Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v4.6
   1/*
   2 *	fs/libfs.c
   3 *	Library for filesystems writers.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/export.h>
   8#include <linux/pagemap.h>
   9#include <linux/slab.h>
  10#include <linux/mount.h>
  11#include <linux/vfs.h>
  12#include <linux/quotaops.h>
  13#include <linux/mutex.h>
  14#include <linux/namei.h>
  15#include <linux/exportfs.h>
  16#include <linux/writeback.h>
  17#include <linux/buffer_head.h> /* sync_mapping_buffers */
  18
  19#include <asm/uaccess.h>
  20
  21#include "internal.h"
  22
  23int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  24		   struct kstat *stat)
  25{
  26	struct inode *inode = d_inode(dentry);
  27	generic_fillattr(inode, stat);
  28	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  29	return 0;
  30}
  31EXPORT_SYMBOL(simple_getattr);
  32
  33int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  34{
  35	buf->f_type = dentry->d_sb->s_magic;
  36	buf->f_bsize = PAGE_SIZE;
  37	buf->f_namelen = NAME_MAX;
  38	return 0;
  39}
  40EXPORT_SYMBOL(simple_statfs);
  41
  42/*
  43 * Retaining negative dentries for an in-memory filesystem just wastes
  44 * memory and lookup time: arrange for them to be deleted immediately.
  45 */
  46int always_delete_dentry(const struct dentry *dentry)
  47{
  48	return 1;
  49}
  50EXPORT_SYMBOL(always_delete_dentry);
  51
  52const struct dentry_operations simple_dentry_operations = {
  53	.d_delete = always_delete_dentry,
  54};
  55EXPORT_SYMBOL(simple_dentry_operations);
  56
  57/*
  58 * Lookup the data. This is trivial - if the dentry didn't already
  59 * exist, we know it is negative.  Set d_op to delete negative dentries.
  60 */
  61struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  62{
  63	if (dentry->d_name.len > NAME_MAX)
  64		return ERR_PTR(-ENAMETOOLONG);
  65	if (!dentry->d_sb->s_d_op)
  66		d_set_d_op(dentry, &simple_dentry_operations);
  67	d_add(dentry, NULL);
  68	return NULL;
  69}
  70EXPORT_SYMBOL(simple_lookup);
  71
  72int dcache_dir_open(struct inode *inode, struct file *file)
  73{
  74	static struct qstr cursor_name = QSTR_INIT(".", 1);
  75
  76	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
  77
  78	return file->private_data ? 0 : -ENOMEM;
  79}
  80EXPORT_SYMBOL(dcache_dir_open);
  81
  82int dcache_dir_close(struct inode *inode, struct file *file)
  83{
  84	dput(file->private_data);
  85	return 0;
  86}
  87EXPORT_SYMBOL(dcache_dir_close);
  88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
  90{
  91	struct dentry *dentry = file->f_path.dentry;
  92	inode_lock(d_inode(dentry));
  93	switch (whence) {
  94		case 1:
  95			offset += file->f_pos;
  96		case 0:
  97			if (offset >= 0)
  98				break;
  99		default:
 100			inode_unlock(d_inode(dentry));
 101			return -EINVAL;
 102	}
 103	if (offset != file->f_pos) {
 104		file->f_pos = offset;
 105		if (file->f_pos >= 2) {
 106			struct list_head *p;
 107			struct dentry *cursor = file->private_data;
 
 108			loff_t n = file->f_pos - 2;
 109
 110			spin_lock(&dentry->d_lock);
 111			/* d_lock not required for cursor */
 112			list_del(&cursor->d_child);
 113			p = dentry->d_subdirs.next;
 114			while (n && p != &dentry->d_subdirs) {
 115				struct dentry *next;
 116				next = list_entry(p, struct dentry, d_child);
 117				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 118				if (simple_positive(next))
 119					n--;
 120				spin_unlock(&next->d_lock);
 121				p = p->next;
 122			}
 123			list_add_tail(&cursor->d_child, p);
 124			spin_unlock(&dentry->d_lock);
 125		}
 126	}
 127	inode_unlock(d_inode(dentry));
 128	return offset;
 129}
 130EXPORT_SYMBOL(dcache_dir_lseek);
 131
 132/* Relationship between i_mode and the DT_xxx types */
 133static inline unsigned char dt_type(struct inode *inode)
 134{
 135	return (inode->i_mode >> 12) & 15;
 136}
 137
 138/*
 139 * Directory is locked and all positive dentries in it are safe, since
 140 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 141 * both impossible due to the lock on directory.
 142 */
 143
 144int dcache_readdir(struct file *file, struct dir_context *ctx)
 145{
 146	struct dentry *dentry = file->f_path.dentry;
 147	struct dentry *cursor = file->private_data;
 148	struct list_head *p, *q = &cursor->d_child;
 
 
 149
 150	if (!dir_emit_dots(file, ctx))
 151		return 0;
 152	spin_lock(&dentry->d_lock);
 153	if (ctx->pos == 2)
 154		list_move(q, &dentry->d_subdirs);
 155
 156	for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
 157		struct dentry *next = list_entry(p, struct dentry, d_child);
 158		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 159		if (!simple_positive(next)) {
 160			spin_unlock(&next->d_lock);
 161			continue;
 162		}
 163
 164		spin_unlock(&next->d_lock);
 165		spin_unlock(&dentry->d_lock);
 
 166		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 167			      d_inode(next)->i_ino, dt_type(d_inode(next))))
 168			return 0;
 169		spin_lock(&dentry->d_lock);
 170		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 171		/* next is still alive */
 172		list_move(q, p);
 173		spin_unlock(&next->d_lock);
 174		p = q;
 175		ctx->pos++;
 176	}
 177	spin_unlock(&dentry->d_lock);
 
 178	return 0;
 179}
 180EXPORT_SYMBOL(dcache_readdir);
 181
 182ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 183{
 184	return -EISDIR;
 185}
 186EXPORT_SYMBOL(generic_read_dir);
 187
 188const struct file_operations simple_dir_operations = {
 189	.open		= dcache_dir_open,
 190	.release	= dcache_dir_close,
 191	.llseek		= dcache_dir_lseek,
 192	.read		= generic_read_dir,
 193	.iterate	= dcache_readdir,
 194	.fsync		= noop_fsync,
 195};
 196EXPORT_SYMBOL(simple_dir_operations);
 197
 198const struct inode_operations simple_dir_inode_operations = {
 199	.lookup		= simple_lookup,
 200};
 201EXPORT_SYMBOL(simple_dir_inode_operations);
 202
 203static const struct super_operations simple_super_operations = {
 204	.statfs		= simple_statfs,
 205};
 206
 207/*
 208 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 209 * will never be mountable)
 210 */
 211struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
 212	const struct super_operations *ops,
 213	const struct dentry_operations *dops, unsigned long magic)
 214{
 215	struct super_block *s;
 216	struct dentry *dentry;
 217	struct inode *root;
 218	struct qstr d_name = QSTR_INIT(name, strlen(name));
 219
 220	s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
 
 221	if (IS_ERR(s))
 222		return ERR_CAST(s);
 223
 224	s->s_maxbytes = MAX_LFS_FILESIZE;
 225	s->s_blocksize = PAGE_SIZE;
 226	s->s_blocksize_bits = PAGE_SHIFT;
 227	s->s_magic = magic;
 228	s->s_op = ops ? ops : &simple_super_operations;
 
 229	s->s_time_gran = 1;
 230	root = new_inode(s);
 231	if (!root)
 232		goto Enomem;
 233	/*
 234	 * since this is the first inode, make it number 1. New inodes created
 235	 * after this must take care not to collide with it (by passing
 236	 * max_reserved of 1 to iunique).
 237	 */
 238	root->i_ino = 1;
 239	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 240	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
 241	dentry = __d_alloc(s, &d_name);
 242	if (!dentry) {
 243		iput(root);
 244		goto Enomem;
 245	}
 246	d_instantiate(dentry, root);
 247	s->s_root = dentry;
 248	s->s_d_op = dops;
 249	s->s_flags |= MS_ACTIVE;
 250	return dget(s->s_root);
 251
 252Enomem:
 253	deactivate_locked_super(s);
 254	return ERR_PTR(-ENOMEM);
 255}
 256EXPORT_SYMBOL(mount_pseudo);
 257
 258int simple_open(struct inode *inode, struct file *file)
 259{
 260	if (inode->i_private)
 261		file->private_data = inode->i_private;
 262	return 0;
 263}
 264EXPORT_SYMBOL(simple_open);
 265
 266int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 267{
 268	struct inode *inode = d_inode(old_dentry);
 269
 270	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 271	inc_nlink(inode);
 272	ihold(inode);
 273	dget(dentry);
 274	d_instantiate(dentry, inode);
 275	return 0;
 276}
 277EXPORT_SYMBOL(simple_link);
 278
 279int simple_empty(struct dentry *dentry)
 280{
 281	struct dentry *child;
 282	int ret = 0;
 283
 284	spin_lock(&dentry->d_lock);
 285	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 286		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 287		if (simple_positive(child)) {
 288			spin_unlock(&child->d_lock);
 289			goto out;
 290		}
 291		spin_unlock(&child->d_lock);
 292	}
 293	ret = 1;
 294out:
 295	spin_unlock(&dentry->d_lock);
 296	return ret;
 297}
 298EXPORT_SYMBOL(simple_empty);
 299
 300int simple_unlink(struct inode *dir, struct dentry *dentry)
 301{
 302	struct inode *inode = d_inode(dentry);
 303
 304	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 305	drop_nlink(inode);
 306	dput(dentry);
 307	return 0;
 308}
 309EXPORT_SYMBOL(simple_unlink);
 310
 311int simple_rmdir(struct inode *dir, struct dentry *dentry)
 312{
 313	if (!simple_empty(dentry))
 314		return -ENOTEMPTY;
 315
 316	drop_nlink(d_inode(dentry));
 317	simple_unlink(dir, dentry);
 318	drop_nlink(dir);
 319	return 0;
 320}
 321EXPORT_SYMBOL(simple_rmdir);
 322
 323int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 324		struct inode *new_dir, struct dentry *new_dentry)
 
