Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v4.6
   1/*
   2 *	fs/libfs.c
   3 *	Library for filesystems writers.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/export.h>
   8#include <linux/pagemap.h>
   9#include <linux/slab.h>
 
  10#include <linux/mount.h>
  11#include <linux/vfs.h>
  12#include <linux/quotaops.h>
  13#include <linux/mutex.h>
  14#include <linux/namei.h>
  15#include <linux/exportfs.h>
  16#include <linux/writeback.h>
  17#include <linux/buffer_head.h> /* sync_mapping_buffers */
  18
  19#include <asm/uaccess.h>
  20
  21#include "internal.h"
  22
  23int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  24		   struct kstat *stat)
  25{
  26	struct inode *inode = d_inode(dentry);
  27	generic_fillattr(inode, stat);
  28	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  29	return 0;
  30}
  31EXPORT_SYMBOL(simple_getattr);
  32
  33int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  34{
  35	buf->f_type = dentry->d_sb->s_magic;
  36	buf->f_bsize = PAGE_SIZE;
  37	buf->f_namelen = NAME_MAX;
  38	return 0;
  39}
  40EXPORT_SYMBOL(simple_statfs);
  41
  42/*
  43 * Retaining negative dentries for an in-memory filesystem just wastes
  44 * memory and lookup time: arrange for them to be deleted immediately.
  45 */
  46int always_delete_dentry(const struct dentry *dentry)
  47{
  48	return 1;
  49}
  50EXPORT_SYMBOL(always_delete_dentry);
  51
  52const struct dentry_operations simple_dentry_operations = {
  53	.d_delete = always_delete_dentry,
  54};
  55EXPORT_SYMBOL(simple_dentry_operations);
  56
  57/*
  58 * Lookup the data. This is trivial - if the dentry didn't already
  59 * exist, we know it is negative.  Set d_op to delete negative dentries.
  60 */
  61struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  62{
  63	if (dentry->d_name.len > NAME_MAX)
  64		return ERR_PTR(-ENAMETOOLONG);
  65	if (!dentry->d_sb->s_d_op)
  66		d_set_d_op(dentry, &simple_dentry_operations);
  67	d_add(dentry, NULL);
  68	return NULL;
  69}
  70EXPORT_SYMBOL(simple_lookup);
  71
  72int dcache_dir_open(struct inode *inode, struct file *file)
  73{
  74	static struct qstr cursor_name = QSTR_INIT(".", 1);
  75
  76	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
  77
  78	return file->private_data ? 0 : -ENOMEM;
  79}
  80EXPORT_SYMBOL(dcache_dir_open);
  81
  82int dcache_dir_close(struct inode *inode, struct file *file)
  83{
  84	dput(file->private_data);
  85	return 0;
  86}
  87EXPORT_SYMBOL(dcache_dir_close);
  88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
  90{
  91	struct dentry *dentry = file->f_path.dentry;
  92	inode_lock(d_inode(dentry));
  93	switch (whence) {
  94		case 1:
  95			offset += file->f_pos;
  96		case 0:
  97			if (offset >= 0)
  98				break;
  99		default:
 100			inode_unlock(d_inode(dentry));
 101			return -EINVAL;
 102	}
 103	if (offset != file->f_pos) {
 104		file->f_pos = offset;
 105		if (file->f_pos >= 2) {
 106			struct list_head *p;
 107			struct dentry *cursor = file->private_data;
 
 108			loff_t n = file->f_pos - 2;
 109
 110			spin_lock(&dentry->d_lock);
 111			/* d_lock not required for cursor */
 112			list_del(&cursor->d_child);
 113			p = dentry->d_subdirs.next;
 114			while (n && p != &dentry->d_subdirs) {
 115				struct dentry *next;
 116				next = list_entry(p, struct dentry, d_child);
 117				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 118				if (simple_positive(next))
 119					n--;
 120				spin_unlock(&next->d_lock);
 121				p = p->next;
 122			}
 123			list_add_tail(&cursor->d_child, p);
 124			spin_unlock(&dentry->d_lock);
 125		}
 126	}
 127	inode_unlock(d_inode(dentry));
 128	return offset;
 129}
 130EXPORT_SYMBOL(dcache_dir_lseek);
 131
 132/* Relationship between i_mode and the DT_xxx types */
 133static inline unsigned char dt_type(struct inode *inode)
 134{
 135	return (inode->i_mode >> 12) & 15;
 136}
 137
 138/*
 139 * Directory is locked and all positive dentries in it are safe, since
 140 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 141 * both impossible due to the lock on directory.
 142 */
 143
 144int dcache_readdir(struct file *file, struct dir_context *ctx)
 145{
 146	struct dentry *dentry = file->f_path.dentry;
 147	struct dentry *cursor = file->private_data;
 148	struct list_head *p, *q = &cursor->d_child;
 
 
 149
 150	if (!dir_emit_dots(file, ctx))
 151		return 0;
 152	spin_lock(&dentry->d_lock);
 153	if (ctx->pos == 2)
 154		list_move(q, &dentry->d_subdirs);
 155
 156	for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
 157		struct dentry *next = list_entry(p, struct dentry, d_child);
 158		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 159		if (!simple_positive(next)) {
 160			spin_unlock(&next->d_lock);
 161			continue;
 162		}
 163
 164		spin_unlock(&next->d_lock);
 165		spin_unlock(&dentry->d_lock);
 166		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 167			      d_inode(next)->i_ino, dt_type(d_inode(next))))
 168			return 0;
 169		spin_lock(&dentry->d_lock);
 170		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 171		/* next is still alive */
 172		list_move(q, p);
 173		spin_unlock(&next->d_lock);
 174		p = q;
 175		ctx->pos++;
 176	}
 177	spin_unlock(&dentry->d_lock);
 
 178	return 0;
 179}
 180EXPORT_SYMBOL(dcache_readdir);
 181
 182ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 183{
 184	return -EISDIR;
 185}
 186EXPORT_SYMBOL(generic_read_dir);
 187
 188const struct file_operations simple_dir_operations = {
 189	.open		= dcache_dir_open,
 190	.release	= dcache_dir_close,
 191	.llseek		= dcache_dir_lseek,
 192	.read		= generic_read_dir,
 193	.iterate	= dcache_readdir,
 194	.fsync		= noop_fsync,
 195};
 196EXPORT_SYMBOL(simple_dir_operations);
 197
 198const struct inode_operations simple_dir_inode_operations = {
 199	.lookup		= simple_lookup,
 200};
 201EXPORT_SYMBOL(simple_dir_inode_operations);
 202
 203static const struct super_operations simple_super_operations = {
 204	.statfs		= simple_statfs,
 205};
 206
 207/*
 208 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 209 * will never be mountable)
 210 */
 211struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
 212	const struct super_operations *ops,
 213	const struct dentry_operations *dops, unsigned long magic)
 214{
 215	struct super_block *s;
 216	struct dentry *dentry;
 217	struct inode *root;
 218	struct qstr d_name = QSTR_INIT(name, strlen(name));
 219
 220	s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
 
 221	if (IS_ERR(s))
 222		return ERR_CAST(s);
 223
 224	s->s_maxbytes = MAX_LFS_FILESIZE;
 225	s->s_blocksize = PAGE_SIZE;
 226	s->s_blocksize_bits = PAGE_SHIFT;
 227	s->s_magic = magic;
 228	s->s_op = ops ? ops : &simple_super_operations;
 
 229	s->s_time_gran = 1;
 230	root = new_inode(s);
 231	if (!root)
 232		goto Enomem;
 233	/*
 234	 * since this is the first inode, make it number 1. New inodes created
 235	 * after this must take care not to collide with it (by passing
 236	 * max_reserved of 1 to iunique).
 237	 */
 238	root->i_ino = 1;
 239	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 240	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
 241	dentry = __d_alloc(s, &d_name);
 242	if (!dentry) {
 243		iput(root);
 244		goto Enomem;
 245	}
 246	d_instantiate(dentry, root);
 247	s->s_root = dentry;
 248	s->s_d_op = dops;
 249	s->s_flags |= MS_ACTIVE;
 250	return dget(s->s_root);
 251
 252Enomem:
 253	deactivate_locked_super(s);
 254	return ERR_PTR(-ENOMEM);
 255}
 256EXPORT_SYMBOL(mount_pseudo);
 257
 258int simple_open(struct inode *inode, struct file *file)
 259{
 260	if (inode->i_private)
 261		file->private_data = inode->i_private;
 262	return 0;
 263}
 264EXPORT_SYMBOL(simple_open);
 265
 266int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 267{
 268	struct inode *inode = d_inode(old_dentry);
 269
 270	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 271	inc_nlink(inode);
 272	ihold(inode);
 273	dget(dentry);
 274	d_instantiate(dentry, inode);
 275	return 0;
 276}
 277EXPORT_SYMBOL(simple_link);
 278
 279int simple_empty(struct dentry *dentry)
 280{
 281	struct dentry *child;
 282	int ret = 0;
 283
 284	spin_lock(&dentry->d_lock);
 285	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 286		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 287		if (simple_positive(child)) {
 288			spin_unlock(&child->d_lock);
 289			goto out;
 290		}
 291		spin_unlock(&child->d_lock);
 292	}
 293	ret = 1;
 294out:
 295	spin_unlock(&dentry->d_lock);
 296	return ret;
 297}
 298EXPORT_SYMBOL(simple_empty);
 299
 300int simple_unlink(struct inode *dir, struct dentry *dentry)
 301{
 302	struct inode *inode = d_inode(dentry);
 303
 304	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 305	drop_nlink(inode);
 306	dput(dentry);
 307	return 0;
 308}
 309EXPORT_SYMBOL(simple_unlink);
 310
 311int simple_rmdir(struct inode *dir, struct dentry *dentry)
 312{
 313	if (!simple_empty(dentry))
 314		return -ENOTEMPTY;
 315
 316	drop_nlink(d_inode(dentry));
 317	simple_unlink(dir, dentry);
 318	drop_nlink(dir);
 319	return 0;
 320}
 321EXPORT_SYMBOL(simple_rmdir);
 322
 323int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 324		struct inode *new_dir, struct dentry *new_dentry)
 
