Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/of.h>
  19#include <linux/rbtree.h>
  20#include <linux/sched.h>
  21#include <linux/delay.h>
  22#include <linux/log2.h>
  23
  24#define CREATE_TRACE_POINTS
  25#include "trace.h"
  26
  27#include "internal.h"
  28
  29/*
  30 * Sometimes for failures during very early init the trace
  31 * infrastructure isn't available early enough to be used.  For this
  32 * sort of problem defining LOG_DEVICE will add printks for basic
  33 * register I/O on a specific device.
  34 */
  35#undef LOG_DEVICE
  36
  37static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  38			       unsigned int mask, unsigned int val,
  39			       bool *change, bool force_write);
  40
  41static int _regmap_bus_reg_read(void *context, unsigned int reg,
  42				unsigned int *val);
  43static int _regmap_bus_read(void *context, unsigned int reg,
  44			    unsigned int *val);
  45static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  46				       unsigned int val);
  47static int _regmap_bus_reg_write(void *context, unsigned int reg,
  48				 unsigned int val);
  49static int _regmap_bus_raw_write(void *context, unsigned int reg,
  50				 unsigned int val);
  51
  52bool regmap_reg_in_ranges(unsigned int reg,
  53			  const struct regmap_range *ranges,
  54			  unsigned int nranges)
  55{
  56	const struct regmap_range *r;
  57	int i;
  58
  59	for (i = 0, r = ranges; i < nranges; i++, r++)
  60		if (regmap_reg_in_range(reg, r))
  61			return true;
  62	return false;
  63}
  64EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  65
  66bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  67			      const struct regmap_access_table *table)
  68{
  69	/* Check "no ranges" first */
  70	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  71		return false;
  72
  73	/* In case zero "yes ranges" are supplied, any reg is OK */
  74	if (!table->n_yes_ranges)
  75		return true;
  76
  77	return regmap_reg_in_ranges(reg, table->yes_ranges,
  78				    table->n_yes_ranges);
  79}
  80EXPORT_SYMBOL_GPL(regmap_check_range_table);
  81
  82bool regmap_writeable(struct regmap *map, unsigned int reg)
  83{
  84	if (map->max_register && reg > map->max_register)
  85		return false;
  86
  87	if (map->writeable_reg)
  88		return map->writeable_reg(map->dev, reg);
  89
  90	if (map->wr_table)
  91		return regmap_check_range_table(map, reg, map->wr_table);
  92
  93	return true;
  94}
  95
  96bool regmap_readable(struct regmap *map, unsigned int reg)
  97{
  98	if (!map->reg_read)
  99		return false;
 100
 101	if (map->max_register && reg > map->max_register)
 102		return false;
 103
 104	if (map->format.format_write)
 105		return false;
 106
 107	if (map->readable_reg)
 108		return map->readable_reg(map->dev, reg);
 109
 110	if (map->rd_table)
 111		return regmap_check_range_table(map, reg, map->rd_table);
 112
 113	return true;
 114}
 115
 116bool regmap_volatile(struct regmap *map, unsigned int reg)
 117{
 118	if (!map->format.format_write && !regmap_readable(map, reg))
 119		return false;
 120
 121	if (map->volatile_reg)
 122		return map->volatile_reg(map->dev, reg);
 123
 124	if (map->volatile_table)
 125		return regmap_check_range_table(map, reg, map->volatile_table);
 126
 127	if (map->cache_ops)
 128		return false;
 129	else
 130		return true;
 131}
 132
 133bool regmap_precious(struct regmap *map, unsigned int reg)
 134{
 135	if (!regmap_readable(map, reg))
 136		return false;
 137
 138	if (map->precious_reg)
 139		return map->precious_reg(map->dev, reg);
 140
 141	if (map->precious_table)
 142		return regmap_check_range_table(map, reg, map->precious_table);
 143
 144	return false;
 145}
 146
 147static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 148	size_t num)
 149{
 150	unsigned int i;
 151
 152	for (i = 0; i < num; i++)
 153		if (!regmap_volatile(map, reg + i))
 154			return false;
 155
 156	return true;
 157}
 158
 159static void regmap_format_2_6_write(struct regmap *map,
 160				     unsigned int reg, unsigned int val)
 161{
 162	u8 *out = map->work_buf;
 163
 164	*out = (reg << 6) | val;
 165}
 166
 167static void regmap_format_4_12_write(struct regmap *map,
 168				     unsigned int reg, unsigned int val)
 169{
 170	__be16 *out = map->work_buf;
 171	*out = cpu_to_be16((reg << 12) | val);
 172}
 173
 174static void regmap_format_7_9_write(struct regmap *map,
 175				    unsigned int reg, unsigned int val)
 176{
 177	__be16 *out = map->work_buf;
 178	*out = cpu_to_be16((reg << 9) | val);
 179}
 180
 181static void regmap_format_10_14_write(struct regmap *map,
 182				    unsigned int reg, unsigned int val)
 183{
 184	u8 *out = map->work_buf;
 185
 186	out[2] = val;
 187	out[1] = (val >> 8) | (reg << 6);
 188	out[0] = reg >> 2;
 189}
 190
 191static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 192{
 193	u8 *b = buf;
 194
 195	b[0] = val << shift;
 196}
 197
 198static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 199{
 200	__be16 *b = buf;
 201
 202	b[0] = cpu_to_be16(val << shift);
 203}
 204
 205static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 206{
 207	__le16 *b = buf;
 208
 209	b[0] = cpu_to_le16(val << shift);
 210}
 211
 212static void regmap_format_16_native(void *buf, unsigned int val,
 213				    unsigned int shift)
 214{
 215	*(u16 *)buf = val << shift;
 216}
 217
 218static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 219{
 220	u8 *b = buf;
 221
 222	val <<= shift;
 223
 224	b[0] = val >> 16;
 225	b[1] = val >> 8;
 226	b[2] = val;
 227}
 228
 229static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 230{
 231	__be32 *b = buf;
 232
 233	b[0] = cpu_to_be32(val << shift);
 234}
 235
 236static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 237{
 238	__le32 *b = buf;
 239
 240	b[0] = cpu_to_le32(val << shift);
 241}
 242
 243static void regmap_format_32_native(void *buf, unsigned int val,
 244				    unsigned int shift)
 245{
 246	*(u32 *)buf = val << shift;
 247}
 248
 249#ifdef CONFIG_64BIT
 250static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 251{
 252	__be64 *b = buf;
 253
 254	b[0] = cpu_to_be64((u64)val << shift);
 255}
 256
 257static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 258{
 259	__le64 *b = buf;
 260
 261	b[0] = cpu_to_le64((u64)val << shift);
 262}
 263
 264static void regmap_format_64_native(void *buf, unsigned int val,
 265				    unsigned int shift)
 266{
 267	*(u64 *)buf = (u64)val << shift;
 268}
 269#endif
 270
 271static void regmap_parse_inplace_noop(void *buf)
 272{
 273}
 274
 275static unsigned int regmap_parse_8(const void *buf)
 276{
 277	const u8 *b = buf;
 278
 279	return b[0];
 280}
 281
 282static unsigned int regmap_parse_16_be(const void *buf)
 283{
 284	const __be16 *b = buf;
 285
 286	return be16_to_cpu(b[0]);
 287}
 288
 289static unsigned int regmap_parse_16_le(const void *buf)
 290{
 291	const __le16 *b = buf;
 292
 293	return le16_to_cpu(b[0]);
 294}
 295
 296static void regmap_parse_16_be_inplace(void *buf)
 297{
 298	__be16 *b = buf;
 299
 300	b[0] = be16_to_cpu(b[0]);
 301}
 302
 303static void regmap_parse_16_le_inplace(void *buf)
 304{
 305	__le16 *b = buf;
 306
 307	b[0] = le16_to_cpu(b[0]);
 308}
 309
 310static unsigned int regmap_parse_16_native(const void *buf)
 311{
 312	return *(u16 *)buf;
 313}
 314
 315static unsigned int regmap_parse_24(const void *buf)
 316{
 317	const u8 *b = buf;
 318	unsigned int ret = b[2];
 319	ret |= ((unsigned int)b[1]) << 8;
 320	ret |= ((unsigned int)b[0]) << 16;
 321
 322	return ret;
 323}
 324
 325static unsigned int regmap_parse_32_be(const void *buf)
 326{
 327	const __be32 *b = buf;
 328
 329	return be32_to_cpu(b[0]);
 330}
 331
 332static unsigned int regmap_parse_32_le(const void *buf)
 333{
 334	const __le32 *b = buf;
 335
 336	return le32_to_cpu(b[0]);
 337}
 338
 339static void regmap_parse_32_be_inplace(void *buf)
 340{
 341	__be32 *b = buf;
 342
 343	b[0] = be32_to_cpu(b[0]);
 344}
 345
 346static void regmap_parse_32_le_inplace(void *buf)
 347{
 348	__le32 *b = buf;
 349
 350	b[0] = le32_to_cpu(b[0]);
 351}
 352
 353static unsigned int regmap_parse_32_native(const void *buf)
 354{
 355	return *(u32 *)buf;
 356}
 357
 358#ifdef CONFIG_64BIT
 359static unsigned int regmap_parse_64_be(const void *buf)
 360{
 361	const __be64 *b = buf;
 362
 363	return be64_to_cpu(b[0]);
 364}
 365
 366static unsigned int regmap_parse_64_le(const void *buf)
 367{
 368	const __le64 *b = buf;
 369
 370	return le64_to_cpu(b[0]);
 371}
 372
 373static void regmap_parse_64_be_inplace(void *buf)
 374{
 375	__be64 *b = buf;
 376
 377	b[0] = be64_to_cpu(b[0]);
 378}
 379
 380static void regmap_parse_64_le_inplace(void *buf)
 381{
 382	__le64 *b = buf;
 383
 384	b[0] = le64_to_cpu(b[0]);
 385}
 386
 387static unsigned int regmap_parse_64_native(const void *buf)
 388{
 389	return *(u64 *)buf;
 390}
 391#endif
 392
 393static void regmap_lock_mutex(void *__map)
 394{
 395	struct regmap *map = __map;
 396	mutex_lock(&map->mutex);
 397}
 398
 399static void regmap_unlock_mutex(void *__map)
 400{
 401	struct regmap *map = __map;
 402	mutex_unlock(&map->mutex);
 403}
 404
 405static void regmap_lock_spinlock(void *__map)
 406__acquires(&map->spinlock)
 407{
 408	struct regmap *map = __map;
 409	unsigned long flags;
 410
 411	spin_lock_irqsave(&map->spinlock, flags);
 412	map->spinlock_flags = flags;
 413}
 414
 415static void regmap_unlock_spinlock(void *__map)
 416__releases(&map->spinlock)
 417{
 418	struct regmap *map = __map;
 419	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 420}
 421
 422static void dev_get_regmap_release(struct device *dev, void *res)
 423{
 424	/*
 425	 * We don't actually have anything to do here; the goal here
 426	 * is not to manage the regmap but to provide a simple way to
 427	 * get the regmap back given a struct device.
 428	 */
 429}
 430
 431static bool _regmap_range_add(struct regmap *map,
 432			      struct regmap_range_node *data)
 433{
 434	struct rb_root *root = &map->range_tree;
 435	struct rb_node **new = &(root->rb_node), *parent = NULL;
 436
 437	while (*new) {
 438		struct regmap_range_node *this =
 439			container_of(*new, struct regmap_range_node, node);
 440
 441		parent = *new;
 442		if (data->range_max < this->range_min)
 443			new = &((*new)->rb_left);
 444		else if (data->range_min > this->range_max)
 445			new = &((*new)->rb_right);
 446		else
 447			return false;
 448	}
 449
 450	rb_link_node(&data->node, parent, new);
 451	rb_insert_color(&data->node, root);
 452
 453	return true;
 454}
 455
 456static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 457						      unsigned int reg)
 458{
 459	struct rb_node *node = map->range_tree.rb_node;
 460
 461	while (node) {
 462		struct regmap_range_node *this =
 463			container_of(node, struct regmap_range_node, node);
 464
 465		if (reg < this->range_min)
 466			node = node->rb_left;
 467		else if (reg > this->range_max)
 468			node = node->rb_right;
 469		else
 470			return this;
 471	}
 472
 473	return NULL;
 474}
 475
 476static void regmap_range_exit(struct regmap *map)
 477{
 478	struct rb_node *next;
 479	struct regmap_range_node *range_node;
 480
 481	next = rb_first(&map->range_tree);
 482	while (next) {
 483		range_node = rb_entry(next, struct regmap_range_node, node);
 484		next = rb_next(&range_node->node);
 485		rb_erase(&range_node->node, &map->range_tree);
 486		kfree(range_node);
 487	}
 488
 489	kfree(map->selector_work_buf);
 490}
 491
 492int regmap_attach_dev(struct device *dev, struct regmap *map,
 493		      const struct regmap_config *config)
 494{
 495	struct regmap **m;
 496
 497	map->dev = dev;
 498
 499	regmap_debugfs_init(map, config->name);
 500
 501	/* Add a devres resource for dev_get_regmap() */
 502	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 503	if (!m) {
 504		regmap_debugfs_exit(map);
 505		return -ENOMEM;
 506	}
 507	*m = map;
 508	devres_add(dev, m);
 509
 510	return 0;
 511}
 512EXPORT_SYMBOL_GPL(regmap_attach_dev);
 513
 514static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 515					const struct regmap_config *config)
 516{
 517	enum regmap_endian endian;
 518
 519	/* Retrieve the endianness specification from the regmap config */
 520	endian = config->reg_format_endian;
 521
 522	/* If the regmap config specified a non-default value, use that */
 523	if (endian != REGMAP_ENDIAN_DEFAULT)
 524		return endian;
 525
 526	/* Retrieve the endianness specification from the bus config */
 527	if (bus && bus->reg_format_endian_default)
 528		endian = bus->reg_format_endian_default;
 529
 530	/* If the bus specified a non-default value, use that */
 531	if (endian != REGMAP_ENDIAN_DEFAULT)
 532		return endian;
 533
 534	/* Use this if no other value was found */
 535	return REGMAP_ENDIAN_BIG;
 536}
 537
 538enum regmap_endian regmap_get_val_endian(struct device *dev,
 539					 const struct regmap_bus *bus,
 540					 const struct regmap_config *config)
 541{
 542	struct device_node *np;
 543	enum regmap_endian endian;
 544
 545	/* Retrieve the endianness specification from the regmap config */
 546	endian = config->val_format_endian;
 547
 548	/* If the regmap config specified a non-default value, use that */
 549	if (endian != REGMAP_ENDIAN_DEFAULT)
 550		return endian;
 551
 552	/* If the dev and dev->of_node exist try to get endianness from DT */
 553	if (dev && dev->of_node) {
 554		np = dev->of_node;
 555
 556		/* Parse the device's DT node for an endianness specification */
 557		if (of_property_read_bool(np, "big-endian"))
 558			endian = REGMAP_ENDIAN_BIG;
 559		else if (of_property_read_bool(np, "little-endian"))
 560			endian = REGMAP_ENDIAN_LITTLE;
 561		else if (of_property_read_bool(np, "native-endian"))
 562			endian = REGMAP_ENDIAN_NATIVE;
 563
 564		/* If the endianness was specified in DT, use that */
 565		if (endian != REGMAP_ENDIAN_DEFAULT)
 566			return endian;
 567	}
 568
 569	/* Retrieve the endianness specification from the bus config */
 570	if (bus && bus->val_format_endian_default)
 571		endian = bus->val_format_endian_default;
 572
 573	/* If the bus specified a non-default value, use that */
 574	if (endian != REGMAP_ENDIAN_DEFAULT)
 575		return endian;
 576
 577	/* Use this if no other value was found */
 578	return REGMAP_ENDIAN_BIG;
 579}
 580EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 581
 582struct regmap *__regmap_init(struct device *dev,
 583			     const struct regmap_bus *bus,
 584			     void *bus_context,
 585			     const struct regmap_config *config,
 586			     struct lock_class_key *lock_key,
 587			     const char *lock_name)
 588{
 589	struct regmap *map;
 590	int ret = -EINVAL;
 591	enum regmap_endian reg_endian, val_endian;
 592	int i, j;
 593
 594	if (!config)
 595		goto err;
 596
 597	map = kzalloc(sizeof(*map), GFP_KERNEL);
 598	if (map == NULL) {
 599		ret = -ENOMEM;
 600		goto err;
 601	}
 602
 603	if (config->lock && config->unlock) {
 604		map->lock = config->lock;
 605		map->unlock = config->unlock;
 606		map->lock_arg = config->lock_arg;
 607	} else {
 608		if ((bus && bus->fast_io) ||
 609		    config->fast_io) {
 610			spin_lock_init(&map->spinlock);
 611			map->lock = regmap_lock_spinlock;
 612			map->unlock = regmap_unlock_spinlock;
 613			lockdep_set_class_and_name(&map->spinlock,
 614						   lock_key, lock_name);
 615		} else {
 616			mutex_init(&map->mutex);
 617			map->lock = regmap_lock_mutex;
 618			map->unlock = regmap_unlock_mutex;
 619			lockdep_set_class_and_name(&map->mutex,
 620						   lock_key, lock_name);
 621		}
 622		map->lock_arg = map;
 623	}
 624
 625	/*
 626	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 627	 * scratch buffers with sleeping allocations.
 628	 */
 629	if ((bus && bus->fast_io) || config->fast_io)
 630		map->alloc_flags = GFP_ATOMIC;
 631	else
 632		map->alloc_flags = GFP_KERNEL;
 633
 634	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 635	map->format.pad_bytes = config->pad_bits / 8;
 636	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 637	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 638			config->val_bits + config->pad_bits, 8);
 639	map->reg_shift = config->pad_bits % 8;
 640	if (config->reg_stride)
 641		map->reg_stride = config->reg_stride;
 642	else
 643		map->reg_stride = 1;
 644	if (is_power_of_2(map->reg_stride))
 645		map->reg_stride_order = ilog2(map->reg_stride);
 646	else
 647		map->reg_stride_order = -1;
 648	map->use_single_read = config->use_single_rw || !bus || !bus->read;
 649	map->use_single_write = config->use_single_rw || !bus || !bus->write;
 650	map->can_multi_write = config->can_multi_write && bus && bus->write;
 651	if (bus) {
 652		map->max_raw_read = bus->max_raw_read;
 653		map->max_raw_write = bus->max_raw_write;
 654	}
 655	map->dev = dev;
 656	map->bus = bus;
 657	map->bus_context = bus_context;
 658	map->max_register = config->max_register;
 659	map->wr_table = config->wr_table;
 660	map->rd_table = config->rd_table;
 661	map->volatile_table = config->volatile_table;
 662	map->precious_table = config->precious_table;
 663	map->writeable_reg = config->writeable_reg;
 664	map->readable_reg = config->readable_reg;
 665	map->volatile_reg = config->volatile_reg;
 666	map->precious_reg = config->precious_reg;
 667	map->cache_type = config->cache_type;
 668	map->name = config->name;
 669
 670	spin_lock_init(&map->async_lock);
 671	INIT_LIST_HEAD(&map->async_list);
 672	INIT_LIST_HEAD(&map->async_free);
 673	init_waitqueue_head(&map->async_waitq);
 674
 675	if (config->read_flag_mask || config->write_flag_mask) {
 676		map->read_flag_mask = config->read_flag_mask;
 677		map->write_flag_mask = config->write_flag_mask;
 678	} else if (bus) {
 679		map->read_flag_mask = bus->read_flag_mask;
 680	}
 681
 682	if (!bus) {
 683		map->reg_read  = config->reg_read;
 684		map->reg_write = config->reg_write;
 685
 686		map->defer_caching = false;
 687		goto skip_format_initialization;
 688	} else if (!bus->read || !bus->write) {
 689		map->reg_read = _regmap_bus_reg_read;
 690		map->reg_write = _regmap_bus_reg_write;
 691
 692		map->defer_caching = false;
 693		goto skip_format_initialization;
 694	} else {
 695		map->reg_read  = _regmap_bus_read;
 696		map->reg_update_bits = bus->reg_update_bits;
 697	}
 698
 699	reg_endian = regmap_get_reg_endian(bus, config);
 700	val_endian = regmap_get_val_endian(dev, bus, config);
 
