Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/of.h>
  19#include <linux/rbtree.h>
  20#include <linux/sched.h>
  21#include <linux/delay.h>
  22#include <linux/log2.h>
 
  23
  24#define CREATE_TRACE_POINTS
  25#include "trace.h"
  26
  27#include "internal.h"
  28
  29/*
  30 * Sometimes for failures during very early init the trace
  31 * infrastructure isn't available early enough to be used.  For this
  32 * sort of problem defining LOG_DEVICE will add printks for basic
  33 * register I/O on a specific device.
  34 */
  35#undef LOG_DEVICE
  36
 
 
 
 
 
 
 
 
 
 
  37static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  38			       unsigned int mask, unsigned int val,
  39			       bool *change, bool force_write);
  40
  41static int _regmap_bus_reg_read(void *context, unsigned int reg,
  42				unsigned int *val);
  43static int _regmap_bus_read(void *context, unsigned int reg,
  44			    unsigned int *val);
  45static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  46				       unsigned int val);
  47static int _regmap_bus_reg_write(void *context, unsigned int reg,
  48				 unsigned int val);
  49static int _regmap_bus_raw_write(void *context, unsigned int reg,
  50				 unsigned int val);
  51
  52bool regmap_reg_in_ranges(unsigned int reg,
  53			  const struct regmap_range *ranges,
  54			  unsigned int nranges)
  55{
  56	const struct regmap_range *r;
  57	int i;
  58
  59	for (i = 0, r = ranges; i < nranges; i++, r++)
  60		if (regmap_reg_in_range(reg, r))
  61			return true;
  62	return false;
  63}
  64EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  65
  66bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  67			      const struct regmap_access_table *table)
  68{
  69	/* Check "no ranges" first */
  70	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  71		return false;
  72
  73	/* In case zero "yes ranges" are supplied, any reg is OK */
  74	if (!table->n_yes_ranges)
  75		return true;
  76
  77	return regmap_reg_in_ranges(reg, table->yes_ranges,
  78				    table->n_yes_ranges);
  79}
  80EXPORT_SYMBOL_GPL(regmap_check_range_table);
  81
  82bool regmap_writeable(struct regmap *map, unsigned int reg)
  83{
  84	if (map->max_register && reg > map->max_register)
  85		return false;
  86
  87	if (map->writeable_reg)
  88		return map->writeable_reg(map->dev, reg);
  89
  90	if (map->wr_table)
  91		return regmap_check_range_table(map, reg, map->wr_table);
  92
  93	return true;
  94}
  95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96bool regmap_readable(struct regmap *map, unsigned int reg)
  97{
  98	if (!map->reg_read)
  99		return false;
 100
 101	if (map->max_register && reg > map->max_register)
 102		return false;
 103
 104	if (map->format.format_write)
 105		return false;
 106
 107	if (map->readable_reg)
 108		return map->readable_reg(map->dev, reg);
 109
 110	if (map->rd_table)
 111		return regmap_check_range_table(map, reg, map->rd_table);
 112
 113	return true;
 114}
 115
 116bool regmap_volatile(struct regmap *map, unsigned int reg)
 117{
 118	if (!map->format.format_write && !regmap_readable(map, reg))
 119		return false;
 120
 121	if (map->volatile_reg)
 122		return map->volatile_reg(map->dev, reg);
 123
 124	if (map->volatile_table)
 125		return regmap_check_range_table(map, reg, map->volatile_table);
 126
 127	if (map->cache_ops)
 128		return false;
 129	else
 130		return true;
 131}
 132
 133bool regmap_precious(struct regmap *map, unsigned int reg)
 134{
 135	if (!regmap_readable(map, reg))
 136		return false;
 137
 138	if (map->precious_reg)
 139		return map->precious_reg(map->dev, reg);
 140
 141	if (map->precious_table)
 142		return regmap_check_range_table(map, reg, map->precious_table);
 143
 144	return false;
 145}
 146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 148	size_t num)
 149{
 150	unsigned int i;
 151
 152	for (i = 0; i < num; i++)
 153		if (!regmap_volatile(map, reg + i))
 154			return false;
 155
 156	return true;
 157}
 158
 159static void regmap_format_2_6_write(struct regmap *map,
 160				     unsigned int reg, unsigned int val)
 161{
 162	u8 *out = map->work_buf;
 163
 164	*out = (reg << 6) | val;
 165}
 166
 167static void regmap_format_4_12_write(struct regmap *map,
 168				     unsigned int reg, unsigned int val)
 169{
 170	__be16 *out = map->work_buf;
 171	*out = cpu_to_be16((reg << 12) | val);
 172}
 173
 174static void regmap_format_7_9_write(struct regmap *map,
 175				    unsigned int reg, unsigned int val)
 176{
 177	__be16 *out = map->work_buf;
 178	*out = cpu_to_be16((reg << 9) | val);
 179}
 180
 181static void regmap_format_10_14_write(struct regmap *map,
 182				    unsigned int reg, unsigned int val)
 183{
 184	u8 *out = map->work_buf;
 185
 186	out[2] = val;
 187	out[1] = (val >> 8) | (reg << 6);
 188	out[0] = reg >> 2;
 189}
 190
 191static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 192{
 193	u8 *b = buf;
 194
 195	b[0] = val << shift;
 196}
 197
 198static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 199{
 200	__be16 *b = buf;
 201
 202	b[0] = cpu_to_be16(val << shift);
 203}
 204
 205static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 206{
 207	__le16 *b = buf;
 208
 209	b[0] = cpu_to_le16(val << shift);
 210}
 211
 212static void regmap_format_16_native(void *buf, unsigned int val,
 213				    unsigned int shift)
 214{
 215	*(u16 *)buf = val << shift;
 216}
 217
 218static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 219{
 220	u8 *b = buf;
 221
 222	val <<= shift;
 223
 224	b[0] = val >> 16;
 225	b[1] = val >> 8;
 226	b[2] = val;
 227}
 228
 229static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 230{
 231	__be32 *b = buf;
 232
 233	b[0] = cpu_to_be32(val << shift);
 234}
 235
 236static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 237{
 238	__le32 *b = buf;
 239
 240	b[0] = cpu_to_le32(val << shift);
 241}
 242
 243static void regmap_format_32_native(void *buf, unsigned int val,
 244				    unsigned int shift)
 245{
 246	*(u32 *)buf = val << shift;
 247}
 248
 249#ifdef CONFIG_64BIT
 250static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 251{
 252	__be64 *b = buf;
 253
 254	b[0] = cpu_to_be64((u64)val << shift);
 255}
 256
 257static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 258{
 259	__le64 *b = buf;
 260
 261	b[0] = cpu_to_le64((u64)val << shift);
 262}
 263
 264static void regmap_format_64_native(void *buf, unsigned int val,
 265				    unsigned int shift)
 266{
 267	*(u64 *)buf = (u64)val << shift;
 268}
 269#endif
 270
 271static void regmap_parse_inplace_noop(void *buf)
 272{
 273}
 274
 275static unsigned int regmap_parse_8(const void *buf)
 276{
 277	const u8 *b = buf;
 278
 279	return b[0];
 280}
 281
 282static unsigned int regmap_parse_16_be(const void *buf)
 283{
 284	const __be16 *b = buf;
 285
 286	return be16_to_cpu(b[0]);
 287}
 288
 289static unsigned int regmap_parse_16_le(const void *buf)
 290{
 291	const __le16 *b = buf;
 292
 293	return le16_to_cpu(b[0]);
 294}
 295
 296static void regmap_parse_16_be_inplace(void *buf)
 297{
 298	__be16 *b = buf;
 299
 300	b[0] = be16_to_cpu(b[0]);
 301}
 302
 303static void regmap_parse_16_le_inplace(void *buf)
 304{
 305	__le16 *b = buf;
 306
 307	b[0] = le16_to_cpu(b[0]);
 308}
 309
 310static unsigned int regmap_parse_16_native(const void *buf)
 311{
 312	return *(u16 *)buf;
 313}
 314
 315static unsigned int regmap_parse_24(const void *buf)
 316{
 317	const u8 *b = buf;
 318	unsigned int ret = b[2];
 319	ret |= ((unsigned int)b[1]) << 8;
 320	ret |= ((unsigned int)b[0]) << 16;
 321
 322	return ret;
 323}
 324
 325static unsigned int regmap_parse_32_be(const void *buf)
 326{
 327	const __be32 *b = buf;
 328
 329	return be32_to_cpu(b[0]);
 330}
 331
 332static unsigned int regmap_parse_32_le(const void *buf)
 333{
 334	const __le32 *b = buf;
 335
 336	return le32_to_cpu(b[0]);
 337}
 338
 339static void regmap_parse_32_be_inplace(void *buf)
 340{
 341	__be32 *b = buf;
 342
 343	b[0] = be32_to_cpu(b[0]);
 344}
 345
 346static void regmap_parse_32_le_inplace(void *buf)
 347{
 348	__le32 *b = buf;
 349
 350	b[0] = le32_to_cpu(b[0]);
 351}
 352
 353static unsigned int regmap_parse_32_native(const void *buf)
 354{
 355	return *(u32 *)buf;
 356}
 357
 358#ifdef CONFIG_64BIT
 359static unsigned int regmap_parse_64_be(const void *buf)
 360{
 361	const __be64 *b = buf;
 362
 363	return be64_to_cpu(b[0]);
 364}
 365
 366static unsigned int regmap_parse_64_le(const void *buf)
 367{
 368	const __le64 *b = buf;
 369
 370	return le64_to_cpu(b[0]);
 371}
 372
 373static void regmap_parse_64_be_inplace(void *buf)
 374{
 375	__be64 *b = buf;
 376
 377	b[0] = be64_to_cpu(b[0]);
 378}
 379
 380static void regmap_parse_64_le_inplace(void *buf)
 381{
 382	__le64 *b = buf;
 383
 384	b[0] = le64_to_cpu(b[0]);
 385}
 386
 387static unsigned int regmap_parse_64_native(const void *buf)
 388{
 389	return *(u64 *)buf;
 390}
 391#endif
 392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 393static void regmap_lock_mutex(void *__map)
 394{
 395	struct regmap *map = __map;
 396	mutex_lock(&map->mutex);
 397}
 398
 399static void regmap_unlock_mutex(void *__map)
 400{
 401	struct regmap *map = __map;
 402	mutex_unlock(&map->mutex);
 403}
 404
 405static void regmap_lock_spinlock(void *__map)
 406__acquires(&map->spinlock)
 407{
 408	struct regmap *map = __map;
 409	unsigned long flags;
 410
 411	spin_lock_irqsave(&map->spinlock, flags);
 412	map->spinlock_flags = flags;
 413}
 414
 415static void regmap_unlock_spinlock(void *__map)
 416__releases(&map->spinlock)
 417{
 418	struct regmap *map = __map;
 419	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 420}
 421
 422static void dev_get_regmap_release(struct device *dev, void *res)
 423{
 424	/*
 425	 * We don't actually have anything to do here; the goal here
 426	 * is not to manage the regmap but to provide a simple way to
 427	 * get the regmap back given a struct device.
 428	 */
 429}
 430
 431static bool _regmap_range_add(struct regmap *map,
 432			      struct regmap_range_node *data)
 433{
 434	struct rb_root *root = &map->range_tree;
 435	struct rb_node **new = &(root->rb_node), *parent = NULL;
 436
 437	while (*new) {
 438		struct regmap_range_node *this =
 439			container_of(*new, struct regmap_range_node, node);
 440
 441		parent = *new;
 442		if (data->range_max < this->range_min)
 443			new = &((*new)->rb_left);
 444		else if (data->range_min > this->range_max)
 445			new = &((*new)->rb_right);
 446		else
 447			return false;
 448	}
 449
 450	rb_link_node(&data->node, parent, new);
 451	rb_insert_color(&data->node, root);
 452
 453	return true;
 454}
 455
 456static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 457						      unsigned int reg)
 458{
 459	struct rb_node *node = map->range_tree.rb_node;
 460
 461	while (node) {
 462		struct regmap_range_node *this =
 463			container_of(node, struct regmap_range_node, node);
 464
 465		if (reg < this->range_min)
 466			node = node->rb_left;
 467		else if (reg > this->range_max)
 468			node = node->rb_right;
 469		else
 470			return this;
 471	}
 472
 473	return NULL;
 474}
 475
 476static void regmap_range_exit(struct regmap *map)
 477{
 478	struct rb_node *next;
 479	struct regmap_range_node *range_node;
 480
 481	next = rb_first(&map->range_tree);
 482	while (next) {
 483		range_node = rb_entry(next, struct regmap_range_node, node);
 484		next = rb_next(&range_node->node);
 485		rb_erase(&range_node->node, &map->range_tree);
 486		kfree(range_node);
 487	}
 488
 489	kfree(map->selector_work_buf);
 490}
 491
 492int regmap_attach_dev(struct device *dev, struct regmap *map,
 493		      const struct regmap_config *config)
 494{
 495	struct regmap **m;
 496
 497	map->dev = dev;
 498
 499	regmap_debugfs_init(map, config->name);
 500
 501	/* Add a devres resource for dev_get_regmap() */
 502	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 503	if (!m) {
 504		regmap_debugfs_exit(map);
 505		return -ENOMEM;
 506	}
 507	*m = map;
 508	devres_add(dev, m);
 509
 510	return 0;
 511}
 512EXPORT_SYMBOL_GPL(regmap_attach_dev);
 513
 514static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 515					const struct regmap_config *config)
 516{
 517	enum regmap_endian endian;
 518
 519	/* Retrieve the endianness specification from the regmap config */
 520	endian = config->reg_format_endian;
 521
 522	/* If the regmap config specified a non-default value, use that */
 523	if (endian != REGMAP_ENDIAN_DEFAULT)
 524		return endian;
 525
 526	/* Retrieve the endianness specification from the bus config */
 527	if (bus && bus->reg_format_endian_default)
 528		endian = bus->reg_format_endian_default;
 529
 530	/* If the bus specified a non-default value, use that */
 531	if (endian != REGMAP_ENDIAN_DEFAULT)
 532		return endian;
 533
 534	/* Use this if no other value was found */
 535	return REGMAP_ENDIAN_BIG;
 536}
 537
 538enum regmap_endian regmap_get_val_endian(struct device *dev,
 539					 const struct regmap_bus *bus,
 540					 const struct regmap_config *config)
 541{
 542	struct device_node *np;
 543	enum regmap_endian endian;
 544
 545	/* Retrieve the endianness specification from the regmap config */
 546	endian = config->val_format_endian;
 547
 548	/* If the regmap config specified a non-default value, use that */
 549	if (endian != REGMAP_ENDIAN_DEFAULT)
 550		return endian;
 551
 552	/* If the dev and dev->of_node exist try to get endianness from DT */
 553	if (dev && dev->of_node) {
 554		np = dev->of_node;
 555
 556		/* Parse the device's DT node for an endianness specification */
 557		if (of_property_read_bool(np, "big-endian"))
 558			endian = REGMAP_ENDIAN_BIG;
 559		else if (of_property_read_bool(np, "little-endian"))
 560			endian = REGMAP_ENDIAN_LITTLE;
 561		else if (of_property_read_bool(np, "native-endian"))
 562			endian = REGMAP_ENDIAN_NATIVE;
 563
 564		/* If the endianness was specified in DT, use that */
 565		if (endian != REGMAP_ENDIAN_DEFAULT)
 566			return endian;
 567	}
 568
 569	/* Retrieve the endianness specification from the bus config */
 570	if (bus && bus->val_format_endian_default)
 571		endian = bus->val_format_endian_default;
 572
 573	/* If the bus specified a non-default value, use that */
 574	if (endian != REGMAP_ENDIAN_DEFAULT)
 575		return endian;
 576
 577	/* Use this if no other value was found */
 578	return REGMAP_ENDIAN_BIG;
 579}
 580EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 581
 582struct regmap *__regmap_init(struct device *dev,
 583			     const struct regmap_bus *bus,
 584			     void *bus_context,
 585			     const struct regmap_config *config,
 586			     struct lock_class_key *lock_key,
 587			     const char *lock_name)
 588{
 589	struct regmap *map;
 590	int ret = -EINVAL;
 591	enum regmap_endian reg_endian, val_endian;
 592	int i, j;
 593
 594	if (!config)
 595		goto err;
 596
 597	map = kzalloc(sizeof(*map), GFP_KERNEL);
 598	if (map == NULL) {
 599		ret = -ENOMEM;
 600		goto err;
 601	}
 602
 603	if (config->lock && config->unlock) {
 
 
 
 
 
 
 
 
 
 
 
 604		map->lock = config->lock;
 605		map->unlock = config->unlock;
 606		map->lock_arg = config->lock_arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607	} else {
 608		if ((bus && bus->fast_io) ||
 609		    config->fast_io) {
 610			spin_lock_init(&map->spinlock);
 611			map->lock = regmap_lock_spinlock;
 612			map->unlock = regmap_unlock_spinlock;
 613			lockdep_set_class_and_name(&map->spinlock,
 614						   lock_key, lock_name);
 615		} else {
 616			mutex_init(&map->mutex);
 617			map->lock = regmap_lock_mutex;
 618			map->unlock = regmap_unlock_mutex;
 619			lockdep_set_class_and_name(&map->mutex,
 620						   lock_key, lock_name);
 621		}
 622		map->lock_arg = map;
 623	}
 624
 625	/*
 626	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 627	 * scratch buffers with sleeping allocations.
 628	 */
 629	if ((bus && bus->fast_io) || config->fast_io)
 630		map->alloc_flags = GFP_ATOMIC;
 631	else
 632		map->alloc_flags = GFP_KERNEL;
 633
 634	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 635	map->format.pad_bytes = config->pad_bits / 8;
 636	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 637	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 638			config->val_bits + config->pad_bits, 8);
 639	map->reg_shift = config->pad_bits % 8;
 640	if (config->reg_stride)
 641		map->reg_stride = config->reg_stride;
 642	else
 643		map->reg_stride = 1;
 644	if (is_power_of_2(map->reg_stride))
 645		map->reg_stride_order = ilog2(map->reg_stride);
 646	else
 647		map->reg_stride_order = -1;
 648	map->use_single_read = config->use_single_rw || !bus || !bus->read;
 649	map->use_single_write = config->use_single_rw || !bus || !bus->write;
 650	map->can_multi_write = config->can_multi_write && bus && bus->write;
 651	if (bus) {
 652		map->max_raw_read = bus->max_raw_read;
 653		map->max_raw_write = bus->max_raw_write;
 654	}
 655	map->dev = dev;
 656	map->bus = bus;
 657	map->bus_context = bus_context;
 658	map->max_register = config->max_register;
 659	map->wr_table = config->wr_table;
 660	map->rd_table = config->rd_table;
 661	map->volatile_table = config->volatile_table;
 662	map->precious_table = config->precious_table;
 
 
 663	map->writeable_reg = config->writeable_reg;
 664	map->readable_reg = config->readable_reg;
 665	map->volatile_reg = config->volatile_reg;
 666	map->precious_reg = config->precious_reg;
 
 
 667	map->cache_type = config->cache_type;
 668	map->name = config->name;
 669
 670	spin_lock_init(&map->async_lock);
 671	INIT_LIST_HEAD(&map->async_list);
 672	INIT_LIST_HEAD(&map->async_free);
 673	init_waitqueue_head(&map->async_waitq);
 674
 675	if (config->read_flag_mask || config->write_flag_mask) {
 
 
 676		map->read_flag_mask = config->read_flag_mask;
 677		map->write_flag_mask = config->write_flag_mask;
 678	} else if (bus) {
 679		map->read_flag_mask = bus->read_flag_mask;
 680	}
 681
 682	if (!bus) {
 683		map->reg_read  = config->reg_read;
 684		map->reg_write = config->reg_write;
 685
 686		map->defer_caching = false;
 687		goto skip_format_initialization;
 688	} else if (!bus->read || !bus->write) {
 689		map->reg_read = _regmap_bus_reg_read;
 690		map->reg_write = _regmap_bus_reg_write;
 691
 692		map->defer_caching = false;
 693		goto skip_format_initialization;
 694	} else {
 695		map->reg_read  = _regmap_bus_read;
 696		map->reg_update_bits = bus->reg_update_bits;
 697	}
 698
 699	reg_endian = regmap_get_reg_endian(bus, config);
 700	val_endian = regmap_get_val_endian(dev, bus, config);
 701
 702	switch (config->reg_bits + map->reg_shift) {
 703	case 2:
 704		switch (config->val_bits) {
 705		case 6:
 706			map->format.format_write = regmap_format_2_6_write;
 707			break;
 708		default:
 709			goto err_map;
 710		}
 711		break;
 712
 713	case 4:
 714		switch (config->val_bits) {
 715		case 12:
 716			map->format.format_write = regmap_format_4_12_write;
 717			break;
 718		default:
 719			goto err_map;
 720		}
 721		break;
 722
 723	case 7:
 724		switch (config->val_bits) {
 725		case 9:
 726			map->format.format_write = regmap_format_7_9_write;
 727			break;
 728		default:
 729			goto err_map;
 730		}
 731		break;
 732
 733	case 10:
 734		switch (config->val_bits) {
 735		case 14:
 736			map->format.format_write = regmap_format_10_14_write;
 737			break;
 738		default:
 739			goto err_map;
 740		}
 741		break;
 742
 743	case 8:
 744		map->format.format_reg = regmap_format_8;
 745		break;
 746
 747	case 16:
 748		switch (reg_endian) {
 749		case REGMAP_ENDIAN_BIG:
 750			map->format.format_reg = regmap_format_16_be;
 751			break;
 
 
 
 752		case REGMAP_ENDIAN_NATIVE:
 753			map->format.format_reg = regmap_format_16_native;
 754			break;
 755		default:
 756			goto err_map;
 757		}
 758		break;
 759
 760	case 24:
 761		if (reg_endian != REGMAP_ENDIAN_BIG)
 762			goto err_map;
 763		map->format.format_reg = regmap_format_24;
 764		break;
 765
 766	case 32:
 767		switch (reg_endian) {
 768		case REGMAP_ENDIAN_BIG:
 769			map->format.format_reg = regmap_format_32_be;
 770			break;
 
 
 
