Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/of.h>
  19#include <linux/rbtree.h>
  20#include <linux/sched.h>
  21#include <linux/delay.h>
  22#include <linux/log2.h>
  23
  24#define CREATE_TRACE_POINTS
  25#include "trace.h"
  26
  27#include "internal.h"
  28
  29/*
  30 * Sometimes for failures during very early init the trace
  31 * infrastructure isn't available early enough to be used.  For this
  32 * sort of problem defining LOG_DEVICE will add printks for basic
  33 * register I/O on a specific device.
  34 */
  35#undef LOG_DEVICE
  36
  37static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  38			       unsigned int mask, unsigned int val,
  39			       bool *change, bool force_write);
  40
  41static int _regmap_bus_reg_read(void *context, unsigned int reg,
  42				unsigned int *val);
  43static int _regmap_bus_read(void *context, unsigned int reg,
  44			    unsigned int *val);
  45static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  46				       unsigned int val);
  47static int _regmap_bus_reg_write(void *context, unsigned int reg,
  48				 unsigned int val);
  49static int _regmap_bus_raw_write(void *context, unsigned int reg,
  50				 unsigned int val);
  51
  52bool regmap_reg_in_ranges(unsigned int reg,
  53			  const struct regmap_range *ranges,
  54			  unsigned int nranges)
  55{
  56	const struct regmap_range *r;
  57	int i;
  58
  59	for (i = 0, r = ranges; i < nranges; i++, r++)
  60		if (regmap_reg_in_range(reg, r))
  61			return true;
  62	return false;
  63}
  64EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  65
  66bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  67			      const struct regmap_access_table *table)
  68{
  69	/* Check "no ranges" first */
  70	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  71		return false;
  72
  73	/* In case zero "yes ranges" are supplied, any reg is OK */
  74	if (!table->n_yes_ranges)
  75		return true;
  76
  77	return regmap_reg_in_ranges(reg, table->yes_ranges,
  78				    table->n_yes_ranges);
  79}
  80EXPORT_SYMBOL_GPL(regmap_check_range_table);
  81
  82bool regmap_writeable(struct regmap *map, unsigned int reg)
  83{
  84	if (map->max_register && reg > map->max_register)
  85		return false;
  86
  87	if (map->writeable_reg)
  88		return map->writeable_reg(map->dev, reg);
  89
  90	if (map->wr_table)
  91		return regmap_check_range_table(map, reg, map->wr_table);
  92
  93	return true;
  94}
  95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96bool regmap_readable(struct regmap *map, unsigned int reg)
  97{
  98	if (!map->reg_read)
  99		return false;
 100
 101	if (map->max_register && reg > map->max_register)
 102		return false;
 103
 104	if (map->format.format_write)
 105		return false;
 106
 107	if (map->readable_reg)
 108		return map->readable_reg(map->dev, reg);
 109
 110	if (map->rd_table)
 111		return regmap_check_range_table(map, reg, map->rd_table);
 112
 113	return true;
 114}
 115
 116bool regmap_volatile(struct regmap *map, unsigned int reg)
 117{
 118	if (!map->format.format_write && !regmap_readable(map, reg))
 119		return false;
 120
 121	if (map->volatile_reg)
 122		return map->volatile_reg(map->dev, reg);
 123
 124	if (map->volatile_table)
 125		return regmap_check_range_table(map, reg, map->volatile_table);
 126
 127	if (map->cache_ops)
 128		return false;
 129	else
 130		return true;
 131}
 132
 133bool regmap_precious(struct regmap *map, unsigned int reg)
 134{
 135	if (!regmap_readable(map, reg))
 136		return false;
 137
 138	if (map->precious_reg)
 139		return map->precious_reg(map->dev, reg);
 140
 141	if (map->precious_table)
 142		return regmap_check_range_table(map, reg, map->precious_table);
 143
 144	return false;
 145}
 146
 147static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 148	size_t num)
 149{
 150	unsigned int i;
 151
 152	for (i = 0; i < num; i++)
 153		if (!regmap_volatile(map, reg + i))
 154			return false;
 155
 156	return true;
 157}
 158
 159static void regmap_format_2_6_write(struct regmap *map,
 160				     unsigned int reg, unsigned int val)
 161{
 162	u8 *out = map->work_buf;
 163
 164	*out = (reg << 6) | val;
 165}
 166
 167static void regmap_format_4_12_write(struct regmap *map,
 168				     unsigned int reg, unsigned int val)
 169{
 170	__be16 *out = map->work_buf;
 171	*out = cpu_to_be16((reg << 12) | val);
 172}
 173
 174static void regmap_format_7_9_write(struct regmap *map,
 175				    unsigned int reg, unsigned int val)
 176{
 177	__be16 *out = map->work_buf;
 178	*out = cpu_to_be16((reg << 9) | val);
 179}
 180
 181static void regmap_format_10_14_write(struct regmap *map,
 182				    unsigned int reg, unsigned int val)
 183{
 184	u8 *out = map->work_buf;
 185
 186	out[2] = val;
 187	out[1] = (val >> 8) | (reg << 6);
 188	out[0] = reg >> 2;
 189}
 190
 191static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 192{
 193	u8 *b = buf;
 194
 195	b[0] = val << shift;
 196}
 197
 198static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 199{
 200	__be16 *b = buf;
 201
 202	b[0] = cpu_to_be16(val << shift);
 203}
 204
 205static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 206{
 207	__le16 *b = buf;
 208
 209	b[0] = cpu_to_le16(val << shift);
 210}
 211
 212static void regmap_format_16_native(void *buf, unsigned int val,
 213				    unsigned int shift)
 214{
 215	*(u16 *)buf = val << shift;
 216}
 217
 218static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 219{
 220	u8 *b = buf;
 221
 222	val <<= shift;
 223
 224	b[0] = val >> 16;
 225	b[1] = val >> 8;
 226	b[2] = val;
 227}
 228
 229static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 230{
 231	__be32 *b = buf;
 232
 233	b[0] = cpu_to_be32(val << shift);
 234}
 235
 236static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 237{
 238	__le32 *b = buf;
 239
 240	b[0] = cpu_to_le32(val << shift);
 241}
 242
 243static void regmap_format_32_native(void *buf, unsigned int val,
 244				    unsigned int shift)
 245{
 246	*(u32 *)buf = val << shift;
 247}
 248
 249#ifdef CONFIG_64BIT
 250static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 251{
 252	__be64 *b = buf;
 253
 254	b[0] = cpu_to_be64((u64)val << shift);
 255}
 256
 257static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 258{
 259	__le64 *b = buf;
 260
 261	b[0] = cpu_to_le64((u64)val << shift);
 262}
 263
 264static void regmap_format_64_native(void *buf, unsigned int val,
 265				    unsigned int shift)
 266{
 267	*(u64 *)buf = (u64)val << shift;
 268}
 269#endif
 270
 271static void regmap_parse_inplace_noop(void *buf)
 272{
 273}
 274
 275static unsigned int regmap_parse_8(const void *buf)
 276{
 277	const u8 *b = buf;
 278
 279	return b[0];
 280}
 281
 282static unsigned int regmap_parse_16_be(const void *buf)
 283{
 284	const __be16 *b = buf;
 285
 286	return be16_to_cpu(b[0]);
 287}
 288
 289static unsigned int regmap_parse_16_le(const void *buf)
 290{
 291	const __le16 *b = buf;
 292
 293	return le16_to_cpu(b[0]);
 294}
 295
 296static void regmap_parse_16_be_inplace(void *buf)
 297{
 298	__be16 *b = buf;
 299
 300	b[0] = be16_to_cpu(b[0]);
 301}
 302
 303static void regmap_parse_16_le_inplace(void *buf)
 304{
 305	__le16 *b = buf;
 306
 307	b[0] = le16_to_cpu(b[0]);
 308}
 309
 310static unsigned int regmap_parse_16_native(const void *buf)
 311{
 312	return *(u16 *)buf;
 313}
 314
 315static unsigned int regmap_parse_24(const void *buf)
 316{
 317	const u8 *b = buf;
 318	unsigned int ret = b[2];
 319	ret |= ((unsigned int)b[1]) << 8;
 320	ret |= ((unsigned int)b[0]) << 16;
 321
 322	return ret;
 323}
 324
 325static unsigned int regmap_parse_32_be(const void *buf)
 326{
 327	const __be32 *b = buf;
 328
 329	return be32_to_cpu(b[0]);
 330}
 331
 332static unsigned int regmap_parse_32_le(const void *buf)
 333{
 334	const __le32 *b = buf;
 335
 336	return le32_to_cpu(b[0]);
 337}
 338
 339static void regmap_parse_32_be_inplace(void *buf)
 340{
 341	__be32 *b = buf;
 342
 343	b[0] = be32_to_cpu(b[0]);
 344}
 345
 346static void regmap_parse_32_le_inplace(void *buf)
 347{
 348	__le32 *b = buf;
 349
 350	b[0] = le32_to_cpu(b[0]);
 351}
 352
 353static unsigned int regmap_parse_32_native(const void *buf)
 354{
 355	return *(u32 *)buf;
 356}
 357
 358#ifdef CONFIG_64BIT
 359static unsigned int regmap_parse_64_be(const void *buf)
 360{
 361	const __be64 *b = buf;
 362
 363	return be64_to_cpu(b[0]);
 364}
 365
 366static unsigned int regmap_parse_64_le(const void *buf)
 367{
 368	const __le64 *b = buf;
 369
 370	return le64_to_cpu(b[0]);
 371}
 372
 373static void regmap_parse_64_be_inplace(void *buf)
 374{
 375	__be64 *b = buf;
 376
 377	b[0] = be64_to_cpu(b[0]);
 378}
 379
 380static void regmap_parse_64_le_inplace(void *buf)
 381{
 382	__le64 *b = buf;
 383
 384	b[0] = le64_to_cpu(b[0]);
 385}
 386
 387static unsigned int regmap_parse_64_native(const void *buf)
 388{
 389	return *(u64 *)buf;
 390}
 391#endif
 392
 393static void regmap_lock_mutex(void *__map)
 394{
 395	struct regmap *map = __map;
 396	mutex_lock(&map->mutex);
 397}
 398
 399static void regmap_unlock_mutex(void *__map)
 400{
 401	struct regmap *map = __map;
 402	mutex_unlock(&map->mutex);
 403}
 404
 405static void regmap_lock_spinlock(void *__map)
 406__acquires(&map->spinlock)
 407{
 408	struct regmap *map = __map;
 409	unsigned long flags;
 410
 411	spin_lock_irqsave(&map->spinlock, flags);
 412	map->spinlock_flags = flags;
 413}
 414
 415static void regmap_unlock_spinlock(void *__map)
 416__releases(&map->spinlock)
 417{
 418	struct regmap *map = __map;
 419	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 420}
 421
 422static void dev_get_regmap_release(struct device *dev, void *res)
 423{
 424	/*
 425	 * We don't actually have anything to do here; the goal here
 426	 * is not to manage the regmap but to provide a simple way to
 427	 * get the regmap back given a struct device.
 428	 */
 429}
 430
 431static bool _regmap_range_add(struct regmap *map,
 432			      struct regmap_range_node *data)
 433{
 434	struct rb_root *root = &map->range_tree;
 435	struct rb_node **new = &(root->rb_node), *parent = NULL;
 436
 437	while (*new) {
 438		struct regmap_range_node *this =
 439			container_of(*new, struct regmap_range_node, node);
 440
 441		parent = *new;
 442		if (data->range_max < this->range_min)
 443			new = &((*new)->rb_left);
 444		else if (data->range_min > this->range_max)
 445			new = &((*new)->rb_right);
 446		else
 447			return false;
 448	}
 449
 450	rb_link_node(&data->node, parent, new);
 451	rb_insert_color(&data->node, root);
 452
 453	return true;
 454}
 455
 456static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 457						      unsigned int reg)
 458{
 459	struct rb_node *node = map->range_tree.rb_node;
 460
 461	while (node) {
 462		struct regmap_range_node *this =
 463			container_of(node, struct regmap_range_node, node);
 464
 465		if (reg < this->range_min)
 466			node = node->rb_left;
 467		else if (reg > this->range_max)
 468			node = node->rb_right;
 469		else
 470			return this;
 471	}
 472
 473	return NULL;
 474}
 475
 476static void regmap_range_exit(struct regmap *map)
 477{
 478	struct rb_node *next;
 479	struct regmap_range_node *range_node;
 480
 481	next = rb_first(&map->range_tree);
 482	while (next) {
 483		range_node = rb_entry(next, struct regmap_range_node, node);
 484		next = rb_next(&range_node->node);
 485		rb_erase(&range_node->node, &map->range_tree);
 486		kfree(range_node);
 487	}
 488
 489	kfree(map->selector_work_buf);
 490}
 491
 492int regmap_attach_dev(struct device *dev, struct regmap *map,
 493		      const struct regmap_config *config)
 494{
 495	struct regmap **m;
 496
 497	map->dev = dev;
 498
 499	regmap_debugfs_init(map, config->name);
 500
 501	/* Add a devres resource for dev_get_regmap() */
 502	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 503	if (!m) {
 504		regmap_debugfs_exit(map);
 505		return -ENOMEM;
 506	}
 507	*m = map;
 508	devres_add(dev, m);
 509
 510	return 0;
 511}
 512EXPORT_SYMBOL_GPL(regmap_attach_dev);
 513
 514static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 515					const struct regmap_config *config)
 516{
 517	enum regmap_endian endian;
 518
 519	/* Retrieve the endianness specification from the regmap config */
 520	endian = config->reg_format_endian;
 521
 522	/* If the regmap config specified a non-default value, use that */
 523	if (endian != REGMAP_ENDIAN_DEFAULT)
 524		return endian;
 525
 526	/* Retrieve the endianness specification from the bus config */
 527	if (bus && bus->reg_format_endian_default)
 528		endian = bus->reg_format_endian_default;
 529
 530	/* If the bus specified a non-default value, use that */
 531	if (endian != REGMAP_ENDIAN_DEFAULT)
 532		return endian;
 533
 534	/* Use this if no other value was found */
 535	return REGMAP_ENDIAN_BIG;
 536}
 537
 538enum regmap_endian regmap_get_val_endian(struct device *dev,
 539					 const struct regmap_bus *bus,
 540					 const struct regmap_config *config)
 541{
 542	struct device_node *np;
 543	enum regmap_endian endian;
 544
 545	/* Retrieve the endianness specification from the regmap config */
 546	endian = config->val_format_endian;
 547
 548	/* If the regmap config specified a non-default value, use that */
 549	if (endian != REGMAP_ENDIAN_DEFAULT)
 550		return endian;
 551
 552	/* If the dev and dev->of_node exist try to get endianness from DT */
 553	if (dev && dev->of_node) {
 554		np = dev->of_node;
 555
 556		/* Parse the device's DT node for an endianness specification */
 557		if (of_property_read_bool(np, "big-endian"))
 558			endian = REGMAP_ENDIAN_BIG;
 559		else if (of_property_read_bool(np, "little-endian"))
 560			endian = REGMAP_ENDIAN_LITTLE;
 561		else if (of_property_read_bool(np, "native-endian"))
 562			endian = REGMAP_ENDIAN_NATIVE;
 563
 564		/* If the endianness was specified in DT, use that */
 565		if (endian != REGMAP_ENDIAN_DEFAULT)
 566			return endian;
 567	}
 568
 569	/* Retrieve the endianness specification from the bus config */
 570	if (bus && bus->val_format_endian_default)
 571		endian = bus->val_format_endian_default;
 572
 573	/* If the bus specified a non-default value, use that */
 574	if (endian != REGMAP_ENDIAN_DEFAULT)
 575		return endian;
 576
 577	/* Use this if no other value was found */
 578	return REGMAP_ENDIAN_BIG;
 579}
 580EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 581
 582struct regmap *__regmap_init(struct device *dev,
 583			     const struct regmap_bus *bus,
 584			     void *bus_context,
 585			     const struct regmap_config *config,
 586			     struct lock_class_key *lock_key,
 587			     const char *lock_name)
 588{
 589	struct regmap *map;
 590	int ret = -EINVAL;
 591	enum regmap_endian reg_endian, val_endian;
 592	int i, j;
 593
 594	if (!config)
 595		goto err;
 596
 597	map = kzalloc(sizeof(*map), GFP_KERNEL);
 598	if (map == NULL) {
 599		ret = -ENOMEM;
 600		goto err;
 601	}
 602
 603	if (config->lock && config->unlock) {
 604		map->lock = config->lock;
 605		map->unlock = config->unlock;
 606		map->lock_arg = config->lock_arg;
 607	} else {
 608		if ((bus && bus->fast_io) ||
 609		    config->fast_io) {
 610			spin_lock_init(&map->spinlock);
 611			map->lock = regmap_lock_spinlock;
 612			map->unlock = regmap_unlock_spinlock;
 613			lockdep_set_class_and_name(&map->spinlock,
 614						   lock_key, lock_name);
 615		} else {
 616			mutex_init(&map->mutex);
 617			map->lock = regmap_lock_mutex;
 618			map->unlock = regmap_unlock_mutex;
 619			lockdep_set_class_and_name(&map->mutex,
 620						   lock_key, lock_name);
 621		}
 622		map->lock_arg = map;
 623	}
 624
 625	/*
 626	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 627	 * scratch buffers with sleeping allocations.
 628	 */
 629	if ((bus && bus->fast_io) || config->fast_io)
 630		map->alloc_flags = GFP_ATOMIC;
 631	else
 632		map->alloc_flags = GFP_KERNEL;
 633
 634	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 635	map->format.pad_bytes = config->pad_bits / 8;
 636	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 637	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 638			config->val_bits + config->pad_bits, 8);
 639	map->reg_shift = config->pad_bits % 8;
 640	if (config->reg_stride)
 641		map->reg_stride = config->reg_stride;
 642	else
 643		map->reg_stride = 1;
 644	if (is_power_of_2(map->reg_stride))
 645		map->reg_stride_order = ilog2(map->reg_stride);
 646	else
 647		map->reg_stride_order = -1;
 648	map->use_single_read = config->use_single_rw || !bus || !bus->read;
 649	map->use_single_write = config->use_single_rw || !bus || !bus->write;
 650	map->can_multi_write = config->can_multi_write && bus && bus->write;
 651	if (bus) {
 652		map->max_raw_read = bus->max_raw_read;
 653		map->max_raw_write = bus->max_raw_write;
 654	}
 655	map->dev = dev;
 656	map->bus = bus;
 657	map->bus_context = bus_context;
 658	map->max_register = config->max_register;
 659	map->wr_table = config->wr_table;
 660	map->rd_table = config->rd_table;
 661	map->volatile_table = config->volatile_table;
 662	map->precious_table = config->precious_table;
 663	map->writeable_reg = config->writeable_reg;
 664	map->readable_reg = config->readable_reg;
 665	map->volatile_reg = config->volatile_reg;
 666	map->precious_reg = config->precious_reg;
 667	map->cache_type = config->cache_type;
 668	map->name = config->name;
 669
 670	spin_lock_init(&map->async_lock);
 671	INIT_LIST_HEAD(&map->async_list);
 672	INIT_LIST_HEAD(&map->async_free);
 673	init_waitqueue_head(&map->async_waitq);
 674
 675	if (config->read_flag_mask || config->write_flag_mask) {
 676		map->read_flag_mask = config->read_flag_mask;
 677		map->write_flag_mask = config->write_flag_mask;
 678	} else if (bus) {
 679		map->read_flag_mask = bus->read_flag_mask;
 680	}
 681
 682	if (!bus) {
 683		map->reg_read  = config->reg_read;
 684		map->reg_write = config->reg_write;
 685
 686		map->defer_caching = false;
 687		goto skip_format_initialization;
 688	} else if (!bus->read || !bus->write) {
 689		map->reg_read = _regmap_bus_reg_read;
 690		map->reg_write = _regmap_bus_reg_write;
 691
 692		map->defer_caching = false;
 693		goto skip_format_initialization;
 694	} else {
 695		map->reg_read  = _regmap_bus_read;
 696		map->reg_update_bits = bus->reg_update_bits;
 697	}
 698
 699	reg_endian = regmap_get_reg_endian(bus, config);
 700	val_endian = regmap_get_val_endian(dev, bus, config);
 701
 702	switch (config->reg_bits + map->reg_shift) {
 703	case 2:
 704		switch (config->val_bits) {
 705		case 6:
 706			map->format.format_write = regmap_format_2_6_write;
 707			break;
 708		default:
 709			goto err_map;
 710		}
 711		break;
 712
 713	case 4:
 714		switch (config->val_bits) {
 715		case 12:
 716			map->format.format_write = regmap_format_4_12_write;
 717			break;
 718		default:
 719			goto err_map;
 720		}
 721		break;
 722
 723	case 7:
 724		switch (config->val_bits) {
 725		case 9:
 726			map->format.format_write = regmap_format_7_9_write;
 727			break;
 728		default:
 729			goto err_map;
 730		}
 731		break;
 732
 733	case 10:
 734		switch (config->val_bits) {
 735		case 14:
 736			map->format.format_write = regmap_format_10_14_write;
 737			break;
 738		default:
 739			goto err_map;
 740		}
 741		break;
 742
 743	case 8:
 744		map->format.format_reg = regmap_format_8;
 745		break;
 746
 747	case 16:
 748		switch (reg_endian) {
 749		case REGMAP_ENDIAN_BIG:
 750			map->format.format_reg = regmap_format_16_be;
 751			break;
 
