_addr(map, reg);
2746 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2747 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2748 map->read_flag_mask);
2749 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2750
2751 ret = map->read(map->bus_context, map->work_buf,
2752 map->format.reg_bytes + map->format.pad_bytes,
2753 val, val_len);
2754
2755 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2756
2757 return ret;
2758}
2759
2760static int _regmap_bus_reg_read(void *context, unsigned int reg,
2761 unsigned int *val)
2762{
2763 struct regmap *map = context;
2764 struct regmap_range_node *range;
2765 int ret;
2766
2767 range = _regmap_range_lookup(map, reg);
2768 if (range) {
2769 ret = _regmap_select_page(map, ®, range, 1);
2770 if (ret != 0)
2771 return ret;
2772 }
2773
2774 reg = regmap_reg_addr(map, reg);
2775 return map->bus->reg_read(map->bus_context, reg, val);
2776}
2777
2778static int _regmap_bus_read(void *context, unsigned int reg,
2779 unsigned int *val)
2780{
2781 int ret;
2782 struct regmap *map = context;
2783 void *work_val = map->work_buf + map->format.reg_bytes +
2784 map->format.pad_bytes;
2785
2786 if (!map->format.parse_val)
2787 return -EINVAL;
2788
2789 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2790 if (ret == 0)
2791 *val = map->format.parse_val(work_val);
2792
2793 return ret;
2794}
2795
2796static int _regmap_read(struct regmap *map, unsigned int reg,
2797 unsigned int *val)
2798{
2799 int ret;
2800 void *context = _regmap_map_get_context(map);
2801
2802 if (!map->cache_bypass) {
2803 ret = regcache_read(map, reg, val);
2804 if (ret == 0)
2805 return 0;
2806 }
2807
2808 if (map->cache_only)
2809 return -EBUSY;
2810
2811 if (!regmap_readable(map, reg))
2812 return -EIO;
2813
2814 ret = map->reg_read(context, reg, val);
2815 if (ret == 0) {
2816 if (regmap_should_log(map))
2817 dev_info(map->dev, "%x => %x\n", reg, *val);
2818
2819 trace_regmap_reg_read(map, reg, *val);
2820
2821 if (!map->cache_bypass)
2822 regcache_write(map, reg, *val);
2823 }
2824
2825 return ret;
2826}
2827
2828/**
2829 * regmap_read() - Read a value from a single register
2830 *
2831 * @map: Register map to read from
2832 * @reg: Register to be read from
2833 * @val: Pointer to store read value
2834 *
2835 * A value of zero will be returned on success, a negative errno will
2836 * be returned in error cases.
2837 */
2838int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2839{
2840 int ret;
2841
2842 if (!IS_ALIGNED(reg, map->reg_stride))
2843 return -EINVAL;
2844
2845 map->lock(map->lock_arg);
2846
2847 ret = _regmap_read(map, reg, val);
2848
2849 map->unlock(map->lock_arg);
2850
2851 return ret;
2852}
2853EXPORT_SYMBOL_GPL(regmap_read);
2854
2855/**
2856 * regmap_read_bypassed() - Read a value from a single register direct
2857 * from the device, bypassing the cache
2858 *
2859 * @map: Register map to read from
2860 * @reg: Register to be read from
2861 * @val: Pointer to store read value
2862 *
2863 * A value of zero will be returned on success, a negative errno will
2864 * be returned in error cases.
2865 */
2866int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2867{
2868 int ret;
2869 bool bypass, cache_only;
2870
2871 if (!IS_ALIGNED(reg, map->reg_stride))
2872 return -EINVAL;
2873
2874 map->lock(map->lock_arg);
2875
2876 bypass = map->cache_bypass;
2877 cache_only = map->cache_only;
2878 map->cache_bypass = true;
2879 map->cache_only = false;
2880
2881 ret = _regmap_read(map, reg, val);
2882
2883 map->cache_bypass = bypass;
2884 map->cache_only = cache_only;
2885
2886 map->unlock(map->lock_arg);
2887
2888 return ret;
2889}
2890EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2891
2892/**
2893 * regmap_raw_read() - Read raw data from the device
2894 *
2895 * @map: Register map to read from
2896 * @reg: First register to be read from
2897 * @val: Pointer to store read value
2898 * @val_len: Size of data to read
2899 *
2900 * A value of zero will be returned on success, a negative errno will
2901 * be returned in error cases.
