Loading...
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 * Copyright (C) 2016 Mellanox Technologies
21 *
22 * This program is free software; you can redistribute it and/or modify
23 * it under the terms of the GNU General Public License version 2,
24 * as published by the Free Software Foundation.
25 */
26
27#include <linux/init.h>
28#include <linux/kd.h>
29#include <linux/kernel.h>
30#include <linux/tracehook.h>
31#include <linux/errno.h>
32#include <linux/sched/signal.h>
33#include <linux/sched/task.h>
34#include <linux/lsm_hooks.h>
35#include <linux/xattr.h>
36#include <linux/capability.h>
37#include <linux/unistd.h>
38#include <linux/mm.h>
39#include <linux/mman.h>
40#include <linux/slab.h>
41#include <linux/pagemap.h>
42#include <linux/proc_fs.h>
43#include <linux/swap.h>
44#include <linux/spinlock.h>
45#include <linux/syscalls.h>
46#include <linux/dcache.h>
47#include <linux/file.h>
48#include <linux/fdtable.h>
49#include <linux/namei.h>
50#include <linux/mount.h>
51#include <linux/netfilter_ipv4.h>
52#include <linux/netfilter_ipv6.h>
53#include <linux/tty.h>
54#include <net/icmp.h>
55#include <net/ip.h> /* for local_port_range[] */
56#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
57#include <net/inet_connection_sock.h>
58#include <net/net_namespace.h>
59#include <net/netlabel.h>
60#include <linux/uaccess.h>
61#include <asm/ioctls.h>
62#include <linux/atomic.h>
63#include <linux/bitops.h>
64#include <linux/interrupt.h>
65#include <linux/netdevice.h> /* for network interface checks */
66#include <net/netlink.h>
67#include <linux/tcp.h>
68#include <linux/udp.h>
69#include <linux/dccp.h>
70#include <linux/sctp.h>
71#include <net/sctp/structs.h>
72#include <linux/quota.h>
73#include <linux/un.h> /* for Unix socket types */
74#include <net/af_unix.h> /* for Unix socket types */
75#include <linux/parser.h>
76#include <linux/nfs_mount.h>
77#include <net/ipv6.h>
78#include <linux/hugetlb.h>
79#include <linux/personality.h>
80#include <linux/audit.h>
81#include <linux/string.h>
82#include <linux/selinux.h>
83#include <linux/mutex.h>
84#include <linux/posix-timers.h>
85#include <linux/syslog.h>
86#include <linux/user_namespace.h>
87#include <linux/export.h>
88#include <linux/msg.h>
89#include <linux/shm.h>
90#include <linux/bpf.h>
91
92#include "avc.h"
93#include "objsec.h"
94#include "netif.h"
95#include "netnode.h"
96#include "netport.h"
97#include "ibpkey.h"
98#include "xfrm.h"
99#include "netlabel.h"
100#include "audit.h"
101#include "avc_ss.h"
102
103struct selinux_state selinux_state;
104
105/* SECMARK reference count */
106static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
107
108#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
109static int selinux_enforcing_boot;
110
111static int __init enforcing_setup(char *str)
112{
113 unsigned long enforcing;
114 if (!kstrtoul(str, 0, &enforcing))
115 selinux_enforcing_boot = enforcing ? 1 : 0;
116 return 1;
117}
118__setup("enforcing=", enforcing_setup);
119#else
120#define selinux_enforcing_boot 1
121#endif
122
123#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
124int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
125
126static int __init selinux_enabled_setup(char *str)
127{
128 unsigned long enabled;
129 if (!kstrtoul(str, 0, &enabled))
130 selinux_enabled = enabled ? 1 : 0;
131 return 1;
132}
133__setup("selinux=", selinux_enabled_setup);
134#else
135int selinux_enabled = 1;
136#endif
137
138static unsigned int selinux_checkreqprot_boot =
139 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140
141static int __init checkreqprot_setup(char *str)
142{
143 unsigned long checkreqprot;
144
145 if (!kstrtoul(str, 0, &checkreqprot))
146 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 return 1;
148}
149__setup("checkreqprot=", checkreqprot_setup);
150
151static struct kmem_cache *sel_inode_cache;
152static struct kmem_cache *file_security_cache;
153
154/**
155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156 *
157 * Description:
158 * This function checks the SECMARK reference counter to see if any SECMARK
159 * targets are currently configured, if the reference counter is greater than
160 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
161 * enabled, false (0) if SECMARK is disabled. If the always_check_network
162 * policy capability is enabled, SECMARK is always considered enabled.
163 *
164 */
165static int selinux_secmark_enabled(void)
166{
167 return (selinux_policycap_alwaysnetwork() ||
168 atomic_read(&selinux_secmark_refcount));
169}
170
171/**
172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173 *
174 * Description:
175 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
176 * (1) if any are enabled or false (0) if neither are enabled. If the
177 * always_check_network policy capability is enabled, peer labeling
178 * is always considered enabled.
179 *
180 */
181static int selinux_peerlbl_enabled(void)
182{
183 return (selinux_policycap_alwaysnetwork() ||
184 netlbl_enabled() || selinux_xfrm_enabled());
185}
186
187static int selinux_netcache_avc_callback(u32 event)
188{
189 if (event == AVC_CALLBACK_RESET) {
190 sel_netif_flush();
191 sel_netnode_flush();
192 sel_netport_flush();
193 synchronize_net();
194 }
195 return 0;
196}
197
198static int selinux_lsm_notifier_avc_callback(u32 event)
199{
200 if (event == AVC_CALLBACK_RESET) {
201 sel_ib_pkey_flush();
202 call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203 }
204
205 return 0;
206}
207
208/*
209 * initialise the security for the init task
210 */
211static void cred_init_security(void)
212{
213 struct cred *cred = (struct cred *) current->real_cred;
214 struct task_security_struct *tsec;
215
216 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
217 if (!tsec)
218 panic("SELinux: Failed to initialize initial task.\n");
219
220 tsec->osid = tsec->sid = SECINITSID_KERNEL;
221 cred->security = tsec;
222}
223
224/*
225 * get the security ID of a set of credentials
226 */
227static inline u32 cred_sid(const struct cred *cred)
228{
229 const struct task_security_struct *tsec;
230
231 tsec = cred->security;
232 return tsec->sid;
233}
234
235/*
236 * get the objective security ID of a task
237 */
238static inline u32 task_sid(const struct task_struct *task)
239{
240 u32 sid;
241
242 rcu_read_lock();
243 sid = cred_sid(__task_cred(task));
244 rcu_read_unlock();
245 return sid;
246}
247
248/* Allocate and free functions for each kind of security blob. */
249
250static int inode_alloc_security(struct inode *inode)
251{
252 struct inode_security_struct *isec;
253 u32 sid = current_sid();
254
255 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
256 if (!isec)
257 return -ENOMEM;
258
259 spin_lock_init(&isec->lock);
260 INIT_LIST_HEAD(&isec->list);
261 isec->inode = inode;
262 isec->sid = SECINITSID_UNLABELED;
263 isec->sclass = SECCLASS_FILE;
264 isec->task_sid = sid;
265 isec->initialized = LABEL_INVALID;
266 inode->i_security = isec;
267
268 return 0;
269}
270
271static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
272
273/*
274 * Try reloading inode security labels that have been marked as invalid. The
275 * @may_sleep parameter indicates when sleeping and thus reloading labels is
276 * allowed; when set to false, returns -ECHILD when the label is
277 * invalid. The @opt_dentry parameter should be set to a dentry of the inode;
278 * when no dentry is available, set it to NULL instead.
279 */
280static int __inode_security_revalidate(struct inode *inode,
281 struct dentry *opt_dentry,
282 bool may_sleep)
283{
284 struct inode_security_struct *isec = inode->i_security;
285
286 might_sleep_if(may_sleep);
287
288 if (selinux_state.initialized &&
289 isec->initialized != LABEL_INITIALIZED) {
290 if (!may_sleep)
291 return -ECHILD;
292
293 /*
294 * Try reloading the inode security label. This will fail if
295 * @opt_dentry is NULL and no dentry for this inode can be
296 * found; in that case, continue using the old label.
297 */
298 inode_doinit_with_dentry(inode, opt_dentry);
299 }
300 return 0;
301}
302
303static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
304{
305 return inode->i_security;
306}
307
308static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
309{
310 int error;
311
312 error = __inode_security_revalidate(inode, NULL, !rcu);
313 if (error)
314 return ERR_PTR(error);
315 return inode->i_security;
316}
317
318/*
319 * Get the security label of an inode.
320 */
321static struct inode_security_struct *inode_security(struct inode *inode)
322{
323 __inode_security_revalidate(inode, NULL, true);
324 return inode->i_security;
325}
326
327static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
328{
329 struct inode *inode = d_backing_inode(dentry);
330
331 return inode->i_security;
332}
333
334/*
335 * Get the security label of a dentry's backing inode.
336 */
337static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
338{
339 struct inode *inode = d_backing_inode(dentry);
340
341 __inode_security_revalidate(inode, dentry, true);
342 return inode->i_security;
343}
344
345static void inode_free_rcu(struct rcu_head *head)
346{
347 struct inode_security_struct *isec;
348
349 isec = container_of(head, struct inode_security_struct, rcu);
350 kmem_cache_free(sel_inode_cache, isec);
351}
352
353static void inode_free_security(struct inode *inode)
354{
355 struct inode_security_struct *isec = inode->i_security;
356 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
357
358 /*
359 * As not all inode security structures are in a list, we check for
360 * empty list outside of the lock to make sure that we won't waste
361 * time taking a lock doing nothing.
362 *
363 * The list_del_init() function can be safely called more than once.
364 * It should not be possible for this function to be called with
365 * concurrent list_add(), but for better safety against future changes
366 * in the code, we use list_empty_careful() here.
367 */
368 if (!list_empty_careful(&isec->list)) {
369 spin_lock(&sbsec->isec_lock);
370 list_del_init(&isec->list);
371 spin_unlock(&sbsec->isec_lock);
372 }
373
374 /*
375 * The inode may still be referenced in a path walk and
376 * a call to selinux_inode_permission() can be made
377 * after inode_free_security() is called. Ideally, the VFS
378 * wouldn't do this, but fixing that is a much harder
379 * job. For now, simply free the i_security via RCU, and
380 * leave the current inode->i_security pointer intact.
381 * The inode will be freed after the RCU grace period too.
382 */
383 call_rcu(&isec->rcu, inode_free_rcu);
384}
385
386static int file_alloc_security(struct file *file)
387{
388 struct file_security_struct *fsec;
389 u32 sid = current_sid();
390
391 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
392 if (!fsec)
393 return -ENOMEM;
394
395 fsec->sid = sid;
396 fsec->fown_sid = sid;
397 file->f_security = fsec;
398
399 return 0;
400}
401
402static void file_free_security(struct file *file)
403{
404 struct file_security_struct *fsec = file->f_security;
405 file->f_security = NULL;
406 kmem_cache_free(file_security_cache, fsec);
407}
408
409static int superblock_alloc_security(struct super_block *sb)
410{
411 struct superblock_security_struct *sbsec;
412
413 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
414 if (!sbsec)
415 return -ENOMEM;
416
417 mutex_init(&sbsec->lock);
418 INIT_LIST_HEAD(&sbsec->isec_head);
419 spin_lock_init(&sbsec->isec_lock);
420 sbsec->sb = sb;
421 sbsec->sid = SECINITSID_UNLABELED;
422 sbsec->def_sid = SECINITSID_FILE;
423 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
424 sb->s_security = sbsec;
425
426 return 0;
427}
428
429static void superblock_free_security(struct super_block *sb)
430{
431 struct superblock_security_struct *sbsec = sb->s_security;
432 sb->s_security = NULL;
433 kfree(sbsec);
434}
435
436static inline int inode_doinit(struct inode *inode)
437{
438 return inode_doinit_with_dentry(inode, NULL);
439}
440
441enum {
442 Opt_error = -1,
443 Opt_context = 1,
444 Opt_fscontext = 2,
445 Opt_defcontext = 3,
446 Opt_rootcontext = 4,
447 Opt_labelsupport = 5,
448 Opt_nextmntopt = 6,
449};
450
451#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
452
453static const match_table_t tokens = {
454 {Opt_context, CONTEXT_STR "%s"},
455 {Opt_fscontext, FSCONTEXT_STR "%s"},
456 {Opt_defcontext, DEFCONTEXT_STR "%s"},
457 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
458 {Opt_labelsupport, LABELSUPP_STR},
459 {Opt_error, NULL},
460};
461
462#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
463
464static int may_context_mount_sb_relabel(u32 sid,
465 struct superblock_security_struct *sbsec,
466 const struct cred *cred)
467{
468 const struct task_security_struct *tsec = cred->security;
469 int rc;
470
471 rc = avc_has_perm(&selinux_state,
472 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
473 FILESYSTEM__RELABELFROM, NULL);
474 if (rc)
475 return rc;
476
477 rc = avc_has_perm(&selinux_state,
478 tsec->sid, sid, SECCLASS_FILESYSTEM,
479 FILESYSTEM__RELABELTO, NULL);
480 return rc;
481}
482
483static int may_context_mount_inode_relabel(u32 sid,
484 struct superblock_security_struct *sbsec,
485 const struct cred *cred)
486{
487 const struct task_security_struct *tsec = cred->security;
488 int rc;
489 rc = avc_has_perm(&selinux_state,
490 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
491 FILESYSTEM__RELABELFROM, NULL);
492 if (rc)
493 return rc;
494
495 rc = avc_has_perm(&selinux_state,
496 sid, sbsec->sid, SECCLASS_FILESYSTEM,
497 FILESYSTEM__ASSOCIATE, NULL);
498 return rc;
499}
500
501static int selinux_is_sblabel_mnt(struct super_block *sb)
502{
503 struct superblock_security_struct *sbsec = sb->s_security;
504
505 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
506 sbsec->behavior == SECURITY_FS_USE_TRANS ||
507 sbsec->behavior == SECURITY_FS_USE_TASK ||
508 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
509 /* Special handling. Genfs but also in-core setxattr handler */
510 !strcmp(sb->s_type->name, "sysfs") ||
511 !strcmp(sb->s_type->name, "pstore") ||
512 !strcmp(sb->s_type->name, "debugfs") ||
513 !strcmp(sb->s_type->name, "tracefs") ||
514 !strcmp(sb->s_type->name, "rootfs") ||
515 (selinux_policycap_cgroupseclabel() &&
516 (!strcmp(sb->s_type->name, "cgroup") ||
517 !strcmp(sb->s_type->name, "cgroup2")));
518}
519
520static int sb_finish_set_opts(struct super_block *sb)
521{
522 struct superblock_security_struct *sbsec = sb->s_security;
523 struct dentry *root = sb->s_root;
524 struct inode *root_inode = d_backing_inode(root);
525 int rc = 0;
526
527 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
528 /* Make sure that the xattr handler exists and that no
529 error other than -ENODATA is returned by getxattr on
530 the root directory. -ENODATA is ok, as this may be
531 the first boot of the SELinux kernel before we have
532 assigned xattr values to the filesystem. */
533 if (!(root_inode->i_opflags & IOP_XATTR)) {
534 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
535 "xattr support\n", sb->s_id, sb->s_type->name);
536 rc = -EOPNOTSUPP;
537 goto out;
538 }
539
540 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
541 if (rc < 0 && rc != -ENODATA) {
542 if (rc == -EOPNOTSUPP)
543 printk(KERN_WARNING "SELinux: (dev %s, type "
544 "%s) has no security xattr handler\n",
545 sb->s_id, sb->s_type->name);
546 else
547 printk(KERN_WARNING "SELinux: (dev %s, type "
548 "%s) getxattr errno %d\n", sb->s_id,
549 sb->s_type->name, -rc);
550 goto out;
551 }
552 }
553
554 sbsec->flags |= SE_SBINITIALIZED;
555
556 /*
557 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
558 * leave the flag untouched because sb_clone_mnt_opts might be handing
559 * us a superblock that needs the flag to be cleared.
