Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/slab.h>
  13#include <linux/backing-dev.h>
  14#include <linux/mm.h>
  15#include <linux/vmacache.h>
  16#include <linux/shm.h>
  17#include <linux/mman.h>
  18#include <linux/pagemap.h>
  19#include <linux/swap.h>
  20#include <linux/syscalls.h>
  21#include <linux/capability.h>
  22#include <linux/init.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/hugetlb.h>
  28#include <linux/profile.h>
  29#include <linux/export.h>
  30#include <linux/mount.h>
  31#include <linux/mempolicy.h>
  32#include <linux/rmap.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/mmdebug.h>
  35#include <linux/perf_event.h>
  36#include <linux/audit.h>
  37#include <linux/khugepaged.h>
  38#include <linux/uprobes.h>
  39#include <linux/rbtree_augmented.h>
  40#include <linux/notifier.h>
  41#include <linux/memory.h>
  42#include <linux/printk.h>
  43#include <linux/userfaultfd_k.h>
  44#include <linux/moduleparam.h>
  45#include <linux/pkeys.h>
  46
  47#include <asm/uaccess.h>
  48#include <asm/cacheflush.h>
  49#include <asm/tlb.h>
  50#include <asm/mmu_context.h>
  51
  52#include "internal.h"
  53
  54#ifndef arch_mmap_check
  55#define arch_mmap_check(addr, len, flags)	(0)
  56#endif
  57
  58#ifndef arch_rebalance_pgtables
  59#define arch_rebalance_pgtables(addr, len)		(addr)
  60#endif
  61
  62#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  63const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  64const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  65int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  66#endif
  67#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  68const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  69const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  70int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  71#endif
  72
  73static bool ignore_rlimit_data = true;
  74core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  75
  76static void unmap_region(struct mm_struct *mm,
  77		struct vm_area_struct *vma, struct vm_area_struct *prev,
  78		unsigned long start, unsigned long end);
  79
 
 
 
 
 
 
  80/* description of effects of mapping type and prot in current implementation.
  81 * this is due to the limited x86 page protection hardware.  The expected
  82 * behavior is in parens:
  83 *
  84 * map_type	prot
  85 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  86 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  87 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  88 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  89 *
  90 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  91 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  92 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  93 *
  94 */
  95pgprot_t protection_map[16] = {
  96	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  97	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  98};
  99
 100pgprot_t vm_get_page_prot(unsigned long vm_flags)
 101{
 102	return __pgprot(pgprot_val(protection_map[vm_flags &
 103				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 104			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 105}
 106EXPORT_SYMBOL(vm_get_page_prot);
 107
 108static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 109{
 110	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 111}
 
 
 
 
 112
 113/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 114void vma_set_page_prot(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115{
 116	unsigned long vm_flags = vma->vm_flags;
 117
 118	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 119	if (vma_wants_writenotify(vma)) {
 120		vm_flags &= ~VM_SHARED;
 121		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
 122						     vm_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124}
 125
 126/*
 127 * Requires inode->i_mapping->i_mmap_rwsem
 128 */
 129static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 130		struct file *file, struct address_space *mapping)
 131{
 132	if (vma->vm_flags & VM_DENYWRITE)
 133		atomic_inc(&file_inode(file)->i_writecount);
 134	if (vma->vm_flags & VM_SHARED)
 135		mapping_unmap_writable(mapping);
 136
 137	flush_dcache_mmap_lock(mapping);
 138	vma_interval_tree_remove(vma, &mapping->i_mmap);
 
 
 
 139	flush_dcache_mmap_unlock(mapping);
 140}
 141
 142/*
 143 * Unlink a file-based vm structure from its interval tree, to hide
 144 * vma from rmap and vmtruncate before freeing its page tables.
 145 */
 146void unlink_file_vma(struct vm_area_struct *vma)
 147{
 148	struct file *file = vma->vm_file;
 149
 150	if (file) {
 151		struct address_space *mapping = file->f_mapping;
 152		i_mmap_lock_write(mapping);
 153		__remove_shared_vm_struct(vma, file, mapping);
 154		i_mmap_unlock_write(mapping);
 155	}
 156}
 157
 158/*
 159 * Close a vm structure and free it, returning the next.
 160 */
 161static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 162{
 163	struct vm_area_struct *next = vma->vm_next;
 164
 165	might_sleep();
 166	if (vma->vm_ops && vma->vm_ops->close)
 167		vma->vm_ops->close(vma);
 168	if (vma->vm_file)
 169		fput(vma->vm_file);
 
 
 
 170	mpol_put(vma_policy(vma));
 171	kmem_cache_free(vm_area_cachep, vma);
 172	return next;
 173}
 174
 175static unsigned long do_brk(unsigned long addr, unsigned long len);
 176
 177SYSCALL_DEFINE1(brk, unsigned long, brk)
 178{
 179	unsigned long retval;
 180	unsigned long newbrk, oldbrk;
 181	struct mm_struct *mm = current->mm;
 182	unsigned long min_brk;
 183	bool populate;
 184
 185	down_write(&mm->mmap_sem);
 186
 187#ifdef CONFIG_COMPAT_BRK
 188	/*
 189	 * CONFIG_COMPAT_BRK can still be overridden by setting
 190	 * randomize_va_space to 2, which will still cause mm->start_brk
 191	 * to be arbitrarily shifted
 192	 */
 193	if (current->brk_randomized)
 194		min_brk = mm->start_brk;
 195	else
 196		min_brk = mm->end_data;
 197#else
 198	min_brk = mm->start_brk;
 199#endif
 200	if (brk < min_brk)
 201		goto out;
 202
 203	/*
 204	 * Check against rlimit here. If this check is done later after the test
 205	 * of oldbrk with newbrk then it can escape the test and let the data
 206	 * segment grow beyond its set limit the in case where the limit is
 207	 * not page aligned -Ram Gupta
 208	 */
 209	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 210			      mm->end_data, mm->start_data))
 
 211		goto out;
 212
 213	newbrk = PAGE_ALIGN(brk);
 214	oldbrk = PAGE_ALIGN(mm->brk);
 215	if (oldbrk == newbrk)
 216		goto set_brk;
 217
 218	/* Always allow shrinking brk. */
 219	if (brk <= mm->brk) {
 220		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 221			goto set_brk;
 222		goto out;
 223	}
 224
 225	/* Check against existing mmap mappings. */
 226	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 227		goto out;
 228
 229	/* Ok, looks good - let it rip. */
 230	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 231		goto out;
 232
 233set_brk:
 234	mm->brk = brk;
 235	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 236	up_write(&mm->mmap_sem);
 237	if (populate)
 238		mm_populate(oldbrk, newbrk - oldbrk);
 239	return brk;
 240
 241out:
 242	retval = mm->brk;
 243	up_write(&mm->mmap_sem);
 244	return retval;
 245}
 246
 247static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 248{
 249	unsigned long max, subtree_gap;
 250	max = vma->vm_start;
 251	if (vma->vm_prev)
 252		max -= vma->vm_prev->vm_end;
 253	if (vma->vm_rb.rb_left) {
 254		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 255				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 256		if (subtree_gap > max)
 257			max = subtree_gap;
 258	}
 259	if (vma->vm_rb.rb_right) {
 260		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 261				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 262		if (subtree_gap > max)
 263			max = subtree_gap;
 264	}
 265	return max;
 266}
 267
 268#ifdef CONFIG_DEBUG_VM_RB
 269static int browse_rb(struct mm_struct *mm)
 270{
 271	struct rb_root *root = &mm->mm_rb;
 272	int i = 0, j, bug = 0;
 273	struct rb_node *nd, *pn = NULL;
 274	unsigned long prev = 0, pend = 0;
 275
 276	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 277		struct vm_area_struct *vma;
 278		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 279		if (vma->vm_start < prev) {
 280			pr_emerg("vm_start %lx < prev %lx\n",
 281				  vma->vm_start, prev);
 282			bug = 1;
 283		}
 284		if (vma->vm_start < pend) {
 285			pr_emerg("vm_start %lx < pend %lx\n",
 286				  vma->vm_start, pend);
 287			bug = 1;
 288		}
 289		if (vma->vm_start > vma->vm_end) {
 290			pr_emerg("vm_start %lx > vm_end %lx\n",
 291				  vma->vm_start, vma->vm_end);
 292			bug = 1;
 293		}
 294		spin_lock(&mm->page_table_lock);
 295		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 296			pr_emerg("free gap %lx, correct %lx\n",
 297			       vma->rb_subtree_gap,
 298			       vma_compute_subtree_gap(vma));
 299			bug = 1;
 300		}
 301		spin_unlock(&mm->page_table_lock);
 302		i++;
 303		pn = nd;
 304		prev = vma->vm_start;
 305		pend = vma->vm_end;
 306	}
 307	j = 0;
 308	for (nd = pn; nd; nd = rb_prev(nd))
 309		j++;
 310	if (i != j) {
 311		pr_emerg("backwards %d, forwards %d\n", j, i);
 312		bug = 1;
 313	}
 314	return bug ? -1 : i;
 315}
 316
 317static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 318{
 319	struct rb_node *nd;
 320
 321	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 322		struct vm_area_struct *vma;
 323		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 324		VM_BUG_ON_VMA(vma != ignore &&
 325			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 326			vma);
 327	}
 
 
 
 328}
 329
 330static void validate_mm(struct mm_struct *mm)
 331{
 332	int bug = 0;
 333	int i = 0;
 334	unsigned long highest_address = 0;
 335	struct vm_area_struct *vma = mm->mmap;
 336
 337	while (vma) {
 338		struct anon_vma *anon_vma = vma->anon_vma;
 339		struct anon_vma_chain *avc;
 340
 341		if (anon_vma) {
 342			anon_vma_lock_read(anon_vma);
 343			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 344				anon_vma_interval_tree_verify(avc);
 345			anon_vma_unlock_read(anon_vma);
 346		}
 347
 348		highest_address = vma->vm_end;
 349		vma = vma->vm_next;
 350		i++;
 351	}
 352	if (i != mm->map_count) {
 353		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 354		bug = 1;
 355	}
 356	if (highest_address != mm->highest_vm_end) {
 357		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 358			  mm->highest_vm_end, highest_address);
 359		bug = 1;
 360	}
 361	i = browse_rb(mm);
 362	if (i != mm->map_count) {
 363		if (i != -1)
 364			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 365		bug = 1;
 366	}
 367	VM_BUG_ON_MM(bug, mm);
 368}
 369#else
 370#define validate_mm_rb(root, ignore) do { } while (0)
 371#define validate_mm(mm) do { } while (0)
 372#endif
 373
 374RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 375		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 376
 377/*
 378 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 379 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 380 * in the rbtree.
 381 */
 382static void vma_gap_update(struct vm_area_struct *vma)
 383{
 384	/*
 385	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 386	 * function that does exacltly what we want.
 387	 */
 388	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 389}
 390
 391static inline void vma_rb_insert(struct vm_area_struct *vma,
 392				 struct rb_root *root)
 393{
 394	/* All rb_subtree_gap values must be consistent prior to insertion */
 395	validate_mm_rb(root, NULL);
 396
 397	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 398}
 399
 400static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 401{
 402	/*
 403	 * All rb_subtree_gap values must be consistent prior to erase,
 404	 * with the possible exception of the vma being erased.
 405	 */
 406	validate_mm_rb(root, vma);
 407
 408	/*
 409	 * Note rb_erase_augmented is a fairly large inline function,
 410	 * so make sure we instantiate it only once with our desired
 411	 * augmented rbtree callbacks.
 412	 */
 413	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 414}
 415
 416/*
 417 * vma has some anon_vma assigned, and is already inserted on that
 418 * anon_vma's interval trees.
 419 *
 420 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 421 * vma must be removed from the anon_vma's interval trees using
 422 * anon_vma_interval_tree_pre_update_vma().
 423 *
 424 * After the update, the vma will be reinserted using
 425 * anon_vma_interval_tree_post_update_vma().
 426 *
 427 * The entire update must be protected by exclusive mmap_sem and by
 428 * the root anon_vma's mutex.
 429 */
 430static inline void
 431anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 432{
 433	struct anon_vma_chain *avc;
 434
 435	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 436		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 437}
 438
 439static inline void
 440anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 441{
 442	struct anon_vma_chain *avc;
 443
 444	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 445		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 446}
 447
 448static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 449		unsigned long end, struct vm_area_struct **pprev,
 450		struct rb_node ***rb_link, struct rb_node **rb_parent)
 451{
 452	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 453
 454	__rb_link = &mm->mm_rb.rb_node;
 455	rb_prev = __rb_parent = NULL;
 
 456
 457	while (*__rb_link) {
 458		struct vm_area_struct *vma_tmp;
 459
 460		__rb_parent = *__rb_link;
 461		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 462
 463		if (vma_tmp->vm_end > addr) {
 464			/* Fail if an existing vma overlaps the area */
 465			if (vma_tmp->vm_start < end)
 466				return -ENOMEM;
 467			__rb_link = &__rb_parent->rb_left;
 468		} else {
 469			rb_prev = __rb_parent;
 470			__rb_link = &__rb_parent->rb_right;
 471		}
 472	}
 473
 474	*pprev = NULL;
 475	if (rb_prev)
 476		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 477	*rb_link = __rb_link;
 478	*rb_parent = __rb_parent;
 479	return 0;
 480}
 481
 482static unsigned long count_vma_pages_range(struct mm_struct *mm,
 483		unsigned long addr, unsigned long end)
 484{
 485	unsigned long nr_pages = 0;
 486	struct vm_area_struct *vma;
 487
 488	/* Find first overlaping mapping */
 489	vma = find_vma_intersection(mm, addr, end);
 490	if (!vma)
 491		return 0;
 492
 493	nr_pages = (min(end, vma->vm_end) -
 494		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 495
 496	/* Iterate over the rest of the overlaps */
 497	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 498		unsigned long overlap_len;
 499
 500		if (vma->vm_start > end)
 501			break;
 502
 503		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 504		nr_pages += overlap_len >> PAGE_SHIFT;
 505	}
 506
 507	return nr_pages;
 508}
 509
 510void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 511		struct rb_node **rb_link, struct rb_node *rb_parent)
 512{
 513	/* Update tracking information for the gap following the new vma. */
 514	if (vma->vm_next)
 515		vma_gap_update(vma->vm_next);
 516	else
 517		mm->highest_vm_end = vma->vm_end;
 518
 519	/*
 520	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 521	 * correct insertion point for that vma. As a result, we could not
 522	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 523	 * So, we first insert the vma with a zero rb_subtree_gap value
 524	 * (to be consistent with what we did on the way down), and then
 525	 * immediately update the gap to the correct value. Finally we
 526	 * rebalance the rbtree after all augmented values have been set.
 527	 */
 528	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 529	vma->rb_subtree_gap = 0;
 530	vma_gap_update(vma);
 531	vma_rb_insert(vma, &mm->mm_rb);
 532}
 533
 534static void __vma_link_file(struct vm_area_struct *vma)
 535{
 536	struct file *file;
 537
 538	file = vma->vm_file;
 539	if (file) {
 540		struct address_space *mapping = file->f_mapping;
 541
 542		if (vma->vm_flags & VM_DENYWRITE)
 543			atomic_dec(&file_inode(file)->i_writecount);
 544		if (vma->vm_flags & VM_SHARED)
 545			atomic_inc(&mapping->i_mmap_writable);
 546
 547		flush_dcache_mmap_lock(mapping);
 548		vma_interval_tree_insert(vma, &mapping->i_mmap);
 
 
 
 549		flush_dcache_mmap_unlock(mapping);
 550	}
 551}
 552
 553static void
 554__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 555	struct vm_area_struct *prev, struct rb_node **rb_link,
 556	struct rb_node *rb_parent)
 557{
 558	__vma_link_list(mm, vma, prev, rb_parent);
 559	__vma_link_rb(mm, vma, rb_link, rb_parent);
 560}
 561
 562static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 563			struct vm_area_struct *prev, struct rb_node **rb_link,
 564			struct rb_node *rb_parent)
 565{
 566	struct address_space *mapping = NULL;
 567
 568	if (vma->vm_file) {
 569		mapping = vma->vm_file->f_mapping;
 570		i_mmap_lock_write(mapping);
 571	}
 
 572
 573	__vma_link(mm, vma, prev, rb_link, rb_parent);
 574	__vma_link_file(vma);
 575
 576	if (mapping)
 577		i_mmap_unlock_write(mapping);
 578
 579	mm->map_count++;
 580	validate_mm(mm);
 581}
 582
 583/*
 584 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 585 * mm's list and rbtree.  It has already been inserted into the interval tree.
 586 */
 587static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 588{
 589	struct vm_area_struct *prev;
 590	struct rb_node **rb_link, *rb_parent;
 591
 592	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 593			   &prev, &rb_link, &rb_parent))
 594		BUG();
 595	__vma_link(mm, vma, prev, rb_link, rb_parent);
 596	mm->map_count++;
 597}
 598
 599static inline void
 600__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 601		struct vm_area_struct *prev)
 602{
 603	struct vm_area_struct *next;
 604
 605	vma_rb_erase(vma, &mm->mm_rb);
 606	prev->vm_next = next = vma->vm_next;
 607	if (next)
 608		next->vm_prev = prev;
 609
 610	/* Kill the cache */
 611	vmacache_invalidate(mm);
 612}
 613
 614/*
 615 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 616 * is already present in an i_mmap tree without adjusting the tree.
 617 * The following helper function should be used when such adjustments
 618 * are necessary.  The "insert" vma (if any) is to be inserted
 619 * before we drop the necessary locks.
 620 */
 621int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 622	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 623{
 624	struct mm_struct *mm = vma->vm_mm;
 625	struct vm_area_struct *next = vma->vm_next;
 626	struct vm_area_struct *importer = NULL;
 627	struct address_space *mapping = NULL;
 628	struct rb_root *root = NULL;
 629	struct anon_vma *anon_vma = NULL;
 630	struct file *file = vma->vm_file;
 631	bool start_changed = false, end_changed = false;
 632	long adjust_next = 0;
 633	int remove_next = 0;
 634
 635	if (next && !insert) {
 636		struct vm_area_struct *exporter = NULL;
 637
 638		if (end >= next->vm_end) {
 639			/*
 640			 * vma expands, overlapping all the next, and
 641			 * perhaps the one after too (mprotect case 6).
 642			 */
 643again:			remove_next = 1 + (end > next->vm_end);
 644			end = next->vm_end;
 645			exporter = next;
 646			importer = vma;
 647		} else if (end > next->vm_start) {
 648			/*
 649			 * vma expands, overlapping part of the next:
 650			 * mprotect case 5 shifting the boundary up.
 651			 */
 652			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 653			exporter = next;
 654			importer = vma;
 655		} else if (end < vma->vm_end) {
 656			/*
 657			 * vma shrinks, and !insert tells it's not
 658			 * split_vma inserting another: so it must be
 659			 * mprotect case 4 shifting the boundary down.
 660			 */
 661			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 662			exporter = vma;
 663			importer = next;
 664		}
 665
 666		/*
 667		 * Easily overlooked: when mprotect shifts the boundary,
 668		 * make sure the expanding vma has anon_vma set if the
 669		 * shrinking vma had, to cover any anon pages imported.
 670		 */
 671		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 672			int error;
 673
 674			importer->anon_vma = exporter->anon_vma;
 675			error = anon_vma_clone(importer, exporter);
 676			if (error)
 677				return error;
 678		}
 679	}
 680
 681	if (file) {
 682		mapping = file->f_mapping;
 683		root = &mapping->i_mmap;
 684		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 
 685
 686		if (adjust_next)
 687			uprobe_munmap(next, next->vm_start, next->vm_end);
 
 
 688
 689		i_mmap_lock_write(mapping);
 690		if (insert) {
 691			/*
 692			 * Put into interval tree now, so instantiated pages
 693			 * are visible to arm/parisc __flush_dcache_page
 694			 * throughout; but we cannot insert into address
 695			 * space until vma start or end is updated.
 696			 */
 697			__vma_link_file(insert);
 698		}
 699	}
 700
 701	vma_adjust_trans_huge(vma, start, end, adjust_next);
 702
 703	anon_vma = vma->anon_vma;
 704	if (!anon_vma && adjust_next)
 705		anon_vma = next->anon_vma;
 706	if (anon_vma) {
 707		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
 708			  anon_vma != next->anon_vma, next);
 709		anon_vma_lock_write(anon_vma);
 710		anon_vma_interval_tree_pre_update_vma(vma);
 711		if (adjust_next)
 712			anon_vma_interval_tree_pre_update_vma(next);
 713	}
 714
 715	if (root) {
 716		flush_dcache_mmap_lock(mapping);
 717		vma_interval_tree_remove(vma, root);
 718		if (adjust_next)
 719			vma_interval_tree_remove(next, root);
 720	}
 721
 722	if (start != vma->vm_start) {
 723		vma->vm_start = start;
 724		start_changed = true;
 725	}
 726	if (end != vma->vm_end) {
 727		vma->vm_end = end;
 728		end_changed = true;
 729	}
 730	vma->vm_pgoff = pgoff;
 731	if (adjust_next) {
 732		next->vm_start += adjust_next << PAGE_SHIFT;
 733		next->vm_pgoff += adjust_next;
 734	}
 735
 736	if (root) {
 737		if (adjust_next)
 738			vma_interval_tree_insert(next, root);
 739		vma_interval_tree_insert(vma, root);
 740		flush_dcache_mmap_unlock(mapping);
 741	}
 742
 743	if (remove_next) {
 744		/*
 745		 * vma_merge has merged next into vma, and needs
 746		 * us to remove next before dropping the locks.
 747		 */
 748		__vma_unlink(mm, next, vma);
 749		if (file)
 750			__remove_shared_vm_struct(next, file, mapping);
 751	} else if (insert) {
 752		/*
 753		 * split_vma has split insert from vma, and needs
 754		 * us to insert it before dropping the locks
 755		 * (it may either follow vma or precede it).
 756		 */
 757		__insert_vm_struct(mm, insert);
 758	} else {
 759		if (start_changed)
 760			vma_gap_update(vma);
 761		if (end_changed) {
 762			if (!next)
 763				mm->highest_vm_end = end;
 764			else if (!adjust_next)
 765				vma_gap_update(next);
 766		}
 767	}
 768
 769	if (anon_vma) {
 770		anon_vma_interval_tree_post_update_vma(vma);
 771		if (adjust_next)
 772			anon_vma_interval_tree_post_update_vma(next);
 773		anon_vma_unlock_write(anon_vma);
 774	}
 775	if (mapping)
 776		i_mmap_unlock_write(mapping);
 777
 778	if (root) {
 779		uprobe_mmap(vma);
 780
 781		if (adjust_next)
 782			uprobe_mmap(next);
 783	}
 784
 785	if (remove_next) {
 786		if (file) {
 787			uprobe_munmap(next, next->vm_start, next->vm_end);
 788			fput(file);
 