 771		case REGMAP_ENDIAN_NATIVE:
 772			map->format.format_reg = regmap_format_32_native;
 773			break;
 774		default:
 775			goto err_map;
 776		}
 777		break;
 778
 779#ifdef CONFIG_64BIT
 780	case 64:
 781		switch (reg_endian) {
 782		case REGMAP_ENDIAN_BIG:
 783			map->format.format_reg = regmap_format_64_be;
 784			break;
 
 
 
 785		case REGMAP_ENDIAN_NATIVE:
 786			map->format.format_reg = regmap_format_64_native;
 787			break;
 788		default:
 789			goto err_map;
 790		}
 791		break;
 792#endif
 793
 794	default:
 795		goto err_map;
 796	}
 797
 798	if (val_endian == REGMAP_ENDIAN_NATIVE)
 799		map->format.parse_inplace = regmap_parse_inplace_noop;
 800
 801	switch (config->val_bits) {
 802	case 8:
 803		map->format.format_val = regmap_format_8;
 804		map->format.parse_val = regmap_parse_8;
 805		map->format.parse_inplace = regmap_parse_inplace_noop;
 806		break;
 807	case 16:
 808		switch (val_endian) {
 809		case REGMAP_ENDIAN_BIG:
 810			map->format.format_val = regmap_format_16_be;
 811			map->format.parse_val = regmap_parse_16_be;
 812			map->format.parse_inplace = regmap_parse_16_be_inplace;
 813			break;
 814		case REGMAP_ENDIAN_LITTLE:
 815			map->format.format_val = regmap_format_16_le;
 816			map->format.parse_val = regmap_parse_16_le;
 817			map->format.parse_inplace = regmap_parse_16_le_inplace;
 818			break;
 819		case REGMAP_ENDIAN_NATIVE:
 820			map->format.format_val = regmap_format_16_native;
 821			map->format.parse_val = regmap_parse_16_native;
 822			break;
 823		default:
 824			goto err_map;
 825		}
 826		break;
 827	case 24:
 828		if (val_endian != REGMAP_ENDIAN_BIG)
 829			goto err_map;
 830		map->format.format_val = regmap_format_24;
 831		map->format.parse_val = regmap_parse_24;
 832		break;
 833	case 32:
 834		switch (val_endian) {
 835		case REGMAP_ENDIAN_BIG:
 836			map->format.format_val = regmap_format_32_be;
 837			map->format.parse_val = regmap_parse_32_be;
 838			map->format.parse_inplace = regmap_parse_32_be_inplace;
 839			break;
 840		case REGMAP_ENDIAN_LITTLE:
 841			map->format.format_val = regmap_format_32_le;
 842			map->format.parse_val = regmap_parse_32_le;
 843			map->format.parse_inplace = regmap_parse_32_le_inplace;
 844			break;
 845		case REGMAP_ENDIAN_NATIVE:
 846			map->format.format_val = regmap_format_32_native;
 847			map->format.parse_val = regmap_parse_32_native;
 848			break;
 849		default:
 850			goto err_map;
 851		}
 852		break;
 853#ifdef CONFIG_64BIT
 854	case 64:
 855		switch (val_endian) {
 856		case REGMAP_ENDIAN_BIG:
 857			map->format.format_val = regmap_format_64_be;
 858			map->format.parse_val = regmap_parse_64_be;
 859			map->format.parse_inplace = regmap_parse_64_be_inplace;
 860			break;
 861		case REGMAP_ENDIAN_LITTLE:
 862			map->format.format_val = regmap_format_64_le;
 863			map->format.parse_val = regmap_parse_64_le;
 864			map->format.parse_inplace = regmap_parse_64_le_inplace;
 865			break;
 866		case REGMAP_ENDIAN_NATIVE:
 867			map->format.format_val = regmap_format_64_native;
 868			map->format.parse_val = regmap_parse_64_native;
 869			break;
 870		default:
 871			goto err_map;
 872		}
 873		break;
 874#endif
 875	}
 876
 877	if (map->format.format_write) {
 878		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 879		    (val_endian != REGMAP_ENDIAN_BIG))
 880			goto err_map;
 881		map->use_single_write = true;
 882	}
 883
 884	if (!map->format.format_write &&
 885	    !(map->format.format_reg && map->format.format_val))
 886		goto err_map;
 887
 888	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 889	if (map->work_buf == NULL) {
 890		ret = -ENOMEM;
 891		goto err_map;
 892	}
 893
 894	if (map->format.format_write) {
 895		map->defer_caching = false;
 896		map->reg_write = _regmap_bus_formatted_write;
 897	} else if (map->format.format_val) {
 898		map->defer_caching = true;
 899		map->reg_write = _regmap_bus_raw_write;
 900	}
 901
 902skip_format_initialization:
 903
 904	map->range_tree = RB_ROOT;
 905	for (i = 0; i < config->num_ranges; i++) {
 906		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 907		struct regmap_range_node *new;
 908
 909		/* Sanity check */
 910		if (range_cfg->range_max < range_cfg->range_min) {
 911			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 912				range_cfg->range_max, range_cfg->range_min);
 913			goto err_range;
 914		}
 915
 916		if (range_cfg->range_max > map->max_register) {
 917			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 918				range_cfg->range_max, map->max_register);
 919			goto err_range;
 920		}
 921
 922		if (range_cfg->selector_reg > map->max_register) {
 923			dev_err(map->dev,
 924				"Invalid range %d: selector out of map\n", i);
 925			goto err_range;
 926		}
 927
 928		if (range_cfg->window_len == 0) {
 929			dev_err(map->dev, "Invalid range %d: window_len 0\n",
 930				i);
 931			goto err_range;
 932		}
 933
 934		/* Make sure, that this register range has no selector
 935		   or data window within its boundary */
 936		for (j = 0; j < config->num_ranges; j++) {
 937			unsigned sel_reg = config->ranges[j].selector_reg;
 938			unsigned win_min = config->ranges[j].window_start;
 939			unsigned win_max = win_min +
 940					   config->ranges[j].window_len - 1;
 941
 942			/* Allow data window inside its own virtual range */
 943			if (j == i)
 944				continue;
 945
 946			if (range_cfg->range_min <= sel_reg &&
 947			    sel_reg <= range_cfg->range_max) {
 948				dev_err(map->dev,
 949					"Range %d: selector for %d in window\n",
 950					i, j);
 951				goto err_range;
 952			}
 953
 954			if (!(win_max < range_cfg->range_min ||
 955			      win_min > range_cfg->range_max)) {
 956				dev_err(map->dev,
 957					"Range %d: window for %d in window\n",
 958					i, j);
 959				goto err_range;
 960			}
 961		}
 962
 963		new = kzalloc(sizeof(*new), GFP_KERNEL);
 964		if (new == NULL) {
 965			ret = -ENOMEM;
 966			goto err_range;
 967		}
 968
 969		new->map = map;
 970		new->name = range_cfg->name;
 971		new->range_min = range_cfg->range_min;
 972		new->range_max = range_cfg->range_max;
 973		new->selector_reg = range_cfg->selector_reg;
 974		new->selector_mask = range_cfg->selector_mask;
 975		new->selector_shift = range_cfg->selector_shift;
 976		new->window_start = range_cfg->window_start;
 977		new->window_len = range_cfg->window_len;
 978
 979		if (!_regmap_range_add(map, new)) {
 980			dev_err(map->dev, "Failed to add range %d\n", i);
 981			kfree(new);
 982			goto err_range;
 983		}
 984
 985		if (map->selector_work_buf == NULL) {
 986			map->selector_work_buf =
 987				kzalloc(map->format.buf_size, GFP_KERNEL);
 988			if (map->selector_work_buf == NULL) {
 989				ret = -ENOMEM;
 990				goto err_range;
 991			}
 992		}
 993	}
 994
 995	ret = regcache_init(map, config);
 996	if (ret != 0)
 997		goto err_range;
 998
 999	if (dev) {
1000		ret = regmap_attach_dev(dev, map, config);
1001		if (ret != 0)
1002			goto err_regcache;
 
 
1003	}
1004
1005	return map;
1006
1007err_regcache:
1008	regcache_exit(map);
1009err_range:
1010	regmap_range_exit(map);
1011	kfree(map->work_buf);
 
 
 
 
 
1012err_map:
1013	kfree(map);
1014err:
1015	return ERR_PTR(ret);
1016}
1017EXPORT_SYMBOL_GPL(__regmap_init);
1018
1019static void devm_regmap_release(struct device *dev, void *res)
1020{
1021	regmap_exit(*(struct regmap **)res);
1022}
1023
1024struct regmap *__devm_regmap_init(struct device *dev,
1025				  const struct regmap_bus *bus,
1026				  void *bus_context,
1027				  const struct regmap_config *config,
1028				  struct lock_class_key *lock_key,
1029				  const char *lock_name)
1030{
1031	struct regmap **ptr, *regmap;
1032
1033	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1034	if (!ptr)
1035		return ERR_PTR(-ENOMEM);
1036
1037	regmap = __regmap_init(dev, bus, bus_context, config,
1038			       lock_key, lock_name);
1039	if (!IS_ERR(regmap)) {
1040		*ptr = regmap;
1041		devres_add(dev, ptr);
1042	} else {
1043		devres_free(ptr);
1044	}
1045
1046	return regmap;
1047}
1048EXPORT_SYMBOL_GPL(__devm_regmap_init);
1049
1050static void regmap_field_init(struct regmap_field *rm_field,
1051	struct regmap *regmap, struct reg_field reg_field)
1052{
1053	rm_field->regmap = regmap;
1054	rm_field->reg = reg_field.reg;
1055	rm_field->shift = reg_field.lsb;
1056	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1057	rm_field->id_size = reg_field.id_size;
1058	rm_field->id_offset = reg_field.id_offset;
1059}
1060
1061/**
1062 * devm_regmap_field_alloc(): Allocate and initialise a register field
1063 * in a register map.
1064 *
1065 * @dev: Device that will be interacted with
1066 * @regmap: regmap bank in which this register field is located.
1067 * @reg_field: Register field with in the bank.
1068 *
1069 * The return value will be an ERR_PTR() on error or a valid pointer
1070 * to a struct regmap_field. The regmap_field will be automatically freed
1071 * by the device management code.
1072 */
1073struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1074		struct regmap *regmap, struct reg_field reg_field)
1075{
1076	struct regmap_field *rm_field = devm_kzalloc(dev,
1077					sizeof(*rm_field), GFP_KERNEL);
1078	if (!rm_field)
1079		return ERR_PTR(-ENOMEM);
1080
1081	regmap_field_init(rm_field, regmap, reg_field);
1082
1083	return rm_field;
1084
1085}
1086EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1087
1088/**
1089 * devm_regmap_field_free(): Free register field allocated using
1090 * devm_regmap_field_alloc. Usally drivers need not call this function,
1091 * as the memory allocated via devm will be freed as per device-driver
1092 * life-cyle.
1093 *
1094 * @dev: Device that will be interacted with
1095 * @field: regmap field which should be freed.
 
 
 
 
1096 */
1097void devm_regmap_field_free(struct device *dev,
1098	struct regmap_field *field)
1099{
1100	devm_kfree(dev, field);
1101}
1102EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1103
1104/**
1105 * regmap_field_alloc(): Allocate and initialise a register field
1106 * in a register map.
1107 *
1108 * @regmap: regmap bank in which this register field is located.
1109 * @reg_field: Register field with in the bank.
1110 *
1111 * The return value will be an ERR_PTR() on error or a valid pointer
1112 * to a struct regmap_field. The regmap_field should be freed by the
1113 * user once its finished working with it using regmap_field_free().
1114 */
1115struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1116		struct reg_field reg_field)
1117{
1118	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1119
1120	if (!rm_field)
1121		return ERR_PTR(-ENOMEM);
1122
1123	regmap_field_init(rm_field, regmap, reg_field);
1124
1125	return rm_field;
1126}
1127EXPORT_SYMBOL_GPL(regmap_field_alloc);
1128
1129/**
1130 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 
1131 *
1132 * @field: regmap field which should be freed.
1133 */
1134void regmap_field_free(struct regmap_field *field)
1135{
1136	kfree(field);
1137}
1138EXPORT_SYMBOL_GPL(regmap_field_free);
1139
1140/**
1141 * regmap_reinit_cache(): Reinitialise the current register cache
1142 *
1143 * @map: Register map to operate on.
1144 * @config: New configuration.  Only the cache data will be used.
1145 *
1146 * Discard any existing register cache for the map and initialize a
1147 * new cache.  This can be used to restore the cache to defaults or to
1148 * update the cache configuration to reflect runtime discovery of the
1149 * hardware.
1150 *
1151 * No explicit locking is done here, the user needs to ensure that
1152 * this function will not race with other calls to regmap.
1153 */
1154int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1155{
1156	regcache_exit(map);
1157	regmap_debugfs_exit(map);
1158
1159	map->max_register = config->max_register;
1160	map->writeable_reg = config->writeable_reg;
1161	map->readable_reg = config->readable_reg;
1162	map->volatile_reg = config->volatile_reg;
1163	map->precious_reg = config->precious_reg;
 
 
1164	map->cache_type = config->cache_type;
1165
1166	regmap_debugfs_init(map, config->name);
1167
1168	map->cache_bypass = false;
1169	map->cache_only = false;
1170
1171	return regcache_init(map, config);
1172}
1173EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1174
1175/**
1176 * regmap_exit(): Free a previously allocated register map
 
 
1177 */
1178void regmap_exit(struct regmap *map)
1179{
1180	struct regmap_async *async;
1181
1182	regcache_exit(map);
1183	regmap_debugfs_exit(map);
1184	regmap_range_exit(map);
1185	if (map->bus && map->bus->free_context)
1186		map->bus->free_context(map->bus_context);
1187	kfree(map->work_buf);
1188	while (!list_empty(&map->async_free)) {
1189		async = list_first_entry_or_null(&map->async_free,
1190						 struct regmap_async,
1191						 list);
1192		list_del(&async->list);
1193		kfree(async->work_buf);
1194		kfree(async);
1195	}
 
 
 
1196	kfree(map);
1197}
1198EXPORT_SYMBOL_GPL(regmap_exit);
1199
1200static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1201{
1202	struct regmap **r = res;
1203	if (!r || !*r) {
1204		WARN_ON(!r || !*r);
1205		return 0;
1206	}
1207
1208	/* If the user didn't specify a name match any */
1209	if (data)
1210		return (*r)->name == data;
1211	else
1212		return 1;
1213}
1214
1215/**
1216 * dev_get_regmap(): Obtain the regmap (if any) for a device
1217 *
1218 * @dev: Device to retrieve the map for
1219 * @name: Optional name for the register map, usually NULL.
1220 *
1221 * Returns the regmap for the device if one is present, or NULL.  If
1222 * name is specified then it must match the name specified when
1223 * registering the device, if it is NULL then the first regmap found
1224 * will be used.  Devices with multiple register maps are very rare,
1225 * generic code should normally not need to specify a name.
1226 */
1227struct regmap *dev_get_regmap(struct device *dev, const char *name)
1228{
1229	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1230					dev_get_regmap_match, (void *)name);
1231
1232	if (!r)
1233		return NULL;
1234	return *r;
1235}
1236EXPORT_SYMBOL_GPL(dev_get_regmap);
1237
1238/**
1239 * regmap_get_device(): Obtain the device from a regmap
1240 *
1241 * @map: Register map to operate on.
1242 *
1243 * Returns the underlying device that the regmap has been created for.
1244 */
1245struct device *regmap_get_device(struct regmap *map)
1246{
1247	return map->dev;
1248}
1249EXPORT_SYMBOL_GPL(regmap_get_device);
1250
1251static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1252			       struct regmap_range_node *range,
1253			       unsigned int val_num)
1254{
1255	void *orig_work_buf;
1256	unsigned int win_offset;
1257	unsigned int win_page;
1258	bool page_chg;
1259	int ret;
1260
1261	win_offset = (*reg - range->range_min) % range->window_len;
1262	win_page = (*reg - range->range_min) / range->window_len;
1263
1264	if (val_num > 1) {
1265		/* Bulk write shouldn't cross range boundary */
1266		if (*reg + val_num - 1 > range->range_max)
1267			return -EINVAL;
1268
1269		/* ... or single page boundary */
1270		if (val_num > range->window_len - win_offset)
1271			return -EINVAL;
1272	}
1273
1274	/* It is possible to have selector register inside data window.
1275	   In that case, selector register is located on every page and
1276	   it needs no page switching, when accessed alone. */
1277	if (val_num > 1 ||
1278	    range->window_start + win_offset != range->selector_reg) {
1279		/* Use separate work_buf during page switching */
1280		orig_work_buf = map->work_buf;
1281		map->work_buf = map->selector_work_buf;
1282
1283		ret = _regmap_update_bits(map, range->selector_reg,
1284					  range->selector_mask,
1285					  win_page << range->selector_shift,
1286					  &page_chg, false);
1287
1288		map->work_buf = orig_work_buf;
1289
1290		if (ret != 0)
1291			return ret;
1292	}
1293
1294	*reg = range->window_start + win_offset;
1295
1296	return 0;
1297}
1298
1299int _regmap_raw_write(struct regmap *map, unsigned int reg,
1300		      const void *val, size_t val_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301{
1302	struct regmap_range_node *range;
1303	unsigned long flags;
1304	u8 *u8 = map->work_buf;
1305	void *work_val = map->work_buf + map->format.reg_bytes +
1306		map->format.pad_bytes;
1307	void *buf;
1308	int ret = -ENOTSUPP;
1309	size_t len;
1310	int i;
1311
1312	WARN_ON(!map->bus);
1313
1314	/* Check for unwritable registers before we start */
1315	if (map->writeable_reg)
1316		for (i = 0; i < val_len / map->format.val_bytes; i++)
1317			if (!map->writeable_reg(map->dev,
1318					       reg + regmap_get_offset(map, i)))
1319				return -EINVAL;
1320
1321	if (!map->cache_bypass && map->format.parse_val) {
1322		unsigned int ival;
1323		int val_bytes = map->format.val_bytes;
1324		for (i = 0; i < val_len / val_bytes; i++) {
1325			ival = map->format.parse_val(val + (i * val_bytes));
1326			ret = regcache_write(map,
1327					     reg + regmap_get_offset(map, i),
1328					     ival);
1329			if (ret) {
1330				dev_err(map->dev,
1331					"Error in caching of register: %x ret: %d\n",
1332					reg + i, ret);
1333				return ret;
1334			}
1335		}
1336		if (map->cache_only) {
1337			map->cache_dirty = true;
1338			return 0;
1339		}
1340	}
1341
1342	range = _regmap_range_lookup(map, reg);
1343	if (range) {
1344		int val_num = val_len / map->format.val_bytes;
1345		int win_offset = (reg - range->range_min) % range->window_len;
1346		int win_residue = range->window_len - win_offset;
1347
1348		/* If the write goes beyond the end of the window split it */
1349		while (val_num > win_residue) {
1350			dev_dbg(map->dev, "Writing window %d/%zu\n",
1351				win_residue, val_len / map->format.val_bytes);
1352			ret = _regmap_raw_write(map, reg, val, win_residue *
1353						map->format.val_bytes);
 
1354			if (ret != 0)
1355				return ret;
1356
1357			reg += win_residue;
1358			val_num -= win_residue;
1359			val += win_residue * map->format.val_bytes;
1360			val_len -= win_residue * map->format.val_bytes;
1361
1362			win_offset = (reg - range->range_min) %
1363				range->window_len;
1364			win_residue = range->window_len - win_offset;
1365		}
1366
1367		ret = _regmap_select_page(map, &reg, range, val_num);
1368		if (ret != 0)
1369			return ret;
1370	}
1371
1372	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1373
1374	u8[0] |= map->write_flag_mask;
1375
1376	/*
1377	 * Essentially all I/O mechanisms will be faster with a single
1378	 * buffer to write.  Since register syncs often generate raw
1379	 * writes of single registers optimise that case.
1380	 */
1381	if (val != work_val && val_len == map->format.val_bytes) {
1382		memcpy(work_val, val, map->format.val_bytes);
1383		val = work_val;
1384	}
1385
1386	if (map->async && map->bus->async_write) {
1387		struct regmap_async *async;
1388
1389		trace_regmap_async_write_start(map, reg, val_len);
1390
1391		spin_lock_irqsave(&map->async_lock, flags);
1392		async = list_first_entry_or_null(&map->async_free,
1393						 struct regmap_async,
1394						 list);
1395		if (async)
1396			list_del(&async->list);
1397		spin_unlock_irqrestore(&map->async_lock, flags);
1398
1399		if (!async) {
1400			async = map->bus->async_alloc();
1401			if (!async)
1402				return -ENOMEM;
1403
1404			async->work_buf = kzalloc(map->format.buf_size,
1405						  GFP_KERNEL | GFP_DMA);
1406			if (!async->work_buf) {
1407				kfree(async);
1408				return -ENOMEM;
1409			}
1410		}
1411
1412		async->map = map;
1413
1414		/* If the caller supplied the value we can use it safely. */
1415		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1416		       map->format.reg_bytes + map->format.val_bytes);
1417
1418		spin_lock_irqsave(&map->async_lock, flags);
1419		list_add_tail(&async->list, &map->async_list);
1420		spin_unlock_irqrestore(&map->async_lock, flags);
1421
1422		if (val != work_val)
1423			ret = map->bus->async_write(map->bus_context,
1424						    async->work_buf,
1425						    map->format.reg_bytes +
1426						    map->format.pad_bytes,
1427						    val, val_len, async);
1428		else
1429			ret = map->bus->async_write(map->bus_context,
1430						    async->work_buf,
1431						    map->format.reg_bytes +
1432						    map->format.pad_bytes +
1433						    val_len, NULL, 0, async);
1434
1435		if (ret != 0) {
1436			dev_err(map->dev, "Failed to schedule write: %d\n",
1437				ret);
1438
1439			spin_lock_irqsave(&map->async_lock, flags);
1440			list_move(&async->list, &map->async_free);
1441			spin_unlock_irqrestore(&map->async_lock, flags);
1442		}
1443
1444		return ret;
1445	}
1446
1447	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1448
1449	/* If we're doing a single register write we can probably just
1450	 * send the work_buf directly, otherwise try to do a gather
1451	 * write.
1452	 */
1453	if (val == work_val)
1454		ret = map->bus->write(map->bus_context, map->work_buf,
1455				      map->format.reg_bytes +
1456				      map->format.pad_bytes +
1457				      val_len);
1458	else if (map->bus->gather_write)
1459		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1460					     map->format.reg_bytes +
1461					     map->format.pad_bytes,
1462					     val, val_len);
 
