Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.6
 
   1/*
   2 *	fs/libfs.c
   3 *	Library for filesystems writers.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/export.h>
   8#include <linux/pagemap.h>
   9#include <linux/slab.h>
 
  10#include <linux/mount.h>
  11#include <linux/vfs.h>
  12#include <linux/quotaops.h>
  13#include <linux/mutex.h>
  14#include <linux/namei.h>
  15#include <linux/exportfs.h>
 
  16#include <linux/writeback.h>
  17#include <linux/buffer_head.h> /* sync_mapping_buffers */
 
 
 
 
 
 
  18
  19#include <asm/uaccess.h>
  20
  21#include "internal.h"
  22
  23int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  24		   struct kstat *stat)
 
  25{
  26	struct inode *inode = d_inode(dentry);
  27	generic_fillattr(inode, stat);
  28	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  29	return 0;
  30}
  31EXPORT_SYMBOL(simple_getattr);
  32
  33int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  34{
 
 
 
  35	buf->f_type = dentry->d_sb->s_magic;
  36	buf->f_bsize = PAGE_SIZE;
  37	buf->f_namelen = NAME_MAX;
  38	return 0;
  39}
  40EXPORT_SYMBOL(simple_statfs);
  41
  42/*
  43 * Retaining negative dentries for an in-memory filesystem just wastes
  44 * memory and lookup time: arrange for them to be deleted immediately.
  45 */
  46int always_delete_dentry(const struct dentry *dentry)
  47{
  48	return 1;
  49}
  50EXPORT_SYMBOL(always_delete_dentry);
  51
  52const struct dentry_operations simple_dentry_operations = {
  53	.d_delete = always_delete_dentry,
  54};
  55EXPORT_SYMBOL(simple_dentry_operations);
  56
  57/*
  58 * Lookup the data. This is trivial - if the dentry didn't already
  59 * exist, we know it is negative.  Set d_op to delete negative dentries.
  60 */
  61struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  62{
  63	if (dentry->d_name.len > NAME_MAX)
  64		return ERR_PTR(-ENAMETOOLONG);
  65	if (!dentry->d_sb->s_d_op)
  66		d_set_d_op(dentry, &simple_dentry_operations);
  67	d_add(dentry, NULL);
  68	return NULL;
  69}
  70EXPORT_SYMBOL(simple_lookup);
  71
  72int dcache_dir_open(struct inode *inode, struct file *file)
  73{
  74	static struct qstr cursor_name = QSTR_INIT(".", 1);
  75
  76	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
  77
  78	return file->private_data ? 0 : -ENOMEM;
  79}
  80EXPORT_SYMBOL(dcache_dir_open);
  81
  82int dcache_dir_close(struct inode *inode, struct file *file)
  83{
  84	dput(file->private_data);
  85	return 0;
  86}
  87EXPORT_SYMBOL(dcache_dir_close);
  88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
  90{
  91	struct dentry *dentry = file->f_path.dentry;
  92	inode_lock(d_inode(dentry));
  93	switch (whence) {
  94		case 1:
  95			offset += file->f_pos;
 
  96		case 0:
  97			if (offset >= 0)
  98				break;
 
  99		default:
 100			inode_unlock(d_inode(dentry));
 101			return -EINVAL;
 102	}
 103	if (offset != file->f_pos) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104		file->f_pos = offset;
 105		if (file->f_pos >= 2) {
 106			struct list_head *p;
 107			struct dentry *cursor = file->private_data;
 108			loff_t n = file->f_pos - 2;
 109
 110			spin_lock(&dentry->d_lock);
 111			/* d_lock not required for cursor */
 112			list_del(&cursor->d_child);
 113			p = dentry->d_subdirs.next;
 114			while (n && p != &dentry->d_subdirs) {
 115				struct dentry *next;
 116				next = list_entry(p, struct dentry, d_child);
 117				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 118				if (simple_positive(next))
 119					n--;
 120				spin_unlock(&next->d_lock);
 121				p = p->next;
 122			}
 123			list_add_tail(&cursor->d_child, p);
 124			spin_unlock(&dentry->d_lock);
 125		}
 126	}
 127	inode_unlock(d_inode(dentry));
 128	return offset;
 129}
 130EXPORT_SYMBOL(dcache_dir_lseek);
 131
 132/* Relationship between i_mode and the DT_xxx types */
 133static inline unsigned char dt_type(struct inode *inode)
 134{
 135	return (inode->i_mode >> 12) & 15;
 136}
 137
 138/*
 139 * Directory is locked and all positive dentries in it are safe, since
 140 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 141 * both impossible due to the lock on directory.
 142 */
 143
 144int dcache_readdir(struct file *file, struct dir_context *ctx)
 145{
 146	struct dentry *dentry = file->f_path.dentry;
 147	struct dentry *cursor = file->private_data;
 148	struct list_head *p, *q = &cursor->d_child;
 
 149
 150	if (!dir_emit_dots(file, ctx))
 151		return 0;
 152	spin_lock(&dentry->d_lock);
 153	if (ctx->pos == 2)
 154		list_move(q, &dentry->d_subdirs);
 155
 156	for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
 157		struct dentry *next = list_entry(p, struct dentry, d_child);
 158		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 159		if (!simple_positive(next)) {
 160			spin_unlock(&next->d_lock);
 161			continue;
 162		}
 163
 164		spin_unlock(&next->d_lock);
 165		spin_unlock(&dentry->d_lock);
 166		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 167			      d_inode(next)->i_ino, dt_type(d_inode(next))))
 168			return 0;
 169		spin_lock(&dentry->d_lock);
 170		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 171		/* next is still alive */
 172		list_move(q, p);
 173		spin_unlock(&next->d_lock);
 174		p = q;
 175		ctx->pos++;
 
 176	}
 
 
 
 
 177	spin_unlock(&dentry->d_lock);
 
 
 178	return 0;
 179}
 180EXPORT_SYMBOL(dcache_readdir);
 181
 182ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 183{
 184	return -EISDIR;
 185}
 186EXPORT_SYMBOL(generic_read_dir);
 187
 188const struct file_operations simple_dir_operations = {
 189	.open		= dcache_dir_open,
 190	.release	= dcache_dir_close,
 191	.llseek		= dcache_dir_lseek,
 192	.read		= generic_read_dir,
 193	.iterate	= dcache_readdir,
 194	.fsync		= noop_fsync,
 195};
 196EXPORT_SYMBOL(simple_dir_operations);
 197
 198const struct inode_operations simple_dir_inode_operations = {
 199	.lookup		= simple_lookup,
 200};
 201EXPORT_SYMBOL(simple_dir_inode_operations);
 202
 203static const struct super_operations simple_super_operations = {
 204	.statfs		= simple_statfs,
 
 205};
 206
 207/*
 208 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 209 * will never be mountable)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210 */
 211struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
 212	const struct super_operations *ops,
 213	const struct dentry_operations *dops, unsigned long magic)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 214{
 215	struct super_block *s;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216	struct dentry *dentry;
 217	struct inode *root;
 218	struct qstr d_name = QSTR_INIT(name, strlen(name));
 219
 220	s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
 221	if (IS_ERR(s))
 222		return ERR_CAST(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223
 224	s->s_maxbytes = MAX_LFS_FILESIZE;
 225	s->s_blocksize = PAGE_SIZE;
 226	s->s_blocksize_bits = PAGE_SHIFT;
 227	s->s_magic = magic;
 228	s->s_op = ops ? ops : &simple_super_operations;
 
 229	s->s_time_gran = 1;
 230	root = new_inode(s);
 231	if (!root)
 232		goto Enomem;
 
 233	/*
 234	 * since this is the first inode, make it number 1. New inodes created
 235	 * after this must take care not to collide with it (by passing
 236	 * max_reserved of 1 to iunique).
 237	 */
 238	root->i_ino = 1;
 239	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 240	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
 241	dentry = __d_alloc(s, &d_name);
 242	if (!dentry) {
 243		iput(root);
 244		goto Enomem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 245	}
 246	d_instantiate(dentry, root);
 247	s->s_root = dentry;
 248	s->s_d_op = dops;
 249	s->s_flags |= MS_ACTIVE;
 250	return dget(s->s_root);
 251
 252Enomem:
 253	deactivate_locked_super(s);
 254	return ERR_PTR(-ENOMEM);
 255}
 256EXPORT_SYMBOL(mount_pseudo);
 257
 258int simple_open(struct inode *inode, struct file *file)
 259{
 260	if (inode->i_private)
 261		file->private_data = inode->i_private;
 262	return 0;
 263}
 264EXPORT_SYMBOL(simple_open);
 265
 266int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 267{
 268	struct inode *inode = d_inode(old_dentry);
 269
 270	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 
 271	inc_nlink(inode);
 272	ihold(inode);
 273	dget(dentry);
 274	d_instantiate(dentry, inode);
 275	return 0;
 276}
 277EXPORT_SYMBOL(simple_link);
 278
 279int simple_empty(struct dentry *dentry)
 280{
 281	struct dentry *child;
 282	int ret = 0;
 283
 284	spin_lock(&dentry->d_lock);
 285	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 286		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 287		if (simple_positive(child)) {
 288			spin_unlock(&child->d_lock);
 289			goto out;
 290		}
 291		spin_unlock(&child->d_lock);
 292	}
 293	ret = 1;
 294out:
 295	spin_unlock(&dentry->d_lock);
 296	return ret;
 297}
 298EXPORT_SYMBOL(simple_empty);
 299
 300int simple_unlink(struct inode *dir, struct dentry *dentry)
 301{
 302	struct inode *inode = d_inode(dentry);
 303
 304	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 
 305	drop_nlink(inode);
 306	dput(dentry);
 307	return 0;
 308}
 309EXPORT_SYMBOL(simple_unlink);
 310
 311int simple_rmdir(struct inode *dir, struct dentry *dentry)
 312{
 313	if (!simple_empty(dentry))
 314		return -ENOTEMPTY;
 315
 316	drop_nlink(d_inode(dentry));
 317	simple_unlink(dir, dentry);
 318	drop_nlink(dir);
 319	return 0;
 320}
 321EXPORT_SYMBOL(simple_rmdir);
 322
 323int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 324		struct inode *new_dir, struct dentry *new_dentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325{
 326	struct inode *inode = d_inode(old_dentry);
 327	int they_are_dirs = d_is_dir(old_dentry);
 328
 
 
 
 
 
 
 329	if (!simple_empty(new_dentry))
 330		return -ENOTEMPTY;
 331
 332	if (d_really_is_positive(new_dentry)) {
 333		simple_unlink(new_dir, new_dentry);
 334		if (they_are_dirs) {
 335			drop_nlink(d_inode(new_dentry));
 336			drop_nlink(old_dir);
 337		}
 338	} else if (they_are_dirs) {
 339		drop_nlink(old_dir);
 340		inc_nlink(new_dir);
 341	}
 342
 343	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 344		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
 345
 346	return 0;
 347}
 348EXPORT_SYMBOL(simple_rename);
 349
 350/**
 351 * simple_setattr - setattr for simple filesystem
 
 352 * @dentry: dentry
 353 * @iattr: iattr structure
 354 *
 355 * Returns 0 on success, -error on failure.
 356 *
 357 * simple_setattr is a simple ->setattr implementation without a proper
 358 * implementation of size changes.
 359 *
 360 * It can either be used for in-memory filesystems or special files
 361 * on simple regular filesystems.  Anything that needs to change on-disk
 362 * or wire state on size changes needs its own setattr method.
 363 */
 364int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 
 365{
 366	struct inode *inode = d_inode(dentry);
 367	int error;
 368
 369	error = inode_change_ok(inode, iattr);
 370	if (error)
 371		return error;
 372
 373	if (iattr->ia_valid & ATTR_SIZE)
 374		truncate_setsize(inode, iattr->ia_size);
 375	setattr_copy(inode, iattr);
 376	mark_inode_dirty(inode);
 377	return 0;
 378}
 379EXPORT_SYMBOL(simple_setattr);
 380
 381int simple_readpage(struct file *file, struct page *page)
 382{
 383	clear_highpage(page);
 384	flush_dcache_page(page);
 385	SetPageUptodate(page);
 386	unlock_page(page);
 387	return 0;
 388}
 389EXPORT_SYMBOL(simple_readpage);
 390
 391int simple_write_begin(struct file *file, struct address_space *mapping,
 392			loff_t pos, unsigned len, unsigned flags,
 393			struct page **pagep, void **fsdata)
 394{
 395	struct page *page;
 396	pgoff_t index;
 397
 398	index = pos >> PAGE_SHIFT;
 399
 400	page = grab_cache_page_write_begin(mapping, index, flags);
 401	if (!page)
 402		return -ENOMEM;
 
 403
 404	*pagep = page;
 405
 406	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 407		unsigned from = pos & (PAGE_SIZE - 1);
 408
 409		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 
 410	}
 411	return 0;
 412}
 413EXPORT_SYMBOL(simple_write_begin);
 414
 415/**
 416 * simple_write_end - .write_end helper for non-block-device FSes
 417 * @available: See .write_end of address_space_operations
 418 * @file: 		"
 419 * @mapping: 		"
 420 * @pos: 		"
 421 * @len: 		"
 422 * @copied: 		"
 423 * @page: 		"
 424 * @fsdata: 		"
 425 *
 426 * simple_write_end does the minimum needed for updating a page after writing is
 427 * done. It has the same API signature as the .write_end of
 428 * address_space_operations vector. So it can just be set onto .write_end for
 429 * FSes that don't need any other processing. i_mutex is assumed to be held.
 430 * Block based filesystems should use generic_write_end().
 431 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 432 * is not called, so a filesystem that actually does store data in .write_inode
 433 * should extend on what's done here with a call to mark_inode_dirty() in the
 434 * case that i_size has changed.
 
