Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v4.6
 
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/slab.h>
  13#include <linux/backing-dev.h>
  14#include <linux/mm.h>
  15#include <linux/vmacache.h>
  16#include <linux/shm.h>
  17#include <linux/mman.h>
  18#include <linux/pagemap.h>
  19#include <linux/swap.h>
  20#include <linux/syscalls.h>
  21#include <linux/capability.h>
  22#include <linux/init.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/hugetlb.h>
 
  28#include <linux/profile.h>
  29#include <linux/export.h>
  30#include <linux/mount.h>
  31#include <linux/mempolicy.h>
  32#include <linux/rmap.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/mmdebug.h>
  35#include <linux/perf_event.h>
  36#include <linux/audit.h>
  37#include <linux/khugepaged.h>
  38#include <linux/uprobes.h>
  39#include <linux/rbtree_augmented.h>
  40#include <linux/notifier.h>
  41#include <linux/memory.h>
  42#include <linux/printk.h>
  43#include <linux/userfaultfd_k.h>
  44#include <linux/moduleparam.h>
  45#include <linux/pkeys.h>
 
 
 
 
  46
  47#include <asm/uaccess.h>
  48#include <asm/cacheflush.h>
  49#include <asm/tlb.h>
  50#include <asm/mmu_context.h>
  51
 
 
 
  52#include "internal.h"
  53
  54#ifndef arch_mmap_check
  55#define arch_mmap_check(addr, len, flags)	(0)
  56#endif
  57
  58#ifndef arch_rebalance_pgtables
  59#define arch_rebalance_pgtables(addr, len)		(addr)
  60#endif
  61
  62#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  63const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  64const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  65int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  66#endif
  67#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  68const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  69const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  70int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  71#endif
  72
  73static bool ignore_rlimit_data = true;
  74core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  75
  76static void unmap_region(struct mm_struct *mm,
  77		struct vm_area_struct *vma, struct vm_area_struct *prev,
  78		unsigned long start, unsigned long end);
  79
  80/* description of effects of mapping type and prot in current implementation.
  81 * this is due to the limited x86 page protection hardware.  The expected
  82 * behavior is in parens:
  83 *
  84 * map_type	prot
  85 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  86 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  87 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  88 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  89 *
  90 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  91 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  92 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  93 *
  94 */
  95pgprot_t protection_map[16] = {
  96	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  97	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  98};
  99
 100pgprot_t vm_get_page_prot(unsigned long vm_flags)
 101{
 102	return __pgprot(pgprot_val(protection_map[vm_flags &
 103				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 104			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 105}
 106EXPORT_SYMBOL(vm_get_page_prot);
 107
 108static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 109{
 110	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 111}
 112
 113/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 114void vma_set_page_prot(struct vm_area_struct *vma)
 115{
 116	unsigned long vm_flags = vma->vm_flags;
 
 117
 118	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 119	if (vma_wants_writenotify(vma)) {
 120		vm_flags &= ~VM_SHARED;
 121		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
 122						     vm_flags);
 123	}
 
 
 124}
 125
 126/*
 127 * Requires inode->i_mapping->i_mmap_rwsem
 128 */
 129static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 130		struct file *file, struct address_space *mapping)
 131{
 132	if (vma->vm_flags & VM_DENYWRITE)
 133		atomic_inc(&file_inode(file)->i_writecount);
 134	if (vma->vm_flags & VM_SHARED)
 135		mapping_unmap_writable(mapping);
 136
 137	flush_dcache_mmap_lock(mapping);
 138	vma_interval_tree_remove(vma, &mapping->i_mmap);
 139	flush_dcache_mmap_unlock(mapping);
 140}
 141
 142/*
 143 * Unlink a file-based vm structure from its interval tree, to hide
 144 * vma from rmap and vmtruncate before freeing its page tables.
 145 */
 146void unlink_file_vma(struct vm_area_struct *vma)
 147{
 148	struct file *file = vma->vm_file;
 149
 150	if (file) {
 151		struct address_space *mapping = file->f_mapping;
 152		i_mmap_lock_write(mapping);
 153		__remove_shared_vm_struct(vma, file, mapping);
 154		i_mmap_unlock_write(mapping);
 155	}
 156}
 157
 158/*
 159 * Close a vm structure and free it, returning the next.
 160 */
 161static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 162{
 163	struct vm_area_struct *next = vma->vm_next;
 164
 165	might_sleep();
 166	if (vma->vm_ops && vma->vm_ops->close)
 167		vma->vm_ops->close(vma);
 168	if (vma->vm_file)
 169		fput(vma->vm_file);
 170	mpol_put(vma_policy(vma));
 171	kmem_cache_free(vm_area_cachep, vma);
 172	return next;
 173}
 174
 175static unsigned long do_brk(unsigned long addr, unsigned long len);
 176
 177SYSCALL_DEFINE1(brk, unsigned long, brk)
 178{
 179	unsigned long retval;
 180	unsigned long newbrk, oldbrk;
 181	struct mm_struct *mm = current->mm;
 
 182	unsigned long min_brk;
 183	bool populate;
 
 
 
 
 
 184
 185	down_write(&mm->mmap_sem);
 186
 187#ifdef CONFIG_COMPAT_BRK
 188	/*
 189	 * CONFIG_COMPAT_BRK can still be overridden by setting
 190	 * randomize_va_space to 2, which will still cause mm->start_brk
 191	 * to be arbitrarily shifted
 192	 */
 193	if (current->brk_randomized)
 194		min_brk = mm->start_brk;
 195	else
 196		min_brk = mm->end_data;
 197#else
 198	min_brk = mm->start_brk;
 199#endif
 200	if (brk < min_brk)
 201		goto out;
 202
 203	/*
 204	 * Check against rlimit here. If this check is done later after the test
 205	 * of oldbrk with newbrk then it can escape the test and let the data
 206	 * segment grow beyond its set limit the in case where the limit is
 207	 * not page aligned -Ram Gupta
 208	 */
 209	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 210			      mm->end_data, mm->start_data))
 211		goto out;
 212
 213	newbrk = PAGE_ALIGN(brk);
 214	oldbrk = PAGE_ALIGN(mm->brk);
 215	if (oldbrk == newbrk)
 216		goto set_brk;
 
 
 217
 218	/* Always allow shrinking brk. */
 219	if (brk <= mm->brk) {
 220		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 221			goto set_brk;
 222		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 223	}
 224
 225	/* Check against existing mmap mappings. */
 226	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 227		goto out;
 228
 
 
 
 
 
 
 
 
 
 
 229	/* Ok, looks good - let it rip. */
 230	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 231		goto out;
 232
 233set_brk:
 234	mm->brk = brk;
 235	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 236	up_write(&mm->mmap_sem);
 
 
 
 
 
 237	if (populate)
 238		mm_populate(oldbrk, newbrk - oldbrk);
 239	return brk;
 240
 241out:
 242	retval = mm->brk;
 243	up_write(&mm->mmap_sem);
 244	return retval;
 245}
 246
 247static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 248{
 249	unsigned long max, subtree_gap;
 250	max = vma->vm_start;
 251	if (vma->vm_prev)
 252		max -= vma->vm_prev->vm_end;
 253	if (vma->vm_rb.rb_left) {
 254		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 255				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 256		if (subtree_gap > max)
 257			max = subtree_gap;
 258	}
 259	if (vma->vm_rb.rb_right) {
 260		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 261				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 262		if (subtree_gap > max)
 263			max = subtree_gap;
 264	}
 265	return max;
 266}
 267
 268#ifdef CONFIG_DEBUG_VM_RB
 269static int browse_rb(struct mm_struct *mm)
 270{
 271	struct rb_root *root = &mm->mm_rb;
 272	int i = 0, j, bug = 0;
 273	struct rb_node *nd, *pn = NULL;
 274	unsigned long prev = 0, pend = 0;
 275
 276	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 277		struct vm_area_struct *vma;
 278		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 279		if (vma->vm_start < prev) {
 280			pr_emerg("vm_start %lx < prev %lx\n",
 281				  vma->vm_start, prev);
 282			bug = 1;
 283		}
 284		if (vma->vm_start < pend) {
 285			pr_emerg("vm_start %lx < pend %lx\n",
 286				  vma->vm_start, pend);
 287			bug = 1;
 288		}
 289		if (vma->vm_start > vma->vm_end) {
 290			pr_emerg("vm_start %lx > vm_end %lx\n",
 291				  vma->vm_start, vma->vm_end);
 292			bug = 1;
 293		}
 294		spin_lock(&mm->page_table_lock);
 295		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 296			pr_emerg("free gap %lx, correct %lx\n",
 297			       vma->rb_subtree_gap,
 298			       vma_compute_subtree_gap(vma));
 299			bug = 1;
 300		}
 301		spin_unlock(&mm->page_table_lock);
 302		i++;
 303		pn = nd;
 304		prev = vma->vm_start;
 305		pend = vma->vm_end;
 306	}
 307	j = 0;
 308	for (nd = pn; nd; nd = rb_prev(nd))
 309		j++;
 310	if (i != j) {
 311		pr_emerg("backwards %d, forwards %d\n", j, i);
 312		bug = 1;
 313	}
 314	return bug ? -1 : i;
 315}
 316
 317static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 318{
 319	struct rb_node *nd;
 320
 321	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 322		struct vm_area_struct *vma;
 323		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 324		VM_BUG_ON_VMA(vma != ignore &&
 325			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 326			vma);
 327	}
 328}
 329
 330static void validate_mm(struct mm_struct *mm)
 331{
 332	int bug = 0;
 333	int i = 0;
 334	unsigned long highest_address = 0;
 335	struct vm_area_struct *vma = mm->mmap;
 336
 337	while (vma) {
 338		struct anon_vma *anon_vma = vma->anon_vma;
 339		struct anon_vma_chain *avc;
 340
 341		if (anon_vma) {
 342			anon_vma_lock_read(anon_vma);
 343			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 344				anon_vma_interval_tree_verify(avc);
 345			anon_vma_unlock_read(anon_vma);
 346		}
 347
 348		highest_address = vma->vm_end;
 349		vma = vma->vm_next;
 350		i++;
 351	}
 352	if (i != mm->map_count) {
 353		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 354		bug = 1;
 355	}
 356	if (highest_address != mm->highest_vm_end) {
 357		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 358			  mm->highest_vm_end, highest_address);
 359		bug = 1;
 360	}
 361	i = browse_rb(mm);
 362	if (i != mm->map_count) {
 363		if (i != -1)
 364			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 365		bug = 1;
 366	}
 367	VM_BUG_ON_MM(bug, mm);
 368}
 369#else
 370#define validate_mm_rb(root, ignore) do { } while (0)
 371#define validate_mm(mm) do { } while (0)
 372#endif
 373
 374RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 375		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 376
 377/*
 378 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 379 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 380 * in the rbtree.
 381 */
 382static void vma_gap_update(struct vm_area_struct *vma)
 383{
 384	/*
 385	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 386	 * function that does exacltly what we want.
 387	 */
 388	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 389}
 390
 391static inline void vma_rb_insert(struct vm_area_struct *vma,
 392				 struct rb_root *root)
 393{
 394	/* All rb_subtree_gap values must be consistent prior to insertion */
 395	validate_mm_rb(root, NULL);
 396
 397	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 398}
 399
 400static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 401{
 402	/*
 403	 * All rb_subtree_gap values must be consistent prior to erase,
 404	 * with the possible exception of the vma being erased.
 405	 */
 406	validate_mm_rb(root, vma);
 407
 408	/*
 409	 * Note rb_erase_augmented is a fairly large inline function,
 410	 * so make sure we instantiate it only once with our desired
 411	 * augmented rbtree callbacks.
 412	 */
 413	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 414}
 415
 416/*
 417 * vma has some anon_vma assigned, and is already inserted on that
 418 * anon_vma's interval trees.
 419 *
 420 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 421 * vma must be removed from the anon_vma's interval trees using
 422 * anon_vma_interval_tree_pre_update_vma().
 423 *
 424 * After the update, the vma will be reinserted using
 425 * anon_vma_interval_tree_post_update_vma().
 426 *
 427 * The entire update must be protected by exclusive mmap_sem and by
 428 * the root anon_vma's mutex.
 429 */
 430static inline void
 431anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 432{
 433	struct anon_vma_chain *avc;
 434
 435	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 436		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 437}
 438
 439static inline void
 440anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 441{
 442	struct anon_vma_chain *avc;
 443
 444	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 445		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 446}
 447
 448static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 449		unsigned long end, struct vm_area_struct **pprev,
 450		struct rb_node ***rb_link, struct rb_node **rb_parent)
 451{
 452	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 453
 454	__rb_link = &mm->mm_rb.rb_node;
 455	rb_prev = __rb_parent = NULL;
 456
 457	while (*__rb_link) {
 458		struct vm_area_struct *vma_tmp;
 459
 460		__rb_parent = *__rb_link;
 461		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 462
 463		if (vma_tmp->vm_end > addr) {
 464			/* Fail if an existing vma overlaps the area */
 465			if (vma_tmp->vm_start < end)
 466				return -ENOMEM;
 467			__rb_link = &__rb_parent->rb_left;
 468		} else {
 469			rb_prev = __rb_parent;
 470			__rb_link = &__rb_parent->rb_right;
 471		}
 472	}
 473
 474	*pprev = NULL;
 475	if (rb_prev)
 476		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 477	*rb_link = __rb_link;
 478	*rb_parent = __rb_parent;
 479	return 0;
 480}
 481
 482static unsigned long count_vma_pages_range(struct mm_struct *mm,
 483		unsigned long addr, unsigned long end)
 484{
 485	unsigned long nr_pages = 0;
 486	struct vm_area_struct *vma;
 487
 488	/* Find first overlaping mapping */
 489	vma = find_vma_intersection(mm, addr, end);
 490	if (!vma)
 491		return 0;
 492
 493	nr_pages = (min(end, vma->vm_end) -
 494		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 495
 496	/* Iterate over the rest of the overlaps */
 497	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 498		unsigned long overlap_len;
 499
 500		if (vma->vm_start > end)
 501			break;
 502
 503		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 504		nr_pages += overlap_len >> PAGE_SHIFT;
 505	}
 506
 507	return nr_pages;
 508}
 509
 510void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 511		struct rb_node **rb_link, struct rb_node *rb_parent)
 512{
 513	/* Update tracking information for the gap following the new vma. */
 514	if (vma->vm_next)
 515		vma_gap_update(vma->vm_next);
 516	else
 517		mm->highest_vm_end = vma->vm_end;
 518
 519	/*
 520	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 521	 * correct insertion point for that vma. As a result, we could not
 522	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 523	 * So, we first insert the vma with a zero rb_subtree_gap value
 524	 * (to be consistent with what we did on the way down), and then
 525	 * immediately update the gap to the correct value. Finally we
 526	 * rebalance the rbtree after all augmented values have been set.
 527	 */
 528	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 529	vma->rb_subtree_gap = 0;
 530	vma_gap_update(vma);
 531	vma_rb_insert(vma, &mm->mm_rb);
 532}
 533
 534static void __vma_link_file(struct vm_area_struct *vma)
 535{
 536	struct file *file;
 537
 538	file = vma->vm_file;
 539	if (file) {
 540		struct address_space *mapping = file->f_mapping;
 541
 542		if (vma->vm_flags & VM_DENYWRITE)
 543			atomic_dec(&file_inode(file)->i_writecount);
 544		if (vma->vm_flags & VM_SHARED)
 545			atomic_inc(&mapping->i_mmap_writable);
 546
 547		flush_dcache_mmap_lock(mapping);
 548		vma_interval_tree_insert(vma, &mapping->i_mmap);
 549		flush_dcache_mmap_unlock(mapping);
 550	}
 551}
 552
 553static void
 554__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 555	struct vm_area_struct *prev, struct rb_node **rb_link,
 556	struct rb_node *rb_parent)
 557{
 558	__vma_link_list(mm, vma, prev, rb_parent);
 559	__vma_link_rb(mm, vma, rb_link, rb_parent);
 560}
 561
 562static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 563			struct vm_area_struct *prev, struct rb_node **rb_link,
 564			struct rb_node *rb_parent)
 565{
 566	struct address_space *mapping = NULL;
 567
 568	if (vma->vm_file) {
 569		mapping = vma->vm_file->f_mapping;
 570		i_mmap_lock_write(mapping);
 571	}
 572
 573	__vma_link(mm, vma, prev, rb_link, rb_parent);
 574	__vma_link_file(vma);
 575
 576	if (mapping)
 577		i_mmap_unlock_write(mapping);
 578
 579	mm->map_count++;
 580	validate_mm(mm);
 581}
 582
 583/*
 584 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 585 * mm's list and rbtree.  It has already been inserted into the interval tree.
 586 */
 587static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 588{
 589	struct vm_area_struct *prev;
 590	struct rb_node **rb_link, *rb_parent;
 591
 592	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 593			   &prev, &rb_link, &rb_parent))
 594		BUG();
 595	__vma_link(mm, vma, prev, rb_link, rb_parent);
 596	mm->map_count++;
 597}
 598
 599static inline void
 600__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 601		struct vm_area_struct *prev)
 602{
 603	struct vm_area_struct *next;
 604
 605	vma_rb_erase(vma, &mm->mm_rb);
 606	prev->vm_next = next = vma->vm_next;
 607	if (next)
 608		next->vm_prev = prev;
 609
 610	/* Kill the cache */
 611	vmacache_invalidate(mm);
 612}
 613
 614/*
 615 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 616 * is already present in an i_mmap tree without adjusting the tree.
 617 * The following helper function should be used when such adjustments
 618 * are necessary.  The "insert" vma (if any) is to be inserted
 619 * before we drop the necessary locks.
 620 */
 621int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 622	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 623{
 624	struct mm_struct *mm = vma->vm_mm;
 625	struct vm_area_struct *next = vma->vm_next;
 626	struct vm_area_struct *importer = NULL;
 627	struct address_space *mapping = NULL;
 628	struct rb_root *root = NULL;
 629	struct anon_vma *anon_vma = NULL;
 630	struct file *file = vma->vm_file;
 631	bool start_changed = false, end_changed = false;
 632	long adjust_next = 0;
 633	int remove_next = 0;
 634
 635	if (next && !insert) {
 636		struct vm_area_struct *exporter = NULL;
 637
 638		if (end >= next->vm_end) {
 639			/*
 640			 * vma expands, overlapping all the next, and
 641			 * perhaps the one after too (mprotect case 6).
 642			 */
 643again:			remove_next = 1 + (end > next->vm_end);
 644			end = next->vm_end;
 645			exporter = next;
 646			importer = vma;
 647		} else if (end > next->vm_start) {
 648			/*
 649			 * vma expands, overlapping part of the next:
 650			 * mprotect case 5 shifting the boundary up.
 651			 */
 652			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 653			exporter = next;
 654			importer = vma;
 655		} else if (end < vma->vm_end) {
 656			/*
 657			 * vma shrinks, and !insert tells it's not
 658			 * split_vma inserting another: so it must be
 659			 * mprotect case 4 shifting the boundary down.
 660			 */
 661			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 662			exporter = vma;
 663			importer = next;
 664		}
 665
 666		/*
 667		 * Easily overlooked: when mprotect shifts the boundary,
 668		 * make sure the expanding vma has anon_vma set if the
 669		 * shrinking vma had, to cover any anon pages imported.
 670		 */
 671		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 672			int error;
 673
 674			importer->anon_vma = exporter->anon_vma;
 675			error = anon_vma_clone(importer, exporter);
 676			if (error)
 677				return error;
 678		}
 679	}
 680
 681	if (file) {
 682		mapping = file->f_mapping;
 683		root = &mapping->i_mmap;
 684		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 685
 686		if (adjust_next)
 687			uprobe_munmap(next, next->vm_start, next->vm_end);
 688
 689		i_mmap_lock_write(mapping);
 690		if (insert) {
 691			/*
 692			 * Put into interval tree now, so instantiated pages
 693			 * are visible to arm/parisc __flush_dcache_page
 694			 * throughout; but we cannot insert into address
 695			 * space until vma start or end is updated.
 696			 */
 697			__vma_link_file(insert);
 698		}
 699	}
 700
 701	vma_adjust_trans_huge(vma, start, end, adjust_next);
 702
 703	anon_vma = vma->anon_vma;
 704	if (!anon_vma && adjust_next)
 705		anon_vma = next->anon_vma;
 706	if (anon_vma) {
 707		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
 708			  anon_vma != next->anon_vma, next);
 709		anon_vma_lock_write(anon_vma);
 710		anon_vma_interval_tree_pre_update_vma(vma);
 711		if (adjust_next)
 712			anon_vma_interval_tree_pre_update_vma(next);
 713	}
 714
 715	if (root) {
 716		flush_dcache_mmap_lock(mapping);
 717		vma_interval_tree_remove(vma, root);
 718		if (adjust_next)
 719			vma_interval_tree_remove(next, root);
 720	}
 721
 722	if (start != vma->vm_start) {
 723		vma->vm_start = start;
 724		start_changed = true;
 725	}
 726	if (end != vma->vm_end) {
 727		vma->vm_end = end;
 728		end_changed = true;
 729	}
 730	vma->vm_pgoff = pgoff;
 731	if (adjust_next) {
 732		next->vm_start += adjust_next << PAGE_SHIFT;
 733		next->vm_pgoff += adjust_next;
 734	}
 735
 736	if (root) {
 737		if (adjust_next)
 738			vma_interval_tree_insert(next, root);
 739		vma_interval_tree_insert(vma, root);
 740		flush_dcache_mmap_unlock(mapping);
 741	}
 742
 743	if (remove_next) {
 744		/*
 745		 * vma_merge has merged next into vma, and needs
 746		 * us to remove next before dropping the locks.
 747		 */
 748		__vma_unlink(mm, next, vma);
 749		if (file)
 750			__remove_shared_vm_struct(next, file, mapping);
 751	} else if (insert) {
 752		/*
 753		 * split_vma has split insert from vma, and needs
 754		 * us to insert it before dropping the locks
 755		 * (it may either follow vma or precede it).
 756		 */
 757		__insert_vm_struct(mm, insert);
 758	} else {
 759		if (start_changed)
 760			vma_gap_update(vma);
 761		if (end_changed) {
 762			if (!next)
 763				mm->highest_vm_end = end;
 764			else if (!adjust_next)
 765				vma_gap_update(next);
 766		}
 767	}
 768
 769	if (anon_vma) {
 770		anon_vma_interval_tree_post_update_vma(vma);
 771		if (adjust_next)
 772			anon_vma_interval_tree_post_update_vma(next);
 773		anon_vma_unlock_write(anon_vma);
 774	}
 775	if (mapping)
 776		i_mmap_unlock_write(mapping);
 777
 778	if (root) {
 779		uprobe_mmap(vma);
 780
 781		if (adjust_next)
 782			uprobe_mmap(next);
 783	}
 784
 785	if (remove_next) {
 786		if (file) {
 787			uprobe_munmap(next, next->vm_start, next->vm_end);
 788			fput(file);
 789		}
 790		if (next->anon_vma)
 791			anon_vma_merge(vma, next);
 792		mm->map_count--;
 793		mpol_put(vma_policy(next));
 794		kmem_cache_free(vm_area_cachep, next);
 795		/*
 796		 * In mprotect's case 6 (see comments on vma_merge),
 797		 * we must remove another next too. It would clutter
 798		 * up the code too much to do both in one go.
 799		 */
 800		next = vma->vm_next;
 801		if (remove_next == 2)
 802			goto again;
 803		else if (next)
 804			vma_gap_update(next);
 805		else
 806			mm->highest_vm_end = end;
 807	}
 808	if (insert && file)
 809		uprobe_mmap(insert);
 810
 811	validate_mm(mm);
 
