Linux Audio

Check our new training course

Loading...
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
   9#include <linux/slab.h>
  10#include <linux/backing-dev.h>
  11#include <linux/mm.h>
  12#include <linux/shm.h>
  13#include <linux/mman.h>
  14#include <linux/pagemap.h>
  15#include <linux/swap.h>
  16#include <linux/syscalls.h>
  17#include <linux/capability.h>
  18#include <linux/init.h>
  19#include <linux/file.h>
  20#include <linux/fs.h>
  21#include <linux/personality.h>
  22#include <linux/security.h>
  23#include <linux/hugetlb.h>
  24#include <linux/profile.h>
  25#include <linux/export.h>
  26#include <linux/mount.h>
  27#include <linux/mempolicy.h>
  28#include <linux/rmap.h>
  29#include <linux/mmu_notifier.h>
  30#include <linux/perf_event.h>
  31#include <linux/audit.h>
  32#include <linux/khugepaged.h>
  33#include <linux/uprobes.h>
  34
  35#include <asm/uaccess.h>
  36#include <asm/cacheflush.h>
  37#include <asm/tlb.h>
  38#include <asm/mmu_context.h>
  39
  40#include "internal.h"
  41
  42#ifndef arch_mmap_check
  43#define arch_mmap_check(addr, len, flags)	(0)
  44#endif
  45
  46#ifndef arch_rebalance_pgtables
  47#define arch_rebalance_pgtables(addr, len)		(addr)
  48#endif
  49
  50static void unmap_region(struct mm_struct *mm,
  51		struct vm_area_struct *vma, struct vm_area_struct *prev,
  52		unsigned long start, unsigned long end);
  53
  54/*
  55 * WARNING: the debugging will use recursive algorithms so never enable this
  56 * unless you know what you are doing.
  57 */
  58#undef DEBUG_MM_RB
  59
  60/* description of effects of mapping type and prot in current implementation.
  61 * this is due to the limited x86 page protection hardware.  The expected
  62 * behavior is in parens:
  63 *
  64 * map_type	prot
  65 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  66 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  67 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  68 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  69 *		
  70 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  71 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  72 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  73 *
  74 */
  75pgprot_t protection_map[16] = {
  76	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  77	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  78};
  79
  80pgprot_t vm_get_page_prot(unsigned long vm_flags)
  81{
  82	return __pgprot(pgprot_val(protection_map[vm_flags &
  83				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
  84			pgprot_val(arch_vm_get_page_prot(vm_flags)));
  85}
  86EXPORT_SYMBOL(vm_get_page_prot);
  87
  88int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
  89int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
  90int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  91/*
  92 * Make sure vm_committed_as in one cacheline and not cacheline shared with
  93 * other variables. It can be updated by several CPUs frequently.
  94 */
  95struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
  96
  97/*
  98 * Check that a process has enough memory to allocate a new virtual
  99 * mapping. 0 means there is enough memory for the allocation to
 100 * succeed and -ENOMEM implies there is not.
 101 *
 102 * We currently support three overcommit policies, which are set via the
 103 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 104 *
 105 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 106 * Additional code 2002 Jul 20 by Robert Love.
 107 *
 108 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 109 *
 110 * Note this is a helper function intended to be used by LSMs which
 111 * wish to use this logic.
 112 */
 113int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 114{
 115	unsigned long free, allowed;
 116
 117	vm_acct_memory(pages);
 118
 119	/*
 120	 * Sometimes we want to use more memory than we have
 121	 */
 122	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 123		return 0;
 124
 125	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 126		free = global_page_state(NR_FREE_PAGES);
 127		free += global_page_state(NR_FILE_PAGES);
 128
 129		/*
 130		 * shmem pages shouldn't be counted as free in this
 131		 * case, they can't be purged, only swapped out, and
 132		 * that won't affect the overall amount of available
 133		 * memory in the system.
 134		 */
 135		free -= global_page_state(NR_SHMEM);
 136
 137		free += nr_swap_pages;
 138
 139		/*
 140		 * Any slabs which are created with the
 141		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 142		 * which are reclaimable, under pressure.  The dentry
 143		 * cache and most inode caches should fall into this
 144		 */
 145		free += global_page_state(NR_SLAB_RECLAIMABLE);
 146
 147		/*
 148		 * Leave reserved pages. The pages are not for anonymous pages.
 149		 */
 150		if (free <= totalreserve_pages)
 151			goto error;
 152		else
 153			free -= totalreserve_pages;
 154
 155		/*
 156		 * Leave the last 3% for root
 157		 */
 158		if (!cap_sys_admin)
 159			free -= free / 32;
 160
 161		if (free > pages)
 162			return 0;
 163
 164		goto error;
 165	}
 166
 167	allowed = (totalram_pages - hugetlb_total_pages())
 168	       	* sysctl_overcommit_ratio / 100;
 169	/*
 170	 * Leave the last 3% for root
 171	 */
 172	if (!cap_sys_admin)
 173		allowed -= allowed / 32;
 174	allowed += total_swap_pages;
 175
 176	/* Don't let a single process grow too big:
 177	   leave 3% of the size of this process for other processes */
 178	if (mm)
 179		allowed -= mm->total_vm / 32;
 180
 181	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 182		return 0;
 183error:
 184	vm_unacct_memory(pages);
 185
 186	return -ENOMEM;
 187}
 188
 189/*
 190 * Requires inode->i_mapping->i_mmap_mutex
 191 */
 192static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 193		struct file *file, struct address_space *mapping)
 194{
 195	if (vma->vm_flags & VM_DENYWRITE)
 196		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
 197	if (vma->vm_flags & VM_SHARED)
 198		mapping->i_mmap_writable--;
 199
 200	flush_dcache_mmap_lock(mapping);
 201	if (unlikely(vma->vm_flags & VM_NONLINEAR))
 202		list_del_init(&vma->shared.vm_set.list);
 203	else
 204		vma_prio_tree_remove(vma, &mapping->i_mmap);
 205	flush_dcache_mmap_unlock(mapping);
 206}
 207
 208/*
 209 * Unlink a file-based vm structure from its prio_tree, to hide
 210 * vma from rmap and vmtruncate before freeing its page tables.
 211 */
 212void unlink_file_vma(struct vm_area_struct *vma)
 213{
 214	struct file *file = vma->vm_file;
 215
 216	if (file) {
 217		struct address_space *mapping = file->f_mapping;
 218		mutex_lock(&mapping->i_mmap_mutex);
 219		__remove_shared_vm_struct(vma, file, mapping);
 220		mutex_unlock(&mapping->i_mmap_mutex);
 221	}
 222}
 223
 224/*
 225 * Close a vm structure and free it, returning the next.
 226 */
 227static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 228{
 229	struct vm_area_struct *next = vma->vm_next;
 230
 231	might_sleep();
 232	if (vma->vm_ops && vma->vm_ops->close)
 233		vma->vm_ops->close(vma);
 234	if (vma->vm_file) {
 235		fput(vma->vm_file);
 236		if (vma->vm_flags & VM_EXECUTABLE)
 237			removed_exe_file_vma(vma->vm_mm);
 238	}
 239	mpol_put(vma_policy(vma));
 240	kmem_cache_free(vm_area_cachep, vma);
 241	return next;
 242}
 243
 244static unsigned long do_brk(unsigned long addr, unsigned long len);
 245
 246SYSCALL_DEFINE1(brk, unsigned long, brk)
 247{
 248	unsigned long rlim, retval;
 249	unsigned long newbrk, oldbrk;
 250	struct mm_struct *mm = current->mm;
 251	unsigned long min_brk;
 252
 253	down_write(&mm->mmap_sem);
 254
 255#ifdef CONFIG_COMPAT_BRK
 256	/*
 257	 * CONFIG_COMPAT_BRK can still be overridden by setting
 258	 * randomize_va_space to 2, which will still cause mm->start_brk
 259	 * to be arbitrarily shifted
 260	 */
 261	if (current->brk_randomized)
 262		min_brk = mm->start_brk;
 263	else
 264		min_brk = mm->end_data;
 265#else
 266	min_brk = mm->start_brk;
 267#endif
 268	if (brk < min_brk)
 269		goto out;
 270
 271	/*
 272	 * Check against rlimit here. If this check is done later after the test
 273	 * of oldbrk with newbrk then it can escape the test and let the data
 274	 * segment grow beyond its set limit the in case where the limit is
 275	 * not page aligned -Ram Gupta
 276	 */
 277	rlim = rlimit(RLIMIT_DATA);
 278	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
 279			(mm->end_data - mm->start_data) > rlim)
 280		goto out;
 281
 282	newbrk = PAGE_ALIGN(brk);
 283	oldbrk = PAGE_ALIGN(mm->brk);
 284	if (oldbrk == newbrk)
 285		goto set_brk;
 286
 287	/* Always allow shrinking brk. */
 288	if (brk <= mm->brk) {
 289		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 290			goto set_brk;
 291		goto out;
 292	}
 293
 294	/* Check against existing mmap mappings. */
 295	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 296		goto out;
 297
 298	/* Ok, looks good - let it rip. */
 299	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 300		goto out;
 301set_brk:
 302	mm->brk = brk;
 303out:
 304	retval = mm->brk;
 305	up_write(&mm->mmap_sem);
 306	return retval;
 307}
 308
 309#ifdef DEBUG_MM_RB
 310static int browse_rb(struct rb_root *root)
 311{
 312	int i = 0, j;
 313	struct rb_node *nd, *pn = NULL;
 314	unsigned long prev = 0, pend = 0;
 315
 316	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 317		struct vm_area_struct *vma;
 318		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 319		if (vma->vm_start < prev)
 320			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
 321		if (vma->vm_start < pend)
 322			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
 323		if (vma->vm_start > vma->vm_end)
 324			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
 325		i++;
 326		pn = nd;
 327		prev = vma->vm_start;
 328		pend = vma->vm_end;
 329	}
 330	j = 0;
 331	for (nd = pn; nd; nd = rb_prev(nd)) {
 332		j++;
 333	}
 334	if (i != j)
 335		printk("backwards %d, forwards %d\n", j, i), i = 0;
 336	return i;
 337}
 338
 339void validate_mm(struct mm_struct *mm)
 340{
 341	int bug = 0;
 342	int i = 0;
 343	struct vm_area_struct *tmp = mm->mmap;
 344	while (tmp) {
