Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/of.h>
  19#include <linux/rbtree.h>
  20#include <linux/sched.h>
  21#include <linux/delay.h>
  22#include <linux/log2.h>
 
 
  23
  24#define CREATE_TRACE_POINTS
  25#include "trace.h"
  26
  27#include "internal.h"
  28
  29/*
  30 * Sometimes for failures during very early init the trace
  31 * infrastructure isn't available early enough to be used.  For this
  32 * sort of problem defining LOG_DEVICE will add printks for basic
  33 * register I/O on a specific device.
  34 */
  35#undef LOG_DEVICE
  36
 
 
 
 
 
 
 
 
 
 
  37static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  38			       unsigned int mask, unsigned int val,
  39			       bool *change, bool force_write);
  40
  41static int _regmap_bus_reg_read(void *context, unsigned int reg,
  42				unsigned int *val);
  43static int _regmap_bus_read(void *context, unsigned int reg,
  44			    unsigned int *val);
  45static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  46				       unsigned int val);
  47static int _regmap_bus_reg_write(void *context, unsigned int reg,
  48				 unsigned int val);
  49static int _regmap_bus_raw_write(void *context, unsigned int reg,
  50				 unsigned int val);
  51
  52bool regmap_reg_in_ranges(unsigned int reg,
  53			  const struct regmap_range *ranges,
  54			  unsigned int nranges)
  55{
  56	const struct regmap_range *r;
  57	int i;
  58
  59	for (i = 0, r = ranges; i < nranges; i++, r++)
  60		if (regmap_reg_in_range(reg, r))
  61			return true;
  62	return false;
  63}
  64EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  65
  66bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  67			      const struct regmap_access_table *table)
  68{
  69	/* Check "no ranges" first */
  70	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  71		return false;
  72
  73	/* In case zero "yes ranges" are supplied, any reg is OK */
  74	if (!table->n_yes_ranges)
  75		return true;
  76
  77	return regmap_reg_in_ranges(reg, table->yes_ranges,
  78				    table->n_yes_ranges);
  79}
  80EXPORT_SYMBOL_GPL(regmap_check_range_table);
  81
  82bool regmap_writeable(struct regmap *map, unsigned int reg)
  83{
  84	if (map->max_register && reg > map->max_register)
  85		return false;
  86
  87	if (map->writeable_reg)
  88		return map->writeable_reg(map->dev, reg);
  89
  90	if (map->wr_table)
  91		return regmap_check_range_table(map, reg, map->wr_table);
  92
  93	return true;
  94}
  95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96bool regmap_readable(struct regmap *map, unsigned int reg)
  97{
  98	if (!map->reg_read)
  99		return false;
 100
 101	if (map->max_register && reg > map->max_register)
 102		return false;
 103
 104	if (map->format.format_write)
 105		return false;
 106
 107	if (map->readable_reg)
 108		return map->readable_reg(map->dev, reg);
 109
 110	if (map->rd_table)
 111		return regmap_check_range_table(map, reg, map->rd_table);
 112
 113	return true;
 114}
 115
 116bool regmap_volatile(struct regmap *map, unsigned int reg)
 117{
 118	if (!map->format.format_write && !regmap_readable(map, reg))
 119		return false;
 120
 121	if (map->volatile_reg)
 122		return map->volatile_reg(map->dev, reg);
 123
 124	if (map->volatile_table)
 125		return regmap_check_range_table(map, reg, map->volatile_table);
 126
 127	if (map->cache_ops)
 128		return false;
 129	else
 130		return true;
 131}
 132
 133bool regmap_precious(struct regmap *map, unsigned int reg)
 134{
 135	if (!regmap_readable(map, reg))
 136		return false;
 137
 138	if (map->precious_reg)
 139		return map->precious_reg(map->dev, reg);
 140
 141	if (map->precious_table)
 142		return regmap_check_range_table(map, reg, map->precious_table);
 143
 144	return false;
 145}
 146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 148	size_t num)
 149{
 150	unsigned int i;
 151
 152	for (i = 0; i < num; i++)
 153		if (!regmap_volatile(map, reg + i))
 154			return false;
 155
 156	return true;
 157}
 158
 
 
 
 
 
 
 
 
 
 
 
 
 159static void regmap_format_2_6_write(struct regmap *map,
 160				     unsigned int reg, unsigned int val)
 161{
 162	u8 *out = map->work_buf;
 163
 164	*out = (reg << 6) | val;
 165}
 166
 167static void regmap_format_4_12_write(struct regmap *map,
 168				     unsigned int reg, unsigned int val)
 169{
 170	__be16 *out = map->work_buf;
 171	*out = cpu_to_be16((reg << 12) | val);
 172}
 173
 174static void regmap_format_7_9_write(struct regmap *map,
 175				    unsigned int reg, unsigned int val)
 176{
 177	__be16 *out = map->work_buf;
 178	*out = cpu_to_be16((reg << 9) | val);
 179}
 180
 
 
 
 
 
 
 
 
 
 
 181static void regmap_format_10_14_write(struct regmap *map,
 182				    unsigned int reg, unsigned int val)
 183{
 184	u8 *out = map->work_buf;
 185
 186	out[2] = val;
 187	out[1] = (val >> 8) | (reg << 6);
 188	out[0] = reg >> 2;
 189}
 190
 191static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 192{
 193	u8 *b = buf;
 194
 195	b[0] = val << shift;
 196}
 197
 198static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 199{
 200	__be16 *b = buf;
 201
 202	b[0] = cpu_to_be16(val << shift);
 203}
 204
 205static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 206{
 207	__le16 *b = buf;
 208
 209	b[0] = cpu_to_le16(val << shift);
 210}
 211
 212static void regmap_format_16_native(void *buf, unsigned int val,
 213				    unsigned int shift)
 214{
 215	*(u16 *)buf = val << shift;
 
 
 216}
 217
 218static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 219{
 220	u8 *b = buf;
 221
 222	val <<= shift;
 223
 224	b[0] = val >> 16;
 225	b[1] = val >> 8;
 226	b[2] = val;
 227}
 228
 229static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 230{
 231	__be32 *b = buf;
 232
 233	b[0] = cpu_to_be32(val << shift);
 234}
 235
 236static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 237{
 238	__le32 *b = buf;
 239
 240	b[0] = cpu_to_le32(val << shift);
 241}
 242
 243static void regmap_format_32_native(void *buf, unsigned int val,
 244				    unsigned int shift)
 245{
 246	*(u32 *)buf = val << shift;
 
 
 247}
 248
 249#ifdef CONFIG_64BIT
 250static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 251{
 252	__be64 *b = buf;
 253
 254	b[0] = cpu_to_be64((u64)val << shift);
 255}
 256
 257static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 258{
 259	__le64 *b = buf;
 260
 261	b[0] = cpu_to_le64((u64)val << shift);
 262}
 263
 264static void regmap_format_64_native(void *buf, unsigned int val,
 265				    unsigned int shift)
 266{
 267	*(u64 *)buf = (u64)val << shift;
 
 
 268}
 269#endif
 270
 271static void regmap_parse_inplace_noop(void *buf)
 272{
 273}
 274
 275static unsigned int regmap_parse_8(const void *buf)
 276{
 277	const u8 *b = buf;
 278
 279	return b[0];
 280}
 281
 282static unsigned int regmap_parse_16_be(const void *buf)
 283{
 284	const __be16 *b = buf;
 285
 286	return be16_to_cpu(b[0]);
 287}
 288
 289static unsigned int regmap_parse_16_le(const void *buf)
 290{
 291	const __le16 *b = buf;
 292
 293	return le16_to_cpu(b[0]);
 294}
 295
 296static void regmap_parse_16_be_inplace(void *buf)
 297{
 298	__be16 *b = buf;
 299
 300	b[0] = be16_to_cpu(b[0]);
 301}
 302
 303static void regmap_parse_16_le_inplace(void *buf)
 304{
 305	__le16 *b = buf;
 306
 307	b[0] = le16_to_cpu(b[0]);
 308}
 309
 310static unsigned int regmap_parse_16_native(const void *buf)
 311{
 312	return *(u16 *)buf;
 
 
 
 313}
 314
 315static unsigned int regmap_parse_24(const void *buf)
 316{
 317	const u8 *b = buf;
 318	unsigned int ret = b[2];
 319	ret |= ((unsigned int)b[1]) << 8;
 320	ret |= ((unsigned int)b[0]) << 16;
 321
 322	return ret;
 323}
 324
 325static unsigned int regmap_parse_32_be(const void *buf)
 326{
 327	const __be32 *b = buf;
 328
 329	return be32_to_cpu(b[0]);
 330}
 331
 332static unsigned int regmap_parse_32_le(const void *buf)
 333{
 334	const __le32 *b = buf;
 335
 336	return le32_to_cpu(b[0]);
 337}
 338
 339static void regmap_parse_32_be_inplace(void *buf)
 340{
 341	__be32 *b = buf;
 342
 343	b[0] = be32_to_cpu(b[0]);
 344}
 345
 346static void regmap_parse_32_le_inplace(void *buf)
 347{
 348	__le32 *b = buf;
 349
 350	b[0] = le32_to_cpu(b[0]);
 351}
 352
 353static unsigned int regmap_parse_32_native(const void *buf)
 354{
 355	return *(u32 *)buf;
 
 
 
 356}
 357
 358#ifdef CONFIG_64BIT
 359static unsigned int regmap_parse_64_be(const void *buf)
 360{
 361	const __be64 *b = buf;
 362
 363	return be64_to_cpu(b[0]);
 364}
 365
 366static unsigned int regmap_parse_64_le(const void *buf)
 367{
 368	const __le64 *b = buf;
 369
 370	return le64_to_cpu(b[0]);
 371}
 372
 373static void regmap_parse_64_be_inplace(void *buf)
 374{
 375	__be64 *b = buf;
 376
 377	b[0] = be64_to_cpu(b[0]);
 378}
 379
 380static void regmap_parse_64_le_inplace(void *buf)
 381{
 382	__le64 *b = buf;
 383
 384	b[0] = le64_to_cpu(b[0]);
 385}
 386
 387static unsigned int regmap_parse_64_native(const void *buf)
 388{
 389	return *(u64 *)buf;
 
 
 
 390}
 391#endif
 392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 393static void regmap_lock_mutex(void *__map)
 394{
 395	struct regmap *map = __map;
 396	mutex_lock(&map->mutex);
 397}
 398
 399static void regmap_unlock_mutex(void *__map)
 400{
 401	struct regmap *map = __map;
 402	mutex_unlock(&map->mutex);
 403}
 404
 405static void regmap_lock_spinlock(void *__map)
 406__acquires(&map->spinlock)
 407{
 408	struct regmap *map = __map;
 409	unsigned long flags;
 410
 411	spin_lock_irqsave(&map->spinlock, flags);
 412	map->spinlock_flags = flags;
 413}
 414
 415static void regmap_unlock_spinlock(void *__map)
 416__releases(&map->spinlock)
 417{
 418	struct regmap *map = __map;
 419	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 420}
 421
 422static void dev_get_regmap_release(struct device *dev, void *res)
 423{
 424	/*
 425	 * We don't actually have anything to do here; the goal here
 426	 * is not to manage the regmap but to provide a simple way to
 427	 * get the regmap back given a struct device.
 428	 */
 429}
 430
 431static bool _regmap_range_add(struct regmap *map,
 432			      struct regmap_range_node *data)
 433{
 434	struct rb_root *root = &map->range_tree;
 435	struct rb_node **new = &(root->rb_node), *parent = NULL;
 436
 437	while (*new) {
 438		struct regmap_range_node *this =
 439			container_of(*new, struct regmap_range_node, node);
 440
 441		parent = *new;
 442		if (data->range_max < this->range_min)
 443			new = &((*new)->rb_left);
 444		else if (data->range_min > this->range_max)
 445			new = &((*new)->rb_right);
 446		else
 447			return false;
 448	}
 449
 450	rb_link_node(&data->node, parent, new);
 451	rb_insert_color(&data->node, root);
 452
 453	return true;
 454}
 455
 456static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 457						      unsigned int reg)
 458{
 459	struct rb_node *node = map->range_tree.rb_node;
 460
 461	while (node) {
 462		struct regmap_range_node *this =
 463			container_of(node, struct regmap_range_node, node);
 464
 465		if (reg < this->range_min)
 466			node = node->rb_left;
 467		else if (reg > this->range_max)
 468			node = node->rb_right;
 469		else
 470			return this;
 471	}
 472
 473	return NULL;
 474}
 475
 476static void regmap_range_exit(struct regmap *map)
 477{
 478	struct rb_node *next;
 479	struct regmap_range_node *range_node;
 480
 481	next = rb_first(&map->range_tree);
 482	while (next) {
 483		range_node = rb_entry(next, struct regmap_range_node, node);
 484		next = rb_next(&range_node->node);
 485		rb_erase(&range_node->node, &map->range_tree);
 486		kfree(range_node);
 487	}
 488
 489	kfree(map->selector_work_buf);
 490}
 491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492int regmap_attach_dev(struct device *dev, struct regmap *map,
 493		      const struct regmap_config *config)
 494{
 495	struct regmap **m;
 
 496
 497	map->dev = dev;
 498
 499	regmap_debugfs_init(map, config->name);
 
 
 
 
 500
 501	/* Add a devres resource for dev_get_regmap() */
 502	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 503	if (!m) {
 504		regmap_debugfs_exit(map);
 505		return -ENOMEM;
 506	}
 507	*m = map;
 508	devres_add(dev, m);
 509
 510	return 0;
 511}
 512EXPORT_SYMBOL_GPL(regmap_attach_dev);
 513
 514static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 515					const struct regmap_config *config)
 516{
 517	enum regmap_endian endian;
 518
 519	/* Retrieve the endianness specification from the regmap config */
 520	endian = config->reg_format_endian;
 521
 522	/* If the regmap config specified a non-default value, use that */
 523	if (endian != REGMAP_ENDIAN_DEFAULT)
 524		return endian;
 525
 526	/* Retrieve the endianness specification from the bus config */
 527	if (bus && bus->reg_format_endian_default)
 528		endian = bus->reg_format_endian_default;
 529
 530	/* If the bus specified a non-default value, use that */
 531	if (endian != REGMAP_ENDIAN_DEFAULT)
 532		return endian;
 533
 534	/* Use this if no other value was found */
 535	return REGMAP_ENDIAN_BIG;
 536}
 537
 538enum regmap_endian regmap_get_val_endian(struct device *dev,
 539					 const struct regmap_bus *bus,
 540					 const struct regmap_config *config)
 541{
 542	struct device_node *np;
 543	enum regmap_endian endian;
 544
 545	/* Retrieve the endianness specification from the regmap config */
 546	endian = config->val_format_endian;
 547
 548	/* If the regmap config specified a non-default value, use that */
 549	if (endian != REGMAP_ENDIAN_DEFAULT)
 550		return endian;
 551
 552	/* If the dev and dev->of_node exist try to get endianness from DT */
 553	if (dev && dev->of_node) {
 554		np = dev->of_node;
 555
 556		/* Parse the device's DT node for an endianness specification */
 557		if (of_property_read_bool(np, "big-endian"))
 558			endian = REGMAP_ENDIAN_BIG;
 559		else if (of_property_read_bool(np, "little-endian"))
 560			endian = REGMAP_ENDIAN_LITTLE;
 561		else if (of_property_read_bool(np, "native-endian"))
 562			endian = REGMAP_ENDIAN_NATIVE;
 563
 564		/* If the endianness was specified in DT, use that */
 565		if (endian != REGMAP_ENDIAN_DEFAULT)
 566			return endian;
 567	}
 568
 569	/* Retrieve the endianness specification from the bus config */
 570	if (bus && bus->val_format_endian_default)
 571		endian = bus->val_format_endian_default;
 572
 573	/* If the bus specified a non-default value, use that */
 574	if (endian != REGMAP_ENDIAN_DEFAULT)
 575		return endian;
 576
 577	/* Use this if no other value was found */
 578	return REGMAP_ENDIAN_BIG;
 579}
 580EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 581
 582struct regmap *__regmap_init(struct device *dev,
 583			     const struct regmap_bus *bus,
 584			     void *bus_context,
 585			     const struct regmap_config *config,
 586			     struct lock_class_key *lock_key,
 587			     const char *lock_name)
 588{
 589	struct regmap *map;
 590	int ret = -EINVAL;
 591	enum regmap_endian reg_endian, val_endian;
 592	int i, j;
 593
 594	if (!config)
 595		goto err;
 596
 597	map = kzalloc(sizeof(*map), GFP_KERNEL);
 598	if (map == NULL) {
 599		ret = -ENOMEM;
 600		goto err;
 601	}
 602
 603	if (config->lock && config->unlock) {
 
 
 
 
 
 
 
 
 
 
 604		map->lock = config->lock;
 605		map->unlock = config->unlock;
 606		map->lock_arg = config->lock_arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607	} else {
 608		if ((bus && bus->fast_io) ||
 609		    config->fast_io) {
 610			spin_lock_init(&map->spinlock);
 611			map->lock = regmap_lock_spinlock;
 612			map->unlock = regmap_unlock_spinlock;
 613			lockdep_set_class_and_name(&map->spinlock,
 614						   lock_key, lock_name);
 615		} else {
 616			mutex_init(&map->mutex);
 617			map->lock = regmap_lock_mutex;
 618			map->unlock = regmap_unlock_mutex;
 
 619			lockdep_set_class_and_name(&map->mutex,
 620						   lock_key, lock_name);
 621		}
 622		map->lock_arg = map;
 623	}
 624
 625	/*
 626	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 627	 * scratch buffers with sleeping allocations.
 628	 */
 629	if ((bus && bus->fast_io) || config->fast_io)
 630		map->alloc_flags = GFP_ATOMIC;
 631	else
 632		map->alloc_flags = GFP_KERNEL;
 633
 634	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 635	map->format.pad_bytes = config->pad_bits / 8;
 636	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 637	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 638			config->val_bits + config->pad_bits, 8);
 639	map->reg_shift = config->pad_bits % 8;
 640	if (config->reg_stride)
 641		map->reg_stride = config->reg_stride;
 642	else
 643		map->reg_stride = 1;
 644	if (is_power_of_2(map->reg_stride))
 645		map->reg_stride_order = ilog2(map->reg_stride);
 646	else
 647		map->reg_stride_order = -1;
 648	map->use_single_read = config->use_single_rw || !bus || !bus->read;
 649	map->use_single_write = config->use_single_rw || !bus || !bus->write;
 650	map->can_multi_write = config->can_multi_write && bus && bus->write;
 651	if (bus) {
 652		map->max_raw_read = bus->max_raw_read;
 653		map->max_raw_write = bus->max_raw_write;
 654	}
 655	map->dev = dev;
 656	map->bus = bus;
 657	map->bus_context = bus_context;
 658	map->max_register = config->max_register;
 659	map->wr_table = config->wr_table;
 660	map->rd_table = config->rd_table;
 661	map->volatile_table = config->volatile_table;
 662	map->precious_table = config->precious_table;
 
 
 663	map->writeable_reg = config->writeable_reg;
 664	map->readable_reg = config->readable_reg;
 665	map->volatile_reg = config->volatile_reg;
 666	map->precious_reg = config->precious_reg;
 
 
 667	map->cache_type = config->cache_type;
 668	map->name = config->name;
 669
 670	spin_lock_init(&map->async_lock);
 671	INIT_LIST_HEAD(&map->async_list);
 672	INIT_LIST_HEAD(&map->async_free);
 673	init_waitqueue_head(&map->async_waitq);
 674
 675	if (config->read_flag_mask || config->write_flag_mask) {
 
 
 676		map->read_flag_mask = config->read_flag_mask;
 677		map->write_flag_mask = config->write_flag_mask;
 678	} else if (bus) {
 679		map->read_flag_mask = bus->read_flag_mask;
 680	}
 681
 682	if (!bus) {
 683		map->reg_read  = config->reg_read;
 684		map->reg_write = config->reg_write;
 685
 686		map->defer_caching = false;
 687		goto skip_format_initialization;
 688	} else if (!bus->read || !bus->write) {
 689		map->reg_read = _regmap_bus_reg_read;
 690		map->reg_write = _regmap_bus_reg_write;
 
 691
 692		map->defer_caching = false;
 693		goto skip_format_initialization;
 694	} else {
 695		map->reg_read  = _regmap_bus_read;
 696		map->reg_update_bits = bus->reg_update_bits;
 697	}
 698
 699	reg_endian = regmap_get_reg_endian(bus, config);
 700	val_endian = regmap_get_val_endian(dev, bus, config);
 701
 702	switch (config->reg_bits + map->reg_shift) {
 703	case 2:
 704		switch (config->val_bits) {
 705		case 6:
 706			map->format.format_write = regmap_format_2_6_write;
 707			break;
 708		default:
 709			goto err_map;
 710		}
 711		break;
 712
 713	case 4:
 714		switch (config->val_bits) {
 715		case 12:
 716			map->format.format_write = regmap_format_4_12_write;
 717			break;
 718		default:
 719			goto err_map;
 720		}
 721		break;
 722
 723	case 7:
 724		switch (config->val_bits) {
 725		case 9:
 726			map->format.format_write = regmap_format_7_9_write;
 727			break;
 
 
 
 728		default:
 729			goto err_map;
 730		}
 731		break;
 732
 733	case 10:
 734		switch (config->val_bits) {
 735		case 14:
 736			map->format.format_write = regmap_format_10_14_write;
 737			break;
 738		default:
 739			goto err_map;
 
 
 
 
 
 
 
 
 
 
 740		}
 741		break;
 742
 743	case 8:
 744		map->format.format_reg = regmap_format_8;
 745		break;
 746
 747	case 16:
 748		switch (reg_endian) {
 749		case REGMAP_ENDIAN_BIG:
 750			map->format.format_reg = regmap_format_16_be;
 751			break;
 
 
 
 752		case REGMAP_ENDIAN_NATIVE:
 753			map->format.format_reg = regmap_format_16_native;
 754			break;
 755		default:
 756			goto err_map;
 757		}
 758		break;
 759
 760	case 24:
 761		if (reg_endian != REGMAP_ENDIAN_BIG)
 762			goto err_map;
 763		map->format.format_reg = regmap_format_24;
 764		break;
 765
 766	case 32:
 767		switch (reg_endian) {
 768		case REGMAP_ENDIAN_BIG:
 769			map->format.format_reg = regmap_format_32_be;
 770			break;
 