 
1463
1464	/* If that didn't work fall back on linearising by hand. */
1465	if (ret == -ENOTSUPP) {
1466		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1467		buf = kzalloc(len, GFP_KERNEL);
1468		if (!buf)
1469			return -ENOMEM;
1470
1471		memcpy(buf, map->work_buf, map->format.reg_bytes);
1472		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1473		       val, val_len);
1474		ret = map->bus->write(map->bus_context, buf, len);
1475
1476		kfree(buf);
 
 
 
 
 
 
1477	}
1478
1479	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1480
1481	return ret;
1482}
1483
1484/**
1485 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1486 *
1487 * @map: Map to check.
1488 */
1489bool regmap_can_raw_write(struct regmap *map)
1490{
1491	return map->bus && map->bus->write && map->format.format_val &&
1492		map->format.format_reg;
1493}
1494EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1495
1496/**
1497 * regmap_get_raw_read_max - Get the maximum size we can read
1498 *
1499 * @map: Map to check.
1500 */
1501size_t regmap_get_raw_read_max(struct regmap *map)
1502{
1503	return map->max_raw_read;
1504}
1505EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1506
1507/**
1508 * regmap_get_raw_write_max - Get the maximum size we can read
1509 *
1510 * @map: Map to check.
1511 */
1512size_t regmap_get_raw_write_max(struct regmap *map)
1513{
1514	return map->max_raw_write;
1515}
1516EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1517
1518static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1519				       unsigned int val)
1520{
1521	int ret;
1522	struct regmap_range_node *range;
1523	struct regmap *map = context;
1524
1525	WARN_ON(!map->bus || !map->format.format_write);
1526
1527	range = _regmap_range_lookup(map, reg);
1528	if (range) {
1529		ret = _regmap_select_page(map, &reg, range, 1);
1530		if (ret != 0)
1531			return ret;
1532	}
1533
1534	map->format.format_write(map, reg, val);
1535
1536	trace_regmap_hw_write_start(map, reg, 1);
1537
1538	ret = map->bus->write(map->bus_context, map->work_buf,
1539			      map->format.buf_size);
1540
1541	trace_regmap_hw_write_done(map, reg, 1);
1542
1543	return ret;
1544}
1545
1546static int _regmap_bus_reg_write(void *context, unsigned int reg,
1547				 unsigned int val)
1548{
1549	struct regmap *map = context;
1550
1551	return map->bus->reg_write(map->bus_context, reg, val);
1552}
1553
1554static int _regmap_bus_raw_write(void *context, unsigned int reg,
1555				 unsigned int val)
1556{
1557	struct regmap *map = context;
1558
1559	WARN_ON(!map->bus || !map->format.format_val);
1560
1561	map->format.format_val(map->work_buf + map->format.reg_bytes
1562			       + map->format.pad_bytes, val, 0);
1563	return _regmap_raw_write(map, reg,
1564				 map->work_buf +
1565				 map->format.reg_bytes +
1566				 map->format.pad_bytes,
1567				 map->format.val_bytes);
1568}
1569
1570static inline void *_regmap_map_get_context(struct regmap *map)
1571{
1572	return (map->bus) ? map : map->bus_context;
1573}
1574
1575int _regmap_write(struct regmap *map, unsigned int reg,
1576		  unsigned int val)
1577{
1578	int ret;
1579	void *context = _regmap_map_get_context(map);
1580
1581	if (!regmap_writeable(map, reg))
1582		return -EIO;
1583
1584	if (!map->cache_bypass && !map->defer_caching) {
1585		ret = regcache_write(map, reg, val);
1586		if (ret != 0)
1587			return ret;
1588		if (map->cache_only) {
1589			map->cache_dirty = true;
1590			return 0;
1591		}
1592	}
1593
1594#ifdef LOG_DEVICE
1595	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1596		dev_info(map->dev, "%x <= %x\n", reg, val);
1597#endif
1598
1599	trace_regmap_reg_write(map, reg, val);
1600
1601	return map->reg_write(context, reg, val);
1602}
1603
1604/**
1605 * regmap_write(): Write a value to a single register
1606 *
1607 * @map: Register map to write to
1608 * @reg: Register to write to
1609 * @val: Value to be written
1610 *
1611 * A value of zero will be returned on success, a negative errno will
1612 * be returned in error cases.
1613 */
1614int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1615{
1616	int ret;
1617
1618	if (!IS_ALIGNED(reg, map->reg_stride))
1619		return -EINVAL;
1620
1621	map->lock(map->lock_arg);
1622
1623	ret = _regmap_write(map, reg, val);
1624
1625	map->unlock(map->lock_arg);
1626
1627	return ret;
1628}
1629EXPORT_SYMBOL_GPL(regmap_write);
1630
1631/**
1632 * regmap_write_async(): Write a value to a single register asynchronously
1633 *
1634 * @map: Register map to write to
1635 * @reg: Register to write to
1636 * @val: Value to be written
1637 *
1638 * A value of zero will be returned on success, a negative errno will
1639 * be returned in error cases.
1640 */
1641int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1642{
1643	int ret;
1644
1645	if (!IS_ALIGNED(reg, map->reg_stride))
1646		return -EINVAL;
1647
1648	map->lock(map->lock_arg);
1649
1650	map->async = true;
1651
1652	ret = _regmap_write(map, reg, val);
1653
1654	map->async = false;
1655
1656	map->unlock(map->lock_arg);
1657
1658	return ret;
1659}
1660EXPORT_SYMBOL_GPL(regmap_write_async);
1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662/**
1663 * regmap_raw_write(): Write raw values to one or more registers
1664 *
1665 * @map: Register map to write to
1666 * @reg: Initial register to write to
1667 * @val: Block of data to be written, laid out for direct transmission to the
1668 *       device
1669 * @val_len: Length of data pointed to by val.
1670 *
1671 * This function is intended to be used for things like firmware
1672 * download where a large block of data needs to be transferred to the
1673 * device.  No formatting will be done on the data provided.
1674 *
1675 * A value of zero will be returned on success, a negative errno will
1676 * be returned in error cases.
1677 */
1678int regmap_raw_write(struct regmap *map, unsigned int reg,
1679		     const void *val, size_t val_len)
1680{
1681	int ret;
1682
1683	if (!regmap_can_raw_write(map))
1684		return -EINVAL;
1685	if (val_len % map->format.val_bytes)
1686		return -EINVAL;
1687	if (map->max_raw_write && map->max_raw_write > val_len)
1688		return -E2BIG;
1689
1690	map->lock(map->lock_arg);
1691
1692	ret = _regmap_raw_write(map, reg, val, val_len);
1693
1694	map->unlock(map->lock_arg);
1695
1696	return ret;
1697}
1698EXPORT_SYMBOL_GPL(regmap_raw_write);
1699
1700/**
1701 * regmap_field_update_bits_base():
1702 *	Perform a read/modify/write cycle on the register field
1703 *	with change, async, force option
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704 *
1705 * @field: Register field to write to
1706 * @mask: Bitmask to change
1707 * @val: Value to be written
1708 * @change: Boolean indicating if a write was done
1709 * @async: Boolean indicating asynchronously
1710 * @force: Boolean indicating use force update
1711 *
 
 
 
1712 * A value of zero will be returned on success, a negative errno will
1713 * be returned in error cases.
1714 */
1715int regmap_field_update_bits_base(struct regmap_field *field,
1716				  unsigned int mask, unsigned int val,
1717				  bool *change, bool async, bool force)
1718{
1719	mask = (mask << field->shift) & field->mask;
1720
1721	return regmap_update_bits_base(field->regmap, field->reg,
1722				       mask, val << field->shift,
1723				       change, async, force);
1724}
1725EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1726
1727/**
1728 * regmap_fields_update_bits_base():
1729 *	Perform a read/modify/write cycle on the register field
1730 *	with change, async, force option
1731 *
1732 * @field: Register field to write to
1733 * @id: port ID
1734 * @mask: Bitmask to change
1735 * @val: Value to be written
1736 * @change: Boolean indicating if a write was done
1737 * @async: Boolean indicating asynchronously
1738 * @force: Boolean indicating use force update
1739 *
1740 * A value of zero will be returned on success, a negative errno will
1741 * be returned in error cases.
1742 */
1743int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1744				   unsigned int mask, unsigned int val,
1745				   bool *change, bool async, bool force)
1746{
1747	if (id >= field->id_size)
1748		return -EINVAL;
1749
1750	mask = (mask << field->shift) & field->mask;
1751
1752	return regmap_update_bits_base(field->regmap,
1753				       field->reg + (field->id_offset * id),
1754				       mask, val << field->shift,
1755				       change, async, force);
1756}
1757EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1758
1759/*
1760 * regmap_bulk_write(): Write multiple registers to the device
1761 *
1762 * @map: Register map to write to
1763 * @reg: First register to be write from
1764 * @val: Block of data to be written, in native register size for device
1765 * @val_count: Number of registers to write
1766 *
1767 * This function is intended to be used for writing a large block of
1768 * data to the device either in single transfer or multiple transfer.
1769 *
1770 * A value of zero will be returned on success, a negative errno will
1771 * be returned in error cases.
1772 */
1773int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1774		     size_t val_count)
1775{
1776	int ret = 0, i;
1777	size_t val_bytes = map->format.val_bytes;
1778	size_t total_size = val_bytes * val_count;
1779
1780	if (map->bus && !map->format.parse_inplace)
1781		return -EINVAL;
1782	if (!IS_ALIGNED(reg, map->reg_stride))
1783		return -EINVAL;
1784
1785	/*
1786	 * Some devices don't support bulk write, for
1787	 * them we have a series of single write operations in the first two if
1788	 * blocks.
1789	 *
1790	 * The first if block is used for memory mapped io. It does not allow
1791	 * val_bytes of 3 for example.
1792	 * The second one is used for busses which do not have this limitation
1793	 * and can write arbitrary value lengths.
1794	 */
1795	if (!map->bus) {
1796		map->lock(map->lock_arg);
1797		for (i = 0; i < val_count; i++) {
1798			unsigned int ival;
1799
1800			switch (val_bytes) {
1801			case 1:
1802				ival = *(u8 *)(val + (i * val_bytes));
1803				break;
1804			case 2:
1805				ival = *(u16 *)(val + (i * val_bytes));
1806				break;
1807			case 4:
1808				ival = *(u32 *)(val + (i * val_bytes));
1809				break;
1810#ifdef CONFIG_64BIT
1811			case 8:
1812				ival = *(u64 *)(val + (i * val_bytes));
1813				break;
1814#endif
1815			default:
1816				ret = -EINVAL;
1817				goto out;
1818			}
1819
1820			ret = _regmap_write(map,
1821					    reg + regmap_get_offset(map, i),
1822					    ival);
1823			if (ret != 0)
1824				goto out;
1825		}
1826out:
1827		map->unlock(map->lock_arg);
1828	} else if (map->use_single_write ||
1829		   (map->max_raw_write && map->max_raw_write < total_size)) {
1830		int chunk_stride = map->reg_stride;
1831		size_t chunk_size = val_bytes;
1832		size_t chunk_count = val_count;
1833
1834		if (!map->use_single_write) {
1835			chunk_size = map->max_raw_write;
1836			if (chunk_size % val_bytes)
1837				chunk_size -= chunk_size % val_bytes;
1838			chunk_count = total_size / chunk_size;
1839			chunk_stride *= chunk_size / val_bytes;
1840		}
1841
1842		map->lock(map->lock_arg);
1843		/* Write as many bytes as possible with chunk_size */
1844		for (i = 0; i < chunk_count; i++) {
1845			ret = _regmap_raw_write(map,
1846						reg + (i * chunk_stride),
1847						val + (i * chunk_size),
1848						chunk_size);
1849			if (ret)
1850				break;
1851		}
1852
1853		/* Write remaining bytes */
1854		if (!ret && chunk_size * i < total_size) {
1855			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1856						val + (i * chunk_size),
1857						total_size - i * chunk_size);
1858		}
1859		map->unlock(map->lock_arg);
1860	} else {
1861		void *wval;
1862
1863		if (!val_count)
1864			return -EINVAL;
1865
1866		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1867		if (!wval) {
1868			dev_err(map->dev, "Error in memory allocation\n");
1869			return -ENOMEM;
1870		}
1871		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1872			map->format.parse_inplace(wval + i);
1873
1874		map->lock(map->lock_arg);
1875		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1876		map->unlock(map->lock_arg);
1877
1878		kfree(wval);
1879	}
1880	return ret;
1881}
1882EXPORT_SYMBOL_GPL(regmap_bulk_write);
1883
1884/*
1885 * _regmap_raw_multi_reg_write()
1886 *
1887 * the (register,newvalue) pairs in regs have not been formatted, but
1888 * they are all in the same page and have been changed to being page
1889 * relative. The page register has been written if that was necessary.
1890 */
1891static int _regmap_raw_multi_reg_write(struct regmap *map,
1892				       const struct reg_sequence *regs,
1893				       size_t num_regs)
1894{
1895	int ret;
1896	void *buf;
1897	int i;
1898	u8 *u8;
1899	size_t val_bytes = map->format.val_bytes;
1900	size_t reg_bytes = map->format.reg_bytes;
1901	size_t pad_bytes = map->format.pad_bytes;
1902	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1903	size_t len = pair_size * num_regs;
1904
1905	if (!len)
1906		return -EINVAL;
1907
1908	buf = kzalloc(len, GFP_KERNEL);
1909	if (!buf)
1910		return -ENOMEM;
1911
1912	/* We have to linearise by hand. */
1913
1914	u8 = buf;
1915
1916	for (i = 0; i < num_regs; i++) {
1917		unsigned int reg = regs[i].reg;
1918		unsigned int val = regs[i].def;
1919		trace_regmap_hw_write_start(map, reg, 1);
1920		map->format.format_reg(u8, reg, map->reg_shift);
1921		u8 += reg_bytes + pad_bytes;
1922		map->format.format_val(u8, val, 0);
1923		u8 += val_bytes;
1924	}
1925	u8 = buf;
1926	*u8 |= map->write_flag_mask;
1927
1928	ret = map->bus->write(map->bus_context, buf, len);
1929
1930	kfree(buf);
1931
1932	for (i = 0; i < num_regs; i++) {
1933		int reg = regs[i].reg;
1934		trace_regmap_hw_write_done(map, reg, 1);
1935	}
1936	return ret;
1937}
1938
1939static unsigned int _regmap_register_page(struct regmap *map,
1940					  unsigned int reg,
1941					  struct regmap_range_node *range)
1942{
1943	unsigned int win_page = (reg - range->range_min) / range->window_len;
1944
1945	return win_page;
1946}
1947
1948static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1949					       struct reg_sequence *regs,
1950					       size_t num_regs)
1951{
1952	int ret;
1953	int i, n;
1954	struct reg_sequence *base;
1955	unsigned int this_page = 0;
1956	unsigned int page_change = 0;
1957	/*
1958	 * the set of registers are not neccessarily in order, but
1959	 * since the order of write must be preserved this algorithm
1960	 * chops the set each time the page changes. This also applies
1961	 * if there is a delay required at any point in the sequence.
1962	 */
1963	base = regs;
1964	for (i = 0, n = 0; i < num_regs; i++, n++) {
1965		unsigned int reg = regs[i].reg;
1966		struct regmap_range_node *range;
1967
1968		range = _regmap_range_lookup(map, reg);
1969		if (range) {
1970			unsigned int win_page = _regmap_register_page(map, reg,
1971								      range);
1972
1973			if (i == 0)
1974				this_page = win_page;
1975			if (win_page != this_page) {
1976				this_page = win_page;
1977				page_change = 1;
1978			}
1979		}
1980
1981		/* If we have both a page change and a delay make sure to
1982		 * write the regs and apply the delay before we change the
1983		 * page.
1984		 */
1985
1986		if (page_change || regs[i].delay_us) {
1987
1988				/* For situations where the first write requires
1989				 * a delay we need to make sure we don't call
1990				 * raw_multi_reg_write with n=0
1991				 * This can't occur with page breaks as we
1992				 * never write on the first iteration
1993				 */
1994				if (regs[i].delay_us && i == 0)
1995					n = 1;
1996
1997				ret = _regmap_raw_multi_reg_write(map, base, n);
1998				if (ret != 0)
1999					return ret;
2000
2001				if (regs[i].delay_us)
2002					udelay(regs[i].delay_us);
2003
2004				base += n;
2005				n = 0;
2006
2007				if (page_change) {
2008					ret = _regmap_select_page(map,
2009								  &base[n].reg,
2010								  range, 1);
2011					if (ret != 0)
2012						return ret;
2013
2014					page_change = 0;
2015				}
2016
2017		}
2018
2019	}
2020	if (n > 0)
2021		return _regmap_raw_multi_reg_write(map, base, n);
2022	return 0;
2023}
2024
2025static int _regmap_multi_reg_write(struct regmap *map,
2026				   const struct reg_sequence *regs,
2027				   size_t num_regs)
2028{
2029	int i;
2030	int ret;
2031
2032	if (!map->can_multi_write) {
2033		for (i = 0; i < num_regs; i++) {
2034			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2035			if (ret != 0)
2036				return ret;
2037
2038			if (regs[i].delay_us)
2039				udelay(regs[i].delay_us);
2040		}
2041		return 0;
2042	}
2043
2044	if (!map->format.parse_inplace)
2045		return -EINVAL;
2046
2047	if (map->writeable_reg)
2048		for (i = 0; i < num_regs; i++) {
2049			int reg = regs[i].reg;
2050			if (!map->writeable_reg(map->dev, reg))
2051				return -EINVAL;
2052			if (!IS_ALIGNED(reg, map->reg_stride))
2053				return -EINVAL;
2054		}
2055
2056	if (!map->cache_bypass) {
2057		for (i = 0; i < num_regs; i++) {
2058			unsigned int val = regs[i].def;
2059			unsigned int reg = regs[i].reg;
2060			ret = regcache_write(map, reg, val);
2061			if (ret) {
2062				dev_err(map->dev,
2063				"Error in caching of register: %x ret: %d\n",
2064								reg, ret);
2065				return ret;
2066			}
2067		}
2068		if (map->cache_only) {
2069			map->cache_dirty = true;
2070			return 0;
2071		}
2072	}
2073
2074	WARN_ON(!map->bus);
2075
2076	for (i = 0; i < num_regs; i++) {
2077		unsigned int reg = regs[i].reg;
2078		struct regmap_range_node *range;
2079
2080		/* Coalesce all the writes between a page break or a delay
2081		 * in a sequence
2082		 */
2083		range = _regmap_range_lookup(map, reg);
2084		if (range || regs[i].delay_us) {
2085			size_t len = sizeof(struct reg_sequence)*num_regs;
2086			struct reg_sequence *base = kmemdup(regs, len,
2087							   GFP_KERNEL);
2088			if (!base)
2089				return -ENOMEM;
2090			ret = _regmap_range_multi_paged_reg_write(map, base,
2091								  num_regs);
2092			kfree(base);
2093
2094			return ret;
2095		}
2096	}
2097	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2098}
2099
2100/*
2101 * regmap_multi_reg_write(): Write multiple registers to the device
2102 *
2103 * where the set of register,value pairs are supplied in any order,
2104 * possibly not all in a single range.
2105 *
2106 * @map: Register map to write to
2107 * @regs: Array of structures containing register,value to be written
2108 * @num_regs: Number of registers to write
2109 *
 
 
 
2110 * The 'normal' block write mode will send ultimately send data on the
2111 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2112 * addressed. However, this alternative block multi write mode will send
2113 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2114 * must of course support the mode.
2115 *
2116 * A value of zero will be returned on success, a negative errno will be
2117 * returned in error cases.
2118 */
2119int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2120			   int num_regs)
2121{
2122	int ret;
2123
2124	map->lock(map->lock_arg);
2125
2126	ret = _regmap_multi_reg_write(map, regs, num_regs);
2127
2128	map->unlock(map->lock_arg);
2129
2130	return ret;
2131}
2132EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2133
2134/*
2135 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2136 *                                    device but not the cache
2137 *
2138 * where the set of register are supplied in any order
2139 *
2140 * @map: Register map to write to
2141 * @regs: Array of structures containing register,value to be written
2142 * @num_regs: Number of registers to write
2143 *
 
 
 
