Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/slab.h>
  13#include <linux/backing-dev.h>
  14#include <linux/mm.h>
  15#include <linux/vmacache.h>
  16#include <linux/shm.h>
  17#include <linux/mman.h>
  18#include <linux/pagemap.h>
  19#include <linux/swap.h>
  20#include <linux/syscalls.h>
  21#include <linux/capability.h>
  22#include <linux/init.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/hugetlb.h>
 
  28#include <linux/profile.h>
  29#include <linux/export.h>
  30#include <linux/mount.h>
  31#include <linux/mempolicy.h>
  32#include <linux/rmap.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/mmdebug.h>
  35#include <linux/perf_event.h>
  36#include <linux/audit.h>
  37#include <linux/khugepaged.h>
  38#include <linux/uprobes.h>
  39#include <linux/rbtree_augmented.h>
  40#include <linux/notifier.h>
  41#include <linux/memory.h>
  42#include <linux/printk.h>
  43#include <linux/userfaultfd_k.h>
  44#include <linux/moduleparam.h>
  45#include <linux/pkeys.h>
  46
  47#include <asm/uaccess.h>
  48#include <asm/cacheflush.h>
  49#include <asm/tlb.h>
  50#include <asm/mmu_context.h>
  51
  52#include "internal.h"
  53
  54#ifndef arch_mmap_check
  55#define arch_mmap_check(addr, len, flags)	(0)
  56#endif
  57
  58#ifndef arch_rebalance_pgtables
  59#define arch_rebalance_pgtables(addr, len)		(addr)
  60#endif
  61
  62#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  63const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  64const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  65int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  66#endif
  67#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  68const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  69const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  70int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  71#endif
  72
  73static bool ignore_rlimit_data = true;
  74core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  75
  76static void unmap_region(struct mm_struct *mm,
  77		struct vm_area_struct *vma, struct vm_area_struct *prev,
  78		unsigned long start, unsigned long end);
  79
  80/* description of effects of mapping type and prot in current implementation.
  81 * this is due to the limited x86 page protection hardware.  The expected
  82 * behavior is in parens:
  83 *
  84 * map_type	prot
  85 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  86 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  87 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  88 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  89 *
  90 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  91 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  92 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  93 *
 
 
 
 
 
  94 */
  95pgprot_t protection_map[16] = {
  96	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  97	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  98};
  99
 100pgprot_t vm_get_page_prot(unsigned long vm_flags)
 101{
 102	return __pgprot(pgprot_val(protection_map[vm_flags &
 103				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 104			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 105}
 106EXPORT_SYMBOL(vm_get_page_prot);
 107
 108static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 109{
 110	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 111}
 112
 113/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 114void vma_set_page_prot(struct vm_area_struct *vma)
 115{
 116	unsigned long vm_flags = vma->vm_flags;
 
 117
 118	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 119	if (vma_wants_writenotify(vma)) {
 120		vm_flags &= ~VM_SHARED;
 121		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
 122						     vm_flags);
 123	}
 
 
 124}
 125
 126/*
 127 * Requires inode->i_mapping->i_mmap_rwsem
 128 */
 129static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 130		struct file *file, struct address_space *mapping)
 131{
 132	if (vma->vm_flags & VM_DENYWRITE)
 133		atomic_inc(&file_inode(file)->i_writecount);
 134	if (vma->vm_flags & VM_SHARED)
 135		mapping_unmap_writable(mapping);
 136
 137	flush_dcache_mmap_lock(mapping);
 138	vma_interval_tree_remove(vma, &mapping->i_mmap);
 139	flush_dcache_mmap_unlock(mapping);
 140}
 141
 142/*
 143 * Unlink a file-based vm structure from its interval tree, to hide
 144 * vma from rmap and vmtruncate before freeing its page tables.
 145 */
 146void unlink_file_vma(struct vm_area_struct *vma)
 147{
 148	struct file *file = vma->vm_file;
 149
 150	if (file) {
 151		struct address_space *mapping = file->f_mapping;
 152		i_mmap_lock_write(mapping);
 153		__remove_shared_vm_struct(vma, file, mapping);
 154		i_mmap_unlock_write(mapping);
 155	}
 156}
 157
 158/*
 159 * Close a vm structure and free it, returning the next.
 160 */
 161static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 162{
 163	struct vm_area_struct *next = vma->vm_next;
 164
 165	might_sleep();
 166	if (vma->vm_ops && vma->vm_ops->close)
 167		vma->vm_ops->close(vma);
 168	if (vma->vm_file)
 169		fput(vma->vm_file);
 170	mpol_put(vma_policy(vma));
 171	kmem_cache_free(vm_area_cachep, vma);
 172	return next;
 173}
 174
 175static unsigned long do_brk(unsigned long addr, unsigned long len);
 176
 177SYSCALL_DEFINE1(brk, unsigned long, brk)
 178{
 179	unsigned long retval;
 180	unsigned long newbrk, oldbrk;
 181	struct mm_struct *mm = current->mm;
 182	unsigned long min_brk;
 183	bool populate;
 184
 185	down_write(&mm->mmap_sem);
 
 186
 187#ifdef CONFIG_COMPAT_BRK
 188	/*
 189	 * CONFIG_COMPAT_BRK can still be overridden by setting
 190	 * randomize_va_space to 2, which will still cause mm->start_brk
 191	 * to be arbitrarily shifted
 192	 */
 193	if (current->brk_randomized)
 194		min_brk = mm->start_brk;
 195	else
 196		min_brk = mm->end_data;
 197#else
 198	min_brk = mm->start_brk;
 199#endif
 200	if (brk < min_brk)
 201		goto out;
 202
 203	/*
 204	 * Check against rlimit here. If this check is done later after the test
 205	 * of oldbrk with newbrk then it can escape the test and let the data
 206	 * segment grow beyond its set limit the in case where the limit is
 207	 * not page aligned -Ram Gupta
 208	 */
 209	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 210			      mm->end_data, mm->start_data))
 211		goto out;
 212
 213	newbrk = PAGE_ALIGN(brk);
 214	oldbrk = PAGE_ALIGN(mm->brk);
 215	if (oldbrk == newbrk)
 216		goto set_brk;
 217
 218	/* Always allow shrinking brk. */
 219	if (brk <= mm->brk) {
 220		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 221			goto set_brk;
 222		goto out;
 223	}
 224
 225	/* Check against existing mmap mappings. */
 226	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 227		goto out;
 228
 229	/* Ok, looks good - let it rip. */
 230	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 231		goto out;
 232
 233set_brk:
 234	mm->brk = brk;
 235	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 236	up_write(&mm->mmap_sem);
 237	if (populate)
 238		mm_populate(oldbrk, newbrk - oldbrk);
 239	return brk;
 240
 241out:
 242	retval = mm->brk;
 243	up_write(&mm->mmap_sem);
 244	return retval;
 245}
 246
 247static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 248{
 249	unsigned long max, subtree_gap;
 250	max = vma->vm_start;
 251	if (vma->vm_prev)
 252		max -= vma->vm_prev->vm_end;
 253	if (vma->vm_rb.rb_left) {
 254		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 255				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 256		if (subtree_gap > max)
 257			max = subtree_gap;
 258	}
 259	if (vma->vm_rb.rb_right) {
 260		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 261				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 262		if (subtree_gap > max)
 263			max = subtree_gap;
 264	}
 265	return max;
 266}
 267
 268#ifdef CONFIG_DEBUG_VM_RB
 269static int browse_rb(struct mm_struct *mm)
 270{
 271	struct rb_root *root = &mm->mm_rb;
 272	int i = 0, j, bug = 0;
 273	struct rb_node *nd, *pn = NULL;
 274	unsigned long prev = 0, pend = 0;
 275
 276	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 277		struct vm_area_struct *vma;
 278		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 279		if (vma->vm_start < prev) {
 280			pr_emerg("vm_start %lx < prev %lx\n",
 281				  vma->vm_start, prev);
 282			bug = 1;
 283		}
 284		if (vma->vm_start < pend) {
 285			pr_emerg("vm_start %lx < pend %lx\n",
 286				  vma->vm_start, pend);
 287			bug = 1;
 288		}
 289		if (vma->vm_start > vma->vm_end) {
 290			pr_emerg("vm_start %lx > vm_end %lx\n",
 291				  vma->vm_start, vma->vm_end);
 292			bug = 1;
 293		}
 294		spin_lock(&mm->page_table_lock);
 295		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 296			pr_emerg("free gap %lx, correct %lx\n",
 297			       vma->rb_subtree_gap,
 298			       vma_compute_subtree_gap(vma));
 299			bug = 1;
 300		}
 301		spin_unlock(&mm->page_table_lock);
 302		i++;
 303		pn = nd;
 304		prev = vma->vm_start;
 305		pend = vma->vm_end;
 306	}
 307	j = 0;
 308	for (nd = pn; nd; nd = rb_prev(nd))
 309		j++;
 310	if (i != j) {
 311		pr_emerg("backwards %d, forwards %d\n", j, i);
 312		bug = 1;
 313	}
 314	return bug ? -1 : i;
 315}
 316
 317static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 318{
 319	struct rb_node *nd;
 320
 321	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 322		struct vm_area_struct *vma;
 323		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 324		VM_BUG_ON_VMA(vma != ignore &&
 325			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 326			vma);
 327	}
 328}
 329
 330static void validate_mm(struct mm_struct *mm)
 331{
 332	int bug = 0;
 333	int i = 0;
 334	unsigned long highest_address = 0;
 335	struct vm_area_struct *vma = mm->mmap;
 336
 337	while (vma) {
 338		struct anon_vma *anon_vma = vma->anon_vma;
 339		struct anon_vma_chain *avc;
 340
 341		if (anon_vma) {
 342			anon_vma_lock_read(anon_vma);
 343			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 344				anon_vma_interval_tree_verify(avc);
 345			anon_vma_unlock_read(anon_vma);
 346		}
 347
 348		highest_address = vma->vm_end;
 349		vma = vma->vm_next;
 350		i++;
 351	}
 352	if (i != mm->map_count) {
 353		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 354		bug = 1;
 355	}
 356	if (highest_address != mm->highest_vm_end) {
 357		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 358			  mm->highest_vm_end, highest_address);
 359		bug = 1;
 360	}
 361	i = browse_rb(mm);
 362	if (i != mm->map_count) {
 363		if (i != -1)
 364			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 365		bug = 1;
 366	}
 367	VM_BUG_ON_MM(bug, mm);
 368}
 369#else
 370#define validate_mm_rb(root, ignore) do { } while (0)
 371#define validate_mm(mm) do { } while (0)
 372#endif
 373
 374RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 375		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 376
 377/*
 378 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 379 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 380 * in the rbtree.
 381 */
 382static void vma_gap_update(struct vm_area_struct *vma)
 383{
 384	/*
 385	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 386	 * function that does exacltly what we want.
 387	 */
 388	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 389}
 390
 391static inline void vma_rb_insert(struct vm_area_struct *vma,
 392				 struct rb_root *root)
 393{
 394	/* All rb_subtree_gap values must be consistent prior to insertion */
 395	validate_mm_rb(root, NULL);
 396
 397	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 398}
 399
 400static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 401{
 402	/*
 403	 * All rb_subtree_gap values must be consistent prior to erase,
 404	 * with the possible exception of the vma being erased.
 405	 */
 406	validate_mm_rb(root, vma);
 407
 408	/*
 409	 * Note rb_erase_augmented is a fairly large inline function,
 410	 * so make sure we instantiate it only once with our desired
 411	 * augmented rbtree callbacks.
 412	 */
 413	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 414}
 415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416/*
 417 * vma has some anon_vma assigned, and is already inserted on that
 418 * anon_vma's interval trees.
 419 *
 420 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 421 * vma must be removed from the anon_vma's interval trees using
 422 * anon_vma_interval_tree_pre_update_vma().
 423 *
 424 * After the update, the vma will be reinserted using
 425 * anon_vma_interval_tree_post_update_vma().
 426 *
 427 * The entire update must be protected by exclusive mmap_sem and by
 428 * the root anon_vma's mutex.
 429 */
 430static inline void
 431anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 432{
 433	struct anon_vma_chain *avc;
 434
 435	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 436		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 437}
 438
 439static inline void
 440anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 441{
 442	struct anon_vma_chain *avc;
 443
 444	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 445		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 446}
 447
 448static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 449		unsigned long end, struct vm_area_struct **pprev,
 450		struct rb_node ***rb_link, struct rb_node **rb_parent)
 451{
 452	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 453
 454	__rb_link = &mm->mm_rb.rb_node;
 455	rb_prev = __rb_parent = NULL;
 456
 457	while (*__rb_link) {
 458		struct vm_area_struct *vma_tmp;
 459
 460		__rb_parent = *__rb_link;
 461		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 462
 463		if (vma_tmp->vm_end > addr) {
 464			/* Fail if an existing vma overlaps the area */
 465			if (vma_tmp->vm_start < end)
 466				return -ENOMEM;
 467			__rb_link = &__rb_parent->rb_left;
 468		} else {
 469			rb_prev = __rb_parent;
 470			__rb_link = &__rb_parent->rb_right;
 471		}
 472	}
 473
 474	*pprev = NULL;
 475	if (rb_prev)
 476		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 477	*rb_link = __rb_link;
 478	*rb_parent = __rb_parent;
 479	return 0;
 480}
 481
 482static unsigned long count_vma_pages_range(struct mm_struct *mm,
 483		unsigned long addr, unsigned long end)
 484{
 485	unsigned long nr_pages = 0;
 486	struct vm_area_struct *vma;
 487
 488	/* Find first overlaping mapping */
 489	vma = find_vma_intersection(mm, addr, end);
 490	if (!vma)
 491		return 0;
 492
 493	nr_pages = (min(end, vma->vm_end) -
 494		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 495
 496	/* Iterate over the rest of the overlaps */
 497	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 498		unsigned long overlap_len;
 499
 500		if (vma->vm_start > end)
 501			break;
 502
 503		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 504		nr_pages += overlap_len >> PAGE_SHIFT;
 505	}
 506
 507	return nr_pages;
 508}
 509
 510void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 511		struct rb_node **rb_link, struct rb_node *rb_parent)
 512{
 513	/* Update tracking information for the gap following the new vma. */
 514	if (vma->vm_next)
 515		vma_gap_update(vma->vm_next);
 516	else
 517		mm->highest_vm_end = vma->vm_end;
 518
 519	/*
 520	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 521	 * correct insertion point for that vma. As a result, we could not
 522	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 523	 * So, we first insert the vma with a zero rb_subtree_gap value
 524	 * (to be consistent with what we did on the way down), and then
 525	 * immediately update the gap to the correct value. Finally we
 526	 * rebalance the rbtree after all augmented values have been set.
 527	 */
 528	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 529	vma->rb_subtree_gap = 0;
 530	vma_gap_update(vma);
 531	vma_rb_insert(vma, &mm->mm_rb);
 532}
 533
 534static void __vma_link_file(struct vm_area_struct *vma)
 535{
 536	struct file *file;
 537
 538	file = vma->vm_file;
 539	if (file) {
 540		struct address_space *mapping = file->f_mapping;
 541
 542		if (vma->vm_flags & VM_DENYWRITE)
 543			atomic_dec(&file_inode(file)->i_writecount);
 544		if (vma->vm_flags & VM_SHARED)
 545			atomic_inc(&mapping->i_mmap_writable);
 546
 547		flush_dcache_mmap_lock(mapping);
 548		vma_interval_tree_insert(vma, &mapping->i_mmap);
 549		flush_dcache_mmap_unlock(mapping);
 550	}
 551}
 552
 553static void
 554__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 555	struct vm_area_struct *prev, struct rb_node **rb_link,
 556	struct rb_node *rb_parent)
 557{
 558	__vma_link_list(mm, vma, prev, rb_parent);
 559	__vma_link_rb(mm, vma, rb_link, rb_parent);
 560}
 561
 562static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 563			struct vm_area_struct *prev, struct rb_node **rb_link,
 564			struct rb_node *rb_parent)
 565{
 566	struct address_space *mapping = NULL;
 567
 568	if (vma->vm_file) {
 569		mapping = vma->vm_file->f_mapping;
 570		i_mmap_lock_write(mapping);
 571	}
 572
 573	__vma_link(mm, vma, prev, rb_link, rb_parent);
 574	__vma_link_file(vma);
 575
 576	if (mapping)
 577		i_mmap_unlock_write(mapping);
 578
 579	mm->map_count++;
 580	validate_mm(mm);
 581}
 582
 583/*
 584 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 585 * mm's list and rbtree.  It has already been inserted into the interval tree.
 586 */
 587static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 588{
 589	struct vm_area_struct *prev;
 590	struct rb_node **rb_link, *rb_parent;
 591
 592	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 593			   &prev, &rb_link, &rb_parent))
 594		BUG();
 595	__vma_link(mm, vma, prev, rb_link, rb_parent);
 596	mm->map_count++;
 597}
 598
 599static inline void
 600__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 601		struct vm_area_struct *prev)
 
 
 602{
 603	struct vm_area_struct *next;
 604
 605	vma_rb_erase(vma, &mm->mm_rb);
 606	prev->vm_next = next = vma->vm_next;
 
 
 
 
 
 
 
 
 
 607	if (next)
 608		next->vm_prev = prev;
 609
 610	/* Kill the cache */
 611	vmacache_invalidate(mm);
 612}
 613
 
 
 
 
 
 
 
 614/*
 615 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 616 * is already present in an i_mmap tree without adjusting the tree.
 617 * The following helper function should be used when such adjustments
 618 * are necessary.  The "insert" vma (if any) is to be inserted
 619 * before we drop the necessary locks.
 620 */
 621int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 622	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 
 623{
 624	struct mm_struct *mm = vma->vm_mm;
 625	struct vm_area_struct *next = vma->vm_next;
 626	struct vm_area_struct *importer = NULL;
 627	struct address_space *mapping = NULL;
 628	struct rb_root *root = NULL;
 629	struct anon_vma *anon_vma = NULL;
 630	struct file *file = vma->vm_file;
 631	bool start_changed = false, end_changed = false;
 632	long adjust_next = 0;
 633	int remove_next = 0;
 634
 635	if (next && !insert) {
 636		struct vm_area_struct *exporter = NULL;
 637
 638		if (end >= next->vm_end) {
 639			/*
 640			 * vma expands, overlapping all the next, and
 641			 * perhaps the one after too (mprotect case 6).
 
 
 642			 */
 643again:			remove_next = 1 + (end > next->vm_end);
 644			end = next->vm_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645			exporter = next;
 646			importer = vma;
 
 
 
 
 
 
 
 
 647		} else if (end > next->vm_start) {
 648			/*
 649			 * vma expands, overlapping part of the next:
 650			 * mprotect case 5 shifting the boundary up.
 651			 */
 652			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 653			exporter = next;
 654			importer = vma;
 
 655		} else if (end < vma->vm_end) {
 656			/*
 657			 * vma shrinks, and !insert tells it's not
 658			 * split_vma inserting another: so it must be
 659			 * mprotect case 4 shifting the boundary down.
 660			 */
 661			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 662			exporter = vma;
 663			importer = next;
 
 664		}
 665
 666		/*
 667		 * Easily overlooked: when mprotect shifts the boundary,
 668		 * make sure the expanding vma has anon_vma set if the
 669		 * shrinking vma had, to cover any anon pages imported.
 670		 */
 671		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 672			int error;
 673
 674			importer->anon_vma = exporter->anon_vma;
 675			error = anon_vma_clone(importer, exporter);
 676			if (error)
 677				return error;
 678		}
 679	}
 
 
 680
 681	if (file) {
 682		mapping = file->f_mapping;
 683		root = &mapping->i_mmap;
 684		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 685
 686		if (adjust_next)
 687			uprobe_munmap(next, next->vm_start, next->vm_end);
 688
 689		i_mmap_lock_write(mapping);
 690		if (insert) {
 691			/*
 692			 * Put into interval tree now, so instantiated pages
 693			 * are visible to arm/parisc __flush_dcache_page
 694			 * throughout; but we cannot insert into address
 695			 * space until vma start or end is updated.
 696			 */
 697			__vma_link_file(insert);
 698		}
 699	}
 700
 701	vma_adjust_trans_huge(vma, start, end, adjust_next);
 702
 703	anon_vma = vma->anon_vma;
 704	if (!anon_vma && adjust_next)
 705		anon_vma = next->anon_vma;
 706	if (anon_vma) {
 707		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
 708			  anon_vma != next->anon_vma, next);
 709		anon_vma_lock_write(anon_vma);
 710		anon_vma_interval_tree_pre_update_vma(vma);
 711		if (adjust_next)
 712			anon_vma_interval_tree_pre_update_vma(next);
 713	}
 714
 715	if (root) {
 716		flush_dcache_mmap_lock(mapping);
 717		vma_interval_tree_remove(vma, root);
 718		if (adjust_next)
 719			vma_interval_tree_remove(next, root);
 720	}
 721
 722	if (start != vma->vm_start) {
 723		vma->vm_start = start;
 724		start_changed = true;
 725	}
 726	if (end != vma->vm_end) {
 727		vma->vm_end = end;
 728		end_changed = true;
 729	}
 730	vma->vm_pgoff = pgoff;
 731	if (adjust_next) {
 732		next->vm_start += adjust_next << PAGE_SHIFT;
 733		next->vm_pgoff += adjust_next;
 734	}
 735
 736	if (root) {
 737		if (adjust_next)
 738			vma_interval_tree_insert(next, root);
 739		vma_interval_tree_insert(vma, root);
 740		flush_dcache_mmap_unlock(mapping);
 741	}
 742
 743	if (remove_next) {
 744		/*
 745		 * vma_merge has merged next into vma, and needs
 746		 * us to remove next before dropping the locks.
 747		 */
 748		__vma_unlink(mm, next, vma);
 
 
 
 
 
 
 
 
 
 
 
 
 749		if (file)
 750			__remove_shared_vm_struct(next, file, mapping);
 751	} else if (insert) {
 752		/*
 753		 * split_vma has split insert from vma, and needs
 754		 * us to insert it before dropping the locks
 755		 * (it may either follow vma or precede it).
 756		 */
 757		__insert_vm_struct(mm, insert);
 758	} else {
 759		if (start_changed)
 760			vma_gap_update(vma);
 761		if (end_changed) {
 762			if (!next)
 763				mm->highest_vm_end = end;
 764			else if (!adjust_next)
 765				vma_gap_update(next);
 766		}
 767	}
 768
 769	if (anon_vma) {
 770		anon_vma_interval_tree_post_update_vma(vma);
 771		if (adjust_next)
 772			anon_vma_interval_tree_post_update_vma(next);
 773		anon_vma_unlock_write(anon_vma);
 774	}
 775	if (mapping)
 776		i_mmap_unlock_write(mapping);
 777
 778	if (root) {
 779		uprobe_mmap(vma);
 780
 781		if (adjust_next)
 782			uprobe_mmap(next);
 783	}
 784
 785	if (remove_next) {
 786		if (file) {
 787			uprobe_munmap(next, next->vm_start, next->vm_end);
 788			fput(file);
 789		}
 790		if (next->anon_vma)
 791			anon_vma_merge(vma, next);
 792		mm->map_count--;
 793		mpol_put(vma_policy(next));
 794		kmem_cache_free(vm_area_cachep, next);
 795		/*
 796		 * In mprotect's case 6 (see comments on vma_merge),
 797		 * we must remove another next too. It would clutter
 798		 * up the code too much to do both in one go.
 799		 */
 800		next = vma->vm_next;
 801		if (remove_next == 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802			goto again;
 
 803		else if (next)
 804			vma_gap_update(next);
 805		else
 806			mm->highest_vm_end = end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 807	}
 808	if (insert && file)
 809		uprobe_mmap(insert);
 810
 811	validate_mm(mm);
 812
 813	return 0;
 814}
 815
 816/*
 817 * If the vma has a ->close operation then the driver probably needs to release
 818 * per-vma resources, so we don't attempt to merge those.
 819 */
 820static inline int is_mergeable_vma(struct vm_area_struct *vma,
 821				struct file *file, unsigned long vm_flags,
 822				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 823{
 824	/*
 825	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 826	 * match the flags but dirty bit -- the caller should mark
 827	 * merged VMA as dirty. If dirty bit won't be excluded from
 828	 * comparison, we increase pressue on the memory system forcing
 829	 * the kernel to generate new VMAs when old one could be
 830	 * extended instead.
 831	 */
 832	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 833		return 0;
 834	if (vma->vm_file != file)
 835		return 0;
 836	if (vma->vm_ops && vma->vm_ops->close)
 837		return 0;
 838	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
 839		return 0;
 840	return 1;
 841}
 842
 843static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 844					struct anon_vma *anon_vma2,
 845					struct vm_area_struct *vma)
 846{
 847	/*
 848	 * The list_is_singular() test is to avoid merging VMA cloned from
 849	 * parents. This can improve scalability caused by anon_vma lock.
 850	 */
 851	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 852		list_is_singular(&vma->anon_vma_chain)))
 853		return 1;
 854	return anon_vma1 == anon_vma2;
 855}
 856
 857/*
 858 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 859 * in front of (at a lower virtual address and file offset than) the vma.
 860 *
 861 * We cannot merge two vmas if they have differently assigned (non-NULL)
 862 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 863 *
 864 * We don't check here for the merged mmap wrapping around the end of pagecache
 865 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 866 * wrap, nor mmaps which cover the final page at index -1UL.
 867 */
 868static int
 869can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 870		     struct anon_vma *anon_vma, struct file *file,
 871		     pgoff_t vm_pgoff,
 872		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 873{
 874	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
 875	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 876		if (vma->vm_pgoff == vm_pgoff)
 877			return 1;
 878	}
 879	return 0;
 880}
 881
 882/*
 883 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 884 * beyond (at a higher virtual address and file offset than) the vma.
 885 *
 886 * We cannot merge two vmas if they have differently assigned (non-NULL)
 887 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 888 */
 889static int
 890can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 891		    struct anon_vma *anon_vma, struct file *file,
 892		    pgoff_t vm_pgoff,
 893		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 894{
 895	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
 896	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 897		pgoff_t vm_pglen;
 898		vm_pglen = vma_pages(vma);
 899		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 900			return 1;
 901	}
 902	return 0;
 903}
 904
 905/*
 906 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 907 * whether that can be merged with its predecessor or its successor.
 908 * Or both (it neatly fills a hole).
 909 *
 910 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 911 * certain not to be mapped by the time vma_merge is called; but when
 912 * called for mprotect, it is certain to be already mapped (either at
 913 * an offset within prev, or at the start of next), and the flags of
 914 * this area are about to be changed to vm_flags - and the no-change
 915 * case has already been eliminated.
 916 *
 917 * The following mprotect cases have to be considered, where AAAA is
 918 * the area passed down from mprotect_fixup, never extending beyond one
 919 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 920 *
 921 *     AAAA             AAAA                AAAA          AAAA
 922 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 923 *    cannot merge    might become    might become    might become
 924 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 925 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 926 *    mremap move:                                    PPPPNNNNNNNN 8
 927 *        AAAA
 928 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 929 *    might become    case 1 below    case 2 below    case 3 below
 930 *
 931 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
 932 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
 