 325{
 326	struct inode *inode = d_inode(old_dentry);
 327	int they_are_dirs = d_is_dir(old_dentry);
 328
 
 
 
 329	if (!simple_empty(new_dentry))
 330		return -ENOTEMPTY;
 331
 332	if (d_really_is_positive(new_dentry)) {
 333		simple_unlink(new_dir, new_dentry);
 334		if (they_are_dirs) {
 335			drop_nlink(d_inode(new_dentry));
 336			drop_nlink(old_dir);
 337		}
 338	} else if (they_are_dirs) {
 339		drop_nlink(old_dir);
 340		inc_nlink(new_dir);
 341	}
 342
 343	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 344		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
 345
 346	return 0;
 347}
 348EXPORT_SYMBOL(simple_rename);
 349
 350/**
 351 * simple_setattr - setattr for simple filesystem
 352 * @dentry: dentry
 353 * @iattr: iattr structure
 354 *
 355 * Returns 0 on success, -error on failure.
 356 *
 357 * simple_setattr is a simple ->setattr implementation without a proper
 358 * implementation of size changes.
 359 *
 360 * It can either be used for in-memory filesystems or special files
 361 * on simple regular filesystems.  Anything that needs to change on-disk
 362 * or wire state on size changes needs its own setattr method.
 363 */
 364int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 365{
 366	struct inode *inode = d_inode(dentry);
 367	int error;
 368
 369	error = inode_change_ok(inode, iattr);
 370	if (error)
 371		return error;
 372
 373	if (iattr->ia_valid & ATTR_SIZE)
 374		truncate_setsize(inode, iattr->ia_size);
 375	setattr_copy(inode, iattr);
 376	mark_inode_dirty(inode);
 377	return 0;
 378}
 379EXPORT_SYMBOL(simple_setattr);
 380
 381int simple_readpage(struct file *file, struct page *page)
 382{
 383	clear_highpage(page);
 384	flush_dcache_page(page);
 385	SetPageUptodate(page);
 386	unlock_page(page);
 387	return 0;
 388}
 389EXPORT_SYMBOL(simple_readpage);
 390
 391int simple_write_begin(struct file *file, struct address_space *mapping,
 392			loff_t pos, unsigned len, unsigned flags,
 393			struct page **pagep, void **fsdata)
 394{
 395	struct page *page;
 396	pgoff_t index;
 397
 398	index = pos >> PAGE_SHIFT;
 399
 400	page = grab_cache_page_write_begin(mapping, index, flags);
 401	if (!page)
 402		return -ENOMEM;
 403
 404	*pagep = page;
 405
 406	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 407		unsigned from = pos & (PAGE_SIZE - 1);
 408
 409		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 410	}
 411	return 0;
 412}
 413EXPORT_SYMBOL(simple_write_begin);
 414
 415/**
 416 * simple_write_end - .write_end helper for non-block-device FSes
 417 * @available: See .write_end of address_space_operations
 418 * @file: 		"
 419 * @mapping: 		"
 420 * @pos: 		"
 421 * @len: 		"
 422 * @copied: 		"
 423 * @page: 		"
 424 * @fsdata: 		"
 425 *
 426 * simple_write_end does the minimum needed for updating a page after writing is
 427 * done. It has the same API signature as the .write_end of
 428 * address_space_operations vector. So it can just be set onto .write_end for
 429 * FSes that don't need any other processing. i_mutex is assumed to be held.
 430 * Block based filesystems should use generic_write_end().
 431 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 432 * is not called, so a filesystem that actually does store data in .write_inode
 433 * should extend on what's done here with a call to mark_inode_dirty() in the
 434 * case that i_size has changed.
 
 
 435 */
 436int simple_write_end(struct file *file, struct address_space *mapping,
 437			loff_t pos, unsigned len, unsigned copied,
 438			struct page *page, void *fsdata)
 439{
 440	struct inode *inode = page->mapping->host;
 441	loff_t last_pos = pos + copied;
 442
 443	/* zero the stale part of the page if we did a short copy */
 444	if (copied < len) {
 445		unsigned from = pos & (PAGE_SIZE - 1);
 446
 447		zero_user(page, from + copied, len - copied);
 448	}
 449
 450	if (!PageUptodate(page))
 