2144 * This function is intended to be used for writing a large block of data
2145 * atomically to the device in single transfer for those I2C client devices
2146 * that implement this alternative block write mode.
2147 *
2148 * A value of zero will be returned on success, a negative errno will
2149 * be returned in error cases.
2150 */
2151int regmap_multi_reg_write_bypassed(struct regmap *map,
2152				    const struct reg_sequence *regs,
2153				    int num_regs)
2154{
2155	int ret;
2156	bool bypass;
2157
2158	map->lock(map->lock_arg);
2159
2160	bypass = map->cache_bypass;
2161	map->cache_bypass = true;
2162
2163	ret = _regmap_multi_reg_write(map, regs, num_regs);
2164
2165	map->cache_bypass = bypass;
2166
2167	map->unlock(map->lock_arg);
2168
2169	return ret;
2170}
2171EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2172
2173/**
2174 * regmap_raw_write_async(): Write raw values to one or more registers
2175 *                           asynchronously
2176 *
2177 * @map: Register map to write to
2178 * @reg: Initial register to write to
2179 * @val: Block of data to be written, laid out for direct transmission to the
2180 *       device.  Must be valid until regmap_async_complete() is called.
2181 * @val_len: Length of data pointed to by val.
2182 *
2183 * This function is intended to be used for things like firmware
2184 * download where a large block of data needs to be transferred to the
2185 * device.  No formatting will be done on the data provided.
2186 *
2187 * If supported by the underlying bus the write will be scheduled
2188 * asynchronously, helping maximise I/O speed on higher speed buses
2189 * like SPI.  regmap_async_complete() can be called to ensure that all
2190 * asynchrnous writes have been completed.
2191 *
2192 * A value of zero will be returned on success, a negative errno will
2193 * be returned in error cases.
2194 */
2195int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2196			   const void *val, size_t val_len)
2197{
2198	int ret;
2199
2200	if (val_len % map->format.val_bytes)
2201		return -EINVAL;
2202	if (!IS_ALIGNED(reg, map->reg_stride))
2203		return -EINVAL;
2204
2205	map->lock(map->lock_arg);
2206
2207	map->async = true;
2208
2209	ret = _regmap_raw_write(map, reg, val, val_len);
2210
2211	map->async = false;
2212
2213	map->unlock(map->lock_arg);
2214
2215	return ret;
2216}
2217EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2218
2219static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2220			    unsigned int val_len)
2221{
2222	struct regmap_range_node *range;
2223	u8 *u8 = map->work_buf;
2224	int ret;
2225
2226	WARN_ON(!map->bus);
2227
2228	if (!map->bus || !map->bus->read)
2229		return -EINVAL;
2230
2231	range = _regmap_range_lookup(map, reg);
2232	if (range) {
2233		ret = _regmap_select_page(map, &reg, range,
2234					  val_len / map->format.val_bytes);
2235		if (ret != 0)
2236			return ret;
2237	}
2238
2239	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2240
2241	/*
2242	 * Some buses or devices flag reads by setting the high bits in the
2243	 * register address; since it's always the high bits for all
2244	 * current formats we can do this here rather than in
2245	 * formatting.  This may break if we get interesting formats.
2246	 */
2247	u8[0] |= map->read_flag_mask;
2248
2249	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2250
2251	ret = map->bus->read(map->bus_context, map->work_buf,
2252			     map->format.reg_bytes + map->format.pad_bytes,
2253			     val, val_len);
2254
2255	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2256
2257	return ret;
2258}
2259
2260static int _regmap_bus_reg_read(void *context, unsigned int reg,
2261				unsigned int *val)
2262{
2263	struct regmap *map = context;
2264
2265	return map->bus->reg_read(map->bus_context, reg, val);
2266}
2267
2268static int _regmap_bus_read(void *context, unsigned int reg,
2269			    unsigned int *val)
2270{
2271	int ret;
2272	struct regmap *map = context;
 
 
2273
2274	if (!map->format.parse_val)
2275		return -EINVAL;
2276
2277	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2278	if (ret == 0)
2279		*val = map->format.parse_val(map->work_buf);
2280
2281	return ret;
2282}
2283
2284static int _regmap_read(struct regmap *map, unsigned int reg,
2285			unsigned int *val)
2286{
2287	int ret;
2288	void *context = _regmap_map_get_context(map);
2289
2290	if (!map->cache_bypass) {
2291		ret = regcache_read(map, reg, val);
2292		if (ret == 0)
2293			return 0;
2294	}
2295
2296	if (map->cache_only)
2297		return -EBUSY;
2298
2299	if (!regmap_readable(map, reg))
2300		return -EIO;
2301
2302	ret = map->reg_read(context, reg, val);
2303	if (ret == 0) {
2304#ifdef LOG_DEVICE
2305		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2306			dev_info(map->dev, "%x => %x\n", reg, *val);
2307#endif
2308
2309		trace_regmap_reg_read(map, reg, *val);
2310
2311		if (!map->cache_bypass)
2312			regcache_write(map, reg, *val);
2313	}
2314
2315	return ret;
2316}
2317
2318/**
2319 * regmap_read(): Read a value from a single register
2320 *
2321 * @map: Register map to read from
2322 * @reg: Register to be read from
2323 * @val: Pointer to store read value
2324 *
2325 * A value of zero will be returned on success, a negative errno will
2326 * be returned in error cases.
2327 */
2328int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2329{
2330	int ret;
2331
2332	if (!IS_ALIGNED(reg, map->reg_stride))
2333		return -EINVAL;
2334
2335	map->lock(map->lock_arg);
2336
2337	ret = _regmap_read(map, reg, val);
2338
2339	map->unlock(map->lock_arg);
2340
2341	return ret;
2342}
2343EXPORT_SYMBOL_GPL(regmap_read);
2344
2345/**
2346 * regmap_raw_read(): Read raw data from the device
2347 *
2348 * @map: Register map to read from
2349 * @reg: First register to be read from
2350 * @val: Pointer to store read value
2351 * @val_len: Size of data to read
2352 *
2353 * A value of zero will be returned on success, a negative errno will
2354 * be returned in error cases.
2355 */
2356int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2357		    size_t val_len)
2358{
2359	size_t val_bytes = map->format.val_bytes;
2360	size_t val_count = val_len / val_bytes;
2361	unsigned int v;
2362	int ret, i;
2363
2364	if (!map->bus)
2365		return -EINVAL;
2366	if (val_len % map->format.val_bytes)
2367		return -EINVAL;
2368	if (!IS_ALIGNED(reg, map->reg_stride))
2369		return -EINVAL;
2370	if (val_count == 0)
2371		return -EINVAL;
2372
2373	map->lock(map->lock_arg);
2374
2375	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2376	    map->cache_type == REGCACHE_NONE) {
 
 
 
2377		if (!map->bus->read) {
2378			ret = -ENOTSUPP;
2379			goto out;
2380		}
2381		if (map->max_raw_read && map->max_raw_read < val_len) {
2382			ret = -E2BIG;
2383			goto out;
2384		}
2385
2386		/* Physical block read if there's no cache involved */
2387		ret = _regmap_raw_read(map, reg, val, val_len);
 
 
2388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2389	} else {
2390		/* Otherwise go word by word for the cache; should be low
2391		 * cost as we expect to hit the cache.
2392		 */
2393		for (i = 0; i < val_count; i++) {
2394			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2395					   &v);
2396			if (ret != 0)
2397				goto out;
2398
2399			map->format.format_val(val + (i * val_bytes), v, 0);
2400		}
2401	}
2402
2403 out:
2404	map->unlock(map->lock_arg);
2405
2406	return ret;
2407}
2408EXPORT_SYMBOL_GPL(regmap_raw_read);
2409
2410/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411 * regmap_field_read(): Read a value to a single register field
2412 *
2413 * @field: Register field to read from
2414 * @val: Pointer to store read value
2415 *
2416 * A value of zero will be returned on success, a negative errno will
2417 * be returned in error cases.
2418 */
2419int regmap_field_read(struct regmap_field *field, unsigned int *val)
2420{
2421	int ret;
2422	unsigned int reg_val;
2423	ret = regmap_read(field->regmap, field->reg, &reg_val);
2424	if (ret != 0)
2425		return ret;
2426
2427	reg_val &= field->mask;
2428	reg_val >>= field->shift;
2429	*val = reg_val;
2430
2431	return ret;
2432}
2433EXPORT_SYMBOL_GPL(regmap_field_read);
2434
2435/**
2436 * regmap_fields_read(): Read a value to a single register field with port ID
2437 *
2438 * @field: Register field to read from
2439 * @id: port ID
2440 * @val: Pointer to store read value
2441 *
2442 * A value of zero will be returned on success, a negative errno will
2443 * be returned in error cases.
2444 */
2445int regmap_fields_read(struct regmap_field *field, unsigned int id,
2446		       unsigned int *val)
2447{
2448	int ret;
2449	unsigned int reg_val;
2450
2451	if (id >= field->id_size)
2452		return -EINVAL;
2453
2454	ret = regmap_read(field->regmap,
2455			  field->reg + (field->id_offset * id),
2456			  &reg_val);
2457	if (ret != 0)
2458		return ret;
2459
2460	reg_val &= field->mask;
2461	reg_val >>= field->shift;
2462	*val = reg_val;
2463
2464	return ret;
2465}
2466EXPORT_SYMBOL_GPL(regmap_fields_read);
2467
2468/**
2469 * regmap_bulk_read(): Read multiple registers from the device
2470 *
2471 * @map: Register map to read from
2472 * @reg: First register to be read from
2473 * @val: Pointer to store read value, in native register size for device
2474 * @val_count: Number of registers to read
2475 *
2476 * A value of zero will be returned on success, a negative errno will
2477 * be returned in error cases.
2478 */
2479int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2480		     size_t val_count)
2481{
2482	int ret, i;
2483	size_t val_bytes = map->format.val_bytes;
2484	bool vol = regmap_volatile_range(map, reg, val_count);
2485
2486	if (!IS_ALIGNED(reg, map->reg_stride))
2487		return -EINVAL;
 
 
2488
2489	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2490		/*
2491		 * Some devices does not support bulk read, for
2492		 * them we have a series of single read operations.
2493		 */
2494		size_t total_size = val_bytes * val_count;
2495
2496		if (!map->use_single_read &&
2497		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2498			ret = regmap_raw_read(map, reg, val,
2499					      val_bytes * val_count);
2500			if (ret != 0)
2501				return ret;
2502		} else {
2503			/*
2504			 * Some devices do not support bulk read or do not
2505			 * support large bulk reads, for them we have a series
2506			 * of read operations.
2507			 */
2508			int chunk_stride = map->reg_stride;
2509			size_t chunk_size = val_bytes;
2510			size_t chunk_count = val_count;
2511
2512			if (!map->use_single_read) {
2513				chunk_size = map->max_raw_read;
2514				if (chunk_size % val_bytes)
2515					chunk_size -= chunk_size % val_bytes;
2516				chunk_count = total_size / chunk_size;
2517				chunk_stride *= chunk_size / val_bytes;
2518			}
2519
2520			/* Read bytes that fit into a multiple of chunk_size */
2521			for (i = 0; i < chunk_count; i++) {
2522				ret = regmap_raw_read(map,
2523						      reg + (i * chunk_stride),
2524						      val + (i * chunk_size),
2525						      chunk_size);
2526				if (ret != 0)
2527					return ret;
2528			}
2529
2530			/* Read remaining bytes */
2531			if (chunk_size * i < total_size) {
2532				ret = regmap_raw_read(map,
2533						      reg + (i * chunk_stride),
2534						      val + (i * chunk_size),
2535						      total_size - i * chunk_size);
2536				if (ret != 0)
2537					return ret;
2538			}
2539		}
2540
2541		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2542			map->format.parse_inplace(val + i);
2543	} else {
 
 
 
 
 
 
 
 
 
2544		for (i = 0; i < val_count; i++) {
2545			unsigned int ival;
2546			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2547					  &ival);
2548			if (ret != 0)
2549				return ret;
2550
2551			if (map->format.format_val) {
2552				map->format.format_val(val + (i * val_bytes), ival, 0);
2553			} else {
2554				/* Devices providing read and write
2555				 * operations can use the bulk I/O
2556				 * functions if they define a val_bytes,
2557				 * we assume that the values are native
2558				 * endian.
2559				 */
2560#ifdef CONFIG_64BIT
2561				u64 *u64 = val;
2562#endif
2563				u32 *u32 = val;
2564				u16 *u16 = val;
2565				u8 *u8 = val;
2566
2567				switch (map->format.val_bytes) {
2568#ifdef CONFIG_64BIT
2569				case 8:
2570					u64[i] = ival;
2571					break;
2572#endif
2573				case 4:
2574					u32[i] = ival;
2575					break;
2576				case 2:
2577					u16[i] = ival;
2578					break;
2579				case 1:
2580					u8[i] = ival;
2581					break;
2582				default:
2583					return -EINVAL;
2584				}
2585			}
2586		}
 
 
 
2587	}
2588
2589	return 0;
2590}
2591EXPORT_SYMBOL_GPL(regmap_bulk_read);
2592
2593static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2594			       unsigned int mask, unsigned int val,
2595			       bool *change, bool force_write)
2596{
2597	int ret;
2598	unsigned int tmp, orig;
2599
2600	if (change)
2601		*change = false;
2602
2603	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2604		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2605		if (ret == 0 && change)
2606			*change = true;
2607	} else {
2608		ret = _regmap_read(map, reg, &orig);
2609		if (ret != 0)
2610			return ret;
2611
2612		tmp = orig & ~mask;
2613		tmp |= val & mask;
2614
2615		if (force_write || (tmp != orig)) {
2616			ret = _regmap_write(map, reg, tmp);
2617			if (ret == 0 && change)
2618				*change = true;
2619		}
2620	}
2621
2622	return ret;
2623}
2624
2625/**
2626 * regmap_update_bits_base:
2627 *	Perform a read/modify/write cycle on the
2628 *	register map with change, async, force option
2629 *
2630 * @map: Register map to update
2631 * @reg: Register to update
2632 * @mask: Bitmask to change
2633 * @val: New value for bitmask
2634 * @change: Boolean indicating if a write was done
2635 * @async: Boolean indicating asynchronously
2636 * @force: Boolean indicating use force update
2637 *
2638 * if async was true,
2639 * With most buses the read must be done synchronously so this is most
2640 * useful for devices with a cache which do not need to interact with
2641 * the hardware to determine the current register value.
 
 
 
 
2642 *
2643 * Returns zero for success, a negative number on error.
2644 */
2645int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2646			    unsigned int mask, unsigned int val,
2647			    bool *change, bool async, bool force)
2648{
2649	int ret;
2650
2651	map->lock(map->lock_arg);
2652
2653	map->async = async;
2654
2655	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2656
2657	map->async = false;
2658
2659	map->unlock(map->lock_arg);
2660
2661	return ret;
2662}
2663EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2664
2665void regmap_async_complete_cb(struct regmap_async *async, int ret)
2666{
2667	struct regmap *map = async->map;
2668	bool wake;
2669
2670	trace_regmap_async_io_complete(map);
2671
2672	spin_lock(&map->async_lock);
2673	list_move(&async->list, &map->async_free);
2674	wake = list_empty(&map->async_list);
2675
2676	if (ret != 0)
2677		map->async_ret = ret;
2678
2679	spin_unlock(&map->async_lock);
2680
2681	if (wake)
2682		wake_up(&map->async_waitq);
2683}
2684EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2685
2686static int regmap_async_is_done(struct regmap *map)
2687{
2688	unsigned long flags;
2689	int ret;
2690
2691	spin_lock_irqsave(&map->async_lock, flags);
2692	ret = list_empty(&map->async_list);
2693	spin_unlock_irqrestore(&map->async_lock, flags);
2694
2695	return ret;
2696}
2697
2698/**
2699 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2700 *
2701 * @map: Map to operate on.
2702 *
2703 * Blocks until any pending asynchronous I/O has completed.  Returns
2704 * an error code for any failed I/O operations.
2705 */
2706int regmap_async_complete(struct regmap *map)
2707{
2708	unsigned long flags;
2709	int ret;
2710
2711	/* Nothing to do with no async support */
2712	if (!map->bus || !map->bus->async_write)
2713		return 0;
2714
2715	trace_regmap_async_complete_start(map);
2716
2717	wait_event(map->async_waitq, regmap_async_is_done(map));
2718
2719	spin_lock_irqsave(&map->async_lock, flags);
2720	ret = map->async_ret;
2721	map->async_ret = 0;
2722	spin_unlock_irqrestore(&map->async_lock, flags);
2723
2724	trace_regmap_async_complete_done(map);
2725
2726	return ret;
2727}
2728EXPORT_SYMBOL_GPL(regmap_async_complete);
2729
2730/**
2731 * regmap_register_patch: Register and apply register updates to be applied
2732 *                        on device initialistion
2733 *
2734 * @map: Register map to apply updates to.
2735 * @regs: Values to update.
2736 * @num_regs: Number of entries in regs.
2737 *
2738 * Register a set of register updates to be applied to the device
2739 * whenever the device registers are synchronised with the cache and
2740 * apply them immediately.  Typically this is used to apply
2741 * corrections to be applied to the device defaults on startup, such
2742 * as the updates some vendors provide to undocumented registers.
2743 *
2744 * The caller must ensure that this function cannot be called
2745 * concurrently with either itself or regcache_sync().
2746 */
2747int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2748			  int num_regs)
2749{
2750	struct reg_sequence *p;
2751	int ret;
2752	bool bypass;
2753
2754	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2755	    num_regs))
2756		return 0;
2757
2758	p = krealloc(map->patch,
2759		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2760		     GFP_KERNEL);
2761	if (p) {
2762		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2763		map->patch = p;
2764		map->patch_regs += num_regs;
2765	} else {
2766		return -ENOMEM;
2767	}
2768
2769	map->lock(map->lock_arg);
2770
2771	bypass = map->cache_bypass;
2772
2773	map->cache_bypass = true;
2774	map->async = true;
2775
2776	ret = _regmap_multi_reg_write(map, regs, num_regs);
2777
2778	map->async = false;
2779	map->cache_bypass = bypass;
2780
2781	map->unlock(map->lock_arg);
2782
2783	regmap_async_complete(map);
2784
2785	return ret;
2786}
2787EXPORT_SYMBOL_GPL(regmap_register_patch);
2788
2789/*
2790 * regmap_get_val_bytes(): Report the size of a register value
 
 
2791 *
2792 * Report the size of a register value, mainly intended to for use by
2793 * generic infrastructure built on top of regmap.
2794 */
2795int regmap_get_val_bytes(struct regmap *map)
2796{
2797	if (map->format.format_write)
2798		return -EINVAL;
2799
2800	return map->format.val_bytes;
2801}
2802EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2803
2804/**
2805 * regmap_get_max_register(): Report the max register value
 
 
2806 *
2807 * Report the max register value, mainly intended to for use by
2808 * generic infrastructure built on top of regmap.
2809 */
2810int regmap_get_max_register(struct regmap *map)
2811{
2812	return map->max_register ? map->max_register : -EINVAL;
2813}
2814EXPORT_SYMBOL_GPL(regmap_get_max_register);
2815
2816/**
2817 * regmap_get_reg_stride(): Report the register address stride
 
 
2818 *
2819 * Report the register address stride, mainly intended to for use by
2820 * generic infrastructure built on top of regmap.
2821 */
2822int regmap_get_reg_stride(struct regmap *map)
2823{
2824	return map->reg_stride;
2825}
2826EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2827
2828int regmap_parse_val(struct regmap *map, const void *buf,
2829			unsigned int *val)
2830{
2831	if (!map->format.parse_val)
2832		return -EINVAL;
2833
2834	*val = map->format.parse_val(buf);
2835
2836	return 0;
2837}
2838EXPORT_SYMBOL_GPL(regmap_parse_val);
2839
2840static int __init regmap_initcall(void)
2841{
2842	regmap_debugfs_initcall();
2843
2844	return 0;
2845}
2846postcore_initcall(regmap_initcall);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 
 
 
 