 812
 813	return 0;
 814}
 815
 816/*
 817 * If the vma has a ->close operation then the driver probably needs to release
 818 * per-vma resources, so we don't attempt to merge those.
 819 */
 820static inline int is_mergeable_vma(struct vm_area_struct *vma,
 821				struct file *file, unsigned long vm_flags,
 822				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 823{
 824	/*
 825	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 826	 * match the flags but dirty bit -- the caller should mark
 827	 * merged VMA as dirty. If dirty bit won't be excluded from
 828	 * comparison, we increase pressue on the memory system forcing
 829	 * the kernel to generate new VMAs when old one could be
 830	 * extended instead.
 831	 */
 832	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 833		return 0;
 834	if (vma->vm_file != file)
 835		return 0;
 836	if (vma->vm_ops && vma->vm_ops->close)
 837		return 0;
 838	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
 839		return 0;
 840	return 1;
 841}
 842
 843static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 844					struct anon_vma *anon_vma2,
 845					struct vm_area_struct *vma)
 846{
 847	/*
 848	 * The list_is_singular() test is to avoid merging VMA cloned from
 849	 * parents. This can improve scalability caused by anon_vma lock.
 850	 */
 851	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 852		list_is_singular(&vma->anon_vma_chain)))
 853		return 1;
 854	return anon_vma1 == anon_vma2;
 855}
 856
 857/*
 858 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 859 * in front of (at a lower virtual address and file offset than) the vma.
 860 *
 861 * We cannot merge two vmas if they have differently assigned (non-NULL)
 862 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 863 *
 864 * We don't check here for the merged mmap wrapping around the end of pagecache
 865 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 866 * wrap, nor mmaps which cover the final page at index -1UL.
 867 */
 868static int
 869can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 870		     struct anon_vma *anon_vma, struct file *file,
 871		     pgoff_t vm_pgoff,
 872		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 873{
 874	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
 875	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 876		if (vma->vm_pgoff == vm_pgoff)
 877			return 1;
 878	}
 879	return 0;
 880}
 881
 882/*
 883 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 884 * beyond (at a higher virtual address and file offset than) the vma.
 885 *
 886 * We cannot merge two vmas if they have differently assigned (non-NULL)
 887 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 888 */
 889static int
 890can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 891		    struct anon_vma *anon_vma, struct file *file,
 892		    pgoff_t vm_pgoff,
 893		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 894{
 895	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
 896	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 897		pgoff_t vm_pglen;
 898		vm_pglen = vma_pages(vma);
 899		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 900			return 1;
 901	}
 902	return 0;
 903}
 904
 905/*
 906 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 907 * whether that can be merged with its predecessor or its successor.
 908 * Or both (it neatly fills a hole).
 909 *
 910 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 911 * certain not to be mapped by the time vma_merge is called; but when
 912 * called for mprotect, it is certain to be already mapped (either at
 913 * an offset within prev, or at the start of next), and the flags of
 914 * this area are about to be changed to vm_flags - and the no-change
 915 * case has already been eliminated.
 916 *
 917 * The following mprotect cases have to be considered, where AAAA is
 918 * the area passed down from mprotect_fixup, never extending beyond one
 919 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 920 *
 921 *     AAAA             AAAA                AAAA          AAAA
 922 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 923 *    cannot merge    might become    might become    might become
 924 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 925 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 926 *    mremap move:                                    PPPPNNNNNNNN 8
 927 *        AAAA
 928 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 929 *    might become    case 1 below    case 2 below    case 3 below
 930 *
 931 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
 932 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
 933 */
 934struct vm_area_struct *vma_merge(struct mm_struct *mm,
 935			struct vm_area_struct *prev, unsigned long addr,
 936			unsigned long end, unsigned long vm_flags,
 937			struct anon_vma *anon_vma, struct file *file,
 938			pgoff_t pgoff, struct mempolicy *policy,
 939			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 940{
 941	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 942	struct vm_area_struct *area, *next;
 943	int err;
 944
 945	/*
 946	 * We later require that vma->vm_flags == vm_flags,
 947	 * so this tests vma->vm_flags & VM_SPECIAL, too.
 948	 */
 949	if (vm_flags & VM_SPECIAL)
 950		return NULL;
 951
 952	if (prev)
 953		next = prev->vm_next;
 954	else
 955		next = mm->mmap;
 956	area = next;
 957	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
 958		next = next->vm_next;
 959
 960	/*
 961	 * Can it merge with the predecessor?
 962	 */
 963	if (prev && prev->vm_end == addr &&
 964			mpol_equal(vma_policy(prev), policy) &&
 965			can_vma_merge_after(prev, vm_flags,
 966					    anon_vma, file, pgoff,
 967					    vm_userfaultfd_ctx)) {
 968		/*
 969		 * OK, it can.  Can we now merge in the successor as well?
 970		 */
 971		if (next && end == next->vm_start &&
 972				mpol_equal(policy, vma_policy(next)) &&
 973				can_vma_merge_before(next, vm_flags,
 974						     anon_vma, file,
 975						     pgoff+pglen,
 976						     vm_userfaultfd_ctx) &&
 977				is_mergeable_anon_vma(prev->anon_vma,
 978						      next->anon_vma, NULL)) {
 979							/* cases 1, 6 */
 980			err = vma_adjust(prev, prev->vm_start,
 981				next->vm_end, prev->vm_pgoff, NULL);
 982		} else					/* cases 2, 5, 7 */
 983			err = vma_adjust(prev, prev->vm_start,
 984				end, prev->vm_pgoff, NULL);
 985		if (err)
 986			return NULL;
 987		khugepaged_enter_vma_merge(prev, vm_flags);
 988		return prev;
 989	}
 990
 991	/*
 992	 * Can this new request be merged in front of next?
 993	 */
 994	if (next && end == next->vm_start &&
 995			mpol_equal(policy, vma_policy(next)) &&
 996			can_vma_merge_before(next, vm_flags,
 997					     anon_vma, file, pgoff+pglen,
 998					     vm_userfaultfd_ctx)) {
 999		if (prev && addr < prev->vm_end)	/* case 4 */
1000			err = vma_adjust(prev, prev->vm_start,
1001				addr, prev->vm_pgoff, NULL);
1002		else					/* cases 3, 8 */
1003			err = vma_adjust(area, addr, next->vm_end,
1004				next->vm_pgoff - pglen, NULL);
1005		if (err)
1006			return NULL;
1007		khugepaged_enter_vma_merge(area, vm_flags);
1008		return area;
1009	}
1010
1011	return NULL;
1012}
1013
1014/*
1015 * Rough compatbility check to quickly see if it's even worth looking
1016 * at sharing an anon_vma.
1017 *
1018 * They need to have the same vm_file, and the flags can only differ
1019 * in things that mprotect may change.
1020 *
1021 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1022 * we can merge the two vma's. For example, we refuse to merge a vma if
1023 * there is a vm_ops->close() function, because that indicates that the
1024 * driver is doing some kind of reference counting. But that doesn't
1025 * really matter for the anon_vma sharing case.
1026 */
1027static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1028{
1029	return a->vm_end == b->vm_start &&
1030		mpol_equal(vma_policy(a), vma_policy(b)) &&
1031		a->vm_file == b->vm_file &&
1032		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1033		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1034}
1035
1036/*
1037 * Do some basic sanity checking to see if we can re-use the anon_vma
1038 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1039 * the same as 'old', the other will be the new one that is trying
1040 * to share the anon_vma.
1041 *
1042 * NOTE! This runs with mm_sem held for reading, so it is possible that
1043 * the anon_vma of 'old' is concurrently in the process of being set up
1044 * by another page fault trying to merge _that_. But that's ok: if it
1045 * is being set up, that automatically means that it will be a singleton
1046 * acceptable for merging, so we can do all of this optimistically. But
1047 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1048 *
1049 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1050 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1051 * is to return an anon_vma that is "complex" due to having gone through
1052 * a fork).
1053 *
1054 * We also make sure that the two vma's are compatible (adjacent,
1055 * and with the same memory policies). That's all stable, even with just
1056 * a read lock on the mm_sem.
1057 */
1058static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1059{
1060	if (anon_vma_compatible(a, b)) {
1061		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1062
1063		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1064			return anon_vma;
1065	}
1066	return NULL;
1067}
1068
1069/*
1070 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1071 * neighbouring vmas for a suitable anon_vma, before it goes off
1072 * to allocate a new anon_vma.  It checks because a repetitive
1073 * sequence of mprotects and faults may otherwise lead to distinct
1074 * anon_vmas being allocated, preventing vma merge in subsequent
1075 * mprotect.
1076 */
1077struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1078{
1079	struct anon_vma *anon_vma;
1080	struct vm_area_struct *near;
1081
1082	near = vma->vm_next;
1083	if (!near)
1084		goto try_prev;
1085
1086	anon_vma = reusable_anon_vma(near, vma, near);
1087	if (anon_vma)
1088		return anon_vma;
1089try_prev:
1090	near = vma->vm_prev;
1091	if (!near)
1092		goto none;
1093
1094	anon_vma = reusable_anon_vma(near, near, vma);
1095	if (anon_vma)
1096		return anon_vma;
1097none:
1098	/*
1099	 * There's no absolute need to look only at touching neighbours:
1100	 * we could search further afield for "compatible" anon_vmas.
1101	 * But it would probably just be a waste of time searching,
1102	 * or lead to too many vmas hanging off the same anon_vma.
1103	 * We're trying to allow mprotect remerging later on,
1104	 * not trying to minimize memory used for anon_vmas.
1105	 */
1106	return NULL;
1107}
1108
1109/*
1110 * If a hint addr is less than mmap_min_addr change hint to be as
1111 * low as possible but still greater than mmap_min_addr
1112 */
1113static inline unsigned long round_hint_to_min(unsigned long hint)
1114{
1115	hint &= PAGE_MASK;
1116	if (((void *)hint != NULL) &&
1117	    (hint < mmap_min_addr))
1118		return PAGE_ALIGN(mmap_min_addr);
1119	return hint;
1120}
1121
1122static inline int mlock_future_check(struct mm_struct *mm,
1123				     unsigned long flags,
1124				     unsigned long len)
1125{
1126	unsigned long locked, lock_limit;
1127
1128	/*  mlock MCL_FUTURE? */
1129	if (flags & VM_LOCKED) {
1130		locked = len >> PAGE_SHIFT;
1131		locked += mm->locked_vm;
1132		lock_limit = rlimit(RLIMIT_MEMLOCK);
1133		lock_limit >>= PAGE_SHIFT;
1134		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1135			return -EAGAIN;
1136	}
1137	return 0;
1138}
1139
1140/*
1141 * The caller must hold down_write(&current->mm->mmap_sem).
1142 */
1143unsigned long do_mmap(struct file *file, unsigned long addr,
1144			unsigned long len, unsigned long prot,
1145			unsigned long flags, vm_flags_t vm_flags,
1146			unsigned long pgoff, unsigned long *populate)
 
1147{
1148	struct mm_struct *mm = current->mm;
1149	int pkey = 0;
1150
1151	*populate = 0;
1152
1153	if (!len)
1154		return -EINVAL;
1155
1156	/*
1157	 * Does the application expect PROT_READ to imply PROT_EXEC?
1158	 *
1159	 * (the exception is when the underlying filesystem is noexec
1160	 *  mounted, in which case we dont add PROT_EXEC.)
1161	 */
1162	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1163		if (!(file && path_noexec(&file->f_path)))
1164			prot |= PROT_EXEC;
1165
 
 
 
 
1166	if (!(flags & MAP_FIXED))
1167		addr = round_hint_to_min(addr);
1168
1169	/* Careful about overflows.. */
1170	len = PAGE_ALIGN(len);
1171	if (!len)
1172		return -ENOMEM;
1173
1174	/* offset overflow? */
1175	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1176		return -EOVERFLOW;
1177
1178	/* Too many mappings? */
1179	if (mm->map_count > sysctl_max_map_count)
1180		return -ENOMEM;
1181
1182	/* Obtain the address to map to. we verify (or select) it and ensure
1183	 * that it represents a valid section of the address space.
 
 
 
 
 
 
1184	 */
1185	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1186	if (offset_in_page(addr))
1187		return addr;
1188
1189	if (prot == PROT_EXEC) {
1190		pkey = execute_only_pkey(mm);
1191		if (pkey < 0)
1192			pkey = 0;
1193	}
1194
1195	/* Do simple checking here so the lower-level routines won't have
1196	 * to. we assume access permissions have been handled by the open
1197	 * of the memory object, so we don't do any here.
1198	 */
1199	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1200			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1201
 
 
 
 
 
 
 
 
 
 
 
 
1202	if (flags & MAP_LOCKED)
1203		if (!can_do_mlock())
1204			return -EPERM;
1205
1206	if (mlock_future_check(mm, vm_flags, len))
1207		return -EAGAIN;
1208
1209	if (file) {
1210		struct inode *inode = file_inode(file);
 
 
 
 
 
 
 
 
 
1211
1212		switch (flags & MAP_TYPE) {
1213		case MAP_SHARED:
1214			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1215				return -EACCES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216
1217			/*
1218			 * Make sure we don't allow writing to an append-only
1219			 * file..
1220			 */
1221			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1222				return -EACCES;
1223
1224			/*
1225			 * Make sure there are no mandatory locks on the file.
1226			 */
1227			if (locks_verify_locked(file))
1228				return -EAGAIN;
1229
1230			vm_flags |= VM_SHARED | VM_MAYSHARE;
1231			if (!(file->f_mode & FMODE_WRITE))
1232				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1233
1234			/* fall through */
 
1235		case MAP_PRIVATE:
1236			if (!(file->f_mode & FMODE_READ))
1237				return -EACCES;
1238			if (path_noexec(&file->f_path)) {
1239				if (vm_flags & VM_EXEC)
1240					return -EPERM;
1241				vm_flags &= ~VM_MAYEXEC;
1242			}
1243
1244			if (!file->f_op->mmap)
1245				return -ENODEV;
1246			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1247				return -EINVAL;
1248			break;
1249
1250		default:
1251			return -EINVAL;
1252		}
1253	} else {
1254		switch (flags & MAP_TYPE) {
1255		case MAP_SHARED:
1256			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1257				return -EINVAL;
1258			/*
1259			 * Ignore pgoff.
1260			 */
1261			pgoff = 0;
1262			vm_flags |= VM_SHARED | VM_MAYSHARE;
1263			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264		case MAP_PRIVATE:
1265			/*
1266			 * Set pgoff according to addr for anon_vma.
1267			 */
1268			pgoff = addr >> PAGE_SHIFT;
1269			break;
1270		default:
1271			return -EINVAL;
1272		}
1273	}
1274
1275	/*
1276	 * Set 'VM_NORESERVE' if we should not account for the
1277	 * memory use of this mapping.
1278	 */
1279	if (flags & MAP_NORESERVE) {
1280		/* We honor MAP_NORESERVE if allowed to overcommit */
1281		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1282			vm_flags |= VM_NORESERVE;
1283
1284		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1285		if (file && is_file_hugepages(file))
1286			vm_flags |= VM_NORESERVE;
1287	}
1288
1289	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1290	if (!IS_ERR_VALUE(addr) &&
1291	    ((vm_flags & VM_LOCKED) ||
1292	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1293		*populate = len;
1294	return addr;
1295}
1296
1297SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1298		unsigned long, prot, unsigned long, flags,
1299		unsigned long, fd, unsigned long, pgoff)
1300{
1301	struct file *file = NULL;
1302	unsigned long retval;
1303
1304	if (!(flags & MAP_ANONYMOUS)) {
1305		audit_mmap_fd(fd, flags);
1306		file = fget(fd);
1307		if (!file)
1308			return -EBADF;
1309		if (is_file_hugepages(file))
1310			len = ALIGN(len, huge_page_size(hstate_file(file)));
1311		retval = -EINVAL;
1312		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1313			goto out_fput;
 
1314	} else if (flags & MAP_HUGETLB) {
1315		struct user_struct *user = NULL;
1316		struct hstate *hs;
1317
1318		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1319		if (!hs)
1320			return -EINVAL;
1321
1322		len = ALIGN(len, huge_page_size(hs));
1323		/*
1324		 * VM_NORESERVE is used because the reservations will be
1325		 * taken when vm_ops->mmap() is called
1326		 * A dummy user value is used because we are not locking
1327		 * memory so no accounting is necessary
1328		 */
1329		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1330				VM_NORESERVE,
1331				&user, HUGETLB_ANONHUGE_INODE,
1332				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1333		if (IS_ERR(file))
1334			return PTR_ERR(file);
1335	}
1336
1337	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1338
1339	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1340out_fput:
1341	if (file)
1342		fput(file);
1343	return retval;
1344}
1345
 
 
 
 
 
 
 