 
 435 */
 436int simple_write_end(struct file *file, struct address_space *mapping,
 437			loff_t pos, unsigned len, unsigned copied,
 438			struct page *page, void *fsdata)
 439{
 440	struct inode *inode = page->mapping->host;
 
 441	loff_t last_pos = pos + copied;
 442
 443	/* zero the stale part of the page if we did a short copy */
 444	if (copied < len) {
 445		unsigned from = pos & (PAGE_SIZE - 1);
 
 446
 447		zero_user(page, from + copied, len - copied);
 
 
 448	}
 449
 450	if (!PageUptodate(page))
 451		SetPageUptodate(page);
 452	/*
 453	 * No need to use i_size_read() here, the i_size
 454	 * cannot change under us because we hold the i_mutex.
 455	 */
 456	if (last_pos > inode->i_size)
 457		i_size_write(inode, last_pos);
 458
 459	set_page_dirty(page);
 460	unlock_page(page);
 461	put_page(page);
 462
 463	return copied;
 464}
 465EXPORT_SYMBOL(simple_write_end);
 
 
 
 
 
 
 
 
 
 
 466
 467/*
 468 * the inodes created here are not hashed. If you use iunique to generate
 469 * unique inode values later for this filesystem, then you must take care
 470 * to pass it an appropriate max_reserved value to avoid collisions.
 471 */
 472int simple_fill_super(struct super_block *s, unsigned long magic,
 473		      struct tree_descr *files)
 474{
 475	struct inode *inode;
 476	struct dentry *root;
 477	struct dentry *dentry;
 478	int i;
 479
 480	s->s_blocksize = PAGE_SIZE;
 481	s->s_blocksize_bits = PAGE_SHIFT;
 482	s->s_magic = magic;
 483	s->s_op = &simple_super_operations;
 484	s->s_time_gran = 1;
 485
 486	inode = new_inode(s);
 487	if (!inode)
 488		return -ENOMEM;
 489	/*
 490	 * because the root inode is 1, the files array must not contain an
 491	 * entry at index 1
 492	 */
 493	inode->i_ino = 1;
 494	inode->i_mode = S_IFDIR | 0755;
 495	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 496	inode->i_op = &simple_dir_inode_operations;
 497	inode->i_fop = &simple_dir_operations;
 498	set_nlink(inode, 2);
 499	root = d_make_root(inode);
 500	if (!root)
 501		return -ENOMEM;
 502	for (i = 0; !files->name || files->name[0]; i++, files++) {
 503		if (!files->name)
 504			continue;
 505
 506		/* warn if it tries to conflict with the root inode */
 507		if (unlikely(i == 1))
 508			printk(KERN_WARNING "%s: %s passed in a files array"
 509				"with an index of 1!\n", __func__,
 510				s->s_type->name);
 511
 512		dentry = d_alloc_name(root, files->name);
 513		if (!dentry)
 514			goto out;
 515		inode = new_inode(s);
 516		if (!inode) {
 517			dput(dentry);
 518			goto out;
 519		}
 520		inode->i_mode = S_IFREG | files->mode;
 521		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 522		inode->i_fop = files->ops;
 523		inode->i_ino = i;
 524		d_add(dentry, inode);
 525	}
 526	s->s_root = root;
 527	return 0;
 528out:
 529	d_genocide(root);
 530	shrink_dcache_parent(root);
 531	dput(root);
 532	return -ENOMEM;
 533}
 534EXPORT_SYMBOL(simple_fill_super);
 535
 536static DEFINE_SPINLOCK(pin_fs_lock);
 537
 538int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 539{
 540	struct vfsmount *mnt = NULL;
 541	spin_lock(&pin_fs_lock);
 542	if (unlikely(!*mount)) {
 543		spin_unlock(&pin_fs_lock);
 544		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
 545		if (IS_ERR(mnt))
 546			return PTR_ERR(mnt);
 547		spin_lock(&pin_fs_lock);
 548		if (!*mount)
 549			*mount = mnt;
 550	}
 551	mntget(*mount);
 552	++*count;
 553	spin_unlock(&pin_fs_lock);
 554	mntput(mnt);
 555	return 0;
 556}
 557EXPORT_SYMBOL(simple_pin_fs);
 558
 559void simple_release_fs(struct vfsmount **mount, int *count)
 560{
 561	struct vfsmount *mnt;
 562	spin_lock(&pin_fs_lock);
 563	mnt = *mount;
 564	if (!--*count)
 565		*mount = NULL;
 566	spin_unlock(&pin_fs_lock);
 567	mntput(mnt);
 568}
 569EXPORT_SYMBOL(simple_release_fs);
 570
 571/**
 572 * simple_read_from_buffer - copy data from the buffer to user space
 573 * @to: the user space buffer to read to
 574 * @count: the maximum number of bytes to read
 575 * @ppos: the current position in the buffer
 576 * @from: the buffer to read from
 577 * @available: the size of the buffer
 578 *
 579 * The simple_read_from_buffer() function reads up to @count bytes from the
 580 * buffer @from at offset @ppos into the user space address starting at @to.
 581 *
 582 * On success, the number of bytes read is returned and the offset @ppos is
 583 * advanced by this number, or negative value is returned on error.
 584 **/
 585ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 586				const void *from, size_t available)
 587{
 588	loff_t pos = *ppos;
 589	size_t ret;
 590
 591	if (pos < 0)
 592		return -EINVAL;
 593	if (pos >= available || !count)
 594		return 0;
 595	if (count > available - pos)
 596		count = available - pos;
 597	ret = copy_to_user(to, from + pos, count);
 598	if (ret == count)
 599		return -EFAULT;
 600	count -= ret;
 601	*ppos = pos + count;
 602	return count;
 603}
 604EXPORT_SYMBOL(simple_read_from_buffer);
 605
 606/**
 607 * simple_write_to_buffer - copy data from user space to the buffer
 608 * @to: the buffer to write to
 609 * @available: the size of the buffer
 610 * @ppos: the current position in the buffer
 611 * @from: the user space buffer to read from
 612 * @count: the maximum number of bytes to read
 613 *
 614 * The simple_write_to_buffer() function reads up to @count bytes from the user
 615 * space address starting at @from into the buffer @to at offset @ppos.
 616 *
 617 * On success, the number of bytes written is returned and the offset @ppos is
 618 * advanced by this number, or negative value is returned on error.
 619 **/
 620ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 621		const void __user *from, size_t count)
 622{
 623	loff_t pos = *ppos;
 624	size_t res;
 625
 626	if (pos < 0)
 627		return -EINVAL;
 628	if (pos >= available || !count)
 629		return 0;
 630	if (count > available - pos)
 631		count = available - pos;
 632	res = copy_from_user(to + pos, from, count);
 633	if (res == count)
 634		return -EFAULT;
 635	count -= res;
 636	*ppos = pos + count;
 637	return count;
 638}
 639EXPORT_SYMBOL(simple_write_to_buffer);
 640
 641/**
 642 * memory_read_from_buffer - copy data from the buffer
 643 * @to: the kernel space buffer to read to
 644 * @count: the maximum number of bytes to read
 645 * @ppos: the current position in the buffer
 646 * @from: the buffer to read from
 647 * @available: the size of the buffer
 648 *
 649 * The memory_read_from_buffer() function reads up to @count bytes from the
 650 * buffer @from at offset @ppos into the kernel space address starting at @to.
 651 *
 652 * On success, the number of bytes read is returned and the offset @ppos is
 653 * advanced by this number, or negative value is returned on error.
 654 **/
 655ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 656				const void *from, size_t available)
 657{
 658	loff_t pos = *ppos;
 659
 660	if (pos < 0)
 661		return -EINVAL;
 662	if (pos >= available)
 663		return 0;
 664	if (count > available - pos)
 665		count = available - pos;
 666	memcpy(to, from + pos, count);
 667	*ppos = pos + count;
 668
 669	return count;
 670}
 671EXPORT_SYMBOL(memory_read_from_buffer);
 672
 673/*
 674 * Transaction based IO.
 675 * The file expects a single write which triggers the transaction, and then
 676 * possibly a read which collects the result - which is stored in a
 677 * file-local buffer.
 678 */
 679
 680void simple_transaction_set(struct file *file, size_t n)
 681{
 682	struct simple_transaction_argresp *ar = file->private_data;
 683
 684	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 685
 686	/*
 687	 * The barrier ensures that ar->size will really remain zero until
 688	 * ar->data is ready for reading.
 689	 */
 690	smp_mb();
 691	ar->size = n;
 692}
 693EXPORT_SYMBOL(simple_transaction_set);
 694
 695char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 696{
 697	struct simple_transaction_argresp *ar;
 698	static DEFINE_SPINLOCK(simple_transaction_lock);
 699
 700	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 701		return ERR_PTR(-EFBIG);
 702
 703	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 704	if (!ar)
 705		return ERR_PTR(-ENOMEM);
 706
 707	spin_lock(&simple_transaction_lock);
 708
 709	/* only one write allowed per open */
 710	if (file->private_data) {
 711		spin_unlock(&simple_transaction_lock);
 712		free_page((unsigned long)ar);
 713		return ERR_PTR(-EBUSY);
 714	}
 715
 716	file->private_data = ar;
 717
 718	spin_unlock(&simple_transaction_lock);
 719
 720	if (copy_from_user(ar->data, buf, size))
 721		return ERR_PTR(-EFAULT);
 722
 723	return ar->data;
 724}
 725EXPORT_SYMBOL(simple_transaction_get);
 726
 727ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 728{
 729	struct simple_transaction_argresp *ar = file->private_data;
 730
 731	if (!ar)
 732		return 0;
 733	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 734}
 735EXPORT_SYMBOL(simple_transaction_read);
 736
 737int simple_transaction_release(struct inode *inode, struct file *file)
 738{
 739	free_page((unsigned long)file->private_data);
 740	return 0;
 741}
 742EXPORT_SYMBOL(simple_transaction_release);
 743
 744/* Simple attribute files */
 745
 746struct simple_attr {
 747	int (*get)(void *, u64 *);
 748	int (*set)(void *, u64);
 749	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 750	char set_buf[24];
 751	void *data;
 752	const char *fmt;	/* format for read operation */
 753	struct mutex mutex;	/* protects access to these buffers */
 754};
 755
 756/* simple_attr_open is called by an actual attribute open file operation
 757 * to set the attribute specific access operations. */
 758int simple_attr_open(struct inode *inode, struct file *file,
 759		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 760		     const char *fmt)
 761{
 762	struct simple_attr *attr;
 763
 764	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 765	if (!attr)
 766		return -ENOMEM;
 767
 768	attr->get = get;
 769	attr->set = set;
 770	attr->data = inode->i_private;
 771	attr->fmt = fmt;
 772	mutex_init(&attr->mutex);
 773
 774	file->private_data = attr;
 775
 776	return nonseekable_open(inode, file);
 777}
 778EXPORT_SYMBOL_GPL(simple_attr_open);
 779
 780int simple_attr_release(struct inode *inode, struct file *file)
 781{
 782	kfree(file->private_data);
 783	return 0;
 784}
 785EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
 786
 787/* read from the buffer that is filled with the get function */
 788ssize_t simple_attr_read(struct file *file, char __user *buf,
 789			 size_t len, loff_t *ppos)
 790{
 791	struct simple_attr *attr;
 792	size_t size;
 793	ssize_t ret;
 794
 795	attr = file->private_data;
 796
 797	if (!attr->get)
 798		return -EACCES;
 799
 800	ret = mutex_lock_interruptible(&attr->mutex);
 801	if (ret)
 802		return ret;
 803
 804	if (*ppos) {		/* continued read */
 
 805		size = strlen(attr->get_buf);
 806	} else {		/* first read */
 
 807		u64 val;
 808		ret = attr->get(attr->data, &val);
 809		if (ret)
 810			goto out;
 811
 812		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 813				 attr->fmt, (unsigned long long)val);
 814	}
 815
 816	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 817out:
 818	mutex_unlock(&attr->mutex);
 819	return ret;
 820}
 821EXPORT_SYMBOL_GPL(simple_attr_read);
 822
 823/* interpret the buffer as a number to call the set function with */
 824ssize_t simple_attr_write(struct file *file, const char __user *buf,
 825			  size_t len, loff_t *ppos)
 826{
 827	struct simple_attr *attr;
 828	u64 val;
 829	size_t size;
 830	ssize_t ret;
 831
 832	attr = file->private_data;
 833	if (!attr->set)
 834		return -EACCES;
 835
 836	ret = mutex_lock_interruptible(&attr->mutex);
 837	if (ret)
 838		return ret;
 839
 840	ret = -EFAULT;
 841	size = min(sizeof(attr->set_buf) - 1, len);
 842	if (copy_from_user(attr->set_buf, buf, size))
 843		goto out;
 844
 845	attr->set_buf[size] = '\0';
 846	val = simple_strtoll(attr->set_buf, NULL, 0);
 