560 */
561 if (selinux_is_sblabel_mnt(sb))
562 sbsec->flags |= SBLABEL_MNT;
563 else
564 sbsec->flags &= ~SBLABEL_MNT;
565
566 /* Initialize the root inode. */
567 rc = inode_doinit_with_dentry(root_inode, root);
568
569 /* Initialize any other inodes associated with the superblock, e.g.
570 inodes created prior to initial policy load or inodes created
571 during get_sb by a pseudo filesystem that directly
572 populates itself. */
573 spin_lock(&sbsec->isec_lock);
574next_inode:
575 if (!list_empty(&sbsec->isec_head)) {
576 struct inode_security_struct *isec =
577 list_entry(sbsec->isec_head.next,
578 struct inode_security_struct, list);
579 struct inode *inode = isec->inode;
580 list_del_init(&isec->list);
581 spin_unlock(&sbsec->isec_lock);
582 inode = igrab(inode);
583 if (inode) {
584 if (!IS_PRIVATE(inode))
585 inode_doinit(inode);
586 iput(inode);
587 }
588 spin_lock(&sbsec->isec_lock);
589 goto next_inode;
590 }
591 spin_unlock(&sbsec->isec_lock);
592out:
593 return rc;
594}
595
596/*
597 * This function should allow an FS to ask what it's mount security
598 * options were so it can use those later for submounts, displaying
599 * mount options, or whatever.
600 */
601static int selinux_get_mnt_opts(const struct super_block *sb,
602 struct security_mnt_opts *opts)
603{
604 int rc = 0, i;
605 struct superblock_security_struct *sbsec = sb->s_security;
606 char *context = NULL;
607 u32 len;
608 char tmp;
609
610 security_init_mnt_opts(opts);
611
612 if (!(sbsec->flags & SE_SBINITIALIZED))
613 return -EINVAL;
614
615 if (!selinux_state.initialized)
616 return -EINVAL;
617
618 /* make sure we always check enough bits to cover the mask */
619 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
620
621 tmp = sbsec->flags & SE_MNTMASK;
622 /* count the number of mount options for this sb */
623 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
624 if (tmp & 0x01)
625 opts->num_mnt_opts++;
626 tmp >>= 1;
627 }
628 /* Check if the Label support flag is set */
629 if (sbsec->flags & SBLABEL_MNT)
630 opts->num_mnt_opts++;
631
632 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
633 if (!opts->mnt_opts) {
634 rc = -ENOMEM;
635 goto out_free;
636 }
637
638 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
639 if (!opts->mnt_opts_flags) {
640 rc = -ENOMEM;
641 goto out_free;
642 }
643
644 i = 0;
645 if (sbsec->flags & FSCONTEXT_MNT) {
646 rc = security_sid_to_context(&selinux_state, sbsec->sid,
647 &context, &len);
648 if (rc)
649 goto out_free;
650 opts->mnt_opts[i] = context;
651 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
652 }
653 if (sbsec->flags & CONTEXT_MNT) {
654 rc = security_sid_to_context(&selinux_state,
655 sbsec->mntpoint_sid,
656 &context, &len);
657 if (rc)
658 goto out_free;
659 opts->mnt_opts[i] = context;
660 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
661 }
662 if (sbsec->flags & DEFCONTEXT_MNT) {
663 rc = security_sid_to_context(&selinux_state, sbsec->def_sid,
664 &context, &len);
665 if (rc)
666 goto out_free;
667 opts->mnt_opts[i] = context;
668 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
669 }
670 if (sbsec->flags & ROOTCONTEXT_MNT) {
671 struct dentry *root = sbsec->sb->s_root;
672 struct inode_security_struct *isec = backing_inode_security(root);
673
674 rc = security_sid_to_context(&selinux_state, isec->sid,
675 &context, &len);
676 if (rc)
677 goto out_free;
678 opts->mnt_opts[i] = context;
679 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
680 }
681 if (sbsec->flags & SBLABEL_MNT) {
682 opts->mnt_opts[i] = NULL;
683 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
684 }
685
686 BUG_ON(i != opts->num_mnt_opts);
687
688 return 0;
689
690out_free:
691 security_free_mnt_opts(opts);
692 return rc;
693}
694
695static int bad_option(struct superblock_security_struct *sbsec, char flag,
696 u32 old_sid, u32 new_sid)
697{
698 char mnt_flags = sbsec->flags & SE_MNTMASK;
699
700 /* check if the old mount command had the same options */
701 if (sbsec->flags & SE_SBINITIALIZED)
702 if (!(sbsec->flags & flag) ||
703 (old_sid != new_sid))
704 return 1;
705
706 /* check if we were passed the same options twice,
707 * aka someone passed context=a,context=b
708 */
709 if (!(sbsec->flags & SE_SBINITIALIZED))
710 if (mnt_flags & flag)
711 return 1;
712 return 0;
713}
714
715/*
716 * Allow filesystems with binary mount data to explicitly set mount point
717 * labeling information.
718 */
719static int selinux_set_mnt_opts(struct super_block *sb,
720 struct security_mnt_opts *opts,
721 unsigned long kern_flags,
722 unsigned long *set_kern_flags)
723{
724 const struct cred *cred = current_cred();
725 int rc = 0, i;
726 struct superblock_security_struct *sbsec = sb->s_security;
727 const char *name = sb->s_type->name;
728 struct dentry *root = sbsec->sb->s_root;
729 struct inode_security_struct *root_isec;
730 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
731 u32 defcontext_sid = 0;
732 char **mount_options = opts->mnt_opts;
733 int *flags = opts->mnt_opts_flags;
734 int num_opts = opts->num_mnt_opts;
735
736 mutex_lock(&sbsec->lock);
737
738 if (!selinux_state.initialized) {
739 if (!num_opts) {
740 /* Defer initialization until selinux_complete_init,
741 after the initial policy is loaded and the security
742 server is ready to handle calls. */
743 goto out;
744 }
745 rc = -EINVAL;
746 printk(KERN_WARNING "SELinux: Unable to set superblock options "
747 "before the security server is initialized\n");
748 goto out;
749 }
750 if (kern_flags && !set_kern_flags) {
751 /* Specifying internal flags without providing a place to
752 * place the results is not allowed */
753 rc = -EINVAL;
754 goto out;
755 }
756
757 /*
758 * Binary mount data FS will come through this function twice. Once
759 * from an explicit call and once from the generic calls from the vfs.
760 * Since the generic VFS calls will not contain any security mount data
761 * we need to skip the double mount verification.
762 *
763 * This does open a hole in which we will not notice if the first
764 * mount using this sb set explict options and a second mount using
765 * this sb does not set any security options. (The first options
766 * will be used for both mounts)
767 */
768 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
769 && (num_opts == 0))
770 goto out;
771
772 root_isec = backing_inode_security_novalidate(root);
773
774 /*
775 * parse the mount options, check if they are valid sids.
776 * also check if someone is trying to mount the same sb more
777 * than once with different security options.
778 */
779 for (i = 0; i < num_opts; i++) {
780 u32 sid;
781
782 if (flags[i] == SBLABEL_MNT)
783 continue;
784 rc = security_context_str_to_sid(&selinux_state,
785 mount_options[i], &sid,
786 GFP_KERNEL);
787 if (rc) {
788 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
789 "(%s) failed for (dev %s, type %s) errno=%d\n",
790 mount_options[i], sb->s_id, name, rc);
791 goto out;
792 }
793 switch (flags[i]) {
794 case FSCONTEXT_MNT:
795 fscontext_sid = sid;
796
797 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
798 fscontext_sid))
799 goto out_double_mount;
800
801 sbsec->flags |= FSCONTEXT_MNT;
802 break;
803 case CONTEXT_MNT:
804 context_sid = sid;
805
806 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
807 context_sid))
808 goto out_double_mount;
809
810 sbsec->flags |= CONTEXT_MNT;
811 break;
812 case ROOTCONTEXT_MNT:
813 rootcontext_sid = sid;
814
815 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
816 rootcontext_sid))
817 goto out_double_mount;
818
819 sbsec->flags |= ROOTCONTEXT_MNT;
820
821 break;
822 case DEFCONTEXT_MNT:
823 defcontext_sid = sid;
824
825 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
826 defcontext_sid))
827 goto out_double_mount;
828
829 sbsec->flags |= DEFCONTEXT_MNT;
830
831 break;
832 default:
833 rc = -EINVAL;
834 goto out;
835 }
836 }
837
838 if (sbsec->flags & SE_SBINITIALIZED) {
839 /* previously mounted with options, but not on this attempt? */
840 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
841 goto out_double_mount;
842 rc = 0;
843 goto out;
844 }
845
846 if (strcmp(sb->s_type->name, "proc") == 0)
847 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
848
849 if (!strcmp(sb->s_type->name, "debugfs") ||
850 !strcmp(sb->s_type->name, "tracefs") ||
851 !strcmp(sb->s_type->name, "sysfs") ||
852 !strcmp(sb->s_type->name, "pstore") ||
853 !strcmp(sb->s_type->name, "cgroup") ||
854 !strcmp(sb->s_type->name, "cgroup2"))
855 sbsec->flags |= SE_SBGENFS;
856
857 if (!sbsec->behavior) {
858 /*
859 * Determine the labeling behavior to use for this
860 * filesystem type.
861 */
862 rc = security_fs_use(&selinux_state, sb);
863 if (rc) {
864 printk(KERN_WARNING
865 "%s: security_fs_use(%s) returned %d\n",
866 __func__, sb->s_type->name, rc);
867 goto out;
868 }
869 }
870
871 /*
872 * If this is a user namespace mount and the filesystem type is not
873 * explicitly whitelisted, then no contexts are allowed on the command
874 * line and security labels must be ignored.
875 */
876 if (sb->s_user_ns != &init_user_ns &&
877 strcmp(sb->s_type->name, "tmpfs") &&
878 strcmp(sb->s_type->name, "ramfs") &&
879 strcmp(sb->s_type->name, "devpts")) {
880 if (context_sid || fscontext_sid || rootcontext_sid ||
881 defcontext_sid) {
882 rc = -EACCES;
883 goto out;
884 }
885 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
886 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
887 rc = security_transition_sid(&selinux_state,
888 current_sid(),
889 current_sid(),
890 SECCLASS_FILE, NULL,
891 &sbsec->mntpoint_sid);
892 if (rc)
893 goto out;
894 }
895 goto out_set_opts;
896 }
897
898 /* sets the context of the superblock for the fs being mounted. */
899 if (fscontext_sid) {
900 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
901 if (rc)
902 goto out;
903
904 sbsec->sid = fscontext_sid;
905 }
906
907 /*
908 * Switch to using mount point labeling behavior.
909 * sets the label used on all file below the mountpoint, and will set
910 * the superblock context if not already set.
911 */
912 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
913 sbsec->behavior = SECURITY_FS_USE_NATIVE;
914 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
915 }
916
917 if (context_sid) {
918 if (!fscontext_sid) {
919 rc = may_context_mount_sb_relabel(context_sid, sbsec,
920 cred);
921 if (rc)
922 goto out;
923 sbsec->sid = context_sid;
924 } else {
925 rc = may_context_mount_inode_relabel(context_sid, sbsec,
926 cred);
927 if (rc)
928 goto out;
929 }
930 if (!rootcontext_sid)
931 rootcontext_sid = context_sid;
932
933 sbsec->mntpoint_sid = context_sid;
934 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
935 }
936
937 if (rootcontext_sid) {
938 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
939 cred);
940 if (rc)
941 goto out;
942
943 root_isec->sid = rootcontext_sid;
944 root_isec->initialized = LABEL_INITIALIZED;
945 }
946
947 if (defcontext_sid) {
948 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
949 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
950 rc = -EINVAL;
951 printk(KERN_WARNING "SELinux: defcontext option is "
952 "invalid for this filesystem type\n");
953 goto out;
954 }
955
956 if (defcontext_sid != sbsec->def_sid) {
957 rc = may_context_mount_inode_relabel(defcontext_sid,
958 sbsec, cred);
959 if (rc)
960 goto out;
961 }
962
963 sbsec->def_sid = defcontext_sid;
964 }
965
966out_set_opts:
967 rc = sb_finish_set_opts(sb);
968out:
969 mutex_unlock(&sbsec->lock);
970 return rc;
971out_double_mount:
972 rc = -EINVAL;
973 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
974 "security settings for (dev %s, type %s)\n", sb->s_id, name);
975 goto out;
976}
977
978static int selinux_cmp_sb_context(const struct super_block *oldsb,
979 const struct super_block *newsb)
980{
981 struct superblock_security_struct *old = oldsb->s_security;
982 struct superblock_security_struct *new = newsb->s_security;
983 char oldflags = old->flags & SE_MNTMASK;
984 char newflags = new->flags & SE_MNTMASK;
985
986 if (oldflags != newflags)
987 goto mismatch;
988 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
989 goto mismatch;
990 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
991 goto mismatch;
992 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
993 goto mismatch;
994 if (oldflags & ROOTCONTEXT_MNT) {
995 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
996 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
997 if (oldroot->sid != newroot->sid)
998 goto mismatch;
999 }
1000 return 0;
1001mismatch:
1002 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
1003 "different security settings for (dev %s, "
1004 "type %s)\n", newsb->s_id, newsb->s_type->name);
1005 return -EBUSY;
1006}
1007
1008static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
1009 struct super_block *newsb,
1010 unsigned long kern_flags,
1011 unsigned long *set_kern_flags)
1012{
1013 int rc = 0;
1014 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
1015 struct superblock_security_struct *newsbsec = newsb->s_security;
1016
1017 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
1018 int set_context = (oldsbsec->flags & CONTEXT_MNT);
1019 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
1020
1021 /*
1022 * if the parent was able to be mounted it clearly had no special lsm
1023 * mount options. thus we can safely deal with this superblock later
1024 */
1025 if (!selinux_state.initialized)
1026 return 0;
1027
1028 /*
1029 * Specifying internal flags without providing a place to
1030 * place the results is not allowed.