 451		SetPageUptodate(page);
 
 452	/*
 453	 * No need to use i_size_read() here, the i_size
 454	 * cannot change under us because we hold the i_mutex.
 455	 */
 456	if (last_pos > inode->i_size)
 457		i_size_write(inode, last_pos);
 458
 459	set_page_dirty(page);
 460	unlock_page(page);
 461	put_page(page);
 462
 463	return copied;
 464}
 465EXPORT_SYMBOL(simple_write_end);
 466
 467/*
 468 * the inodes created here are not hashed. If you use iunique to generate
 469 * unique inode values later for this filesystem, then you must take care
 470 * to pass it an appropriate max_reserved value to avoid collisions.
 471 */
 472int simple_fill_super(struct super_block *s, unsigned long magic,
 473		      struct tree_descr *files)
 474{
 475	struct inode *inode;
 476	struct dentry *root;
 477	struct dentry *dentry;
 478	int i;
 479
 480	s->s_blocksize = PAGE_SIZE;
 481	s->s_blocksize_bits = PAGE_SHIFT;
 482	s->s_magic = magic;
 483	s->s_op = &simple_super_operations;
 484	s->s_time_gran = 1;
 485
 486	inode = new_inode(s);
 487	if (!inode)
 488		return -ENOMEM;
 489	/*
 490	 * because the root inode is 1, the files array must not contain an
 491	 * entry at index 1
 492	 */
 493	inode->i_ino = 1;
 494	inode->i_mode = S_IFDIR | 0755;
 495	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 496	inode->i_op = &simple_dir_inode_operations;
 497	inode->i_fop = &simple_dir_operations;
 498	set_nlink(inode, 2);
 499	root = d_make_root(inode);
 500	if (!root)
 501		return -ENOMEM;
 502	for (i = 0; !files->name || files->name[0]; i++, files++) {
 503		if (!files->name)
 504			continue;
 505
 506		/* warn if it tries to conflict with the root inode */
 507		if (unlikely(i == 1))
 508			printk(KERN_WARNING "%s: %s passed in a files array"
 509				"with an index of 1!\n", __func__,
 510				s->s_type->name);
 511
 512		dentry = d_alloc_name(root, files->name);
 513		if (!dentry)
 514			goto out;
 515		inode = new_inode(s);
 516		if (!inode) {
 517			dput(dentry);
 518			goto out;
 519		}
 520		inode->i_mode = S_IFREG | files->mode;
 521		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 522		inode->i_fop = files->ops;
 523		inode->i_ino = i;
 524		d_add(dentry, inode);
 525	}
 526	s->s_root = root;
 527	return 0;
 528out:
 529	d_genocide(root);
 530	shrink_dcache_parent(root);
 531	dput(root);
 532	return -ENOMEM;
 533}
 534EXPORT_SYMBOL(simple_fill_super);
 535
 536static DEFINE_SPINLOCK(pin_fs_lock);
 537
 538int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 539{
 540	struct vfsmount *mnt = NULL;
 541	spin_lock(&pin_fs_lock);
 542	if (unlikely(!*mount)) {
 543		spin_unlock(&pin_fs_lock);
 544		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
 545		if (IS_ERR(mnt))
 546			return PTR_ERR(mnt);
 547		spin_lock(&pin_fs_lock);
 548		if (!*mount)
 549			*mount = mnt;
 550	}
 551	mntget(*mount);
 552	++*count;
 553	spin_unlock(&pin_fs_lock);
 554	mntput(mnt);
 555	return 0;
 556}
 557EXPORT_SYMBOL(simple_pin_fs);
 558
 559void simple_release_fs(struct vfsmount **mount, int *count)
 560{
 561	struct vfsmount *mnt;
 562	spin_lock(&pin_fs_lock);
 563	mnt = *mount;
 564	if (!--*count)
 565		*mount = NULL;
 566	spin_unlock(&pin_fs_lock);
 567	mntput(mnt);
 568}
 569EXPORT_SYMBOL(simple_release_fs);
 570
 571/**
 572 * simple_read_from_buffer - copy data from the buffer to user space
 573 * @to: the user space buffer to read to
 574 * @count: the maximum number of bytes to read
 575 * @ppos: the current position in the buffer
 576 * @from: the buffer to read from
 577 * @available: the size of the buffer
 578 *
 579 * The simple_read_from_buffer() function reads up to @count bytes from the
 580 * buffer @from at offset @ppos into the user space address starting at @to.
 581 *
 582 * On success, the number of bytes read is returned and the offset @ppos is
 583 * advanced by this number, or negative value is returned on error.
 584 **/
 585ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 586				const void *from, size_t available)
 587{
 588	loff_t pos = *ppos;
 589	size_t ret;
 590
 591	if (pos < 0)
 592		return -EINVAL;
 593	if (pos >= available || !count)
 594		return 0;
 595	if (count > available - pos)
 596		count = available - pos;
 597	ret = copy_to_user(to, from + pos, count);
 598	if (ret == count)
 599		return -EFAULT;
 600	count -= ret;
 601	*ppos = pos + count;
 602	return count;
 603}
 604EXPORT_SYMBOL(simple_read_from_buffer);
 605
 606/**
 607 * simple_write_to_buffer - copy data from user space to the buffer
 608 * @to: the buffer to write to
 609 * @available: the size of the buffer
 610 * @ppos: the current position in the buffer
 611 * @from: the user space buffer to read from
 612 * @count: the maximum number of bytes to read
 613 *
 614 * The simple_write_to_buffer() function reads up to @count bytes from the user
 615 * space address starting at @from into the buffer @to at offset @ppos.
 616 *
 617 * On success, the number of bytes written is returned and the offset @ppos is
 618 * advanced by this number, or negative value is returned on error.
 619 **/
 620ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 621		const void __user *from, size_t count)
 622{
 623	loff_t pos = *ppos;
 624	size_t res;
 625
 626	if (pos < 0)
 627		return -EINVAL;
 628	if (pos >= available || !count)
 629		return 0;
 630	if (count > available - pos)
 631		count = available - pos;
 632	res = copy_from_user(to + pos, from, count);
 633	if (res == count)
 634		return -EFAULT;
 635	count -= res;
 636	*ppos = pos + count;
 637	return count;
 638}
 639EXPORT_SYMBOL(simple_write_to_buffer);
 640
 641/**
 642 * memory_read_from_buffer - copy data from the buffer
 643 * @to: the kernel space buffer to read to
 644 * @count: the maximum number of bytes to read
 645 * @ppos: the current position in the buffer
 646 * @from: the buffer to read from
 647 * @available: the size of the buffer
 648 *
 649 * The memory_read_from_buffer() function reads up to @count bytes from the
 650 * buffer @from at offset @ppos into the kernel space address starting at @to.
 651 *
 652 * On success, the number of bytes read is returned and the offset @ppos is
 653 * advanced by this number, or negative value is returned on error.
 654 **/
 655ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 656				const void *from, size_t available)
 657{
 658	loff_t pos = *ppos;
 659
 660	if (pos < 0)
 661		return -EINVAL;
 662	if (pos >= available)
 663		return 0;
 664	if (count > available - pos)
 665		count = available - pos;
 666	memcpy(to, from + pos, count);
 667	*ppos = pos + count;
 668
 669	return count;
 670}
 671EXPORT_SYMBOL(memory_read_from_buffer);
 672
 673/*
 674 * Transaction based IO.
 675 * The file expects a single write which triggers the transaction, and then
 676 * possibly a read which collects the result - which is stored in a
 677 * file-local buffer.
 678 */
 679
 680void simple_transaction_set(struct file *file, size_t n)
 681{
 682	struct simple_transaction_argresp *ar = file->private_data;
 683
 684	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 685
 686	/*
 687	 * The barrier ensures that ar->size will really remain zero until
 688	 * ar->data is ready for reading.
 689	 */
 690	smp_mb();
 691	ar->size = n;
 692}
 693EXPORT_SYMBOL(simple_transaction_set);
 694
 695char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 696{
 697	struct simple_transaction_argresp *ar;
 698	static DEFINE_SPINLOCK(simple_transaction_lock);
 699
 700	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 701		return ERR_PTR(-EFBIG);
 702
 703	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 704	if (!ar)
 705		return ERR_PTR(-ENOMEM);
 706
 707	spin_lock(&simple_transaction_lock);
 708
 709	/* only one write allowed per open */
 710	if (file->private_data) {
 711		spin_unlock(&simple_transaction_lock);
 712		free_page((unsigned long)ar);
 713		return ERR_PTR(-EBUSY);
 714	}
 715
 716	file->private_data = ar;
 717
 718	spin_unlock(&simple_transaction_lock);
 719
 720	if (copy_from_user(ar->data, buf, size))
 721		return ERR_PTR(-EFAULT);
 722
 723	return ar->data;
 724}
 725EXPORT_SYMBOL(simple_transaction_get);
 726
 727ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 728{
 729	struct simple_transaction_argresp *ar = file->private_data;
 730
 731	if (!ar)
 732		return 0;
 733	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 734}
 735EXPORT_SYMBOL(simple_transaction_read);
 736
 737int simple_transaction_release(struct inode *inode, struct file *file)
 738{
 739	free_page((unsigned long)file->private_data);
 740	return 0;
 741}
 742EXPORT_SYMBOL(simple_transaction_release);
 743
 744/* Simple attribute files */
 745
 746struct simple_attr {
 747	int (*get)(void *, u64 *);
 748	int (*set)(void *, u64);
 749	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 750	char set_buf[24];
 751	void *data;
 752	const char *fmt;	/* format for read operation */
 753	struct mutex mutex;	/* protects access to these buffers */
 754};
 755
 756/* simple_attr_open is called by an actual attribute open file operation
 757 * to set the attribute specific access operations. */
 758int simple_attr_open(struct inode *inode, struct file *file,
 759		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 760		     const char *fmt)
 761{
 762	struct simple_attr *attr;
 763
 764	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 765	if (!attr)
 766		return -ENOMEM;
 767
 768	attr->get = get;
 769	attr->set = set;
 770	attr->data = inode->i_private;
 771	attr->fmt = fmt;
 772	mutex_init(&attr->mutex);
 773
 774	file->private_data = attr;
 775
 776	return nonseekable_open(inode, file);
 777}
 778EXPORT_SYMBOL_GPL(simple_attr_open);
 779
 780int simple_attr_release(struct inode *inode, struct file *file)
 781{
 782	kfree(file->private_data);
 783	return 0;
 784}
 785EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
 786
 787/* read from the buffer that is filled with the get function */
 788ssize_t simple_attr_read(struct file *file, char __user *buf,
 789			 size_t len, loff_t *ppos)
 790{
 791	struct simple_attr *attr;
 792	size_t size;
 793	ssize_t ret;
 794
 795	attr = file->private_data;
 796
 797	if (!attr->get)
 798		return -EACCES;
 799
 800	ret = mutex_lock_interruptible(&attr->mutex);
 801	if (ret)
 802		return ret;
 803
 804	if (*ppos) {		/* continued read */
 805		size = strlen(attr->get_buf);
 806	} else {		/* first read */
 807		u64 val;
 808		ret = attr->get(attr->data, &val);
 809		if (ret)
 810			goto out;
 811
 812		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 813				 attr->fmt, (unsigned long long)val);
 814	}
 815
 816	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 817out:
 818	mutex_unlock(&attr->mutex);
 819	return ret;
 820}
 821EXPORT_SYMBOL_GPL(simple_attr_read);
 822
 823/* interpret the buffer as a number to call the set function with */
 824ssize_t simple_attr_write(struct file *file, const char __user *buf,
 825			  size_t len, loff_t *ppos)
 826{
 827	struct simple_attr *attr;
 828	u64 val;
 829	size_t size;
 830	ssize_t ret;
 831
 832	attr = file->private_data;
 833	if (!attr->set)
 834		return -EACCES;
 835
 836	ret = mutex_lock_interruptible(&attr->mutex);
 837	if (ret)
 838		return ret;
 839
 840	ret = -EFAULT;
 841	size = min(sizeof(attr->set_buf) - 1, len);
 842	if (copy_from_user(attr->set_buf, buf, size))
 843		goto out;
 844
 845	attr->set_buf[size] = '\0';
 846	val = simple_strtoll(attr->set_buf, NULL, 0);
 847	ret = attr->set(attr->data, val);
 848	if (ret == 0)
 849		ret = len; /* on success, claim we got the whole input */
 850out:
 851	mutex_unlock(&attr->mutex);
 852	return ret;
 853}
 854EXPORT_SYMBOL_GPL(simple_attr_write);
 855
 856/**
 857 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 858 * @sb:		filesystem to do the file handle conversion on
 859 * @fid:	file handle to convert
 860 * @fh_len:	length of the file handle in bytes
 861 * @fh_type:	type of file handle
 862 * @get_inode:	filesystem callback to retrieve inode
 863 *
 864 * This function decodes @fid as long as it has one of the well-known
 865 * Linux filehandle types and calls @get_inode on it to retrieve the
 866 * inode for the object specified in the file handle.
 867 */
 868struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 869		int fh_len, int fh_type, struct inode *(*get_inode)
 870			(struct super_block *sb, u64 ino, u32 gen))
 871{
 872	struct inode *inode = NULL;
 873
 874	if (fh_len < 2)
 875		return NULL;
 876
 877	switch (fh_type) {
 878	case FILEID_INO32_GEN:
 879	case FILEID_INO32_GEN_PARENT:
 880		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 881		break;
 882	}
 883
 884	return d_obtain_alias(inode);
 885}
 886EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 887
 888/**
 889 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 890 * @sb:		filesystem to do the file handle conversion on
 891 * @fid:	file handle to convert
 892 * @fh_len:	length of the file handle in bytes
 893 * @fh_type:	type of file handle
 894 * @get_inode:	filesystem callback to retrieve inode
 895 *
 896 * This function decodes @fid as long as it has one of the well-known
 897 * Linux filehandle types and calls @get_inode on it to retrieve the
 898 * inode for the _parent_ object specified in the file handle if it
 899 * is specified in the file handle, or NULL otherwise.
 900 */
 901struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 902		int fh_len, int fh_type, struct inode *(*get_inode)
 903			(struct super_block *sb, u64 ino, u32 gen))
 904{
 905	struct inode *inode = NULL;
 906
 907	if (fh_len <= 2)
 908		return NULL;
 909
 910	switch (fh_type) {
 911	case FILEID_INO32_GEN_PARENT:
 912		inode = get_inode(sb, fid->i32.parent_ino,
 913				  (fh_len > 3 ? fid->i32.parent_gen : 0));
 914		break;
 915	}
 916
 917	return d_obtain_alias(inode);
 918}
 919EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 920
 921/**
 922 * __generic_file_fsync - generic fsync implementation for simple filesystems
 923 *
 924 * @file:	file to synchronize
 925 * @start:	start offset in bytes
 926 * @end:	end offset in bytes (inclusive)
 927 * @datasync:	only synchronize essential metadata if true
 928 *
 929 * This is a generic implementation of the fsync method for simple
 930 * filesystems which track all non-inode metadata in the buffers list
 931 * hanging off the address_space structure.
 932 */
 933int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 934				 int datasync)
 935{
 936	struct inode *inode = file->f_mapping->host;
 937	int err;
 938	int ret;
 939
 940	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
 941	if (err)
 942		return err;
 943
 944	inode_lock(inode);
 945	ret = sync_mapping_buffers(inode->i_mapping);
 946	if (!(inode->i_state & I_DIRTY_ALL))
 947		goto out;
 948	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 949		goto out;
 950
 951	err = sync_inode_metadata(inode, 1);
 952	if (ret == 0)
 953		ret = err;
 954
 955out:
 956	inode_unlock(inode);
 957	return ret;
 958}
 959EXPORT_SYMBOL(__generic_file_fsync);
 960
 961/**
 962 * generic_file_fsync - generic fsync implementation for simple filesystems
 963 *			with flush
 964 * @file:	file to synchronize
 965 * @start:	start offset in bytes
 966 * @end:	end offset in bytes (inclusive)
 967 * @datasync:	only synchronize essential metadata if true
 968 *
 969 */
 970
 971int generic_file_fsync(struct file *file, loff_t start, loff_t end,
 972		       int datasync)
 973{
 974	struct inode *inode = file->f_mapping->host;
 975	int err;
 976
 977	err = __generic_file_fsync(file, start, end, datasync);
 978	if (err)
 979		return err;
 980	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
 981}
 982EXPORT_SYMBOL(generic_file_fsync);
 983
 984/**
 985 * generic_check_addressable - Check addressability of file system
 986 * @blocksize_bits:	log of file system block size
 987 * @num_blocks:		number of blocks in file system
 988 *
 989 * Determine whether a file system with @num_blocks blocks (and a
 990 * block size of 2**@blocksize_bits) is addressable by the sector_t
 991 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
 992 */
 993int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
 994{
 995	u64 last_fs_block = num_blocks - 1;
 996	u64 last_fs_page =
 997		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
 998
 999	if (unlikely(num_blocks == 0))
1000		return 0;
1001
1002	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1003		return -EINVAL;
1004
1005	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1006	    (last_fs_page > (pgoff_t)(~0ULL))) {
1007		return -EFBIG;
1008	}
1009	return 0;
1010}
1011EXPORT_SYMBOL(generic_check_addressable);
1012
1013/*
1014 * No-op implementation of ->fsync for in-memory filesystems.
1015 */
1016int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1017{
1018	return 0;
1019}
1020EXPORT_SYMBOL(noop_fsync);
1021
1022/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1023void kfree_link(void *p)
1024{
1025	kfree(p);
1026}
1027EXPORT_SYMBOL(kfree_link);
1028
1029/*
1030 * nop .set_page_dirty method so that people can use .page_mkwrite on
1031 * anon inodes.
1032 */
1033static int anon_set_page_dirty(struct page *page)
1034{
1035	return 0;
1036};
1037
1038/*
1039 * A single inode exists for all anon_inode files. Contrary to pipes,
1040 * anon_inode inodes have no associated per-instance data, so we need
1041 * only allocate one of them.
1042 */
1043struct inode *alloc_anon_inode(struct super_block *s)
1044{
1045	static const struct address_space_operations anon_aops = {
1046		.set_page_dirty = anon_set_page_dirty,
1047	};
1048	struct inode *inode = new_inode_pseudo(s);
1049
1050	if (!inode)
1051		return ERR_PTR(-ENOMEM);
1052
1053	inode->i_ino = get_next_ino();
1054	inode->i_mapping->a_ops = &anon_aops;
1055
1056	/*
1057	 * Mark the inode dirty from the very beginning,
1058	 * that way it will never be moved to the dirty
1059	 * list because mark_inode_dirty() will think
1060	 * that it already _is_ on the dirty list.
1061	 */
1062	inode->i_state = I_DIRTY;
1063	inode->i_mode = S_IRUSR | S_IWUSR;
1064	inode->i_uid = current_fsuid();
1065	inode->i_gid = current_fsgid();
1066	inode->i_flags |= S_PRIVATE;
1067	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1068	return inode;
1069}
1070EXPORT_SYMBOL(alloc_anon_inode);
1071
1072/**
1073 * simple_nosetlease - generic helper for prohibiting leases
1074 * @filp: file pointer
1075 * @arg: type of lease to obtain
1076 * @flp: new lease supplied for insertion
1077 * @priv: private data for lm_setup operation
1078 *
1079 * Generic helper for filesystems that do not wish to allow leases to be set.
1080 * All arguments are ignored and it just returns -EINVAL.
1081 */
1082int
1083simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1084		  void **priv)
1085{
1086	return -EINVAL;
1087}
1088EXPORT_SYMBOL(simple_nosetlease);
1089
1090const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1091			    struct delayed_call *done)
1092{
1093	return inode->i_link;
1094}
1095EXPORT_SYMBOL(simple_get_link);
1096
1097const struct inode_operations simple_symlink_inode_operations = {
1098	.get_link = simple_get_link,
1099	.readlink = generic_readlink
1100};
1101EXPORT_SYMBOL(simple_symlink_inode_operations);
1102
1103/*
1104 * Operations for a permanently empty directory.
1105 */
1106static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1107{
1108	return ERR_PTR(-ENOENT);
1109}
1110
1111static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1112				 struct kstat *stat)
1113{
1114	struct inode *inode = d_inode(dentry);
1115	generic_fillattr(inode, stat);
1116	return 0;
1117}
1118
1119static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1120{
1121	return -EPERM;
1122}
1123
1124static int empty_dir_setxattr(struct dentry *dentry, const char *name,
1125			      const void *value, size_t size, int flags)
1126{
1127	return -EOPNOTSUPP;
1128}
1129
1130static ssize_t empty_dir_getxattr(struct dentry *dentry, const char *name,
1131				  void *value, size_t size)
1132{
1133	return -EOPNOTSUPP;
1134}
1135
1136static int empty_dir_removexattr(struct dentry *dentry, const char *name)
1137{
1138	return -EOPNOTSUPP;
1139}
1140
1141static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1142{
1143	return -EOPNOTSUPP;
1144}
1145
1146static const struct inode_operations empty_dir_inode_operations = {
1147	.lookup		= empty_dir_lookup,
1148	.permission	= generic_permission,
1149	.setattr	= empty_dir_setattr,
1150	.getattr	= empty_dir_getattr,
1151	.setxattr	= empty_dir_setxattr,
1152	.getxattr	= empty_dir_getxattr,
1153	.removexattr	= empty_dir_removexattr,
1154	.listxattr	= empty_dir_listxattr,
1155};
1156
1157static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1158{
1159	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1160	return generic_file_llseek_size(file, offset, whence, 2, 2);
1161}
1162
1163static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1164{
1165	dir_emit_dots(file, ctx);
1166	return 0;
1167}
1168
1169static const struct file_operations empty_dir_operations = {
1170	.llseek		= empty_dir_llseek,
1171	.read		= generic_read_dir,
1172	.iterate	= empty_dir_readdir,
1173	.fsync		= noop_fsync,
1174};
1175
1176
1177void make_empty_dir_inode(struct inode *inode)
1178{
1179	set_nlink(inode, 2);
1180	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1181	inode->i_uid = GLOBAL_ROOT_UID;
1182	inode->i_gid = GLOBAL_ROOT_GID;
1183	inode->i_rdev = 0;
1184	inode->i_size = 0;
1185	inode->i_blkbits = PAGE_SHIFT;
1186	inode->i_blocks = 0;
1187
1188	inode->i_op = &empty_dir_inode_operations;
 
