Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *	fs/libfs.c
   3 *	Library for filesystems writers.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/export.h>
   8#include <linux/pagemap.h>
   9#include <linux/slab.h>
  10#include <linux/mount.h>
  11#include <linux/vfs.h>
  12#include <linux/quotaops.h>
  13#include <linux/mutex.h>
  14#include <linux/namei.h>
  15#include <linux/exportfs.h>
  16#include <linux/writeback.h>
  17#include <linux/buffer_head.h> /* sync_mapping_buffers */
  18
  19#include <asm/uaccess.h>
  20
  21#include "internal.h"
  22
 
 
 
 
 
  23int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  24		   struct kstat *stat)
  25{
  26	struct inode *inode = d_inode(dentry);
  27	generic_fillattr(inode, stat);
  28	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  29	return 0;
  30}
  31EXPORT_SYMBOL(simple_getattr);
  32
  33int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  34{
  35	buf->f_type = dentry->d_sb->s_magic;
  36	buf->f_bsize = PAGE_SIZE;
  37	buf->f_namelen = NAME_MAX;
  38	return 0;
  39}
  40EXPORT_SYMBOL(simple_statfs);
  41
  42/*
  43 * Retaining negative dentries for an in-memory filesystem just wastes
  44 * memory and lookup time: arrange for them to be deleted immediately.
  45 */
  46int always_delete_dentry(const struct dentry *dentry)
  47{
  48	return 1;
  49}
  50EXPORT_SYMBOL(always_delete_dentry);
  51
  52const struct dentry_operations simple_dentry_operations = {
  53	.d_delete = always_delete_dentry,
  54};
  55EXPORT_SYMBOL(simple_dentry_operations);
  56
  57/*
  58 * Lookup the data. This is trivial - if the dentry didn't already
  59 * exist, we know it is negative.  Set d_op to delete negative dentries.
  60 */
  61struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  62{
 
 
 
 
  63	if (dentry->d_name.len > NAME_MAX)
  64		return ERR_PTR(-ENAMETOOLONG);
  65	if (!dentry->d_sb->s_d_op)
  66		d_set_d_op(dentry, &simple_dentry_operations);
  67	d_add(dentry, NULL);
  68	return NULL;
  69}
  70EXPORT_SYMBOL(simple_lookup);
  71
  72int dcache_dir_open(struct inode *inode, struct file *file)
  73{
  74	static struct qstr cursor_name = QSTR_INIT(".", 1);
  75
  76	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
  77
  78	return file->private_data ? 0 : -ENOMEM;
  79}
  80EXPORT_SYMBOL(dcache_dir_open);
  81
  82int dcache_dir_close(struct inode *inode, struct file *file)
  83{
  84	dput(file->private_data);
  85	return 0;
  86}
  87EXPORT_SYMBOL(dcache_dir_close);
  88
  89loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
  90{
  91	struct dentry *dentry = file->f_path.dentry;
  92	inode_lock(d_inode(dentry));
  93	switch (whence) {
  94		case 1:
  95			offset += file->f_pos;
  96		case 0:
  97			if (offset >= 0)
  98				break;
  99		default:
 100			inode_unlock(d_inode(dentry));
 101			return -EINVAL;
 102	}
 103	if (offset != file->f_pos) {
 104		file->f_pos = offset;
 105		if (file->f_pos >= 2) {
 106			struct list_head *p;
 107			struct dentry *cursor = file->private_data;
 108			loff_t n = file->f_pos - 2;
 109
 110			spin_lock(&dentry->d_lock);
 111			/* d_lock not required for cursor */
 112			list_del(&cursor->d_child);
 113			p = dentry->d_subdirs.next;
 114			while (n && p != &dentry->d_subdirs) {
 115				struct dentry *next;
 116				next = list_entry(p, struct dentry, d_child);
 117				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 118				if (simple_positive(next))
 119					n--;
 120				spin_unlock(&next->d_lock);
 121				p = p->next;
 122			}
 123			list_add_tail(&cursor->d_child, p);
 124			spin_unlock(&dentry->d_lock);
 125		}
 126	}
 127	inode_unlock(d_inode(dentry));
 128	return offset;
 129}
 130EXPORT_SYMBOL(dcache_dir_lseek);
 131
 132/* Relationship between i_mode and the DT_xxx types */
 133static inline unsigned char dt_type(struct inode *inode)
 134{
 135	return (inode->i_mode >> 12) & 15;
 136}
 137
 138/*
 139 * Directory is locked and all positive dentries in it are safe, since
 140 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 141 * both impossible due to the lock on directory.
 142 */
 143
 144int dcache_readdir(struct file *file, struct dir_context *ctx)
 145{
 146	struct dentry *dentry = file->f_path.dentry;
 147	struct dentry *cursor = file->private_data;
 148	struct list_head *p, *q = &cursor->d_child;
 
 
 149
 150	if (!dir_emit_dots(file, ctx))
 151		return 0;
 152	spin_lock(&dentry->d_lock);
 153	if (ctx->pos == 2)
 154		list_move(q, &dentry->d_subdirs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155
 156	for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
 157		struct dentry *next = list_entry(p, struct dentry, d_child);
 158		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 159		if (!simple_positive(next)) {
 160			spin_unlock(&next->d_lock);
 161			continue;
 162		}
 
 163
 164		spin_unlock(&next->d_lock);
 165		spin_unlock(&dentry->d_lock);
 166		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 167			      d_inode(next)->i_ino, dt_type(d_inode(next))))
 168			return 0;
 169		spin_lock(&dentry->d_lock);
 170		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 171		/* next is still alive */
 172		list_move(q, p);
 173		spin_unlock(&next->d_lock);
 174		p = q;
 175		ctx->pos++;
 
 
 
 
 176	}
 177	spin_unlock(&dentry->d_lock);
 178	return 0;
 179}
 180EXPORT_SYMBOL(dcache_readdir);
 181
 182ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 183{
 184	return -EISDIR;
 185}
 186EXPORT_SYMBOL(generic_read_dir);
 187
 188const struct file_operations simple_dir_operations = {
 189	.open		= dcache_dir_open,
 190	.release	= dcache_dir_close,
 191	.llseek		= dcache_dir_lseek,
 192	.read		= generic_read_dir,
 193	.iterate	= dcache_readdir,
 194	.fsync		= noop_fsync,
 195};
 196EXPORT_SYMBOL(simple_dir_operations);
 197
 198const struct inode_operations simple_dir_inode_operations = {
 199	.lookup		= simple_lookup,
 200};
 201EXPORT_SYMBOL(simple_dir_inode_operations);
 202
 203static const struct super_operations simple_super_operations = {
 204	.statfs		= simple_statfs,
 205};
 206
 207/*
 208 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 209 * will never be mountable)
 210 */
 211struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
 212	const struct super_operations *ops,
 213	const struct dentry_operations *dops, unsigned long magic)
 214{
 215	struct super_block *s;
 216	struct dentry *dentry;
 217	struct inode *root;
 218	struct qstr d_name = QSTR_INIT(name, strlen(name));
 219
 220	s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
 221	if (IS_ERR(s))
 222		return ERR_CAST(s);
 223
 