1031 */
1032 if (kern_flags && !set_kern_flags)
1033 return -EINVAL;
1034
1035 /* how can we clone if the old one wasn't set up?? */
1036 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1037
1038 /* if fs is reusing a sb, make sure that the contexts match */
1039 if (newsbsec->flags & SE_SBINITIALIZED)
1040 return selinux_cmp_sb_context(oldsb, newsb);
1041
1042 mutex_lock(&newsbsec->lock);
1043
1044 newsbsec->flags = oldsbsec->flags;
1045
1046 newsbsec->sid = oldsbsec->sid;
1047 newsbsec->def_sid = oldsbsec->def_sid;
1048 newsbsec->behavior = oldsbsec->behavior;
1049
1050 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1051 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1052 rc = security_fs_use(&selinux_state, newsb);
1053 if (rc)
1054 goto out;
1055 }
1056
1057 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1058 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1059 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1060 }
1061
1062 if (set_context) {
1063 u32 sid = oldsbsec->mntpoint_sid;
1064
1065 if (!set_fscontext)
1066 newsbsec->sid = sid;
1067 if (!set_rootcontext) {
1068 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1069 newisec->sid = sid;
1070 }
1071 newsbsec->mntpoint_sid = sid;
1072 }
1073 if (set_rootcontext) {
1074 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1075 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1076
1077 newisec->sid = oldisec->sid;
1078 }
1079
1080 sb_finish_set_opts(newsb);
1081out:
1082 mutex_unlock(&newsbsec->lock);
1083 return rc;
1084}
1085
1086static int selinux_parse_opts_str(char *options,
1087 struct security_mnt_opts *opts)
1088{
1089 char *p;
1090 char *context = NULL, *defcontext = NULL;
1091 char *fscontext = NULL, *rootcontext = NULL;
1092 int rc, num_mnt_opts = 0;
1093
1094 opts->num_mnt_opts = 0;
1095
1096 /* Standard string-based options. */
1097 while ((p = strsep(&options, "|")) != NULL) {
1098 int token;
1099 substring_t args[MAX_OPT_ARGS];
1100
1101 if (!*p)
1102 continue;
1103
1104 token = match_token(p, tokens, args);
1105
1106 switch (token) {
1107 case Opt_context:
1108 if (context || defcontext) {
1109 rc = -EINVAL;
1110 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1111 goto out_err;
1112 }
1113 context = match_strdup(&args[0]);
1114 if (!context) {
1115 rc = -ENOMEM;
1116 goto out_err;
1117 }
1118 break;
1119
1120 case Opt_fscontext:
1121 if (fscontext) {
1122 rc = -EINVAL;
1123 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1124 goto out_err;
1125 }
1126 fscontext = match_strdup(&args[0]);
1127 if (!fscontext) {
1128 rc = -ENOMEM;
1129 goto out_err;
1130 }
1131 break;
1132
1133 case Opt_rootcontext:
1134 if (rootcontext) {
1135 rc = -EINVAL;
1136 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1137 goto out_err;
1138 }
1139 rootcontext = match_strdup(&args[0]);
1140 if (!rootcontext) {
1141 rc = -ENOMEM;
1142 goto out_err;
1143 }
1144 break;
1145
1146 case Opt_defcontext:
1147 if (context || defcontext) {
1148 rc = -EINVAL;
1149 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1150 goto out_err;
1151 }
1152 defcontext = match_strdup(&args[0]);
1153 if (!defcontext) {
1154 rc = -ENOMEM;
1155 goto out_err;
1156 }
1157 break;
1158 case Opt_labelsupport:
1159 break;
1160 default:
1161 rc = -EINVAL;
1162 printk(KERN_WARNING "SELinux: unknown mount option\n");
1163 goto out_err;
1164
1165 }
1166 }
1167
1168 rc = -ENOMEM;
1169 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1170 if (!opts->mnt_opts)
1171 goto out_err;
1172
1173 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1174 GFP_KERNEL);
1175 if (!opts->mnt_opts_flags)
1176 goto out_err;
1177
1178 if (fscontext) {
1179 opts->mnt_opts[num_mnt_opts] = fscontext;
1180 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1181 }
1182 if (context) {
1183 opts->mnt_opts[num_mnt_opts] = context;
1184 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1185 }
1186 if (rootcontext) {
1187 opts->mnt_opts[num_mnt_opts] = rootcontext;
1188 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1189 }
1190 if (defcontext) {
1191 opts->mnt_opts[num_mnt_opts] = defcontext;
1192 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1193 }
1194
1195 opts->num_mnt_opts = num_mnt_opts;
1196 return 0;
1197
1198out_err:
1199 security_free_mnt_opts(opts);
1200 kfree(context);
1201 kfree(defcontext);
1202 kfree(fscontext);
1203 kfree(rootcontext);
1204 return rc;
1205}
1206/*
1207 * string mount options parsing and call set the sbsec
1208 */
1209static int superblock_doinit(struct super_block *sb, void *data)
1210{
1211 int rc = 0;
1212 char *options = data;
1213 struct security_mnt_opts opts;
1214
1215 security_init_mnt_opts(&opts);
1216
1217 if (!data)
1218 goto out;
1219
1220 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1221
1222 rc = selinux_parse_opts_str(options, &opts);
1223 if (rc)
1224 goto out_err;
1225
1226out:
1227 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1228
1229out_err:
1230 security_free_mnt_opts(&opts);
1231 return rc;
1232}
1233
1234static void selinux_write_opts(struct seq_file *m,
1235 struct security_mnt_opts *opts)
1236{
1237 int i;
1238 char *prefix;
1239
1240 for (i = 0; i < opts->num_mnt_opts; i++) {
1241 char *has_comma;
1242
1243 if (opts->mnt_opts[i])
1244 has_comma = strchr(opts->mnt_opts[i], ',');
1245 else
1246 has_comma = NULL;
1247
1248 switch (opts->mnt_opts_flags[i]) {
1249 case CONTEXT_MNT:
1250 prefix = CONTEXT_STR;
1251 break;
1252 case FSCONTEXT_MNT:
1253 prefix = FSCONTEXT_STR;
1254 break;
1255 case ROOTCONTEXT_MNT:
1256 prefix = ROOTCONTEXT_STR;
1257 break;
1258 case DEFCONTEXT_MNT:
1259 prefix = DEFCONTEXT_STR;
1260 break;
1261 case SBLABEL_MNT:
1262 seq_putc(m, ',');
1263 seq_puts(m, LABELSUPP_STR);
1264 continue;
1265 default:
1266 BUG();
1267 return;
1268 };
1269 /* we need a comma before each option */
1270 seq_putc(m, ',');
1271 seq_puts(m, prefix);
1272 if (has_comma)
1273 seq_putc(m, '\"');
1274 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1275 if (has_comma)
1276 seq_putc(m, '\"');
1277 }
1278}
1279
1280static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1281{
1282 struct security_mnt_opts opts;
1283 int rc;
1284
1285 rc = selinux_get_mnt_opts(sb, &opts);
1286 if (rc) {
1287 /* before policy load we may get EINVAL, don't show anything */
1288 if (rc == -EINVAL)
1289 rc = 0;
1290 return rc;
1291 }
1292
1293 selinux_write_opts(m, &opts);
1294
1295 security_free_mnt_opts(&opts);
1296
1297 return rc;
1298}
1299
1300static inline u16 inode_mode_to_security_class(umode_t mode)
1301{
1302 switch (mode & S_IFMT) {
1303 case S_IFSOCK:
1304 return SECCLASS_SOCK_FILE;
1305 case S_IFLNK:
1306 return SECCLASS_LNK_FILE;
1307 case S_IFREG:
1308 return SECCLASS_FILE;
1309 case S_IFBLK:
1310 return SECCLASS_BLK_FILE;
1311 case S_IFDIR:
1312 return SECCLASS_DIR;
1313 case S_IFCHR:
1314 return SECCLASS_CHR_FILE;
1315 case S_IFIFO:
1316 return SECCLASS_FIFO_FILE;
1317
1318 }
1319
1320 return SECCLASS_FILE;
1321}
1322
1323static inline int default_protocol_stream(int protocol)
1324{
1325 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1326}
1327
1328static inline int default_protocol_dgram(int protocol)
1329{
1330 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1331}
1332
1333static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1334{
1335 int extsockclass = selinux_policycap_extsockclass();
1336
1337 switch (family) {
1338 case PF_UNIX:
1339 switch (type) {
1340 case SOCK_STREAM:
1341 case SOCK_SEQPACKET:
1342 return SECCLASS_UNIX_STREAM_SOCKET;
1343 case SOCK_DGRAM:
1344 case SOCK_RAW:
1345 return SECCLASS_UNIX_DGRAM_SOCKET;
1346 }
1347 break;
1348 case PF_INET:
1349 case PF_INET6:
1350 switch (type) {
1351 case SOCK_STREAM:
1352 case SOCK_SEQPACKET:
1353 if (default_protocol_stream(protocol))
1354 return SECCLASS_TCP_SOCKET;
1355 else if (extsockclass && protocol == IPPROTO_SCTP)
1356 return SECCLASS_SCTP_SOCKET;
1357 else
1358 return SECCLASS_RAWIP_SOCKET;
1359 case SOCK_DGRAM:
1360 if (default_protocol_dgram(protocol))
1361 return SECCLASS_UDP_SOCKET;
1362 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1363 protocol == IPPROTO_ICMPV6))
1364 return SECCLASS_ICMP_SOCKET;
1365 else
1366 return SECCLASS_RAWIP_SOCKET;
1367 case SOCK_DCCP:
1368 return SECCLASS_DCCP_SOCKET;
1369 default:
1370 return SECCLASS_RAWIP_SOCKET;
1371 }
1372 break;
1373 case PF_NETLINK:
1374 switch (protocol) {
1375 case NETLINK_ROUTE:
1376 return SECCLASS_NETLINK_ROUTE_SOCKET;
1377 case NETLINK_SOCK_DIAG:
1378 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1379 case NETLINK_NFLOG:
1380 return SECCLASS_NETLINK_NFLOG_SOCKET;
1381 case NETLINK_XFRM:
1382 return SECCLASS_NETLINK_XFRM_SOCKET;
1383 case NETLINK_SELINUX:
1384 return SECCLASS_NETLINK_SELINUX_SOCKET;
1385 case NETLINK_ISCSI:
1386 return SECCLASS_NETLINK_ISCSI_SOCKET;
1387 case NETLINK_AUDIT:
1388 return SECCLASS_NETLINK_AUDIT_SOCKET;
1389 case NETLINK_FIB_LOOKUP:
1390 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1391 case NETLINK_CONNECTOR:
1392 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1393 case NETLINK_NETFILTER:
1394 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1395 case NETLINK_DNRTMSG:
1396 return SECCLASS_NETLINK_DNRT_SOCKET;
1397 case NETLINK_KOBJECT_UEVENT:
1398 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1399 case NETLINK_GENERIC:
1400 return SECCLASS_NETLINK_GENERIC_SOCKET;
1401 case NETLINK_SCSITRANSPORT:
1402 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1403 case NETLINK_RDMA:
1404 return SECCLASS_NETLINK_RDMA_SOCKET;
1405 case NETLINK_CRYPTO:
1406 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1407 default:
1408 return SECCLASS_NETLINK_SOCKET;
1409 }
1410 case PF_PACKET:
1411 return SECCLASS_PACKET_SOCKET;
1412 case PF_KEY:
1413 return SECCLASS_KEY_SOCKET;
1414 case PF_APPLETALK:
1415 return SECCLASS_APPLETALK_SOCKET;
1416 }
1417
1418 if (extsockclass) {
1419 switch (family) {
1420 case PF_AX25:
1421 return SECCLASS_AX25_SOCKET;
1422 case PF_IPX:
1423 return SECCLASS_IPX_SOCKET;
1424 case PF_NETROM:
1425 return SECCLASS_NETROM_SOCKET;
1426 case PF_ATMPVC:
1427 return SECCLASS_ATMPVC_SOCKET;
1428 case PF_X25:
1429 return SECCLASS_X25_SOCKET;
1430 case PF_ROSE:
1431 return SECCLASS_ROSE_SOCKET;
1432 case PF_DECnet:
1433 return SECCLASS_DECNET_SOCKET;
1434 case PF_ATMSVC:
1435 return SECCLASS_ATMSVC_SOCKET;
1436 case PF_RDS:
1437 return SECCLASS_RDS_SOCKET;
1438 case PF_IRDA:
1439 return SECCLASS_IRDA_SOCKET;
1440 case PF_PPPOX:
1441 return SECCLASS_PPPOX_SOCKET;
1442 case PF_LLC:
1443 return SECCLASS_LLC_SOCKET;
1444 case PF_CAN:
1445 return SECCLASS_CAN_SOCKET;
1446 case PF_TIPC:
1447 return SECCLASS_TIPC_SOCKET;
1448 case PF_BLUETOOTH:
1449 return SECCLASS_BLUETOOTH_SOCKET;
1450 case PF_IUCV:
1451 return SECCLASS_IUCV_SOCKET;
1452 case PF_RXRPC:
1453 return SECCLASS_RXRPC_SOCKET;
1454 case PF_ISDN:
1455 return SECCLASS_ISDN_SOCKET;
1456 case PF_PHONET:
1457 return SECCLASS_PHONET_SOCKET;
1458 case PF_IEEE802154:
1459 return SECCLASS_IEEE802154_SOCKET;
1460 case PF_CAIF:
1461 return SECCLASS_CAIF_SOCKET;
1462 case PF_ALG:
1463 return SECCLASS_ALG_SOCKET;
1464 case PF_NFC:
1465 return SECCLASS_NFC_SOCKET;
1466 case PF_VSOCK:
1467 return SECCLASS_VSOCK_SOCKET;
1468 case PF_KCM:
1469 return SECCLASS_KCM_SOCKET;
1470 case PF_QIPCRTR:
1471 return SECCLASS_QIPCRTR_SOCKET;
1472 case PF_SMC:
1473 return SECCLASS_SMC_SOCKET;
1474#if PF_MAX > 44
1475#error New address family defined, please update this function.
1476#endif
1477 }
1478 }
1479
1480 return SECCLASS_SOCKET;
1481}
1482
1483static int selinux_genfs_get_sid(struct dentry *dentry,
1484 u16 tclass,
1485 u16 flags,
1486 u32 *sid)
1487{
1488 int rc;
1489 struct super_block *sb = dentry->d_sb;
1490 char *buffer, *path;
1491
1492 buffer = (char *)__get_free_page(GFP_KERNEL);
1493 if (!buffer)
1494 return -ENOMEM;
1495
1496 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1497 if (IS_ERR(path))
1498 rc = PTR_ERR(path);
1499 else {
1500 if (flags & SE_SBPROC) {
1501 /* each process gets a /proc/PID/ entry. Strip off the
1502 * PID part to get a valid selinux labeling.
1503 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1504 while (path[1] >= '0' && path[1] <= '9') {
1505 path[1] = '/';
1506 path++;
1507 }
1508 }
1509 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1510 path, tclass, sid);
1511 }
1512 free_page((unsigned long)buffer);
1513 return rc;
1514}
1515
1516/* The inode's security attributes must be initialized before first use. */
1517static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1518{
1519 struct superblock_security_struct *sbsec = NULL;
1520 struct inode_security_struct *isec = inode->i_security;
1521 u32 task_sid, sid = 0;
1522 u16 sclass;
1523 struct dentry *dentry;
1524#define INITCONTEXTLEN 255
1525 char *context = NULL;
1526 unsigned len = 0;
1527 int rc = 0;
1528
1529 if (isec->initialized == LABEL_INITIALIZED)
1530 return 0;
1531
1532 spin_lock(&isec->lock);
1533 if (isec->initialized == LABEL_INITIALIZED)
1534 goto out_unlock;
1535
1536 if (isec->sclass == SECCLASS_FILE)
1537 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1538
1539 sbsec = inode->i_sb->s_security;
1540 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1541 /* Defer initialization until selinux_complete_init,
1542 after the initial policy is loaded and the security
1543 server is ready to handle calls. */
1544 spin_lock(&sbsec->isec_lock);
1545 if (list_empty(&isec->list))
1546 list_add(&isec->list, &sbsec->isec_head);
1547 spin_unlock(&sbsec->isec_lock);
1548 goto out_unlock;
1549 }
1550
1551 sclass = isec->sclass;
1552 task_sid = isec->task_sid;
1553 sid = isec->sid;
1554 isec->initialized = LABEL_PENDING;
1555 spin_unlock(&isec->lock);
1556
1557 switch (sbsec->behavior) {
1558 case SECURITY_FS_USE_NATIVE:
1559 break;
1560 case SECURITY_FS_USE_XATTR:
1561 if (!(inode->i_opflags & IOP_XATTR)) {
1562 sid = sbsec->def_sid;
1563 break;
1564 }
1565 /* Need a dentry, since the xattr API requires one.
1566 Life would be simpler if we could just pass the inode. */
1567 if (opt_dentry) {
1568 /* Called from d_instantiate or d_splice_alias. */
1569 dentry = dget(opt_dentry);
1570 } else {
1571 /*
1572 * Called from selinux_complete_init, try to find a dentry.
1573 * Some filesystems really want a connected one, so try
1574 * that first. We could split SECURITY_FS_USE_XATTR in
1575 * two, depending upon that...
1576 */
1577 dentry = d_find_alias(inode);
1578 if (!dentry)
1579 dentry = d_find_any_alias(inode);
1580 }
1581 if (!dentry) {
1582 /*
1583 * this is can be hit on boot when a file is accessed
1584 * before the policy is loaded. When we load policy we
1585 * may find inodes that have no dentry on the
1586 * sbsec->isec_head list. No reason to complain as these
1587 * will get fixed up the next time we go through
1588 * inode_doinit with a dentry, before these inodes could
1589 * be used again by userspace.