1346#ifdef __ARCH_WANT_SYS_OLD_MMAP
1347struct mmap_arg_struct {
1348	unsigned long addr;
1349	unsigned long len;
1350	unsigned long prot;
1351	unsigned long flags;
1352	unsigned long fd;
1353	unsigned long offset;
1354};
1355
1356SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1357{
1358	struct mmap_arg_struct a;
1359
1360	if (copy_from_user(&a, arg, sizeof(a)))
1361		return -EFAULT;
1362	if (offset_in_page(a.offset))
1363		return -EINVAL;
1364
1365	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1366			      a.offset >> PAGE_SHIFT);
1367}
1368#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1369
1370/*
1371 * Some shared mappigns will want the pages marked read-only
1372 * to track write events. If so, we'll downgrade vm_page_prot
1373 * to the private version (using protection_map[] without the
1374 * VM_SHARED bit).
1375 */
1376int vma_wants_writenotify(struct vm_area_struct *vma)
1377{
1378	vm_flags_t vm_flags = vma->vm_flags;
1379	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1380
1381	/* If it was private or non-writable, the write bit is already clear */
1382	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1383		return 0;
1384
1385	/* The backer wishes to know when pages are first written to? */
1386	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1387		return 1;
1388
1389	/* The open routine did something to the protections that pgprot_modify
1390	 * won't preserve? */
1391	if (pgprot_val(vma->vm_page_prot) !=
1392	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1393		return 0;
1394
1395	/* Do we need to track softdirty? */
1396	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1397		return 1;
1398
1399	/* Specialty mapping? */
1400	if (vm_flags & VM_PFNMAP)
1401		return 0;
1402
1403	/* Can the mapping track the dirty pages? */
1404	return vma->vm_file && vma->vm_file->f_mapping &&
1405		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1406}
1407
1408/*
1409 * We account for memory if it's a private writeable mapping,
1410 * not hugepages and VM_NORESERVE wasn't set.
1411 */
1412static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1413{
1414	/*
1415	 * hugetlb has its own accounting separate from the core VM
1416	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1417	 */
1418	if (file && is_file_hugepages(file))
1419		return 0;
1420
1421	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1422}
1423
1424unsigned long mmap_region(struct file *file, unsigned long addr,
1425		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1426{
1427	struct mm_struct *mm = current->mm;
1428	struct vm_area_struct *vma, *prev;
1429	int error;
1430	struct rb_node **rb_link, *rb_parent;
1431	unsigned long charged = 0;
1432
1433	/* Check against address space limit. */
1434	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1435		unsigned long nr_pages;
1436
1437		/*
1438		 * MAP_FIXED may remove pages of mappings that intersects with
1439		 * requested mapping. Account for the pages it would unmap.
1440		 */
1441		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1442
1443		if (!may_expand_vm(mm, vm_flags,
1444					(len >> PAGE_SHIFT) - nr_pages))
1445			return -ENOMEM;
1446	}
1447
1448	/* Clear old maps */
1449	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1450			      &rb_parent)) {
1451		if (do_munmap(mm, addr, len))
1452			return -ENOMEM;
1453	}
1454
1455	/*
1456	 * Private writable mapping: check memory availability
1457	 */
1458	if (accountable_mapping(file, vm_flags)) {
1459		charged = len >> PAGE_SHIFT;
1460		if (security_vm_enough_memory_mm(mm, charged))
1461			return -ENOMEM;
1462		vm_flags |= VM_ACCOUNT;
1463	}
1464
1465	/*
1466	 * Can we just expand an old mapping?
1467	 */
1468	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1469			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1470	if (vma)
1471		goto out;
1472
1473	/*
1474	 * Determine the object being mapped and call the appropriate
1475	 * specific mapper. the address has already been validated, but
1476	 * not unmapped, but the maps are removed from the list.
1477	 */
1478	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1479	if (!vma) {
1480		error = -ENOMEM;
1481		goto unacct_error;
1482	}
1483
1484	vma->vm_mm = mm;
1485	vma->vm_start = addr;
1486	vma->vm_end = addr + len;
1487	vma->vm_flags = vm_flags;
1488	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1489	vma->vm_pgoff = pgoff;
1490	INIT_LIST_HEAD(&vma->anon_vma_chain);
1491
1492	if (file) {
1493		if (vm_flags & VM_DENYWRITE) {
1494			error = deny_write_access(file);
1495			if (error)
1496				goto free_vma;
1497		}
1498		if (vm_flags & VM_SHARED) {
1499			error = mapping_map_writable(file->f_mapping);
1500			if (error)
1501				goto allow_write_and_free_vma;
 
 
1502		}
1503
1504		/* ->mmap() can change vma->vm_file, but must guarantee that
1505		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1506		 * and map writably if VM_SHARED is set. This usually means the
1507		 * new file must not have been exposed to user-space, yet.
1508		 */
1509		vma->vm_file = get_file(file);
1510		error = file->f_op->mmap(file, vma);
1511		if (error)
1512			goto unmap_and_free_vma;
1513
1514		/* Can addr have changed??
1515		 *
1516		 * Answer: Yes, several device drivers can do it in their
1517		 *         f_op->mmap method. -DaveM
1518		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1519		 *      be updated for vma_link()
1520		 */
1521		WARN_ON_ONCE(addr != vma->vm_start);
1522
1523		addr = vma->vm_start;
1524		vm_flags = vma->vm_flags;
1525	} else if (vm_flags & VM_SHARED) {
1526		error = shmem_zero_setup(vma);
1527		if (error)
1528			goto free_vma;
1529	}
1530
1531	vma_link(mm, vma, prev, rb_link, rb_parent);
1532	/* Once vma denies write, undo our temporary denial count */
1533	if (file) {
1534		if (vm_flags & VM_SHARED)
1535			mapping_unmap_writable(file->f_mapping);
1536		if (vm_flags & VM_DENYWRITE)
1537			allow_write_access(file);
1538	}
1539	file = vma->vm_file;
1540out:
1541	perf_event_mmap(vma);
1542
1543	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1544	if (vm_flags & VM_LOCKED) {
1545		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1546					vma == get_gate_vma(current->mm)))
1547			mm->locked_vm += (len >> PAGE_SHIFT);
1548		else
1549			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1550	}
1551
1552	if (file)
1553		uprobe_mmap(vma);
1554
1555	/*
1556	 * New (or expanded) vma always get soft dirty status.
1557	 * Otherwise user-space soft-dirty page tracker won't
1558	 * be able to distinguish situation when vma area unmapped,
1559	 * then new mapped in-place (which must be aimed as
1560	 * a completely new data area).
1561	 */
1562	vma->vm_flags |= VM_SOFTDIRTY;
1563
1564	vma_set_page_prot(vma);
1565
1566	return addr;
1567
1568unmap_and_free_vma:
1569	vma->vm_file = NULL;
1570	fput(file);
1571
1572	/* Undo any partial mapping done by a device driver. */
1573	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1574	charged = 0;
1575	if (vm_flags & VM_SHARED)
1576		mapping_unmap_writable(file->f_mapping);
1577allow_write_and_free_vma:
1578	if (vm_flags & VM_DENYWRITE)
1579		allow_write_access(file);
1580free_vma:
1581	kmem_cache_free(vm_area_cachep, vma);
1582unacct_error:
1583	if (charged)
1584		vm_unacct_memory(charged);
1585	return error;
1586}
1587
1588unsigned long unmapped_area(struct vm_unmapped_area_info *info)
 
 
 
 
 
 
 
 
 
 
1589{
1590	/*
1591	 * We implement the search by looking for an rbtree node that
1592	 * immediately follows a suitable gap. That is,
1593	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1594	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1595	 * - gap_end - gap_start >= length
1596	 */
1597
1598	struct mm_struct *mm = current->mm;
1599	struct vm_area_struct *vma;
1600	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1601
1602	/* Adjust search length to account for worst case alignment overhead */
1603	length = info->length + info->align_mask;
1604	if (length < info->length)
1605		return -ENOMEM;
1606
1607	/* Adjust search limits by the desired length */
1608	if (info->high_limit < length)
1609		return -ENOMEM;
1610	high_limit = info->high_limit - length;
1611
1612	if (info->low_limit > high_limit)
1613		return -ENOMEM;
1614	low_limit = info->low_limit + length;
1615
1616	/* Check if rbtree root looks promising */
1617	if (RB_EMPTY_ROOT(&mm->mm_rb))
1618		goto check_highest;
1619	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1620	if (vma->rb_subtree_gap < length)
1621		goto check_highest;
1622
1623	while (true) {
1624		/* Visit left subtree if it looks promising */
1625		gap_end = vma->vm_start;
1626		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1627			struct vm_area_struct *left =
1628				rb_entry(vma->vm_rb.rb_left,
1629					 struct vm_area_struct, vm_rb);
1630			if (left->rb_subtree_gap >= length) {
1631				vma = left;
1632				continue;
1633			}
1634		}
1635
1636		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1637check_current:
1638		/* Check if current node has a suitable gap */
1639		if (gap_start > high_limit)
1640			return -ENOMEM;
1641		if (gap_end >= low_limit && gap_end - gap_start >= length)
1642			goto found;
1643
1644		/* Visit right subtree if it looks promising */
1645		if (vma->vm_rb.rb_right) {
1646			struct vm_area_struct *right =
1647				rb_entry(vma->vm_rb.rb_right,
1648					 struct vm_area_struct, vm_rb);
1649			if (right->rb_subtree_gap >= length) {
1650				vma = right;
1651				continue;
1652			}
1653		}
1654
1655		/* Go back up the rbtree to find next candidate node */
1656		while (true) {
1657			struct rb_node *prev = &vma->vm_rb;
1658			if (!rb_parent(prev))
1659				goto check_highest;
1660			vma = rb_entry(rb_parent(prev),
1661				       struct vm_area_struct, vm_rb);
1662			if (prev == vma->vm_rb.rb_left) {
1663				gap_start = vma->vm_prev->vm_end;
1664				gap_end = vma->vm_start;
1665				goto check_current;
1666			}
1667		}
1668	}
1669
1670check_highest:
1671	/* Check highest gap, which does not precede any rbtree node */
1672	gap_start = mm->highest_vm_end;
1673	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1674	if (gap_start > high_limit)
1675		return -ENOMEM;
1676
1677found:
1678	/* We found a suitable gap. Clip it with the original low_limit. */
1679	if (gap_start < info->low_limit)
1680		gap_start = info->low_limit;
1681
1682	/* Adjust gap address to the desired alignment */
1683	gap_start += (info->align_offset - gap_start) & info->align_mask;
1684
1685	VM_BUG_ON(gap_start + info->length > info->high_limit);
1686	VM_BUG_ON(gap_start + info->length > gap_end);
1687	return gap_start;
1688}
1689
1690unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
 
 
 
 
1691{
1692	struct mm_struct *mm = current->mm;
1693	struct vm_area_struct *vma;
1694	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1695
1696	/* Adjust search length to account for worst case alignment overhead */
1697	length = info->length + info->align_mask;
1698	if (length < info->length)
1699		return -ENOMEM;
1700
1701	/*
1702	 * Adjust search limits by the desired length.
1703	 * See implementation comment at top of unmapped_area().
1704	 */
1705	gap_end = info->high_limit;
1706	if (gap_end < length)
1707		return -ENOMEM;
1708	high_limit = gap_end - length;
1709
1710	if (info->low_limit > high_limit)
1711		return -ENOMEM;
1712	low_limit = info->low_limit + length;
1713
1714	/* Check highest gap, which does not precede any rbtree node */
1715	gap_start = mm->highest_vm_end;
1716	if (gap_start <= high_limit)
1717		goto found_highest;
1718
1719	/* Check if rbtree root looks promising */
1720	if (RB_EMPTY_ROOT(&mm->mm_rb))
1721		return -ENOMEM;
1722	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1723	if (vma->rb_subtree_gap < length)
1724		return -ENOMEM;
1725
1726	while (true) {
1727		/* Visit right subtree if it looks promising */
1728		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1729		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1730			struct vm_area_struct *right =
1731				rb_entry(vma->vm_rb.rb_right,
1732					 struct vm_area_struct, vm_rb);
1733			if (right->rb_subtree_gap >= length) {
1734				vma = right;
1735				continue;
1736			}
1737		}
1738
1739check_current:
1740		/* Check if current node has a suitable gap */
1741		gap_end = vma->vm_start;
1742		if (gap_end < low_limit)
1743			return -ENOMEM;
1744		if (gap_start <= high_limit && gap_end - gap_start >= length)
1745			goto found;
1746
1747		/* Visit left subtree if it looks promising */
1748		if (vma->vm_rb.rb_left) {
1749			struct vm_area_struct *left =
1750				rb_entry(vma->vm_rb.rb_left,
1751					 struct vm_area_struct, vm_rb);
1752			if (left->rb_subtree_gap >= length) {
1753				vma = left;
1754				continue;
1755			}
1756		}
 
 
1757
1758		/* Go back up the rbtree to find next candidate node */
1759		while (true) {
1760			struct rb_node *prev = &vma->vm_rb;
1761			if (!rb_parent(prev))
1762				return -ENOMEM;
1763			vma = rb_entry(rb_parent(prev),
1764				       struct vm_area_struct, vm_rb);
1765			if (prev == vma->vm_rb.rb_right) {
1766				gap_start = vma->vm_prev ?
1767					vma->vm_prev->vm_end : 0;
1768				goto check_current;
1769			}
1770		}
1771	}
1772
1773found:
1774	/* We found a suitable gap. Clip it with the original high_limit. */
1775	if (gap_end > info->high_limit)
1776		gap_end = info->high_limit;
1777
1778found_highest:
1779	/* Compute highest gap address at the desired alignment */
1780	gap_end -= info->length;
1781	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1782
1783	VM_BUG_ON(gap_end < info->low_limit);
1784	VM_BUG_ON(gap_end < gap_start);
1785	return gap_end;
1786}
1787
1788/* Get an address range which is currently unmapped.
1789 * For shmat() with addr=0.
1790 *
1791 * Ugly calling convention alert:
1792 * Return value with the low bits set means error value,
1793 * ie
1794 *	if (ret & ~PAGE_MASK)
1795 *		error = ret;
1796 *
1797 * This function "knows" that -ENOMEM has the bits set.
1798 */
1799#ifndef HAVE_ARCH_UNMAPPED_AREA
1800unsigned long
1801arch_get_unmapped_area(struct file *filp, unsigned long addr,
1802		unsigned long len, unsigned long pgoff, unsigned long flags)
 
1803{
1804	struct mm_struct *mm = current->mm;
1805	struct vm_area_struct *vma;
1806	struct vm_unmapped_area_info info;
 
1807
1808	if (len > TASK_SIZE - mmap_min_addr)
1809		return -ENOMEM;
1810
1811	if (flags & MAP_FIXED)
1812		return addr;
1813
1814	if (addr) {
1815		addr = PAGE_ALIGN(addr);
1816		vma = find_vma(mm, addr);
1817		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1818		    (!vma || addr + len <= vma->vm_start))
 
1819			return addr;
1820	}
1821
1822	info.flags = 0;
1823	info.length = len;
1824	info.low_limit = mm->mmap_base;
1825	info.high_limit = TASK_SIZE;
1826	info.align_mask = 0;
 
 
1827	return vm_unmapped_area(&info);
1828}
 
 
 
 
 
 
 
 
 
 
1829#endif
1830
1831/*
1832 * This mmap-allocator allocates new areas top-down from below the
1833 * stack's low limit (the base):
1834 */
1835#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1836unsigned long
1837arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1838			  const unsigned long len, const unsigned long pgoff,
1839			  const unsigned long flags)
1840{
1841	struct vm_area_struct *vma;
1842	struct mm_struct *mm = current->mm;
1843	unsigned long addr = addr0;
1844	struct vm_unmapped_area_info info;
1845
1846	/* requested length too big for entire address space */
1847	if (len > TASK_SIZE - mmap_min_addr)
1848		return -ENOMEM;
1849
1850	if (flags & MAP_FIXED)
1851		return addr;
1852
1853	/* requesting a specific address */
1854	if (addr) {
1855		addr = PAGE_ALIGN(addr);
1856		vma = find_vma(mm, addr);
1857		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1858				(!vma || addr + len <= vma->vm_start))
 
1859			return addr;
1860	}
1861
1862	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1863	info.length = len;
1864	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1865	info.high_limit = mm->mmap_base;
1866	info.align_mask = 0;
 
 
1867	addr = vm_unmapped_area(&info);
1868
1869	/*
1870	 * A failed mmap() very likely causes application failure,
1871	 * so fall back to the bottom-up function here. This scenario
1872	 * can happen with large stack limits and large mmap()
1873	 * allocations.
1874	 */
1875	if (offset_in_page(addr)) {
1876		VM_BUG_ON(addr != -ENOMEM);
1877		info.flags = 0;
1878		info.low_limit = TASK_UNMAPPED_BASE;
1879		info.high_limit = TASK_SIZE;
1880		addr = vm_unmapped_area(&info);
1881	}
1882
1883	return addr;
1884}
 
 
 
 
 
 
 
 
 
 
1885#endif
1886
 
 
 
 
 
 
 
 
 
 
 
1887unsigned long
1888get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1889		unsigned long pgoff, unsigned long flags)
1890{
1891	unsigned long (*get_area)(struct file *, unsigned long,
1892				  unsigned long, unsigned long, unsigned long);
 
1893
1894	unsigned long error = arch_mmap_check(addr, len, flags);
1895	if (error)
1896		return error;
1897
1898	/* Careful about overflows.. */
1899	if (len > TASK_SIZE)
1900		return -ENOMEM;
1901
1902	get_area = current->mm->get_unmapped_area;
1903	if (file && file->f_op->get_unmapped_area)
1904		get_area = file->f_op->get_unmapped_area;
1905	addr = get_area(file, addr, len, pgoff, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1906	if (IS_ERR_VALUE(addr))
1907		return addr;
1908
1909	if (addr > TASK_SIZE - len)
1910		return -ENOMEM;
1911	if (offset_in_page(addr))
1912		return -EINVAL;
1913
1914	addr = arch_rebalance_pgtables(addr, len);
1915	error = security_mmap_addr(addr);
1916	return error ? error : addr;
1917}
1918
1919EXPORT_SYMBOL(get_unmapped_area);
1920
1921/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1922struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1923{
1924	struct rb_node *rb_node;
1925	struct vm_area_struct *vma;
1926
1927	/* Check the cache first. */
1928	vma = vmacache_find(mm, addr);
1929	if (likely(vma))
1930		return vma;
1931
1932	rb_node = mm->mm_rb.rb_node;
1933
1934	while (rb_node) {
1935		struct vm_area_struct *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
1936
1937		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
 
 
 
1938
1939		if (tmp->vm_end > addr) {
1940			vma = tmp;
1941			if (tmp->vm_start <= addr)
1942				break;
1943			rb_node = rb_node->rb_left;
1944		} else
1945			rb_node = rb_node->rb_right;
1946	}
 
 
 
1947
1948	if (vma)
1949		vmacache_update(addr, vma);
1950	return vma;
1951}
1952
1953EXPORT_SYMBOL(find_vma);
1954
1955/*
1956 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
 
 
 
 
 
 
 
 
 
 
1957 */
1958struct vm_area_struct *
1959find_vma_prev(struct mm_struct *mm, unsigned long addr,
1960			struct vm_area_struct **pprev)
1961{
1962	struct vm_area_struct *vma;
 
1963
1964	vma = find_vma(mm, addr);
1965	if (vma) {
1966		*pprev = vma->vm_prev;
1967	} else {
1968		struct rb_node *rb_node = mm->mm_rb.rb_node;
1969		*pprev = NULL;
1970		while (rb_node) {
1971			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1972			rb_node = rb_node->rb_right;
1973		}
1974	}
1975	return vma;
1976}
1977
1978/*
1979 * Verify that the stack growth is acceptable and
1980 * update accounting. This is shared with both the
1981 * grow-up and grow-down cases.
1982 */
1983static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
 
1984{
1985	struct mm_struct *mm = vma->vm_mm;
1986	struct rlimit *rlim = current->signal->rlim;
1987	unsigned long new_start, actual_size;
1988
1989	/* address space limit tests */
1990	if (!may_expand_vm(mm, vma->vm_flags, grow))
1991		return -ENOMEM;
1992
1993	/* Stack limit test */
1994	actual_size = size;
1995	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
1996		actual_size -= PAGE_SIZE;
1997	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1998		return -ENOMEM;
1999
2000	/* mlock limit tests */
2001	if (vma->vm_flags & VM_LOCKED) {
2002		unsigned long locked;
2003		unsigned long limit;
2004		locked = mm->locked_vm + grow;
2005		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2006		limit >>= PAGE_SHIFT;
2007		if (locked > limit && !capable(CAP_IPC_LOCK))
2008			return -ENOMEM;
2009	}
2010
2011	/* Check to ensure the stack will not grow into a hugetlb-only region */
2012	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2013			vma->vm_end - size;
2014	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2015		return -EFAULT;
2016
2017	/*
2018	 * Overcommit..  This must be the final test, as it will
2019	 * update security statistics.
2020	 */
2021	if (security_vm_enough_memory_mm(mm, grow))
2022		return -ENOMEM;
2023
2024	return 0;
2025}
2026
2027#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2028/*
2029 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2030 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2031 */
2032int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2033{
2034	struct mm_struct *mm = vma->vm_mm;
 
 
2035	int error = 0;
 
2036
2037	if (!(vma->vm_flags & VM_GROWSUP))
2038		return -EFAULT;
2039
2040	/* Guard against wrapping around to address 0. */
2041	if (address < PAGE_ALIGN(address+4))
2042		address = PAGE_ALIGN(address+4);
2043	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2044		return -ENOMEM;
2045
2046	/* We must make sure the anon_vma is allocated. */
2047	if (unlikely(anon_vma_prepare(vma)))
 
2048		return -ENOMEM;
 
2049
2050	/*
2051	 * vma->vm_start/vm_end cannot change under us because the caller
2052	 * is required to hold the mmap_sem in read mode.  We need the
2053	 * anon_vma lock to serialize against concurrent expand_stacks.
2054	 */
2055	anon_vma_lock_write(vma->anon_vma);
2056
2057	/* Somebody else might have raced and expanded it already */
2058	if (address > vma->vm_end) {
2059		unsigned long size, grow;
2060
2061		size = address - vma->vm_start;
2062		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2063
2064		error = -ENOMEM;
2065		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2066			error = acct_stack_growth(vma, size, grow);
2067			if (!error) {
2068				/*
2069				 * vma_gap_update() doesn't support concurrent
2070				 * updates, but we only hold a shared mmap_sem
2071				 * lock here, so we need to protect against
2072				 * concurrent vma expansions.
2073				 * anon_vma_lock_write() doesn't help here, as
2074				 * we don't guarantee that all growable vmas
2075				 * in a mm share the same root anon vma.
2076				 * So, we reuse mm->page_table_lock to guard
2077				 * against concurrent vma expansions.
2078				 */
2079				spin_lock(&mm->page_table_lock);
2080				if (vma->vm_flags & VM_LOCKED)
2081					mm->locked_vm += grow;
2082				vm_stat_account(mm, vma->vm_flags, grow);
2083				anon_vma_interval_tree_pre_update_vma(vma);
2084				vma->vm_end = address;
 
 
2085				anon_vma_interval_tree_post_update_vma(vma);
2086				if (vma->vm_next)
2087					vma_gap_update(vma->vm_next);
2088				else
2089					mm->highest_vm_end = address;
2090				spin_unlock(&mm->page_table_lock);
2091
2092				perf_event_mmap(vma);
2093			}
2094		}
2095	}
2096	anon_vma_unlock_write(vma->anon_vma);
2097	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2098	validate_mm(mm);
2099	return error;
2100}
2101#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2102
2103/*
2104 * vma is the first one with address < vma->vm_start.  Have to extend vma.
 
