Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/slab.h>
  13#include <linux/backing-dev.h>
  14#include <linux/mm.h>
  15#include <linux/vmacache.h>
  16#include <linux/shm.h>
  17#include <linux/mman.h>
  18#include <linux/pagemap.h>
  19#include <linux/swap.h>
  20#include <linux/syscalls.h>
  21#include <linux/capability.h>
  22#include <linux/init.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/hugetlb.h>
  28#include <linux/profile.h>
  29#include <linux/export.h>
  30#include <linux/mount.h>
  31#include <linux/mempolicy.h>
  32#include <linux/rmap.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/mmdebug.h>
  35#include <linux/perf_event.h>
  36#include <linux/audit.h>
  37#include <linux/khugepaged.h>
  38#include <linux/uprobes.h>
  39#include <linux/rbtree_augmented.h>
 
  40#include <linux/notifier.h>
  41#include <linux/memory.h>
  42#include <linux/printk.h>
  43#include <linux/userfaultfd_k.h>
  44#include <linux/moduleparam.h>
  45#include <linux/pkeys.h>
  46
  47#include <asm/uaccess.h>
  48#include <asm/cacheflush.h>
  49#include <asm/tlb.h>
  50#include <asm/mmu_context.h>
  51
  52#include "internal.h"
  53
  54#ifndef arch_mmap_check
  55#define arch_mmap_check(addr, len, flags)	(0)
  56#endif
  57
  58#ifndef arch_rebalance_pgtables
  59#define arch_rebalance_pgtables(addr, len)		(addr)
  60#endif
  61
  62#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  63const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  64const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  65int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  66#endif
  67#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  68const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  69const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  70int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  71#endif
  72
  73static bool ignore_rlimit_data = true;
  74core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  75
  76static void unmap_region(struct mm_struct *mm,
  77		struct vm_area_struct *vma, struct vm_area_struct *prev,
  78		unsigned long start, unsigned long end);
  79
  80/* description of effects of mapping type and prot in current implementation.
  81 * this is due to the limited x86 page protection hardware.  The expected
  82 * behavior is in parens:
  83 *
  84 * map_type	prot
  85 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  86 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  87 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  88 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  89 *
  90 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  91 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  92 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  93 *
  94 */
  95pgprot_t protection_map[16] = {
  96	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  97	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  98};
  99
 100pgprot_t vm_get_page_prot(unsigned long vm_flags)
 101{
 102	return __pgprot(pgprot_val(protection_map[vm_flags &
 103				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 104			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 105}
 106EXPORT_SYMBOL(vm_get_page_prot);
 107
 108static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109{
 110	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 111}
 
 112
 113/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 114void vma_set_page_prot(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115{
 116	unsigned long vm_flags = vma->vm_flags;
 117
 118	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 119	if (vma_wants_writenotify(vma)) {
 120		vm_flags &= ~VM_SHARED;
 121		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
 122						     vm_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123	}
 
 
 
 
 
 
 
 124}
 125
 126/*
 127 * Requires inode->i_mapping->i_mmap_rwsem
 128 */
 129static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 130		struct file *file, struct address_space *mapping)
 131{
 132	if (vma->vm_flags & VM_DENYWRITE)
 133		atomic_inc(&file_inode(file)->i_writecount);
 134	if (vma->vm_flags & VM_SHARED)
 135		mapping_unmap_writable(mapping);
 136
 137	flush_dcache_mmap_lock(mapping);
 138	vma_interval_tree_remove(vma, &mapping->i_mmap);
 
 
 
 139	flush_dcache_mmap_unlock(mapping);
 140}
 141
 142/*
 143 * Unlink a file-based vm structure from its interval tree, to hide
 144 * vma from rmap and vmtruncate before freeing its page tables.
 145 */
 146void unlink_file_vma(struct vm_area_struct *vma)
 147{
 148	struct file *file = vma->vm_file;
 149
 150	if (file) {
 151		struct address_space *mapping = file->f_mapping;
 152		i_mmap_lock_write(mapping);
 153		__remove_shared_vm_struct(vma, file, mapping);
 154		i_mmap_unlock_write(mapping);
 155	}
 156}
 157
 158/*
 159 * Close a vm structure and free it, returning the next.
 160 */
 161static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 162{
 163	struct vm_area_struct *next = vma->vm_next;
 164
 165	might_sleep();
 166	if (vma->vm_ops && vma->vm_ops->close)
 167		vma->vm_ops->close(vma);
 168	if (vma->vm_file)
 169		fput(vma->vm_file);
 170	mpol_put(vma_policy(vma));
 171	kmem_cache_free(vm_area_cachep, vma);
 172	return next;
 173}
 174
 175static unsigned long do_brk(unsigned long addr, unsigned long len);
 176
 177SYSCALL_DEFINE1(brk, unsigned long, brk)
 178{
 179	unsigned long retval;
 180	unsigned long newbrk, oldbrk;
 181	struct mm_struct *mm = current->mm;
 182	unsigned long min_brk;
 183	bool populate;
 184
 185	down_write(&mm->mmap_sem);
 186
 187#ifdef CONFIG_COMPAT_BRK
 188	/*
 189	 * CONFIG_COMPAT_BRK can still be overridden by setting
 190	 * randomize_va_space to 2, which will still cause mm->start_brk
 191	 * to be arbitrarily shifted
 192	 */
 193	if (current->brk_randomized)
 194		min_brk = mm->start_brk;
 195	else
 196		min_brk = mm->end_data;
 197#else
 198	min_brk = mm->start_brk;
 199#endif
 200	if (brk < min_brk)
 201		goto out;
 202
 203	/*
 204	 * Check against rlimit here. If this check is done later after the test
 205	 * of oldbrk with newbrk then it can escape the test and let the data
 206	 * segment grow beyond its set limit the in case where the limit is
 207	 * not page aligned -Ram Gupta
 208	 */
 209	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 210			      mm->end_data, mm->start_data))
 
 211		goto out;
 212
 213	newbrk = PAGE_ALIGN(brk);
 214	oldbrk = PAGE_ALIGN(mm->brk);
 215	if (oldbrk == newbrk)
 216		goto set_brk;
 217
 218	/* Always allow shrinking brk. */
 219	if (brk <= mm->brk) {
 220		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 221			goto set_brk;
 222		goto out;
 223	}
 224
 225	/* Check against existing mmap mappings. */
 226	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 227		goto out;
 228
 229	/* Ok, looks good - let it rip. */
 230	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 231		goto out;
 232
 233set_brk:
 234	mm->brk = brk;
 235	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 236	up_write(&mm->mmap_sem);
 237	if (populate)
 238		mm_populate(oldbrk, newbrk - oldbrk);
 239	return brk;
 240
 241out:
 242	retval = mm->brk;
 243	up_write(&mm->mmap_sem);
 244	return retval;
 245}
 246
 247static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 248{
 249	unsigned long max, subtree_gap;
 250	max = vma->vm_start;
 251	if (vma->vm_prev)
 252		max -= vma->vm_prev->vm_end;
 253	if (vma->vm_rb.rb_left) {
 254		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 255				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 256		if (subtree_gap > max)
 257			max = subtree_gap;
 258	}
 259	if (vma->vm_rb.rb_right) {
 260		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 261				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 262		if (subtree_gap > max)
 263			max = subtree_gap;
 264	}
 265	return max;
 266}
 267
 268#ifdef CONFIG_DEBUG_VM_RB
 269static int browse_rb(struct mm_struct *mm)
 270{
 271	struct rb_root *root = &mm->mm_rb;
 272	int i = 0, j, bug = 0;
 273	struct rb_node *nd, *pn = NULL;
 274	unsigned long prev = 0, pend = 0;
 275
 276	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 277		struct vm_area_struct *vma;
 278		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 279		if (vma->vm_start < prev) {
 280			pr_emerg("vm_start %lx < prev %lx\n",
 281				  vma->vm_start, prev);
 282			bug = 1;
 283		}
 284		if (vma->vm_start < pend) {
 285			pr_emerg("vm_start %lx < pend %lx\n",
 286				  vma->vm_start, pend);
 287			bug = 1;
 288		}
 289		if (vma->vm_start > vma->vm_end) {
 290			pr_emerg("vm_start %lx > vm_end %lx\n",
 291				  vma->vm_start, vma->vm_end);
 292			bug = 1;
 293		}
 294		spin_lock(&mm->page_table_lock);
 295		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 296			pr_emerg("free gap %lx, correct %lx\n",
 297			       vma->rb_subtree_gap,
 298			       vma_compute_subtree_gap(vma));
 299			bug = 1;
 300		}
 301		spin_unlock(&mm->page_table_lock);
 302		i++;
 303		pn = nd;
 304		prev = vma->vm_start;
 305		pend = vma->vm_end;
 306	}
 307	j = 0;
 308	for (nd = pn; nd; nd = rb_prev(nd))
 309		j++;
 310	if (i != j) {
 311		pr_emerg("backwards %d, forwards %d\n", j, i);
 312		bug = 1;
 313	}
 314	return bug ? -1 : i;
 315}
 316
 317static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 318{
 319	struct rb_node *nd;
 320
 321	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 322		struct vm_area_struct *vma;
 323		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 324		VM_BUG_ON_VMA(vma != ignore &&
 325			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 326			vma);
 327	}
 328}
 329
 330static void validate_mm(struct mm_struct *mm)
 331{
 332	int bug = 0;
 333	int i = 0;
 334	unsigned long highest_address = 0;
 335	struct vm_area_struct *vma = mm->mmap;
 336
 337	while (vma) {
 338		struct anon_vma *anon_vma = vma->anon_vma;
 339		struct anon_vma_chain *avc;
 340
 341		if (anon_vma) {
 342			anon_vma_lock_read(anon_vma);
 343			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 344				anon_vma_interval_tree_verify(avc);
 345			anon_vma_unlock_read(anon_vma);
 346		}
 347
 348		highest_address = vma->vm_end;
 349		vma = vma->vm_next;
 350		i++;
 351	}
 352	if (i != mm->map_count) {
 353		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 354		bug = 1;
 355	}
 356	if (highest_address != mm->highest_vm_end) {
 357		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 358			  mm->highest_vm_end, highest_address);
 359		bug = 1;
 360	}
 361	i = browse_rb(mm);
 362	if (i != mm->map_count) {
 363		if (i != -1)
 364			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 365		bug = 1;
 366	}
 367	VM_BUG_ON_MM(bug, mm);
 368}
 369#else
 370#define validate_mm_rb(root, ignore) do { } while (0)
 371#define validate_mm(mm) do { } while (0)
 372#endif
 373
 374RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 375		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 376
 377/*
 378 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 379 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 380 * in the rbtree.
 381 */
 382static void vma_gap_update(struct vm_area_struct *vma)
 383{
 384	/*
 385	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 386	 * function that does exacltly what we want.
 387	 */
 388	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 389}
 390
 391static inline void vma_rb_insert(struct vm_area_struct *vma,
 392				 struct rb_root *root)
 393{
 394	/* All rb_subtree_gap values must be consistent prior to insertion */
 395	validate_mm_rb(root, NULL);
 396
 397	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 398}
 399
 400static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 401{
 402	/*
 403	 * All rb_subtree_gap values must be consistent prior to erase,
 404	 * with the possible exception of the vma being erased.
 405	 */
 406	validate_mm_rb(root, vma);
 407
 408	/*
 409	 * Note rb_erase_augmented is a fairly large inline function,
 410	 * so make sure we instantiate it only once with our desired
 411	 * augmented rbtree callbacks.
 412	 */
 413	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 414}
 415
 416/*
 417 * vma has some anon_vma assigned, and is already inserted on that
 418 * anon_vma's interval trees.
 419 *
 420 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 421 * vma must be removed from the anon_vma's interval trees using
 422 * anon_vma_interval_tree_pre_update_vma().
 423 *
 424 * After the update, the vma will be reinserted using
 425 * anon_vma_interval_tree_post_update_vma().
 426 *
 427 * The entire update must be protected by exclusive mmap_sem and by
 428 * the root anon_vma's mutex.
 429 */
 430static inline void
 431anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 432{
 433	struct anon_vma_chain *avc;
 434
 435	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 436		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 437}
 438
 439static inline void
 440anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 441{
 442	struct anon_vma_chain *avc;
 443
 444	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 445		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 446}
 447
 448static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 449		unsigned long end, struct vm_area_struct **pprev,
 450		struct rb_node ***rb_link, struct rb_node **rb_parent)
 451{
 452	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 453
 454	__rb_link = &mm->mm_rb.rb_node;
 455	rb_prev = __rb_parent = NULL;
 456
 457	while (*__rb_link) {
 458		struct vm_area_struct *vma_tmp;
 459
 460		__rb_parent = *__rb_link;
 461		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 462
 463		if (vma_tmp->vm_end > addr) {
 464			/* Fail if an existing vma overlaps the area */
 465			if (vma_tmp->vm_start < end)
 466				return -ENOMEM;
 467			__rb_link = &__rb_parent->rb_left;
 468		} else {
 469			rb_prev = __rb_parent;
 470			__rb_link = &__rb_parent->rb_right;
 471		}
 472	}
 473
 474	*pprev = NULL;
 475	if (rb_prev)
 476		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 477	*rb_link = __rb_link;
 478	*rb_parent = __rb_parent;
 479	return 0;
 480}
 481
 482static unsigned long count_vma_pages_range(struct mm_struct *mm,
 483		unsigned long addr, unsigned long end)
 484{
 485	unsigned long nr_pages = 0;
 486	struct vm_area_struct *vma;
 487
 488	/* Find first overlaping mapping */
 489	vma = find_vma_intersection(mm, addr, end);
 490	if (!vma)
 491		return 0;
 492
 493	nr_pages = (min(end, vma->vm_end) -
 494		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 495
 496	/* Iterate over the rest of the overlaps */
 497	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 498		unsigned long overlap_len;
 499
 500		if (vma->vm_start > end)
 501			break;
 502
 503		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 504		nr_pages += overlap_len >> PAGE_SHIFT;
 505	}
 506
 507	return nr_pages;
 508}
 509
 510void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 511		struct rb_node **rb_link, struct rb_node *rb_parent)
 512{
 513	/* Update tracking information for the gap following the new vma. */
 514	if (vma->vm_next)
 515		vma_gap_update(vma->vm_next);
 516	else
 517		mm->highest_vm_end = vma->vm_end;
 518
 519	/*
 520	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 521	 * correct insertion point for that vma. As a result, we could not
 522	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 523	 * So, we first insert the vma with a zero rb_subtree_gap value
 524	 * (to be consistent with what we did on the way down), and then
 525	 * immediately update the gap to the correct value. Finally we
 526	 * rebalance the rbtree after all augmented values have been set.
 527	 */
 528	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 529	vma->rb_subtree_gap = 0;
 530	vma_gap_update(vma);
 531	vma_rb_insert(vma, &mm->mm_rb);
 532}
 533
 534static void __vma_link_file(struct vm_area_struct *vma)
 535{
 536	struct file *file;
 537
 538	file = vma->vm_file;
 539	if (file) {
 540		struct address_space *mapping = file->f_mapping;
 541
 542		if (vma->vm_flags & VM_DENYWRITE)
 543			atomic_dec(&file_inode(file)->i_writecount);
 544		if (vma->vm_flags & VM_SHARED)
 545			atomic_inc(&mapping->i_mmap_writable);
 546
 547		flush_dcache_mmap_lock(mapping);
 548		vma_interval_tree_insert(vma, &mapping->i_mmap);
 
 
 
 549		flush_dcache_mmap_unlock(mapping);
 550	}
 551}
 552
 553static void
 554__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 555	struct vm_area_struct *prev, struct rb_node **rb_link,
 556	struct rb_node *rb_parent)
 557{
 558	__vma_link_list(mm, vma, prev, rb_parent);
 559	__vma_link_rb(mm, vma, rb_link, rb_parent);
 560}
 561
 562static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 563			struct vm_area_struct *prev, struct rb_node **rb_link,
 564			struct rb_node *rb_parent)
 565{
 566	struct address_space *mapping = NULL;
 567
 568	if (vma->vm_file) {
 569		mapping = vma->vm_file->f_mapping;
 570		i_mmap_lock_write(mapping);
 571	}
 
 572
 573	__vma_link(mm, vma, prev, rb_link, rb_parent);
 574	__vma_link_file(vma);
 575
 576	if (mapping)
 577		i_mmap_unlock_write(mapping);
 578
 579	mm->map_count++;
 580	validate_mm(mm);
 581}
 582
 583/*
 584 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 585 * mm's list and rbtree.  It has already been inserted into the interval tree.
 586 */
 587static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 588{
 589	struct vm_area_struct *prev;
 590	struct rb_node **rb_link, *rb_parent;
 591
 592	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 593			   &prev, &rb_link, &rb_parent))
 594		BUG();
 595	__vma_link(mm, vma, prev, rb_link, rb_parent);
 596	mm->map_count++;
 597}
 598
 599static inline void
 600__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 601		struct vm_area_struct *prev)
 602{
 603	struct vm_area_struct *next;
 604
 605	vma_rb_erase(vma, &mm->mm_rb);
 606	prev->vm_next = next = vma->vm_next;
 607	if (next)
 608		next->vm_prev = prev;
 609
 610	/* Kill the cache */
 611	vmacache_invalidate(mm);
 612}
 613
 614/*
 615 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 616 * is already present in an i_mmap tree without adjusting the tree.
 617 * The following helper function should be used when such adjustments
 618 * are necessary.  The "insert" vma (if any) is to be inserted
 619 * before we drop the necessary locks.
 620 */
 621int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 622	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 623{
 624	struct mm_struct *mm = vma->vm_mm;
 625	struct vm_area_struct *next = vma->vm_next;
 626	struct vm_area_struct *importer = NULL;
 627	struct address_space *mapping = NULL;
 628	struct rb_root *root = NULL;
 629	struct anon_vma *anon_vma = NULL;
 630	struct file *file = vma->vm_file;
 631	bool start_changed = false, end_changed = false;
 632	long adjust_next = 0;
 633	int remove_next = 0;
 634
 635	if (next && !insert) {
 636		struct vm_area_struct *exporter = NULL;
 637
 638		if (end >= next->vm_end) {
 639			/*
 640			 * vma expands, overlapping all the next, and
 641			 * perhaps the one after too (mprotect case 6).
 642			 */
 643again:			remove_next = 1 + (end > next->vm_end);
 644			end = next->vm_end;
 645			exporter = next;
 646			importer = vma;
 647		} else if (end > next->vm_start) {
 648			/*
 649			 * vma expands, overlapping part of the next:
 650			 * mprotect case 5 shifting the boundary up.
 651			 */
 652			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 653			exporter = next;
 654			importer = vma;
 655		} else if (end < vma->vm_end) {
 656			/*
 657			 * vma shrinks, and !insert tells it's not
 658			 * split_vma inserting another: so it must be
 659			 * mprotect case 4 shifting the boundary down.
 660			 */
 661			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 662			exporter = vma;
 663			importer = next;
 664		}
 665
 666		/*
 667		 * Easily overlooked: when mprotect shifts the boundary,
 668		 * make sure the expanding vma has anon_vma set if the
 669		 * shrinking vma had, to cover any anon pages imported.
 670		 */
 671		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 672			int error;
 673
 674			importer->anon_vma = exporter->anon_vma;
 675			error = anon_vma_clone(importer, exporter);
 676			if (error)
 677				return error;
 678		}
 679	}
 680
 681	if (file) {
 682		mapping = file->f_mapping;
 683		root = &mapping->i_mmap;
 684		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 
 685
 686		if (adjust_next)
 687			uprobe_munmap(next, next->vm_start, next->vm_end);
 