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/of.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20
  21#define CREATE_TRACE_POINTS
  22#include "trace.h"
  23
  24#include "internal.h"
  25
  26/*
  27 * Sometimes for failures during very early init the trace
  28 * infrastructure isn't available early enough to be used.  For this
  29 * sort of problem defining LOG_DEVICE will add printks for basic
  30 * register I/O on a specific device.
  31 */
  32#undef LOG_DEVICE
  33
  34#ifdef LOG_DEVICE
  35static inline bool regmap_should_log(struct regmap *map)
  36{
  37	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  38}
  39#else
  40static inline bool regmap_should_log(struct regmap *map) { return false; }
  41#endif
  42
  43
  44static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  45			       unsigned int mask, unsigned int val,
  46			       bool *change, bool force_write);
  47
  48static int _regmap_bus_reg_read(void *context, unsigned int reg,
  49				unsigned int *val);
  50static int _regmap_bus_read(void *context, unsigned int reg,
  51			    unsigned int *val);
  52static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  53				       unsigned int val);
  54static int _regmap_bus_reg_write(void *context, unsigned int reg,
  55				 unsigned int val);
  56static int _regmap_bus_raw_write(void *context, unsigned int reg,
  57				 unsigned int val);
  58
  59bool regmap_reg_in_ranges(unsigned int reg,
  60			  const struct regmap_range *ranges,
  61			  unsigned int nranges)
  62{
  63	const struct regmap_range *r;
  64	int i;
  65
  66	for (i = 0, r = ranges; i < nranges; i++, r++)
  67		if (regmap_reg_in_range(reg, r))
  68			return true;
  69	return false;
  70}
  71EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  72
  73bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  74			      const struct regmap_access_table *table)
  75{
  76	/* Check "no ranges" first */
  77	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  78		return false;
  79
  80	/* In case zero "yes ranges" are supplied, any reg is OK */
  81	if (!table->n_yes_ranges)
  82		return true;
  83
  84	return regmap_reg_in_ranges(reg, table->yes_ranges,
  85				    table->n_yes_ranges);
  86}
  87EXPORT_SYMBOL_GPL(regmap_check_range_table);
  88
  89bool regmap_writeable(struct regmap *map, unsigned int reg)
  90{
  91	if (map->max_register && reg > map->max_register)
  92		return false;
  93
  94	if (map->writeable_reg)
  95		return map->writeable_reg(map->dev, reg);
  96
  97	if (map->wr_table)
  98		return regmap_check_range_table(map, reg, map->wr_table);
  99
 100	return true;
 101}
 102
 103bool regmap_cached(struct regmap *map, unsigned int reg)
 104{
 105	int ret;
 106	unsigned int val;
 107
 108	if (map->cache_type == REGCACHE_NONE)
 109		return false;
 110
 111	if (!map->cache_ops)
 112		return false;
 113
 114	if (map->max_register && reg > map->max_register)
 115		return false;
 116
 117	map->lock(map->lock_arg);
 118	ret = regcache_read(map, reg, &val);
 119	map->unlock(map->lock_arg);
 120	if (ret)
 121		return false;
 122
 123	return true;
 124}
 125
 126bool regmap_readable(struct regmap *map, unsigned int reg)
 127{
 128	if (!map->reg_read)
 129		return false;
 130
 131	if (map->max_register && reg > map->max_register)
 132		return false;
 133
 134	if (map->format.format_write)
 135		return false;
 136
 137	if (map->readable_reg)
 138		return map->readable_reg(map->dev, reg);
 139
 140	if (map->rd_table)
 141		return regmap_check_range_table(map, reg, map->rd_table);
 142
 143	return true;
 144}
 145
 146bool regmap_volatile(struct regmap *map, unsigned int reg)
 147{
 148	if (!map->format.format_write && !regmap_readable(map, reg))
 149		return false;
 150
 151	if (map->volatile_reg)
 152		return map->volatile_reg(map->dev, reg);
 153
 154	if (map->volatile_table)
 155		return regmap_check_range_table(map, reg, map->volatile_table);
 156
 157	if (map->cache_ops)
 158		return false;
 159	else
 160		return true;
 161}
 162
 163bool regmap_precious(struct regmap *map, unsigned int reg)
 164{
 165	if (!regmap_readable(map, reg))
 166		return false;
 167
 168	if (map->precious_reg)
 169		return map->precious_reg(map->dev, reg);
 170
 171	if (map->precious_table)
 172		return regmap_check_range_table(map, reg, map->precious_table);
 173
 174	return false;
 175}
 176
 177bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 178{
 179	if (map->writeable_noinc_reg)
 180		return map->writeable_noinc_reg(map->dev, reg);
 181
 182	if (map->wr_noinc_table)
 183		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 184
 185	return true;
 186}
 187
 188bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 189{
 190	if (map->readable_noinc_reg)
 191		return map->readable_noinc_reg(map->dev, reg);
 192
 193	if (map->rd_noinc_table)
 194		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 195
 196	return true;
 197}
 198
 199static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 200	size_t num)
 201{
 202	unsigned int i;
 203
 204	for (i = 0; i < num; i++)
 205		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 206			return false;
 207
 208	return true;
 209}
 210
 211static void regmap_format_2_6_write(struct regmap *map,
 212				     unsigned int reg, unsigned int val)
 213{
 214	u8 *out = map->work_buf;
 215
 216	*out = (reg << 6) | val;
 217}
 218
 219static void regmap_format_4_12_write(struct regmap *map,
 220				     unsigned int reg, unsigned int val)
 221{
 222	__be16 *out = map->work_buf;
 223	*out = cpu_to_be16((reg << 12) | val);
 224}
 225
 226static void regmap_format_7_9_write(struct regmap *map,
 227				    unsigned int reg, unsigned int val)
 228{
 229	__be16 *out = map->work_buf;
 230	*out = cpu_to_be16((reg << 9) | val);
 231}
 232
 233static void regmap_format_10_14_write(struct regmap *map,
 234				    unsigned int reg, unsigned int val)
 235{
 236	u8 *out = map->work_buf;
 237
 238	out[2] = val;
 239	out[1] = (val >> 8) | (reg << 6);
 240	out[0] = reg >> 2;
 241}
 242
 243static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 244{
 245	u8 *b = buf;
 246
 247	b[0] = val << shift;
 248}
 249
 250static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 251{
 252	__be16 *b = buf;
 253
 254	b[0] = cpu_to_be16(val << shift);
 255}
 256
 257static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 258{
 259	__le16 *b = buf;
 260
 261	b[0] = cpu_to_le16(val << shift);
 262}
 263
 264static void regmap_format_16_native(void *buf, unsigned int val,
 265				    unsigned int shift)
 266{
 267	*(u16 *)buf = val << shift;
 268}
 269
 270static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 271{
 272	u8 *b = buf;
 273
 274	val <<= shift;
 275
 276	b[0] = val >> 16;
 277	b[1] = val >> 8;
 278	b[2] = val;
 279}
 280
 281static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 282{
 283	__be32 *b = buf;
 284
 285	b[0] = cpu_to_be32(val << shift);
 286}
 287
 288static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 289{
 290	__le32 *b = buf;
 291
 292	b[0] = cpu_to_le32(val << shift);
 293}
 294
 295static void regmap_format_32_native(void *buf, unsigned int val,
 296				    unsigned int shift)
 297{
 298	*(u32 *)buf = val << shift;
 299}
 300
 301#ifdef CONFIG_64BIT
 302static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 303{
 304	__be64 *b = buf;
 305
 306	b[0] = cpu_to_be64((u64)val << shift);
 307}
 308
 309static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 310{
 311	__le64 *b = buf;
 312
 313	b[0] = cpu_to_le64((u64)val << shift);
 314}
 315
 316static void regmap_format_64_native(void *buf, unsigned int val,
 317				    unsigned int shift)
 318{
 319	*(u64 *)buf = (u64)val << shift;
 320}
 321#endif
 322
 323static void regmap_parse_inplace_noop(void *buf)
 324{
 325}
 326
 327static unsigned int regmap_parse_8(const void *buf)
 328{
 329	const u8 *b = buf;
 330
 331	return b[0];
 332}
 333
 334static unsigned int regmap_parse_16_be(const void *buf)
 335{
 336	const __be16 *b = buf;
 337
 338	return be16_to_cpu(b[0]);
 339}
 340
 341static unsigned int regmap_parse_16_le(const void *buf)
 342{
 343	const __le16 *b = buf;
 344
 345	return le16_to_cpu(b[0]);
 346}
 347
 348static void regmap_parse_16_be_inplace(void *buf)
 349{
 350	__be16 *b = buf;
 351
 352	b[0] = be16_to_cpu(b[0]);
 353}
 354
 355static void regmap_parse_16_le_inplace(void *buf)
 356{
 357	__le16 *b = buf;
 358
 359	b[0] = le16_to_cpu(b[0]);
 360}
 361
 362static unsigned int regmap_parse_16_native(const void *buf)
 363{
 364	return *(u16 *)buf;
 365}
 366
 367static unsigned int regmap_parse_24(const void *buf)
 368{
 369	const u8 *b = buf;
 370	unsigned int ret = b[2];
 371	ret |= ((unsigned int)b[1]) << 8;
 372	ret |= ((unsigned int)b[0]) << 16;
 373
 374	return ret;
 375}
 376
 377static unsigned int regmap_parse_32_be(const void *buf)
 378{
 379	const __be32 *b = buf;
 380
 381	return be32_to_cpu(b[0]);
 382}
 383
 384static unsigned int regmap_parse_32_le(const void *buf)
 385{
 386	const __le32 *b = buf;
 387
 388	return le32_to_cpu(b[0]);
 389}
 390
 391static void regmap_parse_32_be_inplace(void *buf)
 392{
 393	__be32 *b = buf;
 394
 395	b[0] = be32_to_cpu(b[0]);
 396}
 397
 398static void regmap_parse_32_le_inplace(void *buf)
 399{
 400	__le32 *b = buf;
 401
 402	b[0] = le32_to_cpu(b[0]);
 403}
 404
 405static unsigned int regmap_parse_32_native(const void *buf)
 406{
 407	return *(u32 *)buf;
 408}
 409
 410#ifdef CONFIG_64BIT
 411static unsigned int regmap_parse_64_be(const void *buf)
 412{
 413	const __be64 *b = buf;
 414
 415	return be64_to_cpu(b[0]);
 416}
 417
 418static unsigned int regmap_parse_64_le(const void *buf)
 419{
 420	const __le64 *b = buf;
 421
 422	return le64_to_cpu(b[0]);
 423}
 424
 425static void regmap_parse_64_be_inplace(void *buf)
 426{
 427	__be64 *b = buf;
 428
 429	b[0] = be64_to_cpu(b[0]);
 430}
 431
 432static void regmap_parse_64_le_inplace(void *buf)
 433{
 434	__le64 *b = buf;
 435
 436	b[0] = le64_to_cpu(b[0]);
 437}
 438
 439static unsigned int regmap_parse_64_native(const void *buf)
 440{
 441	return *(u64 *)buf;
 442}
 443#endif
 444
 445static void regmap_lock_hwlock(void *__map)
 446{
 447	struct regmap *map = __map;
 448
 449	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 450}
 451
 452static void regmap_lock_hwlock_irq(void *__map)
 453{
 454	struct regmap *map = __map;
 455
 456	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 457}
 458
 459static void regmap_lock_hwlock_irqsave(void *__map)
 460{
 461	struct regmap *map = __map;
 462
 463	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 464				    &map->spinlock_flags);
 465}
 466
 467static void regmap_unlock_hwlock(void *__map)
 468{
 469	struct regmap *map = __map;
 470
 471	hwspin_unlock(map->hwlock);
 472}
 473
 474static void regmap_unlock_hwlock_irq(void *__map)
 475{
 476	struct regmap *map = __map;
 477
 478	hwspin_unlock_irq(map->hwlock);
 479}
 480
 481static void regmap_unlock_hwlock_irqrestore(void *__map)
 482{
 483	struct regmap *map = __map;
 484
 485	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 486}
 487
 488static void regmap_lock_unlock_none(void *__map)
 489{
 490
 491}
 492
 493static void regmap_lock_mutex(void *__map)
 494{
 495	struct regmap *map = __map;
 496	mutex_lock(&map->mutex);
 497}
 498
 499static void regmap_unlock_mutex(void *__map)
 500{
 501	struct regmap *map = __map;
 502	mutex_unlock(&map->mutex);
 503}
 504
 505static void regmap_lock_spinlock(void *__map)
 506__acquires(&map->spinlock)
 507{
 508	struct regmap *map = __map;
 509	unsigned long flags;
 510
 511	spin_lock_irqsave(&map->spinlock, flags);
 512	map->spinlock_flags = flags;
 513}
 514
 515static void regmap_unlock_spinlock(void *__map)
 516__releases(&map->spinlock)
 517{
 518	struct regmap *map = __map;
 519	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 520}
 521
 522static void dev_get_regmap_release(struct device *dev, void *res)
 523{
 524	/*
 525	 * We don't actually have anything to do here; the goal here
 526	 * is not to manage the regmap but to provide a simple way to
 527	 * get the regmap back given a struct device.
 528	 */
 529}
 530
 531static bool _regmap_range_add(struct regmap *map,
 532			      struct regmap_range_node *data)
 533{
 534	struct rb_root *root = &map->range_tree;
 535	struct rb_node **new = &(root->rb_node), *parent = NULL;
 536
 537	while (*new) {
 538		struct regmap_range_node *this =
 539			rb_entry(*new, struct regmap_range_node, node);
 540
 541		parent = *new;
 542		if (data->range_max < this->range_min)
 543			new = &((*new)->rb_left);
 544		else if (data->range_min > this->range_max)
 545			new = &((*new)->rb_right);
 546		else
 547			return false;
 548	}
 549
 550	rb_link_node(&data->node, parent, new);
 551	rb_insert_color(&data->node, root);
 552
 553	return true;
 554}
 555
 556static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 557						      unsigned int reg)
 558{
 559	struct rb_node *node = map->range_tree.rb_node;
 560
 561	while (node) {
 562		struct regmap_range_node *this =
 563			rb_entry(node, struct regmap_range_node, node);
 564
 565		if (reg < this->range_min)
 566			node = node->rb_left;
 567		else if (reg > this->range_max)
 568			node = node->rb_right;
 569		else
 570			return this;
 571	}
 572
 573	return NULL;
 574}
 575
 576static void regmap_range_exit(struct regmap *map)
 577{
 578	struct rb_node *next;
 579	struct regmap_range_node *range_node;
 580
 581	next = rb_first(&map->range_tree);
 582	while (next) {
 583		range_node = rb_entry(next, struct regmap_range_node, node);
 584		next = rb_next(&range_node->node);
 585		rb_erase(&range_node->node, &map->range_tree);
 586		kfree(range_node);
 587	}
 588
 589	kfree(map->selector_work_buf);
 590}
 591
 592int regmap_attach_dev(struct device *dev, struct regmap *map,
 593		      const struct regmap_config *config)
 594{
 595	struct regmap **m;
 596
 597	map->dev = dev;
 598
 599	regmap_debugfs_init(map, config->name);
 600
 601	/* Add a devres resource for dev_get_regmap() */
 602	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 603	if (!m) {
 604		regmap_debugfs_exit(map);
 605		return -ENOMEM;
 606	}
 607	*m = map;
 608	devres_add(dev, m);
 609
 610	return 0;
 611}
 612EXPORT_SYMBOL_GPL(regmap_attach_dev);
 613
 614static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 615					const struct regmap_config *config)
 616{
 617	enum regmap_endian endian;
 618
 619	/* Retrieve the endianness specification from the regmap config */
 620	endian = config->reg_format_endian;
 621
 622	/* If the regmap config specified a non-default value, use that */
 623	if (endian != REGMAP_ENDIAN_DEFAULT)
 624		return endian;
 625
 626	/* Retrieve the endianness specification from the bus config */
 627	if (bus && bus->reg_format_endian_default)
 628		endian = bus->reg_format_endian_default;
 629
 630	/* If the bus specified a non-default value, use that */
 631	if (endian != REGMAP_ENDIAN_DEFAULT)
 632		return endian;
 633
 634	/* Use this if no other value was found */
 635	return REGMAP_ENDIAN_BIG;
 636}
 637
 638enum regmap_endian regmap_get_val_endian(struct device *dev,
 639					 const struct regmap_bus *bus,
 640					 const struct regmap_config *config)
 641{
 642	struct device_node *np;
 643	enum regmap_endian endian;
 644
 645	/* Retrieve the endianness specification from the regmap config */
 646	endian = config->val_format_endian;
 647
 648	/* If the regmap config specified a non-default value, use that */
 649	if (endian != REGMAP_ENDIAN_DEFAULT)
 650		return endian;
 651
 652	/* If the dev and dev->of_node exist try to get endianness from DT */
 653	if (dev && dev->of_node) {
 654		np = dev->of_node;
 655
 656		/* Parse the device's DT node for an endianness specification */
 657		if (of_property_read_bool(np, "big-endian"))
 658			endian = REGMAP_ENDIAN_BIG;
 659		else if (of_property_read_bool(np, "little-endian"))
 660			endian = REGMAP_ENDIAN_LITTLE;
 661		else if (of_property_read_bool(np, "native-endian"))
 662			endian = REGMAP_ENDIAN_NATIVE;
 663
 664		/* If the endianness was specified in DT, use that */
 665		if (endian != REGMAP_ENDIAN_DEFAULT)
 666			return endian;
 667	}
 668
 669	/* Retrieve the endianness specification from the bus config */
 670	if (bus && bus->val_format_endian_default)
 671		endian = bus->val_format_endian_default;
 672
 673	/* If the bus specified a non-default value, use that */
 674	if (endian != REGMAP_ENDIAN_DEFAULT)
 675		return endian;
 676
 677	/* Use this if no other value was found */
 678	return REGMAP_ENDIAN_BIG;
 679}
 680EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 681
 682struct regmap *__regmap_init(struct device *dev,
 683			     const struct regmap_bus *bus,
 684			     void *bus_context,
 685			     const struct regmap_config *config,
 686			     struct lock_class_key *lock_key,
 687			     const char *lock_name)
 688{
 689	struct regmap *map;
 690	int ret = -EINVAL;
 691	enum regmap_endian reg_endian, val_endian;
 692	int i, j;
 693
 694	if (!config)
 695		goto err;
 696
 697	map = kzalloc(sizeof(*map), GFP_KERNEL);
 698	if (map == NULL) {
 699		ret = -ENOMEM;
 700		goto err;
 701	}
 702
 703	if (config->name) {
 704		map->name = kstrdup_const(config->name, GFP_KERNEL);
 705		if (!map->name) {
 706			ret = -ENOMEM;
 707			goto err_map;
 708		}
 709	}
 710
 711	if (config->disable_locking) {
 712		map->lock = map->unlock = regmap_lock_unlock_none;
 713		regmap_debugfs_disable(map);
 714	} else if (config->lock && config->unlock) {
 715		map->lock = config->lock;
 716		map->unlock = config->unlock;
 717		map->lock_arg = config->lock_arg;
 718	} else if (config->use_hwlock) {
 719		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 720		if (!map->hwlock) {
 721			ret = -ENXIO;
 722			goto err_name;
 723		}
 724
 725		switch (config->hwlock_mode) {
 726		case HWLOCK_IRQSTATE:
 727			map->lock = regmap_lock_hwlock_irqsave;
 728			map->unlock = regmap_unlock_hwlock_irqrestore;
 729			break;
 730		case HWLOCK_IRQ:
 731			map->lock = regmap_lock_hwlock_irq;
 732			map->unlock = regmap_unlock_hwlock_irq;
 733			break;
 734		default:
 735			map->lock = regmap_lock_hwlock;
 736			map->unlock = regmap_unlock_hwlock;
 737			break;
 738		}
 739
 740		map->lock_arg = map;
 741	} else {
 742		if ((bus && bus->fast_io) ||
 743		    config->fast_io) {
 744			spin_lock_init(&map->spinlock);
 745			map->lock = regmap_lock_spinlock;
 746			map->unlock = regmap_unlock_spinlock;
 747			lockdep_set_class_and_name(&map->spinlock,
 748						   lock_key, lock_name);
 749		} else {
 750			mutex_init(&map->mutex);
 751			map->lock = regmap_lock_mutex;
 752			map->unlock = regmap_unlock_mutex;
 753			lockdep_set_class_and_name(&map->mutex,
 754						   lock_key, lock_name);
 755		}
 756		map->lock_arg = map;
 757	}
 758
 759	/*
 760	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 761	 * scratch buffers with sleeping allocations.
 762	 */
 763	if ((bus && bus->fast_io) || config->fast_io)
 764		map->alloc_flags = GFP_ATOMIC;
 765	else
 766		map->alloc_flags = GFP_KERNEL;
 767
 768	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 769	map->format.pad_bytes = config->pad_bits / 8;
 770	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 771	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 772			config->val_bits + config->pad_bits, 8);
 773	map->reg_shift = config->pad_bits % 8;
 774	if (config->reg_stride)
 775		map->reg_stride = config->reg_stride;
 776	else
 777		map->reg_stride = 1;
 778	if (is_power_of_2(map->reg_stride))
 779		map->reg_stride_order = ilog2(map->reg_stride);
 780	else
 781		map->reg_stride_order = -1;
 782	map->use_single_read = config->use_single_read || !bus || !bus->read;
 783	map->use_single_write = config->use_single_write || !bus || !bus->write;
 784	map->can_multi_write = config->can_multi_write && bus && bus->write;
 785	if (bus) {
 786		map->max_raw_read = bus->max_raw_read;
 787		map->max_raw_write = bus->max_raw_write;
 788	}
 789	map->dev = dev;
 790	map->bus = bus;
 791	map->bus_context = bus_context;
 792	map->max_register = config->max_register;
 793	map->wr_table = config->wr_table;
 794	map->rd_table = config->rd_table;
 795	map->volatile_table = config->volatile_table;
 796	map->precious_table = config->precious_table;
 797	map->wr_noinc_table = config->wr_noinc_table;
 798	map->rd_noinc_table = config->rd_noinc_table;
 799	map->writeable_reg = config->writeable_reg;
 800	map->readable_reg = config->readable_reg;
 801	map->volatile_reg = config->volatile_reg;
 802	map->precious_reg = config->precious_reg;
 803	map->writeable_noinc_reg = config->writeable_noinc_reg;
 804	map->readable_noinc_reg = config->readable_noinc_reg;
 805	map->cache_type = config->cache_type;
 