 345		tmp = tmp->vm_next;
 346		i++;
 347	}
 348	if (i != mm->map_count)
 349		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
 350	i = browse_rb(&mm->mm_rb);
 351	if (i != mm->map_count)
 352		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
 353	BUG_ON(bug);
 354}
 355#else
 356#define validate_mm(mm) do { } while (0)
 357#endif
 358
 359static struct vm_area_struct *
 360find_vma_prepare(struct mm_struct *mm, unsigned long addr,
 361		struct vm_area_struct **pprev, struct rb_node ***rb_link,
 362		struct rb_node ** rb_parent)
 363{
 364	struct vm_area_struct * vma;
 365	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
 366
 367	__rb_link = &mm->mm_rb.rb_node;
 368	rb_prev = __rb_parent = NULL;
 369	vma = NULL;
 370
 371	while (*__rb_link) {
 372		struct vm_area_struct *vma_tmp;
 373
 374		__rb_parent = *__rb_link;
 375		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 376
 377		if (vma_tmp->vm_end > addr) {
 378			vma = vma_tmp;
 379			if (vma_tmp->vm_start <= addr)
 380				break;
 381			__rb_link = &__rb_parent->rb_left;
 382		} else {
 383			rb_prev = __rb_parent;
 384			__rb_link = &__rb_parent->rb_right;
 385		}
 386	}
 387
 388	*pprev = NULL;
 389	if (rb_prev)
 390		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 391	*rb_link = __rb_link;
 392	*rb_parent = __rb_parent;
 393	return vma;
 394}
 395
 396void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 397		struct rb_node **rb_link, struct rb_node *rb_parent)
 398{
 399	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 400	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 401}
 402
 403static void __vma_link_file(struct vm_area_struct *vma)
 404{
 405	struct file *file;
 406
 407	file = vma->vm_file;
 408	if (file) {
 409		struct address_space *mapping = file->f_mapping;
 410
 411		if (vma->vm_flags & VM_DENYWRITE)
 412			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
 413		if (vma->vm_flags & VM_SHARED)
 414			mapping->i_mmap_writable++;
 415
 416		flush_dcache_mmap_lock(mapping);
 417		if (unlikely(vma->vm_flags & VM_NONLINEAR))
 418			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
 419		else
 420			vma_prio_tree_insert(vma, &mapping->i_mmap);
 421		flush_dcache_mmap_unlock(mapping);
 422	}
 423}
 424
 425static void
 426__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 427	struct vm_area_struct *prev, struct rb_node **rb_link,
 428	struct rb_node *rb_parent)
 429{
 430	__vma_link_list(mm, vma, prev, rb_parent);
 431	__vma_link_rb(mm, vma, rb_link, rb_parent);
 432}
 433
 434static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 435			struct vm_area_struct *prev, struct rb_node **rb_link,
 436			struct rb_node *rb_parent)
 437{
 438	struct address_space *mapping = NULL;
 439
 440	if (vma->vm_file)
 441		mapping = vma->vm_file->f_mapping;
 442
 443	if (mapping)
 444		mutex_lock(&mapping->i_mmap_mutex);
 445
 446	__vma_link(mm, vma, prev, rb_link, rb_parent);
 447	__vma_link_file(vma);
 448
 449	if (mapping)
 450		mutex_unlock(&mapping->i_mmap_mutex);
 451
 452	mm->map_count++;
 453	validate_mm(mm);
 454}
 455
 456/*
 457 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 458 * mm's list and rbtree.  It has already been inserted into the prio_tree.
 459 */
 460static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 461{
 462	struct vm_area_struct *__vma, *prev;
 463	struct rb_node **rb_link, *rb_parent;
 464
 465	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
 466	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
 467	__vma_link(mm, vma, prev, rb_link, rb_parent);
 468	mm->map_count++;
 469}
 470
 471static inline void
 472__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 473		struct vm_area_struct *prev)
 474{
 475	struct vm_area_struct *next = vma->vm_next;
 476
 477	prev->vm_next = next;
 478	if (next)
 479		next->vm_prev = prev;
 480	rb_erase(&vma->vm_rb, &mm->mm_rb);
 481	if (mm->mmap_cache == vma)
 482		mm->mmap_cache = prev;
 483}
 484
 485/*
 486 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 487 * is already present in an i_mmap tree without adjusting the tree.
 488 * The following helper function should be used when such adjustments
 489 * are necessary.  The "insert" vma (if any) is to be inserted
 490 * before we drop the necessary locks.
 491 */
 492int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 493	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 494{
 495	struct mm_struct *mm = vma->vm_mm;
 496	struct vm_area_struct *next = vma->vm_next;
 497	struct vm_area_struct *importer = NULL;
 498	struct address_space *mapping = NULL;
 499	struct prio_tree_root *root = NULL;
 500	struct anon_vma *anon_vma = NULL;
 501	struct file *file = vma->vm_file;
 502	long adjust_next = 0;
 503	int remove_next = 0;
 504
 505	if (next && !insert) {
 506		struct vm_area_struct *exporter = NULL;
 507
 508		if (end >= next->vm_end) {
 509			/*
 510			 * vma expands, overlapping all the next, and
 511			 * perhaps the one after too (mprotect case 6).
 512			 */
 513again:			remove_next = 1 + (end > next->vm_end);
 514			end = next->vm_end;
 515			exporter = next;
 516			importer = vma;
 517		} else if (end > next->vm_start) {
 518			/*
 519			 * vma expands, overlapping part of the next:
 520			 * mprotect case 5 shifting the boundary up.
 521			 */
 522			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 523			exporter = next;
 524			importer = vma;
 525		} else if (end < vma->vm_end) {
 526			/*
 527			 * vma shrinks, and !insert tells it's not
 528			 * split_vma inserting another: so it must be
 529			 * mprotect case 4 shifting the boundary down.
 530			 */
 531			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
 532			exporter = vma;
 533			importer = next;
 534		}
 535
 536		/*
 537		 * Easily overlooked: when mprotect shifts the boundary,
 538		 * make sure the expanding vma has anon_vma set if the
 539		 * shrinking vma had, to cover any anon pages imported.
 540		 */
 541		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 542			if (anon_vma_clone(importer, exporter))
 543				return -ENOMEM;
 544			importer->anon_vma = exporter->anon_vma;
 545		}
 546	}
 547
 548	if (file) {
 549		mapping = file->f_mapping;
 550		if (!(vma->vm_flags & VM_NONLINEAR)) {
 551			root = &mapping->i_mmap;
 552			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 553
 554			if (adjust_next)
 555				uprobe_munmap(next, next->vm_start,
 556							next->vm_end);
 557		}
 558
 559		mutex_lock(&mapping->i_mmap_mutex);
 560		if (insert) {
 561			/*
 562			 * Put into prio_tree now, so instantiated pages
 563			 * are visible to arm/parisc __flush_dcache_page
 564			 * throughout; but we cannot insert into address
 565			 * space until vma start or end is updated.
 566			 */
 567			__vma_link_file(insert);
 568		}
 569	}
 570
 571	vma_adjust_trans_huge(vma, start, end, adjust_next);
 572
 573	/*
 574	 * When changing only vma->vm_end, we don't really need anon_vma
 575	 * lock. This is a fairly rare case by itself, but the anon_vma
 576	 * lock may be shared between many sibling processes.  Skipping
 577	 * the lock for brk adjustments makes a difference sometimes.
 578	 */
 579	if (vma->anon_vma && (importer || start != vma->vm_start)) {
 580		anon_vma = vma->anon_vma;
 581		anon_vma_lock(anon_vma);
 582	}
 583
 584	if (root) {
 585		flush_dcache_mmap_lock(mapping);
 586		vma_prio_tree_remove(vma, root);
 587		if (adjust_next)
 588			vma_prio_tree_remove(next, root);
 589	}
 590
 591	vma->vm_start = start;
 592	vma->vm_end = end;
 593	vma->vm_pgoff = pgoff;
 594	if (adjust_next) {
 595		next->vm_start += adjust_next << PAGE_SHIFT;
 596		next->vm_pgoff += adjust_next;
 597	}
 598
 599	if (root) {
 600		if (adjust_next)
 601			vma_prio_tree_insert(next, root);
 602		vma_prio_tree_insert(vma, root);
 603		flush_dcache_mmap_unlock(mapping);
 604	}
 605
 606	if (remove_next) {
 607		/*
 608		 * vma_merge has merged next into vma, and needs
 609		 * us to remove next before dropping the locks.
 610		 */
 611		__vma_unlink(mm, next, vma);
 612		if (file)
 613			__remove_shared_vm_struct(next, file, mapping);
 614	} else if (insert) {
 615		/*
 616		 * split_vma has split insert from vma, and needs
 617		 * us to insert it before dropping the locks
 618		 * (it may either follow vma or precede it).
 619		 */
 620		__insert_vm_struct(mm, insert);
 621	}
 622
 623	if (anon_vma)
 624		anon_vma_unlock(anon_vma);
 625	if (mapping)
 626		mutex_unlock(&mapping->i_mmap_mutex);
 627
 628	if (root) {
 629		uprobe_mmap(vma);
 630
 631		if (adjust_next)
 632			uprobe_mmap(next);
 633	}
 634
 635	if (remove_next) {
 636		if (file) {
 637			uprobe_munmap(next, next->vm_start, next->vm_end);
 638			fput(file);
 639			if (next->vm_flags & VM_EXECUTABLE)
 640				removed_exe_file_vma(mm);
 641		}
 642		if (next->anon_vma)
 643			anon_vma_merge(vma, next);
 644		mm->map_count--;
 645		mpol_put(vma_policy(next));
 646		kmem_cache_free(vm_area_cachep, next);
 647		/*
 648		 * In mprotect's case 6 (see comments on vma_merge),
 649		 * we must remove another next too. It would clutter
 650		 * up the code too much to do both in one go.
 651		 */
 652		if (remove_next == 2) {
 653			next = vma->vm_next;
 654			goto again;
 655		}
 656	}
 657	if (insert && file)
 658		uprobe_mmap(insert);
 659
 660	validate_mm(mm);
 661
 662	return 0;
 663}
 664
 665/*
 666 * If the vma has a ->close operation then the driver probably needs to release
 667 * per-vma resources, so we don't attempt to merge those.
 668 */
 669static inline int is_mergeable_vma(struct vm_area_struct *vma,
 670			struct file *file, unsigned long vm_flags)
 671{
 672	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
 673	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
 674		return 0;
 675	if (vma->vm_file != file)
 676		return 0;
 677	if (vma->vm_ops && vma->vm_ops->close)
 678		return 0;
 679	return 1;
 680}
 681
 682static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 683					struct anon_vma *anon_vma2,
 684					struct vm_area_struct *vma)
 685{
 686	/*
 687	 * The list_is_singular() test is to avoid merging VMA cloned from
 688	 * parents. This can improve scalability caused by anon_vma lock.