 
 
 752		case REGMAP_ENDIAN_NATIVE:
 753			map->format.format_reg = regmap_format_16_native;
 754			break;
 755		default:
 756			goto err_map;
 757		}
 758		break;
 759
 760	case 24:
 761		if (reg_endian != REGMAP_ENDIAN_BIG)
 762			goto err_map;
 763		map->format.format_reg = regmap_format_24;
 764		break;
 765
 766	case 32:
 767		switch (reg_endian) {
 768		case REGMAP_ENDIAN_BIG:
 769			map->format.format_reg = regmap_format_32_be;
 770			break;
 
 
 
 771		case REGMAP_ENDIAN_NATIVE:
 772			map->format.format_reg = regmap_format_32_native;
 773			break;
 774		default:
 775			goto err_map;
 776		}
 777		break;
 778
 779#ifdef CONFIG_64BIT
 780	case 64:
 781		switch (reg_endian) {
 782		case REGMAP_ENDIAN_BIG:
 783			map->format.format_reg = regmap_format_64_be;
 784			break;
 
 
 
 785		case REGMAP_ENDIAN_NATIVE:
 786			map->format.format_reg = regmap_format_64_native;
 787			break;
 788		default:
 789			goto err_map;
 790		}
 791		break;
 792#endif
 793
 794	default:
 795		goto err_map;
 796	}
 797
 798	if (val_endian == REGMAP_ENDIAN_NATIVE)
 799		map->format.parse_inplace = regmap_parse_inplace_noop;
 800
 801	switch (config->val_bits) {
 802	case 8:
 803		map->format.format_val = regmap_format_8;
 804		map->format.parse_val = regmap_parse_8;
 805		map->format.parse_inplace = regmap_parse_inplace_noop;
 806		break;
 807	case 16:
 808		switch (val_endian) {
 809		case REGMAP_ENDIAN_BIG:
 810			map->format.format_val = regmap_format_16_be;
 811			map->format.parse_val = regmap_parse_16_be;
 812			map->format.parse_inplace = regmap_parse_16_be_inplace;
 813			break;
 814		case REGMAP_ENDIAN_LITTLE:
 815			map->format.format_val = regmap_format_16_le;
 816			map->format.parse_val = regmap_parse_16_le;
 817			map->format.parse_inplace = regmap_parse_16_le_inplace;
 818			break;
 819		case REGMAP_ENDIAN_NATIVE:
 820			map->format.format_val = regmap_format_16_native;
 821			map->format.parse_val = regmap_parse_16_native;
 822			break;
 823		default:
 824			goto err_map;
 825		}
 826		break;
 827	case 24:
 828		if (val_endian != REGMAP_ENDIAN_BIG)
 829			goto err_map;
 830		map->format.format_val = regmap_format_24;
 831		map->format.parse_val = regmap_parse_24;
 832		break;
 833	case 32:
 834		switch (val_endian) {
 835		case REGMAP_ENDIAN_BIG:
 836			map->format.format_val = regmap_format_32_be;
 837			map->format.parse_val = regmap_parse_32_be;
 838			map->format.parse_inplace = regmap_parse_32_be_inplace;
 839			break;
 840		case REGMAP_ENDIAN_LITTLE:
 841			map->format.format_val = regmap_format_32_le;
 842			map->format.parse_val = regmap_parse_32_le;
 843			map->format.parse_inplace = regmap_parse_32_le_inplace;
 844			break;
 845		case REGMAP_ENDIAN_NATIVE:
 846			map->format.format_val = regmap_format_32_native;
 847			map->format.parse_val = regmap_parse_32_native;
 848			break;
 849		default:
 850			goto err_map;
 851		}
 852		break;
 853#ifdef CONFIG_64BIT
 854	case 64:
 855		switch (val_endian) {
 856		case REGMAP_ENDIAN_BIG:
 857			map->format.format_val = regmap_format_64_be;
 858			map->format.parse_val = regmap_parse_64_be;
 859			map->format.parse_inplace = regmap_parse_64_be_inplace;
 860			break;
 861		case REGMAP_ENDIAN_LITTLE:
 862			map->format.format_val = regmap_format_64_le;
 863			map->format.parse_val = regmap_parse_64_le;
 864			map->format.parse_inplace = regmap_parse_64_le_inplace;
 865			break;
 866		case REGMAP_ENDIAN_NATIVE:
 867			map->format.format_val = regmap_format_64_native;
 868			map->format.parse_val = regmap_parse_64_native;
 869			break;
 870		default:
 871			goto err_map;
 872		}
 873		break;
 874#endif
 875	}
 876
 877	if (map->format.format_write) {
 878		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 879		    (val_endian != REGMAP_ENDIAN_BIG))
 880			goto err_map;
 881		map->use_single_write = true;
 882	}
 883
 884	if (!map->format.format_write &&
 885	    !(map->format.format_reg && map->format.format_val))
 886		goto err_map;
 887
 888	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 889	if (map->work_buf == NULL) {
 890		ret = -ENOMEM;
 891		goto err_map;
 892	}
 893
 894	if (map->format.format_write) {
 895		map->defer_caching = false;
 896		map->reg_write = _regmap_bus_formatted_write;
 897	} else if (map->format.format_val) {
 898		map->defer_caching = true;
 899		map->reg_write = _regmap_bus_raw_write;
 900	}
 901
 902skip_format_initialization:
 903
 904	map->range_tree = RB_ROOT;
 905	for (i = 0; i < config->num_ranges; i++) {
 906		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 907		struct regmap_range_node *new;
 908
 909		/* Sanity check */
 910		if (range_cfg->range_max < range_cfg->range_min) {
 911			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 912				range_cfg->range_max, range_cfg->range_min);
 913			goto err_range;
 914		}
 915
 916		if (range_cfg->range_max > map->max_register) {
 917			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 918				range_cfg->range_max, map->max_register);
 919			goto err_range;
 920		}
 921
 922		if (range_cfg->selector_reg > map->max_register) {
 923			dev_err(map->dev,
 924				"Invalid range %d: selector out of map\n", i);
 925			goto err_range;
 926		}
 927
 928		if (range_cfg->window_len == 0) {
 929			dev_err(map->dev, "Invalid range %d: window_len 0\n",
 930				i);
 931			goto err_range;
 932		}
 933
 934		/* Make sure, that this register range has no selector
 935		   or data window within its boundary */
 936		for (j = 0; j < config->num_ranges; j++) {
 937			unsigned sel_reg = config->ranges[j].selector_reg;
 938			unsigned win_min = config->ranges[j].window_start;
 939			unsigned win_max = win_min +
 940					   config->ranges[j].window_len - 1;
 941
 942			/* Allow data window inside its own virtual range */
 943			if (j == i)
 944				continue;
 945
 946			if (range_cfg->range_min <= sel_reg &&
 947			    sel_reg <= range_cfg->range_max) {
 948				dev_err(map->dev,
 949					"Range %d: selector for %d in window\n",
 950					i, j);
 951				goto err_range;
 952			}
 953
 954			if (!(win_max < range_cfg->range_min ||
 955			      win_min > range_cfg->range_max)) {
 956				dev_err(map->dev,
 957					"Range %d: window for %d in window\n",
 958					i, j);
 959				goto err_range;
 960			}
 961		}
 962
 963		new = kzalloc(sizeof(*new), GFP_KERNEL);
 964		if (new == NULL) {
 965			ret = -ENOMEM;
 966			goto err_range;
 967		}
 968
 969		new->map = map;
 970		new->name = range_cfg->name;
 971		new->range_min = range_cfg->range_min;
 972		new->range_max = range_cfg->range_max;
 973		new->selector_reg = range_cfg->selector_reg;
 974		new->selector_mask = range_cfg->selector_mask;
 975		new->selector_shift = range_cfg->selector_shift;
 976		new->window_start = range_cfg->window_start;
 977		new->window_len = range_cfg->window_len;
 978
 979		if (!_regmap_range_add(map, new)) {
 980			dev_err(map->dev, "Failed to add range %d\n", i);
 981			kfree(new);
 982			goto err_range;
 983		}
 984
 985		if (map->selector_work_buf == NULL) {
 986			map->selector_work_buf =
 987				kzalloc(map->format.buf_size, GFP_KERNEL);
 988			if (map->selector_work_buf == NULL) {
 989				ret = -ENOMEM;
 990				goto err_range;
 991			}
 992		}
 993	}
 994
 995	ret = regcache_init(map, config);
 996	if (ret != 0)
 997		goto err_range;
 998
 999	if (dev) {
1000		ret = regmap_attach_dev(dev, map, config);
1001		if (ret != 0)
1002			goto err_regcache;
1003	}
1004
1005	return map;
1006
1007err_regcache:
1008	regcache_exit(map);
1009err_range:
1010	regmap_range_exit(map);
1011	kfree(map->work_buf);
1012err_map:
1013	kfree(map);
1014err:
1015	return ERR_PTR(ret);
1016}
1017EXPORT_SYMBOL_GPL(__regmap_init);
1018
1019static void devm_regmap_release(struct device *dev, void *res)
1020{
1021	regmap_exit(*(struct regmap **)res);
1022}
1023
1024struct regmap *__devm_regmap_init(struct device *dev,
1025				  const struct regmap_bus *bus,
1026				  void *bus_context,
1027				  const struct regmap_config *config,
1028				  struct lock_class_key *lock_key,
1029				  const char *lock_name)
1030{
1031	struct regmap **ptr, *regmap;
1032
1033	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1034	if (!ptr)
1035		return ERR_PTR(-ENOMEM);
1036
1037	regmap = __regmap_init(dev, bus, bus_context, config,
1038			       lock_key, lock_name);
1039	if (!IS_ERR(regmap)) {
1040		*ptr = regmap;
1041		devres_add(dev, ptr);
1042	} else {
1043		devres_free(ptr);
1044	}
1045
1046	return regmap;
1047}
1048EXPORT_SYMBOL_GPL(__devm_regmap_init);
1049
1050static void regmap_field_init(struct regmap_field *rm_field,
1051	struct regmap *regmap, struct reg_field reg_field)
1052{
1053	rm_field->regmap = regmap;
1054	rm_field->reg = reg_field.reg;
1055	rm_field->shift = reg_field.lsb;
1056	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1057	rm_field->id_size = reg_field.id_size;
1058	rm_field->id_offset = reg_field.id_offset;
1059}
1060
1061/**
1062 * devm_regmap_field_alloc(): Allocate and initialise a register field
1063 * in a register map.
1064 *
1065 * @dev: Device that will be interacted with
1066 * @regmap: regmap bank in which this register field is located.
1067 * @reg_field: Register field with in the bank.
1068 *
1069 * The return value will be an ERR_PTR() on error or a valid pointer
1070 * to a struct regmap_field. The regmap_field will be automatically freed
1071 * by the device management code.
1072 */
1073struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1074		struct regmap *regmap, struct reg_field reg_field)
1075{
1076	struct regmap_field *rm_field = devm_kzalloc(dev,
1077					sizeof(*rm_field), GFP_KERNEL);
1078	if (!rm_field)
1079		return ERR_PTR(-ENOMEM);
1080
1081	regmap_field_init(rm_field, regmap, reg_field);
1082
1083	return rm_field;
1084
1085}
1086EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1087
1088/**
1089 * devm_regmap_field_free(): Free register field allocated using
1090 * devm_regmap_field_alloc. Usally drivers need not call this function,
1091 * as the memory allocated via devm will be freed as per device-driver
1092 * life-cyle.
1093 *
1094 * @dev: Device that will be interacted with
1095 * @field: regmap field which should be freed.
1096 */
1097void devm_regmap_field_free(struct device *dev,
1098	struct regmap_field *field)
1099{
1100	devm_kfree(dev, field);
1101}
1102EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1103
1104/**
1105 * regmap_field_alloc(): Allocate and initialise a register field
1106 * in a register map.
1107 *
1108 * @regmap: regmap bank in which this register field is located.
1109 * @reg_field: Register field with in the bank.
1110 *
1111 * The return value will be an ERR_PTR() on error or a valid pointer
1112 * to a struct regmap_field. The regmap_field should be freed by the
1113 * user once its finished working with it using regmap_field_free().
1114 */
1115struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1116		struct reg_field reg_field)
1117{
1118	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1119
1120	if (!rm_field)
1121		return ERR_PTR(-ENOMEM);
1122
1123	regmap_field_init(rm_field, regmap, reg_field);
1124
1125	return rm_field;
1126}
1127EXPORT_SYMBOL_GPL(regmap_field_alloc);
1128
1129/**
1130 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1131 *
1132 * @field: regmap field which should be freed.
1133 */
1134void regmap_field_free(struct regmap_field *field)
1135{
1136	kfree(field);
1137}
1138EXPORT_SYMBOL_GPL(regmap_field_free);
1139
1140/**
1141 * regmap_reinit_cache(): Reinitialise the current register cache
1142 *
1143 * @map: Register map to operate on.
1144 * @config: New configuration.  Only the cache data will be used.
1145 *
1146 * Discard any existing register cache for the map and initialize a
1147 * new cache.  This can be used to restore the cache to defaults or to
1148 * update the cache configuration to reflect runtime discovery of the
1149 * hardware.
1150 *
1151 * No explicit locking is done here, the user needs to ensure that
1152 * this function will not race with other calls to regmap.
1153 */
1154int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1155{
1156	regcache_exit(map);
1157	regmap_debugfs_exit(map);
1158
1159	map->max_register = config->max_register;
1160	map->writeable_reg = config->writeable_reg;
1161	map->readable_reg = config->readable_reg;
1162	map->volatile_reg = config->volatile_reg;
1163	map->precious_reg = config->precious_reg;
1164	map->cache_type = config->cache_type;
1165
1166	regmap_debugfs_init(map, config->name);
1167
1168	map->cache_bypass = false;
1169	map->cache_only = false;
1170
1171	return regcache_init(map, config);
1172}
1173EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1174
1175/**
1176 * regmap_exit(): Free a previously allocated register map
1177 */
1178void regmap_exit(struct regmap *map)
1179{
1180	struct regmap_async *async;
1181
1182	regcache_exit(map);
1183	regmap_debugfs_exit(map);
1184	regmap_range_exit(map);
1185	if (map->bus && map->bus->free_context)
1186		map->bus->free_context(map->bus_context);
1187	kfree(map->work_buf);
1188	while (!list_empty(&map->async_free)) {
1189		async = list_first_entry_or_null(&map->async_free,
1190						 struct regmap_async,
1191						 list);
1192		list_del(&async->list);
1193		kfree(async->work_buf);
1194		kfree(async);
1195	}
1196	kfree(map);
1197}
1198EXPORT_SYMBOL_GPL(regmap_exit);
1199
1200static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1201{
1202	struct regmap **r = res;
1203	if (!r || !*r) {
1204		WARN_ON(!r || !*r);
1205		return 0;
1206	}
1207
1208	/* If the user didn't specify a name match any */
1209	if (data)
1210		return (*r)->name == data;
1211	else
1212		return 1;
1213}
1214
1215/**
1216 * dev_get_regmap(): Obtain the regmap (if any) for a device
1217 *
1218 * @dev: Device to retrieve the map for
1219 * @name: Optional name for the register map, usually NULL.
1220 *
1221 * Returns the regmap for the device if one is present, or NULL.  If
1222 * name is specified then it must match the name specified when
1223 * registering the device, if it is NULL then the first regmap found
1224 * will be used.  Devices with multiple register maps are very rare,
1225 * generic code should normally not need to specify a name.
1226 */
1227struct regmap *dev_get_regmap(struct device *dev, const char *name)
1228{
1229	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1230					dev_get_regmap_match, (void *)name);
1231
1232	if (!r)
1233		return NULL;
1234	return *r;
1235}
1236EXPORT_SYMBOL_GPL(dev_get_regmap);
1237
1238/**
1239 * regmap_get_device(): Obtain the device from a regmap
1240 *
1241 * @map: Register map to operate on.
1242 *
1243 * Returns the underlying device that the regmap has been created for.
1244 */
1245struct device *regmap_get_device(struct regmap *map)
1246{
1247	return map->dev;
1248}
1249EXPORT_SYMBOL_GPL(regmap_get_device);
1250
1251static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1252			       struct regmap_range_node *range,
1253			       unsigned int val_num)
1254{
1255	void *orig_work_buf;
1256	unsigned int win_offset;
1257	unsigned int win_page;
1258	bool page_chg;
1259	int ret;
1260
1261	win_offset = (*reg - range->range_min) % range->window_len;
1262	win_page = (*reg - range->range_min) / range->window_len;
1263
1264	if (val_num > 1) {
1265		/* Bulk write shouldn't cross range boundary */
1266		if (*reg + val_num - 1 > range->range_max)
1267			return -EINVAL;
1268
1269		/* ... or single page boundary */
1270		if (val_num > range->window_len - win_offset)
1271			return -EINVAL;
1272	}
1273
1274	/* It is possible to have selector register inside data window.
1275	   In that case, selector register is located on every page and
1276	   it needs no page switching, when accessed alone. */
1277	if (val_num > 1 ||
1278	    range->window_start + win_offset != range->selector_reg) {
1279		/* Use separate work_buf during page switching */
1280		orig_work_buf = map->work_buf;
1281		map->work_buf = map->selector_work_buf;
1282
1283		ret = _regmap_update_bits(map, range->selector_reg,
1284					  range->selector_mask,
1285					  win_page << range->selector_shift,
1286					  &page_chg, false);
1287
1288		map->work_buf = orig_work_buf;
1289
1290		if (ret != 0)
1291			return ret;
1292	}
1293
1294	*reg = range->window_start + win_offset;
1295
1296	return 0;
1297}
1298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299int _regmap_raw_write(struct regmap *map, unsigned int reg,
1300		      const void *val, size_t val_len)
1301{
1302	struct regmap_range_node *range;
1303	unsigned long flags;
1304	u8 *u8 = map->work_buf;
1305	void *work_val = map->work_buf + map->format.reg_bytes +
1306		map->format.pad_bytes;
1307	void *buf;
1308	int ret = -ENOTSUPP;
1309	size_t len;
1310	int i;
1311
1312	WARN_ON(!map->bus);
1313
1314	/* Check for unwritable registers before we start */
1315	if (map->writeable_reg)
1316		for (i = 0; i < val_len / map->format.val_bytes; i++)
1317			if (!map->writeable_reg(map->dev,
1318					       reg + regmap_get_offset(map, i)))
1319				return -EINVAL;
1320
1321	if (!map->cache_bypass && map->format.parse_val) {
1322		unsigned int ival;
1323		int val_bytes = map->format.val_bytes;
1324		for (i = 0; i < val_len / val_bytes; i++) {
1325			ival = map->format.parse_val(val + (i * val_bytes));
1326			ret = regcache_write(map,
1327					     reg + regmap_get_offset(map, i),
1328					     ival);
1329			if (ret) {
1330				dev_err(map->dev,
1331					"Error in caching of register: %x ret: %d\n",
1332					reg + i, ret);
1333				return ret;
1334			}
1335		}
1336		if (map->cache_only) {
1337			map->cache_dirty = true;
1338			return 0;
1339		}
1340	}
1341
1342	range = _regmap_range_lookup(map, reg);
1343	if (range) {
1344		int val_num = val_len / map->format.val_bytes;
1345		int win_offset = (reg - range->range_min) % range->window_len;
1346		int win_residue = range->window_len - win_offset;
1347
1348		/* If the write goes beyond the end of the window split it */
1349		while (val_num > win_residue) {
1350			dev_dbg(map->dev, "Writing window %d/%zu\n",
1351				win_residue, val_len / map->format.val_bytes);
1352			ret = _regmap_raw_write(map, reg, val, win_residue *
1353						map->format.val_bytes);
1354			if (ret != 0)
1355				return ret;
1356
1357			reg += win_residue;
1358			val_num -= win_residue;
1359			val += win_residue * map->format.val_bytes;
1360			val_len -= win_residue * map->format.val_bytes;
1361
1362			win_offset = (reg - range->range_min) %
1363				range->window_len;
1364			win_residue = range->window_len - win_offset;
1365		}
1366
1367		ret = _regmap_select_page(map, &reg, range, val_num);
1368		if (ret != 0)
1369			return ret;
1370	}
1371
1372	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1373
1374	u8[0] |= map->write_flag_mask;
1375
1376	/*
1377	 * Essentially all I/O mechanisms will be faster with a single
1378	 * buffer to write.  Since register syncs often generate raw
1379	 * writes of single registers optimise that case.
1380	 */
1381	if (val != work_val && val_len == map->format.val_bytes) {
1382		memcpy(work_val, val, map->format.val_bytes);
1383		val = work_val;
1384	}
1385
1386	if (map->async && map->bus->async_write) {
1387		struct regmap_async *async;
1388
1389		trace_regmap_async_write_start(map, reg, val_len);
1390
1391		spin_lock_irqsave(&map->async_lock, flags);
1392		async = list_first_entry_or_null(&map->async_free,
1393						 struct regmap_async,
1394						 list);
1395		if (async)
1396			list_del(&async->list);
1397		spin_unlock_irqrestore(&map->async_lock, flags);
1398
1399		if (!async) {
1400			async = map->bus->async_alloc();
1401			if (!async)
1402				return -ENOMEM;
1403
1404			async->work_buf = kzalloc(map->format.buf_size,
1405						  GFP_KERNEL | GFP_DMA);
1406			if (!async->work_buf) {
1407				kfree(async);
1408				return -ENOMEM;
1409			}
1410		}
1411
1412		async->map = map;
1413
1414		/* If the caller supplied the value we can use it safely. */
1415		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1416		       map->format.reg_bytes + map->format.val_bytes);
1417
1418		spin_lock_irqsave(&map->async_lock, flags);
1419		list_add_tail(&async->list, &map->async_list);
1420		spin_unlock_irqrestore(&map->async_lock, flags);
1421
1422		if (val != work_val)
1423			ret = map->bus->async_write(map->bus_context,
1424						    async->work_buf,
1425						    map->format.reg_bytes +
1426						    map->format.pad_bytes,
1427						    val, val_len, async);
1428		else
1429			ret = map->bus->async_write(map->bus_context,
1430						    async->work_buf,
1431						    map->format.reg_bytes +
1432						    map->format.pad_bytes +
1433						    val_len, NULL, 0, async);
1434
1435		if (ret != 0) {
1436			dev_err(map->dev, "Failed to schedule write: %d\n",
1437				ret);
1438
1439			spin_lock_irqsave(&map->async_lock, flags);
1440			list_move(&async->list, &map->async_free);
1441			spin_unlock_irqrestore(&map->async_lock, flags);
1442		}
1443
1444		return ret;
1445	}
1446
1447	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1448
1449	/* If we're doing a single register write we can probably just
1450	 * send the work_buf directly, otherwise try to do a gather
1451	 * write.
1452	 */
1453	if (val == work_val)
1454		ret = map->bus->write(map->bus_context, map->work_buf,
1455				      map->format.reg_bytes +
1456				      map->format.pad_bytes +
1457				      val_len);
1458	else if (map->bus->gather_write)
1459		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1460					     map->format.reg_bytes +
1461					     map->format.pad_bytes,
1462					     val, val_len);
1463
1464	/* If that didn't work fall back on linearising by hand. */
1465	if (ret == -ENOTSUPP) {
1466		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1467		buf = kzalloc(len, GFP_KERNEL);
1468		if (!buf)
1469			return -ENOMEM;
1470
1471		memcpy(buf, map->work_buf, map->format.reg_bytes);
1472		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1473		       val, val_len);
1474		ret = map->bus->write(map->bus_context, buf, len);
1475
1476		kfree(buf);
 