2105 */
2106int expand_downwards(struct vm_area_struct *vma,
2107				   unsigned long address)
2108{
2109	struct mm_struct *mm = vma->vm_mm;
2110	int error;
 
 
 
 
 
 
 
2111
2112	address &= PAGE_MASK;
2113	error = security_mmap_addr(address);
2114	if (error)
2115		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2116
2117	/* We must make sure the anon_vma is allocated. */
2118	if (unlikely(anon_vma_prepare(vma)))
 
2119		return -ENOMEM;
 
2120
2121	/*
2122	 * vma->vm_start/vm_end cannot change under us because the caller
2123	 * is required to hold the mmap_sem in read mode.  We need the
2124	 * anon_vma lock to serialize against concurrent expand_stacks.
2125	 */
2126	anon_vma_lock_write(vma->anon_vma);
2127
2128	/* Somebody else might have raced and expanded it already */
2129	if (address < vma->vm_start) {
2130		unsigned long size, grow;
2131
2132		size = vma->vm_end - address;
2133		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2134
2135		error = -ENOMEM;
2136		if (grow <= vma->vm_pgoff) {
2137			error = acct_stack_growth(vma, size, grow);
2138			if (!error) {
2139				/*
2140				 * vma_gap_update() doesn't support concurrent
2141				 * updates, but we only hold a shared mmap_sem
2142				 * lock here, so we need to protect against
2143				 * concurrent vma expansions.
2144				 * anon_vma_lock_write() doesn't help here, as
2145				 * we don't guarantee that all growable vmas
2146				 * in a mm share the same root anon vma.
2147				 * So, we reuse mm->page_table_lock to guard
2148				 * against concurrent vma expansions.
2149				 */
2150				spin_lock(&mm->page_table_lock);
2151				if (vma->vm_flags & VM_LOCKED)
2152					mm->locked_vm += grow;
2153				vm_stat_account(mm, vma->vm_flags, grow);
2154				anon_vma_interval_tree_pre_update_vma(vma);
2155				vma->vm_start = address;
2156				vma->vm_pgoff -= grow;
 
 
2157				anon_vma_interval_tree_post_update_vma(vma);
2158				vma_gap_update(vma);
2159				spin_unlock(&mm->page_table_lock);
2160
2161				perf_event_mmap(vma);
2162			}
2163		}
2164	}
2165	anon_vma_unlock_write(vma->anon_vma);
2166	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2167	validate_mm(mm);
2168	return error;
2169}
2170
2171/*
2172 * Note how expand_stack() refuses to expand the stack all the way to
2173 * abut the next virtual mapping, *unless* that mapping itself is also
2174 * a stack mapping. We want to leave room for a guard page, after all
2175 * (the guard page itself is not added here, that is done by the
2176 * actual page faulting logic)
2177 *
2178 * This matches the behavior of the guard page logic (see mm/memory.c:
2179 * check_stack_guard_page()), which only allows the guard page to be
2180 * removed under these circumstances.
2181 */
2182#ifdef CONFIG_STACK_GROWSUP
2183int expand_stack(struct vm_area_struct *vma, unsigned long address)
2184{
2185	struct vm_area_struct *next;
 
2186
2187	address &= PAGE_MASK;
2188	next = vma->vm_next;
2189	if (next && next->vm_start == address + PAGE_SIZE) {
2190		if (!(next->vm_flags & VM_GROWSUP))
2191			return -ENOMEM;
2192	}
 
 
 
 
 
2193	return expand_upwards(vma, address);
2194}
2195
2196struct vm_area_struct *
2197find_extend_vma(struct mm_struct *mm, unsigned long addr)
2198{
2199	struct vm_area_struct *vma, *prev;
2200
2201	addr &= PAGE_MASK;
2202	vma = find_vma_prev(mm, addr, &prev);
2203	if (vma && (vma->vm_start <= addr))
2204		return vma;
2205	if (!prev || expand_stack(prev, addr))
 
 
2206		return NULL;
2207	if (prev->vm_flags & VM_LOCKED)
2208		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2209	return prev;
2210}
2211#else
2212int expand_stack(struct vm_area_struct *vma, unsigned long address)
2213{
2214	struct vm_area_struct *prev;
2215
2216	address &= PAGE_MASK;
2217	prev = vma->vm_prev;
2218	if (prev && prev->vm_end == address) {
2219		if (!(prev->vm_flags & VM_GROWSDOWN))
2220			return -ENOMEM;
2221	}
2222	return expand_downwards(vma, address);
2223}
2224
2225struct vm_area_struct *
2226find_extend_vma(struct mm_struct *mm, unsigned long addr)
2227{
2228	struct vm_area_struct *vma;
2229	unsigned long start;
2230
2231	addr &= PAGE_MASK;
2232	vma = find_vma(mm, addr);
2233	if (!vma)
2234		return NULL;
2235	if (vma->vm_start <= addr)
2236		return vma;
2237	if (!(vma->vm_flags & VM_GROWSDOWN))
2238		return NULL;
2239	start = vma->vm_start;
2240	if (expand_stack(vma, addr))
2241		return NULL;
2242	if (vma->vm_flags & VM_LOCKED)
2243		populate_vma_page_range(vma, addr, start, NULL);
2244	return vma;
2245}
2246#endif
2247
2248EXPORT_SYMBOL_GPL(find_extend_vma);
2249
2250/*
2251 * Ok - we have the memory areas we should free on the vma list,
2252 * so release them, and do the vma updates.
2253 *
2254 * Called with the mm semaphore held.
2255 */
2256static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2257{
2258	unsigned long nr_accounted = 0;
2259
2260	/* Update high watermark before we lower total_vm */
2261	update_hiwater_vm(mm);
2262	do {
2263		long nrpages = vma_pages(vma);
2264
2265		if (vma->vm_flags & VM_ACCOUNT)
2266			nr_accounted += nrpages;
2267		vm_stat_account(mm, vma->vm_flags, -nrpages);
2268		vma = remove_vma(vma);
2269	} while (vma);
2270	vm_unacct_memory(nr_accounted);
2271	validate_mm(mm);
2272}
2273
2274/*
2275 * Get rid of page table information in the indicated region.
2276 *
2277 * Called with the mm semaphore held.
2278 */
2279static void unmap_region(struct mm_struct *mm,
2280		struct vm_area_struct *vma, struct vm_area_struct *prev,
2281		unsigned long start, unsigned long end)
2282{
2283	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2284	struct mmu_gather tlb;
2285
2286	lru_add_drain();
2287	tlb_gather_mmu(&tlb, mm, start, end);
2288	update_hiwater_rss(mm);
2289	unmap_vmas(&tlb, vma, start, end);
2290	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2291				 next ? next->vm_start : USER_PGTABLES_CEILING);
2292	tlb_finish_mmu(&tlb, start, end);
2293}
2294
2295/*
2296 * Create a list of vma's touched by the unmap, removing them from the mm's
2297 * vma list as we go..
2298 */
2299static void
2300detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2301	struct vm_area_struct *prev, unsigned long end)
2302{
2303	struct vm_area_struct **insertion_point;
2304	struct vm_area_struct *tail_vma = NULL;
2305
2306	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2307	vma->vm_prev = NULL;
2308	do {
2309		vma_rb_erase(vma, &mm->mm_rb);
2310		mm->map_count--;
2311		tail_vma = vma;
2312		vma = vma->vm_next;
2313	} while (vma && vma->vm_start < end);
2314	*insertion_point = vma;
2315	if (vma) {
2316		vma->vm_prev = prev;
2317		vma_gap_update(vma);
2318	} else
2319		mm->highest_vm_end = prev ? prev->vm_end : 0;
2320	tail_vma->vm_next = NULL;
2321
2322	/* Kill the cache */
2323	vmacache_invalidate(mm);
2324}
2325
2326/*
2327 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2328 * munmap path where it doesn't make sense to fail.
 
 
 
 
 
 
 
2329 */
2330static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2331	      unsigned long addr, int new_below)
2332{
2333	struct vm_area_struct *new;
2334	int err;
2335
2336	if (is_vm_hugetlb_page(vma) && (addr &
2337					~(huge_page_mask(hstate_vma(vma)))))
2338		return -EINVAL;
2339
2340	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2341	if (!new)
2342		return -ENOMEM;
2343
2344	/* most fields are the same, copy all, and then fixup */
2345	*new = *vma;
 
2346
2347	INIT_LIST_HEAD(&new->anon_vma_chain);
 
 
2348
2349	if (new_below)
2350		new->vm_end = addr;
2351	else {
2352		new->vm_start = addr;
2353		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2354	}
2355
2356	err = vma_dup_policy(vma, new);
2357	if (err)
2358		goto out_free_vma;
2359
2360	err = anon_vma_clone(new, vma);
2361	if (err)
2362		goto out_free_mpol;
2363
2364	if (new->vm_file)
2365		get_file(new->vm_file);
2366
2367	if (new->vm_ops && new->vm_ops->open)
2368		new->vm_ops->open(new);
2369
2370	if (new_below)
2371		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2372			((addr - new->vm_start) >> PAGE_SHIFT), new);
2373	else
2374		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2375
2376	/* Success. */
2377	if (!err)
2378		return 0;
2379
2380	/* Clean everything up if vma_adjust failed. */
2381	if (new->vm_ops && new->vm_ops->close)
2382		new->vm_ops->close(new);
2383	if (new->vm_file)
2384		fput(new->vm_file);
2385	unlink_anon_vmas(new);
2386 out_free_mpol:
2387	mpol_put(vma_policy(new));
2388 out_free_vma:
2389	kmem_cache_free(vm_area_cachep, new);
2390	return err;
2391}
2392
2393/*
2394 * Split a vma into two pieces at address 'addr', a new vma is allocated
2395 * either for the first part or the tail.
 
 
 
 
2396 */
2397int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2398	      unsigned long addr, int new_below)
2399{
2400	if (mm->map_count >= sysctl_max_map_count)
2401		return -ENOMEM;
2402
2403	return __split_vma(mm, vma, addr, new_below);
2404}
2405
2406/* Munmap is split into 2 main parts -- this part which finds
2407 * what needs doing, and the areas themselves, which do the
2408 * work.  This now handles partial unmappings.
2409 * Jeremy Fitzhardinge <jeremy@goop.org>
2410 */
2411int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2412{
2413	unsigned long end;
2414	struct vm_area_struct *vma, *prev, *last;
2415
2416	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2417		return -EINVAL;
 
2418
2419	len = PAGE_ALIGN(len);
2420	if (len == 0)
2421		return -EINVAL;
2422
2423	/* Find the first overlapping VMA */
2424	vma = find_vma(mm, start);
2425	if (!vma)
2426		return 0;
2427	prev = vma->vm_prev;
2428	/* we have  start < vma->vm_end  */
2429
2430	/* if it doesn't overlap, we have nothing.. */
2431	end = start + len;
2432	if (vma->vm_start >= end)
2433		return 0;
2434
2435	/*
2436	 * If we need to split any vma, do it now to save pain later.
2437	 *
2438	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2439	 * unmapped vm_area_struct will remain in use: so lower split_vma
2440	 * places tmp vma above, and higher split_vma places tmp vma below.
2441	 */
2442	if (start > vma->vm_start) {
2443		int error;
2444
2445		/*
2446		 * Make sure that map_count on return from munmap() will
2447		 * not exceed its limit; but let map_count go just above
2448		 * its limit temporarily, to help free resources as expected.
2449		 */
2450		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2451			return -ENOMEM;
2452
2453		error = __split_vma(mm, vma, start, 0);
2454		if (error)
2455			return error;
2456		prev = vma;
2457	}
2458
2459	/* Does it split the last one? */
2460	last = find_vma(mm, end);
2461	if (last && end > last->vm_start) {
2462		int error = __split_vma(mm, last, end, 1);
2463		if (error)
2464			return error;
 
2465	}
2466	vma = prev ? prev->vm_next : mm->mmap;
2467
2468	/*
2469	 * unlock any mlock()ed ranges before detaching vmas
2470	 */
2471	if (mm->locked_vm) {
2472		struct vm_area_struct *tmp = vma;
2473		while (tmp && tmp->vm_start < end) {
2474			if (tmp->vm_flags & VM_LOCKED) {
2475				mm->locked_vm -= vma_pages(tmp);
2476				munlock_vma_pages_all(tmp);
2477			}
2478			tmp = tmp->vm_next;
2479		}
2480	}
2481
2482	/*
2483	 * Remove the vma's, and unmap the actual pages
2484	 */
2485	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2486	unmap_region(mm, vma, prev, start, end);
2487
2488	arch_unmap(mm, vma, start, end);
2489
2490	/* Fix up all other VM information */
2491	remove_vma_list(mm, vma);
 
2492
2493	return 0;
 
2494}
2495
2496int vm_munmap(unsigned long start, size_t len)
2497{
2498	int ret;
2499	struct mm_struct *mm = current->mm;
 
 
2500
2501	down_write(&mm->mmap_sem);
2502	ret = do_munmap(mm, start, len);
2503	up_write(&mm->mmap_sem);
 
 
 
 
 
2504	return ret;
2505}
 
 
 
 
 
2506EXPORT_SYMBOL(vm_munmap);
2507
2508SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2509{
2510	profile_munmap(addr);
2511	return vm_munmap(addr, len);
2512}
2513
2514
2515/*
2516 * Emulation of deprecated remap_file_pages() syscall.
2517 */
2518SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2519		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2520{
2521
2522	struct mm_struct *mm = current->mm;
2523	struct vm_area_struct *vma;
2524	unsigned long populate = 0;
2525	unsigned long ret = -EINVAL;
2526	struct file *file;
 
2527
2528	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2529		     current->comm, current->pid);
2530
2531	if (prot)
2532		return ret;
2533	start = start & PAGE_MASK;
2534	size = size & PAGE_MASK;
2535
2536	if (start + size <= start)
2537		return ret;
2538
2539	/* Does pgoff wrap? */
2540	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2541		return ret;
2542
2543	down_write(&mm->mmap_sem);
2544	vma = find_vma(mm, start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2545
2546	if (!vma || !(vma->vm_flags & VM_SHARED))
 
 
2547		goto out;
2548
2549	if (start < vma->vm_start)
 
 
 
2550		goto out;
2551
2552	if (start + size > vma->vm_end) {
2553		struct vm_area_struct *next;
 
2554
2555		for (next = vma->vm_next; next; next = next->vm_next) {
2556			/* hole between vmas ? */
2557			if (next->vm_start != next->vm_prev->vm_end)
2558				goto out;
2559
2560			if (next->vm_file != vma->vm_file)
2561				goto out;
2562
2563			if (next->vm_flags != vma->vm_flags)
2564				goto out;
2565
2566			if (start + size <= next->vm_end)
2567				break;
 
 
2568		}
2569
2570		if (!next)
2571			goto out;
2572	}
2573
2574	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2575	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2576	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2577
2578	flags &= MAP_NONBLOCK;
2579	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2580	if (vma->vm_flags & VM_LOCKED) {
2581		struct vm_area_struct *tmp;
2582		flags |= MAP_LOCKED;
2583
2584		/* drop PG_Mlocked flag for over-mapped range */
2585		for (tmp = vma; tmp->vm_start >= start + size;
2586				tmp = tmp->vm_next) {
2587			munlock_vma_pages_range(tmp,
2588					max(tmp->vm_start, start),
2589					min(tmp->vm_end, start + size));
2590		}
2591	}
2592
2593	file = get_file(vma->vm_file);
2594	ret = do_mmap_pgoff(vma->vm_file, start, size,
2595			prot, flags, pgoff, &populate);
2596	fput(file);
2597out:
2598	up_write(&mm->mmap_sem);
 
2599	if (populate)
2600		mm_populate(ret, populate);
2601	if (!IS_ERR_VALUE(ret))
2602		ret = 0;
2603	return ret;
2604}
2605
2606static inline void verify_mm_writelocked(struct mm_struct *mm)
2607{
2608#ifdef CONFIG_DEBUG_VM
2609	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2610		WARN_ON(1);
2611		up_read(&mm->mmap_sem);
2612	}
2613#endif
2614}
2615
2616/*
2617 *  this is really a simplified "do_mmap".  it only handles
2618 *  anonymous maps.  eventually we may be able to do some
2619 *  brk-specific accounting here.
 
 
 
 
 
 
 
2620 */
2621static unsigned long do_brk(unsigned long addr, unsigned long len)
 
2622{
2623	struct mm_struct *mm = current->mm;
2624	struct vm_area_struct *vma, *prev;
2625	unsigned long flags;
2626	struct rb_node **rb_link, *rb_parent;
2627	pgoff_t pgoff = addr >> PAGE_SHIFT;
2628	int error;
2629
2630	len = PAGE_ALIGN(len);
2631	if (!len)
2632		return addr;
2633
2634	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2635
2636	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2637	if (offset_in_page(error))
2638		return error;
2639
2640	error = mlock_future_check(mm, mm->def_flags, len);
2641	if (error)
2642		return error;
2643
2644	/*
2645	 * mm->mmap_sem is required to protect against another thread
2646	 * changing the mappings in case we sleep.
2647	 */
2648	verify_mm_writelocked(mm);
2649
2650	/*
2651	 * Clear old maps.  this also does some error checking for us
 
2652	 */
2653	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2654			      &rb_parent)) {
2655		if (do_munmap(mm, addr, len))
2656			return -ENOMEM;
2657	}
2658
2659	/* Check against address space limits *after* clearing old maps... */
2660	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2661		return -ENOMEM;
2662
2663	if (mm->map_count > sysctl_max_map_count)
2664		return -ENOMEM;
2665
2666	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2667		return -ENOMEM;
2668
2669	/* Can we just expand an old private anonymous mapping? */
2670	vma = vma_merge(mm, prev, addr, addr + len, flags,
2671			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2672	if (vma)
2673		goto out;
2674
2675	/*
2676	 * create a vma struct for an anonymous mapping
 
2677	 */
2678	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2679	if (!vma) {
2680		vm_unacct_memory(len >> PAGE_SHIFT);
2681		return -ENOMEM;
 
 
 
 
 
 
 
2682	}
2683
2684	INIT_LIST_HEAD(&vma->anon_vma_chain);
2685	vma->vm_mm = mm;
2686	vma->vm_start = addr;
2687	vma->vm_end = addr + len;
2688	vma->vm_pgoff = pgoff;
2689	vma->vm_flags = flags;
 
 
 
 
2690	vma->vm_page_prot = vm_get_page_prot(flags);
2691	vma_link(mm, vma, prev, rb_link, rb_parent);
 
 
 
 
 
 
2692out:
2693	perf_event_mmap(vma);
2694	mm->total_vm += len >> PAGE_SHIFT;
2695	mm->data_vm += len >> PAGE_SHIFT;
2696	if (flags & VM_LOCKED)
2697		mm->locked_vm += (len >> PAGE_SHIFT);
2698	vma->vm_flags |= VM_SOFTDIRTY;
2699	return addr;
 
 
 
 
 
 
2700}
2701
2702unsigned long vm_brk(unsigned long addr, unsigned long len)
2703{
2704	struct mm_struct *mm = current->mm;
2705	unsigned long ret;
 
 
2706	bool populate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2707
2708	down_write(&mm->mmap_sem);
2709	ret = do_brk(addr, len);
2710	populate = ((mm->def_flags & VM_LOCKED) != 0);
2711	up_write(&mm->mmap_sem);
2712	if (populate)
 
2713		mm_populate(addr, len);
2714	return ret;
 
 
 
 
 
2715}
2716EXPORT_SYMBOL(vm_brk);
2717
2718/* Release all mmaps. */
2719void exit_mmap(struct mm_struct *mm)
2720{
2721	struct mmu_gather tlb;
2722	struct vm_area_struct *vma;
2723	unsigned long nr_accounted = 0;
 
 
2724
2725	/* mm's last user has gone, and its about to be pulled down */
2726	mmu_notifier_release(mm);
2727
2728	if (mm->locked_vm) {
2729		vma = mm->mmap;
2730		while (vma) {
2731			if (vma->vm_flags & VM_LOCKED)
2732				munlock_vma_pages_all(vma);
2733			vma = vma->vm_next;
2734		}
2735	}
2736
2737	arch_exit_mmap(mm);
2738
2739	vma = mm->mmap;
2740	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2741		return;
 
 
 
 
2742
2743	lru_add_drain();
2744	flush_cache_mm(mm);
2745	tlb_gather_mmu(&tlb, mm, 0, -1);
2746	/* update_hiwater_rss(mm) here? but nobody should be looking */
2747	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2748	unmap_vmas(&tlb, vma, 0, -1);
 
2749
2750	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2751	tlb_finish_mmu(&tlb, 0, -1);
 
 
 
 
 
 
 
 
 
2752
2753	/*
2754	 * Walk the list again, actually closing and freeing it,
2755	 * with preemption enabled, without holding any MM locks.
 