 
 789		}
 790		if (next->anon_vma)
 791			anon_vma_merge(vma, next);
 792		mm->map_count--;
 793		mpol_put(vma_policy(next));
 794		kmem_cache_free(vm_area_cachep, next);
 795		/*
 796		 * In mprotect's case 6 (see comments on vma_merge),
 797		 * we must remove another next too. It would clutter
 798		 * up the code too much to do both in one go.
 799		 */
 800		next = vma->vm_next;
 801		if (remove_next == 2)
 802			goto again;
 803		else if (next)
 804			vma_gap_update(next);
 805		else
 806			mm->highest_vm_end = end;
 807	}
 808	if (insert && file)
 809		uprobe_mmap(insert);
 810
 811	validate_mm(mm);
 812
 813	return 0;
 814}
 815
 816/*
 817 * If the vma has a ->close operation then the driver probably needs to release
 818 * per-vma resources, so we don't attempt to merge those.
 819 */
 820static inline int is_mergeable_vma(struct vm_area_struct *vma,
 821				struct file *file, unsigned long vm_flags,
 822				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 823{
 824	/*
 825	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 826	 * match the flags but dirty bit -- the caller should mark
 827	 * merged VMA as dirty. If dirty bit won't be excluded from
 828	 * comparison, we increase pressue on the memory system forcing
 829	 * the kernel to generate new VMAs when old one could be
 830	 * extended instead.
 831	 */
 832	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 833		return 0;
 834	if (vma->vm_file != file)
 835		return 0;
 836	if (vma->vm_ops && vma->vm_ops->close)
 837		return 0;
 838	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
 839		return 0;
 840	return 1;
 841}
 842
 843static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 844					struct anon_vma *anon_vma2,
 845					struct vm_area_struct *vma)
 846{
 847	/*
 848	 * The list_is_singular() test is to avoid merging VMA cloned from
 849	 * parents. This can improve scalability caused by anon_vma lock.
 850	 */
 851	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 852		list_is_singular(&vma->anon_vma_chain)))
 853		return 1;
 854	return anon_vma1 == anon_vma2;
 855}
 856
 857/*
 858 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 859 * in front of (at a lower virtual address and file offset than) the vma.
 860 *
 861 * We cannot merge two vmas if they have differently assigned (non-NULL)
 862 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 863 *
 864 * We don't check here for the merged mmap wrapping around the end of pagecache
 865 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 866 * wrap, nor mmaps which cover the final page at index -1UL.
 867 */
 868static int
 869can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 870		     struct anon_vma *anon_vma, struct file *file,
 871		     pgoff_t vm_pgoff,
 872		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 873{
 874	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
 875	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 876		if (vma->vm_pgoff == vm_pgoff)
 877			return 1;
 878	}
 879	return 0;
 880}
 881
 882/*
 883 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 884 * beyond (at a higher virtual address and file offset than) the vma.
 885 *
 886 * We cannot merge two vmas if they have differently assigned (non-NULL)
 887 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 888 */
 889static int
 890can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 891		    struct anon_vma *anon_vma, struct file *file,
 892		    pgoff_t vm_pgoff,
 893		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 894{
 895	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
 896	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 897		pgoff_t vm_pglen;
 898		vm_pglen = vma_pages(vma);
 899		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 900			return 1;
 901	}
 902	return 0;
 903}
 904
 905/*
 906 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 907 * whether that can be merged with its predecessor or its successor.
 908 * Or both (it neatly fills a hole).
 909 *
 910 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 911 * certain not to be mapped by the time vma_merge is called; but when
 912 * called for mprotect, it is certain to be already mapped (either at
 913 * an offset within prev, or at the start of next), and the flags of
 914 * this area are about to be changed to vm_flags - and the no-change
 915 * case has already been eliminated.
 916 *
 917 * The following mprotect cases have to be considered, where AAAA is
 918 * the area passed down from mprotect_fixup, never extending beyond one
 919 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 920 *
 921 *     AAAA             AAAA                AAAA          AAAA
 922 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 923 *    cannot merge    might become    might become    might become
 924 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 925 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 926 *    mremap move:                                    PPPPNNNNNNNN 8
 927 *        AAAA
 928 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 929 *    might become    case 1 below    case 2 below    case 3 below
 930 *
 931 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
 932 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
 933 */
 934struct vm_area_struct *vma_merge(struct mm_struct *mm,
 935			struct vm_area_struct *prev, unsigned long addr,
 936			unsigned long end, unsigned long vm_flags,
 937			struct anon_vma *anon_vma, struct file *file,
 938			pgoff_t pgoff, struct mempolicy *policy,
 939			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 940{
 941	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 942	struct vm_area_struct *area, *next;
 943	int err;
 944
 945	/*
 946	 * We later require that vma->vm_flags == vm_flags,
 947	 * so this tests vma->vm_flags & VM_SPECIAL, too.
 948	 */
 949	if (vm_flags & VM_SPECIAL)
 950		return NULL;
 951
 952	if (prev)
 953		next = prev->vm_next;
 954	else
 955		next = mm->mmap;
 956	area = next;
 957	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
 958		next = next->vm_next;
 959
 960	/*
 961	 * Can it merge with the predecessor?
 962	 */
 963	if (prev && prev->vm_end == addr &&
 964			mpol_equal(vma_policy(prev), policy) &&
 965			can_vma_merge_after(prev, vm_flags,
 966					    anon_vma, file, pgoff,
 967					    vm_userfaultfd_ctx)) {
 968		/*
 969		 * OK, it can.  Can we now merge in the successor as well?
 970		 */
 971		if (next && end == next->vm_start &&
 972				mpol_equal(policy, vma_policy(next)) &&
 973				can_vma_merge_before(next, vm_flags,
 974						     anon_vma, file,
 975						     pgoff+pglen,
 976						     vm_userfaultfd_ctx) &&
 977				is_mergeable_anon_vma(prev->anon_vma,
 978						      next->anon_vma, NULL)) {
 979							/* cases 1, 6 */
 980			err = vma_adjust(prev, prev->vm_start,
 981				next->vm_end, prev->vm_pgoff, NULL);
 982		} else					/* cases 2, 5, 7 */
 983			err = vma_adjust(prev, prev->vm_start,
 984				end, prev->vm_pgoff, NULL);
 985		if (err)
 986			return NULL;
 987		khugepaged_enter_vma_merge(prev, vm_flags);
 988		return prev;
 989	}
 990
 991	/*
 992	 * Can this new request be merged in front of next?
 993	 */
 994	if (next && end == next->vm_start &&
 995			mpol_equal(policy, vma_policy(next)) &&
 996			can_vma_merge_before(next, vm_flags,
 997					     anon_vma, file, pgoff+pglen,
 998					     vm_userfaultfd_ctx)) {
 999		if (prev && addr < prev->vm_end)	/* case 4 */
1000			err = vma_adjust(prev, prev->vm_start,
1001				addr, prev->vm_pgoff, NULL);
1002		else					/* cases 3, 8 */
1003			err = vma_adjust(area, addr, next->vm_end,
1004				next->vm_pgoff - pglen, NULL);
1005		if (err)
1006			return NULL;
1007		khugepaged_enter_vma_merge(area, vm_flags);
1008		return area;
1009	}
1010
1011	return NULL;
1012}
1013
1014/*
1015 * Rough compatbility check to quickly see if it's even worth looking
1016 * at sharing an anon_vma.
1017 *
1018 * They need to have the same vm_file, and the flags can only differ
1019 * in things that mprotect may change.
1020 *
1021 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1022 * we can merge the two vma's. For example, we refuse to merge a vma if
1023 * there is a vm_ops->close() function, because that indicates that the
1024 * driver is doing some kind of reference counting. But that doesn't
1025 * really matter for the anon_vma sharing case.
1026 */
1027static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1028{
1029	return a->vm_end == b->vm_start &&
1030		mpol_equal(vma_policy(a), vma_policy(b)) &&
1031		a->vm_file == b->vm_file &&
1032		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1033		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1034}
1035
1036/*
1037 * Do some basic sanity checking to see if we can re-use the anon_vma
1038 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1039 * the same as 'old', the other will be the new one that is trying
1040 * to share the anon_vma.
1041 *
1042 * NOTE! This runs with mm_sem held for reading, so it is possible that
1043 * the anon_vma of 'old' is concurrently in the process of being set up
1044 * by another page fault trying to merge _that_. But that's ok: if it
1045 * is being set up, that automatically means that it will be a singleton
1046 * acceptable for merging, so we can do all of this optimistically. But
1047 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1048 *
1049 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1050 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1051 * is to return an anon_vma that is "complex" due to having gone through
1052 * a fork).
1053 *
1054 * We also make sure that the two vma's are compatible (adjacent,
1055 * and with the same memory policies). That's all stable, even with just
1056 * a read lock on the mm_sem.
1057 */
1058static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1059{
1060	if (anon_vma_compatible(a, b)) {
1061		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1062
1063		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1064			return anon_vma;
1065	}
1066	return NULL;
1067}
1068
1069/*
1070 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1071 * neighbouring vmas for a suitable anon_vma, before it goes off
1072 * to allocate a new anon_vma.  It checks because a repetitive
1073 * sequence of mprotects and faults may otherwise lead to distinct
1074 * anon_vmas being allocated, preventing vma merge in subsequent
1075 * mprotect.
1076 */
1077struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1078{
1079	struct anon_vma *anon_vma;
1080	struct vm_area_struct *near;
1081
1082	near = vma->vm_next;
1083	if (!near)
1084		goto try_prev;
1085
1086	anon_vma = reusable_anon_vma(near, vma, near);
1087	if (anon_vma)
1088		return anon_vma;
1089try_prev:
1090	near = vma->vm_prev;
1091	if (!near)
1092		goto none;
1093
1094	anon_vma = reusable_anon_vma(near, near, vma);
1095	if (anon_vma)
1096		return anon_vma;
1097none:
1098	/*
1099	 * There's no absolute need to look only at touching neighbours:
1100	 * we could search further afield for "compatible" anon_vmas.
1101	 * But it would probably just be a waste of time searching,
1102	 * or lead to too many vmas hanging off the same anon_vma.
1103	 * We're trying to allow mprotect remerging later on,
1104	 * not trying to minimize memory used for anon_vmas.
1105	 */
1106	return NULL;
1107}
1108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109/*
1110 * If a hint addr is less than mmap_min_addr change hint to be as
1111 * low as possible but still greater than mmap_min_addr
1112 */
1113static inline unsigned long round_hint_to_min(unsigned long hint)
1114{
1115	hint &= PAGE_MASK;
1116	if (((void *)hint != NULL) &&
1117	    (hint < mmap_min_addr))
1118		return PAGE_ALIGN(mmap_min_addr);
1119	return hint;
1120}
1121
1122static inline int mlock_future_check(struct mm_struct *mm,
1123				     unsigned long flags,
1124				     unsigned long len)
1125{
1126	unsigned long locked, lock_limit;
1127
1128	/*  mlock MCL_FUTURE? */
1129	if (flags & VM_LOCKED) {
1130		locked = len >> PAGE_SHIFT;
1131		locked += mm->locked_vm;
1132		lock_limit = rlimit(RLIMIT_MEMLOCK);
1133		lock_limit >>= PAGE_SHIFT;
1134		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1135			return -EAGAIN;
1136	}
1137	return 0;
1138}
1139
1140/*
1141 * The caller must hold down_write(&current->mm->mmap_sem).
1142 */
1143unsigned long do_mmap(struct file *file, unsigned long addr,
 
1144			unsigned long len, unsigned long prot,
1145			unsigned long flags, vm_flags_t vm_flags,
1146			unsigned long pgoff, unsigned long *populate)
1147{
1148	struct mm_struct *mm = current->mm;
1149	int pkey = 0;
1150
1151	*populate = 0;
1152
1153	if (!len)
1154		return -EINVAL;
1155
1156	/*
1157	 * Does the application expect PROT_READ to imply PROT_EXEC?
1158	 *
1159	 * (the exception is when the underlying filesystem is noexec
1160	 *  mounted, in which case we dont add PROT_EXEC.)
1161	 */
1162	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1163		if (!(file && path_noexec(&file->f_path)))
1164			prot |= PROT_EXEC;
1165
 
 
 
1166	if (!(flags & MAP_FIXED))
1167		addr = round_hint_to_min(addr);
1168
1169	/* Careful about overflows.. */
1170	len = PAGE_ALIGN(len);
1171	if (!len)
1172		return -ENOMEM;
1173
1174	/* offset overflow? */
1175	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1176		return -EOVERFLOW;
1177
1178	/* Too many mappings? */
1179	if (mm->map_count > sysctl_max_map_count)
1180		return -ENOMEM;
1181
1182	/* Obtain the address to map to. we verify (or select) it and ensure
1183	 * that it represents a valid section of the address space.
1184	 */
1185	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1186	if (offset_in_page(addr))
1187		return addr;
1188
1189	if (prot == PROT_EXEC) {
1190		pkey = execute_only_pkey(mm);
1191		if (pkey < 0)
1192			pkey = 0;
1193	}
1194
1195	/* Do simple checking here so the lower-level routines won't have
1196	 * to. we assume access permissions have been handled by the open
1197	 * of the memory object, so we don't do any here.
1198	 */
1199	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1200			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1201
1202	if (flags & MAP_LOCKED)
1203		if (!can_do_mlock())
1204			return -EPERM;
1205
1206	if (mlock_future_check(mm, vm_flags, len))
1207		return -EAGAIN;
 
 
 
 
 
 
 
 
1208
1209	if (file) {
1210		struct inode *inode = file_inode(file);
1211
 
1212		switch (flags & MAP_TYPE) {
1213		case MAP_SHARED:
1214			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1215				return -EACCES;
1216
1217			/*
1218			 * Make sure we don't allow writing to an append-only
1219			 * file..
1220			 */
1221			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1222				return -EACCES;
1223
1224			/*
1225			 * Make sure there are no mandatory locks on the file.
1226			 */
1227			if (locks_verify_locked(file))
1228				return -EAGAIN;
1229
1230			vm_flags |= VM_SHARED | VM_MAYSHARE;
1231			if (!(file->f_mode & FMODE_WRITE))
1232				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1233
1234			/* fall through */
1235		case MAP_PRIVATE:
1236			if (!(file->f_mode & FMODE_READ))
1237				return -EACCES;
1238			if (path_noexec(&file->f_path)) {
1239				if (vm_flags & VM_EXEC)
1240					return -EPERM;
1241				vm_flags &= ~VM_MAYEXEC;
1242			}
1243
1244			if (!file->f_op->mmap)
1245				return -ENODEV;
1246			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1247				return -EINVAL;
1248			break;
1249
1250		default:
1251			return -EINVAL;
1252		}
1253	} else {
1254		switch (flags & MAP_TYPE) {
1255		case MAP_SHARED:
1256			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1257				return -EINVAL;
1258			/*
1259			 * Ignore pgoff.
1260			 */
1261			pgoff = 0;
1262			vm_flags |= VM_SHARED | VM_MAYSHARE;
1263			break;
1264		case MAP_PRIVATE:
1265			/*
1266			 * Set pgoff according to addr for anon_vma.
1267			 */
1268			pgoff = addr >> PAGE_SHIFT;
1269			break;
1270		default:
1271			return -EINVAL;
1272		}
1273	}
1274
1275	/*
1276	 * Set 'VM_NORESERVE' if we should not account for the
1277	 * memory use of this mapping.
1278	 */
1279	if (flags & MAP_NORESERVE) {
1280		/* We honor MAP_NORESERVE if allowed to overcommit */
1281		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1282			vm_flags |= VM_NORESERVE;
1283
1284		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1285		if (file && is_file_hugepages(file))
1286			vm_flags |= VM_NORESERVE;
1287	}
1288
1289	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1290	if (!IS_ERR_VALUE(addr) &&
1291	    ((vm_flags & VM_LOCKED) ||
1292	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1293		*populate = len;
1294	return addr;
1295}
1296
1297SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1298		unsigned long, prot, unsigned long, flags,
1299		unsigned long, fd, unsigned long, pgoff)
1300{
1301	struct file *file = NULL;
1302	unsigned long retval;
1303
1304	if (!(flags & MAP_ANONYMOUS)) {
1305		audit_mmap_fd(fd, flags);
 
 
1306		file = fget(fd);
1307		if (!file)
1308			return -EBADF;
1309		if (is_file_hugepages(file))
1310			len = ALIGN(len, huge_page_size(hstate_file(file)));
1311		retval = -EINVAL;
1312		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1313			goto out_fput;
1314	} else if (flags & MAP_HUGETLB) {
1315		struct user_struct *user = NULL;
1316		struct hstate *hs;
1317
1318		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1319		if (!hs)
1320			return -EINVAL;
1321
1322		len = ALIGN(len, huge_page_size(hs));
1323		/*
1324		 * VM_NORESERVE is used because the reservations will be
1325		 * taken when vm_ops->mmap() is called
1326		 * A dummy user value is used because we are not locking
1327		 * memory so no accounting is necessary
1328		 */
1329		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1330				VM_NORESERVE,
1331				&user, HUGETLB_ANONHUGE_INODE,
1332				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1333		if (IS_ERR(file))
1334			return PTR_ERR(file);
1335	}
1336
1337	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1338
1339	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1340out_fput:
1341	if (file)
1342		fput(file);
 
1343	return retval;
1344}
1345
1346#ifdef __ARCH_WANT_SYS_OLD_MMAP
1347struct mmap_arg_struct {
1348	unsigned long addr;
1349	unsigned long len;
1350	unsigned long prot;
1351	unsigned long flags;
1352	unsigned long fd;
1353	unsigned long offset;
1354};
1355
1356SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1357{
1358	struct mmap_arg_struct a;
1359
1360	if (copy_from_user(&a, arg, sizeof(a)))
1361		return -EFAULT;
1362	if (offset_in_page(a.offset))
1363		return -EINVAL;
1364
1365	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1366			      a.offset >> PAGE_SHIFT);
1367}
1368#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1369
1370/*
1371 * Some shared mappigns will want the pages marked read-only
1372 * to track write events. If so, we'll downgrade vm_page_prot
1373 * to the private version (using protection_map[] without the
1374 * VM_SHARED bit).
1375 */
1376int vma_wants_writenotify(struct vm_area_struct *vma)
1377{
1378	vm_flags_t vm_flags = vma->vm_flags;
1379	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1380
1381	/* If it was private or non-writable, the write bit is already clear */
1382	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1383		return 0;
1384
1385	/* The backer wishes to know when pages are first written to? */
1386	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1387		return 1;
1388
1389	/* The open routine did something to the protections that pgprot_modify
1390	 * won't preserve? */
1391	if (pgprot_val(vma->vm_page_prot) !=
1392	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1393		return 0;
1394
1395	/* Do we need to track softdirty? */
1396	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1397		return 1;
1398
1399	/* Specialty mapping? */
1400	if (vm_flags & VM_PFNMAP)
1401		return 0;
1402
1403	/* Can the mapping track the dirty pages? */
1404	return vma->vm_file && vma->vm_file->f_mapping &&
1405		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1406}
1407
1408/*
1409 * We account for memory if it's a private writeable mapping,
1410 * not hugepages and VM_NORESERVE wasn't set.
1411 */
1412static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1413{
1414	/*
1415	 * hugetlb has its own accounting separate from the core VM
1416	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1417	 */
1418	if (file && is_file_hugepages(file))
1419		return 0;
1420
1421	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1422}
1423
1424unsigned long mmap_region(struct file *file, unsigned long addr,
1425		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
 
1426{
1427	struct mm_struct *mm = current->mm;
1428	struct vm_area_struct *vma, *prev;
 
1429	int error;
1430	struct rb_node **rb_link, *rb_parent;
1431	unsigned long charged = 0;
1432
1433	/* Check against address space limit. */
1434	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1435		unsigned long nr_pages;
1436
1437		/*
1438		 * MAP_FIXED may remove pages of mappings that intersects with
1439		 * requested mapping. Account for the pages it would unmap.
1440		 */
1441		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1442
1443		if (!may_expand_vm(mm, vm_flags,
1444					(len >> PAGE_SHIFT) - nr_pages))
1445			return -ENOMEM;
1446	}
1447
1448	/* Clear old maps */
1449	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1450			      &rb_parent)) {
 
 
1451		if (do_munmap(mm, addr, len))
1452			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453	}
1454
1455	/*
1456	 * Private writable mapping: check memory availability
1457	 */
1458	if (accountable_mapping(file, vm_flags)) {
1459		charged = len >> PAGE_SHIFT;
1460		if (security_vm_enough_memory_mm(mm, charged))
1461			return -ENOMEM;
1462		vm_flags |= VM_ACCOUNT;
1463	}
1464
1465	/*
1466	 * Can we just expand an old mapping?
1467	 */
1468	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1469			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1470	if (vma)
1471		goto out;
1472
1473	/*
1474	 * Determine the object being mapped and call the appropriate
1475	 * specific mapper. the address has already been validated, but
1476	 * not unmapped, but the maps are removed from the list.
1477	 */
1478	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1479	if (!vma) {
1480		error = -ENOMEM;
1481		goto unacct_error;
1482	}
1483
1484	vma->vm_mm = mm;
1485	vma->vm_start = addr;
1486	vma->vm_end = addr + len;
1487	vma->vm_flags = vm_flags;
1488	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1489	vma->vm_pgoff = pgoff;
1490	INIT_LIST_HEAD(&vma->anon_vma_chain);
1491
 
 
1492	if (file) {
 
 
1493		if (vm_flags & VM_DENYWRITE) {
1494			error = deny_write_access(file);
1495			if (error)
1496				goto free_vma;
 
1497		}
1498		if (vm_flags & VM_SHARED) {
1499			error = mapping_map_writable(file->f_mapping);
1500			if (error)
1501				goto allow_write_and_free_vma;
1502		}
1503
1504		/* ->mmap() can change vma->vm_file, but must guarantee that
1505		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1506		 * and map writably if VM_SHARED is set. This usually means the
1507		 * new file must not have been exposed to user-space, yet.
1508		 */
1509		vma->vm_file = get_file(file);
1510		error = file->f_op->mmap(file, vma);
1511		if (error)
1512			goto unmap_and_free_vma;
 
 
1513
1514		/* Can addr have changed??
1515		 *
1516		 * Answer: Yes, several device drivers can do it in their
1517		 *         f_op->mmap method. -DaveM
1518		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1519		 *      be updated for vma_link()
1520		 */
1521		WARN_ON_ONCE(addr != vma->vm_start);
1522
1523		addr = vma->vm_start;
 
1524		vm_flags = vma->vm_flags;
1525	} else if (vm_flags & VM_SHARED) {
 
 
1526		error = shmem_zero_setup(vma);
1527		if (error)
1528			goto free_vma;
1529	}
1530
1531	vma_link(mm, vma, prev, rb_link, rb_parent);
1532	/* Once vma denies write, undo our temporary denial count */
1533	if (file) {
1534		if (vm_flags & VM_SHARED)
1535			mapping_unmap_writable(file->f_mapping);
1536		if (vm_flags & VM_DENYWRITE)
1537			allow_write_access(file);
 
 
 
 
 
 
1538	}
 
 
1539	file = vma->vm_file;
 
 
 
 
1540out:
1541	perf_event_mmap(vma);
1542
1543	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
 
1544	if (vm_flags & VM_LOCKED) {
1545		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1546					vma == get_gate_vma(current->mm)))
1547			mm->locked_vm += (len >> PAGE_SHIFT);
1548		else
1549			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1550	}
1551
1552	if (file)
1553		uprobe_mmap(vma);
1554
1555	/*
1556	 * New (or expanded) vma always get soft dirty status.
1557	 * Otherwise user-space soft-dirty page tracker won't
1558	 * be able to distinguish situation when vma area unmapped,
1559	 * then new mapped in-place (which must be aimed as
1560	 * a completely new data area).
1561	 */
1562	vma->vm_flags |= VM_SOFTDIRTY;
1563
1564	vma_set_page_prot(vma);
1565
1566	return addr;
1567
1568unmap_and_free_vma:
 