 
 688
 689		i_mmap_lock_write(mapping);
 690		if (insert) {
 691			/*
 692			 * Put into interval tree now, so instantiated pages
 693			 * are visible to arm/parisc __flush_dcache_page
 694			 * throughout; but we cannot insert into address
 695			 * space until vma start or end is updated.
 696			 */
 697			__vma_link_file(insert);
 698		}
 699	}
 700
 701	vma_adjust_trans_huge(vma, start, end, adjust_next);
 702
 703	anon_vma = vma->anon_vma;
 704	if (!anon_vma && adjust_next)
 705		anon_vma = next->anon_vma;
 706	if (anon_vma) {
 707		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
 708			  anon_vma != next->anon_vma, next);
 709		anon_vma_lock_write(anon_vma);
 710		anon_vma_interval_tree_pre_update_vma(vma);
 711		if (adjust_next)
 712			anon_vma_interval_tree_pre_update_vma(next);
 713	}
 714
 715	if (root) {
 716		flush_dcache_mmap_lock(mapping);
 717		vma_interval_tree_remove(vma, root);
 718		if (adjust_next)
 719			vma_interval_tree_remove(next, root);
 720	}
 721
 722	if (start != vma->vm_start) {
 723		vma->vm_start = start;
 724		start_changed = true;
 725	}
 726	if (end != vma->vm_end) {
 727		vma->vm_end = end;
 728		end_changed = true;
 729	}
 730	vma->vm_pgoff = pgoff;
 731	if (adjust_next) {
 732		next->vm_start += adjust_next << PAGE_SHIFT;
 733		next->vm_pgoff += adjust_next;
 734	}
 735
 736	if (root) {
 737		if (adjust_next)
 738			vma_interval_tree_insert(next, root);
 739		vma_interval_tree_insert(vma, root);
 740		flush_dcache_mmap_unlock(mapping);
 741	}
 742
 743	if (remove_next) {
 744		/*
 745		 * vma_merge has merged next into vma, and needs
 746		 * us to remove next before dropping the locks.
 747		 */
 748		__vma_unlink(mm, next, vma);
 749		if (file)
 750			__remove_shared_vm_struct(next, file, mapping);
 751	} else if (insert) {
 752		/*
 753		 * split_vma has split insert from vma, and needs
 754		 * us to insert it before dropping the locks
 755		 * (it may either follow vma or precede it).
 756		 */
 757		__insert_vm_struct(mm, insert);
 758	} else {
 759		if (start_changed)
 760			vma_gap_update(vma);
 761		if (end_changed) {
 762			if (!next)
 763				mm->highest_vm_end = end;
 764			else if (!adjust_next)
 765				vma_gap_update(next);
 766		}
 767	}
 768
 769	if (anon_vma) {
 770		anon_vma_interval_tree_post_update_vma(vma);
 771		if (adjust_next)
 772			anon_vma_interval_tree_post_update_vma(next);
 773		anon_vma_unlock_write(anon_vma);
 774	}
 775	if (mapping)
 776		i_mmap_unlock_write(mapping);
 777
 778	if (root) {
 779		uprobe_mmap(vma);
 780
 781		if (adjust_next)
 782			uprobe_mmap(next);
 783	}
 784
 785	if (remove_next) {
 786		if (file) {
 787			uprobe_munmap(next, next->vm_start, next->vm_end);
 788			fput(file);
 789		}
 790		if (next->anon_vma)
 791			anon_vma_merge(vma, next);
 792		mm->map_count--;
 793		mpol_put(vma_policy(next));
 794		kmem_cache_free(vm_area_cachep, next);
 795		/*
 796		 * In mprotect's case 6 (see comments on vma_merge),
 797		 * we must remove another next too. It would clutter
 798		 * up the code too much to do both in one go.
 799		 */
 800		next = vma->vm_next;
 801		if (remove_next == 2)
 802			goto again;
 803		else if (next)
 804			vma_gap_update(next);
 805		else
 806			mm->highest_vm_end = end;
 807	}
 808	if (insert && file)
 809		uprobe_mmap(insert);
 810
 811	validate_mm(mm);
 812
 813	return 0;
 814}
 815
 816/*
 817 * If the vma has a ->close operation then the driver probably needs to release
 818 * per-vma resources, so we don't attempt to merge those.
 819 */
 820static inline int is_mergeable_vma(struct vm_area_struct *vma,
 821				struct file *file, unsigned long vm_flags,
 822				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 823{
 824	/*
 825	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 826	 * match the flags but dirty bit -- the caller should mark
 827	 * merged VMA as dirty. If dirty bit won't be excluded from
 828	 * comparison, we increase pressue on the memory system forcing
 829	 * the kernel to generate new VMAs when old one could be
 830	 * extended instead.
 831	 */
 832	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 833		return 0;
 834	if (vma->vm_file != file)
 835		return 0;
 836	if (vma->vm_ops && vma->vm_ops->close)
 837		return 0;
 838	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
 839		return 0;
 840	return 1;
 841}
 842
 843static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 844					struct anon_vma *anon_vma2,
 845					struct vm_area_struct *vma)
 846{
 847	/*
 848	 * The list_is_singular() test is to avoid merging VMA cloned from
 849	 * parents. This can improve scalability caused by anon_vma lock.
 850	 */
 851	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 852		list_is_singular(&vma->anon_vma_chain)))
 853		return 1;
 854	return anon_vma1 == anon_vma2;
 855}
 856
 857/*
 858 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 859 * in front of (at a lower virtual address and file offset than) the vma.
 860 *
 861 * We cannot merge two vmas if they have differently assigned (non-NULL)
 862 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 863 *
 864 * We don't check here for the merged mmap wrapping around the end of pagecache
 865 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 866 * wrap, nor mmaps which cover the final page at index -1UL.
 867 */
 868static int
 869can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 870		     struct anon_vma *anon_vma, struct file *file,
 871		     pgoff_t vm_pgoff,
 872		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 873{
 874	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
 875	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 876		if (vma->vm_pgoff == vm_pgoff)
 877			return 1;
 878	}
 879	return 0;
 880}
 881
 882/*
 883 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 884 * beyond (at a higher virtual address and file offset than) the vma.
 885 *
 886 * We cannot merge two vmas if they have differently assigned (non-NULL)
 887 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 888 */
 889static int
 890can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 891		    struct anon_vma *anon_vma, struct file *file,
 892		    pgoff_t vm_pgoff,
 893		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 894{
 895	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
 896	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 897		pgoff_t vm_pglen;
 898		vm_pglen = vma_pages(vma);
 899		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 900			return 1;
 901	}
 902	return 0;
 903}
 904
 905/*
 906 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 907 * whether that can be merged with its predecessor or its successor.
 908 * Or both (it neatly fills a hole).
 909 *
 910 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 911 * certain not to be mapped by the time vma_merge is called; but when
 912 * called for mprotect, it is certain to be already mapped (either at
 913 * an offset within prev, or at the start of next), and the flags of
 914 * this area are about to be changed to vm_flags - and the no-change
 915 * case has already been eliminated.
 916 *
 917 * The following mprotect cases have to be considered, where AAAA is
 918 * the area passed down from mprotect_fixup, never extending beyond one
 919 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 920 *
 921 *     AAAA             AAAA                AAAA          AAAA
 922 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 923 *    cannot merge    might become    might become    might become
 924 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 925 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 926 *    mremap move:                                    PPPPNNNNNNNN 8
 927 *        AAAA
 928 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 929 *    might become    case 1 below    case 2 below    case 3 below
 930 *
 931 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
 932 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
 933 */
 934struct vm_area_struct *vma_merge(struct mm_struct *mm,
 935			struct vm_area_struct *prev, unsigned long addr,
 936			unsigned long end, unsigned long vm_flags,
 937			struct anon_vma *anon_vma, struct file *file,
 938			pgoff_t pgoff, struct mempolicy *policy,
 939			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 940{
 941	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 942	struct vm_area_struct *area, *next;
 943	int err;
 944
 945	/*
 946	 * We later require that vma->vm_flags == vm_flags,
 947	 * so this tests vma->vm_flags & VM_SPECIAL, too.
 948	 */
 949	if (vm_flags & VM_SPECIAL)
 950		return NULL;
 951
 952	if (prev)
 953		next = prev->vm_next;
 954	else
 955		next = mm->mmap;
 956	area = next;
 957	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
 958		next = next->vm_next;
 959
 960	/*
 961	 * Can it merge with the predecessor?
 962	 */
 963	if (prev && prev->vm_end == addr &&
 964			mpol_equal(vma_policy(prev), policy) &&
 965			can_vma_merge_after(prev, vm_flags,
 966					    anon_vma, file, pgoff,
 967					    vm_userfaultfd_ctx)) {
 968		/*
 969		 * OK, it can.  Can we now merge in the successor as well?
 970		 */
 971		if (next && end == next->vm_start &&
 972				mpol_equal(policy, vma_policy(next)) &&
 973				can_vma_merge_before(next, vm_flags,
 974						     anon_vma, file,
 975						     pgoff+pglen,
 976						     vm_userfaultfd_ctx) &&
 977				is_mergeable_anon_vma(prev->anon_vma,
 978						      next->anon_vma, NULL)) {
 979							/* cases 1, 6 */
 980			err = vma_adjust(prev, prev->vm_start,
 981				next->vm_end, prev->vm_pgoff, NULL);
 982		} else					/* cases 2, 5, 7 */
 983			err = vma_adjust(prev, prev->vm_start,
 984				end, prev->vm_pgoff, NULL);
 985		if (err)
 986			return NULL;
 987		khugepaged_enter_vma_merge(prev, vm_flags);
 988		return prev;
 989	}
 990
 991	/*
 992	 * Can this new request be merged in front of next?
 993	 */
 994	if (next && end == next->vm_start &&
 995			mpol_equal(policy, vma_policy(next)) &&
 996			can_vma_merge_before(next, vm_flags,
 997					     anon_vma, file, pgoff+pglen,
 998					     vm_userfaultfd_ctx)) {
 999		if (prev && addr < prev->vm_end)	/* case 4 */
1000			err = vma_adjust(prev, prev->vm_start,
1001				addr, prev->vm_pgoff, NULL);
1002		else					/* cases 3, 8 */
1003			err = vma_adjust(area, addr, next->vm_end,
1004				next->vm_pgoff - pglen, NULL);
1005		if (err)
1006			return NULL;
1007		khugepaged_enter_vma_merge(area, vm_flags);
1008		return area;
1009	}
1010
1011	return NULL;
1012}
1013
1014/*
1015 * Rough compatbility check to quickly see if it's even worth looking
1016 * at sharing an anon_vma.
1017 *
1018 * They need to have the same vm_file, and the flags can only differ
1019 * in things that mprotect may change.
1020 *
1021 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1022 * we can merge the two vma's. For example, we refuse to merge a vma if
1023 * there is a vm_ops->close() function, because that indicates that the
1024 * driver is doing some kind of reference counting. But that doesn't
1025 * really matter for the anon_vma sharing case.
1026 */
1027static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1028{
1029	return a->vm_end == b->vm_start &&
1030		mpol_equal(vma_policy(a), vma_policy(b)) &&
1031		a->vm_file == b->vm_file &&
1032		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1033		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1034}
1035
1036/*
1037 * Do some basic sanity checking to see if we can re-use the anon_vma
1038 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1039 * the same as 'old', the other will be the new one that is trying
1040 * to share the anon_vma.
1041 *
1042 * NOTE! This runs with mm_sem held for reading, so it is possible that
1043 * the anon_vma of 'old' is concurrently in the process of being set up
1044 * by another page fault trying to merge _that_. But that's ok: if it
1045 * is being set up, that automatically means that it will be a singleton
1046 * acceptable for merging, so we can do all of this optimistically. But
1047 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1048 *
1049 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1050 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1051 * is to return an anon_vma that is "complex" due to having gone through
1052 * a fork).
1053 *
1054 * We also make sure that the two vma's are compatible (adjacent,
1055 * and with the same memory policies). That's all stable, even with just
1056 * a read lock on the mm_sem.
1057 */
1058static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1059{
1060	if (anon_vma_compatible(a, b)) {
1061		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1062
1063		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1064			return anon_vma;
1065	}
1066	return NULL;
1067}
1068
1069/*
1070 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1071 * neighbouring vmas for a suitable anon_vma, before it goes off
1072 * to allocate a new anon_vma.  It checks because a repetitive
1073 * sequence of mprotects and faults may otherwise lead to distinct
1074 * anon_vmas being allocated, preventing vma merge in subsequent
1075 * mprotect.
1076 */
1077struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1078{
1079	struct anon_vma *anon_vma;
1080	struct vm_area_struct *near;
1081
1082	near = vma->vm_next;
1083	if (!near)
1084		goto try_prev;
1085
1086	anon_vma = reusable_anon_vma(near, vma, near);
1087	if (anon_vma)
1088		return anon_vma;
1089try_prev:
1090	near = vma->vm_prev;
1091	if (!near)
1092		goto none;
1093
1094	anon_vma = reusable_anon_vma(near, near, vma);
1095	if (anon_vma)
1096		return anon_vma;
1097none:
1098	/*
1099	 * There's no absolute need to look only at touching neighbours:
1100	 * we could search further afield for "compatible" anon_vmas.
1101	 * But it would probably just be a waste of time searching,
1102	 * or lead to too many vmas hanging off the same anon_vma.
1103	 * We're trying to allow mprotect remerging later on,
1104	 * not trying to minimize memory used for anon_vmas.
1105	 */
1106	return NULL;
1107}
1108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109/*
1110 * If a hint addr is less than mmap_min_addr change hint to be as
1111 * low as possible but still greater than mmap_min_addr
1112 */
1113static inline unsigned long round_hint_to_min(unsigned long hint)
1114{
1115	hint &= PAGE_MASK;
1116	if (((void *)hint != NULL) &&
1117	    (hint < mmap_min_addr))
1118		return PAGE_ALIGN(mmap_min_addr);
1119	return hint;
1120}
1121
1122static inline int mlock_future_check(struct mm_struct *mm,
1123				     unsigned long flags,
1124				     unsigned long len)
1125{
1126	unsigned long locked, lock_limit;
1127
1128	/*  mlock MCL_FUTURE? */
1129	if (flags & VM_LOCKED) {
1130		locked = len >> PAGE_SHIFT;
1131		locked += mm->locked_vm;
1132		lock_limit = rlimit(RLIMIT_MEMLOCK);
1133		lock_limit >>= PAGE_SHIFT;
1134		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1135			return -EAGAIN;
1136	}
1137	return 0;
1138}
1139
1140/*
1141 * The caller must hold down_write(&current->mm->mmap_sem).
1142 */
1143unsigned long do_mmap(struct file *file, unsigned long addr,
 
1144			unsigned long len, unsigned long prot,
1145			unsigned long flags, vm_flags_t vm_flags,
1146			unsigned long pgoff, unsigned long *populate)
1147{
1148	struct mm_struct *mm = current->mm;
1149	int pkey = 0;
1150
1151	*populate = 0;
1152
1153	if (!len)
1154		return -EINVAL;
1155
1156	/*
1157	 * Does the application expect PROT_READ to imply PROT_EXEC?
1158	 *
1159	 * (the exception is when the underlying filesystem is noexec
1160	 *  mounted, in which case we dont add PROT_EXEC.)
1161	 */
1162	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1163		if (!(file && path_noexec(&file->f_path)))
1164			prot |= PROT_EXEC;
1165
 
 
 
1166	if (!(flags & MAP_FIXED))
1167		addr = round_hint_to_min(addr);
1168
1169	/* Careful about overflows.. */
1170	len = PAGE_ALIGN(len);
1171	if (!len)
1172		return -ENOMEM;
1173
1174	/* offset overflow? */
1175	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1176		return -EOVERFLOW;
1177
1178	/* Too many mappings? */
1179	if (mm->map_count > sysctl_max_map_count)
1180		return -ENOMEM;
1181
1182	/* Obtain the address to map to. we verify (or select) it and ensure
1183	 * that it represents a valid section of the address space.
1184	 */
1185	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1186	if (offset_in_page(addr))
1187		return addr;
1188
1189	if (prot == PROT_EXEC) {
1190		pkey = execute_only_pkey(mm);
1191		if (pkey < 0)
1192			pkey = 0;
1193	}
1194
1195	/* Do simple checking here so the lower-level routines won't have
1196	 * to. we assume access permissions have been handled by the open
1197	 * of the memory object, so we don't do any here.
1198	 */
1199	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1200			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1201
1202	if (flags & MAP_LOCKED)
1203		if (!can_do_mlock())
1204			return -EPERM;
1205
1206	if (mlock_future_check(mm, vm_flags, len))
1207		return -EAGAIN;
1208
1209	if (file) {
1210		struct inode *inode = file_inode(file);
1211
1212		switch (flags & MAP_TYPE) {
1213		case MAP_SHARED:
1214			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1215				return -EACCES;
1216
1217			/*
1218			 * Make sure we don't allow writing to an append-only
1219			 * file..
1220			 */
1221			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1222				return -EACCES;
1223
1224			/*
1225			 * Make sure there are no mandatory locks on the file.
1226			 */
1227			if (locks_verify_locked(file))
1228				return -EAGAIN;
1229
1230			vm_flags |= VM_SHARED | VM_MAYSHARE;
1231			if (!(file->f_mode & FMODE_WRITE))
1232				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1233
1234			/* fall through */
1235		case MAP_PRIVATE:
1236			if (!(file->f_mode & FMODE_READ))
1237				return -EACCES;
1238			if (path_noexec(&file->f_path)) {
1239				if (vm_flags & VM_EXEC)
1240					return -EPERM;
1241				vm_flags &= ~VM_MAYEXEC;
1242			}
1243
1244			if (!file->f_op->mmap)
1245				return -ENODEV;
1246			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1247				return -EINVAL;
1248			break;
1249
1250		default:
1251			return -EINVAL;
1252		}
1253	} else {
1254		switch (flags & MAP_TYPE) {
1255		case MAP_SHARED:
1256			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1257				return -EINVAL;
1258			/*
1259			 * Ignore pgoff.
1260			 */
1261			pgoff = 0;
1262			vm_flags |= VM_SHARED | VM_MAYSHARE;
1263			break;
1264		case MAP_PRIVATE:
1265			/*
1266			 * Set pgoff according to addr for anon_vma.
1267			 */
1268			pgoff = addr >> PAGE_SHIFT;
1269			break;
1270		default:
1271			return -EINVAL;
1272		}
1273	}
1274
1275	/*
1276	 * Set 'VM_NORESERVE' if we should not account for the
1277	 * memory use of this mapping.
1278	 */
1279	if (flags & MAP_NORESERVE) {
1280		/* We honor MAP_NORESERVE if allowed to overcommit */
1281		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1282			vm_flags |= VM_NORESERVE;
1283
1284		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1285		if (file && is_file_hugepages(file))
1286			vm_flags |= VM_NORESERVE;
1287	}
1288
1289	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1290	if (!IS_ERR_VALUE(addr) &&
1291	    ((vm_flags & VM_LOCKED) ||
1292	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1293		*populate = len;
1294	return addr;
1295}
1296
1297SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1298		unsigned long, prot, unsigned long, flags,
1299		unsigned long, fd, unsigned long, pgoff)
1300{
1301	struct file *file = NULL;
1302	unsigned long retval;
1303
1304	if (!(flags & MAP_ANONYMOUS)) {
1305		audit_mmap_fd(fd, flags);
1306		file = fget(fd);
1307		if (!file)
1308			return -EBADF;
1309		if (is_file_hugepages(file))
1310			len = ALIGN(len, huge_page_size(hstate_file(file)));
1311		retval = -EINVAL;
1312		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1313			goto out_fput;
1314	} else if (flags & MAP_HUGETLB) {
1315		struct user_struct *user = NULL;
1316		struct hstate *hs;
1317
1318		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1319		if (!hs)
1320			return -EINVAL;
1321
1322		len = ALIGN(len, huge_page_size(hs));
1323		/*
1324		 * VM_NORESERVE is used because the reservations will be
1325		 * taken when vm_ops->mmap() is called
1326		 * A dummy user value is used because we are not locking
1327		 * memory so no accounting is necessary
1328		 */
1329		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1330				VM_NORESERVE,
1331				&user, HUGETLB_ANONHUGE_INODE,
1332				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1333		if (IS_ERR(file))
1334			return PTR_ERR(file);
1335	}
1336
1337	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1338
1339	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1340out_fput:
1341	if (file)
1342		fput(file);
 
1343	return retval;
1344}
1345
1346#ifdef __ARCH_WANT_SYS_OLD_MMAP
1347struct mmap_arg_struct {
1348	unsigned long addr;
1349	unsigned long len;
1350	unsigned long prot;
1351	unsigned long flags;
1352	unsigned long fd;
1353	unsigned long offset;
1354};
1355
1356SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1357{
1358	struct mmap_arg_struct a;
1359
1360	if (copy_from_user(&a, arg, sizeof(a)))
1361		return -EFAULT;
1362	if (offset_in_page(a.offset))
1363		return -EINVAL;
1364
1365	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1366			      a.offset >> PAGE_SHIFT);
1367}
1368#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1369
1370/*
1371 * Some shared mappigns will want the pages marked read-only
1372 * to track write events. If so, we'll downgrade vm_page_prot
1373 * to the private version (using protection_map[] without the
1374 * VM_SHARED bit).
1375 */
1376int vma_wants_writenotify(struct vm_area_struct *vma)
1377{
1378	vm_flags_t vm_flags = vma->vm_flags;
1379	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1380
1381	/* If it was private or non-writable, the write bit is already clear */
1382	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1383		return 0;
1384
1385	/* The backer wishes to know when pages are first written to? */
1386	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1387		return 1;
1388
1389	/* The open routine did something to the protections that pgprot_modify
1390	 * won't preserve? */
1391	if (pgprot_val(vma->vm_page_prot) !=
1392	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1393		return 0;
1394
1395	/* Do we need to track softdirty? */
1396	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1397		return 1;
1398
1399	/* Specialty mapping? */
1400	if (vm_flags & VM_PFNMAP)
1401		return 0;
1402
1403	/* Can the mapping track the dirty pages? */
1404	return vma->vm_file && vma->vm_file->f_mapping &&
1405		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1406}
1407
1408/*
1409 * We account for memory if it's a private writeable mapping,
1410 * not hugepages and VM_NORESERVE wasn't set.
1411 */
1412static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1413{
1414	/*
1415	 * hugetlb has its own accounting separate from the core VM
1416	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1417	 */
1418	if (file && is_file_hugepages(file))
1419		return 0;
1420
1421	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1422}
1423
1424unsigned long mmap_region(struct file *file, unsigned long addr,
1425		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1426{
1427	struct mm_struct *mm = current->mm;
1428	struct vm_area_struct *vma, *prev;
1429	int error;
1430	struct rb_node **rb_link, *rb_parent;
1431	unsigned long charged = 0;
1432
1433	/* Check against address space limit. */
1434	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1435		unsigned long nr_pages;
1436
1437		/*
1438		 * MAP_FIXED may remove pages of mappings that intersects with
1439		 * requested mapping. Account for the pages it would unmap.
1440		 */
 
 
 
1441		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1442
1443		if (!may_expand_vm(mm, vm_flags,
1444					(len >> PAGE_SHIFT) - nr_pages))
1445			return -ENOMEM;
1446	}
1447
1448	/* Clear old maps */
1449	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1450			      &rb_parent)) {
 
1451		if (do_munmap(mm, addr, len))
1452			return -ENOMEM;
 
1453	}
1454
1455	/*
1456	 * Private writable mapping: check memory availability
1457	 */
1458	if (accountable_mapping(file, vm_flags)) {
1459		charged = len >> PAGE_SHIFT;
1460		if (security_vm_enough_memory_mm(mm, charged))
1461			return -ENOMEM;
1462		vm_flags |= VM_ACCOUNT;
1463	}
1464
1465	/*
1466	 * Can we just expand an old mapping?
1467	 */
1468	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1469			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1470	if (vma)
1471		goto out;
1472
1473	/*
1474	 * Determine the object being mapped and call the appropriate
1475	 * specific mapper. the address has already been validated, but
1476	 * not unmapped, but the maps are removed from the list.
1477	 */
1478	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1479	if (!vma) {
1480		error = -ENOMEM;
1481		goto unacct_error;
1482	}
1483
1484	vma->vm_mm = mm;
1485	vma->vm_start = addr;
1486	vma->vm_end = addr + len;
1487	vma->vm_flags = vm_flags;
1488	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1489	vma->vm_pgoff = pgoff;
1490	INIT_LIST_HEAD(&vma->anon_vma_chain);
1491
1492	if (file) {
1493		if (vm_flags & VM_DENYWRITE) {
1494			error = deny_write_access(file);
1495			if (error)
1496				goto free_vma;
1497		}
1498		if (vm_flags & VM_SHARED) {
1499			error = mapping_map_writable(file->f_mapping);
1500			if (error)
1501				goto allow_write_and_free_vma;
1502		}
1503
1504		/* ->mmap() can change vma->vm_file, but must guarantee that
1505		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1506		 * and map writably if VM_SHARED is set. This usually means the
1507		 * new file must not have been exposed to user-space, yet.
1508		 */
1509		vma->vm_file = get_file(file);
1510		error = file->f_op->mmap(file, vma);
1511		if (error)
1512			goto unmap_and_free_vma;
1513
1514		/* Can addr have changed??
1515		 *
1516		 * Answer: Yes, several device drivers can do it in their
1517		 *         f_op->mmap method. -DaveM
1518		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1519		 *      be updated for vma_link()
1520		 */
1521		WARN_ON_ONCE(addr != vma->vm_start);
1522
1523		addr = vma->vm_start;
1524		vm_flags = vma->vm_flags;
1525	} else if (vm_flags & VM_SHARED) {
1526		error = shmem_zero_setup(vma);
1527		if (error)
1528			goto free_vma;
1529	}
1530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531	vma_link(mm, vma, prev, rb_link, rb_parent);
1532	/* Once vma denies write, undo our temporary denial count */
1533	if (file) {
1534		if (vm_flags & VM_SHARED)
1535			mapping_unmap_writable(file->f_mapping);
1536		if (vm_flags & VM_DENYWRITE)
1537			allow_write_access(file);
1538	}
1539	file = vma->vm_file;
1540out:
1541	perf_event_mmap(vma);
1542
1543	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1544	if (vm_flags & VM_LOCKED) {
1545		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1546					vma == get_gate_vma(current->mm)))
1547			mm->locked_vm += (len >> PAGE_SHIFT);
1548		else
1549			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1550	}
1551
1552	if (file)
1553		uprobe_mmap(vma);
1554
1555	/*
1556	 * New (or expanded) vma always get soft dirty status.
1557	 * Otherwise user-space soft-dirty page tracker won't
1558	 * be able to distinguish situation when vma area unmapped,
1559	 * then new mapped in-place (which must be aimed as
1560	 * a completely new data area).
1561	 */
1562	vma->vm_flags |= VM_SOFTDIRTY;
1563
1564	vma_set_page_prot(vma);
1565
1566	return addr;
1567
1568unmap_and_free_vma:
 