 
 
 
 
 
 
 
 
 701
 702	switch (config->reg_bits + map->reg_shift) {
 703	case 2:
 704		switch (config->val_bits) {
 705		case 6:
 706			map->format.format_write = regmap_format_2_6_write;
 707			break;
 708		default:
 709			goto err_map;
 710		}
 711		break;
 712
 713	case 4:
 714		switch (config->val_bits) {
 715		case 12:
 716			map->format.format_write = regmap_format_4_12_write;
 717			break;
 718		default:
 719			goto err_map;
 720		}
 721		break;
 722
 723	case 7:
 724		switch (config->val_bits) {
 725		case 9:
 726			map->format.format_write = regmap_format_7_9_write;
 727			break;
 728		default:
 729			goto err_map;
 730		}
 731		break;
 732
 733	case 10:
 734		switch (config->val_bits) {
 735		case 14:
 736			map->format.format_write = regmap_format_10_14_write;
 737			break;
 738		default:
 739			goto err_map;
 740		}
 741		break;
 742
 743	case 8:
 744		map->format.format_reg = regmap_format_8;
 745		break;
 746
 747	case 16:
 748		switch (reg_endian) {
 749		case REGMAP_ENDIAN_BIG:
 750			map->format.format_reg = regmap_format_16_be;
 751			break;
 752		case REGMAP_ENDIAN_NATIVE:
 753			map->format.format_reg = regmap_format_16_native;
 754			break;
 755		default:
 756			goto err_map;
 757		}
 758		break;
 759
 760	case 24:
 761		if (reg_endian != REGMAP_ENDIAN_BIG)
 762			goto err_map;
 763		map->format.format_reg = regmap_format_24;
 764		break;
 765
 766	case 32:
 767		switch (reg_endian) {
 768		case REGMAP_ENDIAN_BIG:
 769			map->format.format_reg = regmap_format_32_be;
 770			break;
 771		case REGMAP_ENDIAN_NATIVE:
 772			map->format.format_reg = regmap_format_32_native;
 773			break;
 774		default:
 775			goto err_map;
 776		}
 777		break;
 778
 779#ifdef CONFIG_64BIT
 780	case 64:
 781		switch (reg_endian) {
 782		case REGMAP_ENDIAN_BIG:
 783			map->format.format_reg = regmap_format_64_be;
 784			break;
 785		case REGMAP_ENDIAN_NATIVE:
 786			map->format.format_reg = regmap_format_64_native;
 787			break;
 788		default:
 789			goto err_map;
 790		}
 791		break;
 792#endif
 793
 794	default:
 795		goto err_map;
 796	}
 797
 798	if (val_endian == REGMAP_ENDIAN_NATIVE)
 799		map->format.parse_inplace = regmap_parse_inplace_noop;
 800
 801	switch (config->val_bits) {
 802	case 8:
 803		map->format.format_val = regmap_format_8;
 804		map->format.parse_val = regmap_parse_8;
 805		map->format.parse_inplace = regmap_parse_inplace_noop;
 806		break;
 807	case 16:
 808		switch (val_endian) {
 809		case REGMAP_ENDIAN_BIG:
 810			map->format.format_val = regmap_format_16_be;
 811			map->format.parse_val = regmap_parse_16_be;
 812			map->format.parse_inplace = regmap_parse_16_be_inplace;
 813			break;
 814		case REGMAP_ENDIAN_LITTLE:
 815			map->format.format_val = regmap_format_16_le;
 816			map->format.parse_val = regmap_parse_16_le;
 817			map->format.parse_inplace = regmap_parse_16_le_inplace;
 818			break;
 819		case REGMAP_ENDIAN_NATIVE:
 820			map->format.format_val = regmap_format_16_native;
 821			map->format.parse_val = regmap_parse_16_native;
 822			break;
 823		default:
 824			goto err_map;
 825		}
 826		break;
 827	case 24:
 828		if (val_endian != REGMAP_ENDIAN_BIG)
 829			goto err_map;
 830		map->format.format_val = regmap_format_24;
 831		map->format.parse_val = regmap_parse_24;
 832		break;
 833	case 32:
 834		switch (val_endian) {
 835		case REGMAP_ENDIAN_BIG:
 836			map->format.format_val = regmap_format_32_be;
 837			map->format.parse_val = regmap_parse_32_be;
 838			map->format.parse_inplace = regmap_parse_32_be_inplace;
 839			break;
 840		case REGMAP_ENDIAN_LITTLE:
 841			map->format.format_val = regmap_format_32_le;
 842			map->format.parse_val = regmap_parse_32_le;
 843			map->format.parse_inplace = regmap_parse_32_le_inplace;
 844			break;
 845		case REGMAP_ENDIAN_NATIVE:
 846			map->format.format_val = regmap_format_32_native;
 847			map->format.parse_val = regmap_parse_32_native;
 848			break;
 849		default:
 850			goto err_map;
 851		}
 852		break;
 853#ifdef CONFIG_64BIT
 854	case 64:
 855		switch (val_endian) {
 856		case REGMAP_ENDIAN_BIG:
 857			map->format.format_val = regmap_format_64_be;
 858			map->format.parse_val = regmap_parse_64_be;
 859			map->format.parse_inplace = regmap_parse_64_be_inplace;
 860			break;
 861		case REGMAP_ENDIAN_LITTLE:
 862			map->format.format_val = regmap_format_64_le;
 863			map->format.parse_val = regmap_parse_64_le;
 864			map->format.parse_inplace = regmap_parse_64_le_inplace;
 865			break;
 866		case REGMAP_ENDIAN_NATIVE:
 867			map->format.format_val = regmap_format_64_native;
 868			map->format.parse_val = regmap_parse_64_native;
 869			break;
 870		default:
 871			goto err_map;
 872		}
 873		break;
 874#endif
 875	}
 876
 877	if (map->format.format_write) {
 878		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 879		    (val_endian != REGMAP_ENDIAN_BIG))
 880			goto err_map;
 881		map->use_single_write = true;
 882	}
 883
 884	if (!map->format.format_write &&
 885	    !(map->format.format_reg && map->format.format_val))
 886		goto err_map;
 887
 888	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 889	if (map->work_buf == NULL) {
 890		ret = -ENOMEM;
 891		goto err_map;
 892	}
 893
 894	if (map->format.format_write) {
 895		map->defer_caching = false;
 896		map->reg_write = _regmap_bus_formatted_write;
 897	} else if (map->format.format_val) {
 898		map->defer_caching = true;
 899		map->reg_write = _regmap_bus_raw_write;
 900	}
 901
 902skip_format_initialization:
 903
 904	map->range_tree = RB_ROOT;
 905	for (i = 0; i < config->num_ranges; i++) {
 906		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 907		struct regmap_range_node *new;
 908
 909		/* Sanity check */
 910		if (range_cfg->range_max < range_cfg->range_min) {
 911			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 912				range_cfg->range_max, range_cfg->range_min);
 913			goto err_range;
 914		}
 915
 916		if (range_cfg->range_max > map->max_register) {
 917			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 918				range_cfg->range_max, map->max_register);
 919			goto err_range;
 920		}
 921
 922		if (range_cfg->selector_reg > map->max_register) {
 923			dev_err(map->dev,
 924				"Invalid range %d: selector out of map\n", i);
 925			goto err_range;
 926		}
 927
 928		if (range_cfg->window_len == 0) {
 929			dev_err(map->dev, "Invalid range %d: window_len 0\n",
 930				i);
 931			goto err_range;
 932		}
 933
 934		/* Make sure, that this register range has no selector
 935		   or data window within its boundary */
 936		for (j = 0; j < config->num_ranges; j++) {
 937			unsigned sel_reg = config->ranges[j].selector_reg;
 938			unsigned win_min = config->ranges[j].window_start;
 939			unsigned win_max = win_min +
 940					   config->ranges[j].window_len - 1;
 941
 942			/* Allow data window inside its own virtual range */
 943			if (j == i)
 944				continue;
 945
 946			if (range_cfg->range_min <= sel_reg &&
 947			    sel_reg <= range_cfg->range_max) {
 948				dev_err(map->dev,
 949					"Range %d: selector for %d in window\n",
 950					i, j);
 951				goto err_range;
 952			}
 953
 954			if (!(win_max < range_cfg->range_min ||
 955			      win_min > range_cfg->range_max)) {
 956				dev_err(map->dev,
 957					"Range %d: window for %d in window\n",
 958					i, j);
 959				goto err_range;
 960			}
 961		}
 962
 963		new = kzalloc(sizeof(*new), GFP_KERNEL);
 964		if (new == NULL) {
 965			ret = -ENOMEM;
 966			goto err_range;
 967		}
 968
 969		new->map = map;
 970		new->name = range_cfg->name;
 971		new->range_min = range_cfg->range_min;
 972		new->range_max = range_cfg->range_max;
 973		new->selector_reg = range_cfg->selector_reg;
 974		new->selector_mask = range_cfg->selector_mask;
 975		new->selector_shift = range_cfg->selector_shift;
 976		new->window_start = range_cfg->window_start;
 977		new->window_len = range_cfg->window_len;
 978
 979		if (!_regmap_range_add(map, new)) {
 980			dev_err(map->dev, "Failed to add range %d\n", i);
 981			kfree(new);
 982			goto err_range;
 983		}
 984
 985		if (map->selector_work_buf == NULL) {
 986			map->selector_work_buf =
 987				kzalloc(map->format.buf_size, GFP_KERNEL);
 988			if (map->selector_work_buf == NULL) {
 989				ret = -ENOMEM;
 990				goto err_range;
 991			}
 992		}
 993	}
 994
 995	ret = regcache_init(map, config);
 996	if (ret != 0)
 997		goto err_range;
 998
 999	if (dev) {
1000		ret = regmap_attach_dev(dev, map, config);
1001		if (ret != 0)
1002			goto err_regcache;
1003	}
1004
1005	return map;
1006
1007err_regcache:
1008	regcache_exit(map);
1009err_range:
1010	regmap_range_exit(map);
1011	kfree(map->work_buf);
1012err_map:
1013	kfree(map);
1014err:
1015	return ERR_PTR(ret);
1016}
1017EXPORT_SYMBOL_GPL(__regmap_init);
1018
1019static void devm_regmap_release(struct device *dev, void *res)
1020{
1021	regmap_exit(*(struct regmap **)res);
1022}
1023
1024struct regmap *__devm_regmap_init(struct device *dev,
1025				  const struct regmap_bus *bus,
1026				  void *bus_context,
1027				  const struct regmap_config *config,
1028				  struct lock_class_key *lock_key,
1029				  const char *lock_name)
 
 
 
 
 
 
 
 
 
 
 
1030{
1031	struct regmap **ptr, *regmap;
1032
1033	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1034	if (!ptr)
1035		return ERR_PTR(-ENOMEM);
1036
1037	regmap = __regmap_init(dev, bus, bus_context, config,
1038			       lock_key, lock_name);
1039	if (!IS_ERR(regmap)) {
1040		*ptr = regmap;
1041		devres_add(dev, ptr);
1042	} else {
1043		devres_free(ptr);
1044	}
1045
1046	return regmap;
1047}
1048EXPORT_SYMBOL_GPL(__devm_regmap_init);
1049
1050static void regmap_field_init(struct regmap_field *rm_field,
1051	struct regmap *regmap, struct reg_field reg_field)
1052{
 
1053	rm_field->regmap = regmap;
1054	rm_field->reg = reg_field.reg;
1055	rm_field->shift = reg_field.lsb;
1056	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1057	rm_field->id_size = reg_field.id_size;
1058	rm_field->id_offset = reg_field.id_offset;
1059}
1060
1061/**
1062 * devm_regmap_field_alloc(): Allocate and initialise a register field
1063 * in a register map.
1064 *
1065 * @dev: Device that will be interacted with
1066 * @regmap: regmap bank in which this register field is located.
1067 * @reg_field: Register field with in the bank.
1068 *
1069 * The return value will be an ERR_PTR() on error or a valid pointer
1070 * to a struct regmap_field. The regmap_field will be automatically freed
1071 * by the device management code.
1072 */
1073struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1074		struct regmap *regmap, struct reg_field reg_field)
1075{
1076	struct regmap_field *rm_field = devm_kzalloc(dev,
1077					sizeof(*rm_field), GFP_KERNEL);
1078	if (!rm_field)
1079		return ERR_PTR(-ENOMEM);
1080
1081	regmap_field_init(rm_field, regmap, reg_field);
1082
1083	return rm_field;
1084
1085}
1086EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1087
1088/**
1089 * devm_regmap_field_free(): Free register field allocated using
1090 * devm_regmap_field_alloc. Usally drivers need not call this function,
1091 * as the memory allocated via devm will be freed as per device-driver
1092 * life-cyle.
1093 *
1094 * @dev: Device that will be interacted with
1095 * @field: regmap field which should be freed.
1096 */
1097void devm_regmap_field_free(struct device *dev,
1098	struct regmap_field *field)
1099{
1100	devm_kfree(dev, field);
1101}
1102EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1103
1104/**
1105 * regmap_field_alloc(): Allocate and initialise a register field
1106 * in a register map.
1107 *
1108 * @regmap: regmap bank in which this register field is located.
1109 * @reg_field: Register field with in the bank.
1110 *
1111 * The return value will be an ERR_PTR() on error or a valid pointer
1112 * to a struct regmap_field. The regmap_field should be freed by the
1113 * user once its finished working with it using regmap_field_free().
1114 */
1115struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1116		struct reg_field reg_field)
1117{
1118	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1119
1120	if (!rm_field)
1121		return ERR_PTR(-ENOMEM);
1122
1123	regmap_field_init(rm_field, regmap, reg_field);
1124
1125	return rm_field;
1126}
1127EXPORT_SYMBOL_GPL(regmap_field_alloc);
1128
1129/**
1130 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1131 *
1132 * @field: regmap field which should be freed.
1133 */
1134void regmap_field_free(struct regmap_field *field)
1135{
1136	kfree(field);
1137}
1138EXPORT_SYMBOL_GPL(regmap_field_free);
1139
1140/**
1141 * regmap_reinit_cache(): Reinitialise the current register cache
1142 *
1143 * @map: Register map to operate on.
1144 * @config: New configuration.  Only the cache data will be used.
1145 *
1146 * Discard any existing register cache for the map and initialize a
1147 * new cache.  This can be used to restore the cache to defaults or to
1148 * update the cache configuration to reflect runtime discovery of the
1149 * hardware.
1150 *
1151 * No explicit locking is done here, the user needs to ensure that
1152 * this function will not race with other calls to regmap.
1153 */
1154int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1155{
1156	regcache_exit(map);
1157	regmap_debugfs_exit(map);
1158
1159	map->max_register = config->max_register;
1160	map->writeable_reg = config->writeable_reg;
1161	map->readable_reg = config->readable_reg;
1162	map->volatile_reg = config->volatile_reg;
1163	map->precious_reg = config->precious_reg;
1164	map->cache_type = config->cache_type;
1165
1166	regmap_debugfs_init(map, config->name);
1167
1168	map->cache_bypass = false;
1169	map->cache_only = false;
1170
1171	return regcache_init(map, config);
1172}
1173EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1174
1175/**
1176 * regmap_exit(): Free a previously allocated register map
1177 */
1178void regmap_exit(struct regmap *map)
1179{
1180	struct regmap_async *async;
1181
1182	regcache_exit(map);
1183	regmap_debugfs_exit(map);
1184	regmap_range_exit(map);
1185	if (map->bus && map->bus->free_context)
1186		map->bus->free_context(map->bus_context);
1187	kfree(map->work_buf);
1188	while (!list_empty(&map->async_free)) {
1189		async = list_first_entry_or_null(&map->async_free,
1190						 struct regmap_async,
1191						 list);
1192		list_del(&async->list);
1193		kfree(async->work_buf);
1194		kfree(async);
1195	}
1196	kfree(map);
1197}
1198EXPORT_SYMBOL_GPL(regmap_exit);
1199
1200static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1201{
1202	struct regmap **r = res;
1203	if (!r || !*r) {
1204		WARN_ON(!r || !*r);
1205		return 0;
1206	}
1207
1208	/* If the user didn't specify a name match any */
1209	if (data)
1210		return (*r)->name == data;
1211	else
1212		return 1;
1213}
1214
1215/**
1216 * dev_get_regmap(): Obtain the regmap (if any) for a device
1217 *
1218 * @dev: Device to retrieve the map for
1219 * @name: Optional name for the register map, usually NULL.
1220 *
1221 * Returns the regmap for the device if one is present, or NULL.  If
1222 * name is specified then it must match the name specified when
1223 * registering the device, if it is NULL then the first regmap found
1224 * will be used.  Devices with multiple register maps are very rare,
1225 * generic code should normally not need to specify a name.
1226 */
1227struct regmap *dev_get_regmap(struct device *dev, const char *name)
1228{
1229	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1230					dev_get_regmap_match, (void *)name);
1231
1232	if (!r)
1233		return NULL;
1234	return *r;
1235}
1236EXPORT_SYMBOL_GPL(dev_get_regmap);
1237
1238/**
1239 * regmap_get_device(): Obtain the device from a regmap
1240 *
1241 * @map: Register map to operate on.
1242 *
1243 * Returns the underlying device that the regmap has been created for.
1244 */
1245struct device *regmap_get_device(struct regmap *map)
1246{
1247	return map->dev;
1248}
1249EXPORT_SYMBOL_GPL(regmap_get_device);
1250
1251static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1252			       struct regmap_range_node *range,
1253			       unsigned int val_num)
1254{
1255	void *orig_work_buf;
1256	unsigned int win_offset;
1257	unsigned int win_page;
1258	bool page_chg;
1259	int ret;
1260
1261	win_offset = (*reg - range->range_min) % range->window_len;
1262	win_page = (*reg - range->range_min) / range->window_len;
1263
1264	if (val_num > 1) {
1265		/* Bulk write shouldn't cross range boundary */
1266		if (*reg + val_num - 1 > range->range_max)
1267			return -EINVAL;
1268
1269		/* ... or single page boundary */
1270		if (val_num > range->window_len - win_offset)
1271			return -EINVAL;
1272	}
1273
1274	/* It is possible to have selector register inside data window.
1275	   In that case, selector register is located on every page and
1276	   it needs no page switching, when accessed alone. */
1277	if (val_num > 1 ||
1278	    range->window_start + win_offset != range->selector_reg) {
1279		/* Use separate work_buf during page switching */
1280		orig_work_buf = map->work_buf;
1281		map->work_buf = map->selector_work_buf;
1282
1283		ret = _regmap_update_bits(map, range->selector_reg,
1284					  range->selector_mask,
1285					  win_page << range->selector_shift,
1286					  &page_chg, false);
1287
1288		map->work_buf = orig_work_buf;
1289
1290		if (ret != 0)
1291			return ret;
1292	}
1293
1294	*reg = range->window_start + win_offset;
1295
1296	return 0;
1297}
1298
1299int _regmap_raw_write(struct regmap *map, unsigned int reg,
1300		      const void *val, size_t val_len)
1301{
1302	struct regmap_range_node *range;
1303	unsigned long flags;
1304	u8 *u8 = map->work_buf;
1305	void *work_val = map->work_buf + map->format.reg_bytes +
1306		map->format.pad_bytes;
1307	void *buf;
1308	int ret = -ENOTSUPP;
1309	size_t len;
1310	int i;
1311
1312	WARN_ON(!map->bus);
1313
1314	/* Check for unwritable registers before we start */
1315	if (map->writeable_reg)
1316		for (i = 0; i < val_len / map->format.val_bytes; i++)
1317			if (!map->writeable_reg(map->dev,
1318					       reg + regmap_get_offset(map, i)))
1319				return -EINVAL;
1320
1321	if (!map->cache_bypass && map->format.parse_val) {
1322		unsigned int ival;
1323		int val_bytes = map->format.val_bytes;
1324		for (i = 0; i < val_len / val_bytes; i++) {
1325			ival = map->format.parse_val(val + (i * val_bytes));
1326			ret = regcache_write(map,
1327					     reg + regmap_get_offset(map, i),
1328					     ival);
1329			if (ret) {
1330				dev_err(map->dev,
1331					"Error in caching of register: %x ret: %d\n",
1332					reg + i, ret);
1333				return ret;
1334			}
1335		}
1336		if (map->cache_only) {
1337			map->cache_dirty = true;
1338			return 0;
1339		}
1340	}
1341
1342	range = _regmap_range_lookup(map, reg);
1343	if (range) {
1344		int val_num = val_len / map->format.val_bytes;
1345		int win_offset = (reg - range->range_min) % range->window_len;
1346		int win_residue = range->window_len - win_offset;
1347
1348		/* If the write goes beyond the end of the window split it */
1349		while (val_num > win_residue) {
1350			dev_dbg(map->dev, "Writing window %d/%zu\n",
1351				win_residue, val_len / map->format.val_bytes);
1352			ret = _regmap_raw_write(map, reg, val, win_residue *
1353						map->format.val_bytes);
1354			if (ret != 0)
1355				return ret;
1356
1357			reg += win_residue;
1358			val_num -= win_residue;
1359			val += win_residue * map->format.val_bytes;
1360			val_len -= win_residue * map->format.val_bytes;
1361
1362			win_offset = (reg - range->range_min) %
1363				range->window_len;
1364			win_residue = range->window_len - win_offset;
1365		}
1366
1367		ret = _regmap_select_page(map, &reg, range, val_num);
1368		if (ret != 0)
1369			return ret;
1370	}
1371
1372	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1373
1374	u8[0] |= map->write_flag_mask;
1375
1376	/*
1377	 * Essentially all I/O mechanisms will be faster with a single
1378	 * buffer to write.  Since register syncs often generate raw
1379	 * writes of single registers optimise that case.
1380	 */
1381	if (val != work_val && val_len == map->format.val_bytes) {
1382		memcpy(work_val, val, map->format.val_bytes);
1383		val = work_val;
1384	}
1385
1386	if (map->async && map->bus->async_write) {
1387		struct regmap_async *async;
1388
1389		trace_regmap_async_write_start(map, reg, val_len);
1390
1391		spin_lock_irqsave(&map->async_lock, flags);
1392		async = list_first_entry_or_null(&map->async_free,
1393						 struct regmap_async,
1394						 list);
1395		if (async)
1396			list_del(&async->list);
1397		spin_unlock_irqrestore(&map->async_lock, flags);
1398
1399		if (!async) {
1400			async = map->bus->async_alloc();
1401			if (!async)
1402				return -ENOMEM;
1403
1404			async->work_buf = kzalloc(map->format.buf_size,
1405						  GFP_KERNEL | GFP_DMA);
1406			if (!async->work_buf) {
1407				kfree(async);
1408				return -ENOMEM;
1409			}
1410		}
1411
1412		async->map = map;
1413
1414		/* If the caller supplied the value we can use it safely. */
1415		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1416		       map->format.reg_bytes + map->format.val_bytes);
1417
1418		spin_lock_irqsave(&map->async_lock, flags);
1419		list_add_tail(&async->list, &map->async_list);
1420		spin_unlock_irqrestore(&map->async_lock, flags);
1421
1422		if (val != work_val)
1423			ret = map->bus->async_write(map->bus_context,
1424						    async->work_buf,
1425						    map->format.reg_bytes +
1426						    map->format.pad_bytes,
1427						    val, val_len, async);
1428		else
1429			ret = map->bus->async_write(map->bus_context,
1430						    async->work_buf,
1431						    map->format.reg_bytes +
1432						    map->format.pad_bytes +
1433						    val_len, NULL, 0, async);
1434
1435		if (ret != 0) {
1436			dev_err(map->dev, "Failed to schedule write: %d\n",
1437				ret);
1438
1439			spin_lock_irqsave(&map->async_lock, flags);
1440			list_move(&async->list, &map->async_free);
1441			spin_unlock_irqrestore(&map->async_lock, flags);
1442		}
1443
1444		return ret;
1445	}
1446
1447	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
 