 
1569	vma->vm_file = NULL;
1570	fput(file);
1571
1572	/* Undo any partial mapping done by a device driver. */
1573	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1574	charged = 0;
1575	if (vm_flags & VM_SHARED)
1576		mapping_unmap_writable(file->f_mapping);
1577allow_write_and_free_vma:
1578	if (vm_flags & VM_DENYWRITE)
1579		allow_write_access(file);
1580free_vma:
1581	kmem_cache_free(vm_area_cachep, vma);
1582unacct_error:
1583	if (charged)
1584		vm_unacct_memory(charged);
1585	return error;
1586}
1587
1588unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1589{
1590	/*
1591	 * We implement the search by looking for an rbtree node that
1592	 * immediately follows a suitable gap. That is,
1593	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1594	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1595	 * - gap_end - gap_start >= length
1596	 */
1597
1598	struct mm_struct *mm = current->mm;
1599	struct vm_area_struct *vma;
1600	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1601
1602	/* Adjust search length to account for worst case alignment overhead */
1603	length = info->length + info->align_mask;
1604	if (length < info->length)
1605		return -ENOMEM;
1606
1607	/* Adjust search limits by the desired length */
1608	if (info->high_limit < length)
1609		return -ENOMEM;
1610	high_limit = info->high_limit - length;
1611
1612	if (info->low_limit > high_limit)
1613		return -ENOMEM;
1614	low_limit = info->low_limit + length;
1615
1616	/* Check if rbtree root looks promising */
1617	if (RB_EMPTY_ROOT(&mm->mm_rb))
1618		goto check_highest;
1619	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1620	if (vma->rb_subtree_gap < length)
1621		goto check_highest;
1622
1623	while (true) {
1624		/* Visit left subtree if it looks promising */
1625		gap_end = vma->vm_start;
1626		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1627			struct vm_area_struct *left =
1628				rb_entry(vma->vm_rb.rb_left,
1629					 struct vm_area_struct, vm_rb);
1630			if (left->rb_subtree_gap >= length) {
1631				vma = left;
1632				continue;
1633			}
1634		}
1635
1636		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1637check_current:
1638		/* Check if current node has a suitable gap */
1639		if (gap_start > high_limit)
1640			return -ENOMEM;
1641		if (gap_end >= low_limit && gap_end - gap_start >= length)
1642			goto found;
1643
1644		/* Visit right subtree if it looks promising */
1645		if (vma->vm_rb.rb_right) {
1646			struct vm_area_struct *right =
1647				rb_entry(vma->vm_rb.rb_right,
1648					 struct vm_area_struct, vm_rb);
1649			if (right->rb_subtree_gap >= length) {
1650				vma = right;
1651				continue;
1652			}
1653		}
1654
1655		/* Go back up the rbtree to find next candidate node */
1656		while (true) {
1657			struct rb_node *prev = &vma->vm_rb;
1658			if (!rb_parent(prev))
1659				goto check_highest;
1660			vma = rb_entry(rb_parent(prev),
1661				       struct vm_area_struct, vm_rb);
1662			if (prev == vma->vm_rb.rb_left) {
1663				gap_start = vma->vm_prev->vm_end;
1664				gap_end = vma->vm_start;
1665				goto check_current;
1666			}
1667		}
1668	}
1669
1670check_highest:
1671	/* Check highest gap, which does not precede any rbtree node */
1672	gap_start = mm->highest_vm_end;
1673	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1674	if (gap_start > high_limit)
1675		return -ENOMEM;
1676
1677found:
1678	/* We found a suitable gap. Clip it with the original low_limit. */
1679	if (gap_start < info->low_limit)
1680		gap_start = info->low_limit;
1681
1682	/* Adjust gap address to the desired alignment */
1683	gap_start += (info->align_offset - gap_start) & info->align_mask;
1684
1685	VM_BUG_ON(gap_start + info->length > info->high_limit);
1686	VM_BUG_ON(gap_start + info->length > gap_end);
1687	return gap_start;
1688}
1689
1690unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1691{
1692	struct mm_struct *mm = current->mm;
1693	struct vm_area_struct *vma;
1694	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1695
1696	/* Adjust search length to account for worst case alignment overhead */
1697	length = info->length + info->align_mask;
1698	if (length < info->length)
1699		return -ENOMEM;
1700
1701	/*
1702	 * Adjust search limits by the desired length.
1703	 * See implementation comment at top of unmapped_area().
1704	 */
1705	gap_end = info->high_limit;
1706	if (gap_end < length)
1707		return -ENOMEM;
1708	high_limit = gap_end - length;
1709
1710	if (info->low_limit > high_limit)
1711		return -ENOMEM;
1712	low_limit = info->low_limit + length;
1713
1714	/* Check highest gap, which does not precede any rbtree node */
1715	gap_start = mm->highest_vm_end;
1716	if (gap_start <= high_limit)
1717		goto found_highest;
1718
1719	/* Check if rbtree root looks promising */
1720	if (RB_EMPTY_ROOT(&mm->mm_rb))
1721		return -ENOMEM;
1722	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1723	if (vma->rb_subtree_gap < length)
1724		return -ENOMEM;
1725
1726	while (true) {
1727		/* Visit right subtree if it looks promising */
1728		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1729		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1730			struct vm_area_struct *right =
1731				rb_entry(vma->vm_rb.rb_right,
1732					 struct vm_area_struct, vm_rb);
1733			if (right->rb_subtree_gap >= length) {
1734				vma = right;
1735				continue;
1736			}
1737		}
1738
1739check_current:
1740		/* Check if current node has a suitable gap */
1741		gap_end = vma->vm_start;
1742		if (gap_end < low_limit)
1743			return -ENOMEM;
1744		if (gap_start <= high_limit && gap_end - gap_start >= length)
1745			goto found;
1746
1747		/* Visit left subtree if it looks promising */
1748		if (vma->vm_rb.rb_left) {
1749			struct vm_area_struct *left =
1750				rb_entry(vma->vm_rb.rb_left,
1751					 struct vm_area_struct, vm_rb);
1752			if (left->rb_subtree_gap >= length) {
1753				vma = left;
1754				continue;
1755			}
1756		}
1757
1758		/* Go back up the rbtree to find next candidate node */
1759		while (true) {
1760			struct rb_node *prev = &vma->vm_rb;
1761			if (!rb_parent(prev))
1762				return -ENOMEM;
1763			vma = rb_entry(rb_parent(prev),
1764				       struct vm_area_struct, vm_rb);
1765			if (prev == vma->vm_rb.rb_right) {
1766				gap_start = vma->vm_prev ?
1767					vma->vm_prev->vm_end : 0;
1768				goto check_current;
1769			}
1770		}
1771	}
1772
1773found:
1774	/* We found a suitable gap. Clip it with the original high_limit. */
1775	if (gap_end > info->high_limit)
1776		gap_end = info->high_limit;
1777
1778found_highest:
1779	/* Compute highest gap address at the desired alignment */
1780	gap_end -= info->length;
1781	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1782
1783	VM_BUG_ON(gap_end < info->low_limit);
1784	VM_BUG_ON(gap_end < gap_start);
1785	return gap_end;
1786}
1787
1788/* Get an address range which is currently unmapped.
1789 * For shmat() with addr=0.
1790 *
1791 * Ugly calling convention alert:
1792 * Return value with the low bits set means error value,
1793 * ie
1794 *	if (ret & ~PAGE_MASK)
1795 *		error = ret;
1796 *
1797 * This function "knows" that -ENOMEM has the bits set.
1798 */
1799#ifndef HAVE_ARCH_UNMAPPED_AREA
1800unsigned long
1801arch_get_unmapped_area(struct file *filp, unsigned long addr,
1802		unsigned long len, unsigned long pgoff, unsigned long flags)
1803{
1804	struct mm_struct *mm = current->mm;
1805	struct vm_area_struct *vma;
1806	struct vm_unmapped_area_info info;
1807
1808	if (len > TASK_SIZE - mmap_min_addr)
1809		return -ENOMEM;
1810
1811	if (flags & MAP_FIXED)
1812		return addr;
1813
1814	if (addr) {
1815		addr = PAGE_ALIGN(addr);
1816		vma = find_vma(mm, addr);
1817		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1818		    (!vma || addr + len <= vma->vm_start))
1819			return addr;
1820	}
 
 
 
 
 
 
1821
1822	info.flags = 0;
1823	info.length = len;
1824	info.low_limit = mm->mmap_base;
1825	info.high_limit = TASK_SIZE;
1826	info.align_mask = 0;
1827	return vm_unmapped_area(&info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1828}
1829#endif
1830
1831/*
1832 * This mmap-allocator allocates new areas top-down from below the
1833 * stack's low limit (the base):
1834 */
1835#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1836unsigned long
1837arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1838			  const unsigned long len, const unsigned long pgoff,
1839			  const unsigned long flags)
1840{
1841	struct vm_area_struct *vma;
1842	struct mm_struct *mm = current->mm;
1843	unsigned long addr = addr0;
1844	struct vm_unmapped_area_info info;
1845
1846	/* requested length too big for entire address space */
1847	if (len > TASK_SIZE - mmap_min_addr)
1848		return -ENOMEM;
1849
1850	if (flags & MAP_FIXED)
1851		return addr;
1852
1853	/* requesting a specific address */
1854	if (addr) {
1855		addr = PAGE_ALIGN(addr);
1856		vma = find_vma(mm, addr);
1857		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1858				(!vma || addr + len <= vma->vm_start))
1859			return addr;
1860	}
1861
1862	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1863	info.length = len;
1864	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1865	info.high_limit = mm->mmap_base;
1866	info.align_mask = 0;
1867	addr = vm_unmapped_area(&info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868
1869	/*
1870	 * A failed mmap() very likely causes application failure,
1871	 * so fall back to the bottom-up function here. This scenario
1872	 * can happen with large stack limits and large mmap()
1873	 * allocations.
1874	 */
1875	if (offset_in_page(addr)) {
1876		VM_BUG_ON(addr != -ENOMEM);
1877		info.flags = 0;
1878		info.low_limit = TASK_UNMAPPED_BASE;
1879		info.high_limit = TASK_SIZE;
1880		addr = vm_unmapped_area(&info);
1881	}
 
1882
1883	return addr;
1884}
1885#endif
1886
 
 
 
 
 
 
 
 
 
 
 
 
 
1887unsigned long
1888get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1889		unsigned long pgoff, unsigned long flags)
1890{
1891	unsigned long (*get_area)(struct file *, unsigned long,
1892				  unsigned long, unsigned long, unsigned long);
1893
1894	unsigned long error = arch_mmap_check(addr, len, flags);
1895	if (error)
1896		return error;
1897
1898	/* Careful about overflows.. */
1899	if (len > TASK_SIZE)
1900		return -ENOMEM;
1901
1902	get_area = current->mm->get_unmapped_area;
1903	if (file && file->f_op->get_unmapped_area)
1904		get_area = file->f_op->get_unmapped_area;
1905	addr = get_area(file, addr, len, pgoff, flags);
1906	if (IS_ERR_VALUE(addr))
1907		return addr;
1908
1909	if (addr > TASK_SIZE - len)
1910		return -ENOMEM;
1911	if (offset_in_page(addr))
1912		return -EINVAL;
1913
1914	addr = arch_rebalance_pgtables(addr, len);
1915	error = security_mmap_addr(addr);
1916	return error ? error : addr;
1917}
1918
1919EXPORT_SYMBOL(get_unmapped_area);
1920
1921/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1922struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1923{
1924	struct rb_node *rb_node;
1925	struct vm_area_struct *vma;
 
 
1926
1927	/* Check the cache first. */
1928	vma = vmacache_find(mm, addr);
1929	if (likely(vma))
1930		return vma;
 
1931
1932	rb_node = mm->mm_rb.rb_node;
 
1933
1934	while (rb_node) {
1935		struct vm_area_struct *tmp;
1936
1937		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
 
1938
1939		if (tmp->vm_end > addr) {
1940			vma = tmp;
1941			if (tmp->vm_start <= addr)
1942				break;
1943			rb_node = rb_node->rb_left;
1944		} else
1945			rb_node = rb_node->rb_right;
 
 
 
1946	}
1947
1948	if (vma)
1949		vmacache_update(addr, vma);
1950	return vma;
1951}
1952
1953EXPORT_SYMBOL(find_vma);
1954
1955/*
1956 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1957 */
1958struct vm_area_struct *
1959find_vma_prev(struct mm_struct *mm, unsigned long addr,
1960			struct vm_area_struct **pprev)
1961{
1962	struct vm_area_struct *vma;
1963
1964	vma = find_vma(mm, addr);
1965	if (vma) {
1966		*pprev = vma->vm_prev;
1967	} else {
1968		struct rb_node *rb_node = mm->mm_rb.rb_node;
1969		*pprev = NULL;
1970		while (rb_node) {
1971			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1972			rb_node = rb_node->rb_right;
1973		}
1974	}
1975	return vma;
1976}
1977
1978/*
1979 * Verify that the stack growth is acceptable and
1980 * update accounting. This is shared with both the
1981 * grow-up and grow-down cases.
1982 */
1983static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1984{
1985	struct mm_struct *mm = vma->vm_mm;
1986	struct rlimit *rlim = current->signal->rlim;
1987	unsigned long new_start, actual_size;
1988
1989	/* address space limit tests */
1990	if (!may_expand_vm(mm, vma->vm_flags, grow))
1991		return -ENOMEM;
1992
1993	/* Stack limit test */
1994	actual_size = size;
1995	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
1996		actual_size -= PAGE_SIZE;
1997	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1998		return -ENOMEM;
1999
2000	/* mlock limit tests */
2001	if (vma->vm_flags & VM_LOCKED) {
2002		unsigned long locked;
2003		unsigned long limit;
2004		locked = mm->locked_vm + grow;
2005		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2006		limit >>= PAGE_SHIFT;
2007		if (locked > limit && !capable(CAP_IPC_LOCK))
2008			return -ENOMEM;
2009	}
2010
2011	/* Check to ensure the stack will not grow into a hugetlb-only region */
2012	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2013			vma->vm_end - size;
2014	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2015		return -EFAULT;
2016
2017	/*
2018	 * Overcommit..  This must be the final test, as it will
2019	 * update security statistics.
2020	 */
2021	if (security_vm_enough_memory_mm(mm, grow))
2022		return -ENOMEM;
2023
 
 
 
 
 
2024	return 0;
2025}
2026
2027#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2028/*
2029 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2030 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2031 */
2032int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2033{
2034	struct mm_struct *mm = vma->vm_mm;
2035	int error = 0;
2036
2037	if (!(vma->vm_flags & VM_GROWSUP))
2038		return -EFAULT;
2039
2040	/* Guard against wrapping around to address 0. */
2041	if (address < PAGE_ALIGN(address+4))
2042		address = PAGE_ALIGN(address+4);
2043	else
2044		return -ENOMEM;
2045
2046	/* We must make sure the anon_vma is allocated. */
2047	if (unlikely(anon_vma_prepare(vma)))
2048		return -ENOMEM;
 
2049
2050	/*
2051	 * vma->vm_start/vm_end cannot change under us because the caller
2052	 * is required to hold the mmap_sem in read mode.  We need the
2053	 * anon_vma lock to serialize against concurrent expand_stacks.
 
2054	 */
2055	anon_vma_lock_write(vma->anon_vma);
 
 
 
 
 
 
2056
2057	/* Somebody else might have raced and expanded it already */
2058	if (address > vma->vm_end) {
2059		unsigned long size, grow;
2060
2061		size = address - vma->vm_start;
2062		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2063
2064		error = -ENOMEM;
2065		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2066			error = acct_stack_growth(vma, size, grow);
2067			if (!error) {
2068				/*
2069				 * vma_gap_update() doesn't support concurrent
2070				 * updates, but we only hold a shared mmap_sem
2071				 * lock here, so we need to protect against
2072				 * concurrent vma expansions.
2073				 * anon_vma_lock_write() doesn't help here, as
2074				 * we don't guarantee that all growable vmas
2075				 * in a mm share the same root anon vma.
2076				 * So, we reuse mm->page_table_lock to guard
2077				 * against concurrent vma expansions.
2078				 */
2079				spin_lock(&mm->page_table_lock);
2080				if (vma->vm_flags & VM_LOCKED)
2081					mm->locked_vm += grow;
2082				vm_stat_account(mm, vma->vm_flags, grow);
2083				anon_vma_interval_tree_pre_update_vma(vma);
2084				vma->vm_end = address;
2085				anon_vma_interval_tree_post_update_vma(vma);
2086				if (vma->vm_next)
2087					vma_gap_update(vma->vm_next);
2088				else
2089					mm->highest_vm_end = address;
2090				spin_unlock(&mm->page_table_lock);
2091
2092				perf_event_mmap(vma);
2093			}
2094		}
2095	}
2096	anon_vma_unlock_write(vma->anon_vma);
2097	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2098	validate_mm(mm);
2099	return error;
2100}
2101#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2102
2103/*
2104 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2105 */
2106int expand_downwards(struct vm_area_struct *vma,
2107				   unsigned long address)
2108{
2109	struct mm_struct *mm = vma->vm_mm;
2110	int error;
2111
 
 
 
 
 
 
 
2112	address &= PAGE_MASK;
2113	error = security_mmap_addr(address);
2114	if (error)
2115		return error;
2116
2117	/* We must make sure the anon_vma is allocated. */
2118	if (unlikely(anon_vma_prepare(vma)))
2119		return -ENOMEM;
2120
2121	/*
2122	 * vma->vm_start/vm_end cannot change under us because the caller
2123	 * is required to hold the mmap_sem in read mode.  We need the
2124	 * anon_vma lock to serialize against concurrent expand_stacks.
2125	 */
2126	anon_vma_lock_write(vma->anon_vma);
2127
2128	/* Somebody else might have raced and expanded it already */
2129	if (address < vma->vm_start) {
2130		unsigned long size, grow;
2131
2132		size = vma->vm_end - address;
2133		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2134
2135		error = -ENOMEM;
2136		if (grow <= vma->vm_pgoff) {
2137			error = acct_stack_growth(vma, size, grow);
2138			if (!error) {
2139				/*
2140				 * vma_gap_update() doesn't support concurrent
2141				 * updates, but we only hold a shared mmap_sem
2142				 * lock here, so we need to protect against
2143				 * concurrent vma expansions.
2144				 * anon_vma_lock_write() doesn't help here, as
2145				 * we don't guarantee that all growable vmas
2146				 * in a mm share the same root anon vma.
2147				 * So, we reuse mm->page_table_lock to guard
2148				 * against concurrent vma expansions.
2149				 */
2150				spin_lock(&mm->page_table_lock);
2151				if (vma->vm_flags & VM_LOCKED)
2152					mm->locked_vm += grow;
2153				vm_stat_account(mm, vma->vm_flags, grow);
2154				anon_vma_interval_tree_pre_update_vma(vma);
2155				vma->vm_start = address;
2156				vma->vm_pgoff -= grow;
2157				anon_vma_interval_tree_post_update_vma(vma);
2158				vma_gap_update(vma);
2159				spin_unlock(&mm->page_table_lock);
2160
2161				perf_event_mmap(vma);
2162			}
2163		}
2164	}
2165	anon_vma_unlock_write(vma->anon_vma);
2166	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2167	validate_mm(mm);
2168	return error;
2169}
2170
2171/*
2172 * Note how expand_stack() refuses to expand the stack all the way to
2173 * abut the next virtual mapping, *unless* that mapping itself is also
2174 * a stack mapping. We want to leave room for a guard page, after all
2175 * (the guard page itself is not added here, that is done by the
2176 * actual page faulting logic)
2177 *
2178 * This matches the behavior of the guard page logic (see mm/memory.c:
2179 * check_stack_guard_page()), which only allows the guard page to be
2180 * removed under these circumstances.
2181 */
2182#ifdef CONFIG_STACK_GROWSUP
2183int expand_stack(struct vm_area_struct *vma, unsigned long address)
2184{
2185	struct vm_area_struct *next;
2186
2187	address &= PAGE_MASK;
2188	next = vma->vm_next;
2189	if (next && next->vm_start == address + PAGE_SIZE) {
2190		if (!(next->vm_flags & VM_GROWSUP))
2191			return -ENOMEM;
2192	}
2193	return expand_upwards(vma, address);
2194}
2195
2196struct vm_area_struct *
2197find_extend_vma(struct mm_struct *mm, unsigned long addr)
2198{
2199	struct vm_area_struct *vma, *prev;
2200
2201	addr &= PAGE_MASK;
2202	vma = find_vma_prev(mm, addr, &prev);
2203	if (vma && (vma->vm_start <= addr))
2204		return vma;
2205	if (!prev || expand_stack(prev, addr))
2206		return NULL;
2207	if (prev->vm_flags & VM_LOCKED)
2208		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
 
2209	return prev;
2210}
2211#else
2212int expand_stack(struct vm_area_struct *vma, unsigned long address)
2213{
2214	struct vm_area_struct *prev;
2215
2216	address &= PAGE_MASK;
2217	prev = vma->vm_prev;
2218	if (prev && prev->vm_end == address) {
2219		if (!(prev->vm_flags & VM_GROWSDOWN))
2220			return -ENOMEM;
2221	}
2222	return expand_downwards(vma, address);
2223}
2224
2225struct vm_area_struct *
2226find_extend_vma(struct mm_struct *mm, unsigned long addr)
2227{
2228	struct vm_area_struct *vma;
2229	unsigned long start;
2230
2231	addr &= PAGE_MASK;
2232	vma = find_vma(mm, addr);
2233	if (!vma)
2234		return NULL;
2235	if (vma->vm_start <= addr)
2236		return vma;
2237	if (!(vma->vm_flags & VM_GROWSDOWN))
2238		return NULL;
2239	start = vma->vm_start;
2240	if (expand_stack(vma, addr))
2241		return NULL;
2242	if (vma->vm_flags & VM_LOCKED)
2243		populate_vma_page_range(vma, addr, start, NULL);
 
2244	return vma;
2245}
2246#endif
2247
2248EXPORT_SYMBOL_GPL(find_extend_vma);
2249
2250/*
2251 * Ok - we have the memory areas we should free on the vma list,
2252 * so release them, and do the vma updates.
2253 *
2254 * Called with the mm semaphore held.
2255 */
2256static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2257{
2258	unsigned long nr_accounted = 0;
2259
2260	/* Update high watermark before we lower total_vm */
2261	update_hiwater_vm(mm);
2262	do {
2263		long nrpages = vma_pages(vma);
2264
2265		if (vma->vm_flags & VM_ACCOUNT)
2266			nr_accounted += nrpages;
2267		vm_stat_account(mm, vma->vm_flags, -nrpages);
 