 689	 */
 690	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 691		list_is_singular(&vma->anon_vma_chain)))
 692		return 1;
 693	return anon_vma1 == anon_vma2;
 694}
 695
 696/*
 697 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 698 * in front of (at a lower virtual address and file offset than) the vma.
 699 *
 700 * We cannot merge two vmas if they have differently assigned (non-NULL)
 701 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 702 *
 703 * We don't check here for the merged mmap wrapping around the end of pagecache
 704 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 705 * wrap, nor mmaps which cover the final page at index -1UL.
 706 */
 707static int
 708can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 709	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 710{
 711	if (is_mergeable_vma(vma, file, vm_flags) &&
 712	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 713		if (vma->vm_pgoff == vm_pgoff)
 714			return 1;
 715	}
 716	return 0;
 717}
 718
 719/*
 720 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 721 * beyond (at a higher virtual address and file offset than) the vma.
 722 *
 723 * We cannot merge two vmas if they have differently assigned (non-NULL)
 724 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 725 */
 726static int
 727can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 728	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 729{
 730	if (is_mergeable_vma(vma, file, vm_flags) &&
 731	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 732		pgoff_t vm_pglen;
 733		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 734		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 735			return 1;
 736	}
 737	return 0;
 738}
 739
 740/*
 741 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 742 * whether that can be merged with its predecessor or its successor.
 743 * Or both (it neatly fills a hole).
 744 *
 745 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 746 * certain not to be mapped by the time vma_merge is called; but when
 747 * called for mprotect, it is certain to be already mapped (either at
 748 * an offset within prev, or at the start of next), and the flags of
 749 * this area are about to be changed to vm_flags - and the no-change
 750 * case has already been eliminated.
 751 *
 752 * The following mprotect cases have to be considered, where AAAA is
 753 * the area passed down from mprotect_fixup, never extending beyond one
 754 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 755 *
 756 *     AAAA             AAAA                AAAA          AAAA
 757 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 758 *    cannot merge    might become    might become    might become
 759 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 760 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 761 *    mremap move:                                    PPPPNNNNNNNN 8
 762 *        AAAA
 763 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 764 *    might become    case 1 below    case 2 below    case 3 below
 765 *
 766 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
 767 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
 768 */
 769struct vm_area_struct *vma_merge(struct mm_struct *mm,
 770			struct vm_area_struct *prev, unsigned long addr,
 771			unsigned long end, unsigned long vm_flags,
 772		     	struct anon_vma *anon_vma, struct file *file,
 773			pgoff_t pgoff, struct mempolicy *policy)
 774{
 775	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 776	struct vm_area_struct *area, *next;
 777	int err;
 778
 779	/*
 780	 * We later require that vma->vm_flags == vm_flags,
 781	 * so this tests vma->vm_flags & VM_SPECIAL, too.
 782	 */
 783	if (vm_flags & VM_SPECIAL)
 784		return NULL;
 785
 786	if (prev)
 787		next = prev->vm_next;
 788	else
 789		next = mm->mmap;
 790	area = next;
 791	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
 792		next = next->vm_next;
 793
 794	/*
 795	 * Can it merge with the predecessor?
 796	 */
 797	if (prev && prev->vm_end == addr &&
 798  			mpol_equal(vma_policy(prev), policy) &&
 799			can_vma_merge_after(prev, vm_flags,
 800						anon_vma, file, pgoff)) {
 801		/*
 802		 * OK, it can.  Can we now merge in the successor as well?
 803		 */
 804		if (next && end == next->vm_start &&
 805				mpol_equal(policy, vma_policy(next)) &&
 806				can_vma_merge_before(next, vm_flags,
 807					anon_vma, file, pgoff+pglen) &&
 808				is_mergeable_anon_vma(prev->anon_vma,
 809						      next->anon_vma, NULL)) {
 810							/* cases 1, 6 */
 811			err = vma_adjust(prev, prev->vm_start,
 812				next->vm_end, prev->vm_pgoff, NULL);
 813		} else					/* cases 2, 5, 7 */
 814			err = vma_adjust(prev, prev->vm_start,
 815				end, prev->vm_pgoff, NULL);
 816		if (err)
 817			return NULL;
 818		khugepaged_enter_vma_merge(prev);
 819		return prev;
 820	}
 821
 822	/*
 823	 * Can this new request be merged in front of next?
 824	 */
 825	if (next && end == next->vm_start &&
 826 			mpol_equal(policy, vma_policy(next)) &&
 827			can_vma_merge_before(next, vm_flags,
 828					anon_vma, file, pgoff+pglen)) {
 829		if (prev && addr < prev->vm_end)	/* case 4 */
 830			err = vma_adjust(prev, prev->vm_start,
 831				addr, prev->vm_pgoff, NULL);
 832		else					/* cases 3, 8 */
 833			err = vma_adjust(area, addr, next->vm_end,
 834				next->vm_pgoff - pglen, NULL);
 835		if (err)
 836			return NULL;
 837		khugepaged_enter_vma_merge(area);
 838		return area;
 839	}
 840
 841	return NULL;
 842}
 843
 844/*
 845 * Rough compatbility check to quickly see if it's even worth looking
 846 * at sharing an anon_vma.
 847 *
 848 * They need to have the same vm_file, and the flags can only differ
 849 * in things that mprotect may change.
 850 *
 851 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
 852 * we can merge the two vma's. For example, we refuse to merge a vma if
 853 * there is a vm_ops->close() function, because that indicates that the
 854 * driver is doing some kind of reference counting. But that doesn't
 855 * really matter for the anon_vma sharing case.
 856 */
 857static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
 858{
 859	return a->vm_end == b->vm_start &&
 860		mpol_equal(vma_policy(a), vma_policy(b)) &&
 861		a->vm_file == b->vm_file &&
 862		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
 863		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
 864}
 865
 866/*
 867 * Do some basic sanity checking to see if we can re-use the anon_vma
 868 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
 869 * the same as 'old', the other will be the new one that is trying
 870 * to share the anon_vma.
 871 *
 872 * NOTE! This runs with mm_sem held for reading, so it is possible that
 873 * the anon_vma of 'old' is concurrently in the process of being set up
 874 * by another page fault trying to merge _that_. But that's ok: if it
 875 * is being set up, that automatically means that it will be a singleton
 876 * acceptable for merging, so we can do all of this optimistically. But
 877 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
 878 *
 879 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
 880 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
 881 * is to return an anon_vma that is "complex" due to having gone through
 882 * a fork).
 883 *
 884 * We also make sure that the two vma's are compatible (adjacent,
 885 * and with the same memory policies). That's all stable, even with just
 886 * a read lock on the mm_sem.
 887 */
 888static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
 889{
 890	if (anon_vma_compatible(a, b)) {
 891		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
 892
 893		if (anon_vma && list_is_singular(&old->anon_vma_chain))
 894			return anon_vma;
 895	}
 896	return NULL;
 897}
 898
 899/*
 900 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
 901 * neighbouring vmas for a suitable anon_vma, before it goes off
 902 * to allocate a new anon_vma.  It checks because a repetitive
 903 * sequence of mprotects and faults may otherwise lead to distinct
 904 * anon_vmas being allocated, preventing vma merge in subsequent
 905 * mprotect.
 906 */
 907struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
 908{
 909	struct anon_vma *anon_vma;
 910	struct vm_area_struct *near;
 911
 912	near = vma->vm_next;
 913	if (!near)
 914		goto try_prev;
 915
 916	anon_vma = reusable_anon_vma(near, vma, near);
 917	if (anon_vma)
 918		return anon_vma;
 919try_prev:
 920	near = vma->vm_prev;
 921	if (!near)
 922		goto none;
 923
 924	anon_vma = reusable_anon_vma(near, near, vma);
 925	if (anon_vma)
 926		return anon_vma;
 927none:
 928	/*
 929	 * There's no absolute need to look only at touching neighbours:
 930	 * we could search further afield for "compatible" anon_vmas.
 931	 * But it would probably just be a waste of time searching,
 932	 * or lead to too many vmas hanging off the same anon_vma.
 933	 * We're trying to allow mprotect remerging later on,
 934	 * not trying to minimize memory used for anon_vmas.
 935	 */
 936	return NULL;
 937}
 938
 939#ifdef CONFIG_PROC_FS
 940void vm_stat_account(struct mm_struct *mm, unsigned long flags,
 941						struct file *file, long pages)
 942{
 943	const unsigned long stack_flags
 944		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
 945
 946	if (file) {
 947		mm->shared_vm += pages;
 948		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
 949			mm->exec_vm += pages;
 950	} else if (flags & stack_flags)
 951		mm->stack_vm += pages;
 952	if (flags & (VM_RESERVED|VM_IO))
 953		mm->reserved_vm += pages;
 954}
 955#endif /* CONFIG_PROC_FS */
 956
 957/*
 958 * If a hint addr is less than mmap_min_addr change hint to be as
 959 * low as possible but still greater than mmap_min_addr
 960 */
 961static inline unsigned long round_hint_to_min(unsigned long hint)
 962{
 963	hint &= PAGE_MASK;
 964	if (((void *)hint != NULL) &&
 965	    (hint < mmap_min_addr))
 966		return PAGE_ALIGN(mmap_min_addr);
 967	return hint;
 968}
 969
 970/*
 971 * The caller must hold down_write(&current->mm->mmap_sem).
 972 */
 973
 974unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
 975			unsigned long len, unsigned long prot,
 976			unsigned long flags, unsigned long pgoff)
 977{
 978	struct mm_struct * mm = current->mm;
 979	struct inode *inode;
 980	vm_flags_t vm_flags;
 981
 982	/*
 983	 * Does the application expect PROT_READ to imply PROT_EXEC?
 984	 *
 985	 * (the exception is when the underlying filesystem is noexec
 986	 *  mounted, in which case we dont add PROT_EXEC.)
 987	 */
 988	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
 989		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
 990			prot |= PROT_EXEC;
 991
 992	if (!len)
 993		return -EINVAL;
 994
 995	if (!(flags & MAP_FIXED))
 996		addr = round_hint_to_min(addr);
 997
 998	/* Careful about overflows.. */
 999	len = PAGE_ALIGN(len);
1000	if (!len)
1001		return -ENOMEM;
1002
1003	/* offset overflow? */
1004	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1005               return -EOVERFLOW;
1006
1007	/* Too many mappings? */
1008	if (mm->map_count > sysctl_max_map_count)
1009		return -ENOMEM;
1010
1011	/* Obtain the address to map to. we verify (or select) it and ensure
1012	 * that it represents a valid section of the address space.