1448
1449	/* If we're doing a single register write we can probably just
1450	 * send the work_buf directly, otherwise try to do a gather
1451	 * write.
1452	 */
1453	if (val == work_val)
1454		ret = map->bus->write(map->bus_context, map->work_buf,
1455				      map->format.reg_bytes +
1456				      map->format.pad_bytes +
1457				      val_len);
1458	else if (map->bus->gather_write)
1459		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1460					     map->format.reg_bytes +
1461					     map->format.pad_bytes,
1462					     val, val_len);
1463
1464	/* If that didn't work fall back on linearising by hand. */
1465	if (ret == -ENOTSUPP) {
1466		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1467		buf = kzalloc(len, GFP_KERNEL);
1468		if (!buf)
1469			return -ENOMEM;
1470
1471		memcpy(buf, map->work_buf, map->format.reg_bytes);
1472		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1473		       val, val_len);
1474		ret = map->bus->write(map->bus_context, buf, len);
1475
1476		kfree(buf);
1477	}
1478
1479	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
 
1480
1481	return ret;
1482}
1483
1484/**
1485 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1486 *
1487 * @map: Map to check.
1488 */
1489bool regmap_can_raw_write(struct regmap *map)
1490{
1491	return map->bus && map->bus->write && map->format.format_val &&
1492		map->format.format_reg;
1493}
1494EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1495
1496/**
1497 * regmap_get_raw_read_max - Get the maximum size we can read
1498 *
1499 * @map: Map to check.
1500 */
1501size_t regmap_get_raw_read_max(struct regmap *map)
1502{
1503	return map->max_raw_read;
1504}
1505EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1506
1507/**
1508 * regmap_get_raw_write_max - Get the maximum size we can read
1509 *
1510 * @map: Map to check.
1511 */
1512size_t regmap_get_raw_write_max(struct regmap *map)
1513{
1514	return map->max_raw_write;
1515}
1516EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1517
1518static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1519				       unsigned int val)
1520{
1521	int ret;
1522	struct regmap_range_node *range;
1523	struct regmap *map = context;
1524
1525	WARN_ON(!map->bus || !map->format.format_write);
1526
1527	range = _regmap_range_lookup(map, reg);
1528	if (range) {
1529		ret = _regmap_select_page(map, &reg, range, 1);
1530		if (ret != 0)
1531			return ret;
1532	}
1533
1534	map->format.format_write(map, reg, val);
1535
1536	trace_regmap_hw_write_start(map, reg, 1);
1537
1538	ret = map->bus->write(map->bus_context, map->work_buf,
1539			      map->format.buf_size);
1540
1541	trace_regmap_hw_write_done(map, reg, 1);
1542
1543	return ret;
1544}
1545
1546static int _regmap_bus_reg_write(void *context, unsigned int reg,
1547				 unsigned int val)
1548{
1549	struct regmap *map = context;
1550
1551	return map->bus->reg_write(map->bus_context, reg, val);
1552}
1553
1554static int _regmap_bus_raw_write(void *context, unsigned int reg,
1555				 unsigned int val)
1556{
1557	struct regmap *map = context;
1558
1559	WARN_ON(!map->bus || !map->format.format_val);
1560
1561	map->format.format_val(map->work_buf + map->format.reg_bytes
1562			       + map->format.pad_bytes, val, 0);
1563	return _regmap_raw_write(map, reg,
1564				 map->work_buf +
1565				 map->format.reg_bytes +
1566				 map->format.pad_bytes,
1567				 map->format.val_bytes);
1568}
1569
1570static inline void *_regmap_map_get_context(struct regmap *map)
1571{
1572	return (map->bus) ? map : map->bus_context;
1573}
1574
1575int _regmap_write(struct regmap *map, unsigned int reg,
1576		  unsigned int val)
1577{
1578	int ret;
1579	void *context = _regmap_map_get_context(map);
1580
1581	if (!regmap_writeable(map, reg))
1582		return -EIO;
1583
1584	if (!map->cache_bypass && !map->defer_caching) {
1585		ret = regcache_write(map, reg, val);
1586		if (ret != 0)
1587			return ret;
1588		if (map->cache_only) {
1589			map->cache_dirty = true;
1590			return 0;
1591		}
1592	}
1593
1594#ifdef LOG_DEVICE
1595	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1596		dev_info(map->dev, "%x <= %x\n", reg, val);
1597#endif
1598
1599	trace_regmap_reg_write(map, reg, val);
1600
1601	return map->reg_write(context, reg, val);
1602}
1603
1604/**
1605 * regmap_write(): Write a value to a single register
1606 *
1607 * @map: Register map to write to
1608 * @reg: Register to write to
1609 * @val: Value to be written
1610 *
1611 * A value of zero will be returned on success, a negative errno will
1612 * be returned in error cases.
1613 */
1614int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1615{
1616	int ret;
1617
1618	if (!IS_ALIGNED(reg, map->reg_stride))
1619		return -EINVAL;
1620
1621	map->lock(map->lock_arg);
1622
1623	ret = _regmap_write(map, reg, val);
1624
1625	map->unlock(map->lock_arg);
1626
1627	return ret;
1628}
1629EXPORT_SYMBOL_GPL(regmap_write);
1630
1631/**
1632 * regmap_write_async(): Write a value to a single register asynchronously
1633 *
1634 * @map: Register map to write to
1635 * @reg: Register to write to
1636 * @val: Value to be written
1637 *
1638 * A value of zero will be returned on success, a negative errno will
1639 * be returned in error cases.
1640 */
1641int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1642{
1643	int ret;
1644
1645	if (!IS_ALIGNED(reg, map->reg_stride))
1646		return -EINVAL;
1647
1648	map->lock(map->lock_arg);
1649
1650	map->async = true;
1651
1652	ret = _regmap_write(map, reg, val);
1653
1654	map->async = false;
1655
1656	map->unlock(map->lock_arg);
1657
1658	return ret;
1659}
1660EXPORT_SYMBOL_GPL(regmap_write_async);
1661
1662/**
1663 * regmap_raw_write(): Write raw values to one or more registers
1664 *
1665 * @map: Register map to write to
1666 * @reg: Initial register to write to
1667 * @val: Block of data to be written, laid out for direct transmission to the
1668 *       device
1669 * @val_len: Length of data pointed to by val.
1670 *
1671 * This function is intended to be used for things like firmware
1672 * download where a large block of data needs to be transferred to the
1673 * device.  No formatting will be done on the data provided.
1674 *
1675 * A value of zero will be returned on success, a negative errno will
1676 * be returned in error cases.
1677 */
1678int regmap_raw_write(struct regmap *map, unsigned int reg,
1679		     const void *val, size_t val_len)
1680{
1681	int ret;
1682
1683	if (!regmap_can_raw_write(map))
1684		return -EINVAL;
1685	if (val_len % map->format.val_bytes)
1686		return -EINVAL;
1687	if (map->max_raw_write && map->max_raw_write > val_len)
1688		return -E2BIG;
1689
1690	map->lock(map->lock_arg);
1691
1692	ret = _regmap_raw_write(map, reg, val, val_len);
1693
1694	map->unlock(map->lock_arg);
1695
1696	return ret;
1697}
1698EXPORT_SYMBOL_GPL(regmap_raw_write);
1699
1700/**
1701 * regmap_field_update_bits_base():
1702 *	Perform a read/modify/write cycle on the register field
1703 *	with change, async, force option
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704 *
1705 * @field: Register field to write to
1706 * @mask: Bitmask to change
1707 * @val: Value to be written
1708 * @change: Boolean indicating if a write was done
1709 * @async: Boolean indicating asynchronously
1710 * @force: Boolean indicating use force update
1711 *
1712 * A value of zero will be returned on success, a negative errno will
1713 * be returned in error cases.
1714 */
1715int regmap_field_update_bits_base(struct regmap_field *field,
1716				  unsigned int mask, unsigned int val,
1717				  bool *change, bool async, bool force)
1718{
1719	mask = (mask << field->shift) & field->mask;
1720
1721	return regmap_update_bits_base(field->regmap, field->reg,
1722				       mask, val << field->shift,
1723				       change, async, force);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1724}
1725EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1726
1727/**
1728 * regmap_fields_update_bits_base():
1729 *	Perform a read/modify/write cycle on the register field
1730 *	with change, async, force option
1731 *
1732 * @field: Register field to write to
1733 * @id: port ID
1734 * @mask: Bitmask to change
1735 * @val: Value to be written
1736 * @change: Boolean indicating if a write was done
1737 * @async: Boolean indicating asynchronously
1738 * @force: Boolean indicating use force update
1739 *
1740 * A value of zero will be returned on success, a negative errno will
1741 * be returned in error cases.
1742 */
1743int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1744				   unsigned int mask, unsigned int val,
1745				   bool *change, bool async, bool force)
1746{
1747	if (id >= field->id_size)
1748		return -EINVAL;
1749
1750	mask = (mask << field->shift) & field->mask;
1751
1752	return regmap_update_bits_base(field->regmap,
1753				       field->reg + (field->id_offset * id),
1754				       mask, val << field->shift,
1755				       change, async, force);
1756}
1757EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1758
1759/*
1760 * regmap_bulk_write(): Write multiple registers to the device
1761 *
1762 * @map: Register map to write to
1763 * @reg: First register to be write from
1764 * @val: Block of data to be written, in native register size for device
1765 * @val_count: Number of registers to write
1766 *
1767 * This function is intended to be used for writing a large block of
1768 * data to the device either in single transfer or multiple transfer.
1769 *
1770 * A value of zero will be returned on success, a negative errno will
1771 * be returned in error cases.
1772 */
1773int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1774		     size_t val_count)
1775{
1776	int ret = 0, i;
1777	size_t val_bytes = map->format.val_bytes;
1778	size_t total_size = val_bytes * val_count;
1779
1780	if (map->bus && !map->format.parse_inplace)
1781		return -EINVAL;
1782	if (!IS_ALIGNED(reg, map->reg_stride))
1783		return -EINVAL;
1784
1785	/*
1786	 * Some devices don't support bulk write, for
1787	 * them we have a series of single write operations in the first two if
1788	 * blocks.
1789	 *
1790	 * The first if block is used for memory mapped io. It does not allow
1791	 * val_bytes of 3 for example.
1792	 * The second one is used for busses which do not have this limitation
1793	 * and can write arbitrary value lengths.
1794	 */
1795	if (!map->bus) {
1796		map->lock(map->lock_arg);
1797		for (i = 0; i < val_count; i++) {
1798			unsigned int ival;
1799
1800			switch (val_bytes) {
1801			case 1:
1802				ival = *(u8 *)(val + (i * val_bytes));
1803				break;
1804			case 2:
1805				ival = *(u16 *)(val + (i * val_bytes));
1806				break;
1807			case 4:
1808				ival = *(u32 *)(val + (i * val_bytes));
1809				break;
1810#ifdef CONFIG_64BIT
1811			case 8:
1812				ival = *(u64 *)(val + (i * val_bytes));
1813				break;
1814#endif
1815			default:
1816				ret = -EINVAL;
1817				goto out;
1818			}
1819
1820			ret = _regmap_write(map,
1821					    reg + regmap_get_offset(map, i),
1822					    ival);
1823			if (ret != 0)
1824				goto out;
1825		}
1826out:
1827		map->unlock(map->lock_arg);
1828	} else if (map->use_single_write ||
1829		   (map->max_raw_write && map->max_raw_write < total_size)) {
1830		int chunk_stride = map->reg_stride;
1831		size_t chunk_size = val_bytes;
1832		size_t chunk_count = val_count;
1833
1834		if (!map->use_single_write) {
1835			chunk_size = map->max_raw_write;
1836			if (chunk_size % val_bytes)
1837				chunk_size -= chunk_size % val_bytes;
1838			chunk_count = total_size / chunk_size;
1839			chunk_stride *= chunk_size / val_bytes;
1840		}
1841
1842		map->lock(map->lock_arg);
1843		/* Write as many bytes as possible with chunk_size */
1844		for (i = 0; i < chunk_count; i++) {
1845			ret = _regmap_raw_write(map,
1846						reg + (i * chunk_stride),
1847						val + (i * chunk_size),
1848						chunk_size);
1849			if (ret)
1850				break;
1851		}
1852
1853		/* Write remaining bytes */
1854		if (!ret && chunk_size * i < total_size) {
1855			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1856						val + (i * chunk_size),
1857						total_size - i * chunk_size);
1858		}
1859		map->unlock(map->lock_arg);
1860	} else {
1861		void *wval;
1862
1863		if (!val_count)
1864			return -EINVAL;
1865
1866		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1867		if (!wval) {
1868			dev_err(map->dev, "Error in memory allocation\n");
1869			return -ENOMEM;
1870		}
1871		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1872			map->format.parse_inplace(wval + i);
1873
1874		map->lock(map->lock_arg);
1875		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1876		map->unlock(map->lock_arg);
1877
1878		kfree(wval);
1879	}
1880	return ret;
1881}
1882EXPORT_SYMBOL_GPL(regmap_bulk_write);
1883
1884/*
1885 * _regmap_raw_multi_reg_write()
1886 *
1887 * the (register,newvalue) pairs in regs have not been formatted, but
1888 * they are all in the same page and have been changed to being page
1889 * relative. The page register has been written if that was necessary.
1890 */
1891static int _regmap_raw_multi_reg_write(struct regmap *map,
1892				       const struct reg_sequence *regs,
1893				       size_t num_regs)
1894{
1895	int ret;
1896	void *buf;
1897	int i;
1898	u8 *u8;
1899	size_t val_bytes = map->format.val_bytes;
1900	size_t reg_bytes = map->format.reg_bytes;
1901	size_t pad_bytes = map->format.pad_bytes;
1902	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1903	size_t len = pair_size * num_regs;
1904
1905	if (!len)
1906		return -EINVAL;
1907
1908	buf = kzalloc(len, GFP_KERNEL);
1909	if (!buf)
1910		return -ENOMEM;
1911
1912	/* We have to linearise by hand. */
1913
1914	u8 = buf;
1915
1916	for (i = 0; i < num_regs; i++) {
1917		unsigned int reg = regs[i].reg;
1918		unsigned int val = regs[i].def;
1919		trace_regmap_hw_write_start(map, reg, 1);
1920		map->format.format_reg(u8, reg, map->reg_shift);
1921		u8 += reg_bytes + pad_bytes;
1922		map->format.format_val(u8, val, 0);
1923		u8 += val_bytes;
1924	}
1925	u8 = buf;
1926	*u8 |= map->write_flag_mask;
1927
1928	ret = map->bus->write(map->bus_context, buf, len);
1929
1930	kfree(buf);
1931
1932	for (i = 0; i < num_regs; i++) {
1933		int reg = regs[i].reg;
1934		trace_regmap_hw_write_done(map, reg, 1);
1935	}
1936	return ret;
1937}
1938
1939static unsigned int _regmap_register_page(struct regmap *map,
1940					  unsigned int reg,
1941					  struct regmap_range_node *range)
1942{
1943	unsigned int win_page = (reg - range->range_min) / range->window_len;
1944
1945	return win_page;
1946}
1947
1948static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1949					       struct reg_sequence *regs,
1950					       size_t num_regs)
1951{
1952	int ret;
1953	int i, n;
1954	struct reg_sequence *base;
1955	unsigned int this_page = 0;
1956	unsigned int page_change = 0;
1957	/*
1958	 * the set of registers are not neccessarily in order, but
1959	 * since the order of write must be preserved this algorithm
1960	 * chops the set each time the page changes. This also applies
1961	 * if there is a delay required at any point in the sequence.
1962	 */
1963	base = regs;
1964	for (i = 0, n = 0; i < num_regs; i++, n++) {
1965		unsigned int reg = regs[i].reg;
1966		struct regmap_range_node *range;
1967
1968		range = _regmap_range_lookup(map, reg);
1969		if (range) {
1970			unsigned int win_page = _regmap_register_page(map, reg,
1971								      range);
1972
1973			if (i == 0)
1974				this_page = win_page;
1975			if (win_page != this_page) {
1976				this_page = win_page;
1977				page_change = 1;
1978			}
1979		}
1980
1981		/* If we have both a page change and a delay make sure to
1982		 * write the regs and apply the delay before we change the
1983		 * page.
1984		 */
1985
1986		if (page_change || regs[i].delay_us) {
1987
1988				/* For situations where the first write requires
1989				 * a delay we need to make sure we don't call
1990				 * raw_multi_reg_write with n=0
1991				 * This can't occur with page breaks as we
1992				 * never write on the first iteration
1993				 */
1994				if (regs[i].delay_us && i == 0)
1995					n = 1;
1996
1997				ret = _regmap_raw_multi_reg_write(map, base, n);
1998				if (ret != 0)
1999					return ret;
2000
2001				if (regs[i].delay_us)
2002					udelay(regs[i].delay_us);
2003
2004				base += n;
2005				n = 0;
2006
2007				if (page_change) {
2008					ret = _regmap_select_page(map,
2009								  &base[n].reg,
2010								  range, 1);
2011					if (ret != 0)
2012						return ret;
2013
2014					page_change = 0;
2015				}
2016
2017		}
2018
2019	}
2020	if (n > 0)
2021		return _regmap_raw_multi_reg_write(map, base, n);
2022	return 0;
2023}
2024
2025static int _regmap_multi_reg_write(struct regmap *map,
2026				   const struct reg_sequence *regs,
2027				   size_t num_regs)
2028{
2029	int i;
2030	int ret;
2031
2032	if (!map->can_multi_write) {
2033		for (i = 0; i < num_regs; i++) {
2034			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2035			if (ret != 0)
2036				return ret;
2037
2038			if (regs[i].delay_us)
2039				udelay(regs[i].delay_us);
2040		}
2041		return 0;
2042	}
2043
2044	if (!map->format.parse_inplace)
2045		return -EINVAL;
2046
2047	if (map->writeable_reg)
2048		for (i = 0; i < num_regs; i++) {
2049			int reg = regs[i].reg;
2050			if (!map->writeable_reg(map->dev, reg))
2051				return -EINVAL;
2052			if (!IS_ALIGNED(reg, map->reg_stride))
2053				return -EINVAL;
2054		}
2055
2056	if (!map->cache_bypass) {
2057		for (i = 0; i < num_regs; i++) {
2058			unsigned int val = regs[i].def;
2059			unsigned int reg = regs[i].reg;
2060			ret = regcache_write(map, reg, val);
2061			if (ret) {
2062				dev_err(map->dev,
2063				"Error in caching of register: %x ret: %d\n",
2064								reg, ret);
2065				return ret;
2066			}
2067		}
2068		if (map->cache_only) {
2069			map->cache_dirty = true;
2070			return 0;
2071		}
2072	}
2073
2074	WARN_ON(!map->bus);
2075
2076	for (i = 0; i < num_regs; i++) {
2077		unsigned int reg = regs[i].reg;
2078		struct regmap_range_node *range;
2079
2080		/* Coalesce all the writes between a page break or a delay
2081		 * in a sequence
2082		 */
2083		range = _regmap_range_lookup(map, reg);
2084		if (range || regs[i].delay_us) {
2085			size_t len = sizeof(struct reg_sequence)*num_regs;
2086			struct reg_sequence *base = kmemdup(regs, len,
2087							   GFP_KERNEL);
2088			if (!base)
2089				return -ENOMEM;
2090			ret = _regmap_range_multi_paged_reg_write(map, base,
2091								  num_regs);
2092			kfree(base);
2093
2094			return ret;
2095		}
2096	}
2097	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2098}
2099
2100/*
2101 * regmap_multi_reg_write(): Write multiple registers to the device
2102 *
2103 * where the set of register,value pairs are supplied in any order,
2104 * possibly not all in a single range.
2105 *
2106 * @map: Register map to write to
2107 * @regs: Array of structures containing register,value to be written
2108 * @num_regs: Number of registers to write
2109 *
2110 * The 'normal' block write mode will send ultimately send data on the
2111 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2112 * addressed. However, this alternative block multi write mode will send
2113 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2114 * must of course support the mode.
2115 *
2116 * A value of zero will be returned on success, a negative errno will be
2117 * returned in error cases.
2118 */
2119int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2120			   int num_regs)
2121{
2122	int ret;
2123
2124	map->lock(map->lock_arg);
2125
2126	ret = _regmap_multi_reg_write(map, regs, num_regs);
2127
2128	map->unlock(map->lock_arg);
2129
2130	return ret;
2131}
2132EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2133
2134/*
2135 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2136 *                                    device but not the cache
2137 *
2138 * where the set of register are supplied in any order
2139 *
2140 * @map: Register map to write to
2141 * @regs: Array of structures containing register,value to be written
2142 * @num_regs: Number of registers to write
2143 *
2144 * This function is intended to be used for writing a large block of data
2145 * atomically to the device in single transfer for those I2C client devices
2146 * that implement this alternative block write mode.
2147 *
2148 * A value of zero will be returned on success, a negative errno will
2149 * be returned in error cases.
2150 */
2151int regmap_multi_reg_write_bypassed(struct regmap *map,
2152				    const struct reg_sequence *regs,
2153				    int num_regs)
2154{
2155	int ret;
2156	bool bypass;
2157
2158	map->lock(map->lock_arg);
2159
2160	bypass = map->cache_bypass;
2161	map->cache_bypass = true;
2162
2163	ret = _regmap_multi_reg_write(map, regs, num_regs);
2164
2165	map->cache_bypass = bypass;
2166
2167	map->unlock(map->lock_arg);
2168
2169	return ret;
2170}
2171EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2172
2173/**
2174 * regmap_raw_write_async(): Write raw values to one or more registers
2175 *                           asynchronously
2176 *
2177 * @map: Register map to write to
2178 * @reg: Initial register to write to
2179 * @val: Block of data to be written, laid out for direct transmission to the
2180 *       device.  Must be valid until regmap_async_complete() is called.
2181 * @val_len: Length of data pointed to by val.
2182 *
2183 * This function is intended to be used for things like firmware
2184 * download where a large block of data needs to be transferred to the
2185 * device.  No formatting will be done on the data provided.
2186 *
2187 * If supported by the underlying bus the write will be scheduled
2188 * asynchronously, helping maximise I/O speed on higher speed buses
2189 * like SPI.  regmap_async_complete() can be called to ensure that all
2190 * asynchrnous writes have been completed.
2191 *
2192 * A value of zero will be returned on success, a negative errno will
2193 * be returned in error cases.
2194 */
2195int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2196			   const void *val, size_t val_len)
2197{
2198	int ret;
2199
2200	if (val_len % map->format.val_bytes)
2201		return -EINVAL;
2202	if (!IS_ALIGNED(reg, map->reg_stride))
2203		return -EINVAL;
2204
2205	map->lock(map->lock_arg);
2206
2207	map->async = true;
2208
2209	ret = _regmap_raw_write(map, reg, val, val_len);
2210
2211	map->async = false;
2212
2213	map->unlock(map->lock_arg);
2214
2215	return ret;
2216}
2217EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2218
2219static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2220			    unsigned int val_len)
2221{
2222	struct regmap_range_node *range;
2223	u8 *u8 = map->work_buf;
2224	int ret;
2225
2226	WARN_ON(!map->bus);
2227
2228	if (!map->bus || !map->bus->read)
2229		return -EINVAL;
2230
2231	range = _regmap_range_lookup(map, reg);
2232	if (range) {
2233		ret = _regmap_select_page(map, &reg, range,
2234					  val_len / map->format.val_bytes);
2235		if (ret != 0)
2236			return ret;
2237	}
2238
2239	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2240
2241	/*
2242	 * Some buses or devices flag reads by setting the high bits in the
2243	 * register address; since it's always the high bits for all
2244	 * current formats we can do this here rather than in
2245	 * formatting.  This may break if we get interesting formats.
2246	 */
2247	u8[0] |= map->read_flag_mask;
2248
2249	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
 