2268		vma = remove_vma(vma);
2269	} while (vma);
2270	vm_unacct_memory(nr_accounted);
2271	validate_mm(mm);
2272}
2273
2274/*
2275 * Get rid of page table information in the indicated region.
2276 *
2277 * Called with the mm semaphore held.
2278 */
2279static void unmap_region(struct mm_struct *mm,
2280		struct vm_area_struct *vma, struct vm_area_struct *prev,
2281		unsigned long start, unsigned long end)
2282{
2283	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2284	struct mmu_gather tlb;
2285
2286	lru_add_drain();
2287	tlb_gather_mmu(&tlb, mm, start, end);
2288	update_hiwater_rss(mm);
2289	unmap_vmas(&tlb, vma, start, end);
2290	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2291				 next ? next->vm_start : USER_PGTABLES_CEILING);
2292	tlb_finish_mmu(&tlb, start, end);
2293}
2294
2295/*
2296 * Create a list of vma's touched by the unmap, removing them from the mm's
2297 * vma list as we go..
2298 */
2299static void
2300detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2301	struct vm_area_struct *prev, unsigned long end)
2302{
2303	struct vm_area_struct **insertion_point;
2304	struct vm_area_struct *tail_vma = NULL;
 
2305
2306	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2307	vma->vm_prev = NULL;
2308	do {
2309		vma_rb_erase(vma, &mm->mm_rb);
2310		mm->map_count--;
2311		tail_vma = vma;
2312		vma = vma->vm_next;
2313	} while (vma && vma->vm_start < end);
2314	*insertion_point = vma;
2315	if (vma) {
2316		vma->vm_prev = prev;
2317		vma_gap_update(vma);
2318	} else
2319		mm->highest_vm_end = prev ? prev->vm_end : 0;
2320	tail_vma->vm_next = NULL;
2321
2322	/* Kill the cache */
2323	vmacache_invalidate(mm);
 
 
 
2324}
2325
2326/*
2327 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2328 * munmap path where it doesn't make sense to fail.
2329 */
2330static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2331	      unsigned long addr, int new_below)
2332{
 
2333	struct vm_area_struct *new;
2334	int err;
2335
2336	if (is_vm_hugetlb_page(vma) && (addr &
2337					~(huge_page_mask(hstate_vma(vma)))))
2338		return -EINVAL;
2339
2340	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2341	if (!new)
2342		return -ENOMEM;
2343
2344	/* most fields are the same, copy all, and then fixup */
2345	*new = *vma;
2346
2347	INIT_LIST_HEAD(&new->anon_vma_chain);
2348
2349	if (new_below)
2350		new->vm_end = addr;
2351	else {
2352		new->vm_start = addr;
2353		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2354	}
2355
2356	err = vma_dup_policy(vma, new);
2357	if (err)
 
2358		goto out_free_vma;
 
 
2359
2360	err = anon_vma_clone(new, vma);
2361	if (err)
2362		goto out_free_mpol;
2363
2364	if (new->vm_file)
2365		get_file(new->vm_file);
 
 
 
2366
2367	if (new->vm_ops && new->vm_ops->open)
2368		new->vm_ops->open(new);
2369
2370	if (new_below)
2371		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2372			((addr - new->vm_start) >> PAGE_SHIFT), new);
2373	else
2374		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2375
2376	/* Success. */
2377	if (!err)
2378		return 0;
2379
2380	/* Clean everything up if vma_adjust failed. */
2381	if (new->vm_ops && new->vm_ops->close)
2382		new->vm_ops->close(new);
2383	if (new->vm_file)
 
 
2384		fput(new->vm_file);
 
2385	unlink_anon_vmas(new);
2386 out_free_mpol:
2387	mpol_put(vma_policy(new));
2388 out_free_vma:
2389	kmem_cache_free(vm_area_cachep, new);
 
2390	return err;
2391}
2392
2393/*
2394 * Split a vma into two pieces at address 'addr', a new vma is allocated
2395 * either for the first part or the tail.
2396 */
2397int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2398	      unsigned long addr, int new_below)
2399{
2400	if (mm->map_count >= sysctl_max_map_count)
2401		return -ENOMEM;
2402
2403	return __split_vma(mm, vma, addr, new_below);
2404}
2405
2406/* Munmap is split into 2 main parts -- this part which finds
2407 * what needs doing, and the areas themselves, which do the
2408 * work.  This now handles partial unmappings.
2409 * Jeremy Fitzhardinge <jeremy@goop.org>
2410 */
2411int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2412{
2413	unsigned long end;
2414	struct vm_area_struct *vma, *prev, *last;
2415
2416	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2417		return -EINVAL;
2418
2419	len = PAGE_ALIGN(len);
2420	if (len == 0)
2421		return -EINVAL;
2422
2423	/* Find the first overlapping VMA */
2424	vma = find_vma(mm, start);
2425	if (!vma)
2426		return 0;
2427	prev = vma->vm_prev;
2428	/* we have  start < vma->vm_end  */
2429
2430	/* if it doesn't overlap, we have nothing.. */
2431	end = start + len;
2432	if (vma->vm_start >= end)
2433		return 0;
2434
2435	/*
2436	 * If we need to split any vma, do it now to save pain later.
2437	 *
2438	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2439	 * unmapped vm_area_struct will remain in use: so lower split_vma
2440	 * places tmp vma above, and higher split_vma places tmp vma below.
2441	 */
2442	if (start > vma->vm_start) {
2443		int error;
2444
2445		/*
2446		 * Make sure that map_count on return from munmap() will
2447		 * not exceed its limit; but let map_count go just above
2448		 * its limit temporarily, to help free resources as expected.
2449		 */
2450		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2451			return -ENOMEM;
2452
2453		error = __split_vma(mm, vma, start, 0);
2454		if (error)
2455			return error;
2456		prev = vma;
2457	}
2458
2459	/* Does it split the last one? */
2460	last = find_vma(mm, end);
2461	if (last && end > last->vm_start) {
2462		int error = __split_vma(mm, last, end, 1);
2463		if (error)
2464			return error;
2465	}
2466	vma = prev ? prev->vm_next : mm->mmap;
2467
2468	/*
2469	 * unlock any mlock()ed ranges before detaching vmas
2470	 */
2471	if (mm->locked_vm) {
2472		struct vm_area_struct *tmp = vma;
2473		while (tmp && tmp->vm_start < end) {
2474			if (tmp->vm_flags & VM_LOCKED) {
2475				mm->locked_vm -= vma_pages(tmp);
2476				munlock_vma_pages_all(tmp);
2477			}
2478			tmp = tmp->vm_next;
2479		}
2480	}
2481
2482	/*
2483	 * Remove the vma's, and unmap the actual pages
2484	 */
2485	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2486	unmap_region(mm, vma, prev, start, end);
2487
2488	arch_unmap(mm, vma, start, end);
2489
2490	/* Fix up all other VM information */
2491	remove_vma_list(mm, vma);
2492
2493	return 0;
2494}
2495
2496int vm_munmap(unsigned long start, size_t len)
2497{
2498	int ret;
2499	struct mm_struct *mm = current->mm;
2500
2501	down_write(&mm->mmap_sem);
2502	ret = do_munmap(mm, start, len);
2503	up_write(&mm->mmap_sem);
2504	return ret;
2505}
2506EXPORT_SYMBOL(vm_munmap);
2507
2508SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2509{
2510	profile_munmap(addr);
2511	return vm_munmap(addr, len);
2512}
2513
2514
2515/*
2516 * Emulation of deprecated remap_file_pages() syscall.
2517 */
2518SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2519		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2520{
2521
2522	struct mm_struct *mm = current->mm;
2523	struct vm_area_struct *vma;
2524	unsigned long populate = 0;
2525	unsigned long ret = -EINVAL;
2526	struct file *file;
2527
2528	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2529		     current->comm, current->pid);
2530
2531	if (prot)
2532		return ret;
2533	start = start & PAGE_MASK;
2534	size = size & PAGE_MASK;
2535
2536	if (start + size <= start)
2537		return ret;
2538
2539	/* Does pgoff wrap? */
2540	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2541		return ret;
2542
2543	down_write(&mm->mmap_sem);
2544	vma = find_vma(mm, start);
2545
2546	if (!vma || !(vma->vm_flags & VM_SHARED))
2547		goto out;
2548
2549	if (start < vma->vm_start)
2550		goto out;
2551
2552	if (start + size > vma->vm_end) {
2553		struct vm_area_struct *next;
2554
2555		for (next = vma->vm_next; next; next = next->vm_next) {
2556			/* hole between vmas ? */
2557			if (next->vm_start != next->vm_prev->vm_end)
2558				goto out;
2559
2560			if (next->vm_file != vma->vm_file)
2561				goto out;
2562
2563			if (next->vm_flags != vma->vm_flags)
2564				goto out;
2565
2566			if (start + size <= next->vm_end)
2567				break;
2568		}
2569
2570		if (!next)
2571			goto out;
2572	}
2573
2574	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2575	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2576	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2577
2578	flags &= MAP_NONBLOCK;
2579	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2580	if (vma->vm_flags & VM_LOCKED) {
2581		struct vm_area_struct *tmp;
2582		flags |= MAP_LOCKED;
2583
2584		/* drop PG_Mlocked flag for over-mapped range */
2585		for (tmp = vma; tmp->vm_start >= start + size;
2586				tmp = tmp->vm_next) {
2587			munlock_vma_pages_range(tmp,
2588					max(tmp->vm_start, start),
2589					min(tmp->vm_end, start + size));
2590		}
2591	}
2592
2593	file = get_file(vma->vm_file);
2594	ret = do_mmap_pgoff(vma->vm_file, start, size,
2595			prot, flags, pgoff, &populate);
2596	fput(file);
2597out:
2598	up_write(&mm->mmap_sem);
2599	if (populate)
2600		mm_populate(ret, populate);
2601	if (!IS_ERR_VALUE(ret))
2602		ret = 0;
2603	return ret;
2604}
2605
2606static inline void verify_mm_writelocked(struct mm_struct *mm)
2607{
2608#ifdef CONFIG_DEBUG_VM
2609	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2610		WARN_ON(1);
2611		up_read(&mm->mmap_sem);
2612	}
2613#endif
2614}
2615
2616/*
2617 *  this is really a simplified "do_mmap".  it only handles
2618 *  anonymous maps.  eventually we may be able to do some
2619 *  brk-specific accounting here.
2620 */
2621static unsigned long do_brk(unsigned long addr, unsigned long len)
2622{
2623	struct mm_struct *mm = current->mm;
2624	struct vm_area_struct *vma, *prev;
2625	unsigned long flags;
2626	struct rb_node **rb_link, *rb_parent;
2627	pgoff_t pgoff = addr >> PAGE_SHIFT;
2628	int error;
2629
2630	len = PAGE_ALIGN(len);
2631	if (!len)
2632		return addr;
2633
2634	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2635
2636	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2637	if (offset_in_page(error))
2638		return error;
2639
2640	error = mlock_future_check(mm, mm->def_flags, len);
2641	if (error)
2642		return error;
 
 
 
 
 
 
 
 
 
2643
2644	/*
2645	 * mm->mmap_sem is required to protect against another thread
2646	 * changing the mappings in case we sleep.
2647	 */
2648	verify_mm_writelocked(mm);
2649
2650	/*
2651	 * Clear old maps.  this also does some error checking for us
2652	 */
2653	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2654			      &rb_parent)) {
 
2655		if (do_munmap(mm, addr, len))
2656			return -ENOMEM;
 
2657	}
2658
2659	/* Check against address space limits *after* clearing old maps... */
2660	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2661		return -ENOMEM;
2662
2663	if (mm->map_count > sysctl_max_map_count)
2664		return -ENOMEM;
2665
2666	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2667		return -ENOMEM;
2668
2669	/* Can we just expand an old private anonymous mapping? */
2670	vma = vma_merge(mm, prev, addr, addr + len, flags,
2671			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2672	if (vma)
2673		goto out;
2674
2675	/*
2676	 * create a vma struct for an anonymous mapping
2677	 */
2678	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2679	if (!vma) {
2680		vm_unacct_memory(len >> PAGE_SHIFT);
2681		return -ENOMEM;
2682	}
2683
2684	INIT_LIST_HEAD(&vma->anon_vma_chain);
2685	vma->vm_mm = mm;
2686	vma->vm_start = addr;
2687	vma->vm_end = addr + len;
2688	vma->vm_pgoff = pgoff;
2689	vma->vm_flags = flags;
2690	vma->vm_page_prot = vm_get_page_prot(flags);
2691	vma_link(mm, vma, prev, rb_link, rb_parent);
2692out:
2693	perf_event_mmap(vma);
2694	mm->total_vm += len >> PAGE_SHIFT;
2695	mm->data_vm += len >> PAGE_SHIFT;
2696	if (flags & VM_LOCKED)
2697		mm->locked_vm += (len >> PAGE_SHIFT);
2698	vma->vm_flags |= VM_SOFTDIRTY;
2699	return addr;
2700}
2701
2702unsigned long vm_brk(unsigned long addr, unsigned long len)
2703{
2704	struct mm_struct *mm = current->mm;
2705	unsigned long ret;
2706	bool populate;
2707
2708	down_write(&mm->mmap_sem);
2709	ret = do_brk(addr, len);
2710	populate = ((mm->def_flags & VM_LOCKED) != 0);
2711	up_write(&mm->mmap_sem);
2712	if (populate)
2713		mm_populate(addr, len);
2714	return ret;
2715}
2716EXPORT_SYMBOL(vm_brk);
2717
2718/* Release all mmaps. */
2719void exit_mmap(struct mm_struct *mm)
2720{
2721	struct mmu_gather tlb;
2722	struct vm_area_struct *vma;
2723	unsigned long nr_accounted = 0;
2724
2725	/* mm's last user has gone, and its about to be pulled down */
2726	mmu_notifier_release(mm);
2727
2728	if (mm->locked_vm) {
2729		vma = mm->mmap;
2730		while (vma) {
2731			if (vma->vm_flags & VM_LOCKED)
2732				munlock_vma_pages_all(vma);
2733			vma = vma->vm_next;
2734		}
2735	}
2736
2737	arch_exit_mmap(mm);
2738
2739	vma = mm->mmap;
2740	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2741		return;
2742
2743	lru_add_drain();
2744	flush_cache_mm(mm);
2745	tlb_gather_mmu(&tlb, mm, 0, -1);
2746	/* update_hiwater_rss(mm) here? but nobody should be looking */
2747	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2748	unmap_vmas(&tlb, vma, 0, -1);
2749
2750	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2751	tlb_finish_mmu(&tlb, 0, -1);
2752
2753	/*
2754	 * Walk the list again, actually closing and freeing it,
2755	 * with preemption enabled, without holding any MM locks.
2756	 */
2757	while (vma) {
2758		if (vma->vm_flags & VM_ACCOUNT)
2759			nr_accounted += vma_pages(vma);
2760		vma = remove_vma(vma);
2761	}
2762	vm_unacct_memory(nr_accounted);
 
 
2763}
2764
2765/* Insert vm structure into process list sorted by address
2766 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2767 * then i_mmap_rwsem is taken here.
2768 */
2769int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2770{
2771	struct vm_area_struct *prev;
2772	struct rb_node **rb_link, *rb_parent;
2773
2774	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2775			   &prev, &rb_link, &rb_parent))
2776		return -ENOMEM;
2777	if ((vma->vm_flags & VM_ACCOUNT) &&
2778	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2779		return -ENOMEM;
2780
2781	/*
2782	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2783	 * until its first write fault, when page's anon_vma and index
2784	 * are set.  But now set the vm_pgoff it will almost certainly
2785	 * end up with (unless mremap moves it elsewhere before that
2786	 * first wfault), so /proc/pid/maps tells a consistent story.
2787	 *
2788	 * By setting it to reflect the virtual start address of the
2789	 * vma, merges and splits can happen in a seamless way, just
2790	 * using the existing file pgoff checks and manipulations.
2791	 * Similarly in do_mmap_pgoff and in do_brk.
2792	 */
2793	if (vma_is_anonymous(vma)) {
2794		BUG_ON(vma->anon_vma);
2795		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2796	}
 
 
 
 
 
 
 
 
 
2797
2798	vma_link(mm, vma, prev, rb_link, rb_parent);
2799	return 0;
2800}
2801
2802/*
2803 * Copy the vma structure to a new location in the same mm,
2804 * prior to moving page table entries, to effect an mremap move.
2805 */
2806struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2807	unsigned long addr, unsigned long len, pgoff_t pgoff,
2808	bool *need_rmap_locks)
2809{
2810	struct vm_area_struct *vma = *vmap;
2811	unsigned long vma_start = vma->vm_start;
2812	struct mm_struct *mm = vma->vm_mm;
2813	struct vm_area_struct *new_vma, *prev;
2814	struct rb_node **rb_link, *rb_parent;
 
2815	bool faulted_in_anon_vma = true;
2816
2817	/*
2818	 * If anonymous vma has not yet been faulted, update new pgoff
2819	 * to match new location, to increase its chance of merging.
2820	 */
2821	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2822		pgoff = addr >> PAGE_SHIFT;
2823		faulted_in_anon_vma = false;
2824	}
2825
2826	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2827		return NULL;	/* should never get here */
2828	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2829			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2830			    vma->vm_userfaultfd_ctx);
2831	if (new_vma) {
2832		/*
2833		 * Source vma may have been merged into new_vma
2834		 */
2835		if (unlikely(vma_start >= new_vma->vm_start &&
2836			     vma_start < new_vma->vm_end)) {
2837			/*
2838			 * The only way we can get a vma_merge with
2839			 * self during an mremap is if the vma hasn't
2840			 * been faulted in yet and we were allowed to
2841			 * reset the dst vma->vm_pgoff to the
2842			 * destination address of the mremap to allow
2843			 * the merge to happen. mremap must change the
2844			 * vm_pgoff linearity between src and dst vmas
2845			 * (in turn preventing a vma_merge) to be
2846			 * safe. It is only safe to keep the vm_pgoff
2847			 * linear if there are no pages mapped yet.
2848			 */
2849			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2850			*vmap = vma = new_vma;
2851		}
2852		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2853	} else {
2854		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2855		if (!new_vma)
2856			goto out;
2857		*new_vma = *vma;
2858		new_vma->vm_start = addr;
2859		new_vma->vm_end = addr + len;
2860		new_vma->vm_pgoff = pgoff;
2861		if (vma_dup_policy(vma, new_vma))
2862			goto out_free_vma;
2863		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2864		if (anon_vma_clone(new_vma, vma))
2865			goto out_free_mempol;
2866		if (new_vma->vm_file)
2867			get_file(new_vma->vm_file);
2868		if (new_vma->vm_ops && new_vma->vm_ops->open)
2869			new_vma->vm_ops->open(new_vma);
2870		vma_link(mm, new_vma, prev, rb_link, rb_parent);
2871		*need_rmap_locks = false;
 
 
 
 
 
 
 
 
2872	}
2873	return new_vma;
2874
2875out_free_mempol:
2876	mpol_put(vma_policy(new_vma));
2877out_free_vma:
2878	kmem_cache_free(vm_area_cachep, new_vma);
2879out:
2880	return NULL;
2881}
2882
2883/*
2884 * Return true if the calling process may expand its vm space by the passed
2885 * number of pages
2886 */
2887bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2888{
2889	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2890		return false;
2891
2892	if (is_data_mapping(flags) &&
2893	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2894		if (ignore_rlimit_data)
2895			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Will be forbidden soon.\n",
2896				     current->comm, current->pid,
2897				     (mm->data_vm + npages) << PAGE_SHIFT,
2898				     rlimit(RLIMIT_DATA));
2899		else
2900			return false;
2901	}
2902
2903	return true;
2904}
2905
2906void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2907{
2908	mm->total_vm += npages;
2909
2910	if (is_exec_mapping(flags))
2911		mm->exec_vm += npages;
2912	else if (is_stack_mapping(flags))
2913		mm->stack_vm += npages;
2914	else if (is_data_mapping(flags))
2915		mm->data_vm += npages;
2916}
2917
2918static int special_mapping_fault(struct vm_area_struct *vma,
2919				 struct vm_fault *vmf);
2920
2921/*
2922 * Having a close hook prevents vma merging regardless of flags.
2923 */
2924static void special_mapping_close(struct vm_area_struct *vma)
2925{
2926}
2927
2928static const char *special_mapping_name(struct vm_area_struct *vma)
2929{
2930	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2931}
2932
2933static const struct vm_operations_struct special_mapping_vmops = {
2934	.close = special_mapping_close,
2935	.fault = special_mapping_fault,
2936	.name = special_mapping_name,
2937};
2938
2939static const struct vm_operations_struct legacy_special_mapping_vmops = {
2940	.close = special_mapping_close,
2941	.fault = special_mapping_fault,
2942};
2943
2944static int special_mapping_fault(struct vm_area_struct *vma,
2945				struct vm_fault *vmf)
2946{
2947	pgoff_t pgoff;
2948	struct page **pages;
2949
2950	if (vma->vm_ops == &legacy_special_mapping_vmops) {
2951		pages = vma->vm_private_data;
2952	} else {
2953		struct vm_special_mapping *sm = vma->vm_private_data;
2954
2955		if (sm->fault)
2956			return sm->fault(sm, vma, vmf);
2957
2958		pages = sm->pages;
2959	}
2960
2961	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
2962		pgoff--;
2963
2964	if (*pages) {
2965		struct page *page = *pages;
2966		get_page(page);
2967		vmf->page = page;
2968		return 0;
2969	}
2970
2971	return VM_FAULT_SIGBUS;
2972}
2973
2974static struct vm_area_struct *__install_special_mapping(
2975	struct mm_struct *mm,
2976	unsigned long addr, unsigned long len,
2977	unsigned long vm_flags, void *priv,
2978	const struct vm_operations_struct *ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2979{
2980	int ret;
2981	struct vm_area_struct *vma;
2982
2983	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2984	if (unlikely(vma == NULL))
2985		return ERR_PTR(-ENOMEM);
2986
2987	INIT_LIST_HEAD(&vma->anon_vma_chain);
2988	vma->vm_mm = mm;
2989	vma->vm_start = addr;
2990	vma->vm_end = addr + len;
2991
2992	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2993	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2994
2995	vma->vm_ops = ops;
2996	vma->vm_private_data = priv;
2997
2998	ret = insert_vm_struct(mm, vma);
2999	if (ret)
3000		goto out;
3001
3002	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3003
3004	perf_event_mmap(vma);
3005
3006	return vma;
3007
3008out:
3009	kmem_cache_free(vm_area_cachep, vma);
3010	return ERR_PTR(ret);
3011}
3012
3013/*
3014 * Called with mm->mmap_sem held for writing.
3015 * Insert a new vma covering the given region, with the given flags.
3016 * Its pages are supplied by the given array of struct page *.
3017 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3018 * The region past the last page supplied will always produce SIGBUS.
3019 * The array pointer and the pages it points to are assumed to stay alive
3020 * for as long as this mapping might exist.
3021 */
3022struct vm_area_struct *_install_special_mapping(
3023	struct mm_struct *mm,
3024	unsigned long addr, unsigned long len,
3025	unsigned long vm_flags, const struct vm_special_mapping *spec)
3026{
3027	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3028					&special_mapping_vmops);
3029}
3030
3031int install_special_mapping(struct mm_struct *mm,
3032			    unsigned long addr, unsigned long len,
3033			    unsigned long vm_flags, struct page **pages)
3034{
3035	struct vm_area_struct *vma = __install_special_mapping(
3036		mm, addr, len, vm_flags, (void *)pages,
3037		&legacy_special_mapping_vmops);
3038
3039	return PTR_ERR_OR_ZERO(vma);
3040}
3041
3042static DEFINE_MUTEX(mm_all_locks_mutex);
3043
3044static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3045{
3046	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3047		/*
3048		 * The LSB of head.next can't change from under us
3049		 * because we hold the mm_all_locks_mutex.
3050		 */
3051		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3052		/*
3053		 * We can safely modify head.next after taking the
3054		 * anon_vma->root->rwsem. If some other vma in this mm shares
3055		 * the same anon_vma we won't take it again.
3056		 *
3057		 * No need of atomic instructions here, head.next
3058		 * can't change from under us thanks to the
3059		 * anon_vma->root->rwsem.
3060		 */
3061		if (__test_and_set_bit(0, (unsigned long *)
3062				       &anon_vma->root->rb_root.rb_node))
3063			BUG();
3064	}
3065}
3066
3067static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3068{
3069	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3070		/*
3071		 * AS_MM_ALL_LOCKS can't change from under us because
3072		 * we hold the mm_all_locks_mutex.
3073		 *
3074		 * Operations on ->flags have to be atomic because
3075		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3076		 * mm_all_locks_mutex, there may be other cpus
3077		 * changing other bitflags in parallel to us.
3078		 */
3079		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3080			BUG();
3081		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3082	}
3083}
3084
3085/*
3086 * This operation locks against the VM for all pte/vma/mm related
3087 * operations that could ever happen on a certain mm. This includes
3088 * vmtruncate, try_to_unmap, and all page faults.
3089 *
3090 * The caller must take the mmap_sem in write mode before calling
3091 * mm_take_all_locks(). The caller isn't allowed to release the
3092 * mmap_sem until mm_drop_all_locks() returns.
3093 *
3094 * mmap_sem in write mode is required in order to block all operations
3095 * that could modify pagetables and free pages without need of
3096 * altering the vma layout. It's also needed in write mode to avoid new
 