 
 
 
 
 
1477	}
1478
1479	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1480
1481	return ret;
1482}
1483
1484/**
1485 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1486 *
1487 * @map: Map to check.
1488 */
1489bool regmap_can_raw_write(struct regmap *map)
1490{
1491	return map->bus && map->bus->write && map->format.format_val &&
1492		map->format.format_reg;
1493}
1494EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1495
1496/**
1497 * regmap_get_raw_read_max - Get the maximum size we can read
1498 *
1499 * @map: Map to check.
1500 */
1501size_t regmap_get_raw_read_max(struct regmap *map)
1502{
1503	return map->max_raw_read;
1504}
1505EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1506
1507/**
1508 * regmap_get_raw_write_max - Get the maximum size we can read
1509 *
1510 * @map: Map to check.
1511 */
1512size_t regmap_get_raw_write_max(struct regmap *map)
1513{
1514	return map->max_raw_write;
1515}
1516EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1517
1518static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1519				       unsigned int val)
1520{
1521	int ret;
1522	struct regmap_range_node *range;
1523	struct regmap *map = context;
1524
1525	WARN_ON(!map->bus || !map->format.format_write);
1526
1527	range = _regmap_range_lookup(map, reg);
1528	if (range) {
1529		ret = _regmap_select_page(map, &reg, range, 1);
1530		if (ret != 0)
1531			return ret;
1532	}
1533
1534	map->format.format_write(map, reg, val);
1535
1536	trace_regmap_hw_write_start(map, reg, 1);
1537
1538	ret = map->bus->write(map->bus_context, map->work_buf,
1539			      map->format.buf_size);
1540
1541	trace_regmap_hw_write_done(map, reg, 1);
1542
1543	return ret;
1544}
1545
1546static int _regmap_bus_reg_write(void *context, unsigned int reg,
1547				 unsigned int val)
1548{
1549	struct regmap *map = context;
1550
1551	return map->bus->reg_write(map->bus_context, reg, val);
1552}
1553
1554static int _regmap_bus_raw_write(void *context, unsigned int reg,
1555				 unsigned int val)
1556{
1557	struct regmap *map = context;
1558
1559	WARN_ON(!map->bus || !map->format.format_val);
1560
1561	map->format.format_val(map->work_buf + map->format.reg_bytes
1562			       + map->format.pad_bytes, val, 0);
1563	return _regmap_raw_write(map, reg,
1564				 map->work_buf +
1565				 map->format.reg_bytes +
1566				 map->format.pad_bytes,
1567				 map->format.val_bytes);
1568}
1569
1570static inline void *_regmap_map_get_context(struct regmap *map)
1571{
1572	return (map->bus) ? map : map->bus_context;
1573}
1574
1575int _regmap_write(struct regmap *map, unsigned int reg,
1576		  unsigned int val)
1577{
1578	int ret;
1579	void *context = _regmap_map_get_context(map);
1580
1581	if (!regmap_writeable(map, reg))
1582		return -EIO;
1583
1584	if (!map->cache_bypass && !map->defer_caching) {
1585		ret = regcache_write(map, reg, val);
1586		if (ret != 0)
1587			return ret;
1588		if (map->cache_only) {
1589			map->cache_dirty = true;
1590			return 0;
1591		}
1592	}
1593
1594#ifdef LOG_DEVICE
1595	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1596		dev_info(map->dev, "%x <= %x\n", reg, val);
1597#endif
1598
1599	trace_regmap_reg_write(map, reg, val);
1600
1601	return map->reg_write(context, reg, val);
1602}
1603
1604/**
1605 * regmap_write(): Write a value to a single register
1606 *
1607 * @map: Register map to write to
1608 * @reg: Register to write to
1609 * @val: Value to be written
1610 *
1611 * A value of zero will be returned on success, a negative errno will
1612 * be returned in error cases.
1613 */
1614int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1615{
1616	int ret;
1617
1618	if (!IS_ALIGNED(reg, map->reg_stride))
1619		return -EINVAL;
1620
1621	map->lock(map->lock_arg);
1622
1623	ret = _regmap_write(map, reg, val);
1624
1625	map->unlock(map->lock_arg);
1626
1627	return ret;
1628}
1629EXPORT_SYMBOL_GPL(regmap_write);
1630
1631/**
1632 * regmap_write_async(): Write a value to a single register asynchronously
1633 *
1634 * @map: Register map to write to
1635 * @reg: Register to write to
1636 * @val: Value to be written
1637 *
1638 * A value of zero will be returned on success, a negative errno will
1639 * be returned in error cases.
1640 */
1641int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1642{
1643	int ret;
1644
1645	if (!IS_ALIGNED(reg, map->reg_stride))
1646		return -EINVAL;
1647
1648	map->lock(map->lock_arg);
1649
1650	map->async = true;
1651
1652	ret = _regmap_write(map, reg, val);
1653
1654	map->async = false;
1655
1656	map->unlock(map->lock_arg);
1657
1658	return ret;
1659}
1660EXPORT_SYMBOL_GPL(regmap_write_async);
1661
1662/**
1663 * regmap_raw_write(): Write raw values to one or more registers
1664 *
1665 * @map: Register map to write to
1666 * @reg: Initial register to write to
1667 * @val: Block of data to be written, laid out for direct transmission to the
1668 *       device
1669 * @val_len: Length of data pointed to by val.
1670 *
1671 * This function is intended to be used for things like firmware
1672 * download where a large block of data needs to be transferred to the
1673 * device.  No formatting will be done on the data provided.
1674 *
1675 * A value of zero will be returned on success, a negative errno will
1676 * be returned in error cases.
1677 */
1678int regmap_raw_write(struct regmap *map, unsigned int reg,
1679		     const void *val, size_t val_len)
1680{
1681	int ret;
1682
1683	if (!regmap_can_raw_write(map))
1684		return -EINVAL;
1685	if (val_len % map->format.val_bytes)
1686		return -EINVAL;
1687	if (map->max_raw_write && map->max_raw_write > val_len)
1688		return -E2BIG;
1689
1690	map->lock(map->lock_arg);
1691
1692	ret = _regmap_raw_write(map, reg, val, val_len);
1693
1694	map->unlock(map->lock_arg);
1695
1696	return ret;
1697}
1698EXPORT_SYMBOL_GPL(regmap_raw_write);
1699
1700/**
1701 * regmap_field_update_bits_base():
1702 *	Perform a read/modify/write cycle on the register field
1703 *	with change, async, force option
1704 *
1705 * @field: Register field to write to
1706 * @mask: Bitmask to change
1707 * @val: Value to be written
1708 * @change: Boolean indicating if a write was done
1709 * @async: Boolean indicating asynchronously
1710 * @force: Boolean indicating use force update
1711 *
1712 * A value of zero will be returned on success, a negative errno will
1713 * be returned in error cases.
1714 */
1715int regmap_field_update_bits_base(struct regmap_field *field,
1716				  unsigned int mask, unsigned int val,
1717				  bool *change, bool async, bool force)
1718{
1719	mask = (mask << field->shift) & field->mask;
1720
1721	return regmap_update_bits_base(field->regmap, field->reg,
1722				       mask, val << field->shift,
1723				       change, async, force);
1724}
1725EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1726
1727/**
1728 * regmap_fields_update_bits_base():
1729 *	Perform a read/modify/write cycle on the register field
1730 *	with change, async, force option
1731 *
1732 * @field: Register field to write to
1733 * @id: port ID
1734 * @mask: Bitmask to change
1735 * @val: Value to be written
1736 * @change: Boolean indicating if a write was done
1737 * @async: Boolean indicating asynchronously
1738 * @force: Boolean indicating use force update
1739 *
1740 * A value of zero will be returned on success, a negative errno will
1741 * be returned in error cases.
1742 */
1743int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1744				   unsigned int mask, unsigned int val,
1745				   bool *change, bool async, bool force)
1746{
1747	if (id >= field->id_size)
1748		return -EINVAL;
1749
1750	mask = (mask << field->shift) & field->mask;
1751
1752	return regmap_update_bits_base(field->regmap,
1753				       field->reg + (field->id_offset * id),
1754				       mask, val << field->shift,
1755				       change, async, force);
1756}
1757EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1758
1759/*
1760 * regmap_bulk_write(): Write multiple registers to the device
1761 *
1762 * @map: Register map to write to
1763 * @reg: First register to be write from
1764 * @val: Block of data to be written, in native register size for device
1765 * @val_count: Number of registers to write
1766 *
1767 * This function is intended to be used for writing a large block of
1768 * data to the device either in single transfer or multiple transfer.
1769 *
1770 * A value of zero will be returned on success, a negative errno will
1771 * be returned in error cases.
1772 */
1773int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1774		     size_t val_count)
1775{
1776	int ret = 0, i;
1777	size_t val_bytes = map->format.val_bytes;
1778	size_t total_size = val_bytes * val_count;
1779
1780	if (map->bus && !map->format.parse_inplace)
1781		return -EINVAL;
1782	if (!IS_ALIGNED(reg, map->reg_stride))
1783		return -EINVAL;
1784
1785	/*
1786	 * Some devices don't support bulk write, for
1787	 * them we have a series of single write operations in the first two if
1788	 * blocks.
1789	 *
1790	 * The first if block is used for memory mapped io. It does not allow
1791	 * val_bytes of 3 for example.
1792	 * The second one is used for busses which do not have this limitation
 