2902 */
2903int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2904 size_t val_len)
2905{
2906 size_t val_bytes = map->format.val_bytes;
2907 size_t val_count = val_len / val_bytes;
2908 unsigned int v;
2909 int ret, i;
2910
2911 if (val_len % map->format.val_bytes)
2912 return -EINVAL;
2913 if (!IS_ALIGNED(reg, map->reg_stride))
2914 return -EINVAL;
2915 if (val_count == 0)
2916 return -EINVAL;
2917
2918 map->lock(map->lock_arg);
2919
2920 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2921 map->cache_type == REGCACHE_NONE) {
2922 size_t chunk_count, chunk_bytes;
2923 size_t chunk_regs = val_count;
2924
2925 if (!map->cache_bypass && map->cache_only) {
2926 ret = -EBUSY;
2927 goto out;
2928 }
2929
2930 if (!map->read) {
2931 ret = -ENOTSUPP;
2932 goto out;
2933 }
2934
2935 if (map->use_single_read)
2936 chunk_regs = 1;
2937 else if (map->max_raw_read && val_len > map->max_raw_read)
2938 chunk_regs = map->max_raw_read / val_bytes;
2939
2940 chunk_count = val_count / chunk_regs;
2941 chunk_bytes = chunk_regs * val_bytes;
2942
2943 /* Read bytes that fit into whole chunks */
2944 for (i = 0; i < chunk_count; i++) {
2945 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2946 if (ret != 0)
2947 goto out;
2948
2949 reg += regmap_get_offset(map, chunk_regs);
2950 val += chunk_bytes;
2951 val_len -= chunk_bytes;
2952 }
2953
2954 /* Read remaining bytes */
2955 if (val_len) {
2956 ret = _regmap_raw_read(map, reg, val, val_len, false);
2957 if (ret != 0)
2958 goto out;
2959 }
2960 } else {
2961 /* Otherwise go word by word for the cache; should be low
2962 * cost as we expect to hit the cache.
2963 */
2964 for (i = 0; i < val_count; i++) {
2965 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2966 &v);
2967 if (ret != 0)
2968 goto out;
2969
2970 map->format.format_val(val + (i * val_bytes), v, 0);
2971 }
2972 }
2973
2974 out:
2975 map->unlock(map->lock_arg);
2976
2977 return ret;
2978}
2979EXPORT_SYMBOL_GPL(regmap_raw_read);
2980
2981/**
2982 * regmap_noinc_read(): Read data from a register without incrementing the
2983 * register number
2984 *
2985 * @map: Register map to read from
2986 * @reg: Register to read from
2987 * @val: Pointer to data buffer
2988 * @val_len: Length of output buffer in bytes.
2989 *
2990 * The regmap API usually assumes that bulk read operations will read a
2991 * range of registers. Some devices have certain registers for which a read
2992 * operation read will read from an internal FIFO.
2993 *
2994 * The target register must be volatile but registers after it can be
2995 * completely unrelated cacheable registers.
2996 *
2997 * This will attempt multiple reads as required to read val_len bytes.
2998 *
2999 * A value of zero will be returned on success, a negative errno will be
3000 * returned in error cases.
3001 */
3002int regmap_noinc_read(struct regmap *map, unsigned int reg,
3003 void *val, size_t val_len)
3004{
3005 size_t read_len;
3006 int ret;
3007
3008 if (!map->read)
3009 return -ENOTSUPP;
3010
3011 if (val_len % map->format.val_bytes)
3012 return -EINVAL;
3013 if (!IS_ALIGNED(reg, map->reg_stride))
3014 return -EINVAL;
3015 if (val_len == 0)
3016 return -EINVAL;
3017
3018 map->lock(map->lock_arg);
3019
3020 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3021 ret = -EINVAL;
3022 goto out_unlock;
3023 }
3024
3025 /*
3026 * We have not defined the FIFO semantics for cache, as the
3027 * cache is just one value deep. Should we return the last
3028 * written value? Just avoid this by always reading the FIFO
3029 * even when using cache. Cache only will not work.