 
 
 771		case REGMAP_ENDIAN_NATIVE:
 772			map->format.format_reg = regmap_format_32_native;
 773			break;
 774		default:
 775			goto err_map;
 776		}
 777		break;
 778
 779#ifdef CONFIG_64BIT
 780	case 64:
 781		switch (reg_endian) {
 782		case REGMAP_ENDIAN_BIG:
 783			map->format.format_reg = regmap_format_64_be;
 784			break;
 
 
 
 785		case REGMAP_ENDIAN_NATIVE:
 786			map->format.format_reg = regmap_format_64_native;
 787			break;
 788		default:
 789			goto err_map;
 790		}
 791		break;
 792#endif
 793
 794	default:
 795		goto err_map;
 796	}
 797
 798	if (val_endian == REGMAP_ENDIAN_NATIVE)
 799		map->format.parse_inplace = regmap_parse_inplace_noop;
 800
 801	switch (config->val_bits) {
 802	case 8:
 803		map->format.format_val = regmap_format_8;
 804		map->format.parse_val = regmap_parse_8;
 805		map->format.parse_inplace = regmap_parse_inplace_noop;
 806		break;
 807	case 16:
 808		switch (val_endian) {
 809		case REGMAP_ENDIAN_BIG:
 810			map->format.format_val = regmap_format_16_be;
 811			map->format.parse_val = regmap_parse_16_be;
 812			map->format.parse_inplace = regmap_parse_16_be_inplace;
 813			break;
 814		case REGMAP_ENDIAN_LITTLE:
 815			map->format.format_val = regmap_format_16_le;
 816			map->format.parse_val = regmap_parse_16_le;
 817			map->format.parse_inplace = regmap_parse_16_le_inplace;
 818			break;
 819		case REGMAP_ENDIAN_NATIVE:
 820			map->format.format_val = regmap_format_16_native;
 821			map->format.parse_val = regmap_parse_16_native;
 822			break;
 823		default:
 824			goto err_map;
 825		}
 826		break;
 827	case 24:
 828		if (val_endian != REGMAP_ENDIAN_BIG)
 829			goto err_map;
 830		map->format.format_val = regmap_format_24;
 831		map->format.parse_val = regmap_parse_24;
 832		break;
 833	case 32:
 834		switch (val_endian) {
 835		case REGMAP_ENDIAN_BIG:
 836			map->format.format_val = regmap_format_32_be;
 837			map->format.parse_val = regmap_parse_32_be;
 838			map->format.parse_inplace = regmap_parse_32_be_inplace;
 839			break;
 840		case REGMAP_ENDIAN_LITTLE:
 841			map->format.format_val = regmap_format_32_le;
 842			map->format.parse_val = regmap_parse_32_le;
 843			map->format.parse_inplace = regmap_parse_32_le_inplace;
 844			break;
 845		case REGMAP_ENDIAN_NATIVE:
 846			map->format.format_val = regmap_format_32_native;
 847			map->format.parse_val = regmap_parse_32_native;
 848			break;
 849		default:
 850			goto err_map;
 851		}
 852		break;
 853#ifdef CONFIG_64BIT
 854	case 64:
 855		switch (val_endian) {
 856		case REGMAP_ENDIAN_BIG:
 857			map->format.format_val = regmap_format_64_be;
 858			map->format.parse_val = regmap_parse_64_be;
 859			map->format.parse_inplace = regmap_parse_64_be_inplace;
 860			break;
 861		case REGMAP_ENDIAN_LITTLE:
 862			map->format.format_val = regmap_format_64_le;
 863			map->format.parse_val = regmap_parse_64_le;
 864			map->format.parse_inplace = regmap_parse_64_le_inplace;
 865			break;
 866		case REGMAP_ENDIAN_NATIVE:
 867			map->format.format_val = regmap_format_64_native;
 868			map->format.parse_val = regmap_parse_64_native;
 869			break;
 870		default:
 871			goto err_map;
 872		}
 873		break;
 874#endif
 875	}
 876
 877	if (map->format.format_write) {
 878		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 879		    (val_endian != REGMAP_ENDIAN_BIG))
 880			goto err_map;
 881		map->use_single_write = true;
 882	}
 883
 884	if (!map->format.format_write &&
 885	    !(map->format.format_reg && map->format.format_val))
 886		goto err_map;
 887
 888	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 889	if (map->work_buf == NULL) {
 890		ret = -ENOMEM;
 891		goto err_map;
 892	}
 893
 894	if (map->format.format_write) {
 895		map->defer_caching = false;
 896		map->reg_write = _regmap_bus_formatted_write;
 897	} else if (map->format.format_val) {
 898		map->defer_caching = true;
 899		map->reg_write = _regmap_bus_raw_write;
 900	}
 901
 902skip_format_initialization:
 903
 904	map->range_tree = RB_ROOT;
 905	for (i = 0; i < config->num_ranges; i++) {
 906		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 907		struct regmap_range_node *new;
 908
 909		/* Sanity check */
 910		if (range_cfg->range_max < range_cfg->range_min) {
 911			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 912				range_cfg->range_max, range_cfg->range_min);
 913			goto err_range;
 914		}
 915
 916		if (range_cfg->range_max > map->max_register) {
 917			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 918				range_cfg->range_max, map->max_register);
 919			goto err_range;
 920		}
 921
 922		if (range_cfg->selector_reg > map->max_register) {
 923			dev_err(map->dev,
 924				"Invalid range %d: selector out of map\n", i);
 925			goto err_range;
 926		}
 927
 928		if (range_cfg->window_len == 0) {
 929			dev_err(map->dev, "Invalid range %d: window_len 0\n",
 930				i);
 931			goto err_range;
 932		}
 933
 934		/* Make sure, that this register range has no selector
 935		   or data window within its boundary */
 936		for (j = 0; j < config->num_ranges; j++) {
 937			unsigned sel_reg = config->ranges[j].selector_reg;
 938			unsigned win_min = config->ranges[j].window_start;
 939			unsigned win_max = win_min +
 940					   config->ranges[j].window_len - 1;
 941
 942			/* Allow data window inside its own virtual range */
 943			if (j == i)
 944				continue;
 945
 946			if (range_cfg->range_min <= sel_reg &&
 947			    sel_reg <= range_cfg->range_max) {
 948				dev_err(map->dev,
 949					"Range %d: selector for %d in window\n",
 950					i, j);
 951				goto err_range;
 952			}
 953
 954			if (!(win_max < range_cfg->range_min ||
 955			      win_min > range_cfg->range_max)) {
 956				dev_err(map->dev,
 957					"Range %d: window for %d in window\n",
 958					i, j);
 959				goto err_range;
 960			}
 961		}
 962
 963		new = kzalloc(sizeof(*new), GFP_KERNEL);
 964		if (new == NULL) {
 965			ret = -ENOMEM;
 966			goto err_range;
 967		}
 968
 969		new->map = map;
 970		new->name = range_cfg->name;
 971		new->range_min = range_cfg->range_min;
 972		new->range_max = range_cfg->range_max;
 973		new->selector_reg = range_cfg->selector_reg;
 974		new->selector_mask = range_cfg->selector_mask;
 975		new->selector_shift = range_cfg->selector_shift;
 976		new->window_start = range_cfg->window_start;
 977		new->window_len = range_cfg->window_len;
 978
 979		if (!_regmap_range_add(map, new)) {
 980			dev_err(map->dev, "Failed to add range %d\n", i);
 981			kfree(new);
 982			goto err_range;
 983		}
 984
 985		if (map->selector_work_buf == NULL) {
 986			map->selector_work_buf =
 987				kzalloc(map->format.buf_size, GFP_KERNEL);
 988			if (map->selector_work_buf == NULL) {
 989				ret = -ENOMEM;
 990				goto err_range;
 991			}
 992		}
 993	}
 994
 995	ret = regcache_init(map, config);
 996	if (ret != 0)
 997		goto err_range;
 998
 999	if (dev) {
1000		ret = regmap_attach_dev(dev, map, config);
1001		if (ret != 0)
1002			goto err_regcache;
 
 
1003	}
1004
1005	return map;
1006
1007err_regcache:
1008	regcache_exit(map);
1009err_range:
1010	regmap_range_exit(map);
1011	kfree(map->work_buf);
 
 
 
 
 
1012err_map:
1013	kfree(map);
1014err:
1015	return ERR_PTR(ret);
1016}
1017EXPORT_SYMBOL_GPL(__regmap_init);
1018
1019static void devm_regmap_release(struct device *dev, void *res)
1020{
1021	regmap_exit(*(struct regmap **)res);
1022}
1023
1024struct regmap *__devm_regmap_init(struct device *dev,
1025				  const struct regmap_bus *bus,
1026				  void *bus_context,
1027				  const struct regmap_config *config,
1028				  struct lock_class_key *lock_key,
1029				  const char *lock_name)
1030{
1031	struct regmap **ptr, *regmap;
1032
1033	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1034	if (!ptr)
1035		return ERR_PTR(-ENOMEM);
1036
1037	regmap = __regmap_init(dev, bus, bus_context, config,
1038			       lock_key, lock_name);
1039	if (!IS_ERR(regmap)) {
1040		*ptr = regmap;
1041		devres_add(dev, ptr);
1042	} else {
1043		devres_free(ptr);
1044	}
1045
1046	return regmap;
1047}
1048EXPORT_SYMBOL_GPL(__devm_regmap_init);
1049
1050static void regmap_field_init(struct regmap_field *rm_field,
1051	struct regmap *regmap, struct reg_field reg_field)
1052{
1053	rm_field->regmap = regmap;
1054	rm_field->reg = reg_field.reg;
1055	rm_field->shift = reg_field.lsb;
1056	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1057	rm_field->id_size = reg_field.id_size;
1058	rm_field->id_offset = reg_field.id_offset;
1059}
1060
1061/**
1062 * devm_regmap_field_alloc(): Allocate and initialise a register field
1063 * in a register map.
1064 *
1065 * @dev: Device that will be interacted with
1066 * @regmap: regmap bank in which this register field is located.
1067 * @reg_field: Register field with in the bank.
1068 *
1069 * The return value will be an ERR_PTR() on error or a valid pointer
1070 * to a struct regmap_field. The regmap_field will be automatically freed
1071 * by the device management code.
1072 */
1073struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1074		struct regmap *regmap, struct reg_field reg_field)
1075{
1076	struct regmap_field *rm_field = devm_kzalloc(dev,
1077					sizeof(*rm_field), GFP_KERNEL);
1078	if (!rm_field)
1079		return ERR_PTR(-ENOMEM);
1080
1081	regmap_field_init(rm_field, regmap, reg_field);
1082
1083	return rm_field;
1084
1085}
1086EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1087
 
1088/**
1089 * devm_regmap_field_free(): Free register field allocated using
1090 * devm_regmap_field_alloc. Usally drivers need not call this function,
1091 * as the memory allocated via devm will be freed as per device-driver
1092 * life-cyle.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093 *
1094 * @dev: Device that will be interacted with
1095 * @field: regmap field which should be freed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096 */
1097void devm_regmap_field_free(struct device *dev,
1098	struct regmap_field *field)
1099{
1100	devm_kfree(dev, field);
1101}
1102EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1103
1104/**
1105 * regmap_field_alloc(): Allocate and initialise a register field
1106 * in a register map.
1107 *
1108 * @regmap: regmap bank in which this register field is located.
1109 * @reg_field: Register field with in the bank.
1110 *
1111 * The return value will be an ERR_PTR() on error or a valid pointer
1112 * to a struct regmap_field. The regmap_field should be freed by the
1113 * user once its finished working with it using regmap_field_free().
1114 */
1115struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1116		struct reg_field reg_field)
1117{
1118	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1119
1120	if (!rm_field)
1121		return ERR_PTR(-ENOMEM);
1122
1123	regmap_field_init(rm_field, regmap, reg_field);
1124
1125	return rm_field;
1126}
1127EXPORT_SYMBOL_GPL(regmap_field_alloc);
1128
1129/**
1130 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 
1131 *
1132 * @field: regmap field which should be freed.
1133 */
1134void regmap_field_free(struct regmap_field *field)
1135{
1136	kfree(field);
1137}
1138EXPORT_SYMBOL_GPL(regmap_field_free);
1139
1140/**
1141 * regmap_reinit_cache(): Reinitialise the current register cache
1142 *
1143 * @map: Register map to operate on.
1144 * @config: New configuration.  Only the cache data will be used.
1145 *
1146 * Discard any existing register cache for the map and initialize a
1147 * new cache.  This can be used to restore the cache to defaults or to
1148 * update the cache configuration to reflect runtime discovery of the
1149 * hardware.
1150 *
1151 * No explicit locking is done here, the user needs to ensure that
1152 * this function will not race with other calls to regmap.
1153 */
1154int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1155{
 
 
1156	regcache_exit(map);
1157	regmap_debugfs_exit(map);
1158
1159	map->max_register = config->max_register;
1160	map->writeable_reg = config->writeable_reg;
1161	map->readable_reg = config->readable_reg;
1162	map->volatile_reg = config->volatile_reg;
1163	map->precious_reg = config->precious_reg;
 
 
1164	map->cache_type = config->cache_type;
1165
1166	regmap_debugfs_init(map, config->name);
 
 
 
 
1167
1168	map->cache_bypass = false;
1169	map->cache_only = false;
1170
1171	return regcache_init(map, config);
1172}
1173EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1174
1175/**
1176 * regmap_exit(): Free a previously allocated register map
 
 
1177 */
1178void regmap_exit(struct regmap *map)
1179{
1180	struct regmap_async *async;
1181
1182	regcache_exit(map);
1183	regmap_debugfs_exit(map);
1184	regmap_range_exit(map);
1185	if (map->bus && map->bus->free_context)
1186		map->bus->free_context(map->bus_context);
1187	kfree(map->work_buf);
1188	while (!list_empty(&map->async_free)) {
1189		async = list_first_entry_or_null(&map->async_free,
1190						 struct regmap_async,
1191						 list);
1192		list_del(&async->list);
1193		kfree(async->work_buf);
1194		kfree(async);
1195	}
 
 
 
 
 
 
 
 
1196	kfree(map);
1197}
1198EXPORT_SYMBOL_GPL(regmap_exit);
1199
1200static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1201{
1202	struct regmap **r = res;
1203	if (!r || !*r) {
1204		WARN_ON(!r || !*r);
1205		return 0;
1206	}
1207
1208	/* If the user didn't specify a name match any */
1209	if (data)
1210		return (*r)->name == data;
1211	else
1212		return 1;
1213}
1214
1215/**
1216 * dev_get_regmap(): Obtain the regmap (if any) for a device
1217 *
1218 * @dev: Device to retrieve the map for
1219 * @name: Optional name for the register map, usually NULL.
1220 *
1221 * Returns the regmap for the device if one is present, or NULL.  If
1222 * name is specified then it must match the name specified when
1223 * registering the device, if it is NULL then the first regmap found
1224 * will be used.  Devices with multiple register maps are very rare,
1225 * generic code should normally not need to specify a name.
1226 */
1227struct regmap *dev_get_regmap(struct device *dev, const char *name)
1228{
1229	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1230					dev_get_regmap_match, (void *)name);
1231
1232	if (!r)
1233		return NULL;
1234	return *r;
1235}
1236EXPORT_SYMBOL_GPL(dev_get_regmap);
1237
1238/**
1239 * regmap_get_device(): Obtain the device from a regmap
1240 *
1241 * @map: Register map to operate on.
1242 *
1243 * Returns the underlying device that the regmap has been created for.
1244 */
1245struct device *regmap_get_device(struct regmap *map)
1246{
1247	return map->dev;
1248}
1249EXPORT_SYMBOL_GPL(regmap_get_device);
1250
1251static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1252			       struct regmap_range_node *range,
1253			       unsigned int val_num)
1254{
1255	void *orig_work_buf;
1256	unsigned int win_offset;
1257	unsigned int win_page;
1258	bool page_chg;
1259	int ret;
1260
1261	win_offset = (*reg - range->range_min) % range->window_len;
1262	win_page = (*reg - range->range_min) / range->window_len;
1263
1264	if (val_num > 1) {
1265		/* Bulk write shouldn't cross range boundary */
1266		if (*reg + val_num - 1 > range->range_max)
1267			return -EINVAL;
1268
1269		/* ... or single page boundary */
1270		if (val_num > range->window_len - win_offset)
1271			return -EINVAL;
1272	}
1273
1274	/* It is possible to have selector register inside data window.
1275	   In that case, selector register is located on every page and
1276	   it needs no page switching, when accessed alone. */
1277	if (val_num > 1 ||
1278	    range->window_start + win_offset != range->selector_reg) {
1279		/* Use separate work_buf during page switching */
1280		orig_work_buf = map->work_buf;
1281		map->work_buf = map->selector_work_buf;
1282
1283		ret = _regmap_update_bits(map, range->selector_reg,
1284					  range->selector_mask,
1285					  win_page << range->selector_shift,
1286					  &page_chg, false);
1287
1288		map->work_buf = orig_work_buf;
1289
1290		if (ret != 0)
1291			return ret;
1292	}
1293
1294	*reg = range->window_start + win_offset;
1295
1296	return 0;
1297}
1298
1299int _regmap_raw_write(struct regmap *map, unsigned int reg,
1300		      const void *val, size_t val_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301{
1302	struct regmap_range_node *range;
1303	unsigned long flags;
1304	u8 *u8 = map->work_buf;
1305	void *work_val = map->work_buf + map->format.reg_bytes +
1306		map->format.pad_bytes;
1307	void *buf;
1308	int ret = -ENOTSUPP;
1309	size_t len;
1310	int i;
1311
1312	WARN_ON(!map->bus);
1313
1314	/* Check for unwritable registers before we start */
1315	if (map->writeable_reg)
1316		for (i = 0; i < val_len / map->format.val_bytes; i++)
1317			if (!map->writeable_reg(map->dev,
1318					       reg + regmap_get_offset(map, i)))
 
 
 
 
1319				return -EINVAL;
 
 
1320
1321	if (!map->cache_bypass && map->format.parse_val) {
1322		unsigned int ival;
1323		int val_bytes = map->format.val_bytes;
1324		for (i = 0; i < val_len / val_bytes; i++) {
1325			ival = map->format.parse_val(val + (i * val_bytes));
1326			ret = regcache_write(map,
1327					     reg + regmap_get_offset(map, i),
1328					     ival);
1329			if (ret) {
1330				dev_err(map->dev,
1331					"Error in caching of register: %x ret: %d\n",
1332					reg + i, ret);
1333				return ret;
1334			}
1335		}
1336		if (map->cache_only) {
1337			map->cache_dirty = true;
1338			return 0;
1339		}
1340	}
1341
1342	range = _regmap_range_lookup(map, reg);
1343	if (range) {
1344		int val_num = val_len / map->format.val_bytes;
1345		int win_offset = (reg - range->range_min) % range->window_len;
1346		int win_residue = range->window_len - win_offset;
1347
1348		/* If the write goes beyond the end of the window split it */
1349		while (val_num > win_residue) {
1350			dev_dbg(map->dev, "Writing window %d/%zu\n",
1351				win_residue, val_len / map->format.val_bytes);
1352			ret = _regmap_raw_write(map, reg, val, win_residue *
1353						map->format.val_bytes);
 
1354			if (ret != 0)
1355				return ret;
1356
1357			reg += win_residue;
1358			val_num -= win_residue;
1359			val += win_residue * map->format.val_bytes;
1360			val_len -= win_residue * map->format.val_bytes;
1361
1362			win_offset = (reg - range->range_min) %
1363				range->window_len;
1364			win_residue = range->window_len - win_offset;
1365		}
1366
1367		ret = _regmap_select_page(map, &reg, range, val_num);
1368		if (ret != 0)
1369			return ret;
1370	}
1371
1372	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1373
1374	u8[0] |= map->write_flag_mask;
1375
1376	/*
1377	 * Essentially all I/O mechanisms will be faster with a single
1378	 * buffer to write.  Since register syncs often generate raw
1379	 * writes of single registers optimise that case.
1380	 */
1381	if (val != work_val && val_len == map->format.val_bytes) {
1382		memcpy(work_val, val, map->format.val_bytes);
1383		val = work_val;
1384	}
1385
1386	if (map->async && map->bus->async_write) {
1387		struct regmap_async *async;
1388
1389		trace_regmap_async_write_start(map, reg, val_len);
1390
1391		spin_lock_irqsave(&map->async_lock, flags);
1392		async = list_first_entry_or_null(&map->async_free,
1393						 struct regmap_async,
1394						 list);
1395		if (async)
1396			list_del(&async->list);
1397		spin_unlock_irqrestore(&map->async_lock, flags);
1398
1399		if (!async) {
1400			async = map->bus->async_alloc();
1401			if (!async)
1402				return -ENOMEM;
1403
1404			async->work_buf = kzalloc(map->format.buf_size,
1405						  GFP_KERNEL | GFP_DMA);
1406			if (!async->work_buf) {
1407				kfree(async);
1408				return -ENOMEM;
1409			}
1410		}
1411
1412		async->map = map;
1413
1414		/* If the caller supplied the value we can use it safely. */
1415		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1416		       map->format.reg_bytes + map->format.val_bytes);
1417
1418		spin_lock_irqsave(&map->async_lock, flags);
1419		list_add_tail(&async->list, &map->async_list);
1420		spin_unlock_irqrestore(&map->async_lock, flags);
1421
1422		if (val != work_val)
1423			ret = map->bus->async_write(map->bus_context,
1424						    async->work_buf,
1425						    map->format.reg_bytes +
1426						    map->format.pad_bytes,
1427						    val, val_len, async);
1428		else
1429			ret = map->bus->async_write(map->bus_context,
1430						    async->work_buf,
1431						    map->format.reg_bytes +
1432						    map->format.pad_bytes +
1433						    val_len, NULL, 0, async);
1434
1435		if (ret != 0) {
1436			dev_err(map->dev, "Failed to schedule write: %d\n",
1437				ret);
1438
1439			spin_lock_irqsave(&map->async_lock, flags);
1440			list_move(&async->list, &map->async_free);
1441			spin_unlock_irqrestore(&map->async_lock, flags);
1442		}
1443
1444		return ret;
1445	}
1446
1447	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1448
1449	/* If we're doing a single register write we can probably just
1450	 * send the work_buf directly, otherwise try to do a gather
1451	 * write.
1452	 */
1453	if (val == work_val)
1454		ret = map->bus->write(map->bus_context, map->work_buf,
1455				      map->format.reg_bytes +
1456				      map->format.pad_bytes +
1457				      val_len);
1458	else if (map->bus->gather_write)
1459		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1460					     map->format.reg_bytes +
1461					     map->format.pad_bytes,
1462					     val, val_len);
 