1189	inode->i_fop = &empty_dir_operations;
1190}
1191
1192bool is_empty_dir_inode(struct inode *inode)
1193{
1194	return (inode->i_fop == &empty_dir_operations) &&
1195		(inode->i_op == &empty_dir_inode_operations);
1196}
v4.10.11
   1/*
   2 *	fs/libfs.c
   3 *	Library for filesystems writers.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/export.h>
   8#include <linux/pagemap.h>
   9#include <linux/slab.h>
  10#include <linux/mount.h>
  11#include <linux/vfs.h>
  12#include <linux/quotaops.h>
  13#include <linux/mutex.h>
  14#include <linux/namei.h>
  15#include <linux/exportfs.h>
  16#include <linux/writeback.h>
  17#include <linux/buffer_head.h> /* sync_mapping_buffers */
  18
  19#include <linux/uaccess.h>
  20
  21#include "internal.h"
  22
  23int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  24		   struct kstat *stat)
  25{
  26	struct inode *inode = d_inode(dentry);
  27	generic_fillattr(inode, stat);
  28	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  29	return 0;
  30}
  31EXPORT_SYMBOL(simple_getattr);
  32
  33int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  34{
  35	buf->f_type = dentry->d_sb->s_magic;
  36	buf->f_bsize = PAGE_SIZE;
  37	buf->f_namelen = NAME_MAX;
  38	return 0;
  39}
  40EXPORT_SYMBOL(simple_statfs);
  41
  42/*
  43 * Retaining negative dentries for an in-memory filesystem just wastes
  44 * memory and lookup time: arrange for them to be deleted immediately.
  45 */
  46int always_delete_dentry(const struct dentry *dentry)
  47{
  48	return 1;
  49}
  50EXPORT_SYMBOL(always_delete_dentry);
  51
  52const struct dentry_operations simple_dentry_operations = {
  53	.d_delete = always_delete_dentry,
  54};
  55EXPORT_SYMBOL(simple_dentry_operations);
  56
  57/*
  58 * Lookup the data. This is trivial - if the dentry didn't already
  59 * exist, we know it is negative.  Set d_op to delete negative dentries.
  60 */
  61struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  62{
  63	if (dentry->d_name.len > NAME_MAX)
  64		return ERR_PTR(-ENAMETOOLONG);
  65	if (!dentry->d_sb->s_d_op)
  66		d_set_d_op(dentry, &simple_dentry_operations);
  67	d_add(dentry, NULL);
  68	return NULL;
  69}
  70EXPORT_SYMBOL(simple_lookup);
  71
  72int dcache_dir_open(struct inode *inode, struct file *file)
  73{
  74	file->private_data = d_alloc_cursor(file->f_path.dentry);
 