3030 */
3031 if (!map->cache_bypass && map->cache_only) {
3032 ret = -EBUSY;
3033 goto out_unlock;
3034 }
3035
3036 /* Use the accelerated operation if we can */
3037 if (map->bus->reg_noinc_read) {
3038 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3039 goto out_unlock;
3040 }
3041
3042 while (val_len) {
3043 if (map->max_raw_read && map->max_raw_read < val_len)
3044 read_len = map->max_raw_read;
3045 else
3046 read_len = val_len;
3047 ret = _regmap_raw_read(map, reg, val, read_len, true);
3048 if (ret)
3049 goto out_unlock;
3050 val = ((u8 *)val) + read_len;
3051 val_len -= read_len;
3052 }
3053
3054out_unlock:
3055 map->unlock(map->lock_arg);
3056 return ret;
3057}
3058EXPORT_SYMBOL_GPL(regmap_noinc_read);
3059
3060/**
3061 * regmap_field_read(): Read a value to a single register field
3062 *
3063 * @field: Register field to read from
3064 * @val: Pointer to store read value
3065 *
3066 * A value of zero will be returned on success, a negative errno will
3067 * be returned in error cases.
3068 */
3069int regmap_field_read(struct regmap_field *field, unsigned int *val)
3070{
3071 int ret;
3072 unsigned int reg_val;
3073 ret = regmap_read(field->regmap, field->reg, ®_val);
3074 if (ret != 0)
3075 return ret;
3076
3077 reg_val &= field->mask;
3078 reg_val >>= field->shift;
3079 *val = reg_val;
3080
3081 return ret;
3082}
3083EXPORT_SYMBOL_GPL(regmap_field_read);
3084
3085/**
3086 * regmap_fields_read() - Read a value to a single register field with port ID
3087 *
3088 * @field: Register field to read from
3089 * @id: port ID
3090 * @val: Pointer to store read value
3091 *
3092 * A value of zero will be returned on success, a negative errno will
3093 * be returned in error cases.
3094 */
3095int regmap_fields_read(struct regmap_field *field, unsigned int id,
3096 unsigned int *val)
3097{
3098 int ret;
3099 unsigned int reg_val;
3100
3101 if (id >= field->id_size)
3102 return -EINVAL;
3103
3104 ret = regmap_read(field->regmap,
3105 field->reg + (field->id_offset * id),
3106 ®_val);
3107 if (ret != 0)
3108 return ret;
3109
3110 reg_val &= field->mask;
3111 reg_val >>= field->shift;
3112 *val = reg_val;
3113
3114 return ret;
3115}
3116EXPORT_SYMBOL_GPL(regmap_fields_read);
3117
3118static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3119 unsigned int *regs, void *val, size_t val_count)
3120{
3121 u32 *u32 = val;
3122 u16 *u16 = val;
3123 u8 *u8 = val;
3124 int ret, i;
3125
3126 map->lock(map->lock_arg);
3127
3128 for (i = 0; i < val_count; i++) {
3129 unsigned int ival;
3130
3131 if (regs) {
3132 if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3133 ret = -EINVAL;
3134 goto out;
3135 }
3136 ret = _regmap_read(map, regs[i], &ival);
3137 } else {
3138 ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3139 }
3140 if (ret != 0)
3141 goto out;
3142
3143 switch (map->format.val_bytes) {
3144 case 4:
3145 u32[i] = ival;
3146 break;
3147 case 2:
3148 u16[i] = ival;
3149 break;
3150 case 1:
3151 u8[i] = ival;
3152 break;
3153 default:
3154 ret = -EINVAL;
3155 goto out;
3156 }
3157 }
3158out:
3159 map->unlock(map->lock_arg);
3160 return ret;
3161}
3162
3163/**
3164 * regmap_bulk_read() - Read multiple sequential registers from the device
3165 *
3166 * @map: Register map to read from
3167 * @reg: First register to be read from
3168 * @val: Pointer to store read value, in native register size for device
3169 * @val_count: Number of registers to read
3170 *
3171 * A value of zero will be returned on success, a negative errno will
3172 * be returned in error cases.
3173 */
3174int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3175 size_t val_count)
3176{
3177 int ret, i;
3178 size_t val_bytes = map->format.val_bytes;
3179 bool vol = regmap_volatile_range(map, reg, val_count);
3180
3181 if (!IS_ALIGNED(reg, map->reg_stride))
3182 return -EINVAL;
3183 if (val_count == 0)
3184 return -EINVAL;
3185
3186 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3187 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3188 if (ret != 0)
3189 return ret;
3190
3191 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3192 map->format.parse_inplace(val + i);
3193 } else {
3194 ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
3195 }
3196 if (!ret)
3197 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3198 return ret;
3199}
3200EXPORT_SYMBOL_GPL(regmap_bulk_read);
3201
3202/**
3203 * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3204 *
3205 * @map: Register map to read from
3206 * @regs: Array of registers to read from
3207 * @val: Pointer to store read value, in native register size for device
3208 * @val_count: Number of registers to read
3209 *
3210 * A value of zero will be returned on success, a negative errno will
3211 * be returned in error cases.