1590 */
1591 goto out;
1592 }
1593
1594 len = INITCONTEXTLEN;
1595 context = kmalloc(len+1, GFP_NOFS);
1596 if (!context) {
1597 rc = -ENOMEM;
1598 dput(dentry);
1599 goto out;
1600 }
1601 context[len] = '\0';
1602 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1603 if (rc == -ERANGE) {
1604 kfree(context);
1605
1606 /* Need a larger buffer. Query for the right size. */
1607 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1608 if (rc < 0) {
1609 dput(dentry);
1610 goto out;
1611 }
1612 len = rc;
1613 context = kmalloc(len+1, GFP_NOFS);
1614 if (!context) {
1615 rc = -ENOMEM;
1616 dput(dentry);
1617 goto out;
1618 }
1619 context[len] = '\0';
1620 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1621 }
1622 dput(dentry);
1623 if (rc < 0) {
1624 if (rc != -ENODATA) {
1625 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1626 "%d for dev=%s ino=%ld\n", __func__,
1627 -rc, inode->i_sb->s_id, inode->i_ino);
1628 kfree(context);
1629 goto out;
1630 }
1631 /* Map ENODATA to the default file SID */
1632 sid = sbsec->def_sid;
1633 rc = 0;
1634 } else {
1635 rc = security_context_to_sid_default(&selinux_state,
1636 context, rc, &sid,
1637 sbsec->def_sid,
1638 GFP_NOFS);
1639 if (rc) {
1640 char *dev = inode->i_sb->s_id;
1641 unsigned long ino = inode->i_ino;
1642
1643 if (rc == -EINVAL) {
1644 if (printk_ratelimit())
1645 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1646 "context=%s. This indicates you may need to relabel the inode or the "
1647 "filesystem in question.\n", ino, dev, context);
1648 } else {
1649 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1650 "returned %d for dev=%s ino=%ld\n",
1651 __func__, context, -rc, dev, ino);
1652 }
1653 kfree(context);
1654 /* Leave with the unlabeled SID */
1655 rc = 0;
1656 break;
1657 }
1658 }
1659 kfree(context);
1660 break;
1661 case SECURITY_FS_USE_TASK:
1662 sid = task_sid;
1663 break;
1664 case SECURITY_FS_USE_TRANS:
1665 /* Default to the fs SID. */
1666 sid = sbsec->sid;
1667
1668 /* Try to obtain a transition SID. */
1669 rc = security_transition_sid(&selinux_state, task_sid, sid,
1670 sclass, NULL, &sid);
1671 if (rc)
1672 goto out;
1673 break;
1674 case SECURITY_FS_USE_MNTPOINT:
1675 sid = sbsec->mntpoint_sid;
1676 break;
1677 default:
1678 /* Default to the fs superblock SID. */
1679 sid = sbsec->sid;
1680
1681 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1682 /* We must have a dentry to determine the label on
1683 * procfs inodes */
1684 if (opt_dentry) {
1685 /* Called from d_instantiate or
1686 * d_splice_alias. */
1687 dentry = dget(opt_dentry);
1688 } else {
1689 /* Called from selinux_complete_init, try to
1690 * find a dentry. Some filesystems really want
1691 * a connected one, so try that first.
1692 */
1693 dentry = d_find_alias(inode);
1694 if (!dentry)
1695 dentry = d_find_any_alias(inode);
1696 }
1697 /*
1698 * This can be hit on boot when a file is accessed
1699 * before the policy is loaded. When we load policy we
1700 * may find inodes that have no dentry on the
1701 * sbsec->isec_head list. No reason to complain as
1702 * these will get fixed up the next time we go through
1703 * inode_doinit() with a dentry, before these inodes
1704 * could be used again by userspace.
1705 */
1706 if (!dentry)
1707 goto out;
1708 rc = selinux_genfs_get_sid(dentry, sclass,
1709 sbsec->flags, &sid);
1710 dput(dentry);
1711 if (rc)
1712 goto out;
1713 }
1714 break;
1715 }
1716
1717out:
1718 spin_lock(&isec->lock);
1719 if (isec->initialized == LABEL_PENDING) {
1720 if (!sid || rc) {
1721 isec->initialized = LABEL_INVALID;
1722 goto out_unlock;
1723 }
1724
1725 isec->initialized = LABEL_INITIALIZED;
1726 isec->sid = sid;
1727 }
1728
1729out_unlock:
1730 spin_unlock(&isec->lock);
1731 return rc;
1732}
1733
1734/* Convert a Linux signal to an access vector. */
1735static inline u32 signal_to_av(int sig)
1736{
1737 u32 perm = 0;
1738
1739 switch (sig) {
1740 case SIGCHLD:
1741 /* Commonly granted from child to parent. */
1742 perm = PROCESS__SIGCHLD;
1743 break;
1744 case SIGKILL:
1745 /* Cannot be caught or ignored */
1746 perm = PROCESS__SIGKILL;
1747 break;
1748 case SIGSTOP:
1749 /* Cannot be caught or ignored */
1750 perm = PROCESS__SIGSTOP;
1751 break;
1752 default:
1753 /* All other signals. */
1754 perm = PROCESS__SIGNAL;
1755 break;
1756 }
1757
1758 return perm;
1759}
1760
1761#if CAP_LAST_CAP > 63
1762#error Fix SELinux to handle capabilities > 63.
1763#endif
1764
1765/* Check whether a task is allowed to use a capability. */
1766static int cred_has_capability(const struct cred *cred,
1767 int cap, int audit, bool initns)
1768{
1769 struct common_audit_data ad;
1770 struct av_decision avd;
1771 u16 sclass;
1772 u32 sid = cred_sid(cred);
1773 u32 av = CAP_TO_MASK(cap);
1774 int rc;
1775
1776 ad.type = LSM_AUDIT_DATA_CAP;
1777 ad.u.cap = cap;
1778
1779 switch (CAP_TO_INDEX(cap)) {
1780 case 0:
1781 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1782 break;
1783 case 1:
1784 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1785 break;
1786 default:
1787 printk(KERN_ERR
1788 "SELinux: out of range capability %d\n", cap);
1789 BUG();
1790 return -EINVAL;
1791 }
1792
1793 rc = avc_has_perm_noaudit(&selinux_state,
1794 sid, sid, sclass, av, 0, &avd);
1795 if (audit == SECURITY_CAP_AUDIT) {
1796 int rc2 = avc_audit(&selinux_state,
1797 sid, sid, sclass, av, &avd, rc, &ad, 0);
1798 if (rc2)
1799 return rc2;
1800 }
1801 return rc;
1802}
1803
1804/* Check whether a task has a particular permission to an inode.
1805 The 'adp' parameter is optional and allows other audit
1806 data to be passed (e.g. the dentry). */
1807static int inode_has_perm(const struct cred *cred,
1808 struct inode *inode,
1809 u32 perms,
1810 struct common_audit_data *adp)
1811{
1812 struct inode_security_struct *isec;
1813 u32 sid;
1814
1815 validate_creds(cred);
1816
1817 if (unlikely(IS_PRIVATE(inode)))
1818 return 0;
1819
1820 sid = cred_sid(cred);
1821 isec = inode->i_security;
1822
1823 return avc_has_perm(&selinux_state,
1824 sid, isec->sid, isec->sclass, perms, adp);
1825}
1826
1827/* Same as inode_has_perm, but pass explicit audit data containing
1828 the dentry to help the auditing code to more easily generate the
1829 pathname if needed. */
1830static inline int dentry_has_perm(const struct cred *cred,
1831 struct dentry *dentry,
1832 u32 av)
1833{
1834 struct inode *inode = d_backing_inode(dentry);
1835 struct common_audit_data ad;
1836
1837 ad.type = LSM_AUDIT_DATA_DENTRY;
1838 ad.u.dentry = dentry;
1839 __inode_security_revalidate(inode, dentry, true);
1840 return inode_has_perm(cred, inode, av, &ad);
1841}
1842
1843/* Same as inode_has_perm, but pass explicit audit data containing
1844 the path to help the auditing code to more easily generate the
1845 pathname if needed. */
1846static inline int path_has_perm(const struct cred *cred,
1847 const struct path *path,
1848 u32 av)
1849{
1850 struct inode *inode = d_backing_inode(path->dentry);
1851 struct common_audit_data ad;
1852
1853 ad.type = LSM_AUDIT_DATA_PATH;
1854 ad.u.path = *path;
1855 __inode_security_revalidate(inode, path->dentry, true);
1856 return inode_has_perm(cred, inode, av, &ad);
1857}
1858
1859/* Same as path_has_perm, but uses the inode from the file struct. */
1860static inline int file_path_has_perm(const struct cred *cred,
1861 struct file *file,
1862 u32 av)
1863{
1864 struct common_audit_data ad;
1865
1866 ad.type = LSM_AUDIT_DATA_FILE;
1867 ad.u.file = file;
1868 return inode_has_perm(cred, file_inode(file), av, &ad);
1869}
1870
1871#ifdef CONFIG_BPF_SYSCALL
1872static int bpf_fd_pass(struct file *file, u32 sid);
1873#endif
1874
1875/* Check whether a task can use an open file descriptor to
1876 access an inode in a given way. Check access to the
1877 descriptor itself, and then use dentry_has_perm to
1878 check a particular permission to the file.
1879 Access to the descriptor is implicitly granted if it
1880 has the same SID as the process. If av is zero, then
1881 access to the file is not checked, e.g. for cases
1882 where only the descriptor is affected like seek. */
1883static int file_has_perm(const struct cred *cred,
1884 struct file *file,
1885 u32 av)
1886{
1887 struct file_security_struct *fsec = file->f_security;
1888 struct inode *inode = file_inode(file);
1889 struct common_audit_data ad;
1890 u32 sid = cred_sid(cred);
1891 int rc;
1892
1893 ad.type = LSM_AUDIT_DATA_FILE;
1894 ad.u.file = file;
1895
1896 if (sid != fsec->sid) {
1897 rc = avc_has_perm(&selinux_state,
1898 sid, fsec->sid,
1899 SECCLASS_FD,
1900 FD__USE,
1901 &ad);
1902 if (rc)
1903 goto out;
1904 }
1905
1906#ifdef CONFIG_BPF_SYSCALL
1907 rc = bpf_fd_pass(file, cred_sid(cred));
1908 if (rc)
1909 return rc;
1910#endif
1911
1912 /* av is zero if only checking access to the descriptor. */
1913 rc = 0;
1914 if (av)
1915 rc = inode_has_perm(cred, inode, av, &ad);
1916
1917out:
1918 return rc;
1919}
1920
1921/*
1922 * Determine the label for an inode that might be unioned.
1923 */
1924static int
1925selinux_determine_inode_label(const struct task_security_struct *tsec,
1926 struct inode *dir,
1927 const struct qstr *name, u16 tclass,
1928 u32 *_new_isid)
1929{
1930 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1931
1932 if ((sbsec->flags & SE_SBINITIALIZED) &&
1933 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1934 *_new_isid = sbsec->mntpoint_sid;
1935 } else if ((sbsec->flags & SBLABEL_MNT) &&
1936 tsec->create_sid) {
1937 *_new_isid = tsec->create_sid;
1938 } else {
1939 const struct inode_security_struct *dsec = inode_security(dir);
1940 return security_transition_sid(&selinux_state, tsec->sid,
1941 dsec->sid, tclass,
1942 name, _new_isid);
1943 }
1944
1945 return 0;
1946}
1947
1948/* Check whether a task can create a file. */
1949static int may_create(struct inode *dir,
1950 struct dentry *dentry,
1951 u16 tclass)
1952{
1953 const struct task_security_struct *tsec = current_security();
1954 struct inode_security_struct *dsec;
1955 struct superblock_security_struct *sbsec;
1956 u32 sid, newsid;
1957 struct common_audit_data ad;
1958 int rc;
1959
1960 dsec = inode_security(dir);
1961 sbsec = dir->i_sb->s_security;
1962
1963 sid = tsec->sid;
1964
1965 ad.type = LSM_AUDIT_DATA_DENTRY;
1966 ad.u.dentry = dentry;
1967
1968 rc = avc_has_perm(&selinux_state,
1969 sid, dsec->sid, SECCLASS_DIR,
1970 DIR__ADD_NAME | DIR__SEARCH,
1971 &ad);
1972 if (rc)
1973 return rc;
1974
1975 rc = selinux_determine_inode_label(current_security(), dir,
1976 &dentry->d_name, tclass, &newsid);
1977 if (rc)
1978 return rc;
1979
1980 rc = avc_has_perm(&selinux_state,
1981 sid, newsid, tclass, FILE__CREATE, &ad);
1982 if (rc)
1983 return rc;
1984
1985 return avc_has_perm(&selinux_state,
1986 newsid, sbsec->sid,
1987 SECCLASS_FILESYSTEM,
1988 FILESYSTEM__ASSOCIATE, &ad);
1989}
1990
1991#define MAY_LINK 0
1992#define MAY_UNLINK 1
1993#define MAY_RMDIR 2
1994
1995/* Check whether a task can link, unlink, or rmdir a file/directory. */
1996static int may_link(struct inode *dir,
1997 struct dentry *dentry,
1998 int kind)
1999
2000{
2001 struct inode_security_struct *dsec, *isec;
2002 struct common_audit_data ad;
2003 u32 sid = current_sid();
2004 u32 av;
2005 int rc;
2006
2007 dsec = inode_security(dir);
2008 isec = backing_inode_security(dentry);
2009
2010 ad.type = LSM_AUDIT_DATA_DENTRY;
2011 ad.u.dentry = dentry;
2012
2013 av = DIR__SEARCH;
2014 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
2015 rc = avc_has_perm(&selinux_state,
2016 sid, dsec->sid, SECCLASS_DIR, av, &ad);
2017 if (rc)
2018 return rc;
2019
2020 switch (kind) {
2021 case MAY_LINK:
2022 av = FILE__LINK;
2023 break;
2024 case MAY_UNLINK:
2025 av = FILE__UNLINK;
2026 break;
2027 case MAY_RMDIR:
2028 av = DIR__RMDIR;
2029 break;
2030 default:
2031 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
2032 __func__, kind);
2033 return 0;
2034 }
2035
2036 rc = avc_has_perm(&selinux_state,
2037 sid, isec->sid, isec->sclass, av, &ad);
2038 return rc;
2039}
2040
2041static inline int may_rename(struct inode *old_dir,
2042 struct dentry *old_dentry,
2043 struct inode *new_dir,
2044 struct dentry *new_dentry)
2045{
2046 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
2047 struct common_audit_data ad;
2048 u32 sid = current_sid();
2049 u32 av;
2050 int old_is_dir, new_is_dir;
2051 int rc;
2052
2053 old_dsec = inode_security(old_dir);
2054 old_isec = backing_inode_security(old_dentry);
2055 old_is_dir = d_is_dir(old_dentry);
2056 new_dsec = inode_security(new_dir);
2057
2058 ad.type = LSM_AUDIT_DATA_DENTRY;
2059
2060 ad.u.dentry = old_dentry;
2061 rc = avc_has_perm(&selinux_state,
2062 sid, old_dsec->sid, SECCLASS_DIR,
2063 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2064 if (rc)
2065 return rc;
2066 rc = avc_has_perm(&selinux_state,
2067 sid, old_isec->sid,
2068 old_isec->sclass, FILE__RENAME, &ad);
2069 if (rc)
2070 return rc;
2071 if (old_is_dir && new_dir != old_dir) {
2072 rc = avc_has_perm(&selinux_state,
2073 sid, old_isec->sid,
2074 old_isec->sclass, DIR__REPARENT, &ad);
2075 if (rc)
2076 return rc;
2077 }
2078
2079 ad.u.dentry = new_dentry;
2080 av = DIR__ADD_NAME | DIR__SEARCH;
2081 if (d_is_positive(new_dentry))
2082 av |= DIR__REMOVE_NAME;
2083 rc = avc_has_perm(&selinux_state,
2084 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2085 if (rc)
2086 return rc;
2087 if (d_is_positive(new_dentry)) {
2088 new_isec = backing_inode_security(new_dentry);
2089 new_is_dir = d_is_dir(new_dentry);
2090 rc = avc_has_perm(&selinux_state,
2091 sid, new_isec->sid,
2092 new_isec->sclass,
2093 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2094 if (rc)
2095 return rc;
2096 }
2097
2098 return 0;
2099}
2100
2101/* Check whether a task can perform a filesystem operation. */
2102static int superblock_has_perm(const struct cred *cred,
2103 struct super_block *sb,
2104 u32 perms,
2105 struct common_audit_data *ad)
2106{
2107 struct superblock_security_struct *sbsec;
2108 u32 sid = cred_sid(cred);
2109
2110 sbsec = sb->s_security;
2111 return avc_has_perm(&selinux_state,
2112 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2113}
2114
2115/* Convert a Linux mode and permission mask to an access vector. */
2116static inline u32 file_mask_to_av(int mode, int mask)
2117{
2118 u32 av = 0;
2119
2120 if (!S_ISDIR(mode)) {
2121 if (mask & MAY_EXEC)
2122 av |= FILE__EXECUTE;
2123 if (mask & MAY_READ)
2124 av |= FILE__READ;
2125
2126 if (mask & MAY_APPEND)
2127 av |= FILE__APPEND;
2128 else if (mask & MAY_WRITE)
2129 av |= FILE__WRITE;
2130
2131 } else {
2132 if (mask & MAY_EXEC)
2133 av |= DIR__SEARCH;
2134 if (mask & MAY_WRITE)
2135 av |= DIR__WRITE;
2136 if (mask & MAY_READ)
2137 av |= DIR__READ;
2138 }
2139
2140 return av;
2141}
2142
2143/* Convert a Linux file to an access vector. */
2144static inline u32 file_to_av(struct file *file)
2145{
2146 u32 av = 0;
2147
2148 if (file->f_mode & FMODE_READ)
2149 av |= FILE__READ;
2150 if (file->f_mode & FMODE_WRITE) {
2151 if (file->f_flags & O_APPEND)
2152 av |= FILE__APPEND;
2153 else
2154 av |= FILE__WRITE;
2155 }
2156 if (!av) {
2157 /*
2158 * Special file opened with flags 3 for ioctl-only use.