1013	 */
1014	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1015	if (addr & ~PAGE_MASK)
1016		return addr;
1017
1018	/* Do simple checking here so the lower-level routines won't have
1019	 * to. we assume access permissions have been handled by the open
1020	 * of the memory object, so we don't do any here.
1021	 */
1022	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1023			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1024
1025	if (flags & MAP_LOCKED)
1026		if (!can_do_mlock())
1027			return -EPERM;
1028
1029	/* mlock MCL_FUTURE? */
1030	if (vm_flags & VM_LOCKED) {
1031		unsigned long locked, lock_limit;
1032		locked = len >> PAGE_SHIFT;
1033		locked += mm->locked_vm;
1034		lock_limit = rlimit(RLIMIT_MEMLOCK);
1035		lock_limit >>= PAGE_SHIFT;
1036		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1037			return -EAGAIN;
1038	}
1039
1040	inode = file ? file->f_path.dentry->d_inode : NULL;
1041
1042	if (file) {
1043		switch (flags & MAP_TYPE) {
1044		case MAP_SHARED:
1045			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1046				return -EACCES;
1047
1048			/*
1049			 * Make sure we don't allow writing to an append-only
1050			 * file..
1051			 */
1052			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1053				return -EACCES;
1054
1055			/*
1056			 * Make sure there are no mandatory locks on the file.
1057			 */
1058			if (locks_verify_locked(inode))
1059				return -EAGAIN;
1060
1061			vm_flags |= VM_SHARED | VM_MAYSHARE;
1062			if (!(file->f_mode & FMODE_WRITE))
1063				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1064
1065			/* fall through */
1066		case MAP_PRIVATE:
1067			if (!(file->f_mode & FMODE_READ))
1068				return -EACCES;
1069			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1070				if (vm_flags & VM_EXEC)
1071					return -EPERM;
1072				vm_flags &= ~VM_MAYEXEC;
1073			}
1074
1075			if (!file->f_op || !file->f_op->mmap)
1076				return -ENODEV;
1077			break;
1078
1079		default:
1080			return -EINVAL;
1081		}
1082	} else {
1083		switch (flags & MAP_TYPE) {
1084		case MAP_SHARED:
1085			/*
1086			 * Ignore pgoff.
1087			 */
1088			pgoff = 0;
1089			vm_flags |= VM_SHARED | VM_MAYSHARE;
1090			break;
1091		case MAP_PRIVATE:
1092			/*
1093			 * Set pgoff according to addr for anon_vma.
1094			 */
1095			pgoff = addr >> PAGE_SHIFT;
1096			break;
1097		default:
1098			return -EINVAL;
1099		}
1100	}
1101
1102	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1103}
1104
1105SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1106		unsigned long, prot, unsigned long, flags,
1107		unsigned long, fd, unsigned long, pgoff)
1108{
1109	struct file *file = NULL;
1110	unsigned long retval = -EBADF;
1111
1112	if (!(flags & MAP_ANONYMOUS)) {
1113		audit_mmap_fd(fd, flags);
1114		if (unlikely(flags & MAP_HUGETLB))
1115			return -EINVAL;
1116		file = fget(fd);
1117		if (!file)
1118			goto out;
1119	} else if (flags & MAP_HUGETLB) {
1120		struct user_struct *user = NULL;
1121		/*
1122		 * VM_NORESERVE is used because the reservations will be
1123		 * taken when vm_ops->mmap() is called
1124		 * A dummy user value is used because we are not locking
1125		 * memory so no accounting is necessary
1126		 */
1127		file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1128						VM_NORESERVE, &user,
1129						HUGETLB_ANONHUGE_INODE);
1130		if (IS_ERR(file))
1131			return PTR_ERR(file);
1132	}
1133
1134	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1135
1136	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1137	if (file)
1138		fput(file);
1139out:
1140	return retval;
1141}
1142
1143#ifdef __ARCH_WANT_SYS_OLD_MMAP
1144struct mmap_arg_struct {
1145	unsigned long addr;
1146	unsigned long len;
1147	unsigned long prot;
1148	unsigned long flags;
1149	unsigned long fd;
1150	unsigned long offset;
1151};
1152
1153SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1154{
1155	struct mmap_arg_struct a;
1156
1157	if (copy_from_user(&a, arg, sizeof(a)))
1158		return -EFAULT;
1159	if (a.offset & ~PAGE_MASK)
1160		return -EINVAL;
1161
1162	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1163			      a.offset >> PAGE_SHIFT);
1164}
1165#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1166
1167/*
1168 * Some shared mappigns will want the pages marked read-only
1169 * to track write events. If so, we'll downgrade vm_page_prot
1170 * to the private version (using protection_map[] without the
1171 * VM_SHARED bit).
1172 */
1173int vma_wants_writenotify(struct vm_area_struct *vma)
1174{
1175	vm_flags_t vm_flags = vma->vm_flags;
1176
1177	/* If it was private or non-writable, the write bit is already clear */
1178	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1179		return 0;
1180
1181	/* The backer wishes to know when pages are first written to? */
1182	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1183		return 1;
1184
1185	/* The open routine did something to the protections already? */
1186	if (pgprot_val(vma->vm_page_prot) !=
1187	    pgprot_val(vm_get_page_prot(vm_flags)))
1188		return 0;
1189
1190	/* Specialty mapping? */
1191	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1192		return 0;
1193
1194	/* Can the mapping track the dirty pages? */
1195	return vma->vm_file && vma->vm_file->f_mapping &&
1196		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1197}
1198
1199/*
1200 * We account for memory if it's a private writeable mapping,
1201 * not hugepages and VM_NORESERVE wasn't set.
1202 */
1203static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1204{
1205	/*
1206	 * hugetlb has its own accounting separate from the core VM
1207	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1208	 */
1209	if (file && is_file_hugepages(file))
1210		return 0;
1211
1212	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1213}
1214
1215unsigned long mmap_region(struct file *file, unsigned long addr,
1216			  unsigned long len, unsigned long flags,
1217			  vm_flags_t vm_flags, unsigned long pgoff)
1218{
1219	struct mm_struct *mm = current->mm;
1220	struct vm_area_struct *vma, *prev;
1221	int correct_wcount = 0;
1222	int error;
1223	struct rb_node **rb_link, *rb_parent;
1224	unsigned long charged = 0;
1225	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1226
1227	/* Clear old maps */
1228	error = -ENOMEM;
1229munmap_back:
1230	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1231	if (vma && vma->vm_start < addr + len) {
1232		if (do_munmap(mm, addr, len))
1233			return -ENOMEM;
1234		goto munmap_back;
1235	}
1236
1237	/* Check against address space limit. */
1238	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1239		return -ENOMEM;
1240
1241	/*
1242	 * Set 'VM_NORESERVE' if we should not account for the
1243	 * memory use of this mapping.
1244	 */
1245	if ((flags & MAP_NORESERVE)) {
1246		/* We honor MAP_NORESERVE if allowed to overcommit */
1247		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1248			vm_flags |= VM_NORESERVE;
1249
1250		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1251		if (file && is_file_hugepages(file))
1252			vm_flags |= VM_NORESERVE;
1253	}
1254
1255	/*
1256	 * Private writable mapping: check memory availability
1257	 */
1258	if (accountable_mapping(file, vm_flags)) {
1259		charged = len >> PAGE_SHIFT;
1260		if (security_vm_enough_memory_mm(mm, charged))
1261			return -ENOMEM;
1262		vm_flags |= VM_ACCOUNT;
1263	}
1264
1265	/*
1266	 * Can we just expand an old mapping?
1267	 */
1268	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1269	if (vma)
1270		goto out;
1271
1272	/*
1273	 * Determine the object being mapped and call the appropriate
1274	 * specific mapper. the address has already been validated, but
1275	 * not unmapped, but the maps are removed from the list.
1276	 */
1277	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1278	if (!vma) {
1279		error = -ENOMEM;
1280		goto unacct_error;
1281	}
1282
1283	vma->vm_mm = mm;
1284	vma->vm_start = addr;
1285	vma->vm_end = addr + len;
1286	vma->vm_flags = vm_flags;
1287	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1288	vma->vm_pgoff = pgoff;
1289	INIT_LIST_HEAD(&vma->anon_vma_chain);
1290
1291	error = -EINVAL;	/* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1292
1293	if (file) {
1294		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1295			goto free_vma;
1296		if (vm_flags & VM_DENYWRITE) {
1297			error = deny_write_access(file);
1298			if (error)
1299				goto free_vma;
1300			correct_wcount = 1;
1301		}
1302		vma->vm_file = file;
1303		get_file(file);
1304		error = file->f_op->mmap(file, vma);
1305		if (error)
1306			goto unmap_and_free_vma;
1307		if (vm_flags & VM_EXECUTABLE)
1308			added_exe_file_vma(mm);
1309
1310		/* Can addr have changed??
1311		 *
1312		 * Answer: Yes, several device drivers can do it in their
1313		 *         f_op->mmap method. -DaveM
1314		 */
1315		addr = vma->vm_start;
1316		pgoff = vma->vm_pgoff;
1317		vm_flags = vma->vm_flags;
1318	} else if (vm_flags & VM_SHARED) {
1319		if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1320			goto free_vma;
1321		error = shmem_zero_setup(vma);
1322		if (error)
1323			goto free_vma;
1324	}
1325
1326	if (vma_wants_writenotify(vma)) {
1327		pgprot_t pprot = vma->vm_page_prot;
1328
1329		/* Can vma->vm_page_prot have changed??
1330		 *
1331		 * Answer: Yes, drivers may have changed it in their
1332		 *         f_op->mmap method.
1333		 *
1334		 * Ensures that vmas marked as uncached stay that way.
1335		 */
1336		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1337		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1338			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1339	}
1340
1341	vma_link(mm, vma, prev, rb_link, rb_parent);
1342	file = vma->vm_file;
1343
1344	/* Once vma denies write, undo our temporary denial count */
1345	if (correct_wcount)
1346		atomic_inc(&inode->i_writecount);
1347out:
1348	perf_event_mmap(vma);
1349
1350	mm->total_vm += len >> PAGE_SHIFT;
1351	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1352	if (vm_flags & VM_LOCKED) {
1353		if (!mlock_vma_pages_range(vma, addr, addr + len))
1354			mm->locked_vm += (len >> PAGE_SHIFT);
1355	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1356		make_pages_present(addr, addr + len);
1357
1358	if (file)
1359		uprobe_mmap(vma);
1360
1361	return addr;
1362
1363unmap_and_free_vma:
1364	if (correct_wcount)
1365		atomic_inc(&inode->i_writecount);
1366	vma->vm_file = NULL;
1367	fput(file);
1368
1369	/* Undo any partial mapping done by a device driver. */
1370	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1371	charged = 0;
1372free_vma:
1373	kmem_cache_free(vm_area_cachep, vma);
1374unacct_error:
1375	if (charged)
1376		vm_unacct_memory(charged);
1377	return error;
1378}
1379
1380/* Get an address range which is currently unmapped.