 
1569	vma->vm_file = NULL;
1570	fput(file);
1571
1572	/* Undo any partial mapping done by a device driver. */
1573	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1574	charged = 0;
1575	if (vm_flags & VM_SHARED)
1576		mapping_unmap_writable(file->f_mapping);
1577allow_write_and_free_vma:
1578	if (vm_flags & VM_DENYWRITE)
1579		allow_write_access(file);
1580free_vma:
1581	kmem_cache_free(vm_area_cachep, vma);
1582unacct_error:
1583	if (charged)
1584		vm_unacct_memory(charged);
1585	return error;
1586}
1587
1588unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1589{
1590	/*
1591	 * We implement the search by looking for an rbtree node that
1592	 * immediately follows a suitable gap. That is,
1593	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1594	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1595	 * - gap_end - gap_start >= length
1596	 */
1597
1598	struct mm_struct *mm = current->mm;
1599	struct vm_area_struct *vma;
1600	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1601
1602	/* Adjust search length to account for worst case alignment overhead */
1603	length = info->length + info->align_mask;
1604	if (length < info->length)
1605		return -ENOMEM;
1606
1607	/* Adjust search limits by the desired length */
1608	if (info->high_limit < length)
1609		return -ENOMEM;
1610	high_limit = info->high_limit - length;
1611
1612	if (info->low_limit > high_limit)
1613		return -ENOMEM;
1614	low_limit = info->low_limit + length;
1615
1616	/* Check if rbtree root looks promising */
1617	if (RB_EMPTY_ROOT(&mm->mm_rb))
1618		goto check_highest;
1619	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1620	if (vma->rb_subtree_gap < length)
1621		goto check_highest;
1622
1623	while (true) {
1624		/* Visit left subtree if it looks promising */
1625		gap_end = vma->vm_start;
1626		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1627			struct vm_area_struct *left =
1628				rb_entry(vma->vm_rb.rb_left,
1629					 struct vm_area_struct, vm_rb);
1630			if (left->rb_subtree_gap >= length) {
1631				vma = left;
1632				continue;
1633			}
1634		}
1635
1636		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1637check_current:
1638		/* Check if current node has a suitable gap */
1639		if (gap_start > high_limit)
1640			return -ENOMEM;
1641		if (gap_end >= low_limit && gap_end - gap_start >= length)
1642			goto found;
1643
1644		/* Visit right subtree if it looks promising */
1645		if (vma->vm_rb.rb_right) {
1646			struct vm_area_struct *right =
1647				rb_entry(vma->vm_rb.rb_right,
1648					 struct vm_area_struct, vm_rb);
1649			if (right->rb_subtree_gap >= length) {
1650				vma = right;
1651				continue;
1652			}
1653		}
1654
1655		/* Go back up the rbtree to find next candidate node */
1656		while (true) {
1657			struct rb_node *prev = &vma->vm_rb;
1658			if (!rb_parent(prev))
1659				goto check_highest;
1660			vma = rb_entry(rb_parent(prev),
1661				       struct vm_area_struct, vm_rb);
1662			if (prev == vma->vm_rb.rb_left) {
1663				gap_start = vma->vm_prev->vm_end;
1664				gap_end = vma->vm_start;
1665				goto check_current;
1666			}
1667		}
1668	}
1669
1670check_highest:
1671	/* Check highest gap, which does not precede any rbtree node */
1672	gap_start = mm->highest_vm_end;
1673	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1674	if (gap_start > high_limit)
1675		return -ENOMEM;
1676
1677found:
1678	/* We found a suitable gap. Clip it with the original low_limit. */
1679	if (gap_start < info->low_limit)
1680		gap_start = info->low_limit;
1681
1682	/* Adjust gap address to the desired alignment */
1683	gap_start += (info->align_offset - gap_start) & info->align_mask;
1684
1685	VM_BUG_ON(gap_start + info->length > info->high_limit);
1686	VM_BUG_ON(gap_start + info->length > gap_end);
1687	return gap_start;
1688}
1689
1690unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1691{
1692	struct mm_struct *mm = current->mm;
1693	struct vm_area_struct *vma;
1694	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1695
1696	/* Adjust search length to account for worst case alignment overhead */
1697	length = info->length + info->align_mask;
1698	if (length < info->length)
1699		return -ENOMEM;
1700
1701	/*
1702	 * Adjust search limits by the desired length.
1703	 * See implementation comment at top of unmapped_area().
1704	 */
1705	gap_end = info->high_limit;
1706	if (gap_end < length)
1707		return -ENOMEM;
1708	high_limit = gap_end - length;
1709
1710	if (info->low_limit > high_limit)
1711		return -ENOMEM;
1712	low_limit = info->low_limit + length;
1713
1714	/* Check highest gap, which does not precede any rbtree node */
1715	gap_start = mm->highest_vm_end;
1716	if (gap_start <= high_limit)
1717		goto found_highest;
1718
1719	/* Check if rbtree root looks promising */
1720	if (RB_EMPTY_ROOT(&mm->mm_rb))
1721		return -ENOMEM;
1722	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1723	if (vma->rb_subtree_gap < length)
1724		return -ENOMEM;
1725
1726	while (true) {
1727		/* Visit right subtree if it looks promising */
1728		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1729		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1730			struct vm_area_struct *right =
1731				rb_entry(vma->vm_rb.rb_right,
1732					 struct vm_area_struct, vm_rb);
1733			if (right->rb_subtree_gap >= length) {
1734				vma = right;
1735				continue;
1736			}
1737		}
1738
1739check_current:
1740		/* Check if current node has a suitable gap */
1741		gap_end = vma->vm_start;
1742		if (gap_end < low_limit)
1743			return -ENOMEM;
1744		if (gap_start <= high_limit && gap_end - gap_start >= length)
1745			goto found;
1746
1747		/* Visit left subtree if it looks promising */
1748		if (vma->vm_rb.rb_left) {
1749			struct vm_area_struct *left =
1750				rb_entry(vma->vm_rb.rb_left,
1751					 struct vm_area_struct, vm_rb);
1752			if (left->rb_subtree_gap >= length) {
1753				vma = left;
1754				continue;
1755			}
1756		}
1757
1758		/* Go back up the rbtree to find next candidate node */
1759		while (true) {
1760			struct rb_node *prev = &vma->vm_rb;
1761			if (!rb_parent(prev))
1762				return -ENOMEM;
1763			vma = rb_entry(rb_parent(prev),
1764				       struct vm_area_struct, vm_rb);
1765			if (prev == vma->vm_rb.rb_right) {
1766				gap_start = vma->vm_prev ?
1767					vma->vm_prev->vm_end : 0;
1768				goto check_current;
1769			}
1770		}
1771	}
1772
1773found:
1774	/* We found a suitable gap. Clip it with the original high_limit. */
1775	if (gap_end > info->high_limit)
1776		gap_end = info->high_limit;
1777
1778found_highest:
1779	/* Compute highest gap address at the desired alignment */
1780	gap_end -= info->length;
1781	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1782
1783	VM_BUG_ON(gap_end < info->low_limit);
1784	VM_BUG_ON(gap_end < gap_start);
1785	return gap_end;
1786}
1787
1788/* Get an address range which is currently unmapped.
1789 * For shmat() with addr=0.
1790 *
1791 * Ugly calling convention alert:
1792 * Return value with the low bits set means error value,
1793 * ie
1794 *	if (ret & ~PAGE_MASK)
1795 *		error = ret;
1796 *
1797 * This function "knows" that -ENOMEM has the bits set.
1798 */
1799#ifndef HAVE_ARCH_UNMAPPED_AREA
1800unsigned long
1801arch_get_unmapped_area(struct file *filp, unsigned long addr,
1802		unsigned long len, unsigned long pgoff, unsigned long flags)
1803{
1804	struct mm_struct *mm = current->mm;
1805	struct vm_area_struct *vma;
1806	struct vm_unmapped_area_info info;
1807
1808	if (len > TASK_SIZE - mmap_min_addr)
1809		return -ENOMEM;
1810
1811	if (flags & MAP_FIXED)
1812		return addr;
1813
1814	if (addr) {
1815		addr = PAGE_ALIGN(addr);
1816		vma = find_vma(mm, addr);
1817		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1818		    (!vma || addr + len <= vma->vm_start))
1819			return addr;
1820	}
1821
1822	info.flags = 0;
1823	info.length = len;
1824	info.low_limit = mm->mmap_base;
1825	info.high_limit = TASK_SIZE;
1826	info.align_mask = 0;
1827	return vm_unmapped_area(&info);
1828}
1829#endif
1830
1831/*
1832 * This mmap-allocator allocates new areas top-down from below the
1833 * stack's low limit (the base):
1834 */
1835#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1836unsigned long
1837arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1838			  const unsigned long len, const unsigned long pgoff,
1839			  const unsigned long flags)
1840{
1841	struct vm_area_struct *vma;
1842	struct mm_struct *mm = current->mm;
1843	unsigned long addr = addr0;
1844	struct vm_unmapped_area_info info;
1845
1846	/* requested length too big for entire address space */
1847	if (len > TASK_SIZE - mmap_min_addr)
1848		return -ENOMEM;
1849
1850	if (flags & MAP_FIXED)
1851		return addr;
1852
1853	/* requesting a specific address */
1854	if (addr) {
1855		addr = PAGE_ALIGN(addr);
1856		vma = find_vma(mm, addr);
1857		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1858				(!vma || addr + len <= vma->vm_start))
1859			return addr;
1860	}
1861
1862	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1863	info.length = len;
1864	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1865	info.high_limit = mm->mmap_base;
1866	info.align_mask = 0;
1867	addr = vm_unmapped_area(&info);
1868
1869	/*
1870	 * A failed mmap() very likely causes application failure,
1871	 * so fall back to the bottom-up function here. This scenario
1872	 * can happen with large stack limits and large mmap()
1873	 * allocations.
1874	 */
1875	if (offset_in_page(addr)) {
1876		VM_BUG_ON(addr != -ENOMEM);
1877		info.flags = 0;
1878		info.low_limit = TASK_UNMAPPED_BASE;
1879		info.high_limit = TASK_SIZE;
1880		addr = vm_unmapped_area(&info);
1881	}
1882
1883	return addr;
1884}
1885#endif
1886
1887unsigned long
1888get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1889		unsigned long pgoff, unsigned long flags)
1890{
1891	unsigned long (*get_area)(struct file *, unsigned long,
1892				  unsigned long, unsigned long, unsigned long);
1893
1894	unsigned long error = arch_mmap_check(addr, len, flags);
1895	if (error)
1896		return error;
1897
1898	/* Careful about overflows.. */
1899	if (len > TASK_SIZE)
1900		return -ENOMEM;
1901
1902	get_area = current->mm->get_unmapped_area;
1903	if (file && file->f_op->get_unmapped_area)
1904		get_area = file->f_op->get_unmapped_area;
1905	addr = get_area(file, addr, len, pgoff, flags);
1906	if (IS_ERR_VALUE(addr))
1907		return addr;
1908
1909	if (addr > TASK_SIZE - len)
1910		return -ENOMEM;
1911	if (offset_in_page(addr))
1912		return -EINVAL;
1913
1914	addr = arch_rebalance_pgtables(addr, len);
1915	error = security_mmap_addr(addr);
1916	return error ? error : addr;
1917}
1918
1919EXPORT_SYMBOL(get_unmapped_area);
1920
1921/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1922struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1923{
1924	struct rb_node *rb_node;
1925	struct vm_area_struct *vma;
1926
1927	/* Check the cache first. */
1928	vma = vmacache_find(mm, addr);
1929	if (likely(vma))
1930		return vma;
1931
1932	rb_node = mm->mm_rb.rb_node;
 
1933
1934	while (rb_node) {
1935		struct vm_area_struct *tmp;
1936
1937		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1938
1939		if (tmp->vm_end > addr) {
1940			vma = tmp;
1941			if (tmp->vm_start <= addr)
1942				break;
1943			rb_node = rb_node->rb_left;
1944		} else
1945			rb_node = rb_node->rb_right;
1946	}
1947
1948	if (vma)
1949		vmacache_update(addr, vma);
1950	return vma;
1951}
1952
1953EXPORT_SYMBOL(find_vma);
1954
1955/*
1956 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1957 */
1958struct vm_area_struct *
1959find_vma_prev(struct mm_struct *mm, unsigned long addr,
1960			struct vm_area_struct **pprev)
1961{
1962	struct vm_area_struct *vma;
1963
1964	vma = find_vma(mm, addr);
1965	if (vma) {
1966		*pprev = vma->vm_prev;
1967	} else {
1968		struct rb_node *rb_node = mm->mm_rb.rb_node;
1969		*pprev = NULL;
1970		while (rb_node) {
1971			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1972			rb_node = rb_node->rb_right;
1973		}
1974	}
1975	return vma;
1976}
1977
1978/*
1979 * Verify that the stack growth is acceptable and
1980 * update accounting. This is shared with both the
1981 * grow-up and grow-down cases.
1982 */
1983static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1984{
1985	struct mm_struct *mm = vma->vm_mm;
1986	struct rlimit *rlim = current->signal->rlim;
1987	unsigned long new_start, actual_size;
1988
1989	/* address space limit tests */
1990	if (!may_expand_vm(mm, vma->vm_flags, grow))
1991		return -ENOMEM;
1992
1993	/* Stack limit test */
1994	actual_size = size;
1995	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
1996		actual_size -= PAGE_SIZE;
1997	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1998		return -ENOMEM;
1999
2000	/* mlock limit tests */
2001	if (vma->vm_flags & VM_LOCKED) {
2002		unsigned long locked;
2003		unsigned long limit;
2004		locked = mm->locked_vm + grow;
2005		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2006		limit >>= PAGE_SHIFT;
2007		if (locked > limit && !capable(CAP_IPC_LOCK))
2008			return -ENOMEM;
2009	}
2010
2011	/* Check to ensure the stack will not grow into a hugetlb-only region */
2012	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2013			vma->vm_end - size;
2014	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2015		return -EFAULT;
2016
2017	/*
2018	 * Overcommit..  This must be the final test, as it will
2019	 * update security statistics.
2020	 */
2021	if (security_vm_enough_memory_mm(mm, grow))
2022		return -ENOMEM;
2023
 
 
 
 
2024	return 0;
2025}
2026
2027#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2028/*
2029 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2030 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2031 */
2032int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2033{
2034	struct mm_struct *mm = vma->vm_mm;
2035	int error = 0;
2036
2037	if (!(vma->vm_flags & VM_GROWSUP))
2038		return -EFAULT;
2039
2040	/* Guard against wrapping around to address 0. */
2041	if (address < PAGE_ALIGN(address+4))
2042		address = PAGE_ALIGN(address+4);
2043	else
2044		return -ENOMEM;
2045
2046	/* We must make sure the anon_vma is allocated. */
2047	if (unlikely(anon_vma_prepare(vma)))
2048		return -ENOMEM;
 
2049
2050	/*
2051	 * vma->vm_start/vm_end cannot change under us because the caller
2052	 * is required to hold the mmap_sem in read mode.  We need the
2053	 * anon_vma lock to serialize against concurrent expand_stacks.
 
2054	 */
2055	anon_vma_lock_write(vma->anon_vma);
 
 
 
 
 
 
2056
2057	/* Somebody else might have raced and expanded it already */
2058	if (address > vma->vm_end) {
2059		unsigned long size, grow;
2060
2061		size = address - vma->vm_start;
2062		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2063
2064		error = -ENOMEM;
2065		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2066			error = acct_stack_growth(vma, size, grow);
2067			if (!error) {
2068				/*
2069				 * vma_gap_update() doesn't support concurrent
2070				 * updates, but we only hold a shared mmap_sem
2071				 * lock here, so we need to protect against
2072				 * concurrent vma expansions.
2073				 * anon_vma_lock_write() doesn't help here, as
2074				 * we don't guarantee that all growable vmas
2075				 * in a mm share the same root anon vma.
2076				 * So, we reuse mm->page_table_lock to guard
2077				 * against concurrent vma expansions.
2078				 */
2079				spin_lock(&mm->page_table_lock);
2080				if (vma->vm_flags & VM_LOCKED)
2081					mm->locked_vm += grow;
2082				vm_stat_account(mm, vma->vm_flags, grow);
2083				anon_vma_interval_tree_pre_update_vma(vma);
2084				vma->vm_end = address;
2085				anon_vma_interval_tree_post_update_vma(vma);
2086				if (vma->vm_next)
2087					vma_gap_update(vma->vm_next);
2088				else
2089					mm->highest_vm_end = address;
2090				spin_unlock(&mm->page_table_lock);
2091
2092				perf_event_mmap(vma);
2093			}
2094		}
2095	}
2096	anon_vma_unlock_write(vma->anon_vma);
2097	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2098	validate_mm(mm);
2099	return error;
2100}
2101#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2102
2103/*
2104 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2105 */
2106int expand_downwards(struct vm_area_struct *vma,
2107				   unsigned long address)
2108{
2109	struct mm_struct *mm = vma->vm_mm;
2110	int error;
2111
 
 
 
 
 
 
 
2112	address &= PAGE_MASK;
2113	error = security_mmap_addr(address);
2114	if (error)
2115		return error;
2116
2117	/* We must make sure the anon_vma is allocated. */
2118	if (unlikely(anon_vma_prepare(vma)))
2119		return -ENOMEM;
2120
2121	/*
2122	 * vma->vm_start/vm_end cannot change under us because the caller
2123	 * is required to hold the mmap_sem in read mode.  We need the
2124	 * anon_vma lock to serialize against concurrent expand_stacks.
2125	 */
2126	anon_vma_lock_write(vma->anon_vma);
2127
2128	/* Somebody else might have raced and expanded it already */
2129	if (address < vma->vm_start) {
2130		unsigned long size, grow;
2131
2132		size = vma->vm_end - address;
2133		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2134
2135		error = -ENOMEM;
2136		if (grow <= vma->vm_pgoff) {
2137			error = acct_stack_growth(vma, size, grow);
2138			if (!error) {
2139				/*
2140				 * vma_gap_update() doesn't support concurrent
2141				 * updates, but we only hold a shared mmap_sem
2142				 * lock here, so we need to protect against
2143				 * concurrent vma expansions.
2144				 * anon_vma_lock_write() doesn't help here, as
2145				 * we don't guarantee that all growable vmas
2146				 * in a mm share the same root anon vma.
2147				 * So, we reuse mm->page_table_lock to guard
2148				 * against concurrent vma expansions.
2149				 */
2150				spin_lock(&mm->page_table_lock);
2151				if (vma->vm_flags & VM_LOCKED)
2152					mm->locked_vm += grow;
2153				vm_stat_account(mm, vma->vm_flags, grow);
2154				anon_vma_interval_tree_pre_update_vma(vma);
2155				vma->vm_start = address;
2156				vma->vm_pgoff -= grow;
2157				anon_vma_interval_tree_post_update_vma(vma);
2158				vma_gap_update(vma);
2159				spin_unlock(&mm->page_table_lock);
2160
2161				perf_event_mmap(vma);
2162			}
2163		}
2164	}
2165	anon_vma_unlock_write(vma->anon_vma);
2166	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2167	validate_mm(mm);
2168	return error;
2169}
2170
2171/*
2172 * Note how expand_stack() refuses to expand the stack all the way to
2173 * abut the next virtual mapping, *unless* that mapping itself is also
2174 * a stack mapping. We want to leave room for a guard page, after all
2175 * (the guard page itself is not added here, that is done by the
2176 * actual page faulting logic)
2177 *
2178 * This matches the behavior of the guard page logic (see mm/memory.c:
2179 * check_stack_guard_page()), which only allows the guard page to be
2180 * removed under these circumstances.
2181 */
2182#ifdef CONFIG_STACK_GROWSUP
2183int expand_stack(struct vm_area_struct *vma, unsigned long address)
2184{
2185	struct vm_area_struct *next;
2186
2187	address &= PAGE_MASK;
2188	next = vma->vm_next;
2189	if (next && next->vm_start == address + PAGE_SIZE) {
2190		if (!(next->vm_flags & VM_GROWSUP))
2191			return -ENOMEM;
2192	}
2193	return expand_upwards(vma, address);
2194}
2195
2196struct vm_area_struct *
2197find_extend_vma(struct mm_struct *mm, unsigned long addr)
2198{
2199	struct vm_area_struct *vma, *prev;
2200
2201	addr &= PAGE_MASK;
2202	vma = find_vma_prev(mm, addr, &prev);
2203	if (vma && (vma->vm_start <= addr))
2204		return vma;
2205	if (!prev || expand_stack(prev, addr))
2206		return NULL;
2207	if (prev->vm_flags & VM_LOCKED)
2208		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2209	return prev;
2210}
2211#else
2212int expand_stack(struct vm_area_struct *vma, unsigned long address)
2213{
2214	struct vm_area_struct *prev;
2215
2216	address &= PAGE_MASK;
2217	prev = vma->vm_prev;
2218	if (prev && prev->vm_end == address) {
2219		if (!(prev->vm_flags & VM_GROWSDOWN))
2220			return -ENOMEM;
2221	}
2222	return expand_downwards(vma, address);
2223}
2224
2225struct vm_area_struct *
2226find_extend_vma(struct mm_struct *mm, unsigned long addr)
2227{
2228	struct vm_area_struct *vma;
2229	unsigned long start;
2230
2231	addr &= PAGE_MASK;
2232	vma = find_vma(mm, addr);
2233	if (!vma)
2234		return NULL;
2235	if (vma->vm_start <= addr)
2236		return vma;
2237	if (!(vma->vm_flags & VM_GROWSDOWN))
2238		return NULL;
2239	start = vma->vm_start;
2240	if (expand_stack(vma, addr))
2241		return NULL;
2242	if (vma->vm_flags & VM_LOCKED)
2243		populate_vma_page_range(vma, addr, start, NULL);
2244	return vma;
2245}
2246#endif
2247
2248EXPORT_SYMBOL_GPL(find_extend_vma);
2249
2250/*
2251 * Ok - we have the memory areas we should free on the vma list,
2252 * so release them, and do the vma updates.
2253 *
2254 * Called with the mm semaphore held.
2255 */
2256static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2257{
2258	unsigned long nr_accounted = 0;
2259
2260	/* Update high watermark before we lower total_vm */
2261	update_hiwater_vm(mm);
2262	do {
2263		long nrpages = vma_pages(vma);
2264
2265		if (vma->vm_flags & VM_ACCOUNT)
2266			nr_accounted += nrpages;
2267		vm_stat_account(mm, vma->vm_flags, -nrpages);
2268		vma = remove_vma(vma);
2269	} while (vma);
2270	vm_unacct_memory(nr_accounted);
2271	validate_mm(mm);
2272}
2273
2274/*
2275 * Get rid of page table information in the indicated region.
2276 *
2277 * Called with the mm semaphore held.
2278 */
2279static void unmap_region(struct mm_struct *mm,
2280		struct vm_area_struct *vma, struct vm_area_struct *prev,
2281		unsigned long start, unsigned long end)
2282{
2283	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2284	struct mmu_gather tlb;
2285
2286	lru_add_drain();
2287	tlb_gather_mmu(&tlb, mm, start, end);
2288	update_hiwater_rss(mm);
2289	unmap_vmas(&tlb, vma, start, end);
2290	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2291				 next ? next->vm_start : USER_PGTABLES_CEILING);
2292	tlb_finish_mmu(&tlb, start, end);
2293}
2294
2295/*
2296 * Create a list of vma's touched by the unmap, removing them from the mm's
2297 * vma list as we go..
2298 */
2299static void
2300detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2301	struct vm_area_struct *prev, unsigned long end)
2302{
2303	struct vm_area_struct **insertion_point;
2304	struct vm_area_struct *tail_vma = NULL;
2305
2306	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2307	vma->vm_prev = NULL;
2308	do {
2309		vma_rb_erase(vma, &mm->mm_rb);
2310		mm->map_count--;
2311		tail_vma = vma;
2312		vma = vma->vm_next;
2313	} while (vma && vma->vm_start < end);
2314	*insertion_point = vma;
2315	if (vma) {
2316		vma->vm_prev = prev;
2317		vma_gap_update(vma);
2318	} else
2319		mm->highest_vm_end = prev ? prev->vm_end : 0;
2320	tail_vma->vm_next = NULL;
2321
2322	/* Kill the cache */
2323	vmacache_invalidate(mm);
2324}
2325
2326/*
2327 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2328 * munmap path where it doesn't make sense to fail.
2329 */
2330static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2331	      unsigned long addr, int new_below)
2332{
2333	struct vm_area_struct *new;
2334	int err;
2335
2336	if (is_vm_hugetlb_page(vma) && (addr &
2337					~(huge_page_mask(hstate_vma(vma)))))
2338		return -EINVAL;
2339
2340	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2341	if (!new)
2342		return -ENOMEM;
2343
2344	/* most fields are the same, copy all, and then fixup */
2345	*new = *vma;
2346
2347	INIT_LIST_HEAD(&new->anon_vma_chain);
2348
2349	if (new_below)
2350		new->vm_end = addr;
2351	else {
2352		new->vm_start = addr;
2353		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2354	}
2355
2356	err = vma_dup_policy(vma, new);
2357	if (err)
2358		goto out_free_vma;
2359
2360	err = anon_vma_clone(new, vma);
2361	if (err)
2362		goto out_free_mpol;
2363
2364	if (new->vm_file)
2365		get_file(new->vm_file);
2366
2367	if (new->vm_ops && new->vm_ops->open)
2368		new->vm_ops->open(new);
2369
2370	if (new_below)
2371		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2372			((addr - new->vm_start) >> PAGE_SHIFT), new);
2373	else
2374		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2375
2376	/* Success. */
2377	if (!err)
2378		return 0;
2379
2380	/* Clean everything up if vma_adjust failed. */
2381	if (new->vm_ops && new->vm_ops->close)
2382		new->vm_ops->close(new);
2383	if (new->vm_file)
2384		fput(new->vm_file);
2385	unlink_anon_vmas(new);
2386 out_free_mpol:
2387	mpol_put(vma_policy(new));
2388 out_free_vma:
2389	kmem_cache_free(vm_area_cachep, new);
 