 
 
 
 
 
 
 
 
 
 
 933 */
 934struct vm_area_struct *vma_merge(struct mm_struct *mm,
 935			struct vm_area_struct *prev, unsigned long addr,
 936			unsigned long end, unsigned long vm_flags,
 937			struct anon_vma *anon_vma, struct file *file,
 938			pgoff_t pgoff, struct mempolicy *policy,
 939			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 940{
 941	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 942	struct vm_area_struct *area, *next;
 943	int err;
 944
 945	/*
 946	 * We later require that vma->vm_flags == vm_flags,
 947	 * so this tests vma->vm_flags & VM_SPECIAL, too.
 948	 */
 949	if (vm_flags & VM_SPECIAL)
 950		return NULL;
 951
 952	if (prev)
 953		next = prev->vm_next;
 954	else
 955		next = mm->mmap;
 956	area = next;
 957	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
 958		next = next->vm_next;
 959
 
 
 
 
 
 960	/*
 961	 * Can it merge with the predecessor?
 962	 */
 963	if (prev && prev->vm_end == addr &&
 964			mpol_equal(vma_policy(prev), policy) &&
 965			can_vma_merge_after(prev, vm_flags,
 966					    anon_vma, file, pgoff,
 967					    vm_userfaultfd_ctx)) {
 968		/*
 969		 * OK, it can.  Can we now merge in the successor as well?
 970		 */
 971		if (next && end == next->vm_start &&
 972				mpol_equal(policy, vma_policy(next)) &&
 973				can_vma_merge_before(next, vm_flags,
 974						     anon_vma, file,
 975						     pgoff+pglen,
 976						     vm_userfaultfd_ctx) &&
 977				is_mergeable_anon_vma(prev->anon_vma,
 978						      next->anon_vma, NULL)) {
 979							/* cases 1, 6 */
 980			err = vma_adjust(prev, prev->vm_start,
 981				next->vm_end, prev->vm_pgoff, NULL);
 
 982		} else					/* cases 2, 5, 7 */
 983			err = vma_adjust(prev, prev->vm_start,
 984				end, prev->vm_pgoff, NULL);
 985		if (err)
 986			return NULL;
 987		khugepaged_enter_vma_merge(prev, vm_flags);
 988		return prev;
 989	}
 990
 991	/*
 992	 * Can this new request be merged in front of next?
 993	 */
 994	if (next && end == next->vm_start &&
 995			mpol_equal(policy, vma_policy(next)) &&
 996			can_vma_merge_before(next, vm_flags,
 997					     anon_vma, file, pgoff+pglen,
 998					     vm_userfaultfd_ctx)) {
 999		if (prev && addr < prev->vm_end)	/* case 4 */
1000			err = vma_adjust(prev, prev->vm_start,
1001				addr, prev->vm_pgoff, NULL);
1002		else					/* cases 3, 8 */
1003			err = vma_adjust(area, addr, next->vm_end,
1004				next->vm_pgoff - pglen, NULL);
 
 
 
 
 
 
 
1005		if (err)
1006			return NULL;
1007		khugepaged_enter_vma_merge(area, vm_flags);
1008		return area;
1009	}
1010
1011	return NULL;
1012}
1013
1014/*
1015 * Rough compatbility check to quickly see if it's even worth looking
1016 * at sharing an anon_vma.
1017 *
1018 * They need to have the same vm_file, and the flags can only differ
1019 * in things that mprotect may change.
1020 *
1021 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1022 * we can merge the two vma's. For example, we refuse to merge a vma if
1023 * there is a vm_ops->close() function, because that indicates that the
1024 * driver is doing some kind of reference counting. But that doesn't
1025 * really matter for the anon_vma sharing case.
1026 */
1027static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1028{
1029	return a->vm_end == b->vm_start &&
1030		mpol_equal(vma_policy(a), vma_policy(b)) &&
1031		a->vm_file == b->vm_file &&
1032		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1033		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1034}
1035
1036/*
1037 * Do some basic sanity checking to see if we can re-use the anon_vma
1038 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1039 * the same as 'old', the other will be the new one that is trying
1040 * to share the anon_vma.
1041 *
1042 * NOTE! This runs with mm_sem held for reading, so it is possible that
1043 * the anon_vma of 'old' is concurrently in the process of being set up
1044 * by another page fault trying to merge _that_. But that's ok: if it
1045 * is being set up, that automatically means that it will be a singleton
1046 * acceptable for merging, so we can do all of this optimistically. But
1047 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1048 *
1049 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1050 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1051 * is to return an anon_vma that is "complex" due to having gone through
1052 * a fork).
1053 *
1054 * We also make sure that the two vma's are compatible (adjacent,
1055 * and with the same memory policies). That's all stable, even with just
1056 * a read lock on the mm_sem.
1057 */
1058static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1059{
1060	if (anon_vma_compatible(a, b)) {
1061		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1062
1063		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1064			return anon_vma;
1065	}
1066	return NULL;
1067}
1068
1069/*
1070 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1071 * neighbouring vmas for a suitable anon_vma, before it goes off
1072 * to allocate a new anon_vma.  It checks because a repetitive
1073 * sequence of mprotects and faults may otherwise lead to distinct
1074 * anon_vmas being allocated, preventing vma merge in subsequent
1075 * mprotect.
1076 */
1077struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1078{
1079	struct anon_vma *anon_vma;
1080	struct vm_area_struct *near;
1081
1082	near = vma->vm_next;
1083	if (!near)
1084		goto try_prev;
1085
1086	anon_vma = reusable_anon_vma(near, vma, near);
1087	if (anon_vma)
1088		return anon_vma;
1089try_prev:
1090	near = vma->vm_prev;
1091	if (!near)
1092		goto none;
1093
1094	anon_vma = reusable_anon_vma(near, near, vma);
1095	if (anon_vma)
1096		return anon_vma;
1097none:
1098	/*
1099	 * There's no absolute need to look only at touching neighbours:
1100	 * we could search further afield for "compatible" anon_vmas.
1101	 * But it would probably just be a waste of time searching,
1102	 * or lead to too many vmas hanging off the same anon_vma.
1103	 * We're trying to allow mprotect remerging later on,
1104	 * not trying to minimize memory used for anon_vmas.
1105	 */
1106	return NULL;
1107}
1108
1109/*
1110 * If a hint addr is less than mmap_min_addr change hint to be as
1111 * low as possible but still greater than mmap_min_addr
1112 */
1113static inline unsigned long round_hint_to_min(unsigned long hint)
1114{
1115	hint &= PAGE_MASK;
1116	if (((void *)hint != NULL) &&
1117	    (hint < mmap_min_addr))
1118		return PAGE_ALIGN(mmap_min_addr);
1119	return hint;
1120}
1121
1122static inline int mlock_future_check(struct mm_struct *mm,
1123				     unsigned long flags,
1124				     unsigned long len)
1125{
1126	unsigned long locked, lock_limit;
1127
1128	/*  mlock MCL_FUTURE? */
1129	if (flags & VM_LOCKED) {
1130		locked = len >> PAGE_SHIFT;
1131		locked += mm->locked_vm;
1132		lock_limit = rlimit(RLIMIT_MEMLOCK);
1133		lock_limit >>= PAGE_SHIFT;
1134		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1135			return -EAGAIN;
1136	}
1137	return 0;
1138}
1139
1140/*
1141 * The caller must hold down_write(&current->mm->mmap_sem).
1142 */
1143unsigned long do_mmap(struct file *file, unsigned long addr,
1144			unsigned long len, unsigned long prot,
1145			unsigned long flags, vm_flags_t vm_flags,
1146			unsigned long pgoff, unsigned long *populate)
1147{
1148	struct mm_struct *mm = current->mm;
1149	int pkey = 0;
1150
1151	*populate = 0;
1152
1153	if (!len)
1154		return -EINVAL;
1155
1156	/*
1157	 * Does the application expect PROT_READ to imply PROT_EXEC?
1158	 *
1159	 * (the exception is when the underlying filesystem is noexec
1160	 *  mounted, in which case we dont add PROT_EXEC.)
1161	 */
1162	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1163		if (!(file && path_noexec(&file->f_path)))
1164			prot |= PROT_EXEC;
1165
1166	if (!(flags & MAP_FIXED))
1167		addr = round_hint_to_min(addr);
1168
1169	/* Careful about overflows.. */
1170	len = PAGE_ALIGN(len);
1171	if (!len)
1172		return -ENOMEM;
1173
1174	/* offset overflow? */
1175	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1176		return -EOVERFLOW;
1177
1178	/* Too many mappings? */
1179	if (mm->map_count > sysctl_max_map_count)
1180		return -ENOMEM;
1181
1182	/* Obtain the address to map to. we verify (or select) it and ensure
1183	 * that it represents a valid section of the address space.
1184	 */
1185	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1186	if (offset_in_page(addr))
1187		return addr;
1188
1189	if (prot == PROT_EXEC) {
1190		pkey = execute_only_pkey(mm);
1191		if (pkey < 0)
1192			pkey = 0;
1193	}
1194
1195	/* Do simple checking here so the lower-level routines won't have
1196	 * to. we assume access permissions have been handled by the open
1197	 * of the memory object, so we don't do any here.
1198	 */
1199	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1200			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1201
1202	if (flags & MAP_LOCKED)
1203		if (!can_do_mlock())
1204			return -EPERM;
1205
1206	if (mlock_future_check(mm, vm_flags, len))
1207		return -EAGAIN;
1208
1209	if (file) {
1210		struct inode *inode = file_inode(file);
1211
1212		switch (flags & MAP_TYPE) {
1213		case MAP_SHARED:
1214			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1215				return -EACCES;
1216
1217			/*
1218			 * Make sure we don't allow writing to an append-only
1219			 * file..
1220			 */
1221			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1222				return -EACCES;
1223
1224			/*
1225			 * Make sure there are no mandatory locks on the file.
1226			 */
1227			if (locks_verify_locked(file))
1228				return -EAGAIN;
1229
1230			vm_flags |= VM_SHARED | VM_MAYSHARE;
1231			if (!(file->f_mode & FMODE_WRITE))
1232				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1233
1234			/* fall through */
1235		case MAP_PRIVATE:
1236			if (!(file->f_mode & FMODE_READ))
1237				return -EACCES;
1238			if (path_noexec(&file->f_path)) {
1239				if (vm_flags & VM_EXEC)
1240					return -EPERM;
1241				vm_flags &= ~VM_MAYEXEC;
1242			}
1243
1244			if (!file->f_op->mmap)
1245				return -ENODEV;
1246			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1247				return -EINVAL;
1248			break;
1249
1250		default:
1251			return -EINVAL;
1252		}
1253	} else {
1254		switch (flags & MAP_TYPE) {
1255		case MAP_SHARED:
1256			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1257				return -EINVAL;
1258			/*
1259			 * Ignore pgoff.
1260			 */
1261			pgoff = 0;
1262			vm_flags |= VM_SHARED | VM_MAYSHARE;
1263			break;
1264		case MAP_PRIVATE:
1265			/*
1266			 * Set pgoff according to addr for anon_vma.
1267			 */
1268			pgoff = addr >> PAGE_SHIFT;
1269			break;
1270		default:
1271			return -EINVAL;
1272		}
1273	}
1274
1275	/*
1276	 * Set 'VM_NORESERVE' if we should not account for the
1277	 * memory use of this mapping.
1278	 */
1279	if (flags & MAP_NORESERVE) {
1280		/* We honor MAP_NORESERVE if allowed to overcommit */
1281		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1282			vm_flags |= VM_NORESERVE;
1283
1284		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1285		if (file && is_file_hugepages(file))
1286			vm_flags |= VM_NORESERVE;
1287	}
1288
1289	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1290	if (!IS_ERR_VALUE(addr) &&
1291	    ((vm_flags & VM_LOCKED) ||
1292	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1293		*populate = len;
1294	return addr;
1295}
1296
1297SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1298		unsigned long, prot, unsigned long, flags,
1299		unsigned long, fd, unsigned long, pgoff)
1300{
1301	struct file *file = NULL;
1302	unsigned long retval;
1303
1304	if (!(flags & MAP_ANONYMOUS)) {
1305		audit_mmap_fd(fd, flags);
1306		file = fget(fd);
1307		if (!file)
1308			return -EBADF;
1309		if (is_file_hugepages(file))
1310			len = ALIGN(len, huge_page_size(hstate_file(file)));
1311		retval = -EINVAL;
1312		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1313			goto out_fput;
1314	} else if (flags & MAP_HUGETLB) {
1315		struct user_struct *user = NULL;
1316		struct hstate *hs;
1317
1318		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1319		if (!hs)
1320			return -EINVAL;
1321
1322		len = ALIGN(len, huge_page_size(hs));
1323		/*
1324		 * VM_NORESERVE is used because the reservations will be
1325		 * taken when vm_ops->mmap() is called
1326		 * A dummy user value is used because we are not locking
1327		 * memory so no accounting is necessary
1328		 */
1329		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1330				VM_NORESERVE,
1331				&user, HUGETLB_ANONHUGE_INODE,
1332				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1333		if (IS_ERR(file))
1334			return PTR_ERR(file);
1335	}
1336
1337	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1338
1339	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1340out_fput:
1341	if (file)
1342		fput(file);
1343	return retval;
1344}
1345
1346#ifdef __ARCH_WANT_SYS_OLD_MMAP
1347struct mmap_arg_struct {
1348	unsigned long addr;
1349	unsigned long len;
1350	unsigned long prot;
1351	unsigned long flags;
1352	unsigned long fd;
1353	unsigned long offset;
1354};
1355
1356SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1357{
1358	struct mmap_arg_struct a;
1359
1360	if (copy_from_user(&a, arg, sizeof(a)))
1361		return -EFAULT;
1362	if (offset_in_page(a.offset))
1363		return -EINVAL;
1364
1365	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1366			      a.offset >> PAGE_SHIFT);
1367}
1368#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1369
1370/*
1371 * Some shared mappigns will want the pages marked read-only
1372 * to track write events. If so, we'll downgrade vm_page_prot
1373 * to the private version (using protection_map[] without the
1374 * VM_SHARED bit).
1375 */
1376int vma_wants_writenotify(struct vm_area_struct *vma)
1377{
1378	vm_flags_t vm_flags = vma->vm_flags;
1379	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1380
1381	/* If it was private or non-writable, the write bit is already clear */
1382	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1383		return 0;
1384
1385	/* The backer wishes to know when pages are first written to? */
1386	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1387		return 1;
1388
1389	/* The open routine did something to the protections that pgprot_modify
1390	 * won't preserve? */
1391	if (pgprot_val(vma->vm_page_prot) !=
1392	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1393		return 0;
1394
1395	/* Do we need to track softdirty? */
1396	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1397		return 1;
1398
1399	/* Specialty mapping? */
1400	if (vm_flags & VM_PFNMAP)
1401		return 0;
1402
1403	/* Can the mapping track the dirty pages? */
1404	return vma->vm_file && vma->vm_file->f_mapping &&
1405		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1406}
1407
1408/*
1409 * We account for memory if it's a private writeable mapping,
1410 * not hugepages and VM_NORESERVE wasn't set.
1411 */
1412static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1413{
1414	/*
1415	 * hugetlb has its own accounting separate from the core VM
1416	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1417	 */
1418	if (file && is_file_hugepages(file))
1419		return 0;
1420
1421	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1422}
1423
1424unsigned long mmap_region(struct file *file, unsigned long addr,
1425		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1426{
1427	struct mm_struct *mm = current->mm;
1428	struct vm_area_struct *vma, *prev;
1429	int error;
1430	struct rb_node **rb_link, *rb_parent;
1431	unsigned long charged = 0;
1432
1433	/* Check against address space limit. */
1434	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1435		unsigned long nr_pages;
1436
1437		/*
1438		 * MAP_FIXED may remove pages of mappings that intersects with
1439		 * requested mapping. Account for the pages it would unmap.
1440		 */
1441		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1442
1443		if (!may_expand_vm(mm, vm_flags,
1444					(len >> PAGE_SHIFT) - nr_pages))
1445			return -ENOMEM;
1446	}
1447
1448	/* Clear old maps */
1449	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1450			      &rb_parent)) {
1451		if (do_munmap(mm, addr, len))
1452			return -ENOMEM;
1453	}
1454
1455	/*
1456	 * Private writable mapping: check memory availability
1457	 */
1458	if (accountable_mapping(file, vm_flags)) {
1459		charged = len >> PAGE_SHIFT;
1460		if (security_vm_enough_memory_mm(mm, charged))
1461			return -ENOMEM;
1462		vm_flags |= VM_ACCOUNT;
1463	}
1464
1465	/*
1466	 * Can we just expand an old mapping?
1467	 */
1468	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1469			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1470	if (vma)
1471		goto out;
1472
1473	/*
1474	 * Determine the object being mapped and call the appropriate
1475	 * specific mapper. the address has already been validated, but
1476	 * not unmapped, but the maps are removed from the list.
1477	 */
1478	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1479	if (!vma) {
1480		error = -ENOMEM;
1481		goto unacct_error;
1482	}
1483
1484	vma->vm_mm = mm;
1485	vma->vm_start = addr;
1486	vma->vm_end = addr + len;
1487	vma->vm_flags = vm_flags;
1488	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1489	vma->vm_pgoff = pgoff;
1490	INIT_LIST_HEAD(&vma->anon_vma_chain);
1491
1492	if (file) {
1493		if (vm_flags & VM_DENYWRITE) {
1494			error = deny_write_access(file);
1495			if (error)
1496				goto free_vma;
1497		}
1498		if (vm_flags & VM_SHARED) {
1499			error = mapping_map_writable(file->f_mapping);
1500			if (error)
1501				goto allow_write_and_free_vma;
1502		}
1503
1504		/* ->mmap() can change vma->vm_file, but must guarantee that
1505		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1506		 * and map writably if VM_SHARED is set. This usually means the
1507		 * new file must not have been exposed to user-space, yet.
1508		 */
1509		vma->vm_file = get_file(file);
1510		error = file->f_op->mmap(file, vma);
1511		if (error)
1512			goto unmap_and_free_vma;
1513
1514		/* Can addr have changed??
1515		 *
1516		 * Answer: Yes, several device drivers can do it in their
1517		 *         f_op->mmap method. -DaveM
1518		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1519		 *      be updated for vma_link()
1520		 */
1521		WARN_ON_ONCE(addr != vma->vm_start);
1522
1523		addr = vma->vm_start;
1524		vm_flags = vma->vm_flags;
1525	} else if (vm_flags & VM_SHARED) {
1526		error = shmem_zero_setup(vma);
1527		if (error)
1528			goto free_vma;
1529	}
1530
1531	vma_link(mm, vma, prev, rb_link, rb_parent);
1532	/* Once vma denies write, undo our temporary denial count */
1533	if (file) {
1534		if (vm_flags & VM_SHARED)
1535			mapping_unmap_writable(file->f_mapping);
1536		if (vm_flags & VM_DENYWRITE)
1537			allow_write_access(file);
1538	}
1539	file = vma->vm_file;
1540out:
1541	perf_event_mmap(vma);
1542
1543	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1544	if (vm_flags & VM_LOCKED) {
1545		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1546					vma == get_gate_vma(current->mm)))
1547			mm->locked_vm += (len >> PAGE_SHIFT);
1548		else
1549			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1550	}
1551
1552	if (file)
1553		uprobe_mmap(vma);
1554
1555	/*
1556	 * New (or expanded) vma always get soft dirty status.
1557	 * Otherwise user-space soft-dirty page tracker won't
1558	 * be able to distinguish situation when vma area unmapped,
1559	 * then new mapped in-place (which must be aimed as
1560	 * a completely new data area).
1561	 */
1562	vma->vm_flags |= VM_SOFTDIRTY;
1563
1564	vma_set_page_prot(vma);
1565
1566	return addr;
1567
1568unmap_and_free_vma:
1569	vma->vm_file = NULL;
1570	fput(file);
1571
1572	/* Undo any partial mapping done by a device driver. */
1573	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1574	charged = 0;
1575	if (vm_flags & VM_SHARED)
1576		mapping_unmap_writable(file->f_mapping);
1577allow_write_and_free_vma:
1578	if (vm_flags & VM_DENYWRITE)
1579		allow_write_access(file);
1580free_vma:
1581	kmem_cache_free(vm_area_cachep, vma);
1582unacct_error:
1583	if (charged)
1584		vm_unacct_memory(charged);
1585	return error;
1586}
1587
1588unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1589{
1590	/*
1591	 * We implement the search by looking for an rbtree node that
1592	 * immediately follows a suitable gap. That is,
1593	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1594	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1595	 * - gap_end - gap_start >= length
1596	 */
1597
1598	struct mm_struct *mm = current->mm;
1599	struct vm_area_struct *vma;
1600	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1601
1602	/* Adjust search length to account for worst case alignment overhead */
1603	length = info->length + info->align_mask;
1604	if (length < info->length)
1605		return -ENOMEM;
1606
1607	/* Adjust search limits by the desired length */
1608	if (info->high_limit < length)
1609		return -ENOMEM;
1610	high_limit = info->high_limit - length;
1611
1612	if (info->low_limit > high_limit)
1613		return -ENOMEM;
1614	low_limit = info->low_limit + length;
1615
1616	/* Check if rbtree root looks promising */
1617	if (RB_EMPTY_ROOT(&mm->mm_rb))
1618		goto check_highest;
1619	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1620	if (vma->rb_subtree_gap < length)
1621		goto check_highest;
1622
1623	while (true) {
1624		/* Visit left subtree if it looks promising */
1625		gap_end = vma->vm_start;
1626		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1627			struct vm_area_struct *left =
1628				rb_entry(vma->vm_rb.rb_left,
1629					 struct vm_area_struct, vm_rb);
1630			if (left->rb_subtree_gap >= length) {
1631				vma = left;
1632				continue;
1633			}
1634		}
1635
1636		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1637check_current:
1638		/* Check if current node has a suitable gap */
1639		if (gap_start > high_limit)
1640			return -ENOMEM;
1641		if (gap_end >= low_limit && gap_end - gap_start >= length)
1642			goto found;
1643
1644		/* Visit right subtree if it looks promising */
1645		if (vma->vm_rb.rb_right) {
1646			struct vm_area_struct *right =
1647				rb_entry(vma->vm_rb.rb_right,
1648					 struct vm_area_struct, vm_rb);
1649			if (right->rb_subtree_gap >= length) {
1650				vma = right;
1651				continue;
1652			}
1653		}
1654
1655		/* Go back up the rbtree to find next candidate node */
1656		while (true) {
1657			struct rb_node *prev = &vma->vm_rb;
1658			if (!rb_parent(prev))
1659				goto check_highest;
1660			vma = rb_entry(rb_parent(prev),
1661				       struct vm_area_struct, vm_rb);
1662			if (prev == vma->vm_rb.rb_left) {
1663				gap_start = vma->vm_prev->vm_end;
1664				gap_end = vma->vm_start;
1665				goto check_current;
1666			}
1667		}
1668	}
1669
1670check_highest:
1671	/* Check highest gap, which does not precede any rbtree node */
1672	gap_start = mm->highest_vm_end;
1673	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1674	if (gap_start > high_limit)
1675		return -ENOMEM;
1676
1677found:
1678	/* We found a suitable gap. Clip it with the original low_limit. */
1679	if (gap_start < info->low_limit)
1680		gap_start = info->low_limit;
1681
1682	/* Adjust gap address to the desired alignment */
1683	gap_start += (info->align_offset - gap_start) & info->align_mask;
1684
1685	VM_BUG_ON(gap_start + info->length > info->high_limit);
1686	VM_BUG_ON(gap_start + info->length > gap_end);
1687	return gap_start;
1688}
1689
1690unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1691{
1692	struct mm_struct *mm = current->mm;
1693	struct vm_area_struct *vma;
1694	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1695
1696	/* Adjust search length to account for worst case alignment overhead */
1697	length = info->length + info->align_mask;
1698	if (length < info->length)
1699		return -ENOMEM;
1700
1701	/*
1702	 * Adjust search limits by the desired length.
1703	 * See implementation comment at top of unmapped_area().
1704	 */
1705	gap_end = info->high_limit;
1706	if (gap_end < length)
1707		return -ENOMEM;
1708	high_limit = gap_end - length;
1709
1710	if (info->low_limit > high_limit)
1711		return -ENOMEM;
1712	low_limit = info->low_limit + length;
1713
1714	/* Check highest gap, which does not precede any rbtree node */
1715	gap_start = mm->highest_vm_end;
1716	if (gap_start <= high_limit)
1717		goto found_highest;
1718
1719	/* Check if rbtree root looks promising */
1720	if (RB_EMPTY_ROOT(&mm->mm_rb))
1721		return -ENOMEM;
1722	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1723	if (vma->rb_subtree_gap < length)
1724		return -ENOMEM;
1725
1726	while (true) {
1727		/* Visit right subtree if it looks promising */
1728		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1729		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1730			struct vm_area_struct *right =
1731				rb_entry(vma->vm_rb.rb_right,
1732					 struct vm_area_struct, vm_rb);
1733			if (right->rb_subtree_gap >= length) {
1734				vma = right;
1735				continue;
1736			}
1737		}
1738
1739check_current:
1740		/* Check if current node has a suitable gap */
1741		gap_end = vma->vm_start;
1742		if (gap_end < low_limit)
1743			return -ENOMEM;
1744		if (gap_start <= high_limit && gap_end - gap_start >= length)
1745			goto found;
1746
1747		/* Visit left subtree if it looks promising */
1748		if (vma->vm_rb.rb_left) {
1749			struct vm_area_struct *left =
1750				rb_entry(vma->vm_rb.rb_left,
1751					 struct vm_area_struct, vm_rb);
1752			if (left->rb_subtree_gap >= length) {
1753				vma = left;
1754				continue;
1755			}
1756		}
1757
1758		/* Go back up the rbtree to find next candidate node */
1759		while (true) {
1760			struct rb_node *prev = &vma->vm_rb;
1761			if (!rb_parent(prev))
1762				return -ENOMEM;
1763			vma = rb_entry(rb_parent(prev),
1764				       struct vm_area_struct, vm_rb);
1765			if (prev == vma->vm_rb.rb_right) {
1766				gap_start = vma->vm_prev ?
1767					vma->vm_prev->vm_end : 0;
1768				goto check_current;
1769			}
1770		}
1771	}
1772
1773found:
1774	/* We found a suitable gap. Clip it with the original high_limit. */
1775	if (gap_end > info->high_limit)
1776		gap_end = info->high_limit;
1777
1778found_highest:
1779	/* Compute highest gap address at the desired alignment */
1780	gap_end -= info->length;
1781	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1782
1783	VM_BUG_ON(gap_end < info->low_limit);
1784	VM_BUG_ON(gap_end < gap_start);
1785	return gap_end;
1786}
1787
1788/* Get an address range which is currently unmapped.
1789 * For shmat() with addr=0.
1790 *
1791 * Ugly calling convention alert:
1792 * Return value with the low bits set means error value,
1793 * ie
1794 *	if (ret & ~PAGE_MASK)
1795 *		error = ret;
1796 *
1797 * This function "knows" that -ENOMEM has the bits set.
1798 */
1799#ifndef HAVE_ARCH_UNMAPPED_AREA
1800unsigned long
1801arch_get_unmapped_area(struct file *filp, unsigned long addr,
1802		unsigned long len, unsigned long pgoff, unsigned long flags)
1803{
1804	struct mm_struct *mm = current->mm;
1805	struct vm_area_struct *vma;
1806	struct vm_unmapped_area_info info;
1807
1808	if (len > TASK_SIZE - mmap_min_addr)
1809		return -ENOMEM;
1810
1811	if (flags & MAP_FIXED)
1812		return addr;
1813
1814	if (addr) {
1815		addr = PAGE_ALIGN(addr);
1816		vma = find_vma(mm, addr);
1817		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1818		    (!vma || addr + len <= vma->vm_start))
1819			return addr;
1820	}
1821
1822	info.flags = 0;
1823	info.length = len;
1824	info.low_limit = mm->mmap_base;
1825	info.high_limit = TASK_SIZE;
1826	info.align_mask = 0;
1827	return vm_unmapped_area(&info);
1828}
1829#endif
1830
1831/*
1832 * This mmap-allocator allocates new areas top-down from below the
1833 * stack's low limit (the base):
1834 */
1835#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1836unsigned long
1837arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1838			  const unsigned long len, const unsigned long pgoff,
1839			  const unsigned long flags)
1840{
1841	struct vm_area_struct *vma;
1842	struct mm_struct *mm = current->mm;
1843	unsigned long addr = addr0;
1844	struct vm_unmapped_area_info info;
1845
1846	/* requested length too big for entire address space */
1847	if (len > TASK_SIZE - mmap_min_addr)
1848		return -ENOMEM;
1849
1850	if (flags & MAP_FIXED)
1851		return addr;
1852
1853	/* requesting a specific address */
1854	if (addr) {
1855		addr = PAGE_ALIGN(addr);
1856		vma = find_vma(mm, addr);
1857		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1858				(!vma || addr + len <= vma->vm_start))
1859			return addr;
1860	}
1861
1862	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1863	info.length = len;
1864	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1865	info.high_limit = mm->mmap_base;
1866	info.align_mask = 0;
1867	addr = vm_unmapped_area(&info);
1868
1869	/*
1870	 * A failed mmap() very likely causes application failure,
1871	 * so fall back to the bottom-up function here. This scenario
1872	 * can happen with large stack limits and large mmap()
1873	 * allocations.
1874	 */
1875	if (offset_in_page(addr)) {
1876		VM_BUG_ON(addr != -ENOMEM);
1877		info.flags = 0;
1878		info.low_limit = TASK_UNMAPPED_BASE;
1879		info.high_limit = TASK_SIZE;
1880		addr = vm_unmapped_area(&info);
1881	}
1882
1883	return addr;
1884}
1885#endif
1886
1887unsigned long
1888get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1889		unsigned long pgoff, unsigned long flags)
1890{
1891	unsigned long (*get_area)(struct file *, unsigned long,
1892				  unsigned long, unsigned long, unsigned long);
1893
1894	unsigned long error = arch_mmap_check(addr, len, flags);
1895	if (error)
1896		return error;
1897
1898	/* Careful about overflows.. */
1899	if (len > TASK_SIZE)
1900		return -ENOMEM;
1901
1902	get_area = current->mm->get_unmapped_area;
1903	if (file && file->f_op->get_unmapped_area)
1904		get_area = file->f_op->get_unmapped_area;
 