2159 */
2160 av = FILE__IOCTL;
2161 }
2162
2163 return av;
2164}
2165
2166/*
2167 * Convert a file to an access vector and include the correct open
2168 * open permission.
2169 */
2170static inline u32 open_file_to_av(struct file *file)
2171{
2172 u32 av = file_to_av(file);
2173 struct inode *inode = file_inode(file);
2174
2175 if (selinux_policycap_openperm() &&
2176 inode->i_sb->s_magic != SOCKFS_MAGIC)
2177 av |= FILE__OPEN;
2178
2179 return av;
2180}
2181
2182/* Hook functions begin here. */
2183
2184static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2185{
2186 u32 mysid = current_sid();
2187 u32 mgrsid = task_sid(mgr);
2188
2189 return avc_has_perm(&selinux_state,
2190 mysid, mgrsid, SECCLASS_BINDER,
2191 BINDER__SET_CONTEXT_MGR, NULL);
2192}
2193
2194static int selinux_binder_transaction(struct task_struct *from,
2195 struct task_struct *to)
2196{
2197 u32 mysid = current_sid();
2198 u32 fromsid = task_sid(from);
2199 u32 tosid = task_sid(to);
2200 int rc;
2201
2202 if (mysid != fromsid) {
2203 rc = avc_has_perm(&selinux_state,
2204 mysid, fromsid, SECCLASS_BINDER,
2205 BINDER__IMPERSONATE, NULL);
2206 if (rc)
2207 return rc;
2208 }
2209
2210 return avc_has_perm(&selinux_state,
2211 fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2212 NULL);
2213}
2214
2215static int selinux_binder_transfer_binder(struct task_struct *from,
2216 struct task_struct *to)
2217{
2218 u32 fromsid = task_sid(from);
2219 u32 tosid = task_sid(to);
2220
2221 return avc_has_perm(&selinux_state,
2222 fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2223 NULL);
2224}
2225
2226static int selinux_binder_transfer_file(struct task_struct *from,
2227 struct task_struct *to,
2228 struct file *file)
2229{
2230 u32 sid = task_sid(to);
2231 struct file_security_struct *fsec = file->f_security;
2232 struct dentry *dentry = file->f_path.dentry;
2233 struct inode_security_struct *isec;
2234 struct common_audit_data ad;
2235 int rc;
2236
2237 ad.type = LSM_AUDIT_DATA_PATH;
2238 ad.u.path = file->f_path;
2239
2240 if (sid != fsec->sid) {
2241 rc = avc_has_perm(&selinux_state,
2242 sid, fsec->sid,
2243 SECCLASS_FD,
2244 FD__USE,
2245 &ad);
2246 if (rc)
2247 return rc;
2248 }
2249
2250#ifdef CONFIG_BPF_SYSCALL
2251 rc = bpf_fd_pass(file, sid);
2252 if (rc)
2253 return rc;
2254#endif
2255
2256 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2257 return 0;
2258
2259 isec = backing_inode_security(dentry);
2260 return avc_has_perm(&selinux_state,
2261 sid, isec->sid, isec->sclass, file_to_av(file),
2262 &ad);
2263}
2264
2265static int selinux_ptrace_access_check(struct task_struct *child,
2266 unsigned int mode)
2267{
2268 u32 sid = current_sid();
2269 u32 csid = task_sid(child);
2270
2271 if (mode & PTRACE_MODE_READ)
2272 return avc_has_perm(&selinux_state,
2273 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2274
2275 return avc_has_perm(&selinux_state,
2276 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2277}
2278
2279static int selinux_ptrace_traceme(struct task_struct *parent)
2280{
2281 return avc_has_perm(&selinux_state,
2282 task_sid(parent), current_sid(), SECCLASS_PROCESS,
2283 PROCESS__PTRACE, NULL);
2284}
2285
2286static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2287 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2288{
2289 return avc_has_perm(&selinux_state,
2290 current_sid(), task_sid(target), SECCLASS_PROCESS,
2291 PROCESS__GETCAP, NULL);
2292}
2293
2294static int selinux_capset(struct cred *new, const struct cred *old,
2295 const kernel_cap_t *effective,
2296 const kernel_cap_t *inheritable,
2297 const kernel_cap_t *permitted)
2298{
2299 return avc_has_perm(&selinux_state,
2300 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2301 PROCESS__SETCAP, NULL);
2302}
2303
2304/*
2305 * (This comment used to live with the selinux_task_setuid hook,
2306 * which was removed).
2307 *
2308 * Since setuid only affects the current process, and since the SELinux
2309 * controls are not based on the Linux identity attributes, SELinux does not
2310 * need to control this operation. However, SELinux does control the use of
2311 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2312 */
2313
2314static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2315 int cap, int audit)
2316{
2317 return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2318}
2319
2320static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2321{
2322 const struct cred *cred = current_cred();
2323 int rc = 0;
2324
2325 if (!sb)
2326 return 0;
2327
2328 switch (cmds) {
2329 case Q_SYNC:
2330 case Q_QUOTAON:
2331 case Q_QUOTAOFF:
2332 case Q_SETINFO:
2333 case Q_SETQUOTA:
2334 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2335 break;
2336 case Q_GETFMT:
2337 case Q_GETINFO:
2338 case Q_GETQUOTA:
2339 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2340 break;
2341 default:
2342 rc = 0; /* let the kernel handle invalid cmds */
2343 break;
2344 }
2345 return rc;
2346}
2347
2348static int selinux_quota_on(struct dentry *dentry)
2349{
2350 const struct cred *cred = current_cred();
2351
2352 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2353}
2354
2355static int selinux_syslog(int type)
2356{
2357 switch (type) {
2358 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2359 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2360 return avc_has_perm(&selinux_state,
2361 current_sid(), SECINITSID_KERNEL,
2362 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2363 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2364 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2365 /* Set level of messages printed to console */
2366 case SYSLOG_ACTION_CONSOLE_LEVEL:
2367 return avc_has_perm(&selinux_state,
2368 current_sid(), SECINITSID_KERNEL,
2369 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2370 NULL);
2371 }
2372 /* All other syslog types */
2373 return avc_has_perm(&selinux_state,
2374 current_sid(), SECINITSID_KERNEL,
2375 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2376}
2377
2378/*
2379 * Check that a process has enough memory to allocate a new virtual
2380 * mapping. 0 means there is enough memory for the allocation to
2381 * succeed and -ENOMEM implies there is not.
2382 *
2383 * Do not audit the selinux permission check, as this is applied to all
2384 * processes that allocate mappings.
2385 */
2386static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2387{
2388 int rc, cap_sys_admin = 0;
2389
2390 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2391 SECURITY_CAP_NOAUDIT, true);
2392 if (rc == 0)
2393 cap_sys_admin = 1;
2394
2395 return cap_sys_admin;
2396}
2397
2398/* binprm security operations */
2399
2400static u32 ptrace_parent_sid(void)
2401{
2402 u32 sid = 0;
2403 struct task_struct *tracer;
2404
2405 rcu_read_lock();
2406 tracer = ptrace_parent(current);
2407 if (tracer)
2408 sid = task_sid(tracer);
2409 rcu_read_unlock();
2410
2411 return sid;
2412}
2413
2414static int check_nnp_nosuid(const struct linux_binprm *bprm,
2415 const struct task_security_struct *old_tsec,
2416 const struct task_security_struct *new_tsec)
2417{
2418 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2419 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2420 int rc;
2421 u32 av;
2422
2423 if (!nnp && !nosuid)
2424 return 0; /* neither NNP nor nosuid */
2425
2426 if (new_tsec->sid == old_tsec->sid)
2427 return 0; /* No change in credentials */
2428
2429 /*
2430 * If the policy enables the nnp_nosuid_transition policy capability,
2431 * then we permit transitions under NNP or nosuid if the
2432 * policy allows the corresponding permission between
2433 * the old and new contexts.
2434 */
2435 if (selinux_policycap_nnp_nosuid_transition()) {
2436 av = 0;
2437 if (nnp)
2438 av |= PROCESS2__NNP_TRANSITION;
2439 if (nosuid)
2440 av |= PROCESS2__NOSUID_TRANSITION;
2441 rc = avc_has_perm(&selinux_state,
2442 old_tsec->sid, new_tsec->sid,
2443 SECCLASS_PROCESS2, av, NULL);
2444 if (!rc)
2445 return 0;
2446 }
2447
2448 /*
2449 * We also permit NNP or nosuid transitions to bounded SIDs,
2450 * i.e. SIDs that are guaranteed to only be allowed a subset
2451 * of the permissions of the current SID.
2452 */
2453 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2454 new_tsec->sid);
2455 if (!rc)
2456 return 0;
2457
2458 /*
2459 * On failure, preserve the errno values for NNP vs nosuid.
2460 * NNP: Operation not permitted for caller.
2461 * nosuid: Permission denied to file.
2462 */
2463 if (nnp)
2464 return -EPERM;
2465 return -EACCES;
2466}
2467
2468static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2469{
2470 const struct task_security_struct *old_tsec;
2471 struct task_security_struct *new_tsec;
2472 struct inode_security_struct *isec;
2473 struct common_audit_data ad;
2474 struct inode *inode = file_inode(bprm->file);
2475 int rc;
2476
2477 /* SELinux context only depends on initial program or script and not
2478 * the script interpreter */
2479 if (bprm->called_set_creds)
2480 return 0;
2481
2482 old_tsec = current_security();
2483 new_tsec = bprm->cred->security;
2484 isec = inode_security(inode);
2485
2486 /* Default to the current task SID. */
2487 new_tsec->sid = old_tsec->sid;
2488 new_tsec->osid = old_tsec->sid;
2489
2490 /* Reset fs, key, and sock SIDs on execve. */
2491 new_tsec->create_sid = 0;
2492 new_tsec->keycreate_sid = 0;
2493 new_tsec->sockcreate_sid = 0;
2494
2495 if (old_tsec->exec_sid) {
2496 new_tsec->sid = old_tsec->exec_sid;
2497 /* Reset exec SID on execve. */
2498 new_tsec->exec_sid = 0;
2499
2500 /* Fail on NNP or nosuid if not an allowed transition. */
2501 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2502 if (rc)
2503 return rc;
2504 } else {
2505 /* Check for a default transition on this program. */
2506 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2507 isec->sid, SECCLASS_PROCESS, NULL,
2508 &new_tsec->sid);
2509 if (rc)
2510 return rc;
2511
2512 /*
2513 * Fallback to old SID on NNP or nosuid if not an allowed
2514 * transition.
2515 */
2516 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2517 if (rc)
2518 new_tsec->sid = old_tsec->sid;
2519 }
2520
2521 ad.type = LSM_AUDIT_DATA_FILE;
2522 ad.u.file = bprm->file;
2523
2524 if (new_tsec->sid == old_tsec->sid) {
2525 rc = avc_has_perm(&selinux_state,
2526 old_tsec->sid, isec->sid,
2527 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2528 if (rc)
2529 return rc;
2530 } else {
2531 /* Check permissions for the transition. */
2532 rc = avc_has_perm(&selinux_state,
2533 old_tsec->sid, new_tsec->sid,
2534 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2535 if (rc)
2536 return rc;
2537
2538 rc = avc_has_perm(&selinux_state,
2539 new_tsec->sid, isec->sid,
2540 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2541 if (rc)
2542 return rc;
2543
2544 /* Check for shared state */
2545 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2546 rc = avc_has_perm(&selinux_state,
2547 old_tsec->sid, new_tsec->sid,
2548 SECCLASS_PROCESS, PROCESS__SHARE,
2549 NULL);
2550 if (rc)
2551 return -EPERM;
2552 }
2553
2554 /* Make sure that anyone attempting to ptrace over a task that
2555 * changes its SID has the appropriate permit */
2556 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2557 u32 ptsid = ptrace_parent_sid();
2558 if (ptsid != 0) {
2559 rc = avc_has_perm(&selinux_state,
2560 ptsid, new_tsec->sid,
2561 SECCLASS_PROCESS,
2562 PROCESS__PTRACE, NULL);
2563 if (rc)
2564 return -EPERM;
2565 }
2566 }
2567
2568 /* Clear any possibly unsafe personality bits on exec: */
2569 bprm->per_clear |= PER_CLEAR_ON_SETID;
2570
2571 /* Enable secure mode for SIDs transitions unless
2572 the noatsecure permission is granted between
2573 the two SIDs, i.e. ahp returns 0. */
2574 rc = avc_has_perm(&selinux_state,
2575 old_tsec->sid, new_tsec->sid,
2576 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2577 NULL);
2578 bprm->secureexec |= !!rc;
2579 }
2580
2581 return 0;
2582}
2583
2584static int match_file(const void *p, struct file *file, unsigned fd)
2585{
2586 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2587}
2588
2589/* Derived from fs/exec.c:flush_old_files. */
2590static inline void flush_unauthorized_files(const struct cred *cred,
2591 struct files_struct *files)
2592{
2593 struct file *file, *devnull = NULL;
2594 struct tty_struct *tty;
2595 int drop_tty = 0;
2596 unsigned n;
2597
2598 tty = get_current_tty();
2599 if (tty) {
2600 spin_lock(&tty->files_lock);
2601 if (!list_empty(&tty->tty_files)) {
2602 struct tty_file_private *file_priv;
2603
2604 /* Revalidate access to controlling tty.