 224	s->s_maxbytes = MAX_LFS_FILESIZE;
 225	s->s_blocksize = PAGE_SIZE;
 226	s->s_blocksize_bits = PAGE_SHIFT;
 227	s->s_magic = magic;
 228	s->s_op = ops ? ops : &simple_super_operations;
 229	s->s_time_gran = 1;
 230	root = new_inode(s);
 231	if (!root)
 232		goto Enomem;
 233	/*
 234	 * since this is the first inode, make it number 1. New inodes created
 235	 * after this must take care not to collide with it (by passing
 236	 * max_reserved of 1 to iunique).
 237	 */
 238	root->i_ino = 1;
 239	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 240	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
 241	dentry = __d_alloc(s, &d_name);
 242	if (!dentry) {
 243		iput(root);
 244		goto Enomem;
 245	}
 246	d_instantiate(dentry, root);
 247	s->s_root = dentry;
 248	s->s_d_op = dops;
 249	s->s_flags |= MS_ACTIVE;
 250	return dget(s->s_root);
 251
 252Enomem:
 253	deactivate_locked_super(s);
 254	return ERR_PTR(-ENOMEM);
 255}
 256EXPORT_SYMBOL(mount_pseudo);
 257
 258int simple_open(struct inode *inode, struct file *file)
 259{
 260	if (inode->i_private)
 261		file->private_data = inode->i_private;
 262	return 0;
 263}
 264EXPORT_SYMBOL(simple_open);
 265
 266int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 267{
 268	struct inode *inode = d_inode(old_dentry);
 269
 270	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 271	inc_nlink(inode);
 272	ihold(inode);
 273	dget(dentry);
 274	d_instantiate(dentry, inode);
 275	return 0;
 276}
 277EXPORT_SYMBOL(simple_link);
 278
 279int simple_empty(struct dentry *dentry)
 280{
 281	struct dentry *child;
 282	int ret = 0;
 283
 284	spin_lock(&dentry->d_lock);
 285	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 286		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 287		if (simple_positive(child)) {
 288			spin_unlock(&child->d_lock);
 289			goto out;
 290		}
 291		spin_unlock(&child->d_lock);
 292	}
 293	ret = 1;
 294out:
 295	spin_unlock(&dentry->d_lock);
 296	return ret;
 297}
 298EXPORT_SYMBOL(simple_empty);
 299
 300int simple_unlink(struct inode *dir, struct dentry *dentry)
 301{
 302	struct inode *inode = d_inode(dentry);
 303
 304	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 305	drop_nlink(inode);
 306	dput(dentry);
 307	return 0;
 308}
 309EXPORT_SYMBOL(simple_unlink);
 310
 311int simple_rmdir(struct inode *dir, struct dentry *dentry)
 312{
 313	if (!simple_empty(dentry))
 314		return -ENOTEMPTY;
 315
 316	drop_nlink(d_inode(dentry));
 317	simple_unlink(dir, dentry);
 318	drop_nlink(dir);
 319	return 0;
 320}
 321EXPORT_SYMBOL(simple_rmdir);
 322
 323int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 324		struct inode *new_dir, struct dentry *new_dentry)
 325{
 326	struct inode *inode = d_inode(old_dentry);
 327	int they_are_dirs = d_is_dir(old_dentry);
 328
 329	if (!simple_empty(new_dentry))
 330		return -ENOTEMPTY;
 331
 332	if (d_really_is_positive(new_dentry)) {
 333		simple_unlink(new_dir, new_dentry);
 334		if (they_are_dirs) {
 335			drop_nlink(d_inode(new_dentry));
 336			drop_nlink(old_dir);
 337		}
 338	} else if (they_are_dirs) {
 339		drop_nlink(old_dir);
 340		inc_nlink(new_dir);
 341	}
 342
 343	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 344		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
 345
 346	return 0;
 347}
 348EXPORT_SYMBOL(simple_rename);
 349
 350/**
 351 * simple_setattr - setattr for simple filesystem
 352 * @dentry: dentry
 353 * @iattr: iattr structure
 354 *
 355 * Returns 0 on success, -error on failure.
 356 *
 357 * simple_setattr is a simple ->setattr implementation without a proper
 358 * implementation of size changes.
 359 *
 360 * It can either be used for in-memory filesystems or special files
 361 * on simple regular filesystems.  Anything that needs to change on-disk
 362 * or wire state on size changes needs its own setattr method.
 363 */
 364int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 365{
 366	struct inode *inode = d_inode(dentry);
 367	int error;
 368
 
 
 369	error = inode_change_ok(inode, iattr);
 370	if (error)
 371		return error;
 372
 373	if (iattr->ia_valid & ATTR_SIZE)
 374		truncate_setsize(inode, iattr->ia_size);
 375	setattr_copy(inode, iattr);
 376	mark_inode_dirty(inode);
 377	return 0;
 378}
 379EXPORT_SYMBOL(simple_setattr);
 380
 381int simple_readpage(struct file *file, struct page *page)
 382{
 383	clear_highpage(page);
 384	flush_dcache_page(page);
 385	SetPageUptodate(page);
 386	unlock_page(page);
 387	return 0;
 388}
 389EXPORT_SYMBOL(simple_readpage);
 390
 391int simple_write_begin(struct file *file, struct address_space *mapping,
 392			loff_t pos, unsigned len, unsigned flags,
 393			struct page **pagep, void **fsdata)
 394{
 395	struct page *page;
 396	pgoff_t index;
 397
 398	index = pos >> PAGE_SHIFT;
 399
 400	page = grab_cache_page_write_begin(mapping, index, flags);
 401	if (!page)
 402		return -ENOMEM;
 403
 404	*pagep = page;
 405
 406	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 407		unsigned from = pos & (PAGE_SIZE - 1);
 408
 409		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 410	}
 411	return 0;
 412}
 413EXPORT_SYMBOL(simple_write_begin);
 414
 415/**
 416 * simple_write_end - .write_end helper for non-block-device FSes
 417 * @available: See .write_end of address_space_operations
 418 * @file: 		"
 419 * @mapping: 		"
 420 * @pos: 		"
 421 * @len: 		"
 422 * @copied: 		"
 423 * @page: 		"
 424 * @fsdata: 		"
 425 *
 426 * simple_write_end does the minimum needed for updating a page after writing is
 427 * done. It has the same API signature as the .write_end of
 428 * address_space_operations vector. So it can just be set onto .write_end for
 429 * FSes that don't need any other processing. i_mutex is assumed to be held.
 430 * Block based filesystems should use generic_write_end().
 431 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 432 * is not called, so a filesystem that actually does store data in .write_inode
 433 * should extend on what's done here with a call to mark_inode_dirty() in the
 434 * case that i_size has changed.
 435 */
 436int simple_write_end(struct file *file, struct address_space *mapping,
 437			loff_t pos, unsigned len, unsigned copied,
 438			struct page *page, void *fsdata)
 439{
 440	struct inode *inode = page->mapping->host;
 441	loff_t last_pos = pos + copied;
 442
 443	/* zero the stale part of the page if we did a short copy */
 444	if (copied < len) {
 445		unsigned from = pos & (PAGE_SIZE - 1);
 446
 447		zero_user(page, from + copied, len - copied);
 448	}
 449
 450	if (!PageUptodate(page))
 451		SetPageUptodate(page);
 452	/*
 453	 * No need to use i_size_read() here, the i_size
 454	 * cannot change under us because we hold the i_mutex.
 455	 */
 456	if (last_pos > inode->i_size)
 457		i_size_write(inode, last_pos);
 458
 459	set_page_dirty(page);
 460	unlock_page(page);
 461	put_page(page);
 462
 463	return copied;
 464}
 465EXPORT_SYMBOL(simple_write_end);
 466
 467/*
 468 * the inodes created here are not hashed. If you use iunique to generate
 469 * unique inode values later for this filesystem, then you must take care
 470 * to pass it an appropriate max_reserved value to avoid collisions.
 471 */
 472int simple_fill_super(struct super_block *s, unsigned long magic,
 473		      struct tree_descr *files)
 474{
 475	struct inode *inode;
 476	struct dentry *root;
 477	struct dentry *dentry;
 478	int i;
 479
 480	s->s_blocksize = PAGE_SIZE;
 481	s->s_blocksize_bits = PAGE_SHIFT;
 482	s->s_magic = magic;
 483	s->s_op = &simple_super_operations;
 484	s->s_time_gran = 1;
 485
 486	inode = new_inode(s);
 487	if (!inode)
 488		return -ENOMEM;
 489	/*
 490	 * because the root inode is 1, the files array must not contain an
 491	 * entry at index 1
 492	 */
 493	inode->i_ino = 1;
 494	inode->i_mode = S_IFDIR | 0755;
 495	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 496	inode->i_op = &simple_dir_inode_operations;
 497	inode->i_fop = &simple_dir_operations;
 498	set_nlink(inode, 2);
 499	root = d_make_root(inode);
 500	if (!root)
 
 501		return -ENOMEM;
 