3097 * anon_vmas to be associated with existing vmas.
3098 *
3099 * A single task can't take more than one mm_take_all_locks() in a row
3100 * or it would deadlock.
3101 *
3102 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3103 * mapping->flags avoid to take the same lock twice, if more than one
3104 * vma in this mm is backed by the same anon_vma or address_space.
3105 *
3106 * We take locks in following order, accordingly to comment at beginning
3107 * of mm/rmap.c:
3108 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3109 *     hugetlb mapping);
3110 *   - all i_mmap_rwsem locks;
3111 *   - all anon_vma->rwseml
3112 *
3113 * We can take all locks within these types randomly because the VM code
3114 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3115 * mm_all_locks_mutex.
3116 *
3117 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3118 * that may have to take thousand of locks.
3119 *
3120 * mm_take_all_locks() can fail if it's interrupted by signals.
3121 */
3122int mm_take_all_locks(struct mm_struct *mm)
3123{
3124	struct vm_area_struct *vma;
3125	struct anon_vma_chain *avc;
3126
3127	BUG_ON(down_read_trylock(&mm->mmap_sem));
3128
3129	mutex_lock(&mm_all_locks_mutex);
3130
3131	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3132		if (signal_pending(current))
3133			goto out_unlock;
3134		if (vma->vm_file && vma->vm_file->f_mapping &&
3135				is_vm_hugetlb_page(vma))
3136			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3137	}
3138
3139	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3140		if (signal_pending(current))
3141			goto out_unlock;
3142		if (vma->vm_file && vma->vm_file->f_mapping &&
3143				!is_vm_hugetlb_page(vma))
3144			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3145	}
3146
3147	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3148		if (signal_pending(current))
3149			goto out_unlock;
3150		if (vma->anon_vma)
3151			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3152				vm_lock_anon_vma(mm, avc->anon_vma);
3153	}
3154
3155	return 0;
3156
3157out_unlock:
3158	mm_drop_all_locks(mm);
3159	return -EINTR;
3160}
3161
3162static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3163{
3164	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3165		/*
3166		 * The LSB of head.next can't change to 0 from under
3167		 * us because we hold the mm_all_locks_mutex.
3168		 *
3169		 * We must however clear the bitflag before unlocking
3170		 * the vma so the users using the anon_vma->rb_root will
3171		 * never see our bitflag.
3172		 *
3173		 * No need of atomic instructions here, head.next
3174		 * can't change from under us until we release the
3175		 * anon_vma->root->rwsem.
3176		 */
3177		if (!__test_and_clear_bit(0, (unsigned long *)
3178					  &anon_vma->root->rb_root.rb_node))
3179			BUG();
3180		anon_vma_unlock_write(anon_vma);
3181	}
3182}
3183
3184static void vm_unlock_mapping(struct address_space *mapping)
3185{
3186	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3187		/*
3188		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3189		 * because we hold the mm_all_locks_mutex.
3190		 */
3191		i_mmap_unlock_write(mapping);
3192		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3193					&mapping->flags))
3194			BUG();
3195	}
3196}
3197
3198/*
3199 * The mmap_sem cannot be released by the caller until
3200 * mm_drop_all_locks() returns.
3201 */
3202void mm_drop_all_locks(struct mm_struct *mm)
3203{
3204	struct vm_area_struct *vma;
3205	struct anon_vma_chain *avc;
3206
3207	BUG_ON(down_read_trylock(&mm->mmap_sem));
3208	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3209
3210	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3211		if (vma->anon_vma)
3212			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3213				vm_unlock_anon_vma(avc->anon_vma);
3214		if (vma->vm_file && vma->vm_file->f_mapping)
3215			vm_unlock_mapping(vma->vm_file->f_mapping);
3216	}
3217
3218	mutex_unlock(&mm_all_locks_mutex);
3219}
3220
3221/*
3222 * initialise the VMA slab
3223 */
3224void __init mmap_init(void)
3225{
3226	int ret;
3227
3228	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3229	VM_BUG_ON(ret);
3230}
3231
3232/*
3233 * Initialise sysctl_user_reserve_kbytes.
3234 *
3235 * This is intended to prevent a user from starting a single memory hogging
3236 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3237 * mode.
3238 *
3239 * The default value is min(3% of free memory, 128MB)
3240 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3241 */
3242static int init_user_reserve(void)
3243{
3244	unsigned long free_kbytes;
3245
3246	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3247
3248	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3249	return 0;
3250}
3251subsys_initcall(init_user_reserve);
3252
3253/*
3254 * Initialise sysctl_admin_reserve_kbytes.
3255 *
3256 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3257 * to log in and kill a memory hogging process.
3258 *
3259 * Systems with more than 256MB will reserve 8MB, enough to recover
3260 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3261 * only reserve 3% of free pages by default.
3262 */
3263static int init_admin_reserve(void)
3264{
3265	unsigned long free_kbytes;
3266
3267	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3268
3269	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3270	return 0;
3271}
3272subsys_initcall(init_admin_reserve);
3273
3274/*
3275 * Reinititalise user and admin reserves if memory is added or removed.
3276 *
3277 * The default user reserve max is 128MB, and the default max for the
3278 * admin reserve is 8MB. These are usually, but not always, enough to
3279 * enable recovery from a memory hogging process using login/sshd, a shell,
3280 * and tools like top. It may make sense to increase or even disable the
3281 * reserve depending on the existence of swap or variations in the recovery
3282 * tools. So, the admin may have changed them.
3283 *
3284 * If memory is added and the reserves have been eliminated or increased above
3285 * the default max, then we'll trust the admin.
3286 *
3287 * If memory is removed and there isn't enough free memory, then we
3288 * need to reset the reserves.
3289 *
3290 * Otherwise keep the reserve set by the admin.
3291 */
3292static int reserve_mem_notifier(struct notifier_block *nb,
3293			     unsigned long action, void *data)
3294{
3295	unsigned long tmp, free_kbytes;
3296
3297	switch (action) {
3298	case MEM_ONLINE:
3299		/* Default max is 128MB. Leave alone if modified by operator. */
3300		tmp = sysctl_user_reserve_kbytes;
3301		if (0 < tmp && tmp < (1UL << 17))
3302			init_user_reserve();
3303
3304		/* Default max is 8MB.  Leave alone if modified by operator. */
3305		tmp = sysctl_admin_reserve_kbytes;
3306		if (0 < tmp && tmp < (1UL << 13))
3307			init_admin_reserve();
3308
3309		break;
3310	case MEM_OFFLINE:
3311		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3312
3313		if (sysctl_user_reserve_kbytes > free_kbytes) {
3314			init_user_reserve();
3315			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3316				sysctl_user_reserve_kbytes);
3317		}
3318
3319		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3320			init_admin_reserve();
3321			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3322				sysctl_admin_reserve_kbytes);
3323		}
3324		break;
3325	default:
3326		break;
3327	}
3328	return NOTIFY_OK;
3329}
3330
3331static struct notifier_block reserve_mem_nb = {
3332	.notifier_call = reserve_mem_notifier,
3333};
3334
3335static int __meminit init_reserve_notifier(void)
3336{
3337	if (register_hotmemory_notifier(&reserve_mem_nb))
3338		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3339
3340	return 0;
3341}
3342subsys_initcall(init_reserve_notifier);
v3.5.6
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
 
 
 
   9#include <linux/slab.h>
  10#include <linux/backing-dev.h>
  11#include <linux/mm.h>
 
  12#include <linux/shm.h>
  13#include <linux/mman.h>
  14#include <linux/pagemap.h>
  15#include <linux/swap.h>
  16#include <linux/syscalls.h>
  17#include <linux/capability.h>
  18#include <linux/init.h>
  19#include <linux/file.h>
  20#include <linux/fs.h>
  21#include <linux/personality.h>
  22#include <linux/security.h>
  23#include <linux/hugetlb.h>
  24#include <linux/profile.h>
  25#include <linux/export.h>
  26#include <linux/mount.h>
  27#include <linux/mempolicy.h>
  28#include <linux/rmap.h>
  29#include <linux/mmu_notifier.h>
 
  30#include <linux/perf_event.h>
  31#include <linux/audit.h>
  32#include <linux/khugepaged.h>
  33#include <linux/uprobes.h>
 
 
 
 
 
 
 
  34
  35#include <asm/uaccess.h>
  36#include <asm/cacheflush.h>
  37#include <asm/tlb.h>
  38#include <asm/mmu_context.h>
  39
  40#include "internal.h"
  41
  42#ifndef arch_mmap_check
  43#define arch_mmap_check(addr, len, flags)	(0)
  44#endif
  45
  46#ifndef arch_rebalance_pgtables
  47#define arch_rebalance_pgtables(addr, len)		(addr)
  48#endif
  49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50static void unmap_region(struct mm_struct *mm,
  51		struct vm_area_struct *vma, struct vm_area_struct *prev,
  52		unsigned long start, unsigned long end);
  53
  54/*
  55 * WARNING: the debugging will use recursive algorithms so never enable this
  56 * unless you know what you are doing.
  57 */
  58#undef DEBUG_MM_RB
  59
  60/* description of effects of mapping type and prot in current implementation.
  61 * this is due to the limited x86 page protection hardware.  The expected
  62 * behavior is in parens:
  63 *
  64 * map_type	prot
  65 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  66 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  67 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  68 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  69 *		
  70 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  71 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  72 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  73 *
  74 */
  75pgprot_t protection_map[16] = {
  76	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  77	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  78};
  79
  80pgprot_t vm_get_page_prot(unsigned long vm_flags)
  81{
  82	return __pgprot(pgprot_val(protection_map[vm_flags &
  83				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
  84			pgprot_val(arch_vm_get_page_prot(vm_flags)));
  85}
  86EXPORT_SYMBOL(vm_get_page_prot);
  87
  88int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
  89int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
  90int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  91/*
  92 * Make sure vm_committed_as in one cacheline and not cacheline shared with
  93 * other variables. It can be updated by several CPUs frequently.
  94 */
  95struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
  96
  97/*
  98 * Check that a process has enough memory to allocate a new virtual
  99 * mapping. 0 means there is enough memory for the allocation to
 100 * succeed and -ENOMEM implies there is not.
 101 *
 102 * We currently support three overcommit policies, which are set via the
 103 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 104 *
 105 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 106 * Additional code 2002 Jul 20 by Robert Love.
 107 *
 108 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 109 *
 110 * Note this is a helper function intended to be used by LSMs which
 111 * wish to use this logic.
 112 */
 113int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 114{
 115	unsigned long free, allowed;
 116
 117	vm_acct_memory(pages);
 118
 119	/*
 120	 * Sometimes we want to use more memory than we have
 121	 */
 122	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 123		return 0;
 124
 125	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 126		free = global_page_state(NR_FREE_PAGES);
 127		free += global_page_state(NR_FILE_PAGES);
 128
 129		/*
 130		 * shmem pages shouldn't be counted as free in this
 131		 * case, they can't be purged, only swapped out, and
 132		 * that won't affect the overall amount of available
 133		 * memory in the system.
 134		 */
 135		free -= global_page_state(NR_SHMEM);
 136
 137		free += nr_swap_pages;
 138
 139		/*
 140		 * Any slabs which are created with the
 141		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 142		 * which are reclaimable, under pressure.  The dentry
 143		 * cache and most inode caches should fall into this
 144		 */
 145		free += global_page_state(NR_SLAB_RECLAIMABLE);
 146
 147		/*
 148		 * Leave reserved pages. The pages are not for anonymous pages.
 149		 */
 150		if (free <= totalreserve_pages)
 151			goto error;
 152		else
 153			free -= totalreserve_pages;
 154
 155		/*
 156		 * Leave the last 3% for root
 157		 */
 158		if (!cap_sys_admin)
 159			free -= free / 32;
 160
 161		if (free > pages)
 162			return 0;
 163
 164		goto error;
 165	}
 166
 167	allowed = (totalram_pages - hugetlb_total_pages())
 168	       	* sysctl_overcommit_ratio / 100;
 169	/*
 170	 * Leave the last 3% for root
 171	 */
 172	if (!cap_sys_admin)
 173		allowed -= allowed / 32;
 174	allowed += total_swap_pages;
 175
 176	/* Don't let a single process grow too big:
 177	   leave 3% of the size of this process for other processes */
 178	if (mm)
 179		allowed -= mm->total_vm / 32;
 180
 181	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 182		return 0;
 183error:
 184	vm_unacct_memory(pages);
 185
 186	return -ENOMEM;
 187}
 188
 189/*
 190 * Requires inode->i_mapping->i_mmap_mutex
 191 */
 192static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 193		struct file *file, struct address_space *mapping)
 194{
 195	if (vma->vm_flags & VM_DENYWRITE)
 196		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
 197	if (vma->vm_flags & VM_SHARED)
 198		mapping->i_mmap_writable--;
 199
 200	flush_dcache_mmap_lock(mapping);
 201	if (unlikely(vma->vm_flags & VM_NONLINEAR))
 202		list_del_init(&vma->shared.vm_set.list);
 203	else
 204		vma_prio_tree_remove(vma, &mapping->i_mmap);
 205	flush_dcache_mmap_unlock(mapping);
 206}
 207
 208/*
 209 * Unlink a file-based vm structure from its prio_tree, to hide
 210 * vma from rmap and vmtruncate before freeing its page tables.
 211 */
 212void unlink_file_vma(struct vm_area_struct *vma)
 213{
 214	struct file *file = vma->vm_file;
 215
 216	if (file) {
 217		struct address_space *mapping = file->f_mapping;
 218		mutex_lock(&mapping->i_mmap_mutex);
 219		__remove_shared_vm_struct(vma, file, mapping);
 220		mutex_unlock(&mapping->i_mmap_mutex);
 221	}
 222}
 223
 224/*
 225 * Close a vm structure and free it, returning the next.
 226 */
 227static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 228{
 229	struct vm_area_struct *next = vma->vm_next;
 230
 231	might_sleep();
 232	if (vma->vm_ops && vma->vm_ops->close)
 233		vma->vm_ops->close(vma);
 234	if (vma->vm_file) {
 235		fput(vma->vm_file);
 236		if (vma->vm_flags & VM_EXECUTABLE)
 237			removed_exe_file_vma(vma->vm_mm);
 238	}
 239	mpol_put(vma_policy(vma));
 240	kmem_cache_free(vm_area_cachep, vma);
 241	return next;
 242}
 243
 244static unsigned long do_brk(unsigned long addr, unsigned long len);
 245
 246SYSCALL_DEFINE1(brk, unsigned long, brk)
 247{
 248	unsigned long rlim, retval;
 249	unsigned long newbrk, oldbrk;
 250	struct mm_struct *mm = current->mm;
 251	unsigned long min_brk;
 
 252
 253	down_write(&mm->mmap_sem);
 254
 255#ifdef CONFIG_COMPAT_BRK
 256	/*
 257	 * CONFIG_COMPAT_BRK can still be overridden by setting
 258	 * randomize_va_space to 2, which will still cause mm->start_brk
 259	 * to be arbitrarily shifted
 260	 */
 261	if (current->brk_randomized)
 262		min_brk = mm->start_brk;
 263	else
 264		min_brk = mm->end_data;
 265#else
 266	min_brk = mm->start_brk;
 267#endif
 268	if (brk < min_brk)
 269		goto out;
 270
 271	/*
 272	 * Check against rlimit here. If this check is done later after the test
 273	 * of oldbrk with newbrk then it can escape the test and let the data
 274	 * segment grow beyond its set limit the in case where the limit is
 275	 * not page aligned -Ram Gupta
 276	 */
 277	rlim = rlimit(RLIMIT_DATA);
 278	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
 279			(mm->end_data - mm->start_data) > rlim)
 280		goto out;
 281
 282	newbrk = PAGE_ALIGN(brk);
 283	oldbrk = PAGE_ALIGN(mm->brk);
 284	if (oldbrk == newbrk)
 285		goto set_brk;
 286
 287	/* Always allow shrinking brk. */
 288	if (brk <= mm->brk) {
 289		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 290			goto set_brk;
 291		goto out;
 292	}
 293
 294	/* Check against existing mmap mappings. */
 295	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 296		goto out;
 297
 298	/* Ok, looks good - let it rip. */
 299	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 300		goto out;
 
 301set_brk:
 302	mm->brk = brk;
 
 
 
 
 
 
 303out:
 304	retval = mm->brk;
 305	up_write(&mm->mmap_sem);
 306	return retval;
 307}
 308
 309#ifdef DEBUG_MM_RB
 310static int browse_rb(struct rb_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311{
 312	int i = 0, j;
 
 313	struct rb_node *nd, *pn = NULL;
 314	unsigned long prev = 0, pend = 0;
 315
 316	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 317		struct vm_area_struct *vma;
 318		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 319		if (vma->vm_start < prev)
 320			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
 321		if (vma->vm_start < pend)
 322			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
 323		if (vma->vm_start > vma->vm_end)
 324			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325		i++;
 326		pn = nd;
 327		prev = vma->vm_start;
 328		pend = vma->vm_end;
 329	}
 330	j = 0;
 331	for (nd = pn; nd; nd = rb_prev(nd)) {
 332		j++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333	}
 334	if (i != j)
 335		printk("backwards %d, forwards %d\n", j, i), i = 0;
 336	return i;
 337}
 338
 339void validate_mm(struct mm_struct *mm)
 340{
 341	int bug = 0;
 342	int i = 0;
 343	struct vm_area_struct *tmp = mm->mmap;
 344	while (tmp) {
 345		tmp = tmp->vm_next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 346		i++;
 347	}
 348	if (i != mm->map_count)
 349		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
 350	i = browse_rb(&mm->mm_rb);
 351	if (i != mm->map_count)
 352		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
 353	BUG_ON(bug);
 
 
 
 
 
 
 
 
 
 
 354}
 355#else
 
 356#define validate_mm(mm) do { } while (0)
 357#endif
 358
 359static struct vm_area_struct *
 360find_vma_prepare(struct mm_struct *mm, unsigned long addr,
 361		struct vm_area_struct **pprev, struct rb_node ***rb_link,
 362		struct rb_node ** rb_parent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363{
 364	struct vm_area_struct * vma;
 365	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366
 367	__rb_link = &mm->mm_rb.rb_node;
 368	rb_prev = __rb_parent = NULL;
 369	vma = NULL;
 370
 371	while (*__rb_link) {
 372		struct vm_area_struct *vma_tmp;
 373
 374		__rb_parent = *__rb_link;
 375		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 376
 377		if (vma_tmp->vm_end > addr) {
 378			vma = vma_tmp;
 379			if (vma_tmp->vm_start <= addr)
 380				break;
 381			__rb_link = &__rb_parent->rb_left;
 382		} else {
 383			rb_prev = __rb_parent;
 384			__rb_link = &__rb_parent->rb_right;
 385		}
 386	}
 387
 388	*pprev = NULL;
 389	if (rb_prev)
 390		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 391	*rb_link = __rb_link;
 392	*rb_parent = __rb_parent;
 393	return vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394}
 395
 396void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 397		struct rb_node **rb_link, struct rb_node *rb_parent)
 398{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 400	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 
 
 401}
 402
 403static void __vma_link_file(struct vm_area_struct *vma)
 404{
 405	struct file *file;
 406
 407	file = vma->vm_file;
 408	if (file) {
 409		struct address_space *mapping = file->f_mapping;
 410
 411		if (vma->vm_flags & VM_DENYWRITE)
 412			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
 413		if (vma->vm_flags & VM_SHARED)
 414			mapping->i_mmap_writable++;
 415
 416		flush_dcache_mmap_lock(mapping);
 417		if (unlikely(vma->vm_flags & VM_NONLINEAR))
 418			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
 419		else
 420			vma_prio_tree_insert(vma, &mapping->i_mmap);
 421		flush_dcache_mmap_unlock(mapping);
 422	}
 423}
 424
 425static void
 426__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 427	struct vm_area_struct *prev, struct rb_node **rb_link,
 428	struct rb_node *rb_parent)
 429{
 430	__vma_link_list(mm, vma, prev, rb_parent);
 431	__vma_link_rb(mm, vma, rb_link, rb_parent);
 432}
 433
 434static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 435			struct vm_area_struct *prev, struct rb_node **rb_link,
 436			struct rb_node *rb_parent)
 437{
 438	struct address_space *mapping = NULL;
 439
 440	if (vma->vm_file)
 441		mapping = vma->vm_file->f_mapping;
 442
 443	if (mapping)
 444		mutex_lock(&mapping->i_mmap_mutex);
 445
 446	__vma_link(mm, vma, prev, rb_link, rb_parent);
 447	__vma_link_file(vma);
 448
 449	if (mapping)
 450		mutex_unlock(&mapping->i_mmap_mutex);
 451
 452	mm->map_count++;
 453	validate_mm(mm);
 454}
 455
 456/*
 457 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 458 * mm's list and rbtree.  It has already been inserted into the prio_tree.
 459 */
 460static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 461{
 462	struct vm_area_struct *__vma, *prev;
 463	struct rb_node **rb_link, *rb_parent;
 464
 465	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
 466	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
 
 467	__vma_link(mm, vma, prev, rb_link, rb_parent);
 468	mm->map_count++;
 469}
 470
 471static inline void
 472__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 473		struct vm_area_struct *prev)
 474{
 475	struct vm_area_struct *next = vma->vm_next;
 476
 477	prev->vm_next = next;
 
 478	if (next)
 479		next->vm_prev = prev;
 480	rb_erase(&vma->vm_rb, &mm->mm_rb);
 481	if (mm->mmap_cache == vma)
 482		mm->mmap_cache = prev;
 483}
 484
 485/*
 486 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 487 * is already present in an i_mmap tree without adjusting the tree.
 488 * The following helper function should be used when such adjustments
 489 * are necessary.  The "insert" vma (if any) is to be inserted
 490 * before we drop the necessary locks.
 491 */
 492int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 493	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 494{
 495	struct mm_struct *mm = vma->vm_mm;
 496	struct vm_area_struct *next = vma->vm_next;
 497	struct vm_area_struct *importer = NULL;
 498	struct address_space *mapping = NULL;
 499	struct prio_tree_root *root = NULL;
 500	struct anon_vma *anon_vma = NULL;
 501	struct file *file = vma->vm_file;
 