1793	 * and can write arbitrary value lengths.
1794	 */
1795	if (!map->bus) {
1796		map->lock(map->lock_arg);
1797		for (i = 0; i < val_count; i++) {
1798			unsigned int ival;
1799
1800			switch (val_bytes) {
1801			case 1:
1802				ival = *(u8 *)(val + (i * val_bytes));
1803				break;
1804			case 2:
1805				ival = *(u16 *)(val + (i * val_bytes));
1806				break;
1807			case 4:
1808				ival = *(u32 *)(val + (i * val_bytes));
1809				break;
1810#ifdef CONFIG_64BIT
1811			case 8:
1812				ival = *(u64 *)(val + (i * val_bytes));
1813				break;
1814#endif
1815			default:
1816				ret = -EINVAL;
1817				goto out;
1818			}
1819
1820			ret = _regmap_write(map,
1821					    reg + regmap_get_offset(map, i),
1822					    ival);
1823			if (ret != 0)
1824				goto out;
1825		}
1826out:
1827		map->unlock(map->lock_arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1828	} else if (map->use_single_write ||
1829		   (map->max_raw_write && map->max_raw_write < total_size)) {
1830		int chunk_stride = map->reg_stride;
1831		size_t chunk_size = val_bytes;
1832		size_t chunk_count = val_count;
1833
1834		if (!map->use_single_write) {
1835			chunk_size = map->max_raw_write;
1836			if (chunk_size % val_bytes)
1837				chunk_size -= chunk_size % val_bytes;
1838			chunk_count = total_size / chunk_size;
1839			chunk_stride *= chunk_size / val_bytes;
1840		}
1841
1842		map->lock(map->lock_arg);
1843		/* Write as many bytes as possible with chunk_size */
1844		for (i = 0; i < chunk_count; i++) {
1845			ret = _regmap_raw_write(map,
1846						reg + (i * chunk_stride),
1847						val + (i * chunk_size),
1848						chunk_size);
1849			if (ret)
1850				break;
1851		}
1852
1853		/* Write remaining bytes */
1854		if (!ret && chunk_size * i < total_size) {
1855			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1856						val + (i * chunk_size),
1857						total_size - i * chunk_size);
1858		}
1859		map->unlock(map->lock_arg);
1860	} else {
1861		void *wval;
1862
1863		if (!val_count)
1864			return -EINVAL;
1865
1866		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1867		if (!wval) {
1868			dev_err(map->dev, "Error in memory allocation\n");
1869			return -ENOMEM;
1870		}
1871		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1872			map->format.parse_inplace(wval + i);
1873
1874		map->lock(map->lock_arg);
1875		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1876		map->unlock(map->lock_arg);
1877
1878		kfree(wval);
1879	}
1880	return ret;
1881}
1882EXPORT_SYMBOL_GPL(regmap_bulk_write);
1883
1884/*
1885 * _regmap_raw_multi_reg_write()
1886 *
1887 * the (register,newvalue) pairs in regs have not been formatted, but
1888 * they are all in the same page and have been changed to being page
1889 * relative. The page register has been written if that was necessary.
1890 */
1891static int _regmap_raw_multi_reg_write(struct regmap *map,
1892				       const struct reg_sequence *regs,
1893				       size_t num_regs)
1894{
1895	int ret;
1896	void *buf;
1897	int i;
1898	u8 *u8;
1899	size_t val_bytes = map->format.val_bytes;
1900	size_t reg_bytes = map->format.reg_bytes;
1901	size_t pad_bytes = map->format.pad_bytes;
1902	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1903	size_t len = pair_size * num_regs;
1904
1905	if (!len)
1906		return -EINVAL;
1907
1908	buf = kzalloc(len, GFP_KERNEL);
1909	if (!buf)
1910		return -ENOMEM;
1911
1912	/* We have to linearise by hand. */
1913
1914	u8 = buf;
1915
1916	for (i = 0; i < num_regs; i++) {
1917		unsigned int reg = regs[i].reg;
1918		unsigned int val = regs[i].def;
1919		trace_regmap_hw_write_start(map, reg, 1);
1920		map->format.format_reg(u8, reg, map->reg_shift);
1921		u8 += reg_bytes + pad_bytes;
1922		map->format.format_val(u8, val, 0);
1923		u8 += val_bytes;
1924	}
1925	u8 = buf;
1926	*u8 |= map->write_flag_mask;
1927
1928	ret = map->bus->write(map->bus_context, buf, len);
1929
1930	kfree(buf);
1931
1932	for (i = 0; i < num_regs; i++) {
1933		int reg = regs[i].reg;
1934		trace_regmap_hw_write_done(map, reg, 1);
1935	}
1936	return ret;
1937}
1938
1939static unsigned int _regmap_register_page(struct regmap *map,
1940					  unsigned int reg,
1941					  struct regmap_range_node *range)
1942{
1943	unsigned int win_page = (reg - range->range_min) / range->window_len;
1944
1945	return win_page;
1946}
1947
1948static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1949					       struct reg_sequence *regs,
1950					       size_t num_regs)
1951{
1952	int ret;
1953	int i, n;
1954	struct reg_sequence *base;
1955	unsigned int this_page = 0;
1956	unsigned int page_change = 0;
1957	/*
1958	 * the set of registers are not neccessarily in order, but
1959	 * since the order of write must be preserved this algorithm
1960	 * chops the set each time the page changes. This also applies
1961	 * if there is a delay required at any point in the sequence.
1962	 */
1963	base = regs;
1964	for (i = 0, n = 0; i < num_regs; i++, n++) {
1965		unsigned int reg = regs[i].reg;
1966		struct regmap_range_node *range;
1967
1968		range = _regmap_range_lookup(map, reg);
1969		if (range) {
1970			unsigned int win_page = _regmap_register_page(map, reg,
1971								      range);
1972
1973			if (i == 0)
1974				this_page = win_page;
1975			if (win_page != this_page) {
1976				this_page = win_page;
1977				page_change = 1;
1978			}
1979		}
1980
1981		/* If we have both a page change and a delay make sure to
1982		 * write the regs and apply the delay before we change the
1983		 * page.
1984		 */
1985
1986		if (page_change || regs[i].delay_us) {
1987
1988				/* For situations where the first write requires
1989				 * a delay we need to make sure we don't call
1990				 * raw_multi_reg_write with n=0
1991				 * This can't occur with page breaks as we
1992				 * never write on the first iteration
1993				 */
1994				if (regs[i].delay_us && i == 0)
1995					n = 1;
1996
1997				ret = _regmap_raw_multi_reg_write(map, base, n);
1998				if (ret != 0)
1999					return ret;
2000
2001				if (regs[i].delay_us)
2002					udelay(regs[i].delay_us);
2003
2004				base += n;
2005				n = 0;
2006
2007				if (page_change) {
2008					ret = _regmap_select_page(map,
2009								  &base[n].reg,
2010								  range, 1);
2011					if (ret != 0)
2012						return ret;
2013
2014					page_change = 0;
2015				}
2016
2017		}
2018
2019	}
2020	if (n > 0)
2021		return _regmap_raw_multi_reg_write(map, base, n);
2022	return 0;
2023}
2024
2025static int _regmap_multi_reg_write(struct regmap *map,
2026				   const struct reg_sequence *regs,
2027				   size_t num_regs)
2028{
2029	int i;
2030	int ret;
2031
2032	if (!map->can_multi_write) {
2033		for (i = 0; i < num_regs; i++) {
2034			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2035			if (ret != 0)
2036				return ret;
2037
2038			if (regs[i].delay_us)
2039				udelay(regs[i].delay_us);
2040		}
2041		return 0;
2042	}
2043
2044	if (!map->format.parse_inplace)
2045		return -EINVAL;
2046
2047	if (map->writeable_reg)
2048		for (i = 0; i < num_regs; i++) {
2049			int reg = regs[i].reg;
2050			if (!map->writeable_reg(map->dev, reg))
2051				return -EINVAL;
2052			if (!IS_ALIGNED(reg, map->reg_stride))
2053				return -EINVAL;
2054		}
2055
2056	if (!map->cache_bypass) {
2057		for (i = 0; i < num_regs; i++) {
2058			unsigned int val = regs[i].def;
2059			unsigned int reg = regs[i].reg;
2060			ret = regcache_write(map, reg, val);
2061			if (ret) {
2062				dev_err(map->dev,
2063				"Error in caching of register: %x ret: %d\n",
2064								reg, ret);
2065				return ret;
2066			}
2067		}
2068		if (map->cache_only) {
2069			map->cache_dirty = true;
2070			return 0;
2071		}
2072	}
2073
2074	WARN_ON(!map->bus);
2075
2076	for (i = 0; i < num_regs; i++) {
2077		unsigned int reg = regs[i].reg;
2078		struct regmap_range_node *range;
2079
2080		/* Coalesce all the writes between a page break or a delay
2081		 * in a sequence
2082		 */
2083		range = _regmap_range_lookup(map, reg);
2084		if (range || regs[i].delay_us) {
2085			size_t len = sizeof(struct reg_sequence)*num_regs;
2086			struct reg_sequence *base = kmemdup(regs, len,
2087							   GFP_KERNEL);
2088			if (!base)
2089				return -ENOMEM;
2090			ret = _regmap_range_multi_paged_reg_write(map, base,
2091								  num_regs);
2092			kfree(base);
2093
2094			return ret;
2095		}
2096	}
2097	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2098}
2099
2100/*
2101 * regmap_multi_reg_write(): Write multiple registers to the device
2102 *
2103 * where the set of register,value pairs are supplied in any order,
2104 * possibly not all in a single range.
2105 *
2106 * @map: Register map to write to
2107 * @regs: Array of structures containing register,value to be written
2108 * @num_regs: Number of registers to write
2109 *
2110 * The 'normal' block write mode will send ultimately send data on the
2111 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2112 * addressed. However, this alternative block multi write mode will send
2113 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2114 * must of course support the mode.
2115 *
2116 * A value of zero will be returned on success, a negative errno will be
2117 * returned in error cases.
2118 */
2119int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2120			   int num_regs)
2121{
2122	int ret;
2123
2124	map->lock(map->lock_arg);
2125
2126	ret = _regmap_multi_reg_write(map, regs, num_regs);
2127
2128	map->unlock(map->lock_arg);
2129
2130	return ret;
2131}
2132EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2133
2134/*
2135 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2136 *                                    device but not the cache
2137 *
2138 * where the set of register are supplied in any order
2139 *
2140 * @map: Register map to write to
2141 * @regs: Array of structures containing register,value to be written
2142 * @num_regs: Number of registers to write
2143 *
2144 * This function is intended to be used for writing a large block of data
2145 * atomically to the device in single transfer for those I2C client devices
2146 * that implement this alternative block write mode.
2147 *
2148 * A value of zero will be returned on success, a negative errno will
2149 * be returned in error cases.
2150 */
2151int regmap_multi_reg_write_bypassed(struct regmap *map,
2152				    const struct reg_sequence *regs,
2153				    int num_regs)
2154{
2155	int ret;
2156	bool bypass;
2157
2158	map->lock(map->lock_arg);
2159
2160	bypass = map->cache_bypass;
2161	map->cache_bypass = true;
2162
2163	ret = _regmap_multi_reg_write(map, regs, num_regs);
2164
2165	map->cache_bypass = bypass;
2166
2167	map->unlock(map->lock_arg);
2168
2169	return ret;
2170}
2171EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2172
2173/**
2174 * regmap_raw_write_async(): Write raw values to one or more registers
2175 *                           asynchronously
2176 *
2177 * @map: Register map to write to
2178 * @reg: Initial register to write to
2179 * @val: Block of data to be written, laid out for direct transmission to the
2180 *       device.  Must be valid until regmap_async_complete() is called.
2181 * @val_len: Length of data pointed to by val.
2182 *
2183 * This function is intended to be used for things like firmware
2184 * download where a large block of data needs to be transferred to the
2185 * device.  No formatting will be done on the data provided.
2186 *
2187 * If supported by the underlying bus the write will be scheduled
2188 * asynchronously, helping maximise I/O speed on higher speed buses
2189 * like SPI.  regmap_async_complete() can be called to ensure that all
2190 * asynchrnous writes have been completed.
2191 *
2192 * A value of zero will be returned on success, a negative errno will
2193 * be returned in error cases.
2194 */
2195int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2196			   const void *val, size_t val_len)
2197{
2198	int ret;
2199
2200	if (val_len % map->format.val_bytes)
2201		return -EINVAL;
2202	if (!IS_ALIGNED(reg, map->reg_stride))
2203		return -EINVAL;
2204
2205	map->lock(map->lock_arg);
2206
2207	map->async = true;
2208
2209	ret = _regmap_raw_write(map, reg, val, val_len);
2210
2211	map->async = false;
2212
2213	map->unlock(map->lock_arg);
2214
2215	return ret;
2216}
2217EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2218
2219static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2220			    unsigned int val_len)
2221{
2222	struct regmap_range_node *range;
2223	u8 *u8 = map->work_buf;
2224	int ret;
2225
2226	WARN_ON(!map->bus);
2227
2228	if (!map->bus || !map->bus->read)
2229		return -EINVAL;
2230
2231	range = _regmap_range_lookup(map, reg);
2232	if (range) {
2233		ret = _regmap_select_page(map, &reg, range,
2234					  val_len / map->format.val_bytes);
2235		if (ret != 0)
2236			return ret;
2237	}
2238
2239	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2240
2241	/*
2242	 * Some buses or devices flag reads by setting the high bits in the
2243	 * register address; since it's always the high bits for all
2244	 * current formats we can do this here rather than in
2245	 * formatting.  This may break if we get interesting formats.
2246	 */
2247	u8[0] |= map->read_flag_mask;
2248
2249	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2250
2251	ret = map->bus->read(map->bus_context, map->work_buf,
2252			     map->format.reg_bytes + map->format.pad_bytes,
2253			     val, val_len);
2254
2255	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2256
2257	return ret;
2258}
2259
2260static int _regmap_bus_reg_read(void *context, unsigned int reg,
2261				unsigned int *val)
2262{
2263	struct regmap *map = context;
2264
2265	return map->bus->reg_read(map->bus_context, reg, val);
2266}
2267
2268static int _regmap_bus_read(void *context, unsigned int reg,
2269			    unsigned int *val)
2270{
2271	int ret;
2272	struct regmap *map = context;
2273
2274	if (!map->format.parse_val)
2275		return -EINVAL;
2276
2277	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2278	if (ret == 0)
2279		*val = map->format.parse_val(map->work_buf);
2280
2281	return ret;
2282}
2283
2284static int _regmap_read(struct regmap *map, unsigned int reg,
2285			unsigned int *val)
2286{
2287	int ret;
2288	void *context = _regmap_map_get_context(map);
2289
2290	if (!map->cache_bypass) {
2291		ret = regcache_read(map, reg, val);
2292		if (ret == 0)
2293			return 0;
2294	}
2295
2296	if (map->cache_only)
2297		return -EBUSY;
2298
2299	if (!regmap_readable(map, reg))
2300		return -EIO;
2301
2302	ret = map->reg_read(context, reg, val);
2303	if (ret == 0) {
2304#ifdef LOG_DEVICE
2305		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2306			dev_info(map->dev, "%x => %x\n", reg, *val);
2307#endif
2308
2309		trace_regmap_reg_read(map, reg, *val);
2310
2311		if (!map->cache_bypass)
2312			regcache_write(map, reg, *val);
2313	}
2314
2315	return ret;
2316}
2317
2318/**
2319 * regmap_read(): Read a value from a single register
2320 *
2321 * @map: Register map to read from
2322 * @reg: Register to be read from
2323 * @val: Pointer to store read value
2324 *
2325 * A value of zero will be returned on success, a negative errno will
2326 * be returned in error cases.
2327 */
2328int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2329{
2330	int ret;
2331
2332	if (!IS_ALIGNED(reg, map->reg_stride))
2333		return -EINVAL;
2334
2335	map->lock(map->lock_arg);
2336
2337	ret = _regmap_read(map, reg, val);
2338
2339	map->unlock(map->lock_arg);
2340
2341	return ret;
2342}
2343EXPORT_SYMBOL_GPL(regmap_read);
2344
2345/**
2346 * regmap_raw_read(): Read raw data from the device
2347 *
2348 * @map: Register map to read from
2349 * @reg: First register to be read from
2350 * @val: Pointer to store read value
2351 * @val_len: Size of data to read
2352 *
2353 * A value of zero will be returned on success, a negative errno will
2354 * be returned in error cases.
2355 */
2356int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2357		    size_t val_len)
2358{
2359	size_t val_bytes = map->format.val_bytes;
2360	size_t val_count = val_len / val_bytes;
2361	unsigned int v;
2362	int ret, i;
2363
2364	if (!map->bus)
2365		return -EINVAL;
2366	if (val_len % map->format.val_bytes)
2367		return -EINVAL;
2368	if (!IS_ALIGNED(reg, map->reg_stride))
2369		return -EINVAL;
2370	if (val_count == 0)
2371		return -EINVAL;
2372
2373	map->lock(map->lock_arg);
2374
2375	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2376	    map->cache_type == REGCACHE_NONE) {
2377		if (!map->bus->read) {
2378			ret = -ENOTSUPP;
2379			goto out;
2380		}
2381		if (map->max_raw_read && map->max_raw_read < val_len) {
2382			ret = -E2BIG;
2383			goto out;
2384		}
2385
2386		/* Physical block read if there's no cache involved */
2387		ret = _regmap_raw_read(map, reg, val, val_len);
2388
2389	} else {
2390		/* Otherwise go word by word for the cache; should be low
2391		 * cost as we expect to hit the cache.
2392		 */
2393		for (i = 0; i < val_count; i++) {
2394			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2395					   &v);
2396			if (ret != 0)
2397				goto out;
2398
2399			map->format.format_val(val + (i * val_bytes), v, 0);
2400		}
2401	}
2402
2403 out:
2404	map->unlock(map->lock_arg);
2405
2406	return ret;
2407}
2408EXPORT_SYMBOL_GPL(regmap_raw_read);
2409
2410/**
2411 * regmap_field_read(): Read a value to a single register field
2412 *
2413 * @field: Register field to read from
2414 * @val: Pointer to store read value
2415 *
2416 * A value of zero will be returned on success, a negative errno will
2417 * be returned in error cases.
2418 */
2419int regmap_field_read(struct regmap_field *field, unsigned int *val)
2420{
2421	int ret;
2422	unsigned int reg_val;
2423	ret = regmap_read(field->regmap, field->reg, &reg_val);
2424	if (ret != 0)
2425		return ret;
2426
2427	reg_val &= field->mask;
2428	reg_val >>= field->shift;
2429	*val = reg_val;
2430
2431	return ret;
2432}
2433EXPORT_SYMBOL_GPL(regmap_field_read);
2434
2435/**
2436 * regmap_fields_read(): Read a value to a single register field with port ID
2437 *
2438 * @field: Register field to read from
2439 * @id: port ID
2440 * @val: Pointer to store read value
2441 *
2442 * A value of zero will be returned on success, a negative errno will
2443 * be returned in error cases.
2444 */
2445int regmap_fields_read(struct regmap_field *field, unsigned int id,
2446		       unsigned int *val)
2447{
2448	int ret;
2449	unsigned int reg_val;
2450
2451	if (id >= field->id_size)
2452		return -EINVAL;
2453
2454	ret = regmap_read(field->regmap,
2455			  field->reg + (field->id_offset * id),
2456			  &reg_val);
2457	if (ret != 0)
2458		return ret;
2459
2460	reg_val &= field->mask;
2461	reg_val >>= field->shift;
2462	*val = reg_val;
2463
2464	return ret;
2465}
2466EXPORT_SYMBOL_GPL(regmap_fields_read);
2467
2468/**
2469 * regmap_bulk_read(): Read multiple registers from the device
2470 *
2471 * @map: Register map to read from
2472 * @reg: First register to be read from
2473 * @val: Pointer to store read value, in native register size for device
2474 * @val_count: Number of registers to read
2475 *
2476 * A value of zero will be returned on success, a negative errno will
2477 * be returned in error cases.
2478 */
2479int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2480		     size_t val_count)
2481{
2482	int ret, i;
2483	size_t val_bytes = map->format.val_bytes;
2484	bool vol = regmap_volatile_range(map, reg, val_count);
2485
2486	if (!IS_ALIGNED(reg, map->reg_stride))
2487		return -EINVAL;
2488
2489	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2490		/*
2491		 * Some devices does not support bulk read, for
2492		 * them we have a series of single read operations.
2493		 */
2494		size_t total_size = val_bytes * val_count;
2495
2496		if (!map->use_single_read &&
2497		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2498			ret = regmap_raw_read(map, reg, val,
2499					      val_bytes * val_count);
2500			if (ret != 0)
2501				return ret;
2502		} else {
2503			/*
2504			 * Some devices do not support bulk read or do not
2505			 * support large bulk reads, for them we have a series
2506			 * of read operations.
2507			 */
2508			int chunk_stride = map->reg_stride;
2509			size_t chunk_size = val_bytes;
2510			size_t chunk_count = val_count;
2511
2512			if (!map->use_single_read) {
2513				chunk_size = map->max_raw_read;
2514				if (chunk_size % val_bytes)
2515					chunk_size -= chunk_size % val_bytes;
2516				chunk_count = total_size / chunk_size;
2517				chunk_stride *= chunk_size / val_bytes;
2518			}
2519
2520			/* Read bytes that fit into a multiple of chunk_size */
2521			for (i = 0; i < chunk_count; i++) {
2522				ret = regmap_raw_read(map,
2523						      reg + (i * chunk_stride),
2524						      val + (i * chunk_size),
2525						      chunk_size);
2526				if (ret != 0)
2527					return ret;
2528			}
2529
2530			/* Read remaining bytes */
2531			if (chunk_size * i < total_size) {
2532				ret = regmap_raw_read(map,
2533						      reg + (i * chunk_stride),
2534						      val + (i * chunk_size),
2535						      total_size - i * chunk_size);
2536				if (ret != 0)
2537					return ret;
2538			}
2539		}
2540
2541		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2542			map->format.parse_inplace(val + i);
2543	} else {
2544		for (i = 0; i < val_count; i++) {
2545			unsigned int ival;
2546			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2547					  &ival);
2548			if (ret != 0)
2549				return ret;
2550
2551			if (map->format.format_val) {
2552				map->format.format_val(val + (i * val_bytes), ival, 0);
2553			} else {
2554				/* Devices providing read and write
2555				 * operations can use the bulk I/O
2556				 * functions if they define a val_bytes,
2557				 * we assume that the values are native
2558				 * endian.
2559				 */
2560#ifdef CONFIG_64BIT
2561				u64 *u64 = val;
2562#endif
2563				u32 *u32 = val;
2564				u16 *u16 = val;
2565				u8 *u8 = val;
2566
2567				switch (map->format.val_bytes) {
2568#ifdef CONFIG_64BIT
2569				case 8:
2570					u64[i] = ival;
2571					break;
2572#endif
2573				case 4:
2574					u32[i] = ival;
2575					break;
2576				case 2:
2577					u16[i] = ival;
2578					break;
2579				case 1:
2580					u8[i] = ival;
2581					break;
2582				default:
2583					return -EINVAL;
2584				}
2585			}
2586		}
2587	}
2588
2589	return 0;
2590}
2591EXPORT_SYMBOL_GPL(regmap_bulk_read);
2592
2593static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2594			       unsigned int mask, unsigned int val,
2595			       bool *change, bool force_write)
2596{
2597	int ret;
2598	unsigned int tmp, orig;
2599
2600	if (change)
2601		*change = false;
2602
2603	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2604		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2605		if (ret == 0 && change)
2606			*change = true;
2607	} else {
2608		ret = _regmap_read(map, reg, &orig);
2609		if (ret != 0)
2610			return ret;
2611
2612		tmp = orig & ~mask;
2613		tmp |= val & mask;
2614
2615		if (force_write || (tmp != orig)) {
2616			ret = _regmap_write(map, reg, tmp);
2617			if (ret == 0 && change)
2618				*change = true;
2619		}
2620	}
2621
2622	return ret;
2623}
2624
2625/**
2626 * regmap_update_bits_base:
2627 *	Perform a read/modify/write cycle on the
2628 *	register map with change, async, force option
2629 *
2630 * @map: Register map to update
2631 * @reg: Register to update
2632 * @mask: Bitmask to change
2633 * @val: New value for bitmask
2634 * @change: Boolean indicating if a write was done
2635 * @async: Boolean indicating asynchronously
2636 * @force: Boolean indicating use force update
2637 *
2638 * if async was true,
2639 * With most buses the read must be done synchronously so this is most
2640 * useful for devices with a cache which do not need to interact with
2641 * the hardware to determine the current register value.
2642 *
2643 * Returns zero for success, a negative number on error.
2644 */
2645int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2646			    unsigned int mask, unsigned int val,
2647			    bool *change, bool async, bool force)
2648{
2649	int ret;
2650
2651	map->lock(map->lock_arg);
2652
2653	map->async = async;
2654
2655	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2656
2657	map->async = false;
2658
2659	map->unlock(map->lock_arg);
2660
2661	return ret;
2662}
2663EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2664
2665void regmap_async_complete_cb(struct regmap_async *async, int ret)
2666{
2667	struct regmap *map = async->map;
2668	bool wake;
2669
2670	trace_regmap_async_io_complete(map);
2671
2672	spin_lock(&map->async_lock);
2673	list_move(&async->list, &map->async_free);
2674	wake = list_empty(&map->async_list);
2675
2676	if (ret != 0)
2677		map->async_ret = ret;
2678
2679	spin_unlock(&map->async_lock);
2680
2681	if (wake)
2682		wake_up(&map->async_waitq);
2683}
2684EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2685
2686static int regmap_async_is_done(struct regmap *map)
2687{
2688	unsigned long flags;
2689	int ret;
2690
2691	spin_lock_irqsave(&map->async_lock, flags);
2692	ret = list_empty(&map->async_list);
2693	spin_unlock_irqrestore(&map->async_lock, flags);
2694
2695	return ret;
2696}
2697
2698/**
2699 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2700 *
2701 * @map: Map to operate on.
2702 *
2703 * Blocks until any pending asynchronous I/O has completed.  Returns
2704 * an error code for any failed I/O operations.
2705 */
2706int regmap_async_complete(struct regmap *map)
2707{
2708	unsigned long flags;
2709	int ret;
2710
2711	/* Nothing to do with no async support */
2712	if (!map->bus || !map->bus->async_write)
2713		return 0;
2714
2715	trace_regmap_async_complete_start(map);
2716
2717	wait_event(map->async_waitq, regmap_async_is_done(map));
2718
2719	spin_lock_irqsave(&map->async_lock, flags);
2720	ret = map->async_ret;
2721	map->async_ret = 0;
2722	spin_unlock_irqrestore(&map->async_lock, flags);
2723
2724	trace_regmap_async_complete_done(map);
2725
2726	return ret;
2727}
2728EXPORT_SYMBOL_GPL(regmap_async_complete);
2729
2730/**
2731 * regmap_register_patch: Register and apply register updates to be applied
2732 *                        on device initialistion
2733 *
2734 * @map: Register map to apply updates to.
2735 * @regs: Values to update.
2736 * @num_regs: Number of entries in regs.
2737 *
2738 * Register a set of register updates to be applied to the device
2739 * whenever the device registers are synchronised with the cache and
2740 * apply them immediately.  Typically this is used to apply
2741 * corrections to be applied to the device defaults on startup, such
2742 * as the updates some vendors provide to undocumented registers.
2743 *
2744 * The caller must ensure that this function cannot be called
2745 * concurrently with either itself or regcache_sync().
2746 */
2747int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2748			  int num_regs)
2749{
2750	struct reg_sequence *p;
2751	int ret;
2752	bool bypass;
2753
2754	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2755	    num_regs))
2756		return 0;
2757
2758	p = krealloc(map->patch,
2759		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2760		     GFP_KERNEL);
2761	if (p) {
2762		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2763		map->patch = p;
2764		map->patch_regs += num_regs;
2765	} else {
2766		return -ENOMEM;
2767	}
2768
2769	map->lock(map->lock_arg);
2770
2771	bypass = map->cache_bypass;
2772
2773	map->cache_bypass = true;
2774	map->async = true;
2775
2776	ret = _regmap_multi_reg_write(map, regs, num_regs);
2777
2778	map->async = false;
2779	map->cache_bypass = bypass;
2780
2781	map->unlock(map->lock_arg);
2782
2783	regmap_async_complete(map);
2784
2785	return ret;
2786}
2787EXPORT_SYMBOL_GPL(regmap_register_patch);
2788
2789/*
2790 * regmap_get_val_bytes(): Report the size of a register value
2791 *
2792 * Report the size of a register value, mainly intended to for use by
2793 * generic infrastructure built on top of regmap.
2794 */
2795int regmap_get_val_bytes(struct regmap *map)
2796{
2797	if (map->format.format_write)
2798		return -EINVAL;
2799
2800	return map->format.val_bytes;
2801}
2802EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2803
2804/**
2805 * regmap_get_max_register(): Report the max register value
2806 *
2807 * Report the max register value, mainly intended to for use by
2808 * generic infrastructure built on top of regmap.
2809 */
2810int regmap_get_max_register(struct regmap *map)
2811{
2812	return map->max_register ? map->max_register : -EINVAL;
2813}
2814EXPORT_SYMBOL_GPL(regmap_get_max_register);
2815
2816/**
2817 * regmap_get_reg_stride(): Report the register address stride
2818 *
2819 * Report the register address stride, mainly intended to for use by
2820 * generic infrastructure built on top of regmap.
2821 */
2822int regmap_get_reg_stride(struct regmap *map)
2823{
2824	return map->reg_stride;
2825}
2826EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2827
2828int regmap_parse_val(struct regmap *map, const void *buf,
2829			unsigned int *val)
2830{
2831	if (!map->format.parse_val)
2832		return -EINVAL;
2833
2834	*val = map->format.parse_val(buf);
2835
2836	return 0;
2837}
2838EXPORT_SYMBOL_GPL(regmap_parse_val);
2839
2840static int __init regmap_initcall(void)
2841{
2842	regmap_debugfs_initcall();
2843
2844	return 0;
2845}
2846postcore_initcall(regmap_initcall);
v4.10.11
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/of.h>
  19#include <linux/rbtree.h>
  20#include <linux/sched.h>
  21#include <linux/delay.h>
  22#include <linux/log2.h>
  23
  24#define CREATE_TRACE_POINTS
  25#include "trace.h"
  26
  27#include "internal.h"
  28
  29/*
  30 * Sometimes for failures during very early init the trace
  31 * infrastructure isn't available early enough to be used.  For this
  32 * sort of problem defining LOG_DEVICE will add printks for basic
  33 * register I/O on a specific device.
  34 */
  35#undef LOG_DEVICE
  36
  37static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  38			       unsigned int mask, unsigned int val,
  39			       bool *change, bool force_write);
  40
  41static int _regmap_bus_reg_read(void *context, unsigned int reg,
  42				unsigned int *val);
  43static int _regmap_bus_read(void *context, unsigned int reg,
  44			    unsigned int *val);
  45static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  46				       unsigned int val);
  47static int _regmap_bus_reg_write(void *context, unsigned int reg,
  48				 unsigned int val);
  49static int _regmap_bus_raw_write(void *context, unsigned int reg,
  50				 unsigned int val);
  51
  52bool regmap_reg_in_ranges(unsigned int reg,
  53			  const struct regmap_range *ranges,
  54			  unsigned int nranges)
  55{
  56	const struct regmap_range *r;
  57	int i;
  58
  59	for (i = 0, r = ranges; i < nranges; i++, r++)
  60		if (regmap_reg_in_range(reg, r))
  61			return true;
  62	return false;
  63}
  64EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  65
  66bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  67			      const struct regmap_access_table *table)
  68{
  69	/* Check "no ranges" first */
  70	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  71		return false;
  72
  73	/* In case zero "yes ranges" are supplied, any reg is OK */
  74	if (!table->n_yes_ranges)
  75		return true;
  76
  77	return regmap_reg_in_ranges(reg, table->yes_ranges,
  78				    table->n_yes_ranges);
  79}
  80EXPORT_SYMBOL_GPL(regmap_check_range_table);
  81
  82bool regmap_writeable(struct regmap *map, unsigned int reg)
  83{
  84	if (map->max_register && reg > map->max_register)
  85		return false;
  86
  87	if (map->writeable_reg)
  88		return map->writeable_reg(map->dev, reg);
  89
  90	if (map->wr_table)
  91		return regmap_check_range_table(map, reg, map->wr_table);
  92
  93	return true;
  94}
  95
  96bool regmap_cached(struct regmap *map, unsigned int reg)
  97{
  98	int ret;
  99	unsigned int val;
 100
 101	if (map->cache == REGCACHE_NONE)
 102		return false;
 103
 104	if (!map->cache_ops)
 105		return false;
 106
 107	if (map->max_register && reg > map->max_register)
 108		return false;
 109
 110	map->lock(map->lock_arg);
 111	ret = regcache_read(map, reg, &val);
 112	map->unlock(map->lock_arg);
 113	if (ret)
 114		return false;
 115
 116	return true;
 117}
 118
 119bool regmap_readable(struct regmap *map, unsigned int reg)
 120{
 121	if (!map->reg_read)
 122		return false;
 123
 124	if (map->max_register && reg > map->max_register)
 125		return false;
 126
 127	if (map->format.format_write)
 128		return false;
 129
 130	if (map->readable_reg)
 131		return map->readable_reg(map->dev, reg);
 132
 133	if (map->rd_table)
 134		return regmap_check_range_table(map, reg, map->rd_table);
 135
 136	return true;
 137}
 138
 139bool regmap_volatile(struct regmap *map, unsigned int reg)
 140{
 141	if (!map->format.format_write && !regmap_readable(map, reg))
 142		return false;
 143
 144	if (map->volatile_reg)
 145		return map->volatile_reg(map->dev, reg);
 146
 147	if (map->volatile_table)
 148		return regmap_check_range_table(map, reg, map->volatile_table);
 149
 150	if (map->cache_ops)
 151		return false;
 152	else
 153		return true;