 
  75
  76	return file->private_data ? 0 : -ENOMEM;
  77}
  78EXPORT_SYMBOL(dcache_dir_open);
  79
  80int dcache_dir_close(struct inode *inode, struct file *file)
  81{
  82	dput(file->private_data);
  83	return 0;
  84}
  85EXPORT_SYMBOL(dcache_dir_close);
  86
  87/* parent is locked at least shared */
  88static struct dentry *next_positive(struct dentry *parent,
  89				    struct list_head *from,
  90				    int count)
  91{
  92	unsigned *seq = &parent->d_inode->i_dir_seq, n;
  93	struct dentry *res;
  94	struct list_head *p;
  95	bool skipped;
  96	int i;
  97
  98retry:
  99	i = count;
 100	skipped = false;
 101	n = smp_load_acquire(seq) & ~1;
 102	res = NULL;
 103	rcu_read_lock();
 104	for (p = from->next; p != &parent->d_subdirs; p = p->next) {
 105		struct dentry *d = list_entry(p, struct dentry, d_child);
 106		if (!simple_positive(d)) {
 107			skipped = true;
 108		} else if (!--i) {
 109			res = d;
 110			break;
 111		}
 112	}
 113	rcu_read_unlock();
 114	if (skipped) {
 115		smp_rmb();
 116		if (unlikely(*seq != n))
 117			goto retry;
 118	}
 119	return res;
 120}
 121
 122static void move_cursor(struct dentry *cursor, struct list_head *after)
 123{
 124	struct dentry *parent = cursor->d_parent;
 125	unsigned n, *seq = &parent->d_inode->i_dir_seq;
 126	spin_lock(&parent->d_lock);
 127	for (;;) {
 128		n = *seq;
 129		if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
 130			break;
 131		cpu_relax();
 132	}
 133	__list_del(cursor->d_child.prev, cursor->d_child.next);
 134	if (after)
 135		list_add(&cursor->d_child, after);
 136	else
 137		list_add_tail(&cursor->d_child, &parent->d_subdirs);
 138	smp_store_release(seq, n + 2);
 139	spin_unlock(&parent->d_lock);
 140}
 141
 142loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 143{
 144	struct dentry *dentry = file->f_path.dentry;
 
 145	switch (whence) {
 146		case 1:
 147			offset += file->f_pos;
 148		case 0:
 149			if (offset >= 0)
 150				break;
 151		default:
 
 152			return -EINVAL;
 153	}
 154	if (offset != file->f_pos) {
 155		file->f_pos = offset;
 156		if (file->f_pos >= 2) {
 
 157			struct dentry *cursor = file->private_data;
 158			struct dentry *to;
 159			loff_t n = file->f_pos - 2;
 160
 161			inode_lock_shared(dentry->d_inode);
 162			to = next_positive(dentry, &dentry->d_subdirs, n);
 163			move_cursor(cursor, to ? &to->d_child : NULL);
 164			inode_unlock_shared(dentry->d_inode);
 
 
 
 
 
 
 
 
 
 
 
 165		}
 166	}
 
 167	return offset;
 168}
 169EXPORT_SYMBOL(dcache_dir_lseek);
 170
 171/* Relationship between i_mode and the DT_xxx types */
 172static inline unsigned char dt_type(struct inode *inode)
 173{
 174	return (inode->i_mode >> 12) & 15;
 175}
 176
 177/*
 178 * Directory is locked and all positive dentries in it are safe, since
 179 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 180 * both impossible due to the lock on directory.
 181 */
 182
 183int dcache_readdir(struct file *file, struct dir_context *ctx)
 184{
 185	struct dentry *dentry = file->f_path.dentry;
 186	struct dentry *cursor = file->private_data;
 187	struct list_head *p = &cursor->d_child;
 188	struct dentry *next;
 189	bool moved = false;
 190
 191	if (!dir_emit_dots(file, ctx))
 192		return 0;
 
 
 
 
 
 
 
 
 
 
 
 193
 194	if (ctx->pos == 2)
 195		p = &dentry->d_subdirs;
 196	while ((next = next_positive(dentry, p, 1)) != NULL) {
 197		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 198			      d_inode(next)->i_ino, dt_type(d_inode(next))))
 199			break;
 200		moved = true;
 201		p = &next->d_child;
 
 
 