 502	for (i = 0; !files->name || files->name[0]; i++, files++) {
 503		if (!files->name)
 504			continue;
 505
 506		/* warn if it tries to conflict with the root inode */
 507		if (unlikely(i == 1))
 508			printk(KERN_WARNING "%s: %s passed in a files array"
 509				"with an index of 1!\n", __func__,
 510				s->s_type->name);
 511
 512		dentry = d_alloc_name(root, files->name);
 513		if (!dentry)
 514			goto out;
 515		inode = new_inode(s);
 516		if (!inode) {
 517			dput(dentry);
 518			goto out;
 519		}
 520		inode->i_mode = S_IFREG | files->mode;
 521		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 522		inode->i_fop = files->ops;
 523		inode->i_ino = i;
 524		d_add(dentry, inode);
 525	}
 526	s->s_root = root;
 527	return 0;
 528out:
 529	d_genocide(root);
 530	shrink_dcache_parent(root);
 531	dput(root);
 532	return -ENOMEM;
 533}
 534EXPORT_SYMBOL(simple_fill_super);
 535
 536static DEFINE_SPINLOCK(pin_fs_lock);
 537
 538int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 539{
 540	struct vfsmount *mnt = NULL;
 541	spin_lock(&pin_fs_lock);
 542	if (unlikely(!*mount)) {
 543		spin_unlock(&pin_fs_lock);
 544		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
 545		if (IS_ERR(mnt))
 546			return PTR_ERR(mnt);
 547		spin_lock(&pin_fs_lock);
 548		if (!*mount)
 549			*mount = mnt;
 550	}
 551	mntget(*mount);
 552	++*count;
 553	spin_unlock(&pin_fs_lock);
 554	mntput(mnt);
 555	return 0;
 556}
 557EXPORT_SYMBOL(simple_pin_fs);
 558
 559void simple_release_fs(struct vfsmount **mount, int *count)
 560{
 561	struct vfsmount *mnt;
 562	spin_lock(&pin_fs_lock);
 563	mnt = *mount;
 564	if (!--*count)
 565		*mount = NULL;
 566	spin_unlock(&pin_fs_lock);
 567	mntput(mnt);
 568}
 569EXPORT_SYMBOL(simple_release_fs);
 570
 571/**
 572 * simple_read_from_buffer - copy data from the buffer to user space
 573 * @to: the user space buffer to read to
 574 * @count: the maximum number of bytes to read
 575 * @ppos: the current position in the buffer
 576 * @from: the buffer to read from
 577 * @available: the size of the buffer
 578 *
 579 * The simple_read_from_buffer() function reads up to @count bytes from the
 580 * buffer @from at offset @ppos into the user space address starting at @to.
 581 *
 582 * On success, the number of bytes read is returned and the offset @ppos is
 583 * advanced by this number, or negative value is returned on error.
 584 **/
 585ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 586				const void *from, size_t available)
 587{
 588	loff_t pos = *ppos;
 589	size_t ret;
 590
 591	if (pos < 0)
 592		return -EINVAL;
 593	if (pos >= available || !count)
 594		return 0;
 595	if (count > available - pos)
 596		count = available - pos;
 597	ret = copy_to_user(to, from + pos, count);
 598	if (ret == count)
 599		return -EFAULT;
 600	count -= ret;
 601	*ppos = pos + count;
 602	return count;
 603}
 604EXPORT_SYMBOL(simple_read_from_buffer);
 605
 606/**
 607 * simple_write_to_buffer - copy data from user space to the buffer
 608 * @to: the buffer to write to
 609 * @available: the size of the buffer
 610 * @ppos: the current position in the buffer
 611 * @from: the user space buffer to read from
 612 * @count: the maximum number of bytes to read
 613 *
 614 * The simple_write_to_buffer() function reads up to @count bytes from the user
 615 * space address starting at @from into the buffer @to at offset @ppos.
 616 *
 617 * On success, the number of bytes written is returned and the offset @ppos is
 618 * advanced by this number, or negative value is returned on error.
 619 **/
 620ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 621		const void __user *from, size_t count)
 622{
 623	loff_t pos = *ppos;
 624	size_t res;
 625
 626	if (pos < 0)
 627		return -EINVAL;
 628	if (pos >= available || !count)
 629		return 0;
 630	if (count > available - pos)
 631		count = available - pos;
 632	res = copy_from_user(to + pos, from, count);
 633	if (res == count)
 634		return -EFAULT;
 635	count -= res;
 636	*ppos = pos + count;
 637	return count;
 638}
 639EXPORT_SYMBOL(simple_write_to_buffer);
 640
 641/**
 642 * memory_read_from_buffer - copy data from the buffer
 643 * @to: the kernel space buffer to read to
 644 * @count: the maximum number of bytes to read
 645 * @ppos: the current position in the buffer
 646 * @from: the buffer to read from
 647 * @available: the size of the buffer
 648 *
 649 * The memory_read_from_buffer() function reads up to @count bytes from the
 650 * buffer @from at offset @ppos into the kernel space address starting at @to.
 651 *
 652 * On success, the number of bytes read is returned and the offset @ppos is
 653 * advanced by this number, or negative value is returned on error.
 654 **/
 655ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 656				const void *from, size_t available)
 657{
 658	loff_t pos = *ppos;
 659
 660	if (pos < 0)
 661		return -EINVAL;
 662	if (pos >= available)
 663		return 0;
 664	if (count > available - pos)
 665		count = available - pos;
 666	memcpy(to, from + pos, count);
 667	*ppos = pos + count;
 668
 669	return count;
 670}
 671EXPORT_SYMBOL(memory_read_from_buffer);
 672
 673/*
 674 * Transaction based IO.
 675 * The file expects a single write which triggers the transaction, and then
 676 * possibly a read which collects the result - which is stored in a
 677 * file-local buffer.
 678 */
 679
 680void simple_transaction_set(struct file *file, size_t n)
 681{
 682	struct simple_transaction_argresp *ar = file->private_data;
 683
 684	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 685
 686	/*
 687	 * The barrier ensures that ar->size will really remain zero until
 688	 * ar->data is ready for reading.
 689	 */
 690	smp_mb();
 691	ar->size = n;
 692}
 693EXPORT_SYMBOL(simple_transaction_set);
 694
 695char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 696{
 697	struct simple_transaction_argresp *ar;
 698	static DEFINE_SPINLOCK(simple_transaction_lock);
 699
 700	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 701		return ERR_PTR(-EFBIG);
 702
 703	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 704	if (!ar)
 705		return ERR_PTR(-ENOMEM);
 706
 707	spin_lock(&simple_transaction_lock);
 708
 709	/* only one write allowed per open */
 710	if (file->private_data) {
 711		spin_unlock(&simple_transaction_lock);
 712		free_page((unsigned long)ar);
 713		return ERR_PTR(-EBUSY);
 714	}
 715
 716	file->private_data = ar;
 717
 718	spin_unlock(&simple_transaction_lock);
 719
 720	if (copy_from_user(ar->data, buf, size))
 721		return ERR_PTR(-EFAULT);
 722
 723	return ar->data;
 724}
 725EXPORT_SYMBOL(simple_transaction_get);
 726
 727ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 728{
 729	struct simple_transaction_argresp *ar = file->private_data;
 730
 731	if (!ar)
 732		return 0;
 733	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 734}
 735EXPORT_SYMBOL(simple_transaction_read);
 736
 737int simple_transaction_release(struct inode *inode, struct file *file)
 738{
 739	free_page((unsigned long)file->private_data);
 740	return 0;
 741}
 742EXPORT_SYMBOL(simple_transaction_release);
 743
 744/* Simple attribute files */
 745
 746struct simple_attr {
 747	int (*get)(void *, u64 *);
 748	int (*set)(void *, u64);
 749	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 750	char set_buf[24];
 751	void *data;
 752	const char *fmt;	/* format for read operation */
 753	struct mutex mutex;	/* protects access to these buffers */
 754};
 755
 756/* simple_attr_open is called by an actual attribute open file operation
 757 * to set the attribute specific access operations. */
 758int simple_attr_open(struct inode *inode, struct file *file,
 759		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 760		     const char *fmt)
 761{
 762	struct simple_attr *attr;
 763
 764	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 765	if (!attr)
 766		return -ENOMEM;
 767
 768	attr->get = get;
 769	attr->set = set;
 770	attr->data = inode->i_private;
 771	attr->fmt = fmt;
 772	mutex_init(&attr->mutex);
 773
 774	file->private_data = attr;
 775
 776	return nonseekable_open(inode, file);
 777}
 778EXPORT_SYMBOL_GPL(simple_attr_open);
 779
 780int simple_attr_release(struct inode *inode, struct file *file)
 781{
 782	kfree(file->private_data);
 783	return 0;
 784}
 785EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
 786
 787/* read from the buffer that is filled with the get function */
 788ssize_t simple_attr_read(struct file *file, char __user *buf,
 789			 size_t len, loff_t *ppos)
 790{
 791	struct simple_attr *attr;
 792	size_t size;
 793	ssize_t ret;
 794
 795	attr = file->private_data;
 796
 797	if (!attr->get)
 798		return -EACCES;
 799
 800	ret = mutex_lock_interruptible(&attr->mutex);
 801	if (ret)
 802		return ret;
 803
 804	if (*ppos) {		/* continued read */
 805		size = strlen(attr->get_buf);
 806	} else {		/* first read */
 807		u64 val;
 808		ret = attr->get(attr->data, &val);
 809		if (ret)
 810			goto out;
 811
 812		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 813				 attr->fmt, (unsigned long long)val);
 814	}
 815
 816	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 817out:
 818	mutex_unlock(&attr->mutex);
 819	return ret;
 820}
 821EXPORT_SYMBOL_GPL(simple_attr_read);
 822
 823/* interpret the buffer as a number to call the set function with */
 824ssize_t simple_attr_write(struct file *file, const char __user *buf,
 825			  size_t len, loff_t *ppos)
 826{
 827	struct simple_attr *attr;
 828	u64 val;
 829	size_t size;
 830	ssize_t ret;
 831
 832	attr = file->private_data;
 833	if (!attr->set)
 834		return -EACCES;
 835
 836	ret = mutex_lock_interruptible(&attr->mutex);
 837	if (ret)
 838		return ret;
 839
 840	ret = -EFAULT;
 841	size = min(sizeof(attr->set_buf) - 1, len);
 842	if (copy_from_user(attr->set_buf, buf, size))
 843		goto out;
 844
 845	attr->set_buf[size] = '\0';
 846	val = simple_strtoll(attr->set_buf, NULL, 0);
 847	ret = attr->set(attr->data, val);
 848	if (ret == 0)
 849		ret = len; /* on success, claim we got the whole input */
 850out:
 851	mutex_unlock(&attr->mutex);
 852	return ret;
 853}
 854EXPORT_SYMBOL_GPL(simple_attr_write);
 855
 856/**