 
1463
1464	/* If that didn't work fall back on linearising by hand. */
1465	if (ret == -ENOTSUPP) {
1466		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1467		buf = kzalloc(len, GFP_KERNEL);
1468		if (!buf)
1469			return -ENOMEM;
1470
1471		memcpy(buf, map->work_buf, map->format.reg_bytes);
1472		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1473		       val, val_len);
1474		ret = map->bus->write(map->bus_context, buf, len);
1475
1476		kfree(buf);
 
 
 
 
 
 
1477	}
1478
1479	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1480
1481	return ret;
1482}
1483
1484/**
1485 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1486 *
1487 * @map: Map to check.
1488 */
1489bool regmap_can_raw_write(struct regmap *map)
1490{
1491	return map->bus && map->bus->write && map->format.format_val &&
1492		map->format.format_reg;
1493}
1494EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1495
1496/**
1497 * regmap_get_raw_read_max - Get the maximum size we can read
1498 *
1499 * @map: Map to check.
1500 */
1501size_t regmap_get_raw_read_max(struct regmap *map)
1502{
1503	return map->max_raw_read;
1504}
1505EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1506
1507/**
1508 * regmap_get_raw_write_max - Get the maximum size we can read
1509 *
1510 * @map: Map to check.
1511 */
1512size_t regmap_get_raw_write_max(struct regmap *map)
1513{
1514	return map->max_raw_write;
1515}
1516EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1517
1518static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1519				       unsigned int val)
1520{
1521	int ret;
1522	struct regmap_range_node *range;
1523	struct regmap *map = context;
1524
1525	WARN_ON(!map->bus || !map->format.format_write);
1526
1527	range = _regmap_range_lookup(map, reg);
1528	if (range) {
1529		ret = _regmap_select_page(map, &reg, range, 1);
1530		if (ret != 0)
1531			return ret;
1532	}
1533
1534	map->format.format_write(map, reg, val);
1535
1536	trace_regmap_hw_write_start(map, reg, 1);
1537
1538	ret = map->bus->write(map->bus_context, map->work_buf,
1539			      map->format.buf_size);
1540
1541	trace_regmap_hw_write_done(map, reg, 1);
1542
1543	return ret;
1544}
1545
1546static int _regmap_bus_reg_write(void *context, unsigned int reg,
1547				 unsigned int val)
1548{
1549	struct regmap *map = context;
1550
1551	return map->bus->reg_write(map->bus_context, reg, val);
1552}
1553
1554static int _regmap_bus_raw_write(void *context, unsigned int reg,
1555				 unsigned int val)
1556{
1557	struct regmap *map = context;
1558
1559	WARN_ON(!map->bus || !map->format.format_val);
1560
1561	map->format.format_val(map->work_buf + map->format.reg_bytes
1562			       + map->format.pad_bytes, val, 0);
1563	return _regmap_raw_write(map, reg,
1564				 map->work_buf +
1565				 map->format.reg_bytes +
1566				 map->format.pad_bytes,
1567				 map->format.val_bytes);
 
1568}
1569
1570static inline void *_regmap_map_get_context(struct regmap *map)
1571{
1572	return (map->bus) ? map : map->bus_context;
1573}
1574
1575int _regmap_write(struct regmap *map, unsigned int reg,
1576		  unsigned int val)
1577{
1578	int ret;
1579	void *context = _regmap_map_get_context(map);
1580
1581	if (!regmap_writeable(map, reg))
1582		return -EIO;
1583
1584	if (!map->cache_bypass && !map->defer_caching) {
1585		ret = regcache_write(map, reg, val);
1586		if (ret != 0)
1587			return ret;
1588		if (map->cache_only) {
1589			map->cache_dirty = true;
1590			return 0;
1591		}
1592	}
1593
1594#ifdef LOG_DEVICE
1595	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1596		dev_info(map->dev, "%x <= %x\n", reg, val);
1597#endif
1598
1599	trace_regmap_reg_write(map, reg, val);
 
1600
1601	return map->reg_write(context, reg, val);
1602}
1603
1604/**
1605 * regmap_write(): Write a value to a single register
1606 *
1607 * @map: Register map to write to
1608 * @reg: Register to write to
1609 * @val: Value to be written
1610 *
1611 * A value of zero will be returned on success, a negative errno will
1612 * be returned in error cases.
1613 */
1614int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1615{
1616	int ret;
1617
1618	if (!IS_ALIGNED(reg, map->reg_stride))
1619		return -EINVAL;
1620
1621	map->lock(map->lock_arg);
1622
1623	ret = _regmap_write(map, reg, val);
1624
1625	map->unlock(map->lock_arg);
1626
1627	return ret;
1628}
1629EXPORT_SYMBOL_GPL(regmap_write);
1630
1631/**
1632 * regmap_write_async(): Write a value to a single register asynchronously
1633 *
1634 * @map: Register map to write to
1635 * @reg: Register to write to
1636 * @val: Value to be written
1637 *
1638 * A value of zero will be returned on success, a negative errno will
1639 * be returned in error cases.
1640 */
1641int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1642{
1643	int ret;
1644
1645	if (!IS_ALIGNED(reg, map->reg_stride))
1646		return -EINVAL;
1647
1648	map->lock(map->lock_arg);
1649
1650	map->async = true;
1651
1652	ret = _regmap_write(map, reg, val);
1653
1654	map->async = false;
1655
1656	map->unlock(map->lock_arg);
1657
1658	return ret;
1659}
1660EXPORT_SYMBOL_GPL(regmap_write_async);
1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662/**
1663 * regmap_raw_write(): Write raw values to one or more registers
1664 *
1665 * @map: Register map to write to
1666 * @reg: Initial register to write to
1667 * @val: Block of data to be written, laid out for direct transmission to the
1668 *       device
1669 * @val_len: Length of data pointed to by val.
1670 *
1671 * This function is intended to be used for things like firmware
1672 * download where a large block of data needs to be transferred to the
1673 * device.  No formatting will be done on the data provided.
1674 *
1675 * A value of zero will be returned on success, a negative errno will
1676 * be returned in error cases.
1677 */
1678int regmap_raw_write(struct regmap *map, unsigned int reg,
1679		     const void *val, size_t val_len)
1680{
1681	int ret;
1682
1683	if (!regmap_can_raw_write(map))
1684		return -EINVAL;
1685	if (val_len % map->format.val_bytes)
1686		return -EINVAL;
1687	if (map->max_raw_write && map->max_raw_write > val_len)
1688		return -E2BIG;
1689
1690	map->lock(map->lock_arg);
1691
1692	ret = _regmap_raw_write(map, reg, val, val_len);
1693
1694	map->unlock(map->lock_arg);
1695
1696	return ret;
1697}
1698EXPORT_SYMBOL_GPL(regmap_raw_write);
1699
1700/**
1701 * regmap_field_update_bits_base():
1702 *	Perform a read/modify/write cycle on the register field
1703 *	with change, async, force option
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704 *
1705 * @field: Register field to write to
1706 * @mask: Bitmask to change
1707 * @val: Value to be written
1708 * @change: Boolean indicating if a write was done
1709 * @async: Boolean indicating asynchronously
1710 * @force: Boolean indicating use force update
1711 *
 
 
 
1712 * A value of zero will be returned on success, a negative errno will
1713 * be returned in error cases.
1714 */
1715int regmap_field_update_bits_base(struct regmap_field *field,
1716				  unsigned int mask, unsigned int val,
1717				  bool *change, bool async, bool force)
1718{
1719	mask = (mask << field->shift) & field->mask;
1720
1721	return regmap_update_bits_base(field->regmap, field->reg,
1722				       mask, val << field->shift,
1723				       change, async, force);
1724}
1725EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1726
1727/**
1728 * regmap_fields_update_bits_base():
1729 *	Perform a read/modify/write cycle on the register field
1730 *	with change, async, force option
1731 *
1732 * @field: Register field to write to
1733 * @id: port ID
1734 * @mask: Bitmask to change
1735 * @val: Value to be written
1736 * @change: Boolean indicating if a write was done
1737 * @async: Boolean indicating asynchronously
1738 * @force: Boolean indicating use force update
1739 *
1740 * A value of zero will be returned on success, a negative errno will
1741 * be returned in error cases.
1742 */
1743int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1744				   unsigned int mask, unsigned int val,
1745				   bool *change, bool async, bool force)
1746{
1747	if (id >= field->id_size)
1748		return -EINVAL;
1749
1750	mask = (mask << field->shift) & field->mask;
1751
1752	return regmap_update_bits_base(field->regmap,
1753				       field->reg + (field->id_offset * id),
1754				       mask, val << field->shift,
1755				       change, async, force);
1756}
1757EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1758
1759/*
1760 * regmap_bulk_write(): Write multiple registers to the device
1761 *
1762 * @map: Register map to write to
1763 * @reg: First register to be write from
1764 * @val: Block of data to be written, in native register size for device
1765 * @val_count: Number of registers to write
1766 *
1767 * This function is intended to be used for writing a large block of
1768 * data to the device either in single transfer or multiple transfer.
1769 *
1770 * A value of zero will be returned on success, a negative errno will
1771 * be returned in error cases.
1772 */
1773int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1774		     size_t val_count)
1775{
1776	int ret = 0, i;
1777	size_t val_bytes = map->format.val_bytes;
1778	size_t total_size = val_bytes * val_count;
1779
1780	if (map->bus && !map->format.parse_inplace)
1781		return -EINVAL;
1782	if (!IS_ALIGNED(reg, map->reg_stride))
1783		return -EINVAL;
1784
1785	/*
1786	 * Some devices don't support bulk write, for
1787	 * them we have a series of single write operations in the first two if
1788	 * blocks.
1789	 *
1790	 * The first if block is used for memory mapped io. It does not allow
1791	 * val_bytes of 3 for example.
1792	 * The second one is used for busses which do not have this limitation
1793	 * and can write arbitrary value lengths.
1794	 */
1795	if (!map->bus) {
1796		map->lock(map->lock_arg);
1797		for (i = 0; i < val_count; i++) {
1798			unsigned int ival;
1799
1800			switch (val_bytes) {
1801			case 1:
1802				ival = *(u8 *)(val + (i * val_bytes));
1803				break;
1804			case 2:
1805				ival = *(u16 *)(val + (i * val_bytes));
1806				break;
1807			case 4:
1808				ival = *(u32 *)(val + (i * val_bytes));
1809				break;
1810#ifdef CONFIG_64BIT
1811			case 8:
1812				ival = *(u64 *)(val + (i * val_bytes));
1813				break;
1814#endif
1815			default:
1816				ret = -EINVAL;
1817				goto out;
1818			}
1819
1820			ret = _regmap_write(map,
1821					    reg + regmap_get_offset(map, i),
1822					    ival);
1823			if (ret != 0)
1824				goto out;
1825		}
1826out:
1827		map->unlock(map->lock_arg);
1828	} else if (map->use_single_write ||
1829		   (map->max_raw_write && map->max_raw_write < total_size)) {
1830		int chunk_stride = map->reg_stride;
1831		size_t chunk_size = val_bytes;
1832		size_t chunk_count = val_count;
1833
1834		if (!map->use_single_write) {
1835			chunk_size = map->max_raw_write;
1836			if (chunk_size % val_bytes)
1837				chunk_size -= chunk_size % val_bytes;
1838			chunk_count = total_size / chunk_size;
1839			chunk_stride *= chunk_size / val_bytes;
1840		}
1841
1842		map->lock(map->lock_arg);
1843		/* Write as many bytes as possible with chunk_size */
1844		for (i = 0; i < chunk_count; i++) {
1845			ret = _regmap_raw_write(map,
1846						reg + (i * chunk_stride),
1847						val + (i * chunk_size),
1848						chunk_size);
1849			if (ret)
1850				break;
1851		}
1852
1853		/* Write remaining bytes */
1854		if (!ret && chunk_size * i < total_size) {
1855			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1856						val + (i * chunk_size),
1857						total_size - i * chunk_size);
1858		}
1859		map->unlock(map->lock_arg);
1860	} else {
1861		void *wval;
1862
1863		if (!val_count)
1864			return -EINVAL;
1865
1866		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1867		if (!wval) {
1868			dev_err(map->dev, "Error in memory allocation\n");
1869			return -ENOMEM;
1870		}
1871		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1872			map->format.parse_inplace(wval + i);
1873
1874		map->lock(map->lock_arg);
1875		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1876		map->unlock(map->lock_arg);
1877
1878		kfree(wval);
1879	}
1880	return ret;
1881}
1882EXPORT_SYMBOL_GPL(regmap_bulk_write);
1883
1884/*
1885 * _regmap_raw_multi_reg_write()
1886 *
1887 * the (register,newvalue) pairs in regs have not been formatted, but
1888 * they are all in the same page and have been changed to being page
1889 * relative. The page register has been written if that was necessary.
1890 */
1891static int _regmap_raw_multi_reg_write(struct regmap *map,
1892				       const struct reg_sequence *regs,
1893				       size_t num_regs)
1894{
1895	int ret;
1896	void *buf;
1897	int i;
1898	u8 *u8;
1899	size_t val_bytes = map->format.val_bytes;
1900	size_t reg_bytes = map->format.reg_bytes;
1901	size_t pad_bytes = map->format.pad_bytes;
1902	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1903	size_t len = pair_size * num_regs;
1904
1905	if (!len)
1906		return -EINVAL;
1907
1908	buf = kzalloc(len, GFP_KERNEL);
1909	if (!buf)
1910		return -ENOMEM;
1911
1912	/* We have to linearise by hand. */
1913
1914	u8 = buf;
1915
1916	for (i = 0; i < num_regs; i++) {
1917		unsigned int reg = regs[i].reg;
1918		unsigned int val = regs[i].def;
1919		trace_regmap_hw_write_start(map, reg, 1);
1920		map->format.format_reg(u8, reg, map->reg_shift);
1921		u8 += reg_bytes + pad_bytes;
1922		map->format.format_val(u8, val, 0);
1923		u8 += val_bytes;
1924	}
1925	u8 = buf;
1926	*u8 |= map->write_flag_mask;
1927
1928	ret = map->bus->write(map->bus_context, buf, len);
1929
1930	kfree(buf);
1931
1932	for (i = 0; i < num_regs; i++) {
1933		int reg = regs[i].reg;
1934		trace_regmap_hw_write_done(map, reg, 1);
1935	}
1936	return ret;
1937}
1938
1939static unsigned int _regmap_register_page(struct regmap *map,
1940					  unsigned int reg,
1941					  struct regmap_range_node *range)
1942{
1943	unsigned int win_page = (reg - range->range_min) / range->window_len;
1944
1945	return win_page;
1946}
1947
1948static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1949					       struct reg_sequence *regs,
1950					       size_t num_regs)
1951{
1952	int ret;
1953	int i, n;
1954	struct reg_sequence *base;
1955	unsigned int this_page = 0;
1956	unsigned int page_change = 0;
1957	/*
1958	 * the set of registers are not neccessarily in order, but
1959	 * since the order of write must be preserved this algorithm
1960	 * chops the set each time the page changes. This also applies
1961	 * if there is a delay required at any point in the sequence.
1962	 */
1963	base = regs;
1964	for (i = 0, n = 0; i < num_regs; i++, n++) {
1965		unsigned int reg = regs[i].reg;
1966		struct regmap_range_node *range;
1967
1968		range = _regmap_range_lookup(map, reg);
1969		if (range) {
1970			unsigned int win_page = _regmap_register_page(map, reg,
1971								      range);
1972
1973			if (i == 0)
1974				this_page = win_page;
1975			if (win_page != this_page) {
1976				this_page = win_page;
1977				page_change = 1;
1978			}
1979		}
1980
1981		/* If we have both a page change and a delay make sure to
1982		 * write the regs and apply the delay before we change the
1983		 * page.
1984		 */
1985
1986		if (page_change || regs[i].delay_us) {
1987
1988				/* For situations where the first write requires
1989				 * a delay we need to make sure we don't call
1990				 * raw_multi_reg_write with n=0
1991				 * This can't occur with page breaks as we
1992				 * never write on the first iteration
1993				 */
1994				if (regs[i].delay_us && i == 0)
1995					n = 1;
1996
1997				ret = _regmap_raw_multi_reg_write(map, base, n);
1998				if (ret != 0)
1999					return ret;
2000
2001				if (regs[i].delay_us)
2002					udelay(regs[i].delay_us);
 
 
 
 
2003
2004				base += n;
2005				n = 0;
2006
2007				if (page_change) {
2008					ret = _regmap_select_page(map,
2009								  &base[n].reg,
2010								  range, 1);
2011					if (ret != 0)
2012						return ret;
2013
2014					page_change = 0;
2015				}
2016
2017		}
2018
2019	}
2020	if (n > 0)
2021		return _regmap_raw_multi_reg_write(map, base, n);
2022	return 0;
2023}
2024
2025static int _regmap_multi_reg_write(struct regmap *map,
2026				   const struct reg_sequence *regs,
2027				   size_t num_regs)
2028{
2029	int i;
2030	int ret;
2031
2032	if (!map->can_multi_write) {
2033		for (i = 0; i < num_regs; i++) {
2034			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2035			if (ret != 0)
2036				return ret;
2037
2038			if (regs[i].delay_us)
2039				udelay(regs[i].delay_us);
 
 
 
 
2040		}
2041		return 0;
2042	}
2043
2044	if (!map->format.parse_inplace)
2045		return -EINVAL;
2046
2047	if (map->writeable_reg)
2048		for (i = 0; i < num_regs; i++) {
2049			int reg = regs[i].reg;
2050			if (!map->writeable_reg(map->dev, reg))
2051				return -EINVAL;
2052			if (!IS_ALIGNED(reg, map->reg_stride))
2053				return -EINVAL;
2054		}
2055
2056	if (!map->cache_bypass) {
2057		for (i = 0; i < num_regs; i++) {
2058			unsigned int val = regs[i].def;
2059			unsigned int reg = regs[i].reg;
2060			ret = regcache_write(map, reg, val);
2061			if (ret) {
2062				dev_err(map->dev,
2063				"Error in caching of register: %x ret: %d\n",
2064								reg, ret);
2065				return ret;
2066			}
2067		}
2068		if (map->cache_only) {
2069			map->cache_dirty = true;
2070			return 0;
2071		}
2072	}
2073
2074	WARN_ON(!map->bus);
2075
2076	for (i = 0; i < num_regs; i++) {
2077		unsigned int reg = regs[i].reg;
2078		struct regmap_range_node *range;
2079
2080		/* Coalesce all the writes between a page break or a delay
2081		 * in a sequence
2082		 */
2083		range = _regmap_range_lookup(map, reg);
2084		if (range || regs[i].delay_us) {
2085			size_t len = sizeof(struct reg_sequence)*num_regs;
2086			struct reg_sequence *base = kmemdup(regs, len,
2087							   GFP_KERNEL);
2088			if (!base)
2089				return -ENOMEM;
2090			ret = _regmap_range_multi_paged_reg_write(map, base,
2091								  num_regs);
2092			kfree(base);
2093
2094			return ret;
2095		}
2096	}
2097	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2098}
2099
2100/*
2101 * regmap_multi_reg_write(): Write multiple registers to the device
2102 *
2103 * where the set of register,value pairs are supplied in any order,
2104 * possibly not all in a single range.
2105 *
2106 * @map: Register map to write to
2107 * @regs: Array of structures containing register,value to be written
2108 * @num_regs: Number of registers to write
2109 *
 
 
 
2110 * The 'normal' block write mode will send ultimately send data on the
2111 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2112 * addressed. However, this alternative block multi write mode will send
2113 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2114 * must of course support the mode.
2115 *
2116 * A value of zero will be returned on success, a negative errno will be
2117 * returned in error cases.
2118 */
2119int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2120			   int num_regs)
2121{
2122	int ret;
2123
2124	map->lock(map->lock_arg);
2125
2126	ret = _regmap_multi_reg_write(map, regs, num_regs);
2127
2128	map->unlock(map->lock_arg);
2129
2130	return ret;
2131}
2132EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2133
2134/*
2135 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2136 *                                    device but not the cache
2137 *
2138 * where the set of register are supplied in any order
2139 *
2140 * @map: Register map to write to
2141 * @regs: Array of structures containing register,value to be written
2142 * @num_regs: Number of registers to write
2143 *
 
 
 