1381 * For shmat() with addr=0.
1382 *
1383 * Ugly calling convention alert:
1384 * Return value with the low bits set means error value,
1385 * ie
1386 *	if (ret & ~PAGE_MASK)
1387 *		error = ret;
1388 *
1389 * This function "knows" that -ENOMEM has the bits set.
1390 */
1391#ifndef HAVE_ARCH_UNMAPPED_AREA
1392unsigned long
1393arch_get_unmapped_area(struct file *filp, unsigned long addr,
1394		unsigned long len, unsigned long pgoff, unsigned long flags)
1395{
1396	struct mm_struct *mm = current->mm;
1397	struct vm_area_struct *vma;
1398	unsigned long start_addr;
1399
1400	if (len > TASK_SIZE)
1401		return -ENOMEM;
1402
1403	if (flags & MAP_FIXED)
1404		return addr;
1405
1406	if (addr) {
1407		addr = PAGE_ALIGN(addr);
1408		vma = find_vma(mm, addr);
1409		if (TASK_SIZE - len >= addr &&
1410		    (!vma || addr + len <= vma->vm_start))
1411			return addr;
1412	}
1413	if (len > mm->cached_hole_size) {
1414	        start_addr = addr = mm->free_area_cache;
1415	} else {
1416	        start_addr = addr = TASK_UNMAPPED_BASE;
1417	        mm->cached_hole_size = 0;
1418	}
1419
1420full_search:
1421	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1422		/* At this point:  (!vma || addr < vma->vm_end). */
1423		if (TASK_SIZE - len < addr) {
1424			/*
1425			 * Start a new search - just in case we missed
1426			 * some holes.
1427			 */
1428			if (start_addr != TASK_UNMAPPED_BASE) {
1429				addr = TASK_UNMAPPED_BASE;
1430			        start_addr = addr;
1431				mm->cached_hole_size = 0;
1432				goto full_search;
1433			}
1434			return -ENOMEM;
1435		}
1436		if (!vma || addr + len <= vma->vm_start) {
1437			/*
1438			 * Remember the place where we stopped the search:
1439			 */
1440			mm->free_area_cache = addr + len;
1441			return addr;
1442		}
1443		if (addr + mm->cached_hole_size < vma->vm_start)
1444		        mm->cached_hole_size = vma->vm_start - addr;
1445		addr = vma->vm_end;
1446	}
1447}
1448#endif	
1449
1450void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1451{
1452	/*
1453	 * Is this a new hole at the lowest possible address?
1454	 */
1455	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1456		mm->free_area_cache = addr;
1457}
1458
1459/*
1460 * This mmap-allocator allocates new areas top-down from below the
1461 * stack's low limit (the base):
1462 */
1463#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1464unsigned long
1465arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1466			  const unsigned long len, const unsigned long pgoff,
1467			  const unsigned long flags)
1468{
1469	struct vm_area_struct *vma;
1470	struct mm_struct *mm = current->mm;
1471	unsigned long addr = addr0, start_addr;
1472
1473	/* requested length too big for entire address space */
1474	if (len > TASK_SIZE)
1475		return -ENOMEM;
1476
1477	if (flags & MAP_FIXED)
1478		return addr;
1479
1480	/* requesting a specific address */
1481	if (addr) {
1482		addr = PAGE_ALIGN(addr);
1483		vma = find_vma(mm, addr);
1484		if (TASK_SIZE - len >= addr &&
1485				(!vma || addr + len <= vma->vm_start))
1486			return addr;
1487	}
1488
1489	/* check if free_area_cache is useful for us */
1490	if (len <= mm->cached_hole_size) {
1491 	        mm->cached_hole_size = 0;
1492 		mm->free_area_cache = mm->mmap_base;
1493 	}
1494
1495try_again:
1496	/* either no address requested or can't fit in requested address hole */
1497	start_addr = addr = mm->free_area_cache;
1498
1499	if (addr < len)
1500		goto fail;
1501
1502	addr -= len;
1503	do {
1504		/*
1505		 * Lookup failure means no vma is above this address,
1506		 * else if new region fits below vma->vm_start,
1507		 * return with success:
1508		 */
1509		vma = find_vma(mm, addr);
1510		if (!vma || addr+len <= vma->vm_start)
1511			/* remember the address as a hint for next time */
1512			return (mm->free_area_cache = addr);
1513
1514 		/* remember the largest hole we saw so far */
1515 		if (addr + mm->cached_hole_size < vma->vm_start)
1516 		        mm->cached_hole_size = vma->vm_start - addr;
1517
1518		/* try just below the current vma->vm_start */
1519		addr = vma->vm_start-len;
1520	} while (len < vma->vm_start);
1521
1522fail:
1523	/*
1524	 * if hint left us with no space for the requested
1525	 * mapping then try again:
1526	 *
1527	 * Note: this is different with the case of bottomup
1528	 * which does the fully line-search, but we use find_vma
1529	 * here that causes some holes skipped.
1530	 */
1531	if (start_addr != mm->mmap_base) {
1532		mm->free_area_cache = mm->mmap_base;
1533		mm->cached_hole_size = 0;
1534		goto try_again;
1535	}
1536
1537	/*
1538	 * A failed mmap() very likely causes application failure,
1539	 * so fall back to the bottom-up function here. This scenario
1540	 * can happen with large stack limits and large mmap()
1541	 * allocations.
1542	 */
1543	mm->cached_hole_size = ~0UL;
1544  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1545	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1546	/*
1547	 * Restore the topdown base:
1548	 */
1549	mm->free_area_cache = mm->mmap_base;
1550	mm->cached_hole_size = ~0UL;
1551
1552	return addr;
1553}
1554#endif
1555
1556void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1557{
1558	/*
1559	 * Is this a new hole at the highest possible address?
1560	 */
1561	if (addr > mm->free_area_cache)
1562		mm->free_area_cache = addr;
1563
1564	/* dont allow allocations above current base */
1565	if (mm->free_area_cache > mm->mmap_base)
1566		mm->free_area_cache = mm->mmap_base;
1567}
1568
1569unsigned long
1570get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1571		unsigned long pgoff, unsigned long flags)
1572{
1573	unsigned long (*get_area)(struct file *, unsigned long,
1574				  unsigned long, unsigned long, unsigned long);
1575
1576	unsigned long error = arch_mmap_check(addr, len, flags);
1577	if (error)
1578		return error;
1579
1580	/* Careful about overflows.. */
1581	if (len > TASK_SIZE)
1582		return -ENOMEM;
1583
1584	get_area = current->mm->get_unmapped_area;
1585	if (file && file->f_op && file->f_op->get_unmapped_area)
1586		get_area = file->f_op->get_unmapped_area;
1587	addr = get_area(file, addr, len, pgoff, flags);
1588	if (IS_ERR_VALUE(addr))
1589		return addr;
1590
1591	if (addr > TASK_SIZE - len)
1592		return -ENOMEM;
1593	if (addr & ~PAGE_MASK)
1594		return -EINVAL;
1595
1596	addr = arch_rebalance_pgtables(addr, len);
1597	error = security_mmap_addr(addr);
1598	return error ? error : addr;
1599}
1600
1601EXPORT_SYMBOL(get_unmapped_area);
1602
1603/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1604struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1605{
1606	struct vm_area_struct *vma = NULL;
1607
1608	if (WARN_ON_ONCE(!mm))		/* Remove this in linux-3.6 */
1609		return NULL;
1610
1611	/* Check the cache first. */
1612	/* (Cache hit rate is typically around 35%.) */
1613	vma = mm->mmap_cache;
1614	if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1615		struct rb_node *rb_node;
1616
1617		rb_node = mm->mm_rb.rb_node;
1618		vma = NULL;
1619
1620		while (rb_node) {
1621			struct vm_area_struct *vma_tmp;
1622
1623			vma_tmp = rb_entry(rb_node,
1624					   struct vm_area_struct, vm_rb);
1625
1626			if (vma_tmp->vm_end > addr) {
1627				vma = vma_tmp;
1628				if (vma_tmp->vm_start <= addr)
1629					break;
1630				rb_node = rb_node->rb_left;
1631			} else
1632				rb_node = rb_node->rb_right;
1633		}
1634		if (vma)
1635			mm->mmap_cache = vma;
1636	}
1637	return vma;
1638}
1639
1640EXPORT_SYMBOL(find_vma);
1641
1642/*
1643 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1644 */
1645struct vm_area_struct *
1646find_vma_prev(struct mm_struct *mm, unsigned long addr,
1647			struct vm_area_struct **pprev)
1648{
1649	struct vm_area_struct *vma;
1650
1651	vma = find_vma(mm, addr);
1652	if (vma) {
1653		*pprev = vma->vm_prev;
1654	} else {
1655		struct rb_node *rb_node = mm->mm_rb.rb_node;
1656		*pprev = NULL;
1657		while (rb_node) {
1658			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1659			rb_node = rb_node->rb_right;
1660		}
1661	}
1662	return vma;
1663}
1664
1665/*
1666 * Verify that the stack growth is acceptable and
1667 * update accounting. This is shared with both the
1668 * grow-up and grow-down cases.
1669 */
1670static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1671{
1672	struct mm_struct *mm = vma->vm_mm;
1673	struct rlimit *rlim = current->signal->rlim;
1674	unsigned long new_start;
1675
1676	/* address space limit tests */
1677	if (!may_expand_vm(mm, grow))
1678		return -ENOMEM;
1679
1680	/* Stack limit test */
1681	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1682		return -ENOMEM;
1683
1684	/* mlock limit tests */
1685	if (vma->vm_flags & VM_LOCKED) {
1686		unsigned long locked;
1687		unsigned long limit;
1688		locked = mm->locked_vm + grow;
1689		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1690		limit >>= PAGE_SHIFT;
1691		if (locked > limit && !capable(CAP_IPC_LOCK))
1692			return -ENOMEM;
1693	}
1694
1695	/* Check to ensure the stack will not grow into a hugetlb-only region */
1696	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1697			vma->vm_end - size;
1698	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1699		return -EFAULT;
1700
1701	/*
1702	 * Overcommit..  This must be the final test, as it will
1703	 * update security statistics.