 502	long adjust_next = 0;
 503	int remove_next = 0;
 504
 505	if (next && !insert) {
 506		struct vm_area_struct *exporter = NULL;
 507
 508		if (end >= next->vm_end) {
 509			/*
 510			 * vma expands, overlapping all the next, and
 511			 * perhaps the one after too (mprotect case 6).
 512			 */
 513again:			remove_next = 1 + (end > next->vm_end);
 514			end = next->vm_end;
 515			exporter = next;
 516			importer = vma;
 517		} else if (end > next->vm_start) {
 518			/*
 519			 * vma expands, overlapping part of the next:
 520			 * mprotect case 5 shifting the boundary up.
 521			 */
 522			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 523			exporter = next;
 524			importer = vma;
 525		} else if (end < vma->vm_end) {
 526			/*
 527			 * vma shrinks, and !insert tells it's not
 528			 * split_vma inserting another: so it must be
 529			 * mprotect case 4 shifting the boundary down.
 530			 */
 531			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
 532			exporter = vma;
 533			importer = next;
 534		}
 535
 536		/*
 537		 * Easily overlooked: when mprotect shifts the boundary,
 538		 * make sure the expanding vma has anon_vma set if the
 539		 * shrinking vma had, to cover any anon pages imported.
 540		 */
 541		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 542			if (anon_vma_clone(importer, exporter))
 543				return -ENOMEM;
 544			importer->anon_vma = exporter->anon_vma;
 
 
 
 545		}
 546	}
 547
 548	if (file) {
 549		mapping = file->f_mapping;
 550		if (!(vma->vm_flags & VM_NONLINEAR)) {
 551			root = &mapping->i_mmap;
 552			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 553
 554			if (adjust_next)
 555				uprobe_munmap(next, next->vm_start,
 556							next->vm_end);
 557		}
 558
 559		mutex_lock(&mapping->i_mmap_mutex);
 560		if (insert) {
 561			/*
 562			 * Put into prio_tree now, so instantiated pages
 563			 * are visible to arm/parisc __flush_dcache_page
 564			 * throughout; but we cannot insert into address
 565			 * space until vma start or end is updated.
 566			 */
 567			__vma_link_file(insert);
 568		}
 569	}
 570
 571	vma_adjust_trans_huge(vma, start, end, adjust_next);
 572
 573	/*
 574	 * When changing only vma->vm_end, we don't really need anon_vma
 575	 * lock. This is a fairly rare case by itself, but the anon_vma
 576	 * lock may be shared between many sibling processes.  Skipping
 577	 * the lock for brk adjustments makes a difference sometimes.
 578	 */
 579	if (vma->anon_vma && (importer || start != vma->vm_start)) {
 580		anon_vma = vma->anon_vma;
 581		anon_vma_lock(anon_vma);
 
 582	}
 583
 584	if (root) {
 585		flush_dcache_mmap_lock(mapping);
 586		vma_prio_tree_remove(vma, root);
 587		if (adjust_next)
 588			vma_prio_tree_remove(next, root);
 589	}
 590
 591	vma->vm_start = start;
 592	vma->vm_end = end;
 
 
 
 
 
 
 593	vma->vm_pgoff = pgoff;
 594	if (adjust_next) {
 595		next->vm_start += adjust_next << PAGE_SHIFT;
 596		next->vm_pgoff += adjust_next;
 597	}
 598
 599	if (root) {
 600		if (adjust_next)
 601			vma_prio_tree_insert(next, root);
 602		vma_prio_tree_insert(vma, root);
 603		flush_dcache_mmap_unlock(mapping);
 604	}
 605
 606	if (remove_next) {
 607		/*
 608		 * vma_merge has merged next into vma, and needs
 609		 * us to remove next before dropping the locks.
 610		 */
 611		__vma_unlink(mm, next, vma);
 612		if (file)
 613			__remove_shared_vm_struct(next, file, mapping);
 614	} else if (insert) {
 615		/*
 616		 * split_vma has split insert from vma, and needs
 617		 * us to insert it before dropping the locks
 618		 * (it may either follow vma or precede it).
 619		 */
 620		__insert_vm_struct(mm, insert);
 
 
 
 
 
 
 
 
 
 621	}
 622
 623	if (anon_vma)
 624		anon_vma_unlock(anon_vma);
 
 
 
 
 625	if (mapping)
 626		mutex_unlock(&mapping->i_mmap_mutex);
 627
 628	if (root) {
 629		uprobe_mmap(vma);
 630
 631		if (adjust_next)
 632			uprobe_mmap(next);
 633	}
 634
 635	if (remove_next) {
 636		if (file) {
 637			uprobe_munmap(next, next->vm_start, next->vm_end);
 638			fput(file);
 639			if (next->vm_flags & VM_EXECUTABLE)
 640				removed_exe_file_vma(mm);
 641		}
 642		if (next->anon_vma)
 643			anon_vma_merge(vma, next);
 644		mm->map_count--;
 645		mpol_put(vma_policy(next));
 646		kmem_cache_free(vm_area_cachep, next);
 647		/*
 648		 * In mprotect's case 6 (see comments on vma_merge),
 649		 * we must remove another next too. It would clutter
 650		 * up the code too much to do both in one go.
 651		 */
 652		if (remove_next == 2) {
 653			next = vma->vm_next;
 654			goto again;
 655		}
 
 
 
 656	}
 657	if (insert && file)
 658		uprobe_mmap(insert);
 659
 660	validate_mm(mm);
 661
 662	return 0;
 663}
 664
 665/*
 666 * If the vma has a ->close operation then the driver probably needs to release
 667 * per-vma resources, so we don't attempt to merge those.
 668 */
 669static inline int is_mergeable_vma(struct vm_area_struct *vma,
 670			struct file *file, unsigned long vm_flags)
 
 671{
 672	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
 673	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
 
 
 
 
 
 
 
 674		return 0;
 675	if (vma->vm_file != file)
 676		return 0;
 677	if (vma->vm_ops && vma->vm_ops->close)
 678		return 0;
 
 
 679	return 1;
 680}
 681
 682static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 683					struct anon_vma *anon_vma2,
 684					struct vm_area_struct *vma)
 685{
 686	/*
 687	 * The list_is_singular() test is to avoid merging VMA cloned from
 688	 * parents. This can improve scalability caused by anon_vma lock.
 689	 */
 690	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 691		list_is_singular(&vma->anon_vma_chain)))
 692		return 1;
 693	return anon_vma1 == anon_vma2;
 694}
 695
 696/*
 697 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 698 * in front of (at a lower virtual address and file offset than) the vma.
 699 *
 700 * We cannot merge two vmas if they have differently assigned (non-NULL)
 701 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 702 *
 703 * We don't check here for the merged mmap wrapping around the end of pagecache
 704 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 705 * wrap, nor mmaps which cover the final page at index -1UL.
 706 */
 707static int
 708can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 709	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 710{
 711	if (is_mergeable_vma(vma, file, vm_flags) &&
 712	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 713		if (vma->vm_pgoff == vm_pgoff)
 714			return 1;
 715	}
 716	return 0;
 717}
 718
 719/*
 720 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 721 * beyond (at a higher virtual address and file offset than) the vma.
 722 *
 723 * We cannot merge two vmas if they have differently assigned (non-NULL)
 724 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 725 */
 726static int
 727can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 728	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 729{
 730	if (is_mergeable_vma(vma, file, vm_flags) &&
 731	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 732		pgoff_t vm_pglen;
 733		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 734		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 735			return 1;
 736	}
 737	return 0;
 738}
 739
 740/*
 741 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 742 * whether that can be merged with its predecessor or its successor.
 743 * Or both (it neatly fills a hole).
 744 *
 745 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 746 * certain not to be mapped by the time vma_merge is called; but when
 747 * called for mprotect, it is certain to be already mapped (either at
 748 * an offset within prev, or at the start of next), and the flags of
 749 * this area are about to be changed to vm_flags - and the no-change
 750 * case has already been eliminated.
 751 *
 752 * The following mprotect cases have to be considered, where AAAA is
 753 * the area passed down from mprotect_fixup, never extending beyond one
 754 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 755 *
 756 *     AAAA             AAAA                AAAA          AAAA
 757 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 758 *    cannot merge    might become    might become    might become
 759 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 760 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 761 *    mremap move:                                    PPPPNNNNNNNN 8
 762 *        AAAA
 763 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 764 *    might become    case 1 below    case 2 below    case 3 below
 765 *
 766 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
 767 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
 768 */
 769struct vm_area_struct *vma_merge(struct mm_struct *mm,
 770			struct vm_area_struct *prev, unsigned long addr,
 771			unsigned long end, unsigned long vm_flags,
 772		     	struct anon_vma *anon_vma, struct file *file,
 773			pgoff_t pgoff, struct mempolicy *policy)
 
 774{
 775	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 776	struct vm_area_struct *area, *next;
 777	int err;
 778
 779	/*
 780	 * We later require that vma->vm_flags == vm_flags,
 781	 * so this tests vma->vm_flags & VM_SPECIAL, too.
 782	 */
 783	if (vm_flags & VM_SPECIAL)
 784		return NULL;
 785
 786	if (prev)
 787		next = prev->vm_next;
 788	else
 789		next = mm->mmap;
 790	area = next;
 791	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
 792		next = next->vm_next;
 793
 794	/*
 795	 * Can it merge with the predecessor?
 796	 */
 797	if (prev && prev->vm_end == addr &&
 798  			mpol_equal(vma_policy(prev), policy) &&
 799			can_vma_merge_after(prev, vm_flags,
 800						anon_vma, file, pgoff)) {
 
 801		/*
 802		 * OK, it can.  Can we now merge in the successor as well?
 803		 */
 804		if (next && end == next->vm_start &&
 805				mpol_equal(policy, vma_policy(next)) &&
 806				can_vma_merge_before(next, vm_flags,
 807					anon_vma, file, pgoff+pglen) &&
 
 
 808				is_mergeable_anon_vma(prev->anon_vma,
 809						      next->anon_vma, NULL)) {
 810							/* cases 1, 6 */
 811			err = vma_adjust(prev, prev->vm_start,
 812				next->vm_end, prev->vm_pgoff, NULL);
 813		} else					/* cases 2, 5, 7 */
 814			err = vma_adjust(prev, prev->vm_start,
 815				end, prev->vm_pgoff, NULL);
 816		if (err)
 817			return NULL;
 818		khugepaged_enter_vma_merge(prev);
 819		return prev;
 820	}
 821
 822	/*
 823	 * Can this new request be merged in front of next?
 824	 */
 825	if (next && end == next->vm_start &&
 826 			mpol_equal(policy, vma_policy(next)) &&
 827			can_vma_merge_before(next, vm_flags,
 828					anon_vma, file, pgoff+pglen)) {
 
 829		if (prev && addr < prev->vm_end)	/* case 4 */
 830			err = vma_adjust(prev, prev->vm_start,
 831				addr, prev->vm_pgoff, NULL);
 832		else					/* cases 3, 8 */
 833			err = vma_adjust(area, addr, next->vm_end,
 834				next->vm_pgoff - pglen, NULL);
 835		if (err)
 836			return NULL;
 837		khugepaged_enter_vma_merge(area);
 838		return area;
 839	}
 840
 841	return NULL;
 842}
 843
 844/*
 845 * Rough compatbility check to quickly see if it's even worth looking
 846 * at sharing an anon_vma.
 847 *
 848 * They need to have the same vm_file, and the flags can only differ
 849 * in things that mprotect may change.
 850 *
 851 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
 852 * we can merge the two vma's. For example, we refuse to merge a vma if
 853 * there is a vm_ops->close() function, because that indicates that the
 854 * driver is doing some kind of reference counting. But that doesn't
 855 * really matter for the anon_vma sharing case.
 856 */
 857static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
 858{
 859	return a->vm_end == b->vm_start &&
 860		mpol_equal(vma_policy(a), vma_policy(b)) &&
 861		a->vm_file == b->vm_file &&
 862		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
 863		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
 864}
 865
 866/*
 867 * Do some basic sanity checking to see if we can re-use the anon_vma
 868 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
 869 * the same as 'old', the other will be the new one that is trying
 870 * to share the anon_vma.
 871 *
 872 * NOTE! This runs with mm_sem held for reading, so it is possible that
 873 * the anon_vma of 'old' is concurrently in the process of being set up
 874 * by another page fault trying to merge _that_. But that's ok: if it
 875 * is being set up, that automatically means that it will be a singleton
 876 * acceptable for merging, so we can do all of this optimistically. But
 877 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
 878 *
 879 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
 880 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
 881 * is to return an anon_vma that is "complex" due to having gone through
 882 * a fork).
 883 *
 884 * We also make sure that the two vma's are compatible (adjacent,
 885 * and with the same memory policies). That's all stable, even with just
 886 * a read lock on the mm_sem.
 887 */
 888static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
 889{
 890	if (anon_vma_compatible(a, b)) {
 891		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
 892
 893		if (anon_vma && list_is_singular(&old->anon_vma_chain))
 894			return anon_vma;
 895	}
 896	return NULL;
 897}
 898
 899/*
 900 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
 901 * neighbouring vmas for a suitable anon_vma, before it goes off
 902 * to allocate a new anon_vma.  It checks because a repetitive
 903 * sequence of mprotects and faults may otherwise lead to distinct
 904 * anon_vmas being allocated, preventing vma merge in subsequent
 905 * mprotect.
 906 */
 907struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
 908{
 909	struct anon_vma *anon_vma;
 910	struct vm_area_struct *near;
 911
 912	near = vma->vm_next;
 913	if (!near)
 914		goto try_prev;
 915
 916	anon_vma = reusable_anon_vma(near, vma, near);
 917	if (anon_vma)
 918		return anon_vma;
 919try_prev:
 920	near = vma->vm_prev;
 921	if (!near)
 922		goto none;
 923
 924	anon_vma = reusable_anon_vma(near, near, vma);
 925	if (anon_vma)
 926		return anon_vma;
 927none:
 928	/*
 929	 * There's no absolute need to look only at touching neighbours:
 930	 * we could search further afield for "compatible" anon_vmas.
 931	 * But it would probably just be a waste of time searching,
 932	 * or lead to too many vmas hanging off the same anon_vma.
 933	 * We're trying to allow mprotect remerging later on,
 934	 * not trying to minimize memory used for anon_vmas.
 935	 */
 936	return NULL;
 937}
 938
 939#ifdef CONFIG_PROC_FS
 940void vm_stat_account(struct mm_struct *mm, unsigned long flags,
 941						struct file *file, long pages)
 942{
 943	const unsigned long stack_flags
 944		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
 945
 946	if (file) {
 947		mm->shared_vm += pages;
 948		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
 949			mm->exec_vm += pages;
 950	} else if (flags & stack_flags)
 951		mm->stack_vm += pages;
 952	if (flags & (VM_RESERVED|VM_IO))
 953		mm->reserved_vm += pages;
 954}
 955#endif /* CONFIG_PROC_FS */
 956
 957/*
 958 * If a hint addr is less than mmap_min_addr change hint to be as
 959 * low as possible but still greater than mmap_min_addr
 960 */
 961static inline unsigned long round_hint_to_min(unsigned long hint)
 962{
 963	hint &= PAGE_MASK;
 964	if (((void *)hint != NULL) &&
 965	    (hint < mmap_min_addr))
 966		return PAGE_ALIGN(mmap_min_addr);
 967	return hint;
 968}
 969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970/*
 971 * The caller must hold down_write(&current->mm->mmap_sem).
 972 */
 973
 974unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
 975			unsigned long len, unsigned long prot,
 976			unsigned long flags, unsigned long pgoff)
 
 977{
 978	struct mm_struct * mm = current->mm;
 979	struct inode *inode;
 980	vm_flags_t vm_flags;
 
 
 
 
 981
 982	/*
 983	 * Does the application expect PROT_READ to imply PROT_EXEC?
 984	 *
 985	 * (the exception is when the underlying filesystem is noexec
 986	 *  mounted, in which case we dont add PROT_EXEC.)
 987	 */
 988	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
 989		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
 990			prot |= PROT_EXEC;
 991
 992	if (!len)
 993		return -EINVAL;
 994
 995	if (!(flags & MAP_FIXED))
 996		addr = round_hint_to_min(addr);
 997
 998	/* Careful about overflows.. */
 999	len = PAGE_ALIGN(len);
1000	if (!len)
1001		return -ENOMEM;
1002
1003	/* offset overflow? */
1004	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1005               return -EOVERFLOW;
1006
1007	/* Too many mappings? */
1008	if (mm->map_count > sysctl_max_map_count)
1009		return -ENOMEM;
1010
1011	/* Obtain the address to map to. we verify (or select) it and ensure
1012	 * that it represents a valid section of the address space.
1013	 */
1014	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1015	if (addr & ~PAGE_MASK)
1016		return addr;
1017
 
 
 
 
 
 
1018	/* Do simple checking here so the lower-level routines won't have
1019	 * to. we assume access permissions have been handled by the open
1020	 * of the memory object, so we don't do any here.
1021	 */
1022	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1023			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1024
1025	if (flags & MAP_LOCKED)
1026		if (!can_do_mlock())
1027			return -EPERM;
1028
1029	/* mlock MCL_FUTURE? */
1030	if (vm_flags & VM_LOCKED) {
1031		unsigned long locked, lock_limit;
1032		locked = len >> PAGE_SHIFT;
1033		locked += mm->locked_vm;
1034		lock_limit = rlimit(RLIMIT_MEMLOCK);
1035		lock_limit >>= PAGE_SHIFT;
1036		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1037			return -EAGAIN;
1038	}
1039
1040	inode = file ? file->f_path.dentry->d_inode : NULL;
 
1041
1042	if (file) {
1043		switch (flags & MAP_TYPE) {
1044		case MAP_SHARED:
1045			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1046				return -EACCES;
1047
1048			/*
1049			 * Make sure we don't allow writing to an append-only
1050			 * file..
1051			 */
1052			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1053				return -EACCES;
1054
1055			/*
1056			 * Make sure there are no mandatory locks on the file.
1057			 */
1058			if (locks_verify_locked(inode))
1059				return -EAGAIN;
1060
1061			vm_flags |= VM_SHARED | VM_MAYSHARE;
1062			if (!(file->f_mode & FMODE_WRITE))
1063				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1064
1065			/* fall through */
1066		case MAP_PRIVATE:
1067			if (!(file->f_mode & FMODE_READ))
1068				return -EACCES;
1069			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1070				if (vm_flags & VM_EXEC)
1071					return -EPERM;
1072				vm_flags &= ~VM_MAYEXEC;
1073			}
1074
1075			if (!file->f_op || !file->f_op->mmap)
1076				return -ENODEV;
 
 
1077			break;
1078
1079		default:
1080			return -EINVAL;
1081		}
1082	} else {
1083		switch (flags & MAP_TYPE) {
1084		case MAP_SHARED:
 
 
1085			/*
1086			 * Ignore pgoff.
1087			 */
1088			pgoff = 0;
1089			vm_flags |= VM_SHARED | VM_MAYSHARE;
1090			break;
1091		case MAP_PRIVATE:
1092			/*
1093			 * Set pgoff according to addr for anon_vma.
1094			 */
1095			pgoff = addr >> PAGE_SHIFT;
1096			break;
1097		default:
1098			return -EINVAL;
1099		}
1100	}
1101
1102	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103}
1104
1105SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1106		unsigned long, prot, unsigned long, flags,
1107		unsigned long, fd, unsigned long, pgoff)
1108{
1109	struct file *file = NULL;
1110	unsigned long retval = -EBADF;
1111
1112	if (!(flags & MAP_ANONYMOUS)) {
1113		audit_mmap_fd(fd, flags);
1114		if (unlikely(flags & MAP_HUGETLB))
1115			return -EINVAL;
1116		file = fget(fd);
1117		if (!file)
1118			goto out;
 
 
 
 
 
1119	} else if (flags & MAP_HUGETLB) {
1120		struct user_struct *user = NULL;
 
 
 
 
 
 
 
1121		/*
1122		 * VM_NORESERVE is used because the reservations will be
1123		 * taken when vm_ops->mmap() is called
1124		 * A dummy user value is used because we are not locking
1125		 * memory so no accounting is necessary
1126		 */
1127		file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1128						VM_NORESERVE, &user,
1129						HUGETLB_ANONHUGE_INODE);
 
1130		if (IS_ERR(file))
1131			return PTR_ERR(file);
1132	}
1133
1134	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1135
1136	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
 
1137	if (file)
1138		fput(file);
1139out:
1140	return retval;
1141}
1142
1143#ifdef __ARCH_WANT_SYS_OLD_MMAP
1144struct mmap_arg_struct {
1145	unsigned long addr;
1146	unsigned long len;
1147	unsigned long prot;
1148	unsigned long flags;
1149	unsigned long fd;
1150	unsigned long offset;
1151};
1152
1153SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1154{
1155	struct mmap_arg_struct a;
1156
1157	if (copy_from_user(&a, arg, sizeof(a)))
1158		return -EFAULT;
1159	if (a.offset & ~PAGE_MASK)
1160		return -EINVAL;
1161
1162	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1163			      a.offset >> PAGE_SHIFT);
1164}
1165#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1166
1167/*
1168 * Some shared mappigns will want the pages marked read-only
1169 * to track write events. If so, we'll downgrade vm_page_prot
1170 * to the private version (using protection_map[] without the
1171 * VM_SHARED bit).
1172 */
1173int vma_wants_writenotify(struct vm_area_struct *vma)
1174{
1175	vm_flags_t vm_flags = vma->vm_flags;
 
1176
1177	/* If it was private or non-writable, the write bit is already clear */
1178	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1179		return 0;
1180
1181	/* The backer wishes to know when pages are first written to? */
1182	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1183		return 1;
1184
1185	/* The open routine did something to the protections already? */
 
1186	if (pgprot_val(vma->vm_page_prot) !=
1187	    pgprot_val(vm_get_page_prot(vm_flags)))
1188		return 0;
1189
 
 
 