2144 * This function is intended to be used for writing a large block of data
2145 * atomically to the device in single transfer for those I2C client devices
2146 * that implement this alternative block write mode.
2147 *
2148 * A value of zero will be returned on success, a negative errno will
2149 * be returned in error cases.
2150 */
2151int regmap_multi_reg_write_bypassed(struct regmap *map,
2152				    const struct reg_sequence *regs,
2153				    int num_regs)
2154{
2155	int ret;
2156	bool bypass;
2157
2158	map->lock(map->lock_arg);
2159
2160	bypass = map->cache_bypass;
2161	map->cache_bypass = true;
2162
2163	ret = _regmap_multi_reg_write(map, regs, num_regs);
2164
2165	map->cache_bypass = bypass;
2166
2167	map->unlock(map->lock_arg);
2168
2169	return ret;
2170}
2171EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2172
2173/**
2174 * regmap_raw_write_async(): Write raw values to one or more registers
2175 *                           asynchronously
2176 *
2177 * @map: Register map to write to
2178 * @reg: Initial register to write to
2179 * @val: Block of data to be written, laid out for direct transmission to the
2180 *       device.  Must be valid until regmap_async_complete() is called.
2181 * @val_len: Length of data pointed to by val.
2182 *
2183 * This function is intended to be used for things like firmware
2184 * download where a large block of data needs to be transferred to the
2185 * device.  No formatting will be done on the data provided.
2186 *
2187 * If supported by the underlying bus the write will be scheduled
2188 * asynchronously, helping maximise I/O speed on higher speed buses
2189 * like SPI.  regmap_async_complete() can be called to ensure that all
2190 * asynchrnous writes have been completed.
2191 *
2192 * A value of zero will be returned on success, a negative errno will
2193 * be returned in error cases.
2194 */
2195int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2196			   const void *val, size_t val_len)
2197{
2198	int ret;
2199
2200	if (val_len % map->format.val_bytes)
2201		return -EINVAL;
2202	if (!IS_ALIGNED(reg, map->reg_stride))
2203		return -EINVAL;
2204
2205	map->lock(map->lock_arg);
2206
2207	map->async = true;
2208
2209	ret = _regmap_raw_write(map, reg, val, val_len);
2210
2211	map->async = false;
2212
2213	map->unlock(map->lock_arg);
2214
2215	return ret;
2216}
2217EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2218
2219static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2220			    unsigned int val_len)
2221{
2222	struct regmap_range_node *range;
2223	u8 *u8 = map->work_buf;
2224	int ret;
2225
2226	WARN_ON(!map->bus);
2227
2228	if (!map->bus || !map->bus->read)
2229		return -EINVAL;
2230
2231	range = _regmap_range_lookup(map, reg);
2232	if (range) {
2233		ret = _regmap_select_page(map, &reg, range,
2234					  val_len / map->format.val_bytes);
2235		if (ret != 0)
2236			return ret;
2237	}
2238
2239	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2240
2241	/*
2242	 * Some buses or devices flag reads by setting the high bits in the
2243	 * register address; since it's always the high bits for all
2244	 * current formats we can do this here rather than in
2245	 * formatting.  This may break if we get interesting formats.
2246	 */
2247	u8[0] |= map->read_flag_mask;
2248
2249	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2250
2251	ret = map->bus->read(map->bus_context, map->work_buf,
2252			     map->format.reg_bytes + map->format.pad_bytes,
2253			     val, val_len);
2254
2255	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2256
2257	return ret;
2258}
2259
2260static int _regmap_bus_reg_read(void *context, unsigned int reg,
2261				unsigned int *val)
2262{
2263	struct regmap *map = context;
2264
2265	return map->bus->reg_read(map->bus_context, reg, val);
2266}
2267
2268static int _regmap_bus_read(void *context, unsigned int reg,
2269			    unsigned int *val)
2270{
2271	int ret;
2272	struct regmap *map = context;
 
 
2273
2274	if (!map->format.parse_val)
2275		return -EINVAL;
2276
2277	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2278	if (ret == 0)
2279		*val = map->format.parse_val(map->work_buf);
2280
2281	return ret;
2282}
2283
2284static int _regmap_read(struct regmap *map, unsigned int reg,
2285			unsigned int *val)
2286{
2287	int ret;
2288	void *context = _regmap_map_get_context(map);
2289
2290	if (!map->cache_bypass) {
2291		ret = regcache_read(map, reg, val);
2292		if (ret == 0)
2293			return 0;
2294	}
2295
2296	if (map->cache_only)
2297		return -EBUSY;
2298
2299	if (!regmap_readable(map, reg))
2300		return -EIO;
2301
2302	ret = map->reg_read(context, reg, val);
2303	if (ret == 0) {
2304#ifdef LOG_DEVICE
2305		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2306			dev_info(map->dev, "%x => %x\n", reg, *val);
2307#endif
2308
2309		trace_regmap_reg_read(map, reg, *val);
2310
2311		if (!map->cache_bypass)
2312			regcache_write(map, reg, *val);
2313	}
2314
2315	return ret;
2316}
2317
2318/**
2319 * regmap_read(): Read a value from a single register
2320 *
2321 * @map: Register map to read from
2322 * @reg: Register to be read from
2323 * @val: Pointer to store read value
2324 *
2325 * A value of zero will be returned on success, a negative errno will
2326 * be returned in error cases.
2327 */
2328int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2329{
2330	int ret;
2331
2332	if (!IS_ALIGNED(reg, map->reg_stride))
2333		return -EINVAL;
2334
2335	map->lock(map->lock_arg);
2336
2337	ret = _regmap_read(map, reg, val);
2338
2339	map->unlock(map->lock_arg);
2340
2341	return ret;
2342}
2343EXPORT_SYMBOL_GPL(regmap_read);
2344
2345/**
2346 * regmap_raw_read(): Read raw data from the device
2347 *
2348 * @map: Register map to read from
2349 * @reg: First register to be read from
2350 * @val: Pointer to store read value
2351 * @val_len: Size of data to read
2352 *
2353 * A value of zero will be returned on success, a negative errno will
2354 * be returned in error cases.
2355 */
2356int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2357		    size_t val_len)
2358{
2359	size_t val_bytes = map->format.val_bytes;
2360	size_t val_count = val_len / val_bytes;
2361	unsigned int v;
2362	int ret, i;
2363
2364	if (!map->bus)
2365		return -EINVAL;
2366	if (val_len % map->format.val_bytes)
2367		return -EINVAL;
2368	if (!IS_ALIGNED(reg, map->reg_stride))
2369		return -EINVAL;
2370	if (val_count == 0)
2371		return -EINVAL;
2372
2373	map->lock(map->lock_arg);
2374
2375	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2376	    map->cache_type == REGCACHE_NONE) {
 
 
 
2377		if (!map->bus->read) {
2378			ret = -ENOTSUPP;
2379			goto out;
2380		}
2381		if (map->max_raw_read && map->max_raw_read < val_len) {
2382			ret = -E2BIG;
2383			goto out;
2384		}
2385
2386		/* Physical block read if there's no cache involved */
2387		ret = _regmap_raw_read(map, reg, val, val_len);
 
 
2388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2389	} else {
2390		/* Otherwise go word by word for the cache; should be low
2391		 * cost as we expect to hit the cache.
2392		 */
2393		for (i = 0; i < val_count; i++) {
2394			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2395					   &v);
2396			if (ret != 0)
2397				goto out;
2398
2399			map->format.format_val(val + (i * val_bytes), v, 0);
2400		}
2401	}
2402
2403 out:
2404	map->unlock(map->lock_arg);
2405
2406	return ret;
2407}
2408EXPORT_SYMBOL_GPL(regmap_raw_read);
2409
2410/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411 * regmap_field_read(): Read a value to a single register field
2412 *
2413 * @field: Register field to read from
2414 * @val: Pointer to store read value
2415 *
2416 * A value of zero will be returned on success, a negative errno will
2417 * be returned in error cases.
2418 */
2419int regmap_field_read(struct regmap_field *field, unsigned int *val)
2420{
2421	int ret;
2422	unsigned int reg_val;
2423	ret = regmap_read(field->regmap, field->reg, &reg_val);
2424	if (ret != 0)
2425		return ret;
2426
2427	reg_val &= field->mask;
2428	reg_val >>= field->shift;
2429	*val = reg_val;
2430
2431	return ret;
2432}
2433EXPORT_SYMBOL_GPL(regmap_field_read);
2434
2435/**
2436 * regmap_fields_read(): Read a value to a single register field with port ID
2437 *
2438 * @field: Register field to read from
2439 * @id: port ID
2440 * @val: Pointer to store read value
2441 *
2442 * A value of zero will be returned on success, a negative errno will
2443 * be returned in error cases.
2444 */
2445int regmap_fields_read(struct regmap_field *field, unsigned int id,
2446		       unsigned int *val)
2447{
2448	int ret;
2449	unsigned int reg_val;
2450
2451	if (id >= field->id_size)
2452		return -EINVAL;
2453
2454	ret = regmap_read(field->regmap,
2455			  field->reg + (field->id_offset * id),
2456			  &reg_val);
2457	if (ret != 0)
2458		return ret;
2459
2460	reg_val &= field->mask;
2461	reg_val >>= field->shift;
2462	*val = reg_val;
2463
2464	return ret;
2465}
2466EXPORT_SYMBOL_GPL(regmap_fields_read);
2467
2468/**
2469 * regmap_bulk_read(): Read multiple registers from the device
2470 *
2471 * @map: Register map to read from
2472 * @reg: First register to be read from
2473 * @val: Pointer to store read value, in native register size for device
2474 * @val_count: Number of registers to read
2475 *
2476 * A value of zero will be returned on success, a negative errno will
2477 * be returned in error cases.
2478 */
2479int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2480		     size_t val_count)
2481{
2482	int ret, i;
2483	size_t val_bytes = map->format.val_bytes;
2484	bool vol = regmap_volatile_range(map, reg, val_count);
2485
2486	if (!IS_ALIGNED(reg, map->reg_stride))
2487		return -EINVAL;
 
 
2488
2489	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2490		/*
2491		 * Some devices does not support bulk read, for
2492		 * them we have a series of single read operations.
2493		 */
2494		size_t total_size = val_bytes * val_count;
2495
2496		if (!map->use_single_read &&
2497		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2498			ret = regmap_raw_read(map, reg, val,
2499					      val_bytes * val_count);
2500			if (ret != 0)
2501				return ret;
2502		} else {
2503			/*
2504			 * Some devices do not support bulk read or do not
2505			 * support large bulk reads, for them we have a series
2506			 * of read operations.
2507			 */
2508			int chunk_stride = map->reg_stride;
2509			size_t chunk_size = val_bytes;
2510			size_t chunk_count = val_count;
2511
2512			if (!map->use_single_read) {
2513				chunk_size = map->max_raw_read;
2514				if (chunk_size % val_bytes)
2515					chunk_size -= chunk_size % val_bytes;
2516				chunk_count = total_size / chunk_size;
2517				chunk_stride *= chunk_size / val_bytes;
2518			}
2519
2520			/* Read bytes that fit into a multiple of chunk_size */
2521			for (i = 0; i < chunk_count; i++) {
2522				ret = regmap_raw_read(map,
2523						      reg + (i * chunk_stride),
2524						      val + (i * chunk_size),
2525						      chunk_size);
2526				if (ret != 0)
2527					return ret;
2528			}
2529
2530			/* Read remaining bytes */
2531			if (chunk_size * i < total_size) {
2532				ret = regmap_raw_read(map,
2533						      reg + (i * chunk_stride),
2534						      val + (i * chunk_size),
2535						      total_size - i * chunk_size);
2536				if (ret != 0)
2537					return ret;
2538			}
2539		}
2540
2541		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2542			map->format.parse_inplace(val + i);
2543	} else {
 
 
 
 
 
 
 
 
 
2544		for (i = 0; i < val_count; i++) {
2545			unsigned int ival;
2546			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2547					  &ival);
2548			if (ret != 0)
2549				return ret;
2550
2551			if (map->format.format_val) {
2552				map->format.format_val(val + (i * val_bytes), ival, 0);
2553			} else {
2554				/* Devices providing read and write
2555				 * operations can use the bulk I/O
2556				 * functions if they define a val_bytes,
2557				 * we assume that the values are native
2558				 * endian.
2559				 */
2560#ifdef CONFIG_64BIT
2561				u64 *u64 = val;
2562#endif
2563				u32 *u32 = val;
2564				u16 *u16 = val;
2565				u8 *u8 = val;
2566
2567				switch (map->format.val_bytes) {
2568#ifdef CONFIG_64BIT
2569				case 8:
2570					u64[i] = ival;
2571					break;
2572#endif
2573				case 4:
2574					u32[i] = ival;
2575					break;
2576				case 2:
2577					u16[i] = ival;
2578					break;
2579				case 1:
2580					u8[i] = ival;
2581					break;
2582				default:
2583					return -EINVAL;
2584				}
2585			}
2586		}
 
 
 
2587	}
2588
2589	return 0;
2590}
2591EXPORT_SYMBOL_GPL(regmap_bulk_read);
2592
2593static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2594			       unsigned int mask, unsigned int val,
2595			       bool *change, bool force_write)
2596{
2597	int ret;
2598	unsigned int tmp, orig;
2599
2600	if (change)
2601		*change = false;
2602
2603	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2604		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2605		if (ret == 0 && change)
2606			*change = true;
2607	} else {
2608		ret = _regmap_read(map, reg, &orig);
2609		if (ret != 0)
2610			return ret;
2611
2612		tmp = orig & ~mask;
2613		tmp |= val & mask;
2614
2615		if (force_write || (tmp != orig)) {
2616			ret = _regmap_write(map, reg, tmp);
2617			if (ret == 0 && change)
2618				*change = true;
2619		}
2620	}
2621
2622	return ret;
2623}
2624
2625/**
2626 * regmap_update_bits_base:
2627 *	Perform a read/modify/write cycle on the
2628 *	register map with change, async, force option
2629 *
2630 * @map: Register map to update
2631 * @reg: Register to update
2632 * @mask: Bitmask to change
2633 * @val: New value for bitmask
2634 * @change: Boolean indicating if a write was done
2635 * @async: Boolean indicating asynchronously
2636 * @force: Boolean indicating use force update
2637 *
2638 * if async was true,
2639 * With most buses the read must be done synchronously so this is most
2640 * useful for devices with a cache which do not need to interact with
2641 * the hardware to determine the current register value.
 
 
 
 
2642 *
2643 * Returns zero for success, a negative number on error.
2644 */
2645int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2646			    unsigned int mask, unsigned int val,
2647			    bool *change, bool async, bool force)
2648{
2649	int ret;
2650
2651	map->lock(map->lock_arg);
2652
2653	map->async = async;
2654
2655	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2656
2657	map->async = false;
2658
2659	map->unlock(map->lock_arg);
2660
2661	return ret;
2662}
2663EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2665void regmap_async_complete_cb(struct regmap_async *async, int ret)
2666{
2667	struct regmap *map = async->map;
2668	bool wake;
2669
2670	trace_regmap_async_io_complete(map);
2671
2672	spin_lock(&map->async_lock);
2673	list_move(&async->list, &map->async_free);
2674	wake = list_empty(&map->async_list);
2675
2676	if (ret != 0)
2677		map->async_ret = ret;
2678
2679	spin_unlock(&map->async_lock);
2680
2681	if (wake)
2682		wake_up(&map->async_waitq);
2683}
2684EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2685
2686static int regmap_async_is_done(struct regmap *map)
2687{
2688	unsigned long flags;
2689	int ret;
2690
2691	spin_lock_irqsave(&map->async_lock, flags);
2692	ret = list_empty(&map->async_list);
2693	spin_unlock_irqrestore(&map->async_lock, flags);
2694
2695	return ret;
2696}
2697
2698/**
2699 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2700 *
2701 * @map: Map to operate on.
2702 *
2703 * Blocks until any pending asynchronous I/O has completed.  Returns
2704 * an error code for any failed I/O operations.
2705 */
2706int regmap_async_complete(struct regmap *map)
2707{
2708	unsigned long flags;
2709	int ret;
2710
2711	/* Nothing to do with no async support */
2712	if (!map->bus || !map->bus->async_write)
2713		return 0;
2714
2715	trace_regmap_async_complete_start(map);
2716
2717	wait_event(map->async_waitq, regmap_async_is_done(map));
2718
2719	spin_lock_irqsave(&map->async_lock, flags);
2720	ret = map->async_ret;
2721	map->async_ret = 0;
2722	spin_unlock_irqrestore(&map->async_lock, flags);
2723
2724	trace_regmap_async_complete_done(map);
2725
2726	return ret;
2727}
2728EXPORT_SYMBOL_GPL(regmap_async_complete);
2729
2730/**
2731 * regmap_register_patch: Register and apply register updates to be applied
2732 *                        on device initialistion
2733 *
2734 * @map: Register map to apply updates to.
2735 * @regs: Values to update.
2736 * @num_regs: Number of entries in regs.
2737 *
2738 * Register a set of register updates to be applied to the device
2739 * whenever the device registers are synchronised with the cache and
2740 * apply them immediately.  Typically this is used to apply
2741 * corrections to be applied to the device defaults on startup, such
2742 * as the updates some vendors provide to undocumented registers.
2743 *
2744 * The caller must ensure that this function cannot be called
2745 * concurrently with either itself or regcache_sync().
2746 */
2747int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2748			  int num_regs)
2749{
2750	struct reg_sequence *p;
2751	int ret;
2752	bool bypass;
2753
2754	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2755	    num_regs))
2756		return 0;
2757
2758	p = krealloc(map->patch,
2759		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2760		     GFP_KERNEL);
2761	if (p) {
2762		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2763		map->patch = p;
2764		map->patch_regs += num_regs;
2765	} else {
2766		return -ENOMEM;
2767	}
2768
2769	map->lock(map->lock_arg);
2770
2771	bypass = map->cache_bypass;
2772
2773	map->cache_bypass = true;
2774	map->async = true;
2775
2776	ret = _regmap_multi_reg_write(map, regs, num_regs);
2777
2778	map->async = false;
2779	map->cache_bypass = bypass;
2780
2781	map->unlock(map->lock_arg);
2782
2783	regmap_async_complete(map);
2784
2785	return ret;
2786}
2787EXPORT_SYMBOL_GPL(regmap_register_patch);
2788
2789/*
2790 * regmap_get_val_bytes(): Report the size of a register value
 
 
2791 *
2792 * Report the size of a register value, mainly intended to for use by
2793 * generic infrastructure built on top of regmap.
2794 */
2795int regmap_get_val_bytes(struct regmap *map)
2796{
2797	if (map->format.format_write)
2798		return -EINVAL;
2799
2800	return map->format.val_bytes;
2801}
2802EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2803
2804/**
2805 * regmap_get_max_register(): Report the max register value
 
 
2806 *
2807 * Report the max register value, mainly intended to for use by
2808 * generic infrastructure built on top of regmap.
2809 */
2810int regmap_get_max_register(struct regmap *map)
2811{
2812	return map->max_register ? map->max_register : -EINVAL;
2813}
2814EXPORT_SYMBOL_GPL(regmap_get_max_register);
2815
2816/**
2817 * regmap_get_reg_stride(): Report the register address stride
 
 
2818 *
2819 * Report the register address stride, mainly intended to for use by
2820 * generic infrastructure built on top of regmap.
2821 */
2822int regmap_get_reg_stride(struct regmap *map)
2823{
2824	return map->reg_stride;
2825}
2826EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2827
2828int regmap_parse_val(struct regmap *map, const void *buf,
2829			unsigned int *val)
2830{
2831	if (!map->format.parse_val)
2832		return -EINVAL;
2833
2834	*val = map->format.parse_val(buf);
2835
2836	return 0;
2837}
2838EXPORT_SYMBOL_GPL(regmap_parse_val);
2839
2840static int __init regmap_initcall(void)
2841{
2842	regmap_debugfs_initcall();
2843
2844	return 0;
2845}
2846postcore_initcall(regmap_initcall);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 
 
 
 
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <asm/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 212static void regmap_format_12_20_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	out[0] = reg >> 4;
 218	out[1] = (reg << 4) | (val >> 16);
 219	out[2] = val >> 8;
 220	out[3] = val;
 221}
 222
 223
 224static void regmap_format_2_6_write(struct regmap *map,
 225				     unsigned int reg, unsigned int val)
 226{
 227	u8 *out = map->work_buf;
 228
 229	*out = (reg << 6) | val;
 230}
 231
 232static void regmap_format_4_12_write(struct regmap *map,
 233				     unsigned int reg, unsigned int val)
 234{
 235	__be16 *out = map->work_buf;
 236	*out = cpu_to_be16((reg << 12) | val);
 237}
 238
 239static void regmap_format_7_9_write(struct regmap *map,
 240				    unsigned int reg, unsigned int val)
 241{
 242	__be16 *out = map->work_buf;
 243	*out = cpu_to_be16((reg << 9) | val);
 244}
 245
 246static void regmap_format_7_17_write(struct regmap *map,
 247				    unsigned int reg, unsigned int val)
 248{
 249	u8 *out = map->work_buf;
 250
 251	out[2] = val;
 252	out[1] = val >> 8;
 253	out[0] = (val >> 16) | (reg << 1);
 254}
 255
 256static void regmap_format_10_14_write(struct regmap *map,
 257				    unsigned int reg, unsigned int val)
 258{
 259	u8 *out = map->work_buf;
 260
 261	out[2] = val;
 262	out[1] = (val >> 8) | (reg << 6);
 263	out[0] = reg >> 2;
 264}
 265
 266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 267{
 268	u8 *b = buf;
 269
 270	b[0] = val << shift;
 271}
 272
 273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	put_unaligned_be16(val << shift, buf);
 
 
 276}
 277
 278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 279{
 280	put_unaligned_le16(val << shift, buf);
 
 
 281}
 282
 283static void regmap_format_16_native(void *buf, unsigned int val,
 284				    unsigned int shift)
 285{
 286	u16 v = val << shift;
 287
 288	memcpy(buf, &v, sizeof(v));
 289}
 290
 291static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 292{
 293	u8 *b = buf;
 294
 295	val <<= shift;
 296
 297	b[0] = val >> 16;
 298	b[1] = val >> 8;
 299	b[2] = val;
 300}
 301
 302static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 303{
 304	put_unaligned_be32(val << shift, buf);
 
 
 305}
 306
 307static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 308{
 309	put_unaligned_le32(val << shift, buf);
 
 
 310}
 311
 312static void regmap_format_32_native(void *buf, unsigned int val,
 313				    unsigned int shift)
 314{
 315	u32 v = val << shift;
 316
 317	memcpy(buf, &v, sizeof(v));
 318}
 319
 320#ifdef CONFIG_64BIT
 321static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 322{
 323	put_unaligned_be64((u64) val << shift, buf);
 
 
 324}
 325
 326static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 327{
 328	put_unaligned_le64((u64) val << shift, buf);
 
 
 329}
 330
 331static void regmap_format_64_native(void *buf, unsigned int val,
 332				    unsigned int shift)
 333{
 334	u64 v = (u64) val << shift;
 335
 336	memcpy(buf, &v, sizeof(v));
 337}
 338#endif
 339
 340static void regmap_parse_inplace_noop(void *buf)
 341{
 342}
 343
 344static unsigned int regmap_parse_8(const void *buf)
 345{
 346	const u8 *b = buf;
 347
 348	return b[0];
 349}
 350
 351static unsigned int regmap_parse_16_be(const void *buf)
 352{
 353	return get_unaligned_be16(buf);
 