 
 
 
 
 847	ret = attr->set(attr->data, val);
 848	if (ret == 0)
 849		ret = len; /* on success, claim we got the whole input */
 850out:
 851	mutex_unlock(&attr->mutex);
 852	return ret;
 853}
 
 
 
 
 
 
 854EXPORT_SYMBOL_GPL(simple_attr_write);
 855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856/**
 857 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 858 * @sb:		filesystem to do the file handle conversion on
 859 * @fid:	file handle to convert
 860 * @fh_len:	length of the file handle in bytes
 861 * @fh_type:	type of file handle
 862 * @get_inode:	filesystem callback to retrieve inode
 863 *
 864 * This function decodes @fid as long as it has one of the well-known
 865 * Linux filehandle types and calls @get_inode on it to retrieve the
 866 * inode for the object specified in the file handle.
 867 */
 868struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 869		int fh_len, int fh_type, struct inode *(*get_inode)
 870			(struct super_block *sb, u64 ino, u32 gen))
 871{
 872	struct inode *inode = NULL;
 873
 874	if (fh_len < 2)
 875		return NULL;
 876
 877	switch (fh_type) {
 878	case FILEID_INO32_GEN:
 879	case FILEID_INO32_GEN_PARENT:
 880		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 881		break;
 882	}
 883
 884	return d_obtain_alias(inode);
 885}
 886EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 887
 888/**
 889 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 890 * @sb:		filesystem to do the file handle conversion on
 891 * @fid:	file handle to convert
 892 * @fh_len:	length of the file handle in bytes
 893 * @fh_type:	type of file handle
 894 * @get_inode:	filesystem callback to retrieve inode
 895 *
 896 * This function decodes @fid as long as it has one of the well-known
 897 * Linux filehandle types and calls @get_inode on it to retrieve the
 898 * inode for the _parent_ object specified in the file handle if it
 899 * is specified in the file handle, or NULL otherwise.
 900 */
 901struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 902		int fh_len, int fh_type, struct inode *(*get_inode)
 903			(struct super_block *sb, u64 ino, u32 gen))
 904{
 905	struct inode *inode = NULL;
 906
 907	if (fh_len <= 2)
 908		return NULL;
 909
 910	switch (fh_type) {
 911	case FILEID_INO32_GEN_PARENT:
 912		inode = get_inode(sb, fid->i32.parent_ino,
 913				  (fh_len > 3 ? fid->i32.parent_gen : 0));
 914		break;
 915	}
 916
 917	return d_obtain_alias(inode);
 918}
 919EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 920
 921/**
 922 * __generic_file_fsync - generic fsync implementation for simple filesystems
 923 *
 924 * @file:	file to synchronize
 925 * @start:	start offset in bytes
 926 * @end:	end offset in bytes (inclusive)
 927 * @datasync:	only synchronize essential metadata if true
 928 *
 929 * This is a generic implementation of the fsync method for simple
 930 * filesystems which track all non-inode metadata in the buffers list
 931 * hanging off the address_space structure.
 932 */
 933int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 934				 int datasync)
 935{
 936	struct inode *inode = file->f_mapping->host;
 937	int err;
 938	int ret;
 939
 940	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
 941	if (err)
 942		return err;
 943
 944	inode_lock(inode);
 945	ret = sync_mapping_buffers(inode->i_mapping);
 946	if (!(inode->i_state & I_DIRTY_ALL))
 947		goto out;
 948	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 949		goto out;
 950
 951	err = sync_inode_metadata(inode, 1);
 952	if (ret == 0)
 953		ret = err;
 954
 955out:
 956	inode_unlock(inode);
 
 
 
 
 957	return ret;
 958}
 959EXPORT_SYMBOL(__generic_file_fsync);
 960
 961/**
 962 * generic_file_fsync - generic fsync implementation for simple filesystems
 963 *			with flush
 964 * @file:	file to synchronize
 965 * @start:	start offset in bytes
 966 * @end:	end offset in bytes (inclusive)
 967 * @datasync:	only synchronize essential metadata if true
 968 *
 969 */
 970
 971int generic_file_fsync(struct file *file, loff_t start, loff_t end,
 972		       int datasync)
 973{
 974	struct inode *inode = file->f_mapping->host;
 975	int err;
 976
 977	err = __generic_file_fsync(file, start, end, datasync);
 978	if (err)
 979		return err;
 980	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
 981}
 982EXPORT_SYMBOL(generic_file_fsync);
 983
 984/**
 985 * generic_check_addressable - Check addressability of file system
 986 * @blocksize_bits:	log of file system block size
 987 * @num_blocks:		number of blocks in file system
 988 *
 989 * Determine whether a file system with @num_blocks blocks (and a
 990 * block size of 2**@blocksize_bits) is addressable by the sector_t
 991 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
 992 */
 993int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
 994{
 995	u64 last_fs_block = num_blocks - 1;
 996	u64 last_fs_page =
 997		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
 998
 999	if (unlikely(num_blocks == 0))
1000		return 0;
1001
1002	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1003		return -EINVAL;
1004
1005	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1006	    (last_fs_page > (pgoff_t)(~0ULL))) {
1007		return -EFBIG;
1008	}
1009	return 0;
1010}
1011EXPORT_SYMBOL(generic_check_addressable);
1012
1013/*
1014 * No-op implementation of ->fsync for in-memory filesystems.
1015 */
1016int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1017{
1018	return 0;
1019}
1020EXPORT_SYMBOL(noop_fsync);
1021
 
 
 
 
 
 
 
 
 
 
 
 
1022/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1023void kfree_link(void *p)
1024{
1025	kfree(p);
1026}
1027EXPORT_SYMBOL(kfree_link);
1028
1029/*
1030 * nop .set_page_dirty method so that people can use .page_mkwrite on
1031 * anon inodes.
1032 */
1033static int anon_set_page_dirty(struct page *page)
1034{
1035	return 0;
1036};
1037
1038/*
1039 * A single inode exists for all anon_inode files. Contrary to pipes,
1040 * anon_inode inodes have no associated per-instance data, so we need
1041 * only allocate one of them.
1042 */
1043struct inode *alloc_anon_inode(struct super_block *s)
1044{
1045	static const struct address_space_operations anon_aops = {
1046		.set_page_dirty = anon_set_page_dirty,
1047	};
1048	struct inode *inode = new_inode_pseudo(s);
1049
1050	if (!inode)
1051		return ERR_PTR(-ENOMEM);
1052
1053	inode->i_ino = get_next_ino();
1054	inode->i_mapping->a_ops = &anon_aops;
1055
1056	/*
1057	 * Mark the inode dirty from the very beginning,
1058	 * that way it will never be moved to the dirty
1059	 * list because mark_inode_dirty() will think
1060	 * that it already _is_ on the dirty list.
1061	 */
1062	inode->i_state = I_DIRTY;
1063	inode->i_mode = S_IRUSR | S_IWUSR;
1064	inode->i_uid = current_fsuid();
1065	inode->i_gid = current_fsgid();
1066	inode->i_flags |= S_PRIVATE;
1067	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1068	return inode;
1069}
1070EXPORT_SYMBOL(alloc_anon_inode);
1071
1072/**
1073 * simple_nosetlease - generic helper for prohibiting leases
1074 * @filp: file pointer
1075 * @arg: type of lease to obtain
1076 * @flp: new lease supplied for insertion
1077 * @priv: private data for lm_setup operation
1078 *
1079 * Generic helper for filesystems that do not wish to allow leases to be set.
1080 * All arguments are ignored and it just returns -EINVAL.
1081 */
1082int
1083simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1084		  void **priv)
1085{
1086	return -EINVAL;
1087}
1088EXPORT_SYMBOL(simple_nosetlease);
1089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1090const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1091			    struct delayed_call *done)
1092{
1093	return inode->i_link;
1094}
1095EXPORT_SYMBOL(simple_get_link);
1096
1097const struct inode_operations simple_symlink_inode_operations = {
1098	.get_link = simple_get_link,
1099	.readlink = generic_readlink
1100};
1101EXPORT_SYMBOL(simple_symlink_inode_operations);
1102
1103/*
1104 * Operations for a permanently empty directory.
1105 */
1106static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1107{
1108	return ERR_PTR(-ENOENT);
1109}
1110
1111static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1112				 struct kstat *stat)
 
1113{
1114	struct inode *inode = d_inode(dentry);
1115	generic_fillattr(inode, stat);
1116	return 0;
1117}
1118
1119static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
 
1120{
1121	return -EPERM;
1122}
1123
1124static int empty_dir_setxattr(struct dentry *dentry, const char *name,
1125			      const void *value, size_t size, int flags)
1126{
1127	return -EOPNOTSUPP;
1128}
1129
1130static ssize_t empty_dir_getxattr(struct dentry *dentry, const char *name,
1131				  void *value, size_t size)
1132{
1133	return -EOPNOTSUPP;
1134}
1135
1136static int empty_dir_removexattr(struct dentry *dentry, const char *name)
1137{
1138	return -EOPNOTSUPP;
1139}
1140
1141static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1142{
1143	return -EOPNOTSUPP;
1144}
1145
1146static const struct inode_operations empty_dir_inode_operations = {
1147	.lookup		= empty_dir_lookup,
1148	.permission	= generic_permission,
1149	.setattr	= empty_dir_setattr,
1150	.getattr	= empty_dir_getattr,
1151	.setxattr	= empty_dir_setxattr,
1152	.getxattr	= empty_dir_getxattr,
1153	.removexattr	= empty_dir_removexattr,
1154	.listxattr	= empty_dir_listxattr,
1155};
1156
1157static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1158{
1159	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1160	return generic_file_llseek_size(file, offset, whence, 2, 2);
1161}
1162
1163static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1164{
1165	dir_emit_dots(file, ctx);
1166	return 0;
1167}
1168
1169static const struct file_operations empty_dir_operations = {
1170	.llseek		= empty_dir_llseek,
1171	.read		= generic_read_dir,
1172	.iterate	= empty_dir_readdir,
1173	.fsync		= noop_fsync,
1174};
1175
1176
1177void make_empty_dir_inode(struct inode *inode)
1178{
1179	set_nlink(inode, 2);
1180	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1181	inode->i_uid = GLOBAL_ROOT_UID;
1182	inode->i_gid = GLOBAL_ROOT_GID;
1183	inode->i_rdev = 0;
1184	inode->i_size = 0;
1185	inode->i_blkbits = PAGE_SHIFT;
1186	inode->i_blocks = 0;
1187
1188	inode->i_op = &empty_dir_inode_operations;
 
1189	inode->i_fop = &empty_dir_operations;
1190}
1191
1192bool is_empty_dir_inode(struct inode *inode)
1193{
1194	return (inode->i_fop == &empty_dir_operations) &&
1195		(inode->i_op == &empty_dir_inode_operations);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	fs/libfs.c
   4 *	Library for filesystems writers.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/export.h>
   9#include <linux/pagemap.h>
  10#include <linux/slab.h>
  11#include <linux/cred.h>
  12#include <linux/mount.h>
  13#include <linux/vfs.h>
  14#include <linux/quotaops.h>
  15#include <linux/mutex.h>
  16#include <linux/namei.h>
  17#include <linux/exportfs.h>
  18#include <linux/iversion.h>
  19#include <linux/writeback.h>
  20#include <linux/buffer_head.h> /* sync_mapping_buffers */
  21#include <linux/fs_context.h>
  22#include <linux/pseudo_fs.h>
  23#include <linux/fsnotify.h>
  24#include <linux/unicode.h>
  25#include <linux/fscrypt.h>
  26#include <linux/pidfs.h>
  27
  28#include <linux/uaccess.h>
  29
  30#include "internal.h"
  31
  32int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
  33		   struct kstat *stat, u32 request_mask,
  34		   unsigned int query_flags)
  35{
  36	struct inode *inode = d_inode(path->dentry);
  37	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
  38	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  39	return 0;
  40}
  41EXPORT_SYMBOL(simple_getattr);
  42
  43int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  44{
  45	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
  46
  47	buf->f_fsid = u64_to_fsid(id);
  48	buf->f_type = dentry->d_sb->s_magic;
  49	buf->f_bsize = PAGE_SIZE;
  50	buf->f_namelen = NAME_MAX;
  51	return 0;
  52}
  53EXPORT_SYMBOL(simple_statfs);
  54
  55/*
  56 * Retaining negative dentries for an in-memory filesystem just wastes
  57 * memory and lookup time: arrange for them to be deleted immediately.
  58 */
  59int always_delete_dentry(const struct dentry *dentry)
  60{
  61	return 1;
  62}
  63EXPORT_SYMBOL(always_delete_dentry);
  64
  65const struct dentry_operations simple_dentry_operations = {
  66	.d_delete = always_delete_dentry,
  67};
  68EXPORT_SYMBOL(simple_dentry_operations);
  69
  70/*
  71 * Lookup the data. This is trivial - if the dentry didn't already
  72 * exist, we know it is negative.  Set d_op to delete negative dentries.
  73 */
  74struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  75{
  76	if (dentry->d_name.len > NAME_MAX)
  77		return ERR_PTR(-ENAMETOOLONG);
  78	if (!dentry->d_sb->s_d_op)
  79		d_set_d_op(dentry, &simple_dentry_operations);
  80	d_add(dentry, NULL);
  81	return NULL;
  82}
  83EXPORT_SYMBOL(simple_lookup);
  84
  85int dcache_dir_open(struct inode *inode, struct file *file)
  86{
  87	file->private_data = d_alloc_cursor(file->f_path.dentry);
 