 857 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 858 * @sb:		filesystem to do the file handle conversion on
 859 * @fid:	file handle to convert
 860 * @fh_len:	length of the file handle in bytes
 861 * @fh_type:	type of file handle
 862 * @get_inode:	filesystem callback to retrieve inode
 863 *
 864 * This function decodes @fid as long as it has one of the well-known
 865 * Linux filehandle types and calls @get_inode on it to retrieve the
 866 * inode for the object specified in the file handle.
 867 */
 868struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 869		int fh_len, int fh_type, struct inode *(*get_inode)
 870			(struct super_block *sb, u64 ino, u32 gen))
 871{
 872	struct inode *inode = NULL;
 873
 874	if (fh_len < 2)
 875		return NULL;
 876
 877	switch (fh_type) {
 878	case FILEID_INO32_GEN:
 879	case FILEID_INO32_GEN_PARENT:
 880		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 881		break;
 882	}
 883
 884	return d_obtain_alias(inode);
 885}
 886EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 887
 888/**
 889 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 890 * @sb:		filesystem to do the file handle conversion on
 891 * @fid:	file handle to convert
 892 * @fh_len:	length of the file handle in bytes
 893 * @fh_type:	type of file handle
 894 * @get_inode:	filesystem callback to retrieve inode
 895 *
 896 * This function decodes @fid as long as it has one of the well-known
 897 * Linux filehandle types and calls @get_inode on it to retrieve the
 898 * inode for the _parent_ object specified in the file handle if it
 899 * is specified in the file handle, or NULL otherwise.
 900 */
 901struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 902		int fh_len, int fh_type, struct inode *(*get_inode)
 903			(struct super_block *sb, u64 ino, u32 gen))
 904{
 905	struct inode *inode = NULL;
 906
 907	if (fh_len <= 2)
 908		return NULL;
 909
 910	switch (fh_type) {
 911	case FILEID_INO32_GEN_PARENT:
 912		inode = get_inode(sb, fid->i32.parent_ino,
 913				  (fh_len > 3 ? fid->i32.parent_gen : 0));
 914		break;
 915	}
 916
 917	return d_obtain_alias(inode);
 918}
 919EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 920
 921/**
 922 * __generic_file_fsync - generic fsync implementation for simple filesystems
 923 *
 924 * @file:	file to synchronize
 925 * @start:	start offset in bytes
 926 * @end:	end offset in bytes (inclusive)
 927 * @datasync:	only synchronize essential metadata if true
 928 *
 929 * This is a generic implementation of the fsync method for simple
 930 * filesystems which track all non-inode metadata in the buffers list
 931 * hanging off the address_space structure.
 932 */
 933int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 934				 int datasync)
 935{
 936	struct inode *inode = file->f_mapping->host;
 937	int err;
 938	int ret;
 939
 940	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
 941	if (err)
 942		return err;
 943
 944	inode_lock(inode);
 945	ret = sync_mapping_buffers(inode->i_mapping);
 946	if (!(inode->i_state & I_DIRTY_ALL))
 947		goto out;
 948	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 949		goto out;
 950
 951	err = sync_inode_metadata(inode, 1);
 952	if (ret == 0)
 953		ret = err;
 954
 955out:
 956	inode_unlock(inode);
 957	return ret;
 958}
 959EXPORT_SYMBOL(__generic_file_fsync);
 960
 961/**
 962 * generic_file_fsync - generic fsync implementation for simple filesystems
 963 *			with flush
 964 * @file:	file to synchronize
 965 * @start:	start offset in bytes
 966 * @end:	end offset in bytes (inclusive)
 967 * @datasync:	only synchronize essential metadata if true
 968 *
 969 */
 970
 971int generic_file_fsync(struct file *file, loff_t start, loff_t end,
 972		       int datasync)
 973{
 974	struct inode *inode = file->f_mapping->host;
 975	int err;
 976
 977	err = __generic_file_fsync(file, start, end, datasync);
 978	if (err)
 979		return err;
 980	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
 981}
 982EXPORT_SYMBOL(generic_file_fsync);
 983
 984/**
 985 * generic_check_addressable - Check addressability of file system
 986 * @blocksize_bits:	log of file system block size
 987 * @num_blocks:		number of blocks in file system
 988 *
 989 * Determine whether a file system with @num_blocks blocks (and a
 990 * block size of 2**@blocksize_bits) is addressable by the sector_t
 991 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
 992 */
 993int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
 994{
 995	u64 last_fs_block = num_blocks - 1;
 996	u64 last_fs_page =
 997		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
 998
 999	if (unlikely(num_blocks == 0))
1000		return 0;
1001
1002	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1003		return -EINVAL;
1004
1005	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1006	    (last_fs_page > (pgoff_t)(~0ULL))) {
1007		return -EFBIG;
1008	}
1009	return 0;
1010}
1011EXPORT_SYMBOL(generic_check_addressable);
1012
1013/*
1014 * No-op implementation of ->fsync for in-memory filesystems.
1015 */
1016int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1017{
1018	return 0;
1019}
1020EXPORT_SYMBOL(noop_fsync);
1021
1022/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1023void kfree_link(void *p)
1024{
1025	kfree(p);
1026}
1027EXPORT_SYMBOL(kfree_link);
1028
1029/*
1030 * nop .set_page_dirty method so that people can use .page_mkwrite on
1031 * anon inodes.
1032 */
1033static int anon_set_page_dirty(struct page *page)
1034{
1035	return 0;
1036};
1037
1038/*
1039 * A single inode exists for all anon_inode files. Contrary to pipes,
1040 * anon_inode inodes have no associated per-instance data, so we need
1041 * only allocate one of them.
1042 */
1043struct inode *alloc_anon_inode(struct super_block *s)
1044{
1045	static const struct address_space_operations anon_aops = {
1046		.set_page_dirty = anon_set_page_dirty,
1047	};
1048	struct inode *inode = new_inode_pseudo(s);
1049
1050	if (!inode)
1051		return ERR_PTR(-ENOMEM);
1052
1053	inode->i_ino = get_next_ino();
1054	inode->i_mapping->a_ops = &anon_aops;
1055
1056	/*
1057	 * Mark the inode dirty from the very beginning,
1058	 * that way it will never be moved to the dirty
1059	 * list because mark_inode_dirty() will think
1060	 * that it already _is_ on the dirty list.
1061	 */
1062	inode->i_state = I_DIRTY;
1063	inode->i_mode = S_IRUSR | S_IWUSR;
1064	inode->i_uid = current_fsuid();
1065	inode->i_gid = current_fsgid();
1066	inode->i_flags |= S_PRIVATE;
1067	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1068	return inode;
1069}
1070EXPORT_SYMBOL(alloc_anon_inode);
1071
1072/**
1073 * simple_nosetlease - generic helper for prohibiting leases
1074 * @filp: file pointer
1075 * @arg: type of lease to obtain
1076 * @flp: new lease supplied for insertion
1077 * @priv: private data for lm_setup operation
1078 *
1079 * Generic helper for filesystems that do not wish to allow leases to be set.
1080 * All arguments are ignored and it just returns -EINVAL.
1081 */
1082int
1083simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1084		  void **priv)
1085{
1086	return -EINVAL;
1087}
1088EXPORT_SYMBOL(simple_nosetlease);
1089
1090const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1091			    struct delayed_call *done)
1092{
1093	return inode->i_link;
1094}
1095EXPORT_SYMBOL(simple_get_link);
1096
1097const struct inode_operations simple_symlink_inode_operations = {
1098	.get_link = simple_get_link,
1099	.readlink = generic_readlink
1100};
1101EXPORT_SYMBOL(simple_symlink_inode_operations);
1102
1103/*
1104 * Operations for a permanently empty directory.
1105 */
1106static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1107{
1108	return ERR_PTR(-ENOENT);
1109}
1110
1111static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1112				 struct kstat *stat)
1113{
1114	struct inode *inode = d_inode(dentry);
1115	generic_fillattr(inode, stat);
1116	return 0;
1117}
1118
1119static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1120{
1121	return -EPERM;
1122}
1123
1124static int empty_dir_setxattr(struct dentry *dentry, const char *name,
1125			      const void *value, size_t size, int flags)
1126{
1127	return -EOPNOTSUPP;
1128}
1129
1130static ssize_t empty_dir_getxattr(struct dentry *dentry, const char *name,
1131				  void *value, size_t size)
1132{
1133	return -EOPNOTSUPP;
1134}
1135
1136static int empty_dir_removexattr(struct dentry *dentry, const char *name)
1137{
1138	return -EOPNOTSUPP;
1139}
1140
1141static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1142{
1143	return -EOPNOTSUPP;
1144}
1145
1146static const struct inode_operations empty_dir_inode_operations = {
1147	.lookup		= empty_dir_lookup,
1148	.permission	= generic_permission,
1149	.setattr	= empty_dir_setattr,
1150	.getattr	= empty_dir_getattr,
1151	.setxattr	= empty_dir_setxattr,
1152	.getxattr	= empty_dir_getxattr,
1153	.removexattr	= empty_dir_removexattr,
1154	.listxattr	= empty_dir_listxattr,
1155};
1156
1157static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1158{
1159	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1160	return generic_file_llseek_size(file, offset, whence, 2, 2);
1161}
1162
1163static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1164{
1165	dir_emit_dots(file, ctx);
1166	return 0;
1167}
1168
1169static const struct file_operations empty_dir_operations = {
1170	.llseek		= empty_dir_llseek,
1171	.read		= generic_read_dir,
1172	.iterate	= empty_dir_readdir,
1173	.fsync		= noop_fsync,
1174};
1175
1176
1177void make_empty_dir_inode(struct inode *inode)
1178{
1179	set_nlink(inode, 2);
1180	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1181	inode->i_uid = GLOBAL_ROOT_UID;
1182	inode->i_gid = GLOBAL_ROOT_GID;
1183	inode->i_rdev = 0;
1184	inode->i_size = 0;
1185	inode->i_blkbits = PAGE_SHIFT;
1186	inode->i_blocks = 0;
1187
1188	inode->i_op = &empty_dir_inode_operations;
1189	inode->i_fop = &empty_dir_operations;
1190}
1191
1192bool is_empty_dir_inode(struct inode *inode)
1193{
1194	return (inode->i_fop == &empty_dir_operations) &&
1195		(inode->i_op == &empty_dir_inode_operations);
1196}
v3.1
   1/*
   2 *	fs/libfs.c
   3 *	Library for filesystems writers.
   4 */
   5
   6#include <linux/module.h>
 