2250
2251	ret = map->bus->read(map->bus_context, map->work_buf,
2252			     map->format.reg_bytes + map->format.pad_bytes,
2253			     val, val_len);
2254
2255	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
 
2256
2257	return ret;
2258}
2259
2260static int _regmap_bus_reg_read(void *context, unsigned int reg,
2261				unsigned int *val)
2262{
2263	struct regmap *map = context;
2264
2265	return map->bus->reg_read(map->bus_context, reg, val);
2266}
2267
2268static int _regmap_bus_read(void *context, unsigned int reg,
2269			    unsigned int *val)
2270{
2271	int ret;
2272	struct regmap *map = context;
2273
2274	if (!map->format.parse_val)
2275		return -EINVAL;
2276
2277	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2278	if (ret == 0)
2279		*val = map->format.parse_val(map->work_buf);
2280
2281	return ret;
2282}
2283
2284static int _regmap_read(struct regmap *map, unsigned int reg,
2285			unsigned int *val)
2286{
2287	int ret;
2288	void *context = _regmap_map_get_context(map);
2289
 
 
2290	if (!map->cache_bypass) {
2291		ret = regcache_read(map, reg, val);
2292		if (ret == 0)
2293			return 0;
2294	}
2295
2296	if (map->cache_only)
2297		return -EBUSY;
2298
2299	if (!regmap_readable(map, reg))
2300		return -EIO;
2301
2302	ret = map->reg_read(context, reg, val);
2303	if (ret == 0) {
2304#ifdef LOG_DEVICE
2305		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2306			dev_info(map->dev, "%x => %x\n", reg, *val);
2307#endif
2308
2309		trace_regmap_reg_read(map, reg, *val);
2310
2311		if (!map->cache_bypass)
2312			regcache_write(map, reg, *val);
2313	}
2314
2315	return ret;
2316}
2317
2318/**
2319 * regmap_read(): Read a value from a single register
2320 *
2321 * @map: Register map to read from
2322 * @reg: Register to be read from
2323 * @val: Pointer to store read value
2324 *
2325 * A value of zero will be returned on success, a negative errno will
2326 * be returned in error cases.
2327 */
2328int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2329{
2330	int ret;
2331
2332	if (!IS_ALIGNED(reg, map->reg_stride))
2333		return -EINVAL;
2334
2335	map->lock(map->lock_arg);
2336
2337	ret = _regmap_read(map, reg, val);
2338
2339	map->unlock(map->lock_arg);
2340
2341	return ret;
2342}
2343EXPORT_SYMBOL_GPL(regmap_read);
2344
2345/**
2346 * regmap_raw_read(): Read raw data from the device
2347 *
2348 * @map: Register map to read from
2349 * @reg: First register to be read from
2350 * @val: Pointer to store read value
2351 * @val_len: Size of data to read
2352 *
2353 * A value of zero will be returned on success, a negative errno will
2354 * be returned in error cases.
2355 */
2356int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2357		    size_t val_len)
2358{
2359	size_t val_bytes = map->format.val_bytes;
2360	size_t val_count = val_len / val_bytes;
2361	unsigned int v;
2362	int ret, i;
2363
2364	if (!map->bus)
2365		return -EINVAL;
2366	if (val_len % map->format.val_bytes)
2367		return -EINVAL;
2368	if (!IS_ALIGNED(reg, map->reg_stride))
2369		return -EINVAL;
2370	if (val_count == 0)
2371		return -EINVAL;
2372
2373	map->lock(map->lock_arg);
2374
2375	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2376	    map->cache_type == REGCACHE_NONE) {
2377		if (!map->bus->read) {
2378			ret = -ENOTSUPP;
2379			goto out;
2380		}
2381		if (map->max_raw_read && map->max_raw_read < val_len) {
2382			ret = -E2BIG;
2383			goto out;
2384		}
2385
2386		/* Physical block read if there's no cache involved */
2387		ret = _regmap_raw_read(map, reg, val, val_len);
2388
2389	} else {
2390		/* Otherwise go word by word for the cache; should be low
2391		 * cost as we expect to hit the cache.
2392		 */
2393		for (i = 0; i < val_count; i++) {
2394			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2395					   &v);
2396			if (ret != 0)
2397				goto out;
2398
2399			map->format.format_val(val + (i * val_bytes), v, 0);
2400		}
2401	}
2402
2403 out:
2404	map->unlock(map->lock_arg);
2405
2406	return ret;
2407}
2408EXPORT_SYMBOL_GPL(regmap_raw_read);
2409
2410/**
2411 * regmap_field_read(): Read a value to a single register field
2412 *
2413 * @field: Register field to read from
2414 * @val: Pointer to store read value
2415 *
2416 * A value of zero will be returned on success, a negative errno will
2417 * be returned in error cases.
2418 */
2419int regmap_field_read(struct regmap_field *field, unsigned int *val)
2420{
2421	int ret;
2422	unsigned int reg_val;
2423	ret = regmap_read(field->regmap, field->reg, &reg_val);
2424	if (ret != 0)
2425		return ret;
2426
2427	reg_val &= field->mask;
2428	reg_val >>= field->shift;
2429	*val = reg_val;
2430
2431	return ret;
2432}
2433EXPORT_SYMBOL_GPL(regmap_field_read);
2434
2435/**
2436 * regmap_fields_read(): Read a value to a single register field with port ID
2437 *
2438 * @field: Register field to read from
2439 * @id: port ID
2440 * @val: Pointer to store read value
2441 *
2442 * A value of zero will be returned on success, a negative errno will
2443 * be returned in error cases.
2444 */
2445int regmap_fields_read(struct regmap_field *field, unsigned int id,
2446		       unsigned int *val)
2447{
2448	int ret;
2449	unsigned int reg_val;
2450
2451	if (id >= field->id_size)
2452		return -EINVAL;
2453
2454	ret = regmap_read(field->regmap,
2455			  field->reg + (field->id_offset * id),
2456			  &reg_val);
2457	if (ret != 0)
2458		return ret;
2459
2460	reg_val &= field->mask;
2461	reg_val >>= field->shift;
2462	*val = reg_val;
2463
2464	return ret;
2465}
2466EXPORT_SYMBOL_GPL(regmap_fields_read);
2467
2468/**
2469 * regmap_bulk_read(): Read multiple registers from the device
2470 *
2471 * @map: Register map to read from
2472 * @reg: First register to be read from
2473 * @val: Pointer to store read value, in native register size for device
2474 * @val_count: Number of registers to read
2475 *
2476 * A value of zero will be returned on success, a negative errno will
2477 * be returned in error cases.
2478 */
2479int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2480		     size_t val_count)
2481{
2482	int ret, i;
2483	size_t val_bytes = map->format.val_bytes;
2484	bool vol = regmap_volatile_range(map, reg, val_count);
2485
2486	if (!IS_ALIGNED(reg, map->reg_stride))
2487		return -EINVAL;
2488
2489	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2490		/*
2491		 * Some devices does not support bulk read, for
2492		 * them we have a series of single read operations.
2493		 */
2494		size_t total_size = val_bytes * val_count;
2495
2496		if (!map->use_single_read &&
2497		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2498			ret = regmap_raw_read(map, reg, val,
2499					      val_bytes * val_count);
2500			if (ret != 0)
2501				return ret;
2502		} else {
2503			/*
2504			 * Some devices do not support bulk read or do not
2505			 * support large bulk reads, for them we have a series
2506			 * of read operations.
2507			 */
2508			int chunk_stride = map->reg_stride;
2509			size_t chunk_size = val_bytes;
2510			size_t chunk_count = val_count;
2511
2512			if (!map->use_single_read) {
2513				chunk_size = map->max_raw_read;
2514				if (chunk_size % val_bytes)
2515					chunk_size -= chunk_size % val_bytes;
2516				chunk_count = total_size / chunk_size;
2517				chunk_stride *= chunk_size / val_bytes;
2518			}
2519
2520			/* Read bytes that fit into a multiple of chunk_size */
2521			for (i = 0; i < chunk_count; i++) {
2522				ret = regmap_raw_read(map,
2523						      reg + (i * chunk_stride),
2524						      val + (i * chunk_size),
2525						      chunk_size);
2526				if (ret != 0)
2527					return ret;
2528			}
2529
2530			/* Read remaining bytes */
2531			if (chunk_size * i < total_size) {
2532				ret = regmap_raw_read(map,
2533						      reg + (i * chunk_stride),
2534						      val + (i * chunk_size),
2535						      total_size - i * chunk_size);
2536				if (ret != 0)
2537					return ret;
2538			}
 
 
 
 
 
2539		}
2540
2541		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2542			map->format.parse_inplace(val + i);
2543	} else {
2544		for (i = 0; i < val_count; i++) {
2545			unsigned int ival;
2546			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2547					  &ival);
2548			if (ret != 0)
2549				return ret;
2550
2551			if (map->format.format_val) {
2552				map->format.format_val(val + (i * val_bytes), ival, 0);
2553			} else {
2554				/* Devices providing read and write
2555				 * operations can use the bulk I/O
2556				 * functions if they define a val_bytes,
2557				 * we assume that the values are native
2558				 * endian.
2559				 */
2560#ifdef CONFIG_64BIT
2561				u64 *u64 = val;
2562#endif
2563				u32 *u32 = val;
2564				u16 *u16 = val;
2565				u8 *u8 = val;
2566
2567				switch (map->format.val_bytes) {
2568#ifdef CONFIG_64BIT
2569				case 8:
2570					u64[i] = ival;
2571					break;
2572#endif
2573				case 4:
2574					u32[i] = ival;
2575					break;
2576				case 2:
2577					u16[i] = ival;
2578					break;
2579				case 1:
2580					u8[i] = ival;
2581					break;
2582				default:
2583					return -EINVAL;
2584				}
2585			}
2586		}
2587	}
2588
2589	return 0;
2590}
2591EXPORT_SYMBOL_GPL(regmap_bulk_read);
2592
2593static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2594			       unsigned int mask, unsigned int val,
2595			       bool *change, bool force_write)
2596{
2597	int ret;
2598	unsigned int tmp, orig;
2599
2600	if (change)
2601		*change = false;
 
 
 
 
2602
2603	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2604		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2605		if (ret == 0 && change)
2606			*change = true;
2607	} else {
2608		ret = _regmap_read(map, reg, &orig);
2609		if (ret != 0)
2610			return ret;
2611
2612		tmp = orig & ~mask;
2613		tmp |= val & mask;
2614
2615		if (force_write || (tmp != orig)) {
2616			ret = _regmap_write(map, reg, tmp);
2617			if (ret == 0 && change)
2618				*change = true;
2619		}
2620	}
 
 
 
 
 
 
 
 
 
 
 