2390	return err;
2391}
2392
2393/*
2394 * Split a vma into two pieces at address 'addr', a new vma is allocated
2395 * either for the first part or the tail.
2396 */
2397int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2398	      unsigned long addr, int new_below)
2399{
2400	if (mm->map_count >= sysctl_max_map_count)
2401		return -ENOMEM;
2402
2403	return __split_vma(mm, vma, addr, new_below);
2404}
2405
2406/* Munmap is split into 2 main parts -- this part which finds
2407 * what needs doing, and the areas themselves, which do the
2408 * work.  This now handles partial unmappings.
2409 * Jeremy Fitzhardinge <jeremy@goop.org>
2410 */
2411int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2412{
2413	unsigned long end;
2414	struct vm_area_struct *vma, *prev, *last;
2415
2416	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2417		return -EINVAL;
2418
2419	len = PAGE_ALIGN(len);
2420	if (len == 0)
2421		return -EINVAL;
2422
2423	/* Find the first overlapping VMA */
2424	vma = find_vma(mm, start);
2425	if (!vma)
2426		return 0;
2427	prev = vma->vm_prev;
2428	/* we have  start < vma->vm_end  */
2429
2430	/* if it doesn't overlap, we have nothing.. */
2431	end = start + len;
2432	if (vma->vm_start >= end)
2433		return 0;
2434
2435	/*
2436	 * If we need to split any vma, do it now to save pain later.
2437	 *
2438	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2439	 * unmapped vm_area_struct will remain in use: so lower split_vma
2440	 * places tmp vma above, and higher split_vma places tmp vma below.
2441	 */
2442	if (start > vma->vm_start) {
2443		int error;
2444
2445		/*
2446		 * Make sure that map_count on return from munmap() will
2447		 * not exceed its limit; but let map_count go just above
2448		 * its limit temporarily, to help free resources as expected.
2449		 */
2450		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2451			return -ENOMEM;
2452
2453		error = __split_vma(mm, vma, start, 0);
2454		if (error)
2455			return error;
2456		prev = vma;
2457	}
2458
2459	/* Does it split the last one? */
2460	last = find_vma(mm, end);
2461	if (last && end > last->vm_start) {
2462		int error = __split_vma(mm, last, end, 1);
2463		if (error)
2464			return error;
2465	}
2466	vma = prev ? prev->vm_next : mm->mmap;
2467
2468	/*
2469	 * unlock any mlock()ed ranges before detaching vmas
2470	 */
2471	if (mm->locked_vm) {
2472		struct vm_area_struct *tmp = vma;
2473		while (tmp && tmp->vm_start < end) {
2474			if (tmp->vm_flags & VM_LOCKED) {
2475				mm->locked_vm -= vma_pages(tmp);
2476				munlock_vma_pages_all(tmp);
2477			}
2478			tmp = tmp->vm_next;
2479		}
2480	}
2481
2482	/*
2483	 * Remove the vma's, and unmap the actual pages
2484	 */
2485	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2486	unmap_region(mm, vma, prev, start, end);
2487
2488	arch_unmap(mm, vma, start, end);
2489
2490	/* Fix up all other VM information */
2491	remove_vma_list(mm, vma);
2492
2493	return 0;
2494}
2495
2496int vm_munmap(unsigned long start, size_t len)
2497{
2498	int ret;
2499	struct mm_struct *mm = current->mm;
2500
2501	down_write(&mm->mmap_sem);
2502	ret = do_munmap(mm, start, len);
2503	up_write(&mm->mmap_sem);
2504	return ret;
2505}
2506EXPORT_SYMBOL(vm_munmap);
2507
2508SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2509{
2510	profile_munmap(addr);
2511	return vm_munmap(addr, len);
2512}
2513
2514
2515/*
2516 * Emulation of deprecated remap_file_pages() syscall.
2517 */
2518SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2519		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2520{
2521
2522	struct mm_struct *mm = current->mm;
2523	struct vm_area_struct *vma;
2524	unsigned long populate = 0;
2525	unsigned long ret = -EINVAL;
2526	struct file *file;
2527
2528	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2529		     current->comm, current->pid);
2530
2531	if (prot)
2532		return ret;
2533	start = start & PAGE_MASK;
2534	size = size & PAGE_MASK;
2535
2536	if (start + size <= start)
2537		return ret;
2538
2539	/* Does pgoff wrap? */
2540	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2541		return ret;
2542
2543	down_write(&mm->mmap_sem);
2544	vma = find_vma(mm, start);
2545
2546	if (!vma || !(vma->vm_flags & VM_SHARED))
2547		goto out;
2548
2549	if (start < vma->vm_start)
2550		goto out;
2551
2552	if (start + size > vma->vm_end) {
2553		struct vm_area_struct *next;
2554
2555		for (next = vma->vm_next; next; next = next->vm_next) {
2556			/* hole between vmas ? */
2557			if (next->vm_start != next->vm_prev->vm_end)
2558				goto out;
2559
2560			if (next->vm_file != vma->vm_file)
2561				goto out;
2562
2563			if (next->vm_flags != vma->vm_flags)
2564				goto out;
2565
2566			if (start + size <= next->vm_end)
2567				break;
2568		}
2569
2570		if (!next)
2571			goto out;
2572	}
2573
2574	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2575	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2576	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2577
2578	flags &= MAP_NONBLOCK;
2579	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2580	if (vma->vm_flags & VM_LOCKED) {
2581		struct vm_area_struct *tmp;
2582		flags |= MAP_LOCKED;
2583
2584		/* drop PG_Mlocked flag for over-mapped range */
2585		for (tmp = vma; tmp->vm_start >= start + size;
2586				tmp = tmp->vm_next) {
2587			munlock_vma_pages_range(tmp,
2588					max(tmp->vm_start, start),
2589					min(tmp->vm_end, start + size));
2590		}
2591	}
2592
2593	file = get_file(vma->vm_file);
2594	ret = do_mmap_pgoff(vma->vm_file, start, size,
2595			prot, flags, pgoff, &populate);
2596	fput(file);
2597out:
2598	up_write(&mm->mmap_sem);
2599	if (populate)
2600		mm_populate(ret, populate);
2601	if (!IS_ERR_VALUE(ret))
2602		ret = 0;
2603	return ret;
2604}
2605
2606static inline void verify_mm_writelocked(struct mm_struct *mm)
2607{
2608#ifdef CONFIG_DEBUG_VM
2609	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2610		WARN_ON(1);
2611		up_read(&mm->mmap_sem);
2612	}
2613#endif
2614}
2615
2616/*
2617 *  this is really a simplified "do_mmap".  it only handles
2618 *  anonymous maps.  eventually we may be able to do some
2619 *  brk-specific accounting here.
2620 */
2621static unsigned long do_brk(unsigned long addr, unsigned long len)
2622{
2623	struct mm_struct *mm = current->mm;
2624	struct vm_area_struct *vma, *prev;
2625	unsigned long flags;
2626	struct rb_node **rb_link, *rb_parent;
2627	pgoff_t pgoff = addr >> PAGE_SHIFT;
2628	int error;
2629
2630	len = PAGE_ALIGN(len);
2631	if (!len)
2632		return addr;
2633
2634	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2635
2636	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2637	if (offset_in_page(error))
2638		return error;
2639
2640	error = mlock_future_check(mm, mm->def_flags, len);
2641	if (error)
2642		return error;
2643
2644	/*
2645	 * mm->mmap_sem is required to protect against another thread
2646	 * changing the mappings in case we sleep.
2647	 */
2648	verify_mm_writelocked(mm);
2649
2650	/*
2651	 * Clear old maps.  this also does some error checking for us
2652	 */
2653	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2654			      &rb_parent)) {
2655		if (do_munmap(mm, addr, len))
2656			return -ENOMEM;
 
2657	}
2658
2659	/* Check against address space limits *after* clearing old maps... */
2660	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2661		return -ENOMEM;
2662
2663	if (mm->map_count > sysctl_max_map_count)
2664		return -ENOMEM;
2665
2666	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2667		return -ENOMEM;
2668
2669	/* Can we just expand an old private anonymous mapping? */
2670	vma = vma_merge(mm, prev, addr, addr + len, flags,
2671			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2672	if (vma)
2673		goto out;
2674
2675	/*
2676	 * create a vma struct for an anonymous mapping
2677	 */
2678	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2679	if (!vma) {
2680		vm_unacct_memory(len >> PAGE_SHIFT);
2681		return -ENOMEM;
2682	}
2683
2684	INIT_LIST_HEAD(&vma->anon_vma_chain);
2685	vma->vm_mm = mm;
2686	vma->vm_start = addr;
2687	vma->vm_end = addr + len;
2688	vma->vm_pgoff = pgoff;
2689	vma->vm_flags = flags;
2690	vma->vm_page_prot = vm_get_page_prot(flags);
2691	vma_link(mm, vma, prev, rb_link, rb_parent);
2692out:
2693	perf_event_mmap(vma);
2694	mm->total_vm += len >> PAGE_SHIFT;
2695	mm->data_vm += len >> PAGE_SHIFT;
2696	if (flags & VM_LOCKED)
2697		mm->locked_vm += (len >> PAGE_SHIFT);
2698	vma->vm_flags |= VM_SOFTDIRTY;
2699	return addr;
2700}
2701
2702unsigned long vm_brk(unsigned long addr, unsigned long len)
2703{
2704	struct mm_struct *mm = current->mm;
2705	unsigned long ret;
2706	bool populate;
2707
2708	down_write(&mm->mmap_sem);
2709	ret = do_brk(addr, len);
2710	populate = ((mm->def_flags & VM_LOCKED) != 0);
2711	up_write(&mm->mmap_sem);
2712	if (populate)
2713		mm_populate(addr, len);
2714	return ret;
2715}
2716EXPORT_SYMBOL(vm_brk);
2717
2718/* Release all mmaps. */
2719void exit_mmap(struct mm_struct *mm)
2720{
2721	struct mmu_gather tlb;
2722	struct vm_area_struct *vma;
2723	unsigned long nr_accounted = 0;
2724
2725	/* mm's last user has gone, and its about to be pulled down */
2726	mmu_notifier_release(mm);
2727
2728	if (mm->locked_vm) {
2729		vma = mm->mmap;
2730		while (vma) {
2731			if (vma->vm_flags & VM_LOCKED)
2732				munlock_vma_pages_all(vma);
2733			vma = vma->vm_next;
2734		}
2735	}
2736
2737	arch_exit_mmap(mm);
2738
2739	vma = mm->mmap;
2740	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2741		return;
2742
2743	lru_add_drain();
2744	flush_cache_mm(mm);
2745	tlb_gather_mmu(&tlb, mm, 0, -1);
2746	/* update_hiwater_rss(mm) here? but nobody should be looking */
2747	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2748	unmap_vmas(&tlb, vma, 0, -1);
2749
2750	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2751	tlb_finish_mmu(&tlb, 0, -1);
2752
2753	/*
2754	 * Walk the list again, actually closing and freeing it,
2755	 * with preemption enabled, without holding any MM locks.
2756	 */
2757	while (vma) {
2758		if (vma->vm_flags & VM_ACCOUNT)
2759			nr_accounted += vma_pages(vma);
2760		vma = remove_vma(vma);
2761	}
2762	vm_unacct_memory(nr_accounted);
 
 
 
2763}
2764
2765/* Insert vm structure into process list sorted by address
2766 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2767 * then i_mmap_rwsem is taken here.
2768 */
2769int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2770{
2771	struct vm_area_struct *prev;
2772	struct rb_node **rb_link, *rb_parent;
2773
2774	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2775			   &prev, &rb_link, &rb_parent))
2776		return -ENOMEM;
2777	if ((vma->vm_flags & VM_ACCOUNT) &&
2778	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2779		return -ENOMEM;
2780
2781	/*
2782	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2783	 * until its first write fault, when page's anon_vma and index
2784	 * are set.  But now set the vm_pgoff it will almost certainly
2785	 * end up with (unless mremap moves it elsewhere before that
2786	 * first wfault), so /proc/pid/maps tells a consistent story.
2787	 *
2788	 * By setting it to reflect the virtual start address of the
2789	 * vma, merges and splits can happen in a seamless way, just
2790	 * using the existing file pgoff checks and manipulations.
2791	 * Similarly in do_mmap_pgoff and in do_brk.
2792	 */
2793	if (vma_is_anonymous(vma)) {
2794		BUG_ON(vma->anon_vma);
2795		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2796	}
 
 
 
 
 
 
2797
2798	vma_link(mm, vma, prev, rb_link, rb_parent);
2799	return 0;
2800}
2801
2802/*
2803 * Copy the vma structure to a new location in the same mm,
2804 * prior to moving page table entries, to effect an mremap move.
2805 */
2806struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2807	unsigned long addr, unsigned long len, pgoff_t pgoff,
2808	bool *need_rmap_locks)
2809{
2810	struct vm_area_struct *vma = *vmap;
2811	unsigned long vma_start = vma->vm_start;
2812	struct mm_struct *mm = vma->vm_mm;
2813	struct vm_area_struct *new_vma, *prev;
2814	struct rb_node **rb_link, *rb_parent;
2815	bool faulted_in_anon_vma = true;
2816
2817	/*
2818	 * If anonymous vma has not yet been faulted, update new pgoff
2819	 * to match new location, to increase its chance of merging.
2820	 */
2821	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2822		pgoff = addr >> PAGE_SHIFT;
2823		faulted_in_anon_vma = false;
2824	}
2825
2826	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2827		return NULL;	/* should never get here */
2828	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2829			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2830			    vma->vm_userfaultfd_ctx);
2831	if (new_vma) {
2832		/*
2833		 * Source vma may have been merged into new_vma
2834		 */
2835		if (unlikely(vma_start >= new_vma->vm_start &&
2836			     vma_start < new_vma->vm_end)) {
2837			/*
2838			 * The only way we can get a vma_merge with
2839			 * self during an mremap is if the vma hasn't
2840			 * been faulted in yet and we were allowed to
2841			 * reset the dst vma->vm_pgoff to the
2842			 * destination address of the mremap to allow
2843			 * the merge to happen. mremap must change the
2844			 * vm_pgoff linearity between src and dst vmas
2845			 * (in turn preventing a vma_merge) to be
2846			 * safe. It is only safe to keep the vm_pgoff
2847			 * linear if there are no pages mapped yet.
2848			 */
2849			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2850			*vmap = vma = new_vma;
2851		}
2852		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2853	} else {
2854		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2855		if (!new_vma)
2856			goto out;
2857		*new_vma = *vma;
2858		new_vma->vm_start = addr;
2859		new_vma->vm_end = addr + len;
2860		new_vma->vm_pgoff = pgoff;
2861		if (vma_dup_policy(vma, new_vma))
2862			goto out_free_vma;
2863		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2864		if (anon_vma_clone(new_vma, vma))
2865			goto out_free_mempol;
2866		if (new_vma->vm_file)
2867			get_file(new_vma->vm_file);
2868		if (new_vma->vm_ops && new_vma->vm_ops->open)
2869			new_vma->vm_ops->open(new_vma);
2870		vma_link(mm, new_vma, prev, rb_link, rb_parent);
2871		*need_rmap_locks = false;
2872	}
2873	return new_vma;
2874
2875out_free_mempol:
2876	mpol_put(vma_policy(new_vma));
2877out_free_vma:
2878	kmem_cache_free(vm_area_cachep, new_vma);
2879out:
2880	return NULL;
2881}
2882
2883/*
2884 * Return true if the calling process may expand its vm space by the passed
2885 * number of pages
2886 */
2887bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2888{
2889	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2890		return false;
2891
2892	if (is_data_mapping(flags) &&
2893	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2894		if (ignore_rlimit_data)
2895			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Will be forbidden soon.\n",
2896				     current->comm, current->pid,
2897				     (mm->data_vm + npages) << PAGE_SHIFT,
2898				     rlimit(RLIMIT_DATA));
2899		else
2900			return false;
2901	}
2902
2903	return true;
2904}
2905
2906void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2907{
2908	mm->total_vm += npages;
 
2909
2910	if (is_exec_mapping(flags))
2911		mm->exec_vm += npages;
2912	else if (is_stack_mapping(flags))
2913		mm->stack_vm += npages;
2914	else if (is_data_mapping(flags))
2915		mm->data_vm += npages;
2916}
2917
2918static int special_mapping_fault(struct vm_area_struct *vma,
2919				 struct vm_fault *vmf);
2920
2921/*
2922 * Having a close hook prevents vma merging regardless of flags.
2923 */
2924static void special_mapping_close(struct vm_area_struct *vma)
2925{
2926}
2927
2928static const char *special_mapping_name(struct vm_area_struct *vma)
2929{
2930	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2931}
2932
2933static const struct vm_operations_struct special_mapping_vmops = {
2934	.close = special_mapping_close,
2935	.fault = special_mapping_fault,
2936	.name = special_mapping_name,
2937};
2938
2939static const struct vm_operations_struct legacy_special_mapping_vmops = {
2940	.close = special_mapping_close,
2941	.fault = special_mapping_fault,
2942};
2943
2944static int special_mapping_fault(struct vm_area_struct *vma,
2945				struct vm_fault *vmf)
2946{
2947	pgoff_t pgoff;
2948	struct page **pages;
2949
2950	if (vma->vm_ops == &legacy_special_mapping_vmops) {
2951		pages = vma->vm_private_data;
2952	} else {
2953		struct vm_special_mapping *sm = vma->vm_private_data;
2954
2955		if (sm->fault)
2956			return sm->fault(sm, vma, vmf);
2957
2958		pages = sm->pages;
2959	}
2960
2961	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
2962		pgoff--;
2963
2964	if (*pages) {
2965		struct page *page = *pages;
2966		get_page(page);
2967		vmf->page = page;
2968		return 0;
2969	}
2970
2971	return VM_FAULT_SIGBUS;
2972}
2973
2974static struct vm_area_struct *__install_special_mapping(
2975	struct mm_struct *mm,
2976	unsigned long addr, unsigned long len,
2977	unsigned long vm_flags, void *priv,
2978	const struct vm_operations_struct *ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2979{
2980	int ret;
2981	struct vm_area_struct *vma;
2982
2983	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2984	if (unlikely(vma == NULL))
2985		return ERR_PTR(-ENOMEM);
2986
2987	INIT_LIST_HEAD(&vma->anon_vma_chain);
2988	vma->vm_mm = mm;
2989	vma->vm_start = addr;
2990	vma->vm_end = addr + len;
2991
2992	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2993	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2994
2995	vma->vm_ops = ops;
2996	vma->vm_private_data = priv;
2997
2998	ret = insert_vm_struct(mm, vma);
2999	if (ret)
3000		goto out;
3001
3002	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3003
3004	perf_event_mmap(vma);
3005
3006	return vma;
3007
3008out:
3009	kmem_cache_free(vm_area_cachep, vma);
3010	return ERR_PTR(ret);
3011}
3012
3013/*
3014 * Called with mm->mmap_sem held for writing.
3015 * Insert a new vma covering the given region, with the given flags.
3016 * Its pages are supplied by the given array of struct page *.
3017 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3018 * The region past the last page supplied will always produce SIGBUS.
3019 * The array pointer and the pages it points to are assumed to stay alive
3020 * for as long as this mapping might exist.
3021 */
3022struct vm_area_struct *_install_special_mapping(
3023	struct mm_struct *mm,
3024	unsigned long addr, unsigned long len,
3025	unsigned long vm_flags, const struct vm_special_mapping *spec)
3026{
3027	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3028					&special_mapping_vmops);
3029}
3030
3031int install_special_mapping(struct mm_struct *mm,
3032			    unsigned long addr, unsigned long len,
3033			    unsigned long vm_flags, struct page **pages)
3034{
3035	struct vm_area_struct *vma = __install_special_mapping(
3036		mm, addr, len, vm_flags, (void *)pages,
3037		&legacy_special_mapping_vmops);
3038
3039	return PTR_ERR_OR_ZERO(vma);
 
 
3040}
3041
3042static DEFINE_MUTEX(mm_all_locks_mutex);
3043
3044static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3045{
3046	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3047		/*
3048		 * The LSB of head.next can't change from under us
3049		 * because we hold the mm_all_locks_mutex.
3050		 */
3051		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3052		/*
3053		 * We can safely modify head.next after taking the
3054		 * anon_vma->root->rwsem. If some other vma in this mm shares
3055		 * the same anon_vma we won't take it again.
3056		 *
3057		 * No need of atomic instructions here, head.next
3058		 * can't change from under us thanks to the
3059		 * anon_vma->root->rwsem.
3060		 */
3061		if (__test_and_set_bit(0, (unsigned long *)
3062				       &anon_vma->root->rb_root.rb_node))
3063			BUG();
3064	}
3065}
3066
3067static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3068{
3069	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3070		/*
3071		 * AS_MM_ALL_LOCKS can't change from under us because
3072		 * we hold the mm_all_locks_mutex.
3073		 *
3074		 * Operations on ->flags have to be atomic because
3075		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3076		 * mm_all_locks_mutex, there may be other cpus
3077		 * changing other bitflags in parallel to us.
3078		 */
3079		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3080			BUG();
3081		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3082	}
3083}
3084
3085/*
3086 * This operation locks against the VM for all pte/vma/mm related
3087 * operations that could ever happen on a certain mm. This includes
3088 * vmtruncate, try_to_unmap, and all page faults.
3089 *
3090 * The caller must take the mmap_sem in write mode before calling
3091 * mm_take_all_locks(). The caller isn't allowed to release the
3092 * mmap_sem until mm_drop_all_locks() returns.
3093 *
3094 * mmap_sem in write mode is required in order to block all operations
3095 * that could modify pagetables and free pages without need of
3096 * altering the vma layout. It's also needed in write mode to avoid new
 
3097 * anon_vmas to be associated with existing vmas.
3098 *
3099 * A single task can't take more than one mm_take_all_locks() in a row
3100 * or it would deadlock.
3101 *
3102 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3103 * mapping->flags avoid to take the same lock twice, if more than one
3104 * vma in this mm is backed by the same anon_vma or address_space.
3105 *
3106 * We take locks in following order, accordingly to comment at beginning
3107 * of mm/rmap.c:
3108 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3109 *     hugetlb mapping);
3110 *   - all i_mmap_rwsem locks;
3111 *   - all anon_vma->rwseml
3112 *
3113 * We can take all locks within these types randomly because the VM code
3114 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3115 * mm_all_locks_mutex.
3116 *
3117 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3118 * that may have to take thousand of locks.
3119 *
3120 * mm_take_all_locks() can fail if it's interrupted by signals.
3121 */
3122int mm_take_all_locks(struct mm_struct *mm)
3123{
3124	struct vm_area_struct *vma;
3125	struct anon_vma_chain *avc;
3126
3127	BUG_ON(down_read_trylock(&mm->mmap_sem));
3128
3129	mutex_lock(&mm_all_locks_mutex);
3130
3131	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3132		if (signal_pending(current))
3133			goto out_unlock;
3134		if (vma->vm_file && vma->vm_file->f_mapping &&
3135				is_vm_hugetlb_page(vma))
3136			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3137	}
3138
3139	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3140		if (signal_pending(current))
3141			goto out_unlock;
3142		if (vma->vm_file && vma->vm_file->f_mapping &&
3143				!is_vm_hugetlb_page(vma))
3144			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3145	}
3146
3147	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3148		if (signal_pending(current))
3149			goto out_unlock;
3150		if (vma->anon_vma)
3151			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3152				vm_lock_anon_vma(mm, avc->anon_vma);
3153	}
3154
3155	return 0;
3156
3157out_unlock:
3158	mm_drop_all_locks(mm);
3159	return -EINTR;
3160}
3161
3162static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3163{
3164	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3165		/*
3166		 * The LSB of head.next can't change to 0 from under
3167		 * us because we hold the mm_all_locks_mutex.
3168		 *
3169		 * We must however clear the bitflag before unlocking
3170		 * the vma so the users using the anon_vma->rb_root will
3171		 * never see our bitflag.
3172		 *
3173		 * No need of atomic instructions here, head.next
3174		 * can't change from under us until we release the
3175		 * anon_vma->root->rwsem.
3176		 */
3177		if (!__test_and_clear_bit(0, (unsigned long *)
3178					  &anon_vma->root->rb_root.rb_node))
3179			BUG();
3180		anon_vma_unlock_write(anon_vma);
3181	}
3182}
3183
3184static void vm_unlock_mapping(struct address_space *mapping)
3185{
3186	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3187		/*
3188		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3189		 * because we hold the mm_all_locks_mutex.
3190		 */
3191		i_mmap_unlock_write(mapping);
3192		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3193					&mapping->flags))
3194			BUG();
3195	}
3196}
3197
3198/*
3199 * The mmap_sem cannot be released by the caller until
3200 * mm_drop_all_locks() returns.
3201 */
3202void mm_drop_all_locks(struct mm_struct *mm)
3203{
3204	struct vm_area_struct *vma;
3205	struct anon_vma_chain *avc;
3206
3207	BUG_ON(down_read_trylock(&mm->mmap_sem));
3208	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3209
3210	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3211		if (vma->anon_vma)
3212			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3213				vm_unlock_anon_vma(avc->anon_vma);
3214		if (vma->vm_file && vma->vm_file->f_mapping)
3215			vm_unlock_mapping(vma->vm_file->f_mapping);
3216	}
3217
3218	mutex_unlock(&mm_all_locks_mutex);
3219}
3220
3221/*
3222 * initialise the VMA slab
3223 */
3224void __init mmap_init(void)
3225{
3226	int ret;
3227
3228	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3229	VM_BUG_ON(ret);
3230}
3231
3232/*
3233 * Initialise sysctl_user_reserve_kbytes.
3234 *
3235 * This is intended to prevent a user from starting a single memory hogging
3236 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3237 * mode.
3238 *
3239 * The default value is min(3% of free memory, 128MB)
3240 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3241 */
3242static int init_user_reserve(void)
3243{
3244	unsigned long free_kbytes;
3245
3246	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3247
3248	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3249	return 0;
3250}
3251subsys_initcall(init_user_reserve);
3252
3253/*
3254 * Initialise sysctl_admin_reserve_kbytes.
3255 *
3256 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3257 * to log in and kill a memory hogging process.
3258 *
3259 * Systems with more than 256MB will reserve 8MB, enough to recover
3260 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3261 * only reserve 3% of free pages by default.
3262 */
3263static int init_admin_reserve(void)
3264{
3265	unsigned long free_kbytes;
3266
3267	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3268
3269	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3270	return 0;
3271}
3272subsys_initcall(init_admin_reserve);
3273
3274/*
3275 * Reinititalise user and admin reserves if memory is added or removed.
3276 *
3277 * The default user reserve max is 128MB, and the default max for the
3278 * admin reserve is 8MB. These are usually, but not always, enough to
3279 * enable recovery from a memory hogging process using login/sshd, a shell,
3280 * and tools like top. It may make sense to increase or even disable the
3281 * reserve depending on the existence of swap or variations in the recovery
3282 * tools. So, the admin may have changed them.
3283 *
3284 * If memory is added and the reserves have been eliminated or increased above
3285 * the default max, then we'll trust the admin.
3286 *
3287 * If memory is removed and there isn't enough free memory, then we
3288 * need to reset the reserves.
3289 *
3290 * Otherwise keep the reserve set by the admin.
3291 */
3292static int reserve_mem_notifier(struct notifier_block *nb,
3293			     unsigned long action, void *data)
3294{
3295	unsigned long tmp, free_kbytes;
3296
3297	switch (action) {
3298	case MEM_ONLINE:
3299		/* Default max is 128MB. Leave alone if modified by operator. */
3300		tmp = sysctl_user_reserve_kbytes;
3301		if (0 < tmp && tmp < (1UL << 17))
3302			init_user_reserve();
3303
3304		/* Default max is 8MB.  Leave alone if modified by operator. */
3305		tmp = sysctl_admin_reserve_kbytes;
3306		if (0 < tmp && tmp < (1UL << 13))
3307			init_admin_reserve();
3308
3309		break;
3310	case MEM_OFFLINE:
3311		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3312
3313		if (sysctl_user_reserve_kbytes > free_kbytes) {
3314			init_user_reserve();
3315			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3316				sysctl_user_reserve_kbytes);
3317		}
3318
3319		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3320			init_admin_reserve();
3321			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3322				sysctl_admin_reserve_kbytes);
3323		}
3324		break;
3325	default:
3326		break;
3327	}
3328	return NOTIFY_OK;
3329}
3330
3331static struct notifier_block reserve_mem_nb = {
3332	.notifier_call = reserve_mem_notifier,
3333};
3334
3335static int __meminit init_reserve_notifier(void)
3336{
3337	if (register_hotmemory_notifier(&reserve_mem_nb))
3338		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3339
3340	return 0;
3341}
3342subsys_initcall(init_reserve_notifier);
v3.15
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
 