 325{
 326	struct inode *inode = d_inode(old_dentry);
 327	int they_are_dirs = d_is_dir(old_dentry);
 328
 
 
 
 329	if (!simple_empty(new_dentry))
 330		return -ENOTEMPTY;
 331
 332	if (d_really_is_positive(new_dentry)) {
 333		simple_unlink(new_dir, new_dentry);
 334		if (they_are_dirs) {
 335			drop_nlink(d_inode(new_dentry));
 336			drop_nlink(old_dir);
 337		}
 338	} else if (they_are_dirs) {
 339		drop_nlink(old_dir);
 340		inc_nlink(new_dir);
 341	}
 342
 343	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 344		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
 345
 346	return 0;
 347}
 348EXPORT_SYMBOL(simple_rename);
 349
 350/**
 351 * simple_setattr - setattr for simple filesystem
 352 * @dentry: dentry
 353 * @iattr: iattr structure
 354 *
 355 * Returns 0 on success, -error on failure.
 356 *
 357 * simple_setattr is a simple ->setattr implementation without a proper
 358 * implementation of size changes.
 359 *
 360 * It can either be used for in-memory filesystems or special files
 361 * on simple regular filesystems.  Anything that needs to change on-disk
 362 * or wire state on size changes needs its own setattr method.
 363 */
 364int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 365{
 366	struct inode *inode = d_inode(dentry);
 367	int error;
 368
 369	error = inode_change_ok(inode, iattr);
 370	if (error)
 371		return error;
 372
 373	if (iattr->ia_valid & ATTR_SIZE)
 374		truncate_setsize(inode, iattr->ia_size);
 375	setattr_copy(inode, iattr);
 376	mark_inode_dirty(inode);
 377	return 0;
 378}
 379EXPORT_SYMBOL(simple_setattr);
 380
 381int simple_readpage(struct file *file, struct page *page)
 382{
 383	clear_highpage(page);
 384	flush_dcache_page(page);
 385	SetPageUptodate(page);
 386	unlock_page(page);
 387	return 0;
 388}
 389EXPORT_SYMBOL(simple_readpage);
 390
 391int simple_write_begin(struct file *file, struct address_space *mapping,
 392			loff_t pos, unsigned len, unsigned flags,
 393			struct page **pagep, void **fsdata)
 394{
 395	struct page *page;
 396	pgoff_t index;
 397
 398	index = pos >> PAGE_SHIFT;
 399
 400	page = grab_cache_page_write_begin(mapping, index, flags);
 401	if (!page)
 402		return -ENOMEM;
 403
 404	*pagep = page;
 405
 406	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 407		unsigned from = pos & (PAGE_SIZE - 1);
 408
 409		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 410	}
 411	return 0;
 412}
 413EXPORT_SYMBOL(simple_write_begin);
 414
 415/**
 416 * simple_write_end - .write_end helper for non-block-device FSes
 417 * @available: See .write_end of address_space_operations
 418 * @file: 		"
 419 * @mapping: 		"
 420 * @pos: 		"
 421 * @len: 		"
 422 * @copied: 		"
 423 * @page: 		"
 424 * @fsdata: 		"
 425 *
 426 * simple_write_end does the minimum needed for updating a page after writing is
 427 * done. It has the same API signature as the .write_end of
 428 * address_space_operations vector. So it can just be set onto .write_end for
 429 * FSes that don't need any other processing. i_mutex is assumed to be held.
 430 * Block based filesystems should use generic_write_end().
 431 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 432 * is not called, so a filesystem that actually does store data in .write_inode
 433 * should extend on what's done here with a call to mark_inode_dirty() in the
 434 * case that i_size has changed.
 
 
 435 */
 436int simple_write_end(struct file *file, struct address_space *mapping,
 437			loff_t pos, unsigned len, unsigned copied,
 438			struct page *page, void *fsdata)
 439{
 440	struct inode *inode = page->mapping->host;
 441	loff_t last_pos = pos + copied;
 442
 443	/* zero the stale part of the page if we did a short copy */
 444	if (copied < len) {
 445		unsigned from = pos & (PAGE_SIZE - 1);
 446
 447		zero_user(page, from + copied, len - copied);
 448	}
 449
 450	if (!PageUptodate(page))
 