 
  88
  89	return file->private_data ? 0 : -ENOMEM;
  90}
  91EXPORT_SYMBOL(dcache_dir_open);
  92
  93int dcache_dir_close(struct inode *inode, struct file *file)
  94{
  95	dput(file->private_data);
  96	return 0;
  97}
  98EXPORT_SYMBOL(dcache_dir_close);
  99
 100/* parent is locked at least shared */
 101/*
 102 * Returns an element of siblings' list.
 103 * We are looking for <count>th positive after <p>; if
 104 * found, dentry is grabbed and returned to caller.
 105 * If no such element exists, NULL is returned.
 106 */
 107static struct dentry *scan_positives(struct dentry *cursor,
 108					struct hlist_node **p,
 109					loff_t count,
 110					struct dentry *last)
 111{
 112	struct dentry *dentry = cursor->d_parent, *found = NULL;
 113
 114	spin_lock(&dentry->d_lock);
 115	while (*p) {
 116		struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
 117		p = &d->d_sib.next;
 118		// we must at least skip cursors, to avoid livelocks
 119		if (d->d_flags & DCACHE_DENTRY_CURSOR)
 120			continue;
 121		if (simple_positive(d) && !--count) {
 122			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 123			if (simple_positive(d))
 124				found = dget_dlock(d);
 125			spin_unlock(&d->d_lock);
 126			if (likely(found))
 127				break;
 128			count = 1;
 129		}
 130		if (need_resched()) {
 131			if (!hlist_unhashed(&cursor->d_sib))
 132				__hlist_del(&cursor->d_sib);
 133			hlist_add_behind(&cursor->d_sib, &d->d_sib);
 134			p = &cursor->d_sib.next;
 135			spin_unlock(&dentry->d_lock);
 136			cond_resched();
 137			spin_lock(&dentry->d_lock);
 138		}
 139	}
 140	spin_unlock(&dentry->d_lock);
 141	dput(last);
 142	return found;
 143}
 144
 145loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 146{
 147	struct dentry *dentry = file->f_path.dentry;
 
 148	switch (whence) {
 149		case 1:
 150			offset += file->f_pos;
 151			fallthrough;
 152		case 0:
 153			if (offset >= 0)
 154				break;
 155			fallthrough;
 156		default:
 
 157			return -EINVAL;
 158	}
 159	if (offset != file->f_pos) {
 160		struct dentry *cursor = file->private_data;
 161		struct dentry *to = NULL;
 162
 163		inode_lock_shared(dentry->d_inode);
 164
 165		if (offset > 2)
 166			to = scan_positives(cursor, &dentry->d_children.first,
 167					    offset - 2, NULL);
 168		spin_lock(&dentry->d_lock);
 169		hlist_del_init(&cursor->d_sib);
 170		if (to)
 171			hlist_add_behind(&cursor->d_sib, &to->d_sib);
 172		spin_unlock(&dentry->d_lock);
 173		dput(to);
 174
 175		file->f_pos = offset;
 
 
 
 
 176
 177		inode_unlock_shared(dentry->d_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 178	}
 
 179	return offset;
 180}
 181EXPORT_SYMBOL(dcache_dir_lseek);
 182
 
 
 
 
 
 
 183/*
 184 * Directory is locked and all positive dentries in it are safe, since
 185 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 186 * both impossible due to the lock on directory.
 187 */
 188
 189int dcache_readdir(struct file *file, struct dir_context *ctx)
 190{
 191	struct dentry *dentry = file->f_path.dentry;
 192	struct dentry *cursor = file->private_data;
 193	struct dentry *next = NULL;
 194	struct hlist_node **p;
 195
 196	if (!dir_emit_dots(file, ctx))
 197		return 0;
 
 
 
 198
 199	if (ctx->pos == 2)
 200		p = &dentry->d_children.first;
 201	else
 202		p = &cursor->d_sib.next;
 
 
 
 203
 204	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
 
 205		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 206			      d_inode(next)->i_ino,
 207			      fs_umode_to_dtype(d_inode(next)->i_mode)))
 208			break;
 
 
 
 
 
 209		ctx->pos++;
 210		p = &next->d_sib.next;
 211	}
 212	spin_lock(&dentry->d_lock);
 213	hlist_del_init(&cursor->d_sib);
 214	if (next)
 215		hlist_add_before(&cursor->d_sib, &next->d_sib);
 216	spin_unlock(&dentry->d_lock);
 217	dput(next);
 218
 219	return 0;
 220}
 221EXPORT_SYMBOL(dcache_readdir);
 222
 223ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 224{
 225	return -EISDIR;
 226}
 227EXPORT_SYMBOL(generic_read_dir);
 228
 229const struct file_operations simple_dir_operations = {
 230	.open		= dcache_dir_open,
 231	.release	= dcache_dir_close,
 232	.llseek		= dcache_dir_lseek,
 233	.read		= generic_read_dir,
 234	.iterate_shared	= dcache_readdir,
 235	.fsync		= noop_fsync,
 236};
 237EXPORT_SYMBOL(simple_dir_operations);
 238
 239const struct inode_operations simple_dir_inode_operations = {
 240	.lookup		= simple_lookup,
 241};
 242EXPORT_SYMBOL(simple_dir_inode_operations);
 243
 244/* 0 is '.', 1 is '..', so always start with offset 2 or more */
 245enum {
 246	DIR_OFFSET_MIN	= 2,
 247};
 248
 249static void offset_set(struct dentry *dentry, long offset)
 250{
 251	dentry->d_fsdata = (void *)offset;
 252}
 253
 254static long dentry2offset(struct dentry *dentry)
 255{
 256	return (long)dentry->d_fsdata;
 257}
 258
 259static struct lock_class_key simple_offset_lock_class;
 260
 261/**
 262 * simple_offset_init - initialize an offset_ctx
 263 * @octx: directory offset map to be initialized
 264 *
 265 */
 266void simple_offset_init(struct offset_ctx *octx)
 267{
 268	mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
 269	lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
 270	octx->next_offset = DIR_OFFSET_MIN;
 271}
 272
 273/**
 274 * simple_offset_add - Add an entry to a directory's offset map
 275 * @octx: directory offset ctx to be updated
 276 * @dentry: new dentry being added
 277 *
 278 * Returns zero on success. @octx and the dentry's offset are updated.
 279 * Otherwise, a negative errno value is returned.
 280 */
 281int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
 282{
 283	unsigned long offset;
 284	int ret;
 285
 286	if (dentry2offset(dentry) != 0)
 287		return -EBUSY;
 288
 289	ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
 290				 LONG_MAX, &octx->next_offset, GFP_KERNEL);
 291	if (ret < 0)
 292		return ret;
 293
 294	offset_set(dentry, offset);
 295	return 0;
 296}
 297
 298static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
 299				 long offset)
 300{
 301	int ret;
 302
 303	ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
 304	if (ret)
 305		return ret;
 306	offset_set(dentry, offset);
 307	return 0;
 308}
 309
 310/**
 311 * simple_offset_remove - Remove an entry to a directory's offset map
 312 * @octx: directory offset ctx to be updated
 313 * @dentry: dentry being removed
 314 *
 315 */
 316void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
 317{
 318	long offset;
 319
 320	offset = dentry2offset(dentry);
 321	if (offset == 0)
 322		return;
 323
 324	mtree_erase(&octx->mt, offset);
 325	offset_set(dentry, 0);
 326}
 327
 328/**
 329 * simple_offset_empty - Check if a dentry can be unlinked
 330 * @dentry: dentry to be tested
 331 *
 332 * Returns 0 if @dentry is a non-empty directory; otherwise returns 1.
 333 */
 334int simple_offset_empty(struct dentry *dentry)
 335{
 336	struct inode *inode = d_inode(dentry);
 337	struct offset_ctx *octx;
 338	struct dentry *child;
 339	unsigned long index;
 340	int ret = 1;
 341
 342	if (!inode || !S_ISDIR(inode->i_mode))
 343		return ret;
 344
 345	index = DIR_OFFSET_MIN;
 346	octx = inode->i_op->get_offset_ctx(inode);
 347	mt_for_each(&octx->mt, child, index, LONG_MAX) {
 348		spin_lock(&child->d_lock);
 349		if (simple_positive(child)) {
 350			spin_unlock(&child->d_lock);
 351			ret = 0;
 352			break;
 353		}
 354		spin_unlock(&child->d_lock);
 355	}
 356
 357	return ret;
 358}
 359
 360/**
 361 * simple_offset_rename - handle directory offsets for rename
 362 * @old_dir: parent directory of source entry
 363 * @old_dentry: dentry of source entry
 364 * @new_dir: parent_directory of destination entry
 365 * @new_dentry: dentry of destination
 366 *
 367 * Caller provides appropriate serialization.
 368 *
 369 * User space expects the directory offset value of the replaced
 370 * (new) directory entry to be unchanged after a rename.
 371 *
 372 * Returns zero on success, a negative errno value on failure.
 373 */
 374int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
 375			 struct inode *new_dir, struct dentry *new_dentry)
 376{
 377	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
 378	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
 379	long new_offset = dentry2offset(new_dentry);
 380
 381	simple_offset_remove(old_ctx, old_dentry);
 382
 383	if (new_offset) {
 384		offset_set(new_dentry, 0);
 385		return simple_offset_replace(new_ctx, old_dentry, new_offset);
 386	}
 387	return simple_offset_add(new_ctx, old_dentry);
 388}
 389
 390/**
 391 * simple_offset_rename_exchange - exchange rename with directory offsets
 392 * @old_dir: parent of dentry being moved
 393 * @old_dentry: dentry being moved
 394 * @new_dir: destination parent
 395 * @new_dentry: destination dentry
 396 *
 397 * This API preserves the directory offset values. Caller provides
 398 * appropriate serialization.
 399 *
 400 * Returns zero on success. Otherwise a negative errno is returned and the
 401 * rename is rolled back.
 402 */
 403int simple_offset_rename_exchange(struct inode *old_dir,
 404				  struct dentry *old_dentry,
 405				  struct inode *new_dir,
 406				  struct dentry *new_dentry)
 407{
 408	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
 409	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
 410	long old_index = dentry2offset(old_dentry);
 411	long new_index = dentry2offset(new_dentry);
 412	int ret;
 413
 414	simple_offset_remove(old_ctx, old_dentry);
 415	simple_offset_remove(new_ctx, new_dentry);
 416
 417	ret = simple_offset_replace(new_ctx, old_dentry, new_index);
 418	if (ret)
 419		goto out_restore;
 420
 421	ret = simple_offset_replace(old_ctx, new_dentry, old_index);
 422	if (ret) {
 423		simple_offset_remove(new_ctx, old_dentry);
 424		goto out_restore;
 425	}
 426
 427	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
 428	if (ret) {
 429		simple_offset_remove(new_ctx, old_dentry);
 430		simple_offset_remove(old_ctx, new_dentry);
 431		goto out_restore;
 432	}
 433	return 0;
 434
 435out_restore:
 436	(void)simple_offset_replace(old_ctx, old_dentry, old_index);
 437	(void)simple_offset_replace(new_ctx, new_dentry, new_index);
 438	return ret;
 439}
 440
 441/**
 442 * simple_offset_destroy - Release offset map
 443 * @octx: directory offset ctx that is about to be destroyed
 444 *
 445 * During fs teardown (eg. umount), a directory's offset map might still
 446 * contain entries. xa_destroy() cleans out anything that remains.
 447 */
 448void simple_offset_destroy(struct offset_ctx *octx)
 449{
 450	mtree_destroy(&octx->mt);
 451}
 452
 453/**
 454 * offset_dir_llseek - Advance the read position of a directory descriptor
 455 * @file: an open directory whose position is to be updated
 456 * @offset: a byte offset
 457 * @whence: enumerator describing the starting position for this update
 458 *
 459 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
 460 *
 461 * Returns the updated read position if successful; otherwise a
 462 * negative errno is returned and the read position remains unchanged.
 463 */
 464static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
 465{
 466	switch (whence) {
 467	case SEEK_CUR:
 468		offset += file->f_pos;
 469		fallthrough;
 470	case SEEK_SET:
 471		if (offset >= 0)
 472			break;
 473		fallthrough;
 474	default:
 475		return -EINVAL;
 476	}
 477
 478	/* In this case, ->private_data is protected by f_pos_lock */
 479	file->private_data = NULL;
 480	return vfs_setpos(file, offset, LONG_MAX);
 481}
 482
 483static struct dentry *offset_find_next(struct offset_ctx *octx, loff_t offset)
 484{
 485	MA_STATE(mas, &octx->mt, offset, offset);
 486	struct dentry *child, *found = NULL;
 487
 488	rcu_read_lock();
 489	child = mas_find(&mas, LONG_MAX);
 490	if (!child)
 491		goto out;
 492	spin_lock(&child->d_lock);
 493	if (simple_positive(child))
 494		found = dget_dlock(child);
 495	spin_unlock(&child->d_lock);
 496out:
 497	rcu_read_unlock();
 498	return found;
 499}
 500
 501static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
 502{
 503	struct inode *inode = d_inode(dentry);
 504	long offset = dentry2offset(dentry);
 505
 506	return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
 507			  inode->i_ino, fs_umode_to_dtype(inode->i_mode));
 508}
 509
 510static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
 511{
 512	struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
 513	struct dentry *dentry;
 