 
 
 
 
 
 
 
 
 
 
1905	addr = get_area(file, addr, len, pgoff, flags);
1906	if (IS_ERR_VALUE(addr))
1907		return addr;
1908
1909	if (addr > TASK_SIZE - len)
1910		return -ENOMEM;
1911	if (offset_in_page(addr))
1912		return -EINVAL;
1913
1914	addr = arch_rebalance_pgtables(addr, len);
1915	error = security_mmap_addr(addr);
1916	return error ? error : addr;
1917}
1918
1919EXPORT_SYMBOL(get_unmapped_area);
1920
1921/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1922struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1923{
1924	struct rb_node *rb_node;
1925	struct vm_area_struct *vma;
1926
1927	/* Check the cache first. */
1928	vma = vmacache_find(mm, addr);
1929	if (likely(vma))
1930		return vma;
1931
1932	rb_node = mm->mm_rb.rb_node;
1933
1934	while (rb_node) {
1935		struct vm_area_struct *tmp;
1936
1937		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1938
1939		if (tmp->vm_end > addr) {
1940			vma = tmp;
1941			if (tmp->vm_start <= addr)
1942				break;
1943			rb_node = rb_node->rb_left;
1944		} else
1945			rb_node = rb_node->rb_right;
1946	}
1947
1948	if (vma)
1949		vmacache_update(addr, vma);
1950	return vma;
1951}
1952
1953EXPORT_SYMBOL(find_vma);
1954
1955/*
1956 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1957 */
1958struct vm_area_struct *
1959find_vma_prev(struct mm_struct *mm, unsigned long addr,
1960			struct vm_area_struct **pprev)
1961{
1962	struct vm_area_struct *vma;
1963
1964	vma = find_vma(mm, addr);
1965	if (vma) {
1966		*pprev = vma->vm_prev;
1967	} else {
1968		struct rb_node *rb_node = mm->mm_rb.rb_node;
1969		*pprev = NULL;
1970		while (rb_node) {
1971			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1972			rb_node = rb_node->rb_right;
1973		}
1974	}
1975	return vma;
1976}
1977
1978/*
1979 * Verify that the stack growth is acceptable and
1980 * update accounting. This is shared with both the
1981 * grow-up and grow-down cases.
1982 */
1983static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1984{
1985	struct mm_struct *mm = vma->vm_mm;
1986	struct rlimit *rlim = current->signal->rlim;
1987	unsigned long new_start, actual_size;
1988
1989	/* address space limit tests */
1990	if (!may_expand_vm(mm, vma->vm_flags, grow))
1991		return -ENOMEM;
1992
1993	/* Stack limit test */
1994	actual_size = size;
1995	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
1996		actual_size -= PAGE_SIZE;
1997	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1998		return -ENOMEM;
1999
2000	/* mlock limit tests */
2001	if (vma->vm_flags & VM_LOCKED) {
2002		unsigned long locked;
2003		unsigned long limit;
2004		locked = mm->locked_vm + grow;
2005		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2006		limit >>= PAGE_SHIFT;
2007		if (locked > limit && !capable(CAP_IPC_LOCK))
2008			return -ENOMEM;
2009	}
2010
2011	/* Check to ensure the stack will not grow into a hugetlb-only region */
2012	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2013			vma->vm_end - size;
2014	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2015		return -EFAULT;
2016
2017	/*
2018	 * Overcommit..  This must be the final test, as it will
2019	 * update security statistics.
2020	 */
2021	if (security_vm_enough_memory_mm(mm, grow))
2022		return -ENOMEM;
2023
2024	return 0;
2025}
2026
2027#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2028/*
2029 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2030 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2031 */
2032int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2033{
2034	struct mm_struct *mm = vma->vm_mm;
2035	int error = 0;
2036
2037	if (!(vma->vm_flags & VM_GROWSUP))
2038		return -EFAULT;
2039
2040	/* Guard against wrapping around to address 0. */
2041	if (address < PAGE_ALIGN(address+4))
2042		address = PAGE_ALIGN(address+4);
2043	else
2044		return -ENOMEM;
2045
2046	/* We must make sure the anon_vma is allocated. */
2047	if (unlikely(anon_vma_prepare(vma)))
2048		return -ENOMEM;
2049
2050	/*
2051	 * vma->vm_start/vm_end cannot change under us because the caller
2052	 * is required to hold the mmap_sem in read mode.  We need the
2053	 * anon_vma lock to serialize against concurrent expand_stacks.
2054	 */
2055	anon_vma_lock_write(vma->anon_vma);
2056
2057	/* Somebody else might have raced and expanded it already */
2058	if (address > vma->vm_end) {
2059		unsigned long size, grow;
2060
2061		size = address - vma->vm_start;
2062		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2063
2064		error = -ENOMEM;
2065		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2066			error = acct_stack_growth(vma, size, grow);
2067			if (!error) {
2068				/*
2069				 * vma_gap_update() doesn't support concurrent
2070				 * updates, but we only hold a shared mmap_sem
2071				 * lock here, so we need to protect against
2072				 * concurrent vma expansions.
2073				 * anon_vma_lock_write() doesn't help here, as
2074				 * we don't guarantee that all growable vmas
2075				 * in a mm share the same root anon vma.
2076				 * So, we reuse mm->page_table_lock to guard
2077				 * against concurrent vma expansions.
2078				 */
2079				spin_lock(&mm->page_table_lock);
2080				if (vma->vm_flags & VM_LOCKED)
2081					mm->locked_vm += grow;
2082				vm_stat_account(mm, vma->vm_flags, grow);
2083				anon_vma_interval_tree_pre_update_vma(vma);
2084				vma->vm_end = address;
2085				anon_vma_interval_tree_post_update_vma(vma);
2086				if (vma->vm_next)
2087					vma_gap_update(vma->vm_next);
2088				else
2089					mm->highest_vm_end = address;
2090				spin_unlock(&mm->page_table_lock);
2091
2092				perf_event_mmap(vma);
2093			}
2094		}
2095	}
2096	anon_vma_unlock_write(vma->anon_vma);
2097	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2098	validate_mm(mm);
2099	return error;
2100}
2101#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2102
2103/*
2104 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2105 */
2106int expand_downwards(struct vm_area_struct *vma,
2107				   unsigned long address)
2108{
2109	struct mm_struct *mm = vma->vm_mm;
2110	int error;
2111
2112	address &= PAGE_MASK;
2113	error = security_mmap_addr(address);
2114	if (error)
2115		return error;
2116
2117	/* We must make sure the anon_vma is allocated. */
2118	if (unlikely(anon_vma_prepare(vma)))
2119		return -ENOMEM;
2120
2121	/*
2122	 * vma->vm_start/vm_end cannot change under us because the caller
2123	 * is required to hold the mmap_sem in read mode.  We need the
2124	 * anon_vma lock to serialize against concurrent expand_stacks.
2125	 */
2126	anon_vma_lock_write(vma->anon_vma);
2127
2128	/* Somebody else might have raced and expanded it already */
2129	if (address < vma->vm_start) {
2130		unsigned long size, grow;
2131
2132		size = vma->vm_end - address;
2133		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2134
2135		error = -ENOMEM;
2136		if (grow <= vma->vm_pgoff) {
2137			error = acct_stack_growth(vma, size, grow);
2138			if (!error) {
2139				/*
2140				 * vma_gap_update() doesn't support concurrent
2141				 * updates, but we only hold a shared mmap_sem
2142				 * lock here, so we need to protect against
2143				 * concurrent vma expansions.
2144				 * anon_vma_lock_write() doesn't help here, as
2145				 * we don't guarantee that all growable vmas
2146				 * in a mm share the same root anon vma.
2147				 * So, we reuse mm->page_table_lock to guard
2148				 * against concurrent vma expansions.
2149				 */
2150				spin_lock(&mm->page_table_lock);
2151				if (vma->vm_flags & VM_LOCKED)
2152					mm->locked_vm += grow;
2153				vm_stat_account(mm, vma->vm_flags, grow);
2154				anon_vma_interval_tree_pre_update_vma(vma);
2155				vma->vm_start = address;
2156				vma->vm_pgoff -= grow;
2157				anon_vma_interval_tree_post_update_vma(vma);
2158				vma_gap_update(vma);
2159				spin_unlock(&mm->page_table_lock);
2160
2161				perf_event_mmap(vma);
2162			}
2163		}
2164	}
2165	anon_vma_unlock_write(vma->anon_vma);
2166	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2167	validate_mm(mm);
2168	return error;
2169}
2170
2171/*
2172 * Note how expand_stack() refuses to expand the stack all the way to
2173 * abut the next virtual mapping, *unless* that mapping itself is also
2174 * a stack mapping. We want to leave room for a guard page, after all
2175 * (the guard page itself is not added here, that is done by the
2176 * actual page faulting logic)
2177 *
2178 * This matches the behavior of the guard page logic (see mm/memory.c:
2179 * check_stack_guard_page()), which only allows the guard page to be
2180 * removed under these circumstances.
2181 */
2182#ifdef CONFIG_STACK_GROWSUP
2183int expand_stack(struct vm_area_struct *vma, unsigned long address)
2184{
2185	struct vm_area_struct *next;
2186
2187	address &= PAGE_MASK;
2188	next = vma->vm_next;
2189	if (next && next->vm_start == address + PAGE_SIZE) {
2190		if (!(next->vm_flags & VM_GROWSUP))
2191			return -ENOMEM;
2192	}
2193	return expand_upwards(vma, address);
2194}
2195
2196struct vm_area_struct *
2197find_extend_vma(struct mm_struct *mm, unsigned long addr)
2198{
2199	struct vm_area_struct *vma, *prev;
2200
2201	addr &= PAGE_MASK;
2202	vma = find_vma_prev(mm, addr, &prev);
2203	if (vma && (vma->vm_start <= addr))
2204		return vma;
2205	if (!prev || expand_stack(prev, addr))
2206		return NULL;
2207	if (prev->vm_flags & VM_LOCKED)
2208		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2209	return prev;
2210}
2211#else
2212int expand_stack(struct vm_area_struct *vma, unsigned long address)
2213{
2214	struct vm_area_struct *prev;
2215
2216	address &= PAGE_MASK;
2217	prev = vma->vm_prev;
2218	if (prev && prev->vm_end == address) {
2219		if (!(prev->vm_flags & VM_GROWSDOWN))
2220			return -ENOMEM;
2221	}
2222	return expand_downwards(vma, address);
2223}
2224
2225struct vm_area_struct *
2226find_extend_vma(struct mm_struct *mm, unsigned long addr)
2227{
2228	struct vm_area_struct *vma;
2229	unsigned long start;
2230
2231	addr &= PAGE_MASK;
2232	vma = find_vma(mm, addr);
2233	if (!vma)
2234		return NULL;
2235	if (vma->vm_start <= addr)
2236		return vma;
2237	if (!(vma->vm_flags & VM_GROWSDOWN))
2238		return NULL;
2239	start = vma->vm_start;
2240	if (expand_stack(vma, addr))
2241		return NULL;
2242	if (vma->vm_flags & VM_LOCKED)
2243		populate_vma_page_range(vma, addr, start, NULL);
2244	return vma;
2245}
2246#endif
2247
2248EXPORT_SYMBOL_GPL(find_extend_vma);
2249
2250/*
2251 * Ok - we have the memory areas we should free on the vma list,
2252 * so release them, and do the vma updates.
2253 *
2254 * Called with the mm semaphore held.
2255 */
2256static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2257{
2258	unsigned long nr_accounted = 0;
2259
2260	/* Update high watermark before we lower total_vm */
2261	update_hiwater_vm(mm);
2262	do {
2263		long nrpages = vma_pages(vma);
2264
2265		if (vma->vm_flags & VM_ACCOUNT)
2266			nr_accounted += nrpages;
2267		vm_stat_account(mm, vma->vm_flags, -nrpages);
2268		vma = remove_vma(vma);
2269	} while (vma);
2270	vm_unacct_memory(nr_accounted);
2271	validate_mm(mm);
2272}
2273
2274/*
2275 * Get rid of page table information in the indicated region.
2276 *
2277 * Called with the mm semaphore held.
2278 */
2279static void unmap_region(struct mm_struct *mm,
2280		struct vm_area_struct *vma, struct vm_area_struct *prev,
2281		unsigned long start, unsigned long end)
2282{
2283	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2284	struct mmu_gather tlb;
2285
2286	lru_add_drain();
2287	tlb_gather_mmu(&tlb, mm, start, end);
2288	update_hiwater_rss(mm);
2289	unmap_vmas(&tlb, vma, start, end);
2290	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2291				 next ? next->vm_start : USER_PGTABLES_CEILING);
2292	tlb_finish_mmu(&tlb, start, end);
2293}
2294
2295/*
2296 * Create a list of vma's touched by the unmap, removing them from the mm's
2297 * vma list as we go..
2298 */
2299static void
2300detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2301	struct vm_area_struct *prev, unsigned long end)
2302{
2303	struct vm_area_struct **insertion_point;
2304	struct vm_area_struct *tail_vma = NULL;
2305
2306	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2307	vma->vm_prev = NULL;
2308	do {
2309		vma_rb_erase(vma, &mm->mm_rb);
2310		mm->map_count--;
2311		tail_vma = vma;
2312		vma = vma->vm_next;
2313	} while (vma && vma->vm_start < end);
2314	*insertion_point = vma;
2315	if (vma) {
2316		vma->vm_prev = prev;
2317		vma_gap_update(vma);
2318	} else
2319		mm->highest_vm_end = prev ? prev->vm_end : 0;
2320	tail_vma->vm_next = NULL;
2321
2322	/* Kill the cache */
2323	vmacache_invalidate(mm);
2324}
2325
2326/*
2327 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2328 * munmap path where it doesn't make sense to fail.
2329 */
2330static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2331	      unsigned long addr, int new_below)
2332{
2333	struct vm_area_struct *new;
2334	int err;
2335
2336	if (is_vm_hugetlb_page(vma) && (addr &
2337					~(huge_page_mask(hstate_vma(vma)))))
2338		return -EINVAL;
2339
2340	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2341	if (!new)
2342		return -ENOMEM;
2343
2344	/* most fields are the same, copy all, and then fixup */
2345	*new = *vma;
2346
2347	INIT_LIST_HEAD(&new->anon_vma_chain);
2348
2349	if (new_below)
2350		new->vm_end = addr;
2351	else {
2352		new->vm_start = addr;
2353		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2354	}
2355
2356	err = vma_dup_policy(vma, new);
2357	if (err)
2358		goto out_free_vma;
2359
2360	err = anon_vma_clone(new, vma);
2361	if (err)
2362		goto out_free_mpol;
2363
2364	if (new->vm_file)
2365		get_file(new->vm_file);
2366
2367	if (new->vm_ops && new->vm_ops->open)
2368		new->vm_ops->open(new);
2369
2370	if (new_below)
2371		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2372			((addr - new->vm_start) >> PAGE_SHIFT), new);
2373	else
2374		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2375
2376	/* Success. */
2377	if (!err)
2378		return 0;
2379
2380	/* Clean everything up if vma_adjust failed. */
2381	if (new->vm_ops && new->vm_ops->close)
2382		new->vm_ops->close(new);
2383	if (new->vm_file)
2384		fput(new->vm_file);
2385	unlink_anon_vmas(new);
2386 out_free_mpol:
2387	mpol_put(vma_policy(new));
2388 out_free_vma:
2389	kmem_cache_free(vm_area_cachep, new);
2390	return err;
2391}
2392
2393/*
2394 * Split a vma into two pieces at address 'addr', a new vma is allocated
2395 * either for the first part or the tail.
2396 */
2397int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2398	      unsigned long addr, int new_below)
2399{
2400	if (mm->map_count >= sysctl_max_map_count)
2401		return -ENOMEM;
2402
2403	return __split_vma(mm, vma, addr, new_below);
2404}
2405
2406/* Munmap is split into 2 main parts -- this part which finds
2407 * what needs doing, and the areas themselves, which do the
2408 * work.  This now handles partial unmappings.
2409 * Jeremy Fitzhardinge <jeremy@goop.org>
2410 */
2411int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2412{
2413	unsigned long end;
2414	struct vm_area_struct *vma, *prev, *last;
2415
2416	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2417		return -EINVAL;
2418
2419	len = PAGE_ALIGN(len);
2420	if (len == 0)
2421		return -EINVAL;
2422
2423	/* Find the first overlapping VMA */
2424	vma = find_vma(mm, start);
2425	if (!vma)
2426		return 0;
2427	prev = vma->vm_prev;
2428	/* we have  start < vma->vm_end  */
2429
2430	/* if it doesn't overlap, we have nothing.. */
2431	end = start + len;
2432	if (vma->vm_start >= end)
2433		return 0;
2434
2435	/*
2436	 * If we need to split any vma, do it now to save pain later.
2437	 *
2438	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2439	 * unmapped vm_area_struct will remain in use: so lower split_vma
2440	 * places tmp vma above, and higher split_vma places tmp vma below.
2441	 */
2442	if (start > vma->vm_start) {
2443		int error;
2444
2445		/*
2446		 * Make sure that map_count on return from munmap() will
2447		 * not exceed its limit; but let map_count go just above
2448		 * its limit temporarily, to help free resources as expected.
2449		 */
2450		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2451			return -ENOMEM;
2452
2453		error = __split_vma(mm, vma, start, 0);
2454		if (error)
2455			return error;
2456		prev = vma;
2457	}
2458
2459	/* Does it split the last one? */
2460	last = find_vma(mm, end);
2461	if (last && end > last->vm_start) {
2462		int error = __split_vma(mm, last, end, 1);
2463		if (error)
2464			return error;
2465	}
2466	vma = prev ? prev->vm_next : mm->mmap;
2467
2468	/*
2469	 * unlock any mlock()ed ranges before detaching vmas
2470	 */
2471	if (mm->locked_vm) {
2472		struct vm_area_struct *tmp = vma;
2473		while (tmp && tmp->vm_start < end) {
2474			if (tmp->vm_flags & VM_LOCKED) {
2475				mm->locked_vm -= vma_pages(tmp);
2476				munlock_vma_pages_all(tmp);
2477			}
2478			tmp = tmp->vm_next;
2479		}
2480	}
2481
2482	/*
2483	 * Remove the vma's, and unmap the actual pages
2484	 */
2485	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2486	unmap_region(mm, vma, prev, start, end);
2487
2488	arch_unmap(mm, vma, start, end);
2489
2490	/* Fix up all other VM information */
2491	remove_vma_list(mm, vma);
2492
2493	return 0;
2494}
2495
2496int vm_munmap(unsigned long start, size_t len)
2497{
2498	int ret;
2499	struct mm_struct *mm = current->mm;
2500
2501	down_write(&mm->mmap_sem);
 
 
2502	ret = do_munmap(mm, start, len);
2503	up_write(&mm->mmap_sem);
2504	return ret;
2505}
2506EXPORT_SYMBOL(vm_munmap);
2507
2508SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2509{
 
 
 
2510	profile_munmap(addr);
2511	return vm_munmap(addr, len);
 
 
 
 
2512}
2513
2514
2515/*
2516 * Emulation of deprecated remap_file_pages() syscall.
2517 */
2518SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2519		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2520{
2521
2522	struct mm_struct *mm = current->mm;
2523	struct vm_area_struct *vma;
2524	unsigned long populate = 0;
2525	unsigned long ret = -EINVAL;
2526	struct file *file;
2527
2528	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2529		     current->comm, current->pid);
2530
2531	if (prot)
2532		return ret;
2533	start = start & PAGE_MASK;
2534	size = size & PAGE_MASK;
2535
2536	if (start + size <= start)
2537		return ret;
2538
2539	/* Does pgoff wrap? */
2540	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2541		return ret;
2542
2543	down_write(&mm->mmap_sem);
 
 
2544	vma = find_vma(mm, start);
2545
2546	if (!vma || !(vma->vm_flags & VM_SHARED))
2547		goto out;
2548
2549	if (start < vma->vm_start)
2550		goto out;
2551
2552	if (start + size > vma->vm_end) {
2553		struct vm_area_struct *next;
2554
2555		for (next = vma->vm_next; next; next = next->vm_next) {
2556			/* hole between vmas ? */
2557			if (next->vm_start != next->vm_prev->vm_end)
2558				goto out;
2559
2560			if (next->vm_file != vma->vm_file)
2561				goto out;
2562
2563			if (next->vm_flags != vma->vm_flags)
2564				goto out;
2565
2566			if (start + size <= next->vm_end)
2567				break;
2568		}
2569
2570		if (!next)
2571			goto out;
2572	}
2573
2574	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2575	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2576	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2577
2578	flags &= MAP_NONBLOCK;
2579	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2580	if (vma->vm_flags & VM_LOCKED) {
2581		struct vm_area_struct *tmp;
2582		flags |= MAP_LOCKED;
2583
2584		/* drop PG_Mlocked flag for over-mapped range */
2585		for (tmp = vma; tmp->vm_start >= start + size;
2586				tmp = tmp->vm_next) {
 
 
 
 
 