3212 */
3213int regmap_multi_reg_read(struct regmap *map, unsigned int *regs, void *val,
3214 size_t val_count)
3215{
3216 if (val_count == 0)
3217 return -EINVAL;
3218
3219 return _regmap_bulk_read(map, 0, regs, val, val_count);
3220}
3221EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3222
3223static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3224 unsigned int mask, unsigned int val,
3225 bool *change, bool force_write)
3226{
3227 int ret;
3228 unsigned int tmp, orig;
3229
3230 if (change)
3231 *change = false;
3232
3233 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3234 reg = regmap_reg_addr(map, reg);
3235 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3236 if (ret == 0 && change)
3237 *change = true;
3238 } else {
3239 ret = _regmap_read(map, reg, &orig);
3240 if (ret != 0)
3241 return ret;
3242
3243 tmp = orig & ~mask;
3244 tmp |= val & mask;
3245
3246 if (force_write || (tmp != orig) || map->force_write_field) {
3247 ret = _regmap_write(map, reg, tmp);
3248 if (ret == 0 && change)
3249 *change = true;
3250 }
3251 }
3252
3253 return ret;
3254}
3255
3256/**
3257 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3258 *
3259 * @map: Register map to update
3260 * @reg: Register to update
3261 * @mask: Bitmask to change
3262 * @val: New value for bitmask
3263 * @change: Boolean indicating if a write was done
3264 * @async: Boolean indicating asynchronously
3265 * @force: Boolean indicating use force update
3266 *
3267 * Perform a read/modify/write cycle on a register map with change, async, force
3268 * options.
3269 *
3270 * If async is true:
3271 *
3272 * With most buses the read must be done synchronously so this is most useful
3273 * for devices with a cache which do not need to interact with the hardware to
3274 * determine the current register value.
3275 *
3276 * Returns zero for success, a negative number on error.
3277 */
3278int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3279 unsigned int mask, unsigned int val,
3280 bool *change, bool async, bool force)
3281{
3282 int ret;
3283
3284 map->lock(map->lock_arg);
3285
3286 map->async = async;
3287
3288 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3289
3290 map->async = false;
3291
3292 map->unlock(map->lock_arg);
3293
3294 return ret;
3295}
3296EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3297
3298/**
3299 * regmap_test_bits() - Check if all specified bits are set in a register.
3300 *
3301 * @map: Register map to operate on
3302 * @reg: Register to read from
3303 * @bits: Bits to test
3304 *
3305 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3306 * bits are set and a negative error number if the underlying regmap_read()
3307 * fails.
3308 */
3309int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3310{
3311 unsigned int val, ret;
3312
3313 ret = regmap_read(map, reg, &val);
3314 if (ret)
3315 return ret;
3316
3317 return (val & bits) == bits;
3318}
3319EXPORT_SYMBOL_GPL(regmap_test_bits);
3320
3321void regmap_async_complete_cb(struct regmap_async *async, int ret)
3322{
3323 struct regmap *map = async->map;
3324 bool wake;
3325
3326 trace_regmap_async_io_complete(map);
3327
3328 spin_lock(&map->async_lock);
3329 list_move(&async->list, &map->async_free);
3330 wake = list_empty(&map->async_list);
3331
3332 if (ret != 0)
3333 map->async_ret = ret;
3334
3335 spin_unlock(&map->async_lock);
3336
3337 if (wake)
3338 wake_up(&map->async_waitq);
3339}
3340EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3341
3342static int regmap_async_is_done(struct regmap *map)
3343{
3344 unsigned long flags;
3345 int ret;
3346
3347 spin_lock_irqsave(&map->async_lock, flags);
3348 ret = list_empty(&map->async_list);
3349 spin_unlock_irqrestore(&map->async_lock, flags);
3350
3351 return ret;
3352}
3353
3354/**
3355 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3356 *
3357 * @map: Map to operate on.
3358 *
3359 * Blocks until any pending asynchronous I/O has completed. Returns
3360 * an error code for any failed I/O operations.