 451		SetPageUptodate(page);
 
 452	/*
 453	 * No need to use i_size_read() here, the i_size
 454	 * cannot change under us because we hold the i_mutex.
 455	 */
 456	if (last_pos > inode->i_size)
 457		i_size_write(inode, last_pos);
 458
 459	set_page_dirty(page);
 460	unlock_page(page);
 461	put_page(page);
 462
 463	return copied;
 464}
 465EXPORT_SYMBOL(simple_write_end);
 466
 467/*
 468 * the inodes created here are not hashed. If you use iunique to generate
 469 * unique inode values later for this filesystem, then you must take care
 470 * to pass it an appropriate max_reserved value to avoid collisions.
 471 */
 472int simple_fill_super(struct super_block *s, unsigned long magic,
 473		      struct tree_descr *files)
 474{
 475	struct inode *inode;
 476	struct dentry *root;
 477	struct dentry *dentry;
 478	int i;
 479
 480	s->s_blocksize = PAGE_SIZE;
 481	s->s_blocksize_bits = PAGE_SHIFT;
 482	s->s_magic = magic;
 483	s->s_op = &simple_super_operations;
 484	s->s_time_gran = 1;
 485
 486	inode = new_inode(s);
 487	if (!inode)
 488		return -ENOMEM;
 489	/*
 490	 * because the root inode is 1, the files array must not contain an
 491	 * entry at index 1
 492	 */
 493	inode->i_ino = 1;
 494	inode->i_mode = S_IFDIR | 0755;
 495	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 496	inode->i_op = &simple_dir_inode_operations;
 497	inode->i_fop = &simple_dir_operations;
 498	set_nlink(inode, 2);
 499	root = d_make_root(inode);
 500	if (!root)
 501		return -ENOMEM;
 502	for (i = 0; !files->name || files->name[0]; i++, files++) {
 503		if (!files->name)
 504			continue;
 505
 506		/* warn if it tries to conflict with the root inode */
 507		if (unlikely(i == 1))
 508			printk(KERN_WARNING "%s: %s passed in a files array"
 509				"with an index of 1!\n", __func__,
 510				s->s_type->name);
 511
 512		dentry = d_alloc_name(root, files->name);
 513		if (!dentry)
 514			goto out;
 515		inode = new_inode(s);
 516		if (!inode) {
 517			dput(dentry);
 518			goto out;
 519		}
 520		inode->i_mode = S_IFREG | files->mode;
 521		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 522		inode->i_fop = files->ops;
 523		inode->i_ino = i;
 524		d_add(dentry, inode);
 525	}
 526	s->s_root = root;
 527	return 0;
 528out:
 529	d_genocide(root);
 530	shrink_dcache_parent(root);
 531	dput(root);
 532	return -ENOMEM;
 533}
 534EXPORT_SYMBOL(simple_fill_super);
 535
 536static DEFINE_SPINLOCK(pin_fs_lock);
 537
 538int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 539{
 540	struct vfsmount *mnt = NULL;
 541	spin_lock(&pin_fs_lock);
 542	if (unlikely(!*mount)) {
 543		spin_unlock(&pin_fs_lock);
 544		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
 545		if (IS_ERR(mnt))
 546			return PTR_ERR(mnt);
 547		spin_lock(&pin_fs_lock);
 548		if (!*mount)
 549			*mount = mnt;
 550	}
 551	mntget(*mount);
 552	++*count;
 553	spin_unlock(&pin_fs_lock);
 554	mntput(mnt);
 555	return 0;
 556}
 557EXPORT_SYMBOL(simple_pin_fs);
 558
 559void simple_release_fs(struct vfsmount **mount, int *count)
 560{
 561	struct vfsmount *mnt;
 562	spin_lock(&pin_fs_lock);
 563	mnt = *mount;
 564	if (!--*count)
 565		*mount = NULL;
 566	spin_unlock(&pin_fs_lock);
 567	mntput(mnt);
 568}
 569EXPORT_SYMBOL(simple_release_fs);
 570
 571/**
 572 * simple_read_from_buffer - copy data from the buffer to user space
 573 * @to: the user space buffer to read to
 574 * @count: the maximum number of bytes to read
 575 * @ppos: the current position in the buffer
 576 * @from: the buffer to read from
 577 * @available: the size of the buffer
 578 *
 579 * The simple_read_from_buffer() function reads up to @count bytes from the
 580 * buffer @from at offset @ppos into the user space address starting at @to.
 581 *
 582 * On success, the number of bytes read is returned and the offset @ppos is
 583 * advanced by this number, or negative value is returned on error.
 584 **/
 585ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 586				const void *from, size_t available)
 587{
 588	loff_t pos = *ppos;
 589	size_t ret;
 590
 591	if (pos < 0)
 592		return -EINVAL;
 593	if (pos >= available || !count)
 594		return 0;
 595	if (count > available - pos)
 596		count = available - pos;
 597	ret = copy_to_user(to, from + pos, count);
 598	if (ret == count)
 599		return -EFAULT;
 600	count -= ret;
 601	*ppos = pos + count;
 602	return count;
 603}
 604EXPORT_SYMBOL(simple_read_from_buffer);
 605
 606/**
 607 * simple_write_to_buffer - copy data from user space to the buffer
 608 * @to: the buffer to write to
 609 * @available: the size of the buffer
 610 * @ppos: the current position in the buffer
 611 * @from: the user space buffer to read from
 612 * @count: the maximum number of bytes to read
 613 *
 614 * The simple_write_to_buffer() function reads up to @count bytes from the user
 615 * space address starting at @from into the buffer @to at offset @ppos.
 616 *
 617 * On success, the number of bytes written is returned and the offset @ppos is
 618 * advanced by this number, or negative value is returned on error.
 619 **/
 620ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 621		const void __user *from, size_t count)
 622{
 623	loff_t pos = *ppos;
 624	size_t res;
 625
 626	if (pos < 0)
 627		return -EINVAL;
 628	if (pos >= available || !count)
 629		return 0;
 630	if (count > available - pos)
 631		count = available - pos;
 632	res = copy_from_user(to + pos, from, count);
 633	if (res == count)
 634		return -EFAULT;
 635	count -= res;
 636	*ppos = pos + count;
 637	return count;
 638}
 639EXPORT_SYMBOL(simple_write_to_buffer);
 640
 641/**
 642 * memory_read_from_buffer - copy data from the buffer
 643 * @to: the kernel space buffer to read to
 644 * @count: the maximum number of bytes to read
 645 * @ppos: the current position in the buffer
 646 * @from: the buffer to read from
 647 * @available: the size of the buffer
 648 *
 649 * The memory_read_from_buffer() function reads up to @count bytes from the
 650 * buffer @from at offset @ppos into the kernel space address starting at @to.
 651 *
 652 * On success, the number of bytes read is returned and the offset @ppos is
 653 * advanced by this number, or negative value is returned on error.
 654 **/
 655ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 656				const void *from, size_t available)
 657{
 658	loff_t pos = *ppos;
 659
 660	if (pos < 0)
 661		return -EINVAL;
 662	if (pos >= available)
 663		return 0;
 664	if (count > available - pos)
 665		count = available - pos;
 666	memcpy(to, from + pos, count);
 667	*ppos = pos + count;
 668
 669	return count;
 670}
 671EXPORT_SYMBOL(memory_read_from_buffer);
 672
 673/*
 674 * Transaction based IO.
 675 * The file expects a single write which triggers the transaction, and then
 676 * possibly a read which collects the result - which is stored in a
 677 * file-local buffer.
 678 */
 679
 680void simple_transaction_set(struct file *file, size_t n)
 681{
 682	struct simple_transaction_argresp *ar = file->private_data;
 683
 684	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 685
 686	/*
 687	 * The barrier ensures that ar->size will really remain zero until
 688	 * ar->data is ready for reading.
 689	 */
 690	smp_mb();
 691	ar->size = n;
 692}
 693EXPORT_SYMBOL(simple_transaction_set);
 694
 695char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 696{
 697	struct simple_transaction_argresp *ar;
 698	static DEFINE_SPINLOCK(simple_transaction_lock);
 699
 700	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 701		return ERR_PTR(-EFBIG);
 702
 703	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 704	if (!ar)
 705		return ERR_PTR(-ENOMEM);
 706
 707	spin_lock(&simple_transaction_lock);
 708
 709	/* only one write allowed per open */
 710	if (file->private_data) {
 711		spin_unlock(&simple_transaction_lock);
 712		free_page((unsigned long)ar);
 713		return ERR_PTR(-EBUSY);
 714	}
 715
 716	file->private_data = ar;
 717
 718	spin_unlock(&simple_transaction_lock);
 719
 720	if (copy_from_user(ar->data, buf, size))
 721		return ERR_PTR(-EFAULT);
 722
 723	return ar->data;
 724}
 725EXPORT_SYMBOL(simple_transaction_get);
 726
 727ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 728{
 729	struct simple_transaction_argresp *ar = file->private_data;
 730
 731	if (!ar)
 732		return 0;
 733	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 734}
 735EXPORT_SYMBOL(simple_transaction_read);
 736
 737int simple_transaction_release(struct inode *inode, struct file *file)
 738{
 739	free_page((unsigned long)file->private_data);
 740	return 0;
 741}
 742EXPORT_SYMBOL(simple_transaction_release);
 743
 744/* Simple attribute files */
 745
 746struct simple_attr {
 747	int (*get)(void *, u64 *);
 748	int (*set)(void *, u64);
 749	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 750	char set_buf[24];
 751	void *data;
 752	const char *fmt;	/* format for read operation */
 753	struct mutex mutex;	/* protects access to these buffers */
 754};
 755
 756/* simple_attr_open is called by an actual attribute open file operation
 757 * to set the attribute specific access operations. */
 758int simple_attr_open(struct inode *inode, struct file *file,
 759		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 760		     const char *fmt)
 761{
 762	struct simple_attr *attr;
 763
 764	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 765	if (!attr)
 766		return -ENOMEM;
 767
 768	attr->get = get;
 769	attr->set = set;
 770	attr->data = inode->i_private;
 771	attr->fmt = fmt;
 772	mutex_init(&attr->mutex);
 773
 774	file->private_data = attr;
 775
 776	return nonseekable_open(inode, file);
 777}
 778EXPORT_SYMBOL_GPL(simple_attr_open);
 779
 780int simple_attr_release(struct inode *inode, struct file *file)
 781{
 782	kfree(file->private_data);
 783	return 0;
 784}
 785EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
 786
 787/* read from the buffer that is filled with the get function */
 788ssize_t simple_attr_read(struct file *file, char __user *buf,
 789			 size_t len, loff_t *ppos)
 790{
 791	struct simple_attr *attr;
 792	size_t size;
 793	ssize_t ret;
 794
 795	attr = file->private_data;
 796
 797	if (!attr->get)
 798		return -EACCES;
 799
 800	ret = mutex_lock_interruptible(&attr->mutex);
 801	if (ret)
 802		return ret;
 803
 804	if (*ppos) {		/* continued read */
 805		size = strlen(attr->get_buf);
 806	} else {		/* first read */
 807		u64 val;
 808		ret = attr->get(attr->data, &val);
 809		if (ret)
 810			goto out;
 811
 812		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 813				 attr->fmt, (unsigned long long)val);
 814	}
 815
 816	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 817out:
 818	mutex_unlock(&attr->mutex);
 819	return ret;
 820}
 821EXPORT_SYMBOL_GPL(simple_attr_read);
 822
 823/* interpret the buffer as a number to call the set function with */
 824ssize_t simple_attr_write(struct file *file, const char __user *buf,
 825			  size_t len, loff_t *ppos)
 826{
 827	struct simple_attr *attr;
 828	u64 val;
 829	size_t size;
 830	ssize_t ret;
 831
 832	attr = file->private_data;
 833	if (!attr->set)
 834		return -EACCES;
 835
 836	ret = mutex_lock_interruptible(&attr->mutex);
 837	if (ret)
 838		return ret;
 839
 840	ret = -EFAULT;
 841	size = min(sizeof(attr->set_buf) - 1, len);
 842	if (copy_from_user(attr->set_buf, buf, size))
 843		goto out;
 844
 845	attr->set_buf[size] = '\0';
 846	val = simple_strtoll(attr->set_buf, NULL, 0);
 847	ret = attr->set(attr->data, val);
 848	if (ret == 0)
 849		ret = len; /* on success, claim we got the whole input */
 850out:
 851	mutex_unlock(&attr->mutex);
 852	return ret;
 853}
 854EXPORT_SYMBOL_GPL(simple_attr_write);
 855
 856/**
 857 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 858 * @sb:		filesystem to do the file handle conversion on
 859 * @fid:	file handle to convert
 860 * @fh_len:	length of the file handle in bytes
 861 * @fh_type:	type of file handle
 862 * @get_inode:	filesystem callback to retrieve inode
 863 *
 864 * This function decodes @fid as long as it has one of the well-known
 865 * Linux filehandle types and calls @get_inode on it to retrieve the
 866 * inode for the object specified in the file handle.
 867 */
 868struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 869		int fh_len, int fh_type, struct inode *(*get_inode)
 870			(struct super_block *sb, u64 ino, u32 gen))
 871{
 872	struct inode *inode = NULL;
 873
 874	if (fh_len < 2)
 875		return NULL;
 876
 877	switch (fh_type) {
 878	case FILEID_INO32_GEN:
 879	case FILEID_INO32_GEN_PARENT:
 880		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 881		break;
 882	}
 883
 884	return d_obtain_alias(inode);
 885}
 886EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 887
 888/**
 889 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 890 * @sb:		filesystem to do the file handle conversion on
 891 * @fid:	file handle to convert
 892 * @fh_len:	length of the file handle in bytes
 893 * @fh_type:	type of file handle
 894 * @get_inode:	filesystem callback to retrieve inode
 895 *
 896 * This function decodes @fid as long as it has one of the well-known
 897 * Linux filehandle types and calls @get_inode on it to retrieve the
 898 * inode for the _parent_ object specified in the file handle if it
 899 * is specified in the file handle, or NULL otherwise.
 900 */
 901struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 902		int fh_len, int fh_type, struct inode *(*get_inode)
 903			(struct super_block *sb, u64 ino, u32 gen))
 904{
 905	struct inode *inode = NULL;
 906
 907	if (fh_len <= 2)
 908		return NULL;
 909
 910	switch (fh_type) {
 911	case FILEID_INO32_GEN_PARENT:
 912		inode = get_inode(sb, fid->i32.parent_ino,
 913				  (fh_len > 3 ? fid->i32.parent_gen : 0));
 914		break;
 915	}
 916
 917	return d_obtain_alias(inode);
 918}
 919EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 920
 921/**
 922 * __generic_file_fsync - generic fsync implementation for simple filesystems
 923 *
 924 * @file:	file to synchronize
 925 * @start:	start offset in bytes
 926 * @end:	end offset in bytes (inclusive)
 927 * @datasync:	only synchronize essential metadata if true
 928 *
 929 * This is a generic implementation of the fsync method for simple
 930 * filesystems which track all non-inode metadata in the buffers list
 931 * hanging off the address_space structure.
 932 */
 933int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 934				 int datasync)
 935{
 936	struct inode *inode = file->f_mapping->host;
 937	int err;
 938	int ret;
 939
 940	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
 941	if (err)
 942		return err;
 943
 944	inode_lock(inode);
 945	ret = sync_mapping_buffers(inode->i_mapping);
 946	if (!(inode->i_state & I_DIRTY_ALL))
 947		goto out;
 948	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 949		goto out;
 950
 951	err = sync_inode_metadata(inode, 1);
 952	if (ret == 0)
 953		ret = err;
 954
 955out:
 956	inode_unlock(inode);
 