 
 202		ctx->pos++;
 203	}
 204	if (moved)
 205		move_cursor(cursor, p);
 206	return 0;
 207}
 208EXPORT_SYMBOL(dcache_readdir);
 209
 210ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 211{
 212	return -EISDIR;
 213}
 214EXPORT_SYMBOL(generic_read_dir);
 215
 216const struct file_operations simple_dir_operations = {
 217	.open		= dcache_dir_open,
 218	.release	= dcache_dir_close,
 219	.llseek		= dcache_dir_lseek,
 220	.read		= generic_read_dir,
 221	.iterate_shared	= dcache_readdir,
 222	.fsync		= noop_fsync,
 223};
 224EXPORT_SYMBOL(simple_dir_operations);
 225
 226const struct inode_operations simple_dir_inode_operations = {
 227	.lookup		= simple_lookup,
 228};
 229EXPORT_SYMBOL(simple_dir_inode_operations);
 230
 231static const struct super_operations simple_super_operations = {
 232	.statfs		= simple_statfs,
 233};
 234
 235/*
 236 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 237 * will never be mountable)
 238 */
 239struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
 240	const struct super_operations *ops, const struct xattr_handler **xattr,
 241	const struct dentry_operations *dops, unsigned long magic)
 242{
 243	struct super_block *s;
 244	struct dentry *dentry;
 245	struct inode *root;
 246	struct qstr d_name = QSTR_INIT(name, strlen(name));
 247
 248	s = sget_userns(fs_type, NULL, set_anon_super, MS_KERNMOUNT|MS_NOUSER,
 249			&init_user_ns, NULL);
 250	if (IS_ERR(s))
 251		return ERR_CAST(s);
 252
 253	s->s_maxbytes = MAX_LFS_FILESIZE;
 254	s->s_blocksize = PAGE_SIZE;
 255	s->s_blocksize_bits = PAGE_SHIFT;
 256	s->s_magic = magic;
 257	s->s_op = ops ? ops : &simple_super_operations;
 258	s->s_xattr = xattr;
 259	s->s_time_gran = 1;
 260	root = new_inode(s);
 261	if (!root)
 262		goto Enomem;
 263	/*
 264	 * since this is the first inode, make it number 1. New inodes created
 265	 * after this must take care not to collide with it (by passing
 266	 * max_reserved of 1 to iunique).
 267	 */
 268	root->i_ino = 1;
 269	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 270	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 271	dentry = __d_alloc(s, &d_name);
 272	if (!dentry) {
 273		iput(root);
 274		goto Enomem;
 275	}
 276	d_instantiate(dentry, root);
 277	s->s_root = dentry;
 278	s->s_d_op = dops;
 279	s->s_flags |= MS_ACTIVE;
 280	return dget(s->s_root);
 281
 282Enomem:
 283	deactivate_locked_super(s);
 284	return ERR_PTR(-ENOMEM);
 285}
 286EXPORT_SYMBOL(mount_pseudo_xattr);
 287
 288int simple_open(struct inode *inode, struct file *file)
 289{
 290	if (inode->i_private)
 291		file->private_data = inode->i_private;
 292	return 0;
 293}
 294EXPORT_SYMBOL(simple_open);
 295
 296int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 297{
 298	struct inode *inode = d_inode(old_dentry);
 299
 300	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 301	inc_nlink(inode);
 302	ihold(inode);
 303	dget(dentry);
 304	d_instantiate(dentry, inode);
 305	return 0;
 306}
 307EXPORT_SYMBOL(simple_link);
 308
 309int simple_empty(struct dentry *dentry)
 310{
 311	struct dentry *child;
 312	int ret = 0;
 313
 314	spin_lock(&dentry->d_lock);
 315	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 316		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 317		if (simple_positive(child)) {
 318			spin_unlock(&child->d_lock);
 319			goto out;
 320		}
 321		spin_unlock(&child->d_lock);
 322	}
 323	ret = 1;
 324out:
 325	spin_unlock(&dentry->d_lock);
 326	return ret;
 327}
 328EXPORT_SYMBOL(simple_empty);
 329
 330int simple_unlink(struct inode *dir, struct dentry *dentry)
 331{
 332	struct inode *inode = d_inode(dentry);
 333
 334	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 335	drop_nlink(inode);
 336	dput(dentry);
 337	return 0;
 338}
 339EXPORT_SYMBOL(simple_unlink);
 340
 341int simple_rmdir(struct inode *dir, struct dentry *dentry)
 342{
 343	if (!simple_empty(dentry))
 344		return -ENOTEMPTY;
 345
 346	drop_nlink(d_inode(dentry));
 347	simple_unlink(dir, dentry);
 348	drop_nlink(dir);
 349	return 0;
 350}
 351EXPORT_SYMBOL(simple_rmdir);
 352
 353int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 354		  struct inode *new_dir, struct dentry *new_dentry,
 355		  unsigned int flags)
 356{
 357	struct inode *inode = d_inode(old_dentry);
 358	int they_are_dirs = d_is_dir(old_dentry);
 359
 360	if (flags & ~RENAME_NOREPLACE)
 361		return -EINVAL;
 362
 363	if (!simple_empty(new_dentry))
 364		return -ENOTEMPTY;
 365
 366	if (d_really_is_positive(new_dentry)) {
 367		simple_unlink(new_dir, new_dentry);
 368		if (they_are_dirs) {
 369			drop_nlink(d_inode(new_dentry));
 370			drop_nlink(old_dir);
 371		}
 372	} else if (they_are_dirs) {
 373		drop_nlink(old_dir);
 374		inc_nlink(new_dir);
 375	}
 376
 377	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 378		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 379
 380	return 0;
 381}
 382EXPORT_SYMBOL(simple_rename);
 383
 384/**
 385 * simple_setattr - setattr for simple filesystem
 386 * @dentry: dentry
 387 * @iattr: iattr structure
 388 *
 389 * Returns 0 on success, -error on failure.
 390 *
 391 * simple_setattr is a simple ->setattr implementation without a proper
 392 * implementation of size changes.
 393 *
 394 * It can either be used for in-memory filesystems or special files
 395 * on simple regular filesystems.  Anything that needs to change on-disk
 396 * or wire state on size changes needs its own setattr method.
 397 */
 398int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 399{
 400	struct inode *inode = d_inode(dentry);
 401	int error;
 402
 403	error = setattr_prepare(dentry, iattr);
 404	if (error)
 405		return error;
 406
 407	if (iattr->ia_valid & ATTR_SIZE)
 408		truncate_setsize(inode, iattr->ia_size);
 409	setattr_copy(inode, iattr);
 410	mark_inode_dirty(inode);
 411	return 0;
 412}
 413EXPORT_SYMBOL(simple_setattr);
 414
 415int simple_readpage(struct file *file, struct page *page)
 416{
 417	clear_highpage(page);
 418	flush_dcache_page(page);
 419	SetPageUptodate(page);
 420	unlock_page(page);
 421	return 0;
 422}
 423EXPORT_SYMBOL(simple_readpage);
 424
 425int simple_write_begin(struct file *file, struct address_space *mapping,
 426			loff_t pos, unsigned len, unsigned flags,
 427			struct page **pagep, void **fsdata)
 428{
 429	struct page *page;
 430	pgoff_t index;
 431
 432	index = pos >> PAGE_SHIFT;
 433
 434	page = grab_cache_page_write_begin(mapping, index, flags);
 435	if (!page)
 436		return -ENOMEM;
 437
 438	*pagep = page;
 439
 440	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 441		unsigned from = pos & (PAGE_SIZE - 1);
 442
 443		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 444	}
 445	return 0;
 446}
 447EXPORT_SYMBOL(simple_write_begin);
 448
 449/**
 450 * simple_write_end - .write_end helper for non-block-device FSes
 451 * @available: See .write_end of address_space_operations
 452 * @file: 		"
 453 * @mapping: 		"
 454 * @pos: 		"
 455 * @len: 		"
 456 * @copied: 		"
 457 * @page: 		"
 458 * @fsdata: 		"
 459 *
 460 * simple_write_end does the minimum needed for updating a page after writing is
 461 * done. It has the same API signature as the .write_end of
 462 * address_space_operations vector. So it can just be set onto .write_end for
 463 * FSes that don't need any other processing. i_mutex is assumed to be held.
 464 * Block based filesystems should use generic_write_end().
 465 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 466 * is not called, so a filesystem that actually does store data in .write_inode
 467 * should extend on what's done here with a call to mark_inode_dirty() in the
 468 * case that i_size has changed.
 469 *
 470 * Use *ONLY* with simple_readpage()
 471 */
 472int simple_write_end(struct file *file, struct address_space *mapping,
 473			loff_t pos, unsigned len, unsigned copied,
 474			struct page *page, void *fsdata)
 475{
 476	struct inode *inode = page->mapping->host;
 477	loff_t last_pos = pos + copied;
 478
 479	/* zero the stale part of the page if we did a short copy */
 480	if (!PageUptodate(page)) {
 481		if (copied < len) {
 482			unsigned from = pos & (PAGE_SIZE - 1);
 