 154}
 155
 156bool regmap_precious(struct regmap *map, unsigned int reg)
 157{
 158	if (!regmap_readable(map, reg))
 159		return false;
 160
 161	if (map->precious_reg)
 162		return map->precious_reg(map->dev, reg);
 163
 164	if (map->precious_table)
 165		return regmap_check_range_table(map, reg, map->precious_table);
 166
 167	return false;
 168}
 169
 170static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 171	size_t num)
 172{
 173	unsigned int i;
 174
 175	for (i = 0; i < num; i++)
 176		if (!regmap_volatile(map, reg + i))
 177			return false;
 178
 179	return true;
 180}
 181
 182static void regmap_format_2_6_write(struct regmap *map,
 183				     unsigned int reg, unsigned int val)
 184{
 185	u8 *out = map->work_buf;
 186
 187	*out = (reg << 6) | val;
 188}
 189
 190static void regmap_format_4_12_write(struct regmap *map,
 191				     unsigned int reg, unsigned int val)
 192{
 193	__be16 *out = map->work_buf;
 194	*out = cpu_to_be16((reg << 12) | val);
 195}
 196
 197static void regmap_format_7_9_write(struct regmap *map,
 198				    unsigned int reg, unsigned int val)
 199{
 200	__be16 *out = map->work_buf;
 201	*out = cpu_to_be16((reg << 9) | val);
 202}
 203
 204static void regmap_format_10_14_write(struct regmap *map,
 205				    unsigned int reg, unsigned int val)
 206{
 207	u8 *out = map->work_buf;
 208
 209	out[2] = val;
 210	out[1] = (val >> 8) | (reg << 6);
 211	out[0] = reg >> 2;
 212}
 213
 214static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 215{
 216	u8 *b = buf;
 217
 218	b[0] = val << shift;
 219}
 220
 221static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 222{
 223	__be16 *b = buf;
 224
 225	b[0] = cpu_to_be16(val << shift);
 226}
 227
 228static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 229{
 230	__le16 *b = buf;
 231
 232	b[0] = cpu_to_le16(val << shift);
 233}
 234
 235static void regmap_format_16_native(void *buf, unsigned int val,
 236				    unsigned int shift)
 237{
 238	*(u16 *)buf = val << shift;
 239}
 240
 241static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 242{
 243	u8 *b = buf;
 244
 245	val <<= shift;
 246
 247	b[0] = val >> 16;
 248	b[1] = val >> 8;
 249	b[2] = val;
 250}
 251
 252static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 253{
 254	__be32 *b = buf;
 255
 256	b[0] = cpu_to_be32(val << shift);
 257}
 258
 259static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 260{
 261	__le32 *b = buf;
 262
 263	b[0] = cpu_to_le32(val << shift);
 264}
 265
 266static void regmap_format_32_native(void *buf, unsigned int val,
 267				    unsigned int shift)
 268{
 269	*(u32 *)buf = val << shift;
 270}
 271
 272#ifdef CONFIG_64BIT
 273static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	__be64 *b = buf;
 276
 277	b[0] = cpu_to_be64((u64)val << shift);
 278}
 279
 280static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 281{
 282	__le64 *b = buf;
 283
 284	b[0] = cpu_to_le64((u64)val << shift);
 285}
 286
 287static void regmap_format_64_native(void *buf, unsigned int val,
 288				    unsigned int shift)
 289{
 290	*(u64 *)buf = (u64)val << shift;
 291}
 292#endif
 293
 294static void regmap_parse_inplace_noop(void *buf)
 295{
 296}
 297
 298static unsigned int regmap_parse_8(const void *buf)
 299{
 300	const u8 *b = buf;
 301
 302	return b[0];
 303}
 304
 305static unsigned int regmap_parse_16_be(const void *buf)
 306{
 307	const __be16 *b = buf;
 308
 309	return be16_to_cpu(b[0]);
 310}
 311
 312static unsigned int regmap_parse_16_le(const void *buf)
 313{
 314	const __le16 *b = buf;
 315
 316	return le16_to_cpu(b[0]);
 317}
 318
 319static void regmap_parse_16_be_inplace(void *buf)
 320{
 321	__be16 *b = buf;
 322
 323	b[0] = be16_to_cpu(b[0]);
 324}
 325
 326static void regmap_parse_16_le_inplace(void *buf)
 327{
 328	__le16 *b = buf;
 329
 330	b[0] = le16_to_cpu(b[0]);
 331}
 332
 333static unsigned int regmap_parse_16_native(const void *buf)
 334{
 335	return *(u16 *)buf;
 336}
 337
 338static unsigned int regmap_parse_24(const void *buf)
 339{
 340	const u8 *b = buf;
 341	unsigned int ret = b[2];
 342	ret |= ((unsigned int)b[1]) << 8;
 343	ret |= ((unsigned int)b[0]) << 16;
 344
 345	return ret;
 346}
 347
 348static unsigned int regmap_parse_32_be(const void *buf)
 349{
 350	const __be32 *b = buf;
 351
 352	return be32_to_cpu(b[0]);
 353}
 354
 355static unsigned int regmap_parse_32_le(const void *buf)
 356{
 357	const __le32 *b = buf;
 358
 359	return le32_to_cpu(b[0]);
 360}
 361
 362static void regmap_parse_32_be_inplace(void *buf)
 363{
 364	__be32 *b = buf;
 365
 366	b[0] = be32_to_cpu(b[0]);
 367}
 368
 369static void regmap_parse_32_le_inplace(void *buf)
 370{
 371	__le32 *b = buf;
 372
 373	b[0] = le32_to_cpu(b[0]);
 374}
 375
 376static unsigned int regmap_parse_32_native(const void *buf)
 377{
 378	return *(u32 *)buf;
 379}
 380
 381#ifdef CONFIG_64BIT
 382static unsigned int regmap_parse_64_be(const void *buf)
 383{
 384	const __be64 *b = buf;
 385
 386	return be64_to_cpu(b[0]);
 387}
 388
 389static unsigned int regmap_parse_64_le(const void *buf)
 390{
 391	const __le64 *b = buf;
 392
 393	return le64_to_cpu(b[0]);
 394}
 395
 396static void regmap_parse_64_be_inplace(void *buf)
 397{
 398	__be64 *b = buf;
 399
 400	b[0] = be64_to_cpu(b[0]);
 401}
 402
 403static void regmap_parse_64_le_inplace(void *buf)
 404{
 405	__le64 *b = buf;
 406
 407	b[0] = le64_to_cpu(b[0]);
 408}
 409
 410static unsigned int regmap_parse_64_native(const void *buf)
 411{
 412	return *(u64 *)buf;
 413}
 414#endif
 415
 416static void regmap_lock_mutex(void *__map)
 417{
 418	struct regmap *map = __map;
 419	mutex_lock(&map->mutex);
 420}
 421
 422static void regmap_unlock_mutex(void *__map)
 423{
 424	struct regmap *map = __map;
 425	mutex_unlock(&map->mutex);
 426}
 427
 428static void regmap_lock_spinlock(void *__map)
 429__acquires(&map->spinlock)
 430{
 431	struct regmap *map = __map;
 432	unsigned long flags;
 433
 434	spin_lock_irqsave(&map->spinlock, flags);
 435	map->spinlock_flags = flags;
 436}
 437
 438static void regmap_unlock_spinlock(void *__map)
 439__releases(&map->spinlock)
 440{
 441	struct regmap *map = __map;
 442	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 443}
 444
 445static void dev_get_regmap_release(struct device *dev, void *res)
 446{
 447	/*
 448	 * We don't actually have anything to do here; the goal here
 449	 * is not to manage the regmap but to provide a simple way to
 450	 * get the regmap back given a struct device.
 451	 */
 452}
 453
 454static bool _regmap_range_add(struct regmap *map,
 455			      struct regmap_range_node *data)
 456{
 457	struct rb_root *root = &map->range_tree;
 458	struct rb_node **new = &(root->rb_node), *parent = NULL;
 459
 460	while (*new) {
 461		struct regmap_range_node *this =
 462			container_of(*new, struct regmap_range_node, node);
 463
 464		parent = *new;
 465		if (data->range_max < this->range_min)
 466			new = &((*new)->rb_left);
 467		else if (data->range_min > this->range_max)
 468			new = &((*new)->rb_right);
 469		else
 470			return false;
 471	}
 472
 473	rb_link_node(&data->node, parent, new);
 474	rb_insert_color(&data->node, root);
 475
 476	return true;
 477}
 478
 479static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 480						      unsigned int reg)
 481{
 482	struct rb_node *node = map->range_tree.rb_node;
 483
 484	while (node) {
 485		struct regmap_range_node *this =
 486			container_of(node, struct regmap_range_node, node);
 487
 488		if (reg < this->range_min)
 489			node = node->rb_left;
 490		else if (reg > this->range_max)
 491			node = node->rb_right;
 492		else
 493			return this;
 494	}
 495
 496	return NULL;
 497}
 498
 499static void regmap_range_exit(struct regmap *map)
 500{
 501	struct rb_node *next;
 502	struct regmap_range_node *range_node;
 503
 504	next = rb_first(&map->range_tree);
 505	while (next) {
 506		range_node = rb_entry(next, struct regmap_range_node, node);
 507		next = rb_next(&range_node->node);
 508		rb_erase(&range_node->node, &map->range_tree);
 509		kfree(range_node);
 510	}
 511
 512	kfree(map->selector_work_buf);
 513}
 514
 515int regmap_attach_dev(struct device *dev, struct regmap *map,
 516		      const struct regmap_config *config)
 517{
 518	struct regmap **m;
 519
 520	map->dev = dev;
 521
 522	regmap_debugfs_init(map, config->name);
 523
 524	/* Add a devres resource for dev_get_regmap() */
 525	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 526	if (!m) {
 527		regmap_debugfs_exit(map);
 528		return -ENOMEM;
 529	}
 530	*m = map;
 531	devres_add(dev, m);
 532
 533	return 0;
 534}
 535EXPORT_SYMBOL_GPL(regmap_attach_dev);
 536
 537static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 538					const struct regmap_config *config)
 539{
 540	enum regmap_endian endian;
 541
 542	/* Retrieve the endianness specification from the regmap config */
 543	endian = config->reg_format_endian;
 544
 545	/* If the regmap config specified a non-default value, use that */
 546	if (endian != REGMAP_ENDIAN_DEFAULT)
 547		return endian;
 548
 549	/* Retrieve the endianness specification from the bus config */
 550	if (bus && bus->reg_format_endian_default)
 551		endian = bus->reg_format_endian_default;
 552
 553	/* If the bus specified a non-default value, use that */
 554	if (endian != REGMAP_ENDIAN_DEFAULT)
 555		return endian;
 556
 557	/* Use this if no other value was found */
 558	return REGMAP_ENDIAN_BIG;
 559}
 560
 561enum regmap_endian regmap_get_val_endian(struct device *dev,
 562					 const struct regmap_bus *bus,
 563					 const struct regmap_config *config)
 564{
 565	struct device_node *np;
 566	enum regmap_endian endian;
 567
 568	/* Retrieve the endianness specification from the regmap config */
 569	endian = config->val_format_endian;
 570
 571	/* If the regmap config specified a non-default value, use that */
 572	if (endian != REGMAP_ENDIAN_DEFAULT)
 573		return endian;
 574
 575	/* If the dev and dev->of_node exist try to get endianness from DT */
 576	if (dev && dev->of_node) {
 577		np = dev->of_node;
 578
 579		/* Parse the device's DT node for an endianness specification */
 580		if (of_property_read_bool(np, "big-endian"))
 581			endian = REGMAP_ENDIAN_BIG;
 582		else if (of_property_read_bool(np, "little-endian"))
 583			endian = REGMAP_ENDIAN_LITTLE;
 584		else if (of_property_read_bool(np, "native-endian"))
 585			endian = REGMAP_ENDIAN_NATIVE;
 586
 587		/* If the endianness was specified in DT, use that */
 588		if (endian != REGMAP_ENDIAN_DEFAULT)
 589			return endian;
 590	}
 591
 592	/* Retrieve the endianness specification from the bus config */
 593	if (bus && bus->val_format_endian_default)
 594		endian = bus->val_format_endian_default;
 595
 596	/* If the bus specified a non-default value, use that */
 597	if (endian != REGMAP_ENDIAN_DEFAULT)
 598		return endian;
 599
 600	/* Use this if no other value was found */
 601	return REGMAP_ENDIAN_BIG;
 602}
 603EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 604
 605struct regmap *__regmap_init(struct device *dev,
 606			     const struct regmap_bus *bus,
 607			     void *bus_context,
 608			     const struct regmap_config *config,
 609			     struct lock_class_key *lock_key,
 610			     const char *lock_name)
 611{
 612	struct regmap *map;
 613	int ret = -EINVAL;
 614	enum regmap_endian reg_endian, val_endian;
 615	int i, j;
 616
 617	if (!config)
 618		goto err;
 619
 620	map = kzalloc(sizeof(*map), GFP_KERNEL);
 621	if (map == NULL) {
 622		ret = -ENOMEM;
 623		goto err;
 624	}
 625
 626	if (config->lock && config->unlock) {
 627		map->lock = config->lock;
 628		map->unlock = config->unlock;
 629		map->lock_arg = config->lock_arg;
 630	} else {
 631		if ((bus && bus->fast_io) ||
 632		    config->fast_io) {
 633			spin_lock_init(&map->spinlock);
 634			map->lock = regmap_lock_spinlock;
 635			map->unlock = regmap_unlock_spinlock;
 636			lockdep_set_class_and_name(&map->spinlock,
 637						   lock_key, lock_name);
 638		} else {
 639			mutex_init(&map->mutex);
 640			map->lock = regmap_lock_mutex;
 641			map->unlock = regmap_unlock_mutex;
 642			lockdep_set_class_and_name(&map->mutex,
 643						   lock_key, lock_name);
 644		}
 645		map->lock_arg = map;
 646	}
 647
 648	/*
 649	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 650	 * scratch buffers with sleeping allocations.
 651	 */
 652	if ((bus && bus->fast_io) || config->fast_io)
 653		map->alloc_flags = GFP_ATOMIC;
 654	else
 655		map->alloc_flags = GFP_KERNEL;
 656
 657	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 658	map->format.pad_bytes = config->pad_bits / 8;
 659	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 660	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 661			config->val_bits + config->pad_bits, 8);
 662	map->reg_shift = config->pad_bits % 8;
 663	if (config->reg_stride)
 664		map->reg_stride = config->reg_stride;
 665	else
 666		map->reg_stride = 1;
 667	if (is_power_of_2(map->reg_stride))
 668		map->reg_stride_order = ilog2(map->reg_stride);
 669	else
 670		map->reg_stride_order = -1;
 671	map->use_single_read = config->use_single_rw || !bus || !bus->read;
 672	map->use_single_write = config->use_single_rw || !bus || !bus->write;
 673	map->can_multi_write = config->can_multi_write && bus && bus->write;
 674	if (bus) {
 675		map->max_raw_read = bus->max_raw_read;
 676		map->max_raw_write = bus->max_raw_write;
 677	}
 678	map->dev = dev;
 679	map->bus = bus;
 680	map->bus_context = bus_context;
 681	map->max_register = config->max_register;
 682	map->wr_table = config->wr_table;
 683	map->rd_table = config->rd_table;
 684	map->volatile_table = config->volatile_table;
 685	map->precious_table = config->precious_table;
 686	map->writeable_reg = config->writeable_reg;
 687	map->readable_reg = config->readable_reg;
 688	map->volatile_reg = config->volatile_reg;
 689	map->precious_reg = config->precious_reg;
 690	map->cache_type = config->cache_type;
 691	map->name = config->name;
 692
 693	spin_lock_init(&map->async_lock);
 694	INIT_LIST_HEAD(&map->async_list);
 695	INIT_LIST_HEAD(&map->async_free);
 696	init_waitqueue_head(&map->async_waitq);
 697
 698	if (config->read_flag_mask || config->write_flag_mask) {
 699		map->read_flag_mask = config->read_flag_mask;
 700		map->write_flag_mask = config->write_flag_mask;
 701	} else if (bus) {
 702		map->read_flag_mask = bus->read_flag_mask;
 703	}
 704
 705	if (!bus) {
 706		map->reg_read  = config->reg_read;
 707		map->reg_write = config->reg_write;
 708
 709		map->defer_caching = false;
 710		goto skip_format_initialization;
 711	} else if (!bus->read || !bus->write) {
 712		map->reg_read = _regmap_bus_reg_read;
 713		map->reg_write = _regmap_bus_reg_write;
 714
 715		map->defer_caching = false;
 716		goto skip_format_initialization;
 717	} else {
 718		map->reg_read  = _regmap_bus_read;
 719		map->reg_update_bits = bus->reg_update_bits;
 720	}
 721
 722	reg_endian = regmap_get_reg_endian(bus, config);
 723	val_endian = regmap_get_val_endian(dev, bus, config);
 724
 725	switch (config->reg_bits + map->reg_shift) {
 726	case 2:
 727		switch (config->val_bits) {
 728		case 6:
 729			map->format.format_write = regmap_format_2_6_write;
 730			break;
 731		default:
 732			goto err_map;
 733		}
 734		break;
 735
 736	case 4:
 737		switch (config->val_bits) {
 738		case 12:
 739			map->format.format_write = regmap_format_4_12_write;
 740			break;
 741		default:
 742			goto err_map;
 743		}
 744		break;
 745
 746	case 7:
 747		switch (config->val_bits) {
 748		case 9:
 749			map->format.format_write = regmap_format_7_9_write;
 750			break;
 751		default:
 752			goto err_map;
 753		}
 754		break;
 755
 756	case 10:
 757		switch (config->val_bits) {
 758		case 14:
 759			map->format.format_write = regmap_format_10_14_write;
 760			break;
 761		default:
 762			goto err_map;
 763		}
 764		break;
 765
 766	case 8:
 767		map->format.format_reg = regmap_format_8;
 768		break;
 769
 770	case 16:
 771		switch (reg_endian) {
 772		case REGMAP_ENDIAN_BIG:
 773			map->format.format_reg = regmap_format_16_be;
 774			break;
 775		case REGMAP_ENDIAN_LITTLE:
 776			map->format.format_reg = regmap_format_16_le;
 777			break;
 778		case REGMAP_ENDIAN_NATIVE:
 779			map->format.format_reg = regmap_format_16_native;
 780			break;
 781		default:
 782			goto err_map;
 783		}
 784		break;
 785
 786	case 24:
 787		if (reg_endian != REGMAP_ENDIAN_BIG)
 788			goto err_map;
 789		map->format.format_reg = regmap_format_24;
 790		break;
 791
 792	case 32:
 793		switch (reg_endian) {
 794		case REGMAP_ENDIAN_BIG:
 795			map->format.format_reg = regmap_format_32_be;
 796			break;
 797		case REGMAP_ENDIAN_LITTLE:
 798			map->format.format_reg = regmap_format_32_le;
 799			break;
 800		case REGMAP_ENDIAN_NATIVE:
 801			map->format.format_reg = regmap_format_32_native;
 802			break;
 803		default:
 804			goto err_map;
 805		}
 806		break;
 807
 808#ifdef CONFIG_64BIT
 809	case 64:
 810		switch (reg_endian) {
 811		case REGMAP_ENDIAN_BIG:
 812			map->format.format_reg = regmap_format_64_be;
 813			break;
 814		case REGMAP_ENDIAN_LITTLE:
 815			map->format.format_reg = regmap_format_64_le;
 816			break;
 817		case REGMAP_ENDIAN_NATIVE:
 818			map->format.format_reg = regmap_format_64_native;
 819			break;
 820		default:
 821			goto err_map;
 822		}
 823		break;
 824#endif
 825
 826	default:
 827		goto err_map;
 828	}
 829
 830	if (val_endian == REGMAP_ENDIAN_NATIVE)
 831		map->format.parse_inplace = regmap_parse_inplace_noop;
 832
 833	switch (config->val_bits) {
 834	case 8:
 835		map->format.format_val = regmap_format_8;
 836		map->format.parse_val = regmap_parse_8;
 837		map->format.parse_inplace = regmap_parse_inplace_noop;
 838		break;
 839	case 16:
 840		switch (val_endian) {
 841		case REGMAP_ENDIAN_BIG:
 842			map->format.format_val = regmap_format_16_be;
 843			map->format.parse_val = regmap_parse_16_be;
 844			map->format.parse_inplace = regmap_parse_16_be_inplace;
 845			break;
 846		case REGMAP_ENDIAN_LITTLE:
 847			map->format.format_val = regmap_format_16_le;
 848			map->format.parse_val = regmap_parse_16_le;
 849			map->format.parse_inplace = regmap_parse_16_le_inplace;
 850			break;
 851		case REGMAP_ENDIAN_NATIVE:
 852			map->format.format_val = regmap_format_16_native;
 853			map->format.parse_val = regmap_parse_16_native;
 854			break;
 855		default:
 856			goto err_map;
 857		}
 858		break;
 859	case 24:
 860		if (val_endian != REGMAP_ENDIAN_BIG)
 861			goto err_map;
 862		map->format.format_val = regmap_format_24;
 863		map->format.parse_val = regmap_parse_24;
 864		break;
 865	case 32:
 866		switch (val_endian) {
 867		case REGMAP_ENDIAN_BIG:
 868			map->format.format_val = regmap_format_32_be;
 869			map->format.parse_val = regmap_parse_32_be;
 870			map->format.parse_inplace = regmap_parse_32_be_inplace;
 871			break;
 872		case REGMAP_ENDIAN_LITTLE:
 873			map->format.format_val = regmap_format_32_le;
 874			map->format.parse_val = regmap_parse_32_le;
 875			map->format.parse_inplace = regmap_parse_32_le_inplace;
 876			break;
 877		case REGMAP_ENDIAN_NATIVE:
 878			map->format.format_val = regmap_format_32_native;
 879			map->format.parse_val = regmap_parse_32_native;
 880			break;
 881		default:
 882			goto err_map;
 883		}
 884		break;
 885#ifdef CONFIG_64BIT
 886	case 64:
 887		switch (val_endian) {
 888		case REGMAP_ENDIAN_BIG:
 889			map->format.format_val = regmap_format_64_be;
 890			map->format.parse_val = regmap_parse_64_be;
 891			map->format.parse_inplace = regmap_parse_64_be_inplace;
 892			break;
 893		case REGMAP_ENDIAN_LITTLE:
 894			map->format.format_val = regmap_format_64_le;
 895			map->format.parse_val = regmap_parse_64_le;
 896			map->format.parse_inplace = regmap_parse_64_le_inplace;
 897			break;
 898		case REGMAP_ENDIAN_NATIVE:
 899			map->format.format_val = regmap_format_64_native;
 900			map->format.parse_val = regmap_parse_64_native;
 901			break;
 902		default:
 903			goto err_map;
 904		}
 905		break;
 906#endif
 907	}
 908
 909	if (map->format.format_write) {
 910		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 911		    (val_endian != REGMAP_ENDIAN_BIG))
 912			goto err_map;
 913		map->use_single_write = true;
 914	}
 915
 916	if (!map->format.format_write &&
 917	    !(map->format.format_reg && map->format.format_val))
 918		goto err_map;
 919
 920	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 921	if (map->work_buf == NULL) {
 922		ret = -ENOMEM;
 923		goto err_map;
 924	}
 925
 926	if (map->format.format_write) {
 927		map->defer_caching = false;
 928		map->reg_write = _regmap_bus_formatted_write;
 929	} else if (map->format.format_val) {
 930		map->defer_caching = true;
 931		map->reg_write = _regmap_bus_raw_write;
 932	}
 933
 934skip_format_initialization:
 935
 936	map->range_tree = RB_ROOT;
 937	for (i = 0; i < config->num_ranges; i++) {
 938		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 939		struct regmap_range_node *new;
 940
 941		/* Sanity check */
 942		if (range_cfg->range_max < range_cfg->range_min) {
 943			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 944				range_cfg->range_max, range_cfg->range_min);
 945			goto err_range;
 946		}
 947
 948		if (range_cfg->range_max > map->max_register) {
 949			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 950				range_cfg->range_max, map->max_register);
 951			goto err_range;
 952		}
 953
 954		if (range_cfg->selector_reg > map->max_register) {
 955			dev_err(map->dev,
 956				"Invalid range %d: selector out of map\n", i);
 957			goto err_range;
 958		}
 959
 960		if (range_cfg->window_len == 0) {
 961			dev_err(map->dev, "Invalid range %d: window_len 0\n",
 962				i);
 963			goto err_range;
 964		}
 965
 966		/* Make sure, that this register range has no selector
 967		   or data window within its boundary */
 968		for (j = 0; j < config->num_ranges; j++) {
 969			unsigned sel_reg = config->ranges[j].selector_reg;
 970			unsigned win_min = config->ranges[j].window_start;
 971			unsigned win_max = win_min +
 972					   config->ranges[j].window_len - 1;
 973
 974			/* Allow data window inside its own virtual range */
 975			if (j == i)
 976				continue;
 977
 978			if (range_cfg->range_min <= sel_reg &&
 979			    sel_reg <= range_cfg->range_max) {
 980				dev_err(map->dev,
 981					"Range %d: selector for %d in window\n",
 982					i, j);
 983				goto err_range;
 984			}
 985
 986			if (!(win_max < range_cfg->range_min ||
 987			      win_min > range_cfg->range_max)) {
 988				dev_err(map->dev,
 989					"Range %d: window for %d in window\n",
 990					i, j);
 991				goto err_range;
 992			}
 993		}
 994
 995		new = kzalloc(sizeof(*new), GFP_KERNEL);
 996		if (new == NULL) {
 997			ret = -ENOMEM;
 998			goto err_range;
 999		}
1000
1001		new->map = map;
1002		new->name = range_cfg->name;
1003		new->range_min = range_cfg->range_min;
1004		new->range_max = range_cfg->range_max;
1005		new->selector_reg = range_cfg->selector_reg;
1006		new->selector_mask = range_cfg->selector_mask;
1007		new->selector_shift = range_cfg->selector_shift;
1008		new->window_start = range_cfg->window_start;
1009		new->window_len = range_cfg->window_len;
1010
1011		if (!_regmap_range_add(map, new)) {
1012			dev_err(map->dev, "Failed to add range %d\n", i);
1013			kfree(new);
1014			goto err_range;
1015		}
1016
1017		if (map->selector_work_buf == NULL) {
1018			map->selector_work_buf =
1019				kzalloc(map->format.buf_size, GFP_KERNEL);
1020			if (map->selector_work_buf == NULL) {
1021				ret = -ENOMEM;
1022				goto err_range;
1023			}
1024		}
1025	}
1026
1027	ret = regcache_init(map, config);
1028	if (ret != 0)
1029		goto err_range;
1030
1031	if (dev) {
1032		ret = regmap_attach_dev(dev, map, config);
1033		if (ret != 0)
1034			goto err_regcache;
1035	}
1036
1037	return map;
1038
1039err_regcache:
1040	regcache_exit(map);
1041err_range:
1042	regmap_range_exit(map);
1043	kfree(map->work_buf);
1044err_map:
1045	kfree(map);
1046err:
1047	return ERR_PTR(ret);
1048}
1049EXPORT_SYMBOL_GPL(__regmap_init);
1050
1051static void devm_regmap_release(struct device *dev, void *res)
1052{
1053	regmap_exit(*(struct regmap **)res);
1054}
1055
1056struct regmap *__devm_regmap_init(struct device *dev,
1057				  const struct regmap_bus *bus,
1058				  void *bus_context,
1059				  const struct regmap_config *config,
1060				  struct lock_class_key *lock_key,
1061				  const char *lock_name)
1062{
1063	struct regmap **ptr, *regmap;
1064
1065	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1066	if (!ptr)
1067		return ERR_PTR(-ENOMEM);
1068
1069	regmap = __regmap_init(dev, bus, bus_context, config,
1070			       lock_key, lock_name);
1071	if (!IS_ERR(regmap)) {
1072		*ptr = regmap;
1073		devres_add(dev, ptr);
1074	} else {
1075		devres_free(ptr);
1076	}
1077
1078	return regmap;
1079}
1080EXPORT_SYMBOL_GPL(__devm_regmap_init);
1081
1082static void regmap_field_init(struct regmap_field *rm_field,
1083	struct regmap *regmap, struct reg_field reg_field)
1084{
1085	rm_field->regmap = regmap;
1086	rm_field->reg = reg_field.reg;
1087	rm_field->shift = reg_field.lsb;
1088	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1089	rm_field->id_size = reg_field.id_size;
1090	rm_field->id_offset = reg_field.id_offset;
1091}
1092
1093/**
1094 * devm_regmap_field_alloc(): Allocate and initialise a register field
1095 * in a register map.
1096 *
1097 * @dev: Device that will be interacted with
1098 * @regmap: regmap bank in which this register field is located.
1099 * @reg_field: Register field with in the bank.
1100 *
1101 * The return value will be an ERR_PTR() on error or a valid pointer
1102 * to a struct regmap_field. The regmap_field will be automatically freed
1103 * by the device management code.
1104 */
1105struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1106		struct regmap *regmap, struct reg_field reg_field)
1107{
1108	struct regmap_field *rm_field = devm_kzalloc(dev,
1109					sizeof(*rm_field), GFP_KERNEL);
1110	if (!rm_field)
1111		return ERR_PTR(-ENOMEM);
1112
1113	regmap_field_init(rm_field, regmap, reg_field);
1114
1115	return rm_field;
1116
1117}
1118EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1119
1120/**
1121 * devm_regmap_field_free(): Free register field allocated using
1122 * devm_regmap_field_alloc. Usally drivers need not call this function,
1123 * as the memory allocated via devm will be freed as per device-driver
1124 * life-cyle.
1125 *
1126 * @dev: Device that will be interacted with
1127 * @field: regmap field which should be freed.
1128 */
1129void devm_regmap_field_free(struct device *dev,
1130	struct regmap_field *field)
1131{
1132	devm_kfree(dev, field);
1133}
1134EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1135
1136/**
1137 * regmap_field_alloc(): Allocate and initialise a register field
1138 * in a register map.
1139 *
1140 * @regmap: regmap bank in which this register field is located.
1141 * @reg_field: Register field with in the bank.
1142 *
1143 * The return value will be an ERR_PTR() on error or a valid pointer
1144 * to a struct regmap_field. The regmap_field should be freed by the
1145 * user once its finished working with it using regmap_field_free().
1146 */
1147struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1148		struct reg_field reg_field)
1149{
1150	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1151
1152	if (!rm_field)
1153		return ERR_PTR(-ENOMEM);
1154
1155	regmap_field_init(rm_field, regmap, reg_field);
1156
1157	return rm_field;
1158}
1159EXPORT_SYMBOL_GPL(regmap_field_alloc);
1160
1161/**
1162 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1163 *
1164 * @field: regmap field which should be freed.
1165 */
1166void regmap_field_free(struct regmap_field *field)
1167{
1168	kfree(field);
1169}
1170EXPORT_SYMBOL_GPL(regmap_field_free);
1171
1172/**
1173 * regmap_reinit_cache(): Reinitialise the current register cache
1174 *
1175 * @map: Register map to operate on.
1176 * @config: New configuration.  Only the cache data will be used.
1177 *
1178 * Discard any existing register cache for the map and initialize a
1179 * new cache.  This can be used to restore the cache to defaults or to
1180 * update the cache configuration to reflect runtime discovery of the
1181 * hardware.
1182 *
1183 * No explicit locking is done here, the user needs to ensure that
1184 * this function will not race with other calls to regmap.
1185 */
1186int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1187{
1188	regcache_exit(map);
1189	regmap_debugfs_exit(map);
1190
1191	map->max_register = config->max_register;
1192	map->writeable_reg = config->writeable_reg;
1193	map->readable_reg = config->readable_reg;
1194	map->volatile_reg = config->volatile_reg;
1195	map->precious_reg = config->precious_reg;
1196	map->cache_type = config->cache_type;
1197
1198	regmap_debugfs_init(map, config->name);
1199
1200	map->cache_bypass = false;
1201	map->cache_only = false;
1202
1203	return regcache_init(map, config);
1204}
1205EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1206
1207/**
1208 * regmap_exit(): Free a previously allocated register map
1209 */
1210void regmap_exit(struct regmap *map)
1211{
1212	struct regmap_async *async;
1213
1214	regcache_exit(map);
1215	regmap_debugfs_exit(map);
1216	regmap_range_exit(map);
1217	if (map->bus && map->bus->free_context)
1218		map->bus->free_context(map->bus_context);
1219	kfree(map->work_buf);
1220	while (!list_empty(&map->async_free)) {
1221		async = list_first_entry_or_null(&map->async_free,
1222						 struct regmap_async,
1223						 list);
1224		list_del(&async->list);
1225		kfree(async->work_buf);
1226		kfree(async);
1227	}
1228	kfree(map);
1229}
1230EXPORT_SYMBOL_GPL(regmap_exit);
1231
1232static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1233{
1234	struct regmap **r = res;
1235	if (!r || !*r) {
1236		WARN_ON(!r || !*r);
1237		return 0;
1238	}
1239
1240	/* If the user didn't specify a name match any */
1241	if (data)
1242		return (*r)->name == data;
1243	else
1244		return 1;
1245}
1246
1247/**
1248 * dev_get_regmap(): Obtain the regmap (if any) for a device
1249 *
1250 * @dev: Device to retrieve the map for
1251 * @name: Optional name for the register map, usually NULL.
1252 *
1253 * Returns the regmap for the device if one is present, or NULL.  If
1254 * name is specified then it must match the name specified when
1255 * registering the device, if it is NULL then the first regmap found
1256 * will be used.  Devices with multiple register maps are very rare,
1257 * generic code should normally not need to specify a name.
1258 */
1259struct regmap *dev_get_regmap(struct device *dev, const char *name)
1260{
1261	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1262					dev_get_regmap_match, (void *)name);
1263
1264	if (!r)
1265		return NULL;
1266	return *r;
1267}
1268EXPORT_SYMBOL_GPL(dev_get_regmap);
1269
1270/**
1271 * regmap_get_device(): Obtain the device from a regmap
1272 *
1273 * @map: Register map to operate on.
1274 *
1275 * Returns the underlying device that the regmap has been created for.
1276 */
1277struct device *regmap_get_device(struct regmap *map)
1278{
1279	return map->dev;
1280}
1281EXPORT_SYMBOL_GPL(regmap_get_device);
1282
1283static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1284			       struct regmap_range_node *range,
1285			       unsigned int val_num)
1286{
1287	void *orig_work_buf;
1288	unsigned int win_offset;
1289	unsigned int win_page;
1290	bool page_chg;
1291	int ret;
1292
1293	win_offset = (*reg - range->range_min) % range->window_len;
1294	win_page = (*reg - range->range_min) / range->window_len;
1295
1296	if (val_num > 1) {
1297		/* Bulk write shouldn't cross range boundary */
1298		if (*reg + val_num - 1 > range->range_max)
1299			return -EINVAL;
1300
1301		/* ... or single page boundary */
1302		if (val_num > range->window_len - win_offset)
1303			return -EINVAL;
1304	}
1305
1306	/* It is possible to have selector register inside data window.
1307	   In that case, selector register is located on every page and
1308	   it needs no page switching, when accessed alone. */
1309	if (val_num > 1 ||
1310	    range->window_start + win_offset != range->selector_reg) {
1311		/* Use separate work_buf during page switching */
1312		orig_work_buf = map->work_buf;
1313		map->work_buf = map->selector_work_buf;
1314
1315		ret = _regmap_update_bits(map, range->selector_reg,
1316					  range->selector_mask,
1317					  win_page << range->selector_shift,
1318					  &page_chg, false);
1319
1320		map->work_buf = orig_work_buf;
1321
1322		if (ret != 0)
1323			return ret;
1324	}
1325
1326	*reg = range->window_start + win_offset;
1327
1328	return 0;
1329}
1330
1331static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1332					  unsigned long mask)
1333{
1334	u8 *buf;
1335	int i;
1336
1337	if (!mask || !map->work_buf)
1338		return;
1339
1340	buf = map->work_buf;
1341
1342	for (i = 0; i < max_bytes; i++)
1343		buf[i] |= (mask >> (8 * i)) & 0xff;
1344}
1345
1346int _regmap_raw_write(struct regmap *map, unsigned int reg,
1347		      const void *val, size_t val_len)
1348{
1349	struct regmap_range_node *range;
1350	unsigned long flags;
 