1704	 */
1705	if (security_vm_enough_memory_mm(mm, grow))
1706		return -ENOMEM;
1707
1708	/* Ok, everything looks good - let it rip */
1709	mm->total_vm += grow;
1710	if (vma->vm_flags & VM_LOCKED)
1711		mm->locked_vm += grow;
1712	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1713	return 0;
1714}
1715
1716#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1717/*
1718 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1719 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1720 */
1721int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1722{
1723	int error;
1724
1725	if (!(vma->vm_flags & VM_GROWSUP))
1726		return -EFAULT;
1727
1728	/*
1729	 * We must make sure the anon_vma is allocated
1730	 * so that the anon_vma locking is not a noop.
1731	 */
1732	if (unlikely(anon_vma_prepare(vma)))
1733		return -ENOMEM;
1734	vma_lock_anon_vma(vma);
1735
1736	/*
1737	 * vma->vm_start/vm_end cannot change under us because the caller
1738	 * is required to hold the mmap_sem in read mode.  We need the
1739	 * anon_vma lock to serialize against concurrent expand_stacks.
1740	 * Also guard against wrapping around to address 0.
1741	 */
1742	if (address < PAGE_ALIGN(address+4))
1743		address = PAGE_ALIGN(address+4);
1744	else {
1745		vma_unlock_anon_vma(vma);
1746		return -ENOMEM;
1747	}
1748	error = 0;
1749
1750	/* Somebody else might have raced and expanded it already */
1751	if (address > vma->vm_end) {
1752		unsigned long size, grow;
1753
1754		size = address - vma->vm_start;
1755		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1756
1757		error = -ENOMEM;
1758		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1759			error = acct_stack_growth(vma, size, grow);
1760			if (!error) {
1761				vma->vm_end = address;
1762				perf_event_mmap(vma);
1763			}
1764		}
1765	}
1766	vma_unlock_anon_vma(vma);
1767	khugepaged_enter_vma_merge(vma);
1768	return error;
1769}
1770#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1771
1772/*
1773 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1774 */
1775int expand_downwards(struct vm_area_struct *vma,
1776				   unsigned long address)
1777{
1778	int error;
1779
1780	/*
1781	 * We must make sure the anon_vma is allocated
1782	 * so that the anon_vma locking is not a noop.
1783	 */
1784	if (unlikely(anon_vma_prepare(vma)))
1785		return -ENOMEM;
1786
1787	address &= PAGE_MASK;
1788	error = security_mmap_addr(address);
1789	if (error)
1790		return error;
1791
1792	vma_lock_anon_vma(vma);
1793
1794	/*
1795	 * vma->vm_start/vm_end cannot change under us because the caller
1796	 * is required to hold the mmap_sem in read mode.  We need the
1797	 * anon_vma lock to serialize against concurrent expand_stacks.
1798	 */
1799
1800	/* Somebody else might have raced and expanded it already */
1801	if (address < vma->vm_start) {
1802		unsigned long size, grow;
1803
1804		size = vma->vm_end - address;
1805		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1806
1807		error = -ENOMEM;
1808		if (grow <= vma->vm_pgoff) {
1809			error = acct_stack_growth(vma, size, grow);
1810			if (!error) {
1811				vma->vm_start = address;
1812				vma->vm_pgoff -= grow;
1813				perf_event_mmap(vma);
1814			}
1815		}
1816	}
1817	vma_unlock_anon_vma(vma);
1818	khugepaged_enter_vma_merge(vma);
1819	return error;
1820}
1821
1822#ifdef CONFIG_STACK_GROWSUP
1823int expand_stack(struct vm_area_struct *vma, unsigned long address)
1824{
1825	return expand_upwards(vma, address);
1826}
1827
1828struct vm_area_struct *
1829find_extend_vma(struct mm_struct *mm, unsigned long addr)
1830{
1831	struct vm_area_struct *vma, *prev;
1832
1833	addr &= PAGE_MASK;
1834	vma = find_vma_prev(mm, addr, &prev);
1835	if (vma && (vma->vm_start <= addr))
1836		return vma;
1837	if (!prev || expand_stack(prev, addr))
1838		return NULL;
1839	if (prev->vm_flags & VM_LOCKED) {
1840		mlock_vma_pages_range(prev, addr, prev->vm_end);
1841	}
1842	return prev;
1843}
1844#else
1845int expand_stack(struct vm_area_struct *vma, unsigned long address)
1846{
1847	return expand_downwards(vma, address);
1848}
1849
1850struct vm_area_struct *
1851find_extend_vma(struct mm_struct * mm, unsigned long addr)
1852{
1853	struct vm_area_struct * vma;
1854	unsigned long start;
1855
1856	addr &= PAGE_MASK;
1857	vma = find_vma(mm,addr);
1858	if (!vma)
1859		return NULL;
1860	if (vma->vm_start <= addr)
1861		return vma;
1862	if (!(vma->vm_flags & VM_GROWSDOWN))
1863		return NULL;
1864	start = vma->vm_start;
1865	if (expand_stack(vma, addr))
1866		return NULL;
1867	if (vma->vm_flags & VM_LOCKED) {
1868		mlock_vma_pages_range(vma, addr, start);
1869	}
1870	return vma;
1871}
1872#endif
1873
1874/*
1875 * Ok - we have the memory areas we should free on the vma list,
1876 * so release them, and do the vma updates.
1877 *
1878 * Called with the mm semaphore held.
1879 */
1880static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1881{
1882	unsigned long nr_accounted = 0;
1883
1884	/* Update high watermark before we lower total_vm */
1885	update_hiwater_vm(mm);
1886	do {
1887		long nrpages = vma_pages(vma);
1888
1889		if (vma->vm_flags & VM_ACCOUNT)
1890			nr_accounted += nrpages;
1891		mm->total_vm -= nrpages;
1892		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1893		vma = remove_vma(vma);
1894	} while (vma);
1895	vm_unacct_memory(nr_accounted);
1896	validate_mm(mm);
1897}
1898
1899/*
1900 * Get rid of page table information in the indicated region.
1901 *
1902 * Called with the mm semaphore held.
1903 */
1904static void unmap_region(struct mm_struct *mm,
1905		struct vm_area_struct *vma, struct vm_area_struct *prev,
1906		unsigned long start, unsigned long end)
1907{
1908	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1909	struct mmu_gather tlb;
1910
1911	lru_add_drain();
1912	tlb_gather_mmu(&tlb, mm, 0);
1913	update_hiwater_rss(mm);
1914	unmap_vmas(&tlb, vma, start, end);
1915	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1916				 next ? next->vm_start : 0);
1917	tlb_finish_mmu(&tlb, start, end);
1918}
1919
1920/*
1921 * Create a list of vma's touched by the unmap, removing them from the mm's
1922 * vma list as we go..
1923 */
1924static void
1925detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1926	struct vm_area_struct *prev, unsigned long end)
1927{
1928	struct vm_area_struct **insertion_point;
1929	struct vm_area_struct *tail_vma = NULL;
1930	unsigned long addr;
1931
1932	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1933	vma->vm_prev = NULL;
1934	do {
1935		rb_erase(&vma->vm_rb, &mm->mm_rb);
1936		mm->map_count--;
1937		tail_vma = vma;
1938		vma = vma->vm_next;
1939	} while (vma && vma->vm_start < end);
1940	*insertion_point = vma;
1941	if (vma)
1942		vma->vm_prev = prev;
1943	tail_vma->vm_next = NULL;
1944	if (mm->unmap_area == arch_unmap_area)
1945		addr = prev ? prev->vm_end : mm->mmap_base;
1946	else
1947		addr = vma ?  vma->vm_start : mm->mmap_base;
1948	mm->unmap_area(mm, addr);
1949	mm->mmap_cache = NULL;		/* Kill the cache. */
1950}
1951
1952/*
1953 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1954 * munmap path where it doesn't make sense to fail.
1955 */
1956static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1957	      unsigned long addr, int new_below)
1958{
1959	struct mempolicy *pol;
1960	struct vm_area_struct *new;
1961	int err = -ENOMEM;
1962
1963	if (is_vm_hugetlb_page(vma) && (addr &
1964					~(huge_page_mask(hstate_vma(vma)))))
1965		return -EINVAL;
1966
1967	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1968	if (!new)
1969		goto out_err;
1970
1971	/* most fields are the same, copy all, and then fixup */
1972	*new = *vma;
1973
1974	INIT_LIST_HEAD(&new->anon_vma_chain);
1975
1976	if (new_below)
1977		new->vm_end = addr;
1978	else {
1979		new->vm_start = addr;
1980		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1981	}
1982
1983	pol = mpol_dup(vma_policy(vma));
1984	if (IS_ERR(pol)) {
1985		err = PTR_ERR(pol);
1986		goto out_free_vma;
1987	}
1988	vma_set_policy(new, pol);
1989
1990	if (anon_vma_clone(new, vma))
1991		goto out_free_mpol;
1992
1993	if (new->vm_file) {
1994		get_file(new->vm_file);
1995		if (vma->vm_flags & VM_EXECUTABLE)
1996			added_exe_file_vma(mm);
1997	}
1998
1999	if (new->vm_ops && new->vm_ops->open)
2000		new->vm_ops->open(new);
2001
2002	if (new_below)
2003		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2004			((addr - new->vm_start) >> PAGE_SHIFT), new);
2005	else
2006		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2007
2008	/* Success. */
2009	if (!err)
2010		return 0;
2011
2012	/* Clean everything up if vma_adjust failed. */
2013	if (new->vm_ops && new->vm_ops->close)
2014		new->vm_ops->close(new);
2015	if (new->vm_file) {
2016		if (vma->vm_flags & VM_EXECUTABLE)
2017			removed_exe_file_vma(mm);
2018		fput(new->vm_file);
2019	}
2020	unlink_anon_vmas(new);
2021 out_free_mpol:
2022	mpol_put(pol);
2023 out_free_vma:
2024	kmem_cache_free(vm_area_cachep, new);
2025 out_err:
2026	return err;
2027}
2028
2029/*
2030 * Split a vma into two pieces at address 'addr', a new vma is allocated
2031 * either for the first part or the tail.
2032 */
2033int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2034	      unsigned long addr, int new_below)
2035{
2036	if (mm->map_count >= sysctl_max_map_count)
2037		return -ENOMEM;
2038
2039	return __split_vma(mm, vma, addr, new_below);
2040}
2041
2042/* Munmap is split into 2 main parts -- this part which finds
2043 * what needs doing, and the areas themselves, which do the
2044 * work.  This now handles partial unmappings.