 
 
 
 957	return ret;
 958}
 959EXPORT_SYMBOL(__generic_file_fsync);
 960
 961/**
 962 * generic_file_fsync - generic fsync implementation for simple filesystems
 963 *			with flush
 964 * @file:	file to synchronize
 965 * @start:	start offset in bytes
 966 * @end:	end offset in bytes (inclusive)
 967 * @datasync:	only synchronize essential metadata if true
 968 *
 969 */
 970
 971int generic_file_fsync(struct file *file, loff_t start, loff_t end,
 972		       int datasync)
 973{
 974	struct inode *inode = file->f_mapping->host;
 975	int err;
 976
 977	err = __generic_file_fsync(file, start, end, datasync);
 978	if (err)
 979		return err;
 980	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
 981}
 982EXPORT_SYMBOL(generic_file_fsync);
 983
 984/**
 985 * generic_check_addressable - Check addressability of file system
 986 * @blocksize_bits:	log of file system block size
 987 * @num_blocks:		number of blocks in file system
 988 *
 989 * Determine whether a file system with @num_blocks blocks (and a
 990 * block size of 2**@blocksize_bits) is addressable by the sector_t
 991 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
 992 */
 993int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
 994{
 995	u64 last_fs_block = num_blocks - 1;
 996	u64 last_fs_page =
 997		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
 998
 999	if (unlikely(num_blocks == 0))
1000		return 0;
1001
1002	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1003		return -EINVAL;
1004
1005	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1006	    (last_fs_page > (pgoff_t)(~0ULL))) {
1007		return -EFBIG;
1008	}
1009	return 0;
1010}
1011EXPORT_SYMBOL(generic_check_addressable);
1012
1013/*
1014 * No-op implementation of ->fsync for in-memory filesystems.
1015 */
1016int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1017{
1018	return 0;
1019}
1020EXPORT_SYMBOL(noop_fsync);
1021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1023void kfree_link(void *p)
1024{
1025	kfree(p);
1026}
1027EXPORT_SYMBOL(kfree_link);
1028
1029/*
1030 * nop .set_page_dirty method so that people can use .page_mkwrite on
1031 * anon inodes.
1032 */
1033static int anon_set_page_dirty(struct page *page)
1034{
1035	return 0;
1036};
1037
1038/*
1039 * A single inode exists for all anon_inode files. Contrary to pipes,
1040 * anon_inode inodes have no associated per-instance data, so we need
1041 * only allocate one of them.
1042 */
1043struct inode *alloc_anon_inode(struct super_block *s)
1044{
1045	static const struct address_space_operations anon_aops = {
1046		.set_page_dirty = anon_set_page_dirty,
1047	};
1048	struct inode *inode = new_inode_pseudo(s);
1049
1050	if (!inode)
1051		return ERR_PTR(-ENOMEM);
1052
1053	inode->i_ino = get_next_ino();
1054	inode->i_mapping->a_ops = &anon_aops;
1055
1056	/*
1057	 * Mark the inode dirty from the very beginning,
1058	 * that way it will never be moved to the dirty
1059	 * list because mark_inode_dirty() will think
1060	 * that it already _is_ on the dirty list.
1061	 */
1062	inode->i_state = I_DIRTY;
1063	inode->i_mode = S_IRUSR | S_IWUSR;
1064	inode->i_uid = current_fsuid();
1065	inode->i_gid = current_fsgid();
1066	inode->i_flags |= S_PRIVATE;
1067	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1068	return inode;
1069}
1070EXPORT_SYMBOL(alloc_anon_inode);
1071
1072/**
1073 * simple_nosetlease - generic helper for prohibiting leases
1074 * @filp: file pointer
1075 * @arg: type of lease to obtain
1076 * @flp: new lease supplied for insertion
1077 * @priv: private data for lm_setup operation
1078 *
1079 * Generic helper for filesystems that do not wish to allow leases to be set.
1080 * All arguments are ignored and it just returns -EINVAL.
1081 */
1082int
1083simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1084		  void **priv)
1085{
1086	return -EINVAL;
1087}
1088EXPORT_SYMBOL(simple_nosetlease);
1089
1090const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1091			    struct delayed_call *done)
1092{
1093	return inode->i_link;
1094}
1095EXPORT_SYMBOL(simple_get_link);
1096
1097const struct inode_operations simple_symlink_inode_operations = {
1098	.get_link = simple_get_link,
1099	.readlink = generic_readlink
1100};
1101EXPORT_SYMBOL(simple_symlink_inode_operations);
1102
1103/*
1104 * Operations for a permanently empty directory.
1105 */
1106static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1107{
1108	return ERR_PTR(-ENOENT);
1109}
1110
1111static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1112				 struct kstat *stat)
1113{
1114	struct inode *inode = d_inode(dentry);
1115	generic_fillattr(inode, stat);
1116	return 0;
1117}
1118
1119static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1120{
1121	return -EPERM;
1122}
1123
1124static int empty_dir_setxattr(struct dentry *dentry, const char *name,
1125			      const void *value, size_t size, int flags)
1126{
1127	return -EOPNOTSUPP;
1128}
1129
1130static ssize_t empty_dir_getxattr(struct dentry *dentry, const char *name,
1131				  void *value, size_t size)
1132{
1133	return -EOPNOTSUPP;
1134}
1135
1136static int empty_dir_removexattr(struct dentry *dentry, const char *name)
1137{
1138	return -EOPNOTSUPP;
1139}
1140
1141static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1142{
1143	return -EOPNOTSUPP;
1144}
1145
1146static const struct inode_operations empty_dir_inode_operations = {
1147	.lookup		= empty_dir_lookup,
1148	.permission	= generic_permission,
1149	.setattr	= empty_dir_setattr,
1150	.getattr	= empty_dir_getattr,
1151	.setxattr	= empty_dir_setxattr,
1152	.getxattr	= empty_dir_getxattr,
1153	.removexattr	= empty_dir_removexattr,
1154	.listxattr	= empty_dir_listxattr,
1155};
1156
1157static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1158{
1159	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1160	return generic_file_llseek_size(file, offset, whence, 2, 2);
1161}
1162
1163static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1164{
1165	dir_emit_dots(file, ctx);
1166	return 0;
1167}
1168
1169static const struct file_operations empty_dir_operations = {
1170	.llseek		= empty_dir_llseek,
1171	.read		= generic_read_dir,
1172	.iterate	= empty_dir_readdir,
1173	.fsync		= noop_fsync,
1174};
1175
1176
1177void make_empty_dir_inode(struct inode *inode)
1178{
1179	set_nlink(inode, 2);
1180	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1181	inode->i_uid = GLOBAL_ROOT_UID;
1182	inode->i_gid = GLOBAL_ROOT_GID;
1183	inode->i_rdev = 0;
1184	inode->i_size = 0;
1185	inode->i_blkbits = PAGE_SHIFT;
1186	inode->i_blocks = 0;
1187
1188	inode->i_op = &empty_dir_inode_operations;
 
1189	inode->i_fop = &empty_dir_operations;
1190}
1191
1192bool is_empty_dir_inode(struct inode *inode)
1193{
1194	return (inode->i_fop == &empty_dir_operations) &&
1195		(inode->i_op == &empty_dir_inode_operations);
1196}
v4.17
   1/*
   2 *	fs/libfs.c
   3 *	Library for filesystems writers.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/export.h>
   8#include <linux/pagemap.h>
   9#include <linux/slab.h>
  10#include <linux/cred.h>
  11#include <linux/mount.h>
  12#include <linux/vfs.h>
  13#include <linux/quotaops.h>
  14#include <linux/mutex.h>
  15#include <linux/namei.h>
  16#include <linux/exportfs.h>
  17#include <linux/writeback.h>
  18#include <linux/buffer_head.h> /* sync_mapping_buffers */
  19
  20#include <linux/uaccess.h>
  21
  22#include "internal.h"
  23
  24int simple_getattr(const struct path *path, struct kstat *stat,
  25		   u32 request_mask, unsigned int query_flags)
  26{
  27	struct inode *inode = d_inode(path->dentry);
  28	generic_fillattr(inode, stat);
  29	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  30	return 0;
  31}
  32EXPORT_SYMBOL(simple_getattr);
  33
  34int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  35{
  36	buf->f_type = dentry->d_sb->s_magic;
  37	buf->f_bsize = PAGE_SIZE;
  38	buf->f_namelen = NAME_MAX;
  39	return 0;
  40}
  41EXPORT_SYMBOL(simple_statfs);
  42
  43/*
  44 * Retaining negative dentries for an in-memory filesystem just wastes
  45 * memory and lookup time: arrange for them to be deleted immediately.
  46 */
  47int always_delete_dentry(const struct dentry *dentry)
  48{
  49	return 1;
  50}
  51EXPORT_SYMBOL(always_delete_dentry);
  52
  53const struct dentry_operations simple_dentry_operations = {
  54	.d_delete = always_delete_dentry,
  55};
  56EXPORT_SYMBOL(simple_dentry_operations);
  57
  58/*
  59 * Lookup the data. This is trivial - if the dentry didn't already
  60 * exist, we know it is negative.  Set d_op to delete negative dentries.
  61 */
  62struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  63{
  64	if (dentry->d_name.len > NAME_MAX)
  65		return ERR_PTR(-ENAMETOOLONG);
  66	if (!dentry->d_sb->s_d_op)
  67		d_set_d_op(dentry, &simple_dentry_operations);
  68	d_add(dentry, NULL);
  69	return NULL;
  70}
  71EXPORT_SYMBOL(simple_lookup);
  72
  73int dcache_dir_open(struct inode *inode, struct file *file)
  74{
  75	file->private_data = d_alloc_cursor(file->f_path.dentry);
 