 
2587			munlock_vma_pages_range(tmp,
2588					max(tmp->vm_start, start),
2589					min(tmp->vm_end, start + size));
2590		}
2591	}
2592
2593	file = get_file(vma->vm_file);
2594	ret = do_mmap_pgoff(vma->vm_file, start, size,
2595			prot, flags, pgoff, &populate);
2596	fput(file);
2597out:
2598	up_write(&mm->mmap_sem);
2599	if (populate)
2600		mm_populate(ret, populate);
2601	if (!IS_ERR_VALUE(ret))
2602		ret = 0;
2603	return ret;
2604}
2605
2606static inline void verify_mm_writelocked(struct mm_struct *mm)
2607{
2608#ifdef CONFIG_DEBUG_VM
2609	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2610		WARN_ON(1);
2611		up_read(&mm->mmap_sem);
2612	}
2613#endif
2614}
2615
2616/*
2617 *  this is really a simplified "do_mmap".  it only handles
2618 *  anonymous maps.  eventually we may be able to do some
2619 *  brk-specific accounting here.
2620 */
2621static unsigned long do_brk(unsigned long addr, unsigned long len)
2622{
2623	struct mm_struct *mm = current->mm;
2624	struct vm_area_struct *vma, *prev;
2625	unsigned long flags;
2626	struct rb_node **rb_link, *rb_parent;
2627	pgoff_t pgoff = addr >> PAGE_SHIFT;
2628	int error;
2629
2630	len = PAGE_ALIGN(len);
 
 
2631	if (!len)
2632		return addr;
2633
2634	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2635
2636	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2637	if (offset_in_page(error))
2638		return error;
2639
2640	error = mlock_future_check(mm, mm->def_flags, len);
2641	if (error)
2642		return error;
2643
2644	/*
2645	 * mm->mmap_sem is required to protect against another thread
2646	 * changing the mappings in case we sleep.
2647	 */
2648	verify_mm_writelocked(mm);
2649
2650	/*
2651	 * Clear old maps.  this also does some error checking for us
2652	 */
2653	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2654			      &rb_parent)) {
2655		if (do_munmap(mm, addr, len))
2656			return -ENOMEM;
2657	}
2658
2659	/* Check against address space limits *after* clearing old maps... */
2660	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2661		return -ENOMEM;
2662
2663	if (mm->map_count > sysctl_max_map_count)
2664		return -ENOMEM;
2665
2666	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2667		return -ENOMEM;
2668
2669	/* Can we just expand an old private anonymous mapping? */
2670	vma = vma_merge(mm, prev, addr, addr + len, flags,
2671			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2672	if (vma)
2673		goto out;
2674
2675	/*
2676	 * create a vma struct for an anonymous mapping
2677	 */
2678	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2679	if (!vma) {
2680		vm_unacct_memory(len >> PAGE_SHIFT);
2681		return -ENOMEM;
2682	}
2683
2684	INIT_LIST_HEAD(&vma->anon_vma_chain);
2685	vma->vm_mm = mm;
2686	vma->vm_start = addr;
2687	vma->vm_end = addr + len;
2688	vma->vm_pgoff = pgoff;
2689	vma->vm_flags = flags;
2690	vma->vm_page_prot = vm_get_page_prot(flags);
2691	vma_link(mm, vma, prev, rb_link, rb_parent);
2692out:
2693	perf_event_mmap(vma);
2694	mm->total_vm += len >> PAGE_SHIFT;
2695	mm->data_vm += len >> PAGE_SHIFT;
2696	if (flags & VM_LOCKED)
2697		mm->locked_vm += (len >> PAGE_SHIFT);
2698	vma->vm_flags |= VM_SOFTDIRTY;
2699	return addr;
2700}
2701
2702unsigned long vm_brk(unsigned long addr, unsigned long len)
2703{
2704	struct mm_struct *mm = current->mm;
2705	unsigned long ret;
2706	bool populate;
2707
2708	down_write(&mm->mmap_sem);
 
 
2709	ret = do_brk(addr, len);
2710	populate = ((mm->def_flags & VM_LOCKED) != 0);
2711	up_write(&mm->mmap_sem);
2712	if (populate)
2713		mm_populate(addr, len);
2714	return ret;
2715}
2716EXPORT_SYMBOL(vm_brk);
2717
2718/* Release all mmaps. */
2719void exit_mmap(struct mm_struct *mm)
2720{
2721	struct mmu_gather tlb;
2722	struct vm_area_struct *vma;
2723	unsigned long nr_accounted = 0;
2724
2725	/* mm's last user has gone, and its about to be pulled down */
2726	mmu_notifier_release(mm);
2727
2728	if (mm->locked_vm) {
2729		vma = mm->mmap;
2730		while (vma) {
2731			if (vma->vm_flags & VM_LOCKED)
2732				munlock_vma_pages_all(vma);
2733			vma = vma->vm_next;
2734		}
2735	}
2736
2737	arch_exit_mmap(mm);
2738
2739	vma = mm->mmap;
2740	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2741		return;
2742
2743	lru_add_drain();
2744	flush_cache_mm(mm);
2745	tlb_gather_mmu(&tlb, mm, 0, -1);
2746	/* update_hiwater_rss(mm) here? but nobody should be looking */
2747	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2748	unmap_vmas(&tlb, vma, 0, -1);
2749
2750	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2751	tlb_finish_mmu(&tlb, 0, -1);
2752
2753	/*
2754	 * Walk the list again, actually closing and freeing it,
2755	 * with preemption enabled, without holding any MM locks.
2756	 */
2757	while (vma) {
2758		if (vma->vm_flags & VM_ACCOUNT)
2759			nr_accounted += vma_pages(vma);
2760		vma = remove_vma(vma);
2761	}
2762	vm_unacct_memory(nr_accounted);
2763}
2764
2765/* Insert vm structure into process list sorted by address
2766 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2767 * then i_mmap_rwsem is taken here.
2768 */
2769int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2770{
2771	struct vm_area_struct *prev;
2772	struct rb_node **rb_link, *rb_parent;
2773
2774	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2775			   &prev, &rb_link, &rb_parent))
2776		return -ENOMEM;
2777	if ((vma->vm_flags & VM_ACCOUNT) &&
2778	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2779		return -ENOMEM;
2780
2781	/*
2782	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2783	 * until its first write fault, when page's anon_vma and index
2784	 * are set.  But now set the vm_pgoff it will almost certainly
2785	 * end up with (unless mremap moves it elsewhere before that
2786	 * first wfault), so /proc/pid/maps tells a consistent story.
2787	 *
2788	 * By setting it to reflect the virtual start address of the
2789	 * vma, merges and splits can happen in a seamless way, just
2790	 * using the existing file pgoff checks and manipulations.
2791	 * Similarly in do_mmap_pgoff and in do_brk.
2792	 */
2793	if (vma_is_anonymous(vma)) {
2794		BUG_ON(vma->anon_vma);
2795		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2796	}
2797
2798	vma_link(mm, vma, prev, rb_link, rb_parent);
2799	return 0;
2800}
2801
2802/*
2803 * Copy the vma structure to a new location in the same mm,
2804 * prior to moving page table entries, to effect an mremap move.
2805 */
2806struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2807	unsigned long addr, unsigned long len, pgoff_t pgoff,
2808	bool *need_rmap_locks)
2809{
2810	struct vm_area_struct *vma = *vmap;
2811	unsigned long vma_start = vma->vm_start;
2812	struct mm_struct *mm = vma->vm_mm;
2813	struct vm_area_struct *new_vma, *prev;
2814	struct rb_node **rb_link, *rb_parent;
2815	bool faulted_in_anon_vma = true;
2816
2817	/*
2818	 * If anonymous vma has not yet been faulted, update new pgoff
2819	 * to match new location, to increase its chance of merging.
2820	 */
2821	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2822		pgoff = addr >> PAGE_SHIFT;
2823		faulted_in_anon_vma = false;
2824	}
2825
2826	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2827		return NULL;	/* should never get here */
2828	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2829			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2830			    vma->vm_userfaultfd_ctx);
2831	if (new_vma) {
2832		/*
2833		 * Source vma may have been merged into new_vma
2834		 */
2835		if (unlikely(vma_start >= new_vma->vm_start &&
2836			     vma_start < new_vma->vm_end)) {
2837			/*
2838			 * The only way we can get a vma_merge with
2839			 * self during an mremap is if the vma hasn't
2840			 * been faulted in yet and we were allowed to
2841			 * reset the dst vma->vm_pgoff to the
2842			 * destination address of the mremap to allow
2843			 * the merge to happen. mremap must change the
2844			 * vm_pgoff linearity between src and dst vmas
2845			 * (in turn preventing a vma_merge) to be
2846			 * safe. It is only safe to keep the vm_pgoff
2847			 * linear if there are no pages mapped yet.
2848			 */
2849			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2850			*vmap = vma = new_vma;
2851		}
2852		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2853	} else {
2854		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2855		if (!new_vma)
2856			goto out;
2857		*new_vma = *vma;
2858		new_vma->vm_start = addr;
2859		new_vma->vm_end = addr + len;
2860		new_vma->vm_pgoff = pgoff;
2861		if (vma_dup_policy(vma, new_vma))
2862			goto out_free_vma;
2863		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2864		if (anon_vma_clone(new_vma, vma))
2865			goto out_free_mempol;
2866		if (new_vma->vm_file)
2867			get_file(new_vma->vm_file);
2868		if (new_vma->vm_ops && new_vma->vm_ops->open)
2869			new_vma->vm_ops->open(new_vma);
2870		vma_link(mm, new_vma, prev, rb_link, rb_parent);
2871		*need_rmap_locks = false;
2872	}
2873	return new_vma;
2874
2875out_free_mempol:
2876	mpol_put(vma_policy(new_vma));
2877out_free_vma:
2878	kmem_cache_free(vm_area_cachep, new_vma);
2879out:
2880	return NULL;
2881}
2882
2883/*
2884 * Return true if the calling process may expand its vm space by the passed
2885 * number of pages
2886 */
2887bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2888{
2889	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2890		return false;
2891
2892	if (is_data_mapping(flags) &&
2893	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2894		if (ignore_rlimit_data)
2895			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Will be forbidden soon.\n",
 
 
 
 
2896				     current->comm, current->pid,
2897				     (mm->data_vm + npages) << PAGE_SHIFT,
2898				     rlimit(RLIMIT_DATA));
2899		else
2900			return false;
 
2901	}
2902
2903	return true;
2904}
2905
2906void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2907{
2908	mm->total_vm += npages;
2909
2910	if (is_exec_mapping(flags))
2911		mm->exec_vm += npages;
2912	else if (is_stack_mapping(flags))
2913		mm->stack_vm += npages;
2914	else if (is_data_mapping(flags))
2915		mm->data_vm += npages;
2916}
2917
2918static int special_mapping_fault(struct vm_area_struct *vma,
2919				 struct vm_fault *vmf);
2920
2921/*
2922 * Having a close hook prevents vma merging regardless of flags.
2923 */
2924static void special_mapping_close(struct vm_area_struct *vma)
2925{
2926}
2927
2928static const char *special_mapping_name(struct vm_area_struct *vma)
2929{
2930	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2931}
2932
 
 
 
 
 
 
 
 
 
2933static const struct vm_operations_struct special_mapping_vmops = {
2934	.close = special_mapping_close,
2935	.fault = special_mapping_fault,
 
2936	.name = special_mapping_name,
2937};
2938
2939static const struct vm_operations_struct legacy_special_mapping_vmops = {
2940	.close = special_mapping_close,
2941	.fault = special_mapping_fault,
2942};
2943
2944static int special_mapping_fault(struct vm_area_struct *vma,
2945				struct vm_fault *vmf)
2946{
2947	pgoff_t pgoff;
2948	struct page **pages;
2949
2950	if (vma->vm_ops == &legacy_special_mapping_vmops) {
2951		pages = vma->vm_private_data;
2952	} else {
2953		struct vm_special_mapping *sm = vma->vm_private_data;
2954
2955		if (sm->fault)
2956			return sm->fault(sm, vma, vmf);
2957
2958		pages = sm->pages;
2959	}
2960
2961	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
2962		pgoff--;
2963
2964	if (*pages) {
2965		struct page *page = *pages;
2966		get_page(page);
2967		vmf->page = page;
2968		return 0;
2969	}
2970
2971	return VM_FAULT_SIGBUS;
2972}
2973
2974static struct vm_area_struct *__install_special_mapping(
2975	struct mm_struct *mm,
2976	unsigned long addr, unsigned long len,
2977	unsigned long vm_flags, void *priv,
2978	const struct vm_operations_struct *ops)
2979{
2980	int ret;
2981	struct vm_area_struct *vma;
2982
2983	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2984	if (unlikely(vma == NULL))
2985		return ERR_PTR(-ENOMEM);
2986
2987	INIT_LIST_HEAD(&vma->anon_vma_chain);
2988	vma->vm_mm = mm;
2989	vma->vm_start = addr;
2990	vma->vm_end = addr + len;
2991
2992	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2993	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2994
2995	vma->vm_ops = ops;
2996	vma->vm_private_data = priv;
2997
2998	ret = insert_vm_struct(mm, vma);
2999	if (ret)
3000		goto out;
3001
3002	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3003
3004	perf_event_mmap(vma);
3005
3006	return vma;
3007
3008out:
3009	kmem_cache_free(vm_area_cachep, vma);
3010	return ERR_PTR(ret);
 
 
 
 
 
 
 
 
3011}
3012
3013/*
3014 * Called with mm->mmap_sem held for writing.
3015 * Insert a new vma covering the given region, with the given flags.
3016 * Its pages are supplied by the given array of struct page *.
3017 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3018 * The region past the last page supplied will always produce SIGBUS.
3019 * The array pointer and the pages it points to are assumed to stay alive
3020 * for as long as this mapping might exist.
3021 */
3022struct vm_area_struct *_install_special_mapping(
3023	struct mm_struct *mm,
3024	unsigned long addr, unsigned long len,
3025	unsigned long vm_flags, const struct vm_special_mapping *spec)
3026{
3027	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3028					&special_mapping_vmops);
3029}
3030
3031int install_special_mapping(struct mm_struct *mm,
3032			    unsigned long addr, unsigned long len,
3033			    unsigned long vm_flags, struct page **pages)
3034{
3035	struct vm_area_struct *vma = __install_special_mapping(
3036		mm, addr, len, vm_flags, (void *)pages,
3037		&legacy_special_mapping_vmops);
3038
3039	return PTR_ERR_OR_ZERO(vma);
3040}
3041
3042static DEFINE_MUTEX(mm_all_locks_mutex);
3043
3044static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3045{
3046	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3047		/*
3048		 * The LSB of head.next can't change from under us
3049		 * because we hold the mm_all_locks_mutex.
3050		 */
3051		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3052		/*
3053		 * We can safely modify head.next after taking the
3054		 * anon_vma->root->rwsem. If some other vma in this mm shares
3055		 * the same anon_vma we won't take it again.
3056		 *
3057		 * No need of atomic instructions here, head.next
3058		 * can't change from under us thanks to the
3059		 * anon_vma->root->rwsem.
3060		 */
3061		if (__test_and_set_bit(0, (unsigned long *)
3062				       &anon_vma->root->rb_root.rb_node))
3063			BUG();
3064	}
3065}
3066
3067static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3068{
3069	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3070		/*
3071		 * AS_MM_ALL_LOCKS can't change from under us because
3072		 * we hold the mm_all_locks_mutex.
3073		 *
3074		 * Operations on ->flags have to be atomic because
3075		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3076		 * mm_all_locks_mutex, there may be other cpus
3077		 * changing other bitflags in parallel to us.
3078		 */
3079		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3080			BUG();
3081		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3082	}
3083}
3084
3085/*
3086 * This operation locks against the VM for all pte/vma/mm related
3087 * operations that could ever happen on a certain mm. This includes
3088 * vmtruncate, try_to_unmap, and all page faults.
3089 *
3090 * The caller must take the mmap_sem in write mode before calling
3091 * mm_take_all_locks(). The caller isn't allowed to release the
3092 * mmap_sem until mm_drop_all_locks() returns.
3093 *
3094 * mmap_sem in write mode is required in order to block all operations
3095 * that could modify pagetables and free pages without need of
3096 * altering the vma layout. It's also needed in write mode to avoid new
3097 * anon_vmas to be associated with existing vmas.
3098 *
3099 * A single task can't take more than one mm_take_all_locks() in a row
3100 * or it would deadlock.
3101 *
3102 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3103 * mapping->flags avoid to take the same lock twice, if more than one
3104 * vma in this mm is backed by the same anon_vma or address_space.
3105 *
3106 * We take locks in following order, accordingly to comment at beginning
3107 * of mm/rmap.c:
3108 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3109 *     hugetlb mapping);
3110 *   - all i_mmap_rwsem locks;
3111 *   - all anon_vma->rwseml
3112 *
3113 * We can take all locks within these types randomly because the VM code
3114 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3115 * mm_all_locks_mutex.
3116 *
3117 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3118 * that may have to take thousand of locks.
3119 *
3120 * mm_take_all_locks() can fail if it's interrupted by signals.
3121 */
3122int mm_take_all_locks(struct mm_struct *mm)
3123{
3124	struct vm_area_struct *vma;
3125	struct anon_vma_chain *avc;
3126
3127	BUG_ON(down_read_trylock(&mm->mmap_sem));
3128
3129	mutex_lock(&mm_all_locks_mutex);
3130
3131	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3132		if (signal_pending(current))
3133			goto out_unlock;
3134		if (vma->vm_file && vma->vm_file->f_mapping &&
3135				is_vm_hugetlb_page(vma))
3136			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3137	}
3138
3139	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3140		if (signal_pending(current))
3141			goto out_unlock;
3142		if (vma->vm_file && vma->vm_file->f_mapping &&
3143				!is_vm_hugetlb_page(vma))
3144			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3145	}
3146
3147	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3148		if (signal_pending(current))
3149			goto out_unlock;
3150		if (vma->anon_vma)
3151			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3152				vm_lock_anon_vma(mm, avc->anon_vma);
3153	}
3154
3155	return 0;
3156
3157out_unlock:
3158	mm_drop_all_locks(mm);
3159	return -EINTR;
3160}
3161
3162static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3163{
3164	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3165		/*
3166		 * The LSB of head.next can't change to 0 from under
3167		 * us because we hold the mm_all_locks_mutex.
3168		 *
3169		 * We must however clear the bitflag before unlocking
3170		 * the vma so the users using the anon_vma->rb_root will
3171		 * never see our bitflag.
3172		 *
3173		 * No need of atomic instructions here, head.next
3174		 * can't change from under us until we release the
3175		 * anon_vma->root->rwsem.
3176		 */
3177		if (!__test_and_clear_bit(0, (unsigned long *)
3178					  &anon_vma->root->rb_root.rb_node))
3179			BUG();
3180		anon_vma_unlock_write(anon_vma);
3181	}
3182}
3183
3184static void vm_unlock_mapping(struct address_space *mapping)
3185{
3186	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3187		/*
3188		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3189		 * because we hold the mm_all_locks_mutex.
3190		 */
3191		i_mmap_unlock_write(mapping);
3192		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3193					&mapping->flags))
3194			BUG();
3195	}
3196}
3197
3198/*
3199 * The mmap_sem cannot be released by the caller until
3200 * mm_drop_all_locks() returns.
3201 */
3202void mm_drop_all_locks(struct mm_struct *mm)
3203{
3204	struct vm_area_struct *vma;
3205	struct anon_vma_chain *avc;
3206
3207	BUG_ON(down_read_trylock(&mm->mmap_sem));
3208	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3209
3210	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3211		if (vma->anon_vma)
3212			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3213				vm_unlock_anon_vma(avc->anon_vma);
3214		if (vma->vm_file && vma->vm_file->f_mapping)
3215			vm_unlock_mapping(vma->vm_file->f_mapping);
3216	}
3217
3218	mutex_unlock(&mm_all_locks_mutex);
3219}
3220
3221/*
3222 * initialise the VMA slab
3223 */
3224void __init mmap_init(void)
3225{
3226	int ret;
3227
3228	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3229	VM_BUG_ON(ret);
3230}
3231
3232/*
3233 * Initialise sysctl_user_reserve_kbytes.
3234 *
3235 * This is intended to prevent a user from starting a single memory hogging
3236 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3237 * mode.
3238 *
3239 * The default value is min(3% of free memory, 128MB)
3240 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3241 */
3242static int init_user_reserve(void)
3243{
3244	unsigned long free_kbytes;
3245
3246	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3247
3248	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3249	return 0;
3250}
3251subsys_initcall(init_user_reserve);
3252
3253/*
3254 * Initialise sysctl_admin_reserve_kbytes.
3255 *
3256 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3257 * to log in and kill a memory hogging process.
3258 *
3259 * Systems with more than 256MB will reserve 8MB, enough to recover
3260 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3261 * only reserve 3% of free pages by default.
3262 */
3263static int init_admin_reserve(void)
3264{
3265	unsigned long free_kbytes;
3266
3267	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3268
3269	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3270	return 0;
3271}
3272subsys_initcall(init_admin_reserve);
3273
3274/*
3275 * Reinititalise user and admin reserves if memory is added or removed.
3276 *
3277 * The default user reserve max is 128MB, and the default max for the
3278 * admin reserve is 8MB. These are usually, but not always, enough to
3279 * enable recovery from a memory hogging process using login/sshd, a shell,
3280 * and tools like top. It may make sense to increase or even disable the
3281 * reserve depending on the existence of swap or variations in the recovery
3282 * tools. So, the admin may have changed them.
3283 *
3284 * If memory is added and the reserves have been eliminated or increased above
3285 * the default max, then we'll trust the admin.
3286 *
3287 * If memory is removed and there isn't enough free memory, then we
3288 * need to reset the reserves.
3289 *
3290 * Otherwise keep the reserve set by the admin.
3291 */
3292static int reserve_mem_notifier(struct notifier_block *nb,
3293			     unsigned long action, void *data)
3294{
3295	unsigned long tmp, free_kbytes;
3296
3297	switch (action) {
3298	case MEM_ONLINE:
3299		/* Default max is 128MB. Leave alone if modified by operator. */
3300		tmp = sysctl_user_reserve_kbytes;
3301		if (0 < tmp && tmp < (1UL << 17))
3302			init_user_reserve();
3303
3304		/* Default max is 8MB.  Leave alone if modified by operator. */
3305		tmp = sysctl_admin_reserve_kbytes;
3306		if (0 < tmp && tmp < (1UL << 13))
3307			init_admin_reserve();
3308
3309		break;
3310	case MEM_OFFLINE:
3311		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3312
3313		if (sysctl_user_reserve_kbytes > free_kbytes) {
3314			init_user_reserve();
3315			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3316				sysctl_user_reserve_kbytes);
3317		}
3318
3319		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3320			init_admin_reserve();
3321			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3322				sysctl_admin_reserve_kbytes);
3323		}
3324		break;
3325	default:
3326		break;
3327	}
3328	return NOTIFY_OK;
3329}
3330
3331static struct notifier_block reserve_mem_nb = {
3332	.notifier_call = reserve_mem_notifier,
3333};
3334
3335static int __meminit init_reserve_notifier(void)
3336{
3337	if (register_hotmemory_notifier(&reserve_mem_nb))
3338		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3339
3340	return 0;
3341}
3342subsys_initcall(init_reserve_notifier);
v4.10.11
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/slab.h>
  13#include <linux/backing-dev.h>
  14#include <linux/mm.h>
  15#include <linux/vmacache.h>
  16#include <linux/shm.h>
  17#include <linux/mman.h>
  18#include <linux/pagemap.h>
  19#include <linux/swap.h>
  20#include <linux/syscalls.h>
  21#include <linux/capability.h>
  22#include <linux/init.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/hugetlb.h>
  28#include <linux/shmem_fs.h>
  29#include <linux/profile.h>
  30#include <linux/export.h>
  31#include <linux/mount.h>
  32#include <linux/mempolicy.h>
  33#include <linux/rmap.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/mmdebug.h>
  36#include <linux/perf_event.h>
  37#include <linux/audit.h>
  38#include <linux/khugepaged.h>
  39#include <linux/uprobes.h>
  40#include <linux/rbtree_augmented.h>
  41#include <linux/notifier.h>
  42#include <linux/memory.h>
  43#include <linux/printk.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/moduleparam.h>
  46#include <linux/pkeys.h>
  47
  48#include <linux/uaccess.h>
  49#include <asm/cacheflush.h>
  50#include <asm/tlb.h>
  51#include <asm/mmu_context.h>
  52
  53#include "internal.h"
  54
  55#ifndef arch_mmap_check
  56#define arch_mmap_check(addr, len, flags)	(0)
  57#endif
  58
 
 
 