 
2621
2622	return ret;
2623}
 
2624
2625/**
2626 * regmap_update_bits_base:
2627 *	Perform a read/modify/write cycle on the
2628 *	register map with change, async, force option
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2629 *
2630 * @map: Register map to update
2631 * @reg: Register to update
2632 * @mask: Bitmask to change
2633 * @val: New value for bitmask
2634 * @change: Boolean indicating if a write was done
2635 * @async: Boolean indicating asynchronously
2636 * @force: Boolean indicating use force update
2637 *
2638 * if async was true,
2639 * With most buses the read must be done synchronously so this is most
2640 * useful for devices with a cache which do not need to interact with
2641 * the hardware to determine the current register value.
2642 *
2643 * Returns zero for success, a negative number on error.
2644 */
2645int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2646			    unsigned int mask, unsigned int val,
2647			    bool *change, bool async, bool force)
2648{
2649	int ret;
2650
2651	map->lock(map->lock_arg);
2652
2653	map->async = async;
2654
2655	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2656
2657	map->async = false;
2658
2659	map->unlock(map->lock_arg);
2660
2661	return ret;
2662}
2663EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2664
2665void regmap_async_complete_cb(struct regmap_async *async, int ret)
2666{
2667	struct regmap *map = async->map;
2668	bool wake;
2669
2670	trace_regmap_async_io_complete(map);
2671
2672	spin_lock(&map->async_lock);
2673	list_move(&async->list, &map->async_free);
2674	wake = list_empty(&map->async_list);
2675
2676	if (ret != 0)
2677		map->async_ret = ret;
2678
2679	spin_unlock(&map->async_lock);
2680
2681	if (wake)
2682		wake_up(&map->async_waitq);
2683}
2684EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2685
2686static int regmap_async_is_done(struct regmap *map)
2687{
2688	unsigned long flags;
2689	int ret;
2690
2691	spin_lock_irqsave(&map->async_lock, flags);
2692	ret = list_empty(&map->async_list);
2693	spin_unlock_irqrestore(&map->async_lock, flags);
2694
2695	return ret;
2696}
2697
2698/**
2699 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2700 *
2701 * @map: Map to operate on.
2702 *
2703 * Blocks until any pending asynchronous I/O has completed.  Returns
2704 * an error code for any failed I/O operations.
2705 */
2706int regmap_async_complete(struct regmap *map)
2707{
2708	unsigned long flags;
2709	int ret;
2710
2711	/* Nothing to do with no async support */
2712	if (!map->bus || !map->bus->async_write)
2713		return 0;
2714
2715	trace_regmap_async_complete_start(map);
2716
2717	wait_event(map->async_waitq, regmap_async_is_done(map));
2718
2719	spin_lock_irqsave(&map->async_lock, flags);
2720	ret = map->async_ret;
2721	map->async_ret = 0;
2722	spin_unlock_irqrestore(&map->async_lock, flags);
2723
2724	trace_regmap_async_complete_done(map);
2725
2726	return ret;
2727}
2728EXPORT_SYMBOL_GPL(regmap_async_complete);
2729
2730/**
2731 * regmap_register_patch: Register and apply register updates to be applied
2732 *                        on device initialistion
2733 *
2734 * @map: Register map to apply updates to.
2735 * @regs: Values to update.
2736 * @num_regs: Number of entries in regs.
2737 *
2738 * Register a set of register updates to be applied to the device
2739 * whenever the device registers are synchronised with the cache and
2740 * apply them immediately.  Typically this is used to apply
2741 * corrections to be applied to the device defaults on startup, such
2742 * as the updates some vendors provide to undocumented registers.
2743 *
2744 * The caller must ensure that this function cannot be called
2745 * concurrently with either itself or regcache_sync().
2746 */
2747int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2748			  int num_regs)
2749{
2750	struct reg_sequence *p;
2751	int ret;
2752	bool bypass;
2753
2754	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2755	    num_regs))
2756		return 0;
2757
2758	p = krealloc(map->patch,
2759		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2760		     GFP_KERNEL);
2761	if (p) {
2762		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2763		map->patch = p;
2764		map->patch_regs += num_regs;
2765	} else {
2766		return -ENOMEM;
2767	}
2768
2769	map->lock(map->lock_arg);
2770
2771	bypass = map->cache_bypass;
2772
2773	map->cache_bypass = true;
2774	map->async = true;
2775
2776	ret = _regmap_multi_reg_write(map, regs, num_regs);
 
 
2777
 
2778	map->async = false;
2779	map->cache_bypass = bypass;
2780
2781	map->unlock(map->lock_arg);
2782
2783	regmap_async_complete(map);
2784
2785	return ret;
2786}
2787EXPORT_SYMBOL_GPL(regmap_register_patch);
2788
2789/*
2790 * regmap_get_val_bytes(): Report the size of a register value
2791 *
2792 * Report the size of a register value, mainly intended to for use by
2793 * generic infrastructure built on top of regmap.
2794 */
2795int regmap_get_val_bytes(struct regmap *map)
2796{
2797	if (map->format.format_write)
2798		return -EINVAL;
2799
2800	return map->format.val_bytes;
2801}
2802EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2803
2804/**
2805 * regmap_get_max_register(): Report the max register value
2806 *
2807 * Report the max register value, mainly intended to for use by
2808 * generic infrastructure built on top of regmap.
2809 */
2810int regmap_get_max_register(struct regmap *map)
2811{
2812	return map->max_register ? map->max_register : -EINVAL;
2813}
2814EXPORT_SYMBOL_GPL(regmap_get_max_register);
2815
2816/**
2817 * regmap_get_reg_stride(): Report the register address stride
2818 *
2819 * Report the register address stride, mainly intended to for use by
2820 * generic infrastructure built on top of regmap.
2821 */
2822int regmap_get_reg_stride(struct regmap *map)
2823{
2824	return map->reg_stride;
2825}
2826EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2827
2828int regmap_parse_val(struct regmap *map, const void *buf,
2829			unsigned int *val)
2830{
2831	if (!map->format.parse_val)
2832		return -EINVAL;
2833
2834	*val = map->format.parse_val(buf);
2835
2836	return 0;
2837}
2838EXPORT_SYMBOL_GPL(regmap_parse_val);
2839
2840static int __init regmap_initcall(void)
2841{
2842	regmap_debugfs_initcall();
2843
2844	return 0;
2845}
2846postcore_initcall(regmap_initcall);
v3.15
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
 
  18#include <linux/rbtree.h>
  19#include <linux/sched.h>
 
 
  20
  21#define CREATE_TRACE_POINTS
  22#include <trace/events/regmap.h>
  23
  24#include "internal.h"
  25
  26/*
  27 * Sometimes for failures during very early init the trace
  28 * infrastructure isn't available early enough to be used.  For this
  29 * sort of problem defining LOG_DEVICE will add printks for basic
  30 * register I/O on a specific device.
  31 */
  32#undef LOG_DEVICE
  33
  34static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  35			       unsigned int mask, unsigned int val,
  36			       bool *change);
  37
 
 
  38static int _regmap_bus_read(void *context, unsigned int reg,
  39			    unsigned int *val);
  40static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  41				       unsigned int val);
 
 
  42static int _regmap_bus_raw_write(void *context, unsigned int reg,
  43				 unsigned int val);
  44
  45bool regmap_reg_in_ranges(unsigned int reg,
  46			  const struct regmap_range *ranges,
  47			  unsigned int nranges)
  48{
  49	const struct regmap_range *r;
  50	int i;
  51
  52	for (i = 0, r = ranges; i < nranges; i++, r++)
  53		if (regmap_reg_in_range(reg, r))
  54			return true;
  55	return false;
  56}
  57EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  58
  59bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  60			      const struct regmap_access_table *table)
  61{
  62	/* Check "no ranges" first */
  63	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  64		return false;
  65
  66	/* In case zero "yes ranges" are supplied, any reg is OK */
  67	if (!table->n_yes_ranges)
  68		return true;
  69
  70	return regmap_reg_in_ranges(reg, table->yes_ranges,
  71				    table->n_yes_ranges);
  72}
  73EXPORT_SYMBOL_GPL(regmap_check_range_table);
  74
  75bool regmap_writeable(struct regmap *map, unsigned int reg)
  76{
  77	if (map->max_register && reg > map->max_register)
  78		return false;
  79
  80	if (map->writeable_reg)
  81		return map->writeable_reg(map->dev, reg);
  82
  83	if (map->wr_table)
  84		return regmap_check_range_table(map, reg, map->wr_table);
  85
  86	return true;
  87}
  88
  89bool regmap_readable(struct regmap *map, unsigned int reg)
  90{
 
 
 
  91	if (map->max_register && reg > map->max_register)
  92		return false;
  93
  94	if (map->format.format_write)
  95		return false;
  96
  97	if (map->readable_reg)
  98		return map->readable_reg(map->dev, reg);
  99
 100	if (map->rd_table)
 101		return regmap_check_range_table(map, reg, map->rd_table);
 102
 103	return true;
 104}
 105
 106bool regmap_volatile(struct regmap *map, unsigned int reg)
 107{
 108	if (!regmap_readable(map, reg))
 109		return false;
 110
 111	if (map->volatile_reg)
 112		return map->volatile_reg(map->dev, reg);
 113
 114	if (map->volatile_table)
 115		return regmap_check_range_table(map, reg, map->volatile_table);
 116
 117	if (map->cache_ops)
 118		return false;
 119	else
 120		return true;
 121}
 122
 123bool regmap_precious(struct regmap *map, unsigned int reg)
 124{
 125	if (!regmap_readable(map, reg))
 126		return false;
 127
 128	if (map->precious_reg)
 129		return map->precious_reg(map->dev, reg);
 130
 131	if (map->precious_table)
 132		return regmap_check_range_table(map, reg, map->precious_table);
 133
 134	return false;
 135}
 136
 137static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 138	size_t num)
 139{
 140	unsigned int i;
 141
 142	for (i = 0; i < num; i++)
 143		if (!regmap_volatile(map, reg + i))
 144			return false;
 145
 146	return true;
 147}
 148
 149static void regmap_format_2_6_write(struct regmap *map,
 150				     unsigned int reg, unsigned int val)
 151{
 152	u8 *out = map->work_buf;
 153
 154	*out = (reg << 6) | val;
 155}
 156
 157static void regmap_format_4_12_write(struct regmap *map,
 158				     unsigned int reg, unsigned int val)
 159{
 160	__be16 *out = map->work_buf;
 161	*out = cpu_to_be16((reg << 12) | val);
 162}
 163
 164static void regmap_format_7_9_write(struct regmap *map,
 165				    unsigned int reg, unsigned int val)
 166{
 167	__be16 *out = map->work_buf;
 168	*out = cpu_to_be16((reg << 9) | val);
 169}
 170
 171static void regmap_format_10_14_write(struct regmap *map,
 172				    unsigned int reg, unsigned int val)
 173{
 174	u8 *out = map->work_buf;
 175
 176	out[2] = val;
 177	out[1] = (val >> 8) | (reg << 6);
 178	out[0] = reg >> 2;
 179}
 180
 181static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 182{
 183	u8 *b = buf;
 184
 185	b[0] = val << shift;
 186}
 187
 188static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 189{
 190	__be16 *b = buf;
 191
 192	b[0] = cpu_to_be16(val << shift);
 193}
 194
 
 
 
 
 
 
 
 195static void regmap_format_16_native(void *buf, unsigned int val,
 196				    unsigned int shift)
 197{
 198	*(u16 *)buf = val << shift;
 199}
 200
 201static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 202{
 203	u8 *b = buf;
 204
 205	val <<= shift;
 206
 207	b[0] = val >> 16;
 208	b[1] = val >> 8;
 209	b[2] = val;
 210}
 211
 212static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 213{
 214	__be32 *b = buf;
 215
 216	b[0] = cpu_to_be32(val << shift);
 217}
 218
 
 
 
 
 
 
 
 219static void regmap_format_32_native(void *buf, unsigned int val,
 220				    unsigned int shift)
 221{
 222	*(u32 *)buf = val << shift;
 223}
 224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225static void regmap_parse_inplace_noop(void *buf)
 226{
 227}
 228
 229static unsigned int regmap_parse_8(const void *buf)
 230{
 231	const u8 *b = buf;
 232
 233	return b[0];
 234}
 235
 236static unsigned int regmap_parse_16_be(const void *buf)
 237{
 238	const __be16 *b = buf;
 239
 240	return be16_to_cpu(b[0]);
 241}
 242
 
 
 
 
 
 
 
 243static void regmap_parse_16_be_inplace(void *buf)
 244{
 245	__be16 *b = buf;
 246
 247	b[0] = be16_to_cpu(b[0]);
 248}
 249
 
 
 
 
 
 
 
 250static unsigned int regmap_parse_16_native(const void *buf)
 251{
 252	return *(u16 *)buf;
 253}
 254
 255static unsigned int regmap_parse_24(const void *buf)
 256{
 257	const u8 *b = buf;
 258	unsigned int ret = b[2];
 259	ret |= ((unsigned int)b[1]) << 8;
 260	ret |= ((unsigned int)b[0]) << 16;
 261
 262	return ret;
 263}
 264
 265static unsigned int regmap_parse_32_be(const void *buf)
 266{
 267	const __be32 *b = buf;
 268
 269	return be32_to_cpu(b[0]);
 270}
 271
 
 
 
 
 
 
 
 272static void regmap_parse_32_be_inplace(void *buf)
 273{
 274	__be32 *b = buf;
 275
 276	b[0] = be32_to_cpu(b[0]);
 277}
 278
 
 
 
 
 
 
 
 279static unsigned int regmap_parse_32_native(const void *buf)
 280{
 281	return *(u32 *)buf;
 282}
 283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284static void regmap_lock_mutex(void *__map)
 285{
 286	struct regmap *map = __map;
 287	mutex_lock(&map->mutex);
 288}
 289
 290static void regmap_unlock_mutex(void *__map)
 291{
 292	struct regmap *map = __map;
 293	mutex_unlock(&map->mutex);
 294}
 295
 296static void regmap_lock_spinlock(void *__map)
 297__acquires(&map->spinlock)
 298{
 299	struct regmap *map = __map;
 300	unsigned long flags;
 301
 302	spin_lock_irqsave(&map->spinlock, flags);
 303	map->spinlock_flags = flags;
 304}
 305
 306static void regmap_unlock_spinlock(void *__map)
 307__releases(&map->spinlock)
 308{
 309	struct regmap *map = __map;
 310	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 311}
 312
 313static void dev_get_regmap_release(struct device *dev, void *res)
 314{
 315	/*
 316	 * We don't actually have anything to do here; the goal here
 317	 * is not to manage the regmap but to provide a simple way to
 318	 * get the regmap back given a struct device.
 319	 */
 320}
 321
 322static bool _regmap_range_add(struct regmap *map,
 323			      struct regmap_range_node *data)
 324{
 325	struct rb_root *root = &map->range_tree;
 326	struct rb_node **new = &(root->rb_node), *parent = NULL;
 327
 328	while (*new) {
 329		struct regmap_range_node *this =
 330			container_of(*new, struct regmap_range_node, node);
 331
 332		parent = *new;
 333		if (data->range_max < this->range_min)
 334			new = &((*new)->rb_left);
 335		else if (data->range_min > this->range_max)
 336			new = &((*new)->rb_right);
 337		else
 338			return false;
 339	}
 340
 341	rb_link_node(&data->node, parent, new);
 342	rb_insert_color(&data->node, root);
 343
 344	return true;
 345}
 346
 347static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 348						      unsigned int reg)
 349{
 350	struct rb_node *node = map->range_tree.rb_node;
 351
 352	while (node) {
 353		struct regmap_range_node *this =
 354			container_of(node, struct regmap_range_node, node);
 355
 356		if (reg < this->range_min)
 357			node = node->rb_left;
 358		else if (reg > this->range_max)
 359			node = node->rb_right;
 360		else
 361			return this;
 362	}
 363
 364	return NULL;
 365}
 366
 367static void regmap_range_exit(struct regmap *map)
 368{
 369	struct rb_node *next;
 370	struct regmap_range_node *range_node;
 371
 372	next = rb_first(&map->range_tree);
 373	while (next) {
 374		range_node = rb_entry(next, struct regmap_range_node, node);
 375		next = rb_next(&range_node->node);
 376		rb_erase(&range_node->node, &map->range_tree);
 377		kfree(range_node);
 378	}
 379
 380	kfree(map->selector_work_buf);
 381}
 382
 383int regmap_attach_dev(struct device *dev, struct regmap *map,
 384		      const struct regmap_config *config)
 385{
 386	struct regmap **m;
 387
 388	map->dev = dev;
 389
 390	regmap_debugfs_init(map, config->name);
 391
 392	/* Add a devres resource for dev_get_regmap() */
 393	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 394	if (!m) {
 395		regmap_debugfs_exit(map);
 396		return -ENOMEM;
 397	}
 398	*m = map;
 399	devres_add(dev, m);
 400
 401	return 0;
 402}
 403EXPORT_SYMBOL_GPL(regmap_attach_dev);
 404
 405/**
 406 * regmap_init(): Initialise register map
 407 *
 408 * @dev: Device that will be interacted with
 409 * @bus: Bus-specific callbacks to use with device
 410 * @bus_context: Data passed to bus-specific callbacks
 411 * @config: Configuration for register map
 412 *
 413 * The return value will be an ERR_PTR() on error or a valid pointer to
 414 * a struct regmap.  This function should generally not be called
 415 * directly, it should be called by bus-specific init functions.
 416 */
 417struct regmap *regmap_init(struct device *dev,
 418			   const struct regmap_bus *bus,
 419			   void *bus_context,
 420			   const struct regmap_config *config)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421{
 422	struct regmap *map;
 423	int ret = -EINVAL;
 424	enum regmap_endian reg_endian, val_endian;
 425	int i, j;
 426
 427	if (!config)
 428		goto err;
 429
 430	map = kzalloc(sizeof(*map), GFP_KERNEL);
 431	if (map == NULL) {
 432		ret = -ENOMEM;
 433		goto err;
 434	}
 435
 436	if (config->lock && config->unlock) {
 437		map->lock = config->lock;
 438		map->unlock = config->unlock;
 439		map->lock_arg = config->lock_arg;
 440	} else {
 441		if ((bus && bus->fast_io) ||
 442		    config->fast_io) {
 443			spin_lock_init(&map->spinlock);
 444			map->lock = regmap_lock_spinlock;
 445			map->unlock = regmap_unlock_spinlock;
 
 
 446		} else {
 447			mutex_init(&map->mutex);
 448			map->lock = regmap_lock_mutex;
 449			map->unlock = regmap_unlock_mutex;
 
 
 450		}
 451		map->lock_arg = map;
 452	}
 
 
 
 
 
 
 
 
 
 
 453	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 454	map->format.pad_bytes = config->pad_bits / 8;
 455	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 456	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 457			config->val_bits + config->pad_bits, 8);
 458	map->reg_shift = config->pad_bits % 8;
 459	if (config->reg_stride)
 460		map->reg_stride = config->reg_stride;
 461	else
 462		map->reg_stride = 1;
 463	map->use_single_rw = config->use_single_rw;
 464	map->can_multi_write = config->can_multi_write;
 
 
 
 
 
 
 
 
 
 465	map->dev = dev;
 466	map->bus = bus;
 467	map->bus_context = bus_context;
 468	map->max_register = config->max_register;
 469	map->wr_table = config->wr_table;
 470	map->rd_table = config->rd_table;
 471	map->volatile_table = config->volatile_table;
 472	map->precious_table = config->precious_table;
 473	map->writeable_reg = config->writeable_reg;
 474	map->readable_reg = config->readable_reg;
 475	map->volatile_reg = config->volatile_reg;
 476	map->precious_reg = config->precious_reg;
 477	map->cache_type = config->cache_type;
 478	map->name = config->name;
 479
 480	spin_lock_init(&map->async_lock);
 481	INIT_LIST_HEAD(&map->async_list);
 482	INIT_LIST_HEAD(&map->async_free);
 483	init_waitqueue_head(&map->async_waitq);
 484
 485	if (config->read_flag_mask || config->write_flag_mask) {
 486		map->read_flag_mask = config->read_flag_mask;
 487		map->write_flag_mask = config->write_flag_mask;
 488	} else if (bus) {
 489		map->read_flag_mask = bus->read_flag_mask;
 490	}
 491
 492	if (!bus) {
 493		map->reg_read  = config->reg_read;
 494		map->reg_write = config->reg_write;
 495
 496		map->defer_caching = false;
 497		goto skip_format_initialization;
 
 
 
 
 
 
 498	} else {
 499		map->reg_read  = _regmap_bus_read;
 