 
 354}
 355
 356static unsigned int regmap_parse_16_le(const void *buf)
 357{
 358	return get_unaligned_le16(buf);
 
 
 359}
 360
 361static void regmap_parse_16_be_inplace(void *buf)
 362{
 363	u16 v = get_unaligned_be16(buf);
 364
 365	memcpy(buf, &v, sizeof(v));
 366}
 367
 368static void regmap_parse_16_le_inplace(void *buf)
 369{
 370	u16 v = get_unaligned_le16(buf);
 371
 372	memcpy(buf, &v, sizeof(v));
 373}
 374
 375static unsigned int regmap_parse_16_native(const void *buf)
 376{
 377	u16 v;
 378
 379	memcpy(&v, buf, sizeof(v));
 380	return v;
 381}
 382
 383static unsigned int regmap_parse_24(const void *buf)
 384{
 385	const u8 *b = buf;
 386	unsigned int ret = b[2];
 387	ret |= ((unsigned int)b[1]) << 8;
 388	ret |= ((unsigned int)b[0]) << 16;
 389
 390	return ret;
 391}
 392
 393static unsigned int regmap_parse_32_be(const void *buf)
 394{
 395	return get_unaligned_be32(buf);
 
 
 396}
 397
 398static unsigned int regmap_parse_32_le(const void *buf)
 399{
 400	return get_unaligned_le32(buf);
 
 
 401}
 402
 403static void regmap_parse_32_be_inplace(void *buf)
 404{
 405	u32 v = get_unaligned_be32(buf);
 406
 407	memcpy(buf, &v, sizeof(v));
 408}
 409
 410static void regmap_parse_32_le_inplace(void *buf)
 411{
 412	u32 v = get_unaligned_le32(buf);
 413
 414	memcpy(buf, &v, sizeof(v));
 415}
 416
 417static unsigned int regmap_parse_32_native(const void *buf)
 418{
 419	u32 v;
 420
 421	memcpy(&v, buf, sizeof(v));
 422	return v;
 423}
 424
 425#ifdef CONFIG_64BIT
 426static unsigned int regmap_parse_64_be(const void *buf)
 427{
 428	return get_unaligned_be64(buf);
 
 
 429}
 430
 431static unsigned int regmap_parse_64_le(const void *buf)
 432{
 433	return get_unaligned_le64(buf);
 
 
 434}
 435
 436static void regmap_parse_64_be_inplace(void *buf)
 437{
 438	u64 v =  get_unaligned_be64(buf);
 439
 440	memcpy(buf, &v, sizeof(v));
 441}
 442
 443static void regmap_parse_64_le_inplace(void *buf)
 444{
 445	u64 v = get_unaligned_le64(buf);
 446
 447	memcpy(buf, &v, sizeof(v));
 448}
 449
 450static unsigned int regmap_parse_64_native(const void *buf)
 451{
 452	u64 v;
 453
 454	memcpy(&v, buf, sizeof(v));
 455	return v;
 456}
 457#endif
 458
 459static void regmap_lock_hwlock(void *__map)
 460{
 461	struct regmap *map = __map;
 462
 463	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 464}
 465
 466static void regmap_lock_hwlock_irq(void *__map)
 467{
 468	struct regmap *map = __map;
 469
 470	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 471}
 472
 473static void regmap_lock_hwlock_irqsave(void *__map)
 474{
 475	struct regmap *map = __map;
 476
 477	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 478				    &map->spinlock_flags);
 479}
 480
 481static void regmap_unlock_hwlock(void *__map)
 482{
 483	struct regmap *map = __map;
 484
 485	hwspin_unlock(map->hwlock);
 486}
 487
 488static void regmap_unlock_hwlock_irq(void *__map)
 489{
 490	struct regmap *map = __map;
 491
 492	hwspin_unlock_irq(map->hwlock);
 493}
 494
 495static void regmap_unlock_hwlock_irqrestore(void *__map)
 496{
 497	struct regmap *map = __map;
 498
 499	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 500}
 501
 502static void regmap_lock_unlock_none(void *__map)
 503{
 504
 505}
 506
 507static void regmap_lock_mutex(void *__map)
 508{
 509	struct regmap *map = __map;
 510	mutex_lock(&map->mutex);
 511}
 512
 513static void regmap_unlock_mutex(void *__map)
 514{
 515	struct regmap *map = __map;
 516	mutex_unlock(&map->mutex);
 517}
 518
 519static void regmap_lock_spinlock(void *__map)
 520__acquires(&map->spinlock)
 521{
 522	struct regmap *map = __map;
 523	unsigned long flags;
 524
 525	spin_lock_irqsave(&map->spinlock, flags);
 526	map->spinlock_flags = flags;
 527}
 528
 529static void regmap_unlock_spinlock(void *__map)
 530__releases(&map->spinlock)
 531{
 532	struct regmap *map = __map;
 533	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 534}
 535
 536static void dev_get_regmap_release(struct device *dev, void *res)
 537{
 538	/*
 539	 * We don't actually have anything to do here; the goal here
 540	 * is not to manage the regmap but to provide a simple way to
 541	 * get the regmap back given a struct device.
 542	 */
 543}
 544
 545static bool _regmap_range_add(struct regmap *map,
 546			      struct regmap_range_node *data)
 547{
 548	struct rb_root *root = &map->range_tree;
 549	struct rb_node **new = &(root->rb_node), *parent = NULL;
 550
 551	while (*new) {
 552		struct regmap_range_node *this =
 553			rb_entry(*new, struct regmap_range_node, node);
 554
 555		parent = *new;
 556		if (data->range_max < this->range_min)
 557			new = &((*new)->rb_left);
 558		else if (data->range_min > this->range_max)
 559			new = &((*new)->rb_right);
 560		else
 561			return false;
 562	}
 563
 564	rb_link_node(&data->node, parent, new);
 565	rb_insert_color(&data->node, root);
 566
 567	return true;
 568}
 569
 570static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 571						      unsigned int reg)
 572{
 573	struct rb_node *node = map->range_tree.rb_node;
 574
 575	while (node) {
 576		struct regmap_range_node *this =
 577			rb_entry(node, struct regmap_range_node, node);
 578
 579		if (reg < this->range_min)
 580			node = node->rb_left;
 581		else if (reg > this->range_max)
 582			node = node->rb_right;
 583		else
 584			return this;
 585	}
 586
 587	return NULL;
 588}
 589
 590static void regmap_range_exit(struct regmap *map)
 591{
 592	struct rb_node *next;
 593	struct regmap_range_node *range_node;
 594
 595	next = rb_first(&map->range_tree);
 596	while (next) {
 597		range_node = rb_entry(next, struct regmap_range_node, node);
 598		next = rb_next(&range_node->node);
 599		rb_erase(&range_node->node, &map->range_tree);
 600		kfree(range_node);
 601	}
 602
 603	kfree(map->selector_work_buf);
 604}
 605
 606static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 607{
 608	if (config->name) {
 609		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 610
 611		if (!name)
 612			return -ENOMEM;
 613
 614		kfree_const(map->name);
 615		map->name = name;
 616	}
 617
 618	return 0;
 619}
 620
 621int regmap_attach_dev(struct device *dev, struct regmap *map,
 622		      const struct regmap_config *config)
 623{
 624	struct regmap **m;
 625	int ret;
 626
 627	map->dev = dev;
 628
 629	ret = regmap_set_name(map, config);
 630	if (ret)
 631		return ret;
 632
 633	regmap_debugfs_init(map);
 634
 635	/* Add a devres resource for dev_get_regmap() */
 636	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 637	if (!m) {
 638		regmap_debugfs_exit(map);
 639		return -ENOMEM;
 640	}
 641	*m = map;
 642	devres_add(dev, m);
 643
 644	return 0;
 645}
 646EXPORT_SYMBOL_GPL(regmap_attach_dev);
 647
 648static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 649					const struct regmap_config *config)
 650{
 651	enum regmap_endian endian;
 652
 653	/* Retrieve the endianness specification from the regmap config */
 654	endian = config->reg_format_endian;
 655
 656	/* If the regmap config specified a non-default value, use that */
 657	if (endian != REGMAP_ENDIAN_DEFAULT)
 658		return endian;
 659
 660	/* Retrieve the endianness specification from the bus config */
 661	if (bus && bus->reg_format_endian_default)
 662		endian = bus->reg_format_endian_default;
 663
 664	/* If the bus specified a non-default value, use that */
 665	if (endian != REGMAP_ENDIAN_DEFAULT)
 666		return endian;
 667
 668	/* Use this if no other value was found */
 669	return REGMAP_ENDIAN_BIG;
 670}
 671
 672enum regmap_endian regmap_get_val_endian(struct device *dev,
 673					 const struct regmap_bus *bus,
 674					 const struct regmap_config *config)
 675{
 676	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 677	enum regmap_endian endian;
 678
 679	/* Retrieve the endianness specification from the regmap config */
 680	endian = config->val_format_endian;
 681
 682	/* If the regmap config specified a non-default value, use that */
 683	if (endian != REGMAP_ENDIAN_DEFAULT)
 684		return endian;
 685
 686	/* If the firmware node exist try to get endianness from it */
 687	if (fwnode_property_read_bool(fwnode, "big-endian"))
 688		endian = REGMAP_ENDIAN_BIG;
 689	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 690		endian = REGMAP_ENDIAN_LITTLE;
 691	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 692		endian = REGMAP_ENDIAN_NATIVE;
 693
 694	/* If the endianness was specified in fwnode, use that */
 695	if (endian != REGMAP_ENDIAN_DEFAULT)
 696		return endian;
 
 
 
 
 
 697
 698	/* Retrieve the endianness specification from the bus config */
 699	if (bus && bus->val_format_endian_default)
 700		endian = bus->val_format_endian_default;
 701
 702	/* If the bus specified a non-default value, use that */
 703	if (endian != REGMAP_ENDIAN_DEFAULT)
 704		return endian;
 705
 706	/* Use this if no other value was found */
 707	return REGMAP_ENDIAN_BIG;
 708}
 709EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 710
 711struct regmap *__regmap_init(struct device *dev,
 712			     const struct regmap_bus *bus,
 713			     void *bus_context,
 714			     const struct regmap_config *config,
 715			     struct lock_class_key *lock_key,
 716			     const char *lock_name)
 717{
 718	struct regmap *map;
 719	int ret = -EINVAL;
 720	enum regmap_endian reg_endian, val_endian;
 721	int i, j;
 722
 723	if (!config)
 724		goto err;
 725
 726	map = kzalloc(sizeof(*map), GFP_KERNEL);
 727	if (map == NULL) {
 728		ret = -ENOMEM;
 729		goto err;
 730	}
 731
 732	ret = regmap_set_name(map, config);
 733	if (ret)
 734		goto err_map;
 735
 736	ret = -EINVAL; /* Later error paths rely on this */
 737
 738	if (config->disable_locking) {
 739		map->lock = map->unlock = regmap_lock_unlock_none;
 740		map->can_sleep = config->can_sleep;
 741		regmap_debugfs_disable(map);
 742	} else if (config->lock && config->unlock) {
 743		map->lock = config->lock;
 744		map->unlock = config->unlock;
 745		map->lock_arg = config->lock_arg;
 746		map->can_sleep = config->can_sleep;
 747	} else if (config->use_hwlock) {
 748		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 749		if (!map->hwlock) {
 750			ret = -ENXIO;
 751			goto err_name;
 752		}
 753
 754		switch (config->hwlock_mode) {
 755		case HWLOCK_IRQSTATE:
 756			map->lock = regmap_lock_hwlock_irqsave;
 757			map->unlock = regmap_unlock_hwlock_irqrestore;
 758			break;
 759		case HWLOCK_IRQ:
 760			map->lock = regmap_lock_hwlock_irq;
 761			map->unlock = regmap_unlock_hwlock_irq;
 762			break;
 763		default:
 764			map->lock = regmap_lock_hwlock;
 765			map->unlock = regmap_unlock_hwlock;
 766			break;
 767		}
 768
 769		map->lock_arg = map;
 770	} else {
 771		if ((bus && bus->fast_io) ||
 772		    config->fast_io) {
 773			spin_lock_init(&map->spinlock);
 774			map->lock = regmap_lock_spinlock;
 775			map->unlock = regmap_unlock_spinlock;
 776			lockdep_set_class_and_name(&map->spinlock,
 777						   lock_key, lock_name);
 778		} else {
 779			mutex_init(&map->mutex);
 780			map->lock = regmap_lock_mutex;
 781			map->unlock = regmap_unlock_mutex;
 782			map->can_sleep = true;
 783			lockdep_set_class_and_name(&map->mutex,
 784						   lock_key, lock_name);
 785		}
 786		map->lock_arg = map;
 787	}
 788
 789	/*
 790	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 791	 * scratch buffers with sleeping allocations.
 792	 */
 793	if ((bus && bus->fast_io) || config->fast_io)
 794		map->alloc_flags = GFP_ATOMIC;
 795	else
 796		map->alloc_flags = GFP_KERNEL;
 797
 798	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 799	map->format.pad_bytes = config->pad_bits / 8;
 800	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 801	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 802			config->val_bits + config->pad_bits, 8);
 803	map->reg_shift = config->pad_bits % 8;
 804	if (config->reg_stride)
 805		map->reg_stride = config->reg_stride;
 806	else
 807		map->reg_stride = 1;
 808	if (is_power_of_2(map->reg_stride))
 809		map->reg_stride_order = ilog2(map->reg_stride);
 810	else
 811		map->reg_stride_order = -1;
 812	map->use_single_read = config->use_single_read || !bus || !bus->read;
 813	map->use_single_write = config->use_single_write || !bus || !bus->write;
 814	map->can_multi_write = config->can_multi_write && bus && bus->write;
 815	if (bus) {
 816		map->max_raw_read = bus->max_raw_read;
 817		map->max_raw_write = bus->max_raw_write;
 818	}
 819	map->dev = dev;
 820	map->bus = bus;
 821	map->bus_context = bus_context;
 822	map->max_register = config->max_register;
 823	map->wr_table = config->wr_table;
 824	map->rd_table = config->rd_table;
 825	map->volatile_table = config->volatile_table;
 826	map->precious_table = config->precious_table;
 827	map->wr_noinc_table = config->wr_noinc_table;
 828	map->rd_noinc_table = config->rd_noinc_table;
 829	map->writeable_reg = config->writeable_reg;
 830	map->readable_reg = config->readable_reg;
 831	map->volatile_reg = config->volatile_reg;
 832	map->precious_reg = config->precious_reg;
 833	map->writeable_noinc_reg = config->writeable_noinc_reg;
 834	map->readable_noinc_reg = config->readable_noinc_reg;
 835	map->cache_type = config->cache_type;
 
 836
 837	spin_lock_init(&map->async_lock);
 838	INIT_LIST_HEAD(&map->async_list);
 839	INIT_LIST_HEAD(&map->async_free);
 840	init_waitqueue_head(&map->async_waitq);
 841
 842	if (config->read_flag_mask ||
 843	    config->write_flag_mask ||
 844	    config->zero_flag_mask) {
 845		map->read_flag_mask = config->read_flag_mask;
 846		map->write_flag_mask = config->write_flag_mask;
 847	} else if (bus) {
 848		map->read_flag_mask = bus->read_flag_mask;
 849	}
 850
 851	if (!bus) {
 852		map->reg_read  = config->reg_read;
 853		map->reg_write = config->reg_write;
 854
 855		map->defer_caching = false;
 856		goto skip_format_initialization;
 857	} else if (!bus->read || !bus->write) {
 858		map->reg_read = _regmap_bus_reg_read;
 859		map->reg_write = _regmap_bus_reg_write;
 860		map->reg_update_bits = bus->reg_update_bits;
 861
 862		map->defer_caching = false;
 863		goto skip_format_initialization;
 864	} else {
 865		map->reg_read  = _regmap_bus_read;
 866		map->reg_update_bits = bus->reg_update_bits;
 867	}
 868
 869	reg_endian = regmap_get_reg_endian(bus, config);
 870	val_endian = regmap_get_val_endian(dev, bus, config);
 871
 872	switch (config->reg_bits + map->reg_shift) {
 873	case 2:
 874		switch (config->val_bits) {
 875		case 6:
 876			map->format.format_write = regmap_format_2_6_write;
 877			break;
 878		default:
 879			goto err_hwlock;
 880		}
 881		break;
 882
 883	case 4:
 884		switch (config->val_bits) {
 885		case 12:
 886			map->format.format_write = regmap_format_4_12_write;
 887			break;
 888		default:
 889			goto err_hwlock;
 890		}
 891		break;
 892
 893	case 7:
 894		switch (config->val_bits) {
 895		case 9:
 896			map->format.format_write = regmap_format_7_9_write;
 897			break;
 898		case 17:
 899			map->format.format_write = regmap_format_7_17_write;
 900			break;
 901		default:
 902			goto err_hwlock;
 903		}
 904		break;
 905
 906	case 10:
 907		switch (config->val_bits) {
 908		case 14:
 909			map->format.format_write = regmap_format_10_14_write;
 910			break;
 911		default:
 912			goto err_hwlock;
 913		}
 914		break;
 915
 916	case 12:
 917		switch (config->val_bits) {
 918		case 20:
 919			map->format.format_write = regmap_format_12_20_write;
 920			break;
 921		default:
 922			goto err_hwlock;
 923		}
 924		break;
 925
 926	case 8:
 927		map->format.format_reg = regmap_format_8;
 928		break;
 929
 930	case 16:
 931		switch (reg_endian) {
 932		case REGMAP_ENDIAN_BIG:
 933			map->format.format_reg = regmap_format_16_be;
 934			break;
 935		case REGMAP_ENDIAN_LITTLE:
 936			map->format.format_reg = regmap_format_16_le;
 937			break;
 938		case REGMAP_ENDIAN_NATIVE:
 939			map->format.format_reg = regmap_format_16_native;
 940			break;
 941		default:
 942			goto err_hwlock;
 943		}
 944		break;
 945
 946	case 24:
 947		if (reg_endian != REGMAP_ENDIAN_BIG)
 948			goto err_hwlock;
 949		map->format.format_reg = regmap_format_24;
 950		break;
 951
 952	case 32:
 953		switch (reg_endian) {
 954		case REGMAP_ENDIAN_BIG:
 955			map->format.format_reg = regmap_format_32_be;
 956			break;
 957		case REGMAP_ENDIAN_LITTLE:
 958			map->format.format_reg = regmap_format_32_le;
 959			break;
 960		case REGMAP_ENDIAN_NATIVE:
 961			map->format.format_reg = regmap_format_32_native;
 962			break;
 963		default:
 964			goto err_hwlock;
 965		}
 966		break;
 967
 968#ifdef CONFIG_64BIT
 969	case 64:
 970		switch (reg_endian) {
 971		case REGMAP_ENDIAN_BIG:
 972			map->format.format_reg = regmap_format_64_be;
 973			break;
 974		case REGMAP_ENDIAN_LITTLE:
 975			map->format.format_reg = regmap_format_64_le;
 976			break;
 977		case REGMAP_ENDIAN_NATIVE:
 978			map->format.format_reg = regmap_format_64_native;
 979			break;
 980		default:
 981			goto err_hwlock;
 982		}
 983		break;
 984#endif
 985
 986	default:
 987		goto err_hwlock;
 988	}
 989
 990	if (val_endian == REGMAP_ENDIAN_NATIVE)
 991		map->format.parse_inplace = regmap_parse_inplace_noop;
 992
 993	switch (config->val_bits) {
 994	case 8:
 995		map->format.format_val = regmap_format_8;
 996		map->format.parse_val = regmap_parse_8;
 997		map->format.parse_inplace = regmap_parse_inplace_noop;
 998		break;
 999	case 16:
1000		switch (val_endian) {
1001		case REGMAP_ENDIAN_BIG:
1002			map->format.format_val = regmap_format_16_be;
1003			map->format.parse_val = regmap_parse_16_be;
1004			map->format.parse_inplace = regmap_parse_16_be_inplace;
1005			break;
1006		case REGMAP_ENDIAN_LITTLE:
1007			map->format.format_val = regmap_format_16_le;
1008			map->format.parse_val = regmap_parse_16_le;
1009			map->format.parse_inplace = regmap_parse_16_le_inplace;
1010			break;
1011		case REGMAP_ENDIAN_NATIVE:
1012			map->format.format_val = regmap_format_16_native;
1013			map->format.parse_val = regmap_parse_16_native;
1014			break;
1015		default:
1016			goto err_hwlock;
1017		}
1018		break;
1019	case 24:
1020		if (val_endian != REGMAP_ENDIAN_BIG)
1021			goto err_hwlock;
1022		map->format.format_val = regmap_format_24;
1023		map->format.parse_val = regmap_parse_24;
1024		break;
1025	case 32:
1026		switch (val_endian) {
1027		case REGMAP_ENDIAN_BIG:
1028			map->format.format_val = regmap_format_32_be;
1029			map->format.parse_val = regmap_parse_32_be;
1030			map->format.parse_inplace = regmap_parse_32_be_inplace;
1031			break;
1032		case REGMAP_ENDIAN_LITTLE:
1033			map->format.format_val = regmap_format_32_le;
1034			map->format.parse_val = regmap_parse_32_le;
1035			map->format.parse_inplace = regmap_parse_32_le_inplace;
1036			break;
1037		case REGMAP_ENDIAN_NATIVE:
1038			map->format.format_val = regmap_format_32_native;
1039			map->format.parse_val = regmap_parse_32_native;
1040			break;
1041		default:
1042			goto err_hwlock;
1043		}
1044		break;
1045#ifdef CONFIG_64BIT
1046	case 64:
1047		switch (val_endian) {
1048		case REGMAP_ENDIAN_BIG:
1049			map->format.format_val = regmap_format_64_be;
1050			map->format.parse_val = regmap_parse_64_be;
1051			map->format.parse_inplace = regmap_parse_64_be_inplace;
1052			break;
1053		case REGMAP_ENDIAN_LITTLE:
1054			map->format.format_val = regmap_format_64_le;
1055			map->format.parse_val = regmap_parse_64_le;
1056			map->format.parse_inplace = regmap_parse_64_le_inplace;
1057			break;
1058		case REGMAP_ENDIAN_NATIVE:
1059			map->format.format_val = regmap_format_64_native;
1060			map->format.parse_val = regmap_parse_64_native;
1061			break;
1062		default:
1063			goto err_hwlock;
1064		}
1065		break;
1066#endif
1067	}
1068
1069	if (map->format.format_write) {
1070		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1071		    (val_endian != REGMAP_ENDIAN_BIG))
1072			goto err_hwlock;
1073		map->use_single_write = true;
1074	}
1075
1076	if (!map->format.format_write &&
1077	    !(map->format.format_reg && map->format.format_val))
1078		goto err_hwlock;
1079
1080	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1081	if (map->work_buf == NULL) {
1082		ret = -ENOMEM;
1083		goto err_hwlock;
1084	}
1085
1086	if (map->format.format_write) {
1087		map->defer_caching = false;
1088		map->reg_write = _regmap_bus_formatted_write;
1089	} else if (map->format.format_val) {
1090		map->defer_caching = true;
1091		map->reg_write = _regmap_bus_raw_write;
1092	}
1093
1094skip_format_initialization:
1095
1096	map->range_tree = RB_ROOT;
1097	for (i = 0; i < config->num_ranges; i++) {
1098		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1099		struct regmap_range_node *new;
1100
1101		/* Sanity check */
1102		if (range_cfg->range_max < range_cfg->range_min) {
1103			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1104				range_cfg->range_max, range_cfg->range_min);
1105			goto err_range;
1106		}
1107
1108		if (range_cfg->range_max > map->max_register) {
1109			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1110				range_cfg->range_max, map->max_register);
1111			goto err_range;
1112		}
1113
1114		if (range_cfg->selector_reg > map->max_register) {
1115			dev_err(map->dev,
1116				"Invalid range %d: selector out of map\n", i);
1117			goto err_range;
1118		}
1119
1120		if (range_cfg->window_len == 0) {
1121			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1122				i);
1123			goto err_range;
1124		}
1125
1126		/* Make sure, that this register range has no selector
1127		   or data window within its boundary */
1128		for (j = 0; j < config->num_ranges; j++) {
1129			unsigned sel_reg = config->ranges[j].selector_reg;
1130			unsigned win_min = config->ranges[j].window_start;
1131			unsigned win_max = win_min +
1132					   config->ranges[j].window_len - 1;
1133
1134			/* Allow data window inside its own virtual range */
1135			if (j == i)
1136				continue;
1137
1138			if (range_cfg->range_min <= sel_reg &&
1139			    sel_reg <= range_cfg->range_max) {
1140				dev_err(map->dev,
1141					"Range %d: selector for %d in window\n",
1142					i, j);
1143				goto err_range;
1144			}
1145
1146			if (!(win_max < range_cfg->range_min ||
1147			      win_min > range_cfg->range_max)) {
1148				dev_err(map->dev,
1149					"Range %d: window for %d in window\n",
1150					i, j);
1151				goto err_range;
1152			}
1153		}
1154
1155		new = kzalloc(sizeof(*new), GFP_KERNEL);
1156		if (new == NULL) {
1157			ret = -ENOMEM;
1158			goto err_range;
1159		}
1160
1161		new->map = map;
1162		new->name = range_cfg->name;
1163		new->range_min = range_cfg->range_min;
1164		new->range_max = range_cfg->range_max;
1165		new->selector_reg = range_cfg->selector_reg;
1166		new->selector_mask = range_cfg->selector_mask;
1167		new->selector_shift = range_cfg->selector_shift;
1168		new->window_start = range_cfg->window_start;
1169		new->window_len = range_cfg->window_len;
1170
1171		if (!_regmap_range_add(map, new)) {
1172			dev_err(map->dev, "Failed to add range %d\n", i);
1173			kfree(new);
1174			goto err_range;
1175		}
1176
1177		if (map->selector_work_buf == NULL) {
1178			map->selector_work_buf =
1179				kzalloc(map->format.buf_size, GFP_KERNEL);
1180			if (map->selector_work_buf == NULL) {
1181				ret = -ENOMEM;
1182				goto err_range;
1183			}
1184		}
1185	}
1186
1187	ret = regcache_init(map, config);
1188	if (ret != 0)
1189		goto err_range;
1190
1191	if (dev) {
1192		ret = regmap_attach_dev(dev, map, config);
1193		if (ret != 0)
1194			goto err_regcache;
1195	} else {
1196		regmap_debugfs_init(map);
1197	}
1198
1199	return map;
1200
1201err_regcache:
1202	regcache_exit(map);
1203err_range:
1204	regmap_range_exit(map);
1205	kfree(map->work_buf);
1206err_hwlock:
1207	if (map->hwlock)
1208		hwspin_lock_free(map->hwlock);
1209err_name:
1210	kfree_const(map->name);
1211err_map:
1212	kfree(map);
1213err:
1214	return ERR_PTR(ret);
1215}
1216EXPORT_SYMBOL_GPL(__regmap_init);
1217
1218static void devm_regmap_release(struct device *dev, void *res)
1219{
1220	regmap_exit(*(struct regmap **)res);
1221}
1222
1223struct regmap *__devm_regmap_init(struct device *dev,
1224				  const struct regmap_bus *bus,
1225				  void *bus_context,
1226				  const struct regmap_config *config,
1227				  struct lock_class_key *lock_key,
1228				  const char *lock_name)
1229{
1230	struct regmap **ptr, *regmap;
1231
1232	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1233	if (!ptr)
1234		return ERR_PTR(-ENOMEM);
1235
1236	regmap = __regmap_init(dev, bus, bus_context, config,
1237			       lock_key, lock_name);
1238	if (!IS_ERR(regmap)) {
1239		*ptr = regmap;
1240		devres_add(dev, ptr);
1241	} else {
1242		devres_free(ptr);
1243	}
1244
1245	return regmap;
1246}
1247EXPORT_SYMBOL_GPL(__devm_regmap_init);
1248
1249static void regmap_field_init(struct regmap_field *rm_field,
1250	struct regmap *regmap, struct reg_field reg_field)
1251{
1252	rm_field->regmap = regmap;
1253	rm_field->reg = reg_field.reg;
1254	rm_field->shift = reg_field.lsb;
1255	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1256	rm_field->id_size = reg_field.id_size;
1257	rm_field->id_offset = reg_field.id_offset;
1258}
1259
1260/**
1261 * devm_regmap_field_alloc() - Allocate and initialise a register field.
 