 
  59#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  60const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  61const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  62int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  63#endif
  64#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  65const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  66const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  67int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  68#endif
  69
  70static bool ignore_rlimit_data;
  71core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  72
  73static void unmap_region(struct mm_struct *mm,
  74		struct vm_area_struct *vma, struct vm_area_struct *prev,
  75		unsigned long start, unsigned long end);
  76
  77/* description of effects of mapping type and prot in current implementation.
  78 * this is due to the limited x86 page protection hardware.  The expected
  79 * behavior is in parens:
  80 *
  81 * map_type	prot
  82 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  83 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  84 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  85 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  86 *
  87 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  88 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  89 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  90 *
  91 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
  92 * MAP_PRIVATE:
  93 *								r: (no) no
  94 *								w: (no) no
  95 *								x: (yes) yes
  96 */
  97pgprot_t protection_map[16] = {
  98	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  99	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
 100};
 101
 102pgprot_t vm_get_page_prot(unsigned long vm_flags)
 103{
 104	return __pgprot(pgprot_val(protection_map[vm_flags &
 105				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 106			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 107}
 108EXPORT_SYMBOL(vm_get_page_prot);
 109
 110static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 111{
 112	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 113}
 114
 115/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 116void vma_set_page_prot(struct vm_area_struct *vma)
 117{
 118	unsigned long vm_flags = vma->vm_flags;
 119	pgprot_t vm_page_prot;
 120
 121	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 122	if (vma_wants_writenotify(vma, vm_page_prot)) {
 123		vm_flags &= ~VM_SHARED;
 124		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 
 125	}
 126	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
 127	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 128}
 129
 130/*
 131 * Requires inode->i_mapping->i_mmap_rwsem
 132 */
 133static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 134		struct file *file, struct address_space *mapping)
 135{
 136	if (vma->vm_flags & VM_DENYWRITE)
 137		atomic_inc(&file_inode(file)->i_writecount);
 138	if (vma->vm_flags & VM_SHARED)
 139		mapping_unmap_writable(mapping);
 140
 141	flush_dcache_mmap_lock(mapping);
 142	vma_interval_tree_remove(vma, &mapping->i_mmap);
 143	flush_dcache_mmap_unlock(mapping);
 144}
 145
 146/*
 147 * Unlink a file-based vm structure from its interval tree, to hide
 148 * vma from rmap and vmtruncate before freeing its page tables.
 149 */
 150void unlink_file_vma(struct vm_area_struct *vma)
 151{
 152	struct file *file = vma->vm_file;
 153
 154	if (file) {
 155		struct address_space *mapping = file->f_mapping;
 156		i_mmap_lock_write(mapping);
 157		__remove_shared_vm_struct(vma, file, mapping);
 158		i_mmap_unlock_write(mapping);
 159	}
 160}
 161
 162/*
 163 * Close a vm structure and free it, returning the next.
 164 */
 165static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 166{
 167	struct vm_area_struct *next = vma->vm_next;
 168
 169	might_sleep();
 170	if (vma->vm_ops && vma->vm_ops->close)
 171		vma->vm_ops->close(vma);
 172	if (vma->vm_file)
 173		fput(vma->vm_file);
 174	mpol_put(vma_policy(vma));
 175	kmem_cache_free(vm_area_cachep, vma);
 176	return next;
 177}
 178
 179static int do_brk(unsigned long addr, unsigned long len);
 180
 181SYSCALL_DEFINE1(brk, unsigned long, brk)
 182{
 183	unsigned long retval;
 184	unsigned long newbrk, oldbrk;
 185	struct mm_struct *mm = current->mm;
 186	unsigned long min_brk;
 187	bool populate;
 188
 189	if (down_write_killable(&mm->mmap_sem))
 190		return -EINTR;
 191
 192#ifdef CONFIG_COMPAT_BRK
 193	/*
 194	 * CONFIG_COMPAT_BRK can still be overridden by setting
 195	 * randomize_va_space to 2, which will still cause mm->start_brk
 196	 * to be arbitrarily shifted
 197	 */
 198	if (current->brk_randomized)
 199		min_brk = mm->start_brk;
 200	else
 201		min_brk = mm->end_data;
 202#else
 203	min_brk = mm->start_brk;
 204#endif
 205	if (brk < min_brk)
 206		goto out;
 207
 208	/*
 209	 * Check against rlimit here. If this check is done later after the test
 210	 * of oldbrk with newbrk then it can escape the test and let the data
 211	 * segment grow beyond its set limit the in case where the limit is
 212	 * not page aligned -Ram Gupta
 213	 */
 214	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 215			      mm->end_data, mm->start_data))
 216		goto out;
 217
 218	newbrk = PAGE_ALIGN(brk);
 219	oldbrk = PAGE_ALIGN(mm->brk);
 220	if (oldbrk == newbrk)
 221		goto set_brk;
 222
 223	/* Always allow shrinking brk. */
 224	if (brk <= mm->brk) {
 225		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 226			goto set_brk;
 227		goto out;
 228	}
 229
 230	/* Check against existing mmap mappings. */
 231	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 232		goto out;
 233
 234	/* Ok, looks good - let it rip. */
 235	if (do_brk(oldbrk, newbrk-oldbrk) < 0)
 236		goto out;
 237
 238set_brk:
 239	mm->brk = brk;
 240	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 241	up_write(&mm->mmap_sem);
 242	if (populate)
 243		mm_populate(oldbrk, newbrk - oldbrk);
 244	return brk;
 245
 246out:
 247	retval = mm->brk;
 248	up_write(&mm->mmap_sem);
 249	return retval;
 250}
 251
 252static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 253{
 254	unsigned long max, subtree_gap;
 255	max = vma->vm_start;
 256	if (vma->vm_prev)
 257		max -= vma->vm_prev->vm_end;
 258	if (vma->vm_rb.rb_left) {
 259		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 260				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 261		if (subtree_gap > max)
 262			max = subtree_gap;
 263	}
 264	if (vma->vm_rb.rb_right) {
 265		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 266				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 267		if (subtree_gap > max)
 268			max = subtree_gap;
 269	}
 270	return max;
 271}
 272
 273#ifdef CONFIG_DEBUG_VM_RB
 274static int browse_rb(struct mm_struct *mm)
 275{
 276	struct rb_root *root = &mm->mm_rb;
 277	int i = 0, j, bug = 0;
 278	struct rb_node *nd, *pn = NULL;
 279	unsigned long prev = 0, pend = 0;
 280
 281	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 282		struct vm_area_struct *vma;
 283		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 284		if (vma->vm_start < prev) {
 285			pr_emerg("vm_start %lx < prev %lx\n",
 286				  vma->vm_start, prev);
 287			bug = 1;
 288		}
 289		if (vma->vm_start < pend) {
 290			pr_emerg("vm_start %lx < pend %lx\n",
 291				  vma->vm_start, pend);
 292			bug = 1;
 293		}
 294		if (vma->vm_start > vma->vm_end) {
 295			pr_emerg("vm_start %lx > vm_end %lx\n",
 296				  vma->vm_start, vma->vm_end);
 297			bug = 1;
 298		}
 299		spin_lock(&mm->page_table_lock);
 300		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 301			pr_emerg("free gap %lx, correct %lx\n",
 302			       vma->rb_subtree_gap,
 303			       vma_compute_subtree_gap(vma));
 304			bug = 1;
 305		}
 306		spin_unlock(&mm->page_table_lock);
 307		i++;
 308		pn = nd;
 309		prev = vma->vm_start;
 310		pend = vma->vm_end;
 311	}
 312	j = 0;
 313	for (nd = pn; nd; nd = rb_prev(nd))
 314		j++;
 315	if (i != j) {
 316		pr_emerg("backwards %d, forwards %d\n", j, i);
 317		bug = 1;
 318	}
 319	return bug ? -1 : i;
 320}
 321
 322static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 323{
 324	struct rb_node *nd;
 325
 326	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 327		struct vm_area_struct *vma;
 328		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 329		VM_BUG_ON_VMA(vma != ignore &&
 330			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 331			vma);
 332	}
 333}
 334
 335static void validate_mm(struct mm_struct *mm)
 336{
 337	int bug = 0;
 338	int i = 0;
 339	unsigned long highest_address = 0;
 340	struct vm_area_struct *vma = mm->mmap;
 341
 342	while (vma) {
 343		struct anon_vma *anon_vma = vma->anon_vma;
 344		struct anon_vma_chain *avc;
 345
 346		if (anon_vma) {
 347			anon_vma_lock_read(anon_vma);
 348			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 349				anon_vma_interval_tree_verify(avc);
 350			anon_vma_unlock_read(anon_vma);
 351		}
 352
 353		highest_address = vma->vm_end;
 354		vma = vma->vm_next;
 355		i++;
 356	}
 357	if (i != mm->map_count) {
 358		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 359		bug = 1;
 360	}
 361	if (highest_address != mm->highest_vm_end) {
 362		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 363			  mm->highest_vm_end, highest_address);
 364		bug = 1;
 365	}
 366	i = browse_rb(mm);
 367	if (i != mm->map_count) {
 368		if (i != -1)
 369			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 370		bug = 1;
 371	}
 372	VM_BUG_ON_MM(bug, mm);
 373}
 374#else
 375#define validate_mm_rb(root, ignore) do { } while (0)
 376#define validate_mm(mm) do { } while (0)
 377#endif
 378
 379RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 380		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 381
 382/*
 383 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 384 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 385 * in the rbtree.
 386 */
 387static void vma_gap_update(struct vm_area_struct *vma)
 388{
 389	/*
 390	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 391	 * function that does exacltly what we want.
 392	 */
 393	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 394}
 395
 396static inline void vma_rb_insert(struct vm_area_struct *vma,
 397				 struct rb_root *root)
 398{
 399	/* All rb_subtree_gap values must be consistent prior to insertion */
 400	validate_mm_rb(root, NULL);
 401
 402	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 403}
 404
 405static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 406{
 407	/*
 
 
 
 
 
 
 408	 * Note rb_erase_augmented is a fairly large inline function,
 409	 * so make sure we instantiate it only once with our desired
 410	 * augmented rbtree callbacks.
 411	 */
 412	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 413}
 414
 415static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
 416						struct rb_root *root,
 417						struct vm_area_struct *ignore)
 418{
 419	/*
 420	 * All rb_subtree_gap values must be consistent prior to erase,
 421	 * with the possible exception of the "next" vma being erased if
 422	 * next->vm_start was reduced.
 423	 */
 424	validate_mm_rb(root, ignore);
 425
 426	__vma_rb_erase(vma, root);
 427}
 428
 429static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
 430					 struct rb_root *root)
 431{
 432	/*
 433	 * All rb_subtree_gap values must be consistent prior to erase,
 434	 * with the possible exception of the vma being erased.
 435	 */
 436	validate_mm_rb(root, vma);
 437
 438	__vma_rb_erase(vma, root);
 439}
 440
 441/*
 442 * vma has some anon_vma assigned, and is already inserted on that
 443 * anon_vma's interval trees.
 444 *
 445 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 446 * vma must be removed from the anon_vma's interval trees using
 447 * anon_vma_interval_tree_pre_update_vma().
 448 *
 449 * After the update, the vma will be reinserted using
 450 * anon_vma_interval_tree_post_update_vma().
 451 *
 452 * The entire update must be protected by exclusive mmap_sem and by
 453 * the root anon_vma's mutex.
 454 */
 455static inline void
 456anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 457{
 458	struct anon_vma_chain *avc;
 459
 460	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 461		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 462}
 463
 464static inline void
 465anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 466{
 467	struct anon_vma_chain *avc;
 468
 469	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 470		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 471}
 472
 473static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 474		unsigned long end, struct vm_area_struct **pprev,
 475		struct rb_node ***rb_link, struct rb_node **rb_parent)
 476{
 477	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 478
 479	__rb_link = &mm->mm_rb.rb_node;
 480	rb_prev = __rb_parent = NULL;
 481
 482	while (*__rb_link) {
 483		struct vm_area_struct *vma_tmp;
 484
 485		__rb_parent = *__rb_link;
 486		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 487
 488		if (vma_tmp->vm_end > addr) {
 489			/* Fail if an existing vma overlaps the area */
 490			if (vma_tmp->vm_start < end)
 491				return -ENOMEM;
 492			__rb_link = &__rb_parent->rb_left;
 493		} else {
 494			rb_prev = __rb_parent;
 495			__rb_link = &__rb_parent->rb_right;
 496		}
 497	}
 498
 499	*pprev = NULL;
 500	if (rb_prev)
 501		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 502	*rb_link = __rb_link;
 503	*rb_parent = __rb_parent;
 504	return 0;
 505}
 506
 507static unsigned long count_vma_pages_range(struct mm_struct *mm,
 508		unsigned long addr, unsigned long end)
 509{
 510	unsigned long nr_pages = 0;
 511	struct vm_area_struct *vma;
 512
 513	/* Find first overlaping mapping */
 514	vma = find_vma_intersection(mm, addr, end);
 515	if (!vma)
 516		return 0;
 517
 518	nr_pages = (min(end, vma->vm_end) -
 519		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 520
 521	/* Iterate over the rest of the overlaps */
 522	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 523		unsigned long overlap_len;
 524
 525		if (vma->vm_start > end)
 526			break;
 527
 528		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 529		nr_pages += overlap_len >> PAGE_SHIFT;
 530	}
 531
 532	return nr_pages;
 533}
 534
 535void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 536		struct rb_node **rb_link, struct rb_node *rb_parent)
 537{
 538	/* Update tracking information for the gap following the new vma. */
 539	if (vma->vm_next)
 540		vma_gap_update(vma->vm_next);
 541	else
 542		mm->highest_vm_end = vma->vm_end;
 543
 544	/*
 545	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 546	 * correct insertion point for that vma. As a result, we could not
 547	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 548	 * So, we first insert the vma with a zero rb_subtree_gap value
 549	 * (to be consistent with what we did on the way down), and then
 550	 * immediately update the gap to the correct value. Finally we
 551	 * rebalance the rbtree after all augmented values have been set.
 552	 */
 553	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 554	vma->rb_subtree_gap = 0;
 555	vma_gap_update(vma);
 556	vma_rb_insert(vma, &mm->mm_rb);
 557}
 558
 559static void __vma_link_file(struct vm_area_struct *vma)
 560{
 561	struct file *file;
 562
 563	file = vma->vm_file;
 564	if (file) {
 565		struct address_space *mapping = file->f_mapping;
 566
 567		if (vma->vm_flags & VM_DENYWRITE)
 568			atomic_dec(&file_inode(file)->i_writecount);
 569		if (vma->vm_flags & VM_SHARED)
 570			atomic_inc(&mapping->i_mmap_writable);
 571
 572		flush_dcache_mmap_lock(mapping);
 573		vma_interval_tree_insert(vma, &mapping->i_mmap);
 574		flush_dcache_mmap_unlock(mapping);
 575	}
 576}
 577
 578static void
 579__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 580	struct vm_area_struct *prev, struct rb_node **rb_link,
 581	struct rb_node *rb_parent)
 582{
 583	__vma_link_list(mm, vma, prev, rb_parent);
 584	__vma_link_rb(mm, vma, rb_link, rb_parent);
 585}
 586
 587static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 588			struct vm_area_struct *prev, struct rb_node **rb_link,
 589			struct rb_node *rb_parent)
 590{
 591	struct address_space *mapping = NULL;
 592
 593	if (vma->vm_file) {
 594		mapping = vma->vm_file->f_mapping;
 595		i_mmap_lock_write(mapping);
 596	}
 597
 598	__vma_link(mm, vma, prev, rb_link, rb_parent);
 599	__vma_link_file(vma);
 600
 601	if (mapping)
 602		i_mmap_unlock_write(mapping);
 603
 604	mm->map_count++;
 605	validate_mm(mm);
 606}
 607
 608/*
 609 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 610 * mm's list and rbtree.  It has already been inserted into the interval tree.
 611 */
 612static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 613{
 614	struct vm_area_struct *prev;
 615	struct rb_node **rb_link, *rb_parent;
 616
 617	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 618			   &prev, &rb_link, &rb_parent))
 619		BUG();
 620	__vma_link(mm, vma, prev, rb_link, rb_parent);
 621	mm->map_count++;
 622}
 623
 624static __always_inline void __vma_unlink_common(struct mm_struct *mm,
 625						struct vm_area_struct *vma,
 626						struct vm_area_struct *prev,
 627						bool has_prev,
 628						struct vm_area_struct *ignore)
 629{
 630	struct vm_area_struct *next;
 631
 632	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
 633	next = vma->vm_next;
 634	if (has_prev)
 635		prev->vm_next = next;
 636	else {
 637		prev = vma->vm_prev;
 638		if (prev)
 639			prev->vm_next = next;
 640		else
 641			mm->mmap = next;
 642	}
 643	if (next)
 644		next->vm_prev = prev;
 645
 646	/* Kill the cache */
 647	vmacache_invalidate(mm);
 648}
 649
 650static inline void __vma_unlink_prev(struct mm_struct *mm,
 651				     struct vm_area_struct *vma,
 652				     struct vm_area_struct *prev)
 653{
 654	__vma_unlink_common(mm, vma, prev, true, vma);
 655}
 656
 657/*
 658 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 659 * is already present in an i_mmap tree without adjusting the tree.
 660 * The following helper function should be used when such adjustments
 661 * are necessary.  The "insert" vma (if any) is to be inserted
 662 * before we drop the necessary locks.
 663 */
 664int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 665	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 666	struct vm_area_struct *expand)
 667{
 668	struct mm_struct *mm = vma->vm_mm;
 669	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
 
 670	struct address_space *mapping = NULL;
 671	struct rb_root *root = NULL;
 672	struct anon_vma *anon_vma = NULL;
 673	struct file *file = vma->vm_file;
 674	bool start_changed = false, end_changed = false;
 675	long adjust_next = 0;
 676	int remove_next = 0;
 677
 678	if (next && !insert) {
 679		struct vm_area_struct *exporter = NULL, *importer = NULL;
 680
 681		if (end >= next->vm_end) {
 682			/*
 683			 * vma expands, overlapping all the next, and
 684			 * perhaps the one after too (mprotect case 6).
 685			 * The only other cases that gets here are
 686			 * case 1, case 7 and case 8.
 687			 */
 688			if (next == expand) {
 689				/*
 690				 * The only case where we don't expand "vma"
 691				 * and we expand "next" instead is case 8.
 692				 */
 693				VM_WARN_ON(end != next->vm_end);
 694				/*
 695				 * remove_next == 3 means we're
 696				 * removing "vma" and that to do so we
 697				 * swapped "vma" and "next".
 698				 */
 699				remove_next = 3;
 700				VM_WARN_ON(file != next->vm_file);
 701				swap(vma, next);
 702			} else {
 703				VM_WARN_ON(expand != vma);
 704				/*
 705				 * case 1, 6, 7, remove_next == 2 is case 6,
 706				 * remove_next == 1 is case 1 or 7.
 707				 */
 708				remove_next = 1 + (end > next->vm_end);
 709				VM_WARN_ON(remove_next == 2 &&
 710					   end != next->vm_next->vm_end);
 711				VM_WARN_ON(remove_next == 1 &&
 712					   end != next->vm_end);
 713				/* trim end to next, for case 6 first pass */
 714				end = next->vm_end;
 715			}
 716
 717			exporter = next;
 718			importer = vma;
 719
 720			/*
 721			 * If next doesn't have anon_vma, import from vma after
 722			 * next, if the vma overlaps with it.
 723			 */
 724			if (remove_next == 2 && !next->anon_vma)
 725				exporter = next->vm_next;
 726
 727		} else if (end > next->vm_start) {
 728			/*
 729			 * vma expands, overlapping part of the next:
 730			 * mprotect case 5 shifting the boundary up.
 731			 */
 732			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 733			exporter = next;
 734			importer = vma;
 735			VM_WARN_ON(expand != importer);
 736		} else if (end < vma->vm_end) {
 737			/*
 738			 * vma shrinks, and !insert tells it's not
 739			 * split_vma inserting another: so it must be
 740			 * mprotect case 4 shifting the boundary down.
 741			 */
 742			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 743			exporter = vma;
 744			importer = next;
 745			VM_WARN_ON(expand != importer);
 746		}
 747
 748		/*
 749		 * Easily overlooked: when mprotect shifts the boundary,
 750		 * make sure the expanding vma has anon_vma set if the
 751		 * shrinking vma had, to cover any anon pages imported.
 752		 */
 753		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 754			int error;
 755
 756			importer->anon_vma = exporter->anon_vma;
 757			error = anon_vma_clone(importer, exporter);
 758			if (error)
 759				return error;
 760		}
 761	}
 762again:
 763	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
 764
 765	if (file) {
 766		mapping = file->f_mapping;
 767		root = &mapping->i_mmap;
 768		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 769
 770		if (adjust_next)
 771			uprobe_munmap(next, next->vm_start, next->vm_end);
 772
 773		i_mmap_lock_write(mapping);
 774		if (insert) {
 775			/*
 776			 * Put into interval tree now, so instantiated pages
 777			 * are visible to arm/parisc __flush_dcache_page
 778			 * throughout; but we cannot insert into address
 779			 * space until vma start or end is updated.
 780			 */
 781			__vma_link_file(insert);
 782		}
 783	}
 784
 