 
1190	/* Specialty mapping? */
1191	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1192		return 0;
1193
1194	/* Can the mapping track the dirty pages? */
1195	return vma->vm_file && vma->vm_file->f_mapping &&
1196		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1197}
1198
1199/*
1200 * We account for memory if it's a private writeable mapping,
1201 * not hugepages and VM_NORESERVE wasn't set.
1202 */
1203static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1204{
1205	/*
1206	 * hugetlb has its own accounting separate from the core VM
1207	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1208	 */
1209	if (file && is_file_hugepages(file))
1210		return 0;
1211
1212	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1213}
1214
1215unsigned long mmap_region(struct file *file, unsigned long addr,
1216			  unsigned long len, unsigned long flags,
1217			  vm_flags_t vm_flags, unsigned long pgoff)
1218{
1219	struct mm_struct *mm = current->mm;
1220	struct vm_area_struct *vma, *prev;
1221	int correct_wcount = 0;
1222	int error;
1223	struct rb_node **rb_link, *rb_parent;
1224	unsigned long charged = 0;
1225	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226
1227	/* Clear old maps */
1228	error = -ENOMEM;
1229munmap_back:
1230	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1231	if (vma && vma->vm_start < addr + len) {
1232		if (do_munmap(mm, addr, len))
1233			return -ENOMEM;
1234		goto munmap_back;
1235	}
1236
1237	/* Check against address space limit. */
1238	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1239		return -ENOMEM;
1240
1241	/*
1242	 * Set 'VM_NORESERVE' if we should not account for the
1243	 * memory use of this mapping.
1244	 */
1245	if ((flags & MAP_NORESERVE)) {
1246		/* We honor MAP_NORESERVE if allowed to overcommit */
1247		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1248			vm_flags |= VM_NORESERVE;
1249
1250		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1251		if (file && is_file_hugepages(file))
1252			vm_flags |= VM_NORESERVE;
1253	}
1254
1255	/*
1256	 * Private writable mapping: check memory availability
1257	 */
1258	if (accountable_mapping(file, vm_flags)) {
1259		charged = len >> PAGE_SHIFT;
1260		if (security_vm_enough_memory_mm(mm, charged))
1261			return -ENOMEM;
1262		vm_flags |= VM_ACCOUNT;
1263	}
1264
1265	/*
1266	 * Can we just expand an old mapping?
1267	 */
1268	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
 
1269	if (vma)
1270		goto out;
1271
1272	/*
1273	 * Determine the object being mapped and call the appropriate
1274	 * specific mapper. the address has already been validated, but
1275	 * not unmapped, but the maps are removed from the list.
1276	 */
1277	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1278	if (!vma) {
1279		error = -ENOMEM;
1280		goto unacct_error;
1281	}
1282
1283	vma->vm_mm = mm;
1284	vma->vm_start = addr;
1285	vma->vm_end = addr + len;
1286	vma->vm_flags = vm_flags;
1287	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1288	vma->vm_pgoff = pgoff;
1289	INIT_LIST_HEAD(&vma->anon_vma_chain);
1290
1291	error = -EINVAL;	/* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1292
1293	if (file) {
1294		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1295			goto free_vma;
1296		if (vm_flags & VM_DENYWRITE) {
1297			error = deny_write_access(file);
1298			if (error)
1299				goto free_vma;
1300			correct_wcount = 1;
1301		}
1302		vma->vm_file = file;
1303		get_file(file);
 
 
 
 
 
 
 
 
 
 
1304		error = file->f_op->mmap(file, vma);
1305		if (error)
1306			goto unmap_and_free_vma;
1307		if (vm_flags & VM_EXECUTABLE)
1308			added_exe_file_vma(mm);
1309
1310		/* Can addr have changed??
1311		 *
1312		 * Answer: Yes, several device drivers can do it in their
1313		 *         f_op->mmap method. -DaveM
 
 
1314		 */
 
 
1315		addr = vma->vm_start;
1316		pgoff = vma->vm_pgoff;
1317		vm_flags = vma->vm_flags;
1318	} else if (vm_flags & VM_SHARED) {
1319		if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1320			goto free_vma;
1321		error = shmem_zero_setup(vma);
1322		if (error)
1323			goto free_vma;
1324	}
1325
1326	if (vma_wants_writenotify(vma)) {
1327		pgprot_t pprot = vma->vm_page_prot;
1328
1329		/* Can vma->vm_page_prot have changed??
1330		 *
1331		 * Answer: Yes, drivers may have changed it in their
1332		 *         f_op->mmap method.
1333		 *
1334		 * Ensures that vmas marked as uncached stay that way.
1335		 */
1336		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1337		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1338			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1339	}
1340
1341	vma_link(mm, vma, prev, rb_link, rb_parent);
1342	file = vma->vm_file;
1343
1344	/* Once vma denies write, undo our temporary denial count */
1345	if (correct_wcount)
1346		atomic_inc(&inode->i_writecount);
1347out:
1348	perf_event_mmap(vma);
1349
1350	mm->total_vm += len >> PAGE_SHIFT;
1351	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1352	if (vm_flags & VM_LOCKED) {
1353		if (!mlock_vma_pages_range(vma, addr, addr + len))
 
1354			mm->locked_vm += (len >> PAGE_SHIFT);
1355	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1356		make_pages_present(addr, addr + len);
 
1357
1358	if (file)
1359		uprobe_mmap(vma);
1360
 
 
 
 
 
 
 
 
 
 
 
1361	return addr;
1362
1363unmap_and_free_vma:
1364	if (correct_wcount)
1365		atomic_inc(&inode->i_writecount);
1366	vma->vm_file = NULL;
1367	fput(file);
1368
1369	/* Undo any partial mapping done by a device driver. */
1370	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1371	charged = 0;
 
 
 
 
 
1372free_vma:
1373	kmem_cache_free(vm_area_cachep, vma);
1374unacct_error:
1375	if (charged)
1376		vm_unacct_memory(charged);
1377	return error;
1378}
1379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380/* Get an address range which is currently unmapped.
1381 * For shmat() with addr=0.
1382 *
1383 * Ugly calling convention alert:
1384 * Return value with the low bits set means error value,
1385 * ie
1386 *	if (ret & ~PAGE_MASK)
1387 *		error = ret;
1388 *
1389 * This function "knows" that -ENOMEM has the bits set.
1390 */
1391#ifndef HAVE_ARCH_UNMAPPED_AREA
1392unsigned long
1393arch_get_unmapped_area(struct file *filp, unsigned long addr,
1394		unsigned long len, unsigned long pgoff, unsigned long flags)
1395{
1396	struct mm_struct *mm = current->mm;
1397	struct vm_area_struct *vma;
1398	unsigned long start_addr;
1399
1400	if (len > TASK_SIZE)
1401		return -ENOMEM;
1402
1403	if (flags & MAP_FIXED)
1404		return addr;
1405
1406	if (addr) {
1407		addr = PAGE_ALIGN(addr);
1408		vma = find_vma(mm, addr);
1409		if (TASK_SIZE - len >= addr &&
1410		    (!vma || addr + len <= vma->vm_start))
1411			return addr;
1412	}
1413	if (len > mm->cached_hole_size) {
1414	        start_addr = addr = mm->free_area_cache;
1415	} else {
1416	        start_addr = addr = TASK_UNMAPPED_BASE;
1417	        mm->cached_hole_size = 0;
1418	}
1419
1420full_search:
1421	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1422		/* At this point:  (!vma || addr < vma->vm_end). */
1423		if (TASK_SIZE - len < addr) {
1424			/*
1425			 * Start a new search - just in case we missed
1426			 * some holes.
1427			 */
1428			if (start_addr != TASK_UNMAPPED_BASE) {
1429				addr = TASK_UNMAPPED_BASE;
1430			        start_addr = addr;
1431				mm->cached_hole_size = 0;
1432				goto full_search;
1433			}
1434			return -ENOMEM;
1435		}
1436		if (!vma || addr + len <= vma->vm_start) {
1437			/*
1438			 * Remember the place where we stopped the search:
1439			 */
1440			mm->free_area_cache = addr + len;
1441			return addr;
1442		}
1443		if (addr + mm->cached_hole_size < vma->vm_start)
1444		        mm->cached_hole_size = vma->vm_start - addr;
1445		addr = vma->vm_end;
1446	}
1447}
1448#endif	
1449
1450void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1451{
1452	/*
1453	 * Is this a new hole at the lowest possible address?
1454	 */
1455	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1456		mm->free_area_cache = addr;
1457}
 
1458
1459/*
1460 * This mmap-allocator allocates new areas top-down from below the
1461 * stack's low limit (the base):
1462 */
1463#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1464unsigned long
1465arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1466			  const unsigned long len, const unsigned long pgoff,
1467			  const unsigned long flags)
1468{
1469	struct vm_area_struct *vma;
1470	struct mm_struct *mm = current->mm;
1471	unsigned long addr = addr0, start_addr;
 
1472
1473	/* requested length too big for entire address space */
1474	if (len > TASK_SIZE)
1475		return -ENOMEM;
1476
1477	if (flags & MAP_FIXED)
1478		return addr;
1479
1480	/* requesting a specific address */
1481	if (addr) {
1482		addr = PAGE_ALIGN(addr);
1483		vma = find_vma(mm, addr);
1484		if (TASK_SIZE - len >= addr &&
1485				(!vma || addr + len <= vma->vm_start))
1486			return addr;
1487	}
1488
1489	/* check if free_area_cache is useful for us */
1490	if (len <= mm->cached_hole_size) {
1491 	        mm->cached_hole_size = 0;
1492 		mm->free_area_cache = mm->mmap_base;
1493 	}
1494
1495try_again:
1496	/* either no address requested or can't fit in requested address hole */
1497	start_addr = addr = mm->free_area_cache;
1498
1499	if (addr < len)
1500		goto fail;
1501
1502	addr -= len;
1503	do {
1504		/*
1505		 * Lookup failure means no vma is above this address,
1506		 * else if new region fits below vma->vm_start,
1507		 * return with success:
1508		 */
1509		vma = find_vma(mm, addr);
1510		if (!vma || addr+len <= vma->vm_start)
1511			/* remember the address as a hint for next time */
1512			return (mm->free_area_cache = addr);
1513
1514 		/* remember the largest hole we saw so far */
1515 		if (addr + mm->cached_hole_size < vma->vm_start)
1516 		        mm->cached_hole_size = vma->vm_start - addr;
1517
1518		/* try just below the current vma->vm_start */
1519		addr = vma->vm_start-len;
1520	} while (len < vma->vm_start);
1521
1522fail:
1523	/*
1524	 * if hint left us with no space for the requested
1525	 * mapping then try again:
1526	 *
1527	 * Note: this is different with the case of bottomup
1528	 * which does the fully line-search, but we use find_vma
1529	 * here that causes some holes skipped.
1530	 */
1531	if (start_addr != mm->mmap_base) {
1532		mm->free_area_cache = mm->mmap_base;
1533		mm->cached_hole_size = 0;
1534		goto try_again;
1535	}
1536
1537	/*
1538	 * A failed mmap() very likely causes application failure,
1539	 * so fall back to the bottom-up function here. This scenario
1540	 * can happen with large stack limits and large mmap()
1541	 * allocations.
1542	 */
1543	mm->cached_hole_size = ~0UL;
1544  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1545	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1546	/*
1547	 * Restore the topdown base:
1548	 */
1549	mm->free_area_cache = mm->mmap_base;
1550	mm->cached_hole_size = ~0UL;
1551
1552	return addr;
1553}
1554#endif
1555
1556void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1557{
1558	/*
1559	 * Is this a new hole at the highest possible address?
1560	 */
1561	if (addr > mm->free_area_cache)
1562		mm->free_area_cache = addr;
1563
1564	/* dont allow allocations above current base */
1565	if (mm->free_area_cache > mm->mmap_base)
1566		mm->free_area_cache = mm->mmap_base;
1567}
1568
1569unsigned long
1570get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1571		unsigned long pgoff, unsigned long flags)
1572{
1573	unsigned long (*get_area)(struct file *, unsigned long,
1574				  unsigned long, unsigned long, unsigned long);
1575
1576	unsigned long error = arch_mmap_check(addr, len, flags);
1577	if (error)
1578		return error;
1579
1580	/* Careful about overflows.. */
1581	if (len > TASK_SIZE)
1582		return -ENOMEM;
1583
1584	get_area = current->mm->get_unmapped_area;
1585	if (file && file->f_op && file->f_op->get_unmapped_area)
1586		get_area = file->f_op->get_unmapped_area;
1587	addr = get_area(file, addr, len, pgoff, flags);
1588	if (IS_ERR_VALUE(addr))
1589		return addr;
1590
1591	if (addr > TASK_SIZE - len)
1592		return -ENOMEM;
1593	if (addr & ~PAGE_MASK)
1594		return -EINVAL;
1595
1596	addr = arch_rebalance_pgtables(addr, len);
1597	error = security_mmap_addr(addr);
1598	return error ? error : addr;
1599}
1600
1601EXPORT_SYMBOL(get_unmapped_area);
1602
1603/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1604struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1605{
1606	struct vm_area_struct *vma = NULL;
1607
1608	if (WARN_ON_ONCE(!mm))		/* Remove this in linux-3.6 */
1609		return NULL;
1610
1611	/* Check the cache first. */
1612	/* (Cache hit rate is typically around 35%.) */
1613	vma = mm->mmap_cache;
1614	if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1615		struct rb_node *rb_node;
1616
1617		rb_node = mm->mm_rb.rb_node;
1618		vma = NULL;
1619
1620		while (rb_node) {
1621			struct vm_area_struct *vma_tmp;
1622
1623			vma_tmp = rb_entry(rb_node,
1624					   struct vm_area_struct, vm_rb);
1625
1626			if (vma_tmp->vm_end > addr) {
1627				vma = vma_tmp;
1628				if (vma_tmp->vm_start <= addr)
1629					break;
1630				rb_node = rb_node->rb_left;
1631			} else
1632				rb_node = rb_node->rb_right;
1633		}
1634		if (vma)
1635			mm->mmap_cache = vma;
1636	}
 
 
 
1637	return vma;
1638}
1639
1640EXPORT_SYMBOL(find_vma);
1641
1642/*
1643 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1644 */
1645struct vm_area_struct *
1646find_vma_prev(struct mm_struct *mm, unsigned long addr,
1647			struct vm_area_struct **pprev)
1648{
1649	struct vm_area_struct *vma;
1650
1651	vma = find_vma(mm, addr);
1652	if (vma) {
1653		*pprev = vma->vm_prev;
1654	} else {
1655		struct rb_node *rb_node = mm->mm_rb.rb_node;
1656		*pprev = NULL;
1657		while (rb_node) {
1658			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1659			rb_node = rb_node->rb_right;
1660		}
1661	}
1662	return vma;
1663}
1664
1665/*
1666 * Verify that the stack growth is acceptable and
1667 * update accounting. This is shared with both the
1668 * grow-up and grow-down cases.
1669 */
1670static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1671{
1672	struct mm_struct *mm = vma->vm_mm;
1673	struct rlimit *rlim = current->signal->rlim;
1674	unsigned long new_start;
1675
1676	/* address space limit tests */
1677	if (!may_expand_vm(mm, grow))
1678		return -ENOMEM;
1679
1680	/* Stack limit test */
1681	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
 
 
 
1682		return -ENOMEM;
1683
1684	/* mlock limit tests */
1685	if (vma->vm_flags & VM_LOCKED) {
1686		unsigned long locked;
1687		unsigned long limit;
1688		locked = mm->locked_vm + grow;
1689		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1690		limit >>= PAGE_SHIFT;
1691		if (locked > limit && !capable(CAP_IPC_LOCK))
1692			return -ENOMEM;
1693	}
1694
1695	/* Check to ensure the stack will not grow into a hugetlb-only region */
1696	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1697			vma->vm_end - size;
1698	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1699		return -EFAULT;
1700
1701	/*
1702	 * Overcommit..  This must be the final test, as it will
1703	 * update security statistics.
1704	 */
1705	if (security_vm_enough_memory_mm(mm, grow))
1706		return -ENOMEM;
1707
1708	/* Ok, everything looks good - let it rip */
1709	mm->total_vm += grow;
1710	if (vma->vm_flags & VM_LOCKED)
1711		mm->locked_vm += grow;
1712	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1713	return 0;
1714}
1715
1716#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1717/*
1718 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1719 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1720 */
1721int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1722{
1723	int error;
 
1724
1725	if (!(vma->vm_flags & VM_GROWSUP))
1726		return -EFAULT;
1727
1728	/*
1729	 * We must make sure the anon_vma is allocated
1730	 * so that the anon_vma locking is not a noop.
1731	 */
 
 
 
1732	if (unlikely(anon_vma_prepare(vma)))
1733		return -ENOMEM;
1734	vma_lock_anon_vma(vma);
1735
1736	/*
1737	 * vma->vm_start/vm_end cannot change under us because the caller
1738	 * is required to hold the mmap_sem in read mode.  We need the
1739	 * anon_vma lock to serialize against concurrent expand_stacks.
1740	 * Also guard against wrapping around to address 0.
1741	 */
1742	if (address < PAGE_ALIGN(address+4))
1743		address = PAGE_ALIGN(address+4);
1744	else {
1745		vma_unlock_anon_vma(vma);
1746		return -ENOMEM;
1747	}
1748	error = 0;
1749
1750	/* Somebody else might have raced and expanded it already */
1751	if (address > vma->vm_end) {
1752		unsigned long size, grow;
1753
1754		size = address - vma->vm_start;
1755		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1756
1757		error = -ENOMEM;
1758		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1759			error = acct_stack_growth(vma, size, grow);
1760			if (!error) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1761				vma->vm_end = address;
 
 
 
 
 
 
 
1762				perf_event_mmap(vma);
1763			}
1764		}
1765	}
1766	vma_unlock_anon_vma(vma);
1767	khugepaged_enter_vma_merge(vma);
 
1768	return error;
1769}
1770#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1771
1772/*
1773 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1774 */
1775int expand_downwards(struct vm_area_struct *vma,
1776				   unsigned long address)
1777{
 
1778	int error;
1779
1780	/*
1781	 * We must make sure the anon_vma is allocated
1782	 * so that the anon_vma locking is not a noop.
1783	 */
1784	if (unlikely(anon_vma_prepare(vma)))
1785		return -ENOMEM;
1786
1787	address &= PAGE_MASK;
1788	error = security_mmap_addr(address);
1789	if (error)
1790		return error;
1791
1792	vma_lock_anon_vma(vma);
 
 
1793
1794	/*
1795	 * vma->vm_start/vm_end cannot change under us because the caller
1796	 * is required to hold the mmap_sem in read mode.  We need the
1797	 * anon_vma lock to serialize against concurrent expand_stacks.
1798	 */
 
1799
1800	/* Somebody else might have raced and expanded it already */
1801	if (address < vma->vm_start) {
1802		unsigned long size, grow;
1803
1804		size = vma->vm_end - address;
1805		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1806
1807		error = -ENOMEM;
1808		if (grow <= vma->vm_pgoff) {
1809			error = acct_stack_growth(vma, size, grow);
1810			if (!error) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811				vma->vm_start = address;
1812				vma->vm_pgoff -= grow;
 
 
 
 
1813				perf_event_mmap(vma);
1814			}
1815		}
1816	}
1817	vma_unlock_anon_vma(vma);
1818	khugepaged_enter_vma_merge(vma);
 
1819	return error;
1820}
1821
 
 
 
 
 
 
 
 
 
 
 
1822#ifdef CONFIG_STACK_GROWSUP
1823int expand_stack(struct vm_area_struct *vma, unsigned long address)
1824{
 
 
 
 
 
 
 
 
1825	return expand_upwards(vma, address);
1826}
1827
1828struct vm_area_struct *
1829find_extend_vma(struct mm_struct *mm, unsigned long addr)
1830{
1831	struct vm_area_struct *vma, *prev;
1832
1833	addr &= PAGE_MASK;
1834	vma = find_vma_prev(mm, addr, &prev);
1835	if (vma && (vma->vm_start <= addr))
1836		return vma;
1837	if (!prev || expand_stack(prev, addr))
1838		return NULL;
1839	if (prev->vm_flags & VM_LOCKED) {
1840		mlock_vma_pages_range(prev, addr, prev->vm_end);
1841	}
1842	return prev;
1843}
1844#else
1845int expand_stack(struct vm_area_struct *vma, unsigned long address)
1846{
 
 
 
 
 
 
 
 
1847	return expand_downwards(vma, address);
1848}
1849
1850struct vm_area_struct *
1851find_extend_vma(struct mm_struct * mm, unsigned long addr)
1852{
1853	struct vm_area_struct * vma;
1854	unsigned long start;
1855
1856	addr &= PAGE_MASK;
1857	vma = find_vma(mm,addr);
1858	if (!vma)
1859		return NULL;
1860	if (vma->vm_start <= addr)
1861		return vma;
1862	if (!(vma->vm_flags & VM_GROWSDOWN))
1863		return NULL;
1864	start = vma->vm_start;
1865	if (expand_stack(vma, addr))
1866		return NULL;
1867	if (vma->vm_flags & VM_LOCKED) {
1868		mlock_vma_pages_range(vma, addr, start);
1869	}
1870	return vma;
1871}
1872#endif
1873
 
 
1874/*
1875 * Ok - we have the memory areas we should free on the vma list,
1876 * so release them, and do the vma updates.
1877 *
1878 * Called with the mm semaphore held.
1879 */
1880static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1881{
1882	unsigned long nr_accounted = 0;
1883
1884	/* Update high watermark before we lower total_vm */
1885	update_hiwater_vm(mm);
1886	do {
1887		long nrpages = vma_pages(vma);
1888
1889		if (vma->vm_flags & VM_ACCOUNT)
1890			nr_accounted += nrpages;
1891		mm->total_vm -= nrpages;
1892		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1893		vma = remove_vma(vma);
1894	} while (vma);
1895	vm_unacct_memory(nr_accounted);
1896	validate_mm(mm);
1897}
1898
1899/*
1900 * Get rid of page table information in the indicated region.
1901 *
1902 * Called with the mm semaphore held.
1903 */
1904static void unmap_region(struct mm_struct *mm,
1905		struct vm_area_struct *vma, struct vm_area_struct *prev,
1906		unsigned long start, unsigned long end)
1907{
1908	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1909	struct mmu_gather tlb;
1910
1911	lru_add_drain();
1912	tlb_gather_mmu(&tlb, mm, 0);
1913	update_hiwater_rss(mm);
1914	unmap_vmas(&tlb, vma, start, end);
1915	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1916				 next ? next->vm_start : 0);
1917	tlb_finish_mmu(&tlb, start, end);
1918}
1919
1920/*
1921 * Create a list of vma's touched by the unmap, removing them from the mm's
1922 * vma list as we go..
1923 */
1924static void
1925detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1926	struct vm_area_struct *prev, unsigned long end)
1927{
1928	struct vm_area_struct **insertion_point;
1929	struct vm_area_struct *tail_vma = NULL;
1930	unsigned long addr;
1931
1932	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1933	vma->vm_prev = NULL;
1934	do {
1935		rb_erase(&vma->vm_rb, &mm->mm_rb);
1936		mm->map_count--;
1937		tail_vma = vma;
1938		vma = vma->vm_next;
1939	} while (vma && vma->vm_start < end);
1940	*insertion_point = vma;
1941	if (vma)
1942		vma->vm_prev = prev;
 
 
 
1943	tail_vma->vm_next = NULL;
1944	if (mm->unmap_area == arch_unmap_area)
1945		addr = prev ? prev->vm_end : mm->mmap_base;
1946	else
1947		addr = vma ?  vma->vm_start : mm->mmap_base;
1948	mm->unmap_area(mm, addr);
1949	mm->mmap_cache = NULL;		/* Kill the cache. */
1950}
1951
1952/*
1953 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1954 * munmap path where it doesn't make sense to fail.
1955 */
1956static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1957	      unsigned long addr, int new_below)
1958{
1959	struct mempolicy *pol;
1960	struct vm_area_struct *new;
1961	int err = -ENOMEM;
1962
1963	if (is_vm_hugetlb_page(vma) && (addr &
1964					~(huge_page_mask(hstate_vma(vma)))))
1965		return -EINVAL;
1966
1967	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1968	if (!new)
1969		goto out_err;
1970
1971	/* most fields are the same, copy all, and then fixup */
1972	*new = *vma;
1973
1974	INIT_LIST_HEAD(&new->anon_vma_chain);
1975
1976	if (new_below)
1977		new->vm_end = addr;
1978	else {
1979		new->vm_start = addr;
1980		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1981	}
1982
1983	pol = mpol_dup(vma_policy(vma));
1984	if (IS_ERR(pol)) {
1985		err = PTR_ERR(pol);
1986		goto out_free_vma;
1987	}
1988	vma_set_policy(new, pol);
1989
1990	if (anon_vma_clone(new, vma))
 