2605 Use file_path_has_perm on the tty path directly
2606 rather than using file_has_perm, as this particular
2607 open file may belong to another process and we are
2608 only interested in the inode-based check here. */
2609 file_priv = list_first_entry(&tty->tty_files,
2610 struct tty_file_private, list);
2611 file = file_priv->file;
2612 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2613 drop_tty = 1;
2614 }
2615 spin_unlock(&tty->files_lock);
2616 tty_kref_put(tty);
2617 }
2618 /* Reset controlling tty. */
2619 if (drop_tty)
2620 no_tty();
2621
2622 /* Revalidate access to inherited open files. */
2623 n = iterate_fd(files, 0, match_file, cred);
2624 if (!n) /* none found? */
2625 return;
2626
2627 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2628 if (IS_ERR(devnull))
2629 devnull = NULL;
2630 /* replace all the matching ones with this */
2631 do {
2632 replace_fd(n - 1, devnull, 0);
2633 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2634 if (devnull)
2635 fput(devnull);
2636}
2637
2638/*
2639 * Prepare a process for imminent new credential changes due to exec
2640 */
2641static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2642{
2643 struct task_security_struct *new_tsec;
2644 struct rlimit *rlim, *initrlim;
2645 int rc, i;
2646
2647 new_tsec = bprm->cred->security;
2648 if (new_tsec->sid == new_tsec->osid)
2649 return;
2650
2651 /* Close files for which the new task SID is not authorized. */
2652 flush_unauthorized_files(bprm->cred, current->files);
2653
2654 /* Always clear parent death signal on SID transitions. */
2655 current->pdeath_signal = 0;
2656
2657 /* Check whether the new SID can inherit resource limits from the old
2658 * SID. If not, reset all soft limits to the lower of the current
2659 * task's hard limit and the init task's soft limit.
2660 *
2661 * Note that the setting of hard limits (even to lower them) can be
2662 * controlled by the setrlimit check. The inclusion of the init task's
2663 * soft limit into the computation is to avoid resetting soft limits
2664 * higher than the default soft limit for cases where the default is
2665 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2666 */
2667 rc = avc_has_perm(&selinux_state,
2668 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2669 PROCESS__RLIMITINH, NULL);
2670 if (rc) {
2671 /* protect against do_prlimit() */
2672 task_lock(current);
2673 for (i = 0; i < RLIM_NLIMITS; i++) {
2674 rlim = current->signal->rlim + i;
2675 initrlim = init_task.signal->rlim + i;
2676 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2677 }
2678 task_unlock(current);
2679 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2680 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2681 }
2682}
2683
2684/*
2685 * Clean up the process immediately after the installation of new credentials
2686 * due to exec
2687 */
2688static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2689{
2690 const struct task_security_struct *tsec = current_security();
2691 struct itimerval itimer;
2692 u32 osid, sid;
2693 int rc, i;
2694
2695 osid = tsec->osid;
2696 sid = tsec->sid;
2697
2698 if (sid == osid)
2699 return;
2700
2701 /* Check whether the new SID can inherit signal state from the old SID.
2702 * If not, clear itimers to avoid subsequent signal generation and
2703 * flush and unblock signals.
2704 *
2705 * This must occur _after_ the task SID has been updated so that any
2706 * kill done after the flush will be checked against the new SID.
2707 */
2708 rc = avc_has_perm(&selinux_state,
2709 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2710 if (rc) {
2711 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2712 memset(&itimer, 0, sizeof itimer);
2713 for (i = 0; i < 3; i++)
2714 do_setitimer(i, &itimer, NULL);
2715 }
2716 spin_lock_irq(¤t->sighand->siglock);
2717 if (!fatal_signal_pending(current)) {
2718 flush_sigqueue(¤t->pending);
2719 flush_sigqueue(¤t->signal->shared_pending);
2720 flush_signal_handlers(current, 1);
2721 sigemptyset(¤t->blocked);
2722 recalc_sigpending();
2723 }
2724 spin_unlock_irq(¤t->sighand->siglock);
2725 }
2726
2727 /* Wake up the parent if it is waiting so that it can recheck
2728 * wait permission to the new task SID. */
2729 read_lock(&tasklist_lock);
2730 __wake_up_parent(current, current->real_parent);
2731 read_unlock(&tasklist_lock);
2732}
2733
2734/* superblock security operations */
2735
2736static int selinux_sb_alloc_security(struct super_block *sb)
2737{
2738 return superblock_alloc_security(sb);
2739}
2740
2741static void selinux_sb_free_security(struct super_block *sb)
2742{
2743 superblock_free_security(sb);
2744}
2745
2746static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2747{
2748 if (plen > olen)
2749 return 0;
2750
2751 return !memcmp(prefix, option, plen);
2752}
2753
2754static inline int selinux_option(char *option, int len)
2755{
2756 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2757 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2758 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2759 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2760 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2761}
2762
2763static inline void take_option(char **to, char *from, int *first, int len)
2764{
2765 if (!*first) {
2766 **to = ',';
2767 *to += 1;
2768 } else
2769 *first = 0;
2770 memcpy(*to, from, len);
2771 *to += len;
2772}
2773
2774static inline void take_selinux_option(char **to, char *from, int *first,
2775 int len)
2776{
2777 int current_size = 0;
2778
2779 if (!*first) {
2780 **to = '|';
2781 *to += 1;
2782 } else
2783 *first = 0;
2784
2785 while (current_size < len) {
2786 if (*from != '"') {
2787 **to = *from;
2788 *to += 1;
2789 }
2790 from += 1;
2791 current_size += 1;
2792 }
2793}
2794
2795static int selinux_sb_copy_data(char *orig, char *copy)
2796{
2797 int fnosec, fsec, rc = 0;
2798 char *in_save, *in_curr, *in_end;
2799 char *sec_curr, *nosec_save, *nosec;
2800 int open_quote = 0;
2801
2802 in_curr = orig;
2803 sec_curr = copy;
2804
2805 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2806 if (!nosec) {
2807 rc = -ENOMEM;
2808 goto out;
2809 }
2810
2811 nosec_save = nosec;
2812 fnosec = fsec = 1;
2813 in_save = in_end = orig;
2814
2815 do {
2816 if (*in_end == '"')
2817 open_quote = !open_quote;
2818 if ((*in_end == ',' && open_quote == 0) ||
2819 *in_end == '\0') {
2820 int len = in_end - in_curr;
2821
2822 if (selinux_option(in_curr, len))
2823 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2824 else
2825 take_option(&nosec, in_curr, &fnosec, len);
2826
2827 in_curr = in_end + 1;
2828 }
2829 } while (*in_end++);
2830
2831 strcpy(in_save, nosec_save);
2832 free_page((unsigned long)nosec_save);
2833out:
2834 return rc;
2835}
2836
2837static int selinux_sb_remount(struct super_block *sb, void *data)
2838{
2839 int rc, i, *flags;
2840 struct security_mnt_opts opts;
2841 char *secdata, **mount_options;
2842 struct superblock_security_struct *sbsec = sb->s_security;
2843
2844 if (!(sbsec->flags & SE_SBINITIALIZED))
2845 return 0;
2846
2847 if (!data)
2848 return 0;
2849
2850 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2851 return 0;
2852
2853 security_init_mnt_opts(&opts);
2854 secdata = alloc_secdata();
2855 if (!secdata)
2856 return -ENOMEM;
2857 rc = selinux_sb_copy_data(data, secdata);
2858 if (rc)
2859 goto out_free_secdata;
2860
2861 rc = selinux_parse_opts_str(secdata, &opts);
2862 if (rc)
2863 goto out_free_secdata;
2864
2865 mount_options = opts.mnt_opts;
2866 flags = opts.mnt_opts_flags;
2867
2868 for (i = 0; i < opts.num_mnt_opts; i++) {
2869 u32 sid;
2870
2871 if (flags[i] == SBLABEL_MNT)
2872 continue;
2873 rc = security_context_str_to_sid(&selinux_state,
2874 mount_options[i], &sid,
2875 GFP_KERNEL);
2876 if (rc) {
2877 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2878 "(%s) failed for (dev %s, type %s) errno=%d\n",
2879 mount_options[i], sb->s_id, sb->s_type->name, rc);
2880 goto out_free_opts;
2881 }
2882 rc = -EINVAL;
2883 switch (flags[i]) {
2884 case FSCONTEXT_MNT:
2885 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2886 goto out_bad_option;
2887 break;
2888 case CONTEXT_MNT:
2889 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2890 goto out_bad_option;
2891 break;
2892 case ROOTCONTEXT_MNT: {
2893 struct inode_security_struct *root_isec;
2894 root_isec = backing_inode_security(sb->s_root);
2895
2896 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2897 goto out_bad_option;
2898 break;
2899 }
2900 case DEFCONTEXT_MNT:
2901 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2902 goto out_bad_option;
2903 break;
2904 default:
2905 goto out_free_opts;
2906 }
2907 }
2908
2909 rc = 0;
2910out_free_opts:
2911 security_free_mnt_opts(&opts);
2912out_free_secdata:
2913 free_secdata(secdata);
2914 return rc;
2915out_bad_option:
2916 printk(KERN_WARNING "SELinux: unable to change security options "
2917 "during remount (dev %s, type=%s)\n", sb->s_id,
2918 sb->s_type->name);
2919 goto out_free_opts;
2920}
2921
2922static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2923{
2924 const struct cred *cred = current_cred();
2925 struct common_audit_data ad;
2926 int rc;
2927
2928 rc = superblock_doinit(sb, data);
2929 if (rc)
2930 return rc;
2931
2932 /* Allow all mounts performed by the kernel */
2933 if (flags & MS_KERNMOUNT)
2934 return 0;
2935
2936 ad.type = LSM_AUDIT_DATA_DENTRY;
2937 ad.u.dentry = sb->s_root;
2938 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2939}
2940
2941static int selinux_sb_statfs(struct dentry *dentry)
2942{
2943 const struct cred *cred = current_cred();
2944 struct common_audit_data ad;
2945
2946 ad.type = LSM_AUDIT_DATA_DENTRY;
2947 ad.u.dentry = dentry->d_sb->s_root;
2948 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2949}
2950
2951static int selinux_mount(const char *dev_name,
2952 const struct path *path,
2953 const char *type,
2954 unsigned long flags,
2955 void *data)
2956{
2957 const struct cred *cred = current_cred();
2958
2959 if (flags & MS_REMOUNT)
2960 return superblock_has_perm(cred, path->dentry->d_sb,
2961 FILESYSTEM__REMOUNT, NULL);
2962 else
2963 return path_has_perm(cred, path, FILE__MOUNTON);
2964}
2965
2966static int selinux_umount(struct vfsmount *mnt, int flags)
2967{
2968 const struct cred *cred = current_cred();
2969
2970 return superblock_has_perm(cred, mnt->mnt_sb,
2971 FILESYSTEM__UNMOUNT, NULL);
2972}
2973
2974/* inode security operations */
2975
2976static int selinux_inode_alloc_security(struct inode *inode)
2977{
2978 return inode_alloc_security(inode);
2979}
2980
2981static void selinux_inode_free_security(struct inode *inode)
2982{
2983 inode_free_security(inode);
2984}
2985
2986static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2987 const struct qstr *name, void **ctx,
2988 u32 *ctxlen)
2989{
2990 u32 newsid;
2991 int rc;
2992
2993 rc = selinux_determine_inode_label(current_security(),
2994 d_inode(dentry->d_parent), name,
2995 inode_mode_to_security_class(mode),
2996 &newsid);
2997 if (rc)
2998 return rc;
2999
3000 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
3001 ctxlen);
3002}
3003
3004static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
3005 struct qstr *name,
3006 const struct cred *old,
3007 struct cred *new)
3008{
3009 u32 newsid;
3010 int rc;
3011 struct task_security_struct *tsec;
3012
3013 rc = selinux_determine_inode_label(old->security,
3014 d_inode(dentry->d_parent), name,
3015 inode_mode_to_security_class(mode),
3016 &newsid);
3017 if (rc)
3018 return rc;
3019
3020 tsec = new->security;
3021 tsec->create_sid = newsid;
3022 return 0;
3023}
3024
3025static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
3026 const struct qstr *qstr,
3027 const char **name,
3028 void **value, size_t *len)
3029{
3030 const struct task_security_struct *tsec = current_security();
3031 struct superblock_security_struct *sbsec;
3032 u32 newsid, clen;
3033 int rc;
3034 char *context;
3035
3036 sbsec = dir->i_sb->s_security;
3037
3038 newsid = tsec->create_sid;
3039
3040 rc = selinux_determine_inode_label(current_security(),
3041 dir, qstr,
3042 inode_mode_to_security_class(inode->i_mode),
3043 &newsid);
3044 if (rc)
3045 return rc;
3046
3047 /* Possibly defer initialization to selinux_complete_init. */
3048 if (sbsec->flags & SE_SBINITIALIZED) {
3049 struct inode_security_struct *isec = inode->i_security;
3050 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3051 isec->sid = newsid;
3052 isec->initialized = LABEL_INITIALIZED;
3053 }
3054
3055 if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
3056 return -EOPNOTSUPP;
3057
3058 if (name)
3059 *name = XATTR_SELINUX_SUFFIX;
3060
3061 if (value && len) {
3062 rc = security_sid_to_context_force(&selinux_state, newsid,
3063 &context, &clen);
3064 if (rc)
3065 return rc;
3066 *value = context;
3067 *len = clen;
3068 }
3069
3070 return 0;
3071}
3072
3073static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3074{
3075 return may_create(dir, dentry, SECCLASS_FILE);
3076}
3077
3078static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3079{
3080 return may_link(dir, old_dentry, MAY_LINK);
3081}
3082
3083static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3084{
3085 return may_link(dir, dentry, MAY_UNLINK);
3086}
3087
3088static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3089{
3090 return may_create(dir, dentry, SECCLASS_LNK_FILE);
3091}
3092
3093static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3094{
3095 return may_create(dir, dentry, SECCLASS_DIR);
3096}
3097
3098static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3099{
3100 return may_link(dir, dentry, MAY_RMDIR);
3101}
3102
3103static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3104{
3105 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3106}
3107
3108static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3109 struct inode *new_inode, struct dentry *new_dentry)
3110{
3111 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3112}
3113
3114static int selinux_inode_readlink(struct dentry *dentry)
3115{
3116 const struct cred *cred = current_cred();
3117
3118 return dentry_has_perm(cred, dentry, FILE__READ);
3119}
3120
3121static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3122 bool rcu)
3123{
3124 const struct cred *cred = current_cred();
3125 struct common_audit_data ad;
3126 struct inode_security_struct *isec;
3127 u32 sid;
3128
3129 validate_creds(cred);
3130
3131 ad.type = LSM_AUDIT_DATA_DENTRY;
3132 ad.u.dentry = dentry;
3133 sid = cred_sid(cred);
3134 isec = inode_security_rcu(inode, rcu);
3135 if (IS_ERR(isec))
3136 return PTR_ERR(isec);
3137
3138 return avc_has_perm_flags(&selinux_state,
3139 sid, isec->sid, isec->sclass, FILE__READ, &ad,
3140 rcu ? MAY_NOT_BLOCK : 0);
3141}
3142
3143static noinline int audit_inode_permission(struct inode *inode,
3144 u32 perms, u32 audited, u32 denied,
3145 int result,
3146 unsigned flags)
3147{
3148 struct common_audit_data ad;
3149 struct inode_security_struct *isec = inode->i_security;
3150 int rc;
3151
3152 ad.type = LSM_AUDIT_DATA_INODE;
3153 ad.u.inode = inode;
3154
3155 rc = slow_avc_audit(&selinux_state,
3156 current_sid(), isec->sid, isec->sclass, perms,
3157 audited, denied, result, &ad, flags);
3158 if (rc)
3159 return rc;
3160 return 0;
3161}
3162
3163static int selinux_inode_permission(struct inode *inode, int mask)
3164{
3165 const struct cred *cred = current_cred();
3166 u32 perms;
3167 bool from_access;
3168 unsigned flags = mask & MAY_NOT_BLOCK;
3169 struct inode_security_struct *isec;
3170 u32 sid;
3171 struct av_decision avd;
3172 int rc, rc2;
3173 u32 audited, denied;
3174
3175 from_access = mask & MAY_ACCESS;
3176 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3177
3178 /* No permission to check. Existence test. */
3179 if (!mask)
3180 return 0;
3181
3182 validate_creds(cred);
3183
3184 if (unlikely(IS_PRIVATE(inode)))
3185 return 0;
3186
3187 perms = file_mask_to_av(inode->i_mode, mask);
3188
3189 sid = cred_sid(cred);