 
 785	anon_vma = vma->anon_vma;
 786	if (!anon_vma && adjust_next)
 787		anon_vma = next->anon_vma;
 788	if (anon_vma) {
 789		VM_WARN_ON(adjust_next && next->anon_vma &&
 790			   anon_vma != next->anon_vma);
 791		anon_vma_lock_write(anon_vma);
 792		anon_vma_interval_tree_pre_update_vma(vma);
 793		if (adjust_next)
 794			anon_vma_interval_tree_pre_update_vma(next);
 795	}
 796
 797	if (root) {
 798		flush_dcache_mmap_lock(mapping);
 799		vma_interval_tree_remove(vma, root);
 800		if (adjust_next)
 801			vma_interval_tree_remove(next, root);
 802	}
 803
 804	if (start != vma->vm_start) {
 805		vma->vm_start = start;
 806		start_changed = true;
 807	}
 808	if (end != vma->vm_end) {
 809		vma->vm_end = end;
 810		end_changed = true;
 811	}
 812	vma->vm_pgoff = pgoff;
 813	if (adjust_next) {
 814		next->vm_start += adjust_next << PAGE_SHIFT;
 815		next->vm_pgoff += adjust_next;
 816	}
 817
 818	if (root) {
 819		if (adjust_next)
 820			vma_interval_tree_insert(next, root);
 821		vma_interval_tree_insert(vma, root);
 822		flush_dcache_mmap_unlock(mapping);
 823	}
 824
 825	if (remove_next) {
 826		/*
 827		 * vma_merge has merged next into vma, and needs
 828		 * us to remove next before dropping the locks.
 829		 */
 830		if (remove_next != 3)
 831			__vma_unlink_prev(mm, next, vma);
 832		else
 833			/*
 834			 * vma is not before next if they've been
 835			 * swapped.
 836			 *
 837			 * pre-swap() next->vm_start was reduced so
 838			 * tell validate_mm_rb to ignore pre-swap()
 839			 * "next" (which is stored in post-swap()
 840			 * "vma").
 841			 */
 842			__vma_unlink_common(mm, next, NULL, false, vma);
 843		if (file)
 844			__remove_shared_vm_struct(next, file, mapping);
 845	} else if (insert) {
 846		/*
 847		 * split_vma has split insert from vma, and needs
 848		 * us to insert it before dropping the locks
 849		 * (it may either follow vma or precede it).
 850		 */
 851		__insert_vm_struct(mm, insert);
 852	} else {
 853		if (start_changed)
 854			vma_gap_update(vma);
 855		if (end_changed) {
 856			if (!next)
 857				mm->highest_vm_end = end;
 858			else if (!adjust_next)
 859				vma_gap_update(next);
 860		}
 861	}
 862
 863	if (anon_vma) {
 864		anon_vma_interval_tree_post_update_vma(vma);
 865		if (adjust_next)
 866			anon_vma_interval_tree_post_update_vma(next);
 867		anon_vma_unlock_write(anon_vma);
 868	}
 869	if (mapping)
 870		i_mmap_unlock_write(mapping);
 871
 872	if (root) {
 873		uprobe_mmap(vma);
 874
 875		if (adjust_next)
 876			uprobe_mmap(next);
 877	}
 878
 879	if (remove_next) {
 880		if (file) {
 881			uprobe_munmap(next, next->vm_start, next->vm_end);
 882			fput(file);
 883		}
 884		if (next->anon_vma)
 885			anon_vma_merge(vma, next);
 886		mm->map_count--;
 887		mpol_put(vma_policy(next));
 888		kmem_cache_free(vm_area_cachep, next);
 889		/*
 890		 * In mprotect's case 6 (see comments on vma_merge),
 891		 * we must remove another next too. It would clutter
 892		 * up the code too much to do both in one go.
 893		 */
 894		if (remove_next != 3) {
 895			/*
 896			 * If "next" was removed and vma->vm_end was
 897			 * expanded (up) over it, in turn
 898			 * "next->vm_prev->vm_end" changed and the
 899			 * "vma->vm_next" gap must be updated.
 900			 */
 901			next = vma->vm_next;
 902		} else {
 903			/*
 904			 * For the scope of the comment "next" and
 905			 * "vma" considered pre-swap(): if "vma" was
 906			 * removed, next->vm_start was expanded (down)
 907			 * over it and the "next" gap must be updated.
 908			 * Because of the swap() the post-swap() "vma"
 909			 * actually points to pre-swap() "next"
 910			 * (post-swap() "next" as opposed is now a
 911			 * dangling pointer).
 912			 */
 913			next = vma;
 914		}
 915		if (remove_next == 2) {
 916			remove_next = 1;
 917			end = next->vm_end;
 918			goto again;
 919		}
 920		else if (next)
 921			vma_gap_update(next);
 922		else {
 923			/*
 924			 * If remove_next == 2 we obviously can't
 925			 * reach this path.
 926			 *
 927			 * If remove_next == 3 we can't reach this
 928			 * path because pre-swap() next is always not
 929			 * NULL. pre-swap() "next" is not being
 930			 * removed and its next->vm_end is not altered
 931			 * (and furthermore "end" already matches
 932			 * next->vm_end in remove_next == 3).
 933			 *
 934			 * We reach this only in the remove_next == 1
 935			 * case if the "next" vma that was removed was
 936			 * the highest vma of the mm. However in such
 937			 * case next->vm_end == "end" and the extended
 938			 * "vma" has vma->vm_end == next->vm_end so
 939			 * mm->highest_vm_end doesn't need any update
 940			 * in remove_next == 1 case.
 941			 */
 942			VM_WARN_ON(mm->highest_vm_end != end);
 943		}
 944	}
 945	if (insert && file)
 946		uprobe_mmap(insert);
 947
 948	validate_mm(mm);
 949
 950	return 0;
 951}
 952
 953/*
 954 * If the vma has a ->close operation then the driver probably needs to release
 955 * per-vma resources, so we don't attempt to merge those.
 956 */
 957static inline int is_mergeable_vma(struct vm_area_struct *vma,
 958				struct file *file, unsigned long vm_flags,
 959				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 960{
 961	/*
 962	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 963	 * match the flags but dirty bit -- the caller should mark
 964	 * merged VMA as dirty. If dirty bit won't be excluded from
 965	 * comparison, we increase pressue on the memory system forcing
 966	 * the kernel to generate new VMAs when old one could be
 967	 * extended instead.
 968	 */
 969	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 970		return 0;
 971	if (vma->vm_file != file)
 972		return 0;
 973	if (vma->vm_ops && vma->vm_ops->close)
 974		return 0;
 975	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
 976		return 0;
 977	return 1;
 978}
 979
 980static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 981					struct anon_vma *anon_vma2,
 982					struct vm_area_struct *vma)
 983{
 984	/*
 985	 * The list_is_singular() test is to avoid merging VMA cloned from
 986	 * parents. This can improve scalability caused by anon_vma lock.
 987	 */
 988	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 989		list_is_singular(&vma->anon_vma_chain)))
 990		return 1;
 991	return anon_vma1 == anon_vma2;
 992}
 993
 994/*
 995 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 996 * in front of (at a lower virtual address and file offset than) the vma.
 997 *
 998 * We cannot merge two vmas if they have differently assigned (non-NULL)
 999 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1000 *
1001 * We don't check here for the merged mmap wrapping around the end of pagecache
1002 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1003 * wrap, nor mmaps which cover the final page at index -1UL.
1004 */
1005static int
1006can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1007		     struct anon_vma *anon_vma, struct file *file,
1008		     pgoff_t vm_pgoff,
1009		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1010{
1011	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1012	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1013		if (vma->vm_pgoff == vm_pgoff)
1014			return 1;
1015	}
1016	return 0;
1017}
1018
1019/*
1020 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1021 * beyond (at a higher virtual address and file offset than) the vma.
1022 *
1023 * We cannot merge two vmas if they have differently assigned (non-NULL)
1024 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1025 */
1026static int
1027can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1028		    struct anon_vma *anon_vma, struct file *file,
1029		    pgoff_t vm_pgoff,
1030		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1031{
1032	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1033	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1034		pgoff_t vm_pglen;
1035		vm_pglen = vma_pages(vma);
1036		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1037			return 1;
1038	}
1039	return 0;
1040}
1041
1042/*
1043 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1044 * whether that can be merged with its predecessor or its successor.
1045 * Or both (it neatly fills a hole).
1046 *
1047 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1048 * certain not to be mapped by the time vma_merge is called; but when
1049 * called for mprotect, it is certain to be already mapped (either at
1050 * an offset within prev, or at the start of next), and the flags of
1051 * this area are about to be changed to vm_flags - and the no-change
1052 * case has already been eliminated.
1053 *
1054 * The following mprotect cases have to be considered, where AAAA is
1055 * the area passed down from mprotect_fixup, never extending beyond one
1056 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1057 *
1058 *     AAAA             AAAA                AAAA          AAAA
1059 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1060 *    cannot merge    might become    might become    might become
1061 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1062 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1063 *    mremap move:                                    PPPPXXXXXXXX 8
1064 *        AAAA
1065 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1066 *    might become    case 1 below    case 2 below    case 3 below
1067 *
1068 * It is important for case 8 that the the vma NNNN overlapping the
1069 * region AAAA is never going to extended over XXXX. Instead XXXX must
1070 * be extended in region AAAA and NNNN must be removed. This way in
1071 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1072 * rmap_locks, the properties of the merged vma will be already
1073 * correct for the whole merged range. Some of those properties like
1074 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1075 * be correct for the whole merged range immediately after the
1076 * rmap_locks are released. Otherwise if XXXX would be removed and
1077 * NNNN would be extended over the XXXX range, remove_migration_ptes
1078 * or other rmap walkers (if working on addresses beyond the "end"
1079 * parameter) may establish ptes with the wrong permissions of NNNN
1080 * instead of the right permissions of XXXX.
1081 */
1082struct vm_area_struct *vma_merge(struct mm_struct *mm,
1083			struct vm_area_struct *prev, unsigned long addr,
1084			unsigned long end, unsigned long vm_flags,
1085			struct anon_vma *anon_vma, struct file *file,
1086			pgoff_t pgoff, struct mempolicy *policy,
1087			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1088{
1089	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1090	struct vm_area_struct *area, *next;
1091	int err;
1092
1093	/*
1094	 * We later require that vma->vm_flags == vm_flags,
1095	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1096	 */
1097	if (vm_flags & VM_SPECIAL)
1098		return NULL;
1099
1100	if (prev)
1101		next = prev->vm_next;
1102	else
1103		next = mm->mmap;
1104	area = next;
1105	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1106		next = next->vm_next;
1107
1108	/* verify some invariant that must be enforced by the caller */
1109	VM_WARN_ON(prev && addr <= prev->vm_start);
1110	VM_WARN_ON(area && end > area->vm_end);
1111	VM_WARN_ON(addr >= end);
1112
1113	/*
1114	 * Can it merge with the predecessor?
1115	 */
1116	if (prev && prev->vm_end == addr &&
1117			mpol_equal(vma_policy(prev), policy) &&
1118			can_vma_merge_after(prev, vm_flags,
1119					    anon_vma, file, pgoff,
1120					    vm_userfaultfd_ctx)) {
1121		/*
1122		 * OK, it can.  Can we now merge in the successor as well?
1123		 */
1124		if (next && end == next->vm_start &&
1125				mpol_equal(policy, vma_policy(next)) &&
1126				can_vma_merge_before(next, vm_flags,
1127						     anon_vma, file,
1128						     pgoff+pglen,
1129						     vm_userfaultfd_ctx) &&
1130				is_mergeable_anon_vma(prev->anon_vma,
1131						      next->anon_vma, NULL)) {
1132							/* cases 1, 6 */
1133			err = __vma_adjust(prev, prev->vm_start,
1134					 next->vm_end, prev->vm_pgoff, NULL,
1135					 prev);
1136		} else					/* cases 2, 5, 7 */
1137			err = __vma_adjust(prev, prev->vm_start,
1138					 end, prev->vm_pgoff, NULL, prev);
1139		if (err)
1140			return NULL;
1141		khugepaged_enter_vma_merge(prev, vm_flags);
1142		return prev;
1143	}
1144
1145	/*
1146	 * Can this new request be merged in front of next?
1147	 */
1148	if (next && end == next->vm_start &&
1149			mpol_equal(policy, vma_policy(next)) &&
1150			can_vma_merge_before(next, vm_flags,
1151					     anon_vma, file, pgoff+pglen,
1152					     vm_userfaultfd_ctx)) {
1153		if (prev && addr < prev->vm_end)	/* case 4 */
1154			err = __vma_adjust(prev, prev->vm_start,
1155					 addr, prev->vm_pgoff, NULL, next);
1156		else {					/* cases 3, 8 */
1157			err = __vma_adjust(area, addr, next->vm_end,
1158					 next->vm_pgoff - pglen, NULL, next);
1159			/*
1160			 * In case 3 area is already equal to next and
1161			 * this is a noop, but in case 8 "area" has
1162			 * been removed and next was expanded over it.
1163			 */
1164			area = next;
1165		}
1166		if (err)
1167			return NULL;
1168		khugepaged_enter_vma_merge(area, vm_flags);
1169		return area;
1170	}
1171
1172	return NULL;
1173}
1174
1175/*
1176 * Rough compatbility check to quickly see if it's even worth looking
1177 * at sharing an anon_vma.
1178 *
1179 * They need to have the same vm_file, and the flags can only differ
1180 * in things that mprotect may change.
1181 *
1182 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1183 * we can merge the two vma's. For example, we refuse to merge a vma if
1184 * there is a vm_ops->close() function, because that indicates that the
1185 * driver is doing some kind of reference counting. But that doesn't
1186 * really matter for the anon_vma sharing case.
1187 */
1188static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1189{
1190	return a->vm_end == b->vm_start &&
1191		mpol_equal(vma_policy(a), vma_policy(b)) &&
1192		a->vm_file == b->vm_file &&
1193		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1194		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1195}
1196
1197/*
1198 * Do some basic sanity checking to see if we can re-use the anon_vma
1199 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1200 * the same as 'old', the other will be the new one that is trying
1201 * to share the anon_vma.
1202 *
1203 * NOTE! This runs with mm_sem held for reading, so it is possible that
1204 * the anon_vma of 'old' is concurrently in the process of being set up
1205 * by another page fault trying to merge _that_. But that's ok: if it
1206 * is being set up, that automatically means that it will be a singleton
1207 * acceptable for merging, so we can do all of this optimistically. But
1208 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1209 *
1210 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1211 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1212 * is to return an anon_vma that is "complex" due to having gone through
1213 * a fork).
1214 *
1215 * We also make sure that the two vma's are compatible (adjacent,
1216 * and with the same memory policies). That's all stable, even with just
1217 * a read lock on the mm_sem.
1218 */
1219static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1220{
1221	if (anon_vma_compatible(a, b)) {
1222		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1223
1224		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1225			return anon_vma;
1226	}
1227	return NULL;
1228}
1229
1230/*
1231 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1232 * neighbouring vmas for a suitable anon_vma, before it goes off
1233 * to allocate a new anon_vma.  It checks because a repetitive
1234 * sequence of mprotects and faults may otherwise lead to distinct
1235 * anon_vmas being allocated, preventing vma merge in subsequent
1236 * mprotect.
1237 */
1238struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1239{
1240	struct anon_vma *anon_vma;
1241	struct vm_area_struct *near;
1242
1243	near = vma->vm_next;
1244	if (!near)
1245		goto try_prev;
1246
1247	anon_vma = reusable_anon_vma(near, vma, near);
1248	if (anon_vma)
1249		return anon_vma;
1250try_prev:
1251	near = vma->vm_prev;
1252	if (!near)
1253		goto none;
1254
1255	anon_vma = reusable_anon_vma(near, near, vma);
1256	if (anon_vma)
1257		return anon_vma;
1258none:
1259	/*
1260	 * There's no absolute need to look only at touching neighbours:
1261	 * we could search further afield for "compatible" anon_vmas.
1262	 * But it would probably just be a waste of time searching,
1263	 * or lead to too many vmas hanging off the same anon_vma.
1264	 * We're trying to allow mprotect remerging later on,
1265	 * not trying to minimize memory used for anon_vmas.
1266	 */
1267	return NULL;
1268}
1269
1270/*
1271 * If a hint addr is less than mmap_min_addr change hint to be as
1272 * low as possible but still greater than mmap_min_addr
1273 */
1274static inline unsigned long round_hint_to_min(unsigned long hint)
1275{
1276	hint &= PAGE_MASK;
1277	if (((void *)hint != NULL) &&
1278	    (hint < mmap_min_addr))
1279		return PAGE_ALIGN(mmap_min_addr);
1280	return hint;
1281}
1282
1283static inline int mlock_future_check(struct mm_struct *mm,
1284				     unsigned long flags,
1285				     unsigned long len)
1286{
1287	unsigned long locked, lock_limit;
1288
1289	/*  mlock MCL_FUTURE? */
1290	if (flags & VM_LOCKED) {
1291		locked = len >> PAGE_SHIFT;
1292		locked += mm->locked_vm;
1293		lock_limit = rlimit(RLIMIT_MEMLOCK);
1294		lock_limit >>= PAGE_SHIFT;
1295		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1296			return -EAGAIN;
1297	}
1298	return 0;
1299}
1300
1301/*
1302 * The caller must hold down_write(&current->mm->mmap_sem).
1303 */
1304unsigned long do_mmap(struct file *file, unsigned long addr,
1305			unsigned long len, unsigned long prot,
1306			unsigned long flags, vm_flags_t vm_flags,
1307			unsigned long pgoff, unsigned long *populate)
1308{
1309	struct mm_struct *mm = current->mm;
1310	int pkey = 0;
1311
1312	*populate = 0;
1313
1314	if (!len)
1315		return -EINVAL;
1316
1317	/*
1318	 * Does the application expect PROT_READ to imply PROT_EXEC?
1319	 *
1320	 * (the exception is when the underlying filesystem is noexec
1321	 *  mounted, in which case we dont add PROT_EXEC.)
1322	 */
1323	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1324		if (!(file && path_noexec(&file->f_path)))
1325			prot |= PROT_EXEC;
1326
1327	if (!(flags & MAP_FIXED))
1328		addr = round_hint_to_min(addr);
1329
1330	/* Careful about overflows.. */
1331	len = PAGE_ALIGN(len);
1332	if (!len)
1333		return -ENOMEM;
1334
1335	/* offset overflow? */
1336	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1337		return -EOVERFLOW;
1338
1339	/* Too many mappings? */
1340	if (mm->map_count > sysctl_max_map_count)
1341		return -ENOMEM;
1342
1343	/* Obtain the address to map to. we verify (or select) it and ensure
1344	 * that it represents a valid section of the address space.
1345	 */
1346	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1347	if (offset_in_page(addr))
1348		return addr;
1349
1350	if (prot == PROT_EXEC) {
1351		pkey = execute_only_pkey(mm);
1352		if (pkey < 0)
1353			pkey = 0;
1354	}
1355
1356	/* Do simple checking here so the lower-level routines won't have
1357	 * to. we assume access permissions have been handled by the open
1358	 * of the memory object, so we don't do any here.
1359	 */
1360	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1361			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1362
1363	if (flags & MAP_LOCKED)
1364		if (!can_do_mlock())
1365			return -EPERM;
1366
1367	if (mlock_future_check(mm, vm_flags, len))
1368		return -EAGAIN;
1369
1370	if (file) {
1371		struct inode *inode = file_inode(file);
1372
1373		switch (flags & MAP_TYPE) {
1374		case MAP_SHARED:
1375			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1376				return -EACCES;
1377
1378			/*
1379			 * Make sure we don't allow writing to an append-only
1380			 * file..
1381			 */
1382			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1383				return -EACCES;
1384
1385			/*
1386			 * Make sure there are no mandatory locks on the file.
1387			 */
1388			if (locks_verify_locked(file))
1389				return -EAGAIN;
1390
1391			vm_flags |= VM_SHARED | VM_MAYSHARE;
1392			if (!(file->f_mode & FMODE_WRITE))
1393				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1394
1395			/* fall through */
1396		case MAP_PRIVATE:
1397			if (!(file->f_mode & FMODE_READ))
1398				return -EACCES;
1399			if (path_noexec(&file->f_path)) {
1400				if (vm_flags & VM_EXEC)
1401					return -EPERM;
1402				vm_flags &= ~VM_MAYEXEC;
1403			}
1404
1405			if (!file->f_op->mmap)
1406				return -ENODEV;
1407			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1408				return -EINVAL;
1409			break;
1410
1411		default:
1412			return -EINVAL;
1413		}
1414	} else {
1415		switch (flags & MAP_TYPE) {
1416		case MAP_SHARED:
1417			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1418				return -EINVAL;
1419			/*
1420			 * Ignore pgoff.
1421			 */
1422			pgoff = 0;
1423			vm_flags |= VM_SHARED | VM_MAYSHARE;
1424			break;
1425		case MAP_PRIVATE:
1426			/*
1427			 * Set pgoff according to addr for anon_vma.
1428			 */
1429			pgoff = addr >> PAGE_SHIFT;
1430			break;
1431		default:
1432			return -EINVAL;
1433		}
1434	}
1435
1436	/*
1437	 * Set 'VM_NORESERVE' if we should not account for the
1438	 * memory use of this mapping.
1439	 */
1440	if (flags & MAP_NORESERVE) {
1441		/* We honor MAP_NORESERVE if allowed to overcommit */
1442		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1443			vm_flags |= VM_NORESERVE;
1444
1445		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1446		if (file && is_file_hugepages(file))
1447			vm_flags |= VM_NORESERVE;
1448	}
1449
1450	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1451	if (!IS_ERR_VALUE(addr) &&
1452	    ((vm_flags & VM_LOCKED) ||
1453	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1454		*populate = len;
1455	return addr;
1456}
1457
1458SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1459		unsigned long, prot, unsigned long, flags,
1460		unsigned long, fd, unsigned long, pgoff)
1461{
1462	struct file *file = NULL;
1463	unsigned long retval;
1464
1465	if (!(flags & MAP_ANONYMOUS)) {
1466		audit_mmap_fd(fd, flags);
1467		file = fget(fd);
1468		if (!file)
1469			return -EBADF;
1470		if (is_file_hugepages(file))
1471			len = ALIGN(len, huge_page_size(hstate_file(file)));
1472		retval = -EINVAL;
1473		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1474			goto out_fput;
1475	} else if (flags & MAP_HUGETLB) {
1476		struct user_struct *user = NULL;
1477		struct hstate *hs;
1478
1479		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1480		if (!hs)
1481			return -EINVAL;
1482
1483		len = ALIGN(len, huge_page_size(hs));
1484		/*
1485		 * VM_NORESERVE is used because the reservations will be
1486		 * taken when vm_ops->mmap() is called
1487		 * A dummy user value is used because we are not locking
1488		 * memory so no accounting is necessary
1489		 */
1490		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1491				VM_NORESERVE,
1492				&user, HUGETLB_ANONHUGE_INODE,
1493				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1494		if (IS_ERR(file))
1495			return PTR_ERR(file);
1496	}
1497
1498	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1499
1500	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1501out_fput:
1502	if (file)
1503		fput(file);
1504	return retval;
1505}
1506
1507#ifdef __ARCH_WANT_SYS_OLD_MMAP
1508struct mmap_arg_struct {
1509	unsigned long addr;
1510	unsigned long len;
1511	unsigned long prot;
1512	unsigned long flags;
1513	unsigned long fd;
1514	unsigned long offset;
1515};
1516
1517SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1518{
1519	struct mmap_arg_struct a;
1520
1521	if (copy_from_user(&a, arg, sizeof(a)))
1522		return -EFAULT;
1523	if (offset_in_page(a.offset))
1524		return -EINVAL;
1525
1526	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1527			      a.offset >> PAGE_SHIFT);
1528}
1529#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1530
1531/*
1532 * Some shared mappigns will want the pages marked read-only
1533 * to track write events. If so, we'll downgrade vm_page_prot
1534 * to the private version (using protection_map[] without the
1535 * VM_SHARED bit).
1536 */
1537int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1538{
1539	vm_flags_t vm_flags = vma->vm_flags;
1540	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1541
1542	/* If it was private or non-writable, the write bit is already clear */
1543	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1544		return 0;
1545
1546	/* The backer wishes to know when pages are first written to? */
1547	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1548		return 1;
1549
1550	/* The open routine did something to the protections that pgprot_modify
1551	 * won't preserve? */
1552	if (pgprot_val(vm_page_prot) !=
1553	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1554		return 0;
1555
1556	/* Do we need to track softdirty? */
1557	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1558		return 1;
1559
1560	/* Specialty mapping? */
1561	if (vm_flags & VM_PFNMAP)
1562		return 0;
1563
1564	/* Can the mapping track the dirty pages? */
1565	return vma->vm_file && vma->vm_file->f_mapping &&
1566		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1567}
1568
1569/*
1570 * We account for memory if it's a private writeable mapping,
1571 * not hugepages and VM_NORESERVE wasn't set.
1572 */
1573static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1574{
1575	/*
1576	 * hugetlb has its own accounting separate from the core VM
1577	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1578	 */
1579	if (file && is_file_hugepages(file))
1580		return 0;
1581
1582	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1583}
1584
1585unsigned long mmap_region(struct file *file, unsigned long addr,
1586		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1587{
1588	struct mm_struct *mm = current->mm;
1589	struct vm_area_struct *vma, *prev;
1590	int error;
1591	struct rb_node **rb_link, *rb_parent;
1592	unsigned long charged = 0;
1593
1594	/* Check against address space limit. */
1595	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1596		unsigned long nr_pages;
1597
1598		/*
1599		 * MAP_FIXED may remove pages of mappings that intersects with
1600		 * requested mapping. Account for the pages it would unmap.
1601		 */
1602		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1603
1604		if (!may_expand_vm(mm, vm_flags,
1605					(len >> PAGE_SHIFT) - nr_pages))
1606			return -ENOMEM;
1607	}
1608
1609	/* Clear old maps */
1610	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1611			      &rb_parent)) {
1612		if (do_munmap(mm, addr, len))
1613			return -ENOMEM;
1614	}
1615
1616	/*
1617	 * Private writable mapping: check memory availability
1618	 */
1619	if (accountable_mapping(file, vm_flags)) {
1620		charged = len >> PAGE_SHIFT;
1621		if (security_vm_enough_memory_mm(mm, charged))
1622			return -ENOMEM;
1623		vm_flags |= VM_ACCOUNT;
1624	}
1625
1626	/*
1627	 * Can we just expand an old mapping?
1628	 */
1629	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1630			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1631	if (vma)
1632		goto out;
1633
1634	/*
1635	 * Determine the object being mapped and call the appropriate
1636	 * specific mapper. the address has already been validated, but
1637	 * not unmapped, but the maps are removed from the list.
1638	 */
1639	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1640	if (!vma) {
1641		error = -ENOMEM;
1642		goto unacct_error;
1643	}
1644
1645	vma->vm_mm = mm;
1646	vma->vm_start = addr;
1647	vma->vm_end = addr + len;
1648	vma->vm_flags = vm_flags;
1649	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1650	vma->vm_pgoff = pgoff;
1651	INIT_LIST_HEAD(&vma->anon_vma_chain);
1652
1653	if (file) {
1654		if (vm_flags & VM_DENYWRITE) {
1655			error = deny_write_access(file);
1656			if (error)
1657				goto free_vma;
1658		}
1659		if (vm_flags & VM_SHARED) {
1660			error = mapping_map_writable(file->f_mapping);
1661			if (error)
1662				goto allow_write_and_free_vma;
1663		}
1664
1665		/* ->mmap() can change vma->vm_file, but must guarantee that
1666		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1667		 * and map writably if VM_SHARED is set. This usually means the
1668		 * new file must not have been exposed to user-space, yet.
1669		 */
1670		vma->vm_file = get_file(file);
1671		error = file->f_op->mmap(file, vma);
1672		if (error)
1673			goto unmap_and_free_vma;
1674
1675		/* Can addr have changed??
1676		 *
1677		 * Answer: Yes, several device drivers can do it in their
1678		 *         f_op->mmap method. -DaveM
1679		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1680		 *      be updated for vma_link()
1681		 */
1682		WARN_ON_ONCE(addr != vma->vm_start);
1683
1684		addr = vma->vm_start;
1685		vm_flags = vma->vm_flags;
1686	} else if (vm_flags & VM_SHARED) {
1687		error = shmem_zero_setup(vma);
1688		if (error)
1689			goto free_vma;
1690	}
1691
1692	vma_link(mm, vma, prev, rb_link, rb_parent);
1693	/* Once vma denies write, undo our temporary denial count */
1694	if (file) {
1695		if (vm_flags & VM_SHARED)
1696			mapping_unmap_writable(file->f_mapping);
1697		if (vm_flags & VM_DENYWRITE)
1698			allow_write_access(file);
1699	}
1700	file = vma->vm_file;
1701out:
1702	perf_event_mmap(vma);
1703
1704	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1705	if (vm_flags & VM_LOCKED) {
1706		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1707					vma == get_gate_vma(current->mm)))
1708			mm->locked_vm += (len >> PAGE_SHIFT);
1709		else
1710			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1711	}
1712
1713	if (file)
1714		uprobe_mmap(vma);
1715
1716	/*
1717	 * New (or expanded) vma always get soft dirty status.
1718	 * Otherwise user-space soft-dirty page tracker won't
1719	 * be able to distinguish situation when vma area unmapped,
1720	 * then new mapped in-place (which must be aimed as
1721	 * a completely new data area).
1722	 */
1723	vma->vm_flags |= VM_SOFTDIRTY;
1724
1725	vma_set_page_prot(vma);
1726
1727	return addr;
1728
1729unmap_and_free_vma:
1730	vma->vm_file = NULL;
1731	fput(file);
1732
1733	/* Undo any partial mapping done by a device driver. */
1734	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1735	charged = 0;
1736	if (vm_flags & VM_SHARED)
1737		mapping_unmap_writable(file->f_mapping);
1738allow_write_and_free_vma:
1739	if (vm_flags & VM_DENYWRITE)
1740		allow_write_access(file);
1741free_vma:
1742	kmem_cache_free(vm_area_cachep, vma);
1743unacct_error:
1744	if (charged)
1745		vm_unacct_memory(charged);
1746	return error;
1747}
1748
1749unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1750{
1751	/*
1752	 * We implement the search by looking for an rbtree node that
1753	 * immediately follows a suitable gap. That is,
1754	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1755	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1756	 * - gap_end - gap_start >= length
1757	 */
1758
1759	struct mm_struct *mm = current->mm;
1760	struct vm_area_struct *vma;
1761	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1762
1763	/* Adjust search length to account for worst case alignment overhead */
1764	length = info->length + info->align_mask;
1765	if (length < info->length)
1766		return -ENOMEM;
1767
1768	/* Adjust search limits by the desired length */
1769	if (info->high_limit < length)
1770		return -ENOMEM;
1771	high_limit = info->high_limit - length;
1772
1773	if (info->low_limit > high_limit)
1774		return -ENOMEM;
1775	low_limit = info->low_limit + length;
1776
1777	/* Check if rbtree root looks promising */
1778	if (RB_EMPTY_ROOT(&mm->mm_rb))
1779		goto check_highest;
1780	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1781	if (vma->rb_subtree_gap < length)
1782		goto check_highest;
1783
1784	while (true) {
1785		/* Visit left subtree if it looks promising */
1786		gap_end = vma->vm_start;
1787		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1788			struct vm_area_struct *left =
1789				rb_entry(vma->vm_rb.rb_left,
1790					 struct vm_area_struct, vm_rb);
1791			if (left->rb_subtree_gap >= length) {
1792				vma = left;
1793				continue;
1794			}
1795		}
1796
1797		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1798check_current:
1799		/* Check if current node has a suitable gap */
1800		if (gap_start > high_limit)
1801			return -ENOMEM;
1802		if (gap_end >= low_limit && gap_end - gap_start >= length)
1803			goto found;
1804
1805		/* Visit right subtree if it looks promising */
1806		if (vma->vm_rb.rb_right) {
1807			struct vm_area_struct *right =
1808				rb_entry(vma->vm_rb.rb_right,
1809					 struct vm_area_struct, vm_rb);
1810			if (right->rb_subtree_gap >= length) {
1811				vma = right;
1812				continue;
1813			}
1814		}
1815
1816		/* Go back up the rbtree to find next candidate node */
1817		while (true) {
1818			struct rb_node *prev = &vma->vm_rb;
1819			if (!rb_parent(prev))
1820				goto check_highest;
1821			vma = rb_entry(rb_parent(prev),
1822				       struct vm_area_struct, vm_rb);
1823			if (prev == vma->vm_rb.rb_left) {
1824				gap_start = vma->vm_prev->vm_end;
1825				gap_end = vma->vm_start;
1826				goto check_current;
1827			}
1828		}
1829	}
1830
1831check_highest:
1832	/* Check highest gap, which does not precede any rbtree node */
1833	gap_start = mm->highest_vm_end;
1834	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1835	if (gap_start > high_limit)
1836		return -ENOMEM;
1837
1838found:
1839	/* We found a suitable gap. Clip it with the original low_limit. */
1840	if (gap_start < info->low_limit)
1841		gap_start = info->low_limit;
1842
1843	/* Adjust gap address to the desired alignment */
1844	gap_start += (info->align_offset - gap_start) & info->align_mask;
1845
1846	VM_BUG_ON(gap_start + info->length > info->high_limit);
1847	VM_BUG_ON(gap_start + info->length > gap_end);
1848	return gap_start;
1849}
1850
1851unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1852{
1853	struct mm_struct *mm = current->mm;
1854	struct vm_area_struct *vma;
1855	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1856
1857	/* Adjust search length to account for worst case alignment overhead */
1858	length = info->length + info->align_mask;
1859	if (length < info->length)
1860		return -ENOMEM;
1861
1862	/*
1863	 * Adjust search limits by the desired length.
1864	 * See implementation comment at top of unmapped_area().
1865	 */
1866	gap_end = info->high_limit;
1867	if (gap_end < length)
1868		return -ENOMEM;
1869	high_limit = gap_end - length;
1870
1871	if (info->low_limit > high_limit)
1872		return -ENOMEM;
1873	low_limit = info->low_limit + length;
1874
1875	/* Check highest gap, which does not precede any rbtree node */
1876	gap_start = mm->highest_vm_end;
1877	if (gap_start <= high_limit)
1878		goto found_highest;
1879
1880	/* Check if rbtree root looks promising */
1881	if (RB_EMPTY_ROOT(&mm->mm_rb))
1882		return -ENOMEM;
1883	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1884	if (vma->rb_subtree_gap < length)
1885		return -ENOMEM;
1886
1887	while (true) {
1888		/* Visit right subtree if it looks promising */
1889		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1890		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1891			struct vm_area_struct *right =
1892				rb_entry(vma->vm_rb.rb_right,
1893					 struct vm_area_struct, vm_rb);
1894			if (right->rb_subtree_gap >= length) {
1895				vma = right;
1896				continue;
1897			}
1898		}
1899
1900check_current:
1901		/* Check if current node has a suitable gap */
1902		gap_end = vma->vm_start;
1903		if (gap_end < low_limit)
1904			return -ENOMEM;
1905		if (gap_start <= high_limit && gap_end - gap_start >= length)
1906			goto found;
1907
1908		/* Visit left subtree if it looks promising */
1909		if (vma->vm_rb.rb_left) {
1910			struct vm_area_struct *left =
1911				rb_entry(vma->vm_rb.rb_left,
1912					 struct vm_area_struct, vm_rb);
1913			if (left->rb_subtree_gap >= length) {
1914				vma = left;
1915				continue;
1916			}
1917		}
1918
1919		/* Go back up the rbtree to find next candidate node */
1920		while (true) {
1921			struct rb_node *prev = &vma->vm_rb;
1922			if (!rb_parent(prev))
1923				return -ENOMEM;
1924			vma = rb_entry(rb_parent(prev),
1925				       struct vm_area_struct, vm_rb);
1926			if (prev == vma->vm_rb.rb_right) {
1927				gap_start = vma->vm_prev ?
1928					vma->vm_prev->vm_end : 0;
1929				goto check_current;
1930			}
1931		}
1932	}
1933
1934found:
1935	/* We found a suitable gap. Clip it with the original high_limit. */
1936	if (gap_end > info->high_limit)
1937		gap_end = info->high_limit;
1938
1939found_highest:
1940	/* Compute highest gap address at the desired alignment */
1941	gap_end -= info->length;
1942	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1943
1944	VM_BUG_ON(gap_end < info->low_limit);
1945	VM_BUG_ON(gap_end < gap_start);
1946	return gap_end;
1947}
1948
1949/* Get an address range which is currently unmapped.
1950 * For shmat() with addr=0.
1951 *
1952 * Ugly calling convention alert:
1953 * Return value with the low bits set means error value,
1954 * ie
1955 *	if (ret & ~PAGE_MASK)
1956 *		error = ret;
1957 *
1958 * This function "knows" that -ENOMEM has the bits set.
1959 */
1960#ifndef HAVE_ARCH_UNMAPPED_AREA
1961unsigned long
1962arch_get_unmapped_area(struct file *filp, unsigned long addr,
1963		unsigned long len, unsigned long pgoff, unsigned long flags)
1964{
1965	struct mm_struct *mm = current->mm;
1966	struct vm_area_struct *vma;
1967	struct vm_unmapped_area_info info;
1968
1969	if (len > TASK_SIZE - mmap_min_addr)
1970		return -ENOMEM;
1971
1972	if (flags & MAP_FIXED)
1973		return addr;
1974
1975	if (addr) {
1976		addr = PAGE_ALIGN(addr);
1977		vma = find_vma(mm, addr);
1978		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1979		    (!vma || addr + len <= vma->vm_start))
1980			return addr;
1981	}
1982
1983	info.flags = 0;
1984	info.length = len;
1985	info.low_limit = mm->mmap_base;
1986	info.high_limit = TASK_SIZE;
1987	info.align_mask = 0;
1988	return vm_unmapped_area(&info);
1989}
1990#endif
1991
1992/*
1993 * This mmap-allocator allocates new areas top-down from below the
1994 * stack's low limit (the base):
1995 */
1996#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1997unsigned long
1998arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1999			  const unsigned long len, const unsigned long pgoff,
2000			  const unsigned long flags)
2001{
2002	struct vm_area_struct *vma;
2003	struct mm_struct *mm = current->mm;
2004	unsigned long addr = addr0;
2005	struct vm_unmapped_area_info info;
2006
2007	/* requested length too big for entire address space */
2008	if (len > TASK_SIZE - mmap_min_addr)
2009		return -ENOMEM;
2010
2011	if (flags & MAP_FIXED)
2012		return addr;
2013
2014	/* requesting a specific address */
2015	if (addr) {
2016		addr = PAGE_ALIGN(addr);
2017		vma = find_vma(mm, addr);
2018		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2019				(!vma || addr + len <= vma->vm_start))
2020			return addr;
2021	}
2022
2023	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2024	info.length = len;
2025	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2026	info.high_limit = mm->mmap_base;
2027	info.align_mask = 0;
2028	addr = vm_unmapped_area(&info);
2029
2030	/*
2031	 * A failed mmap() very likely causes application failure,
2032	 * so fall back to the bottom-up function here. This scenario
2033	 * can happen with large stack limits and large mmap()
2034	 * allocations.
2035	 */
2036	if (offset_in_page(addr)) {
2037		VM_BUG_ON(addr != -ENOMEM);
2038		info.flags = 0;
2039		info.low_limit = TASK_UNMAPPED_BASE;
2040		info.high_limit = TASK_SIZE;
2041		addr = vm_unmapped_area(&info);
2042	}
2043
2044	return addr;
2045}
2046#endif
2047
2048unsigned long
2049get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2050		unsigned long pgoff, unsigned long flags)
2051{
2052	unsigned long (*get_area)(struct file *, unsigned long,
2053				  unsigned long, unsigned long, unsigned long);
2054
2055	unsigned long error = arch_mmap_check(addr, len, flags);
2056	if (error)
2057		return error;
2058
2059	/* Careful about overflows.. */
2060	if (len > TASK_SIZE)
2061		return -ENOMEM;
2062
2063	get_area = current->mm->get_unmapped_area;
2064	if (file) {
2065		if (file->f_op->get_unmapped_area)
2066			get_area = file->f_op->get_unmapped_area;
2067	} else if (flags & MAP_SHARED) {
2068		/*
2069		 * mmap_region() will call shmem_zero_setup() to create a file,
2070		 * so use shmem's get_unmapped_area in case it can be huge.
2071		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2072		 */
2073		pgoff = 0;
2074		get_area = shmem_get_unmapped_area;
2075	}
2076
2077	addr = get_area(file, addr, len, pgoff, flags);
2078	if (IS_ERR_VALUE(addr))
2079		return addr;
2080
2081	if (addr > TASK_SIZE - len)
2082		return -ENOMEM;
2083	if (offset_in_page(addr))
2084		return -EINVAL;
2085
 