   7#include <linux/pagemap.h>
   8#include <linux/slab.h>
   9#include <linux/mount.h>
  10#include <linux/vfs.h>
  11#include <linux/quotaops.h>
  12#include <linux/mutex.h>
 
  13#include <linux/exportfs.h>
  14#include <linux/writeback.h>
  15#include <linux/buffer_head.h>
  16
  17#include <asm/uaccess.h>
  18
  19#include "internal.h"
  20
  21static inline int simple_positive(struct dentry *dentry)
  22{
  23	return dentry->d_inode && !d_unhashed(dentry);
  24}
  25
  26int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  27		   struct kstat *stat)
  28{
  29	struct inode *inode = dentry->d_inode;
  30	generic_fillattr(inode, stat);
  31	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
  32	return 0;
  33}
 
  34
  35int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  36{
  37	buf->f_type = dentry->d_sb->s_magic;
  38	buf->f_bsize = PAGE_CACHE_SIZE;
  39	buf->f_namelen = NAME_MAX;
  40	return 0;
  41}
 
  42
  43/*
  44 * Retaining negative dentries for an in-memory filesystem just wastes
  45 * memory and lookup time: arrange for them to be deleted immediately.
  46 */
  47static int simple_delete_dentry(const struct dentry *dentry)
  48{
  49	return 1;
  50}
 
 
 
 
 
 
  51
  52/*
  53 * Lookup the data. This is trivial - if the dentry didn't already
  54 * exist, we know it is negative.  Set d_op to delete negative dentries.
  55 */
  56struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
  57{
  58	static const struct dentry_operations simple_dentry_operations = {
  59		.d_delete = simple_delete_dentry,
  60	};
  61
  62	if (dentry->d_name.len > NAME_MAX)
  63		return ERR_PTR(-ENAMETOOLONG);
  64	d_set_d_op(dentry, &simple_dentry_operations);
 
  65	d_add(dentry, NULL);
  66	return NULL;
  67}
 
  68
  69int dcache_dir_open(struct inode *inode, struct file *file)
  70{
  71	static struct qstr cursor_name = {.len = 1, .name = "."};
  72
  73	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
  74
  75	return file->private_data ? 0 : -ENOMEM;
  76}
 
  77
  78int dcache_dir_close(struct inode *inode, struct file *file)
  79{
  80	dput(file->private_data);
  81	return 0;
  82}
 
  83
  84loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
  85{
  86	struct dentry *dentry = file->f_path.dentry;
  87	mutex_lock(&dentry->d_inode->i_mutex);
  88	switch (origin) {
  89		case 1:
  90			offset += file->f_pos;
  91		case 0:
  92			if (offset >= 0)
  93				break;
  94		default:
  95			mutex_unlock(&dentry->d_inode->i_mutex);
  96			return -EINVAL;
  97	}
  98	if (offset != file->f_pos) {
  99		file->f_pos = offset;
 100		if (file->f_pos >= 2) {
 101			struct list_head *p;
 102			struct dentry *cursor = file->private_data;
 103			loff_t n = file->f_pos - 2;
 104
 105			spin_lock(&dentry->d_lock);
 106			/* d_lock not required for cursor */
 107			list_del(&cursor->d_u.d_child);
 108			p = dentry->d_subdirs.next;
 109			while (n && p != &dentry->d_subdirs) {
 110				struct dentry *next;
 111				next = list_entry(p, struct dentry, d_u.d_child);
 112				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 113				if (simple_positive(next))
 114					n--;
 115				spin_unlock(&next->d_lock);
 116				p = p->next;
 117			}
 118			list_add_tail(&cursor->d_u.d_child, p);
 119			spin_unlock(&dentry->d_lock);
 120		}
 121	}
 122	mutex_unlock(&dentry->d_inode->i_mutex);
 123	return offset;
 124}
 
 125
 126/* Relationship between i_mode and the DT_xxx types */
 127static inline unsigned char dt_type(struct inode *inode)
 128{
 129	return (inode->i_mode >> 12) & 15;
 130}
 131
 132/*
 133 * Directory is locked and all positive dentries in it are safe, since
 134 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 135 * both impossible due to the lock on directory.
 136 */
 137
 138int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
 139{
 140	struct dentry *dentry = filp->f_path.dentry;
 141	struct dentry *cursor = filp->private_data;
 142	struct list_head *p, *q = &cursor->d_u.d_child;
 143	ino_t ino;
 144	int i = filp->f_pos;
 145
 146	switch (i) {
 147		case 0:
 148			ino = dentry->d_inode->i_ino;
 149			if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
 150				break;
 151			filp->f_pos++;
 152			i++;
 153			/* fallthrough */
 154		case 1:
 155			ino = parent_ino(dentry);
 156			if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
 157				break;
 158			filp->f_pos++;
 159			i++;
 160			/* fallthrough */
 161		default:
 162			spin_lock(&dentry->d_lock);
 163			if (filp->f_pos == 2)
 164				list_move(q, &dentry->d_subdirs);
 165
 166			for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
 167				struct dentry *next;
 168				next = list_entry(p, struct dentry, d_u.d_child);
 169				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 170				if (!simple_positive(next)) {
 171					spin_unlock(&next->d_lock);
 172					continue;
 173				}
 174
 175				spin_unlock(&next->d_lock);
 176				spin_unlock(&dentry->d_lock);
 177				if (filldir(dirent, next->d_name.name, 
 178					    next->d_name.len, filp->f_pos, 
 179					    next->d_inode->i_ino, 
 180					    dt_type(next->d_inode)) < 0)
 181					return 0;
 182				spin_lock(&dentry->d_lock);
 183				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 184				/* next is still alive */
 185				list_move(q, p);
 186				spin_unlock(&next->d_lock);
 187				p = q;
 188				filp->f_pos++;
 189			}
 190			spin_unlock(&dentry->d_lock);
 191	}
 