1351	void *work_val = map->work_buf + map->format.reg_bytes +
1352		map->format.pad_bytes;
1353	void *buf;
1354	int ret = -ENOTSUPP;
1355	size_t len;
1356	int i;
1357
1358	WARN_ON(!map->bus);
1359
1360	/* Check for unwritable registers before we start */
1361	if (map->writeable_reg)
1362		for (i = 0; i < val_len / map->format.val_bytes; i++)
1363			if (!map->writeable_reg(map->dev,
1364					       reg + regmap_get_offset(map, i)))
1365				return -EINVAL;
1366
1367	if (!map->cache_bypass && map->format.parse_val) {
1368		unsigned int ival;
1369		int val_bytes = map->format.val_bytes;
1370		for (i = 0; i < val_len / val_bytes; i++) {
1371			ival = map->format.parse_val(val + (i * val_bytes));
1372			ret = regcache_write(map,
1373					     reg + regmap_get_offset(map, i),
1374					     ival);
1375			if (ret) {
1376				dev_err(map->dev,
1377					"Error in caching of register: %x ret: %d\n",
1378					reg + i, ret);
1379				return ret;
1380			}
1381		}
1382		if (map->cache_only) {
1383			map->cache_dirty = true;
1384			return 0;
1385		}
1386	}
1387
1388	range = _regmap_range_lookup(map, reg);
1389	if (range) {
1390		int val_num = val_len / map->format.val_bytes;
1391		int win_offset = (reg - range->range_min) % range->window_len;
1392		int win_residue = range->window_len - win_offset;
1393
1394		/* If the write goes beyond the end of the window split it */
1395		while (val_num > win_residue) {
1396			dev_dbg(map->dev, "Writing window %d/%zu\n",
1397				win_residue, val_len / map->format.val_bytes);
1398			ret = _regmap_raw_write(map, reg, val, win_residue *
1399						map->format.val_bytes);
1400			if (ret != 0)
1401				return ret;
1402
1403			reg += win_residue;
1404			val_num -= win_residue;
1405			val += win_residue * map->format.val_bytes;
1406			val_len -= win_residue * map->format.val_bytes;
1407
1408			win_offset = (reg - range->range_min) %
1409				range->window_len;
1410			win_residue = range->window_len - win_offset;
1411		}
1412
1413		ret = _regmap_select_page(map, &reg, range, val_num);
1414		if (ret != 0)
1415			return ret;
1416	}
1417
1418	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1419	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1420				      map->write_flag_mask);
1421
1422	/*
1423	 * Essentially all I/O mechanisms will be faster with a single
1424	 * buffer to write.  Since register syncs often generate raw
1425	 * writes of single registers optimise that case.
1426	 */
1427	if (val != work_val && val_len == map->format.val_bytes) {
1428		memcpy(work_val, val, map->format.val_bytes);
1429		val = work_val;
1430	}
1431
1432	if (map->async && map->bus->async_write) {
1433		struct regmap_async *async;
1434
1435		trace_regmap_async_write_start(map, reg, val_len);
1436
1437		spin_lock_irqsave(&map->async_lock, flags);
1438		async = list_first_entry_or_null(&map->async_free,
1439						 struct regmap_async,
1440						 list);
1441		if (async)
1442			list_del(&async->list);
1443		spin_unlock_irqrestore(&map->async_lock, flags);
1444
1445		if (!async) {
1446			async = map->bus->async_alloc();
1447			if (!async)
1448				return -ENOMEM;
1449
1450			async->work_buf = kzalloc(map->format.buf_size,
1451						  GFP_KERNEL | GFP_DMA);
1452			if (!async->work_buf) {
1453				kfree(async);
1454				return -ENOMEM;
1455			}
1456		}
1457
1458		async->map = map;
1459
1460		/* If the caller supplied the value we can use it safely. */
1461		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1462		       map->format.reg_bytes + map->format.val_bytes);
1463
1464		spin_lock_irqsave(&map->async_lock, flags);
1465		list_add_tail(&async->list, &map->async_list);
1466		spin_unlock_irqrestore(&map->async_lock, flags);
1467
1468		if (val != work_val)
1469			ret = map->bus->async_write(map->bus_context,
1470						    async->work_buf,
1471						    map->format.reg_bytes +
1472						    map->format.pad_bytes,
1473						    val, val_len, async);
1474		else
1475			ret = map->bus->async_write(map->bus_context,
1476						    async->work_buf,
1477						    map->format.reg_bytes +
1478						    map->format.pad_bytes +
1479						    val_len, NULL, 0, async);
1480
1481		if (ret != 0) {
1482			dev_err(map->dev, "Failed to schedule write: %d\n",
1483				ret);
1484
1485			spin_lock_irqsave(&map->async_lock, flags);
1486			list_move(&async->list, &map->async_free);
1487			spin_unlock_irqrestore(&map->async_lock, flags);
1488		}
1489
1490		return ret;
1491	}
1492
1493	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1494
1495	/* If we're doing a single register write we can probably just
1496	 * send the work_buf directly, otherwise try to do a gather
1497	 * write.
1498	 */
1499	if (val == work_val)
1500		ret = map->bus->write(map->bus_context, map->work_buf,
1501				      map->format.reg_bytes +
1502				      map->format.pad_bytes +
1503				      val_len);
1504	else if (map->bus->gather_write)
1505		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1506					     map->format.reg_bytes +
1507					     map->format.pad_bytes,
1508					     val, val_len);
1509
1510	/* If that didn't work fall back on linearising by hand. */
1511	if (ret == -ENOTSUPP) {
1512		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1513		buf = kzalloc(len, GFP_KERNEL);
1514		if (!buf)
1515			return -ENOMEM;
1516
1517		memcpy(buf, map->work_buf, map->format.reg_bytes);
1518		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1519		       val, val_len);
1520		ret = map->bus->write(map->bus_context, buf, len);
1521
1522		kfree(buf);
1523	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1524		/* regcache_drop_region() takes lock that we already have,
1525		 * thus call map->cache_ops->drop() directly
1526		 */
1527		if (map->cache_ops && map->cache_ops->drop)
1528			map->cache_ops->drop(map, reg, reg + 1);
1529	}
1530
1531	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1532
1533	return ret;
1534}
1535
1536/**
1537 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1538 *
1539 * @map: Map to check.
1540 */
1541bool regmap_can_raw_write(struct regmap *map)
1542{
1543	return map->bus && map->bus->write && map->format.format_val &&
1544		map->format.format_reg;
1545}
1546EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1547
1548/**
1549 * regmap_get_raw_read_max - Get the maximum size we can read
1550 *
1551 * @map: Map to check.
1552 */
1553size_t regmap_get_raw_read_max(struct regmap *map)
1554{
1555	return map->max_raw_read;
1556}
1557EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1558
1559/**
1560 * regmap_get_raw_write_max - Get the maximum size we can read
1561 *
1562 * @map: Map to check.
1563 */
1564size_t regmap_get_raw_write_max(struct regmap *map)
1565{
1566	return map->max_raw_write;
1567}
1568EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1569
1570static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1571				       unsigned int val)
1572{
1573	int ret;
1574	struct regmap_range_node *range;
1575	struct regmap *map = context;
1576
1577	WARN_ON(!map->bus || !map->format.format_write);
1578
1579	range = _regmap_range_lookup(map, reg);
1580	if (range) {
1581		ret = _regmap_select_page(map, &reg, range, 1);
1582		if (ret != 0)
1583			return ret;
1584	}
1585
1586	map->format.format_write(map, reg, val);
1587
1588	trace_regmap_hw_write_start(map, reg, 1);
1589
1590	ret = map->bus->write(map->bus_context, map->work_buf,
1591			      map->format.buf_size);
1592
1593	trace_regmap_hw_write_done(map, reg, 1);
1594
1595	return ret;
1596}
1597
1598static int _regmap_bus_reg_write(void *context, unsigned int reg,
1599				 unsigned int val)
1600{
1601	struct regmap *map = context;
1602
1603	return map->bus->reg_write(map->bus_context, reg, val);
1604}
1605
1606static int _regmap_bus_raw_write(void *context, unsigned int reg,
1607				 unsigned int val)
1608{
1609	struct regmap *map = context;
1610
1611	WARN_ON(!map->bus || !map->format.format_val);
1612
1613	map->format.format_val(map->work_buf + map->format.reg_bytes
1614			       + map->format.pad_bytes, val, 0);
1615	return _regmap_raw_write(map, reg,
1616				 map->work_buf +
1617				 map->format.reg_bytes +
1618				 map->format.pad_bytes,
1619				 map->format.val_bytes);
1620}
1621
1622static inline void *_regmap_map_get_context(struct regmap *map)
1623{
1624	return (map->bus) ? map : map->bus_context;
1625}
1626
1627int _regmap_write(struct regmap *map, unsigned int reg,
1628		  unsigned int val)
1629{
1630	int ret;
1631	void *context = _regmap_map_get_context(map);
1632
1633	if (!regmap_writeable(map, reg))
1634		return -EIO;
1635
1636	if (!map->cache_bypass && !map->defer_caching) {
1637		ret = regcache_write(map, reg, val);
1638		if (ret != 0)
1639			return ret;
1640		if (map->cache_only) {
1641			map->cache_dirty = true;
1642			return 0;
1643		}
1644	}
1645
1646#ifdef LOG_DEVICE
1647	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1648		dev_info(map->dev, "%x <= %x\n", reg, val);
1649#endif
1650
1651	trace_regmap_reg_write(map, reg, val);
1652
1653	return map->reg_write(context, reg, val);
1654}
1655
1656/**
1657 * regmap_write(): Write a value to a single register
1658 *
1659 * @map: Register map to write to
1660 * @reg: Register to write to
1661 * @val: Value to be written
1662 *
1663 * A value of zero will be returned on success, a negative errno will
1664 * be returned in error cases.
1665 */
1666int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1667{
1668	int ret;
1669
1670	if (!IS_ALIGNED(reg, map->reg_stride))
1671		return -EINVAL;
1672
1673	map->lock(map->lock_arg);
1674
1675	ret = _regmap_write(map, reg, val);
1676
1677	map->unlock(map->lock_arg);
1678
1679	return ret;
1680}
1681EXPORT_SYMBOL_GPL(regmap_write);
1682
1683/**
1684 * regmap_write_async(): Write a value to a single register asynchronously
1685 *
1686 * @map: Register map to write to
1687 * @reg: Register to write to
1688 * @val: Value to be written
1689 *
1690 * A value of zero will be returned on success, a negative errno will
1691 * be returned in error cases.
1692 */
1693int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1694{
1695	int ret;
1696
1697	if (!IS_ALIGNED(reg, map->reg_stride))
1698		return -EINVAL;
1699
1700	map->lock(map->lock_arg);
1701
1702	map->async = true;
1703
1704	ret = _regmap_write(map, reg, val);
1705
1706	map->async = false;
1707
1708	map->unlock(map->lock_arg);
1709
1710	return ret;
1711}
1712EXPORT_SYMBOL_GPL(regmap_write_async);
1713
1714/**
1715 * regmap_raw_write(): Write raw values to one or more registers
1716 *
1717 * @map: Register map to write to
1718 * @reg: Initial register to write to
1719 * @val: Block of data to be written, laid out for direct transmission to the
1720 *       device
1721 * @val_len: Length of data pointed to by val.
1722 *
1723 * This function is intended to be used for things like firmware
1724 * download where a large block of data needs to be transferred to the
1725 * device.  No formatting will be done on the data provided.
1726 *
1727 * A value of zero will be returned on success, a negative errno will
1728 * be returned in error cases.
1729 */
1730int regmap_raw_write(struct regmap *map, unsigned int reg,
1731		     const void *val, size_t val_len)
1732{
1733	int ret;
1734
1735	if (!regmap_can_raw_write(map))
1736		return -EINVAL;
1737	if (val_len % map->format.val_bytes)
1738		return -EINVAL;
1739	if (map->max_raw_write && map->max_raw_write > val_len)
1740		return -E2BIG;
1741
1742	map->lock(map->lock_arg);
1743
1744	ret = _regmap_raw_write(map, reg, val, val_len);
1745
1746	map->unlock(map->lock_arg);
1747
1748	return ret;
1749}
1750EXPORT_SYMBOL_GPL(regmap_raw_write);
1751
1752/**
1753 * regmap_field_update_bits_base():
1754 *	Perform a read/modify/write cycle on the register field
1755 *	with change, async, force option
1756 *
1757 * @field: Register field to write to
1758 * @mask: Bitmask to change
1759 * @val: Value to be written
1760 * @change: Boolean indicating if a write was done
1761 * @async: Boolean indicating asynchronously
1762 * @force: Boolean indicating use force update
1763 *
1764 * A value of zero will be returned on success, a negative errno will
1765 * be returned in error cases.
1766 */
1767int regmap_field_update_bits_base(struct regmap_field *field,
1768				  unsigned int mask, unsigned int val,
1769				  bool *change, bool async, bool force)
1770{
1771	mask = (mask << field->shift) & field->mask;
1772
1773	return regmap_update_bits_base(field->regmap, field->reg,
1774				       mask, val << field->shift,
1775				       change, async, force);
1776}
1777EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1778
1779/**
1780 * regmap_fields_update_bits_base():
1781 *	Perform a read/modify/write cycle on the register field
1782 *	with change, async, force option
1783 *
1784 * @field: Register field to write to
1785 * @id: port ID
1786 * @mask: Bitmask to change
1787 * @val: Value to be written
1788 * @change: Boolean indicating if a write was done
1789 * @async: Boolean indicating asynchronously
1790 * @force: Boolean indicating use force update
1791 *
1792 * A value of zero will be returned on success, a negative errno will
1793 * be returned in error cases.
1794 */
1795int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1796				   unsigned int mask, unsigned int val,
1797				   bool *change, bool async, bool force)
1798{
1799	if (id >= field->id_size)
1800		return -EINVAL;
1801
1802	mask = (mask << field->shift) & field->mask;
1803
1804	return regmap_update_bits_base(field->regmap,
1805				       field->reg + (field->id_offset * id),
1806				       mask, val << field->shift,
1807				       change, async, force);
1808}
1809EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1810
1811/*
1812 * regmap_bulk_write(): Write multiple registers to the device
1813 *
1814 * @map: Register map to write to
1815 * @reg: First register to be write from
1816 * @val: Block of data to be written, in native register size for device
1817 * @val_count: Number of registers to write
1818 *
1819 * This function is intended to be used for writing a large block of
1820 * data to the device either in single transfer or multiple transfer.
1821 *
1822 * A value of zero will be returned on success, a negative errno will
1823 * be returned in error cases.
1824 */
1825int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1826		     size_t val_count)
1827{
1828	int ret = 0, i;
1829	size_t val_bytes = map->format.val_bytes;
1830	size_t total_size = val_bytes * val_count;
1831
 