1262 *
1263 * @dev: Device that will be interacted with
1264 * @regmap: regmap bank in which this register field is located.
1265 * @reg_field: Register field with in the bank.
1266 *
1267 * The return value will be an ERR_PTR() on error or a valid pointer
1268 * to a struct regmap_field. The regmap_field will be automatically freed
1269 * by the device management code.
1270 */
1271struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1272		struct regmap *regmap, struct reg_field reg_field)
1273{
1274	struct regmap_field *rm_field = devm_kzalloc(dev,
1275					sizeof(*rm_field), GFP_KERNEL);
1276	if (!rm_field)
1277		return ERR_PTR(-ENOMEM);
1278
1279	regmap_field_init(rm_field, regmap, reg_field);
1280
1281	return rm_field;
1282
1283}
1284EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1285
1286
1287/**
1288 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1289 *
1290 * @regmap: regmap bank in which this register field is located.
1291 * @rm_field: regmap register fields within the bank.
1292 * @reg_field: Register fields within the bank.
1293 * @num_fields: Number of register fields.
1294 *
1295 * The return value will be an -ENOMEM on error or zero for success.
1296 * Newly allocated regmap_fields should be freed by calling
1297 * regmap_field_bulk_free()
1298 */
1299int regmap_field_bulk_alloc(struct regmap *regmap,
1300			    struct regmap_field **rm_field,
1301			    struct reg_field *reg_field,
1302			    int num_fields)
1303{
1304	struct regmap_field *rf;
1305	int i;
1306
1307	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1308	if (!rf)
1309		return -ENOMEM;
1310
1311	for (i = 0; i < num_fields; i++) {
1312		regmap_field_init(&rf[i], regmap, reg_field[i]);
1313		rm_field[i] = &rf[i];
1314	}
1315
1316	return 0;
1317}
1318EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1319
1320/**
1321 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1322 * fields.
1323 *
1324 * @dev: Device that will be interacted with
1325 * @regmap: regmap bank in which this register field is located.
1326 * @rm_field: regmap register fields within the bank.
1327 * @reg_field: Register fields within the bank.
1328 * @num_fields: Number of register fields.
1329 *
1330 * The return value will be an -ENOMEM on error or zero for success.
1331 * Newly allocated regmap_fields will be automatically freed by the
1332 * device management code.
1333 */
1334int devm_regmap_field_bulk_alloc(struct device *dev,
1335				 struct regmap *regmap,
1336				 struct regmap_field **rm_field,
1337				 struct reg_field *reg_field,
1338				 int num_fields)
1339{
1340	struct regmap_field *rf;
1341	int i;
1342
1343	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1344	if (!rf)
1345		return -ENOMEM;
1346
1347	for (i = 0; i < num_fields; i++) {
1348		regmap_field_init(&rf[i], regmap, reg_field[i]);
1349		rm_field[i] = &rf[i];
1350	}
1351
1352	return 0;
1353}
1354EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1355
1356/**
1357 * regmap_field_bulk_free() - Free register field allocated using
1358 *                       regmap_field_bulk_alloc.
1359 *
1360 * @field: regmap fields which should be freed.
1361 */
1362void regmap_field_bulk_free(struct regmap_field *field)
1363{
1364	kfree(field);
1365}
1366EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1367
1368/**
1369 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1370 *                            devm_regmap_field_bulk_alloc.
1371 *
1372 * @dev: Device that will be interacted with
1373 * @field: regmap field which should be freed.
1374 *
1375 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1376 * drivers need not call this function, as the memory allocated via devm
1377 * will be freed as per device-driver life-cycle.
1378 */
1379void devm_regmap_field_bulk_free(struct device *dev,
1380				 struct regmap_field *field)
1381{
1382	devm_kfree(dev, field);
1383}
1384EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1385
1386/**
1387 * devm_regmap_field_free() - Free a register field allocated using
1388 *                            devm_regmap_field_alloc.
1389 *
1390 * @dev: Device that will be interacted with
1391 * @field: regmap field which should be freed.
1392 *
1393 * Free register field allocated using devm_regmap_field_alloc(). Usually
1394 * drivers need not call this function, as the memory allocated via devm
1395 * will be freed as per device-driver life-cyle.
1396 */
1397void devm_regmap_field_free(struct device *dev,
1398	struct regmap_field *field)
1399{
1400	devm_kfree(dev, field);
1401}
1402EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1403
1404/**
1405 * regmap_field_alloc() - Allocate and initialise a register field.
 
1406 *
1407 * @regmap: regmap bank in which this register field is located.
1408 * @reg_field: Register field with in the bank.
1409 *
1410 * The return value will be an ERR_PTR() on error or a valid pointer
1411 * to a struct regmap_field. The regmap_field should be freed by the
1412 * user once its finished working with it using regmap_field_free().
1413 */
1414struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1415		struct reg_field reg_field)
1416{
1417	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1418
1419	if (!rm_field)
1420		return ERR_PTR(-ENOMEM);
1421
1422	regmap_field_init(rm_field, regmap, reg_field);
1423
1424	return rm_field;
1425}
1426EXPORT_SYMBOL_GPL(regmap_field_alloc);
1427
1428/**
1429 * regmap_field_free() - Free register field allocated using
1430 *                       regmap_field_alloc.
1431 *
1432 * @field: regmap field which should be freed.
1433 */
1434void regmap_field_free(struct regmap_field *field)
1435{
1436	kfree(field);
1437}
1438EXPORT_SYMBOL_GPL(regmap_field_free);
1439
1440/**
1441 * regmap_reinit_cache() - Reinitialise the current register cache
1442 *
1443 * @map: Register map to operate on.
1444 * @config: New configuration.  Only the cache data will be used.
1445 *
1446 * Discard any existing register cache for the map and initialize a
1447 * new cache.  This can be used to restore the cache to defaults or to
1448 * update the cache configuration to reflect runtime discovery of the
1449 * hardware.
1450 *
1451 * No explicit locking is done here, the user needs to ensure that
1452 * this function will not race with other calls to regmap.
1453 */
1454int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1455{
1456	int ret;
1457
1458	regcache_exit(map);
1459	regmap_debugfs_exit(map);
1460
1461	map->max_register = config->max_register;
1462	map->writeable_reg = config->writeable_reg;
1463	map->readable_reg = config->readable_reg;
1464	map->volatile_reg = config->volatile_reg;
1465	map->precious_reg = config->precious_reg;
1466	map->writeable_noinc_reg = config->writeable_noinc_reg;
1467	map->readable_noinc_reg = config->readable_noinc_reg;
1468	map->cache_type = config->cache_type;
1469
1470	ret = regmap_set_name(map, config);
1471	if (ret)
1472		return ret;
1473
1474	regmap_debugfs_init(map);
1475
1476	map->cache_bypass = false;
1477	map->cache_only = false;
1478
1479	return regcache_init(map, config);
1480}
1481EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1482
1483/**
1484 * regmap_exit() - Free a previously allocated register map
1485 *
1486 * @map: Register map to operate on.
1487 */
1488void regmap_exit(struct regmap *map)
1489{
1490	struct regmap_async *async;
1491
1492	regcache_exit(map);
1493	regmap_debugfs_exit(map);
1494	regmap_range_exit(map);
1495	if (map->bus && map->bus->free_context)
1496		map->bus->free_context(map->bus_context);
1497	kfree(map->work_buf);
1498	while (!list_empty(&map->async_free)) {
1499		async = list_first_entry_or_null(&map->async_free,
1500						 struct regmap_async,
1501						 list);
1502		list_del(&async->list);
1503		kfree(async->work_buf);
1504		kfree(async);
1505	}
1506	if (map->hwlock)
1507		hwspin_lock_free(map->hwlock);
1508	if (map->lock == regmap_lock_mutex)
1509		mutex_destroy(&map->mutex);
1510	kfree_const(map->name);
1511	kfree(map->patch);
1512	if (map->bus && map->bus->free_on_exit)
1513		kfree(map->bus);
1514	kfree(map);
1515}
1516EXPORT_SYMBOL_GPL(regmap_exit);
1517
1518static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1519{
1520	struct regmap **r = res;
1521	if (!r || !*r) {
1522		WARN_ON(!r || !*r);
1523		return 0;
1524	}
1525
1526	/* If the user didn't specify a name match any */
1527	if (data)
1528		return !strcmp((*r)->name, data);
1529	else
1530		return 1;
1531}
1532
1533/**
1534 * dev_get_regmap() - Obtain the regmap (if any) for a device
1535 *
1536 * @dev: Device to retrieve the map for
1537 * @name: Optional name for the register map, usually NULL.
1538 *
1539 * Returns the regmap for the device if one is present, or NULL.  If
1540 * name is specified then it must match the name specified when
1541 * registering the device, if it is NULL then the first regmap found
1542 * will be used.  Devices with multiple register maps are very rare,
1543 * generic code should normally not need to specify a name.
1544 */
1545struct regmap *dev_get_regmap(struct device *dev, const char *name)
1546{
1547	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1548					dev_get_regmap_match, (void *)name);
1549
1550	if (!r)
1551		return NULL;
1552	return *r;
1553}
1554EXPORT_SYMBOL_GPL(dev_get_regmap);
1555
1556/**
1557 * regmap_get_device() - Obtain the device from a regmap
1558 *
1559 * @map: Register map to operate on.
1560 *
1561 * Returns the underlying device that the regmap has been created for.
1562 */
1563struct device *regmap_get_device(struct regmap *map)
1564{
1565	return map->dev;
1566}
1567EXPORT_SYMBOL_GPL(regmap_get_device);
1568
1569static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1570			       struct regmap_range_node *range,
1571			       unsigned int val_num)
1572{
1573	void *orig_work_buf;
1574	unsigned int win_offset;
1575	unsigned int win_page;
1576	bool page_chg;
1577	int ret;
1578
1579	win_offset = (*reg - range->range_min) % range->window_len;
1580	win_page = (*reg - range->range_min) / range->window_len;
1581
1582	if (val_num > 1) {
1583		/* Bulk write shouldn't cross range boundary */
1584		if (*reg + val_num - 1 > range->range_max)
1585			return -EINVAL;
1586
1587		/* ... or single page boundary */
1588		if (val_num > range->window_len - win_offset)
1589			return -EINVAL;
1590	}
1591
1592	/* It is possible to have selector register inside data window.
1593	   In that case, selector register is located on every page and
1594	   it needs no page switching, when accessed alone. */
1595	if (val_num > 1 ||
1596	    range->window_start + win_offset != range->selector_reg) {
1597		/* Use separate work_buf during page switching */
1598		orig_work_buf = map->work_buf;
1599		map->work_buf = map->selector_work_buf;
1600
1601		ret = _regmap_update_bits(map, range->selector_reg,
1602					  range->selector_mask,
1603					  win_page << range->selector_shift,
1604					  &page_chg, false);
1605
1606		map->work_buf = orig_work_buf;
1607
1608		if (ret != 0)
1609			return ret;
1610	}
1611
1612	*reg = range->window_start + win_offset;
1613
1614	return 0;
1615}
1616
1617static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1618					  unsigned long mask)
1619{
1620	u8 *buf;
1621	int i;
1622
1623	if (!mask || !map->work_buf)
1624		return;
1625
1626	buf = map->work_buf;
1627
1628	for (i = 0; i < max_bytes; i++)
1629		buf[i] |= (mask >> (8 * i)) & 0xff;
1630}
1631
1632static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1633				  const void *val, size_t val_len, bool noinc)
1634{
1635	struct regmap_range_node *range;
1636	unsigned long flags;
 