 
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/backing-dev.h>
  12#include <linux/mm.h>
  13#include <linux/vmacache.h>
  14#include <linux/shm.h>
  15#include <linux/mman.h>
  16#include <linux/pagemap.h>
  17#include <linux/swap.h>
  18#include <linux/syscalls.h>
  19#include <linux/capability.h>
  20#include <linux/init.h>
  21#include <linux/file.h>
  22#include <linux/fs.h>
  23#include <linux/personality.h>
  24#include <linux/security.h>
  25#include <linux/hugetlb.h>
  26#include <linux/profile.h>
  27#include <linux/export.h>
  28#include <linux/mount.h>
  29#include <linux/mempolicy.h>
  30#include <linux/rmap.h>
  31#include <linux/mmu_notifier.h>
 
  32#include <linux/perf_event.h>
  33#include <linux/audit.h>
  34#include <linux/khugepaged.h>
  35#include <linux/uprobes.h>
  36#include <linux/rbtree_augmented.h>
  37#include <linux/sched/sysctl.h>
  38#include <linux/notifier.h>
  39#include <linux/memory.h>
 
 
 
 
  40
  41#include <asm/uaccess.h>
  42#include <asm/cacheflush.h>
  43#include <asm/tlb.h>
  44#include <asm/mmu_context.h>
  45
  46#include "internal.h"
  47
  48#ifndef arch_mmap_check
  49#define arch_mmap_check(addr, len, flags)	(0)
  50#endif
  51
  52#ifndef arch_rebalance_pgtables
  53#define arch_rebalance_pgtables(addr, len)		(addr)
  54#endif
  55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56static void unmap_region(struct mm_struct *mm,
  57		struct vm_area_struct *vma, struct vm_area_struct *prev,
  58		unsigned long start, unsigned long end);
  59
  60/* description of effects of mapping type and prot in current implementation.
  61 * this is due to the limited x86 page protection hardware.  The expected
  62 * behavior is in parens:
  63 *
  64 * map_type	prot
  65 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  66 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  67 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  68 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  69 *		
  70 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  71 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  72 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  73 *
  74 */
  75pgprot_t protection_map[16] = {
  76	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  77	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  78};
  79
  80pgprot_t vm_get_page_prot(unsigned long vm_flags)
  81{
  82	return __pgprot(pgprot_val(protection_map[vm_flags &
  83				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
  84			pgprot_val(arch_vm_get_page_prot(vm_flags)));
  85}
  86EXPORT_SYMBOL(vm_get_page_prot);
  87
  88int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
  89int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
  90unsigned long sysctl_overcommit_kbytes __read_mostly;
  91int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  92unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
  93unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
  94/*
  95 * Make sure vm_committed_as in one cacheline and not cacheline shared with
  96 * other variables. It can be updated by several CPUs frequently.
  97 */
  98struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
  99
 100/*
 101 * The global memory commitment made in the system can be a metric
 102 * that can be used to drive ballooning decisions when Linux is hosted
 103 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 104 * balancing memory across competing virtual machines that are hosted.
 105 * Several metrics drive this policy engine including the guest reported
 106 * memory commitment.
 107 */
 108unsigned long vm_memory_committed(void)
 109{
 110	return percpu_counter_read_positive(&vm_committed_as);
 111}
 112EXPORT_SYMBOL_GPL(vm_memory_committed);
 113
 114/*
 115 * Check that a process has enough memory to allocate a new virtual
 116 * mapping. 0 means there is enough memory for the allocation to
 117 * succeed and -ENOMEM implies there is not.
 118 *
 119 * We currently support three overcommit policies, which are set via the
 120 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 121 *
 122 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 123 * Additional code 2002 Jul 20 by Robert Love.
 124 *
 125 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 126 *
 127 * Note this is a helper function intended to be used by LSMs which
 128 * wish to use this logic.
 129 */
 130int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 131{
 132	unsigned long free, allowed, reserve;
 133
 134	vm_acct_memory(pages);
 135
 136	/*
 137	 * Sometimes we want to use more memory than we have
 138	 */
 139	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 140		return 0;
 141
 142	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 143		free = global_page_state(NR_FREE_PAGES);
 144		free += global_page_state(NR_FILE_PAGES);
 145
 146		/*
 147		 * shmem pages shouldn't be counted as free in this
 148		 * case, they can't be purged, only swapped out, and
 149		 * that won't affect the overall amount of available
 150		 * memory in the system.
 151		 */
 152		free -= global_page_state(NR_SHMEM);
 153
 154		free += get_nr_swap_pages();
 155
 156		/*
 157		 * Any slabs which are created with the
 158		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 159		 * which are reclaimable, under pressure.  The dentry
 160		 * cache and most inode caches should fall into this
 161		 */
 162		free += global_page_state(NR_SLAB_RECLAIMABLE);
 163
 164		/*
 165		 * Leave reserved pages. The pages are not for anonymous pages.
 166		 */
 167		if (free <= totalreserve_pages)
 168			goto error;
 169		else
 170			free -= totalreserve_pages;
 171
 172		/*
 173		 * Reserve some for root
 174		 */
 175		if (!cap_sys_admin)
 176			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 177
 178		if (free > pages)
 179			return 0;
 180
 181		goto error;
 182	}
 183
 184	allowed = vm_commit_limit();
 185	/*
 186	 * Reserve some for root
 187	 */
 188	if (!cap_sys_admin)
 189		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 190
 191	/*
 192	 * Don't let a single process grow so big a user can't recover
 193	 */
 194	if (mm) {
 195		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 196		allowed -= min(mm->total_vm / 32, reserve);
 197	}
 198
 199	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 200		return 0;
 201error:
 202	vm_unacct_memory(pages);
 203
 204	return -ENOMEM;
 205}
 206
 207/*
 208 * Requires inode->i_mapping->i_mmap_mutex
 209 */
 210static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 211		struct file *file, struct address_space *mapping)
 212{
 213	if (vma->vm_flags & VM_DENYWRITE)
 214		atomic_inc(&file_inode(file)->i_writecount);
 215	if (vma->vm_flags & VM_SHARED)
 216		mapping->i_mmap_writable--;
 217
 218	flush_dcache_mmap_lock(mapping);
 219	if (unlikely(vma->vm_flags & VM_NONLINEAR))
 220		list_del_init(&vma->shared.nonlinear);
 221	else
 222		vma_interval_tree_remove(vma, &mapping->i_mmap);
 223	flush_dcache_mmap_unlock(mapping);
 224}
 225
 226/*
 227 * Unlink a file-based vm structure from its interval tree, to hide
 228 * vma from rmap and vmtruncate before freeing its page tables.
 229 */
 230void unlink_file_vma(struct vm_area_struct *vma)
 231{
 232	struct file *file = vma->vm_file;
 233
 234	if (file) {
 235		struct address_space *mapping = file->f_mapping;
 236		mutex_lock(&mapping->i_mmap_mutex);
 237		__remove_shared_vm_struct(vma, file, mapping);
 238		mutex_unlock(&mapping->i_mmap_mutex);
 239	}
 240}
 241
 242/*
 243 * Close a vm structure and free it, returning the next.
 244 */
 245static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 246{
 247	struct vm_area_struct *next = vma->vm_next;
 248
 249	might_sleep();
 250	if (vma->vm_ops && vma->vm_ops->close)
 251		vma->vm_ops->close(vma);
 252	if (vma->vm_file)
 253		fput(vma->vm_file);
 254	mpol_put(vma_policy(vma));
 255	kmem_cache_free(vm_area_cachep, vma);
 256	return next;
 257}
 258
 259static unsigned long do_brk(unsigned long addr, unsigned long len);
 260
 261SYSCALL_DEFINE1(brk, unsigned long, brk)
 262{
 263	unsigned long rlim, retval;
 264	unsigned long newbrk, oldbrk;
 265	struct mm_struct *mm = current->mm;
 266	unsigned long min_brk;
 267	bool populate;
 268
 269	down_write(&mm->mmap_sem);
 270
 271#ifdef CONFIG_COMPAT_BRK
 272	/*
 273	 * CONFIG_COMPAT_BRK can still be overridden by setting
 274	 * randomize_va_space to 2, which will still cause mm->start_brk
 275	 * to be arbitrarily shifted
 276	 */
 277	if (current->brk_randomized)
 278		min_brk = mm->start_brk;
 279	else
 280		min_brk = mm->end_data;
 281#else
 282	min_brk = mm->start_brk;
 283#endif
 284	if (brk < min_brk)
 285		goto out;
 286
 287	/*
 288	 * Check against rlimit here. If this check is done later after the test
 289	 * of oldbrk with newbrk then it can escape the test and let the data
 290	 * segment grow beyond its set limit the in case where the limit is
 291	 * not page aligned -Ram Gupta
 292	 */
 293	rlim = rlimit(RLIMIT_DATA);
 294	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
 295			(mm->end_data - mm->start_data) > rlim)
 296		goto out;
 297
 298	newbrk = PAGE_ALIGN(brk);
 299	oldbrk = PAGE_ALIGN(mm->brk);
 300	if (oldbrk == newbrk)
 301		goto set_brk;
 302
 303	/* Always allow shrinking brk. */
 304	if (brk <= mm->brk) {
 305		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 306			goto set_brk;
 307		goto out;
 308	}
 309
 310	/* Check against existing mmap mappings. */
 311	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 312		goto out;
 313
 314	/* Ok, looks good - let it rip. */
 315	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 316		goto out;
 317
 318set_brk:
 319	mm->brk = brk;
 320	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 321	up_write(&mm->mmap_sem);
 322	if (populate)
 323		mm_populate(oldbrk, newbrk - oldbrk);
 324	return brk;
 325
 326out:
 327	retval = mm->brk;
 328	up_write(&mm->mmap_sem);
 329	return retval;
 330}
 331
 332static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 333{
 334	unsigned long max, subtree_gap;
 335	max = vma->vm_start;
 336	if (vma->vm_prev)
 337		max -= vma->vm_prev->vm_end;
 338	if (vma->vm_rb.rb_left) {
 339		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 340				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 341		if (subtree_gap > max)
 342			max = subtree_gap;
 343	}
 344	if (vma->vm_rb.rb_right) {
 345		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 346				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 347		if (subtree_gap > max)
 348			max = subtree_gap;
 349	}
 350	return max;
 351}
 352
 353#ifdef CONFIG_DEBUG_VM_RB
 354static int browse_rb(struct rb_root *root)
 355{
 
 356	int i = 0, j, bug = 0;
 357	struct rb_node *nd, *pn = NULL;
 358	unsigned long prev = 0, pend = 0;
 359
 360	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 361		struct vm_area_struct *vma;
 362		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 363		if (vma->vm_start < prev) {
 364			printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
 
 365			bug = 1;
 366		}
 367		if (vma->vm_start < pend) {
 368			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
 
 369			bug = 1;
 370		}
 371		if (vma->vm_start > vma->vm_end) {
 372			printk("vm_end %lx < vm_start %lx\n",
 373				vma->vm_end, vma->vm_start);
 374			bug = 1;
 375		}
 
 376		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 377			printk("free gap %lx, correct %lx\n",
 378			       vma->rb_subtree_gap,
 379			       vma_compute_subtree_gap(vma));
 380			bug = 1;
 381		}
 
 382		i++;
 383		pn = nd;
 384		prev = vma->vm_start;
 385		pend = vma->vm_end;
 386	}
 387	j = 0;
 388	for (nd = pn; nd; nd = rb_prev(nd))
 389		j++;
 390	if (i != j) {
 391		printk("backwards %d, forwards %d\n", j, i);
 392		bug = 1;
 393	}
 394	return bug ? -1 : i;
 395}
 396
 397static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 398{
 399	struct rb_node *nd;
 400
 401	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 402		struct vm_area_struct *vma;
 403		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 404		BUG_ON(vma != ignore &&
 405		       vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
 
 406	}
 407}
 408
 409static void validate_mm(struct mm_struct *mm)
 410{
 411	int bug = 0;
 412	int i = 0;
 413	unsigned long highest_address = 0;
 414	struct vm_area_struct *vma = mm->mmap;
 
 415	while (vma) {
 
 416		struct anon_vma_chain *avc;
 417		vma_lock_anon_vma(vma);
 418		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 419			anon_vma_interval_tree_verify(avc);
 420		vma_unlock_anon_vma(vma);
 
 
 
 
 421		highest_address = vma->vm_end;
 422		vma = vma->vm_next;
 423		i++;
 424	}
 425	if (i != mm->map_count) {
 426		printk("map_count %d vm_next %d\n", mm->map_count, i);
 427		bug = 1;
 428	}
 429	if (highest_address != mm->highest_vm_end) {
 430		printk("mm->highest_vm_end %lx, found %lx\n",
 431		       mm->highest_vm_end, highest_address);
 432		bug = 1;
 433	}
 434	i = browse_rb(&mm->mm_rb);
 435	if (i != mm->map_count) {
 436		printk("map_count %d rb %d\n", mm->map_count, i);
 
 437		bug = 1;
 438	}
 439	BUG_ON(bug);
 440}
 441#else
 442#define validate_mm_rb(root, ignore) do { } while (0)
 443#define validate_mm(mm) do { } while (0)
 444#endif
 445
 446RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 447		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 448
 449/*
 450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 452 * in the rbtree.
 453 */
 454static void vma_gap_update(struct vm_area_struct *vma)
 455{
 456	/*
 457	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 458	 * function that does exacltly what we want.
 459	 */
 460	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 461}
 462
 463static inline void vma_rb_insert(struct vm_area_struct *vma,
 464				 struct rb_root *root)
 465{
 466	/* All rb_subtree_gap values must be consistent prior to insertion */
 467	validate_mm_rb(root, NULL);
 468
 469	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 470}
 471
 472static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 473{
 474	/*
 475	 * All rb_subtree_gap values must be consistent prior to erase,
 476	 * with the possible exception of the vma being erased.
 477	 */
 478	validate_mm_rb(root, vma);
 479
 480	/*
 481	 * Note rb_erase_augmented is a fairly large inline function,
 482	 * so make sure we instantiate it only once with our desired
 483	 * augmented rbtree callbacks.
 484	 */
 485	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 486}
 487
 488/*
 489 * vma has some anon_vma assigned, and is already inserted on that
 490 * anon_vma's interval trees.
 491 *
 492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 493 * vma must be removed from the anon_vma's interval trees using
 494 * anon_vma_interval_tree_pre_update_vma().
 495 *
 496 * After the update, the vma will be reinserted using
 497 * anon_vma_interval_tree_post_update_vma().
 498 *
 499 * The entire update must be protected by exclusive mmap_sem and by
 500 * the root anon_vma's mutex.
 501 */
 502static inline void
 503anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 504{
 505	struct anon_vma_chain *avc;
 506
 507	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 508		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 509}
 510
 511static inline void
 512anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 513{
 514	struct anon_vma_chain *avc;
 515
 516	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 517		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 518}
 519
 520static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 521		unsigned long end, struct vm_area_struct **pprev,
 522		struct rb_node ***rb_link, struct rb_node **rb_parent)
 523{
 524	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 525
 526	__rb_link = &mm->mm_rb.rb_node;
 527	rb_prev = __rb_parent = NULL;
 528
 529	while (*__rb_link) {
 530		struct vm_area_struct *vma_tmp;
 531
 532		__rb_parent = *__rb_link;
 533		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 534
 535		if (vma_tmp->vm_end > addr) {
 536			/* Fail if an existing vma overlaps the area */
 537			if (vma_tmp->vm_start < end)
 538				return -ENOMEM;
 539			__rb_link = &__rb_parent->rb_left;
 540		} else {
 541			rb_prev = __rb_parent;
 542			__rb_link = &__rb_parent->rb_right;
 543		}
 544	}
 545
 546	*pprev = NULL;
 547	if (rb_prev)
 548		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 549	*rb_link = __rb_link;
 550	*rb_parent = __rb_parent;
 551	return 0;
 552}
 553
 554static unsigned long count_vma_pages_range(struct mm_struct *mm,
 555		unsigned long addr, unsigned long end)
 556{
 557	unsigned long nr_pages = 0;
 558	struct vm_area_struct *vma;
 559
 560	/* Find first overlaping mapping */
 561	vma = find_vma_intersection(mm, addr, end);
 562	if (!vma)
 563		return 0;
 564
 565	nr_pages = (min(end, vma->vm_end) -
 566		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 567
 568	/* Iterate over the rest of the overlaps */
 569	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 570		unsigned long overlap_len;
 571
 572		if (vma->vm_start > end)
 573			break;
 574
 575		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 576		nr_pages += overlap_len >> PAGE_SHIFT;
 577	}
 578
 579	return nr_pages;
 580}
 581
 582void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 583		struct rb_node **rb_link, struct rb_node *rb_parent)
 584{
 585	/* Update tracking information for the gap following the new vma. */
 586	if (vma->vm_next)
 587		vma_gap_update(vma->vm_next);
 588	else
 589		mm->highest_vm_end = vma->vm_end;
 590
 591	/*
 592	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 593	 * correct insertion point for that vma. As a result, we could not
 594	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 595	 * So, we first insert the vma with a zero rb_subtree_gap value
 596	 * (to be consistent with what we did on the way down), and then
 597	 * immediately update the gap to the correct value. Finally we
 598	 * rebalance the rbtree after all augmented values have been set.
 599	 */
 600	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 601	vma->rb_subtree_gap = 0;
 602	vma_gap_update(vma);
 603	vma_rb_insert(vma, &mm->mm_rb);
 604}
 605
 606static void __vma_link_file(struct vm_area_struct *vma)
 607{
 608	struct file *file;
 609
 610	file = vma->vm_file;
 611	if (file) {
 612		struct address_space *mapping = file->f_mapping;
 613
 614		if (vma->vm_flags & VM_DENYWRITE)
 615			atomic_dec(&file_inode(file)->i_writecount);
 616		if (vma->vm_flags & VM_SHARED)
 617			mapping->i_mmap_writable++;
 618
 619		flush_dcache_mmap_lock(mapping);
 620		if (unlikely(vma->vm_flags & VM_NONLINEAR))
 621			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
 622		else
 623			vma_interval_tree_insert(vma, &mapping->i_mmap);
 624		flush_dcache_mmap_unlock(mapping);
 625	}
 626}
 627
 628static void
 629__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 630	struct vm_area_struct *prev, struct rb_node **rb_link,
 631	struct rb_node *rb_parent)
 632{
 633	__vma_link_list(mm, vma, prev, rb_parent);
 634	__vma_link_rb(mm, vma, rb_link, rb_parent);
 635}
 636
 637static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 638			struct vm_area_struct *prev, struct rb_node **rb_link,
 639			struct rb_node *rb_parent)
 640{
 641	struct address_space *mapping = NULL;
 642
 643	if (vma->vm_file)
 644		mapping = vma->vm_file->f_mapping;
 645
 646	if (mapping)
 647		mutex_lock(&mapping->i_mmap_mutex);
 648
 649	__vma_link(mm, vma, prev, rb_link, rb_parent);
 650	__vma_link_file(vma);
 651
 652	if (mapping)
 653		mutex_unlock(&mapping->i_mmap_mutex);
 654
 655	mm->map_count++;
 656	validate_mm(mm);
 657}
 658
 659/*
 660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 661 * mm's list and rbtree.  It has already been inserted into the interval tree.
 662 */
 663static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 664{
 665	struct vm_area_struct *prev;
 666	struct rb_node **rb_link, *rb_parent;
 667
 668	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 669			   &prev, &rb_link, &rb_parent))
 670		BUG();
 671	__vma_link(mm, vma, prev, rb_link, rb_parent);
 672	mm->map_count++;
 673}
 674
 675static inline void
 676__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 677		struct vm_area_struct *prev)
 678{
 679	struct vm_area_struct *next;
 680
 681	vma_rb_erase(vma, &mm->mm_rb);
 682	prev->vm_next = next = vma->vm_next;
 683	if (next)
 684		next->vm_prev = prev;
 685
 686	/* Kill the cache */
 687	vmacache_invalidate(mm);
 688}
 689
 690/*
 691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 692 * is already present in an i_mmap tree without adjusting the tree.
 693 * The following helper function should be used when such adjustments
 694 * are necessary.  The "insert" vma (if any) is to be inserted
 695 * before we drop the necessary locks.
 696 */
 697int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 698	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 699{
 700	struct mm_struct *mm = vma->vm_mm;
 701	struct vm_area_struct *next = vma->vm_next;
 702	struct vm_area_struct *importer = NULL;
 703	struct address_space *mapping = NULL;
 704	struct rb_root *root = NULL;
 705	struct anon_vma *anon_vma = NULL;
 706	struct file *file = vma->vm_file;
 707	bool start_changed = false, end_changed = false;
 708	long adjust_next = 0;
 709	int remove_next = 0;
 710
 711	if (next && !insert) {
 712		struct vm_area_struct *exporter = NULL;
 713
 714		if (end >= next->vm_end) {
 715			/*
 716			 * vma expands, overlapping all the next, and
 717			 * perhaps the one after too (mprotect case 6).
 718			 */
 719again:			remove_next = 1 + (end > next->vm_end);
 720			end = next->vm_end;
 721			exporter = next;
 722			importer = vma;
 723		} else if (end > next->vm_start) {
 724			/*
 725			 * vma expands, overlapping part of the next:
 726			 * mprotect case 5 shifting the boundary up.
 727			 */
 728			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 729			exporter = next;
 730			importer = vma;
 731		} else if (end < vma->vm_end) {
 732			/*
 733			 * vma shrinks, and !insert tells it's not
 734			 * split_vma inserting another: so it must be
 735			 * mprotect case 4 shifting the boundary down.
 736			 */
 737			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
 738			exporter = vma;
 739			importer = next;
 740		}
 741
 742		/*
 743		 * Easily overlooked: when mprotect shifts the boundary,
 744		 * make sure the expanding vma has anon_vma set if the
 745		 * shrinking vma had, to cover any anon pages imported.
 746		 */
 747		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 748			if (anon_vma_clone(importer, exporter))
 749				return -ENOMEM;
 750			importer->anon_vma = exporter->anon_vma;
 
 
 
 751		}
 752	}
 753
 754	if (file) {
 755		mapping = file->f_mapping;
 756		if (!(vma->vm_flags & VM_NONLINEAR)) {
 757			root = &mapping->i_mmap;
 758			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 759
 760			if (adjust_next)
 761				uprobe_munmap(next, next->vm_start,
 762							next->vm_end);
 763		}
 764
 765		mutex_lock(&mapping->i_mmap_mutex);
 766		if (insert) {
 767			/*
 768			 * Put into interval tree now, so instantiated pages
 769			 * are visible to arm/parisc __flush_dcache_page
 770			 * throughout; but we cannot insert into address
 771			 * space until vma start or end is updated.
 772			 */
 773			__vma_link_file(insert);
 774		}
 775	}
 776
 777	vma_adjust_trans_huge(vma, start, end, adjust_next);
 778
 779	anon_vma = vma->anon_vma;
 780	if (!anon_vma && adjust_next)
 781		anon_vma = next->anon_vma;
 782	if (anon_vma) {
 783		VM_BUG_ON(adjust_next && next->anon_vma &&
 784			  anon_vma != next->anon_vma);
 785		anon_vma_lock_write(anon_vma);
 786		anon_vma_interval_tree_pre_update_vma(vma);
 787		if (adjust_next)
 788			anon_vma_interval_tree_pre_update_vma(next);
 789	}
 790
 791	if (root) {
 792		flush_dcache_mmap_lock(mapping);
 793		vma_interval_tree_remove(vma, root);
 794		if (adjust_next)
 795			vma_interval_tree_remove(next, root);
 796	}
 797
 798	if (start != vma->vm_start) {
 799		vma->vm_start = start;
 800		start_changed = true;
 801	}
 802	if (end != vma->vm_end) {
 803		vma->vm_end = end;
 804		end_changed = true;
 805	}
 806	vma->vm_pgoff = pgoff;
 807	if (adjust_next) {
 808		next->vm_start += adjust_next << PAGE_SHIFT;
 809		next->vm_pgoff += adjust_next;
 810	}
 811
 812	if (root) {
 813		if (adjust_next)
 814			vma_interval_tree_insert(next, root);
 815		vma_interval_tree_insert(vma, root);
 816		flush_dcache_mmap_unlock(mapping);
 817	}
 818
 819	if (remove_next) {
 820		/*
 821		 * vma_merge has merged next into vma, and needs
 822		 * us to remove next before dropping the locks.
 823		 */
 824		__vma_unlink(mm, next, vma);
 825		if (file)
 826			__remove_shared_vm_struct(next, file, mapping);
 827	} else if (insert) {
 828		/*
 829		 * split_vma has split insert from vma, and needs
 830		 * us to insert it before dropping the locks
 831		 * (it may either follow vma or precede it).
 832		 */
 833		__insert_vm_struct(mm, insert);
 834	} else {
 835		if (start_changed)
 836			vma_gap_update(vma);
 837		if (end_changed) {
 838			if (!next)
 839				mm->highest_vm_end = end;
 840			else if (!adjust_next)
 841				vma_gap_update(next);
 842		}
 843	}
 844
 845	if (anon_vma) {
 846		anon_vma_interval_tree_post_update_vma(vma);
 847		if (adjust_next)
 848			anon_vma_interval_tree_post_update_vma(next);
 849		anon_vma_unlock_write(anon_vma);
 850	}
 851	if (mapping)
 852		mutex_unlock(&mapping->i_mmap_mutex);
 853
 854	if (root) {
 855		uprobe_mmap(vma);
 856
 857		if (adjust_next)
 858			uprobe_mmap(next);
 859	}
 860
 861	if (remove_next) {
 862		if (file) {
 863			uprobe_munmap(next, next->vm_start, next->vm_end);
 864			fput(file);
 865		}
 866		if (next->anon_vma)
 867			anon_vma_merge(vma, next);
 868		mm->map_count--;
 869		mpol_put(vma_policy(next));
 870		kmem_cache_free(vm_area_cachep, next);
 871		/*
 872		 * In mprotect's case 6 (see comments on vma_merge),
 873		 * we must remove another next too. It would clutter
 874		 * up the code too much to do both in one go.
 875		 */
 876		next = vma->vm_next;
 877		if (remove_next == 2)
 878			goto again;
 879		else if (next)
 880			vma_gap_update(next);
 881		else
 882			mm->highest_vm_end = end;
 883	}
 884	if (insert && file)
 885		uprobe_mmap(insert);
 886
 887	validate_mm(mm);
 888
 889	return 0;
 890}
 891
 892/*
 893 * If the vma has a ->close operation then the driver probably needs to release
 894 * per-vma resources, so we don't attempt to merge those.
 895 */
 896static inline int is_mergeable_vma(struct vm_area_struct *vma,
 897			struct file *file, unsigned long vm_flags)
 