 
1832	if (!IS_ALIGNED(reg, map->reg_stride))
1833		return -EINVAL;
1834
1835	/*
1836	 * Some devices don't support bulk write, for
1837	 * them we have a series of single write operations in the first two if
1838	 * blocks.
1839	 *
1840	 * The first if block is used for memory mapped io. It does not allow
1841	 * val_bytes of 3 for example.
1842	 * The second one is for busses that do not provide raw I/O.
1843	 * The third one is used for busses which do not have these limitations
1844	 * and can write arbitrary value lengths.
1845	 */
1846	if (!map->bus) {
1847		map->lock(map->lock_arg);
1848		for (i = 0; i < val_count; i++) {
1849			unsigned int ival;
1850
1851			switch (val_bytes) {
1852			case 1:
1853				ival = *(u8 *)(val + (i * val_bytes));
1854				break;
1855			case 2:
1856				ival = *(u16 *)(val + (i * val_bytes));
1857				break;
1858			case 4:
1859				ival = *(u32 *)(val + (i * val_bytes));
1860				break;
1861#ifdef CONFIG_64BIT
1862			case 8:
1863				ival = *(u64 *)(val + (i * val_bytes));
1864				break;
1865#endif
1866			default:
1867				ret = -EINVAL;
1868				goto out;
1869			}
1870
1871			ret = _regmap_write(map,
1872					    reg + regmap_get_offset(map, i),
1873					    ival);
1874			if (ret != 0)
1875				goto out;
1876		}
1877out:
1878		map->unlock(map->lock_arg);
1879	} else if (map->bus && !map->format.parse_inplace) {
1880		const u8 *u8 = val;
1881		const u16 *u16 = val;
1882		const u32 *u32 = val;
1883		unsigned int ival;
1884
1885		for (i = 0; i < val_count; i++) {
1886			switch (map->format.val_bytes) {
1887			case 4:
1888				ival = u32[i];
1889				break;
1890			case 2:
1891				ival = u16[i];
1892				break;
1893			case 1:
1894				ival = u8[i];
1895				break;
1896			default:
1897				return -EINVAL;
1898			}
1899
1900			ret = regmap_write(map, reg + (i * map->reg_stride),
1901					   ival);
1902			if (ret)
1903				return ret;
1904		}
1905	} else if (map->use_single_write ||
1906		   (map->max_raw_write && map->max_raw_write < total_size)) {
1907		int chunk_stride = map->reg_stride;
1908		size_t chunk_size = val_bytes;
1909		size_t chunk_count = val_count;
1910
1911		if (!map->use_single_write) {
1912			chunk_size = map->max_raw_write;
1913			if (chunk_size % val_bytes)
1914				chunk_size -= chunk_size % val_bytes;
1915			chunk_count = total_size / chunk_size;
1916			chunk_stride *= chunk_size / val_bytes;
1917		}
1918
1919		map->lock(map->lock_arg);
1920		/* Write as many bytes as possible with chunk_size */
1921		for (i = 0; i < chunk_count; i++) {
1922			ret = _regmap_raw_write(map,
1923						reg + (i * chunk_stride),
1924						val + (i * chunk_size),
1925						chunk_size);
1926			if (ret)
1927				break;
1928		}
1929
1930		/* Write remaining bytes */
1931		if (!ret && chunk_size * i < total_size) {
1932			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1933						val + (i * chunk_size),
1934						total_size - i * chunk_size);
1935		}
1936		map->unlock(map->lock_arg);
1937	} else {
1938		void *wval;
1939
1940		if (!val_count)
1941			return -EINVAL;
1942
1943		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1944		if (!wval) {
1945			dev_err(map->dev, "Error in memory allocation\n");
1946			return -ENOMEM;
1947		}
1948		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1949			map->format.parse_inplace(wval + i);
1950
1951		map->lock(map->lock_arg);
1952		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1953		map->unlock(map->lock_arg);
1954
1955		kfree(wval);
1956	}
1957	return ret;
1958}
1959EXPORT_SYMBOL_GPL(regmap_bulk_write);
1960
1961/*
1962 * _regmap_raw_multi_reg_write()
1963 *
1964 * the (register,newvalue) pairs in regs have not been formatted, but
1965 * they are all in the same page and have been changed to being page
1966 * relative. The page register has been written if that was necessary.
1967 */
1968static int _regmap_raw_multi_reg_write(struct regmap *map,
1969				       const struct reg_sequence *regs,
1970				       size_t num_regs)
1971{
1972	int ret;
1973	void *buf;
1974	int i;
1975	u8 *u8;
1976	size_t val_bytes = map->format.val_bytes;
1977	size_t reg_bytes = map->format.reg_bytes;
1978	size_t pad_bytes = map->format.pad_bytes;
1979	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1980	size_t len = pair_size * num_regs;
1981
1982	if (!len)
1983		return -EINVAL;
1984
1985	buf = kzalloc(len, GFP_KERNEL);
1986	if (!buf)
1987		return -ENOMEM;
1988
1989	/* We have to linearise by hand. */
1990
1991	u8 = buf;
1992
1993	for (i = 0; i < num_regs; i++) {
1994		unsigned int reg = regs[i].reg;
1995		unsigned int val = regs[i].def;
1996		trace_regmap_hw_write_start(map, reg, 1);
1997		map->format.format_reg(u8, reg, map->reg_shift);
1998		u8 += reg_bytes + pad_bytes;
1999		map->format.format_val(u8, val, 0);
2000		u8 += val_bytes;
2001	}
2002	u8 = buf;
2003	*u8 |= map->write_flag_mask;
2004
2005	ret = map->bus->write(map->bus_context, buf, len);
2006
2007	kfree(buf);
2008
2009	for (i = 0; i < num_regs; i++) {
2010		int reg = regs[i].reg;
2011		trace_regmap_hw_write_done(map, reg, 1);
2012	}
2013	return ret;
2014}
2015
2016static unsigned int _regmap_register_page(struct regmap *map,
2017					  unsigned int reg,
2018					  struct regmap_range_node *range)
2019{
2020	unsigned int win_page = (reg - range->range_min) / range->window_len;
2021
2022	return win_page;
2023}
2024
2025static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2026					       struct reg_sequence *regs,
2027					       size_t num_regs)
2028{
2029	int ret;
2030	int i, n;
2031	struct reg_sequence *base;
2032	unsigned int this_page = 0;
2033	unsigned int page_change = 0;
2034	/*
2035	 * the set of registers are not neccessarily in order, but
2036	 * since the order of write must be preserved this algorithm
2037	 * chops the set each time the page changes. This also applies
2038	 * if there is a delay required at any point in the sequence.
2039	 */
2040	base = regs;
2041	for (i = 0, n = 0; i < num_regs; i++, n++) {
2042		unsigned int reg = regs[i].reg;
2043		struct regmap_range_node *range;
2044
2045		range = _regmap_range_lookup(map, reg);
2046		if (range) {
2047			unsigned int win_page = _regmap_register_page(map, reg,
2048								      range);
2049
2050			if (i == 0)
2051				this_page = win_page;
2052			if (win_page != this_page) {
2053				this_page = win_page;
2054				page_change = 1;
2055			}
2056		}
2057
2058		/* If we have both a page change and a delay make sure to
2059		 * write the regs and apply the delay before we change the
2060		 * page.
2061		 */
2062
2063		if (page_change || regs[i].delay_us) {
2064
2065				/* For situations where the first write requires
2066				 * a delay we need to make sure we don't call
2067				 * raw_multi_reg_write with n=0
2068				 * This can't occur with page breaks as we
2069				 * never write on the first iteration
2070				 */
2071				if (regs[i].delay_us && i == 0)
2072					n = 1;
2073
2074				ret = _regmap_raw_multi_reg_write(map, base, n);
2075				if (ret != 0)
2076					return ret;
2077
2078				if (regs[i].delay_us)
2079					udelay(regs[i].delay_us);
2080
2081				base += n;
2082				n = 0;
2083
2084				if (page_change) {
2085					ret = _regmap_select_page(map,
2086								  &base[n].reg,
2087								  range, 1);
2088					if (ret != 0)
2089						return ret;
2090
2091					page_change = 0;
2092				}
2093
2094		}
2095
2096	}
2097	if (n > 0)
2098		return _regmap_raw_multi_reg_write(map, base, n);
2099	return 0;
2100}
2101
2102static int _regmap_multi_reg_write(struct regmap *map,
2103				   const struct reg_sequence *regs,
2104				   size_t num_regs)
2105{
2106	int i;
2107	int ret;
2108
2109	if (!map->can_multi_write) {
2110		for (i = 0; i < num_regs; i++) {
2111			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2112			if (ret != 0)
2113				return ret;
2114
2115			if (regs[i].delay_us)
2116				udelay(regs[i].delay_us);
2117		}
2118		return 0;
2119	}
2120
2121	if (!map->format.parse_inplace)
2122		return -EINVAL;
2123
2124	if (map->writeable_reg)
2125		for (i = 0; i < num_regs; i++) {
2126			int reg = regs[i].reg;
2127			if (!map->writeable_reg(map->dev, reg))
2128				return -EINVAL;
2129			if (!IS_ALIGNED(reg, map->reg_stride))
2130				return -EINVAL;
2131		}
2132
2133	if (!map->cache_bypass) {
2134		for (i = 0; i < num_regs; i++) {
2135			unsigned int val = regs[i].def;
2136			unsigned int reg = regs[i].reg;
2137			ret = regcache_write(map, reg, val);
2138			if (ret) {
2139				dev_err(map->dev,
2140				"Error in caching of register: %x ret: %d\n",
2141								reg, ret);
2142				return ret;
2143			}
2144		}
2145		if (map->cache_only) {
2146			map->cache_dirty = true;
2147			return 0;
2148		}
2149	}
2150
2151	WARN_ON(!map->bus);
2152
2153	for (i = 0; i < num_regs; i++) {
2154		unsigned int reg = regs[i].reg;
2155		struct regmap_range_node *range;
2156
2157		/* Coalesce all the writes between a page break or a delay
2158		 * in a sequence
2159		 */
2160		range = _regmap_range_lookup(map, reg);
2161		if (range || regs[i].delay_us) {
2162			size_t len = sizeof(struct reg_sequence)*num_regs;
2163			struct reg_sequence *base = kmemdup(regs, len,
2164							   GFP_KERNEL);
2165			if (!base)
2166				return -ENOMEM;
2167			ret = _regmap_range_multi_paged_reg_write(map, base,
2168								  num_regs);
2169			kfree(base);
2170
2171			return ret;
2172		}
2173	}
2174	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2175}
2176
2177/*
2178 * regmap_multi_reg_write(): Write multiple registers to the device
2179 *
2180 * where the set of register,value pairs are supplied in any order,
2181 * possibly not all in a single range.
2182 *
2183 * @map: Register map to write to
2184 * @regs: Array of structures containing register,value to be written
2185 * @num_regs: Number of registers to write
2186 *
2187 * The 'normal' block write mode will send ultimately send data on the
2188 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2189 * addressed. However, this alternative block multi write mode will send
2190 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2191 * must of course support the mode.
2192 *
2193 * A value of zero will be returned on success, a negative errno will be
2194 * returned in error cases.
2195 */
2196int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2197			   int num_regs)
2198{
2199	int ret;
2200
2201	map->lock(map->lock_arg);
2202
2203	ret = _regmap_multi_reg_write(map, regs, num_regs);
2204
2205	map->unlock(map->lock_arg);
2206
2207	return ret;
2208}
2209EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2210
2211/*
2212 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2213 *                                    device but not the cache
2214 *
2215 * where the set of register are supplied in any order
2216 *
2217 * @map: Register map to write to
2218 * @regs: Array of structures containing register,value to be written
2219 * @num_regs: Number of registers to write
2220 *
2221 * This function is intended to be used for writing a large block of data
2222 * atomically to the device in single transfer for those I2C client devices
2223 * that implement this alternative block write mode.
2224 *
2225 * A value of zero will be returned on success, a negative errno will
2226 * be returned in error cases.
2227 */
2228int regmap_multi_reg_write_bypassed(struct regmap *map,
2229				    const struct reg_sequence *regs,
2230				    int num_regs)
2231{
2232	int ret;
2233	bool bypass;
2234
2235	map->lock(map->lock_arg);
2236
2237	bypass = map->cache_bypass;
2238	map->cache_bypass = true;
2239
2240	ret = _regmap_multi_reg_write(map, regs, num_regs);
2241
2242	map->cache_bypass = bypass;
2243
2244	map->unlock(map->lock_arg);
2245
2246	return ret;
2247}
2248EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2249
2250/**
2251 * regmap_raw_write_async(): Write raw values to one or more registers
2252 *                           asynchronously
2253 *
2254 * @map: Register map to write to
2255 * @reg: Initial register to write to
2256 * @val: Block of data to be written, laid out for direct transmission to the
2257 *       device.  Must be valid until regmap_async_complete() is called.
2258 * @val_len: Length of data pointed to by val.
2259 *
2260 * This function is intended to be used for things like firmware
2261 * download where a large block of data needs to be transferred to the
2262 * device.  No formatting will be done on the data provided.
2263 *
2264 * If supported by the underlying bus the write will be scheduled
2265 * asynchronously, helping maximise I/O speed on higher speed buses
2266 * like SPI.  regmap_async_complete() can be called to ensure that all
2267 * asynchrnous writes have been completed.
2268 *
2269 * A value of zero will be returned on success, a negative errno will
2270 * be returned in error cases.
2271 */
2272int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2273			   const void *val, size_t val_len)
2274{
2275	int ret;
2276
2277	if (val_len % map->format.val_bytes)
2278		return -EINVAL;
2279	if (!IS_ALIGNED(reg, map->reg_stride))
2280		return -EINVAL;
2281
2282	map->lock(map->lock_arg);
2283
2284	map->async = true;
2285
2286	ret = _regmap_raw_write(map, reg, val, val_len);
2287
2288	map->async = false;
2289
2290	map->unlock(map->lock_arg);
2291
2292	return ret;
2293}
2294EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2295
2296static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2297			    unsigned int val_len)
2298{
2299	struct regmap_range_node *range;
 