 806
 807	spin_lock_init(&map->async_lock);
 808	INIT_LIST_HEAD(&map->async_list);
 809	INIT_LIST_HEAD(&map->async_free);
 810	init_waitqueue_head(&map->async_waitq);
 811
 812	if (config->read_flag_mask ||
 813	    config->write_flag_mask ||
 814	    config->zero_flag_mask) {
 815		map->read_flag_mask = config->read_flag_mask;
 816		map->write_flag_mask = config->write_flag_mask;
 817	} else if (bus) {
 818		map->read_flag_mask = bus->read_flag_mask;
 819	}
 820
 821	if (!bus) {
 822		map->reg_read  = config->reg_read;
 823		map->reg_write = config->reg_write;
 824
 825		map->defer_caching = false;
 826		goto skip_format_initialization;
 827	} else if (!bus->read || !bus->write) {
 828		map->reg_read = _regmap_bus_reg_read;
 829		map->reg_write = _regmap_bus_reg_write;
 830
 831		map->defer_caching = false;
 832		goto skip_format_initialization;
 833	} else {
 834		map->reg_read  = _regmap_bus_read;
 835		map->reg_update_bits = bus->reg_update_bits;
 836	}
 837
 838	reg_endian = regmap_get_reg_endian(bus, config);
 839	val_endian = regmap_get_val_endian(dev, bus, config);
 840
 841	switch (config->reg_bits + map->reg_shift) {
 842	case 2:
 843		switch (config->val_bits) {
 844		case 6:
 845			map->format.format_write = regmap_format_2_6_write;
 846			break;
 847		default:
 848			goto err_hwlock;
 849		}
 850		break;
 851
 852	case 4:
 853		switch (config->val_bits) {
 854		case 12:
 855			map->format.format_write = regmap_format_4_12_write;
 856			break;
 857		default:
 858			goto err_hwlock;
 859		}
 860		break;
 861
 862	case 7:
 863		switch (config->val_bits) {
 864		case 9:
 865			map->format.format_write = regmap_format_7_9_write;
 866			break;
 867		default:
 868			goto err_hwlock;
 869		}
 870		break;
 871
 872	case 10:
 873		switch (config->val_bits) {
 874		case 14:
 875			map->format.format_write = regmap_format_10_14_write;
 876			break;
 877		default:
 878			goto err_hwlock;
 879		}
 880		break;
 881
 882	case 8:
 883		map->format.format_reg = regmap_format_8;
 884		break;
 885
 886	case 16:
 887		switch (reg_endian) {
 888		case REGMAP_ENDIAN_BIG:
 889			map->format.format_reg = regmap_format_16_be;
 890			break;
 891		case REGMAP_ENDIAN_LITTLE:
 892			map->format.format_reg = regmap_format_16_le;
 893			break;
 894		case REGMAP_ENDIAN_NATIVE:
 895			map->format.format_reg = regmap_format_16_native;
 896			break;
 897		default:
 898			goto err_hwlock;
 899		}
 900		break;
 901
 902	case 24:
 903		if (reg_endian != REGMAP_ENDIAN_BIG)
 904			goto err_hwlock;
 905		map->format.format_reg = regmap_format_24;
 906		break;
 907
 908	case 32:
 909		switch (reg_endian) {
 910		case REGMAP_ENDIAN_BIG:
 911			map->format.format_reg = regmap_format_32_be;
 912			break;
 913		case REGMAP_ENDIAN_LITTLE:
 914			map->format.format_reg = regmap_format_32_le;
 915			break;
 916		case REGMAP_ENDIAN_NATIVE:
 917			map->format.format_reg = regmap_format_32_native;
 918			break;
 919		default:
 920			goto err_hwlock;
 921		}
 922		break;
 923
 924#ifdef CONFIG_64BIT
 925	case 64:
 926		switch (reg_endian) {
 927		case REGMAP_ENDIAN_BIG:
 928			map->format.format_reg = regmap_format_64_be;
 929			break;
 930		case REGMAP_ENDIAN_LITTLE:
 931			map->format.format_reg = regmap_format_64_le;
 932			break;
 933		case REGMAP_ENDIAN_NATIVE:
 934			map->format.format_reg = regmap_format_64_native;
 935			break;
 936		default:
 937			goto err_hwlock;
 938		}
 939		break;
 940#endif
 941
 942	default:
 943		goto err_hwlock;
 944	}
 945
 946	if (val_endian == REGMAP_ENDIAN_NATIVE)
 947		map->format.parse_inplace = regmap_parse_inplace_noop;
 948
 949	switch (config->val_bits) {
 950	case 8:
 951		map->format.format_val = regmap_format_8;
 952		map->format.parse_val = regmap_parse_8;
 953		map->format.parse_inplace = regmap_parse_inplace_noop;
 954		break;
 955	case 16:
 956		switch (val_endian) {
 957		case REGMAP_ENDIAN_BIG:
 958			map->format.format_val = regmap_format_16_be;
 959			map->format.parse_val = regmap_parse_16_be;
 960			map->format.parse_inplace = regmap_parse_16_be_inplace;
 961			break;
 962		case REGMAP_ENDIAN_LITTLE:
 963			map->format.format_val = regmap_format_16_le;
 964			map->format.parse_val = regmap_parse_16_le;
 965			map->format.parse_inplace = regmap_parse_16_le_inplace;
 966			break;
 967		case REGMAP_ENDIAN_NATIVE:
 968			map->format.format_val = regmap_format_16_native;
 969			map->format.parse_val = regmap_parse_16_native;
 970			break;
 971		default:
 972			goto err_hwlock;
 973		}
 974		break;
 975	case 24:
 976		if (val_endian != REGMAP_ENDIAN_BIG)
 977			goto err_hwlock;
 978		map->format.format_val = regmap_format_24;
 979		map->format.parse_val = regmap_parse_24;
 980		break;
 981	case 32:
 982		switch (val_endian) {
 983		case REGMAP_ENDIAN_BIG:
 984			map->format.format_val = regmap_format_32_be;
 985			map->format.parse_val = regmap_parse_32_be;
 986			map->format.parse_inplace = regmap_parse_32_be_inplace;
 987			break;
 988		case REGMAP_ENDIAN_LITTLE:
 989			map->format.format_val = regmap_format_32_le;
 990			map->format.parse_val = regmap_parse_32_le;
 991			map->format.parse_inplace = regmap_parse_32_le_inplace;
 992			break;
 993		case REGMAP_ENDIAN_NATIVE:
 994			map->format.format_val = regmap_format_32_native;
 995			map->format.parse_val = regmap_parse_32_native;
 996			break;
 997		default:
 998			goto err_hwlock;
 999		}
1000		break;
1001#ifdef CONFIG_64BIT
1002	case 64:
1003		switch (val_endian) {
1004		case REGMAP_ENDIAN_BIG:
1005			map->format.format_val = regmap_format_64_be;
1006			map->format.parse_val = regmap_parse_64_be;
1007			map->format.parse_inplace = regmap_parse_64_be_inplace;
1008			break;
1009		case REGMAP_ENDIAN_LITTLE:
1010			map->format.format_val = regmap_format_64_le;
1011			map->format.parse_val = regmap_parse_64_le;
1012			map->format.parse_inplace = regmap_parse_64_le_inplace;
1013			break;
1014		case REGMAP_ENDIAN_NATIVE:
1015			map->format.format_val = regmap_format_64_native;
1016			map->format.parse_val = regmap_parse_64_native;
1017			break;
1018		default:
1019			goto err_hwlock;
1020		}
1021		break;
1022#endif
1023	}
1024
1025	if (map->format.format_write) {
1026		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1027		    (val_endian != REGMAP_ENDIAN_BIG))
1028			goto err_hwlock;
1029		map->use_single_write = true;
1030	}
1031
1032	if (!map->format.format_write &&
1033	    !(map->format.format_reg && map->format.format_val))
1034		goto err_hwlock;
1035
1036	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1037	if (map->work_buf == NULL) {
1038		ret = -ENOMEM;
1039		goto err_hwlock;
1040	}
1041
1042	if (map->format.format_write) {
1043		map->defer_caching = false;
1044		map->reg_write = _regmap_bus_formatted_write;
1045	} else if (map->format.format_val) {
1046		map->defer_caching = true;
1047		map->reg_write = _regmap_bus_raw_write;
1048	}
1049
1050skip_format_initialization:
1051
1052	map->range_tree = RB_ROOT;
1053	for (i = 0; i < config->num_ranges; i++) {
1054		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1055		struct regmap_range_node *new;
1056
1057		/* Sanity check */
1058		if (range_cfg->range_max < range_cfg->range_min) {
1059			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1060				range_cfg->range_max, range_cfg->range_min);
1061			goto err_range;
1062		}
1063
1064		if (range_cfg->range_max > map->max_register) {
1065			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1066				range_cfg->range_max, map->max_register);
1067			goto err_range;
1068		}
1069
1070		if (range_cfg->selector_reg > map->max_register) {
1071			dev_err(map->dev,
1072				"Invalid range %d: selector out of map\n", i);
1073			goto err_range;
1074		}
1075
1076		if (range_cfg->window_len == 0) {
1077			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1078				i);
1079			goto err_range;
1080		}
1081
1082		/* Make sure, that this register range has no selector
1083		   or data window within its boundary */
1084		for (j = 0; j < config->num_ranges; j++) {
1085			unsigned sel_reg = config->ranges[j].selector_reg;
1086			unsigned win_min = config->ranges[j].window_start;
1087			unsigned win_max = win_min +
1088					   config->ranges[j].window_len - 1;
1089
1090			/* Allow data window inside its own virtual range */
1091			if (j == i)
1092				continue;
1093
1094			if (range_cfg->range_min <= sel_reg &&
1095			    sel_reg <= range_cfg->range_max) {
1096				dev_err(map->dev,
1097					"Range %d: selector for %d in window\n",
1098					i, j);
1099				goto err_range;
1100			}
1101
1102			if (!(win_max < range_cfg->range_min ||
1103			      win_min > range_cfg->range_max)) {
1104				dev_err(map->dev,
1105					"Range %d: window for %d in window\n",
1106					i, j);
1107				goto err_range;
1108			}
1109		}
1110
1111		new = kzalloc(sizeof(*new), GFP_KERNEL);
1112		if (new == NULL) {
1113			ret = -ENOMEM;
1114			goto err_range;
1115		}
1116
1117		new->map = map;
1118		new->name = range_cfg->name;
1119		new->range_min = range_cfg->range_min;
1120		new->range_max = range_cfg->range_max;
1121		new->selector_reg = range_cfg->selector_reg;
1122		new->selector_mask = range_cfg->selector_mask;
1123		new->selector_shift = range_cfg->selector_shift;
1124		new->window_start = range_cfg->window_start;
1125		new->window_len = range_cfg->window_len;
1126
1127		if (!_regmap_range_add(map, new)) {
1128			dev_err(map->dev, "Failed to add range %d\n", i);
1129			kfree(new);
1130			goto err_range;
1131		}
1132
1133		if (map->selector_work_buf == NULL) {
1134			map->selector_work_buf =
1135				kzalloc(map->format.buf_size, GFP_KERNEL);
1136			if (map->selector_work_buf == NULL) {
1137				ret = -ENOMEM;
1138				goto err_range;
1139			}
1140		}
1141	}
1142
1143	ret = regcache_init(map, config);
1144	if (ret != 0)
1145		goto err_range;
1146
1147	if (dev) {
1148		ret = regmap_attach_dev(dev, map, config);
1149		if (ret != 0)
1150			goto err_regcache;
1151	} else {
1152		regmap_debugfs_init(map, config->name);
1153	}
1154
1155	return map;
1156
1157err_regcache:
1158	regcache_exit(map);
1159err_range:
1160	regmap_range_exit(map);
1161	kfree(map->work_buf);
1162err_hwlock:
1163	if (map->hwlock)
1164		hwspin_lock_free(map->hwlock);
1165err_name:
1166	kfree_const(map->name);
1167err_map:
1168	kfree(map);
1169err:
1170	return ERR_PTR(ret);
1171}
1172EXPORT_SYMBOL_GPL(__regmap_init);
1173
1174static void devm_regmap_release(struct device *dev, void *res)
1175{
1176	regmap_exit(*(struct regmap **)res);
1177}
1178
1179struct regmap *__devm_regmap_init(struct device *dev,
1180				  const struct regmap_bus *bus,
1181				  void *bus_context,
1182				  const struct regmap_config *config,
1183				  struct lock_class_key *lock_key,
1184				  const char *lock_name)
1185{
1186	struct regmap **ptr, *regmap;
1187
1188	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1189	if (!ptr)
1190		return ERR_PTR(-ENOMEM);
1191
1192	regmap = __regmap_init(dev, bus, bus_context, config,
1193			       lock_key, lock_name);
1194	if (!IS_ERR(regmap)) {
1195		*ptr = regmap;
1196		devres_add(dev, ptr);
1197	} else {
1198		devres_free(ptr);
1199	}
1200
1201	return regmap;
1202}
1203EXPORT_SYMBOL_GPL(__devm_regmap_init);
1204
1205static void regmap_field_init(struct regmap_field *rm_field,
1206	struct regmap *regmap, struct reg_field reg_field)
1207{
1208	rm_field->regmap = regmap;
1209	rm_field->reg = reg_field.reg;
1210	rm_field->shift = reg_field.lsb;
1211	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1212	rm_field->id_size = reg_field.id_size;
1213	rm_field->id_offset = reg_field.id_offset;
1214}
1215
1216/**
1217 * devm_regmap_field_alloc() - Allocate and initialise a register field.
 
1218 *
1219 * @dev: Device that will be interacted with
1220 * @regmap: regmap bank in which this register field is located.
1221 * @reg_field: Register field with in the bank.
1222 *
1223 * The return value will be an ERR_PTR() on error or a valid pointer
1224 * to a struct regmap_field. The regmap_field will be automatically freed
1225 * by the device management code.
1226 */
1227struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1228		struct regmap *regmap, struct reg_field reg_field)
1229{
1230	struct regmap_field *rm_field = devm_kzalloc(dev,
1231					sizeof(*rm_field), GFP_KERNEL);
1232	if (!rm_field)
1233		return ERR_PTR(-ENOMEM);
1234
1235	regmap_field_init(rm_field, regmap, reg_field);
1236
1237	return rm_field;
1238
1239}
1240EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1241
1242/**
1243 * devm_regmap_field_free() - Free a register field allocated using
1244 *                            devm_regmap_field_alloc.
 
 
1245 *
1246 * @dev: Device that will be interacted with
1247 * @field: regmap field which should be freed.
1248 *
1249 * Free register field allocated using devm_regmap_field_alloc(). Usually
1250 * drivers need not call this function, as the memory allocated via devm
1251 * will be freed as per device-driver life-cyle.
1252 */
1253void devm_regmap_field_free(struct device *dev,
1254	struct regmap_field *field)
1255{
1256	devm_kfree(dev, field);
1257}
1258EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1259
1260/**
1261 * regmap_field_alloc() - Allocate and initialise a register field.
 
1262 *
1263 * @regmap: regmap bank in which this register field is located.
1264 * @reg_field: Register field with in the bank.
1265 *
1266 * The return value will be an ERR_PTR() on error or a valid pointer
1267 * to a struct regmap_field. The regmap_field should be freed by the
1268 * user once its finished working with it using regmap_field_free().
1269 */
1270struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1271		struct reg_field reg_field)
1272{
1273	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1274
1275	if (!rm_field)
1276		return ERR_PTR(-ENOMEM);
1277
1278	regmap_field_init(rm_field, regmap, reg_field);
1279
1280	return rm_field;
1281}
1282EXPORT_SYMBOL_GPL(regmap_field_alloc);
1283
1284/**
1285 * regmap_field_free() - Free register field allocated using
1286 *                       regmap_field_alloc.
1287 *
1288 * @field: regmap field which should be freed.
1289 */
1290void regmap_field_free(struct regmap_field *field)
1291{
1292	kfree(field);
1293}
1294EXPORT_SYMBOL_GPL(regmap_field_free);
1295
1296/**
1297 * regmap_reinit_cache() - Reinitialise the current register cache
1298 *
1299 * @map: Register map to operate on.
1300 * @config: New configuration.  Only the cache data will be used.
1301 *
1302 * Discard any existing register cache for the map and initialize a
1303 * new cache.  This can be used to restore the cache to defaults or to
1304 * update the cache configuration to reflect runtime discovery of the
1305 * hardware.
1306 *
1307 * No explicit locking is done here, the user needs to ensure that
1308 * this function will not race with other calls to regmap.
1309 */
1310int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1311{
1312	regcache_exit(map);
1313	regmap_debugfs_exit(map);
1314
1315	map->max_register = config->max_register;
1316	map->writeable_reg = config->writeable_reg;
1317	map->readable_reg = config->readable_reg;
1318	map->volatile_reg = config->volatile_reg;
1319	map->precious_reg = config->precious_reg;
1320	map->writeable_noinc_reg = config->writeable_noinc_reg;
1321	map->readable_noinc_reg = config->readable_noinc_reg;
1322	map->cache_type = config->cache_type;
1323
1324	regmap_debugfs_init(map, config->name);
1325
1326	map->cache_bypass = false;
1327	map->cache_only = false;
1328
1329	return regcache_init(map, config);
1330}
1331EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1332
1333/**
1334 * regmap_exit() - Free a previously allocated register map
1335 *
1336 * @map: Register map to operate on.
1337 */
1338void regmap_exit(struct regmap *map)
1339{
1340	struct regmap_async *async;
1341
1342	regcache_exit(map);
1343	regmap_debugfs_exit(map);
1344	regmap_range_exit(map);
1345	if (map->bus && map->bus->free_context)
1346		map->bus->free_context(map->bus_context);
1347	kfree(map->work_buf);
1348	while (!list_empty(&map->async_free)) {
1349		async = list_first_entry_or_null(&map->async_free,
1350						 struct regmap_async,
1351						 list);
1352		list_del(&async->list);
1353		kfree(async->work_buf);
1354		kfree(async);
1355	}
1356	if (map->hwlock)
1357		hwspin_lock_free(map->hwlock);
1358	kfree_const(map->name);
1359	kfree(map);
1360}
1361EXPORT_SYMBOL_GPL(regmap_exit);
1362
1363static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1364{
1365	struct regmap **r = res;
1366	if (!r || !*r) {
1367		WARN_ON(!r || !*r);
1368		return 0;
1369	}
1370
1371	/* If the user didn't specify a name match any */
1372	if (data)
1373		return (*r)->name == data;
1374	else
1375		return 1;
1376}
1377
1378/**
1379 * dev_get_regmap() - Obtain the regmap (if any) for a device
1380 *
1381 * @dev: Device to retrieve the map for
1382 * @name: Optional name for the register map, usually NULL.
1383 *
1384 * Returns the regmap for the device if one is present, or NULL.  If
1385 * name is specified then it must match the name specified when
1386 * registering the device, if it is NULL then the first regmap found
1387 * will be used.  Devices with multiple register maps are very rare,
1388 * generic code should normally not need to specify a name.
1389 */
1390struct regmap *dev_get_regmap(struct device *dev, const char *name)
1391{
1392	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1393					dev_get_regmap_match, (void *)name);
1394
1395	if (!r)
1396		return NULL;
1397	return *r;
1398}
1399EXPORT_SYMBOL_GPL(dev_get_regmap);
1400
1401/**
1402 * regmap_get_device() - Obtain the device from a regmap
1403 *
1404 * @map: Register map to operate on.
1405 *
1406 * Returns the underlying device that the regmap has been created for.
1407 */
1408struct device *regmap_get_device(struct regmap *map)
1409{
1410	return map->dev;
1411}
1412EXPORT_SYMBOL_GPL(regmap_get_device);
1413
1414static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1415			       struct regmap_range_node *range,
1416			       unsigned int val_num)
1417{
1418	void *orig_work_buf;
1419	unsigned int win_offset;
1420	unsigned int win_page;
1421	bool page_chg;
1422	int ret;
1423
1424	win_offset = (*reg - range->range_min) % range->window_len;
1425	win_page = (*reg - range->range_min) / range->window_len;
1426
1427	if (val_num > 1) {
1428		/* Bulk write shouldn't cross range boundary */
1429		if (*reg + val_num - 1 > range->range_max)
1430			return -EINVAL;
1431
1432		/* ... or single page boundary */
1433		if (val_num > range->window_len - win_offset)
1434			return -EINVAL;
1435	}
1436
1437	/* It is possible to have selector register inside data window.
1438	   In that case, selector register is located on every page and
1439	   it needs no page switching, when accessed alone. */
1440	if (val_num > 1 ||
1441	    range->window_start + win_offset != range->selector_reg) {
1442		/* Use separate work_buf during page switching */
1443		orig_work_buf = map->work_buf;
1444		map->work_buf = map->selector_work_buf;
1445
1446		ret = _regmap_update_bits(map, range->selector_reg,
1447					  range->selector_mask,
1448					  win_page << range->selector_shift,
1449					  &page_chg, false);
1450
1451		map->work_buf = orig_work_buf;
1452
1453		if (ret != 0)
1454			return ret;
1455	}
1456
1457	*reg = range->window_start + win_offset;
1458
1459	return 0;
1460}
1461
1462static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1463					  unsigned long mask)
1464{
1465	u8 *buf;
1466	int i;
1467
1468	if (!mask || !map->work_buf)
1469		return;
1470
1471	buf = map->work_buf;
1472
1473	for (i = 0; i < max_bytes; i++)
1474		buf[i] |= (mask >> (8 * i)) & 0xff;
1475}
1476
1477static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1478				  const void *val, size_t val_len)
1479{
1480	struct regmap_range_node *range;
1481	unsigned long flags;
 
1482	void *work_val = map->work_buf + map->format.reg_bytes +
1483		map->format.pad_bytes;
1484	void *buf;
1485	int ret = -ENOTSUPP;
1486	size_t len;
1487	int i;
1488
1489	WARN_ON(!map->bus);
1490
1491	/* Check for unwritable registers before we start */
1492	for (i = 0; i < val_len / map->format.val_bytes; i++)
1493		if (!regmap_writeable(map,
1494				     reg + regmap_get_offset(map, i)))
1495			return -EINVAL;
 