 500	}
 501
 502	reg_endian = config->reg_format_endian;
 503	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
 504		reg_endian = bus->reg_format_endian_default;
 505	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
 506		reg_endian = REGMAP_ENDIAN_BIG;
 507
 508	val_endian = config->val_format_endian;
 509	if (val_endian == REGMAP_ENDIAN_DEFAULT)
 510		val_endian = bus->val_format_endian_default;
 511	if (val_endian == REGMAP_ENDIAN_DEFAULT)
 512		val_endian = REGMAP_ENDIAN_BIG;
 513
 514	switch (config->reg_bits + map->reg_shift) {
 515	case 2:
 516		switch (config->val_bits) {
 517		case 6:
 518			map->format.format_write = regmap_format_2_6_write;
 519			break;
 520		default:
 521			goto err_map;
 522		}
 523		break;
 524
 525	case 4:
 526		switch (config->val_bits) {
 527		case 12:
 528			map->format.format_write = regmap_format_4_12_write;
 529			break;
 530		default:
 531			goto err_map;
 532		}
 533		break;
 534
 535	case 7:
 536		switch (config->val_bits) {
 537		case 9:
 538			map->format.format_write = regmap_format_7_9_write;
 539			break;
 540		default:
 541			goto err_map;
 542		}
 543		break;
 544
 545	case 10:
 546		switch (config->val_bits) {
 547		case 14:
 548			map->format.format_write = regmap_format_10_14_write;
 549			break;
 550		default:
 551			goto err_map;
 552		}
 553		break;
 554
 555	case 8:
 556		map->format.format_reg = regmap_format_8;
 557		break;
 558
 559	case 16:
 560		switch (reg_endian) {
 561		case REGMAP_ENDIAN_BIG:
 562			map->format.format_reg = regmap_format_16_be;
 563			break;
 564		case REGMAP_ENDIAN_NATIVE:
 565			map->format.format_reg = regmap_format_16_native;
 566			break;
 567		default:
 568			goto err_map;
 569		}
 570		break;
 571
 572	case 24:
 573		if (reg_endian != REGMAP_ENDIAN_BIG)
 574			goto err_map;
 575		map->format.format_reg = regmap_format_24;
 576		break;
 577
 578	case 32:
 579		switch (reg_endian) {
 580		case REGMAP_ENDIAN_BIG:
 581			map->format.format_reg = regmap_format_32_be;
 582			break;
 583		case REGMAP_ENDIAN_NATIVE:
 584			map->format.format_reg = regmap_format_32_native;
 585			break;
 586		default:
 587			goto err_map;
 588		}
 589		break;
 590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591	default:
 592		goto err_map;
 593	}
 594
 595	if (val_endian == REGMAP_ENDIAN_NATIVE)
 596		map->format.parse_inplace = regmap_parse_inplace_noop;
 597
 598	switch (config->val_bits) {
 599	case 8:
 600		map->format.format_val = regmap_format_8;
 601		map->format.parse_val = regmap_parse_8;
 602		map->format.parse_inplace = regmap_parse_inplace_noop;
 603		break;
 604	case 16:
 605		switch (val_endian) {
 606		case REGMAP_ENDIAN_BIG:
 607			map->format.format_val = regmap_format_16_be;
 608			map->format.parse_val = regmap_parse_16_be;
 609			map->format.parse_inplace = regmap_parse_16_be_inplace;
 610			break;
 
 
 
 
 
 611		case REGMAP_ENDIAN_NATIVE:
 612			map->format.format_val = regmap_format_16_native;
 613			map->format.parse_val = regmap_parse_16_native;
 614			break;
 615		default:
 616			goto err_map;
 617		}
 618		break;
 619	case 24:
 620		if (val_endian != REGMAP_ENDIAN_BIG)
 621			goto err_map;
 622		map->format.format_val = regmap_format_24;
 623		map->format.parse_val = regmap_parse_24;
 624		break;
 625	case 32:
 626		switch (val_endian) {
 627		case REGMAP_ENDIAN_BIG:
 628			map->format.format_val = regmap_format_32_be;
 629			map->format.parse_val = regmap_parse_32_be;
 630			map->format.parse_inplace = regmap_parse_32_be_inplace;
 631			break;
 
 
 
 
 
 632		case REGMAP_ENDIAN_NATIVE:
 633			map->format.format_val = regmap_format_32_native;
 634			map->format.parse_val = regmap_parse_32_native;
 635			break;
 636		default:
 637			goto err_map;
 638		}
 639		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640	}
 641
 642	if (map->format.format_write) {
 643		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 644		    (val_endian != REGMAP_ENDIAN_BIG))
 645			goto err_map;
 646		map->use_single_rw = true;
 647	}
 648
 649	if (!map->format.format_write &&
 650	    !(map->format.format_reg && map->format.format_val))
 651		goto err_map;
 652
 653	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 654	if (map->work_buf == NULL) {
 655		ret = -ENOMEM;
 656		goto err_map;
 657	}
 658
 659	if (map->format.format_write) {
 660		map->defer_caching = false;
 661		map->reg_write = _regmap_bus_formatted_write;
 662	} else if (map->format.format_val) {
 663		map->defer_caching = true;
 664		map->reg_write = _regmap_bus_raw_write;
 665	}
 666
 667skip_format_initialization:
 668
 669	map->range_tree = RB_ROOT;
 670	for (i = 0; i < config->num_ranges; i++) {
 671		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 672		struct regmap_range_node *new;
 673
 674		/* Sanity check */
 675		if (range_cfg->range_max < range_cfg->range_min) {
 676			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 677				range_cfg->range_max, range_cfg->range_min);
 678			goto err_range;
 679		}
 680
 681		if (range_cfg->range_max > map->max_register) {
 682			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 683				range_cfg->range_max, map->max_register);
 684			goto err_range;
 685		}
 686
 687		if (range_cfg->selector_reg > map->max_register) {
 688			dev_err(map->dev,
 689				"Invalid range %d: selector out of map\n", i);
 690			goto err_range;
 691		}
 692
 693		if (range_cfg->window_len == 0) {
 694			dev_err(map->dev, "Invalid range %d: window_len 0\n",
 695				i);
 696			goto err_range;
 697		}
 698
 699		/* Make sure, that this register range has no selector
 700		   or data window within its boundary */
 701		for (j = 0; j < config->num_ranges; j++) {
 702			unsigned sel_reg = config->ranges[j].selector_reg;
 703			unsigned win_min = config->ranges[j].window_start;
 704			unsigned win_max = win_min +
 705					   config->ranges[j].window_len - 1;
 706
 707			/* Allow data window inside its own virtual range */
 708			if (j == i)
 709				continue;
 710
 711			if (range_cfg->range_min <= sel_reg &&
 712			    sel_reg <= range_cfg->range_max) {
 713				dev_err(map->dev,
 714					"Range %d: selector for %d in window\n",
 715					i, j);
 716				goto err_range;
 717			}
 718
 719			if (!(win_max < range_cfg->range_min ||
 720			      win_min > range_cfg->range_max)) {
 721				dev_err(map->dev,
 722					"Range %d: window for %d in window\n",
 723					i, j);
 724				goto err_range;
 725			}
 726		}
 727
 728		new = kzalloc(sizeof(*new), GFP_KERNEL);
 729		if (new == NULL) {
 730			ret = -ENOMEM;
 731			goto err_range;
 732		}
 733
 734		new->map = map;
 735		new->name = range_cfg->name;
 736		new->range_min = range_cfg->range_min;
 737		new->range_max = range_cfg->range_max;
 738		new->selector_reg = range_cfg->selector_reg;
 739		new->selector_mask = range_cfg->selector_mask;
 740		new->selector_shift = range_cfg->selector_shift;
 741		new->window_start = range_cfg->window_start;
 742		new->window_len = range_cfg->window_len;
 743
 744		if (!_regmap_range_add(map, new)) {
 745			dev_err(map->dev, "Failed to add range %d\n", i);
 746			kfree(new);
 747			goto err_range;
 748		}
 749
 750		if (map->selector_work_buf == NULL) {
 751			map->selector_work_buf =
 752				kzalloc(map->format.buf_size, GFP_KERNEL);
 753			if (map->selector_work_buf == NULL) {
 754				ret = -ENOMEM;
 755				goto err_range;
 756			}
 757		}
 758	}
 759
 760	ret = regcache_init(map, config);
 761	if (ret != 0)
 762		goto err_range;
 763
 764	if (dev) {
 765		ret = regmap_attach_dev(dev, map, config);
 766		if (ret != 0)
 767			goto err_regcache;
 768	}
 769
 770	return map;
 771
 772err_regcache:
 773	regcache_exit(map);
 774err_range:
 775	regmap_range_exit(map);
 776	kfree(map->work_buf);
 777err_map:
 778	kfree(map);
 779err:
 780	return ERR_PTR(ret);
 781}
 782EXPORT_SYMBOL_GPL(regmap_init);
 783
 784static void devm_regmap_release(struct device *dev, void *res)
 785{
 786	regmap_exit(*(struct regmap **)res);
 787}
 788
 789/**
 790 * devm_regmap_init(): Initialise managed register map
 791 *
 792 * @dev: Device that will be interacted with
 793 * @bus: Bus-specific callbacks to use with device
 794 * @bus_context: Data passed to bus-specific callbacks
 795 * @config: Configuration for register map
 796 *
 797 * The return value will be an ERR_PTR() on error or a valid pointer
 798 * to a struct regmap.  This function should generally not be called
 799 * directly, it should be called by bus-specific init functions.  The
 800 * map will be automatically freed by the device management code.
 801 */
 802struct regmap *devm_regmap_init(struct device *dev,
 803				const struct regmap_bus *bus,
 804				void *bus_context,
 805				const struct regmap_config *config)
 806{
 807	struct regmap **ptr, *regmap;
 808
 809	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
 810	if (!ptr)
 811		return ERR_PTR(-ENOMEM);
 812
 813	regmap = regmap_init(dev, bus, bus_context, config);
 
 814	if (!IS_ERR(regmap)) {
 815		*ptr = regmap;
 816		devres_add(dev, ptr);
 817	} else {
 818		devres_free(ptr);
 819	}
 820
 821	return regmap;
 822}
 823EXPORT_SYMBOL_GPL(devm_regmap_init);
 824
 825static void regmap_field_init(struct regmap_field *rm_field,
 826	struct regmap *regmap, struct reg_field reg_field)
 827{
 828	int field_bits = reg_field.msb - reg_field.lsb + 1;
 829	rm_field->regmap = regmap;
 830	rm_field->reg = reg_field.reg;
 831	rm_field->shift = reg_field.lsb;
 832	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
 833	rm_field->id_size = reg_field.id_size;
 834	rm_field->id_offset = reg_field.id_offset;
 835}
 836
 837/**
 838 * devm_regmap_field_alloc(): Allocate and initialise a register field
 839 * in a register map.
 840 *
 841 * @dev: Device that will be interacted with
 842 * @regmap: regmap bank in which this register field is located.
 843 * @reg_field: Register field with in the bank.
 844 *
 845 * The return value will be an ERR_PTR() on error or a valid pointer
 846 * to a struct regmap_field. The regmap_field will be automatically freed
 847 * by the device management code.
 848 */
 849struct regmap_field *devm_regmap_field_alloc(struct device *dev,
 850		struct regmap *regmap, struct reg_field reg_field)
 851{
 852	struct regmap_field *rm_field = devm_kzalloc(dev,
 853					sizeof(*rm_field), GFP_KERNEL);
 854	if (!rm_field)
 855		return ERR_PTR(-ENOMEM);
 856
 857	regmap_field_init(rm_field, regmap, reg_field);
 858
 859	return rm_field;
 860
 861}
 862EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
 863
 864/**
 865 * devm_regmap_field_free(): Free register field allocated using
 866 * devm_regmap_field_alloc. Usally drivers need not call this function,
 867 * as the memory allocated via devm will be freed as per device-driver
 868 * life-cyle.
 869 *
 870 * @dev: Device that will be interacted with
 871 * @field: regmap field which should be freed.
 872 */
 873void devm_regmap_field_free(struct device *dev,
 874	struct regmap_field *field)
 875{
 876	devm_kfree(dev, field);
 877}
 878EXPORT_SYMBOL_GPL(devm_regmap_field_free);
 879
 880/**
 881 * regmap_field_alloc(): Allocate and initialise a register field
 882 * in a register map.
 883 *
 884 * @regmap: regmap bank in which this register field is located.
 885 * @reg_field: Register field with in the bank.
 886 *
 887 * The return value will be an ERR_PTR() on error or a valid pointer
 888 * to a struct regmap_field. The regmap_field should be freed by the
 889 * user once its finished working with it using regmap_field_free().
 890 */
 891struct regmap_field *regmap_field_alloc(struct regmap *regmap,
 892		struct reg_field reg_field)
 893{
 894	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
 895
 896	if (!rm_field)
 897		return ERR_PTR(-ENOMEM);
 898
 899	regmap_field_init(rm_field, regmap, reg_field);
 900
 901	return rm_field;
 902}
 903EXPORT_SYMBOL_GPL(regmap_field_alloc);
 904
 905/**
 906 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 907 *
 908 * @field: regmap field which should be freed.
 909 */
 910void regmap_field_free(struct regmap_field *field)
 911{
 912	kfree(field);
 913}
 914EXPORT_SYMBOL_GPL(regmap_field_free);
 915
 916/**
 917 * regmap_reinit_cache(): Reinitialise the current register cache
 918 *
 919 * @map: Register map to operate on.
 920 * @config: New configuration.  Only the cache data will be used.
 921 *
 922 * Discard any existing register cache for the map and initialize a
 923 * new cache.  This can be used to restore the cache to defaults or to
 924 * update the cache configuration to reflect runtime discovery of the
 925 * hardware.
 926 *
 927 * No explicit locking is done here, the user needs to ensure that
 928 * this function will not race with other calls to regmap.
 929 */
 930int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
 931{
 932	regcache_exit(map);
 933	regmap_debugfs_exit(map);
 934
 935	map->max_register = config->max_register;
 936	map->writeable_reg = config->writeable_reg;
 937	map->readable_reg = config->readable_reg;
 938	map->volatile_reg = config->volatile_reg;
 939	map->precious_reg = config->precious_reg;
 940	map->cache_type = config->cache_type;
 941
 942	regmap_debugfs_init(map, config->name);
 943
 944	map->cache_bypass = false;
 945	map->cache_only = false;
 946
 947	return regcache_init(map, config);
 948}
 949EXPORT_SYMBOL_GPL(regmap_reinit_cache);
 950
 951/**
 952 * regmap_exit(): Free a previously allocated register map
 953 */
 954void regmap_exit(struct regmap *map)
 955{
 956	struct regmap_async *async;
 957
 958	regcache_exit(map);
 959	regmap_debugfs_exit(map);
 960	regmap_range_exit(map);
 961	if (map->bus && map->bus->free_context)
 962		map->bus->free_context(map->bus_context);
 963	kfree(map->work_buf);
 964	while (!list_empty(&map->async_free)) {
 965		async = list_first_entry_or_null(&map->async_free,
 966						 struct regmap_async,
 967						 list);
 968		list_del(&async->list);
 969		kfree(async->work_buf);
 970		kfree(async);
 971	}
 972	kfree(map);
 973}
 974EXPORT_SYMBOL_GPL(regmap_exit);
 975
 976static int dev_get_regmap_match(struct device *dev, void *res, void *data)
 977{
 978	struct regmap **r = res;
 979	if (!r || !*r) {
 980		WARN_ON(!r || !*r);
 981		return 0;
 982	}
 983
 984	/* If the user didn't specify a name match any */
 985	if (data)
 986		return (*r)->name == data;
 987	else
 988		return 1;
 989}
 990
 991/**
 992 * dev_get_regmap(): Obtain the regmap (if any) for a device
 993 *
 994 * @dev: Device to retrieve the map for
 995 * @name: Optional name for the register map, usually NULL.
 996 *
 997 * Returns the regmap for the device if one is present, or NULL.  If
 998 * name is specified then it must match the name specified when
 999 * registering the device, if it is NULL then the first regmap found
1000 * will be used.  Devices with multiple register maps are very rare,
1001 * generic code should normally not need to specify a name.
1002 */
1003struct regmap *dev_get_regmap(struct device *dev, const char *name)
1004{
1005	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1006					dev_get_regmap_match, (void *)name);
1007
1008	if (!r)
1009		return NULL;
1010	return *r;
1011}
1012EXPORT_SYMBOL_GPL(dev_get_regmap);
1013
 
 
 
 
 
 
 
 
 
 
 
 
 
1014static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1015			       struct regmap_range_node *range,
1016			       unsigned int val_num)
1017{
1018	void *orig_work_buf;
1019	unsigned int win_offset;
1020	unsigned int win_page;
1021	bool page_chg;
1022	int ret;
1023
1024	win_offset = (*reg - range->range_min) % range->window_len;
1025	win_page = (*reg - range->range_min) / range->window_len;
1026
1027	if (val_num > 1) {
1028		/* Bulk write shouldn't cross range boundary */
1029		if (*reg + val_num - 1 > range->range_max)
1030			return -EINVAL;
1031
1032		/* ... or single page boundary */
1033		if (val_num > range->window_len - win_offset)
1034			return -EINVAL;
1035	}
1036
1037	/* It is possible to have selector register inside data window.
1038	   In that case, selector register is located on every page and
1039	   it needs no page switching, when accessed alone. */
1040	if (val_num > 1 ||
1041	    range->window_start + win_offset != range->selector_reg) {
1042		/* Use separate work_buf during page switching */
1043		orig_work_buf = map->work_buf;
1044		map->work_buf = map->selector_work_buf;
1045
1046		ret = _regmap_update_bits(map, range->selector_reg,
1047					  range->selector_mask,
1048					  win_page << range->selector_shift,
1049					  &page_chg);
1050
1051		map->work_buf = orig_work_buf;
1052
1053		if (ret != 0)
1054			return ret;
1055	}
1056
1057	*reg = range->window_start + win_offset;
1058
1059	return 0;
1060}
1061
1062int _regmap_raw_write(struct regmap *map, unsigned int reg,
1063		      const void *val, size_t val_len)
1064{
1065	struct regmap_range_node *range;
1066	unsigned long flags;
1067	u8 *u8 = map->work_buf;
1068	void *work_val = map->work_buf + map->format.reg_bytes +
1069		map->format.pad_bytes;
1070	void *buf;
1071	int ret = -ENOTSUPP;
1072	size_t len;
1073	int i;
1074
1075	WARN_ON(!map->bus);
1076
1077	/* Check for unwritable registers before we start */
1078	if (map->writeable_reg)
1079		for (i = 0; i < val_len / map->format.val_bytes; i++)
1080			if (!map->writeable_reg(map->dev,
1081						reg + (i * map->reg_stride)))
1082				return -EINVAL;
1083
1084	if (!map->cache_bypass && map->format.parse_val) {
1085		unsigned int ival;
1086		int val_bytes = map->format.val_bytes;
1087		for (i = 0; i < val_len / val_bytes; i++) {
1088			ival = map->format.parse_val(val + (i * val_bytes));
1089			ret = regcache_write(map, reg + (i * map->reg_stride),
 