2756	 */
2757	while (vma) {
 
2758		if (vma->vm_flags & VM_ACCOUNT)
2759			nr_accounted += vma_pages(vma);
2760		vma = remove_vma(vma);
2761	}
 
 
 
 
 
 
 
 
 
 
2762	vm_unacct_memory(nr_accounted);
2763}
2764
2765/* Insert vm structure into process list sorted by address
2766 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2767 * then i_mmap_rwsem is taken here.
2768 */
2769int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2770{
2771	struct vm_area_struct *prev;
2772	struct rb_node **rb_link, *rb_parent;
2773
2774	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2775			   &prev, &rb_link, &rb_parent))
2776		return -ENOMEM;
 
2777	if ((vma->vm_flags & VM_ACCOUNT) &&
2778	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2779		return -ENOMEM;
2780
2781	/*
2782	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2783	 * until its first write fault, when page's anon_vma and index
2784	 * are set.  But now set the vm_pgoff it will almost certainly
2785	 * end up with (unless mremap moves it elsewhere before that
2786	 * first wfault), so /proc/pid/maps tells a consistent story.
2787	 *
2788	 * By setting it to reflect the virtual start address of the
2789	 * vma, merges and splits can happen in a seamless way, just
2790	 * using the existing file pgoff checks and manipulations.
2791	 * Similarly in do_mmap_pgoff and in do_brk.
2792	 */
2793	if (vma_is_anonymous(vma)) {
2794		BUG_ON(vma->anon_vma);
2795		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2796	}
2797
2798	vma_link(mm, vma, prev, rb_link, rb_parent);
2799	return 0;
2800}
2801
2802/*
2803 * Copy the vma structure to a new location in the same mm,
2804 * prior to moving page table entries, to effect an mremap move.
2805 */
2806struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2807	unsigned long addr, unsigned long len, pgoff_t pgoff,
2808	bool *need_rmap_locks)
2809{
2810	struct vm_area_struct *vma = *vmap;
2811	unsigned long vma_start = vma->vm_start;
2812	struct mm_struct *mm = vma->vm_mm;
2813	struct vm_area_struct *new_vma, *prev;
2814	struct rb_node **rb_link, *rb_parent;
2815	bool faulted_in_anon_vma = true;
2816
2817	/*
2818	 * If anonymous vma has not yet been faulted, update new pgoff
2819	 * to match new location, to increase its chance of merging.
2820	 */
2821	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2822		pgoff = addr >> PAGE_SHIFT;
2823		faulted_in_anon_vma = false;
2824	}
2825
2826	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2827		return NULL;	/* should never get here */
2828	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2829			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2830			    vma->vm_userfaultfd_ctx);
2831	if (new_vma) {
2832		/*
2833		 * Source vma may have been merged into new_vma
2834		 */
2835		if (unlikely(vma_start >= new_vma->vm_start &&
2836			     vma_start < new_vma->vm_end)) {
2837			/*
2838			 * The only way we can get a vma_merge with
2839			 * self during an mremap is if the vma hasn't
2840			 * been faulted in yet and we were allowed to
2841			 * reset the dst vma->vm_pgoff to the
2842			 * destination address of the mremap to allow
2843			 * the merge to happen. mremap must change the
2844			 * vm_pgoff linearity between src and dst vmas
2845			 * (in turn preventing a vma_merge) to be
2846			 * safe. It is only safe to keep the vm_pgoff
2847			 * linear if there are no pages mapped yet.
2848			 */
2849			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2850			*vmap = vma = new_vma;
2851		}
2852		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2853	} else {
2854		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2855		if (!new_vma)
2856			goto out;
2857		*new_vma = *vma;
2858		new_vma->vm_start = addr;
2859		new_vma->vm_end = addr + len;
2860		new_vma->vm_pgoff = pgoff;
2861		if (vma_dup_policy(vma, new_vma))
2862			goto out_free_vma;
2863		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2864		if (anon_vma_clone(new_vma, vma))
2865			goto out_free_mempol;
2866		if (new_vma->vm_file)
2867			get_file(new_vma->vm_file);
2868		if (new_vma->vm_ops && new_vma->vm_ops->open)
2869			new_vma->vm_ops->open(new_vma);
2870		vma_link(mm, new_vma, prev, rb_link, rb_parent);
2871		*need_rmap_locks = false;
2872	}
2873	return new_vma;
2874
2875out_free_mempol:
2876	mpol_put(vma_policy(new_vma));
2877out_free_vma:
2878	kmem_cache_free(vm_area_cachep, new_vma);
2879out:
2880	return NULL;
2881}
2882
2883/*
2884 * Return true if the calling process may expand its vm space by the passed
2885 * number of pages
2886 */
2887bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2888{
2889	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2890		return false;
2891
2892	if (is_data_mapping(flags) &&
2893	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2894		if (ignore_rlimit_data)
2895			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Will be forbidden soon.\n",
2896				     current->comm, current->pid,
2897				     (mm->data_vm + npages) << PAGE_SHIFT,
2898				     rlimit(RLIMIT_DATA));
2899		else
 
 
 
 
 
 
2900			return false;
2901	}
2902
2903	return true;
2904}
2905
2906void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2907{
2908	mm->total_vm += npages;
2909
2910	if (is_exec_mapping(flags))
2911		mm->exec_vm += npages;
2912	else if (is_stack_mapping(flags))
2913		mm->stack_vm += npages;
2914	else if (is_data_mapping(flags))
2915		mm->data_vm += npages;
2916}
2917
2918static int special_mapping_fault(struct vm_area_struct *vma,
2919				 struct vm_fault *vmf);
2920
2921/*
 
 
2922 * Having a close hook prevents vma merging regardless of flags.
2923 */
2924static void special_mapping_close(struct vm_area_struct *vma)
2925{
 
 
 
 
2926}
2927
2928static const char *special_mapping_name(struct vm_area_struct *vma)
2929{
2930	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2931}
2932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2933static const struct vm_operations_struct special_mapping_vmops = {
2934	.close = special_mapping_close,
2935	.fault = special_mapping_fault,
 
2936	.name = special_mapping_name,
 
 
 
2937};
2938
2939static const struct vm_operations_struct legacy_special_mapping_vmops = {
2940	.close = special_mapping_close,
2941	.fault = special_mapping_fault,
2942};
2943
2944static int special_mapping_fault(struct vm_area_struct *vma,
2945				struct vm_fault *vmf)
2946{
 
2947	pgoff_t pgoff;
2948	struct page **pages;
 
2949
2950	if (vma->vm_ops == &legacy_special_mapping_vmops) {
2951		pages = vma->vm_private_data;
2952	} else {
2953		struct vm_special_mapping *sm = vma->vm_private_data;
2954
2955		if (sm->fault)
2956			return sm->fault(sm, vma, vmf);
2957
2958		pages = sm->pages;
2959	}
2960
2961	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
2962		pgoff--;
2963
2964	if (*pages) {
2965		struct page *page = *pages;
2966		get_page(page);
2967		vmf->page = page;
2968		return 0;
2969	}
2970
2971	return VM_FAULT_SIGBUS;
2972}
2973
2974static struct vm_area_struct *__install_special_mapping(
2975	struct mm_struct *mm,
2976	unsigned long addr, unsigned long len,
2977	unsigned long vm_flags, void *priv,
2978	const struct vm_operations_struct *ops)
2979{
2980	int ret;
2981	struct vm_area_struct *vma;
2982
2983	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2984	if (unlikely(vma == NULL))
2985		return ERR_PTR(-ENOMEM);
2986
2987	INIT_LIST_HEAD(&vma->anon_vma_chain);
2988	vma->vm_mm = mm;
2989	vma->vm_start = addr;
2990	vma->vm_end = addr + len;
2991
2992	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2993	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2994
2995	vma->vm_ops = ops;
2996	vma->vm_private_data = priv;
2997
2998	ret = insert_vm_struct(mm, vma);
2999	if (ret)
3000		goto out;
3001
3002	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3003
3004	perf_event_mmap(vma);
3005
3006	return vma;
3007
3008out:
3009	kmem_cache_free(vm_area_cachep, vma);
3010	return ERR_PTR(ret);
3011}
3012
 
 
 
 
 
 
 
3013/*
3014 * Called with mm->mmap_sem held for writing.
3015 * Insert a new vma covering the given region, with the given flags.
3016 * Its pages are supplied by the given array of struct page *.
3017 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3018 * The region past the last page supplied will always produce SIGBUS.
3019 * The array pointer and the pages it points to are assumed to stay alive
3020 * for as long as this mapping might exist.
3021 */
3022struct vm_area_struct *_install_special_mapping(
3023	struct mm_struct *mm,
3024	unsigned long addr, unsigned long len,
3025	unsigned long vm_flags, const struct vm_special_mapping *spec)
3026{
3027	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3028					&special_mapping_vmops);
3029}
3030
3031int install_special_mapping(struct mm_struct *mm,
3032			    unsigned long addr, unsigned long len,
3033			    unsigned long vm_flags, struct page **pages)
3034{
3035	struct vm_area_struct *vma = __install_special_mapping(
3036		mm, addr, len, vm_flags, (void *)pages,
3037		&legacy_special_mapping_vmops);
3038
3039	return PTR_ERR_OR_ZERO(vma);
3040}
3041
3042static DEFINE_MUTEX(mm_all_locks_mutex);
3043
3044static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3045{
3046	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3047		/*
3048		 * The LSB of head.next can't change from under us
3049		 * because we hold the mm_all_locks_mutex.
3050		 */
3051		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3052		/*
3053		 * We can safely modify head.next after taking the
3054		 * anon_vma->root->rwsem. If some other vma in this mm shares
3055		 * the same anon_vma we won't take it again.
3056		 *
3057		 * No need of atomic instructions here, head.next
3058		 * can't change from under us thanks to the
3059		 * anon_vma->root->rwsem.
3060		 */
3061		if (__test_and_set_bit(0, (unsigned long *)
3062				       &anon_vma->root->rb_root.rb_node))
3063			BUG();
3064	}
3065}
3066
3067static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3068{
3069	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3070		/*
3071		 * AS_MM_ALL_LOCKS can't change from under us because
3072		 * we hold the mm_all_locks_mutex.
3073		 *
3074		 * Operations on ->flags have to be atomic because
3075		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3076		 * mm_all_locks_mutex, there may be other cpus
3077		 * changing other bitflags in parallel to us.
3078		 */
3079		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3080			BUG();
3081		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3082	}
3083}
3084
3085/*
3086 * This operation locks against the VM for all pte/vma/mm related
3087 * operations that could ever happen on a certain mm. This includes
3088 * vmtruncate, try_to_unmap, and all page faults.
3089 *
3090 * The caller must take the mmap_sem in write mode before calling
3091 * mm_take_all_locks(). The caller isn't allowed to release the
3092 * mmap_sem until mm_drop_all_locks() returns.
3093 *
3094 * mmap_sem in write mode is required in order to block all operations
3095 * that could modify pagetables and free pages without need of
3096 * altering the vma layout. It's also needed in write mode to avoid new
3097 * anon_vmas to be associated with existing vmas.
3098 *
3099 * A single task can't take more than one mm_take_all_locks() in a row
3100 * or it would deadlock.
3101 *
3102 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3103 * mapping->flags avoid to take the same lock twice, if more than one
3104 * vma in this mm is backed by the same anon_vma or address_space.
3105 *
3106 * We take locks in following order, accordingly to comment at beginning
3107 * of mm/rmap.c:
3108 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3109 *     hugetlb mapping);
3110 *   - all i_mmap_rwsem locks;
3111 *   - all anon_vma->rwseml
3112 *
3113 * We can take all locks within these types randomly because the VM code
3114 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3115 * mm_all_locks_mutex.
3116 *
3117 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3118 * that may have to take thousand of locks.
3119 *
3120 * mm_take_all_locks() can fail if it's interrupted by signals.
3121 */
3122int mm_take_all_locks(struct mm_struct *mm)
3123{
3124	struct vm_area_struct *vma;
3125	struct anon_vma_chain *avc;
3126
3127	BUG_ON(down_read_trylock(&mm->mmap_sem));
3128
3129	mutex_lock(&mm_all_locks_mutex);
3130
3131	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3132		if (signal_pending(current))
3133			goto out_unlock;
3134		if (vma->vm_file && vma->vm_file->f_mapping &&
3135				is_vm_hugetlb_page(vma))
3136			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3137	}
3138
3139	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3140		if (signal_pending(current))
3141			goto out_unlock;
3142		if (vma->vm_file && vma->vm_file->f_mapping &&
3143				!is_vm_hugetlb_page(vma))
3144			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3145	}
3146
3147	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3148		if (signal_pending(current))
3149			goto out_unlock;
3150		if (vma->anon_vma)
3151			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3152				vm_lock_anon_vma(mm, avc->anon_vma);
3153	}
3154
3155	return 0;
3156
3157out_unlock:
3158	mm_drop_all_locks(mm);
3159	return -EINTR;
3160}
3161
3162static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3163{
3164	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3165		/*
3166		 * The LSB of head.next can't change to 0 from under
3167		 * us because we hold the mm_all_locks_mutex.
3168		 *
3169		 * We must however clear the bitflag before unlocking
3170		 * the vma so the users using the anon_vma->rb_root will
3171		 * never see our bitflag.
3172		 *
3173		 * No need of atomic instructions here, head.next
3174		 * can't change from under us until we release the
3175		 * anon_vma->root->rwsem.
3176		 */
3177		if (!__test_and_clear_bit(0, (unsigned long *)
3178					  &anon_vma->root->rb_root.rb_node))
3179			BUG();
3180		anon_vma_unlock_write(anon_vma);
3181	}
3182}
3183
3184static void vm_unlock_mapping(struct address_space *mapping)
3185{
3186	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3187		/*
3188		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3189		 * because we hold the mm_all_locks_mutex.
3190		 */
3191		i_mmap_unlock_write(mapping);
3192		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3193					&mapping->flags))
3194			BUG();
3195	}
3196}
3197
3198/*
3199 * The mmap_sem cannot be released by the caller until
3200 * mm_drop_all_locks() returns.
3201 */
3202void mm_drop_all_locks(struct mm_struct *mm)
3203{
3204	struct vm_area_struct *vma;
3205	struct anon_vma_chain *avc;
3206
3207	BUG_ON(down_read_trylock(&mm->mmap_sem));
3208	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3209
3210	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3211		if (vma->anon_vma)
3212			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3213				vm_unlock_anon_vma(avc->anon_vma);
3214		if (vma->vm_file && vma->vm_file->f_mapping)
3215			vm_unlock_mapping(vma->vm_file->f_mapping);
3216	}
3217
3218	mutex_unlock(&mm_all_locks_mutex);
3219}
3220
3221/*
3222 * initialise the VMA slab
3223 */
3224void __init mmap_init(void)
3225{
3226	int ret;
3227
3228	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3229	VM_BUG_ON(ret);
3230}
3231
3232/*
3233 * Initialise sysctl_user_reserve_kbytes.
3234 *
3235 * This is intended to prevent a user from starting a single memory hogging
3236 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3237 * mode.
3238 *
3239 * The default value is min(3% of free memory, 128MB)
3240 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3241 */
3242static int init_user_reserve(void)
3243{
3244	unsigned long free_kbytes;
3245
3246	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3247
3248	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3249	return 0;
3250}
3251subsys_initcall(init_user_reserve);
3252
3253/*
3254 * Initialise sysctl_admin_reserve_kbytes.
3255 *
3256 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3257 * to log in and kill a memory hogging process.
3258 *
3259 * Systems with more than 256MB will reserve 8MB, enough to recover
3260 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3261 * only reserve 3% of free pages by default.
3262 */
3263static int init_admin_reserve(void)
3264{
3265	unsigned long free_kbytes;
3266
3267	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3268
3269	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3270	return 0;
3271}
3272subsys_initcall(init_admin_reserve);
3273
3274/*
3275 * Reinititalise user and admin reserves if memory is added or removed.
3276 *
3277 * The default user reserve max is 128MB, and the default max for the
3278 * admin reserve is 8MB. These are usually, but not always, enough to
3279 * enable recovery from a memory hogging process using login/sshd, a shell,
3280 * and tools like top. It may make sense to increase or even disable the
3281 * reserve depending on the existence of swap or variations in the recovery
3282 * tools. So, the admin may have changed them.
3283 *
3284 * If memory is added and the reserves have been eliminated or increased above
3285 * the default max, then we'll trust the admin.
3286 *
3287 * If memory is removed and there isn't enough free memory, then we
3288 * need to reset the reserves.
3289 *
3290 * Otherwise keep the reserve set by the admin.
3291 */
3292static int reserve_mem_notifier(struct notifier_block *nb,
3293			     unsigned long action, void *data)
3294{
3295	unsigned long tmp, free_kbytes;
3296
3297	switch (action) {
3298	case MEM_ONLINE:
3299		/* Default max is 128MB. Leave alone if modified by operator. */
3300		tmp = sysctl_user_reserve_kbytes;
3301		if (0 < tmp && tmp < (1UL << 17))
3302			init_user_reserve();
3303
3304		/* Default max is 8MB.  Leave alone if modified by operator. */
3305		tmp = sysctl_admin_reserve_kbytes;
3306		if (0 < tmp && tmp < (1UL << 13))
3307			init_admin_reserve();
3308
3309		break;
3310	case MEM_OFFLINE:
3311		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3312
3313		if (sysctl_user_reserve_kbytes > free_kbytes) {
3314			init_user_reserve();
3315			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3316				sysctl_user_reserve_kbytes);
3317		}
3318
3319		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3320			init_admin_reserve();
3321			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3322				sysctl_admin_reserve_kbytes);
3323		}
3324		break;
3325	default:
3326		break;
3327	}
3328	return NOTIFY_OK;
3329}
3330
3331static struct notifier_block reserve_mem_nb = {
3332	.notifier_call = reserve_mem_notifier,
3333};
3334
3335static int __meminit init_reserve_notifier(void)
3336{
3337	if (register_hotmemory_notifier(&reserve_mem_nb))
3338		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3339
3340	return 0;
3341}
3342subsys_initcall(init_reserve_notifier);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/mm_inline.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
 
  41#include <linux/notifier.h>
  42#include <linux/memory.h>
  43#include <linux/printk.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/moduleparam.h>
  46#include <linux/pkeys.h>
  47#include <linux/oom.h>
  48#include <linux/sched/mm.h>
  49#include <linux/ksm.h>
  50#include <linux/memfd.h>
  51
  52#include <linux/uaccess.h>
  53#include <asm/cacheflush.h>
  54#include <asm/tlb.h>
  55#include <asm/mmu_context.h>
  56
  57#define CREATE_TRACE_POINTS
  58#include <trace/events/mmap.h>
  59
  60#include "internal.h"
  61
  62#ifndef arch_mmap_check
  63#define arch_mmap_check(addr, len, flags)	(0)
  64#endif
  65
 
 
 
 
  66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  67const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  68int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  69int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  70#endif
  71#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  72const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  73const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  74int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  75#endif
  76
  77static bool ignore_rlimit_data;
  78core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80/* Update vma->vm_page_prot to reflect vma->vm_flags. */
  81void vma_set_page_prot(struct vm_area_struct *vma)
  82{
  83	unsigned long vm_flags = vma->vm_flags;
  84	pgprot_t vm_page_prot;
  85
  86	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
  87	if (vma_wants_writenotify(vma, vm_page_prot)) {
  88		vm_flags &= ~VM_SHARED;
  89		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 
  90	}
  91	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
  92	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
  93}
  94
  95/*
  96 * check_brk_limits() - Use platform specific check of range & verify mlock
  97 * limits.
  98 * @addr: The address to check
  99 * @len: The size of increase.
 100 *
 101 * Return: 0 on success.
 