1496
1497	if (!map->cache_bypass && map->format.parse_val) {
1498		unsigned int ival;
1499		int val_bytes = map->format.val_bytes;
1500		for (i = 0; i < val_len / val_bytes; i++) {
1501			ival = map->format.parse_val(val + (i * val_bytes));
1502			ret = regcache_write(map,
1503					     reg + regmap_get_offset(map, i),
1504					     ival);
1505			if (ret) {
1506				dev_err(map->dev,
1507					"Error in caching of register: %x ret: %d\n",
1508					reg + i, ret);
1509				return ret;
1510			}
1511		}
1512		if (map->cache_only) {
1513			map->cache_dirty = true;
1514			return 0;
1515		}
1516	}
1517
1518	range = _regmap_range_lookup(map, reg);
1519	if (range) {
1520		int val_num = val_len / map->format.val_bytes;
1521		int win_offset = (reg - range->range_min) % range->window_len;
1522		int win_residue = range->window_len - win_offset;
1523
1524		/* If the write goes beyond the end of the window split it */
1525		while (val_num > win_residue) {
1526			dev_dbg(map->dev, "Writing window %d/%zu\n",
1527				win_residue, val_len / map->format.val_bytes);
1528			ret = _regmap_raw_write_impl(map, reg, val,
1529						     win_residue *
1530						     map->format.val_bytes);
1531			if (ret != 0)
1532				return ret;
1533
1534			reg += win_residue;
1535			val_num -= win_residue;
1536			val += win_residue * map->format.val_bytes;
1537			val_len -= win_residue * map->format.val_bytes;
1538
1539			win_offset = (reg - range->range_min) %
1540				range->window_len;
1541			win_residue = range->window_len - win_offset;
1542		}
1543
1544		ret = _regmap_select_page(map, &reg, range, val_num);
1545		if (ret != 0)
1546			return ret;
1547	}
1548
1549	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1550	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1551				      map->write_flag_mask);
1552
1553	/*
1554	 * Essentially all I/O mechanisms will be faster with a single
1555	 * buffer to write.  Since register syncs often generate raw
1556	 * writes of single registers optimise that case.
1557	 */
1558	if (val != work_val && val_len == map->format.val_bytes) {
1559		memcpy(work_val, val, map->format.val_bytes);
1560		val = work_val;
1561	}
1562
1563	if (map->async && map->bus->async_write) {
1564		struct regmap_async *async;
1565
1566		trace_regmap_async_write_start(map, reg, val_len);
1567
1568		spin_lock_irqsave(&map->async_lock, flags);
1569		async = list_first_entry_or_null(&map->async_free,
1570						 struct regmap_async,
1571						 list);
1572		if (async)
1573			list_del(&async->list);
1574		spin_unlock_irqrestore(&map->async_lock, flags);
1575
1576		if (!async) {
1577			async = map->bus->async_alloc();
1578			if (!async)
1579				return -ENOMEM;
1580
1581			async->work_buf = kzalloc(map->format.buf_size,
1582						  GFP_KERNEL | GFP_DMA);
1583			if (!async->work_buf) {
1584				kfree(async);
1585				return -ENOMEM;
1586			}
1587		}
1588
1589		async->map = map;
1590
1591		/* If the caller supplied the value we can use it safely. */
1592		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1593		       map->format.reg_bytes + map->format.val_bytes);
1594
1595		spin_lock_irqsave(&map->async_lock, flags);
1596		list_add_tail(&async->list, &map->async_list);
1597		spin_unlock_irqrestore(&map->async_lock, flags);
1598
1599		if (val != work_val)
1600			ret = map->bus->async_write(map->bus_context,
1601						    async->work_buf,
1602						    map->format.reg_bytes +
1603						    map->format.pad_bytes,
1604						    val, val_len, async);
1605		else
1606			ret = map->bus->async_write(map->bus_context,
1607						    async->work_buf,
1608						    map->format.reg_bytes +
1609						    map->format.pad_bytes +
1610						    val_len, NULL, 0, async);
1611
1612		if (ret != 0) {
1613			dev_err(map->dev, "Failed to schedule write: %d\n",
1614				ret);
1615
1616			spin_lock_irqsave(&map->async_lock, flags);
1617			list_move(&async->list, &map->async_free);
1618			spin_unlock_irqrestore(&map->async_lock, flags);
1619		}
1620
1621		return ret;
1622	}
1623
1624	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1625
1626	/* If we're doing a single register write we can probably just
1627	 * send the work_buf directly, otherwise try to do a gather
1628	 * write.
1629	 */
1630	if (val == work_val)
1631		ret = map->bus->write(map->bus_context, map->work_buf,
1632				      map->format.reg_bytes +
1633				      map->format.pad_bytes +
1634				      val_len);
1635	else if (map->bus->gather_write)
1636		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1637					     map->format.reg_bytes +
1638					     map->format.pad_bytes,
1639					     val, val_len);
1640	else
1641		ret = -ENOTSUPP;
1642
1643	/* If that didn't work fall back on linearising by hand. */
1644	if (ret == -ENOTSUPP) {
1645		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1646		buf = kzalloc(len, GFP_KERNEL);
1647		if (!buf)
1648			return -ENOMEM;
1649
1650		memcpy(buf, map->work_buf, map->format.reg_bytes);
1651		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1652		       val, val_len);
1653		ret = map->bus->write(map->bus_context, buf, len);
1654
1655		kfree(buf);
1656	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1657		/* regcache_drop_region() takes lock that we already have,
1658		 * thus call map->cache_ops->drop() directly
1659		 */
1660		if (map->cache_ops && map->cache_ops->drop)
1661			map->cache_ops->drop(map, reg, reg + 1);
1662	}
1663
1664	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1665
1666	return ret;
1667}
1668
1669/**
1670 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1671 *
1672 * @map: Map to check.
1673 */
1674bool regmap_can_raw_write(struct regmap *map)
1675{
1676	return map->bus && map->bus->write && map->format.format_val &&
1677		map->format.format_reg;
1678}
1679EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1680
1681/**
1682 * regmap_get_raw_read_max - Get the maximum size we can read
1683 *
1684 * @map: Map to check.
1685 */
1686size_t regmap_get_raw_read_max(struct regmap *map)
1687{
1688	return map->max_raw_read;
1689}
1690EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1691
1692/**
1693 * regmap_get_raw_write_max - Get the maximum size we can read
1694 *
1695 * @map: Map to check.
1696 */
1697size_t regmap_get_raw_write_max(struct regmap *map)
1698{
1699	return map->max_raw_write;
1700}
1701EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1702
1703static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1704				       unsigned int val)
1705{
1706	int ret;
1707	struct regmap_range_node *range;
1708	struct regmap *map = context;
1709
1710	WARN_ON(!map->bus || !map->format.format_write);
1711
1712	range = _regmap_range_lookup(map, reg);
1713	if (range) {
1714		ret = _regmap_select_page(map, &reg, range, 1);
1715		if (ret != 0)
1716			return ret;
1717	}
1718
1719	map->format.format_write(map, reg, val);
1720
1721	trace_regmap_hw_write_start(map, reg, 1);
1722
1723	ret = map->bus->write(map->bus_context, map->work_buf,
1724			      map->format.buf_size);
1725
1726	trace_regmap_hw_write_done(map, reg, 1);
1727
1728	return ret;
1729}
1730
1731static int _regmap_bus_reg_write(void *context, unsigned int reg,
1732				 unsigned int val)
1733{
1734	struct regmap *map = context;
1735
1736	return map->bus->reg_write(map->bus_context, reg, val);
1737}
1738
1739static int _regmap_bus_raw_write(void *context, unsigned int reg,
1740				 unsigned int val)
1741{
1742	struct regmap *map = context;
1743
1744	WARN_ON(!map->bus || !map->format.format_val);
1745
1746	map->format.format_val(map->work_buf + map->format.reg_bytes
1747			       + map->format.pad_bytes, val, 0);
1748	return _regmap_raw_write_impl(map, reg,
1749				      map->work_buf +
1750				      map->format.reg_bytes +
1751				      map->format.pad_bytes,
1752				      map->format.val_bytes);
1753}
1754
1755static inline void *_regmap_map_get_context(struct regmap *map)
1756{
1757	return (map->bus) ? map : map->bus_context;
1758}
1759
1760int _regmap_write(struct regmap *map, unsigned int reg,
1761		  unsigned int val)
1762{
1763	int ret;
1764	void *context = _regmap_map_get_context(map);
1765
1766	if (!regmap_writeable(map, reg))
1767		return -EIO;
1768
1769	if (!map->cache_bypass && !map->defer_caching) {
1770		ret = regcache_write(map, reg, val);
1771		if (ret != 0)
1772			return ret;
1773		if (map->cache_only) {
1774			map->cache_dirty = true;
1775			return 0;
1776		}
1777	}
1778
1779	if (regmap_should_log(map))
 
1780		dev_info(map->dev, "%x <= %x\n", reg, val);
 
1781
1782	trace_regmap_reg_write(map, reg, val);
1783
1784	return map->reg_write(context, reg, val);
1785}
1786
1787/**
1788 * regmap_write() - Write a value to a single register
1789 *
1790 * @map: Register map to write to
1791 * @reg: Register to write to
1792 * @val: Value to be written
1793 *
1794 * A value of zero will be returned on success, a negative errno will
1795 * be returned in error cases.
1796 */
1797int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1798{
1799	int ret;
1800
1801	if (!IS_ALIGNED(reg, map->reg_stride))
1802		return -EINVAL;
1803
1804	map->lock(map->lock_arg);
1805
1806	ret = _regmap_write(map, reg, val);
1807
1808	map->unlock(map->lock_arg);
1809
1810	return ret;
1811}
1812EXPORT_SYMBOL_GPL(regmap_write);
1813
1814/**
1815 * regmap_write_async() - Write a value to a single register asynchronously
1816 *
1817 * @map: Register map to write to
1818 * @reg: Register to write to
1819 * @val: Value to be written
1820 *
1821 * A value of zero will be returned on success, a negative errno will
1822 * be returned in error cases.
1823 */
1824int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1825{
1826	int ret;
1827
1828	if (!IS_ALIGNED(reg, map->reg_stride))
1829		return -EINVAL;
1830
1831	map->lock(map->lock_arg);
1832
1833	map->async = true;
1834
1835	ret = _regmap_write(map, reg, val);
1836
1837	map->async = false;
1838
1839	map->unlock(map->lock_arg);
1840
1841	return ret;
1842}
1843EXPORT_SYMBOL_GPL(regmap_write_async);
1844
1845int _regmap_raw_write(struct regmap *map, unsigned int reg,
1846		      const void *val, size_t val_len)
1847{
1848	size_t val_bytes = map->format.val_bytes;
1849	size_t val_count = val_len / val_bytes;
1850	size_t chunk_count, chunk_bytes;
1851	size_t chunk_regs = val_count;
1852	int ret, i;
1853
1854	if (!val_count)
1855		return -EINVAL;
1856
1857	if (map->use_single_write)
1858		chunk_regs = 1;
1859	else if (map->max_raw_write && val_len > map->max_raw_write)
1860		chunk_regs = map->max_raw_write / val_bytes;
1861
1862	chunk_count = val_count / chunk_regs;
1863	chunk_bytes = chunk_regs * val_bytes;
1864
1865	/* Write as many bytes as possible with chunk_size */
1866	for (i = 0; i < chunk_count; i++) {
1867		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1868		if (ret)
1869			return ret;
1870
1871		reg += regmap_get_offset(map, chunk_regs);
1872		val += chunk_bytes;
1873		val_len -= chunk_bytes;
1874	}
1875
1876	/* Write remaining bytes */
1877	if (val_len)
1878		ret = _regmap_raw_write_impl(map, reg, val, val_len);
1879
1880	return ret;
1881}
1882
1883/**
1884 * regmap_raw_write() - Write raw values to one or more registers
1885 *
1886 * @map: Register map to write to
1887 * @reg: Initial register to write to
1888 * @val: Block of data to be written, laid out for direct transmission to the
1889 *       device
1890 * @val_len: Length of data pointed to by val.
1891 *
1892 * This function is intended to be used for things like firmware
1893 * download where a large block of data needs to be transferred to the
1894 * device.  No formatting will be done on the data provided.
1895 *
1896 * A value of zero will be returned on success, a negative errno will
1897 * be returned in error cases.
1898 */
1899int regmap_raw_write(struct regmap *map, unsigned int reg,
1900		     const void *val, size_t val_len)
1901{
1902	int ret;
1903
1904	if (!regmap_can_raw_write(map))
1905		return -EINVAL;
1906	if (val_len % map->format.val_bytes)
1907		return -EINVAL;
 
 
1908
1909	map->lock(map->lock_arg);
1910
1911	ret = _regmap_raw_write(map, reg, val, val_len);
1912
1913	map->unlock(map->lock_arg);
1914
1915	return ret;
1916}
1917EXPORT_SYMBOL_GPL(regmap_raw_write);
1918
1919/**
1920 * regmap_noinc_write(): Write data from a register without incrementing the
1921 *			register number
1922 *
1923 * @map: Register map to write to
1924 * @reg: Register to write to
1925 * @val: Pointer to data buffer
1926 * @val_len: Length of output buffer in bytes.
1927 *
1928 * The regmap API usually assumes that bulk bus write operations will write a
1929 * range of registers. Some devices have certain registers for which a write
1930 * operation can write to an internal FIFO.
1931 *
1932 * The target register must be volatile but registers after it can be
1933 * completely unrelated cacheable registers.
1934 *
1935 * This will attempt multiple writes as required to write val_len bytes.
1936 *
1937 * A value of zero will be returned on success, a negative errno will be
1938 * returned in error cases.
1939 */
1940int regmap_noinc_write(struct regmap *map, unsigned int reg,
1941		      const void *val, size_t val_len)
1942{
1943	size_t write_len;
1944	int ret;
1945
1946	if (!map->bus)
1947		return -EINVAL;
1948	if (!map->bus->write)
1949		return -ENOTSUPP;
1950	if (val_len % map->format.val_bytes)
1951		return -EINVAL;
1952	if (!IS_ALIGNED(reg, map->reg_stride))
1953		return -EINVAL;
1954	if (val_len == 0)
1955		return -EINVAL;
1956
1957	map->lock(map->lock_arg);
1958
1959	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1960		ret = -EINVAL;
1961		goto out_unlock;
1962	}
1963
1964	while (val_len) {
1965		if (map->max_raw_write && map->max_raw_write < val_len)
1966			write_len = map->max_raw_write;
1967		else
1968			write_len = val_len;
1969		ret = _regmap_raw_write(map, reg, val, write_len);
1970		if (ret)
1971			goto out_unlock;
1972		val = ((u8 *)val) + write_len;
1973		val_len -= write_len;
1974	}
1975
1976out_unlock:
1977	map->unlock(map->lock_arg);
1978	return ret;
1979}
1980EXPORT_SYMBOL_GPL(regmap_noinc_write);
1981
1982/**
1983 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1984 *                                   register field.
1985 *
1986 * @field: Register field to write to
1987 * @mask: Bitmask to change
1988 * @val: Value to be written
1989 * @change: Boolean indicating if a write was done
1990 * @async: Boolean indicating asynchronously
1991 * @force: Boolean indicating use force update
1992 *
1993 * Perform a read/modify/write cycle on the register field with change,
1994 * async, force option.
1995 *
1996 * A value of zero will be returned on success, a negative errno will
1997 * be returned in error cases.
1998 */
1999int regmap_field_update_bits_base(struct regmap_field *field,
2000				  unsigned int mask, unsigned int val,
2001				  bool *change, bool async, bool force)
2002{
2003	mask = (mask << field->shift) & field->mask;
2004
2005	return regmap_update_bits_base(field->regmap, field->reg,
2006				       mask, val << field->shift,
2007				       change, async, force);
2008}
2009EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2010
2011/**
2012 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2013 *                                    register field with port ID
 
2014 *
2015 * @field: Register field to write to
2016 * @id: port ID
2017 * @mask: Bitmask to change
2018 * @val: Value to be written
2019 * @change: Boolean indicating if a write was done
2020 * @async: Boolean indicating asynchronously
2021 * @force: Boolean indicating use force update
2022 *
2023 * A value of zero will be returned on success, a negative errno will
2024 * be returned in error cases.
2025 */
2026int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
2027				   unsigned int mask, unsigned int val,
2028				   bool *change, bool async, bool force)
2029{
2030	if (id >= field->id_size)
2031		return -EINVAL;
2032
2033	mask = (mask << field->shift) & field->mask;
2034
2035	return regmap_update_bits_base(field->regmap,
2036				       field->reg + (field->id_offset * id),
2037				       mask, val << field->shift,
2038				       change, async, force);
2039}
2040EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2041
2042/**
2043 * regmap_bulk_write() - Write multiple registers to the device
2044 *
2045 * @map: Register map to write to
2046 * @reg: First register to be write from
2047 * @val: Block of data to be written, in native register size for device
2048 * @val_count: Number of registers to write
2049 *
2050 * This function is intended to be used for writing a large block of
2051 * data to the device either in single transfer or multiple transfer.
2052 *
2053 * A value of zero will be returned on success, a negative errno will
2054 * be returned in error cases.
2055 */
2056int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2057		     size_t val_count)
2058{
2059	int ret = 0, i;
2060	size_t val_bytes = map->format.val_bytes;
 
2061
 
 
2062	if (!IS_ALIGNED(reg, map->reg_stride))
2063		return -EINVAL;
2064
2065	/*
2066	 * Some devices don't support bulk write, for them we have a series of
2067	 * single write operations.
 
 
 
 
 
 
2068	 */
2069	if (!map->bus || !map->format.parse_inplace) {
2070		map->lock(map->lock_arg);
2071		for (i = 0; i < val_count; i++) {
2072			unsigned int ival;
2073
2074			switch (val_bytes) {
2075			case 1:
2076				ival = *(u8 *)(val + (i * val_bytes));
2077				break;
2078			case 2:
2079				ival = *(u16 *)(val + (i * val_bytes));
2080				break;
2081			case 4:
2082				ival = *(u32 *)(val + (i * val_bytes));
2083				break;
2084#ifdef CONFIG_64BIT
2085			case 8:
2086				ival = *(u64 *)(val + (i * val_bytes));
2087				break;
2088#endif
2089			default:
2090				ret = -EINVAL;
2091				goto out;
2092			}
2093
2094			ret = _regmap_write(map,
2095					    reg + regmap_get_offset(map, i),
2096					    ival);
2097			if (ret != 0)
2098				goto out;
2099		}
2100out:
2101		map->unlock(map->lock_arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2102	} else {
2103		void *wval;
2104
 
 
 
2105		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2106		if (!wval)
 
2107			return -ENOMEM;
2108
2109		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2110			map->format.parse_inplace(wval + i);
2111
2112		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
 
 
2113
2114		kfree(wval);
2115	}
2116	return ret;
2117}
2118EXPORT_SYMBOL_GPL(regmap_bulk_write);
2119
2120/*
2121 * _regmap_raw_multi_reg_write()
2122 *
2123 * the (register,newvalue) pairs in regs have not been formatted, but
2124 * they are all in the same page and have been changed to being page
2125 * relative. The page register has been written if that was necessary.
2126 */
2127static int _regmap_raw_multi_reg_write(struct regmap *map,
2128				       const struct reg_sequence *regs,
2129				       size_t num_regs)
2130{
2131	int ret;
2132	void *buf;
2133	int i;
2134	u8 *u8;
2135	size_t val_bytes = map->format.val_bytes;
2136	size_t reg_bytes = map->format.reg_bytes;
2137	size_t pad_bytes = map->format.pad_bytes;
2138	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2139	size_t len = pair_size * num_regs;
2140
2141	if (!len)
2142		return -EINVAL;
2143
2144	buf = kzalloc(len, GFP_KERNEL);
2145	if (!buf)
2146		return -ENOMEM;
2147
2148	/* We have to linearise by hand. */
2149
2150	u8 = buf;
2151
2152	for (i = 0; i < num_regs; i++) {
2153		unsigned int reg = regs[i].reg;
2154		unsigned int val = regs[i].def;
2155		trace_regmap_hw_write_start(map, reg, 1);
2156		map->format.format_reg(u8, reg, map->reg_shift);
2157		u8 += reg_bytes + pad_bytes;
2158		map->format.format_val(u8, val, 0);
2159		u8 += val_bytes;
2160	}
2161	u8 = buf;
2162	*u8 |= map->write_flag_mask;
2163
2164	ret = map->bus->write(map->bus_context, buf, len);
2165
2166	kfree(buf);
2167
2168	for (i = 0; i < num_regs; i++) {
2169		int reg = regs[i].reg;
2170		trace_regmap_hw_write_done(map, reg, 1);
2171	}
2172	return ret;
2173}
2174
2175static unsigned int _regmap_register_page(struct regmap *map,
2176					  unsigned int reg,
2177					  struct regmap_range_node *range)
2178{
2179	unsigned int win_page = (reg - range->range_min) / range->window_len;
2180
2181	return win_page;
2182}
2183
2184static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2185					       struct reg_sequence *regs,
2186					       size_t num_regs)
2187{
2188	int ret;
2189	int i, n;
2190	struct reg_sequence *base;
2191	unsigned int this_page = 0;
2192	unsigned int page_change = 0;
2193	/*
2194	 * the set of registers are not neccessarily in order, but
2195	 * since the order of write must be preserved this algorithm
2196	 * chops the set each time the page changes. This also applies
2197	 * if there is a delay required at any point in the sequence.
2198	 */
2199	base = regs;
2200	for (i = 0, n = 0; i < num_regs; i++, n++) {
2201		unsigned int reg = regs[i].reg;
2202		struct regmap_range_node *range;
2203
2204		range = _regmap_range_lookup(map, reg);
2205		if (range) {
2206			unsigned int win_page = _regmap_register_page(map, reg,
2207								      range);
2208
2209			if (i == 0)
2210				this_page = win_page;
2211			if (win_page != this_page) {
2212				this_page = win_page;
2213				page_change = 1;
2214			}
2215		}
2216
2217		/* If we have both a page change and a delay make sure to
2218		 * write the regs and apply the delay before we change the
2219		 * page.
2220		 */
2221
2222		if (page_change || regs[i].delay_us) {
2223
2224				/* For situations where the first write requires
2225				 * a delay we need to make sure we don't call
2226				 * raw_multi_reg_write with n=0
2227				 * This can't occur with page breaks as we
2228				 * never write on the first iteration
2229				 */
2230				if (regs[i].delay_us && i == 0)
2231					n = 1;
2232
2233				ret = _regmap_raw_multi_reg_write(map, base, n);
2234				if (ret != 0)
2235					return ret;
2236
2237				if (regs[i].delay_us)
2238					udelay(regs[i].delay_us);
2239
2240				base += n;
2241				n = 0;
2242
2243				if (page_change) {
2244					ret = _regmap_select_page(map,
2245								  &base[n].reg,
2246								  range, 1);
2247					if (ret != 0)
2248						return ret;
2249
2250					page_change = 0;
2251				}
2252
2253		}
2254
2255	}
2256	if (n > 0)
2257		return _regmap_raw_multi_reg_write(map, base, n);
2258	return 0;
2259}
2260
2261static int _regmap_multi_reg_write(struct regmap *map,
2262				   const struct reg_sequence *regs,
2263				   size_t num_regs)
2264{
2265	int i;
2266	int ret;
2267
2268	if (!map->can_multi_write) {
2269		for (i = 0; i < num_regs; i++) {
2270			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2271			if (ret != 0)
2272				return ret;
2273
2274			if (regs[i].delay_us)
2275				udelay(regs[i].delay_us);
2276		}
2277		return 0;
2278	}
2279
2280	if (!map->format.parse_inplace)
2281		return -EINVAL;
2282
2283	if (map->writeable_reg)
2284		for (i = 0; i < num_regs; i++) {
2285			int reg = regs[i].reg;
2286			if (!map->writeable_reg(map->dev, reg))
2287				return -EINVAL;
2288			if (!IS_ALIGNED(reg, map->reg_stride))
2289				return -EINVAL;
2290		}
2291
2292	if (!map->cache_bypass) {
2293		for (i = 0; i < num_regs; i++) {
2294			unsigned int val = regs[i].def;
2295			unsigned int reg = regs[i].reg;
2296			ret = regcache_write(map, reg, val);
2297			if (ret) {
2298				dev_err(map->dev,
2299				"Error in caching of register: %x ret: %d\n",
2300								reg, ret);
2301				return ret;
2302			}
2303		}
2304		if (map->cache_only) {
2305			map->cache_dirty = true;
2306			return 0;
2307		}
2308	}
2309
2310	WARN_ON(!map->bus);
2311
2312	for (i = 0; i < num_regs; i++) {
2313		unsigned int reg = regs[i].reg;
2314		struct regmap_range_node *range;
2315
2316		/* Coalesce all the writes between a page break or a delay
2317		 * in a sequence
2318		 */
2319		range = _regmap_range_lookup(map, reg);
2320		if (range || regs[i].delay_us) {
2321			size_t len = sizeof(struct reg_sequence)*num_regs;
2322			struct reg_sequence *base = kmemdup(regs, len,
2323							   GFP_KERNEL);
2324			if (!base)
2325				return -ENOMEM;
2326			ret = _regmap_range_multi_paged_reg_write(map, base,
2327								  num_regs);
2328			kfree(base);
2329
2330			return ret;
2331		}
2332	}
2333	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2334}
2335
2336/**
2337 * regmap_multi_reg_write() - Write multiple registers to the device
 