 
 483
 484			zero_user(page, from + copied, len - copied);
 485		}
 486		SetPageUptodate(page);
 487	}
 488	/*
 489	 * No need to use i_size_read() here, the i_size
 490	 * cannot change under us because we hold the i_mutex.
 491	 */
 492	if (last_pos > inode->i_size)
 493		i_size_write(inode, last_pos);
 494
 495	set_page_dirty(page);
 496	unlock_page(page);
 497	put_page(page);
 498
 499	return copied;
 500}
 501EXPORT_SYMBOL(simple_write_end);
 502
 503/*
 504 * the inodes created here are not hashed. If you use iunique to generate
 505 * unique inode values later for this filesystem, then you must take care
 506 * to pass it an appropriate max_reserved value to avoid collisions.
 507 */
 508int simple_fill_super(struct super_block *s, unsigned long magic,
 509		      struct tree_descr *files)
 510{
 511	struct inode *inode;
 512	struct dentry *root;
 513	struct dentry *dentry;
 514	int i;
 515
 516	s->s_blocksize = PAGE_SIZE;
 517	s->s_blocksize_bits = PAGE_SHIFT;
 518	s->s_magic = magic;
 519	s->s_op = &simple_super_operations;
 520	s->s_time_gran = 1;
 521
 522	inode = new_inode(s);
 523	if (!inode)
 524		return -ENOMEM;
 525	/*
 526	 * because the root inode is 1, the files array must not contain an
 527	 * entry at index 1
 528	 */
 529	inode->i_ino = 1;
 530	inode->i_mode = S_IFDIR | 0755;
 531	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 532	inode->i_op = &simple_dir_inode_operations;
 533	inode->i_fop = &simple_dir_operations;
 534	set_nlink(inode, 2);
 535	root = d_make_root(inode);
 536	if (!root)
 537		return -ENOMEM;
 538	for (i = 0; !files->name || files->name[0]; i++, files++) {
 539		if (!files->name)
 540			continue;
 541
 542		/* warn if it tries to conflict with the root inode */
 543		if (unlikely(i == 1))
 544			printk(KERN_WARNING "%s: %s passed in a files array"
 545				"with an index of 1!\n", __func__,
 546				s->s_type->name);
 547
 548		dentry = d_alloc_name(root, files->name);
 549		if (!dentry)
 550			goto out;
 551		inode = new_inode(s);
 552		if (!inode) {
 553			dput(dentry);
 554			goto out;
 555		}
 556		inode->i_mode = S_IFREG | files->mode;
 557		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 558		inode->i_fop = files->ops;
 559		inode->i_ino = i;
 560		d_add(dentry, inode);
 561	}
 562	s->s_root = root;
 563	return 0;
 564out:
 565	d_genocide(root);
 566	shrink_dcache_parent(root);
 567	dput(root);
 568	return -ENOMEM;
 569}
 570EXPORT_SYMBOL(simple_fill_super);
 571
 572static DEFINE_SPINLOCK(pin_fs_lock);
 573
 574int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 575{
 576	struct vfsmount *mnt = NULL;
 577	spin_lock(&pin_fs_lock);
 578	if (unlikely(!*mount)) {
 579		spin_unlock(&pin_fs_lock);
 580		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
 581		if (IS_ERR(mnt))
 582			return PTR_ERR(mnt);
 583		spin_lock(&pin_fs_lock);
 584		if (!*mount)
 585			*mount = mnt;
 586	}
 587	mntget(*mount);
 588	++*count;
 589	spin_unlock(&pin_fs_lock);
 590	mntput(mnt);
 591	return 0;
 592}
 593EXPORT_SYMBOL(simple_pin_fs);
 594
 595void simple_release_fs(struct vfsmount **mount, int *count)
 596{
 597	struct vfsmount *mnt;
 598	spin_lock(&pin_fs_lock);
 599	mnt = *mount;
 600	if (!--*count)
 601		*mount = NULL;
 602	spin_unlock(&pin_fs_lock);
 603	mntput(mnt);
 604}
 605EXPORT_SYMBOL(simple_release_fs);
 606
 607/**
 608 * simple_read_from_buffer - copy data from the buffer to user space
 609 * @to: the user space buffer to read to
 610 * @count: the maximum number of bytes to read
 611 * @ppos: the current position in the buffer
 612 * @from: the buffer to read from
 613 * @available: the size of the buffer
 614 *
 615 * The simple_read_from_buffer() function reads up to @count bytes from the
 616 * buffer @from at offset @ppos into the user space address starting at @to.
 617 *
 618 * On success, the number of bytes read is returned and the offset @ppos is
 619 * advanced by this number, or negative value is returned on error.
 620 **/
 621ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 622				const void *from, size_t available)
 623{
 624	loff_t pos = *ppos;
 625	size_t ret;
 626
 627	if (pos < 0)
 628		return -EINVAL;
 629	if (pos >= available || !count)
 630		return 0;
 631	if (count > available - pos)
 632		count = available - pos;
 633	ret = copy_to_user(to, from + pos, count);
 634	if (ret == count)
 635		return -EFAULT;
 636	count -= ret;
 637	*ppos = pos + count;
 638	return count;
 639}
 640EXPORT_SYMBOL(simple_read_from_buffer);
 641
 642/**
 643 * simple_write_to_buffer - copy data from user space to the buffer
 644 * @to: the buffer to write to
 645 * @available: the size of the buffer
 646 * @ppos: the current position in the buffer
 647 * @from: the user space buffer to read from
 648 * @count: the maximum number of bytes to read
 649 *
 650 * The simple_write_to_buffer() function reads up to @count bytes from the user
 651 * space address starting at @from into the buffer @to at offset @ppos.
 652 *
 653 * On success, the number of bytes written is returned and the offset @ppos is
 654 * advanced by this number, or negative value is returned on error.
 655 **/
 656ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 657		const void __user *from, size_t count)
 658{
 659	loff_t pos = *ppos;
 660	size_t res;
 661
 662	if (pos < 0)
 663		return -EINVAL;
 664	if (pos >= available || !count)
 665		return 0;
 666	if (count > available - pos)
 667		count = available - pos;
 668	res = copy_from_user(to + pos, from, count);
 669	if (res == count)
 670		return -EFAULT;
 671	count -= res;
 672	*ppos = pos + count;
 673	return count;
 674}
 675EXPORT_SYMBOL(simple_write_to_buffer);
 676
 677/**
 678 * memory_read_from_buffer - copy data from the buffer
 679 * @to: the kernel space buffer to read to
 680 * @count: the maximum number of bytes to read
 681 * @ppos: the current position in the buffer
 682 * @from: the buffer to read from
 683 * @available: the size of the buffer
 684 *
 685 * The memory_read_from_buffer() function reads up to @count bytes from the
 686 * buffer @from at offset @ppos into the kernel space address starting at @to.
 687 *
 688 * On success, the number of bytes read is returned and the offset @ppos is
 689 * advanced by this number, or negative value is returned on error.
 690 **/
 691ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 692				const void *from, size_t available)
 693{
 694	loff_t pos = *ppos;
 695
 696	if (pos < 0)
 697		return -EINVAL;
 698	if (pos >= available)
 699		return 0;
 700	if (count > available - pos)
 701		count = available - pos;
 702	memcpy(to, from + pos, count);
 703	*ppos = pos + count;
 704
 705	return count;
 706}
 707EXPORT_SYMBOL(memory_read_from_buffer);
 708
 709/*
 710 * Transaction based IO.
 711 * The file expects a single write which triggers the transaction, and then
 712 * possibly a read which collects the result - which is stored in a
 713 * file-local buffer.
 714 */
 715
 716void simple_transaction_set(struct file *file, size_t n)
 717{
 718	struct simple_transaction_argresp *ar = file->private_data;
 719
 720	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 721
 722	/*
 723	 * The barrier ensures that ar->size will really remain zero until
 724	 * ar->data is ready for reading.
 725	 */
 726	smp_mb();
 727	ar->size = n;
 728}
 729EXPORT_SYMBOL(simple_transaction_set);
 730
 731char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 732{
 733	struct simple_transaction_argresp *ar;
 734	static DEFINE_SPINLOCK(simple_transaction_lock);
 735
 736	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 737		return ERR_PTR(-EFBIG);
 738
 739	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 740	if (!ar)
 741		return ERR_PTR(-ENOMEM);
 742
 743	spin_lock(&simple_transaction_lock);
 744
 745	/* only one write allowed per open */
 746	if (file->private_data) {
 747		spin_unlock(&simple_transaction_lock);
 748		free_page((unsigned long)ar);
 749		return ERR_PTR(-EBUSY);
 750	}
 751
 752	file->private_data = ar;
 753
 754	spin_unlock(&simple_transaction_lock);
 755
 756	if (copy_from_user(ar->data, buf, size))
 757		return ERR_PTR(-EFAULT);
 758
 759	return ar->data;
 760}
 761EXPORT_SYMBOL(simple_transaction_get);
 762
 763ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 764{
 765	struct simple_transaction_argresp *ar = file->private_data;
 766
 767	if (!ar)
 768		return 0;
 769	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 770}
 771EXPORT_SYMBOL(simple_transaction_read);
 772
 773int simple_transaction_release(struct inode *inode, struct file *file)
 774{
 775	free_page((unsigned long)file->private_data);
 776	return 0;
 777}
 778EXPORT_SYMBOL(simple_transaction_release);
 779
 780/* Simple attribute files */
 781
 782struct simple_attr {
 783	int (*get)(void *, u64 *);
 784	int (*set)(void *, u64);
 785	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 786	char set_buf[24];
 787	void *data;
 788	const char *fmt;	/* format for read operation */
 789	struct mutex mutex;	/* protects access to these buffers */
 790};
 791
 792/* simple_attr_open is called by an actual attribute open file operation
 793 * to set the attribute specific access operations. */
 794int simple_attr_open(struct inode *inode, struct file *file,
 795		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 796		     const char *fmt)
 797{
 798	struct simple_attr *attr;
 799
 800	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 801	if (!attr)
 802		return -ENOMEM;
 803
 804	attr->get = get;
 805	attr->set = set;
 806	attr->data = inode->i_private;
 807	attr->fmt = fmt;
 808	mutex_init(&attr->mutex);
 809
 810	file->private_data = attr;
 811
 812	return nonseekable_open(inode, file);
 813}
 814EXPORT_SYMBOL_GPL(simple_attr_open);
 815
 816int simple_attr_release(struct inode *inode, struct file *file)
 817{
 818	kfree(file->private_data);
 819	return 0;
 820}
 821EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
 822
 823/* read from the buffer that is filled with the get function */
 824ssize_t simple_attr_read(struct file *file, char __user *buf,
 825			 size_t len, loff_t *ppos)
 826{
 827	struct simple_attr *attr;
 828	size_t size;
 829	ssize_t ret;
 830
 831	attr = file->private_data;
 832
 833	if (!attr->get)
 834		return -EACCES;
 835
 836	ret = mutex_lock_interruptible(&attr->mutex);
 837	if (ret)
 838		return ret;
 839
 840	if (*ppos) {		/* continued read */
 841		size = strlen(attr->get_buf);
 842	} else {		/* first read */
 843		u64 val;
 844		ret = attr->get(attr->data, &val);
 845		if (ret)
 846			goto out;
 847
 848		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 849				 attr->fmt, (unsigned long long)val);
 850	}
 851
 852	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 853out:
 854	mutex_unlock(&attr->mutex);
 855	return ret;
 856}
 857EXPORT_SYMBOL_GPL(simple_attr_read);
 858
 859/* interpret the buffer as a number to call the set function with */
 860ssize_t simple_attr_write(struct file *file, const char __user *buf,
 861			  size_t len, loff_t *ppos)
 862{
 863	struct simple_attr *attr;
 864	u64 val;
 865	size_t size;
 866	ssize_t ret;
 867
 868	attr = file->private_data;
 869	if (!attr->set)
 870		return -EACCES;
 871
 872	ret = mutex_lock_interruptible(&attr->mutex);
 873	if (ret)
 874		return ret;
 875
 876	ret = -EFAULT;
 877	size = min(sizeof(attr->set_buf) - 1, len);
 878	if (copy_from_user(attr->set_buf, buf, size))
 879		goto out;
 880
 881	attr->set_buf[size] = '\0';
 882	val = simple_strtoll(attr->set_buf, NULL, 0);
 883	ret = attr->set(attr->data, val);
 884	if (ret == 0)
 885		ret = len; /* on success, claim we got the whole input */
 886out:
 887	mutex_unlock(&attr->mutex);
 888	return ret;
 889}
 890EXPORT_SYMBOL_GPL(simple_attr_write);
 891
 892/**
 893 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 894 * @sb:		filesystem to do the file handle conversion on
 895 * @fid:	file handle to convert
 896 * @fh_len:	length of the file handle in bytes
 897 * @fh_type:	type of file handle
 898 * @get_inode:	filesystem callback to retrieve inode
 899 *
 900 * This function decodes @fid as long as it has one of the well-known
 901 * Linux filehandle types and calls @get_inode on it to retrieve the
 902 * inode for the object specified in the file handle.
 903 */
 904struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 905		int fh_len, int fh_type, struct inode *(*get_inode)
 906			(struct super_block *sb, u64 ino, u32 gen))
 907{
 908	struct inode *inode = NULL;
 909
 910	if (fh_len < 2)
 911		return NULL;
 912
 913	switch (fh_type) {
 914	case FILEID_INO32_GEN:
 915	case FILEID_INO32_GEN_PARENT:
 916		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 917		break;
 918	}
 919
 920	return d_obtain_alias(inode);
 921}
 922EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 923
 924/**
 925 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 926 * @sb:		filesystem to do the file handle conversion on
 927 * @fid:	file handle to convert
 928 * @fh_len:	length of the file handle in bytes
 929 * @fh_type:	type of file handle
 930 * @get_inode:	filesystem callback to retrieve inode
 931 *
 932 * This function decodes @fid as long as it has one of the well-known
 933 * Linux filehandle types and calls @get_inode on it to retrieve the
 934 * inode for the _parent_ object specified in the file handle if it
 935 * is specified in the file handle, or NULL otherwise.
 936 */
 937struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 938		int fh_len, int fh_type, struct inode *(*get_inode)
 939			(struct super_block *sb, u64 ino, u32 gen))
 940{
 941	struct inode *inode = NULL;
 942
 943	if (fh_len <= 2)
 944		return NULL;
 945
 946	switch (fh_type) {
 947	case FILEID_INO32_GEN_PARENT:
 948		inode = get_inode(sb, fid->i32.parent_ino,
 949				  (fh_len > 3 ? fid->i32.parent_gen : 0));
 950		break;
 951	}
 952
 953	return d_obtain_alias(inode);
 954}
 955EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 956
 957/**
 958 * __generic_file_fsync - generic fsync implementation for simple filesystems
 959 *
 960 * @file:	file to synchronize
 961 * @start:	start offset in bytes
 962 * @end:	end offset in bytes (inclusive)
 963 * @datasync:	only synchronize essential metadata if true
 964 *
 965 * This is a generic implementation of the fsync method for simple
 966 * filesystems which track all non-inode metadata in the buffers list
 967 * hanging off the address_space structure.
 968 */
 969int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 970				 int datasync)
 971{
 972	struct inode *inode = file->f_mapping->host;
 973	int err;
 974	int ret;
 975
 976	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
 977	if (err)
 978		return err;
 979
 980	inode_lock(inode);
 981	ret = sync_mapping_buffers(inode->i_mapping);
 982	if (!(inode->i_state & I_DIRTY_ALL))
 983		goto out;
 984	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 985		goto out;
 986
 987	err = sync_inode_metadata(inode, 1);
 988	if (ret == 0)
 989		ret = err;
 990
 991out:
 992	inode_unlock(inode);
 993	return ret;
 994}
 995EXPORT_SYMBOL(__generic_file_fsync);
 996
 997/**
 998 * generic_file_fsync - generic fsync implementation for simple filesystems
 999 *			with flush
1000 * @file:	file to synchronize
1001 * @start:	start offset in bytes
1002 * @end:	end offset in bytes (inclusive)
1003 * @datasync:	only synchronize essential metadata if true
1004 *
1005 */
1006
1007int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1008		       int datasync)
1009{
1010	struct inode *inode = file->f_mapping->host;
1011	int err;
1012
1013	err = __generic_file_fsync(file, start, end, datasync);
1014	if (err)
1015		return err;
1016	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1017}
1018EXPORT_SYMBOL(generic_file_fsync);
1019
1020/**
1021 * generic_check_addressable - Check addressability of file system
1022 * @blocksize_bits:	log of file system block size
1023 * @num_blocks:		number of blocks in file system
1024 *
1025 * Determine whether a file system with @num_blocks blocks (and a
1026 * block size of 2**@blocksize_bits) is addressable by the sector_t
1027 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1028 */
1029int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1030{
1031	u64 last_fs_block = num_blocks - 1;
1032	u64 last_fs_page =
1033		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1034
1035	if (unlikely(num_blocks == 0))
1036		return 0;
1037
1038	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1039		return -EINVAL;
1040
1041	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1042	    (last_fs_page > (pgoff_t)(~0ULL))) {
1043		return -EFBIG;
1044	}
1045	return 0;
1046}
1047EXPORT_SYMBOL(generic_check_addressable);
1048
1049/*
1050 * No-op implementation of ->fsync for in-memory filesystems.
1051 */
1052int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1053{
1054	return 0;
1055}
1056EXPORT_SYMBOL(noop_fsync);
1057
1058/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1059void kfree_link(void *p)
1060{
1061	kfree(p);
1062}
1063EXPORT_SYMBOL(kfree_link);
1064
1065/*
1066 * nop .set_page_dirty method so that people can use .page_mkwrite on
1067 * anon inodes.
1068 */
1069static int anon_set_page_dirty(struct page *page)
1070{
1071	return 0;
1072};
1073
1074/*
1075 * A single inode exists for all anon_inode files. Contrary to pipes,
1076 * anon_inode inodes have no associated per-instance data, so we need
1077 * only allocate one of them.
1078 */
1079struct inode *alloc_anon_inode(struct super_block *s)
1080{
1081	static const struct address_space_operations anon_aops = {
1082		.set_page_dirty = anon_set_page_dirty,
1083	};
1084	struct inode *inode = new_inode_pseudo(s);
1085
1086	if (!inode)
1087		return ERR_PTR(-ENOMEM);
1088
1089	inode->i_ino = get_next_ino();
1090	inode->i_mapping->a_ops = &anon_aops;
1091
1092	/*
1093	 * Mark the inode dirty from the very beginning,
1094	 * that way it will never be moved to the dirty
1095	 * list because mark_inode_dirty() will think
1096	 * that it already _is_ on the dirty list.
1097	 */
1098	inode->i_state = I_DIRTY;
1099	inode->i_mode = S_IRUSR | S_IWUSR;
1100	inode->i_uid = current_fsuid();
1101	inode->i_gid = current_fsgid();
1102	inode->i_flags |= S_PRIVATE;
1103	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1104	return inode;
1105}
1106EXPORT_SYMBOL(alloc_anon_inode);
1107
1108/**
1109 * simple_nosetlease - generic helper for prohibiting leases
1110 * @filp: file pointer
1111 * @arg: type of lease to obtain
1112 * @flp: new lease supplied for insertion
1113 * @priv: private data for lm_setup operation
1114 *
1115 * Generic helper for filesystems that do not wish to allow leases to be set.
1116 * All arguments are ignored and it just returns -EINVAL.
1117 */
1118int
1119simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1120		  void **priv)
1121{
1122	return -EINVAL;
1123}
1124EXPORT_SYMBOL(simple_nosetlease);
1125
1126const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1127			    struct delayed_call *done)
1128{
1129	return inode->i_link;
1130}
1131EXPORT_SYMBOL(simple_get_link);
1132
1133const struct inode_operations simple_symlink_inode_operations = {
1134	.get_link = simple_get_link,
 