3190 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3191 if (IS_ERR(isec))
3192 return PTR_ERR(isec);
3193
3194 rc = avc_has_perm_noaudit(&selinux_state,
3195 sid, isec->sid, isec->sclass, perms, 0, &avd);
3196 audited = avc_audit_required(perms, &avd, rc,
3197 from_access ? FILE__AUDIT_ACCESS : 0,
3198 &denied);
3199 if (likely(!audited))
3200 return rc;
3201
3202 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3203 if (rc2)
3204 return rc2;
3205 return rc;
3206}
3207
3208static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3209{
3210 const struct cred *cred = current_cred();
3211 struct inode *inode = d_backing_inode(dentry);
3212 unsigned int ia_valid = iattr->ia_valid;
3213 __u32 av = FILE__WRITE;
3214
3215 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3216 if (ia_valid & ATTR_FORCE) {
3217 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3218 ATTR_FORCE);
3219 if (!ia_valid)
3220 return 0;
3221 }
3222
3223 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3224 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3225 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3226
3227 if (selinux_policycap_openperm() &&
3228 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3229 (ia_valid & ATTR_SIZE) &&
3230 !(ia_valid & ATTR_FILE))
3231 av |= FILE__OPEN;
3232
3233 return dentry_has_perm(cred, dentry, av);
3234}
3235
3236static int selinux_inode_getattr(const struct path *path)
3237{
3238 return path_has_perm(current_cred(), path, FILE__GETATTR);
3239}
3240
3241static bool has_cap_mac_admin(bool audit)
3242{
3243 const struct cred *cred = current_cred();
3244 int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3245
3246 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3247 return false;
3248 if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3249 return false;
3250 return true;
3251}
3252
3253static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3254 const void *value, size_t size, int flags)
3255{
3256 struct inode *inode = d_backing_inode(dentry);
3257 struct inode_security_struct *isec;
3258 struct superblock_security_struct *sbsec;
3259 struct common_audit_data ad;
3260 u32 newsid, sid = current_sid();
3261 int rc = 0;
3262
3263 if (strcmp(name, XATTR_NAME_SELINUX)) {
3264 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3265 if (rc)
3266 return rc;
3267
3268 /* Not an attribute we recognize, so just check the
3269 ordinary setattr permission. */
3270 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3271 }
3272
3273 sbsec = inode->i_sb->s_security;
3274 if (!(sbsec->flags & SBLABEL_MNT))
3275 return -EOPNOTSUPP;
3276
3277 if (!inode_owner_or_capable(inode))
3278 return -EPERM;
3279
3280 ad.type = LSM_AUDIT_DATA_DENTRY;
3281 ad.u.dentry = dentry;
3282
3283 isec = backing_inode_security(dentry);
3284 rc = avc_has_perm(&selinux_state,
3285 sid, isec->sid, isec->sclass,
3286 FILE__RELABELFROM, &ad);
3287 if (rc)
3288 return rc;
3289
3290 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3291 GFP_KERNEL);
3292 if (rc == -EINVAL) {
3293 if (!has_cap_mac_admin(true)) {
3294 struct audit_buffer *ab;
3295 size_t audit_size;
3296
3297 /* We strip a nul only if it is at the end, otherwise the
3298 * context contains a nul and we should audit that */
3299 if (value) {
3300 const char *str = value;
3301
3302 if (str[size - 1] == '\0')
3303 audit_size = size - 1;
3304 else
3305 audit_size = size;
3306 } else {
3307 audit_size = 0;
3308 }
3309 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3310 audit_log_format(ab, "op=setxattr invalid_context=");
3311 audit_log_n_untrustedstring(ab, value, audit_size);
3312 audit_log_end(ab);
3313
3314 return rc;
3315 }
3316 rc = security_context_to_sid_force(&selinux_state, value,
3317 size, &newsid);
3318 }
3319 if (rc)
3320 return rc;
3321
3322 rc = avc_has_perm(&selinux_state,
3323 sid, newsid, isec->sclass,
3324 FILE__RELABELTO, &ad);
3325 if (rc)
3326 return rc;
3327
3328 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3329 sid, isec->sclass);
3330 if (rc)
3331 return rc;
3332
3333 return avc_has_perm(&selinux_state,
3334 newsid,
3335 sbsec->sid,
3336 SECCLASS_FILESYSTEM,
3337 FILESYSTEM__ASSOCIATE,
3338 &ad);
3339}
3340
3341static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3342 const void *value, size_t size,
3343 int flags)
3344{
3345 struct inode *inode = d_backing_inode(dentry);
3346 struct inode_security_struct *isec;
3347 u32 newsid;
3348 int rc;
3349
3350 if (strcmp(name, XATTR_NAME_SELINUX)) {
3351 /* Not an attribute we recognize, so nothing to do. */
3352 return;
3353 }
3354
3355 rc = security_context_to_sid_force(&selinux_state, value, size,
3356 &newsid);
3357 if (rc) {
3358 printk(KERN_ERR "SELinux: unable to map context to SID"
3359 "for (%s, %lu), rc=%d\n",
3360 inode->i_sb->s_id, inode->i_ino, -rc);
3361 return;
3362 }
3363
3364 isec = backing_inode_security(dentry);
3365 spin_lock(&isec->lock);
3366 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3367 isec->sid = newsid;
3368 isec->initialized = LABEL_INITIALIZED;
3369 spin_unlock(&isec->lock);
3370
3371 return;
3372}
3373
3374static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3375{
3376 const struct cred *cred = current_cred();
3377
3378 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3379}
3380
3381static int selinux_inode_listxattr(struct dentry *dentry)
3382{
3383 const struct cred *cred = current_cred();
3384
3385 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3386}
3387
3388static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3389{
3390 if (strcmp(name, XATTR_NAME_SELINUX)) {
3391 int rc = cap_inode_removexattr(dentry, name);
3392 if (rc)
3393 return rc;
3394
3395 /* Not an attribute we recognize, so just check the
3396 ordinary setattr permission. */
3397 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3398 }
3399
3400 /* No one is allowed to remove a SELinux security label.
3401 You can change the label, but all data must be labeled. */
3402 return -EACCES;
3403}
3404
3405/*
3406 * Copy the inode security context value to the user.
3407 *
3408 * Permission check is handled by selinux_inode_getxattr hook.
3409 */
3410static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3411{
3412 u32 size;
3413 int error;
3414 char *context = NULL;
3415 struct inode_security_struct *isec;
3416
3417 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3418 return -EOPNOTSUPP;
3419
3420 /*
3421 * If the caller has CAP_MAC_ADMIN, then get the raw context
3422 * value even if it is not defined by current policy; otherwise,
3423 * use the in-core value under current policy.
3424 * Use the non-auditing forms of the permission checks since
3425 * getxattr may be called by unprivileged processes commonly
3426 * and lack of permission just means that we fall back to the
3427 * in-core context value, not a denial.
3428 */
3429 isec = inode_security(inode);
3430 if (has_cap_mac_admin(false))
3431 error = security_sid_to_context_force(&selinux_state,
3432 isec->sid, &context,
3433 &size);
3434 else
3435 error = security_sid_to_context(&selinux_state, isec->sid,
3436 &context, &size);
3437 if (error)
3438 return error;
3439 error = size;
3440 if (alloc) {
3441 *buffer = context;
3442 goto out_nofree;
3443 }
3444 kfree(context);
3445out_nofree:
3446 return error;
3447}
3448
3449static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3450 const void *value, size_t size, int flags)
3451{
3452 struct inode_security_struct *isec = inode_security_novalidate(inode);
3453 u32 newsid;
3454 int rc;
3455
3456 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3457 return -EOPNOTSUPP;
3458
3459 if (!value || !size)
3460 return -EACCES;
3461
3462 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3463 GFP_KERNEL);
3464 if (rc)
3465 return rc;
3466
3467 spin_lock(&isec->lock);
3468 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3469 isec->sid = newsid;
3470 isec->initialized = LABEL_INITIALIZED;
3471 spin_unlock(&isec->lock);
3472 return 0;
3473}
3474
3475static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3476{
3477 const int len = sizeof(XATTR_NAME_SELINUX);
3478 if (buffer && len <= buffer_size)
3479 memcpy(buffer, XATTR_NAME_SELINUX, len);
3480 return len;
3481}
3482
3483static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3484{
3485 struct inode_security_struct *isec = inode_security_novalidate(inode);
3486 *secid = isec->sid;
3487}
3488
3489static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3490{
3491 u32 sid;
3492 struct task_security_struct *tsec;
3493 struct cred *new_creds = *new;
3494
3495 if (new_creds == NULL) {
3496 new_creds = prepare_creds();
3497 if (!new_creds)
3498 return -ENOMEM;
3499 }
3500
3501 tsec = new_creds->security;
3502 /* Get label from overlay inode and set it in create_sid */
3503 selinux_inode_getsecid(d_inode(src), &sid);
3504 tsec->create_sid = sid;
3505 *new = new_creds;
3506 return 0;
3507}
3508
3509static int selinux_inode_copy_up_xattr(const char *name)
3510{
3511 /* The copy_up hook above sets the initial context on an inode, but we
3512 * don't then want to overwrite it by blindly copying all the lower
3513 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3514 */
3515 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3516 return 1; /* Discard */
3517 /*
3518 * Any other attribute apart from SELINUX is not claimed, supported
3519 * by selinux.
3520 */
3521 return -EOPNOTSUPP;
3522}
3523
3524/* file security operations */
3525
3526static int selinux_revalidate_file_permission(struct file *file, int mask)
3527{
3528 const struct cred *cred = current_cred();
3529 struct inode *inode = file_inode(file);
3530
3531 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3532 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3533 mask |= MAY_APPEND;
3534
3535 return file_has_perm(cred, file,
3536 file_mask_to_av(inode->i_mode, mask));
3537}
3538
3539static int selinux_file_permission(struct file *file, int mask)
3540{
3541 struct inode *inode = file_inode(file);
3542 struct file_security_struct *fsec = file->f_security;
3543 struct inode_security_struct *isec;
3544 u32 sid = current_sid();
3545
3546 if (!mask)
3547 /* No permission to check. Existence test. */
3548 return 0;
3549
3550 isec = inode_security(inode);
3551 if (sid == fsec->sid && fsec->isid == isec->sid &&
3552 fsec->pseqno == avc_policy_seqno(&selinux_state))
3553 /* No change since file_open check. */
3554 return 0;
3555
3556 return selinux_revalidate_file_permission(file, mask);
3557}
3558
3559static int selinux_file_alloc_security(struct file *file)
3560{
3561 return file_alloc_security(file);
3562}
3563
3564static void selinux_file_free_security(struct file *file)
3565{
3566 file_free_security(file);
3567}
3568
3569/*
3570 * Check whether a task has the ioctl permission and cmd
3571 * operation to an inode.
3572 */
3573static int ioctl_has_perm(const struct cred *cred, struct file *file,
3574 u32 requested, u16 cmd)
3575{
3576 struct common_audit_data ad;
3577 struct file_security_struct *fsec = file->f_security;
3578 struct inode *inode = file_inode(file);
3579 struct inode_security_struct *isec;
3580 struct lsm_ioctlop_audit ioctl;
3581 u32 ssid = cred_sid(cred);
3582 int rc;
3583 u8 driver = cmd >> 8;
3584 u8 xperm = cmd & 0xff;
3585
3586 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3587 ad.u.op = &ioctl;
3588 ad.u.op->cmd = cmd;
3589 ad.u.op->path = file->f_path;
3590
3591 if (ssid != fsec->sid) {
3592 rc = avc_has_perm(&selinux_state,
3593 ssid, fsec->sid,
3594 SECCLASS_FD,
3595 FD__USE,
3596 &ad);
3597 if (rc)
3598 goto out;
3599 }
3600
3601 if (unlikely(IS_PRIVATE(inode)))
3602 return 0;
3603
3604 isec = inode_security(inode);
3605 rc = avc_has_extended_perms(&selinux_state,
3606 ssid, isec->sid, isec->sclass,
3607 requested, driver, xperm, &ad);
3608out:
3609 return rc;
3610}
3611
3612static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3613 unsigned long arg)
3614{
3615 const struct cred *cred = current_cred();
3616 int error = 0;
3617
3618 switch (cmd) {
3619 case FIONREAD:
3620 /* fall through */
3621 case FIBMAP:
3622 /* fall through */
3623 case FIGETBSZ:
3624 /* fall through */
3625 case FS_IOC_GETFLAGS:
3626 /* fall through */
3627 case FS_IOC_GETVERSION:
3628 error = file_has_perm(cred, file, FILE__GETATTR);
3629 break;
3630
3631 case FS_IOC_SETFLAGS:
3632 /* fall through */
3633 case FS_IOC_SETVERSION:
3634 error = file_has_perm(cred, file, FILE__SETATTR);
3635 break;
3636
3637 /* sys_ioctl() checks */
3638 case FIONBIO:
3639 /* fall through */
3640 case FIOASYNC:
3641 error = file_has_perm(cred, file, 0);
3642 break;
3643
3644 case KDSKBENT:
3645 case KDSKBSENT:
3646 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3647 SECURITY_CAP_AUDIT, true);
3648 break;
3649
3650 /* default case assumes that the command will go
3651 * to the file's ioctl() function.
3652 */
3653 default:
3654 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3655 }
3656 return error;
3657}
3658
3659static int default_noexec;
3660
3661static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3662{
3663 const struct cred *cred = current_cred();
3664 u32 sid = cred_sid(cred);
3665 int rc = 0;
3666
3667 if (default_noexec &&
3668 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3669 (!shared && (prot & PROT_WRITE)))) {
3670 /*
3671 * We are making executable an anonymous mapping or a
3672 * private file mapping that will also be writable.
3673 * This has an additional check.
3674 */
3675 rc = avc_has_perm(&selinux_state,
3676 sid, sid, SECCLASS_PROCESS,
3677 PROCESS__EXECMEM, NULL);
3678 if (rc)
3679 goto error;
3680 }
3681
3682 if (file) {
3683 /* read access is always possible with a mapping */
3684 u32 av = FILE__READ;
3685
3686 /* write access only matters if the mapping is shared */
3687 if (shared && (prot & PROT_WRITE))
3688 av |= FILE__WRITE;
3689
3690 if (prot & PROT_EXEC)
3691 av |= FILE__EXECUTE;
3692
3693 return file_has_perm(cred, file, av);
3694 }
3695
3696error:
3697 return rc;
3698}
3699
3700static int selinux_mmap_addr(unsigned long addr)
3701{
3702 int rc = 0;
3703
3704 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3705 u32 sid = current_sid();
3706 rc = avc_has_perm(&selinux_state,
3707 sid, sid, SECCLASS_MEMPROTECT,
3708 MEMPROTECT__MMAP_ZERO, NULL);
3709 }
3710
3711 return rc;
3712}
3713
3714static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3715 unsigned long prot, unsigned long flags)
3716{
3717 struct common_audit_data ad;
3718 int rc;
3719
3720 if (file) {
3721 ad.type = LSM_AUDIT_DATA_FILE;
3722 ad.u.file = file;
3723 rc = inode_has_perm(current_cred(), file_inode(file),
3724 FILE__MAP, &ad);
3725 if (rc)
3726 return rc;
3727 }
3728
3729 if (selinux_state.checkreqprot)
3730 prot = reqprot;
3731
3732 return file_map_prot_check(file, prot,
3733 (flags & MAP_TYPE) == MAP_SHARED);
3734}
3735
3736static int selinux_file_mprotect(struct vm_area_struct *vma,
3737 unsigned long reqprot,
3738 unsigned long prot)
3739{
3740 const struct cred *cred = current_cred();
3741 u32 sid = cred_sid(cred);
3742
3743 if (selinux_state.checkreqprot)
3744 prot = reqprot;
3745
3746 if (default_noexec &&
3747 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3748 int rc = 0;
3749 if (vma->vm_start >= vma->vm_mm->start_brk &&
3750 vma->vm_end <= vma->vm_mm->brk) {
3751 rc = avc_has_perm(&selinux_state,
3752 sid, sid, SECCLASS_PROCESS,
3753 PROCESS__EXECHEAP, NULL);
3754 } else if (!vma->vm_file &&
3755 ((vma->vm_start <= vma->vm_mm->start_stack &&
3756 vma->vm_end >= vma->vm_mm->start_stack) ||
3757 vma_is_stack_for_current(vma))) {
3758 rc = avc_has_perm(&selinux_state,
3759 sid, sid, SECCLASS_PROCESS,
3760 PROCESS__EXECSTACK, NULL);
3761 } else if (vma->vm_file && vma->anon_vma) {
3762 /*
3763 * We are making executable a file mapping that has
3764 * had some COW done. Since pages might have been
3765 * written, check ability to execute the possibly
3766 * modified content. This typically should only
3767 * occur for text relocations.