 192	return 0;
 193}
 
 194
 195ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 196{
 197	return -EISDIR;
 198}
 
 199
 200const struct file_operations simple_dir_operations = {
 201	.open		= dcache_dir_open,
 202	.release	= dcache_dir_close,
 203	.llseek		= dcache_dir_lseek,
 204	.read		= generic_read_dir,
 205	.readdir	= dcache_readdir,
 206	.fsync		= noop_fsync,
 207};
 
 208
 209const struct inode_operations simple_dir_inode_operations = {
 210	.lookup		= simple_lookup,
 211};
 
 212
 213static const struct super_operations simple_super_operations = {
 214	.statfs		= simple_statfs,
 215};
 216
 217/*
 218 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 219 * will never be mountable)
 220 */
 221struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
 222	const struct super_operations *ops,
 223	const struct dentry_operations *dops, unsigned long magic)
 224{
 225	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
 226	struct dentry *dentry;
 227	struct inode *root;
 228	struct qstr d_name = {.name = name, .len = strlen(name)};
 229
 
 230	if (IS_ERR(s))
 231		return ERR_CAST(s);
 232
 233	s->s_flags = MS_NOUSER;
 234	s->s_maxbytes = MAX_LFS_FILESIZE;
 235	s->s_blocksize = PAGE_SIZE;
 236	s->s_blocksize_bits = PAGE_SHIFT;
 237	s->s_magic = magic;
 238	s->s_op = ops ? ops : &simple_super_operations;
 239	s->s_time_gran = 1;
 240	root = new_inode(s);
 241	if (!root)
 242		goto Enomem;
 243	/*
 244	 * since this is the first inode, make it number 1. New inodes created
 245	 * after this must take care not to collide with it (by passing
 246	 * max_reserved of 1 to iunique).
 247	 */
 248	root->i_ino = 1;
 249	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 250	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
 251	dentry = __d_alloc(s, &d_name);
 252	if (!dentry) {
 253		iput(root);
 254		goto Enomem;
 255	}
 256	d_instantiate(dentry, root);
 257	s->s_root = dentry;
 258	s->s_d_op = dops;
 259	s->s_flags |= MS_ACTIVE;
 260	return dget(s->s_root);
 261
 262Enomem:
 263	deactivate_locked_super(s);
 264	return ERR_PTR(-ENOMEM);
 265}
 
 
 
 
 
 
 
 
 
 266
 267int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 268{
 269	struct inode *inode = old_dentry->d_inode;
 270
 271	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 272	inc_nlink(inode);
 273	ihold(inode);
 274	dget(dentry);
 275	d_instantiate(dentry, inode);
 276	return 0;
 277}
 
 278
 279int simple_empty(struct dentry *dentry)
 280{
 281	struct dentry *child;
 282	int ret = 0;
 283
 284	spin_lock(&dentry->d_lock);
 285	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
 286		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 287		if (simple_positive(child)) {
 288			spin_unlock(&child->d_lock);
 289			goto out;
 290		}
 291		spin_unlock(&child->d_lock);
 292	}
 293	ret = 1;
 294out:
 295	spin_unlock(&dentry->d_lock);
 296	return ret;
 297}
 
 298
 299int simple_unlink(struct inode *dir, struct dentry *dentry)
 300{
 301	struct inode *inode = dentry->d_inode;
 302
 303	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 304	drop_nlink(inode);
 305	dput(dentry);
 306	return 0;
 307}
 
 308
 309int simple_rmdir(struct inode *dir, struct dentry *dentry)
 310{
 311	if (!simple_empty(dentry))
 312		return -ENOTEMPTY;
 313
 314	drop_nlink(dentry->d_inode);
 315	simple_unlink(dir, dentry);
 316	drop_nlink(dir);
 317	return 0;
 318}
 
 319
 320int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 321		struct inode *new_dir, struct dentry *new_dentry)
 322{
 323	struct inode *inode = old_dentry->d_inode;
 324	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
 325
 326	if (!simple_empty(new_dentry))
 327		return -ENOTEMPTY;
 328
 329	if (new_dentry->d_inode) {
 330		simple_unlink(new_dir, new_dentry);
 331		if (they_are_dirs) {
 332			drop_nlink(new_dentry->d_inode);
 333			drop_nlink(old_dir);
 334		}
 335	} else if (they_are_dirs) {
 336		drop_nlink(old_dir);
 337		inc_nlink(new_dir);
 338	}
 339
 340	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 341		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
 342
 343	return 0;
 344}
 
 345
 346/**
 347 * simple_setattr - setattr for simple filesystem
 348 * @dentry: dentry
 349 * @iattr: iattr structure
 350 *
 351 * Returns 0 on success, -error on failure.
 352 *
 353 * simple_setattr is a simple ->setattr implementation without a proper
 354 * implementation of size changes.
 355 *
 356 * It can either be used for in-memory filesystems or special files
 357 * on simple regular filesystems.  Anything that needs to change on-disk
 358 * or wire state on size changes needs its own setattr method.
 359 */
 360int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 361{
 362	struct inode *inode = dentry->d_inode;
 363	int error;
 364
 365	WARN_ON_ONCE(inode->i_op->truncate);
 366
 367	error = inode_change_ok(inode, iattr);
 368	if (error)
 369		return error;
 370
 371	if (iattr->ia_valid & ATTR_SIZE)
 372		truncate_setsize(inode, iattr->ia_size);
 373	setattr_copy(inode, iattr);
 374	mark_inode_dirty(inode);
 375	return 0;
 376}
 377EXPORT_SYMBOL(simple_setattr);
 378
 379int simple_readpage(struct file *file, struct page *page)
 380{
 381	clear_highpage(page);
 382	flush_dcache_page(page);
 383	SetPageUptodate(page);
 384	unlock_page(page);
 385	return 0;
 386}
 
 387
 388int simple_write_begin(struct file *file, struct address_space *mapping,
 389			loff_t pos, unsigned len, unsigned flags,
 390			struct page **pagep, void **fsdata)
 391{
 392	struct page *page;
 393	pgoff_t index;
 394
 395	index = pos >> PAGE_CACHE_SHIFT;
 396
 397	page = grab_cache_page_write_begin(mapping, index, flags);
 398	if (!page)
 399		return -ENOMEM;
 400
 401	*pagep = page;
 402
 403	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
 404		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 405
 406		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
 407	}
 408	return 0;
 409}
 
 410
 411/**
 412 * simple_write_end - .write_end helper for non-block-device FSes
 413 * @available: See .write_end of address_space_operations
 414 * @file: 		"
 415 * @mapping: 		"
 416 * @pos: 		"
 417 * @len: 		"
 418 * @copied: 		"
 419 * @page: 		"
 420 * @fsdata: 		"
 421 *
 422 * simple_write_end does the minimum needed for updating a page after writing is
 423 * done. It has the same API signature as the .write_end of
 424 * address_space_operations vector. So it can just be set onto .write_end for
 425 * FSes that don't need any other processing. i_mutex is assumed to be held.
 426 * Block based filesystems should use generic_write_end().
 427 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 428 * is not called, so a filesystem that actually does store data in .write_inode
 429 * should extend on what's done here with a call to mark_inode_dirty() in the
 430 * case that i_size has changed.
 431 */
 432int simple_write_end(struct file *file, struct address_space *mapping,
 433			loff_t pos, unsigned len, unsigned copied,
 434			struct page *page, void *fsdata)
 435{
 436	struct inode *inode = page->mapping->host;
 437	loff_t last_pos = pos + copied;
 438
 439	/* zero the stale part of the page if we did a short copy */
 440	if (copied < len) {
 441		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 442
 443		zero_user(page, from + copied, len - copied);
 444	}
 445
 446	if (!PageUptodate(page))
 447		SetPageUptodate(page);
 448	/*
 449	 * No need to use i_size_read() here, the i_size
 450	 * cannot change under us because we hold the i_mutex.
 451	 */
 452	if (last_pos > inode->i_size)
 453		i_size_write(inode, last_pos);
 454
 455	set_page_dirty(page);
 456	unlock_page(page);
 457	page_cache_release(page);
 458
 459	return copied;
 460}
 