2086	error = security_mmap_addr(addr);
2087	return error ? error : addr;
2088}
2089
2090EXPORT_SYMBOL(get_unmapped_area);
2091
2092/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2093struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2094{
2095	struct rb_node *rb_node;
2096	struct vm_area_struct *vma;
2097
2098	/* Check the cache first. */
2099	vma = vmacache_find(mm, addr);
2100	if (likely(vma))
2101		return vma;
2102
2103	rb_node = mm->mm_rb.rb_node;
2104
2105	while (rb_node) {
2106		struct vm_area_struct *tmp;
2107
2108		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2109
2110		if (tmp->vm_end > addr) {
2111			vma = tmp;
2112			if (tmp->vm_start <= addr)
2113				break;
2114			rb_node = rb_node->rb_left;
2115		} else
2116			rb_node = rb_node->rb_right;
2117	}
2118
2119	if (vma)
2120		vmacache_update(addr, vma);
2121	return vma;
2122}
2123
2124EXPORT_SYMBOL(find_vma);
2125
2126/*
2127 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2128 */
2129struct vm_area_struct *
2130find_vma_prev(struct mm_struct *mm, unsigned long addr,
2131			struct vm_area_struct **pprev)
2132{
2133	struct vm_area_struct *vma;
2134
2135	vma = find_vma(mm, addr);
2136	if (vma) {
2137		*pprev = vma->vm_prev;
2138	} else {
2139		struct rb_node *rb_node = mm->mm_rb.rb_node;
2140		*pprev = NULL;
2141		while (rb_node) {
2142			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2143			rb_node = rb_node->rb_right;
2144		}
2145	}
2146	return vma;
2147}
2148
2149/*
2150 * Verify that the stack growth is acceptable and
2151 * update accounting. This is shared with both the
2152 * grow-up and grow-down cases.
2153 */
2154static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2155{
2156	struct mm_struct *mm = vma->vm_mm;
2157	struct rlimit *rlim = current->signal->rlim;
2158	unsigned long new_start, actual_size;
2159
2160	/* address space limit tests */
2161	if (!may_expand_vm(mm, vma->vm_flags, grow))
2162		return -ENOMEM;
2163
2164	/* Stack limit test */
2165	actual_size = size;
2166	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2167		actual_size -= PAGE_SIZE;
2168	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2169		return -ENOMEM;
2170
2171	/* mlock limit tests */
2172	if (vma->vm_flags & VM_LOCKED) {
2173		unsigned long locked;
2174		unsigned long limit;
2175		locked = mm->locked_vm + grow;
2176		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2177		limit >>= PAGE_SHIFT;
2178		if (locked > limit && !capable(CAP_IPC_LOCK))
2179			return -ENOMEM;
2180	}
2181
2182	/* Check to ensure the stack will not grow into a hugetlb-only region */
2183	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2184			vma->vm_end - size;
2185	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2186		return -EFAULT;
2187
2188	/*
2189	 * Overcommit..  This must be the final test, as it will
2190	 * update security statistics.
2191	 */
2192	if (security_vm_enough_memory_mm(mm, grow))
2193		return -ENOMEM;
2194
2195	return 0;
2196}
2197
2198#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2199/*
2200 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2201 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2202 */
2203int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2204{
2205	struct mm_struct *mm = vma->vm_mm;
2206	int error = 0;
2207
2208	if (!(vma->vm_flags & VM_GROWSUP))
2209		return -EFAULT;
2210
2211	/* Guard against wrapping around to address 0. */
2212	if (address < PAGE_ALIGN(address+4))
2213		address = PAGE_ALIGN(address+4);
2214	else
2215		return -ENOMEM;
2216
2217	/* We must make sure the anon_vma is allocated. */
2218	if (unlikely(anon_vma_prepare(vma)))
2219		return -ENOMEM;
2220
2221	/*
2222	 * vma->vm_start/vm_end cannot change under us because the caller
2223	 * is required to hold the mmap_sem in read mode.  We need the
2224	 * anon_vma lock to serialize against concurrent expand_stacks.
2225	 */
2226	anon_vma_lock_write(vma->anon_vma);
2227
2228	/* Somebody else might have raced and expanded it already */
2229	if (address > vma->vm_end) {
2230		unsigned long size, grow;
2231
2232		size = address - vma->vm_start;
2233		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2234
2235		error = -ENOMEM;
2236		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2237			error = acct_stack_growth(vma, size, grow);
2238			if (!error) {
2239				/*
2240				 * vma_gap_update() doesn't support concurrent
2241				 * updates, but we only hold a shared mmap_sem
2242				 * lock here, so we need to protect against
2243				 * concurrent vma expansions.
2244				 * anon_vma_lock_write() doesn't help here, as
2245				 * we don't guarantee that all growable vmas
2246				 * in a mm share the same root anon vma.
2247				 * So, we reuse mm->page_table_lock to guard
2248				 * against concurrent vma expansions.
2249				 */
2250				spin_lock(&mm->page_table_lock);
2251				if (vma->vm_flags & VM_LOCKED)
2252					mm->locked_vm += grow;
2253				vm_stat_account(mm, vma->vm_flags, grow);
2254				anon_vma_interval_tree_pre_update_vma(vma);
2255				vma->vm_end = address;
2256				anon_vma_interval_tree_post_update_vma(vma);
2257				if (vma->vm_next)
2258					vma_gap_update(vma->vm_next);
2259				else
2260					mm->highest_vm_end = address;
2261				spin_unlock(&mm->page_table_lock);
2262
2263				perf_event_mmap(vma);
2264			}
2265		}
2266	}
2267	anon_vma_unlock_write(vma->anon_vma);
2268	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2269	validate_mm(mm);
2270	return error;
2271}
2272#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2273
2274/*
2275 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2276 */
2277int expand_downwards(struct vm_area_struct *vma,
2278				   unsigned long address)
2279{
2280	struct mm_struct *mm = vma->vm_mm;
2281	int error;
2282
2283	address &= PAGE_MASK;
2284	error = security_mmap_addr(address);
2285	if (error)
2286		return error;
2287
2288	/* We must make sure the anon_vma is allocated. */
2289	if (unlikely(anon_vma_prepare(vma)))
2290		return -ENOMEM;
2291
2292	/*
2293	 * vma->vm_start/vm_end cannot change under us because the caller
2294	 * is required to hold the mmap_sem in read mode.  We need the
2295	 * anon_vma lock to serialize against concurrent expand_stacks.
2296	 */
2297	anon_vma_lock_write(vma->anon_vma);
2298
2299	/* Somebody else might have raced and expanded it already */
2300	if (address < vma->vm_start) {
2301		unsigned long size, grow;
2302
2303		size = vma->vm_end - address;
2304		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2305
2306		error = -ENOMEM;
2307		if (grow <= vma->vm_pgoff) {
2308			error = acct_stack_growth(vma, size, grow);
2309			if (!error) {
2310				/*
2311				 * vma_gap_update() doesn't support concurrent
2312				 * updates, but we only hold a shared mmap_sem
2313				 * lock here, so we need to protect against
2314				 * concurrent vma expansions.
2315				 * anon_vma_lock_write() doesn't help here, as
2316				 * we don't guarantee that all growable vmas
2317				 * in a mm share the same root anon vma.
2318				 * So, we reuse mm->page_table_lock to guard
2319				 * against concurrent vma expansions.
2320				 */
2321				spin_lock(&mm->page_table_lock);
2322				if (vma->vm_flags & VM_LOCKED)
2323					mm->locked_vm += grow;
2324				vm_stat_account(mm, vma->vm_flags, grow);
2325				anon_vma_interval_tree_pre_update_vma(vma);
2326				vma->vm_start = address;
2327				vma->vm_pgoff -= grow;
2328				anon_vma_interval_tree_post_update_vma(vma);
2329				vma_gap_update(vma);
2330				spin_unlock(&mm->page_table_lock);
2331
2332				perf_event_mmap(vma);
2333			}
2334		}
2335	}
2336	anon_vma_unlock_write(vma->anon_vma);
2337	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2338	validate_mm(mm);
2339	return error;
2340}
2341
2342/*
2343 * Note how expand_stack() refuses to expand the stack all the way to
2344 * abut the next virtual mapping, *unless* that mapping itself is also
2345 * a stack mapping. We want to leave room for a guard page, after all
2346 * (the guard page itself is not added here, that is done by the
2347 * actual page faulting logic)
2348 *
2349 * This matches the behavior of the guard page logic (see mm/memory.c:
2350 * check_stack_guard_page()), which only allows the guard page to be
2351 * removed under these circumstances.
2352 */
2353#ifdef CONFIG_STACK_GROWSUP
2354int expand_stack(struct vm_area_struct *vma, unsigned long address)
2355{
2356	struct vm_area_struct *next;
2357
2358	address &= PAGE_MASK;
2359	next = vma->vm_next;
2360	if (next && next->vm_start == address + PAGE_SIZE) {
2361		if (!(next->vm_flags & VM_GROWSUP))
2362			return -ENOMEM;
2363	}
2364	return expand_upwards(vma, address);
2365}
2366
2367struct vm_area_struct *
2368find_extend_vma(struct mm_struct *mm, unsigned long addr)
2369{
2370	struct vm_area_struct *vma, *prev;
2371
2372	addr &= PAGE_MASK;
2373	vma = find_vma_prev(mm, addr, &prev);
2374	if (vma && (vma->vm_start <= addr))
2375		return vma;
2376	if (!prev || expand_stack(prev, addr))
2377		return NULL;
2378	if (prev->vm_flags & VM_LOCKED)
2379		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2380	return prev;
2381}
2382#else
2383int expand_stack(struct vm_area_struct *vma, unsigned long address)
2384{
2385	struct vm_area_struct *prev;
2386
2387	address &= PAGE_MASK;
2388	prev = vma->vm_prev;
2389	if (prev && prev->vm_end == address) {
2390		if (!(prev->vm_flags & VM_GROWSDOWN))
2391			return -ENOMEM;
2392	}
2393	return expand_downwards(vma, address);
2394}
2395
2396struct vm_area_struct *
2397find_extend_vma(struct mm_struct *mm, unsigned long addr)
2398{
2399	struct vm_area_struct *vma;
2400	unsigned long start;
2401
2402	addr &= PAGE_MASK;
2403	vma = find_vma(mm, addr);
2404	if (!vma)
2405		return NULL;
2406	if (vma->vm_start <= addr)
2407		return vma;
2408	if (!(vma->vm_flags & VM_GROWSDOWN))
2409		return NULL;
2410	start = vma->vm_start;
2411	if (expand_stack(vma, addr))
2412		return NULL;
2413	if (vma->vm_flags & VM_LOCKED)
2414		populate_vma_page_range(vma, addr, start, NULL);
2415	return vma;
2416}
2417#endif
2418
2419EXPORT_SYMBOL_GPL(find_extend_vma);
2420
2421/*
2422 * Ok - we have the memory areas we should free on the vma list,
2423 * so release them, and do the vma updates.
2424 *
2425 * Called with the mm semaphore held.
2426 */
2427static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2428{
2429	unsigned long nr_accounted = 0;
2430
2431	/* Update high watermark before we lower total_vm */
2432	update_hiwater_vm(mm);
2433	do {
2434		long nrpages = vma_pages(vma);
2435
2436		if (vma->vm_flags & VM_ACCOUNT)
2437			nr_accounted += nrpages;
2438		vm_stat_account(mm, vma->vm_flags, -nrpages);
2439		vma = remove_vma(vma);
2440	} while (vma);
2441	vm_unacct_memory(nr_accounted);
2442	validate_mm(mm);
2443}
2444
2445/*
2446 * Get rid of page table information in the indicated region.
2447 *
2448 * Called with the mm semaphore held.
2449 */
2450static void unmap_region(struct mm_struct *mm,
2451		struct vm_area_struct *vma, struct vm_area_struct *prev,
2452		unsigned long start, unsigned long end)
2453{
2454	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2455	struct mmu_gather tlb;
2456
2457	lru_add_drain();
2458	tlb_gather_mmu(&tlb, mm, start, end);
2459	update_hiwater_rss(mm);
2460	unmap_vmas(&tlb, vma, start, end);
2461	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2462				 next ? next->vm_start : USER_PGTABLES_CEILING);
2463	tlb_finish_mmu(&tlb, start, end);
2464}
2465
2466/*
2467 * Create a list of vma's touched by the unmap, removing them from the mm's
2468 * vma list as we go..
2469 */
2470static void
2471detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2472	struct vm_area_struct *prev, unsigned long end)
2473{
2474	struct vm_area_struct **insertion_point;
2475	struct vm_area_struct *tail_vma = NULL;
2476
2477	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2478	vma->vm_prev = NULL;
2479	do {
2480		vma_rb_erase(vma, &mm->mm_rb);
2481		mm->map_count--;
2482		tail_vma = vma;
2483		vma = vma->vm_next;
2484	} while (vma && vma->vm_start < end);
2485	*insertion_point = vma;
2486	if (vma) {
2487		vma->vm_prev = prev;
2488		vma_gap_update(vma);
2489	} else
2490		mm->highest_vm_end = prev ? prev->vm_end : 0;
2491	tail_vma->vm_next = NULL;
2492
2493	/* Kill the cache */
2494	vmacache_invalidate(mm);
2495}
2496
2497/*
2498 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2499 * munmap path where it doesn't make sense to fail.
2500 */
2501static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2502	      unsigned long addr, int new_below)
2503{
2504	struct vm_area_struct *new;
2505	int err;
2506
2507	if (is_vm_hugetlb_page(vma) && (addr &
2508					~(huge_page_mask(hstate_vma(vma)))))
2509		return -EINVAL;
2510
2511	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2512	if (!new)
2513		return -ENOMEM;
2514
2515	/* most fields are the same, copy all, and then fixup */
2516	*new = *vma;
2517
2518	INIT_LIST_HEAD(&new->anon_vma_chain);
2519
2520	if (new_below)
2521		new->vm_end = addr;
2522	else {
2523		new->vm_start = addr;
2524		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2525	}
2526
2527	err = vma_dup_policy(vma, new);
2528	if (err)
2529		goto out_free_vma;
2530
2531	err = anon_vma_clone(new, vma);
2532	if (err)
2533		goto out_free_mpol;
2534
2535	if (new->vm_file)
2536		get_file(new->vm_file);
2537
2538	if (new->vm_ops && new->vm_ops->open)
2539		new->vm_ops->open(new);
2540
2541	if (new_below)
2542		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2543			((addr - new->vm_start) >> PAGE_SHIFT), new);
2544	else
2545		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2546
2547	/* Success. */
2548	if (!err)
2549		return 0;
2550
2551	/* Clean everything up if vma_adjust failed. */
2552	if (new->vm_ops && new->vm_ops->close)
2553		new->vm_ops->close(new);
2554	if (new->vm_file)
2555		fput(new->vm_file);
2556	unlink_anon_vmas(new);
2557 out_free_mpol:
2558	mpol_put(vma_policy(new));
2559 out_free_vma:
2560	kmem_cache_free(vm_area_cachep, new);
2561	return err;
2562}
2563
2564/*
2565 * Split a vma into two pieces at address 'addr', a new vma is allocated
2566 * either for the first part or the tail.
2567 */
2568int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2569	      unsigned long addr, int new_below)
2570{
2571	if (mm->map_count >= sysctl_max_map_count)
2572		return -ENOMEM;
2573
2574	return __split_vma(mm, vma, addr, new_below);
2575}
2576
2577/* Munmap is split into 2 main parts -- this part which finds
2578 * what needs doing, and the areas themselves, which do the
2579 * work.  This now handles partial unmappings.
2580 * Jeremy Fitzhardinge <jeremy@goop.org>
2581 */
2582int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2583{
2584	unsigned long end;
2585	struct vm_area_struct *vma, *prev, *last;
2586
2587	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2588		return -EINVAL;
2589
2590	len = PAGE_ALIGN(len);
2591	if (len == 0)
2592		return -EINVAL;
2593
2594	/* Find the first overlapping VMA */
2595	vma = find_vma(mm, start);
2596	if (!vma)
2597		return 0;
2598	prev = vma->vm_prev;
2599	/* we have  start < vma->vm_end  */
2600
2601	/* if it doesn't overlap, we have nothing.. */
2602	end = start + len;
2603	if (vma->vm_start >= end)
2604		return 0;
2605
2606	/*
2607	 * If we need to split any vma, do it now to save pain later.
2608	 *
2609	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2610	 * unmapped vm_area_struct will remain in use: so lower split_vma
2611	 * places tmp vma above, and higher split_vma places tmp vma below.
2612	 */
2613	if (start > vma->vm_start) {
2614		int error;
2615
2616		/*
2617		 * Make sure that map_count on return from munmap() will
2618		 * not exceed its limit; but let map_count go just above
2619		 * its limit temporarily, to help free resources as expected.
2620		 */
2621		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2622			return -ENOMEM;
2623
2624		error = __split_vma(mm, vma, start, 0);
2625		if (error)
2626			return error;
2627		prev = vma;
2628	}
2629
2630	/* Does it split the last one? */
2631	last = find_vma(mm, end);
2632	if (last && end > last->vm_start) {
2633		int error = __split_vma(mm, last, end, 1);
2634		if (error)
2635			return error;
2636	}
2637	vma = prev ? prev->vm_next : mm->mmap;
2638
2639	/*
2640	 * unlock any mlock()ed ranges before detaching vmas
2641	 */
2642	if (mm->locked_vm) {
2643		struct vm_area_struct *tmp = vma;
2644		while (tmp && tmp->vm_start < end) {
2645			if (tmp->vm_flags & VM_LOCKED) {
2646				mm->locked_vm -= vma_pages(tmp);
2647				munlock_vma_pages_all(tmp);
2648			}
2649			tmp = tmp->vm_next;
2650		}
2651	}
2652
2653	/*
2654	 * Remove the vma's, and unmap the actual pages
2655	 */
2656	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2657	unmap_region(mm, vma, prev, start, end);
2658
2659	arch_unmap(mm, vma, start, end);
2660
2661	/* Fix up all other VM information */
2662	remove_vma_list(mm, vma);
2663
2664	return 0;
2665}
2666
2667int vm_munmap(unsigned long start, size_t len)
2668{
2669	int ret;
2670	struct mm_struct *mm = current->mm;
2671
2672	if (down_write_killable(&mm->mmap_sem))
2673		return -EINTR;
2674
2675	ret = do_munmap(mm, start, len);
2676	up_write(&mm->mmap_sem);
2677	return ret;
2678}
2679EXPORT_SYMBOL(vm_munmap);
2680
2681SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2682{
2683	int ret;
2684	struct mm_struct *mm = current->mm;
2685
2686	profile_munmap(addr);
2687	if (down_write_killable(&mm->mmap_sem))
2688		return -EINTR;
2689	ret = do_munmap(mm, addr, len);
2690	up_write(&mm->mmap_sem);
2691	return ret;
2692}
2693
2694
2695/*
2696 * Emulation of deprecated remap_file_pages() syscall.
2697 */
2698SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2699		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2700{
2701
2702	struct mm_struct *mm = current->mm;
2703	struct vm_area_struct *vma;
2704	unsigned long populate = 0;
2705	unsigned long ret = -EINVAL;
2706	struct file *file;
2707
2708	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2709		     current->comm, current->pid);
2710
2711	if (prot)
2712		return ret;
2713	start = start & PAGE_MASK;
2714	size = size & PAGE_MASK;
2715
2716	if (start + size <= start)
2717		return ret;
2718
2719	/* Does pgoff wrap? */
2720	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2721		return ret;
2722
2723	if (down_write_killable(&mm->mmap_sem))
2724		return -EINTR;
2725
2726	vma = find_vma(mm, start);
2727
2728	if (!vma || !(vma->vm_flags & VM_SHARED))
2729		goto out;
2730
2731	if (start < vma->vm_start)
2732		goto out;
2733
2734	if (start + size > vma->vm_end) {
2735		struct vm_area_struct *next;
2736
2737		for (next = vma->vm_next; next; next = next->vm_next) {
2738			/* hole between vmas ? */
2739			if (next->vm_start != next->vm_prev->vm_end)
2740				goto out;
2741
2742			if (next->vm_file != vma->vm_file)
2743				goto out;
2744
2745			if (next->vm_flags != vma->vm_flags)
2746				goto out;
2747
2748			if (start + size <= next->vm_end)
2749				break;
2750		}
2751
2752		if (!next)
2753			goto out;
2754	}
2755
2756	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2757	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2758	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2759
2760	flags &= MAP_NONBLOCK;
2761	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2762	if (vma->vm_flags & VM_LOCKED) {
2763		struct vm_area_struct *tmp;
2764		flags |= MAP_LOCKED;
2765
2766		/* drop PG_Mlocked flag for over-mapped range */
2767		for (tmp = vma; tmp->vm_start >= start + size;
2768				tmp = tmp->vm_next) {
2769			/*
2770			 * Split pmd and munlock page on the border
2771			 * of the range.
2772			 */
2773			vma_adjust_trans_huge(tmp, start, start + size, 0);
2774
2775			munlock_vma_pages_range(tmp,
2776					max(tmp->vm_start, start),
2777					min(tmp->vm_end, start + size));
2778		}
2779	}
2780
2781	file = get_file(vma->vm_file);
2782	ret = do_mmap_pgoff(vma->vm_file, start, size,
2783			prot, flags, pgoff, &populate);
2784	fput(file);
2785out:
2786	up_write(&mm->mmap_sem);
2787	if (populate)
2788		mm_populate(ret, populate);
2789	if (!IS_ERR_VALUE(ret))
2790		ret = 0;
2791	return ret;
2792}
2793
2794static inline void verify_mm_writelocked(struct mm_struct *mm)
2795{
2796#ifdef CONFIG_DEBUG_VM
2797	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2798		WARN_ON(1);
2799		up_read(&mm->mmap_sem);
2800	}
2801#endif
2802}
2803
2804/*
2805 *  this is really a simplified "do_mmap".  it only handles
2806 *  anonymous maps.  eventually we may be able to do some
2807 *  brk-specific accounting here.
2808 */
2809static int do_brk(unsigned long addr, unsigned long request)
2810{
2811	struct mm_struct *mm = current->mm;
2812	struct vm_area_struct *vma, *prev;
2813	unsigned long flags, len;
2814	struct rb_node **rb_link, *rb_parent;
2815	pgoff_t pgoff = addr >> PAGE_SHIFT;
2816	int error;
2817
2818	len = PAGE_ALIGN(request);
2819	if (len < request)
2820		return -ENOMEM;
2821	if (!len)
2822		return 0;
2823
2824	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2825
2826	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2827	if (offset_in_page(error))
2828		return error;
2829
2830	error = mlock_future_check(mm, mm->def_flags, len);
2831	if (error)
2832		return error;
2833
2834	/*
2835	 * mm->mmap_sem is required to protect against another thread
2836	 * changing the mappings in case we sleep.
2837	 */
2838	verify_mm_writelocked(mm);
2839
2840	/*
2841	 * Clear old maps.  this also does some error checking for us
2842	 */
2843	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2844			      &rb_parent)) {
2845		if (do_munmap(mm, addr, len))
2846			return -ENOMEM;
2847	}
2848
2849	/* Check against address space limits *after* clearing old maps... */
2850	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2851		return -ENOMEM;
2852
2853	if (mm->map_count > sysctl_max_map_count)
2854		return -ENOMEM;
2855
2856	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2857		return -ENOMEM;
2858
2859	/* Can we just expand an old private anonymous mapping? */
2860	vma = vma_merge(mm, prev, addr, addr + len, flags,
2861			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2862	if (vma)
2863		goto out;
2864
2865	/*
2866	 * create a vma struct for an anonymous mapping
2867	 */
2868	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2869	if (!vma) {
2870		vm_unacct_memory(len >> PAGE_SHIFT);
2871		return -ENOMEM;
2872	}
2873
2874	INIT_LIST_HEAD(&vma->anon_vma_chain);
2875	vma->vm_mm = mm;
2876	vma->vm_start = addr;
2877	vma->vm_end = addr + len;
2878	vma->vm_pgoff = pgoff;
2879	vma->vm_flags = flags;
2880	vma->vm_page_prot = vm_get_page_prot(flags);
2881	vma_link(mm, vma, prev, rb_link, rb_parent);
2882out:
2883	perf_event_mmap(vma);
2884	mm->total_vm += len >> PAGE_SHIFT;
2885	mm->data_vm += len >> PAGE_SHIFT;
2886	if (flags & VM_LOCKED)
2887		mm->locked_vm += (len >> PAGE_SHIFT);
2888	vma->vm_flags |= VM_SOFTDIRTY;
2889	return 0;
2890}
2891
2892int vm_brk(unsigned long addr, unsigned long len)
2893{
2894	struct mm_struct *mm = current->mm;
2895	int ret;
2896	bool populate;
2897
2898	if (down_write_killable(&mm->mmap_sem))
2899		return -EINTR;
2900
2901	ret = do_brk(addr, len);
2902	populate = ((mm->def_flags & VM_LOCKED) != 0);
2903	up_write(&mm->mmap_sem);
2904	if (populate && !ret)
2905		mm_populate(addr, len);
2906	return ret;
2907}
2908EXPORT_SYMBOL(vm_brk);
2909
2910/* Release all mmaps. */
2911void exit_mmap(struct mm_struct *mm)
2912{
2913	struct mmu_gather tlb;
2914	struct vm_area_struct *vma;
2915	unsigned long nr_accounted = 0;
2916
2917	/* mm's last user has gone, and its about to be pulled down */
2918	mmu_notifier_release(mm);
2919
2920	if (mm->locked_vm) {
2921		vma = mm->mmap;
2922		while (vma) {
2923			if (vma->vm_flags & VM_LOCKED)
2924				munlock_vma_pages_all(vma);
2925			vma = vma->vm_next;
2926		}
2927	}
2928
2929	arch_exit_mmap(mm);
2930
2931	vma = mm->mmap;
2932	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2933		return;
2934
2935	lru_add_drain();
2936	flush_cache_mm(mm);
2937	tlb_gather_mmu(&tlb, mm, 0, -1);
2938	/* update_hiwater_rss(mm) here? but nobody should be looking */
2939	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2940	unmap_vmas(&tlb, vma, 0, -1);
2941
2942	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2943	tlb_finish_mmu(&tlb, 0, -1);
2944
2945	/*
2946	 * Walk the list again, actually closing and freeing it,
2947	 * with preemption enabled, without holding any MM locks.
2948	 */
2949	while (vma) {
2950		if (vma->vm_flags & VM_ACCOUNT)
2951			nr_accounted += vma_pages(vma);
2952		vma = remove_vma(vma);
2953	}
2954	vm_unacct_memory(nr_accounted);
2955}
2956
2957/* Insert vm structure into process list sorted by address
2958 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2959 * then i_mmap_rwsem is taken here.
2960 */
2961int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2962{
2963	struct vm_area_struct *prev;
2964	struct rb_node **rb_link, *rb_parent;
2965
2966	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2967			   &prev, &rb_link, &rb_parent))
2968		return -ENOMEM;
2969	if ((vma->vm_flags & VM_ACCOUNT) &&
2970	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2971		return -ENOMEM;
2972
2973	/*
2974	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2975	 * until its first write fault, when page's anon_vma and index
2976	 * are set.  But now set the vm_pgoff it will almost certainly
2977	 * end up with (unless mremap moves it elsewhere before that
2978	 * first wfault), so /proc/pid/maps tells a consistent story.
2979	 *
2980	 * By setting it to reflect the virtual start address of the
2981	 * vma, merges and splits can happen in a seamless way, just
2982	 * using the existing file pgoff checks and manipulations.
2983	 * Similarly in do_mmap_pgoff and in do_brk.
2984	 */
2985	if (vma_is_anonymous(vma)) {
2986		BUG_ON(vma->anon_vma);
2987		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2988	}
2989
2990	vma_link(mm, vma, prev, rb_link, rb_parent);
2991	return 0;
2992}
2993
2994/*
2995 * Copy the vma structure to a new location in the same mm,
2996 * prior to moving page table entries, to effect an mremap move.
2997 */
2998struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2999	unsigned long addr, unsigned long len, pgoff_t pgoff,
3000	bool *need_rmap_locks)
3001{
3002	struct vm_area_struct *vma = *vmap;
3003	unsigned long vma_start = vma->vm_start;
3004	struct mm_struct *mm = vma->vm_mm;
3005	struct vm_area_struct *new_vma, *prev;
3006	struct rb_node **rb_link, *rb_parent;
3007	bool faulted_in_anon_vma = true;
3008
3009	/*
3010	 * If anonymous vma has not yet been faulted, update new pgoff
3011	 * to match new location, to increase its chance of merging.
3012	 */
3013	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3014		pgoff = addr >> PAGE_SHIFT;
3015		faulted_in_anon_vma = false;
3016	}
3017
3018	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3019		return NULL;	/* should never get here */
3020	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3021			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3022			    vma->vm_userfaultfd_ctx);
3023	if (new_vma) {
3024		/*
3025		 * Source vma may have been merged into new_vma
3026		 */
3027		if (unlikely(vma_start >= new_vma->vm_start &&
3028			     vma_start < new_vma->vm_end)) {
3029			/*
3030			 * The only way we can get a vma_merge with
3031			 * self during an mremap is if the vma hasn't
3032			 * been faulted in yet and we were allowed to
3033			 * reset the dst vma->vm_pgoff to the
3034			 * destination address of the mremap to allow
3035			 * the merge to happen. mremap must change the
3036			 * vm_pgoff linearity between src and dst vmas
3037			 * (in turn preventing a vma_merge) to be
3038			 * safe. It is only safe to keep the vm_pgoff
3039			 * linear if there are no pages mapped yet.
3040			 */
3041			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3042			*vmap = vma = new_vma;
3043		}
3044		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3045	} else {
3046		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3047		if (!new_vma)
3048			goto out;
3049		*new_vma = *vma;
3050		new_vma->vm_start = addr;
3051		new_vma->vm_end = addr + len;
3052		new_vma->vm_pgoff = pgoff;
3053		if (vma_dup_policy(vma, new_vma))
3054			goto out_free_vma;
3055		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3056		if (anon_vma_clone(new_vma, vma))
3057			goto out_free_mempol;
3058		if (new_vma->vm_file)
3059			get_file(new_vma->vm_file);
3060		if (new_vma->vm_ops && new_vma->vm_ops->open)
3061			new_vma->vm_ops->open(new_vma);
3062		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3063		*need_rmap_locks = false;
3064	}
3065	return new_vma;
3066
3067out_free_mempol:
3068	mpol_put(vma_policy(new_vma));
3069out_free_vma:
3070	kmem_cache_free(vm_area_cachep, new_vma);
3071out:
3072	return NULL;
3073}
3074
3075/*
3076 * Return true if the calling process may expand its vm space by the passed
3077 * number of pages
3078 */
3079bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3080{
3081	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3082		return false;
3083
3084	if (is_data_mapping(flags) &&
3085	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3086		/* Workaround for Valgrind */
3087		if (rlimit(RLIMIT_DATA) == 0 &&
3088		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3089			return true;
3090		if (!ignore_rlimit_data) {
3091			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3092				     current->comm, current->pid,
3093				     (mm->data_vm + npages) << PAGE_SHIFT,
3094				     rlimit(RLIMIT_DATA));
 