1991		goto out_free_mpol;
1992
1993	if (new->vm_file) {
1994		get_file(new->vm_file);
1995		if (vma->vm_flags & VM_EXECUTABLE)
1996			added_exe_file_vma(mm);
1997	}
1998
1999	if (new->vm_ops && new->vm_ops->open)
2000		new->vm_ops->open(new);
2001
2002	if (new_below)
2003		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2004			((addr - new->vm_start) >> PAGE_SHIFT), new);
2005	else
2006		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2007
2008	/* Success. */
2009	if (!err)
2010		return 0;
2011
2012	/* Clean everything up if vma_adjust failed. */
2013	if (new->vm_ops && new->vm_ops->close)
2014		new->vm_ops->close(new);
2015	if (new->vm_file) {
2016		if (vma->vm_flags & VM_EXECUTABLE)
2017			removed_exe_file_vma(mm);
2018		fput(new->vm_file);
2019	}
2020	unlink_anon_vmas(new);
2021 out_free_mpol:
2022	mpol_put(pol);
2023 out_free_vma:
2024	kmem_cache_free(vm_area_cachep, new);
2025 out_err:
2026	return err;
2027}
2028
2029/*
2030 * Split a vma into two pieces at address 'addr', a new vma is allocated
2031 * either for the first part or the tail.
2032 */
2033int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2034	      unsigned long addr, int new_below)
2035{
2036	if (mm->map_count >= sysctl_max_map_count)
2037		return -ENOMEM;
2038
2039	return __split_vma(mm, vma, addr, new_below);
2040}
2041
2042/* Munmap is split into 2 main parts -- this part which finds
2043 * what needs doing, and the areas themselves, which do the
2044 * work.  This now handles partial unmappings.
2045 * Jeremy Fitzhardinge <jeremy@goop.org>
2046 */
2047int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2048{
2049	unsigned long end;
2050	struct vm_area_struct *vma, *prev, *last;
2051
2052	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2053		return -EINVAL;
2054
2055	if ((len = PAGE_ALIGN(len)) == 0)
 
2056		return -EINVAL;
2057
2058	/* Find the first overlapping VMA */
2059	vma = find_vma(mm, start);
2060	if (!vma)
2061		return 0;
2062	prev = vma->vm_prev;
2063	/* we have  start < vma->vm_end  */
2064
2065	/* if it doesn't overlap, we have nothing.. */
2066	end = start + len;
2067	if (vma->vm_start >= end)
2068		return 0;
2069
2070	/*
2071	 * If we need to split any vma, do it now to save pain later.
2072	 *
2073	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2074	 * unmapped vm_area_struct will remain in use: so lower split_vma
2075	 * places tmp vma above, and higher split_vma places tmp vma below.
2076	 */
2077	if (start > vma->vm_start) {
2078		int error;
2079
2080		/*
2081		 * Make sure that map_count on return from munmap() will
2082		 * not exceed its limit; but let map_count go just above
2083		 * its limit temporarily, to help free resources as expected.
2084		 */
2085		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2086			return -ENOMEM;
2087
2088		error = __split_vma(mm, vma, start, 0);
2089		if (error)
2090			return error;
2091		prev = vma;
2092	}
2093
2094	/* Does it split the last one? */
2095	last = find_vma(mm, end);
2096	if (last && end > last->vm_start) {
2097		int error = __split_vma(mm, last, end, 1);
2098		if (error)
2099			return error;
2100	}
2101	vma = prev? prev->vm_next: mm->mmap;
2102
2103	/*
2104	 * unlock any mlock()ed ranges before detaching vmas
2105	 */
2106	if (mm->locked_vm) {
2107		struct vm_area_struct *tmp = vma;
2108		while (tmp && tmp->vm_start < end) {
2109			if (tmp->vm_flags & VM_LOCKED) {
2110				mm->locked_vm -= vma_pages(tmp);
2111				munlock_vma_pages_all(tmp);
2112			}
2113			tmp = tmp->vm_next;
2114		}
2115	}
2116
2117	/*
2118	 * Remove the vma's, and unmap the actual pages
2119	 */
2120	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2121	unmap_region(mm, vma, prev, start, end);
2122
 
 
2123	/* Fix up all other VM information */
2124	remove_vma_list(mm, vma);
2125
2126	return 0;
2127}
2128
2129int vm_munmap(unsigned long start, size_t len)
2130{
2131	int ret;
2132	struct mm_struct *mm = current->mm;
2133
2134	down_write(&mm->mmap_sem);
2135	ret = do_munmap(mm, start, len);
2136	up_write(&mm->mmap_sem);
2137	return ret;
2138}
2139EXPORT_SYMBOL(vm_munmap);
2140
2141SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2142{
2143	profile_munmap(addr);
2144	return vm_munmap(addr, len);
2145}
2146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147static inline void verify_mm_writelocked(struct mm_struct *mm)
2148{
2149#ifdef CONFIG_DEBUG_VM
2150	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2151		WARN_ON(1);
2152		up_read(&mm->mmap_sem);
2153	}
2154#endif
2155}
2156
2157/*
2158 *  this is really a simplified "do_mmap".  it only handles
2159 *  anonymous maps.  eventually we may be able to do some
2160 *  brk-specific accounting here.
2161 */
2162static unsigned long do_brk(unsigned long addr, unsigned long len)
2163{
2164	struct mm_struct * mm = current->mm;
2165	struct vm_area_struct * vma, * prev;
2166	unsigned long flags;
2167	struct rb_node ** rb_link, * rb_parent;
2168	pgoff_t pgoff = addr >> PAGE_SHIFT;
2169	int error;
2170
2171	len = PAGE_ALIGN(len);
2172	if (!len)
2173		return addr;
2174
2175	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2176
2177	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2178	if (error & ~PAGE_MASK)
2179		return error;
2180
2181	/*
2182	 * mlock MCL_FUTURE?
2183	 */
2184	if (mm->def_flags & VM_LOCKED) {
2185		unsigned long locked, lock_limit;
2186		locked = len >> PAGE_SHIFT;
2187		locked += mm->locked_vm;
2188		lock_limit = rlimit(RLIMIT_MEMLOCK);
2189		lock_limit >>= PAGE_SHIFT;
2190		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2191			return -EAGAIN;
2192	}
2193
2194	/*
2195	 * mm->mmap_sem is required to protect against another thread
2196	 * changing the mappings in case we sleep.
2197	 */
2198	verify_mm_writelocked(mm);
2199
2200	/*
2201	 * Clear old maps.  this also does some error checking for us
2202	 */
2203 munmap_back:
2204	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2205	if (vma && vma->vm_start < addr + len) {
2206		if (do_munmap(mm, addr, len))
2207			return -ENOMEM;
2208		goto munmap_back;
2209	}
2210
2211	/* Check against address space limits *after* clearing old maps... */
2212	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2213		return -ENOMEM;
2214
2215	if (mm->map_count > sysctl_max_map_count)
2216		return -ENOMEM;
2217
2218	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2219		return -ENOMEM;
2220
2221	/* Can we just expand an old private anonymous mapping? */
2222	vma = vma_merge(mm, prev, addr, addr + len, flags,
2223					NULL, NULL, pgoff, NULL);
2224	if (vma)
2225		goto out;
2226
2227	/*
2228	 * create a vma struct for an anonymous mapping
2229	 */
2230	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2231	if (!vma) {
2232		vm_unacct_memory(len >> PAGE_SHIFT);
2233		return -ENOMEM;
2234	}
2235
2236	INIT_LIST_HEAD(&vma->anon_vma_chain);
2237	vma->vm_mm = mm;
2238	vma->vm_start = addr;
2239	vma->vm_end = addr + len;
2240	vma->vm_pgoff = pgoff;
2241	vma->vm_flags = flags;
2242	vma->vm_page_prot = vm_get_page_prot(flags);
2243	vma_link(mm, vma, prev, rb_link, rb_parent);
2244out:
2245	perf_event_mmap(vma);
2246	mm->total_vm += len >> PAGE_SHIFT;
2247	if (flags & VM_LOCKED) {
2248		if (!mlock_vma_pages_range(vma, addr, addr + len))
2249			mm->locked_vm += (len >> PAGE_SHIFT);
2250	}
2251	return addr;
2252}
2253
2254unsigned long vm_brk(unsigned long addr, unsigned long len)
2255{
2256	struct mm_struct *mm = current->mm;
2257	unsigned long ret;
 
2258
2259	down_write(&mm->mmap_sem);
2260	ret = do_brk(addr, len);
 
2261	up_write(&mm->mmap_sem);
 
 
2262	return ret;
2263}
2264EXPORT_SYMBOL(vm_brk);
2265
2266/* Release all mmaps. */
2267void exit_mmap(struct mm_struct *mm)
2268{
2269	struct mmu_gather tlb;
2270	struct vm_area_struct *vma;
2271	unsigned long nr_accounted = 0;
2272
2273	/* mm's last user has gone, and its about to be pulled down */
2274	mmu_notifier_release(mm);
2275
2276	if (mm->locked_vm) {
2277		vma = mm->mmap;
2278		while (vma) {
2279			if (vma->vm_flags & VM_LOCKED)
2280				munlock_vma_pages_all(vma);
2281			vma = vma->vm_next;
2282		}
2283	}
2284
2285	arch_exit_mmap(mm);
2286
2287	vma = mm->mmap;
2288	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2289		return;
2290
2291	lru_add_drain();
2292	flush_cache_mm(mm);
2293	tlb_gather_mmu(&tlb, mm, 1);
2294	/* update_hiwater_rss(mm) here? but nobody should be looking */
2295	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2296	unmap_vmas(&tlb, vma, 0, -1);
2297
2298	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2299	tlb_finish_mmu(&tlb, 0, -1);
2300
2301	/*
2302	 * Walk the list again, actually closing and freeing it,
2303	 * with preemption enabled, without holding any MM locks.
2304	 */
2305	while (vma) {
2306		if (vma->vm_flags & VM_ACCOUNT)
2307			nr_accounted += vma_pages(vma);
2308		vma = remove_vma(vma);
2309	}
2310	vm_unacct_memory(nr_accounted);
2311
2312	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2313}
2314
2315/* Insert vm structure into process list sorted by address
2316 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2317 * then i_mmap_mutex is taken here.
2318 */
2319int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2320{
2321	struct vm_area_struct * __vma, * prev;
2322	struct rb_node ** rb_link, * rb_parent;
 
 
 
 
 
 
 
2323
2324	/*
2325	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2326	 * until its first write fault, when page's anon_vma and index
2327	 * are set.  But now set the vm_pgoff it will almost certainly
2328	 * end up with (unless mremap moves it elsewhere before that
2329	 * first wfault), so /proc/pid/maps tells a consistent story.
2330	 *
2331	 * By setting it to reflect the virtual start address of the
2332	 * vma, merges and splits can happen in a seamless way, just
2333	 * using the existing file pgoff checks and manipulations.
2334	 * Similarly in do_mmap_pgoff and in do_brk.
2335	 */
2336	if (!vma->vm_file) {
2337		BUG_ON(vma->anon_vma);
2338		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2339	}
2340	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2341	if (__vma && __vma->vm_start < vma->vm_end)
2342		return -ENOMEM;
2343	if ((vma->vm_flags & VM_ACCOUNT) &&
2344	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2345		return -ENOMEM;
2346
2347	if (vma->vm_file && uprobe_mmap(vma))
2348		return -EINVAL;
2349
2350	vma_link(mm, vma, prev, rb_link, rb_parent);
2351	return 0;
2352}
2353
2354/*
2355 * Copy the vma structure to a new location in the same mm,
2356 * prior to moving page table entries, to effect an mremap move.
2357 */
2358struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2359	unsigned long addr, unsigned long len, pgoff_t pgoff)
 
2360{
2361	struct vm_area_struct *vma = *vmap;
2362	unsigned long vma_start = vma->vm_start;
2363	struct mm_struct *mm = vma->vm_mm;
2364	struct vm_area_struct *new_vma, *prev;
2365	struct rb_node **rb_link, *rb_parent;
2366	struct mempolicy *pol;
2367	bool faulted_in_anon_vma = true;
2368
2369	/*
2370	 * If anonymous vma has not yet been faulted, update new pgoff
2371	 * to match new location, to increase its chance of merging.
2372	 */
2373	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2374		pgoff = addr >> PAGE_SHIFT;
2375		faulted_in_anon_vma = false;
2376	}
2377
2378	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
 
2379	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2380			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
 
2381	if (new_vma) {
2382		/*
2383		 * Source vma may have been merged into new_vma
2384		 */
2385		if (unlikely(vma_start >= new_vma->vm_start &&
2386			     vma_start < new_vma->vm_end)) {
2387			/*
2388			 * The only way we can get a vma_merge with
2389			 * self during an mremap is if the vma hasn't
2390			 * been faulted in yet and we were allowed to
2391			 * reset the dst vma->vm_pgoff to the
2392			 * destination address of the mremap to allow
2393			 * the merge to happen. mremap must change the
2394			 * vm_pgoff linearity between src and dst vmas
2395			 * (in turn preventing a vma_merge) to be
2396			 * safe. It is only safe to keep the vm_pgoff
2397			 * linear if there are no pages mapped yet.
2398			 */
2399			VM_BUG_ON(faulted_in_anon_vma);
2400			*vmap = new_vma;
2401		} else
2402			anon_vma_moveto_tail(new_vma);
2403	} else {
2404		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2405		if (new_vma) {
2406			*new_vma = *vma;
2407			pol = mpol_dup(vma_policy(vma));
2408			if (IS_ERR(pol))
2409				goto out_free_vma;
2410			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2411			if (anon_vma_clone(new_vma, vma))
2412				goto out_free_mempol;
2413			vma_set_policy(new_vma, pol);
2414			new_vma->vm_start = addr;
2415			new_vma->vm_end = addr + len;
2416			new_vma->vm_pgoff = pgoff;
2417			if (new_vma->vm_file) {
2418				get_file(new_vma->vm_file);
2419
2420				if (uprobe_mmap(new_vma))
2421					goto out_free_mempol;
2422
2423				if (vma->vm_flags & VM_EXECUTABLE)
2424					added_exe_file_vma(mm);
2425			}
2426			if (new_vma->vm_ops && new_vma->vm_ops->open)
2427				new_vma->vm_ops->open(new_vma);
2428			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2429		}
2430	}
2431	return new_vma;
2432
2433 out_free_mempol:
2434	mpol_put(pol);
2435 out_free_vma:
2436	kmem_cache_free(vm_area_cachep, new_vma);
 
2437	return NULL;
2438}
2439
2440/*
2441 * Return true if the calling process may expand its vm space by the passed
2442 * number of pages
2443 */
2444int may_expand_vm(struct mm_struct *mm, unsigned long npages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2445{
2446	unsigned long cur = mm->total_vm;	/* pages */
2447	unsigned long lim;
 
 
 
 
 
 
 
 
 
 
2448
2449	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
 
 
 
 
 
2450
2451	if (cur + npages > lim)
2452		return 0;
2453	return 1;
2454}
2455
 
 
 
 
 
 
 
 
 
 
2456
2457static int special_mapping_fault(struct vm_area_struct *vma,
2458				struct vm_fault *vmf)
2459{
2460	pgoff_t pgoff;
2461	struct page **pages;
2462
2463	/*
2464	 * special mappings have no vm_file, and in that case, the mm
2465	 * uses vm_pgoff internally. So we have to subtract it from here.
2466	 * We are allowed to do this because we are the mm; do not copy
2467	 * this code into drivers!
2468	 */
2469	pgoff = vmf->pgoff - vma->vm_pgoff;
 
 
 
2470
2471	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2472		pgoff--;
2473
2474	if (*pages) {
2475		struct page *page = *pages;
2476		get_page(page);
2477		vmf->page = page;
2478		return 0;
2479	}
2480
2481	return VM_FAULT_SIGBUS;
2482}
2483
2484/*
2485 * Having a close hook prevents vma merging regardless of flags.
2486 */
2487static void special_mapping_close(struct vm_area_struct *vma)
2488{
2489}
2490
2491static const struct vm_operations_struct special_mapping_vmops = {
2492	.close = special_mapping_close,
2493	.fault = special_mapping_fault,
2494};
2495
2496/*
2497 * Called with mm->mmap_sem held for writing.
2498 * Insert a new vma covering the given region, with the given flags.
2499 * Its pages are supplied by the given array of struct page *.
2500 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2501 * The region past the last page supplied will always produce SIGBUS.
2502 * The array pointer and the pages it points to are assumed to stay alive
2503 * for as long as this mapping might exist.
2504 */
2505int install_special_mapping(struct mm_struct *mm,
2506			    unsigned long addr, unsigned long len,
2507			    unsigned long vm_flags, struct page **pages)
2508{
2509	int ret;
2510	struct vm_area_struct *vma;
2511
2512	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2513	if (unlikely(vma == NULL))
2514		return -ENOMEM;
2515
2516	INIT_LIST_HEAD(&vma->anon_vma_chain);
2517	vma->vm_mm = mm;
2518	vma->vm_start = addr;
2519	vma->vm_end = addr + len;
2520
2521	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2522	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2523
2524	vma->vm_ops = &special_mapping_vmops;
2525	vma->vm_private_data = pages;
2526
2527	ret = insert_vm_struct(mm, vma);
2528	if (ret)
2529		goto out;
2530
2531	mm->total_vm += len >> PAGE_SHIFT;
2532
2533	perf_event_mmap(vma);
2534
2535	return 0;
2536
2537out:
2538	kmem_cache_free(vm_area_cachep, vma);
2539	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2540}
2541
2542static DEFINE_MUTEX(mm_all_locks_mutex);
2543
2544static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2545{
2546	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2547		/*
2548		 * The LSB of head.next can't change from under us
2549		 * because we hold the mm_all_locks_mutex.
2550		 */
2551		mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2552		/*
2553		 * We can safely modify head.next after taking the
2554		 * anon_vma->root->mutex. If some other vma in this mm shares
2555		 * the same anon_vma we won't take it again.
2556		 *
2557		 * No need of atomic instructions here, head.next
2558		 * can't change from under us thanks to the
2559		 * anon_vma->root->mutex.
2560		 */
2561		if (__test_and_set_bit(0, (unsigned long *)
2562				       &anon_vma->root->head.next))
2563			BUG();
2564	}
2565}
2566
2567static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2568{
2569	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2570		/*
2571		 * AS_MM_ALL_LOCKS can't change from under us because
2572		 * we hold the mm_all_locks_mutex.
2573		 *
2574		 * Operations on ->flags have to be atomic because
2575		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2576		 * mm_all_locks_mutex, there may be other cpus
2577		 * changing other bitflags in parallel to us.
2578		 */
2579		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2580			BUG();
2581		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2582	}
2583}
2584
2585/*
2586 * This operation locks against the VM for all pte/vma/mm related
2587 * operations that could ever happen on a certain mm. This includes
2588 * vmtruncate, try_to_unmap, and all page faults.
2589 *
2590 * The caller must take the mmap_sem in write mode before calling
2591 * mm_take_all_locks(). The caller isn't allowed to release the
2592 * mmap_sem until mm_drop_all_locks() returns.
2593 *
2594 * mmap_sem in write mode is required in order to block all operations
2595 * that could modify pagetables and free pages without need of
2596 * altering the vma layout (for example populate_range() with
2597 * nonlinear vmas). It's also needed in write mode to avoid new
2598 * anon_vmas to be associated with existing vmas.
2599 *
2600 * A single task can't take more than one mm_take_all_locks() in a row
2601 * or it would deadlock.
2602 *
2603 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2604 * mapping->flags avoid to take the same lock twice, if more than one
2605 * vma in this mm is backed by the same anon_vma or address_space.
2606 *
2607 * We can take all the locks in random order because the VM code
2608 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2609 * takes more than one of them in a row. Secondly we're protected
2610 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
 
 
 
 
 
 
2611 *
2612 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2613 * that may have to take thousand of locks.
2614 *
2615 * mm_take_all_locks() can fail if it's interrupted by signals.
2616 */
2617int mm_take_all_locks(struct mm_struct *mm)
2618{
2619	struct vm_area_struct *vma;
2620	struct anon_vma_chain *avc;
2621
2622	BUG_ON(down_read_trylock(&mm->mmap_sem));
2623
2624	mutex_lock(&mm_all_locks_mutex);
2625
2626	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2627		if (signal_pending(current))
2628			goto out_unlock;
2629		if (vma->vm_file && vma->vm_file->f_mapping)
 
 
 
 
 
 
 
 
 
2630			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2631	}
2632
2633	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2634		if (signal_pending(current))
2635			goto out_unlock;
2636		if (vma->anon_vma)
2637			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2638				vm_lock_anon_vma(mm, avc->anon_vma);
2639	}
2640
2641	return 0;
2642
2643out_unlock:
2644	mm_drop_all_locks(mm);
2645	return -EINTR;
2646}
2647
2648static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2649{
2650	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2651		/*
2652		 * The LSB of head.next can't change to 0 from under
2653		 * us because we hold the mm_all_locks_mutex.
2654		 *
2655		 * We must however clear the bitflag before unlocking
2656		 * the vma so the users using the anon_vma->head will
2657		 * never see our bitflag.
2658		 *
2659		 * No need of atomic instructions here, head.next
2660		 * can't change from under us until we release the
2661		 * anon_vma->root->mutex.
2662		 */
2663		if (!__test_and_clear_bit(0, (unsigned long *)
2664					  &anon_vma->root->head.next))
2665			BUG();
2666		anon_vma_unlock(anon_vma);
2667	}
2668}
2669
2670static void vm_unlock_mapping(struct address_space *mapping)
2671{
2672	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2673		/*
2674		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2675		 * because we hold the mm_all_locks_mutex.
2676		 */
2677		mutex_unlock(&mapping->i_mmap_mutex);
2678		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2679					&mapping->flags))
2680			BUG();
2681	}
2682}
2683
2684/*
2685 * The mmap_sem cannot be released by the caller until
2686 * mm_drop_all_locks() returns.
2687 */
2688void mm_drop_all_locks(struct mm_struct *mm)
2689{
2690	struct vm_area_struct *vma;
2691	struct anon_vma_chain *avc;
2692
2693	BUG_ON(down_read_trylock(&mm->mmap_sem));
2694	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2695
2696	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2697		if (vma->anon_vma)
2698			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2699				vm_unlock_anon_vma(avc->anon_vma);
2700		if (vma->vm_file && vma->vm_file->f_mapping)
2701			vm_unlock_mapping(vma->vm_file->f_mapping);
2702	}
2703
2704	mutex_unlock(&mm_all_locks_mutex);
2705}
2706
2707/*
2708 * initialise the VMA slab
2709 */
2710void __init mmap_init(void)
2711{
2712	int ret;
2713
2714	ret = percpu_counter_init(&vm_committed_as, 0);
2715	VM_BUG_ON(ret);
2716}