2300	int ret;
2301
2302	WARN_ON(!map->bus);
2303
2304	if (!map->bus || !map->bus->read)
2305		return -EINVAL;
2306
2307	range = _regmap_range_lookup(map, reg);
2308	if (range) {
2309		ret = _regmap_select_page(map, &reg, range,
2310					  val_len / map->format.val_bytes);
2311		if (ret != 0)
2312			return ret;
2313	}
2314
2315	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2316	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2317				      map->read_flag_mask);
 
 
 
 
 
 
 
2318	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2319
2320	ret = map->bus->read(map->bus_context, map->work_buf,
2321			     map->format.reg_bytes + map->format.pad_bytes,
2322			     val, val_len);
2323
2324	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2325
2326	return ret;
2327}
2328
2329static int _regmap_bus_reg_read(void *context, unsigned int reg,
2330				unsigned int *val)
2331{
2332	struct regmap *map = context;
2333
2334	return map->bus->reg_read(map->bus_context, reg, val);
2335}
2336
2337static int _regmap_bus_read(void *context, unsigned int reg,
2338			    unsigned int *val)
2339{
2340	int ret;
2341	struct regmap *map = context;
2342
2343	if (!map->format.parse_val)
2344		return -EINVAL;
2345
2346	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2347	if (ret == 0)
2348		*val = map->format.parse_val(map->work_buf);
2349
2350	return ret;
2351}
2352
2353static int _regmap_read(struct regmap *map, unsigned int reg,
2354			unsigned int *val)
2355{
2356	int ret;
2357	void *context = _regmap_map_get_context(map);
2358
2359	if (!map->cache_bypass) {
2360		ret = regcache_read(map, reg, val);
2361		if (ret == 0)
2362			return 0;
2363	}
2364
2365	if (map->cache_only)
2366		return -EBUSY;
2367
2368	if (!regmap_readable(map, reg))
2369		return -EIO;
2370
2371	ret = map->reg_read(context, reg, val);
2372	if (ret == 0) {
2373#ifdef LOG_DEVICE
2374		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2375			dev_info(map->dev, "%x => %x\n", reg, *val);
2376#endif
2377
2378		trace_regmap_reg_read(map, reg, *val);
2379
2380		if (!map->cache_bypass)
2381			regcache_write(map, reg, *val);
2382	}
2383
2384	return ret;
2385}
2386
2387/**
2388 * regmap_read(): Read a value from a single register
2389 *
2390 * @map: Register map to read from
2391 * @reg: Register to be read from
2392 * @val: Pointer to store read value
2393 *
2394 * A value of zero will be returned on success, a negative errno will
2395 * be returned in error cases.
2396 */
2397int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2398{
2399	int ret;
2400
2401	if (!IS_ALIGNED(reg, map->reg_stride))
2402		return -EINVAL;
2403
2404	map->lock(map->lock_arg);
2405
2406	ret = _regmap_read(map, reg, val);
2407
2408	map->unlock(map->lock_arg);
2409
2410	return ret;
2411}
2412EXPORT_SYMBOL_GPL(regmap_read);
2413
2414/**
2415 * regmap_raw_read(): Read raw data from the device
2416 *
2417 * @map: Register map to read from
2418 * @reg: First register to be read from
2419 * @val: Pointer to store read value
2420 * @val_len: Size of data to read
2421 *
2422 * A value of zero will be returned on success, a negative errno will
2423 * be returned in error cases.
2424 */
2425int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2426		    size_t val_len)
2427{
2428	size_t val_bytes = map->format.val_bytes;
2429	size_t val_count = val_len / val_bytes;
2430	unsigned int v;
2431	int ret, i;
2432
2433	if (!map->bus)
2434		return -EINVAL;
2435	if (val_len % map->format.val_bytes)
2436		return -EINVAL;
2437	if (!IS_ALIGNED(reg, map->reg_stride))
2438		return -EINVAL;
2439	if (val_count == 0)
2440		return -EINVAL;
2441
2442	map->lock(map->lock_arg);
2443
2444	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2445	    map->cache_type == REGCACHE_NONE) {
2446		if (!map->bus->read) {
2447			ret = -ENOTSUPP;
2448			goto out;
2449		}
2450		if (map->max_raw_read && map->max_raw_read < val_len) {
2451			ret = -E2BIG;
2452			goto out;
2453		}
2454
2455		/* Physical block read if there's no cache involved */
2456		ret = _regmap_raw_read(map, reg, val, val_len);
2457
2458	} else {
2459		/* Otherwise go word by word for the cache; should be low
2460		 * cost as we expect to hit the cache.
2461		 */
2462		for (i = 0; i < val_count; i++) {
2463			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2464					   &v);
2465			if (ret != 0)
2466				goto out;
2467
2468			map->format.format_val(val + (i * val_bytes), v, 0);
2469		}
2470	}
2471
2472 out:
2473	map->unlock(map->lock_arg);
2474
2475	return ret;
2476}
2477EXPORT_SYMBOL_GPL(regmap_raw_read);
2478
2479/**
2480 * regmap_field_read(): Read a value to a single register field
2481 *
2482 * @field: Register field to read from
2483 * @val: Pointer to store read value
2484 *
2485 * A value of zero will be returned on success, a negative errno will
2486 * be returned in error cases.
2487 */
2488int regmap_field_read(struct regmap_field *field, unsigned int *val)
2489{
2490	int ret;
2491	unsigned int reg_val;
2492	ret = regmap_read(field->regmap, field->reg, &reg_val);
2493	if (ret != 0)
2494		return ret;
2495
2496	reg_val &= field->mask;
2497	reg_val >>= field->shift;
2498	*val = reg_val;
2499
2500	return ret;
2501}
2502EXPORT_SYMBOL_GPL(regmap_field_read);
2503
2504/**
2505 * regmap_fields_read(): Read a value to a single register field with port ID
2506 *
2507 * @field: Register field to read from
2508 * @id: port ID
2509 * @val: Pointer to store read value
2510 *
2511 * A value of zero will be returned on success, a negative errno will
2512 * be returned in error cases.
2513 */
2514int regmap_fields_read(struct regmap_field *field, unsigned int id,
2515		       unsigned int *val)
2516{
2517	int ret;
2518	unsigned int reg_val;
2519
2520	if (id >= field->id_size)
2521		return -EINVAL;
2522
2523	ret = regmap_read(field->regmap,
2524			  field->reg + (field->id_offset * id),
2525			  &reg_val);
2526	if (ret != 0)
2527		return ret;
2528
2529	reg_val &= field->mask;
2530	reg_val >>= field->shift;
2531	*val = reg_val;
2532
2533	return ret;
2534}
2535EXPORT_SYMBOL_GPL(regmap_fields_read);
2536
2537/**
2538 * regmap_bulk_read(): Read multiple registers from the device
2539 *
2540 * @map: Register map to read from
2541 * @reg: First register to be read from
2542 * @val: Pointer to store read value, in native register size for device
2543 * @val_count: Number of registers to read
2544 *
2545 * A value of zero will be returned on success, a negative errno will
2546 * be returned in error cases.
2547 */
2548int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2549		     size_t val_count)
2550{
2551	int ret, i;
2552	size_t val_bytes = map->format.val_bytes;
2553	bool vol = regmap_volatile_range(map, reg, val_count);
2554
2555	if (!IS_ALIGNED(reg, map->reg_stride))
2556		return -EINVAL;
2557
2558	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2559		/*
2560		 * Some devices does not support bulk read, for
2561		 * them we have a series of single read operations.
2562		 */
2563		size_t total_size = val_bytes * val_count;
2564
2565		if (!map->use_single_read &&
2566		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2567			ret = regmap_raw_read(map, reg, val,
2568					      val_bytes * val_count);
2569			if (ret != 0)
2570				return ret;
2571		} else {
2572			/*
2573			 * Some devices do not support bulk read or do not
2574			 * support large bulk reads, for them we have a series
2575			 * of read operations.
2576			 */
2577			int chunk_stride = map->reg_stride;
2578			size_t chunk_size = val_bytes;
2579			size_t chunk_count = val_count;
2580
2581			if (!map->use_single_read) {
2582				chunk_size = map->max_raw_read;
2583				if (chunk_size % val_bytes)
2584					chunk_size -= chunk_size % val_bytes;
2585				chunk_count = total_size / chunk_size;
2586				chunk_stride *= chunk_size / val_bytes;
2587			}
2588
2589			/* Read bytes that fit into a multiple of chunk_size */
2590			for (i = 0; i < chunk_count; i++) {
2591				ret = regmap_raw_read(map,
2592						      reg + (i * chunk_stride),
2593						      val + (i * chunk_size),
2594						      chunk_size);
2595				if (ret != 0)
2596					return ret;
2597			}
2598
2599			/* Read remaining bytes */
2600			if (chunk_size * i < total_size) {
2601				ret = regmap_raw_read(map,
2602						      reg + (i * chunk_stride),
2603						      val + (i * chunk_size),
2604						      total_size - i * chunk_size);
2605				if (ret != 0)
2606					return ret;
2607			}
2608		}
2609
2610		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2611			map->format.parse_inplace(val + i);
2612	} else {
2613		for (i = 0; i < val_count; i++) {
2614			unsigned int ival;
2615			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2616					  &ival);
2617			if (ret != 0)
2618				return ret;
2619
2620			if (map->format.format_val) {
2621				map->format.format_val(val + (i * val_bytes), ival, 0);
2622			} else {
2623				/* Devices providing read and write
2624				 * operations can use the bulk I/O
2625				 * functions if they define a val_bytes,
2626				 * we assume that the values are native
2627				 * endian.
2628				 */
2629#ifdef CONFIG_64BIT
2630				u64 *u64 = val;
2631#endif
2632				u32 *u32 = val;
2633				u16 *u16 = val;
2634				u8 *u8 = val;
2635
2636				switch (map->format.val_bytes) {
2637#ifdef CONFIG_64BIT
2638				case 8:
2639					u64[i] = ival;
2640					break;
2641#endif
2642				case 4:
2643					u32[i] = ival;
2644					break;
2645				case 2:
2646					u16[i] = ival;
2647					break;
2648				case 1:
2649					u8[i] = ival;
2650					break;
2651				default:
2652					return -EINVAL;
2653				}
2654			}
2655		}
2656	}
2657
2658	return 0;
2659}
2660EXPORT_SYMBOL_GPL(regmap_bulk_read);
2661
2662static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2663			       unsigned int mask, unsigned int val,
2664			       bool *change, bool force_write)
2665{
2666	int ret;
2667	unsigned int tmp, orig;
2668
2669	if (change)
2670		*change = false;
2671
2672	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2673		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2674		if (ret == 0 && change)
2675			*change = true;
2676	} else {
2677		ret = _regmap_read(map, reg, &orig);
2678		if (ret != 0)
2679			return ret;
2680
2681		tmp = orig & ~mask;
2682		tmp |= val & mask;
2683
2684		if (force_write || (tmp != orig)) {
2685			ret = _regmap_write(map, reg, tmp);
2686			if (ret == 0 && change)
2687				*change = true;
2688		}
2689	}
2690
2691	return ret;
2692}
2693
2694/**
2695 * regmap_update_bits_base:
2696 *	Perform a read/modify/write cycle on the
2697 *	register map with change, async, force option
2698 *
2699 * @map: Register map to update
2700 * @reg: Register to update
2701 * @mask: Bitmask to change
2702 * @val: New value for bitmask
2703 * @change: Boolean indicating if a write was done
2704 * @async: Boolean indicating asynchronously
2705 * @force: Boolean indicating use force update
2706 *
2707 * if async was true,
2708 * With most buses the read must be done synchronously so this is most
2709 * useful for devices with a cache which do not need to interact with
2710 * the hardware to determine the current register value.
2711 *
2712 * Returns zero for success, a negative number on error.
2713 */
2714int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2715			    unsigned int mask, unsigned int val,
2716			    bool *change, bool async, bool force)
2717{
2718	int ret;
2719
2720	map->lock(map->lock_arg);
2721
2722	map->async = async;
2723
2724	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2725
2726	map->async = false;
2727
2728	map->unlock(map->lock_arg);
2729
2730	return ret;
2731}
2732EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2733
2734void regmap_async_complete_cb(struct regmap_async *async, int ret)
2735{
2736	struct regmap *map = async->map;
2737	bool wake;
2738
2739	trace_regmap_async_io_complete(map);
2740
2741	spin_lock(&map->async_lock);
2742	list_move(&async->list, &map->async_free);
2743	wake = list_empty(&map->async_list);
2744
2745	if (ret != 0)
2746		map->async_ret = ret;
2747
2748	spin_unlock(&map->async_lock);
2749
2750	if (wake)
2751		wake_up(&map->async_waitq);
2752}
2753EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2754
2755static int regmap_async_is_done(struct regmap *map)
2756{
2757	unsigned long flags;
2758	int ret;
2759
2760	spin_lock_irqsave(&map->async_lock, flags);
2761	ret = list_empty(&map->async_list);
2762	spin_unlock_irqrestore(&map->async_lock, flags);
2763
2764	return ret;
2765}
2766
2767/**
2768 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2769 *
2770 * @map: Map to operate on.
2771 *
2772 * Blocks until any pending asynchronous I/O has completed.  Returns
2773 * an error code for any failed I/O operations.
2774 */
2775int regmap_async_complete(struct regmap *map)
2776{
2777	unsigned long flags;
2778	int ret;
2779
2780	/* Nothing to do with no async support */
2781	if (!map->bus || !map->bus->async_write)
2782		return 0;
2783
2784	trace_regmap_async_complete_start(map);
2785
2786	wait_event(map->async_waitq, regmap_async_is_done(map));
2787
2788	spin_lock_irqsave(&map->async_lock, flags);
2789	ret = map->async_ret;
2790	map->async_ret = 0;
2791	spin_unlock_irqrestore(&map->async_lock, flags);
2792
2793	trace_regmap_async_complete_done(map);
2794
2795	return ret;
2796}
2797EXPORT_SYMBOL_GPL(regmap_async_complete);
2798
2799/**
2800 * regmap_register_patch: Register and apply register updates to be applied
2801 *                        on device initialistion
2802 *
2803 * @map: Register map to apply updates to.
2804 * @regs: Values to update.
2805 * @num_regs: Number of entries in regs.
2806 *
2807 * Register a set of register updates to be applied to the device
2808 * whenever the device registers are synchronised with the cache and
2809 * apply them immediately.  Typically this is used to apply
2810 * corrections to be applied to the device defaults on startup, such
2811 * as the updates some vendors provide to undocumented registers.
2812 *
2813 * The caller must ensure that this function cannot be called
2814 * concurrently with either itself or regcache_sync().
2815 */
2816int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2817			  int num_regs)
2818{
2819	struct reg_sequence *p;
2820	int ret;
2821	bool bypass;
2822
2823	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2824	    num_regs))
2825		return 0;
2826
2827	p = krealloc(map->patch,
2828		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2829		     GFP_KERNEL);
2830	if (p) {
2831		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2832		map->patch = p;
2833		map->patch_regs += num_regs;
2834	} else {
2835		return -ENOMEM;
2836	}
2837
2838	map->lock(map->lock_arg);
2839
2840	bypass = map->cache_bypass;
2841
2842	map->cache_bypass = true;
2843	map->async = true;
2844
2845	ret = _regmap_multi_reg_write(map, regs, num_regs);
2846
2847	map->async = false;
2848	map->cache_bypass = bypass;
2849
2850	map->unlock(map->lock_arg);
2851
2852	regmap_async_complete(map);
2853
2854	return ret;
2855}
2856EXPORT_SYMBOL_GPL(regmap_register_patch);
2857
2858/*
2859 * regmap_get_val_bytes(): Report the size of a register value
2860 *
2861 * Report the size of a register value, mainly intended to for use by
2862 * generic infrastructure built on top of regmap.
2863 */
2864int regmap_get_val_bytes(struct regmap *map)
2865{
2866	if (map->format.format_write)
2867		return -EINVAL;
2868
2869	return map->format.val_bytes;
2870}
2871EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2872
2873/**
2874 * regmap_get_max_register(): Report the max register value
2875 *
2876 * Report the max register value, mainly intended to for use by
2877 * generic infrastructure built on top of regmap.
2878 */
2879int regmap_get_max_register(struct regmap *map)
2880{
2881	return map->max_register ? map->max_register : -EINVAL;
2882}
2883EXPORT_SYMBOL_GPL(regmap_get_max_register);
2884
2885/**
2886 * regmap_get_reg_stride(): Report the register address stride
2887 *
2888 * Report the register address stride, mainly intended to for use by
2889 * generic infrastructure built on top of regmap.
2890 */
2891int regmap_get_reg_stride(struct regmap *map)
2892{
2893	return map->reg_stride;
2894}
2895EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2896
2897int regmap_parse_val(struct regmap *map, const void *buf,
2898			unsigned int *val)
2899{
2900	if (!map->format.parse_val)
2901		return -EINVAL;
2902
2903	*val = map->format.parse_val(buf);
2904
2905	return 0;
2906}
2907EXPORT_SYMBOL_GPL(regmap_parse_val);
2908
2909static int __init regmap_initcall(void)
2910{
2911	regmap_debugfs_initcall();
2912
2913	return 0;
2914}
2915postcore_initcall(regmap_initcall);