 
 
 
 
 
 
 
 
 
 
 
 102 */
 103static int check_brk_limits(unsigned long addr, unsigned long len)
 104{
 105	unsigned long mapped_addr;
 106
 107	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
 108	if (IS_ERR_VALUE(mapped_addr))
 109		return mapped_addr;
 
 
 
 
 110
 111	return mlock_future_ok(current->mm, current->mm->def_flags, len)
 112		? 0 : -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 113}
 114static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
 115		unsigned long addr, unsigned long request, unsigned long flags);
 
 116SYSCALL_DEFINE1(brk, unsigned long, brk)
 117{
 118	unsigned long newbrk, oldbrk, origbrk;
 
 119	struct mm_struct *mm = current->mm;
 120	struct vm_area_struct *brkvma, *next = NULL;
 121	unsigned long min_brk;
 122	bool populate = false;
 123	LIST_HEAD(uf);
 124	struct vma_iterator vmi;
 125
 126	if (mmap_write_lock_killable(mm))
 127		return -EINTR;
 128
 129	origbrk = mm->brk;
 130
 131#ifdef CONFIG_COMPAT_BRK
 132	/*
 133	 * CONFIG_COMPAT_BRK can still be overridden by setting
 134	 * randomize_va_space to 2, which will still cause mm->start_brk
 135	 * to be arbitrarily shifted
 136	 */
 137	if (current->brk_randomized)
 138		min_brk = mm->start_brk;
 139	else
 140		min_brk = mm->end_data;
 141#else
 142	min_brk = mm->start_brk;
 143#endif
 144	if (brk < min_brk)
 145		goto out;
 146
 147	/*
 148	 * Check against rlimit here. If this check is done later after the test
 149	 * of oldbrk with newbrk then it can escape the test and let the data
 150	 * segment grow beyond its set limit the in case where the limit is
 151	 * not page aligned -Ram Gupta
 152	 */
 153	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 154			      mm->end_data, mm->start_data))
 155		goto out;
 156
 157	newbrk = PAGE_ALIGN(brk);
 158	oldbrk = PAGE_ALIGN(mm->brk);
 159	if (oldbrk == newbrk) {
 160		mm->brk = brk;
 161		goto success;
 162	}
 163
 164	/* Always allow shrinking brk. */
 165	if (brk <= mm->brk) {
 166		/* Search one past newbrk */
 167		vma_iter_init(&vmi, mm, newbrk);
 168		brkvma = vma_find(&vmi, oldbrk);
 169		if (!brkvma || brkvma->vm_start >= oldbrk)
 170			goto out; /* mapping intersects with an existing non-brk vma. */
 171		/*
 172		 * mm->brk must be protected by write mmap_lock.
 173		 * do_vmi_align_munmap() will drop the lock on success,  so
 174		 * update it before calling do_vma_munmap().
 175		 */
 176		mm->brk = brk;
 177		if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf,
 178					/* unlock = */ true))
 179			goto out;
 180
 181		goto success_unlocked;
 182	}
 183
 184	if (check_brk_limits(oldbrk, newbrk - oldbrk))
 
 185		goto out;
 186
 187	/*
 188	 * Only check if the next VMA is within the stack_guard_gap of the
 189	 * expansion area
 190	 */
 191	vma_iter_init(&vmi, mm, oldbrk);
 192	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
 193	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 194		goto out;
 195
 196	brkvma = vma_prev_limit(&vmi, mm->start_brk);
 197	/* Ok, looks good - let it rip. */
 198	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
 199		goto out;
 200
 
 201	mm->brk = brk;
 202	if (mm->def_flags & VM_LOCKED)
 203		populate = true;
 204
 205success:
 206	mmap_write_unlock(mm);
 207success_unlocked:
 208	userfaultfd_unmap_complete(mm, &uf);
 209	if (populate)
 210		mm_populate(oldbrk, newbrk - oldbrk);
 211	return brk;
 212
 213out:
 214	mm->brk = origbrk;
 215	mmap_write_unlock(mm);
 216	return origbrk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217}
 218
 219/*
 220 * If a hint addr is less than mmap_min_addr change hint to be as
 221 * low as possible but still greater than mmap_min_addr
 
 
 
 
 
 
 
 
 
 
 222 */
 223static inline unsigned long round_hint_to_min(unsigned long hint)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224{
 225	hint &= PAGE_MASK;
 226	if (((void *)hint != NULL) &&
 227	    (hint < mmap_min_addr))
 228		return PAGE_ALIGN(mmap_min_addr);
 229	return hint;
 
 
 
 
 
 
 
 
 
 
 230}
 231
 232bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
 233			unsigned long bytes)
 
 
 
 234{
 235	unsigned long locked_pages, limit_pages;
 
 236
 237	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
 238		return true;
 
 
 
 
 239
 240	locked_pages = bytes >> PAGE_SHIFT;
 241	locked_pages += mm->locked_vm;
 
 
 
 242
 243	limit_pages = rlimit(RLIMIT_MEMLOCK);
 244	limit_pages >>= PAGE_SHIFT;
 
 
 245
 246	return locked_pages <= limit_pages;
 
 247}
 248
 249static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
 
 
 
 
 
 
 
 
 250{
 251	if (S_ISREG(inode->i_mode))
 252		return MAX_LFS_FILESIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253
 254	if (S_ISBLK(inode->i_mode))
 255		return MAX_LFS_FILESIZE;
 256
 257	if (S_ISSOCK(inode->i_mode))
 258		return MAX_LFS_FILESIZE;
 259
 260	/* Special "we do even unsigned file positions" case */
 261	if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263
 264	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
 265	return ULONG_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266}
 267
 268static inline bool file_mmap_ok(struct file *file, struct inode *inode,
 269				unsigned long pgoff, unsigned long len)
 
 
 
 270{
 271	u64 maxsize = file_mmap_size_max(file, inode);
 
 
 
 
 
 272
 273	if (maxsize && len > maxsize)
 274		return false;
 275	maxsize -= len;
 276	if (pgoff > maxsize >> PAGE_SHIFT)
 277		return false;
 278	return true;
 
 
 
 
 
 
 
 
 
 
 279}
 280
 281/*
 282 * The caller must write-lock current->mm->mmap_lock.
 283 */
 284unsigned long do_mmap(struct file *file, unsigned long addr,
 285			unsigned long len, unsigned long prot,
 286			unsigned long flags, vm_flags_t vm_flags,
 287			unsigned long pgoff, unsigned long *populate,
 288			struct list_head *uf)
 289{
 290	struct mm_struct *mm = current->mm;
 291	int pkey = 0;
 292
 293	*populate = 0;
 294
 295	if (!len)
 296		return -EINVAL;
 297
 298	/*
 299	 * Does the application expect PROT_READ to imply PROT_EXEC?
 300	 *
 301	 * (the exception is when the underlying filesystem is noexec
 302	 *  mounted, in which case we don't add PROT_EXEC.)
 303	 */
 304	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
 305		if (!(file && path_noexec(&file->f_path)))
 306			prot |= PROT_EXEC;
 307
 308	/* force arch specific MAP_FIXED handling in get_unmapped_area */
 309	if (flags & MAP_FIXED_NOREPLACE)
 310		flags |= MAP_FIXED;
 311
 312	if (!(flags & MAP_FIXED))
 313		addr = round_hint_to_min(addr);
 314
 315	/* Careful about overflows.. */
 316	len = PAGE_ALIGN(len);
 317	if (!len)
 318		return -ENOMEM;
 319
 320	/* offset overflow? */
 321	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
 322		return -EOVERFLOW;
 323
 324	/* Too many mappings? */
 325	if (mm->map_count > sysctl_max_map_count)
 326		return -ENOMEM;
 327
 328	/*
 329	 * addr is returned from get_unmapped_area,
 330	 * There are two cases:
 331	 * 1> MAP_FIXED == false
 332	 *	unallocated memory, no need to check sealing.
 333	 * 1> MAP_FIXED == true
 334	 *	sealing is checked inside mmap_region when
 335	 *	do_vmi_munmap is called.
 336	 */
 
 
 
 337
 338	if (prot == PROT_EXEC) {
 339		pkey = execute_only_pkey(mm);
 340		if (pkey < 0)
 341			pkey = 0;
 342	}
 343
 344	/* Do simple checking here so the lower-level routines won't have
 345	 * to. we assume access permissions have been handled by the open
 346	 * of the memory object, so we don't do any here.
 347	 */
 348	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) |
 349			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
 350
 351	/* Obtain the address to map to. we verify (or select) it and ensure
 352	 * that it represents a valid section of the address space.
 353	 */
 354	addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
 355	if (IS_ERR_VALUE(addr))
 356		return addr;
 357
 358	if (flags & MAP_FIXED_NOREPLACE) {
 359		if (find_vma_intersection(mm, addr, addr + len))
 360			return -EEXIST;
 361	}
 362
 363	if (flags & MAP_LOCKED)
 364		if (!can_do_mlock())
 365			return -EPERM;
 366
 367	if (!mlock_future_ok(mm, vm_flags, len))
 368		return -EAGAIN;
 369
 370	if (file) {
 371		struct inode *inode = file_inode(file);
 372		unsigned int seals = memfd_file_seals(file);
 373		unsigned long flags_mask;
 374
 375		if (!file_mmap_ok(file, inode, pgoff, len))
 376			return -EOVERFLOW;
 377
 378		flags_mask = LEGACY_MAP_MASK;
 379		if (file->f_op->fop_flags & FOP_MMAP_SYNC)
 380			flags_mask |= MAP_SYNC;
 381
 382		switch (flags & MAP_TYPE) {
 383		case MAP_SHARED:
 384			/*
 385			 * Force use of MAP_SHARED_VALIDATE with non-legacy
 386			 * flags. E.g. MAP_SYNC is dangerous to use with
 387			 * MAP_SHARED as you don't know which consistency model
 388			 * you will get. We silently ignore unsupported flags
 389			 * with MAP_SHARED to preserve backward compatibility.
 390			 */
 391			flags &= LEGACY_MAP_MASK;
 392			fallthrough;
 393		case MAP_SHARED_VALIDATE:
 394			if (flags & ~flags_mask)
 395				return -EOPNOTSUPP;
 396			if (prot & PROT_WRITE) {
 397				if (!(file->f_mode & FMODE_WRITE))
 398					return -EACCES;
 399				if (IS_SWAPFILE(file->f_mapping->host))
 400					return -ETXTBSY;
 401			}
 402
 403			/*
 404			 * Make sure we don't allow writing to an append-only
 405			 * file..
 406			 */
 407			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
 408				return -EACCES;
 409
 
 
 
 
 
 
 410			vm_flags |= VM_SHARED | VM_MAYSHARE;
 411			if (!(file->f_mode & FMODE_WRITE))
 412				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
 413			else if (is_readonly_sealed(seals, vm_flags))
 414				vm_flags &= ~VM_MAYWRITE;
 415			fallthrough;
 416		case MAP_PRIVATE:
 417			if (!(file->f_mode & FMODE_READ))
 418				return -EACCES;
 419			if (path_noexec(&file->f_path)) {
 420				if (vm_flags & VM_EXEC)
 421					return -EPERM;
 422				vm_flags &= ~VM_MAYEXEC;
 423			}
 424
 425			if (!file->f_op->mmap)
 426				return -ENODEV;
 427			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
 428				return -EINVAL;
 429			break;
 430
 431		default:
 432			return -EINVAL;
 433		}
 434	} else {
 435		switch (flags & MAP_TYPE) {
 436		case MAP_SHARED:
 437			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
 438				return -EINVAL;
 439			/*
 440			 * Ignore pgoff.
 441			 */
 442			pgoff = 0;
 443			vm_flags |= VM_SHARED | VM_MAYSHARE;
 444			break;
 445		case MAP_DROPPABLE:
 446			if (VM_DROPPABLE == VM_NONE)
 447				return -ENOTSUPP;
 448			/*
 449			 * A locked or stack area makes no sense to be droppable.
 450			 *
 451			 * Also, since droppable pages can just go away at any time
 452			 * it makes no sense to copy them on fork or dump them.
 453			 *
 454			 * And don't attempt to combine with hugetlb for now.
 455			 */
 456			if (flags & (MAP_LOCKED | MAP_HUGETLB))
 457			        return -EINVAL;
 458			if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
 459			        return -EINVAL;
 460
 461			vm_flags |= VM_DROPPABLE;
 462
 463			/*
 464			 * If the pages can be dropped, then it doesn't make
 465			 * sense to reserve them.
 466			 */
 467			vm_flags |= VM_NORESERVE;
 468
 469			/*
 470			 * Likewise, they're volatile enough that they
 471			 * shouldn't survive forks or coredumps.
 472			 */
 473			vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
 474			fallthrough;
 475		case MAP_PRIVATE:
 476			/*
 477			 * Set pgoff according to addr for anon_vma.
 478			 */
 479			pgoff = addr >> PAGE_SHIFT;
 480			break;
 481		default:
 482			return -EINVAL;
 483		}
 484	}
 485
 486	/*
 487	 * Set 'VM_NORESERVE' if we should not account for the
 488	 * memory use of this mapping.
 489	 */
 490	if (flags & MAP_NORESERVE) {
 491		/* We honor MAP_NORESERVE if allowed to overcommit */
 492		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
 493			vm_flags |= VM_NORESERVE;
 494
 495		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
 496		if (file && is_file_hugepages(file))
 497			vm_flags |= VM_NORESERVE;
 498	}
 499
 500	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
 501	if (!IS_ERR_VALUE(addr) &&
 502	    ((vm_flags & VM_LOCKED) ||
 503	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
 504		*populate = len;
 505	return addr;
 506}
 507
 508unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
 509			      unsigned long prot, unsigned long flags,
 510			      unsigned long fd, unsigned long pgoff)
 511{
 512	struct file *file = NULL;
 513	unsigned long retval;
 514
 515	if (!(flags & MAP_ANONYMOUS)) {
 516		audit_mmap_fd(fd, flags);
 517		file = fget(fd);
 518		if (!file)
 519			return -EBADF;
 520		if (is_file_hugepages(file)) {
 521			len = ALIGN(len, huge_page_size(hstate_file(file)));
 522		} else if (unlikely(flags & MAP_HUGETLB)) {
 523			retval = -EINVAL;
 524			goto out_fput;
 525		}
 526	} else if (flags & MAP_HUGETLB) {
 
 527		struct hstate *hs;
 528
 529		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
 530		if (!hs)
 531			return -EINVAL;
 532
 533		len = ALIGN(len, huge_page_size(hs));
 534		/*
 535		 * VM_NORESERVE is used because the reservations will be
 536		 * taken when vm_ops->mmap() is called
 
 
 537		 */
 538		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
 539				VM_NORESERVE,
 540				HUGETLB_ANONHUGE_INODE,
 541				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
 542		if (IS_ERR(file))
 543			return PTR_ERR(file);
 544	}
 545
 
 
 546	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
 547out_fput:
 548	if (file)
 549		fput(file);
 550	return retval;
 551}
 552
 553SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
 554		unsigned long, prot, unsigned long, flags,
 555		unsigned long, fd, unsigned long, pgoff)
 556{
 557	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
 558}
 559
 560#ifdef __ARCH_WANT_SYS_OLD_MMAP
 561struct mmap_arg_struct {
 562	unsigned long addr;
 563	unsigned long len;
 564	unsigned long prot;
 565	unsigned long flags;
 566	unsigned long fd;
 567	unsigned long offset;
 568};
 569
 570SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
 571{
 572	struct mmap_arg_struct a;
 573
 574	if (copy_from_user(&a, arg, sizeof(a)))
 575		return -EFAULT;
 576	if (offset_in_page(a.offset))
 577		return -EINVAL;
 578
 579	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
 580			       a.offset >> PAGE_SHIFT);
 581}
 582#endif /* __ARCH_WANT_SYS_OLD_MMAP */
 583
 584/**
 585 * unmapped_area() - Find an area between the low_limit and the high_limit with
 586 * the correct alignment and offset, all from @info. Note: current->mm is used
 587 * for the search.
 588 *
 589 * @info: The unmapped area information including the range [low_limit -
 590 * high_limit), the alignment offset and mask.
 591 *
 592 * Return: A memory address or -ENOMEM.
 593 */
 594static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
 595{
 596	unsigned long length, gap;
 597	unsigned long low_limit, high_limit;
 598	struct vm_area_struct *tmp;
 599	VMA_ITERATOR(vmi, current->mm, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600
 601	/* Adjust search length to account for worst case alignment overhead */
 602	length = info->length + info->align_mask + info->start_gap;
 603	if (length < info->length)
 604		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605
 606	low_limit = info->low_limit;
 607	if (low_limit < mmap_min_addr)
 608		low_limit = mmap_min_addr;
 609	high_limit = info->high_limit;
 610retry:
 611	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
 612		return -ENOMEM;
 613
 614	/*
 615	 * Adjust for the gap first so it doesn't interfere with the
 616	 * later alignment. The first step is the minimum needed to
 617	 * fulill the start gap, the next steps is the minimum to align
 618	 * that. It is the minimum needed to fulill both.
 619	 */
 620	gap = vma_iter_addr(&vmi) + info->start_gap;
 621	gap += (info->align_offset - gap) & info->align_mask;
 622	tmp = vma_next(&vmi);
 623	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
 624		if (vm_start_gap(tmp) < gap + length - 1) {
 625			low_limit = tmp->vm_end;
 626			vma_iter_reset(&vmi);
 627			goto retry;
 
 
 
 
 
 
 
 
 
 
 628		}
 629	} else {
 630		tmp = vma_prev(&vmi);
 631		if (tmp && vm_end_gap(tmp) > gap) {
 632			low_limit = vm_end_gap(tmp);
 633			vma_iter_reset(&vmi);
 634			goto retry;
 635		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636	}
 637
 638	return gap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639}
 640
 641/**
 642 * unmapped_area_topdown() - Find an area between the low_limit and the
 643 * high_limit with the correct alignment and offset at the highest available
 644 * address, all from @info. Note: current->mm is used for the search.
 645 *
 646 * @info: The unmapped area information including the range [low_limit -
 647 * high_limit), the alignment offset and mask.
 648 *
 649 * Return: A memory address or -ENOMEM.
 650 */
 651static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
 652{
 653	unsigned long length, gap, gap_end;
 654	unsigned long low_limit, high_limit;
 655	struct vm_area_struct *tmp;
 656	VMA_ITERATOR(vmi, current->mm, 0);
 
 
 
 
 
 
 
 657
 658	/* Adjust search length to account for worst case alignment overhead */
 659	length = info->length + info->align_mask + info->start_gap;
 660	if (length < info->length)
 661		return -ENOMEM;
 662
 663	low_limit = info->low_limit;
 664	if (low_limit < mmap_min_addr)
 665		low_limit = mmap_min_addr;
 666	high_limit = info->high_limit;
 667retry:
 668	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
 669		return -ENOMEM;
 670
 671	gap = vma_iter_end(&vmi) - info->length;
 672	gap -= (gap - info->align_offset) & info->align_mask;
 673	gap_end = vma_iter_end(&vmi);
 674	tmp = vma_next(&vmi);
 675	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
 676		if (vm_start_gap(tmp) < gap_end) {
 677			high_limit = vm_start_gap(tmp);
 678			vma_iter_reset(&vmi);
 679			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680		}
 681	} else {
 682		tmp = vma_prev(&vmi);
 683		if (tmp && vm_end_gap(tmp) > gap) {
 684			high_limit = tmp->vm_start;
 685			vma_iter_reset(&vmi);
 686			goto retry;
 
 
 
 
 
 
 
 687		}
 688	}
 689
 690	return gap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691}
 692
 693/*
 694 * Determine if the allocation needs to ensure that there is no
 695 * existing mapping within it's guard gaps, for use as start_gap.
 696 */
 697static inline unsigned long stack_guard_placement(vm_flags_t vm_flags)
 698{
 699	if (vm_flags & VM_SHADOW_STACK)
 700		return PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 701
 702	return 0;
 703}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704
 705/*
 706 * Search for an unmapped address range.
 707 *
 708 * We are looking for a range that:
 709 * - does not intersect with any VMA;
 710 * - is contained within the [low_limit, high_limit) interval;
 711 * - is at least the desired size.
 712 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
 713 */
 714unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
 715{
 716	unsigned long addr;
 717
 718	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
 719		addr = unmapped_area_topdown(info);
 720	else
 721		addr = unmapped_area(info);
 
 
 
 
 
 
 
 
 
 
 722
 723	trace_vm_unmapped_area(addr, info);
 724	return addr;
 
 
 
 
 
 
 
 
 
 
 
 725}
 726
 727/* Get an address range which is currently unmapped.
 728 * For shmat() with addr=0.
 729 *
 730 * Ugly calling convention alert:
 731 * Return value with the low bits set means error value,
 732 * ie
 733 *	if (ret & ~PAGE_MASK)
 734 *		error = ret;
 735 *
 736 * This function "knows" that -ENOMEM has the bits set.
 737 */
 
 738unsigned long
 739generic_get_unmapped_area(struct file *filp, unsigned long addr,
 740			  unsigned long len, unsigned long pgoff,
 741			  unsigned long flags, vm_flags_t vm_flags)
 742{
 743	struct mm_struct *mm = current->mm;
 744	struct vm_area_struct *vma, *prev;
 745	struct vm_unmapped_area_info info = {};
 746	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
 747
 748	if (len > mmap_end - mmap_min_addr)
 749		return -ENOMEM;
 750
 751	if (flags & MAP_FIXED)
 752		return addr;
 753
 754	if (addr) {
 755		addr = PAGE_ALIGN(addr);
 756		vma = find_vma_prev(mm, addr, &prev);
 757		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
 758		    (!vma || addr + len <= vm_start_gap(vma)) &&
 759		    (!prev || addr >= vm_end_gap(prev)))
 760			return addr;
 761	}
 762
 
 763	info.length = len;
 764	info.low_limit = mm->mmap_base;
 765	info.high_limit = mmap_end;
 766	info.start_gap = stack_guard_placement(vm_flags);
 767	if (filp && is_file_hugepages(filp))
 768		info.align_mask = huge_page_mask_align(filp);
 769	return vm_unmapped_area(&info);
 770}
 771
 772#ifndef HAVE_ARCH_UNMAPPED_AREA
 773unsigned long
 774arch_get_unmapped_area(struct file *filp, unsigned long addr,
 775		       unsigned long len, unsigned long pgoff,
 776		       unsigned long flags, vm_flags_t vm_flags)
 777{
 778	return generic_get_unmapped_area(filp, addr, len, pgoff, flags,
 779					 vm_flags);
 780}
 781#endif
 782
 783/*
 784 * This mmap-allocator allocates new areas top-down from below the
 785 * stack's low limit (the base):
 786 */
 