 
 514
 515	while (true) {
 516		dentry = offset_find_next(octx, ctx->pos);
 517		if (!dentry)
 518			return ERR_PTR(-ENOENT);
 519
 520		if (!offset_dir_emit(ctx, dentry)) {
 521			dput(dentry);
 522			break;
 523		}
 524
 525		ctx->pos = dentry2offset(dentry) + 1;
 526		dput(dentry);
 527	}
 528	return NULL;
 529}
 530
 531/**
 532 * offset_readdir - Emit entries starting at offset @ctx->pos
 533 * @file: an open directory to iterate over
 534 * @ctx: directory iteration context
 535 *
 536 * Caller must hold @file's i_rwsem to prevent insertion or removal of
 537 * entries during this call.
 538 *
 539 * On entry, @ctx->pos contains an offset that represents the first entry
 540 * to be read from the directory.
 541 *
 542 * The operation continues until there are no more entries to read, or
 543 * until the ctx->actor indicates there is no more space in the caller's
 544 * output buffer.
 545 *
 546 * On return, @ctx->pos contains an offset that will read the next entry
 547 * in this directory when offset_readdir() is called again with @ctx.
 548 *
 549 * Return values:
 550 *   %0 - Complete
 551 */
 552static int offset_readdir(struct file *file, struct dir_context *ctx)
 553{
 554	struct dentry *dir = file->f_path.dentry;
 555
 556	lockdep_assert_held(&d_inode(dir)->i_rwsem);
 557
 558	if (!dir_emit_dots(file, ctx))
 559		return 0;
 560
 561	/* In this case, ->private_data is protected by f_pos_lock */
 562	if (ctx->pos == DIR_OFFSET_MIN)
 563		file->private_data = NULL;
 564	else if (file->private_data == ERR_PTR(-ENOENT))
 565		return 0;
 566	file->private_data = offset_iterate_dir(d_inode(dir), ctx);
 567	return 0;
 568}
 569
 570const struct file_operations simple_offset_dir_operations = {
 571	.llseek		= offset_dir_llseek,
 572	.iterate_shared	= offset_readdir,
 573	.read		= generic_read_dir,
 574	.fsync		= noop_fsync,
 575};
 576
 577static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
 578{
 579	struct dentry *child = NULL, *d;
 580
 581	spin_lock(&parent->d_lock);
 582	d = prev ? d_next_sibling(prev) : d_first_child(parent);
 583	hlist_for_each_entry_from(d, d_sib) {
 584		if (simple_positive(d)) {
 585			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 586			if (simple_positive(d))
 587				child = dget_dlock(d);
 588			spin_unlock(&d->d_lock);
 589			if (likely(child))
 590				break;
 591		}
 592	}
 593	spin_unlock(&parent->d_lock);
 594	dput(prev);
 595	return child;
 596}
 597
 598void simple_recursive_removal(struct dentry *dentry,
 599                              void (*callback)(struct dentry *))
 600{
 601	struct dentry *this = dget(dentry);
 602	while (true) {
 603		struct dentry *victim = NULL, *child;
 604		struct inode *inode = this->d_inode;
 605
 606		inode_lock(inode);
 607		if (d_is_dir(this))
 608			inode->i_flags |= S_DEAD;
 609		while ((child = find_next_child(this, victim)) == NULL) {
 610			// kill and ascend
 611			// update metadata while it's still locked
 612			inode_set_ctime_current(inode);
 613			clear_nlink(inode);
 614			inode_unlock(inode);
 615			victim = this;
 616			this = this->d_parent;
 617			inode = this->d_inode;
 618			inode_lock(inode);
 619			if (simple_positive(victim)) {
 620				d_invalidate(victim);	// avoid lost mounts
 621				if (d_is_dir(victim))
 622					fsnotify_rmdir(inode, victim);
 623				else
 624					fsnotify_unlink(inode, victim);
 625				if (callback)
 626					callback(victim);
 627				dput(victim);		// unpin it
 628			}
 629			if (victim == dentry) {
 630				inode_set_mtime_to_ts(inode,
 631						      inode_set_ctime_current(inode));
 632				if (d_is_dir(dentry))
 633					drop_nlink(inode);
 634				inode_unlock(inode);
 635				dput(dentry);
 636				return;
 637			}
 638		}
 639		inode_unlock(inode);
 640		this = child;
 641	}
 642}
 643EXPORT_SYMBOL(simple_recursive_removal);
 644
 645static const struct super_operations simple_super_operations = {
 646	.statfs		= simple_statfs,
 647};
 648
 649static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
 650{
 651	struct pseudo_fs_context *ctx = fc->fs_private;
 652	struct inode *root;
 653
 654	s->s_maxbytes = MAX_LFS_FILESIZE;
 655	s->s_blocksize = PAGE_SIZE;
 656	s->s_blocksize_bits = PAGE_SHIFT;
 657	s->s_magic = ctx->magic;
 658	s->s_op = ctx->ops ?: &simple_super_operations;
 659	s->s_xattr = ctx->xattr;
 660	s->s_time_gran = 1;
 661	root = new_inode(s);
 662	if (!root)
 663		return -ENOMEM;
 664
 665	/*
 666	 * since this is the first inode, make it number 1. New inodes created
 667	 * after this must take care not to collide with it (by passing
 668	 * max_reserved of 1 to iunique).
 669	 */
 670	root->i_ino = 1;
 671	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 672	simple_inode_init_ts(root);
 673	s->s_root = d_make_root(root);
 674	if (!s->s_root)
 675		return -ENOMEM;
 676	s->s_d_op = ctx->dops;
 677	return 0;
 678}
 679
 680static int pseudo_fs_get_tree(struct fs_context *fc)
 681{
 682	return get_tree_nodev(fc, pseudo_fs_fill_super);
 683}
 684
 685static void pseudo_fs_free(struct fs_context *fc)
 686{
 687	kfree(fc->fs_private);
 688}
 689
 690static const struct fs_context_operations pseudo_fs_context_ops = {
 691	.free		= pseudo_fs_free,
 692	.get_tree	= pseudo_fs_get_tree,
 693};
 694
 695/*
 696 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 697 * will never be mountable)
 698 */
 699struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
 700					unsigned long magic)
 701{
 702	struct pseudo_fs_context *ctx;
 703
 704	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
 705	if (likely(ctx)) {
 706		ctx->magic = magic;
 707		fc->fs_private = ctx;
 708		fc->ops = &pseudo_fs_context_ops;
 709		fc->sb_flags |= SB_NOUSER;
 710		fc->global = true;
 711	}
 712	return ctx;
 
 
 
 
 
 
 
 
 713}
 714EXPORT_SYMBOL(init_pseudo);
 715
 716int simple_open(struct inode *inode, struct file *file)
 717{
 718	if (inode->i_private)
 719		file->private_data = inode->i_private;
 720	return 0;
 721}
 722EXPORT_SYMBOL(simple_open);
 723
 724int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 725{
 726	struct inode *inode = d_inode(old_dentry);
 727
 728	inode_set_mtime_to_ts(dir,
 729			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
 730	inc_nlink(inode);
 731	ihold(inode);
 732	dget(dentry);
 733	d_instantiate(dentry, inode);
 734	return 0;
 735}
 736EXPORT_SYMBOL(simple_link);
 737
 738int simple_empty(struct dentry *dentry)
 739{
 740	struct dentry *child;
 741	int ret = 0;
 742
 743	spin_lock(&dentry->d_lock);
 744	hlist_for_each_entry(child, &dentry->d_children, d_sib) {
 745		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 746		if (simple_positive(child)) {
 747			spin_unlock(&child->d_lock);
 748			goto out;
 749		}
 750		spin_unlock(&child->d_lock);
 751	}
 752	ret = 1;
 753out:
 754	spin_unlock(&dentry->d_lock);
 755	return ret;
 756}
 757EXPORT_SYMBOL(simple_empty);
 758
 759int simple_unlink(struct inode *dir, struct dentry *dentry)
 760{
 761	struct inode *inode = d_inode(dentry);
 762
 763	inode_set_mtime_to_ts(dir,
 764			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
 765	drop_nlink(inode);
 766	dput(dentry);
 767	return 0;
 768}
 769EXPORT_SYMBOL(simple_unlink);
 770
 771int simple_rmdir(struct inode *dir, struct dentry *dentry)
 772{
 773	if (!simple_empty(dentry))
 774		return -ENOTEMPTY;
 775
 776	drop_nlink(d_inode(dentry));
 777	simple_unlink(dir, dentry);
 778	drop_nlink(dir);
 779	return 0;
 780}
 781EXPORT_SYMBOL(simple_rmdir);
 782
 783/**
 784 * simple_rename_timestamp - update the various inode timestamps for rename
 785 * @old_dir: old parent directory
 786 * @old_dentry: dentry that is being renamed
 787 * @new_dir: new parent directory
 788 * @new_dentry: target for rename
 789 *
 790 * POSIX mandates that the old and new parent directories have their ctime and
 791 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
 792 * their ctime updated.
 793 */
 794void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
 795			     struct inode *new_dir, struct dentry *new_dentry)
 796{
 797	struct inode *newino = d_inode(new_dentry);
 798
 799	inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
 800	if (new_dir != old_dir)
 801		inode_set_mtime_to_ts(new_dir,
 802				      inode_set_ctime_current(new_dir));
 803	inode_set_ctime_current(d_inode(old_dentry));
 804	if (newino)
 805		inode_set_ctime_current(newino);
 806}
 807EXPORT_SYMBOL_GPL(simple_rename_timestamp);
 808
 809int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
 810			   struct inode *new_dir, struct dentry *new_dentry)
 811{
 812	bool old_is_dir = d_is_dir(old_dentry);
 813	bool new_is_dir = d_is_dir(new_dentry);
 814
 815	if (old_dir != new_dir && old_is_dir != new_is_dir) {
 816		if (old_is_dir) {
 817			drop_nlink(old_dir);
 818			inc_nlink(new_dir);
 819		} else {
 820			drop_nlink(new_dir);
 821			inc_nlink(old_dir);
 822		}
 823	}
 824	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
 825	return 0;
 826}
 827EXPORT_SYMBOL_GPL(simple_rename_exchange);
 828
 829int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
 830		  struct dentry *old_dentry, struct inode *new_dir,
 831		  struct dentry *new_dentry, unsigned int flags)
 832{
 
 833	int they_are_dirs = d_is_dir(old_dentry);
 834
 835	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
 836		return -EINVAL;
 837
 838	if (flags & RENAME_EXCHANGE)
 839		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
 840
 841	if (!simple_empty(new_dentry))
 842		return -ENOTEMPTY;
 843
 844	if (d_really_is_positive(new_dentry)) {
 845		simple_unlink(new_dir, new_dentry);
 846		if (they_are_dirs) {
 847			drop_nlink(d_inode(new_dentry));
 848			drop_nlink(old_dir);
 849		}
 850	} else if (they_are_dirs) {
 851		drop_nlink(old_dir);
 852		inc_nlink(new_dir);
 853	}
 854
 855	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
 
 
 856	return 0;
 857}
 858EXPORT_SYMBOL(simple_rename);
 859
 860/**
 861 * simple_setattr - setattr for simple filesystem
 862 * @idmap: idmap of the target mount
 863 * @dentry: dentry
 864 * @iattr: iattr structure
 865 *
 866 * Returns 0 on success, -error on failure.
 867 *
 868 * simple_setattr is a simple ->setattr implementation without a proper
 869 * implementation of size changes.
 870 *
 871 * It can either be used for in-memory filesystems or special files
 872 * on simple regular filesystems.  Anything that needs to change on-disk
 873 * or wire state on size changes needs its own setattr method.
 874 */
 875int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
 876		   struct iattr *iattr)
 877{
 878	struct inode *inode = d_inode(dentry);
 879	int error;
 880
 881	error = setattr_prepare(idmap, dentry, iattr);
 882	if (error)
 883		return error;
 884
 885	if (iattr->ia_valid & ATTR_SIZE)
 886		truncate_setsize(inode, iattr->ia_size);
 887	setattr_copy(idmap, inode, iattr);
 888	mark_inode_dirty(inode);
 889	return 0;
 890}
 891EXPORT_SYMBOL(simple_setattr);
 892
 893static int simple_read_folio(struct file *file, struct folio *folio)
 894{
 895	folio_zero_range(folio, 0, folio_size(folio));
 896	flush_dcache_folio(folio);
 897	folio_mark_uptodate(folio);
 898	folio_unlock(folio);
 899	return 0;
 900}
 
 901
 902int simple_write_begin(struct file *file, struct address_space *mapping,
 903			loff_t pos, unsigned len,
 904			struct page **pagep, void **fsdata)
 905{
 906	struct folio *folio;
 
 
 
 907
 908	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
 909			mapping_gfp_mask(mapping));
 910	if (IS_ERR(folio))
 911		return PTR_ERR(folio);
 912
 913	*pagep = &folio->page;
 914
 915	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
 916		size_t from = offset_in_folio(folio, pos);
 917
 918		folio_zero_segments(folio, 0, from,
 919				from + len, folio_size(folio));
 920	}
 921	return 0;
 922}
 923EXPORT_SYMBOL(simple_write_begin);
 924
 925/**
 926 * simple_write_end - .write_end helper for non-block-device FSes
 927 * @file: See .write_end of address_space_operations
 