1637	void *work_val = map->work_buf + map->format.reg_bytes +
1638		map->format.pad_bytes;
1639	void *buf;
1640	int ret = -ENOTSUPP;
1641	size_t len;
1642	int i;
1643
1644	WARN_ON(!map->bus);
1645
1646	/* Check for unwritable or noinc registers in range
1647	 * before we start
1648	 */
1649	if (!regmap_writeable_noinc(map, reg)) {
1650		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1651			unsigned int element =
1652				reg + regmap_get_offset(map, i);
1653			if (!regmap_writeable(map, element) ||
1654				regmap_writeable_noinc(map, element))
1655				return -EINVAL;
1656		}
1657	}
1658
1659	if (!map->cache_bypass && map->format.parse_val) {
1660		unsigned int ival;
1661		int val_bytes = map->format.val_bytes;
1662		for (i = 0; i < val_len / val_bytes; i++) {
1663			ival = map->format.parse_val(val + (i * val_bytes));
1664			ret = regcache_write(map,
1665					     reg + regmap_get_offset(map, i),
1666					     ival);
1667			if (ret) {
1668				dev_err(map->dev,
1669					"Error in caching of register: %x ret: %d\n",
1670					reg + regmap_get_offset(map, i), ret);
1671				return ret;
1672			}
1673		}
1674		if (map->cache_only) {
1675			map->cache_dirty = true;
1676			return 0;
1677		}
1678	}
1679
1680	range = _regmap_range_lookup(map, reg);
1681	if (range) {
1682		int val_num = val_len / map->format.val_bytes;
1683		int win_offset = (reg - range->range_min) % range->window_len;
1684		int win_residue = range->window_len - win_offset;
1685
1686		/* If the write goes beyond the end of the window split it */
1687		while (val_num > win_residue) {
1688			dev_dbg(map->dev, "Writing window %d/%zu\n",
1689				win_residue, val_len / map->format.val_bytes);
1690			ret = _regmap_raw_write_impl(map, reg, val,
1691						     win_residue *
1692						     map->format.val_bytes, noinc);
1693			if (ret != 0)
1694				return ret;
1695
1696			reg += win_residue;
1697			val_num -= win_residue;
1698			val += win_residue * map->format.val_bytes;
1699			val_len -= win_residue * map->format.val_bytes;
1700
1701			win_offset = (reg - range->range_min) %
1702				range->window_len;
1703			win_residue = range->window_len - win_offset;
1704		}
1705
1706		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1707		if (ret != 0)
1708			return ret;
1709	}
1710
1711	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1712	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1713				      map->write_flag_mask);
1714
1715	/*
1716	 * Essentially all I/O mechanisms will be faster with a single
1717	 * buffer to write.  Since register syncs often generate raw
1718	 * writes of single registers optimise that case.
1719	 */
1720	if (val != work_val && val_len == map->format.val_bytes) {
1721		memcpy(work_val, val, map->format.val_bytes);
1722		val = work_val;
1723	}
1724
1725	if (map->async && map->bus->async_write) {
1726		struct regmap_async *async;
1727
1728		trace_regmap_async_write_start(map, reg, val_len);
1729
1730		spin_lock_irqsave(&map->async_lock, flags);
1731		async = list_first_entry_or_null(&map->async_free,
1732						 struct regmap_async,
1733						 list);
1734		if (async)
1735			list_del(&async->list);
1736		spin_unlock_irqrestore(&map->async_lock, flags);
1737
1738		if (!async) {
1739			async = map->bus->async_alloc();
1740			if (!async)
1741				return -ENOMEM;
1742
1743			async->work_buf = kzalloc(map->format.buf_size,
1744						  GFP_KERNEL | GFP_DMA);
1745			if (!async->work_buf) {
1746				kfree(async);
1747				return -ENOMEM;
1748			}
1749		}
1750
1751		async->map = map;
1752
1753		/* If the caller supplied the value we can use it safely. */
1754		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1755		       map->format.reg_bytes + map->format.val_bytes);
1756
1757		spin_lock_irqsave(&map->async_lock, flags);
1758		list_add_tail(&async->list, &map->async_list);
1759		spin_unlock_irqrestore(&map->async_lock, flags);
1760
1761		if (val != work_val)
1762			ret = map->bus->async_write(map->bus_context,
1763						    async->work_buf,
1764						    map->format.reg_bytes +
1765						    map->format.pad_bytes,
1766						    val, val_len, async);
1767		else
1768			ret = map->bus->async_write(map->bus_context,
1769						    async->work_buf,
1770						    map->format.reg_bytes +
1771						    map->format.pad_bytes +
1772						    val_len, NULL, 0, async);
1773
1774		if (ret != 0) {
1775			dev_err(map->dev, "Failed to schedule write: %d\n",
1776				ret);
1777
1778			spin_lock_irqsave(&map->async_lock, flags);
1779			list_move(&async->list, &map->async_free);
1780			spin_unlock_irqrestore(&map->async_lock, flags);
1781		}
1782
1783		return ret;
1784	}
1785
1786	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1787
1788	/* If we're doing a single register write we can probably just
1789	 * send the work_buf directly, otherwise try to do a gather
1790	 * write.
1791	 */
1792	if (val == work_val)
1793		ret = map->bus->write(map->bus_context, map->work_buf,
1794				      map->format.reg_bytes +
1795				      map->format.pad_bytes +
1796				      val_len);
1797	else if (map->bus->gather_write)
1798		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1799					     map->format.reg_bytes +
1800					     map->format.pad_bytes,
1801					     val, val_len);
1802	else
1803		ret = -ENOTSUPP;
1804
1805	/* If that didn't work fall back on linearising by hand. */
1806	if (ret == -ENOTSUPP) {
1807		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1808		buf = kzalloc(len, GFP_KERNEL);
1809		if (!buf)
1810			return -ENOMEM;
1811
1812		memcpy(buf, map->work_buf, map->format.reg_bytes);
1813		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1814		       val, val_len);
1815		ret = map->bus->write(map->bus_context, buf, len);
1816
1817		kfree(buf);
1818	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1819		/* regcache_drop_region() takes lock that we already have,
1820		 * thus call map->cache_ops->drop() directly
1821		 */
1822		if (map->cache_ops && map->cache_ops->drop)
1823			map->cache_ops->drop(map, reg, reg + 1);
1824	}
1825
1826	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1827
1828	return ret;
1829}
1830
1831/**
1832 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1833 *
1834 * @map: Map to check.
1835 */
1836bool regmap_can_raw_write(struct regmap *map)
1837{
1838	return map->bus && map->bus->write && map->format.format_val &&
1839		map->format.format_reg;
1840}
1841EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1842
1843/**
1844 * regmap_get_raw_read_max - Get the maximum size we can read
1845 *
1846 * @map: Map to check.
1847 */
1848size_t regmap_get_raw_read_max(struct regmap *map)
1849{
1850	return map->max_raw_read;
1851}
1852EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1853
1854/**
1855 * regmap_get_raw_write_max - Get the maximum size we can read
1856 *
1857 * @map: Map to check.
1858 */
1859size_t regmap_get_raw_write_max(struct regmap *map)
1860{
1861	return map->max_raw_write;
1862}
1863EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1864
1865static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1866				       unsigned int val)
1867{
1868	int ret;
1869	struct regmap_range_node *range;
1870	struct regmap *map = context;
1871
1872	WARN_ON(!map->bus || !map->format.format_write);
1873
1874	range = _regmap_range_lookup(map, reg);
1875	if (range) {
1876		ret = _regmap_select_page(map, &reg, range, 1);
1877		if (ret != 0)
1878			return ret;
1879	}
1880
1881	map->format.format_write(map, reg, val);
1882
1883	trace_regmap_hw_write_start(map, reg, 1);
1884
1885	ret = map->bus->write(map->bus_context, map->work_buf,
1886			      map->format.buf_size);
1887
1888	trace_regmap_hw_write_done(map, reg, 1);
1889
1890	return ret;
1891}
1892
1893static int _regmap_bus_reg_write(void *context, unsigned int reg,
1894				 unsigned int val)
1895{
1896	struct regmap *map = context;
1897
1898	return map->bus->reg_write(map->bus_context, reg, val);
1899}
1900
1901static int _regmap_bus_raw_write(void *context, unsigned int reg,
1902				 unsigned int val)
1903{
1904	struct regmap *map = context;
1905
1906	WARN_ON(!map->bus || !map->format.format_val);
1907
1908	map->format.format_val(map->work_buf + map->format.reg_bytes
1909			       + map->format.pad_bytes, val, 0);
1910	return _regmap_raw_write_impl(map, reg,
1911				      map->work_buf +
1912				      map->format.reg_bytes +
1913				      map->format.pad_bytes,
1914				      map->format.val_bytes,
1915				      false);
1916}
1917
1918static inline void *_regmap_map_get_context(struct regmap *map)
1919{
1920	return (map->bus) ? map : map->bus_context;
1921}
1922
1923int _regmap_write(struct regmap *map, unsigned int reg,
1924		  unsigned int val)
1925{
1926	int ret;
1927	void *context = _regmap_map_get_context(map);
1928
1929	if (!regmap_writeable(map, reg))
1930		return -EIO;
1931
1932	if (!map->cache_bypass && !map->defer_caching) {
1933		ret = regcache_write(map, reg, val);
1934		if (ret != 0)
1935			return ret;
1936		if (map->cache_only) {
1937			map->cache_dirty = true;
1938			return 0;
1939		}
1940	}
1941
1942	ret = map->reg_write(context, reg, val);
1943	if (ret == 0) {
1944		if (regmap_should_log(map))
1945			dev_info(map->dev, "%x <= %x\n", reg, val);
1946
1947		trace_regmap_reg_write(map, reg, val);
1948	}
1949
1950	return ret;
1951}
1952
1953/**
1954 * regmap_write() - Write a value to a single register
1955 *
1956 * @map: Register map to write to
1957 * @reg: Register to write to
1958 * @val: Value to be written
1959 *
1960 * A value of zero will be returned on success, a negative errno will
1961 * be returned in error cases.
1962 */
1963int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1964{
1965	int ret;
1966
1967	if (!IS_ALIGNED(reg, map->reg_stride))
1968		return -EINVAL;
1969
1970	map->lock(map->lock_arg);
1971
1972	ret = _regmap_write(map, reg, val);
1973
1974	map->unlock(map->lock_arg);
1975
1976	return ret;
1977}
1978EXPORT_SYMBOL_GPL(regmap_write);
1979
1980/**
1981 * regmap_write_async() - Write a value to a single register asynchronously
1982 *
1983 * @map: Register map to write to
1984 * @reg: Register to write to
1985 * @val: Value to be written
1986 *
1987 * A value of zero will be returned on success, a negative errno will
1988 * be returned in error cases.
1989 */
1990int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1991{
1992	int ret;
1993
1994	if (!IS_ALIGNED(reg, map->reg_stride))
1995		return -EINVAL;
1996
1997	map->lock(map->lock_arg);
1998
1999	map->async = true;
2000
2001	ret = _regmap_write(map, reg, val);
2002
2003	map->async = false;
2004
2005	map->unlock(map->lock_arg);
2006
2007	return ret;
2008}
2009EXPORT_SYMBOL_GPL(regmap_write_async);
2010
2011int _regmap_raw_write(struct regmap *map, unsigned int reg,
2012		      const void *val, size_t val_len, bool noinc)
2013{
2014	size_t val_bytes = map->format.val_bytes;
2015	size_t val_count = val_len / val_bytes;
2016	size_t chunk_count, chunk_bytes;
2017	size_t chunk_regs = val_count;
2018	int ret, i;
2019
2020	if (!val_count)
2021		return -EINVAL;
2022
2023	if (map->use_single_write)
2024		chunk_regs = 1;
2025	else if (map->max_raw_write && val_len > map->max_raw_write)
2026		chunk_regs = map->max_raw_write / val_bytes;
2027
2028	chunk_count = val_count / chunk_regs;
2029	chunk_bytes = chunk_regs * val_bytes;
2030
2031	/* Write as many bytes as possible with chunk_size */
2032	for (i = 0; i < chunk_count; i++) {
2033		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2034		if (ret)
2035			return ret;
2036
2037		reg += regmap_get_offset(map, chunk_regs);
2038		val += chunk_bytes;
2039		val_len -= chunk_bytes;
2040	}
2041
2042	/* Write remaining bytes */
2043	if (val_len)
2044		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2045
2046	return ret;
2047}
2048
2049/**
2050 * regmap_raw_write() - Write raw values to one or more registers
2051 *
2052 * @map: Register map to write to
2053 * @reg: Initial register to write to
2054 * @val: Block of data to be written, laid out for direct transmission to the
2055 *       device
2056 * @val_len: Length of data pointed to by val.
2057 *
2058 * This function is intended to be used for things like firmware
2059 * download where a large block of data needs to be transferred to the
2060 * device.  No formatting will be done on the data provided.
2061 *
2062 * A value of zero will be returned on success, a negative errno will
2063 * be returned in error cases.
2064 */
2065int regmap_raw_write(struct regmap *map, unsigned int reg,
2066		     const void *val, size_t val_len)
2067{
2068	int ret;
2069
2070	if (!regmap_can_raw_write(map))
2071		return -EINVAL;
2072	if (val_len % map->format.val_bytes)
2073		return -EINVAL;
 
 
2074
2075	map->lock(map->lock_arg);
2076
2077	ret = _regmap_raw_write(map, reg, val, val_len, false);
2078
2079	map->unlock(map->lock_arg);
2080
2081	return ret;
2082}
2083EXPORT_SYMBOL_GPL(regmap_raw_write);
2084
2085/**
2086 * regmap_noinc_write(): Write data from a register without incrementing the
2087 *			register number
2088 *
2089 * @map: Register map to write to
2090 * @reg: Register to write to
2091 * @val: Pointer to data buffer
2092 * @val_len: Length of output buffer in bytes.
2093 *
2094 * The regmap API usually assumes that bulk bus write operations will write a
2095 * range of registers. Some devices have certain registers for which a write
2096 * operation can write to an internal FIFO.
2097 *
2098 * The target register must be volatile but registers after it can be
2099 * completely unrelated cacheable registers.
2100 *
2101 * This will attempt multiple writes as required to write val_len bytes.
2102 *
2103 * A value of zero will be returned on success, a negative errno will be
2104 * returned in error cases.
2105 */
2106int regmap_noinc_write(struct regmap *map, unsigned int reg,
2107		      const void *val, size_t val_len)
2108{
2109	size_t write_len;
2110	int ret;
2111
2112	if (!map->bus)
2113		return -EINVAL;
2114	if (!map->bus->write)
2115		return -ENOTSUPP;
2116	if (val_len % map->format.val_bytes)
2117		return -EINVAL;
2118	if (!IS_ALIGNED(reg, map->reg_stride))
2119		return -EINVAL;
2120	if (val_len == 0)
2121		return -EINVAL;
2122
2123	map->lock(map->lock_arg);
2124
2125	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2126		ret = -EINVAL;
2127		goto out_unlock;
2128	}
2129
2130	while (val_len) {
2131		if (map->max_raw_write && map->max_raw_write < val_len)
2132			write_len = map->max_raw_write;
2133		else
2134			write_len = val_len;
2135		ret = _regmap_raw_write(map, reg, val, write_len, true);
2136		if (ret)
2137			goto out_unlock;
2138		val = ((u8 *)val) + write_len;
2139		val_len -= write_len;
2140	}
2141
2142out_unlock:
2143	map->unlock(map->lock_arg);
2144	return ret;
2145}
2146EXPORT_SYMBOL_GPL(regmap_noinc_write);
2147
2148/**
2149 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2150 *                                   register field.
2151 *
2152 * @field: Register field to write to
2153 * @mask: Bitmask to change
2154 * @val: Value to be written
2155 * @change: Boolean indicating if a write was done
2156 * @async: Boolean indicating asynchronously
2157 * @force: Boolean indicating use force update
2158 *
2159 * Perform a read/modify/write cycle on the register field with change,
2160 * async, force option.
2161 *
2162 * A value of zero will be returned on success, a negative errno will
2163 * be returned in error cases.
2164 */
2165int regmap_field_update_bits_base(struct regmap_field *field,
2166				  unsigned int mask, unsigned int val,
2167				  bool *change, bool async, bool force)
2168{
2169	mask = (mask << field->shift) & field->mask;
2170
2171	return regmap_update_bits_base(field->regmap, field->reg,
2172				       mask, val << field->shift,
2173				       change, async, force);
2174}
2175EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2176
2177/**
2178 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2179 *                                    register field with port ID
 
2180 *
2181 * @field: Register field to write to
2182 * @id: port ID
2183 * @mask: Bitmask to change
2184 * @val: Value to be written
2185 * @change: Boolean indicating if a write was done
2186 * @async: Boolean indicating asynchronously
2187 * @force: Boolean indicating use force update
2188 *
2189 * A value of zero will be returned on success, a negative errno will
2190 * be returned in error cases.
2191 */
2192int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2193				   unsigned int mask, unsigned int val,
2194				   bool *change, bool async, bool force)
2195{
2196	if (id >= field->id_size)
2197		return -EINVAL;
2198
2199	mask = (mask << field->shift) & field->mask;
2200
2201	return regmap_update_bits_base(field->regmap,
2202				       field->reg + (field->id_offset * id),
2203				       mask, val << field->shift,
2204				       change, async, force);
2205}
2206EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2207
2208/**
2209 * regmap_bulk_write() - Write multiple registers to the device
2210 *
2211 * @map: Register map to write to
2212 * @reg: First register to be write from
2213 * @val: Block of data to be written, in native register size for device
2214 * @val_count: Number of registers to write
2215 *
2216 * This function is intended to be used for writing a large block of
2217 * data to the device either in single transfer or multiple transfer.
2218 *
2219 * A value of zero will be returned on success, a negative errno will
2220 * be returned in error cases.
2221 */
2222int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2223		     size_t val_count)
2224{
2225	int ret = 0, i;
2226	size_t val_bytes = map->format.val_bytes;
 
2227
 
 
2228	if (!IS_ALIGNED(reg, map->reg_stride))
2229		return -EINVAL;
2230
2231	/*
2232	 * Some devices don't support bulk write, for them we have a series of
2233	 * single write operations.
 
 
 
 
 
 
2234	 */
2235	if (!map->bus || !map->format.parse_inplace) {
2236		map->lock(map->lock_arg);
2237		for (i = 0; i < val_count; i++) {
2238			unsigned int ival;
2239
2240			switch (val_bytes) {
2241			case 1:
2242				ival = *(u8 *)(val + (i * val_bytes));
2243				break;
2244			case 2:
2245				ival = *(u16 *)(val + (i * val_bytes));
2246				break;
2247			case 4:
2248				ival = *(u32 *)(val + (i * val_bytes));
2249				break;
2250#ifdef CONFIG_64BIT
2251			case 8:
2252				ival = *(u64 *)(val + (i * val_bytes));
2253				break;
2254#endif
2255			default:
2256				ret = -EINVAL;
2257				goto out;
2258			}
2259
2260			ret = _regmap_write(map,
2261					    reg + regmap_get_offset(map, i),
2262					    ival);
2263			if (ret != 0)
2264				goto out;
2265		}
2266out:
2267		map->unlock(map->lock_arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2268	} else {
2269		void *wval;
2270
 
 
 
2271		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2272		if (!wval)
 
2273			return -ENOMEM;
2274
2275		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2276			map->format.parse_inplace(wval + i);
2277
2278		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
 
 
2279
2280		kfree(wval);
2281	}
2282	return ret;
2283}
2284EXPORT_SYMBOL_GPL(regmap_bulk_write);
2285
2286/*
2287 * _regmap_raw_multi_reg_write()
2288 *
2289 * the (register,newvalue) pairs in regs have not been formatted, but
2290 * they are all in the same page and have been changed to being page
2291 * relative. The page register has been written if that was necessary.
2292 */
2293static int _regmap_raw_multi_reg_write(struct regmap *map,
2294				       const struct reg_sequence *regs,
2295				       size_t num_regs)
2296{
2297	int ret;
2298	void *buf;
2299	int i;
2300	u8 *u8;
2301	size_t val_bytes = map->format.val_bytes;
2302	size_t reg_bytes = map->format.reg_bytes;
2303	size_t pad_bytes = map->format.pad_bytes;
2304	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2305	size_t len = pair_size * num_regs;
2306
2307	if (!len)
2308		return -EINVAL;
2309
2310	buf = kzalloc(len, GFP_KERNEL);
2311	if (!buf)
2312		return -ENOMEM;
2313
2314	/* We have to linearise by hand. */
2315
2316	u8 = buf;
2317
2318	for (i = 0; i < num_regs; i++) {
2319		unsigned int reg = regs[i].reg;
2320		unsigned int val = regs[i].def;
2321		trace_regmap_hw_write_start(map, reg, 1);
2322		map->format.format_reg(u8, reg, map->reg_shift);
2323		u8 += reg_bytes + pad_bytes;
2324		map->format.format_val(u8, val, 0);
2325		u8 += val_bytes;
2326	}
2327	u8 = buf;
2328	*u8 |= map->write_flag_mask;
2329
2330	ret = map->bus->write(map->bus_context, buf, len);
2331
2332	kfree(buf);
2333
2334	for (i = 0; i < num_regs; i++) {
2335		int reg = regs[i].reg;
2336		trace_regmap_hw_write_done(map, reg, 1);
2337	}
2338	return ret;
2339}
2340
2341static unsigned int _regmap_register_page(struct regmap *map,
2342					  unsigned int reg,
2343					  struct regmap_range_node *range)
2344{
2345	unsigned int win_page = (reg - range->range_min) / range->window_len;
2346
2347	return win_page;
2348}
2349
2350static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2351					       struct reg_sequence *regs,
2352					       size_t num_regs)
2353{
2354	int ret;
2355	int i, n;
2356	struct reg_sequence *base;
2357	unsigned int this_page = 0;
2358	unsigned int page_change = 0;
2359	/*
2360	 * the set of registers are not neccessarily in order, but
2361	 * since the order of write must be preserved this algorithm
2362	 * chops the set each time the page changes. This also applies
2363	 * if there is a delay required at any point in the sequence.
2364	 */
2365	base = regs;
2366	for (i = 0, n = 0; i < num_regs; i++, n++) {
2367		unsigned int reg = regs[i].reg;
2368		struct regmap_range_node *range;
2369
2370		range = _regmap_range_lookup(map, reg);
2371		if (range) {
2372			unsigned int win_page = _regmap_register_page(map, reg,
2373								      range);
2374
2375			if (i == 0)
2376				this_page = win_page;
2377			if (win_page != this_page) {
2378				this_page = win_page;
2379				page_change = 1;
2380			}
2381		}
2382
2383		/* If we have both a page change and a delay make sure to
2384		 * write the regs and apply the delay before we change the
2385		 * page.
2386		 */
2387
2388		if (page_change || regs[i].delay_us) {
2389
2390				/* For situations where the first write requires
2391				 * a delay we need to make sure we don't call
2392				 * raw_multi_reg_write with n=0
2393				 * This can't occur with page breaks as we
2394				 * never write on the first iteration
2395				 */
2396				if (regs[i].delay_us && i == 0)
2397					n = 1;
2398
2399				ret = _regmap_raw_multi_reg_write(map, base, n);
2400				if (ret != 0)
2401					return ret;
2402
2403				if (regs[i].delay_us) {
2404					if (map->can_sleep)
2405						fsleep(regs[i].delay_us);
2406					else
2407						udelay(regs[i].delay_us);
2408				}
2409
2410				base += n;
2411				n = 0;
2412
2413				if (page_change) {
2414					ret = _regmap_select_page(map,
2415								  &base[n].reg,
2416								  range, 1);
2417					if (ret != 0)
2418						return ret;
2419
2420					page_change = 0;
2421				}
2422
2423		}
2424
2425	}
2426	if (n > 0)
2427		return _regmap_raw_multi_reg_write(map, base, n);
2428	return 0;
2429}
2430
2431static int _regmap_multi_reg_write(struct regmap *map,
2432				   const struct reg_sequence *regs,
2433				   size_t num_regs)
2434{
2435	int i;
2436	int ret;
2437
2438	if (!map->can_multi_write) {
2439		for (i = 0; i < num_regs; i++) {
2440			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2441			if (ret != 0)
2442				return ret;
2443
2444			if (regs[i].delay_us) {
2445				if (map->can_sleep)
2446					fsleep(regs[i].delay_us);
2447				else
2448					udelay(regs[i].delay_us);
2449			}
2450		}
2451		return 0;
2452	}
2453
2454	if (!map->format.parse_inplace)
2455		return -EINVAL;
2456
2457	if (map->writeable_reg)
2458		for (i = 0; i < num_regs; i++) {
2459			int reg = regs[i].reg;
2460			if (!map->writeable_reg(map->dev, reg))
2461				return -EINVAL;
2462			if (!IS_ALIGNED(reg, map->reg_stride))
2463				return -EINVAL;
2464		}
2465
2466	if (!map->cache_bypass) {
2467		for (i = 0; i < num_regs; i++) {
2468			unsigned int val = regs[i].def;
2469			unsigned int reg = regs[i].reg;
2470			ret = regcache_write(map, reg, val);
2471			if (ret) {
2472				dev_err(map->dev,
2473				"Error in caching of register: %x ret: %d\n",
2474								reg, ret);
2475				return ret;
2476			}
2477		}
2478		if (map->cache_only) {
2479			map->cache_dirty = true;
2480			return 0;
2481		}
2482	}
2483
2484	WARN_ON(!map->bus);
2485
2486	for (i = 0; i < num_regs; i++) {
2487		unsigned int reg = regs[i].reg;
2488		struct regmap_range_node *range;
2489
2490		/* Coalesce all the writes between a page break or a delay
2491		 * in a sequence
2492		 */
2493		range = _regmap_range_lookup(map, reg);
2494		if (range || regs[i].delay_us) {
2495			size_t len = sizeof(struct reg_sequence)*num_regs;
2496			struct reg_sequence *base = kmemdup(regs, len,
2497							   GFP_KERNEL);
2498			if (!base)
2499				return -ENOMEM;
2500			ret = _regmap_range_multi_paged_reg_write(map, base,
2501								  num_regs);
2502			kfree(base);
2503
2504			return ret;
2505		}
2506	}
2507	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2508}
2509
2510/**
2511 * regmap_multi_reg_write() - Write multiple registers to the device
 
 
 
2512 *
2513 * @map: Register map to write to
2514 * @regs: Array of structures containing register,value to be written
2515 * @num_regs: Number of registers to write
2516 *
2517 * Write multiple registers to the device where the set of register, value
2518 * pairs are supplied in any order, possibly not all in a single range.
2519 *
2520 * The 'normal' block write mode will send ultimately send data on the
2521 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2522 * addressed. However, this alternative block multi write mode will send
2523 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2524 * must of course support the mode.
2525 *
2526 * A value of zero will be returned on success, a negative errno will be
2527 * returned in error cases.
2528 */
2529int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2530			   int num_regs)
2531{
2532	int ret;
2533
2534	map->lock(map->lock_arg);
2535
2536	ret = _regmap_multi_reg_write(map, regs, num_regs);
2537
2538	map->unlock(map->lock_arg);
2539
2540	return ret;
2541}
2542EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2543
2544/**
2545 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2546 *                                     device but not the cache
 