 787unsigned long
 788generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 789				  unsigned long len, unsigned long pgoff,
 790				  unsigned long flags, vm_flags_t vm_flags)
 791{
 792	struct vm_area_struct *vma, *prev;
 793	struct mm_struct *mm = current->mm;
 794	struct vm_unmapped_area_info info = {};
 795	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
 796
 797	/* requested length too big for entire address space */
 798	if (len > mmap_end - mmap_min_addr)
 799		return -ENOMEM;
 800
 801	if (flags & MAP_FIXED)
 802		return addr;
 803
 804	/* requesting a specific address */
 805	if (addr) {
 806		addr = PAGE_ALIGN(addr);
 807		vma = find_vma_prev(mm, addr, &prev);
 808		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
 809				(!vma || addr + len <= vm_start_gap(vma)) &&
 810				(!prev || addr >= vm_end_gap(prev)))
 811			return addr;
 812	}
 813
 814	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
 815	info.length = len;
 816	info.low_limit = PAGE_SIZE;
 817	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
 818	info.start_gap = stack_guard_placement(vm_flags);
 819	if (filp && is_file_hugepages(filp))
 820		info.align_mask = huge_page_mask_align(filp);
 821	addr = vm_unmapped_area(&info);
 822
 823	/*
 824	 * A failed mmap() very likely causes application failure,
 825	 * so fall back to the bottom-up function here. This scenario
 826	 * can happen with large stack limits and large mmap()
 827	 * allocations.
 828	 */
 829	if (offset_in_page(addr)) {
 830		VM_BUG_ON(addr != -ENOMEM);
 831		info.flags = 0;
 832		info.low_limit = TASK_UNMAPPED_BASE;
 833		info.high_limit = mmap_end;
 834		addr = vm_unmapped_area(&info);
 835	}
 836
 837	return addr;
 838}
 839
 840#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
 841unsigned long
 842arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 843			       unsigned long len, unsigned long pgoff,
 844			       unsigned long flags, vm_flags_t vm_flags)
 845{
 846	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags,
 847						 vm_flags);
 848}
 849#endif
 850
 851unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
 852					   unsigned long addr, unsigned long len,
 853					   unsigned long pgoff, unsigned long flags,
 854					   vm_flags_t vm_flags)
 855{
 856	if (test_bit(MMF_TOPDOWN, &mm->flags))
 857		return arch_get_unmapped_area_topdown(filp, addr, len, pgoff,
 858						      flags, vm_flags);
 859	return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
 860}
 861
 862unsigned long
 863__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
 864		unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
 865{
 866	unsigned long (*get_area)(struct file *, unsigned long,
 867				  unsigned long, unsigned long, unsigned long)
 868				  = NULL;
 869
 870	unsigned long error = arch_mmap_check(addr, len, flags);
 871	if (error)
 872		return error;
 873
 874	/* Careful about overflows.. */
 875	if (len > TASK_SIZE)
 876		return -ENOMEM;
 877
 878	if (file) {
 879		if (file->f_op->get_unmapped_area)
 880			get_area = file->f_op->get_unmapped_area;
 881	} else if (flags & MAP_SHARED) {
 882		/*
 883		 * mmap_region() will call shmem_zero_setup() to create a file,
 884		 * so use shmem's get_unmapped_area in case it can be huge.
 885		 */
 886		get_area = shmem_get_unmapped_area;
 887	}
 888
 889	/* Always treat pgoff as zero for anonymous memory. */
 890	if (!file)
 891		pgoff = 0;
 892
 893	if (get_area) {
 894		addr = get_area(file, addr, len, pgoff, flags);
 895	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && !file
 896		   && !addr /* no hint */
 897		   && IS_ALIGNED(len, PMD_SIZE)) {
 898		/* Ensures that larger anonymous mappings are THP aligned. */
 899		addr = thp_get_unmapped_area_vmflags(file, addr, len,
 900						     pgoff, flags, vm_flags);
 901	} else {
 902		addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
 903						    pgoff, flags, vm_flags);
 904	}
 905	if (IS_ERR_VALUE(addr))
 906		return addr;
 907
 908	if (addr > TASK_SIZE - len)
 909		return -ENOMEM;
 910	if (offset_in_page(addr))
 911		return -EINVAL;
 912
 
 913	error = security_mmap_addr(addr);
 914	return error ? error : addr;
 915}
 916
 917unsigned long
 918mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
 919		     unsigned long addr, unsigned long len,
 920		     unsigned long pgoff, unsigned long flags)
 921{
 922	if (test_bit(MMF_TOPDOWN, &mm->flags))
 923		return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0);
 924	return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0);
 925}
 926EXPORT_SYMBOL(mm_get_unmapped_area);
 
 
 
 
 927
 928/**
 929 * find_vma_intersection() - Look up the first VMA which intersects the interval
 930 * @mm: The process address space.
 931 * @start_addr: The inclusive start user address.
 932 * @end_addr: The exclusive end user address.
 933 *
 934 * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
 935 * start_addr < end_addr.
 936 */
 937struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
 938					     unsigned long start_addr,
 939					     unsigned long end_addr)
 940{
 941	unsigned long index = start_addr;
 942
 943	mmap_assert_locked(mm);
 944	return mt_find(&mm->mm_mt, &index, end_addr - 1);
 945}
 946EXPORT_SYMBOL(find_vma_intersection);
 947
 948/**
 949 * find_vma() - Find the VMA for a given address, or the next VMA.
 950 * @mm: The mm_struct to check
 951 * @addr: The address
 952 *
 953 * Returns: The VMA associated with addr, or the next VMA.
 954 * May return %NULL in the case of no VMA at addr or above.
 955 */
 956struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 957{
 958	unsigned long index = addr;
 959
 960	mmap_assert_locked(mm);
 961	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
 
 962}
 
 963EXPORT_SYMBOL(find_vma);
 964
 965/**
 966 * find_vma_prev() - Find the VMA for a given address, or the next vma and
 967 * set %pprev to the previous VMA, if any.
 968 * @mm: The mm_struct to check
 969 * @addr: The address
 970 * @pprev: The pointer to set to the previous VMA
 971 *
 972 * Note that RCU lock is missing here since the external mmap_lock() is used
 973 * instead.
 974 *
 975 * Returns: The VMA associated with @addr, or the next vma.
 976 * May return %NULL in the case of no vma at addr or above.
 977 */
 978struct vm_area_struct *
 979find_vma_prev(struct mm_struct *mm, unsigned long addr,
 980			struct vm_area_struct **pprev)
 981{
 982	struct vm_area_struct *vma;
 983	VMA_ITERATOR(vmi, mm, addr);
 984
 985	vma = vma_iter_load(&vmi);
 986	*pprev = vma_prev(&vmi);
 987	if (!vma)
 988		vma = vma_next(&vmi);
 
 
 
 
 
 
 
 989	return vma;
 990}
 991
 992/*
 993 * Verify that the stack growth is acceptable and
 994 * update accounting. This is shared with both the
 995 * grow-up and grow-down cases.
 996 */
 997static int acct_stack_growth(struct vm_area_struct *vma,
 998			     unsigned long size, unsigned long grow)
 999{
1000	struct mm_struct *mm = vma->vm_mm;
1001	unsigned long new_start;
 
1002
1003	/* address space limit tests */
1004	if (!may_expand_vm(mm, vma->vm_flags, grow))
1005		return -ENOMEM;
1006
1007	/* Stack limit test */
1008	if (size > rlimit(RLIMIT_STACK))
 
 
 
1009		return -ENOMEM;
1010
1011	/* mlock limit tests */
1012	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1013		return -ENOMEM;
 
 
 
 
 
 
 
1014
1015	/* Check to ensure the stack will not grow into a hugetlb-only region */
1016	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1017			vma->vm_end - size;
1018	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1019		return -EFAULT;
1020
1021	/*
1022	 * Overcommit..  This must be the final test, as it will
1023	 * update security statistics.
1024	 */
1025	if (security_vm_enough_memory_mm(mm, grow))
1026		return -ENOMEM;
1027
1028	return 0;
1029}
1030
1031#if defined(CONFIG_STACK_GROWSUP)
1032/*
1033 * PA-RISC uses this for its stack.
1034 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1035 */
1036static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1037{
1038	struct mm_struct *mm = vma->vm_mm;
1039	struct vm_area_struct *next;
1040	unsigned long gap_addr;
1041	int error = 0;
1042	VMA_ITERATOR(vmi, mm, vma->vm_start);
1043
1044	if (!(vma->vm_flags & VM_GROWSUP))
1045		return -EFAULT;
1046
1047	mmap_assert_write_locked(mm);
1048
1049	/* Guard against exceeding limits of the address space. */
1050	address &= PAGE_MASK;
1051	if (address >= (TASK_SIZE & PAGE_MASK))
1052		return -ENOMEM;
1053	address += PAGE_SIZE;
1054
1055	/* Enforce stack_guard_gap */
1056	gap_addr = address + stack_guard_gap;
1057
1058	/* Guard against overflow */
1059	if (gap_addr < address || gap_addr > TASK_SIZE)
1060		gap_addr = TASK_SIZE;
1061
1062	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1063	if (next && vma_is_accessible(next)) {
1064		if (!(next->vm_flags & VM_GROWSUP))
1065			return -ENOMEM;
1066		/* Check that both stack segments have the same anon_vma? */
1067	}
1068
1069	if (next)
1070		vma_iter_prev_range_limit(&vmi, address);
1071
1072	vma_iter_config(&vmi, vma->vm_start, address);
1073	if (vma_iter_prealloc(&vmi, vma))
1074		return -ENOMEM;
1075
1076	/* We must make sure the anon_vma is allocated. */
1077	if (unlikely(anon_vma_prepare(vma))) {
1078		vma_iter_free(&vmi);
1079		return -ENOMEM;
1080	}
1081
1082	/* Lock the VMA before expanding to prevent concurrent page faults */
1083	vma_start_write(vma);
1084	/* We update the anon VMA tree. */
 
 
1085	anon_vma_lock_write(vma->anon_vma);
1086
1087	/* Somebody else might have raced and expanded it already */
1088	if (address > vma->vm_end) {
1089		unsigned long size, grow;
1090
1091		size = address - vma->vm_start;
1092		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1093
1094		error = -ENOMEM;
1095		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1096			error = acct_stack_growth(vma, size, grow);
1097			if (!error) {
 
 
 
 
 
 
 
 
 
 
 
 
1098				if (vma->vm_flags & VM_LOCKED)
1099					mm->locked_vm += grow;
1100				vm_stat_account(mm, vma->vm_flags, grow);
1101				anon_vma_interval_tree_pre_update_vma(vma);
1102				vma->vm_end = address;
1103				/* Overwrite old entry in mtree. */
1104				vma_iter_store(&vmi, vma);
1105				anon_vma_interval_tree_post_update_vma(vma);
 
 
 
 
 
1106
1107				perf_event_mmap(vma);
1108			}
1109		}
1110	}
1111	anon_vma_unlock_write(vma->anon_vma);
1112	vma_iter_free(&vmi);
1113	validate_mm(mm);
1114	return error;
1115}
1116#endif /* CONFIG_STACK_GROWSUP */
1117
1118/*
1119 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1120 * mmap_lock held for writing.
1121 */
1122int expand_downwards(struct vm_area_struct *vma, unsigned long address)
 
1123{
1124	struct mm_struct *mm = vma->vm_mm;
1125	struct vm_area_struct *prev;
1126	int error = 0;
1127	VMA_ITERATOR(vmi, mm, vma->vm_start);
1128
1129	if (!(vma->vm_flags & VM_GROWSDOWN))
1130		return -EFAULT;
1131
1132	mmap_assert_write_locked(mm);
1133
1134	address &= PAGE_MASK;
1135	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
1136		return -EPERM;
1137
1138	/* Enforce stack_guard_gap */
1139	prev = vma_prev(&vmi);
1140	/* Check that both stack segments have the same anon_vma? */
1141	if (prev) {
1142		if (!(prev->vm_flags & VM_GROWSDOWN) &&
1143		    vma_is_accessible(prev) &&
1144		    (address - prev->vm_end < stack_guard_gap))
1145			return -ENOMEM;
1146	}
1147
1148	if (prev)
1149		vma_iter_next_range_limit(&vmi, vma->vm_start);
1150
1151	vma_iter_config(&vmi, address, vma->vm_end);
1152	if (vma_iter_prealloc(&vmi, vma))
1153		return -ENOMEM;
1154
1155	/* We must make sure the anon_vma is allocated. */
1156	if (unlikely(anon_vma_prepare(vma))) {
1157		vma_iter_free(&vmi);
1158		return -ENOMEM;
1159	}
1160
1161	/* Lock the VMA before expanding to prevent concurrent page faults */
1162	vma_start_write(vma);
1163	/* We update the anon VMA tree. */
 
 
1164	anon_vma_lock_write(vma->anon_vma);
1165
1166	/* Somebody else might have raced and expanded it already */
1167	if (address < vma->vm_start) {
1168		unsigned long size, grow;
1169
1170		size = vma->vm_end - address;
1171		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1172
1173		error = -ENOMEM;
1174		if (grow <= vma->vm_pgoff) {
1175			error = acct_stack_growth(vma, size, grow);
1176			if (!error) {
 
 
 
 
 
 
 
 
 
 
 
 
1177				if (vma->vm_flags & VM_LOCKED)
1178					mm->locked_vm += grow;
1179				vm_stat_account(mm, vma->vm_flags, grow);
1180				anon_vma_interval_tree_pre_update_vma(vma);
1181				vma->vm_start = address;
1182				vma->vm_pgoff -= grow;
1183				/* Overwrite old entry in mtree. */
1184				vma_iter_store(&vmi, vma);
1185				anon_vma_interval_tree_post_update_vma(vma);
 
 
1186
1187				perf_event_mmap(vma);
1188			}
1189		}
1190	}
1191	anon_vma_unlock_write(vma->anon_vma);
1192	vma_iter_free(&vmi);
1193	validate_mm(mm);
1194	return error;
1195}
1196
1197/* enforced gap between the expanding stack and other mappings. */
1198unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
1199
1200static int __init cmdline_parse_stack_guard_gap(char *p)
 
 
 
 
 
 
 
 
 
1201{
1202	unsigned long val;
1203	char *endptr;
1204
1205	val = simple_strtoul(p, &endptr, 10);
1206	if (!*endptr)
1207		stack_guard_gap = val << PAGE_SHIFT;
1208
1209	return 1;
1210}
1211__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
1212
1213#ifdef CONFIG_STACK_GROWSUP
1214int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1215{
1216	return expand_upwards(vma, address);
1217}
1218
1219struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
 
1220{
1221	struct vm_area_struct *vma, *prev;
1222
1223	addr &= PAGE_MASK;
1224	vma = find_vma_prev(mm, addr, &prev);
1225	if (vma && (vma->vm_start <= addr))
1226		return vma;
1227	if (!prev)
1228		return NULL;
1229	if (expand_stack_locked(prev, addr))
1230		return NULL;
1231	if (prev->vm_flags & VM_LOCKED)
1232		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
1233	return prev;
1234}
1235#else
1236int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1237{
 
 
 
 
 
 
 
 
1238	return expand_downwards(vma, address);
1239}
1240
1241struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
 
1242{
1243	struct vm_area_struct *vma;
1244	unsigned long start;
1245
1246	addr &= PAGE_MASK;
1247	vma = find_vma(mm, addr);
1248	if (!vma)
1249		return NULL;
1250	if (vma->vm_start <= addr)
1251		return vma;
 
 
1252	start = vma->vm_start;
1253	if (expand_stack_locked(vma, addr))
1254		return NULL;
1255	if (vma->vm_flags & VM_LOCKED)
1256		populate_vma_page_range(vma, addr, start, NULL);
1257	return vma;
1258}
1259#endif
1260
1261#if defined(CONFIG_STACK_GROWSUP)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1262
1263#define vma_expand_up(vma,addr) expand_upwards(vma, addr)
1264#define vma_expand_down(vma, addr) (-EFAULT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265
1266#else
 
 
 
 
 
 
 
1267
1268#define vma_expand_up(vma,addr) (-EFAULT)
1269#define vma_expand_down(vma, addr) expand_downwards(vma, addr)
 
 
 
 
 
 
 
 
1270
1271#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272
1273/*
1274 * expand_stack(): legacy interface for page faulting. Don't use unless
1275 * you have to.
1276 *
1277 * This is called with the mm locked for reading, drops the lock, takes
1278 * the lock for writing, tries to look up a vma again, expands it if
1279 * necessary, and downgrades the lock to reading again.
1280 *
1281 * If no vma is found or it can't be expanded, it returns NULL and has
1282 * dropped the lock.
1283 */
1284struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
 
1285{
1286	struct vm_area_struct *vma, *prev;
 
 
 
 
 
 
 
 
 
1287
1288	mmap_read_unlock(mm);
1289	if (mmap_write_lock_killable(mm))
1290		return NULL;
1291
1292	vma = find_vma_prev(mm, addr, &prev);
1293	if (vma && vma->vm_start <= addr)
1294		goto success;
1295
1296	if (prev && !vma_expand_up(prev, addr)) {
1297		vma = prev;
1298		goto success;
 
 
1299	}
1300
1301	if (vma && !vma_expand_down(vma, addr))
1302		goto success;
 
1303
1304	mmap_write_unlock(mm);
1305	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306
1307success:
1308	mmap_write_downgrade(mm);
1309	return vma;
 
 
 
 
 
 
 
 
1310}
1311
1312/* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
1313 * @mm: The mm_struct
1314 * @start: The start address to munmap
1315 * @len: The length to be munmapped.
1316 * @uf: The userfaultfd list_head
1317 *
1318 * Return: 0 on success, error otherwise.
1319 */
1320int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
1321	      struct list_head *uf)
1322{
1323	VMA_ITERATOR(vmi, mm, start);
 
1324
1325	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
1326}
1327
1328unsigned long mmap_region(struct file *file, unsigned long addr,
1329			  unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1330			  struct list_head *uf)
 
 
 
1331{
1332	unsigned long ret;
1333	bool writable_file_mapping = false;
1334
1335	/* Check to see if MDWE is applicable. */
1336	if (map_deny_write_exec(vm_flags, vm_flags))
1337		return -EACCES;
1338
1339	/* Allow architectures to sanity-check the vm_flags. */
1340	if (!arch_validate_flags(vm_flags))
1341		return -EINVAL;
1342
1343	/* Map writable and ensure this isn't a sealed memfd. */
1344	if (file && is_shared_maywrite(vm_flags)) {
1345		int error = mapping_map_writable(file->f_mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346
 
 
 
 
1347		if (error)
1348			return error;
1349		writable_file_mapping = true;
1350	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351
1352	ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
1353
1354	/* Clear our write mapping regardless of error. */
1355	if (writable_file_mapping)
1356		mapping_unmap_writable(file->f_mapping);
1357
1358	validate_mm(current->mm);
1359	return ret;
1360}
1361
1362static int __vm_munmap(unsigned long start, size_t len, bool unlock)
1363{
1364	int ret;
1365	struct mm_struct *mm = current->mm;
1366	LIST_HEAD(uf);
1367	VMA_ITERATOR(vmi, mm, start);
1368
1369	if (mmap_write_lock_killable(mm))
1370		return -EINTR;
1371
1372	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
1373	if (ret || !unlock)
1374		mmap_write_unlock(mm);
1375
1376	userfaultfd_unmap_complete(mm, &uf);
1377	return ret;
1378}
1379
1380int vm_munmap(unsigned long start, size_t len)
1381{
1382	return __vm_munmap(start, len, false);
1383}
1384EXPORT_SYMBOL(vm_munmap);
1385
1386SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1387{
1388	addr = untagged_addr(addr);
1389	return __vm_munmap(addr, len, true);
1390}
1391
1392
1393/*
1394 * Emulation of deprecated remap_file_pages() syscall.
1395 */
1396SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
1397		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
1398{
1399
1400	struct mm_struct *mm = current->mm;
1401	struct vm_area_struct *vma;
1402	unsigned long populate = 0;
1403	unsigned long ret = -EINVAL;
1404	struct file *file;
1405	vm_flags_t vm_flags;
1406
1407	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
1408		     current->comm, current->pid);
1409
1410	if (prot)
1411		return ret;
1412	start = start & PAGE_MASK;
1413	size = size & PAGE_MASK;
1414
1415	if (start + size <= start)
1416		return ret;
1417
1418	/* Does pgoff wrap? */
1419	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
1420		return ret;
1421
1422	if (mmap_read_lock_killable(mm))
1423		return -EINTR;
1424
1425	/*
1426	 * Look up VMA under read lock first so we can perform the security
1427	 * without holding locks (which can be problematic). We reacquire a
1428	 * write lock later and check nothing changed underneath us.
1429	 */
1430	vma = vma_lookup(mm, start);
1431
1432	if (!vma || !(vma->vm_flags & VM_SHARED)) {
1433		mmap_read_unlock(mm);
1434		return -EINVAL;
1435	}
1436
1437	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
1438	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
1439	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
1440
1441	flags &= MAP_NONBLOCK;
1442	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
1443	if (vma->vm_flags & VM_LOCKED)
1444		flags |= MAP_LOCKED;
1445
1446	/* Save vm_flags used to calculate prot and flags, and recheck later. */
1447	vm_flags = vma->vm_flags;
1448	file = get_file(vma->vm_file);
1449
1450	mmap_read_unlock(mm);
1451
1452	/* Call outside mmap_lock to be consistent with other callers. */
1453	ret = security_mmap_file(file, prot, flags);
1454	if (ret) {
1455		fput(file);
1456		return ret;
1457	}
1458
1459	ret = -EINVAL;
1460
1461	/* OK security check passed, take write lock + let it rip. */
1462	if (mmap_write_lock_killable(mm)) {
1463		fput(file);
1464		return -EINTR;
1465	}
1466
1467	vma = vma_lookup(mm, start);
1468
1469	if (!vma)
1470		goto out;
1471
1472	/* Make sure things didn't change under us. */
1473	if (vma->vm_flags != vm_flags)
1474		goto out;
1475	if (vma->vm_file != file)
1476		goto out;
1477
1478	if (start + size > vma->vm_end) {
1479		VMA_ITERATOR(vmi, mm, vma->vm_end);
1480		struct vm_area_struct *next, *prev = vma;
1481
1482		for_each_vma_range(vmi, next, start + size) {
1483			/* hole between vmas ? */
1484			if (next->vm_start != prev->vm_end)
1485				goto out;
1486
1487			if (next->vm_file != vma->vm_file)
1488				goto out;
1489
1490			if (next->vm_flags != vma->vm_flags)
1491				goto out;
1492
1493			if (start + size <= next->vm_end)
1494				break;
1495
1496			prev = next;
1497		}
1498
1499		if (!next)
1500			goto out;
1501	}
1502
1503	ret = do_mmap(vma->vm_file, start, size,
1504			prot, flags, 0, pgoff, &populate, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505out:
1506	mmap_write_unlock(mm);
1507	fput(file);
1508	if (populate)
1509		mm_populate(ret, populate);
1510	if (!IS_ERR_VALUE(ret))
1511		ret = 0;
1512	return ret;
1513}
1514
 