 
  76
  77	return file->private_data ? 0 : -ENOMEM;
  78}
  79EXPORT_SYMBOL(dcache_dir_open);
  80
  81int dcache_dir_close(struct inode *inode, struct file *file)
  82{
  83	dput(file->private_data);
  84	return 0;
  85}
  86EXPORT_SYMBOL(dcache_dir_close);
  87
  88/* parent is locked at least shared */
  89static struct dentry *next_positive(struct dentry *parent,
  90				    struct list_head *from,
  91				    int count)
  92{
  93	unsigned *seq = &parent->d_inode->i_dir_seq, n;
  94	struct dentry *res;
  95	struct list_head *p;
  96	bool skipped;
  97	int i;
  98
  99retry:
 100	i = count;
 101	skipped = false;
 102	n = smp_load_acquire(seq) & ~1;
 103	res = NULL;
 104	rcu_read_lock();
 105	for (p = from->next; p != &parent->d_subdirs; p = p->next) {
 106		struct dentry *d = list_entry(p, struct dentry, d_child);
 107		if (!simple_positive(d)) {
 108			skipped = true;
 109		} else if (!--i) {
 110			res = d;
 111			break;
 112		}
 113	}
 114	rcu_read_unlock();
 115	if (skipped) {
 116		smp_rmb();
 117		if (unlikely(*seq != n))
 118			goto retry;
 119	}
 120	return res;
 121}
 122
 123static void move_cursor(struct dentry *cursor, struct list_head *after)
 124{
 125	struct dentry *parent = cursor->d_parent;
 126	unsigned n, *seq = &parent->d_inode->i_dir_seq;
 127	spin_lock(&parent->d_lock);
 128	for (;;) {
 129		n = *seq;
 130		if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
 131			break;
 132		cpu_relax();
 133	}
 134	__list_del(cursor->d_child.prev, cursor->d_child.next);
 135	if (after)
 136		list_add(&cursor->d_child, after);
 137	else
 138		list_add_tail(&cursor->d_child, &parent->d_subdirs);
 139	smp_store_release(seq, n + 2);
 140	spin_unlock(&parent->d_lock);
 141}
 142
 143loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 144{
 145	struct dentry *dentry = file->f_path.dentry;
 
 146	switch (whence) {
 147		case 1:
 148			offset += file->f_pos;
 149		case 0:
 150			if (offset >= 0)
 151				break;
 152		default:
 
 153			return -EINVAL;
 154	}
 155	if (offset != file->f_pos) {
 156		file->f_pos = offset;
 157		if (file->f_pos >= 2) {
 
 158			struct dentry *cursor = file->private_data;
 159			struct dentry *to;
 160			loff_t n = file->f_pos - 2;
 161
 162			inode_lock_shared(dentry->d_inode);
 163			to = next_positive(dentry, &dentry->d_subdirs, n);
 164			move_cursor(cursor, to ? &to->d_child : NULL);
 165			inode_unlock_shared(dentry->d_inode);
 
 
 
 
 
 
 
 
 
 
 
 166		}
 167	}
 
 168	return offset;
 169}
 170EXPORT_SYMBOL(dcache_dir_lseek);
 171
 172/* Relationship between i_mode and the DT_xxx types */
 173static inline unsigned char dt_type(struct inode *inode)
 174{
 175	return (inode->i_mode >> 12) & 15;
 176}
 177
 178/*
 179 * Directory is locked and all positive dentries in it are safe, since
 180 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 181 * both impossible due to the lock on directory.
 182 */
 183
 184int dcache_readdir(struct file *file, struct dir_context *ctx)
 185{
 186	struct dentry *dentry = file->f_path.dentry;
 187	struct dentry *cursor = file->private_data;
 188	struct list_head *p = &cursor->d_child;
 189	struct dentry *next;
 190	bool moved = false;
 191
 192	if (!dir_emit_dots(file, ctx))
 193		return 0;
 
 
 
 194
 195	if (ctx->pos == 2)
 196		p = &dentry->d_subdirs;
 197	while ((next = next_positive(dentry, p, 1)) != NULL) {
 
 
 
 
 
 
 
 198		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 199			      d_inode(next)->i_ino, dt_type(d_inode(next))))
 200			break;
 201		moved = true;
 202		p = &next->d_child;
 
 
 