 928 * @mapping: 		"
 929 * @pos: 		"
 930 * @len: 		"
 931 * @copied: 		"
 932 * @page: 		"
 933 * @fsdata: 		"
 934 *
 935 * simple_write_end does the minimum needed for updating a page after writing is
 936 * done. It has the same API signature as the .write_end of
 937 * address_space_operations vector. So it can just be set onto .write_end for
 938 * FSes that don't need any other processing. i_mutex is assumed to be held.
 939 * Block based filesystems should use generic_write_end().
 940 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 941 * is not called, so a filesystem that actually does store data in .write_inode
 942 * should extend on what's done here with a call to mark_inode_dirty() in the
 943 * case that i_size has changed.
 944 *
 945 * Use *ONLY* with simple_read_folio()
 946 */
 947static int simple_write_end(struct file *file, struct address_space *mapping,
 948			loff_t pos, unsigned len, unsigned copied,
 949			struct page *page, void *fsdata)
 950{
 951	struct folio *folio = page_folio(page);
 952	struct inode *inode = folio->mapping->host;
 953	loff_t last_pos = pos + copied;
 954
 955	/* zero the stale part of the folio if we did a short copy */
 956	if (!folio_test_uptodate(folio)) {
 957		if (copied < len) {
 958			size_t from = offset_in_folio(folio, pos);
 959
 960			folio_zero_range(folio, from + copied, len - copied);
 961		}
 962		folio_mark_uptodate(folio);
 963	}
 
 
 
 964	/*
 965	 * No need to use i_size_read() here, the i_size
 966	 * cannot change under us because we hold the i_mutex.
 967	 */
 968	if (last_pos > inode->i_size)
 969		i_size_write(inode, last_pos);
 970
 971	folio_mark_dirty(folio);
 972	folio_unlock(folio);
 973	folio_put(folio);
 974
 975	return copied;
 976}
 977
 978/*
 979 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
 980 */
 981const struct address_space_operations ram_aops = {
 982	.read_folio	= simple_read_folio,
 983	.write_begin	= simple_write_begin,
 984	.write_end	= simple_write_end,
 985	.dirty_folio	= noop_dirty_folio,
 986};
 987EXPORT_SYMBOL(ram_aops);
 988
 989/*
 990 * the inodes created here are not hashed. If you use iunique to generate
 991 * unique inode values later for this filesystem, then you must take care
 992 * to pass it an appropriate max_reserved value to avoid collisions.
 993 */
 994int simple_fill_super(struct super_block *s, unsigned long magic,
 995		      const struct tree_descr *files)
 996{
 997	struct inode *inode;
 
 998	struct dentry *dentry;
 999	int i;
1000
1001	s->s_blocksize = PAGE_SIZE;
1002	s->s_blocksize_bits = PAGE_SHIFT;
1003	s->s_magic = magic;
1004	s->s_op = &simple_super_operations;
1005	s->s_time_gran = 1;
1006
1007	inode = new_inode(s);
1008	if (!inode)
1009		return -ENOMEM;
1010	/*
1011	 * because the root inode is 1, the files array must not contain an
1012	 * entry at index 1
1013	 */
1014	inode->i_ino = 1;
1015	inode->i_mode = S_IFDIR | 0755;
1016	simple_inode_init_ts(inode);
1017	inode->i_op = &simple_dir_inode_operations;
1018	inode->i_fop = &simple_dir_operations;
1019	set_nlink(inode, 2);
1020	s->s_root = d_make_root(inode);
1021	if (!s->s_root)
1022		return -ENOMEM;
1023	for (i = 0; !files->name || files->name[0]; i++, files++) {
1024		if (!files->name)
1025			continue;
1026
1027		/* warn if it tries to conflict with the root inode */
1028		if (unlikely(i == 1))
1029			printk(KERN_WARNING "%s: %s passed in a files array"
1030				"with an index of 1!\n", __func__,
1031				s->s_type->name);
1032
1033		dentry = d_alloc_name(s->s_root, files->name);
1034		if (!dentry)
1035			return -ENOMEM;
1036		inode = new_inode(s);
1037		if (!inode) {
1038			dput(dentry);
1039			return -ENOMEM;
1040		}
1041		inode->i_mode = S_IFREG | files->mode;
1042		simple_inode_init_ts(inode);
1043		inode->i_fop = files->ops;
1044		inode->i_ino = i;
1045		d_add(dentry, inode);
1046	}
 
1047	return 0;
 
 
 
 
 