 898{
 899	/*
 900	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 901	 * match the flags but dirty bit -- the caller should mark
 902	 * merged VMA as dirty. If dirty bit won't be excluded from
 903	 * comparison, we increase pressue on the memory system forcing
 904	 * the kernel to generate new VMAs when old one could be
 905	 * extended instead.
 906	 */
 907	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 908		return 0;
 909	if (vma->vm_file != file)
 910		return 0;
 911	if (vma->vm_ops && vma->vm_ops->close)
 912		return 0;
 
 
 913	return 1;
 914}
 915
 916static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 917					struct anon_vma *anon_vma2,
 918					struct vm_area_struct *vma)
 919{
 920	/*
 921	 * The list_is_singular() test is to avoid merging VMA cloned from
 922	 * parents. This can improve scalability caused by anon_vma lock.
 923	 */
 924	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 925		list_is_singular(&vma->anon_vma_chain)))
 926		return 1;
 927	return anon_vma1 == anon_vma2;
 928}
 929
 930/*
 931 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 932 * in front of (at a lower virtual address and file offset than) the vma.
 933 *
 934 * We cannot merge two vmas if they have differently assigned (non-NULL)
 935 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 936 *
 937 * We don't check here for the merged mmap wrapping around the end of pagecache
 938 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 939 * wrap, nor mmaps which cover the final page at index -1UL.
 940 */
 941static int
 942can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 943	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 944{
 945	if (is_mergeable_vma(vma, file, vm_flags) &&
 946	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 947		if (vma->vm_pgoff == vm_pgoff)
 948			return 1;
 949	}
 950	return 0;
 951}
 952
 953/*
 954 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 955 * beyond (at a higher virtual address and file offset than) the vma.
 956 *
 957 * We cannot merge two vmas if they have differently assigned (non-NULL)
 958 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 959 */
 960static int
 961can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 962	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 963{
 964	if (is_mergeable_vma(vma, file, vm_flags) &&
 965	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 966		pgoff_t vm_pglen;
 967		vm_pglen = vma_pages(vma);
 968		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 969			return 1;
 970	}
 971	return 0;
 972}
 973
 974/*
 975 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 976 * whether that can be merged with its predecessor or its successor.
 977 * Or both (it neatly fills a hole).
 978 *
 979 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 980 * certain not to be mapped by the time vma_merge is called; but when
 981 * called for mprotect, it is certain to be already mapped (either at
 982 * an offset within prev, or at the start of next), and the flags of
 983 * this area are about to be changed to vm_flags - and the no-change
 984 * case has already been eliminated.
 985 *
 986 * The following mprotect cases have to be considered, where AAAA is
 987 * the area passed down from mprotect_fixup, never extending beyond one
 988 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 989 *
 990 *     AAAA             AAAA                AAAA          AAAA
 991 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 992 *    cannot merge    might become    might become    might become
 993 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 994 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 995 *    mremap move:                                    PPPPNNNNNNNN 8
 996 *        AAAA
 997 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 998 *    might become    case 1 below    case 2 below    case 3 below
 999 *
1000 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1001 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1002 */
1003struct vm_area_struct *vma_merge(struct mm_struct *mm,
1004			struct vm_area_struct *prev, unsigned long addr,
1005			unsigned long end, unsigned long vm_flags,
1006		     	struct anon_vma *anon_vma, struct file *file,
1007			pgoff_t pgoff, struct mempolicy *policy)
 
1008{
1009	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1010	struct vm_area_struct *area, *next;
1011	int err;
1012
1013	/*
1014	 * We later require that vma->vm_flags == vm_flags,
1015	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1016	 */
1017	if (vm_flags & VM_SPECIAL)
1018		return NULL;
1019
1020	if (prev)
1021		next = prev->vm_next;
1022	else
1023		next = mm->mmap;
1024	area = next;
1025	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1026		next = next->vm_next;
1027
1028	/*
1029	 * Can it merge with the predecessor?
1030	 */
1031	if (prev && prev->vm_end == addr &&
1032  			mpol_equal(vma_policy(prev), policy) &&
1033			can_vma_merge_after(prev, vm_flags,
1034						anon_vma, file, pgoff)) {
 
1035		/*
1036		 * OK, it can.  Can we now merge in the successor as well?
1037		 */
1038		if (next && end == next->vm_start &&
1039				mpol_equal(policy, vma_policy(next)) &&
1040				can_vma_merge_before(next, vm_flags,
1041					anon_vma, file, pgoff+pglen) &&
 
 
1042				is_mergeable_anon_vma(prev->anon_vma,
1043						      next->anon_vma, NULL)) {
1044							/* cases 1, 6 */
1045			err = vma_adjust(prev, prev->vm_start,
1046				next->vm_end, prev->vm_pgoff, NULL);
1047		} else					/* cases 2, 5, 7 */
1048			err = vma_adjust(prev, prev->vm_start,
1049				end, prev->vm_pgoff, NULL);
1050		if (err)
1051			return NULL;
1052		khugepaged_enter_vma_merge(prev);
1053		return prev;
1054	}
1055
1056	/*
1057	 * Can this new request be merged in front of next?
1058	 */
1059	if (next && end == next->vm_start &&
1060 			mpol_equal(policy, vma_policy(next)) &&
1061			can_vma_merge_before(next, vm_flags,
1062					anon_vma, file, pgoff+pglen)) {
 
1063		if (prev && addr < prev->vm_end)	/* case 4 */
1064			err = vma_adjust(prev, prev->vm_start,
1065				addr, prev->vm_pgoff, NULL);
1066		else					/* cases 3, 8 */
1067			err = vma_adjust(area, addr, next->vm_end,
1068				next->vm_pgoff - pglen, NULL);
1069		if (err)
1070			return NULL;
1071		khugepaged_enter_vma_merge(area);
1072		return area;
1073	}
1074
1075	return NULL;
1076}
1077
1078/*
1079 * Rough compatbility check to quickly see if it's even worth looking
1080 * at sharing an anon_vma.
1081 *
1082 * They need to have the same vm_file, and the flags can only differ
1083 * in things that mprotect may change.
1084 *
1085 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1086 * we can merge the two vma's. For example, we refuse to merge a vma if
1087 * there is a vm_ops->close() function, because that indicates that the
1088 * driver is doing some kind of reference counting. But that doesn't
1089 * really matter for the anon_vma sharing case.
1090 */
1091static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1092{
1093	return a->vm_end == b->vm_start &&
1094		mpol_equal(vma_policy(a), vma_policy(b)) &&
1095		a->vm_file == b->vm_file &&
1096		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1097		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1098}
1099
1100/*
1101 * Do some basic sanity checking to see if we can re-use the anon_vma
1102 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1103 * the same as 'old', the other will be the new one that is trying
1104 * to share the anon_vma.
1105 *
1106 * NOTE! This runs with mm_sem held for reading, so it is possible that
1107 * the anon_vma of 'old' is concurrently in the process of being set up
1108 * by another page fault trying to merge _that_. But that's ok: if it
1109 * is being set up, that automatically means that it will be a singleton
1110 * acceptable for merging, so we can do all of this optimistically. But
1111 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1112 *
1113 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1114 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1115 * is to return an anon_vma that is "complex" due to having gone through
1116 * a fork).
1117 *
1118 * We also make sure that the two vma's are compatible (adjacent,
1119 * and with the same memory policies). That's all stable, even with just
1120 * a read lock on the mm_sem.
1121 */
1122static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1123{
1124	if (anon_vma_compatible(a, b)) {
1125		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1126
1127		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1128			return anon_vma;
1129	}
1130	return NULL;
1131}
1132
1133/*
1134 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1135 * neighbouring vmas for a suitable anon_vma, before it goes off
1136 * to allocate a new anon_vma.  It checks because a repetitive
1137 * sequence of mprotects and faults may otherwise lead to distinct
1138 * anon_vmas being allocated, preventing vma merge in subsequent
1139 * mprotect.
1140 */
1141struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1142{
1143	struct anon_vma *anon_vma;
1144	struct vm_area_struct *near;
1145
1146	near = vma->vm_next;
1147	if (!near)
1148		goto try_prev;
1149
1150	anon_vma = reusable_anon_vma(near, vma, near);
1151	if (anon_vma)
1152		return anon_vma;
1153try_prev:
1154	near = vma->vm_prev;
1155	if (!near)
1156		goto none;
1157
1158	anon_vma = reusable_anon_vma(near, near, vma);
1159	if (anon_vma)
1160		return anon_vma;
1161none:
1162	/*
1163	 * There's no absolute need to look only at touching neighbours:
1164	 * we could search further afield for "compatible" anon_vmas.
1165	 * But it would probably just be a waste of time searching,
1166	 * or lead to too many vmas hanging off the same anon_vma.
1167	 * We're trying to allow mprotect remerging later on,
1168	 * not trying to minimize memory used for anon_vmas.
1169	 */
1170	return NULL;
1171}
1172
1173#ifdef CONFIG_PROC_FS
1174void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1175						struct file *file, long pages)
1176{
1177	const unsigned long stack_flags
1178		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1179
1180	mm->total_vm += pages;
1181
1182	if (file) {
1183		mm->shared_vm += pages;
1184		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1185			mm->exec_vm += pages;
1186	} else if (flags & stack_flags)
1187		mm->stack_vm += pages;
1188}
1189#endif /* CONFIG_PROC_FS */
1190
1191/*
1192 * If a hint addr is less than mmap_min_addr change hint to be as
1193 * low as possible but still greater than mmap_min_addr
1194 */
1195static inline unsigned long round_hint_to_min(unsigned long hint)
1196{
1197	hint &= PAGE_MASK;
1198	if (((void *)hint != NULL) &&
1199	    (hint < mmap_min_addr))
1200		return PAGE_ALIGN(mmap_min_addr);
1201	return hint;
1202}
1203
1204static inline int mlock_future_check(struct mm_struct *mm,
1205				     unsigned long flags,
1206				     unsigned long len)
1207{
1208	unsigned long locked, lock_limit;
1209
1210	/*  mlock MCL_FUTURE? */
1211	if (flags & VM_LOCKED) {
1212		locked = len >> PAGE_SHIFT;
1213		locked += mm->locked_vm;
1214		lock_limit = rlimit(RLIMIT_MEMLOCK);
1215		lock_limit >>= PAGE_SHIFT;
1216		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1217			return -EAGAIN;
1218	}
1219	return 0;
1220}
1221
1222/*
1223 * The caller must hold down_write(&current->mm->mmap_sem).
1224 */
1225
1226unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1227			unsigned long len, unsigned long prot,
1228			unsigned long flags, unsigned long pgoff,
1229			unsigned long *populate)
1230{
1231	struct mm_struct * mm = current->mm;
1232	vm_flags_t vm_flags;
1233
1234	*populate = 0;
1235
 
 
 
1236	/*
1237	 * Does the application expect PROT_READ to imply PROT_EXEC?
1238	 *
1239	 * (the exception is when the underlying filesystem is noexec
1240	 *  mounted, in which case we dont add PROT_EXEC.)
1241	 */
1242	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1243		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1244			prot |= PROT_EXEC;
1245
1246	if (!len)
1247		return -EINVAL;
1248
1249	if (!(flags & MAP_FIXED))
1250		addr = round_hint_to_min(addr);
1251
1252	/* Careful about overflows.. */
1253	len = PAGE_ALIGN(len);
1254	if (!len)
1255		return -ENOMEM;
1256
1257	/* offset overflow? */
1258	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1259               return -EOVERFLOW;
1260
1261	/* Too many mappings? */
1262	if (mm->map_count > sysctl_max_map_count)
1263		return -ENOMEM;
1264
1265	/* Obtain the address to map to. we verify (or select) it and ensure
1266	 * that it represents a valid section of the address space.
1267	 */
1268	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1269	if (addr & ~PAGE_MASK)
1270		return addr;
1271
 
 
 
 
 
 
1272	/* Do simple checking here so the lower-level routines won't have
1273	 * to. we assume access permissions have been handled by the open
1274	 * of the memory object, so we don't do any here.
1275	 */
1276	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1277			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1278
1279	if (flags & MAP_LOCKED)
1280		if (!can_do_mlock())
1281			return -EPERM;
1282
1283	if (mlock_future_check(mm, vm_flags, len))
1284		return -EAGAIN;
1285
1286	if (file) {
1287		struct inode *inode = file_inode(file);
1288
1289		switch (flags & MAP_TYPE) {
1290		case MAP_SHARED:
1291			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1292				return -EACCES;
1293
1294			/*
1295			 * Make sure we don't allow writing to an append-only
1296			 * file..
1297			 */
1298			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1299				return -EACCES;
1300
1301			/*
1302			 * Make sure there are no mandatory locks on the file.
1303			 */
1304			if (locks_verify_locked(file))
1305				return -EAGAIN;
1306
1307			vm_flags |= VM_SHARED | VM_MAYSHARE;
1308			if (!(file->f_mode & FMODE_WRITE))
1309				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1310
1311			/* fall through */
1312		case MAP_PRIVATE:
1313			if (!(file->f_mode & FMODE_READ))
1314				return -EACCES;
1315			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1316				if (vm_flags & VM_EXEC)
1317					return -EPERM;
1318				vm_flags &= ~VM_MAYEXEC;
1319			}
1320
1321			if (!file->f_op->mmap)
1322				return -ENODEV;
1323			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1324				return -EINVAL;
1325			break;
1326
1327		default:
1328			return -EINVAL;
1329		}
1330	} else {
1331		switch (flags & MAP_TYPE) {
1332		case MAP_SHARED:
1333			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1334				return -EINVAL;
1335			/*
1336			 * Ignore pgoff.
1337			 */
1338			pgoff = 0;
1339			vm_flags |= VM_SHARED | VM_MAYSHARE;
1340			break;
1341		case MAP_PRIVATE:
1342			/*
1343			 * Set pgoff according to addr for anon_vma.
1344			 */
1345			pgoff = addr >> PAGE_SHIFT;
1346			break;
1347		default:
1348			return -EINVAL;
1349		}
1350	}
1351
1352	/*
1353	 * Set 'VM_NORESERVE' if we should not account for the
1354	 * memory use of this mapping.
1355	 */
1356	if (flags & MAP_NORESERVE) {
1357		/* We honor MAP_NORESERVE if allowed to overcommit */
1358		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1359			vm_flags |= VM_NORESERVE;
1360
1361		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1362		if (file && is_file_hugepages(file))
1363			vm_flags |= VM_NORESERVE;
1364	}
1365
1366	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1367	if (!IS_ERR_VALUE(addr) &&
1368	    ((vm_flags & VM_LOCKED) ||
1369	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1370		*populate = len;
1371	return addr;
1372}
1373
1374SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1375		unsigned long, prot, unsigned long, flags,
1376		unsigned long, fd, unsigned long, pgoff)
1377{
1378	struct file *file = NULL;
1379	unsigned long retval = -EBADF;
1380
1381	if (!(flags & MAP_ANONYMOUS)) {
1382		audit_mmap_fd(fd, flags);
1383		file = fget(fd);
1384		if (!file)
1385			goto out;
1386		if (is_file_hugepages(file))
1387			len = ALIGN(len, huge_page_size(hstate_file(file)));
1388		retval = -EINVAL;
1389		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1390			goto out_fput;
1391	} else if (flags & MAP_HUGETLB) {
1392		struct user_struct *user = NULL;
1393		struct hstate *hs;
1394
1395		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1396		if (!hs)
1397			return -EINVAL;
1398
1399		len = ALIGN(len, huge_page_size(hs));
1400		/*
1401		 * VM_NORESERVE is used because the reservations will be
1402		 * taken when vm_ops->mmap() is called
1403		 * A dummy user value is used because we are not locking
1404		 * memory so no accounting is necessary
1405		 */
1406		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1407				VM_NORESERVE,
1408				&user, HUGETLB_ANONHUGE_INODE,
1409				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1410		if (IS_ERR(file))
1411			return PTR_ERR(file);
1412	}
1413
1414	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1415
1416	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1417out_fput:
1418	if (file)
1419		fput(file);
1420out:
1421	return retval;
1422}
1423
1424#ifdef __ARCH_WANT_SYS_OLD_MMAP
1425struct mmap_arg_struct {
1426	unsigned long addr;
1427	unsigned long len;
1428	unsigned long prot;
1429	unsigned long flags;
1430	unsigned long fd;
1431	unsigned long offset;
1432};
1433
1434SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1435{
1436	struct mmap_arg_struct a;
1437
1438	if (copy_from_user(&a, arg, sizeof(a)))
1439		return -EFAULT;
1440	if (a.offset & ~PAGE_MASK)
1441		return -EINVAL;
1442
1443	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1444			      a.offset >> PAGE_SHIFT);
1445}
1446#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1447
1448/*
1449 * Some shared mappigns will want the pages marked read-only
1450 * to track write events. If so, we'll downgrade vm_page_prot
1451 * to the private version (using protection_map[] without the
1452 * VM_SHARED bit).
1453 */
1454int vma_wants_writenotify(struct vm_area_struct *vma)
1455{
1456	vm_flags_t vm_flags = vma->vm_flags;
 
1457
1458	/* If it was private or non-writable, the write bit is already clear */
1459	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1460		return 0;
1461
1462	/* The backer wishes to know when pages are first written to? */
1463	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1464		return 1;
1465
1466	/* The open routine did something to the protections already? */
 
1467	if (pgprot_val(vma->vm_page_prot) !=
1468	    pgprot_val(vm_get_page_prot(vm_flags)))
1469		return 0;
1470
 
 
 
 
1471	/* Specialty mapping? */
1472	if (vm_flags & VM_PFNMAP)
1473		return 0;
1474
1475	/* Can the mapping track the dirty pages? */
1476	return vma->vm_file && vma->vm_file->f_mapping &&
1477		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1478}
1479
1480/*
1481 * We account for memory if it's a private writeable mapping,
1482 * not hugepages and VM_NORESERVE wasn't set.
1483 */
1484static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1485{
1486	/*
1487	 * hugetlb has its own accounting separate from the core VM
1488	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1489	 */
1490	if (file && is_file_hugepages(file))
1491		return 0;
1492
1493	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1494}
1495
1496unsigned long mmap_region(struct file *file, unsigned long addr,
1497		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1498{
1499	struct mm_struct *mm = current->mm;
1500	struct vm_area_struct *vma, *prev;
1501	int error;
1502	struct rb_node **rb_link, *rb_parent;
1503	unsigned long charged = 0;
1504
1505	/* Check against address space limit. */
1506	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1507		unsigned long nr_pages;
1508
1509		/*
1510		 * MAP_FIXED may remove pages of mappings that intersects with
1511		 * requested mapping. Account for the pages it would unmap.
1512		 */
1513		if (!(vm_flags & MAP_FIXED))
1514			return -ENOMEM;
1515
1516		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1517
1518		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
 
1519			return -ENOMEM;
1520	}
1521
1522	/* Clear old maps */
1523	error = -ENOMEM;
1524munmap_back:
1525	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1526		if (do_munmap(mm, addr, len))
1527			return -ENOMEM;
1528		goto munmap_back;
1529	}
1530
1531	/*
1532	 * Private writable mapping: check memory availability
1533	 */
1534	if (accountable_mapping(file, vm_flags)) {
1535		charged = len >> PAGE_SHIFT;
1536		if (security_vm_enough_memory_mm(mm, charged))
1537			return -ENOMEM;
1538		vm_flags |= VM_ACCOUNT;
1539	}
1540
1541	/*
1542	 * Can we just expand an old mapping?
1543	 */
1544	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
 
1545	if (vma)
1546		goto out;
1547
1548	/*
1549	 * Determine the object being mapped and call the appropriate
1550	 * specific mapper. the address has already been validated, but
1551	 * not unmapped, but the maps are removed from the list.
1552	 */
1553	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1554	if (!vma) {
1555		error = -ENOMEM;
1556		goto unacct_error;
1557	}
1558
1559	vma->vm_mm = mm;
1560	vma->vm_start = addr;
1561	vma->vm_end = addr + len;
1562	vma->vm_flags = vm_flags;
1563	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1564	vma->vm_pgoff = pgoff;
1565	INIT_LIST_HEAD(&vma->anon_vma_chain);
1566
1567	if (file) {
1568		if (vm_flags & VM_DENYWRITE) {
1569			error = deny_write_access(file);
1570			if (error)
1571				goto free_vma;
1572		}
 
 
 
 
 
 
 
 
 
 
 
1573		vma->vm_file = get_file(file);
1574		error = file->f_op->mmap(file, vma);
1575		if (error)
1576			goto unmap_and_free_vma;
1577
1578		/* Can addr have changed??
1579		 *
1580		 * Answer: Yes, several device drivers can do it in their
1581		 *         f_op->mmap method. -DaveM
1582		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1583		 *      be updated for vma_link()
1584		 */
1585		WARN_ON_ONCE(addr != vma->vm_start);
1586
1587		addr = vma->vm_start;
1588		vm_flags = vma->vm_flags;
1589	} else if (vm_flags & VM_SHARED) {
1590		error = shmem_zero_setup(vma);
1591		if (error)
1592			goto free_vma;
1593	}
1594
1595	if (vma_wants_writenotify(vma)) {
1596		pgprot_t pprot = vma->vm_page_prot;
1597
1598		/* Can vma->vm_page_prot have changed??
1599		 *
1600		 * Answer: Yes, drivers may have changed it in their
1601		 *         f_op->mmap method.
1602		 *
1603		 * Ensures that vmas marked as uncached stay that way.
1604		 */
1605		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1606		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1607			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1608	}
1609
1610	vma_link(mm, vma, prev, rb_link, rb_parent);
1611	/* Once vma denies write, undo our temporary denial count */
1612	if (vm_flags & VM_DENYWRITE)
1613		allow_write_access(file);
 
 
 
 
1614	file = vma->vm_file;
1615out:
1616	perf_event_mmap(vma);
1617
1618	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1619	if (vm_flags & VM_LOCKED) {
1620		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1621					vma == get_gate_vma(current->mm)))
1622			mm->locked_vm += (len >> PAGE_SHIFT);
1623		else
1624			vma->vm_flags &= ~VM_LOCKED;
1625	}
1626
1627	if (file)
1628		uprobe_mmap(vma);
1629
1630	/*
1631	 * New (or expanded) vma always get soft dirty status.
1632	 * Otherwise user-space soft-dirty page tracker won't
1633	 * be able to distinguish situation when vma area unmapped,
1634	 * then new mapped in-place (which must be aimed as
1635	 * a completely new data area).
1636	 */
1637	vma->vm_flags |= VM_SOFTDIRTY;
1638
 
 
1639	return addr;
1640
1641unmap_and_free_vma:
1642	if (vm_flags & VM_DENYWRITE)
1643		allow_write_access(file);
1644	vma->vm_file = NULL;
1645	fput(file);
1646
1647	/* Undo any partial mapping done by a device driver. */
1648	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1649	charged = 0;
 
 
 
 
 