1090					     ival);
1091			if (ret) {
1092				dev_err(map->dev,
1093					"Error in caching of register: %x ret: %d\n",
1094					reg + i, ret);
1095				return ret;
1096			}
1097		}
1098		if (map->cache_only) {
1099			map->cache_dirty = true;
1100			return 0;
1101		}
1102	}
1103
1104	range = _regmap_range_lookup(map, reg);
1105	if (range) {
1106		int val_num = val_len / map->format.val_bytes;
1107		int win_offset = (reg - range->range_min) % range->window_len;
1108		int win_residue = range->window_len - win_offset;
1109
1110		/* If the write goes beyond the end of the window split it */
1111		while (val_num > win_residue) {
1112			dev_dbg(map->dev, "Writing window %d/%zu\n",
1113				win_residue, val_len / map->format.val_bytes);
1114			ret = _regmap_raw_write(map, reg, val, win_residue *
1115						map->format.val_bytes);
1116			if (ret != 0)
1117				return ret;
1118
1119			reg += win_residue;
1120			val_num -= win_residue;
1121			val += win_residue * map->format.val_bytes;
1122			val_len -= win_residue * map->format.val_bytes;
1123
1124			win_offset = (reg - range->range_min) %
1125				range->window_len;
1126			win_residue = range->window_len - win_offset;
1127		}
1128
1129		ret = _regmap_select_page(map, &reg, range, val_num);
1130		if (ret != 0)
1131			return ret;
1132	}
1133
1134	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1135
1136	u8[0] |= map->write_flag_mask;
1137
1138	/*
1139	 * Essentially all I/O mechanisms will be faster with a single
1140	 * buffer to write.  Since register syncs often generate raw
1141	 * writes of single registers optimise that case.
1142	 */
1143	if (val != work_val && val_len == map->format.val_bytes) {
1144		memcpy(work_val, val, map->format.val_bytes);
1145		val = work_val;
1146	}
1147
1148	if (map->async && map->bus->async_write) {
1149		struct regmap_async *async;
1150
1151		trace_regmap_async_write_start(map->dev, reg, val_len);
1152
1153		spin_lock_irqsave(&map->async_lock, flags);
1154		async = list_first_entry_or_null(&map->async_free,
1155						 struct regmap_async,
1156						 list);
1157		if (async)
1158			list_del(&async->list);
1159		spin_unlock_irqrestore(&map->async_lock, flags);
1160
1161		if (!async) {
1162			async = map->bus->async_alloc();
1163			if (!async)
1164				return -ENOMEM;
1165
1166			async->work_buf = kzalloc(map->format.buf_size,
1167						  GFP_KERNEL | GFP_DMA);
1168			if (!async->work_buf) {
1169				kfree(async);
1170				return -ENOMEM;
1171			}
1172		}
1173
1174		async->map = map;
1175
1176		/* If the caller supplied the value we can use it safely. */
1177		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1178		       map->format.reg_bytes + map->format.val_bytes);
1179
1180		spin_lock_irqsave(&map->async_lock, flags);
1181		list_add_tail(&async->list, &map->async_list);
1182		spin_unlock_irqrestore(&map->async_lock, flags);
1183
1184		if (val != work_val)
1185			ret = map->bus->async_write(map->bus_context,
1186						    async->work_buf,
1187						    map->format.reg_bytes +
1188						    map->format.pad_bytes,
1189						    val, val_len, async);
1190		else
1191			ret = map->bus->async_write(map->bus_context,
1192						    async->work_buf,
1193						    map->format.reg_bytes +
1194						    map->format.pad_bytes +
1195						    val_len, NULL, 0, async);
1196
1197		if (ret != 0) {
1198			dev_err(map->dev, "Failed to schedule write: %d\n",
1199				ret);
1200
1201			spin_lock_irqsave(&map->async_lock, flags);
1202			list_move(&async->list, &map->async_free);
1203			spin_unlock_irqrestore(&map->async_lock, flags);
1204		}
1205
1206		return ret;
1207	}
1208
1209	trace_regmap_hw_write_start(map->dev, reg,
1210				    val_len / map->format.val_bytes);
1211
1212	/* If we're doing a single register write we can probably just
1213	 * send the work_buf directly, otherwise try to do a gather
1214	 * write.
1215	 */
1216	if (val == work_val)
1217		ret = map->bus->write(map->bus_context, map->work_buf,
1218				      map->format.reg_bytes +
1219				      map->format.pad_bytes +
1220				      val_len);
1221	else if (map->bus->gather_write)
1222		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1223					     map->format.reg_bytes +
1224					     map->format.pad_bytes,
1225					     val, val_len);
1226
1227	/* If that didn't work fall back on linearising by hand. */
1228	if (ret == -ENOTSUPP) {
1229		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1230		buf = kzalloc(len, GFP_KERNEL);
1231		if (!buf)
1232			return -ENOMEM;
1233
1234		memcpy(buf, map->work_buf, map->format.reg_bytes);
1235		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1236		       val, val_len);
1237		ret = map->bus->write(map->bus_context, buf, len);
1238
1239		kfree(buf);
1240	}
1241
1242	trace_regmap_hw_write_done(map->dev, reg,
1243				   val_len / map->format.val_bytes);
1244
1245	return ret;
1246}
1247
1248/**
1249 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1250 *
1251 * @map: Map to check.
1252 */
1253bool regmap_can_raw_write(struct regmap *map)
1254{
1255	return map->bus && map->format.format_val && map->format.format_reg;
 
1256}
1257EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1260				       unsigned int val)
1261{
1262	int ret;
1263	struct regmap_range_node *range;
1264	struct regmap *map = context;
1265
1266	WARN_ON(!map->bus || !map->format.format_write);
1267
1268	range = _regmap_range_lookup(map, reg);
1269	if (range) {
1270		ret = _regmap_select_page(map, &reg, range, 1);
1271		if (ret != 0)
1272			return ret;
1273	}
1274
1275	map->format.format_write(map, reg, val);
1276
1277	trace_regmap_hw_write_start(map->dev, reg, 1);
1278
1279	ret = map->bus->write(map->bus_context, map->work_buf,
1280			      map->format.buf_size);
1281
1282	trace_regmap_hw_write_done(map->dev, reg, 1);
1283
1284	return ret;
1285}
1286
 
 
 
 
 
 
 
 
1287static int _regmap_bus_raw_write(void *context, unsigned int reg,
1288				 unsigned int val)
1289{
1290	struct regmap *map = context;
1291
1292	WARN_ON(!map->bus || !map->format.format_val);
1293
1294	map->format.format_val(map->work_buf + map->format.reg_bytes
1295			       + map->format.pad_bytes, val, 0);
1296	return _regmap_raw_write(map, reg,
1297				 map->work_buf +
1298				 map->format.reg_bytes +
1299				 map->format.pad_bytes,
1300				 map->format.val_bytes);
1301}
1302
1303static inline void *_regmap_map_get_context(struct regmap *map)
1304{
1305	return (map->bus) ? map : map->bus_context;
1306}
1307
1308int _regmap_write(struct regmap *map, unsigned int reg,
1309		  unsigned int val)
1310{
1311	int ret;
1312	void *context = _regmap_map_get_context(map);
1313
1314	if (!regmap_writeable(map, reg))
1315		return -EIO;
1316
1317	if (!map->cache_bypass && !map->defer_caching) {
1318		ret = regcache_write(map, reg, val);
1319		if (ret != 0)
1320			return ret;
1321		if (map->cache_only) {
1322			map->cache_dirty = true;
1323			return 0;
1324		}
1325	}
1326
1327#ifdef LOG_DEVICE
1328	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1329		dev_info(map->dev, "%x <= %x\n", reg, val);
1330#endif
1331
1332	trace_regmap_reg_write(map->dev, reg, val);
1333
1334	return map->reg_write(context, reg, val);
1335}
1336
1337/**
1338 * regmap_write(): Write a value to a single register
1339 *
1340 * @map: Register map to write to
1341 * @reg: Register to write to
1342 * @val: Value to be written
1343 *
1344 * A value of zero will be returned on success, a negative errno will
1345 * be returned in error cases.
1346 */
1347int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1348{
1349	int ret;
1350
1351	if (reg % map->reg_stride)
1352		return -EINVAL;
1353
1354	map->lock(map->lock_arg);
1355
1356	ret = _regmap_write(map, reg, val);
1357
1358	map->unlock(map->lock_arg);
1359
1360	return ret;
1361}
1362EXPORT_SYMBOL_GPL(regmap_write);
1363
1364/**
1365 * regmap_write_async(): Write a value to a single register asynchronously
1366 *
1367 * @map: Register map to write to
1368 * @reg: Register to write to
1369 * @val: Value to be written
1370 *
1371 * A value of zero will be returned on success, a negative errno will
1372 * be returned in error cases.
1373 */
1374int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1375{
1376	int ret;
1377
1378	if (reg % map->reg_stride)
1379		return -EINVAL;
1380
1381	map->lock(map->lock_arg);
1382
1383	map->async = true;
1384
1385	ret = _regmap_write(map, reg, val);
1386
1387	map->async = false;
1388
1389	map->unlock(map->lock_arg);
1390
1391	return ret;
1392}
1393EXPORT_SYMBOL_GPL(regmap_write_async);
1394
1395/**
1396 * regmap_raw_write(): Write raw values to one or more registers
1397 *
1398 * @map: Register map to write to
1399 * @reg: Initial register to write to
1400 * @val: Block of data to be written, laid out for direct transmission to the
1401 *       device
1402 * @val_len: Length of data pointed to by val.
1403 *
1404 * This function is intended to be used for things like firmware
1405 * download where a large block of data needs to be transferred to the
1406 * device.  No formatting will be done on the data provided.
1407 *
1408 * A value of zero will be returned on success, a negative errno will
1409 * be returned in error cases.
1410 */
1411int regmap_raw_write(struct regmap *map, unsigned int reg,
1412		     const void *val, size_t val_len)
1413{
1414	int ret;
1415
1416	if (!regmap_can_raw_write(map))
1417		return -EINVAL;
1418	if (val_len % map->format.val_bytes)
1419		return -EINVAL;
 
 
1420
1421	map->lock(map->lock_arg);
1422
1423	ret = _regmap_raw_write(map, reg, val, val_len);
1424
1425	map->unlock(map->lock_arg);
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL_GPL(regmap_raw_write);
1430
1431/**
1432 * regmap_field_write(): Write a value to a single register field
1433 *
1434 * @field: Register field to write to
1435 * @val: Value to be written
1436 *
1437 * A value of zero will be returned on success, a negative errno will
1438 * be returned in error cases.
1439 */
1440int regmap_field_write(struct regmap_field *field, unsigned int val)
1441{
1442	return regmap_update_bits(field->regmap, field->reg,
1443				field->mask, val << field->shift);
1444}
1445EXPORT_SYMBOL_GPL(regmap_field_write);
1446
1447/**
1448 * regmap_field_update_bits():	Perform a read/modify/write cycle
1449 *                              on the register field
1450 *
1451 * @field: Register field to write to
1452 * @mask: Bitmask to change
1453 * @val: Value to be written
 
 
 
1454 *
1455 * A value of zero will be returned on success, a negative errno will
1456 * be returned in error cases.
1457 */
1458int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
 
 
1459{
1460	mask = (mask << field->shift) & field->mask;
1461
1462	return regmap_update_bits(field->regmap, field->reg,
1463				  mask, val << field->shift);
1464}
1465EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1466
1467/**
1468 * regmap_fields_write(): Write a value to a single register field with port ID
1469 *
1470 * @field: Register field to write to
1471 * @id: port ID
1472 * @val: Value to be written
1473 *
1474 * A value of zero will be returned on success, a negative errno will
1475 * be returned in error cases.
1476 */
1477int regmap_fields_write(struct regmap_field *field, unsigned int id,
1478			unsigned int val)
1479{
1480	if (id >= field->id_size)
1481		return -EINVAL;
1482
1483	return regmap_update_bits(field->regmap,
1484				  field->reg + (field->id_offset * id),
1485				  field->mask, val << field->shift);
1486}
1487EXPORT_SYMBOL_GPL(regmap_fields_write);
1488
1489/**
1490 * regmap_fields_update_bits():	Perform a read/modify/write cycle
1491 *                              on the register field
 
1492 *
1493 * @field: Register field to write to
1494 * @id: port ID
1495 * @mask: Bitmask to change
1496 * @val: Value to be written
 
 
 
1497 *
1498 * A value of zero will be returned on success, a negative errno will
1499 * be returned in error cases.
1500 */
1501int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1502			      unsigned int mask, unsigned int val)
 
1503{
1504	if (id >= field->id_size)
1505		return -EINVAL;
1506
1507	mask = (mask << field->shift) & field->mask;
1508
1509	return regmap_update_bits(field->regmap,
1510				  field->reg + (field->id_offset * id),
1511				  mask, val << field->shift);
 
1512}
1513EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1514
1515/*
1516 * regmap_bulk_write(): Write multiple registers to the device
1517 *
1518 * @map: Register map to write to
1519 * @reg: First register to be write from
1520 * @val: Block of data to be written, in native register size for device
1521 * @val_count: Number of registers to write
1522 *
1523 * This function is intended to be used for writing a large block of
1524 * data to the device either in single transfer or multiple transfer.
1525 *
1526 * A value of zero will be returned on success, a negative errno will
1527 * be returned in error cases.
1528 */
1529int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1530		     size_t val_count)
1531{
1532	int ret = 0, i;
1533	size_t val_bytes = map->format.val_bytes;
 
1534
1535	if (map->bus && !map->format.parse_inplace)
1536		return -EINVAL;
1537	if (reg % map->reg_stride)
1538		return -EINVAL;
1539
1540	/*
1541	 * Some devices don't support bulk write, for
1542	 * them we have a series of single write operations.
 
 
 
 
 
 
1543	 */
1544	if (!map->bus || map->use_single_rw) {
1545		map->lock(map->lock_arg);
1546		for (i = 0; i < val_count; i++) {
1547			unsigned int ival;
1548
1549			switch (val_bytes) {
1550			case 1:
1551				ival = *(u8 *)(val + (i * val_bytes));
1552				break;
1553			case 2:
1554				ival = *(u16 *)(val + (i * val_bytes));
1555				break;
1556			case 4:
1557				ival = *(u32 *)(val + (i * val_bytes));
1558				break;
1559#ifdef CONFIG_64BIT
1560			case 8:
1561				ival = *(u64 *)(val + (i * val_bytes));
1562				break;
1563#endif
1564			default:
1565				ret = -EINVAL;
1566				goto out;
1567			}
1568
1569			ret = _regmap_write(map, reg + (i * map->reg_stride),
1570					ival);
 
1571			if (ret != 0)
1572				goto out;
1573		}
1574out:
1575		map->unlock(map->lock_arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1576	} else {
1577		void *wval;
1578
1579		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
 
 
 
1580		if (!wval) {
1581			dev_err(map->dev, "Error in memory allocation\n");
1582			return -ENOMEM;
1583		}
1584		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1585			map->format.parse_inplace(wval + i);
1586
1587		map->lock(map->lock_arg);
1588		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1589		map->unlock(map->lock_arg);
1590
1591		kfree(wval);
1592	}
1593	return ret;
1594}
1595EXPORT_SYMBOL_GPL(regmap_bulk_write);
1596
1597/*
1598 * _regmap_raw_multi_reg_write()
1599 *
1600 * the (register,newvalue) pairs in regs have not been formatted, but
1601 * they are all in the same page and have been changed to being page
1602 * relative. The page register has been written if that was neccessary.
1603 */
1604static int _regmap_raw_multi_reg_write(struct regmap *map,
1605				       const struct reg_default *regs,
1606				       size_t num_regs)
1607{
1608	int ret;
1609	void *buf;
1610	int i;
1611	u8 *u8;
1612	size_t val_bytes = map->format.val_bytes;
1613	size_t reg_bytes = map->format.reg_bytes;
1614	size_t pad_bytes = map->format.pad_bytes;
1615	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1616	size_t len = pair_size * num_regs;
1617
 
 
 
1618	buf = kzalloc(len, GFP_KERNEL);
1619	if (!buf)
1620		return -ENOMEM;
1621
1622	/* We have to linearise by hand. */
1623
1624	u8 = buf;
1625
1626	for (i = 0; i < num_regs; i++) {
1627		int reg = regs[i].reg;
1628		int val = regs[i].def;
1629		trace_regmap_hw_write_start(map->dev, reg, 1);
1630		map->format.format_reg(u8, reg, map->reg_shift);
1631		u8 += reg_bytes + pad_bytes;
1632		map->format.format_val(u8, val, 0);
1633		u8 += val_bytes;
1634	}
1635	u8 = buf;
1636	*u8 |= map->write_flag_mask;
1637
1638	ret = map->bus->write(map->bus_context, buf, len);
1639
1640	kfree(buf);
1641
1642	for (i = 0; i < num_regs; i++) {
1643		int reg = regs[i].reg;
1644		trace_regmap_hw_write_done(map->dev, reg, 1);
1645	}
1646	return ret;
1647}
1648
1649static unsigned int _regmap_register_page(struct regmap *map,
1650					  unsigned int reg,
1651					  struct regmap_range_node *range)
1652{
1653	unsigned int win_page = (reg - range->range_min) / range->window_len;
1654
1655	return win_page;
1656}
1657
1658static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1659					       struct reg_default *regs,
1660					       size_t num_regs)
1661{
1662	int ret;
1663	int i, n;
1664	struct reg_default *base;
1665	unsigned int this_page;
 
1666	/*
1667	 * the set of registers are not neccessarily in order, but
1668	 * since the order of write must be preserved this algorithm
1669	 * chops the set each time the page changes
 
1670	 */
1671	base = regs;
1672	for (i = 0, n = 0; i < num_regs; i++, n++) {
1673		unsigned int reg = regs[i].reg;
1674		struct regmap_range_node *range;
1675
1676		range = _regmap_range_lookup(map, reg);
1677		if (range) {
1678			unsigned int win_page = _regmap_register_page(map, reg,
1679								      range);
1680
1681			if (i == 0)
1682				this_page = win_page;
1683			if (win_page != this_page) {
1684				this_page = win_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1685				ret = _regmap_raw_multi_reg_write(map, base, n);
1686				if (ret != 0)
1687					return ret;
 
 
 
 
1688				base += n;
1689				n = 0;
1690			}
1691			ret = _regmap_select_page(map, &base[n].reg, range, 1);
1692			if (ret != 0)
1693				return ret;
 
 
 
 
 
 
 
1694		}
 
1695	}
1696	if (n > 0)
1697		return _regmap_raw_multi_reg_write(map, base, n);
1698	return 0;
1699}
1700
1701static int _regmap_multi_reg_write(struct regmap *map,
1702				   const struct reg_default *regs,
1703				   size_t num_regs)
1704{
1705	int i;
1706	int ret;
1707
1708	if (!map->can_multi_write) {
1709		for (i = 0; i < num_regs; i++) {
1710			ret = _regmap_write(map, regs[i].reg, regs[i].def);
1711			if (ret != 0)
1712				return ret;
 
 
 
1713		}
1714		return 0;
1715	}
1716
1717	if (!map->format.parse_inplace)
1718		return -EINVAL;
1719
1720	if (map->writeable_reg)
1721		for (i = 0; i < num_regs; i++) {
1722			int reg = regs[i].reg;
1723			if (!map->writeable_reg(map->dev, reg))
1724				return -EINVAL;
1725			if (reg % map->reg_stride)
1726				return -EINVAL;
1727		}
1728
1729	if (!map->cache_bypass) {
1730		for (i = 0; i < num_regs; i++) {
1731			unsigned int val = regs[i].def;
1732			unsigned int reg = regs[i].reg;
1733			ret = regcache_write(map, reg, val);
1734			if (ret) {
1735				dev_err(map->dev,
1736				"Error in caching of register: %x ret: %d\n",
1737								reg, ret);
1738				return ret;
1739			}
1740		}
1741		if (map->cache_only) {
1742			map->cache_dirty = true;
1743			return 0;
1744		}
1745	}
1746
1747	WARN_ON(!map->bus);
1748
1749	for (i = 0; i < num_regs; i++) {
1750		unsigned int reg = regs[i].reg;
1751		struct regmap_range_node *range;
 
 
 