1048}
1049EXPORT_SYMBOL(simple_fill_super);
1050
1051static DEFINE_SPINLOCK(pin_fs_lock);
1052
1053int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1054{
1055	struct vfsmount *mnt = NULL;
1056	spin_lock(&pin_fs_lock);
1057	if (unlikely(!*mount)) {
1058		spin_unlock(&pin_fs_lock);
1059		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1060		if (IS_ERR(mnt))
1061			return PTR_ERR(mnt);
1062		spin_lock(&pin_fs_lock);
1063		if (!*mount)
1064			*mount = mnt;
1065	}
1066	mntget(*mount);
1067	++*count;
1068	spin_unlock(&pin_fs_lock);
1069	mntput(mnt);
1070	return 0;
1071}
1072EXPORT_SYMBOL(simple_pin_fs);
1073
1074void simple_release_fs(struct vfsmount **mount, int *count)
1075{
1076	struct vfsmount *mnt;
1077	spin_lock(&pin_fs_lock);
1078	mnt = *mount;
1079	if (!--*count)
1080		*mount = NULL;
1081	spin_unlock(&pin_fs_lock);
1082	mntput(mnt);
1083}
1084EXPORT_SYMBOL(simple_release_fs);
1085
1086/**
1087 * simple_read_from_buffer - copy data from the buffer to user space
1088 * @to: the user space buffer to read to
1089 * @count: the maximum number of bytes to read
1090 * @ppos: the current position in the buffer
1091 * @from: the buffer to read from
1092 * @available: the size of the buffer
1093 *
1094 * The simple_read_from_buffer() function reads up to @count bytes from the
1095 * buffer @from at offset @ppos into the user space address starting at @to.
1096 *
1097 * On success, the number of bytes read is returned and the offset @ppos is
1098 * advanced by this number, or negative value is returned on error.
1099 **/
1100ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1101				const void *from, size_t available)
1102{
1103	loff_t pos = *ppos;
1104	size_t ret;
1105
1106	if (pos < 0)
1107		return -EINVAL;
1108	if (pos >= available || !count)
1109		return 0;
1110	if (count > available - pos)
1111		count = available - pos;
1112	ret = copy_to_user(to, from + pos, count);
1113	if (ret == count)
1114		return -EFAULT;
1115	count -= ret;
1116	*ppos = pos + count;
1117	return count;
1118}
1119EXPORT_SYMBOL(simple_read_from_buffer);
1120
1121/**
1122 * simple_write_to_buffer - copy data from user space to the buffer
1123 * @to: the buffer to write to
1124 * @available: the size of the buffer
1125 * @ppos: the current position in the buffer
1126 * @from: the user space buffer to read from
1127 * @count: the maximum number of bytes to read
1128 *
1129 * The simple_write_to_buffer() function reads up to @count bytes from the user
1130 * space address starting at @from into the buffer @to at offset @ppos.
1131 *
1132 * On success, the number of bytes written is returned and the offset @ppos is
1133 * advanced by this number, or negative value is returned on error.
1134 **/
1135ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1136		const void __user *from, size_t count)
1137{
1138	loff_t pos = *ppos;
1139	size_t res;
1140
1141	if (pos < 0)
1142		return -EINVAL;
1143	if (pos >= available || !count)
1144		return 0;
1145	if (count > available - pos)
1146		count = available - pos;
1147	res = copy_from_user(to + pos, from, count);
1148	if (res == count)
1149		return -EFAULT;
1150	count -= res;
1151	*ppos = pos + count;
1152	return count;
1153}
1154EXPORT_SYMBOL(simple_write_to_buffer);
1155
1156/**
1157 * memory_read_from_buffer - copy data from the buffer
1158 * @to: the kernel space buffer to read to
1159 * @count: the maximum number of bytes to read
1160 * @ppos: the current position in the buffer
1161 * @from: the buffer to read from
1162 * @available: the size of the buffer
1163 *
1164 * The memory_read_from_buffer() function reads up to @count bytes from the
1165 * buffer @from at offset @ppos into the kernel space address starting at @to.
1166 *
1167 * On success, the number of bytes read is returned and the offset @ppos is
1168 * advanced by this number, or negative value is returned on error.
1169 **/
1170ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1171				const void *from, size_t available)
1172{
1173	loff_t pos = *ppos;
1174
1175	if (pos < 0)
1176		return -EINVAL;
1177	if (pos >= available)
1178		return 0;
1179	if (count > available - pos)
1180		count = available - pos;
1181	memcpy(to, from + pos, count);
1182	*ppos = pos + count;
1183
1184	return count;
1185}
1186EXPORT_SYMBOL(memory_read_from_buffer);
1187
1188/*
1189 * Transaction based IO.
1190 * The file expects a single write which triggers the transaction, and then
1191 * possibly a read which collects the result - which is stored in a
1192 * file-local buffer.
1193 */
1194
1195void simple_transaction_set(struct file *file, size_t n)
1196{
1197	struct simple_transaction_argresp *ar = file->private_data;
1198
1199	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1200
1201	/*
1202	 * The barrier ensures that ar->size will really remain zero until
1203	 * ar->data is ready for reading.
1204	 */
1205	smp_mb();
1206	ar->size = n;
1207}
1208EXPORT_SYMBOL(simple_transaction_set);
1209
1210char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1211{
1212	struct simple_transaction_argresp *ar;
1213	static DEFINE_SPINLOCK(simple_transaction_lock);
1214
1215	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1216		return ERR_PTR(-EFBIG);
1217
1218	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1219	if (!ar)
1220		return ERR_PTR(-ENOMEM);
1221
1222	spin_lock(&simple_transaction_lock);
1223
1224	/* only one write allowed per open */
1225	if (file->private_data) {
1226		spin_unlock(&simple_transaction_lock);
1227		free_page((unsigned long)ar);
1228		return ERR_PTR(-EBUSY);
1229	}
1230
1231	file->private_data = ar;
1232
1233	spin_unlock(&simple_transaction_lock);
1234
1235	if (copy_from_user(ar->data, buf, size))
1236		return ERR_PTR(-EFAULT);
1237
1238	return ar->data;
1239}
1240EXPORT_SYMBOL(simple_transaction_get);
1241
1242ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1243{
1244	struct simple_transaction_argresp *ar = file->private_data;
1245
1246	if (!ar)
1247		return 0;
1248	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1249}
1250EXPORT_SYMBOL(simple_transaction_read);
1251
1252int simple_transaction_release(struct inode *inode, struct file *file)
1253{
1254	free_page((unsigned long)file->private_data);
1255	return 0;
1256}
1257EXPORT_SYMBOL(simple_transaction_release);
1258
1259/* Simple attribute files */
1260
1261struct simple_attr {
1262	int (*get)(void *, u64 *);
1263	int (*set)(void *, u64);
1264	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1265	char set_buf[24];
1266	void *data;
1267	const char *fmt;	/* format for read operation */
1268	struct mutex mutex;	/* protects access to these buffers */
1269};
1270
1271/* simple_attr_open is called by an actual attribute open file operation
1272 * to set the attribute specific access operations. */
1273int simple_attr_open(struct inode *inode, struct file *file,
1274		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1275		     const char *fmt)
1276{
1277	struct simple_attr *attr;
1278
1279	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1280	if (!attr)
1281		return -ENOMEM;
1282
1283	attr->get = get;
1284	attr->set = set;
1285	attr->data = inode->i_private;
1286	attr->fmt = fmt;
1287	mutex_init(&attr->mutex);
1288
1289	file->private_data = attr;
1290
1291	return nonseekable_open(inode, file);
1292}
1293EXPORT_SYMBOL_GPL(simple_attr_open);
1294
1295int simple_attr_release(struct inode *inode, struct file *file)
1296{
1297	kfree(file->private_data);
1298	return 0;
1299}
1300EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1301
1302/* read from the buffer that is filled with the get function */
1303ssize_t simple_attr_read(struct file *file, char __user *buf,
1304			 size_t len, loff_t *ppos)
1305{
1306	struct simple_attr *attr;
1307	size_t size;
1308	ssize_t ret;
1309
1310	attr = file->private_data;
1311
1312	if (!attr->get)
1313		return -EACCES;
1314
1315	ret = mutex_lock_interruptible(&attr->mutex);
1316	if (ret)
1317		return ret;
1318
1319	if (*ppos && attr->get_buf[0]) {
1320		/* continued read */
1321		size = strlen(attr->get_buf);
1322	} else {
1323		/* first read */
1324		u64 val;
1325		ret = attr->get(attr->data, &val);
1326		if (ret)
1327			goto out;
1328
1329		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1330				 attr->fmt, (unsigned long long)val);
1331	}
1332
1333	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1334out:
1335	mutex_unlock(&attr->mutex);
1336	return ret;
1337}
1338EXPORT_SYMBOL_GPL(simple_attr_read);
1339
1340/* interpret the buffer as a number to call the set function with */
1341static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1342			  size_t len, loff_t *ppos, bool is_signed)
1343{
1344	struct simple_attr *attr;
1345	unsigned long long val;
1346	size_t size;
1347	ssize_t ret;
1348
1349	attr = file->private_data;
1350	if (!attr->set)
1351		return -EACCES;
1352
1353	ret = mutex_lock_interruptible(&attr->mutex);
1354	if (ret)
1355		return ret;
1356
1357	ret = -EFAULT;
1358	size = min(sizeof(attr->set_buf) - 1, len);
1359	if (copy_from_user(attr->set_buf, buf, size))
1360		goto out;
1361
1362	attr->set_buf[size] = '\0';
1363	if (is_signed)
1364		ret = kstrtoll(attr->set_buf, 0, &val);
1365	else
1366		ret = kstrtoull(attr->set_buf, 0, &val);
1367	if (ret)
1368		goto out;
1369	ret = attr->set(attr->data, val);
1370	if (ret == 0)
1371		ret = len; /* on success, claim we got the whole input */
1372out:
1373	mutex_unlock(&attr->mutex);
1374	return ret;
1375}
1376
1377ssize_t simple_attr_write(struct file *file, const char __user *buf,
1378			  size_t len, loff_t *ppos)
1379{
1380	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1381}
1382EXPORT_SYMBOL_GPL(simple_attr_write);
1383
1384ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1385			  size_t len, loff_t *ppos)
1386{
1387	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1388}
1389EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1390
1391/**
1392 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1393 * @inode:   the object to encode
1394 * @fh:      where to store the file handle fragment
1395 * @max_len: maximum length to store there (in 4 byte units)
1396 * @parent:  parent directory inode, if wanted
1397 *
1398 * This generic encode_fh function assumes that the 32 inode number
1399 * is suitable for locating an inode, and that the generation number
1400 * can be used to check that it is still valid.  It places them in the
1401 * filehandle fragment where export_decode_fh expects to find them.
1402 */
1403int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1404			    struct inode *parent)
1405{
1406	struct fid *fid = (void *)fh;
1407	int len = *max_len;
1408	int type = FILEID_INO32_GEN;
1409
1410	if (parent && (len < 4)) {
1411		*max_len = 4;
1412		return FILEID_INVALID;
1413	} else if (len < 2) {
1414		*max_len = 2;
1415		return FILEID_INVALID;
1416	}
1417
1418	len = 2;
1419	fid->i32.ino = inode->i_ino;
1420	fid->i32.gen = inode->i_generation;
1421	if (parent) {
1422		fid->i32.parent_ino = parent->i_ino;
1423		fid->i32.parent_gen = parent->i_generation;
1424		len = 4;
1425		type = FILEID_INO32_GEN_PARENT;
1426	}
1427	*max_len = len;
1428	return type;
1429}
1430EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1431
1432/**
1433 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1434 * @sb:		filesystem to do the file handle conversion on
1435 * @fid:	file handle to convert
1436 * @fh_len:	length of the file handle in bytes
1437 * @fh_type:	type of file handle
1438 * @get_inode:	filesystem callback to retrieve inode
1439 *
1440 * This function decodes @fid as long as it has one of the well-known
1441 * Linux filehandle types and calls @get_inode on it to retrieve the
1442 * inode for the object specified in the file handle.
1443 */
1444struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1445		int fh_len, int fh_type, struct inode *(*get_inode)
1446			(struct super_block *sb, u64 ino, u32 gen))
1447{
1448	struct inode *inode = NULL;
1449
1450	if (fh_len < 2)
1451		return NULL;
1452
1453	switch (fh_type) {
1454	case FILEID_INO32_GEN:
1455	case FILEID_INO32_GEN_PARENT:
1456		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1457		break;
1458	}
1459
1460	return d_obtain_alias(inode);
1461}
1462EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1463
1464/**
1465 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1466 * @sb:		filesystem to do the file handle conversion on
1467 * @fid:	file handle to convert
1468 * @fh_len:	length of the file handle in bytes
1469 * @fh_type:	type of file handle
1470 * @get_inode:	filesystem callback to retrieve inode
1471 *
1472 * This function decodes @fid as long as it has one of the well-known
1473 * Linux filehandle types and calls @get_inode on it to retrieve the
1474 * inode for the _parent_ object specified in the file handle if it
1475 * is specified in the file handle, or NULL otherwise.
1476 */
1477struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1478		int fh_len, int fh_type, struct inode *(*get_inode)
1479			(struct super_block *sb, u64 ino, u32 gen))
1480{
1481	struct inode *inode = NULL;
1482
1483	if (fh_len <= 2)
1484		return NULL;
1485
1486	switch (fh_type) {
1487	case FILEID_INO32_GEN_PARENT:
1488		inode = get_inode(sb, fid->i32.parent_ino,
1489				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1490		break;
1491	}
1492
1493	return d_obtain_alias(inode);
1494}
1495EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1496
1497/**
1498 * __generic_file_fsync - generic fsync implementation for simple filesystems
1499 *
1500 * @file:	file to synchronize
1501 * @start:	start offset in bytes
1502 * @end:	end offset in bytes (inclusive)
1503 * @datasync:	only synchronize essential metadata if true
1504 *
1505 * This is a generic implementation of the fsync method for simple
1506 * filesystems which track all non-inode metadata in the buffers list
1507 * hanging off the address_space structure.
1508 */
1509int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1510				 int datasync)
1511{
1512	struct inode *inode = file->f_mapping->host;
1513	int err;
1514	int ret;
1515
1516	err = file_write_and_wait_range(file, start, end);
1517	if (err)
1518		return err;
1519
1520	inode_lock(inode);
1521	ret = sync_mapping_buffers(inode->i_mapping);
1522	if (!(inode->i_state & I_DIRTY_ALL))
1523		goto out;
1524	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1525		goto out;
1526
1527	err = sync_inode_metadata(inode, 1);
1528	if (ret == 0)
1529		ret = err;
1530
1531out:
1532	inode_unlock(inode);
1533	/* check and advance again to catch errors after syncing out buffers */
1534	err = file_check_and_advance_wb_err(file);
1535	if (ret == 0)
1536		ret = err;
1537	return ret;
1538}
1539EXPORT_SYMBOL(__generic_file_fsync);
1540
1541/**
1542 * generic_file_fsync - generic fsync implementation for simple filesystems
1543 *			with flush
1544 * @file:	file to synchronize
1545 * @start:	start offset in bytes
1546 * @end:	end offset in bytes (inclusive)
1547 * @datasync:	only synchronize essential metadata if true
1548 *
1549 */
1550
1551int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1552		       int datasync)
1553{
1554	struct inode *inode = file->f_mapping->host;
1555	int err;
1556
1557	err = __generic_file_fsync(file, start, end, datasync);
1558	if (err)
1559		return err;
1560	return blkdev_issue_flush(inode->i_sb->s_bdev);
1561}
1562EXPORT_SYMBOL(generic_file_fsync);
1563
1564/**
1565 * generic_check_addressable - Check addressability of file system
1566 * @blocksize_bits:	log of file system block size
1567 * @num_blocks:		number of blocks in file system
1568 *
1569 * Determine whether a file system with @num_blocks blocks (and a
1570 * block size of 2**@blocksize_bits) is addressable by the sector_t
1571 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1572 */
1573int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1574{
1575	u64 last_fs_block = num_blocks - 1;
1576	u64 last_fs_page =
1577		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1578
1579	if (unlikely(num_blocks == 0))
1580		return 0;
1581
1582	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1583		return -EINVAL;
1584
1585	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1586	    (last_fs_page > (pgoff_t)(~0ULL))) {
1587		return -EFBIG;
1588	}
1589	return 0;
1590}
1591EXPORT_SYMBOL(generic_check_addressable);
1592
1593/*
1594 * No-op implementation of ->fsync for in-memory filesystems.
1595 */
1596int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1597{
1598	return 0;
1599}
1600EXPORT_SYMBOL(noop_fsync);
1601
1602ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1603{
1604	/*
1605	 * iomap based filesystems support direct I/O without need for
1606	 * this callback. However, it still needs to be set in
1607	 * inode->a_ops so that open/fcntl know that direct I/O is
1608	 * generally supported.
1609	 */
1610	return -EINVAL;
1611}
1612EXPORT_SYMBOL_GPL(noop_direct_IO);
1613
1614/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1615void kfree_link(void *p)
1616{
1617	kfree(p);
1618}
1619EXPORT_SYMBOL(kfree_link);
1620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621struct inode *alloc_anon_inode(struct super_block *s)
1622{
1623	static const struct address_space_operations anon_aops = {
1624		.dirty_folio	= noop_dirty_folio,
1625	};
1626	struct inode *inode = new_inode_pseudo(s);
1627
1628	if (!inode)
1629		return ERR_PTR(-ENOMEM);
1630
1631	inode->i_ino = get_next_ino();
1632	inode->i_mapping->a_ops = &anon_aops;
1633
1634	/*
1635	 * Mark the inode dirty from the very beginning,
1636	 * that way it will never be moved to the dirty
1637	 * list because mark_inode_dirty() will think
1638	 * that it already _is_ on the dirty list.
1639	 */
1640	inode->i_state = I_DIRTY;
1641	inode->i_mode = S_IRUSR | S_IWUSR;
1642	inode->i_uid = current_fsuid();
1643	inode->i_gid = current_fsgid();
1644	inode->i_flags |= S_PRIVATE;
1645	simple_inode_init_ts(inode);
1646	return inode;
1647}
1648EXPORT_SYMBOL(alloc_anon_inode);
1649
1650/**
1651 * simple_nosetlease - generic helper for prohibiting leases
1652 * @filp: file pointer
1653 * @arg: type of lease to obtain
1654 * @flp: new lease supplied for insertion
1655 * @priv: private data for lm_setup operation
1656 *
1657 * Generic helper for filesystems that do not wish to allow leases to be set.
1658 * All arguments are ignored and it just returns -EINVAL.
1659 */
1660int
1661simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1662		  void **priv)
1663{
1664	return -EINVAL;
1665}
1666EXPORT_SYMBOL(simple_nosetlease);
1667
1668/**
1669 * simple_get_link - generic helper to get the target of "fast" symlinks
1670 * @dentry: not used here
1671 * @inode: the symlink inode
1672 * @done: not used here
1673 *
1674 * Generic helper for filesystems to use for symlink inodes where a pointer to
1675 * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1676 * since as an optimization the path lookup code uses any non-NULL ->i_link
1677 * directly, without calling ->get_link().  But ->get_link() still must be set,
1678 * to mark the inode_operations as being for a symlink.
1679 *
1680 * Return: the symlink target
1681 */
1682const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1683			    struct delayed_call *done)
1684{
1685	return inode->i_link;
1686}
1687EXPORT_SYMBOL(simple_get_link);
1688
1689const struct inode_operations simple_symlink_inode_operations = {
1690	.get_link = simple_get_link,
 
1691};
1692EXPORT_SYMBOL(simple_symlink_inode_operations);
1693
1694/*
1695 * Operations for a permanently empty directory.
1696 */
1697static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1698{
1699	return ERR_PTR(-ENOENT);
1700}
1701
1702static int empty_dir_getattr(struct mnt_idmap *idmap,
1703			     const struct path *path, struct kstat *stat,
1704			     u32 request_mask, unsigned int query_flags)
1705{
1706	struct inode *inode = d_inode(path->dentry);
1707	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1708	return 0;
1709}
1710
1711static int empty_dir_setattr(struct mnt_idmap *idmap,
1712			     struct dentry *dentry, struct iattr *attr)
1713{
1714	return -EPERM;
1715}
1716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1718{
1719	return -EOPNOTSUPP;
1720}
1721
1722static const struct inode_operations empty_dir_inode_operations = {
1723	.lookup		= empty_dir_lookup,
1724	.permission	= generic_permission,
1725	.setattr	= empty_dir_setattr,
1726	.getattr	= empty_dir_getattr,
 
 
 