 
 
2338 *
2339 * @map: Register map to write to
2340 * @regs: Array of structures containing register,value to be written
2341 * @num_regs: Number of registers to write
2342 *
2343 * Write multiple registers to the device where the set of register, value
2344 * pairs are supplied in any order, possibly not all in a single range.
2345 *
2346 * The 'normal' block write mode will send ultimately send data on the
2347 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2348 * addressed. However, this alternative block multi write mode will send
2349 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2350 * must of course support the mode.
2351 *
2352 * A value of zero will be returned on success, a negative errno will be
2353 * returned in error cases.
2354 */
2355int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2356			   int num_regs)
2357{
2358	int ret;
2359
2360	map->lock(map->lock_arg);
2361
2362	ret = _regmap_multi_reg_write(map, regs, num_regs);
2363
2364	map->unlock(map->lock_arg);
2365
2366	return ret;
2367}
2368EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2369
2370/**
2371 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2372 *                                     device but not the cache
 
 
2373 *
2374 * @map: Register map to write to
2375 * @regs: Array of structures containing register,value to be written
2376 * @num_regs: Number of registers to write
2377 *
2378 * Write multiple registers to the device but not the cache where the set
2379 * of register are supplied in any order.
2380 *
2381 * This function is intended to be used for writing a large block of data
2382 * atomically to the device in single transfer for those I2C client devices
2383 * that implement this alternative block write mode.
2384 *
2385 * A value of zero will be returned on success, a negative errno will
2386 * be returned in error cases.
2387 */
2388int regmap_multi_reg_write_bypassed(struct regmap *map,
2389				    const struct reg_sequence *regs,
2390				    int num_regs)
2391{
2392	int ret;
2393	bool bypass;
2394
2395	map->lock(map->lock_arg);
2396
2397	bypass = map->cache_bypass;
2398	map->cache_bypass = true;
2399
2400	ret = _regmap_multi_reg_write(map, regs, num_regs);
2401
2402	map->cache_bypass = bypass;
2403
2404	map->unlock(map->lock_arg);
2405
2406	return ret;
2407}
2408EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2409
2410/**
2411 * regmap_raw_write_async() - Write raw values to one or more registers
2412 *                            asynchronously
2413 *
2414 * @map: Register map to write to
2415 * @reg: Initial register to write to
2416 * @val: Block of data to be written, laid out for direct transmission to the
2417 *       device.  Must be valid until regmap_async_complete() is called.
2418 * @val_len: Length of data pointed to by val.
2419 *
2420 * This function is intended to be used for things like firmware
2421 * download where a large block of data needs to be transferred to the
2422 * device.  No formatting will be done on the data provided.
2423 *
2424 * If supported by the underlying bus the write will be scheduled
2425 * asynchronously, helping maximise I/O speed on higher speed buses
2426 * like SPI.  regmap_async_complete() can be called to ensure that all
2427 * asynchrnous writes have been completed.
2428 *
2429 * A value of zero will be returned on success, a negative errno will
2430 * be returned in error cases.
2431 */
2432int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2433			   const void *val, size_t val_len)
2434{
2435	int ret;
2436
2437	if (val_len % map->format.val_bytes)
2438		return -EINVAL;
2439	if (!IS_ALIGNED(reg, map->reg_stride))
2440		return -EINVAL;
2441
2442	map->lock(map->lock_arg);
2443
2444	map->async = true;
2445
2446	ret = _regmap_raw_write(map, reg, val, val_len);
2447
2448	map->async = false;
2449
2450	map->unlock(map->lock_arg);
2451
2452	return ret;
2453}
2454EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2455
2456static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2457			    unsigned int val_len)
2458{
2459	struct regmap_range_node *range;
 
2460	int ret;
2461
2462	WARN_ON(!map->bus);
2463
2464	if (!map->bus || !map->bus->read)
2465		return -EINVAL;
2466
2467	range = _regmap_range_lookup(map, reg);
2468	if (range) {
2469		ret = _regmap_select_page(map, &reg, range,
2470					  val_len / map->format.val_bytes);
2471		if (ret != 0)
2472			return ret;
2473	}
2474
2475	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2476	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2477				      map->read_flag_mask);
 
 
 
 
 
 
 
2478	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2479
2480	ret = map->bus->read(map->bus_context, map->work_buf,
2481			     map->format.reg_bytes + map->format.pad_bytes,
2482			     val, val_len);
2483
2484	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2485
2486	return ret;
2487}
2488
2489static int _regmap_bus_reg_read(void *context, unsigned int reg,
2490				unsigned int *val)
2491{
2492	struct regmap *map = context;
2493
2494	return map->bus->reg_read(map->bus_context, reg, val);
2495}
2496
2497static int _regmap_bus_read(void *context, unsigned int reg,
2498			    unsigned int *val)
2499{
2500	int ret;
2501	struct regmap *map = context;
2502	void *work_val = map->work_buf + map->format.reg_bytes +
2503		map->format.pad_bytes;
2504
2505	if (!map->format.parse_val)
2506		return -EINVAL;
2507
2508	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2509	if (ret == 0)
2510		*val = map->format.parse_val(work_val);
2511
2512	return ret;
2513}
2514
2515static int _regmap_read(struct regmap *map, unsigned int reg,
2516			unsigned int *val)
2517{
2518	int ret;
2519	void *context = _regmap_map_get_context(map);
2520
2521	if (!map->cache_bypass) {
2522		ret = regcache_read(map, reg, val);
2523		if (ret == 0)
2524			return 0;
2525	}
2526
2527	if (map->cache_only)
2528		return -EBUSY;
2529
2530	if (!regmap_readable(map, reg))
2531		return -EIO;
2532
2533	ret = map->reg_read(context, reg, val);
2534	if (ret == 0) {
2535		if (regmap_should_log(map))
 
2536			dev_info(map->dev, "%x => %x\n", reg, *val);
 
2537
2538		trace_regmap_reg_read(map, reg, *val);
2539
2540		if (!map->cache_bypass)
2541			regcache_write(map, reg, *val);
2542	}
2543
2544	return ret;
2545}
2546
2547/**
2548 * regmap_read() - Read a value from a single register
2549 *
2550 * @map: Register map to read from
2551 * @reg: Register to be read from
2552 * @val: Pointer to store read value
2553 *
2554 * A value of zero will be returned on success, a negative errno will
2555 * be returned in error cases.
2556 */
2557int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2558{
2559	int ret;
2560
2561	if (!IS_ALIGNED(reg, map->reg_stride))
2562		return -EINVAL;
2563
2564	map->lock(map->lock_arg);
2565
2566	ret = _regmap_read(map, reg, val);
2567
2568	map->unlock(map->lock_arg);
2569
2570	return ret;
2571}
2572EXPORT_SYMBOL_GPL(regmap_read);
2573
2574/**
2575 * regmap_raw_read() - Read raw data from the device
2576 *
2577 * @map: Register map to read from
2578 * @reg: First register to be read from
2579 * @val: Pointer to store read value
2580 * @val_len: Size of data to read
2581 *
2582 * A value of zero will be returned on success, a negative errno will
2583 * be returned in error cases.
2584 */
2585int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2586		    size_t val_len)
2587{
2588	size_t val_bytes = map->format.val_bytes;
2589	size_t val_count = val_len / val_bytes;
2590	unsigned int v;
2591	int ret, i;
2592
2593	if (!map->bus)
2594		return -EINVAL;
2595	if (val_len % map->format.val_bytes)
2596		return -EINVAL;
2597	if (!IS_ALIGNED(reg, map->reg_stride))
2598		return -EINVAL;
2599	if (val_count == 0)
2600		return -EINVAL;
2601
2602	map->lock(map->lock_arg);
2603
2604	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2605	    map->cache_type == REGCACHE_NONE) {
2606		size_t chunk_count, chunk_bytes;
2607		size_t chunk_regs = val_count;
2608
2609		if (!map->bus->read) {
2610			ret = -ENOTSUPP;
2611			goto out;
2612		}
 
 
 
 
2613
2614		if (map->use_single_read)
2615			chunk_regs = 1;
2616		else if (map->max_raw_read && val_len > map->max_raw_read)
2617			chunk_regs = map->max_raw_read / val_bytes;
2618
2619		chunk_count = val_count / chunk_regs;
2620		chunk_bytes = chunk_regs * val_bytes;
2621
2622		/* Read bytes that fit into whole chunks */
2623		for (i = 0; i < chunk_count; i++) {
2624			ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2625			if (ret != 0)
2626				goto out;
2627
2628			reg += regmap_get_offset(map, chunk_regs);
2629			val += chunk_bytes;
2630			val_len -= chunk_bytes;
2631		}
2632
2633		/* Read remaining bytes */
2634		if (val_len) {
2635			ret = _regmap_raw_read(map, reg, val, val_len);
2636			if (ret != 0)
2637				goto out;
2638		}
2639	} else {
2640		/* Otherwise go word by word for the cache; should be low
2641		 * cost as we expect to hit the cache.
2642		 */
2643		for (i = 0; i < val_count; i++) {
2644			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2645					   &v);
2646			if (ret != 0)
2647				goto out;
2648
2649			map->format.format_val(val + (i * val_bytes), v, 0);
2650		}
2651	}
2652
2653 out:
2654	map->unlock(map->lock_arg);
2655
2656	return ret;
2657}
2658EXPORT_SYMBOL_GPL(regmap_raw_read);
2659
2660/**
2661 * regmap_noinc_read(): Read data from a register without incrementing the
2662 *			register number
2663 *
2664 * @map: Register map to read from
2665 * @reg: Register to read from
2666 * @val: Pointer to data buffer
2667 * @val_len: Length of output buffer in bytes.
2668 *
2669 * The regmap API usually assumes that bulk bus read operations will read a
2670 * range of registers. Some devices have certain registers for which a read
2671 * operation read will read from an internal FIFO.
2672 *
2673 * The target register must be volatile but registers after it can be
2674 * completely unrelated cacheable registers.
2675 *
2676 * This will attempt multiple reads as required to read val_len bytes.
2677 *
2678 * A value of zero will be returned on success, a negative errno will be
2679 * returned in error cases.
2680 */
2681int regmap_noinc_read(struct regmap *map, unsigned int reg,
2682		      void *val, size_t val_len)
2683{
2684	size_t read_len;
2685	int ret;
2686
2687	if (!map->bus)
2688		return -EINVAL;
2689	if (!map->bus->read)
2690		return -ENOTSUPP;
2691	if (val_len % map->format.val_bytes)
2692		return -EINVAL;
2693	if (!IS_ALIGNED(reg, map->reg_stride))
2694		return -EINVAL;
2695	if (val_len == 0)
2696		return -EINVAL;
2697
2698	map->lock(map->lock_arg);
2699
2700	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2701		ret = -EINVAL;
2702		goto out_unlock;
2703	}
2704
2705	while (val_len) {
2706		if (map->max_raw_read && map->max_raw_read < val_len)
2707			read_len = map->max_raw_read;
2708		else
2709			read_len = val_len;
2710		ret = _regmap_raw_read(map, reg, val, read_len);
2711		if (ret)
2712			goto out_unlock;
2713		val = ((u8 *)val) + read_len;
2714		val_len -= read_len;
2715	}
2716
2717out_unlock:
2718	map->unlock(map->lock_arg);
2719	return ret;
2720}
2721EXPORT_SYMBOL_GPL(regmap_noinc_read);
2722
2723/**
2724 * regmap_field_read(): Read a value to a single register field
2725 *
2726 * @field: Register field to read from
2727 * @val: Pointer to store read value
2728 *
2729 * A value of zero will be returned on success, a negative errno will
2730 * be returned in error cases.
2731 */
2732int regmap_field_read(struct regmap_field *field, unsigned int *val)
2733{
2734	int ret;
2735	unsigned int reg_val;
2736	ret = regmap_read(field->regmap, field->reg, &reg_val);
2737	if (ret != 0)
2738		return ret;
2739
2740	reg_val &= field->mask;
2741	reg_val >>= field->shift;
2742	*val = reg_val;
2743
2744	return ret;
2745}
2746EXPORT_SYMBOL_GPL(regmap_field_read);
2747
2748/**
2749 * regmap_fields_read() - Read a value to a single register field with port ID
2750 *
2751 * @field: Register field to read from
2752 * @id: port ID
2753 * @val: Pointer to store read value
2754 *
2755 * A value of zero will be returned on success, a negative errno will
2756 * be returned in error cases.
2757 */
2758int regmap_fields_read(struct regmap_field *field, unsigned int id,
2759		       unsigned int *val)
2760{
2761	int ret;
2762	unsigned int reg_val;
2763
2764	if (id >= field->id_size)
2765		return -EINVAL;
2766
2767	ret = regmap_read(field->regmap,
2768			  field->reg + (field->id_offset * id),
2769			  &reg_val);
2770	if (ret != 0)
2771		return ret;
2772
2773	reg_val &= field->mask;
2774	reg_val >>= field->shift;
2775	*val = reg_val;
2776
2777	return ret;
2778}
2779EXPORT_SYMBOL_GPL(regmap_fields_read);
2780
2781/**
2782 * regmap_bulk_read() - Read multiple registers from the device
2783 *
2784 * @map: Register map to read from
2785 * @reg: First register to be read from
2786 * @val: Pointer to store read value, in native register size for device
2787 * @val_count: Number of registers to read
2788 *
2789 * A value of zero will be returned on success, a negative errno will
2790 * be returned in error cases.
2791 */
2792int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2793		     size_t val_count)
2794{
2795	int ret, i;
2796	size_t val_bytes = map->format.val_bytes;
2797	bool vol = regmap_volatile_range(map, reg, val_count);
2798
2799	if (!IS_ALIGNED(reg, map->reg_stride))
2800		return -EINVAL;
2801	if (val_count == 0)
2802		return -EINVAL;
2803
2804	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2805		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2806		if (ret != 0)
2807			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2808
2809		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2810			map->format.parse_inplace(val + i);
2811	} else {
2812#ifdef CONFIG_64BIT
2813		u64 *u64 = val;
2814#endif
2815		u32 *u32 = val;
2816		u16 *u16 = val;
2817		u8 *u8 = val;
2818
2819		map->lock(map->lock_arg);
2820
2821		for (i = 0; i < val_count; i++) {
2822			unsigned int ival;
 
 
 
 
2823
2824			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2825					   &ival);
2826			if (ret != 0)
2827				goto out;
 
 
 
 
 
 
 
 
 
 
 
2828
2829			switch (map->format.val_bytes) {
2830#ifdef CONFIG_64BIT
2831			case 8:
2832				u64[i] = ival;
2833				break;
2834#endif
2835			case 4:
2836				u32[i] = ival;
2837				break;
2838			case 2:
2839				u16[i] = ival;
2840				break;
2841			case 1:
2842				u8[i] = ival;
2843				break;
2844			default:
2845				ret = -EINVAL;
2846				goto out;
2847			}
2848		}
2849
2850out:
2851		map->unlock(map->lock_arg);
2852	}
2853
2854	return ret;
2855}
2856EXPORT_SYMBOL_GPL(regmap_bulk_read);
2857
2858static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2859			       unsigned int mask, unsigned int val,
2860			       bool *change, bool force_write)
2861{
2862	int ret;
2863	unsigned int tmp, orig;
2864
2865	if (change)
2866		*change = false;
2867
2868	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2869		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2870		if (ret == 0 && change)
2871			*change = true;
2872	} else {
2873		ret = _regmap_read(map, reg, &orig);
2874		if (ret != 0)
2875			return ret;
2876
2877		tmp = orig & ~mask;
2878		tmp |= val & mask;
2879
2880		if (force_write || (tmp != orig)) {
2881			ret = _regmap_write(map, reg, tmp);
2882			if (ret == 0 && change)
2883				*change = true;
2884		}
2885	}
2886
2887	return ret;
2888}
2889
2890/**
2891 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
 
 
2892 *
2893 * @map: Register map to update
2894 * @reg: Register to update
2895 * @mask: Bitmask to change
2896 * @val: New value for bitmask
2897 * @change: Boolean indicating if a write was done
2898 * @async: Boolean indicating asynchronously
2899 * @force: Boolean indicating use force update
2900 *
2901 * Perform a read/modify/write cycle on a register map with change, async, force
2902 * options.
2903 *
2904 * If async is true:
2905 *
2906 * With most buses the read must be done synchronously so this is most useful
2907 * for devices with a cache which do not need to interact with the hardware to
2908 * determine the current register value.
2909 *
2910 * Returns zero for success, a negative number on error.
2911 */
2912int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2913			    unsigned int mask, unsigned int val,
2914			    bool *change, bool async, bool force)
2915{
2916	int ret;
2917
2918	map->lock(map->lock_arg);
2919
2920	map->async = async;
2921
2922	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2923
2924	map->async = false;
2925
2926	map->unlock(map->lock_arg);
2927
2928	return ret;
2929}
2930EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2931
2932void regmap_async_complete_cb(struct regmap_async *async, int ret)
2933{
2934	struct regmap *map = async->map;
2935	bool wake;
2936
2937	trace_regmap_async_io_complete(map);
2938
2939	spin_lock(&map->async_lock);
2940	list_move(&async->list, &map->async_free);
2941	wake = list_empty(&map->async_list);
2942
2943	if (ret != 0)
2944		map->async_ret = ret;
2945
2946	spin_unlock(&map->async_lock);
2947
2948	if (wake)
2949		wake_up(&map->async_waitq);
2950}
2951EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2952
2953static int regmap_async_is_done(struct regmap *map)
2954{
2955	unsigned long flags;
2956	int ret;
2957
2958	spin_lock_irqsave(&map->async_lock, flags);
2959	ret = list_empty(&map->async_list);
2960	spin_unlock_irqrestore(&map->async_lock, flags);
2961
2962	return ret;
2963}
2964
2965/**
2966 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2967 *
2968 * @map: Map to operate on.
2969 *
2970 * Blocks until any pending asynchronous I/O has completed.  Returns
2971 * an error code for any failed I/O operations.
2972 */
2973int regmap_async_complete(struct regmap *map)
2974{
2975	unsigned long flags;
2976	int ret;
2977
2978	/* Nothing to do with no async support */
2979	if (!map->bus || !map->bus->async_write)
2980		return 0;
2981
2982	trace_regmap_async_complete_start(map);
2983
2984	wait_event(map->async_waitq, regmap_async_is_done(map));
2985
2986	spin_lock_irqsave(&map->async_lock, flags);
2987	ret = map->async_ret;
2988	map->async_ret = 0;
2989	spin_unlock_irqrestore(&map->async_lock, flags);
2990
2991	trace_regmap_async_complete_done(map);
2992
2993	return ret;
2994}
2995EXPORT_SYMBOL_GPL(regmap_async_complete);
2996
2997/**
2998 * regmap_register_patch - Register and apply register updates to be applied
2999 *                         on device initialistion
3000 *
3001 * @map: Register map to apply updates to.
3002 * @regs: Values to update.
3003 * @num_regs: Number of entries in regs.
3004 *
3005 * Register a set of register updates to be applied to the device
3006 * whenever the device registers are synchronised with the cache and
3007 * apply them immediately.  Typically this is used to apply
3008 * corrections to be applied to the device defaults on startup, such
3009 * as the updates some vendors provide to undocumented registers.
3010 *
3011 * The caller must ensure that this function cannot be called
3012 * concurrently with either itself or regcache_sync().
3013 */
3014int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3015			  int num_regs)
3016{
3017	struct reg_sequence *p;
3018	int ret;
3019	bool bypass;
3020
3021	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3022	    num_regs))
3023		return 0;
3024
3025	p = krealloc(map->patch,
3026		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3027		     GFP_KERNEL);
3028	if (p) {
3029		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3030		map->patch = p;
3031		map->patch_regs += num_regs;
3032	} else {
3033		return -ENOMEM;
3034	}
3035
3036	map->lock(map->lock_arg);
3037
3038	bypass = map->cache_bypass;
3039
3040	map->cache_bypass = true;
3041	map->async = true;
3042
3043	ret = _regmap_multi_reg_write(map, regs, num_regs);
3044
3045	map->async = false;
3046	map->cache_bypass = bypass;
3047
3048	map->unlock(map->lock_arg);
3049
3050	regmap_async_complete(map);
3051
3052	return ret;
3053}
3054EXPORT_SYMBOL_GPL(regmap_register_patch);
3055
3056/**
3057 * regmap_get_val_bytes() - Report the size of a register value
3058 *
3059 * @map: Register map to operate on.
3060 *
3061 * Report the size of a register value, mainly intended to for use by
3062 * generic infrastructure built on top of regmap.
3063 */
3064int regmap_get_val_bytes(struct regmap *map)
3065{
3066	if (map->format.format_write)
3067		return -EINVAL;
3068
3069	return map->format.val_bytes;
3070}
3071EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3072
3073/**
3074 * regmap_get_max_register() - Report the max register value
3075 *
3076 * @map: Register map to operate on.
3077 *
3078 * Report the max register value, mainly intended to for use by
3079 * generic infrastructure built on top of regmap.
3080 */
3081int regmap_get_max_register(struct regmap *map)
3082{
3083	return map->max_register ? map->max_register : -EINVAL;
3084}
3085EXPORT_SYMBOL_GPL(regmap_get_max_register);
3086
3087/**
3088 * regmap_get_reg_stride() - Report the register address stride
3089 *
3090 * @map: Register map to operate on.
3091 *
3092 * Report the register address stride, mainly intended to for use by
3093 * generic infrastructure built on top of regmap.
3094 */
3095int regmap_get_reg_stride(struct regmap *map)
3096{
3097	return map->reg_stride;
3098}
3099EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3100
3101int regmap_parse_val(struct regmap *map, const void *buf,
3102			unsigned int *val)
3103{
3104	if (!map->format.parse_val)
3105		return -EINVAL;
3106
3107	*val = map->format.parse_val(buf);
3108
3109	return 0;
3110}
3111EXPORT_SYMBOL_GPL(regmap_parse_val);
3112
3113static int __init regmap_initcall(void)
3114{
3115	regmap_debugfs_initcall();
3116
3117	return 0;
3118}
3119postcore_initcall(regmap_initcall);