 
 
 
 
 
 
 
 
 
1515/*
1516 * do_brk_flags() - Increase the brk vma if the flags match.
1517 * @vmi: The vma iterator
1518 * @addr: The start address
1519 * @len: The length of the increase
1520 * @vma: The vma,
1521 * @flags: The VMA Flags
1522 *
1523 * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
1524 * do not match then create a new anonymous VMA.  Eventually we may be able to
1525 * do some brk-specific accounting here.
1526 */
1527static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
1528		unsigned long addr, unsigned long len, unsigned long flags)
1529{
1530	struct mm_struct *mm = current->mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531
1532	/*
1533	 * Check against address space limits by the changed size
1534	 * Note: This happens *after* clearing old mappings in some code paths.
1535	 */
1536	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
 
 
 
 
 
 
1537	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
1538		return -ENOMEM;
1539
1540	if (mm->map_count > sysctl_max_map_count)
1541		return -ENOMEM;
1542
1543	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
1544		return -ENOMEM;
1545
 
 
 
 
 
 
1546	/*
1547	 * Expand the existing vma if possible; Note that singular lists do not
1548	 * occur after forking, so the expand will only happen on new VMAs.
1549	 */
1550	if (vma && vma->vm_end == addr) {
1551		VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
1552
1553		vmg.prev = vma;
1554		/* vmi is positioned at prev, which this mode expects. */
1555		vmg.merge_flags = VMG_FLAG_JUST_EXPAND;
1556
1557		if (vma_merge_new_range(&vmg))
1558			goto out;
1559		else if (vmg_nomem(&vmg))
1560			goto unacct_fail;
1561	}
1562
1563	if (vma)
1564		vma_iter_next_range(vmi);
1565	/* create a vma struct for an anonymous mapping */
1566	vma = vm_area_alloc(mm);
1567	if (!vma)
1568		goto unacct_fail;
1569
1570	vma_set_anonymous(vma);
1571	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
1572	vm_flags_init(vma, flags);
1573	vma->vm_page_prot = vm_get_page_prot(flags);
1574	vma_start_write(vma);
1575	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
1576		goto mas_store_fail;
1577
1578	mm->map_count++;
1579	validate_mm(mm);
1580	ksm_add_vma(vma);
1581out:
1582	perf_event_mmap(vma);
1583	mm->total_vm += len >> PAGE_SHIFT;
1584	mm->data_vm += len >> PAGE_SHIFT;
1585	if (flags & VM_LOCKED)
1586		mm->locked_vm += (len >> PAGE_SHIFT);
1587	vm_flags_set(vma, VM_SOFTDIRTY);
1588	return 0;
1589
1590mas_store_fail:
1591	vm_area_free(vma);
1592unacct_fail:
1593	vm_unacct_memory(len >> PAGE_SHIFT);
1594	return -ENOMEM;
1595}
1596
1597int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
1598{
1599	struct mm_struct *mm = current->mm;
1600	struct vm_area_struct *vma = NULL;
1601	unsigned long len;
1602	int ret;
1603	bool populate;
1604	LIST_HEAD(uf);
1605	VMA_ITERATOR(vmi, mm, addr);
1606
1607	len = PAGE_ALIGN(request);
1608	if (len < request)
1609		return -ENOMEM;
1610	if (!len)
1611		return 0;
1612
1613	/* Until we need other flags, refuse anything except VM_EXEC. */
1614	if ((flags & (~VM_EXEC)) != 0)
1615		return -EINVAL;
1616
1617	if (mmap_write_lock_killable(mm))
1618		return -EINTR;
1619
1620	ret = check_brk_limits(addr, len);
1621	if (ret)
1622		goto limits_failed;
1623
1624	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
1625	if (ret)
1626		goto munmap_failed;
1627
1628	vma = vma_prev(&vmi);
1629	ret = do_brk_flags(&vmi, vma, addr, len, flags);
1630	populate = ((mm->def_flags & VM_LOCKED) != 0);
1631	mmap_write_unlock(mm);
1632	userfaultfd_unmap_complete(mm, &uf);
1633	if (populate && !ret)
1634		mm_populate(addr, len);
1635	return ret;
1636
1637munmap_failed:
1638limits_failed:
1639	mmap_write_unlock(mm);
1640	return ret;
1641}
1642EXPORT_SYMBOL(vm_brk_flags);
1643
1644/* Release all mmaps. */
1645void exit_mmap(struct mm_struct *mm)
1646{
1647	struct mmu_gather tlb;
1648	struct vm_area_struct *vma;
1649	unsigned long nr_accounted = 0;
1650	VMA_ITERATOR(vmi, mm, 0);
1651	int count = 0;
1652
1653	/* mm's last user has gone, and its about to be pulled down */
1654	mmu_notifier_release(mm);
1655
1656	mmap_read_lock(mm);
 
 
 
 
 
 
 
 
1657	arch_exit_mmap(mm);
1658
1659	vma = vma_next(&vmi);
1660	if (!vma || unlikely(xa_is_zero(vma))) {
1661		/* Can happen if dup_mmap() received an OOM */
1662		mmap_read_unlock(mm);
1663		mmap_write_lock(mm);
1664		goto destroy;
1665	}
1666
1667	lru_add_drain();
1668	flush_cache_mm(mm);
1669	tlb_gather_mmu_fullmm(&tlb, mm);
1670	/* update_hiwater_rss(mm) here? but nobody should be looking */
1671	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
1672	unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
1673	mmap_read_unlock(mm);
1674
1675	/*
1676	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
1677	 * because the memory has been already freed.
1678	 */
1679	set_bit(MMF_OOM_SKIP, &mm->flags);
1680	mmap_write_lock(mm);
1681	mt_clear_in_rcu(&mm->mm_mt);
1682	vma_iter_set(&vmi, vma->vm_end);
1683	free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
1684		      USER_PGTABLES_CEILING, true);
1685	tlb_finish_mmu(&tlb);
1686
1687	/*
1688	 * Walk the list again, actually closing and freeing it, with preemption
1689	 * enabled, without holding any MM locks besides the unreachable
1690	 * mmap_write_lock.
1691	 */
1692	vma_iter_set(&vmi, vma->vm_end);
1693	do {
1694		if (vma->vm_flags & VM_ACCOUNT)
1695			nr_accounted += vma_pages(vma);
1696		remove_vma(vma, /* unreachable = */ true);
1697		count++;
1698		cond_resched();
1699		vma = vma_next(&vmi);
1700	} while (vma && likely(!xa_is_zero(vma)));
1701
1702	BUG_ON(count != mm->map_count);
1703
1704	trace_exit_mmap(mm);
1705destroy:
1706	__mt_destroy(&mm->mm_mt);
1707	mmap_write_unlock(mm);
1708	vm_unacct_memory(nr_accounted);
1709}
1710
1711/* Insert vm structure into process list sorted by address
1712 * and into the inode's i_mmap tree.  If vm_file is non-NULL
1713 * then i_mmap_rwsem is taken here.
1714 */
1715int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1716{
1717	unsigned long charged = vma_pages(vma);
 
1718
1719
1720	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
1721		return -ENOMEM;
1722
1723	if ((vma->vm_flags & VM_ACCOUNT) &&
1724	     security_vm_enough_memory_mm(mm, charged))
1725		return -ENOMEM;
1726
1727	/*
1728	 * The vm_pgoff of a purely anonymous vma should be irrelevant
1729	 * until its first write fault, when page's anon_vma and index
1730	 * are set.  But now set the vm_pgoff it will almost certainly
1731	 * end up with (unless mremap moves it elsewhere before that
1732	 * first wfault), so /proc/pid/maps tells a consistent story.
1733	 *
1734	 * By setting it to reflect the virtual start address of the
1735	 * vma, merges and splits can happen in a seamless way, just
1736	 * using the existing file pgoff checks and manipulations.
1737	 * Similarly in do_mmap and in do_brk_flags.
1738	 */
1739	if (vma_is_anonymous(vma)) {
1740		BUG_ON(vma->anon_vma);
1741		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1742	}
1743
1744	if (vma_link(mm, vma)) {
1745		if (vma->vm_flags & VM_ACCOUNT)
1746			vm_unacct_memory(charged);
1747		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1748	}
1749
1750	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751}
1752
1753/*
1754 * Return true if the calling process may expand its vm space by the passed
1755 * number of pages
1756 */
1757bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
1758{
1759	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
1760		return false;
1761
1762	if (is_data_mapping(flags) &&
1763	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
1764		/* Workaround for Valgrind */
1765		if (rlimit(RLIMIT_DATA) == 0 &&
1766		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
1767			return true;
1768
1769		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
1770			     current->comm, current->pid,
1771			     (mm->data_vm + npages) << PAGE_SHIFT,
1772			     rlimit(RLIMIT_DATA),
1773			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
1774
1775		if (!ignore_rlimit_data)
1776			return false;
1777	}
1778
1779	return true;
1780}
1781
1782void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
1783{
1784	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
1785
1786	if (is_exec_mapping(flags))
1787		mm->exec_vm += npages;
1788	else if (is_stack_mapping(flags))
1789		mm->stack_vm += npages;
1790	else if (is_data_mapping(flags))
1791		mm->data_vm += npages;
1792}
1793
1794static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
 
1795
1796/*
1797 * Close hook, called for unmap() and on the old vma for mremap().
1798 *
1799 * Having a close hook prevents vma merging regardless of flags.
1800 */
1801static void special_mapping_close(struct vm_area_struct *vma)
1802{
1803	const struct vm_special_mapping *sm = vma->vm_private_data;
1804
1805	if (sm->close)
1806		sm->close(sm, vma);
1807}
1808
1809static const char *special_mapping_name(struct vm_area_struct *vma)
1810{
1811	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
1812}
1813
1814static int special_mapping_mremap(struct vm_area_struct *new_vma)
1815{
1816	struct vm_special_mapping *sm = new_vma->vm_private_data;
1817
1818	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
1819		return -EFAULT;
1820
1821	if (sm->mremap)
1822		return sm->mremap(sm, new_vma);
1823
1824	return 0;
1825}
1826
1827static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
1828{
1829	/*
1830	 * Forbid splitting special mappings - kernel has expectations over
1831	 * the number of pages in mapping. Together with VM_DONTEXPAND
1832	 * the size of vma should stay the same over the special mapping's
1833	 * lifetime.
1834	 */
1835	return -EINVAL;
1836}
1837
1838static const struct vm_operations_struct special_mapping_vmops = {
1839	.close = special_mapping_close,
1840	.fault = special_mapping_fault,
1841	.mremap = special_mapping_mremap,
1842	.name = special_mapping_name,
1843	/* vDSO code relies that VVAR can't be accessed remotely */
1844	.access = NULL,
1845	.may_split = special_mapping_split,
1846};
1847
1848static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
 
 
 
 
 
 
1849{
1850	struct vm_area_struct *vma = vmf->vma;
1851	pgoff_t pgoff;
1852	struct page **pages;
1853	struct vm_special_mapping *sm = vma->vm_private_data;
1854
1855	if (sm->fault)
1856		return sm->fault(sm, vmf->vma, vmf);
 
 
 
 
 
1857
1858	pages = sm->pages;
 
1859
1860	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
1861		pgoff--;
1862
1863	if (*pages) {
1864		struct page *page = *pages;
1865		get_page(page);
1866		vmf->page = page;
1867		return 0;
1868	}
1869
1870	return VM_FAULT_SIGBUS;
1871}
1872
1873static struct vm_area_struct *__install_special_mapping(
1874	struct mm_struct *mm,
1875	unsigned long addr, unsigned long len,
1876	unsigned long vm_flags, void *priv,
1877	const struct vm_operations_struct *ops)
1878{
1879	int ret;
1880	struct vm_area_struct *vma;
1881
1882	vma = vm_area_alloc(mm);
1883	if (unlikely(vma == NULL))
1884		return ERR_PTR(-ENOMEM);
1885
1886	vma_set_range(vma, addr, addr + len, 0);
1887	vm_flags_init(vma, (vm_flags | mm->def_flags |
1888		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
 
 
 
1889	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1890
1891	vma->vm_ops = ops;
1892	vma->vm_private_data = priv;
1893
1894	ret = insert_vm_struct(mm, vma);
1895	if (ret)
1896		goto out;
1897
1898	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
1899
1900	perf_event_mmap(vma);
1901
1902	return vma;
1903
1904out:
1905	vm_area_free(vma);
1906	return ERR_PTR(ret);
1907}
1908
1909bool vma_is_special_mapping(const struct vm_area_struct *vma,
1910	const struct vm_special_mapping *sm)
1911{
1912	return vma->vm_private_data == sm &&
1913		vma->vm_ops == &special_mapping_vmops;
1914}
1915
1916/*
1917 * Called with mm->mmap_lock held for writing.
1918 * Insert a new vma covering the given region, with the given flags.
1919 * Its pages are supplied by the given array of struct page *.
1920 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
1921 * The region past the last page supplied will always produce SIGBUS.
1922 * The array pointer and the pages it points to are assumed to stay alive
1923 * for as long as this mapping might exist.
1924 */
1925struct vm_area_struct *_install_special_mapping(
1926	struct mm_struct *mm,
1927	unsigned long addr, unsigned long len,
1928	unsigned long vm_flags, const struct vm_special_mapping *spec)
1929{
1930	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
1931					&special_mapping_vmops);
1932}
1933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1934/*
1935 * initialise the percpu counter for VM
1936 */
1937void __init mmap_init(void)
1938{
1939	int ret;
1940
1941	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
1942	VM_BUG_ON(ret);
1943}
1944
1945/*
1946 * Initialise sysctl_user_reserve_kbytes.
1947 *
1948 * This is intended to prevent a user from starting a single memory hogging
1949 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1950 * mode.
1951 *
1952 * The default value is min(3% of free memory, 128MB)
1953 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1954 */
1955static int init_user_reserve(void)
1956{
1957	unsigned long free_kbytes;
1958
1959	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1960
1961	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
1962	return 0;
1963}
1964subsys_initcall(init_user_reserve);
1965
1966/*
1967 * Initialise sysctl_admin_reserve_kbytes.
1968 *
1969 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1970 * to log in and kill a memory hogging process.
1971 *
1972 * Systems with more than 256MB will reserve 8MB, enough to recover
1973 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1974 * only reserve 3% of free pages by default.
1975 */
1976static int init_admin_reserve(void)
1977{
1978	unsigned long free_kbytes;
1979
1980	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1981
1982	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
1983	return 0;
1984}
1985subsys_initcall(init_admin_reserve);
1986
1987/*
1988 * Reinititalise user and admin reserves if memory is added or removed.
1989 *
1990 * The default user reserve max is 128MB, and the default max for the
1991 * admin reserve is 8MB. These are usually, but not always, enough to
1992 * enable recovery from a memory hogging process using login/sshd, a shell,
1993 * and tools like top. It may make sense to increase or even disable the
1994 * reserve depending on the existence of swap or variations in the recovery
1995 * tools. So, the admin may have changed them.
1996 *
1997 * If memory is added and the reserves have been eliminated or increased above
1998 * the default max, then we'll trust the admin.
1999 *
2000 * If memory is removed and there isn't enough free memory, then we
2001 * need to reset the reserves.
2002 *
2003 * Otherwise keep the reserve set by the admin.
2004 */
2005static int reserve_mem_notifier(struct notifier_block *nb,
2006			     unsigned long action, void *data)
2007{
2008	unsigned long tmp, free_kbytes;
2009
2010	switch (action) {
2011	case MEM_ONLINE:
2012		/* Default max is 128MB. Leave alone if modified by operator. */
2013		tmp = sysctl_user_reserve_kbytes;
2014		if (tmp > 0 && tmp < SZ_128K)
2015			init_user_reserve();
2016
2017		/* Default max is 8MB.  Leave alone if modified by operator. */
2018		tmp = sysctl_admin_reserve_kbytes;
2019		if (tmp > 0 && tmp < SZ_8K)
2020			init_admin_reserve();
2021
2022		break;
2023	case MEM_OFFLINE:
2024		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2025
2026		if (sysctl_user_reserve_kbytes > free_kbytes) {
2027			init_user_reserve();
2028			pr_info("vm.user_reserve_kbytes reset to %lu\n",
2029				sysctl_user_reserve_kbytes);
2030		}
2031
2032		if (sysctl_admin_reserve_kbytes > free_kbytes) {
2033			init_admin_reserve();
2034			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
2035				sysctl_admin_reserve_kbytes);
2036		}
2037		break;
2038	default:
2039		break;
2040	}
2041	return NOTIFY_OK;
2042}
2043
 
 
 
 
2044static int __meminit init_reserve_notifier(void)
2045{
2046	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
2047		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
2048
2049	return 0;
2050}
2051subsys_initcall(init_reserve_notifier);
2052
2053/*
2054 * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between
2055 * this VMA and its relocated range, which will now reside at [vma->vm_start -
2056 * shift, vma->vm_end - shift).
2057 *
2058 * This function is almost certainly NOT what you want for anything other than
2059 * early executable temporary stack relocation.
2060 */
2061int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift)
2062{
2063	/*
2064	 * The process proceeds as follows:
2065	 *
2066	 * 1) Use shift to calculate the new vma endpoints.
2067	 * 2) Extend vma to cover both the old and new ranges.  This ensures the
2068	 *    arguments passed to subsequent functions are consistent.
2069	 * 3) Move vma's page tables to the new range.
2070	 * 4) Free up any cleared pgd range.
2071	 * 5) Shrink the vma to cover only the new range.
2072	 */
2073
2074	struct mm_struct *mm = vma->vm_mm;
2075	unsigned long old_start = vma->vm_start;
2076	unsigned long old_end = vma->vm_end;
2077	unsigned long length = old_end - old_start;
2078	unsigned long new_start = old_start - shift;
2079	unsigned long new_end = old_end - shift;
2080	VMA_ITERATOR(vmi, mm, new_start);
2081	VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff);
2082	struct vm_area_struct *next;
2083	struct mmu_gather tlb;
2084
2085	BUG_ON(new_start > new_end);
2086
2087	/*
2088	 * ensure there are no vmas between where we want to go
2089	 * and where we are
2090	 */
2091	if (vma != vma_next(&vmi))
2092		return -EFAULT;
2093
2094	vma_iter_prev_range(&vmi);
2095	/*
2096	 * cover the whole range: [new_start, old_end)
2097	 */
2098	vmg.vma = vma;
2099	if (vma_expand(&vmg))
2100		return -ENOMEM;
2101
2102	/*
2103	 * move the page tables downwards, on failure we rely on
2104	 * process cleanup to remove whatever mess we made.
2105	 */
2106	if (length != move_page_tables(vma, old_start,
2107				       vma, new_start, length, false, true))
2108		return -ENOMEM;
2109
2110	lru_add_drain();
2111	tlb_gather_mmu(&tlb, mm);
2112	next = vma_next(&vmi);
2113	if (new_end > old_start) {
2114		/*
2115		 * when the old and new regions overlap clear from new_end.
2116		 */
2117		free_pgd_range(&tlb, new_end, old_end, new_end,
2118			next ? next->vm_start : USER_PGTABLES_CEILING);
2119	} else {
2120		/*
2121		 * otherwise, clean from old_start; this is done to not touch
2122		 * the address space in [new_end, old_start) some architectures
2123		 * have constraints on va-space that make this illegal (IA64) -
2124		 * for the others its just a little faster.
2125		 */
2126		free_pgd_range(&tlb, old_start, old_end, new_end,
2127			next ? next->vm_start : USER_PGTABLES_CEILING);
2128	}
2129	tlb_finish_mmu(&tlb);
2130
2131	vma_prev(&vmi);
2132	/* Shrink the vma to just the new range */
2133	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
2134}