 461
 462/*
 463 * the inodes created here are not hashed. If you use iunique to generate
 464 * unique inode values later for this filesystem, then you must take care
 465 * to pass it an appropriate max_reserved value to avoid collisions.
 466 */
 467int simple_fill_super(struct super_block *s, unsigned long magic,
 468		      struct tree_descr *files)
 469{
 470	struct inode *inode;
 471	struct dentry *root;
 472	struct dentry *dentry;
 473	int i;
 474
 475	s->s_blocksize = PAGE_CACHE_SIZE;
 476	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
 477	s->s_magic = magic;
 478	s->s_op = &simple_super_operations;
 479	s->s_time_gran = 1;
 480
 481	inode = new_inode(s);
 482	if (!inode)
 483		return -ENOMEM;
 484	/*
 485	 * because the root inode is 1, the files array must not contain an
 486	 * entry at index 1
 487	 */
 488	inode->i_ino = 1;
 489	inode->i_mode = S_IFDIR | 0755;
 490	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 491	inode->i_op = &simple_dir_inode_operations;
 492	inode->i_fop = &simple_dir_operations;
 493	inode->i_nlink = 2;
 494	root = d_alloc_root(inode);
 495	if (!root) {
 496		iput(inode);
 497		return -ENOMEM;
 498	}
 499	for (i = 0; !files->name || files->name[0]; i++, files++) {
 500		if (!files->name)
 501			continue;
 502
 503		/* warn if it tries to conflict with the root inode */
 504		if (unlikely(i == 1))
 505			printk(KERN_WARNING "%s: %s passed in a files array"
 506				"with an index of 1!\n", __func__,
 507				s->s_type->name);
 508
 509		dentry = d_alloc_name(root, files->name);
 510		if (!dentry)
 511			goto out;
 512		inode = new_inode(s);
 513		if (!inode)
 
 514			goto out;
 
 515		inode->i_mode = S_IFREG | files->mode;
 516		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 517		inode->i_fop = files->ops;
 518		inode->i_ino = i;
 519		d_add(dentry, inode);
 520	}
 521	s->s_root = root;
 522	return 0;
 523out:
 524	d_genocide(root);
 
 525	dput(root);
 526	return -ENOMEM;
 527}
 
 528
 529static DEFINE_SPINLOCK(pin_fs_lock);
 530
 531int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 532{
 533	struct vfsmount *mnt = NULL;
 534	spin_lock(&pin_fs_lock);
 535	if (unlikely(!*mount)) {
 536		spin_unlock(&pin_fs_lock);
 537		mnt = vfs_kern_mount(type, 0, type->name, NULL);
 538		if (IS_ERR(mnt))
 539			return PTR_ERR(mnt);
 540		spin_lock(&pin_fs_lock);
 541		if (!*mount)
 542			*mount = mnt;
 543	}
 544	mntget(*mount);
 545	++*count;
 546	spin_unlock(&pin_fs_lock);
 547	mntput(mnt);
 548	return 0;
 549}
 
 550
 551void simple_release_fs(struct vfsmount **mount, int *count)
 552{
 553	struct vfsmount *mnt;
 554	spin_lock(&pin_fs_lock);
 555	mnt = *mount;
 556	if (!--*count)
 557		*mount = NULL;
 558	spin_unlock(&pin_fs_lock);
 559	mntput(mnt);
 560}
 
 561
 562/**
 563 * simple_read_from_buffer - copy data from the buffer to user space
 564 * @to: the user space buffer to read to
 565 * @count: the maximum number of bytes to read
 566 * @ppos: the current position in the buffer
 567 * @from: the buffer to read from
 568 * @available: the size of the buffer
 569 *
 570 * The simple_read_from_buffer() function reads up to @count bytes from the
 571 * buffer @from at offset @ppos into the user space address starting at @to.
 572 *
 573 * On success, the number of bytes read is returned and the offset @ppos is
 574 * advanced by this number, or negative value is returned on error.
 575 **/
 576ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 577				const void *from, size_t available)
 578{
 579	loff_t pos = *ppos;
 580	size_t ret;
 581
 582	if (pos < 0)
 583		return -EINVAL;
 584	if (pos >= available || !count)
 585		return 0;
 586	if (count > available - pos)
 587		count = available - pos;
 588	ret = copy_to_user(to, from + pos, count);
 589	if (ret == count)
 590		return -EFAULT;
 591	count -= ret;
 592	*ppos = pos + count;
 593	return count;
 594}
 
 595
 596/**
 597 * simple_write_to_buffer - copy data from user space to the buffer
 598 * @to: the buffer to write to
 599 * @available: the size of the buffer
 600 * @ppos: the current position in the buffer
 601 * @from: the user space buffer to read from
 602 * @count: the maximum number of bytes to read
 603 *
 604 * The simple_write_to_buffer() function reads up to @count bytes from the user
 605 * space address starting at @from into the buffer @to at offset @ppos.
 606 *
 607 * On success, the number of bytes written is returned and the offset @ppos is
 608 * advanced by this number, or negative value is returned on error.
 609 **/
 610ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 611		const void __user *from, size_t count)
 612{
 613	loff_t pos = *ppos;
 614	size_t res;
 615
 616	if (pos < 0)
 617		return -EINVAL;
 618	if (pos >= available || !count)
 619		return 0;
 620	if (count > available - pos)
 621		count = available - pos;
 622	res = copy_from_user(to + pos, from, count);
 623	if (res == count)
 624		return -EFAULT;
 625	count -= res;
 626	*ppos = pos + count;
 627	return count;
 628}
 
 629
 630/**
 631 * memory_read_from_buffer - copy data from the buffer
 632 * @to: the kernel space buffer to read to
 633 * @count: the maximum number of bytes to read
 634 * @ppos: the current position in the buffer
 635 * @from: the buffer to read from
 636 * @available: the size of the buffer
 637 *
 638 * The memory_read_from_buffer() function reads up to @count bytes from the
 639 * buffer @from at offset @ppos into the kernel space address starting at @to.
 640 *
 641 * On success, the number of bytes read is returned and the offset @ppos is
 642 * advanced by this number, or negative value is returned on error.
 643 **/
 644ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 645				const void *from, size_t available)
 646{
 647	loff_t pos = *ppos;
 648
 649	if (pos < 0)
 650		return -EINVAL;
 651	if (pos >= available)
 652		return 0;
 653	if (count > available - pos)
 654		count = available - pos;
 655	memcpy(to, from + pos, count);
 656	*ppos = pos + count;
 657
 658	return count;
 659}
 
 660
 661/*
 662 * Transaction based IO.
 663 * The file expects a single write which triggers the transaction, and then
 664 * possibly a read which collects the result - which is stored in a
 665 * file-local buffer.
 666 */
 667
 668void simple_transaction_set(struct file *file, size_t n)
 669{
 670	struct simple_transaction_argresp *ar = file->private_data;
 671
 672	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 673
 674	/*
 675	 * The barrier ensures that ar->size will really remain zero until
 676	 * ar->data is ready for reading.
 677	 */
 678	smp_mb();
 679	ar->size = n;
 680}
 
 681
 682char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 683{
 684	struct simple_transaction_argresp *ar;
 685	static DEFINE_SPINLOCK(simple_transaction_lock);
 686
 687	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 688		return ERR_PTR(-EFBIG);
 689
 690	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 691	if (!ar)
 692		return ERR_PTR(-ENOMEM);
 693
 694	spin_lock(&simple_transaction_lock);
 695
 696	/* only one write allowed per open */
 697	if (file->private_data) {
 698		spin_unlock(&simple_transaction_lock);
 699		free_page((unsigned long)ar);
 700		return ERR_PTR(-EBUSY);
 701	}
 702
 703	file->private_data = ar;
 704
 705	spin_unlock(&simple_transaction_lock);
 706
 707	if (copy_from_user(ar->data, buf, size))
 708		return ERR_PTR(-EFAULT);
 709
 710	return ar->data;
 711}
 
 712
 713ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 714{
 715	struct simple_transaction_argresp *ar = file->private_data;
 716
 717	if (!ar)
 718		return 0;
 719	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 720}
 
 721
 722int simple_transaction_release(struct inode *inode, struct file *file)
 723{
 724	free_page((unsigned long)file->private_data);
 725	return 0;
 726}
 
 727
 728/* Simple attribute files */
 729
 730struct simple_attr {
 731	int (*get)(void *, u64 *);
 732	int (*set)(void *, u64);
 733	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 734	char set_buf[24];
 735	void *data;
 736	const char *fmt;	/* format for read operation */
 737	struct mutex mutex;	/* protects access to these buffers */
 738};
 739
 740/* simple_attr_open is called by an actual attribute open file operation
 741 * to set the attribute specific access operations. */
 742int simple_attr_open(struct inode *inode, struct file *file,
 743		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 744		     const char *fmt)
 745{
 746	struct simple_attr *attr;
 747
 748	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 749	if (!attr)
 750		return -ENOMEM;
 751
 752	attr->get = get;
 753	attr->set = set;
 754	attr->data = inode->i_private;
 755	attr->fmt = fmt;
 756	mutex_init(&attr->mutex);
 757
 758	file->private_data = attr;
 759
 760	return nonseekable_open(inode, file);
 761}
 