1650free_vma:
1651	kmem_cache_free(vm_area_cachep, vma);
1652unacct_error:
1653	if (charged)
1654		vm_unacct_memory(charged);
1655	return error;
1656}
1657
1658unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1659{
1660	/*
1661	 * We implement the search by looking for an rbtree node that
1662	 * immediately follows a suitable gap. That is,
1663	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1664	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1665	 * - gap_end - gap_start >= length
1666	 */
1667
1668	struct mm_struct *mm = current->mm;
1669	struct vm_area_struct *vma;
1670	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1671
1672	/* Adjust search length to account for worst case alignment overhead */
1673	length = info->length + info->align_mask;
1674	if (length < info->length)
1675		return -ENOMEM;
1676
1677	/* Adjust search limits by the desired length */
1678	if (info->high_limit < length)
1679		return -ENOMEM;
1680	high_limit = info->high_limit - length;
1681
1682	if (info->low_limit > high_limit)
1683		return -ENOMEM;
1684	low_limit = info->low_limit + length;
1685
1686	/* Check if rbtree root looks promising */
1687	if (RB_EMPTY_ROOT(&mm->mm_rb))
1688		goto check_highest;
1689	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1690	if (vma->rb_subtree_gap < length)
1691		goto check_highest;
1692
1693	while (true) {
1694		/* Visit left subtree if it looks promising */
1695		gap_end = vma->vm_start;
1696		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1697			struct vm_area_struct *left =
1698				rb_entry(vma->vm_rb.rb_left,
1699					 struct vm_area_struct, vm_rb);
1700			if (left->rb_subtree_gap >= length) {
1701				vma = left;
1702				continue;
1703			}
1704		}
1705
1706		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1707check_current:
1708		/* Check if current node has a suitable gap */
1709		if (gap_start > high_limit)
1710			return -ENOMEM;
1711		if (gap_end >= low_limit && gap_end - gap_start >= length)
1712			goto found;
1713
1714		/* Visit right subtree if it looks promising */
1715		if (vma->vm_rb.rb_right) {
1716			struct vm_area_struct *right =
1717				rb_entry(vma->vm_rb.rb_right,
1718					 struct vm_area_struct, vm_rb);
1719			if (right->rb_subtree_gap >= length) {
1720				vma = right;
1721				continue;
1722			}
1723		}
1724
1725		/* Go back up the rbtree to find next candidate node */
1726		while (true) {
1727			struct rb_node *prev = &vma->vm_rb;
1728			if (!rb_parent(prev))
1729				goto check_highest;
1730			vma = rb_entry(rb_parent(prev),
1731				       struct vm_area_struct, vm_rb);
1732			if (prev == vma->vm_rb.rb_left) {
1733				gap_start = vma->vm_prev->vm_end;
1734				gap_end = vma->vm_start;
1735				goto check_current;
1736			}
1737		}
1738	}
1739
1740check_highest:
1741	/* Check highest gap, which does not precede any rbtree node */
1742	gap_start = mm->highest_vm_end;
1743	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1744	if (gap_start > high_limit)
1745		return -ENOMEM;
1746
1747found:
1748	/* We found a suitable gap. Clip it with the original low_limit. */
1749	if (gap_start < info->low_limit)
1750		gap_start = info->low_limit;
1751
1752	/* Adjust gap address to the desired alignment */
1753	gap_start += (info->align_offset - gap_start) & info->align_mask;
1754
1755	VM_BUG_ON(gap_start + info->length > info->high_limit);
1756	VM_BUG_ON(gap_start + info->length > gap_end);
1757	return gap_start;
1758}
1759
1760unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1761{
1762	struct mm_struct *mm = current->mm;
1763	struct vm_area_struct *vma;
1764	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1765
1766	/* Adjust search length to account for worst case alignment overhead */
1767	length = info->length + info->align_mask;
1768	if (length < info->length)
1769		return -ENOMEM;
1770
1771	/*
1772	 * Adjust search limits by the desired length.
1773	 * See implementation comment at top of unmapped_area().
1774	 */
1775	gap_end = info->high_limit;
1776	if (gap_end < length)
1777		return -ENOMEM;
1778	high_limit = gap_end - length;
1779
1780	if (info->low_limit > high_limit)
1781		return -ENOMEM;
1782	low_limit = info->low_limit + length;
1783
1784	/* Check highest gap, which does not precede any rbtree node */
1785	gap_start = mm->highest_vm_end;
1786	if (gap_start <= high_limit)
1787		goto found_highest;
1788
1789	/* Check if rbtree root looks promising */
1790	if (RB_EMPTY_ROOT(&mm->mm_rb))
1791		return -ENOMEM;
1792	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1793	if (vma->rb_subtree_gap < length)
1794		return -ENOMEM;
1795
1796	while (true) {
1797		/* Visit right subtree if it looks promising */
1798		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1799		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1800			struct vm_area_struct *right =
1801				rb_entry(vma->vm_rb.rb_right,
1802					 struct vm_area_struct, vm_rb);
1803			if (right->rb_subtree_gap >= length) {
1804				vma = right;
1805				continue;
1806			}
1807		}
1808
1809check_current:
1810		/* Check if current node has a suitable gap */
1811		gap_end = vma->vm_start;
1812		if (gap_end < low_limit)
1813			return -ENOMEM;
1814		if (gap_start <= high_limit && gap_end - gap_start >= length)
1815			goto found;
1816
1817		/* Visit left subtree if it looks promising */
1818		if (vma->vm_rb.rb_left) {
1819			struct vm_area_struct *left =
1820				rb_entry(vma->vm_rb.rb_left,
1821					 struct vm_area_struct, vm_rb);
1822			if (left->rb_subtree_gap >= length) {
1823				vma = left;
1824				continue;
1825			}
1826		}
1827
1828		/* Go back up the rbtree to find next candidate node */
1829		while (true) {
1830			struct rb_node *prev = &vma->vm_rb;
1831			if (!rb_parent(prev))
1832				return -ENOMEM;
1833			vma = rb_entry(rb_parent(prev),
1834				       struct vm_area_struct, vm_rb);
1835			if (prev == vma->vm_rb.rb_right) {
1836				gap_start = vma->vm_prev ?
1837					vma->vm_prev->vm_end : 0;
1838				goto check_current;
1839			}
1840		}
1841	}
1842
1843found:
1844	/* We found a suitable gap. Clip it with the original high_limit. */
1845	if (gap_end > info->high_limit)
1846		gap_end = info->high_limit;
1847
1848found_highest:
1849	/* Compute highest gap address at the desired alignment */
1850	gap_end -= info->length;
1851	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1852
1853	VM_BUG_ON(gap_end < info->low_limit);
1854	VM_BUG_ON(gap_end < gap_start);
1855	return gap_end;
1856}
1857
1858/* Get an address range which is currently unmapped.
1859 * For shmat() with addr=0.
1860 *
1861 * Ugly calling convention alert:
1862 * Return value with the low bits set means error value,
1863 * ie
1864 *	if (ret & ~PAGE_MASK)
1865 *		error = ret;
1866 *
1867 * This function "knows" that -ENOMEM has the bits set.
1868 */
1869#ifndef HAVE_ARCH_UNMAPPED_AREA
1870unsigned long
1871arch_get_unmapped_area(struct file *filp, unsigned long addr,
1872		unsigned long len, unsigned long pgoff, unsigned long flags)
1873{
1874	struct mm_struct *mm = current->mm;
1875	struct vm_area_struct *vma;
1876	struct vm_unmapped_area_info info;
1877
1878	if (len > TASK_SIZE - mmap_min_addr)
1879		return -ENOMEM;
1880
1881	if (flags & MAP_FIXED)
1882		return addr;
1883
1884	if (addr) {
1885		addr = PAGE_ALIGN(addr);
1886		vma = find_vma(mm, addr);
1887		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1888		    (!vma || addr + len <= vma->vm_start))
1889			return addr;
1890	}
1891
1892	info.flags = 0;
1893	info.length = len;
1894	info.low_limit = mm->mmap_base;
1895	info.high_limit = TASK_SIZE;
1896	info.align_mask = 0;
1897	return vm_unmapped_area(&info);
1898}
1899#endif	
1900
1901/*
1902 * This mmap-allocator allocates new areas top-down from below the
1903 * stack's low limit (the base):
1904 */
1905#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1906unsigned long
1907arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1908			  const unsigned long len, const unsigned long pgoff,
1909			  const unsigned long flags)
1910{
1911	struct vm_area_struct *vma;
1912	struct mm_struct *mm = current->mm;
1913	unsigned long addr = addr0;
1914	struct vm_unmapped_area_info info;
1915
1916	/* requested length too big for entire address space */
1917	if (len > TASK_SIZE - mmap_min_addr)
1918		return -ENOMEM;
1919
1920	if (flags & MAP_FIXED)
1921		return addr;
1922
1923	/* requesting a specific address */
1924	if (addr) {
1925		addr = PAGE_ALIGN(addr);
1926		vma = find_vma(mm, addr);
1927		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1928				(!vma || addr + len <= vma->vm_start))
1929			return addr;
1930	}
1931
1932	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1933	info.length = len;
1934	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1935	info.high_limit = mm->mmap_base;
1936	info.align_mask = 0;
1937	addr = vm_unmapped_area(&info);
1938
1939	/*
1940	 * A failed mmap() very likely causes application failure,
1941	 * so fall back to the bottom-up function here. This scenario
1942	 * can happen with large stack limits and large mmap()
1943	 * allocations.
1944	 */
1945	if (addr & ~PAGE_MASK) {
1946		VM_BUG_ON(addr != -ENOMEM);
1947		info.flags = 0;
1948		info.low_limit = TASK_UNMAPPED_BASE;
1949		info.high_limit = TASK_SIZE;
1950		addr = vm_unmapped_area(&info);
1951	}
1952
1953	return addr;
1954}
1955#endif
1956
1957unsigned long
1958get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1959		unsigned long pgoff, unsigned long flags)
1960{
1961	unsigned long (*get_area)(struct file *, unsigned long,
1962				  unsigned long, unsigned long, unsigned long);
1963
1964	unsigned long error = arch_mmap_check(addr, len, flags);
1965	if (error)
1966		return error;
1967
1968	/* Careful about overflows.. */
1969	if (len > TASK_SIZE)
1970		return -ENOMEM;
1971
1972	get_area = current->mm->get_unmapped_area;
1973	if (file && file->f_op->get_unmapped_area)
1974		get_area = file->f_op->get_unmapped_area;
1975	addr = get_area(file, addr, len, pgoff, flags);
1976	if (IS_ERR_VALUE(addr))
1977		return addr;
1978
1979	if (addr > TASK_SIZE - len)
1980		return -ENOMEM;
1981	if (addr & ~PAGE_MASK)
1982		return -EINVAL;
1983
1984	addr = arch_rebalance_pgtables(addr, len);
1985	error = security_mmap_addr(addr);
1986	return error ? error : addr;
1987}
1988
1989EXPORT_SYMBOL(get_unmapped_area);
1990
1991/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1992struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1993{
1994	struct rb_node *rb_node;
1995	struct vm_area_struct *vma;
1996
1997	/* Check the cache first. */
1998	vma = vmacache_find(mm, addr);
1999	if (likely(vma))
2000		return vma;
2001
2002	rb_node = mm->mm_rb.rb_node;
2003	vma = NULL;
2004
2005	while (rb_node) {
2006		struct vm_area_struct *tmp;
2007
2008		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2009
2010		if (tmp->vm_end > addr) {
2011			vma = tmp;
2012			if (tmp->vm_start <= addr)
2013				break;
2014			rb_node = rb_node->rb_left;
2015		} else
2016			rb_node = rb_node->rb_right;
2017	}
2018
2019	if (vma)
2020		vmacache_update(addr, vma);
2021	return vma;
2022}
2023
2024EXPORT_SYMBOL(find_vma);
2025
2026/*
2027 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2028 */
2029struct vm_area_struct *
2030find_vma_prev(struct mm_struct *mm, unsigned long addr,
2031			struct vm_area_struct **pprev)
2032{
2033	struct vm_area_struct *vma;
2034
2035	vma = find_vma(mm, addr);
2036	if (vma) {
2037		*pprev = vma->vm_prev;
2038	} else {
2039		struct rb_node *rb_node = mm->mm_rb.rb_node;
2040		*pprev = NULL;
2041		while (rb_node) {
2042			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2043			rb_node = rb_node->rb_right;
2044		}
2045	}
2046	return vma;
2047}
2048
2049/*
2050 * Verify that the stack growth is acceptable and
2051 * update accounting. This is shared with both the
2052 * grow-up and grow-down cases.
2053 */
2054static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2055{
2056	struct mm_struct *mm = vma->vm_mm;
2057	struct rlimit *rlim = current->signal->rlim;
2058	unsigned long new_start;
2059
2060	/* address space limit tests */
2061	if (!may_expand_vm(mm, grow))
2062		return -ENOMEM;
2063
2064	/* Stack limit test */
2065	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
 
 
 
2066		return -ENOMEM;
2067
2068	/* mlock limit tests */
2069	if (vma->vm_flags & VM_LOCKED) {
2070		unsigned long locked;
2071		unsigned long limit;
2072		locked = mm->locked_vm + grow;
2073		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2074		limit >>= PAGE_SHIFT;
2075		if (locked > limit && !capable(CAP_IPC_LOCK))
2076			return -ENOMEM;
2077	}
2078
2079	/* Check to ensure the stack will not grow into a hugetlb-only region */
2080	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2081			vma->vm_end - size;
2082	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2083		return -EFAULT;
2084
2085	/*
2086	 * Overcommit..  This must be the final test, as it will
2087	 * update security statistics.
2088	 */
2089	if (security_vm_enough_memory_mm(mm, grow))
2090		return -ENOMEM;
2091
2092	/* Ok, everything looks good - let it rip */
2093	if (vma->vm_flags & VM_LOCKED)
2094		mm->locked_vm += grow;
2095	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2096	return 0;
2097}
2098
2099#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2100/*
2101 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2102 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2103 */
2104int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2105{
2106	int error;
 
2107
2108	if (!(vma->vm_flags & VM_GROWSUP))
2109		return -EFAULT;
2110
2111	/*
2112	 * We must make sure the anon_vma is allocated
2113	 * so that the anon_vma locking is not a noop.
2114	 */
 
 
 
2115	if (unlikely(anon_vma_prepare(vma)))
2116		return -ENOMEM;
2117	vma_lock_anon_vma(vma);
2118
2119	/*
2120	 * vma->vm_start/vm_end cannot change under us because the caller
2121	 * is required to hold the mmap_sem in read mode.  We need the
2122	 * anon_vma lock to serialize against concurrent expand_stacks.
2123	 * Also guard against wrapping around to address 0.
2124	 */
2125	if (address < PAGE_ALIGN(address+4))
2126		address = PAGE_ALIGN(address+4);
2127	else {
2128		vma_unlock_anon_vma(vma);
2129		return -ENOMEM;
2130	}
2131	error = 0;
2132
2133	/* Somebody else might have raced and expanded it already */
2134	if (address > vma->vm_end) {
2135		unsigned long size, grow;
2136
2137		size = address - vma->vm_start;
2138		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2139
2140		error = -ENOMEM;
2141		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2142			error = acct_stack_growth(vma, size, grow);
2143			if (!error) {
2144				/*
2145				 * vma_gap_update() doesn't support concurrent
2146				 * updates, but we only hold a shared mmap_sem
2147				 * lock here, so we need to protect against
2148				 * concurrent vma expansions.
2149				 * vma_lock_anon_vma() doesn't help here, as
2150				 * we don't guarantee that all growable vmas
2151				 * in a mm share the same root anon vma.
2152				 * So, we reuse mm->page_table_lock to guard
2153				 * against concurrent vma expansions.
2154				 */
2155				spin_lock(&vma->vm_mm->page_table_lock);
 
 
 
2156				anon_vma_interval_tree_pre_update_vma(vma);
2157				vma->vm_end = address;
2158				anon_vma_interval_tree_post_update_vma(vma);
2159				if (vma->vm_next)
2160					vma_gap_update(vma->vm_next);
2161				else
2162					vma->vm_mm->highest_vm_end = address;
2163				spin_unlock(&vma->vm_mm->page_table_lock);
2164
2165				perf_event_mmap(vma);
2166			}
2167		}
2168	}
2169	vma_unlock_anon_vma(vma);
2170	khugepaged_enter_vma_merge(vma);
2171	validate_mm(vma->vm_mm);
2172	return error;
2173}
2174#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2175
2176/*
2177 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2178 */
2179int expand_downwards(struct vm_area_struct *vma,
2180				   unsigned long address)
2181{
 
2182	int error;
2183
2184	/*
2185	 * We must make sure the anon_vma is allocated
2186	 * so that the anon_vma locking is not a noop.
2187	 */
2188	if (unlikely(anon_vma_prepare(vma)))
2189		return -ENOMEM;
2190
2191	address &= PAGE_MASK;
2192	error = security_mmap_addr(address);
2193	if (error)
2194		return error;
2195
2196	vma_lock_anon_vma(vma);
 
 
2197
2198	/*
2199	 * vma->vm_start/vm_end cannot change under us because the caller
2200	 * is required to hold the mmap_sem in read mode.  We need the
2201	 * anon_vma lock to serialize against concurrent expand_stacks.
2202	 */
 
2203
2204	/* Somebody else might have raced and expanded it already */
2205	if (address < vma->vm_start) {
2206		unsigned long size, grow;
2207
2208		size = vma->vm_end - address;
2209		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2210
2211		error = -ENOMEM;
2212		if (grow <= vma->vm_pgoff) {
2213			error = acct_stack_growth(vma, size, grow);
2214			if (!error) {
2215				/*
2216				 * vma_gap_update() doesn't support concurrent
2217				 * updates, but we only hold a shared mmap_sem
2218				 * lock here, so we need to protect against
2219				 * concurrent vma expansions.
2220				 * vma_lock_anon_vma() doesn't help here, as
2221				 * we don't guarantee that all growable vmas
2222				 * in a mm share the same root anon vma.
2223				 * So, we reuse mm->page_table_lock to guard
2224				 * against concurrent vma expansions.
2225				 */
2226				spin_lock(&vma->vm_mm->page_table_lock);
 
 
 
2227				anon_vma_interval_tree_pre_update_vma(vma);
2228				vma->vm_start = address;
2229				vma->vm_pgoff -= grow;
2230				anon_vma_interval_tree_post_update_vma(vma);
2231				vma_gap_update(vma);
2232				spin_unlock(&vma->vm_mm->page_table_lock);
2233
2234				perf_event_mmap(vma);
2235			}
2236		}
2237	}
2238	vma_unlock_anon_vma(vma);
2239	khugepaged_enter_vma_merge(vma);
2240	validate_mm(vma->vm_mm);
2241	return error;
2242}
2243
2244/*
2245 * Note how expand_stack() refuses to expand the stack all the way to
2246 * abut the next virtual mapping, *unless* that mapping itself is also
2247 * a stack mapping. We want to leave room for a guard page, after all
2248 * (the guard page itself is not added here, that is done by the
2249 * actual page faulting logic)
2250 *
2251 * This matches the behavior of the guard page logic (see mm/memory.c:
2252 * check_stack_guard_page()), which only allows the guard page to be
2253 * removed under these circumstances.
2254 */
2255#ifdef CONFIG_STACK_GROWSUP
2256int expand_stack(struct vm_area_struct *vma, unsigned long address)
2257{
2258	struct vm_area_struct *next;
2259
2260	address &= PAGE_MASK;
2261	next = vma->vm_next;
2262	if (next && next->vm_start == address + PAGE_SIZE) {
2263		if (!(next->vm_flags & VM_GROWSUP))
2264			return -ENOMEM;
2265	}
2266	return expand_upwards(vma, address);
2267}
2268
2269struct vm_area_struct *
2270find_extend_vma(struct mm_struct *mm, unsigned long addr)
2271{
2272	struct vm_area_struct *vma, *prev;
2273
2274	addr &= PAGE_MASK;
2275	vma = find_vma_prev(mm, addr, &prev);
2276	if (vma && (vma->vm_start <= addr))
2277		return vma;
2278	if (!prev || expand_stack(prev, addr))
2279		return NULL;
2280	if (prev->vm_flags & VM_LOCKED)
2281		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2282	return prev;
2283}
2284#else
2285int expand_stack(struct vm_area_struct *vma, unsigned long address)
2286{
2287	struct vm_area_struct *prev;
2288
2289	address &= PAGE_MASK;
2290	prev = vma->vm_prev;
2291	if (prev && prev->vm_end == address) {
2292		if (!(prev->vm_flags & VM_GROWSDOWN))
2293			return -ENOMEM;
2294	}
2295	return expand_downwards(vma, address);
2296}
2297
2298struct vm_area_struct *
2299find_extend_vma(struct mm_struct * mm, unsigned long addr)
2300{
2301	struct vm_area_struct * vma;
2302	unsigned long start;
2303
2304	addr &= PAGE_MASK;
2305	vma = find_vma(mm,addr);
2306	if (!vma)
2307		return NULL;
2308	if (vma->vm_start <= addr)
2309		return vma;
2310	if (!(vma->vm_flags & VM_GROWSDOWN))
2311		return NULL;
2312	start = vma->vm_start;
2313	if (expand_stack(vma, addr))
2314		return NULL;
2315	if (vma->vm_flags & VM_LOCKED)
2316		__mlock_vma_pages_range(vma, addr, start, NULL);
2317	return vma;
2318}
2319#endif
2320
 
 
2321/*
2322 * Ok - we have the memory areas we should free on the vma list,
2323 * so release them, and do the vma updates.
2324 *
2325 * Called with the mm semaphore held.
2326 */
2327static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2328{
2329	unsigned long nr_accounted = 0;
2330
2331	/* Update high watermark before we lower total_vm */
2332	update_hiwater_vm(mm);
2333	do {
2334		long nrpages = vma_pages(vma);
2335
2336		if (vma->vm_flags & VM_ACCOUNT)
2337			nr_accounted += nrpages;
2338		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2339		vma = remove_vma(vma);
2340	} while (vma);
2341	vm_unacct_memory(nr_accounted);
2342	validate_mm(mm);
2343}
2344
2345/*
2346 * Get rid of page table information in the indicated region.
2347 *
2348 * Called with the mm semaphore held.
2349 */
2350static void unmap_region(struct mm_struct *mm,
2351		struct vm_area_struct *vma, struct vm_area_struct *prev,
2352		unsigned long start, unsigned long end)
2353{
2354	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2355	struct mmu_gather tlb;
2356
2357	lru_add_drain();
2358	tlb_gather_mmu(&tlb, mm, start, end);
2359	update_hiwater_rss(mm);
2360	unmap_vmas(&tlb, vma, start, end);
2361	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2362				 next ? next->vm_start : USER_PGTABLES_CEILING);
2363	tlb_finish_mmu(&tlb, start, end);
2364}
2365
2366/*
2367 * Create a list of vma's touched by the unmap, removing them from the mm's
2368 * vma list as we go..
2369 */
2370static void
2371detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2372	struct vm_area_struct *prev, unsigned long end)
2373{
2374	struct vm_area_struct **insertion_point;
2375	struct vm_area_struct *tail_vma = NULL;
2376
2377	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2378	vma->vm_prev = NULL;
2379	do {
2380		vma_rb_erase(vma, &mm->mm_rb);
2381		mm->map_count--;
2382		tail_vma = vma;
2383		vma = vma->vm_next;
2384	} while (vma && vma->vm_start < end);
2385	*insertion_point = vma;
2386	if (vma) {
2387		vma->vm_prev = prev;
2388		vma_gap_update(vma);
2389	} else
2390		mm->highest_vm_end = prev ? prev->vm_end : 0;
2391	tail_vma->vm_next = NULL;
2392
2393	/* Kill the cache */
2394	vmacache_invalidate(mm);
2395}
2396
2397/*
2398 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2399 * munmap path where it doesn't make sense to fail.
2400 */
2401static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2402	      unsigned long addr, int new_below)
2403{
2404	struct vm_area_struct *new;
2405	int err = -ENOMEM;
2406
2407	if (is_vm_hugetlb_page(vma) && (addr &
2408					~(huge_page_mask(hstate_vma(vma)))))
2409		return -EINVAL;
2410
2411	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2412	if (!new)
2413		goto out_err;
2414
2415	/* most fields are the same, copy all, and then fixup */
2416	*new = *vma;
2417
2418	INIT_LIST_HEAD(&new->anon_vma_chain);
2419
2420	if (new_below)
2421		new->vm_end = addr;
2422	else {
2423		new->vm_start = addr;
2424		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2425	}
2426
2427	err = vma_dup_policy(vma, new);
2428	if (err)
2429		goto out_free_vma;
2430
2431	if (anon_vma_clone(new, vma))
 