 
 203		ctx->pos++;
 204	}
 205	if (moved)
 206		move_cursor(cursor, p);
 207	return 0;
 208}
 209EXPORT_SYMBOL(dcache_readdir);
 210
 211ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 212{
 213	return -EISDIR;
 214}
 215EXPORT_SYMBOL(generic_read_dir);
 216
 217const struct file_operations simple_dir_operations = {
 218	.open		= dcache_dir_open,
 219	.release	= dcache_dir_close,
 220	.llseek		= dcache_dir_lseek,
 221	.read		= generic_read_dir,
 222	.iterate_shared	= dcache_readdir,
 223	.fsync		= noop_fsync,
 224};
 225EXPORT_SYMBOL(simple_dir_operations);
 226
 227const struct inode_operations simple_dir_inode_operations = {
 228	.lookup		= simple_lookup,
 229};
 230EXPORT_SYMBOL(simple_dir_inode_operations);
 231
 232static const struct super_operations simple_super_operations = {
 233	.statfs		= simple_statfs,
 234};
 235
 236/*
 237 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 238 * will never be mountable)
 239 */
 240struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
 241	const struct super_operations *ops, const struct xattr_handler **xattr,
 242	const struct dentry_operations *dops, unsigned long magic)
 243{
 244	struct super_block *s;
 245	struct dentry *dentry;
 246	struct inode *root;
 247	struct qstr d_name = QSTR_INIT(name, strlen(name));
 248
 249	s = sget_userns(fs_type, NULL, set_anon_super, SB_KERNMOUNT|SB_NOUSER,
 250			&init_user_ns, NULL);
 251	if (IS_ERR(s))
 252		return ERR_CAST(s);
 253
 254	s->s_maxbytes = MAX_LFS_FILESIZE;
 255	s->s_blocksize = PAGE_SIZE;
 256	s->s_blocksize_bits = PAGE_SHIFT;
 257	s->s_magic = magic;
 258	s->s_op = ops ? ops : &simple_super_operations;
 259	s->s_xattr = xattr;
 260	s->s_time_gran = 1;
 261	root = new_inode(s);
 262	if (!root)
 263		goto Enomem;
 264	/*
 265	 * since this is the first inode, make it number 1. New inodes created
 266	 * after this must take care not to collide with it (by passing
 267	 * max_reserved of 1 to iunique).
 268	 */
 269	root->i_ino = 1;
 270	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 271	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 272	dentry = __d_alloc(s, &d_name);
 273	if (!dentry) {
 274		iput(root);
 275		goto Enomem;
 276	}
 277	d_instantiate(dentry, root);
 278	s->s_root = dentry;
 279	s->s_d_op = dops;
 280	s->s_flags |= SB_ACTIVE;
 281	return dget(s->s_root);
 282
 283Enomem:
 284	deactivate_locked_super(s);
 285	return ERR_PTR(-ENOMEM);
 286}
 287EXPORT_SYMBOL(mount_pseudo_xattr);
 288
 289int simple_open(struct inode *inode, struct file *file)
 290{
 291	if (inode->i_private)
 292		file->private_data = inode->i_private;
 293	return 0;
 294}
 295EXPORT_SYMBOL(simple_open);
 296
 297int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 298{
 299	struct inode *inode = d_inode(old_dentry);
 300
 301	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 302	inc_nlink(inode);
 303	ihold(inode);
 304	dget(dentry);
 305	d_instantiate(dentry, inode);
 306	return 0;
 307}
 308EXPORT_SYMBOL(simple_link);
 309
 310int simple_empty(struct dentry *dentry)
 311{
 312	struct dentry *child;
 313	int ret = 0;
 314
 315	spin_lock(&dentry->d_lock);
 316	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 317		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 318		if (simple_positive(child)) {
 319			spin_unlock(&child->d_lock);
 320			goto out;
 321		}
 322		spin_unlock(&child->d_lock);
 323	}
 324	ret = 1;
 325out:
 326	spin_unlock(&dentry->d_lock);
 327	return ret;
 328}
 329EXPORT_SYMBOL(simple_empty);
 330
 331int simple_unlink(struct inode *dir, struct dentry *dentry)
 332{
 333	struct inode *inode = d_inode(dentry);
 334
 335	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 336	drop_nlink(inode);
 337	dput(dentry);
 338	return 0;
 339}
 340EXPORT_SYMBOL(simple_unlink);
 341
 342int simple_rmdir(struct inode *dir, struct dentry *dentry)
 343{
 344	if (!simple_empty(dentry))
 345		return -ENOTEMPTY;
 346
 347	drop_nlink(d_inode(dentry));
 348	simple_unlink(dir, dentry);
 349	drop_nlink(dir);
 350	return 0;
 351}
 352EXPORT_SYMBOL(simple_rmdir);
 353
 354int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 355		  struct inode *new_dir, struct dentry *new_dentry,
 356		  unsigned int flags)
 357{
 358	struct inode *inode = d_inode(old_dentry);
 359	int they_are_dirs = d_is_dir(old_dentry);
 360
 361	if (flags & ~RENAME_NOREPLACE)
 362		return -EINVAL;
 363
 364	if (!simple_empty(new_dentry))
 365		return -ENOTEMPTY;
 366
 367	if (d_really_is_positive(new_dentry)) {
 368		simple_unlink(new_dir, new_dentry);
 369		if (they_are_dirs) {
 370			drop_nlink(d_inode(new_dentry));
 371			drop_nlink(old_dir);
 372		}
 373	} else if (they_are_dirs) {
 374		drop_nlink(old_dir);
 375		inc_nlink(new_dir);
 376	}
 377
 378	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 379		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 380
 381	return 0;
 382}
 383EXPORT_SYMBOL(simple_rename);
 384
 385/**
 386 * simple_setattr - setattr for simple filesystem
 387 * @dentry: dentry
 388 * @iattr: iattr structure
 389 *
 390 * Returns 0 on success, -error on failure.
 391 *
 392 * simple_setattr is a simple ->setattr implementation without a proper
 393 * implementation of size changes.
 394 *
 395 * It can either be used for in-memory filesystems or special files
 396 * on simple regular filesystems.  Anything that needs to change on-disk
 397 * or wire state on size changes needs its own setattr method.
 398 */
 399int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 400{
 401	struct inode *inode = d_inode(dentry);
 402	int error;
 403
 404	error = setattr_prepare(dentry, iattr);
 405	if (error)
 406		return error;
 407
 408	if (iattr->ia_valid & ATTR_SIZE)
 409		truncate_setsize(inode, iattr->ia_size);
 410	setattr_copy(inode, iattr);
 411	mark_inode_dirty(inode);
 412	return 0;
 413}
 414EXPORT_SYMBOL(simple_setattr);
 415
 416int simple_readpage(struct file *file, struct page *page)
 417{
 418	clear_highpage(page);
 419	flush_dcache_page(page);
 420	SetPageUptodate(page);
 421	unlock_page(page);
 422	return 0;
 423}
 424EXPORT_SYMBOL(simple_readpage);
 425
 426int simple_write_begin(struct file *file, struct address_space *mapping,
 427			loff_t pos, unsigned len, unsigned flags,
 428			struct page **pagep, void **fsdata)
 429{
 430	struct page *page;
 431	pgoff_t index;
 432
 433	index = pos >> PAGE_SHIFT;
 434
 435	page = grab_cache_page_write_begin(mapping, index, flags);
 436	if (!page)
 437		return -ENOMEM;
 438
 439	*pagep = page;
 440
 441	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 442		unsigned from = pos & (PAGE_SIZE - 1);
 443
 444		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 445	}
 446	return 0;
 447}
 448EXPORT_SYMBOL(simple_write_begin);
 449
 450/**
 451 * simple_write_end - .write_end helper for non-block-device FSes
 452 * @available: See .write_end of address_space_operations
 453 * @file: 		"
 454 * @mapping: 		"
 455 * @pos: 		"
 456 * @len: 		"
 457 * @copied: 		"
 458 * @page: 		"
 459 * @fsdata: 		"
 460 *
 461 * simple_write_end does the minimum needed for updating a page after writing is
 462 * done. It has the same API signature as the .write_end of
 463 * address_space_operations vector. So it can just be set onto .write_end for
 464 * FSes that don't need any other processing. i_mutex is assumed to be held.
 465 * Block based filesystems should use generic_write_end().
 466 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 467 * is not called, so a filesystem that actually does store data in .write_inode
 468 * should extend on what's done here with a call to mark_inode_dirty() in the
 469 * case that i_size has changed.
 470 *
 471 * Use *ONLY* with simple_readpage()
 472 */
 473int simple_write_end(struct file *file, struct address_space *mapping,
 474			loff_t pos, unsigned len, unsigned copied,
 475			struct page *page, void *fsdata)
 476{
 477	struct inode *inode = page->mapping->host;
 478	loff_t last_pos = pos + copied;
 479
 480	/* zero the stale part of the page if we did a short copy */
 481	if (!PageUptodate(page)) {
 482		if (copied < len) {
 483			unsigned from = pos & (PAGE_SIZE - 1);
 