2045 * Jeremy Fitzhardinge <jeremy@goop.org>
2046 */
2047int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2048{
2049	unsigned long end;
2050	struct vm_area_struct *vma, *prev, *last;
2051
2052	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2053		return -EINVAL;
2054
2055	if ((len = PAGE_ALIGN(len)) == 0)
2056		return -EINVAL;
2057
2058	/* Find the first overlapping VMA */
2059	vma = find_vma(mm, start);
2060	if (!vma)
2061		return 0;
2062	prev = vma->vm_prev;
2063	/* we have  start < vma->vm_end  */
2064
2065	/* if it doesn't overlap, we have nothing.. */
2066	end = start + len;
2067	if (vma->vm_start >= end)
2068		return 0;
2069
2070	/*
2071	 * If we need to split any vma, do it now to save pain later.
2072	 *
2073	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2074	 * unmapped vm_area_struct will remain in use: so lower split_vma
2075	 * places tmp vma above, and higher split_vma places tmp vma below.
2076	 */
2077	if (start > vma->vm_start) {
2078		int error;
2079
2080		/*
2081		 * Make sure that map_count on return from munmap() will
2082		 * not exceed its limit; but let map_count go just above
2083		 * its limit temporarily, to help free resources as expected.
2084		 */
2085		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2086			return -ENOMEM;
2087
2088		error = __split_vma(mm, vma, start, 0);
2089		if (error)
2090			return error;
2091		prev = vma;
2092	}
2093
2094	/* Does it split the last one? */
2095	last = find_vma(mm, end);
2096	if (last && end > last->vm_start) {
2097		int error = __split_vma(mm, last, end, 1);
2098		if (error)
2099			return error;
2100	}
2101	vma = prev? prev->vm_next: mm->mmap;
2102
2103	/*
2104	 * unlock any mlock()ed ranges before detaching vmas
2105	 */
2106	if (mm->locked_vm) {
2107		struct vm_area_struct *tmp = vma;
2108		while (tmp && tmp->vm_start < end) {
2109			if (tmp->vm_flags & VM_LOCKED) {
2110				mm->locked_vm -= vma_pages(tmp);
2111				munlock_vma_pages_all(tmp);
2112			}
2113			tmp = tmp->vm_next;
2114		}
2115	}
2116
2117	/*
2118	 * Remove the vma's, and unmap the actual pages
2119	 */
2120	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2121	unmap_region(mm, vma, prev, start, end);
2122
2123	/* Fix up all other VM information */
2124	remove_vma_list(mm, vma);
2125
2126	return 0;
2127}
2128
2129int vm_munmap(unsigned long start, size_t len)
2130{
2131	int ret;
2132	struct mm_struct *mm = current->mm;
2133
2134	down_write(&mm->mmap_sem);
2135	ret = do_munmap(mm, start, len);
2136	up_write(&mm->mmap_sem);
2137	return ret;
2138}
2139EXPORT_SYMBOL(vm_munmap);
2140
2141SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2142{
2143	profile_munmap(addr);
2144	return vm_munmap(addr, len);
2145}
2146
2147static inline void verify_mm_writelocked(struct mm_struct *mm)
2148{
2149#ifdef CONFIG_DEBUG_VM
2150	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2151		WARN_ON(1);
2152		up_read(&mm->mmap_sem);
2153	}
2154#endif
2155}
2156
2157/*
2158 *  this is really a simplified "do_mmap".  it only handles
2159 *  anonymous maps.  eventually we may be able to do some
2160 *  brk-specific accounting here.
2161 */
2162static unsigned long do_brk(unsigned long addr, unsigned long len)
2163{
2164	struct mm_struct * mm = current->mm;
2165	struct vm_area_struct * vma, * prev;
2166	unsigned long flags;
2167	struct rb_node ** rb_link, * rb_parent;
2168	pgoff_t pgoff = addr >> PAGE_SHIFT;
2169	int error;
2170
2171	len = PAGE_ALIGN(len);
2172	if (!len)
2173		return addr;
2174
2175	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2176
2177	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2178	if (error & ~PAGE_MASK)
2179		return error;
2180
2181	/*
2182	 * mlock MCL_FUTURE?
2183	 */
2184	if (mm->def_flags & VM_LOCKED) {
2185		unsigned long locked, lock_limit;
2186		locked = len >> PAGE_SHIFT;
2187		locked += mm->locked_vm;
2188		lock_limit = rlimit(RLIMIT_MEMLOCK);
2189		lock_limit >>= PAGE_SHIFT;
2190		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2191			return -EAGAIN;
2192	}
2193
2194	/*
2195	 * mm->mmap_sem is required to protect against another thread
2196	 * changing the mappings in case we sleep.
2197	 */
2198	verify_mm_writelocked(mm);
2199
2200	/*
2201	 * Clear old maps.  this also does some error checking for us
2202	 */
2203 munmap_back:
2204	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2205	if (vma && vma->vm_start < addr + len) {
2206		if (do_munmap(mm, addr, len))
2207			return -ENOMEM;
2208		goto munmap_back;
2209	}
2210
2211	/* Check against address space limits *after* clearing old maps... */
2212	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2213		return -ENOMEM;
2214
2215	if (mm->map_count > sysctl_max_map_count)
2216		return -ENOMEM;
2217
2218	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2219		return -ENOMEM;
2220
2221	/* Can we just expand an old private anonymous mapping? */
2222	vma = vma_merge(mm, prev, addr, addr + len, flags,
2223					NULL, NULL, pgoff, NULL);
2224	if (vma)
2225		goto out;
2226
2227	/*
2228	 * create a vma struct for an anonymous mapping
2229	 */
2230	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2231	if (!vma) {
2232		vm_unacct_memory(len >> PAGE_SHIFT);
2233		return -ENOMEM;
2234	}
2235
2236	INIT_LIST_HEAD(&vma->anon_vma_chain);
2237	vma->vm_mm = mm;
2238	vma->vm_start = addr;
2239	vma->vm_end = addr + len;
2240	vma->vm_pgoff = pgoff;
2241	vma->vm_flags = flags;
2242	vma->vm_page_prot = vm_get_page_prot(flags);
2243	vma_link(mm, vma, prev, rb_link, rb_parent);
2244out:
2245	perf_event_mmap(vma);
2246	mm->total_vm += len >> PAGE_SHIFT;
2247	if (flags & VM_LOCKED) {
2248		if (!mlock_vma_pages_range(vma, addr, addr + len))
2249			mm->locked_vm += (len >> PAGE_SHIFT);
2250	}
2251	return addr;
2252}
2253
2254unsigned long vm_brk(unsigned long addr, unsigned long len)
2255{
2256	struct mm_struct *mm = current->mm;
2257	unsigned long ret;
2258
2259	down_write(&mm->mmap_sem);
2260	ret = do_brk(addr, len);
2261	up_write(&mm->mmap_sem);
2262	return ret;
2263}
2264EXPORT_SYMBOL(vm_brk);
2265
2266/* Release all mmaps. */
2267void exit_mmap(struct mm_struct *mm)
2268{
2269	struct mmu_gather tlb;
2270	struct vm_area_struct *vma;
2271	unsigned long nr_accounted = 0;
2272
2273	/* mm's last user has gone, and its about to be pulled down */
2274	mmu_notifier_release(mm);
2275
2276	if (mm->locked_vm) {
2277		vma = mm->mmap;
2278		while (vma) {
2279			if (vma->vm_flags & VM_LOCKED)
2280				munlock_vma_pages_all(vma);
2281			vma = vma->vm_next;
2282		}
2283	}
2284
2285	arch_exit_mmap(mm);
2286
2287	vma = mm->mmap;
2288	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2289		return;
2290
2291	lru_add_drain();
2292	flush_cache_mm(mm);
2293	tlb_gather_mmu(&tlb, mm, 1);
2294	/* update_hiwater_rss(mm) here? but nobody should be looking */
2295	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2296	unmap_vmas(&tlb, vma, 0, -1);
2297
2298	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2299	tlb_finish_mmu(&tlb, 0, -1);
2300
2301	/*
2302	 * Walk the list again, actually closing and freeing it,
2303	 * with preemption enabled, without holding any MM locks.
2304	 */
2305	while (vma) {
2306		if (vma->vm_flags & VM_ACCOUNT)
2307			nr_accounted += vma_pages(vma);
2308		vma = remove_vma(vma);
2309	}
2310	vm_unacct_memory(nr_accounted);
2311
2312	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2313}
2314
2315/* Insert vm structure into process list sorted by address
2316 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2317 * then i_mmap_mutex is taken here.
2318 */
2319int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2320{
2321	struct vm_area_struct * __vma, * prev;
2322	struct rb_node ** rb_link, * rb_parent;
2323
2324	/*
2325	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2326	 * until its first write fault, when page's anon_vma and index
2327	 * are set.  But now set the vm_pgoff it will almost certainly
2328	 * end up with (unless mremap moves it elsewhere before that
2329	 * first wfault), so /proc/pid/maps tells a consistent story.
2330	 *
2331	 * By setting it to reflect the virtual start address of the
2332	 * vma, merges and splits can happen in a seamless way, just
2333	 * using the existing file pgoff checks and manipulations.
2334	 * Similarly in do_mmap_pgoff and in do_brk.
2335	 */
2336	if (!vma->vm_file) {
2337		BUG_ON(vma->anon_vma);
2338		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2339	}
2340	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2341	if (__vma && __vma->vm_start < vma->vm_end)
2342		return -ENOMEM;
2343	if ((vma->vm_flags & VM_ACCOUNT) &&
2344	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2345		return -ENOMEM;
2346
2347	if (vma->vm_file && uprobe_mmap(vma))
2348		return -EINVAL;
2349
2350	vma_link(mm, vma, prev, rb_link, rb_parent);
2351	return 0;
2352}
2353
2354/*
2355 * Copy the vma structure to a new location in the same mm,
2356 * prior to moving page table entries, to effect an mremap move.
2357 */
2358struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2359	unsigned long addr, unsigned long len, pgoff_t pgoff)
2360{
2361	struct vm_area_struct *vma = *vmap;
2362	unsigned long vma_start = vma->vm_start;
2363	struct mm_struct *mm = vma->vm_mm;
2364	struct vm_area_struct *new_vma, *prev;
2365	struct rb_node **rb_link, *rb_parent;
2366	struct mempolicy *pol;
2367	bool faulted_in_anon_vma = true;
2368
2369	/*
2370	 * If anonymous vma has not yet been faulted, update new pgoff
2371	 * to match new location, to increase its chance of merging.