2432		goto out_free_mpol;
2433
2434	if (new->vm_file)
2435		get_file(new->vm_file);
2436
2437	if (new->vm_ops && new->vm_ops->open)
2438		new->vm_ops->open(new);
2439
2440	if (new_below)
2441		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2442			((addr - new->vm_start) >> PAGE_SHIFT), new);
2443	else
2444		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2445
2446	/* Success. */
2447	if (!err)
2448		return 0;
2449
2450	/* Clean everything up if vma_adjust failed. */
2451	if (new->vm_ops && new->vm_ops->close)
2452		new->vm_ops->close(new);
2453	if (new->vm_file)
2454		fput(new->vm_file);
2455	unlink_anon_vmas(new);
2456 out_free_mpol:
2457	mpol_put(vma_policy(new));
2458 out_free_vma:
2459	kmem_cache_free(vm_area_cachep, new);
2460 out_err:
2461	return err;
2462}
2463
2464/*
2465 * Split a vma into two pieces at address 'addr', a new vma is allocated
2466 * either for the first part or the tail.
2467 */
2468int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2469	      unsigned long addr, int new_below)
2470{
2471	if (mm->map_count >= sysctl_max_map_count)
2472		return -ENOMEM;
2473
2474	return __split_vma(mm, vma, addr, new_below);
2475}
2476
2477/* Munmap is split into 2 main parts -- this part which finds
2478 * what needs doing, and the areas themselves, which do the
2479 * work.  This now handles partial unmappings.
2480 * Jeremy Fitzhardinge <jeremy@goop.org>
2481 */
2482int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2483{
2484	unsigned long end;
2485	struct vm_area_struct *vma, *prev, *last;
2486
2487	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2488		return -EINVAL;
2489
2490	if ((len = PAGE_ALIGN(len)) == 0)
 
2491		return -EINVAL;
2492
2493	/* Find the first overlapping VMA */
2494	vma = find_vma(mm, start);
2495	if (!vma)
2496		return 0;
2497	prev = vma->vm_prev;
2498	/* we have  start < vma->vm_end  */
2499
2500	/* if it doesn't overlap, we have nothing.. */
2501	end = start + len;
2502	if (vma->vm_start >= end)
2503		return 0;
2504
2505	/*
2506	 * If we need to split any vma, do it now to save pain later.
2507	 *
2508	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2509	 * unmapped vm_area_struct will remain in use: so lower split_vma
2510	 * places tmp vma above, and higher split_vma places tmp vma below.
2511	 */
2512	if (start > vma->vm_start) {
2513		int error;
2514
2515		/*
2516		 * Make sure that map_count on return from munmap() will
2517		 * not exceed its limit; but let map_count go just above
2518		 * its limit temporarily, to help free resources as expected.
2519		 */
2520		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2521			return -ENOMEM;
2522
2523		error = __split_vma(mm, vma, start, 0);
2524		if (error)
2525			return error;
2526		prev = vma;
2527	}
2528
2529	/* Does it split the last one? */
2530	last = find_vma(mm, end);
2531	if (last && end > last->vm_start) {
2532		int error = __split_vma(mm, last, end, 1);
2533		if (error)
2534			return error;
2535	}
2536	vma = prev? prev->vm_next: mm->mmap;
2537
2538	/*
2539	 * unlock any mlock()ed ranges before detaching vmas
2540	 */
2541	if (mm->locked_vm) {
2542		struct vm_area_struct *tmp = vma;
2543		while (tmp && tmp->vm_start < end) {
2544			if (tmp->vm_flags & VM_LOCKED) {
2545				mm->locked_vm -= vma_pages(tmp);
2546				munlock_vma_pages_all(tmp);
2547			}
2548			tmp = tmp->vm_next;
2549		}
2550	}
2551
2552	/*
2553	 * Remove the vma's, and unmap the actual pages
2554	 */
2555	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2556	unmap_region(mm, vma, prev, start, end);
2557
 
 
2558	/* Fix up all other VM information */
2559	remove_vma_list(mm, vma);
2560
2561	return 0;
2562}
2563
2564int vm_munmap(unsigned long start, size_t len)
2565{
2566	int ret;
2567	struct mm_struct *mm = current->mm;
2568
2569	down_write(&mm->mmap_sem);
2570	ret = do_munmap(mm, start, len);
2571	up_write(&mm->mmap_sem);
2572	return ret;
2573}
2574EXPORT_SYMBOL(vm_munmap);
2575
2576SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2577{
2578	profile_munmap(addr);
2579	return vm_munmap(addr, len);
2580}
2581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2582static inline void verify_mm_writelocked(struct mm_struct *mm)
2583{
2584#ifdef CONFIG_DEBUG_VM
2585	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2586		WARN_ON(1);
2587		up_read(&mm->mmap_sem);
2588	}
2589#endif
2590}
2591
2592/*
2593 *  this is really a simplified "do_mmap".  it only handles
2594 *  anonymous maps.  eventually we may be able to do some
2595 *  brk-specific accounting here.
2596 */
2597static unsigned long do_brk(unsigned long addr, unsigned long len)
2598{
2599	struct mm_struct * mm = current->mm;
2600	struct vm_area_struct * vma, * prev;
2601	unsigned long flags;
2602	struct rb_node ** rb_link, * rb_parent;
2603	pgoff_t pgoff = addr >> PAGE_SHIFT;
2604	int error;
2605
2606	len = PAGE_ALIGN(len);
2607	if (!len)
2608		return addr;
2609
2610	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2611
2612	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2613	if (error & ~PAGE_MASK)
2614		return error;
2615
2616	error = mlock_future_check(mm, mm->def_flags, len);
2617	if (error)
2618		return error;
2619
2620	/*
2621	 * mm->mmap_sem is required to protect against another thread
2622	 * changing the mappings in case we sleep.
2623	 */
2624	verify_mm_writelocked(mm);
2625
2626	/*
2627	 * Clear old maps.  this also does some error checking for us
2628	 */
2629 munmap_back:
2630	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2631		if (do_munmap(mm, addr, len))
2632			return -ENOMEM;
2633		goto munmap_back;
2634	}
2635
2636	/* Check against address space limits *after* clearing old maps... */
2637	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2638		return -ENOMEM;
2639
2640	if (mm->map_count > sysctl_max_map_count)
2641		return -ENOMEM;
2642
2643	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2644		return -ENOMEM;
2645
2646	/* Can we just expand an old private anonymous mapping? */
2647	vma = vma_merge(mm, prev, addr, addr + len, flags,
2648					NULL, NULL, pgoff, NULL);
2649	if (vma)
2650		goto out;
2651
2652	/*
2653	 * create a vma struct for an anonymous mapping
2654	 */
2655	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2656	if (!vma) {
2657		vm_unacct_memory(len >> PAGE_SHIFT);
2658		return -ENOMEM;
2659	}
2660
2661	INIT_LIST_HEAD(&vma->anon_vma_chain);
2662	vma->vm_mm = mm;
2663	vma->vm_start = addr;
2664	vma->vm_end = addr + len;
2665	vma->vm_pgoff = pgoff;
2666	vma->vm_flags = flags;
2667	vma->vm_page_prot = vm_get_page_prot(flags);
2668	vma_link(mm, vma, prev, rb_link, rb_parent);
2669out:
2670	perf_event_mmap(vma);
2671	mm->total_vm += len >> PAGE_SHIFT;
 
2672	if (flags & VM_LOCKED)
2673		mm->locked_vm += (len >> PAGE_SHIFT);
2674	vma->vm_flags |= VM_SOFTDIRTY;
2675	return addr;
2676}
2677
2678unsigned long vm_brk(unsigned long addr, unsigned long len)
2679{
2680	struct mm_struct *mm = current->mm;
2681	unsigned long ret;
2682	bool populate;
2683
2684	down_write(&mm->mmap_sem);
2685	ret = do_brk(addr, len);
2686	populate = ((mm->def_flags & VM_LOCKED) != 0);
2687	up_write(&mm->mmap_sem);
2688	if (populate)
2689		mm_populate(addr, len);
2690	return ret;
2691}
2692EXPORT_SYMBOL(vm_brk);
2693
2694/* Release all mmaps. */
2695void exit_mmap(struct mm_struct *mm)
2696{
2697	struct mmu_gather tlb;
2698	struct vm_area_struct *vma;
2699	unsigned long nr_accounted = 0;
2700
2701	/* mm's last user has gone, and its about to be pulled down */
2702	mmu_notifier_release(mm);
2703
2704	if (mm->locked_vm) {
2705		vma = mm->mmap;
2706		while (vma) {
2707			if (vma->vm_flags & VM_LOCKED)
2708				munlock_vma_pages_all(vma);
2709			vma = vma->vm_next;
2710		}
2711	}
2712
2713	arch_exit_mmap(mm);
2714
2715	vma = mm->mmap;
2716	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2717		return;
2718
2719	lru_add_drain();
2720	flush_cache_mm(mm);
2721	tlb_gather_mmu(&tlb, mm, 0, -1);
2722	/* update_hiwater_rss(mm) here? but nobody should be looking */
2723	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2724	unmap_vmas(&tlb, vma, 0, -1);
2725
2726	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2727	tlb_finish_mmu(&tlb, 0, -1);
2728
2729	/*
2730	 * Walk the list again, actually closing and freeing it,
2731	 * with preemption enabled, without holding any MM locks.
2732	 */
2733	while (vma) {
2734		if (vma->vm_flags & VM_ACCOUNT)
2735			nr_accounted += vma_pages(vma);
2736		vma = remove_vma(vma);
2737	}
2738	vm_unacct_memory(nr_accounted);
2739
2740	WARN_ON(atomic_long_read(&mm->nr_ptes) >
2741			(FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2742}
2743
2744/* Insert vm structure into process list sorted by address
2745 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2746 * then i_mmap_mutex is taken here.
2747 */
2748int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2749{
2750	struct vm_area_struct *prev;
2751	struct rb_node **rb_link, *rb_parent;
2752
 
 
 
 
 
 
 
2753	/*
2754	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2755	 * until its first write fault, when page's anon_vma and index
2756	 * are set.  But now set the vm_pgoff it will almost certainly
2757	 * end up with (unless mremap moves it elsewhere before that
2758	 * first wfault), so /proc/pid/maps tells a consistent story.
2759	 *
2760	 * By setting it to reflect the virtual start address of the
2761	 * vma, merges and splits can happen in a seamless way, just
2762	 * using the existing file pgoff checks and manipulations.
2763	 * Similarly in do_mmap_pgoff and in do_brk.
2764	 */
2765	if (!vma->vm_file) {
2766		BUG_ON(vma->anon_vma);
2767		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2768	}
2769	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2770			   &prev, &rb_link, &rb_parent))
2771		return -ENOMEM;
2772	if ((vma->vm_flags & VM_ACCOUNT) &&
2773	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2774		return -ENOMEM;
2775
2776	vma_link(mm, vma, prev, rb_link, rb_parent);
2777	return 0;
2778}
2779
2780/*
2781 * Copy the vma structure to a new location in the same mm,
2782 * prior to moving page table entries, to effect an mremap move.
2783 */
2784struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2785	unsigned long addr, unsigned long len, pgoff_t pgoff,
2786	bool *need_rmap_locks)
2787{
2788	struct vm_area_struct *vma = *vmap;
2789	unsigned long vma_start = vma->vm_start;
2790	struct mm_struct *mm = vma->vm_mm;
2791	struct vm_area_struct *new_vma, *prev;
2792	struct rb_node **rb_link, *rb_parent;
2793	bool faulted_in_anon_vma = true;
2794
2795	/*
2796	 * If anonymous vma has not yet been faulted, update new pgoff
2797	 * to match new location, to increase its chance of merging.
2798	 */
2799	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2800		pgoff = addr >> PAGE_SHIFT;
2801		faulted_in_anon_vma = false;
2802	}
2803
2804	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2805		return NULL;	/* should never get here */
2806	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2807			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
 
2808	if (new_vma) {
2809		/*
2810		 * Source vma may have been merged into new_vma
2811		 */
2812		if (unlikely(vma_start >= new_vma->vm_start &&
2813			     vma_start < new_vma->vm_end)) {
2814			/*
2815			 * The only way we can get a vma_merge with
2816			 * self during an mremap is if the vma hasn't
2817			 * been faulted in yet and we were allowed to
2818			 * reset the dst vma->vm_pgoff to the
2819			 * destination address of the mremap to allow
2820			 * the merge to happen. mremap must change the
2821			 * vm_pgoff linearity between src and dst vmas
2822			 * (in turn preventing a vma_merge) to be
2823			 * safe. It is only safe to keep the vm_pgoff
2824			 * linear if there are no pages mapped yet.
2825			 */
2826			VM_BUG_ON(faulted_in_anon_vma);
2827			*vmap = vma = new_vma;
2828		}
2829		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2830	} else {
2831		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2832		if (new_vma) {
2833			*new_vma = *vma;
2834			new_vma->vm_start = addr;
2835			new_vma->vm_end = addr + len;
2836			new_vma->vm_pgoff = pgoff;
2837			if (vma_dup_policy(vma, new_vma))
2838				goto out_free_vma;
2839			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2840			if (anon_vma_clone(new_vma, vma))
2841				goto out_free_mempol;
2842			if (new_vma->vm_file)
2843				get_file(new_vma->vm_file);
2844			if (new_vma->vm_ops && new_vma->vm_ops->open)
2845				new_vma->vm_ops->open(new_vma);
2846			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2847			*need_rmap_locks = false;
2848		}
2849	}
2850	return new_vma;
2851
2852 out_free_mempol:
2853	mpol_put(vma_policy(new_vma));
2854 out_free_vma:
2855	kmem_cache_free(vm_area_cachep, new_vma);
 
2856	return NULL;
2857}
2858
2859/*
2860 * Return true if the calling process may expand its vm space by the passed
2861 * number of pages
2862 */
2863int may_expand_vm(struct mm_struct *mm, unsigned long npages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864{
2865	unsigned long cur = mm->total_vm;	/* pages */
2866	unsigned long lim;
2867
2868	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2869
2870	if (cur + npages > lim)
2871		return 0;
2872	return 1;
2873}
2874
 
 
 
 
 
 
 
 
 
 
2875
2876static int special_mapping_fault(struct vm_area_struct *vma,
2877				struct vm_fault *vmf)
2878{
2879	pgoff_t pgoff;
2880	struct page **pages;
2881
2882	/*
2883	 * special mappings have no vm_file, and in that case, the mm
2884	 * uses vm_pgoff internally. So we have to subtract it from here.
2885	 * We are allowed to do this because we are the mm; do not copy
2886	 * this code into drivers!
2887	 */
2888	pgoff = vmf->pgoff - vma->vm_pgoff;
 
 
 
2889
2890	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2891		pgoff--;
2892
2893	if (*pages) {
2894		struct page *page = *pages;
2895		get_page(page);
2896		vmf->page = page;
2897		return 0;
2898	}
2899
2900	return VM_FAULT_SIGBUS;
2901}
2902
2903/*
2904 * Having a close hook prevents vma merging regardless of flags.
2905 */
2906static void special_mapping_close(struct vm_area_struct *vma)
2907{
2908}
2909
2910static const struct vm_operations_struct special_mapping_vmops = {
2911	.close = special_mapping_close,
2912	.fault = special_mapping_fault,
2913};
2914
2915/*
2916 * Called with mm->mmap_sem held for writing.
2917 * Insert a new vma covering the given region, with the given flags.
2918 * Its pages are supplied by the given array of struct page *.
2919 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2920 * The region past the last page supplied will always produce SIGBUS.
2921 * The array pointer and the pages it points to are assumed to stay alive
2922 * for as long as this mapping might exist.
2923 */
2924struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2925			    unsigned long addr, unsigned long len,
2926			    unsigned long vm_flags, struct page **pages)
2927{
2928	int ret;
2929	struct vm_area_struct *vma;
2930
2931	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2932	if (unlikely(vma == NULL))
2933		return ERR_PTR(-ENOMEM);
2934
2935	INIT_LIST_HEAD(&vma->anon_vma_chain);
2936	vma->vm_mm = mm;
2937	vma->vm_start = addr;
2938	vma->vm_end = addr + len;
2939
2940	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2941	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2942
2943	vma->vm_ops = &special_mapping_vmops;
2944	vma->vm_private_data = pages;
2945
2946	ret = insert_vm_struct(mm, vma);
2947	if (ret)
2948		goto out;
2949
2950	mm->total_vm += len >> PAGE_SHIFT;
2951
2952	perf_event_mmap(vma);
2953
2954	return vma;
2955
2956out:
2957	kmem_cache_free(vm_area_cachep, vma);
2958	return ERR_PTR(ret);
2959}
2960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2961int install_special_mapping(struct mm_struct *mm,
2962			    unsigned long addr, unsigned long len,
2963			    unsigned long vm_flags, struct page **pages)
2964{
2965	struct vm_area_struct *vma = _install_special_mapping(mm,
2966			    addr, len, vm_flags, pages);
 
2967
2968	if (IS_ERR(vma))
2969		return PTR_ERR(vma);
2970	return 0;
2971}
2972
2973static DEFINE_MUTEX(mm_all_locks_mutex);
2974
2975static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2976{
2977	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2978		/*
2979		 * The LSB of head.next can't change from under us
2980		 * because we hold the mm_all_locks_mutex.
2981		 */
2982		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2983		/*
2984		 * We can safely modify head.next after taking the
2985		 * anon_vma->root->rwsem. If some other vma in this mm shares
2986		 * the same anon_vma we won't take it again.
2987		 *
2988		 * No need of atomic instructions here, head.next
2989		 * can't change from under us thanks to the
2990		 * anon_vma->root->rwsem.
2991		 */
2992		if (__test_and_set_bit(0, (unsigned long *)
2993				       &anon_vma->root->rb_root.rb_node))
2994			BUG();
2995	}
2996}
2997
2998static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2999{
3000	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3001		/*
3002		 * AS_MM_ALL_LOCKS can't change from under us because
3003		 * we hold the mm_all_locks_mutex.
3004		 *
3005		 * Operations on ->flags have to be atomic because
3006		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3007		 * mm_all_locks_mutex, there may be other cpus
3008		 * changing other bitflags in parallel to us.
3009		 */
3010		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3011			BUG();
3012		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3013	}
3014}
3015
3016/*
3017 * This operation locks against the VM for all pte/vma/mm related
3018 * operations that could ever happen on a certain mm. This includes
3019 * vmtruncate, try_to_unmap, and all page faults.
3020 *
3021 * The caller must take the mmap_sem in write mode before calling
3022 * mm_take_all_locks(). The caller isn't allowed to release the
3023 * mmap_sem until mm_drop_all_locks() returns.
3024 *
3025 * mmap_sem in write mode is required in order to block all operations
3026 * that could modify pagetables and free pages without need of
3027 * altering the vma layout (for example populate_range() with
3028 * nonlinear vmas). It's also needed in write mode to avoid new
3029 * anon_vmas to be associated with existing vmas.
3030 *
3031 * A single task can't take more than one mm_take_all_locks() in a row
3032 * or it would deadlock.
3033 *
3034 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3035 * mapping->flags avoid to take the same lock twice, if more than one
3036 * vma in this mm is backed by the same anon_vma or address_space.
3037 *
3038 * We can take all the locks in random order because the VM code
3039 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3040 * takes more than one of them in a row. Secondly we're protected
3041 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
 
 
 
 
 
 
3042 *
3043 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3044 * that may have to take thousand of locks.
3045 *
3046 * mm_take_all_locks() can fail if it's interrupted by signals.
3047 */
3048int mm_take_all_locks(struct mm_struct *mm)
3049{
3050	struct vm_area_struct *vma;
3051	struct anon_vma_chain *avc;
3052
3053	BUG_ON(down_read_trylock(&mm->mmap_sem));
3054
3055	mutex_lock(&mm_all_locks_mutex);
3056
3057	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3058		if (signal_pending(current))
3059			goto out_unlock;
3060		if (vma->vm_file && vma->vm_file->f_mapping)
 
 
 
 
 
 
 
 
 
3061			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3062	}
3063
3064	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3065		if (signal_pending(current))
3066			goto out_unlock;
3067		if (vma->anon_vma)
3068			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3069				vm_lock_anon_vma(mm, avc->anon_vma);
3070	}
3071
3072	return 0;
3073
3074out_unlock:
3075	mm_drop_all_locks(mm);
3076	return -EINTR;
3077}
3078
3079static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3080{
3081	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3082		/*
3083		 * The LSB of head.next can't change to 0 from under
3084		 * us because we hold the mm_all_locks_mutex.
3085		 *
3086		 * We must however clear the bitflag before unlocking
3087		 * the vma so the users using the anon_vma->rb_root will
3088		 * never see our bitflag.
3089		 *
3090		 * No need of atomic instructions here, head.next
3091		 * can't change from under us until we release the
3092		 * anon_vma->root->rwsem.
3093		 */
3094		if (!__test_and_clear_bit(0, (unsigned long *)
3095					  &anon_vma->root->rb_root.rb_node))
3096			BUG();
3097		anon_vma_unlock_write(anon_vma);
3098	}
3099}
3100
3101static void vm_unlock_mapping(struct address_space *mapping)
3102{
3103	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3104		/*
3105		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3106		 * because we hold the mm_all_locks_mutex.
3107		 */
3108		mutex_unlock(&mapping->i_mmap_mutex);
3109		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3110					&mapping->flags))
3111			BUG();
3112	}
3113}
3114
3115/*
3116 * The mmap_sem cannot be released by the caller until
3117 * mm_drop_all_locks() returns.
3118 */
3119void mm_drop_all_locks(struct mm_struct *mm)
3120{
3121	struct vm_area_struct *vma;
3122	struct anon_vma_chain *avc;
3123
3124	BUG_ON(down_read_trylock(&mm->mmap_sem));
3125	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3126
3127	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3128		if (vma->anon_vma)
3129			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3130				vm_unlock_anon_vma(avc->anon_vma);
3131		if (vma->vm_file && vma->vm_file->f_mapping)
3132			vm_unlock_mapping(vma->vm_file->f_mapping);
3133	}
3134
3135	mutex_unlock(&mm_all_locks_mutex);
3136}
3137
3138/*
3139 * initialise the VMA slab
3140 */
3141void __init mmap_init(void)
3142{
3143	int ret;
3144
3145	ret = percpu_counter_init(&vm_committed_as, 0);
3146	VM_BUG_ON(ret);
3147}
3148
3149/*
3150 * Initialise sysctl_user_reserve_kbytes.
3151 *
3152 * This is intended to prevent a user from starting a single memory hogging
3153 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3154 * mode.
3155 *
3156 * The default value is min(3% of free memory, 128MB)
3157 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3158 */
3159static int init_user_reserve(void)
3160{
3161	unsigned long free_kbytes;
3162
3163	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3164
3165	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3166	return 0;
3167}
3168subsys_initcall(init_user_reserve);
3169
3170/*
3171 * Initialise sysctl_admin_reserve_kbytes.
3172 *
3173 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3174 * to log in and kill a memory hogging process.
3175 *
3176 * Systems with more than 256MB will reserve 8MB, enough to recover
3177 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3178 * only reserve 3% of free pages by default.
3179 */
3180static int init_admin_reserve(void)
3181{
3182	unsigned long free_kbytes;
3183
3184	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3185
3186	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3187	return 0;
3188}
3189subsys_initcall(init_admin_reserve);
3190
3191/*
3192 * Reinititalise user and admin reserves if memory is added or removed.
3193 *
3194 * The default user reserve max is 128MB, and the default max for the
3195 * admin reserve is 8MB. These are usually, but not always, enough to
3196 * enable recovery from a memory hogging process using login/sshd, a shell,
3197 * and tools like top. It may make sense to increase or even disable the
3198 * reserve depending on the existence of swap or variations in the recovery
3199 * tools. So, the admin may have changed them.
3200 *
3201 * If memory is added and the reserves have been eliminated or increased above
3202 * the default max, then we'll trust the admin.
3203 *
3204 * If memory is removed and there isn't enough free memory, then we
3205 * need to reset the reserves.
3206 *
3207 * Otherwise keep the reserve set by the admin.
3208 */
3209static int reserve_mem_notifier(struct notifier_block *nb,
3210			     unsigned long action, void *data)
3211{
3212	unsigned long tmp, free_kbytes;
3213
3214	switch (action) {
3215	case MEM_ONLINE:
3216		/* Default max is 128MB. Leave alone if modified by operator. */
3217		tmp = sysctl_user_reserve_kbytes;
3218		if (0 < tmp && tmp < (1UL << 17))
3219			init_user_reserve();
3220
3221		/* Default max is 8MB.  Leave alone if modified by operator. */
3222		tmp = sysctl_admin_reserve_kbytes;
3223		if (0 < tmp && tmp < (1UL << 13))
3224			init_admin_reserve();
3225
3226		break;
3227	case MEM_OFFLINE:
3228		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3229
3230		if (sysctl_user_reserve_kbytes > free_kbytes) {
3231			init_user_reserve();
3232			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3233				sysctl_user_reserve_kbytes);
3234		}
3235
3236		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3237			init_admin_reserve();
3238			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3239				sysctl_admin_reserve_kbytes);
3240		}
3241		break;
3242	default:
3243		break;
3244	}
3245	return NOTIFY_OK;
3246}
3247
3248static struct notifier_block reserve_mem_nb = {
3249	.notifier_call = reserve_mem_notifier,
3250};
3251
3252static int __meminit init_reserve_notifier(void)
3253{
3254	if (register_hotmemory_notifier(&reserve_mem_nb))
3255		printk("Failed registering memory add/remove notifier for admin reserve");
3256
3257	return 0;
3258}
3259subsys_initcall(init_reserve_notifier);