1727	.listxattr	= empty_dir_listxattr,
1728};
1729
1730static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1731{
1732	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1733	return generic_file_llseek_size(file, offset, whence, 2, 2);
1734}
1735
1736static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1737{
1738	dir_emit_dots(file, ctx);
1739	return 0;
1740}
1741
1742static const struct file_operations empty_dir_operations = {
1743	.llseek		= empty_dir_llseek,
1744	.read		= generic_read_dir,
1745	.iterate_shared	= empty_dir_readdir,
1746	.fsync		= noop_fsync,
1747};
1748
1749
1750void make_empty_dir_inode(struct inode *inode)
1751{
1752	set_nlink(inode, 2);
1753	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1754	inode->i_uid = GLOBAL_ROOT_UID;
1755	inode->i_gid = GLOBAL_ROOT_GID;
1756	inode->i_rdev = 0;
1757	inode->i_size = 0;
1758	inode->i_blkbits = PAGE_SHIFT;
1759	inode->i_blocks = 0;
1760
1761	inode->i_op = &empty_dir_inode_operations;
1762	inode->i_opflags &= ~IOP_XATTR;
1763	inode->i_fop = &empty_dir_operations;
1764}
1765
1766bool is_empty_dir_inode(struct inode *inode)
1767{
1768	return (inode->i_fop == &empty_dir_operations) &&
1769		(inode->i_op == &empty_dir_inode_operations);
1770}
1771
1772#if IS_ENABLED(CONFIG_UNICODE)
1773/**
1774 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1775 * @dentry:	dentry whose name we are checking against
1776 * @len:	len of name of dentry
1777 * @str:	str pointer to name of dentry
1778 * @name:	Name to compare against
1779 *
1780 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1781 */
1782static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1783				const char *str, const struct qstr *name)
1784{
1785	const struct dentry *parent;
1786	const struct inode *dir;
1787	char strbuf[DNAME_INLINE_LEN];
1788	struct qstr qstr;
1789
1790	/*
1791	 * Attempt a case-sensitive match first. It is cheaper and
1792	 * should cover most lookups, including all the sane
1793	 * applications that expect a case-sensitive filesystem.
1794	 *
1795	 * This comparison is safe under RCU because the caller
1796	 * guarantees the consistency between str and len. See
1797	 * __d_lookup_rcu_op_compare() for details.
1798	 */
1799	if (len == name->len && !memcmp(str, name->name, len))
1800		return 0;
1801
1802	parent = READ_ONCE(dentry->d_parent);
1803	dir = READ_ONCE(parent->d_inode);
1804	if (!dir || !IS_CASEFOLDED(dir))
1805		return 1;
1806
1807	/*
1808	 * If the dentry name is stored in-line, then it may be concurrently
1809	 * modified by a rename.  If this happens, the VFS will eventually retry
1810	 * the lookup, so it doesn't matter what ->d_compare() returns.
1811	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1812	 * string.  Therefore, we have to copy the name into a temporary buffer.
1813	 */
1814	if (len <= DNAME_INLINE_LEN - 1) {
1815		memcpy(strbuf, str, len);
1816		strbuf[len] = 0;
1817		str = strbuf;
1818		/* prevent compiler from optimizing out the temporary buffer */
1819		barrier();
1820	}
1821	qstr.len = len;
1822	qstr.name = str;
1823
1824	return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1825}
1826
1827/**
1828 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1829 * @dentry:	dentry of the parent directory
1830 * @str:	qstr of name whose hash we should fill in
1831 *
1832 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1833 */
1834static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1835{
1836	const struct inode *dir = READ_ONCE(dentry->d_inode);
1837	struct super_block *sb = dentry->d_sb;
1838	const struct unicode_map *um = sb->s_encoding;
1839	int ret;
1840
1841	if (!dir || !IS_CASEFOLDED(dir))
1842		return 0;
1843
1844	ret = utf8_casefold_hash(um, dentry, str);
1845	if (ret < 0 && sb_has_strict_encoding(sb))
1846		return -EINVAL;
1847	return 0;
1848}
1849
1850static const struct dentry_operations generic_ci_dentry_ops = {
1851	.d_hash = generic_ci_d_hash,
1852	.d_compare = generic_ci_d_compare,
1853#ifdef CONFIG_FS_ENCRYPTION
1854	.d_revalidate = fscrypt_d_revalidate,
1855#endif
1856};
1857#endif
1858
1859#ifdef CONFIG_FS_ENCRYPTION
1860static const struct dentry_operations generic_encrypted_dentry_ops = {
1861	.d_revalidate = fscrypt_d_revalidate,
1862};
1863#endif
1864
1865/**
1866 * generic_set_sb_d_ops - helper for choosing the set of
1867 * filesystem-wide dentry operations for the enabled features
1868 * @sb: superblock to be configured
1869 *
1870 * Filesystems supporting casefolding and/or fscrypt can call this
1871 * helper at mount-time to configure sb->s_d_op to best set of dentry
1872 * operations required for the enabled features. The helper must be
1873 * called after these have been configured, but before the root dentry
1874 * is created.
1875 */
1876void generic_set_sb_d_ops(struct super_block *sb)
1877{
1878#if IS_ENABLED(CONFIG_UNICODE)
1879	if (sb->s_encoding) {
1880		sb->s_d_op = &generic_ci_dentry_ops;
1881		return;
1882	}
1883#endif
1884#ifdef CONFIG_FS_ENCRYPTION
1885	if (sb->s_cop) {
1886		sb->s_d_op = &generic_encrypted_dentry_ops;
1887		return;
1888	}
1889#endif
1890}
1891EXPORT_SYMBOL(generic_set_sb_d_ops);
1892
1893/**
1894 * inode_maybe_inc_iversion - increments i_version
1895 * @inode: inode with the i_version that should be updated
1896 * @force: increment the counter even if it's not necessary?
1897 *
1898 * Every time the inode is modified, the i_version field must be seen to have
1899 * changed by any observer.
1900 *
1901 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1902 * the value, and clear the queried flag.
1903 *
1904 * In the common case where neither is set, then we can return "false" without
1905 * updating i_version.
1906 *
1907 * If this function returns false, and no other metadata has changed, then we
1908 * can avoid logging the metadata.
1909 */
1910bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1911{
1912	u64 cur, new;
1913
1914	/*
1915	 * The i_version field is not strictly ordered with any other inode
1916	 * information, but the legacy inode_inc_iversion code used a spinlock
1917	 * to serialize increments.
1918	 *
1919	 * Here, we add full memory barriers to ensure that any de-facto
1920	 * ordering with other info is preserved.
1921	 *
1922	 * This barrier pairs with the barrier in inode_query_iversion()
1923	 */
1924	smp_mb();
1925	cur = inode_peek_iversion_raw(inode);
1926	do {
1927		/* If flag is clear then we needn't do anything */
1928		if (!force && !(cur & I_VERSION_QUERIED))
1929			return false;
1930
1931		/* Since lowest bit is flag, add 2 to avoid it */
1932		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1933	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1934	return true;
1935}
1936EXPORT_SYMBOL(inode_maybe_inc_iversion);
1937
1938/**
1939 * inode_query_iversion - read i_version for later use
1940 * @inode: inode from which i_version should be read
1941 *
1942 * Read the inode i_version counter. This should be used by callers that wish
1943 * to store the returned i_version for later comparison. This will guarantee
1944 * that a later query of the i_version will result in a different value if
1945 * anything has changed.
1946 *
1947 * In this implementation, we fetch the current value, set the QUERIED flag and
1948 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1949 * that fails, we try again with the newly fetched value from the cmpxchg.
1950 */
1951u64 inode_query_iversion(struct inode *inode)
1952{
1953	u64 cur, new;
1954
1955	cur = inode_peek_iversion_raw(inode);
1956	do {
1957		/* If flag is already set, then no need to swap */
1958		if (cur & I_VERSION_QUERIED) {
1959			/*
1960			 * This barrier (and the implicit barrier in the
1961			 * cmpxchg below) pairs with the barrier in
1962			 * inode_maybe_inc_iversion().
1963			 */
1964			smp_mb();
1965			break;
1966		}
1967
1968		new = cur | I_VERSION_QUERIED;
1969	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1970	return cur >> I_VERSION_QUERIED_SHIFT;
1971}
1972EXPORT_SYMBOL(inode_query_iversion);
1973
1974ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1975		ssize_t direct_written, ssize_t buffered_written)
1976{
1977	struct address_space *mapping = iocb->ki_filp->f_mapping;
1978	loff_t pos = iocb->ki_pos - buffered_written;
1979	loff_t end = iocb->ki_pos - 1;
1980	int err;
1981
1982	/*
1983	 * If the buffered write fallback returned an error, we want to return
1984	 * the number of bytes which were written by direct I/O, or the error
1985	 * code if that was zero.
1986	 *
1987	 * Note that this differs from normal direct-io semantics, which will
1988	 * return -EFOO even if some bytes were written.
1989	 */
1990	if (unlikely(buffered_written < 0)) {
1991		if (direct_written)
1992			return direct_written;
1993		return buffered_written;
1994	}
1995
1996	/*
1997	 * We need to ensure that the page cache pages are written to disk and
1998	 * invalidated to preserve the expected O_DIRECT semantics.
1999	 */
2000	err = filemap_write_and_wait_range(mapping, pos, end);
2001	if (err < 0) {
2002		/*
2003		 * We don't know how much we wrote, so just return the number of
2004		 * bytes which were direct-written
2005		 */
2006		iocb->ki_pos -= buffered_written;
2007		if (direct_written)
2008			return direct_written;
2009		return err;
2010	}
2011	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2012	return direct_written + buffered_written;
2013}
2014EXPORT_SYMBOL_GPL(direct_write_fallback);
2015
2016/**
2017 * simple_inode_init_ts - initialize the timestamps for a new inode
2018 * @inode: inode to be initialized
2019 *
2020 * When a new inode is created, most filesystems set the timestamps to the
2021 * current time. Add a helper to do this.
2022 */
2023struct timespec64 simple_inode_init_ts(struct inode *inode)
2024{
2025	struct timespec64 ts = inode_set_ctime_current(inode);
2026
2027	inode_set_atime_to_ts(inode, ts);
2028	inode_set_mtime_to_ts(inode, ts);
2029	return ts;
2030}
2031EXPORT_SYMBOL(simple_inode_init_ts);
2032
2033static inline struct dentry *get_stashed_dentry(struct dentry *stashed)
2034{
2035	struct dentry *dentry;
2036
2037	guard(rcu)();
2038	dentry = READ_ONCE(stashed);
2039	if (!dentry)
2040		return NULL;
2041	if (!lockref_get_not_dead(&dentry->d_lockref))
2042		return NULL;
2043	return dentry;
2044}
2045
2046static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2047					  struct super_block *sb,
2048					  void *data)
2049{
2050	struct dentry *dentry;
2051	struct inode *inode;
2052	const struct stashed_operations *sops = sb->s_fs_info;
2053	int ret;
2054
2055	inode = new_inode_pseudo(sb);
2056	if (!inode) {
2057		sops->put_data(data);
2058		return ERR_PTR(-ENOMEM);
2059	}
2060
2061	inode->i_flags |= S_IMMUTABLE;
2062	inode->i_mode = S_IFREG;
2063	simple_inode_init_ts(inode);
2064
2065	ret = sops->init_inode(inode, data);
2066	if (ret < 0) {
2067		iput(inode);
2068		return ERR_PTR(ret);
2069	}
2070
2071	/* Notice when this is changed. */
2072	WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2073	WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2074
2075	dentry = d_alloc_anon(sb);
2076	if (!dentry) {
2077		iput(inode);
2078		return ERR_PTR(-ENOMEM);
2079	}
2080
2081	/* Store address of location where dentry's supposed to be stashed. */
2082	dentry->d_fsdata = stashed;
2083
2084	/* @data is now owned by the fs */
2085	d_instantiate(dentry, inode);
2086	return dentry;
2087}
2088
2089static struct dentry *stash_dentry(struct dentry **stashed,
2090				   struct dentry *dentry)
2091{
2092	guard(rcu)();
2093	for (;;) {
2094		struct dentry *old;
2095
2096		/* Assume any old dentry was cleared out. */
2097		old = cmpxchg(stashed, NULL, dentry);
2098		if (likely(!old))
2099			return dentry;
2100
2101		/* Check if somebody else installed a reusable dentry. */
2102		if (lockref_get_not_dead(&old->d_lockref))
2103			return old;
2104
2105		/* There's an old dead dentry there, try to take it over. */
2106		if (likely(try_cmpxchg(stashed, &old, dentry)))
2107			return dentry;
2108	}
2109}
2110
2111/**
2112 * path_from_stashed - create path from stashed or new dentry
2113 * @stashed:    where to retrieve or stash dentry
2114 * @mnt:        mnt of the filesystems to use
2115 * @data:       data to store in inode->i_private
2116 * @path:       path to create
2117 *
2118 * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2119 * is still valid then it will be reused. If the dentry isn't able the function
2120 * will allocate a new dentry and inode. It will then check again whether it
2121 * can reuse an existing dentry in case one has been added in the meantime or
2122 * update @stashed with the newly added dentry.
2123 *
2124 * Special-purpose helper for nsfs and pidfs.
2125 *
2126 * Return: On success zero and on failure a negative error is returned.
2127 */
2128int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2129		      struct path *path)
2130{
2131	struct dentry *dentry;
2132	const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2133
2134	/* See if dentry can be reused. */
2135	path->dentry = get_stashed_dentry(*stashed);
2136	if (path->dentry) {
2137		sops->put_data(data);
2138		goto out_path;
2139	}
2140
2141	/* Allocate a new dentry. */
2142	dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2143	if (IS_ERR(dentry))
2144		return PTR_ERR(dentry);
2145
2146	/* Added a new dentry. @data is now owned by the filesystem. */
2147	path->dentry = stash_dentry(stashed, dentry);
2148	if (path->dentry != dentry)
2149		dput(dentry);
2150
2151out_path:
2152	WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2153	WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2154	path->mnt = mntget(mnt);
2155	return 0;
2156}
2157
2158void stashed_dentry_prune(struct dentry *dentry)
2159{
2160	struct dentry **stashed = dentry->d_fsdata;
2161	struct inode *inode = d_inode(dentry);
2162
2163	if (WARN_ON_ONCE(!stashed))
2164		return;
2165
2166	if (!inode)
2167		return;
2168
2169	/*
2170	 * Only replace our own @dentry as someone else might've
2171	 * already cleared out @dentry and stashed their own
2172	 * dentry in there.
2173	 */
2174	cmpxchg(stashed, dentry, NULL);
2175}