 762
 763int simple_attr_release(struct inode *inode, struct file *file)
 764{
 765	kfree(file->private_data);
 766	return 0;
 767}
 
 768
 769/* read from the buffer that is filled with the get function */
 770ssize_t simple_attr_read(struct file *file, char __user *buf,
 771			 size_t len, loff_t *ppos)
 772{
 773	struct simple_attr *attr;
 774	size_t size;
 775	ssize_t ret;
 776
 777	attr = file->private_data;
 778
 779	if (!attr->get)
 780		return -EACCES;
 781
 782	ret = mutex_lock_interruptible(&attr->mutex);
 783	if (ret)
 784		return ret;
 785
 786	if (*ppos) {		/* continued read */
 787		size = strlen(attr->get_buf);
 788	} else {		/* first read */
 789		u64 val;
 790		ret = attr->get(attr->data, &val);
 791		if (ret)
 792			goto out;
 793
 794		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 795				 attr->fmt, (unsigned long long)val);
 796	}
 797
 798	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 799out:
 800	mutex_unlock(&attr->mutex);
 801	return ret;
 802}
 
 803
 804/* interpret the buffer as a number to call the set function with */
 805ssize_t simple_attr_write(struct file *file, const char __user *buf,
 806			  size_t len, loff_t *ppos)
 807{
 808	struct simple_attr *attr;
 809	u64 val;
 810	size_t size;
 811	ssize_t ret;
 812
 813	attr = file->private_data;
 814	if (!attr->set)
 815		return -EACCES;
 816
 817	ret = mutex_lock_interruptible(&attr->mutex);
 818	if (ret)
 819		return ret;
 820
 821	ret = -EFAULT;
 822	size = min(sizeof(attr->set_buf) - 1, len);
 823	if (copy_from_user(attr->set_buf, buf, size))
 824		goto out;
 825
 826	attr->set_buf[size] = '\0';
 827	val = simple_strtoll(attr->set_buf, NULL, 0);
 828	ret = attr->set(attr->data, val);
 829	if (ret == 0)
 830		ret = len; /* on success, claim we got the whole input */
 831out:
 832	mutex_unlock(&attr->mutex);
 833	return ret;
 834}
 
 835
 836/**
 837 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 838 * @sb:		filesystem to do the file handle conversion on
 839 * @fid:	file handle to convert
 840 * @fh_len:	length of the file handle in bytes
 841 * @fh_type:	type of file handle
 842 * @get_inode:	filesystem callback to retrieve inode
 843 *
 844 * This function decodes @fid as long as it has one of the well-known
 845 * Linux filehandle types and calls @get_inode on it to retrieve the
 846 * inode for the object specified in the file handle.
 847 */
 848struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 849		int fh_len, int fh_type, struct inode *(*get_inode)
 850			(struct super_block *sb, u64 ino, u32 gen))
 851{
 852	struct inode *inode = NULL;
 853
 854	if (fh_len < 2)
 855		return NULL;
 856
 857	switch (fh_type) {
 858	case FILEID_INO32_GEN:
 859	case FILEID_INO32_GEN_PARENT:
 860		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 861		break;
 862	}
 863
 864	return d_obtain_alias(inode);
 865}
 866EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 867
 868/**
 869 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
 870 * @sb:		filesystem to do the file handle conversion on
 871 * @fid:	file handle to convert
 872 * @fh_len:	length of the file handle in bytes
 873 * @fh_type:	type of file handle
 874 * @get_inode:	filesystem callback to retrieve inode
 875 *
 876 * This function decodes @fid as long as it has one of the well-known
 877 * Linux filehandle types and calls @get_inode on it to retrieve the
 878 * inode for the _parent_ object specified in the file handle if it
 879 * is specified in the file handle, or NULL otherwise.
 880 */
 881struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 882		int fh_len, int fh_type, struct inode *(*get_inode)
 883			(struct super_block *sb, u64 ino, u32 gen))
 884{
 885	struct inode *inode = NULL;
 886
 887	if (fh_len <= 2)
 888		return NULL;
 889
 890	switch (fh_type) {
 891	case FILEID_INO32_GEN_PARENT:
 892		inode = get_inode(sb, fid->i32.parent_ino,
 893				  (fh_len > 3 ? fid->i32.parent_gen : 0));
 894		break;
 895	}
 896
 897	return d_obtain_alias(inode);
 898}
 899EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 900
 901/**
 902 * generic_file_fsync - generic fsync implementation for simple filesystems
 
 903 * @file:	file to synchronize
 
 
 904 * @datasync:	only synchronize essential metadata if true
 905 *
 906 * This is a generic implementation of the fsync method for simple
 907 * filesystems which track all non-inode metadata in the buffers list
 908 * hanging off the address_space structure.
 909 */
 910int generic_file_fsync(struct file *file, loff_t start, loff_t end,
 911		       int datasync)
 912{
 913	struct inode *inode = file->f_mapping->host;
 914	int err;
 915	int ret;
 916
 917	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
 918	if (err)
 919		return err;
 920
 921	mutex_lock(&inode->i_mutex);
 922	ret = sync_mapping_buffers(inode->i_mapping);
 923	if (!(inode->i_state & I_DIRTY))
 924		goto out;
 925	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 926		goto out;
 927
 928	err = sync_inode_metadata(inode, 1);
 929	if (ret == 0)
 930		ret = err;
 
 931out:
 932	mutex_unlock(&inode->i_mutex);
 933	return ret;
 934}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935EXPORT_SYMBOL(generic_file_fsync);
 936
 937/**
 938 * generic_check_addressable - Check addressability of file system
 939 * @blocksize_bits:	log of file system block size
 940 * @num_blocks:		number of blocks in file system
 941 *
 942 * Determine whether a file system with @num_blocks blocks (and a
 943 * block size of 2**@blocksize_bits) is addressable by the sector_t
 944 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
 945 */
 946int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
 947{
 948	u64 last_fs_block = num_blocks - 1;
 949	u64 last_fs_page =
 950		last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
 951
 952	if (unlikely(num_blocks == 0))
 953		return 0;
 954
 955	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
 956		return -EINVAL;
 957
 958	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
 959	    (last_fs_page > (pgoff_t)(~0ULL))) {
 960		return -EFBIG;
 961	}
 962	return 0;
 963}
 964EXPORT_SYMBOL(generic_check_addressable);
 965
 966/*
 967 * No-op implementation of ->fsync for in-memory filesystems.
 968 */
 969int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
 970{
 971	return 0;
 972}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973
 974EXPORT_SYMBOL(dcache_dir_close);
 975EXPORT_SYMBOL(dcache_dir_lseek);
 976EXPORT_SYMBOL(dcache_dir_open);
 977EXPORT_SYMBOL(dcache_readdir);
 978EXPORT_SYMBOL(generic_read_dir);
 979EXPORT_SYMBOL(mount_pseudo);
 980EXPORT_SYMBOL(simple_write_begin);
 981EXPORT_SYMBOL(simple_write_end);
 982EXPORT_SYMBOL(simple_dir_inode_operations);
 983EXPORT_SYMBOL(simple_dir_operations);
 984EXPORT_SYMBOL(simple_empty);
 985EXPORT_SYMBOL(simple_fill_super);
 986EXPORT_SYMBOL(simple_getattr);
 987EXPORT_SYMBOL(simple_link);
 988EXPORT_SYMBOL(simple_lookup);
 989EXPORT_SYMBOL(simple_pin_fs);
 990EXPORT_SYMBOL(simple_readpage);
 991EXPORT_SYMBOL(simple_release_fs);
 992EXPORT_SYMBOL(simple_rename);
 993EXPORT_SYMBOL(simple_rmdir);
 994EXPORT_SYMBOL(simple_statfs);
 995EXPORT_SYMBOL(noop_fsync);
 996EXPORT_SYMBOL(simple_unlink);
 997EXPORT_SYMBOL(simple_read_from_buffer);
 998EXPORT_SYMBOL(simple_write_to_buffer);
 999EXPORT_SYMBOL(memory_read_from_buffer);
1000EXPORT_SYMBOL(simple_transaction_set);
1001EXPORT_SYMBOL(simple_transaction_get);
1002EXPORT_SYMBOL(simple_transaction_read);
1003EXPORT_SYMBOL(simple_transaction_release);
1004EXPORT_SYMBOL_GPL(simple_attr_open);
1005EXPORT_SYMBOL_GPL(simple_attr_release);
1006EXPORT_SYMBOL_GPL(simple_attr_read);
1007EXPORT_SYMBOL_GPL(simple_attr_write);