 
 484
 485			zero_user(page, from + copied, len - copied);
 486		}
 487		SetPageUptodate(page);
 488	}
 489	/*
 490	 * No need to use i_size_read() here, the i_size
 491	 * cannot change under us because we hold the i_mutex.
 492	 */
 493	if (last_pos > inode->i_size)
 494		i_size_write(inode, last_pos);
 495
 496	set_page_dirty(page);
 497	unlock_page(page);
 498	put_page(page);
 499
 500	return copied;
 501}
 502EXPORT_SYMBOL(simple_write_end);
 503
 504/*
 505 * the inodes created here are not hashed. If you use iunique to generate
 506 * unique inode values later for this filesystem, then you must take care
 507 * to pass it an appropriate max_reserved value to avoid collisions.
 508 */
 509int simple_fill_super(struct super_block *s, unsigned long magic,
 510		      const struct tree_descr *files)
 511{
 512	struct inode *inode;
 513	struct dentry *root;
 514	struct dentry *dentry;
 515	int i;
 516
 517	s->s_blocksize = PAGE_SIZE;
 518	s->s_blocksize_bits = PAGE_SHIFT;
 519	s->s_magic = magic;
 520	s->s_op = &simple_super_operations;
 521	s->s_time_gran = 1;
 522
 523	inode = new_inode(s);
 524	if (!inode)
 525		return -ENOMEM;
 526	/*
 527	 * because the root inode is 1, the files array must not contain an
 528	 * entry at index 1
 529	 */
 530	inode->i_ino = 1;
 531	inode->i_mode = S_IFDIR | 0755;
 532	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 533	inode->i_op = &simple_dir_inode_operations;
 534	inode->i_fop = &simple_dir_operations;
 535	set_nlink(inode, 2);
 536	root = d_make_root(inode);
 537	if (!root)
 538		return -ENOMEM;
 539	for (i = 0; !files->name || files->name[0]; i++, files++) {
 540		if (!files->name)
 541			continue;
 542
 543		/* warn if it tries to conflict with the root inode */
 544		if (unlikely(i == 1))
 545			printk(KERN_WARNING "%s: %s passed in a files array"
 546				"with an index of 1!\n", __func__,
 547				s->s_type->name);
 548
 549		dentry = d_alloc_name(root, files->name);
 550		if (!dentry)
 551			goto out;
 552		inode = new_inode(s);
 553		if (!inode) {
 554			dput(dentry);
 555			goto out;
 556		}
 557		inode->i_mode = S_IFREG | files->mode;
 558		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 559		inode->i_fop = files->ops;
 560		inode->i_ino = i;
 561		d_add(dentry, inode);
 562	}
 563	s->s_root = root;
 564	return 0;
 565out:
 566	d_genocide(root);
 567	shrink_dcache_parent(root);
 568	dput(root);
 569	return -ENOMEM;
 570}
 571EXPORT_SYMBOL(simple_fill_super);
 572
 573static DEFINE_SPINLOCK(pin_fs_lock);
 574
 575int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 576{
 577	struct vfsmount *mnt = NULL;
 578	spin_lock(&pin_fs_lock);
 579	if (unlikely(!*mount)) {
 580		spin_unlock(&pin_fs_lock);
 581		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
 582		if (IS_ERR(mnt))
 583			return PTR_ERR(mnt);
 584		spin_lock(&pin_fs_lock);
 585		if (!*mount)
 586			*mount = mnt;
 587	}
 588	mntget(*mount);
 589	++*count;
 590	spin_unlock(&pin_fs_lock);
 591	mntput(mnt);
 592	return 0;
 593}
 594EXPORT_SYMBOL(simple_pin_fs);
 595
 596void simple_release_fs(struct vfsmount **mount, int *count)
 597{
 598	struct vfsmount *mnt;
 599	spin_lock(&pin_fs_lock);
 600	mnt = *mount;
 601	if (!--*count)
 602		*mount = NULL;
 603	spin_unlock(&pin_fs_lock);
 604	mntput(mnt);
 605}
 606EXPORT_SYMBOL(simple_release_fs);
 607
 608/**
 609 * simple_read_from_buffer - copy data from the buffer to user space
 610 * @to: the user space buffer to read to
 611 * @count: the maximum number of bytes to read
 612 * @ppos: the current position in the buffer
 613 * @from: the buffer to read from
 614 * @available: the size of the buffer
 615 *
 616 * The simple_read_from_buffer() function reads up to @count bytes from the
 617 * buffer @from at offset @ppos into the user space address starting at @to.
 618 *
 619 * On success, the number of bytes read is returned and the offset @ppos is
 620 * advanced by this number, or negative value is returned on error.
 621 **/
 622ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 623				const void *from, size_t available)
 624{
 625	loff_t pos = *ppos;
 626	size_t ret;
 627
 628	if (pos < 0)
 629		return -EINVAL;
 630	if (pos >= available || !count)
 631		return 0;
 632	if (count > available - pos)
 633		count = available - pos;
 634	ret = copy_to_user(to, from + pos, count);
 635	if (ret == count)
 636		return -EFAULT;
 637	count -= ret;
 638	*ppos = pos + count;
 639	return count;
 640}
 641EXPORT_SYMBOL(simple_read_from_buffer);
 642
 643/**
 644 * simple_write_to_buffer - copy data from user space to the buffer
 645 * @to: the buffer to write to
 646 * @available: the size of the buffer
 647 * @ppos: the current position in the buffer
 648 * @from: the user space buffer to read from
 649 * @count: the maximum number of bytes to read
 650 *
 651 * The simple_write_to_buffer() function reads up to @count bytes from the user
 652 * space address starting at @from into the buffer @to at offset @ppos.
 653 *
 654 * On success, the number of bytes written is returned and the offset @ppos is
 655 * advanced by this number, or negative value is returned on error.
 656 **/
 657ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 658		const void __user *from, size_t count)
 659{
 660	loff_t pos = *ppos;
 661	size_t res;
 662
 663	if (pos < 0)
 664		return -EINVAL;
 665	if (pos >= available || !count)
 666		return 0;
 667	if (count > available - pos)
 668		count = available - pos;
 669	res = copy_from_user(to + pos, from, count);
 670	if (res == count)
 671		return -EFAULT;
 672	count -= res;
 673	*ppos = pos + count;
 674	return count;
 675}
 676EXPORT_SYMBOL(simple_write_to_buffer);
 677
 678/**
 679 * memory_read_from_buffer - copy data from the buffer
 680 * @to: the kernel space buffer to read to
 681 * @count: the maximum number of bytes to read
 682 * @ppos: the current position in the buffer
 683 * @from: the buffer to read from
 684 * @available: the size of the buffer
 685 *
 686 * The memory_read_from_buffer() function reads up to @count bytes from the
 687 * buffer @from at offset @ppos into the kernel space address starting at @to.
 688 *
 689 * On success, the number of bytes read is returned and the offset @ppos is
 690 * advanced by this number, or negative value is returned on error.
 691 **/
 692ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 693				const void *from, size_t available)
 694{
 695	loff_t pos = *ppos;
 696
 697	if (pos < 0)
 698		return -EINVAL;
 699	if (pos >= available)
 700		return 0;
 701	if (count > available - pos)
 702		count = available - pos;
 703	memcpy(to, from + pos, count);
 704	*ppos = pos + count;
 705
 706	return count;
 707}
 708EXPORT_SYMBOL(memory_read_from_buffer);
 709
 710/*
 711 * Transaction based IO.
 712 * The file expects a single write which triggers the transaction, and then
 713 * possibly a read which collects the result - which is stored in a
 714 * file-local buffer.
 715 */
 716
 717void simple_transaction_set(struct file *file, size_t n)
 718{
 719	struct simple_transaction_argresp *ar = file->private_data;
 720
 721	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 722
 723	/*
 724	 * The barrier ensures that ar->size will really remain zero until
 725	 * ar->data is ready for reading.
 726	 */
 727	smp_mb();
 728	ar->size = n;
 729}
 730EXPORT_SYMBOL(simple_transaction_set);
 731
 732char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 733{
 734	struct simple_transaction_argresp *ar;
 735	static DEFINE_SPINLOCK(simple_transaction_lock);
 736
 737	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 738		return ERR_PTR(-EFBIG);
 739
 740	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 741	if (!ar)
 742		return ERR_PTR(-ENOMEM);
 743
 744	spin_lock(&simple_transaction_lock);
 745
 746	/* only one write allowed per open */
 747	if (file->private_data) {
 748		spin_unlock(&simple_transaction_lock);
 749		free_page((unsigned long)ar);
 750		return ERR_PTR(-EBUSY);
 751	}
 752
 753	file->private_data = ar;
 754
 755	spin_unlock(&simple_transaction_lock);
 756
 757	if (copy_from_user(ar->data, buf, size))
 758		return ERR_PTR(-EFAULT);
 759
 760	return ar->data;
 761}
 762EXPORT_SYMBOL(simple_transaction_get);
 763
 764ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 765{
 766	struct simple_transaction_argresp *ar = file->private_data;
 767
 768	if (!ar)
 769		return 0;
 770	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 771}
 772EXPORT_SYMBOL(simple_transaction_read);
 773
 774int simple_transaction_release(struct inode *inode, struct file *file)
 775{
 776	free_page((unsigned long)file->private_data);
 777	return 0;
 778}
 779EXPORT_SYMBOL(simple_transaction_release);
 780
 781/* Simple attribute files */
 782
 783struct simple_attr {
 784	int (*get)(void *, u64 *);
 785	int (*set)(void *, u64);
 786	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 787	char set_buf[24];
 788	void *data;
 789	const char *fmt;	/* format for read operation */
 790	struct mutex mutex;	/* protects access to these buffers */
 791};
 792
 793/* simple_attr_open is called by an actual attribute open file operation
 794 * to set the attribute specific access operations. */
 795int simple_attr_open(struct inode *inode, struct file *file,
 796		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 797		     const char *fmt)
 798{
 799	struct simple_attr *attr;
 800
 801	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 802	if (!attr)
 803		return -ENOMEM;
 804
 805	attr->get = get;
 806	attr->set = set;
 807	attr->data = inode->i_private;
 808	attr->fmt = fmt;
 809	mutex_init(&attr->mutex);
 810
 811	file->private_data = attr;
 812
 813	return nonseekable_open(inode, file);
 814}
 815EXPORT_SYMBOL_GPL(simple_attr_open);
 816
 817int simple_attr_release(struct inode *inode, struct file *file)
 818{
 819	kfree(file->private_data);
 820	return 0;
 821}
 822EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
 823
 824/* read from the buffer that is filled with the get function */
 825ssize_t simple_attr_read(struct file *file, char __user *buf,
 826			 size_t len, loff_t *ppos)
 827{
 828	struct simple_attr *attr;
 829	size_t size;
 830	ssize_t ret;
 831
 832	attr = file->private_data;
 833
 834	if (!attr->get)
 835		return -EACCES;
 836
 837	ret = mutex_lock_interruptible(&attr->mutex);
 838	if (ret)
 839		return ret;
 840
 841	if (*ppos) {		/* continued read */
 842		size = strlen(attr->get_buf);
 843	} else {		/* first read */
 844		u64 val;
 845		ret = attr->get(attr->data, &val);
 846		if (ret)
 847			goto out;
 848
 849		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 850				 attr->fmt, (unsigned long long)val);
 851	}
 852
 853	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 854out:
 855	mutex_unlock(&attr->mutex);
 856	return ret;
 857}
 858EXPORT_SYMBOL_GPL(simple_attr_read);
 859
 860/* interpret the buffer as a number to call the set function with */
 861ssize_t simple_attr_write(struct file *file, const char __user *buf,
 862			  size_t len, loff_t *ppos)
 863{
 864	struct simple_attr *attr;
 865	u64 val;
 866	size_t size;
 867	ssize_t ret;
 868
 869	attr = file->private_data;
 870	if (!attr->set)
 871		return -EACCES;
 872
 873	ret = mutex_lock_interruptible(&attr->mutex);
 874	if (ret)
 875		return ret;
 876
 877	ret = -EFAULT;
 878	size = min(sizeof(attr->set_buf) - 1, len);
 879	if (copy_from_user(attr->set_buf, buf, size))
 880		goto out;
 881
 882	attr->set_buf[size] = '\0';
 883	val = simple_strtoll(attr->set_buf, NULL, 0);
 884	ret = attr->set(attr->data, val);
 885	if (ret == 0)
 886		ret = len; /* on success, claim we got the whole input */
 887out:
 888	mutex_unlock(&attr->mutex);
 889	return ret;
 890}
 891EXPORT_SYMBOL_GPL(simple_attr_write);
 892
 893/**
 894 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 895 * @sb:		filesystem to do the file handle conversion on
 896 * @fid:	file handle to convert
 897 * @fh_len:	length of the file handle in bytes
 898 * @fh_type:	type of file handle
 899 * @get_inode:	filesystem callback to retrieve inode
 900 *
 901 * This function decodes @fid as long as it has one of the well-known
 902 * Linux filehandle types and calls @get_inode on it to retrieve the
 903 * inode for the object specified in the file handle.
 904 */
 905struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 906		int fh_len, int fh_type, struct inode *(*get_inode)
 907			(struct super_block *sb, u64 ino, u32 gen))
 908{
 909	struct inode *inode = NULL;
 910
 911	if (fh_len < 2)
 912		return NULL;
 913
 914	switch (fh_type) {
 915	case FILEID_INO32_GEN:
 916	case FILEID_INO32_GEN_PARENT:
 917		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 918		break;
 919	}
 920
 921	return d_obtain_alias(inode);
 922}
 923EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 924
 925/**
 926 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 927 * @sb:		filesystem to do the file handle conversion on
 928 * @fid:	file handle to convert
 929 * @fh_len:	length of the file handle in bytes
 930 * @fh_type:	type of file handle
 931 * @get_inode:	filesystem callback to retrieve inode
 932 *
 933 * This function decodes @fid as long as it has one of the well-known
 934 * Linux filehandle types and calls @get_inode on it to retrieve the
 935 * inode for the _parent_ object specified in the file handle if it
 936 * is specified in the file handle, or NULL otherwise.
 937 */
 938struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 939		int fh_len, int fh_type, struct inode *(*get_inode)
 940			(struct super_block *sb, u64 ino, u32 gen))
 941{
 942	struct inode *inode = NULL;
 943
 944	if (fh_len <= 2)
 945		return NULL;
 946
 947	switch (fh_type) {
 948	case FILEID_INO32_GEN_PARENT:
 949		inode = get_inode(sb, fid->i32.parent_ino,
 950				  (fh_len > 3 ? fid->i32.parent_gen : 0));
 951		break;
 952	}
 953
 954	return d_obtain_alias(inode);
 955}
 956EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 957
 958/**
 959 * __generic_file_fsync - generic fsync implementation for simple filesystems
 960 *
 961 * @file:	file to synchronize
 962 * @start:	start offset in bytes
 963 * @end:	end offset in bytes (inclusive)
 964 * @datasync:	only synchronize essential metadata if true
 965 *
 966 * This is a generic implementation of the fsync method for simple
 967 * filesystems which track all non-inode metadata in the buffers list
 968 * hanging off the address_space structure.
 969 */
 970int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 971				 int datasync)
 972{
 973	struct inode *inode = file->f_mapping->host;
 974	int err;
 975	int ret;
 976
 977	err = file_write_and_wait_range(file, start, end);
 978	if (err)
 979		return err;
 980
 981	inode_lock(inode);
 982	ret = sync_mapping_buffers(inode->i_mapping);
 983	if (!(inode->i_state & I_DIRTY_ALL))
 984		goto out;
 985	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 986		goto out;
 987
 988	err = sync_inode_metadata(inode, 1);
 989	if (ret == 0)
 990		ret = err;
 991
 992out:
 993	inode_unlock(inode);
 994	/* check and advance again to catch errors after syncing out buffers */
 995	err = file_check_and_advance_wb_err(file);
 996	if (ret == 0)
 997		ret = err;
 998	return ret;
 999}
1000EXPORT_SYMBOL(__generic_file_fsync);
1001
1002/**
1003 * generic_file_fsync - generic fsync implementation for simple filesystems
1004 *			with flush
1005 * @file:	file to synchronize
1006 * @start:	start offset in bytes
1007 * @end:	end offset in bytes (inclusive)
1008 * @datasync:	only synchronize essential metadata if true
1009 *
1010 */
1011
1012int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1013		       int datasync)
1014{
1015	struct inode *inode = file->f_mapping->host;
1016	int err;
1017
1018	err = __generic_file_fsync(file, start, end, datasync);
1019	if (err)
1020		return err;
1021	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1022}
1023EXPORT_SYMBOL(generic_file_fsync);
1024
1025/**
1026 * generic_check_addressable - Check addressability of file system
1027 * @blocksize_bits:	log of file system block size
1028 * @num_blocks:		number of blocks in file system
1029 *
1030 * Determine whether a file system with @num_blocks blocks (and a
1031 * block size of 2**@blocksize_bits) is addressable by the sector_t
1032 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1033 */
1034int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1035{
1036	u64 last_fs_block = num_blocks - 1;
1037	u64 last_fs_page =
1038		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1039
1040	if (unlikely(num_blocks == 0))
1041		return 0;
1042
1043	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1044		return -EINVAL;
1045
1046	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1047	    (last_fs_page > (pgoff_t)(~0ULL))) {
1048		return -EFBIG;
1049	}
1050	return 0;
1051}
1052EXPORT_SYMBOL(generic_check_addressable);
1053
1054/*
1055 * No-op implementation of ->fsync for in-memory filesystems.
1056 */
1057int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1058{
1059	return 0;
1060}
1061EXPORT_SYMBOL(noop_fsync);
1062
1063int noop_set_page_dirty(struct page *page)
1064{
1065	/*
1066	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1067	 * tracking in the page object, dax does all dirty tracking in
1068	 * the inode address_space in response to mkwrite faults. In the
1069	 * dax case we only need to worry about potentially dirty CPU
1070	 * caches, not dirty page cache pages to write back.
1071	 *
1072	 * This callback is defined to prevent fallback to
1073	 * __set_page_dirty_buffers() in set_page_dirty().
1074	 */
1075	return 0;
1076}
1077EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1078
1079void noop_invalidatepage(struct page *page, unsigned int offset,
1080		unsigned int length)
1081{
1082	/*
1083	 * There is no page cache to invalidate in the dax case, however
1084	 * we need this callback defined to prevent falling back to
1085	 * block_invalidatepage() in do_invalidatepage().
1086	 */
1087}
1088EXPORT_SYMBOL_GPL(noop_invalidatepage);
1089
1090ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1091{
1092	/*
1093	 * iomap based filesystems support direct I/O without need for
1094	 * this callback. However, it still needs to be set in
1095	 * inode->a_ops so that open/fcntl know that direct I/O is
1096	 * generally supported.
1097	 */
1098	return -EINVAL;
1099}
1100EXPORT_SYMBOL_GPL(noop_direct_IO);
1101
1102/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1103void kfree_link(void *p)
1104{
1105	kfree(p);
1106}
1107EXPORT_SYMBOL(kfree_link);
1108
1109/*
1110 * nop .set_page_dirty method so that people can use .page_mkwrite on
1111 * anon inodes.
1112 */
1113static int anon_set_page_dirty(struct page *page)
1114{
1115	return 0;
1116};
1117
1118/*
1119 * A single inode exists for all anon_inode files. Contrary to pipes,
1120 * anon_inode inodes have no associated per-instance data, so we need
1121 * only allocate one of them.
1122 */
1123struct inode *alloc_anon_inode(struct super_block *s)
1124{
1125	static const struct address_space_operations anon_aops = {
1126		.set_page_dirty = anon_set_page_dirty,
1127	};
1128	struct inode *inode = new_inode_pseudo(s);
1129
1130	if (!inode)
1131		return ERR_PTR(-ENOMEM);
1132
1133	inode->i_ino = get_next_ino();
1134	inode->i_mapping->a_ops = &anon_aops;
1135
1136	/*
1137	 * Mark the inode dirty from the very beginning,
1138	 * that way it will never be moved to the dirty
1139	 * list because mark_inode_dirty() will think
1140	 * that it already _is_ on the dirty list.
1141	 */
1142	inode->i_state = I_DIRTY;
1143	inode->i_mode = S_IRUSR | S_IWUSR;
1144	inode->i_uid = current_fsuid();
1145	inode->i_gid = current_fsgid();
1146	inode->i_flags |= S_PRIVATE;
1147	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1148	return inode;
1149}
1150EXPORT_SYMBOL(alloc_anon_inode);
1151
1152/**
1153 * simple_nosetlease - generic helper for prohibiting leases
1154 * @filp: file pointer
1155 * @arg: type of lease to obtain
1156 * @flp: new lease supplied for insertion
1157 * @priv: private data for lm_setup operation
1158 *
1159 * Generic helper for filesystems that do not wish to allow leases to be set.
1160 * All arguments are ignored and it just returns -EINVAL.
1161 */
1162int
1163simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1164		  void **priv)
1165{
1166	return -EINVAL;
1167}
1168EXPORT_SYMBOL(simple_nosetlease);
1169
1170const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1171			    struct delayed_call *done)
1172{
1173	return inode->i_link;
1174}
1175EXPORT_SYMBOL(simple_get_link);
1176
1177const struct inode_operations simple_symlink_inode_operations = {
1178	.get_link = simple_get_link,
 