1135};
1136EXPORT_SYMBOL(simple_symlink_inode_operations);
1137
1138/*
1139 * Operations for a permanently empty directory.
1140 */
1141static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1142{
1143	return ERR_PTR(-ENOENT);
1144}
1145
1146static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1147				 struct kstat *stat)
1148{
1149	struct inode *inode = d_inode(dentry);
1150	generic_fillattr(inode, stat);
1151	return 0;
1152}
1153
1154static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1155{
1156	return -EPERM;
1157}
1158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1160{
1161	return -EOPNOTSUPP;
1162}
1163
1164static const struct inode_operations empty_dir_inode_operations = {
1165	.lookup		= empty_dir_lookup,
1166	.permission	= generic_permission,
1167	.setattr	= empty_dir_setattr,
1168	.getattr	= empty_dir_getattr,
 
 
 
1169	.listxattr	= empty_dir_listxattr,
1170};
1171
1172static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1173{
1174	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1175	return generic_file_llseek_size(file, offset, whence, 2, 2);
1176}
1177
1178static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1179{
1180	dir_emit_dots(file, ctx);
1181	return 0;
1182}
1183
1184static const struct file_operations empty_dir_operations = {
1185	.llseek		= empty_dir_llseek,
1186	.read		= generic_read_dir,
1187	.iterate_shared	= empty_dir_readdir,
1188	.fsync		= noop_fsync,
1189};
1190
1191
1192void make_empty_dir_inode(struct inode *inode)
1193{
1194	set_nlink(inode, 2);
1195	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1196	inode->i_uid = GLOBAL_ROOT_UID;
1197	inode->i_gid = GLOBAL_ROOT_GID;
1198	inode->i_rdev = 0;
1199	inode->i_size = 0;
1200	inode->i_blkbits = PAGE_SHIFT;
1201	inode->i_blocks = 0;
1202
1203	inode->i_op = &empty_dir_inode_operations;
1204	inode->i_opflags &= ~IOP_XATTR;
1205	inode->i_fop = &empty_dir_operations;
1206}
1207
1208bool is_empty_dir_inode(struct inode *inode)
1209{
1210	return (inode->i_fop == &empty_dir_operations) &&
1211		(inode->i_op == &empty_dir_inode_operations);
1212}