3095			return false;
3096		}
3097	}
3098
3099	return true;
3100}
3101
3102void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3103{
3104	mm->total_vm += npages;
3105
3106	if (is_exec_mapping(flags))
3107		mm->exec_vm += npages;
3108	else if (is_stack_mapping(flags))
3109		mm->stack_vm += npages;
3110	else if (is_data_mapping(flags))
3111		mm->data_vm += npages;
3112}
3113
3114static int special_mapping_fault(struct vm_area_struct *vma,
3115				 struct vm_fault *vmf);
3116
3117/*
3118 * Having a close hook prevents vma merging regardless of flags.
3119 */
3120static void special_mapping_close(struct vm_area_struct *vma)
3121{
3122}
3123
3124static const char *special_mapping_name(struct vm_area_struct *vma)
3125{
3126	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3127}
3128
3129static int special_mapping_mremap(struct vm_area_struct *new_vma)
3130{
3131	struct vm_special_mapping *sm = new_vma->vm_private_data;
3132
3133	if (sm->mremap)
3134		return sm->mremap(sm, new_vma);
3135	return 0;
3136}
3137
3138static const struct vm_operations_struct special_mapping_vmops = {
3139	.close = special_mapping_close,
3140	.fault = special_mapping_fault,
3141	.mremap = special_mapping_mremap,
3142	.name = special_mapping_name,
3143};
3144
3145static const struct vm_operations_struct legacy_special_mapping_vmops = {
3146	.close = special_mapping_close,
3147	.fault = special_mapping_fault,
3148};
3149
3150static int special_mapping_fault(struct vm_area_struct *vma,
3151				struct vm_fault *vmf)
3152{
3153	pgoff_t pgoff;
3154	struct page **pages;
3155
3156	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3157		pages = vma->vm_private_data;
3158	} else {
3159		struct vm_special_mapping *sm = vma->vm_private_data;
3160
3161		if (sm->fault)
3162			return sm->fault(sm, vma, vmf);
3163
3164		pages = sm->pages;
3165	}
3166
3167	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3168		pgoff--;
3169
3170	if (*pages) {
3171		struct page *page = *pages;
3172		get_page(page);
3173		vmf->page = page;
3174		return 0;
3175	}
3176
3177	return VM_FAULT_SIGBUS;
3178}
3179
3180static struct vm_area_struct *__install_special_mapping(
3181	struct mm_struct *mm,
3182	unsigned long addr, unsigned long len,
3183	unsigned long vm_flags, void *priv,
3184	const struct vm_operations_struct *ops)
3185{
3186	int ret;
3187	struct vm_area_struct *vma;
3188
3189	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3190	if (unlikely(vma == NULL))
3191		return ERR_PTR(-ENOMEM);
3192
3193	INIT_LIST_HEAD(&vma->anon_vma_chain);
3194	vma->vm_mm = mm;
3195	vma->vm_start = addr;
3196	vma->vm_end = addr + len;
3197
3198	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3199	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3200
3201	vma->vm_ops = ops;
3202	vma->vm_private_data = priv;
3203
3204	ret = insert_vm_struct(mm, vma);
3205	if (ret)
3206		goto out;
3207
3208	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3209
3210	perf_event_mmap(vma);
3211
3212	return vma;
3213
3214out:
3215	kmem_cache_free(vm_area_cachep, vma);
3216	return ERR_PTR(ret);
3217}
3218
3219bool vma_is_special_mapping(const struct vm_area_struct *vma,
3220	const struct vm_special_mapping *sm)
3221{
3222	return vma->vm_private_data == sm &&
3223		(vma->vm_ops == &special_mapping_vmops ||
3224		 vma->vm_ops == &legacy_special_mapping_vmops);
3225}
3226
3227/*
3228 * Called with mm->mmap_sem held for writing.
3229 * Insert a new vma covering the given region, with the given flags.
3230 * Its pages are supplied by the given array of struct page *.
3231 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3232 * The region past the last page supplied will always produce SIGBUS.
3233 * The array pointer and the pages it points to are assumed to stay alive
3234 * for as long as this mapping might exist.
3235 */
3236struct vm_area_struct *_install_special_mapping(
3237	struct mm_struct *mm,
3238	unsigned long addr, unsigned long len,
3239	unsigned long vm_flags, const struct vm_special_mapping *spec)
3240{
3241	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3242					&special_mapping_vmops);
3243}
3244
3245int install_special_mapping(struct mm_struct *mm,
3246			    unsigned long addr, unsigned long len,
3247			    unsigned long vm_flags, struct page **pages)
3248{
3249	struct vm_area_struct *vma = __install_special_mapping(
3250		mm, addr, len, vm_flags, (void *)pages,
3251		&legacy_special_mapping_vmops);
3252
3253	return PTR_ERR_OR_ZERO(vma);
3254}
3255
3256static DEFINE_MUTEX(mm_all_locks_mutex);
3257
3258static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3259{
3260	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3261		/*
3262		 * The LSB of head.next can't change from under us
3263		 * because we hold the mm_all_locks_mutex.
3264		 */
3265		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3266		/*
3267		 * We can safely modify head.next after taking the
3268		 * anon_vma->root->rwsem. If some other vma in this mm shares
3269		 * the same anon_vma we won't take it again.
3270		 *
3271		 * No need of atomic instructions here, head.next
3272		 * can't change from under us thanks to the
3273		 * anon_vma->root->rwsem.
3274		 */
3275		if (__test_and_set_bit(0, (unsigned long *)
3276				       &anon_vma->root->rb_root.rb_node))
3277			BUG();
3278	}
3279}
3280
3281static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3282{
3283	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3284		/*
3285		 * AS_MM_ALL_LOCKS can't change from under us because
3286		 * we hold the mm_all_locks_mutex.
3287		 *
3288		 * Operations on ->flags have to be atomic because
3289		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3290		 * mm_all_locks_mutex, there may be other cpus
3291		 * changing other bitflags in parallel to us.
3292		 */
3293		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3294			BUG();
3295		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3296	}
3297}
3298
3299/*
3300 * This operation locks against the VM for all pte/vma/mm related
3301 * operations that could ever happen on a certain mm. This includes
3302 * vmtruncate, try_to_unmap, and all page faults.
3303 *
3304 * The caller must take the mmap_sem in write mode before calling
3305 * mm_take_all_locks(). The caller isn't allowed to release the
3306 * mmap_sem until mm_drop_all_locks() returns.
3307 *
3308 * mmap_sem in write mode is required in order to block all operations
3309 * that could modify pagetables and free pages without need of
3310 * altering the vma layout. It's also needed in write mode to avoid new
3311 * anon_vmas to be associated with existing vmas.
3312 *
3313 * A single task can't take more than one mm_take_all_locks() in a row
3314 * or it would deadlock.
3315 *
3316 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3317 * mapping->flags avoid to take the same lock twice, if more than one
3318 * vma in this mm is backed by the same anon_vma or address_space.
3319 *
3320 * We take locks in following order, accordingly to comment at beginning
3321 * of mm/rmap.c:
3322 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3323 *     hugetlb mapping);
3324 *   - all i_mmap_rwsem locks;
3325 *   - all anon_vma->rwseml
3326 *
3327 * We can take all locks within these types randomly because the VM code
3328 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3329 * mm_all_locks_mutex.
3330 *
3331 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3332 * that may have to take thousand of locks.
3333 *
3334 * mm_take_all_locks() can fail if it's interrupted by signals.
3335 */
3336int mm_take_all_locks(struct mm_struct *mm)
3337{
3338	struct vm_area_struct *vma;
3339	struct anon_vma_chain *avc;
3340
3341	BUG_ON(down_read_trylock(&mm->mmap_sem));
3342
3343	mutex_lock(&mm_all_locks_mutex);
3344
3345	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3346		if (signal_pending(current))
3347			goto out_unlock;
3348		if (vma->vm_file && vma->vm_file->f_mapping &&
3349				is_vm_hugetlb_page(vma))
3350			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3351	}
3352
3353	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3354		if (signal_pending(current))
3355			goto out_unlock;
3356		if (vma->vm_file && vma->vm_file->f_mapping &&
3357				!is_vm_hugetlb_page(vma))
3358			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3359	}
3360
3361	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3362		if (signal_pending(current))
3363			goto out_unlock;
3364		if (vma->anon_vma)
3365			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3366				vm_lock_anon_vma(mm, avc->anon_vma);
3367	}
3368
3369	return 0;
3370
3371out_unlock:
3372	mm_drop_all_locks(mm);
3373	return -EINTR;
3374}
3375
3376static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3377{
3378	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3379		/*
3380		 * The LSB of head.next can't change to 0 from under
3381		 * us because we hold the mm_all_locks_mutex.
3382		 *
3383		 * We must however clear the bitflag before unlocking
3384		 * the vma so the users using the anon_vma->rb_root will
3385		 * never see our bitflag.
3386		 *
3387		 * No need of atomic instructions here, head.next
3388		 * can't change from under us until we release the
3389		 * anon_vma->root->rwsem.
3390		 */
3391		if (!__test_and_clear_bit(0, (unsigned long *)
3392					  &anon_vma->root->rb_root.rb_node))
3393			BUG();
3394		anon_vma_unlock_write(anon_vma);
3395	}
3396}
3397
3398static void vm_unlock_mapping(struct address_space *mapping)
3399{
3400	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3401		/*
3402		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3403		 * because we hold the mm_all_locks_mutex.
3404		 */
3405		i_mmap_unlock_write(mapping);
3406		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3407					&mapping->flags))
3408			BUG();
3409	}
3410}
3411
3412/*
3413 * The mmap_sem cannot be released by the caller until
3414 * mm_drop_all_locks() returns.
3415 */
3416void mm_drop_all_locks(struct mm_struct *mm)
3417{
3418	struct vm_area_struct *vma;
3419	struct anon_vma_chain *avc;
3420
3421	BUG_ON(down_read_trylock(&mm->mmap_sem));
3422	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3423
3424	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3425		if (vma->anon_vma)
3426			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3427				vm_unlock_anon_vma(avc->anon_vma);
3428		if (vma->vm_file && vma->vm_file->f_mapping)
3429			vm_unlock_mapping(vma->vm_file->f_mapping);
3430	}
3431
3432	mutex_unlock(&mm_all_locks_mutex);
3433}
3434
3435/*
3436 * initialise the VMA slab
3437 */
3438void __init mmap_init(void)
3439{
3440	int ret;
3441
3442	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3443	VM_BUG_ON(ret);
3444}
3445
3446/*
3447 * Initialise sysctl_user_reserve_kbytes.
3448 *
3449 * This is intended to prevent a user from starting a single memory hogging
3450 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3451 * mode.
3452 *
3453 * The default value is min(3% of free memory, 128MB)
3454 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3455 */
3456static int init_user_reserve(void)
3457{
3458	unsigned long free_kbytes;
3459
3460	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3461
3462	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3463	return 0;
3464}
3465subsys_initcall(init_user_reserve);
3466
3467/*
3468 * Initialise sysctl_admin_reserve_kbytes.
3469 *
3470 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3471 * to log in and kill a memory hogging process.
3472 *
3473 * Systems with more than 256MB will reserve 8MB, enough to recover
3474 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3475 * only reserve 3% of free pages by default.
3476 */
3477static int init_admin_reserve(void)
3478{
3479	unsigned long free_kbytes;
3480
3481	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3482
3483	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3484	return 0;
3485}
3486subsys_initcall(init_admin_reserve);
3487
3488/*
3489 * Reinititalise user and admin reserves if memory is added or removed.
3490 *
3491 * The default user reserve max is 128MB, and the default max for the
3492 * admin reserve is 8MB. These are usually, but not always, enough to
3493 * enable recovery from a memory hogging process using login/sshd, a shell,
3494 * and tools like top. It may make sense to increase or even disable the
3495 * reserve depending on the existence of swap or variations in the recovery
3496 * tools. So, the admin may have changed them.
3497 *
3498 * If memory is added and the reserves have been eliminated or increased above
3499 * the default max, then we'll trust the admin.
3500 *
3501 * If memory is removed and there isn't enough free memory, then we
3502 * need to reset the reserves.
3503 *
3504 * Otherwise keep the reserve set by the admin.
3505 */
3506static int reserve_mem_notifier(struct notifier_block *nb,
3507			     unsigned long action, void *data)
3508{
3509	unsigned long tmp, free_kbytes;
3510
3511	switch (action) {
3512	case MEM_ONLINE:
3513		/* Default max is 128MB. Leave alone if modified by operator. */
3514		tmp = sysctl_user_reserve_kbytes;
3515		if (0 < tmp && tmp < (1UL << 17))
3516			init_user_reserve();
3517
3518		/* Default max is 8MB.  Leave alone if modified by operator. */
3519		tmp = sysctl_admin_reserve_kbytes;
3520		if (0 < tmp && tmp < (1UL << 13))
3521			init_admin_reserve();
3522
3523		break;
3524	case MEM_OFFLINE:
3525		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3526
3527		if (sysctl_user_reserve_kbytes > free_kbytes) {
3528			init_user_reserve();
3529			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3530				sysctl_user_reserve_kbytes);
3531		}
3532
3533		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3534			init_admin_reserve();
3535			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3536				sysctl_admin_reserve_kbytes);
3537		}
3538		break;
3539	default:
3540		break;
3541	}
3542	return NOTIFY_OK;
3543}
3544
3545static struct notifier_block reserve_mem_nb = {
3546	.notifier_call = reserve_mem_notifier,
3547};
3548
3549static int __meminit init_reserve_notifier(void)
3550{
3551	if (register_hotmemory_notifier(&reserve_mem_nb))
3552		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3553
3554	return 0;
3555}
3556subsys_initcall(init_reserve_notifier);