1179};
1180EXPORT_SYMBOL(simple_symlink_inode_operations);
1181
1182/*
1183 * Operations for a permanently empty directory.
1184 */
1185static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1186{
1187	return ERR_PTR(-ENOENT);
1188}
1189
1190static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1191			     u32 request_mask, unsigned int query_flags)
1192{
1193	struct inode *inode = d_inode(path->dentry);
1194	generic_fillattr(inode, stat);
1195	return 0;
1196}
1197
1198static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1199{
1200	return -EPERM;
1201}
1202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1204{
1205	return -EOPNOTSUPP;
1206}
1207
1208static const struct inode_operations empty_dir_inode_operations = {
1209	.lookup		= empty_dir_lookup,
1210	.permission	= generic_permission,
1211	.setattr	= empty_dir_setattr,
1212	.getattr	= empty_dir_getattr,
 
 
 
1213	.listxattr	= empty_dir_listxattr,
1214};
1215
1216static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1217{
1218	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1219	return generic_file_llseek_size(file, offset, whence, 2, 2);
1220}
1221
1222static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1223{
1224	dir_emit_dots(file, ctx);
1225	return 0;
1226}
1227
1228static const struct file_operations empty_dir_operations = {
1229	.llseek		= empty_dir_llseek,
1230	.read		= generic_read_dir,
1231	.iterate_shared	= empty_dir_readdir,
1232	.fsync		= noop_fsync,
1233};
1234
1235
1236void make_empty_dir_inode(struct inode *inode)
1237{
1238	set_nlink(inode, 2);
1239	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1240	inode->i_uid = GLOBAL_ROOT_UID;
1241	inode->i_gid = GLOBAL_ROOT_GID;
1242	inode->i_rdev = 0;
1243	inode->i_size = 0;
1244	inode->i_blkbits = PAGE_SHIFT;
1245	inode->i_blocks = 0;
1246
1247	inode->i_op = &empty_dir_inode_operations;
1248	inode->i_opflags &= ~IOP_XATTR;
1249	inode->i_fop = &empty_dir_operations;
1250}
1251
1252bool is_empty_dir_inode(struct inode *inode)
1253{
1254	return (inode->i_fop == &empty_dir_operations) &&
1255		(inode->i_op == &empty_dir_inode_operations);
1256}