2372	 */
2373	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2374		pgoff = addr >> PAGE_SHIFT;
2375		faulted_in_anon_vma = false;
2376	}
2377
2378	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2379	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2380			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2381	if (new_vma) {
2382		/*
2383		 * Source vma may have been merged into new_vma
2384		 */
2385		if (unlikely(vma_start >= new_vma->vm_start &&
2386			     vma_start < new_vma->vm_end)) {
2387			/*
2388			 * The only way we can get a vma_merge with
2389			 * self during an mremap is if the vma hasn't
2390			 * been faulted in yet and we were allowed to
2391			 * reset the dst vma->vm_pgoff to the
2392			 * destination address of the mremap to allow
2393			 * the merge to happen. mremap must change the
2394			 * vm_pgoff linearity between src and dst vmas
2395			 * (in turn preventing a vma_merge) to be
2396			 * safe. It is only safe to keep the vm_pgoff
2397			 * linear if there are no pages mapped yet.
2398			 */
2399			VM_BUG_ON(faulted_in_anon_vma);
2400			*vmap = new_vma;
2401		} else
2402			anon_vma_moveto_tail(new_vma);
2403	} else {
2404		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2405		if (new_vma) {
2406			*new_vma = *vma;
2407			pol = mpol_dup(vma_policy(vma));
2408			if (IS_ERR(pol))
2409				goto out_free_vma;
2410			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2411			if (anon_vma_clone(new_vma, vma))
2412				goto out_free_mempol;
2413			vma_set_policy(new_vma, pol);
2414			new_vma->vm_start = addr;
2415			new_vma->vm_end = addr + len;
2416			new_vma->vm_pgoff = pgoff;
2417			if (new_vma->vm_file) {
2418				get_file(new_vma->vm_file);
2419
2420				if (uprobe_mmap(new_vma))
2421					goto out_free_mempol;
2422
2423				if (vma->vm_flags & VM_EXECUTABLE)
2424					added_exe_file_vma(mm);
2425			}
2426			if (new_vma->vm_ops && new_vma->vm_ops->open)
2427				new_vma->vm_ops->open(new_vma);
2428			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2429		}
2430	}
2431	return new_vma;
2432
2433 out_free_mempol:
2434	mpol_put(pol);
2435 out_free_vma:
2436	kmem_cache_free(vm_area_cachep, new_vma);
2437	return NULL;
2438}
2439
2440/*
2441 * Return true if the calling process may expand its vm space by the passed
2442 * number of pages
2443 */
2444int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2445{
2446	unsigned long cur = mm->total_vm;	/* pages */
2447	unsigned long lim;
2448
2449	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2450
2451	if (cur + npages > lim)
2452		return 0;
2453	return 1;
2454}
2455
2456
2457static int special_mapping_fault(struct vm_area_struct *vma,
2458				struct vm_fault *vmf)
2459{
2460	pgoff_t pgoff;
2461	struct page **pages;
2462
2463	/*
2464	 * special mappings have no vm_file, and in that case, the mm
2465	 * uses vm_pgoff internally. So we have to subtract it from here.
2466	 * We are allowed to do this because we are the mm; do not copy
2467	 * this code into drivers!
2468	 */
2469	pgoff = vmf->pgoff - vma->vm_pgoff;
2470
2471	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2472		pgoff--;
2473
2474	if (*pages) {
2475		struct page *page = *pages;
2476		get_page(page);
2477		vmf->page = page;
2478		return 0;
2479	}
2480
2481	return VM_FAULT_SIGBUS;
2482}
2483
2484/*
2485 * Having a close hook prevents vma merging regardless of flags.
2486 */
2487static void special_mapping_close(struct vm_area_struct *vma)
2488{
2489}
2490
2491static const struct vm_operations_struct special_mapping_vmops = {
2492	.close = special_mapping_close,
2493	.fault = special_mapping_fault,
2494};
2495
2496/*
2497 * Called with mm->mmap_sem held for writing.
2498 * Insert a new vma covering the given region, with the given flags.
2499 * Its pages are supplied by the given array of struct page *.
2500 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2501 * The region past the last page supplied will always produce SIGBUS.
2502 * The array pointer and the pages it points to are assumed to stay alive
2503 * for as long as this mapping might exist.
2504 */
2505int install_special_mapping(struct mm_struct *mm,
2506			    unsigned long addr, unsigned long len,
2507			    unsigned long vm_flags, struct page **pages)
2508{
2509	int ret;
2510	struct vm_area_struct *vma;
2511
2512	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2513	if (unlikely(vma == NULL))
2514		return -ENOMEM;
2515
2516	INIT_LIST_HEAD(&vma->anon_vma_chain);
2517	vma->vm_mm = mm;
2518	vma->vm_start = addr;
2519	vma->vm_end = addr + len;
2520
2521	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2522	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2523
2524	vma->vm_ops = &special_mapping_vmops;
2525	vma->vm_private_data = pages;
2526
2527	ret = insert_vm_struct(mm, vma);
2528	if (ret)
2529		goto out;
2530
2531	mm->total_vm += len >> PAGE_SHIFT;
2532
2533	perf_event_mmap(vma);
2534
2535	return 0;
2536
2537out:
2538	kmem_cache_free(vm_area_cachep, vma);
2539	return ret;
2540}
2541
2542static DEFINE_MUTEX(mm_all_locks_mutex);
2543
2544static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2545{
2546	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2547		/*
2548		 * The LSB of head.next can't change from under us
2549		 * because we hold the mm_all_locks_mutex.
2550		 */
2551		mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2552		/*
2553		 * We can safely modify head.next after taking the
2554		 * anon_vma->root->mutex. If some other vma in this mm shares
2555		 * the same anon_vma we won't take it again.
2556		 *
2557		 * No need of atomic instructions here, head.next
2558		 * can't change from under us thanks to the
2559		 * anon_vma->root->mutex.
2560		 */
2561		if (__test_and_set_bit(0, (unsigned long *)
2562				       &anon_vma->root->head.next))
2563			BUG();
2564	}
2565}
2566
2567static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2568{
2569	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2570		/*
2571		 * AS_MM_ALL_LOCKS can't change from under us because
2572		 * we hold the mm_all_locks_mutex.
2573		 *
2574		 * Operations on ->flags have to be atomic because
2575		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2576		 * mm_all_locks_mutex, there may be other cpus
2577		 * changing other bitflags in parallel to us.
2578		 */
2579		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2580			BUG();
2581		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2582	}
2583}
2584
2585/*
2586 * This operation locks against the VM for all pte/vma/mm related
2587 * operations that could ever happen on a certain mm. This includes
2588 * vmtruncate, try_to_unmap, and all page faults.
2589 *
2590 * The caller must take the mmap_sem in write mode before calling
2591 * mm_take_all_locks(). The caller isn't allowed to release the
2592 * mmap_sem until mm_drop_all_locks() returns.
2593 *
2594 * mmap_sem in write mode is required in order to block all operations
2595 * that could modify pagetables and free pages without need of
2596 * altering the vma layout (for example populate_range() with
2597 * nonlinear vmas). It's also needed in write mode to avoid new
2598 * anon_vmas to be associated with existing vmas.
2599 *
2600 * A single task can't take more than one mm_take_all_locks() in a row
2601 * or it would deadlock.
2602 *
2603 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2604 * mapping->flags avoid to take the same lock twice, if more than one
2605 * vma in this mm is backed by the same anon_vma or address_space.
2606 *
2607 * We can take all the locks in random order because the VM code
2608 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2609 * takes more than one of them in a row. Secondly we're protected
2610 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2611 *
2612 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2613 * that may have to take thousand of locks.
2614 *
2615 * mm_take_all_locks() can fail if it's interrupted by signals.
2616 */
2617int mm_take_all_locks(struct mm_struct *mm)
2618{
2619	struct vm_area_struct *vma;
2620	struct anon_vma_chain *avc;
2621
2622	BUG_ON(down_read_trylock(&mm->mmap_sem));
2623
2624	mutex_lock(&mm_all_locks_mutex);
2625
2626	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2627		if (signal_pending(current))
2628			goto out_unlock;
2629		if (vma->vm_file && vma->vm_file->f_mapping)
2630			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2631	}
2632
2633	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2634		if (signal_pending(current))
2635			goto out_unlock;
2636		if (vma->anon_vma)
2637			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2638				vm_lock_anon_vma(mm, avc->anon_vma);
2639	}
2640
2641	return 0;
2642
2643out_unlock:
2644	mm_drop_all_locks(mm);
2645	return -EINTR;
2646}
2647
2648static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2649{
2650	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2651		/*
2652		 * The LSB of head.next can't change to 0 from under
2653		 * us because we hold the mm_all_locks_mutex.
2654		 *
2655		 * We must however clear the bitflag before unlocking
2656		 * the vma so the users using the anon_vma->head will
2657		 * never see our bitflag.
2658		 *
2659		 * No need of atomic instructions here, head.next
2660		 * can't change from under us until we release the
2661		 * anon_vma->root->mutex.
2662		 */
2663		if (!__test_and_clear_bit(0, (unsigned long *)
2664					  &anon_vma->root->head.next))
2665			BUG();
2666		anon_vma_unlock(anon_vma);
2667	}
2668}
2669
2670static void vm_unlock_mapping(struct address_space *mapping)
2671{
2672	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2673		/*
2674		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2675		 * because we hold the mm_all_locks_mutex.
2676		 */
2677		mutex_unlock(&mapping->i_mmap_mutex);
2678		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2679					&mapping->flags))
2680			BUG();
2681	}
2682}
2683
2684/*
2685 * The mmap_sem cannot be released by the caller until
2686 * mm_drop_all_locks() returns.
2687 */
2688void mm_drop_all_locks(struct mm_struct *mm)
2689{
2690	struct vm_area_struct *vma;
2691	struct anon_vma_chain *avc;
2692
2693	BUG_ON(down_read_trylock(&mm->mmap_sem));
2694	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2695
2696	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2697		if (vma->anon_vma)
2698			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2699				vm_unlock_anon_vma(avc->anon_vma);
2700		if (vma->vm_file && vma->vm_file->f_mapping)
2701			vm_unlock_mapping(vma->vm_file->f_mapping);
2702	}
2703
2704	mutex_unlock(&mm_all_locks_mutex);
2705}
2706
2707/*
2708 * initialise the VMA slab
2709 */
2710void __init mmap_init(void)
2711{
2712	int ret;
2713
2714	ret = percpu_counter_init(&vm_committed_as, 0);
2715	VM_BUG_ON(ret);
2716}