 
2547 *
2548 * @map: Register map to write to
2549 * @regs: Array of structures containing register,value to be written
2550 * @num_regs: Number of registers to write
2551 *
2552 * Write multiple registers to the device but not the cache where the set
2553 * of register are supplied in any order.
2554 *
2555 * This function is intended to be used for writing a large block of data
2556 * atomically to the device in single transfer for those I2C client devices
2557 * that implement this alternative block write mode.
2558 *
2559 * A value of zero will be returned on success, a negative errno will
2560 * be returned in error cases.
2561 */
2562int regmap_multi_reg_write_bypassed(struct regmap *map,
2563				    const struct reg_sequence *regs,
2564				    int num_regs)
2565{
2566	int ret;
2567	bool bypass;
2568
2569	map->lock(map->lock_arg);
2570
2571	bypass = map->cache_bypass;
2572	map->cache_bypass = true;
2573
2574	ret = _regmap_multi_reg_write(map, regs, num_regs);
2575
2576	map->cache_bypass = bypass;
2577
2578	map->unlock(map->lock_arg);
2579
2580	return ret;
2581}
2582EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2583
2584/**
2585 * regmap_raw_write_async() - Write raw values to one or more registers
2586 *                            asynchronously
2587 *
2588 * @map: Register map to write to
2589 * @reg: Initial register to write to
2590 * @val: Block of data to be written, laid out for direct transmission to the
2591 *       device.  Must be valid until regmap_async_complete() is called.
2592 * @val_len: Length of data pointed to by val.
2593 *
2594 * This function is intended to be used for things like firmware
2595 * download where a large block of data needs to be transferred to the
2596 * device.  No formatting will be done on the data provided.
2597 *
2598 * If supported by the underlying bus the write will be scheduled
2599 * asynchronously, helping maximise I/O speed on higher speed buses
2600 * like SPI.  regmap_async_complete() can be called to ensure that all
2601 * asynchrnous writes have been completed.
2602 *
2603 * A value of zero will be returned on success, a negative errno will
2604 * be returned in error cases.
2605 */
2606int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2607			   const void *val, size_t val_len)
2608{
2609	int ret;
2610
2611	if (val_len % map->format.val_bytes)
2612		return -EINVAL;
2613	if (!IS_ALIGNED(reg, map->reg_stride))
2614		return -EINVAL;
2615
2616	map->lock(map->lock_arg);
2617
2618	map->async = true;
2619
2620	ret = _regmap_raw_write(map, reg, val, val_len, false);
2621
2622	map->async = false;
2623
2624	map->unlock(map->lock_arg);
2625
2626	return ret;
2627}
2628EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2629
2630static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2631			    unsigned int val_len, bool noinc)
2632{
2633	struct regmap_range_node *range;
 
2634	int ret;
2635
2636	WARN_ON(!map->bus);
2637
2638	if (!map->bus || !map->bus->read)
2639		return -EINVAL;
2640
2641	range = _regmap_range_lookup(map, reg);
2642	if (range) {
2643		ret = _regmap_select_page(map, &reg, range,
2644					  noinc ? 1 : val_len / map->format.val_bytes);
2645		if (ret != 0)
2646			return ret;
2647	}
2648
2649	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2650	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2651				      map->read_flag_mask);
 
 
 
 
 
 
 
2652	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2653
2654	ret = map->bus->read(map->bus_context, map->work_buf,
2655			     map->format.reg_bytes + map->format.pad_bytes,
2656			     val, val_len);
2657
2658	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2659
2660	return ret;
2661}
2662
2663static int _regmap_bus_reg_read(void *context, unsigned int reg,
2664				unsigned int *val)
2665{
2666	struct regmap *map = context;
2667
2668	return map->bus->reg_read(map->bus_context, reg, val);
2669}
2670
2671static int _regmap_bus_read(void *context, unsigned int reg,
2672			    unsigned int *val)
2673{
2674	int ret;
2675	struct regmap *map = context;
2676	void *work_val = map->work_buf + map->format.reg_bytes +
2677		map->format.pad_bytes;
2678
2679	if (!map->format.parse_val)
2680		return -EINVAL;
2681
2682	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2683	if (ret == 0)
2684		*val = map->format.parse_val(work_val);
2685
2686	return ret;
2687}
2688
2689static int _regmap_read(struct regmap *map, unsigned int reg,
2690			unsigned int *val)
2691{
2692	int ret;
2693	void *context = _regmap_map_get_context(map);
2694
2695	if (!map->cache_bypass) {
2696		ret = regcache_read(map, reg, val);
2697		if (ret == 0)
2698			return 0;
2699	}
2700
2701	if (map->cache_only)
2702		return -EBUSY;
2703
2704	if (!regmap_readable(map, reg))
2705		return -EIO;
2706
2707	ret = map->reg_read(context, reg, val);
2708	if (ret == 0) {
2709		if (regmap_should_log(map))
 
2710			dev_info(map->dev, "%x => %x\n", reg, *val);
 
2711
2712		trace_regmap_reg_read(map, reg, *val);
2713
2714		if (!map->cache_bypass)
2715			regcache_write(map, reg, *val);
2716	}
2717
2718	return ret;
2719}
2720
2721/**
2722 * regmap_read() - Read a value from a single register
2723 *
2724 * @map: Register map to read from
2725 * @reg: Register to be read from
2726 * @val: Pointer to store read value
2727 *
2728 * A value of zero will be returned on success, a negative errno will
2729 * be returned in error cases.
2730 */
2731int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2732{
2733	int ret;
2734
2735	if (!IS_ALIGNED(reg, map->reg_stride))
2736		return -EINVAL;
2737
2738	map->lock(map->lock_arg);
2739
2740	ret = _regmap_read(map, reg, val);
2741
2742	map->unlock(map->lock_arg);
2743
2744	return ret;
2745}
2746EXPORT_SYMBOL_GPL(regmap_read);
2747
2748/**
2749 * regmap_raw_read() - Read raw data from the device
2750 *
2751 * @map: Register map to read from
2752 * @reg: First register to be read from
2753 * @val: Pointer to store read value
2754 * @val_len: Size of data to read
2755 *
2756 * A value of zero will be returned on success, a negative errno will
2757 * be returned in error cases.
2758 */
2759int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2760		    size_t val_len)
2761{
2762	size_t val_bytes = map->format.val_bytes;
2763	size_t val_count = val_len / val_bytes;
2764	unsigned int v;
2765	int ret, i;
2766
2767	if (!map->bus)
2768		return -EINVAL;
2769	if (val_len % map->format.val_bytes)
2770		return -EINVAL;
2771	if (!IS_ALIGNED(reg, map->reg_stride))
2772		return -EINVAL;
2773	if (val_count == 0)
2774		return -EINVAL;
2775
2776	map->lock(map->lock_arg);
2777
2778	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2779	    map->cache_type == REGCACHE_NONE) {
2780		size_t chunk_count, chunk_bytes;
2781		size_t chunk_regs = val_count;
2782
2783		if (!map->bus->read) {
2784			ret = -ENOTSUPP;
2785			goto out;
2786		}
 
 
 
 
2787
2788		if (map->use_single_read)
2789			chunk_regs = 1;
2790		else if (map->max_raw_read && val_len > map->max_raw_read)
2791			chunk_regs = map->max_raw_read / val_bytes;
2792
2793		chunk_count = val_count / chunk_regs;
2794		chunk_bytes = chunk_regs * val_bytes;
2795
2796		/* Read bytes that fit into whole chunks */
2797		for (i = 0; i < chunk_count; i++) {
2798			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2799			if (ret != 0)
2800				goto out;
2801
2802			reg += regmap_get_offset(map, chunk_regs);
2803			val += chunk_bytes;
2804			val_len -= chunk_bytes;
2805		}
2806
2807		/* Read remaining bytes */
2808		if (val_len) {
2809			ret = _regmap_raw_read(map, reg, val, val_len, false);
2810			if (ret != 0)
2811				goto out;
2812		}
2813	} else {
2814		/* Otherwise go word by word for the cache; should be low
2815		 * cost as we expect to hit the cache.
2816		 */
2817		for (i = 0; i < val_count; i++) {
2818			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2819					   &v);
2820			if (ret != 0)
2821				goto out;
2822
2823			map->format.format_val(val + (i * val_bytes), v, 0);
2824		}
2825	}
2826
2827 out:
2828	map->unlock(map->lock_arg);
2829
2830	return ret;
2831}
2832EXPORT_SYMBOL_GPL(regmap_raw_read);
2833
2834/**
2835 * regmap_noinc_read(): Read data from a register without incrementing the
2836 *			register number
2837 *
2838 * @map: Register map to read from
2839 * @reg: Register to read from
2840 * @val: Pointer to data buffer
2841 * @val_len: Length of output buffer in bytes.
2842 *
2843 * The regmap API usually assumes that bulk bus read operations will read a
2844 * range of registers. Some devices have certain registers for which a read
2845 * operation read will read from an internal FIFO.
2846 *
2847 * The target register must be volatile but registers after it can be
2848 * completely unrelated cacheable registers.
2849 *
2850 * This will attempt multiple reads as required to read val_len bytes.
2851 *
2852 * A value of zero will be returned on success, a negative errno will be
2853 * returned in error cases.
2854 */
2855int regmap_noinc_read(struct regmap *map, unsigned int reg,
2856		      void *val, size_t val_len)
2857{
2858	size_t read_len;
2859	int ret;
2860
2861	if (!map->bus)
2862		return -EINVAL;
2863	if (!map->bus->read)
2864		return -ENOTSUPP;
2865	if (val_len % map->format.val_bytes)
2866		return -EINVAL;
2867	if (!IS_ALIGNED(reg, map->reg_stride))
2868		return -EINVAL;
2869	if (val_len == 0)
2870		return -EINVAL;
2871
2872	map->lock(map->lock_arg);
2873
2874	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2875		ret = -EINVAL;
2876		goto out_unlock;
2877	}
2878
2879	while (val_len) {
2880		if (map->max_raw_read && map->max_raw_read < val_len)
2881			read_len = map->max_raw_read;
2882		else
2883			read_len = val_len;
2884		ret = _regmap_raw_read(map, reg, val, read_len, true);
2885		if (ret)
2886			goto out_unlock;
2887		val = ((u8 *)val) + read_len;
2888		val_len -= read_len;
2889	}
2890
2891out_unlock:
2892	map->unlock(map->lock_arg);
2893	return ret;
2894}
2895EXPORT_SYMBOL_GPL(regmap_noinc_read);
2896
2897/**
2898 * regmap_field_read(): Read a value to a single register field
2899 *
2900 * @field: Register field to read from
2901 * @val: Pointer to store read value
2902 *
2903 * A value of zero will be returned on success, a negative errno will
2904 * be returned in error cases.
2905 */
2906int regmap_field_read(struct regmap_field *field, unsigned int *val)
2907{
2908	int ret;
2909	unsigned int reg_val;
2910	ret = regmap_read(field->regmap, field->reg, &reg_val);
2911	if (ret != 0)
2912		return ret;
2913
2914	reg_val &= field->mask;
2915	reg_val >>= field->shift;
2916	*val = reg_val;
2917
2918	return ret;
2919}
2920EXPORT_SYMBOL_GPL(regmap_field_read);
2921
2922/**
2923 * regmap_fields_read() - Read a value to a single register field with port ID
2924 *
2925 * @field: Register field to read from
2926 * @id: port ID
2927 * @val: Pointer to store read value
2928 *
2929 * A value of zero will be returned on success, a negative errno will
2930 * be returned in error cases.
2931 */
2932int regmap_fields_read(struct regmap_field *field, unsigned int id,
2933		       unsigned int *val)
2934{
2935	int ret;
2936	unsigned int reg_val;
2937
2938	if (id >= field->id_size)
2939		return -EINVAL;
2940
2941	ret = regmap_read(field->regmap,
2942			  field->reg + (field->id_offset * id),
2943			  &reg_val);
2944	if (ret != 0)
2945		return ret;
2946
2947	reg_val &= field->mask;
2948	reg_val >>= field->shift;
2949	*val = reg_val;
2950
2951	return ret;
2952}
2953EXPORT_SYMBOL_GPL(regmap_fields_read);
2954
2955/**
2956 * regmap_bulk_read() - Read multiple registers from the device
2957 *
2958 * @map: Register map to read from
2959 * @reg: First register to be read from
2960 * @val: Pointer to store read value, in native register size for device
2961 * @val_count: Number of registers to read
2962 *
2963 * A value of zero will be returned on success, a negative errno will
2964 * be returned in error cases.
2965 */
2966int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2967		     size_t val_count)
2968{
2969	int ret, i;
2970	size_t val_bytes = map->format.val_bytes;
2971	bool vol = regmap_volatile_range(map, reg, val_count);
2972
2973	if (!IS_ALIGNED(reg, map->reg_stride))
2974		return -EINVAL;
2975	if (val_count == 0)
2976		return -EINVAL;
2977
2978	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2979		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2980		if (ret != 0)
2981			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2982
2983		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2984			map->format.parse_inplace(val + i);
2985	} else {
2986#ifdef CONFIG_64BIT
2987		u64 *u64 = val;
2988#endif
2989		u32 *u32 = val;
2990		u16 *u16 = val;
2991		u8 *u8 = val;
2992
2993		map->lock(map->lock_arg);
2994
2995		for (i = 0; i < val_count; i++) {
2996			unsigned int ival;
 
 
 
 
2997
2998			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2999					   &ival);
3000			if (ret != 0)
3001				goto out;
 
 
 
 
 
 
 
 
 
 
 
3002
3003			switch (map->format.val_bytes) {
3004#ifdef CONFIG_64BIT
3005			case 8:
3006				u64[i] = ival;
3007				break;
3008#endif
3009			case 4:
3010				u32[i] = ival;
3011				break;
3012			case 2:
3013				u16[i] = ival;
3014				break;
3015			case 1:
3016				u8[i] = ival;
3017				break;
3018			default:
3019				ret = -EINVAL;
3020				goto out;
3021			}
3022		}
3023
3024out:
3025		map->unlock(map->lock_arg);
3026	}
3027
3028	return ret;
3029}
3030EXPORT_SYMBOL_GPL(regmap_bulk_read);
3031
3032static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3033			       unsigned int mask, unsigned int val,
3034			       bool *change, bool force_write)
3035{
3036	int ret;
3037	unsigned int tmp, orig;
3038
3039	if (change)
3040		*change = false;
3041
3042	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3043		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3044		if (ret == 0 && change)
3045			*change = true;
3046	} else {
3047		ret = _regmap_read(map, reg, &orig);
3048		if (ret != 0)
3049			return ret;
3050
3051		tmp = orig & ~mask;
3052		tmp |= val & mask;
3053
3054		if (force_write || (tmp != orig)) {
3055			ret = _regmap_write(map, reg, tmp);
3056			if (ret == 0 && change)
3057				*change = true;
3058		}
3059	}
3060
3061	return ret;
3062}
3063
3064/**
3065 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
 
 
3066 *
3067 * @map: Register map to update
3068 * @reg: Register to update
3069 * @mask: Bitmask to change
3070 * @val: New value for bitmask
3071 * @change: Boolean indicating if a write was done
3072 * @async: Boolean indicating asynchronously
3073 * @force: Boolean indicating use force update
3074 *
3075 * Perform a read/modify/write cycle on a register map with change, async, force
3076 * options.
3077 *
3078 * If async is true:
3079 *
3080 * With most buses the read must be done synchronously so this is most useful
3081 * for devices with a cache which do not need to interact with the hardware to
3082 * determine the current register value.
3083 *
3084 * Returns zero for success, a negative number on error.
3085 */
3086int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3087			    unsigned int mask, unsigned int val,
3088			    bool *change, bool async, bool force)
3089{
3090	int ret;
3091
3092	map->lock(map->lock_arg);
3093
3094	map->async = async;
3095
3096	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3097
3098	map->async = false;
3099
3100	map->unlock(map->lock_arg);
3101
3102	return ret;
3103}
3104EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3105
3106/**
3107 * regmap_test_bits() - Check if all specified bits are set in a register.
3108 *
3109 * @map: Register map to operate on
3110 * @reg: Register to read from
3111 * @bits: Bits to test
3112 *
3113 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3114 * bits are set and a negative error number if the underlying regmap_read()
3115 * fails.
3116 */
3117int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3118{
3119	unsigned int val, ret;
3120
3121	ret = regmap_read(map, reg, &val);
3122	if (ret)
3123		return ret;
3124
3125	return (val & bits) == bits;
3126}
3127EXPORT_SYMBOL_GPL(regmap_test_bits);
3128
3129void regmap_async_complete_cb(struct regmap_async *async, int ret)
3130{
3131	struct regmap *map = async->map;
3132	bool wake;
3133
3134	trace_regmap_async_io_complete(map);
3135
3136	spin_lock(&map->async_lock);
3137	list_move(&async->list, &map->async_free);
3138	wake = list_empty(&map->async_list);
3139
3140	if (ret != 0)
3141		map->async_ret = ret;
3142
3143	spin_unlock(&map->async_lock);
3144
3145	if (wake)
3146		wake_up(&map->async_waitq);
3147}
3148EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3149
3150static int regmap_async_is_done(struct regmap *map)
3151{
3152	unsigned long flags;
3153	int ret;
3154
3155	spin_lock_irqsave(&map->async_lock, flags);
3156	ret = list_empty(&map->async_list);
3157	spin_unlock_irqrestore(&map->async_lock, flags);
3158
3159	return ret;
3160}
3161
3162/**
3163 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3164 *
3165 * @map: Map to operate on.
3166 *
3167 * Blocks until any pending asynchronous I/O has completed.  Returns
3168 * an error code for any failed I/O operations.
3169 */
3170int regmap_async_complete(struct regmap *map)
3171{
3172	unsigned long flags;
3173	int ret;
3174
3175	/* Nothing to do with no async support */
3176	if (!map->bus || !map->bus->async_write)
3177		return 0;
3178
3179	trace_regmap_async_complete_start(map);
3180
3181	wait_event(map->async_waitq, regmap_async_is_done(map));
3182
3183	spin_lock_irqsave(&map->async_lock, flags);
3184	ret = map->async_ret;
3185	map->async_ret = 0;
3186	spin_unlock_irqrestore(&map->async_lock, flags);
3187
3188	trace_regmap_async_complete_done(map);
3189
3190	return ret;
3191}
3192EXPORT_SYMBOL_GPL(regmap_async_complete);
3193
3194/**
3195 * regmap_register_patch - Register and apply register updates to be applied
3196 *                         on device initialistion
3197 *
3198 * @map: Register map to apply updates to.
3199 * @regs: Values to update.
3200 * @num_regs: Number of entries in regs.
3201 *
3202 * Register a set of register updates to be applied to the device
3203 * whenever the device registers are synchronised with the cache and
3204 * apply them immediately.  Typically this is used to apply
3205 * corrections to be applied to the device defaults on startup, such
3206 * as the updates some vendors provide to undocumented registers.
3207 *
3208 * The caller must ensure that this function cannot be called
3209 * concurrently with either itself or regcache_sync().
3210 */
3211int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3212			  int num_regs)
3213{
3214	struct reg_sequence *p;
3215	int ret;
3216	bool bypass;
3217
3218	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3219	    num_regs))
3220		return 0;
3221
3222	p = krealloc(map->patch,
3223		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3224		     GFP_KERNEL);
3225	if (p) {
3226		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3227		map->patch = p;
3228		map->patch_regs += num_regs;
3229	} else {
3230		return -ENOMEM;
3231	}
3232
3233	map->lock(map->lock_arg);
3234
3235	bypass = map->cache_bypass;
3236
3237	map->cache_bypass = true;
3238	map->async = true;
3239
3240	ret = _regmap_multi_reg_write(map, regs, num_regs);
3241
3242	map->async = false;
3243	map->cache_bypass = bypass;
3244
3245	map->unlock(map->lock_arg);
3246
3247	regmap_async_complete(map);
3248
3249	return ret;
3250}
3251EXPORT_SYMBOL_GPL(regmap_register_patch);
3252
3253/**
3254 * regmap_get_val_bytes() - Report the size of a register value
3255 *
3256 * @map: Register map to operate on.
3257 *
3258 * Report the size of a register value, mainly intended to for use by
3259 * generic infrastructure built on top of regmap.
3260 */
3261int regmap_get_val_bytes(struct regmap *map)
3262{
3263	if (map->format.format_write)
3264		return -EINVAL;
3265
3266	return map->format.val_bytes;
3267}
3268EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3269
3270/**
3271 * regmap_get_max_register() - Report the max register value
3272 *
3273 * @map: Register map to operate on.
3274 *
3275 * Report the max register value, mainly intended to for use by
3276 * generic infrastructure built on top of regmap.
3277 */
3278int regmap_get_max_register(struct regmap *map)
3279{
3280	return map->max_register ? map->max_register : -EINVAL;
3281}
3282EXPORT_SYMBOL_GPL(regmap_get_max_register);
3283
3284/**
3285 * regmap_get_reg_stride() - Report the register address stride
3286 *
3287 * @map: Register map to operate on.
3288 *
3289 * Report the register address stride, mainly intended to for use by
3290 * generic infrastructure built on top of regmap.
3291 */
3292int regmap_get_reg_stride(struct regmap *map)
3293{
3294	return map->reg_stride;
3295}
3296EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3297
3298int regmap_parse_val(struct regmap *map, const void *buf,
3299			unsigned int *val)
3300{
3301	if (!map->format.parse_val)
3302		return -EINVAL;
3303
3304	*val = map->format.parse_val(buf);
3305
3306	return 0;
3307}
3308EXPORT_SYMBOL_GPL(regmap_parse_val);
3309
3310static int __init regmap_initcall(void)
3311{
3312	regmap_debugfs_initcall();
3313
3314	return 0;
3315}
3316postcore_initcall(regmap_initcall);