 
1752		range = _regmap_range_lookup(map, reg);
1753		if (range) {
1754			size_t len = sizeof(struct reg_default)*num_regs;
1755			struct reg_default *base = kmemdup(regs, len,
1756							   GFP_KERNEL);
1757			if (!base)
1758				return -ENOMEM;
1759			ret = _regmap_range_multi_paged_reg_write(map, base,
1760								  num_regs);
1761			kfree(base);
1762
1763			return ret;
1764		}
1765	}
1766	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1767}
1768
1769/*
1770 * regmap_multi_reg_write(): Write multiple registers to the device
1771 *
1772 * where the set of register,value pairs are supplied in any order,
1773 * possibly not all in a single range.
1774 *
1775 * @map: Register map to write to
1776 * @regs: Array of structures containing register,value to be written
1777 * @num_regs: Number of registers to write
1778 *
1779 * The 'normal' block write mode will send ultimately send data on the
1780 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1781 * addressed. However, this alternative block multi write mode will send
1782 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1783 * must of course support the mode.
1784 *
1785 * A value of zero will be returned on success, a negative errno will be
1786 * returned in error cases.
1787 */
1788int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1789			   int num_regs)
1790{
1791	int ret;
1792
1793	map->lock(map->lock_arg);
1794
1795	ret = _regmap_multi_reg_write(map, regs, num_regs);
1796
1797	map->unlock(map->lock_arg);
1798
1799	return ret;
1800}
1801EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1802
1803/*
1804 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1805 *                                    device but not the cache
1806 *
1807 * where the set of register are supplied in any order
1808 *
1809 * @map: Register map to write to
1810 * @regs: Array of structures containing register,value to be written
1811 * @num_regs: Number of registers to write
1812 *
1813 * This function is intended to be used for writing a large block of data
1814 * atomically to the device in single transfer for those I2C client devices
1815 * that implement this alternative block write mode.
1816 *
1817 * A value of zero will be returned on success, a negative errno will
1818 * be returned in error cases.
1819 */
1820int regmap_multi_reg_write_bypassed(struct regmap *map,
1821				    const struct reg_default *regs,
1822				    int num_regs)
1823{
1824	int ret;
1825	bool bypass;
1826
1827	map->lock(map->lock_arg);
1828
1829	bypass = map->cache_bypass;
1830	map->cache_bypass = true;
1831
1832	ret = _regmap_multi_reg_write(map, regs, num_regs);
1833
1834	map->cache_bypass = bypass;
1835
1836	map->unlock(map->lock_arg);
1837
1838	return ret;
1839}
1840EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1841
1842/**
1843 * regmap_raw_write_async(): Write raw values to one or more registers
1844 *                           asynchronously
1845 *
1846 * @map: Register map to write to
1847 * @reg: Initial register to write to
1848 * @val: Block of data to be written, laid out for direct transmission to the
1849 *       device.  Must be valid until regmap_async_complete() is called.
1850 * @val_len: Length of data pointed to by val.
1851 *
1852 * This function is intended to be used for things like firmware
1853 * download where a large block of data needs to be transferred to the
1854 * device.  No formatting will be done on the data provided.
1855 *
1856 * If supported by the underlying bus the write will be scheduled
1857 * asynchronously, helping maximise I/O speed on higher speed buses
1858 * like SPI.  regmap_async_complete() can be called to ensure that all
1859 * asynchrnous writes have been completed.
1860 *
1861 * A value of zero will be returned on success, a negative errno will
1862 * be returned in error cases.
1863 */
1864int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1865			   const void *val, size_t val_len)
1866{
1867	int ret;
1868
1869	if (val_len % map->format.val_bytes)
1870		return -EINVAL;
1871	if (reg % map->reg_stride)
1872		return -EINVAL;
1873
1874	map->lock(map->lock_arg);
1875
1876	map->async = true;
1877
1878	ret = _regmap_raw_write(map, reg, val, val_len);
1879
1880	map->async = false;
1881
1882	map->unlock(map->lock_arg);
1883
1884	return ret;
1885}
1886EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1887
1888static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1889			    unsigned int val_len)
1890{
1891	struct regmap_range_node *range;
1892	u8 *u8 = map->work_buf;
1893	int ret;
1894
1895	WARN_ON(!map->bus);
1896
 
 
 
1897	range = _regmap_range_lookup(map, reg);
1898	if (range) {
1899		ret = _regmap_select_page(map, &reg, range,
1900					  val_len / map->format.val_bytes);
1901		if (ret != 0)
1902			return ret;
1903	}
1904
1905	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1906
1907	/*
1908	 * Some buses or devices flag reads by setting the high bits in the
1909	 * register addresss; since it's always the high bits for all
1910	 * current formats we can do this here rather than in
1911	 * formatting.  This may break if we get interesting formats.
1912	 */
1913	u8[0] |= map->read_flag_mask;
1914
1915	trace_regmap_hw_read_start(map->dev, reg,
1916				   val_len / map->format.val_bytes);
1917
1918	ret = map->bus->read(map->bus_context, map->work_buf,
1919			     map->format.reg_bytes + map->format.pad_bytes,
1920			     val, val_len);
1921
1922	trace_regmap_hw_read_done(map->dev, reg,
1923				  val_len / map->format.val_bytes);
1924
1925	return ret;
1926}
1927
 
 
 
 
 
 
 
 
1928static int _regmap_bus_read(void *context, unsigned int reg,
1929			    unsigned int *val)
1930{
1931	int ret;
1932	struct regmap *map = context;
1933
1934	if (!map->format.parse_val)
1935		return -EINVAL;
1936
1937	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1938	if (ret == 0)
1939		*val = map->format.parse_val(map->work_buf);
1940
1941	return ret;
1942}
1943
1944static int _regmap_read(struct regmap *map, unsigned int reg,
1945			unsigned int *val)
1946{
1947	int ret;
1948	void *context = _regmap_map_get_context(map);
1949
1950	WARN_ON(!map->reg_read);
1951
1952	if (!map->cache_bypass) {
1953		ret = regcache_read(map, reg, val);
1954		if (ret == 0)
1955			return 0;
1956	}
1957
1958	if (map->cache_only)
1959		return -EBUSY;
1960
1961	if (!regmap_readable(map, reg))
1962		return -EIO;
1963
1964	ret = map->reg_read(context, reg, val);
1965	if (ret == 0) {
1966#ifdef LOG_DEVICE
1967		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1968			dev_info(map->dev, "%x => %x\n", reg, *val);
1969#endif
1970
1971		trace_regmap_reg_read(map->dev, reg, *val);
1972
1973		if (!map->cache_bypass)
1974			regcache_write(map, reg, *val);
1975	}
1976
1977	return ret;
1978}
1979
1980/**
1981 * regmap_read(): Read a value from a single register
1982 *
1983 * @map: Register map to read from
1984 * @reg: Register to be read from
1985 * @val: Pointer to store read value
1986 *
1987 * A value of zero will be returned on success, a negative errno will
1988 * be returned in error cases.
1989 */
1990int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1991{
1992	int ret;
1993
1994	if (reg % map->reg_stride)
1995		return -EINVAL;
1996
1997	map->lock(map->lock_arg);
1998
1999	ret = _regmap_read(map, reg, val);
2000
2001	map->unlock(map->lock_arg);
2002
2003	return ret;
2004}
2005EXPORT_SYMBOL_GPL(regmap_read);
2006
2007/**
2008 * regmap_raw_read(): Read raw data from the device
2009 *
2010 * @map: Register map to read from
2011 * @reg: First register to be read from
2012 * @val: Pointer to store read value
2013 * @val_len: Size of data to read
2014 *
2015 * A value of zero will be returned on success, a negative errno will
2016 * be returned in error cases.
2017 */
2018int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2019		    size_t val_len)
2020{
2021	size_t val_bytes = map->format.val_bytes;
2022	size_t val_count = val_len / val_bytes;
2023	unsigned int v;
2024	int ret, i;
2025
2026	if (!map->bus)
2027		return -EINVAL;
2028	if (val_len % map->format.val_bytes)
2029		return -EINVAL;
2030	if (reg % map->reg_stride)
 
 
2031		return -EINVAL;
2032
2033	map->lock(map->lock_arg);
2034
2035	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2036	    map->cache_type == REGCACHE_NONE) {
 
 
 
 
 
 
 
 
 
2037		/* Physical block read if there's no cache involved */
2038		ret = _regmap_raw_read(map, reg, val, val_len);
2039
2040	} else {
2041		/* Otherwise go word by word for the cache; should be low
2042		 * cost as we expect to hit the cache.
2043		 */
2044		for (i = 0; i < val_count; i++) {
2045			ret = _regmap_read(map, reg + (i * map->reg_stride),
2046					   &v);
2047			if (ret != 0)
2048				goto out;
2049
2050			map->format.format_val(val + (i * val_bytes), v, 0);
2051		}
2052	}
2053
2054 out:
2055	map->unlock(map->lock_arg);
2056
2057	return ret;
2058}
2059EXPORT_SYMBOL_GPL(regmap_raw_read);
2060
2061/**
2062 * regmap_field_read(): Read a value to a single register field
2063 *
2064 * @field: Register field to read from
2065 * @val: Pointer to store read value
2066 *
2067 * A value of zero will be returned on success, a negative errno will
2068 * be returned in error cases.
2069 */
2070int regmap_field_read(struct regmap_field *field, unsigned int *val)
2071{
2072	int ret;
2073	unsigned int reg_val;
2074	ret = regmap_read(field->regmap, field->reg, &reg_val);
2075	if (ret != 0)
2076		return ret;
2077
2078	reg_val &= field->mask;
2079	reg_val >>= field->shift;
2080	*val = reg_val;
2081
2082	return ret;
2083}
2084EXPORT_SYMBOL_GPL(regmap_field_read);
2085
2086/**
2087 * regmap_fields_read(): Read a value to a single register field with port ID
2088 *
2089 * @field: Register field to read from
2090 * @id: port ID
2091 * @val: Pointer to store read value
2092 *
2093 * A value of zero will be returned on success, a negative errno will
2094 * be returned in error cases.
2095 */
2096int regmap_fields_read(struct regmap_field *field, unsigned int id,
2097		       unsigned int *val)
2098{
2099	int ret;
2100	unsigned int reg_val;
2101
2102	if (id >= field->id_size)
2103		return -EINVAL;
2104
2105	ret = regmap_read(field->regmap,
2106			  field->reg + (field->id_offset * id),
2107			  &reg_val);
2108	if (ret != 0)
2109		return ret;
2110
2111	reg_val &= field->mask;
2112	reg_val >>= field->shift;
2113	*val = reg_val;
2114
2115	return ret;
2116}
2117EXPORT_SYMBOL_GPL(regmap_fields_read);
2118
2119/**
2120 * regmap_bulk_read(): Read multiple registers from the device
2121 *
2122 * @map: Register map to read from
2123 * @reg: First register to be read from
2124 * @val: Pointer to store read value, in native register size for device
2125 * @val_count: Number of registers to read
2126 *
2127 * A value of zero will be returned on success, a negative errno will
2128 * be returned in error cases.
2129 */
2130int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2131		     size_t val_count)
2132{
2133	int ret, i;
2134	size_t val_bytes = map->format.val_bytes;
2135	bool vol = regmap_volatile_range(map, reg, val_count);
2136
2137	if (reg % map->reg_stride)
2138		return -EINVAL;
2139
2140	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2141		/*
2142		 * Some devices does not support bulk read, for
2143		 * them we have a series of single read operations.
2144		 */
2145		if (map->use_single_rw) {
2146			for (i = 0; i < val_count; i++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147				ret = regmap_raw_read(map,
2148						reg + (i * map->reg_stride),
2149						val + (i * val_bytes),
2150						val_bytes);
2151				if (ret != 0)
2152					return ret;
2153			}
2154		} else {
2155			ret = regmap_raw_read(map, reg, val,
2156					      val_bytes * val_count);
2157			if (ret != 0)
2158				return ret;
2159		}
2160
2161		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2162			map->format.parse_inplace(val + i);
2163	} else {
2164		for (i = 0; i < val_count; i++) {
2165			unsigned int ival;
2166			ret = regmap_read(map, reg + (i * map->reg_stride),
2167					  &ival);
2168			if (ret != 0)
2169				return ret;
2170			memcpy(val + (i * val_bytes), &ival, val_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2171		}
2172	}
2173
2174	return 0;
2175}
2176EXPORT_SYMBOL_GPL(regmap_bulk_read);
2177
2178static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2179			       unsigned int mask, unsigned int val,
2180			       bool *change)
2181{
2182	int ret;
2183	unsigned int tmp, orig;
2184
2185	ret = _regmap_read(map, reg, &orig);
2186	if (ret != 0)
2187		return ret;
2188
2189	tmp = orig & ~mask;
2190	tmp |= val & mask;
2191
2192	if (tmp != orig) {
2193		ret = _regmap_write(map, reg, tmp);
2194		if (change)
2195			*change = true;
2196	} else {
2197		if (change)
2198			*change = false;
2199	}
2200
2201	return ret;
2202}
2203
2204/**
2205 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2206 *
2207 * @map: Register map to update
2208 * @reg: Register to update
2209 * @mask: Bitmask to change
2210 * @val: New value for bitmask
2211 *
2212 * Returns zero for success, a negative number on error.
2213 */
2214int regmap_update_bits(struct regmap *map, unsigned int reg,
2215		       unsigned int mask, unsigned int val)
2216{
2217	int ret;
2218
2219	map->lock(map->lock_arg);
2220	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2221	map->unlock(map->lock_arg);
2222
2223	return ret;
2224}
2225EXPORT_SYMBOL_GPL(regmap_update_bits);
2226
2227/**
2228 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2229 *                           map asynchronously
2230 *
2231 * @map: Register map to update
2232 * @reg: Register to update
2233 * @mask: Bitmask to change
2234 * @val: New value for bitmask
2235 *
2236 * With most buses the read must be done synchronously so this is most
2237 * useful for devices with a cache which do not need to interact with
2238 * the hardware to determine the current register value.
2239 *
2240 * Returns zero for success, a negative number on error.
2241 */
2242int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2243			     unsigned int mask, unsigned int val)
2244{
2245	int ret;
2246
2247	map->lock(map->lock_arg);
2248
2249	map->async = true;
2250
2251	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2252
2253	map->async = false;
2254
2255	map->unlock(map->lock_arg);
2256
2257	return ret;
2258}
2259EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2260
2261/**
2262 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2263 *                           register map and report if updated
2264 *
2265 * @map: Register map to update
2266 * @reg: Register to update
2267 * @mask: Bitmask to change
2268 * @val: New value for bitmask
2269 * @change: Boolean indicating if a write was done
2270 *
2271 * Returns zero for success, a negative number on error.
2272 */
2273int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2274			     unsigned int mask, unsigned int val,
2275			     bool *change)
2276{
2277	int ret;
2278
2279	map->lock(map->lock_arg);
2280	ret = _regmap_update_bits(map, reg, mask, val, change);
2281	map->unlock(map->lock_arg);
2282	return ret;
2283}
2284EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2285
2286/**
2287 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2288 *                                 register map asynchronously and report if
2289 *                                 updated
2290 *
2291 * @map: Register map to update
2292 * @reg: Register to update
2293 * @mask: Bitmask to change
2294 * @val: New value for bitmask
2295 * @change: Boolean indicating if a write was done
 
 
2296 *
 
2297 * With most buses the read must be done synchronously so this is most
2298 * useful for devices with a cache which do not need to interact with
2299 * the hardware to determine the current register value.
2300 *
2301 * Returns zero for success, a negative number on error.
2302 */
2303int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2304				   unsigned int mask, unsigned int val,
2305				   bool *change)
2306{
2307	int ret;
2308
2309	map->lock(map->lock_arg);
2310
2311	map->async = true;
2312
2313	ret = _regmap_update_bits(map, reg, mask, val, change);
2314
2315	map->async = false;
2316
2317	map->unlock(map->lock_arg);
2318
2319	return ret;
2320}
2321EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2322
2323void regmap_async_complete_cb(struct regmap_async *async, int ret)
2324{
2325	struct regmap *map = async->map;
2326	bool wake;
2327
2328	trace_regmap_async_io_complete(map->dev);
2329
2330	spin_lock(&map->async_lock);
2331	list_move(&async->list, &map->async_free);
2332	wake = list_empty(&map->async_list);
2333
2334	if (ret != 0)
2335		map->async_ret = ret;
2336
2337	spin_unlock(&map->async_lock);
2338
2339	if (wake)
2340		wake_up(&map->async_waitq);
2341}
2342EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2343
2344static int regmap_async_is_done(struct regmap *map)
2345{
2346	unsigned long flags;
2347	int ret;
2348
2349	spin_lock_irqsave(&map->async_lock, flags);
2350	ret = list_empty(&map->async_list);
2351	spin_unlock_irqrestore(&map->async_lock, flags);
2352
2353	return ret;
2354}
2355
2356/**
2357 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2358 *
2359 * @map: Map to operate on.
2360 *
2361 * Blocks until any pending asynchronous I/O has completed.  Returns
2362 * an error code for any failed I/O operations.
2363 */
2364int regmap_async_complete(struct regmap *map)
2365{
2366	unsigned long flags;
2367	int ret;
2368
2369	/* Nothing to do with no async support */
2370	if (!map->bus || !map->bus->async_write)
2371		return 0;
2372
2373	trace_regmap_async_complete_start(map->dev);
2374
2375	wait_event(map->async_waitq, regmap_async_is_done(map));
2376
2377	spin_lock_irqsave(&map->async_lock, flags);
2378	ret = map->async_ret;
2379	map->async_ret = 0;
2380	spin_unlock_irqrestore(&map->async_lock, flags);
2381
2382	trace_regmap_async_complete_done(map->dev);
2383
2384	return ret;
2385}
2386EXPORT_SYMBOL_GPL(regmap_async_complete);
2387
2388/**
2389 * regmap_register_patch: Register and apply register updates to be applied
2390 *                        on device initialistion
2391 *
2392 * @map: Register map to apply updates to.
2393 * @regs: Values to update.
2394 * @num_regs: Number of entries in regs.
2395 *
2396 * Register a set of register updates to be applied to the device
2397 * whenever the device registers are synchronised with the cache and
2398 * apply them immediately.  Typically this is used to apply
2399 * corrections to be applied to the device defaults on startup, such
2400 * as the updates some vendors provide to undocumented registers.
2401 *
2402 * The caller must ensure that this function cannot be called
2403 * concurrently with either itself or regcache_sync().
2404 */
2405int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2406			  int num_regs)
2407{
2408	struct reg_default *p;
2409	int ret;
2410	bool bypass;
2411
2412	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2413	    num_regs))
2414		return 0;
2415
2416	p = krealloc(map->patch,
2417		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2418		     GFP_KERNEL);
2419	if (p) {
2420		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2421		map->patch = p;
2422		map->patch_regs += num_regs;
2423	} else {
2424		return -ENOMEM;
2425	}
2426
2427	map->lock(map->lock_arg);
2428
2429	bypass = map->cache_bypass;
2430
2431	map->cache_bypass = true;
2432	map->async = true;
2433
2434	ret = _regmap_multi_reg_write(map, regs, num_regs);
2435	if (ret != 0)
2436		goto out;
2437
2438out:
2439	map->async = false;
2440	map->cache_bypass = bypass;
2441
2442	map->unlock(map->lock_arg);
2443
2444	regmap_async_complete(map);
2445
2446	return ret;
2447}
2448EXPORT_SYMBOL_GPL(regmap_register_patch);
2449
2450/*
2451 * regmap_get_val_bytes(): Report the size of a register value
2452 *
2453 * Report the size of a register value, mainly intended to for use by
2454 * generic infrastructure built on top of regmap.
2455 */
2456int regmap_get_val_bytes(struct regmap *map)
2457{
2458	if (map->format.format_write)
2459		return -EINVAL;
2460
2461	return map->format.val_bytes;
2462}
2463EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2464
2465int regmap_parse_val(struct regmap *map, const void *buf,
2466			unsigned int *val)
2467{
2468	if (!map->format.parse_val)
2469		return -EINVAL;
2470
2471	*val = map->format.parse_val(buf);
2472
2473	return 0;
2474}
2475EXPORT_SYMBOL_GPL(regmap_parse_val);
2476
2477static int __init regmap_initcall(void)
2478{
2479	regmap_debugfs_initcall();
2480
2481	return 0;
2482}
2483postcore_initcall(regmap_initcall);