3361 */
3362int regmap_async_complete(struct regmap *map)
3363{
3364 unsigned long flags;
3365 int ret;
3366
3367 /* Nothing to do with no async support */
3368 if (!map->bus || !map->bus->async_write)
3369 return 0;
3370
3371 trace_regmap_async_complete_start(map);
3372
3373 wait_event(map->async_waitq, regmap_async_is_done(map));
3374
3375 spin_lock_irqsave(&map->async_lock, flags);
3376 ret = map->async_ret;
3377 map->async_ret = 0;
3378 spin_unlock_irqrestore(&map->async_lock, flags);
3379
3380 trace_regmap_async_complete_done(map);
3381
3382 return ret;
3383}
3384EXPORT_SYMBOL_GPL(regmap_async_complete);
3385
3386/**
3387 * regmap_register_patch - Register and apply register updates to be applied
3388 * on device initialistion
3389 *
3390 * @map: Register map to apply updates to.
3391 * @regs: Values to update.
3392 * @num_regs: Number of entries in regs.
3393 *
3394 * Register a set of register updates to be applied to the device
3395 * whenever the device registers are synchronised with the cache and
3396 * apply them immediately. Typically this is used to apply
3397 * corrections to be applied to the device defaults on startup, such
3398 * as the updates some vendors provide to undocumented registers.
3399 *
3400 * The caller must ensure that this function cannot be called
3401 * concurrently with either itself or regcache_sync().
3402 */
3403int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3404 int num_regs)
3405{
3406 struct reg_sequence *p;
3407 int ret;
3408 bool bypass;
3409
3410 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3411 num_regs))
3412 return 0;
3413
3414 p = krealloc(map->patch,
3415 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3416 GFP_KERNEL);
3417 if (p) {
3418 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3419 map->patch = p;
3420 map->patch_regs += num_regs;
3421 } else {
3422 return -ENOMEM;
3423 }
3424
3425 map->lock(map->lock_arg);
3426
3427 bypass = map->cache_bypass;
3428
3429 map->cache_bypass = true;
3430 map->async = true;
3431
3432 ret = _regmap_multi_reg_write(map, regs, num_regs);
3433
3434 map->async = false;
3435 map->cache_bypass = bypass;
3436
3437 map->unlock(map->lock_arg);
3438
3439 regmap_async_complete(map);
3440
3441 return ret;
3442}
3443EXPORT_SYMBOL_GPL(regmap_register_patch);
3444
3445/**
3446 * regmap_get_val_bytes() - Report the size of a register value
3447 *
3448 * @map: Register map to operate on.
3449 *
3450 * Report the size of a register value, mainly intended to for use by
3451 * generic infrastructure built on top of regmap.
3452 */
3453int regmap_get_val_bytes(struct regmap *map)
3454{
3455 if (map->format.format_write)
3456 return -EINVAL;
3457
3458 return map->format.val_bytes;
3459}
3460EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3461
3462/**
3463 * regmap_get_max_register() - Report the max register value
3464 *
3465 * @map: Register map to operate on.
3466 *
3467 * Report the max register value, mainly intended to for use by
3468 * generic infrastructure built on top of regmap.
3469 */
3470int regmap_get_max_register(struct regmap *map)
3471{
3472 return map->max_register_is_set ? map->max_register : -EINVAL;
3473}
3474EXPORT_SYMBOL_GPL(regmap_get_max_register);
3475
3476/**
3477 * regmap_get_reg_stride() - Report the register address stride
3478 *
3479 * @map: Register map to operate on.
3480 *
3481 * Report the register address stride, mainly intended to for use by
3482 * generic infrastructure built on top of regmap.
3483 */
3484int regmap_get_reg_stride(struct regmap *map)
3485{
3486 return map->reg_stride;
3487}
3488EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3489
3490/**
3491 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3492 *
3493 * @map: Register map to operate on.
3494 *
3495 * Returns true if an access to the register might sleep, else false.
3496 */
3497bool regmap_might_sleep(struct regmap *map)
3498{
3499 return map->can_sleep;
3500}
3501EXPORT_SYMBOL_GPL(regmap_might_sleep);
3502
3503int regmap_parse_val(struct regmap *map, const void *buf,
3504 unsigned int *val)
3505{
3506 if (!map->format.parse_val)
3507 return -EINVAL;
3508
3509 *val = map->format.parse_val(buf);
3510
3511 return 0;
3512}
3513EXPORT_SYMBOL_GPL(regmap_parse_val);
3514
3515static int __init regmap_initcall(void)
3516{
3517 regmap_debugfs_initcall();
3518
3519 return 0;
3520}
3521postcore_initcall(regmap_initcall);