3768 */
3769 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3770 }
3771 if (rc)
3772 return rc;
3773 }
3774
3775 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3776}
3777
3778static int selinux_file_lock(struct file *file, unsigned int cmd)
3779{
3780 const struct cred *cred = current_cred();
3781
3782 return file_has_perm(cred, file, FILE__LOCK);
3783}
3784
3785static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3786 unsigned long arg)
3787{
3788 const struct cred *cred = current_cred();
3789 int err = 0;
3790
3791 switch (cmd) {
3792 case F_SETFL:
3793 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3794 err = file_has_perm(cred, file, FILE__WRITE);
3795 break;
3796 }
3797 /* fall through */
3798 case F_SETOWN:
3799 case F_SETSIG:
3800 case F_GETFL:
3801 case F_GETOWN:
3802 case F_GETSIG:
3803 case F_GETOWNER_UIDS:
3804 /* Just check FD__USE permission */
3805 err = file_has_perm(cred, file, 0);
3806 break;
3807 case F_GETLK:
3808 case F_SETLK:
3809 case F_SETLKW:
3810 case F_OFD_GETLK:
3811 case F_OFD_SETLK:
3812 case F_OFD_SETLKW:
3813#if BITS_PER_LONG == 32
3814 case F_GETLK64:
3815 case F_SETLK64:
3816 case F_SETLKW64:
3817#endif
3818 err = file_has_perm(cred, file, FILE__LOCK);
3819 break;
3820 }
3821
3822 return err;
3823}
3824
3825static void selinux_file_set_fowner(struct file *file)
3826{
3827 struct file_security_struct *fsec;
3828
3829 fsec = file->f_security;
3830 fsec->fown_sid = current_sid();
3831}
3832
3833static int selinux_file_send_sigiotask(struct task_struct *tsk,
3834 struct fown_struct *fown, int signum)
3835{
3836 struct file *file;
3837 u32 sid = task_sid(tsk);
3838 u32 perm;
3839 struct file_security_struct *fsec;
3840
3841 /* struct fown_struct is never outside the context of a struct file */
3842 file = container_of(fown, struct file, f_owner);
3843
3844 fsec = file->f_security;
3845
3846 if (!signum)
3847 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3848 else
3849 perm = signal_to_av(signum);
3850
3851 return avc_has_perm(&selinux_state,
3852 fsec->fown_sid, sid,
3853 SECCLASS_PROCESS, perm, NULL);
3854}
3855
3856static int selinux_file_receive(struct file *file)
3857{
3858 const struct cred *cred = current_cred();
3859
3860 return file_has_perm(cred, file, file_to_av(file));
3861}
3862
3863static int selinux_file_open(struct file *file, const struct cred *cred)
3864{
3865 struct file_security_struct *fsec;
3866 struct inode_security_struct *isec;
3867
3868 fsec = file->f_security;
3869 isec = inode_security(file_inode(file));
3870 /*
3871 * Save inode label and policy sequence number
3872 * at open-time so that selinux_file_permission
3873 * can determine whether revalidation is necessary.
3874 * Task label is already saved in the file security
3875 * struct as its SID.
3876 */
3877 fsec->isid = isec->sid;
3878 fsec->pseqno = avc_policy_seqno(&selinux_state);
3879 /*
3880 * Since the inode label or policy seqno may have changed
3881 * between the selinux_inode_permission check and the saving
3882 * of state above, recheck that access is still permitted.
3883 * Otherwise, access might never be revalidated against the
3884 * new inode label or new policy.
3885 * This check is not redundant - do not remove.
3886 */
3887 return file_path_has_perm(cred, file, open_file_to_av(file));
3888}
3889
3890/* task security operations */
3891
3892static int selinux_task_alloc(struct task_struct *task,
3893 unsigned long clone_flags)
3894{
3895 u32 sid = current_sid();
3896
3897 return avc_has_perm(&selinux_state,
3898 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3899}
3900
3901/*
3902 * allocate the SELinux part of blank credentials
3903 */
3904static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3905{
3906 struct task_security_struct *tsec;
3907
3908 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3909 if (!tsec)
3910 return -ENOMEM;
3911
3912 cred->security = tsec;
3913 return 0;
3914}
3915
3916/*
3917 * detach and free the LSM part of a set of credentials
3918 */
3919static void selinux_cred_free(struct cred *cred)
3920{
3921 struct task_security_struct *tsec = cred->security;
3922
3923 /*
3924 * cred->security == NULL if security_cred_alloc_blank() or
3925 * security_prepare_creds() returned an error.
3926 */
3927 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3928 cred->security = (void *) 0x7UL;
3929 kfree(tsec);
3930}
3931
3932/*
3933 * prepare a new set of credentials for modification
3934 */
3935static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3936 gfp_t gfp)
3937{
3938 const struct task_security_struct *old_tsec;
3939 struct task_security_struct *tsec;
3940
3941 old_tsec = old->security;
3942
3943 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3944 if (!tsec)
3945 return -ENOMEM;
3946
3947 new->security = tsec;
3948 return 0;
3949}
3950
3951/*
3952 * transfer the SELinux data to a blank set of creds
3953 */
3954static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3955{
3956 const struct task_security_struct *old_tsec = old->security;
3957 struct task_security_struct *tsec = new->security;
3958
3959 *tsec = *old_tsec;
3960}
3961
3962static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3963{
3964 *secid = cred_sid(c);
3965}
3966
3967/*
3968 * set the security data for a kernel service
3969 * - all the creation contexts are set to unlabelled
3970 */
3971static int selinux_kernel_act_as(struct cred *new, u32 secid)
3972{
3973 struct task_security_struct *tsec = new->security;
3974 u32 sid = current_sid();
3975 int ret;
3976
3977 ret = avc_has_perm(&selinux_state,
3978 sid, secid,
3979 SECCLASS_KERNEL_SERVICE,
3980 KERNEL_SERVICE__USE_AS_OVERRIDE,
3981 NULL);
3982 if (ret == 0) {
3983 tsec->sid = secid;
3984 tsec->create_sid = 0;
3985 tsec->keycreate_sid = 0;
3986 tsec->sockcreate_sid = 0;
3987 }
3988 return ret;
3989}
3990
3991/*
3992 * set the file creation context in a security record to the same as the
3993 * objective context of the specified inode
3994 */
3995static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3996{
3997 struct inode_security_struct *isec = inode_security(inode);
3998 struct task_security_struct *tsec = new->security;
3999 u32 sid = current_sid();
4000 int ret;
4001
4002 ret = avc_has_perm(&selinux_state,
4003 sid, isec->sid,
4004 SECCLASS_KERNEL_SERVICE,
4005 KERNEL_SERVICE__CREATE_FILES_AS,
4006 NULL);
4007
4008 if (ret == 0)
4009 tsec->create_sid = isec->sid;
4010 return ret;
4011}
4012
4013static int selinux_kernel_module_request(char *kmod_name)
4014{
4015 struct common_audit_data ad;
4016
4017 ad.type = LSM_AUDIT_DATA_KMOD;
4018 ad.u.kmod_name = kmod_name;
4019
4020 return avc_has_perm(&selinux_state,
4021 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4022 SYSTEM__MODULE_REQUEST, &ad);
4023}
4024
4025static int selinux_kernel_module_from_file(struct file *file)
4026{
4027 struct common_audit_data ad;
4028 struct inode_security_struct *isec;
4029 struct file_security_struct *fsec;
4030 u32 sid = current_sid();
4031 int rc;
4032
4033 /* init_module */
4034 if (file == NULL)
4035 return avc_has_perm(&selinux_state,
4036 sid, sid, SECCLASS_SYSTEM,
4037 SYSTEM__MODULE_LOAD, NULL);
4038
4039 /* finit_module */
4040
4041 ad.type = LSM_AUDIT_DATA_FILE;
4042 ad.u.file = file;
4043
4044 fsec = file->f_security;
4045 if (sid != fsec->sid) {
4046 rc = avc_has_perm(&selinux_state,
4047 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4048 if (rc)
4049 return rc;
4050 }
4051
4052 isec = inode_security(file_inode(file));
4053 return avc_has_perm(&selinux_state,
4054 sid, isec->sid, SECCLASS_SYSTEM,
4055 SYSTEM__MODULE_LOAD, &ad);
4056}
4057
4058static int selinux_kernel_read_file(struct file *file,
4059 enum kernel_read_file_id id)
4060{
4061 int rc = 0;
4062
4063 switch (id) {
4064 case READING_MODULE:
4065 rc = selinux_kernel_module_from_file(file);
4066 break;
4067 default:
4068 break;
4069 }
4070
4071 return rc;
4072}
4073
4074static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4075{
4076 return avc_has_perm(&selinux_state,
4077 current_sid(), task_sid(p), SECCLASS_PROCESS,
4078 PROCESS__SETPGID, NULL);
4079}
4080
4081static int selinux_task_getpgid(struct task_struct *p)
4082{
4083 return avc_has_perm(&selinux_state,
4084 current_sid(), task_sid(p), SECCLASS_PROCESS,
4085 PROCESS__GETPGID, NULL);
4086}
4087
4088static int selinux_task_getsid(struct task_struct *p)
4089{
4090 return avc_has_perm(&selinux_state,
4091 current_sid(), task_sid(p), SECCLASS_PROCESS,
4092 PROCESS__GETSESSION, NULL);
4093}
4094
4095static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4096{
4097 *secid = task_sid(p);
4098}
4099
4100static int selinux_task_setnice(struct task_struct *p, int nice)
4101{
4102 return avc_has_perm(&selinux_state,
4103 current_sid(), task_sid(p), SECCLASS_PROCESS,
4104 PROCESS__SETSCHED, NULL);
4105}
4106
4107static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4108{
4109 return avc_has_perm(&selinux_state,
4110 current_sid(), task_sid(p), SECCLASS_PROCESS,
4111 PROCESS__SETSCHED, NULL);
4112}
4113
4114static int selinux_task_getioprio(struct task_struct *p)
4115{
4116 return avc_has_perm(&selinux_state,
4117 current_sid(), task_sid(p), SECCLASS_PROCESS,
4118 PROCESS__GETSCHED, NULL);
4119}
4120
4121static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4122 unsigned int flags)
4123{
4124 u32 av = 0;
4125
4126 if (!flags)
4127 return 0;
4128 if (flags & LSM_PRLIMIT_WRITE)
4129 av |= PROCESS__SETRLIMIT;
4130 if (flags & LSM_PRLIMIT_READ)
4131 av |= PROCESS__GETRLIMIT;
4132 return avc_has_perm(&selinux_state,
4133 cred_sid(cred), cred_sid(tcred),
4134 SECCLASS_PROCESS, av, NULL);
4135}
4136
4137static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4138 struct rlimit *new_rlim)
4139{
4140 struct rlimit *old_rlim = p->signal->rlim + resource;
4141
4142 /* Control the ability to change the hard limit (whether
4143 lowering or raising it), so that the hard limit can
4144 later be used as a safe reset point for the soft limit
4145 upon context transitions. See selinux_bprm_committing_creds. */
4146 if (old_rlim->rlim_max != new_rlim->rlim_max)
4147 return avc_has_perm(&selinux_state,
4148 current_sid(), task_sid(p),
4149 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4150
4151 return 0;
4152}
4153
4154static int selinux_task_setscheduler(struct task_struct *p)
4155{
4156 return avc_has_perm(&selinux_state,
4157 current_sid(), task_sid(p), SECCLASS_PROCESS,
4158 PROCESS__SETSCHED, NULL);
4159}
4160
4161static int selinux_task_getscheduler(struct task_struct *p)
4162{
4163 return avc_has_perm(&selinux_state,
4164 current_sid(), task_sid(p), SECCLASS_PROCESS,
4165 PROCESS__GETSCHED, NULL);
4166}
4167
4168static int selinux_task_movememory(struct task_struct *p)
4169{
4170 return avc_has_perm(&selinux_state,
4171 current_sid(), task_sid(p), SECCLASS_PROCESS,
4172 PROCESS__SETSCHED, NULL);
4173}
4174
4175static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4176 int sig, const struct cred *cred)
4177{
4178 u32 secid;
4179 u32 perm;
4180
4181 if (!sig)
4182 perm = PROCESS__SIGNULL; /* null signal; existence test */
4183 else
4184 perm = signal_to_av(sig);
4185 if (!cred)
4186 secid = current_sid();
4187 else
4188 secid = cred_sid(cred);
4189 return avc_has_perm(&selinux_state,
4190 secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4191}
4192
4193static void selinux_task_to_inode(struct task_struct *p,
4194 struct inode *inode)
4195{
4196 struct inode_security_struct *isec = inode->i_security;
4197 u32 sid = task_sid(p);
4198
4199 spin_lock(&isec->lock);
4200 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4201 isec->sid = sid;
4202 isec->initialized = LABEL_INITIALIZED;
4203 spin_unlock(&isec->lock);
4204}
4205
4206/* Returns error only if unable to parse addresses */
4207static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4208 struct common_audit_data *ad, u8 *proto)
4209{
4210 int offset, ihlen, ret = -EINVAL;
4211 struct iphdr _iph, *ih;
4212
4213 offset = skb_network_offset(skb);
4214 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4215 if (ih == NULL)
4216 goto out;
4217
4218 ihlen = ih->ihl * 4;
4219 if (ihlen < sizeof(_iph))
4220 goto out;
4221
4222 ad->u.net->v4info.saddr = ih->saddr;
4223 ad->u.net->v4info.daddr = ih->daddr;
4224 ret = 0;
4225
4226 if (proto)
4227 *proto = ih->protocol;
4228
4229 switch (ih->protocol) {
4230 case IPPROTO_TCP: {
4231 struct tcphdr _tcph, *th;
4232
4233 if (ntohs(ih->frag_off) & IP_OFFSET)
4234 break;
4235
4236 offset += ihlen;
4237 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4238 if (th == NULL)
4239 break;
4240
4241 ad->u.net->sport = th->source;
4242 ad->u.net->dport = th->dest;
4243 break;
4244 }
4245
4246 case IPPROTO_UDP: {
4247 struct udphdr _udph, *uh;
4248
4249 if (ntohs(ih->frag_off) & IP_OFFSET)
4250 break;
4251
4252 offset += ihlen;
4253 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4254 if (uh == NULL)
4255 break;
4256
4257 ad->u.net->sport = uh->source;
4258 ad->u.net->dport = uh->dest;
4259 break;
4260 }
4261
4262 case IPPROTO_DCCP: {
4263 struct dccp_hdr _dccph, *dh;
4264
4265 if (ntohs(ih->frag_off) & IP_OFFSET)
4266 break;
4267
4268 offset += ihlen;
4269 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4270 if (dh == NULL)
4271 break;
4272
4273 ad->u.net->sport = dh->dccph_sport;
4274 ad->u.net->dport = dh->dccph_dport;
4275 break;
4276 }
4277
4278#if IS_ENABLED(CONFIG_IP_SCTP)
4279 case IPPROTO_SCTP: {
4280 struct sctphdr _sctph, *sh;
4281
4282 if (ntohs(ih->frag_off) & IP_OFFSET)
4283 break;
4284
4285 offset += ihlen;
4286 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4287 if (sh == NULL)
4288 break;
4289
4290 ad->u.net->sport = sh->source;
4291 ad->u.net->dport = sh->dest;
4292 break;
4293 }
4294#endif
4295 default:
4296 break;
4297 }
4298out:
4299 return ret;
4300}
4301
4302#if IS_ENABLED(CONFIG_IPV6)
4303
4304/* Returns error only if unable to parse addresses */
4305static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4306 struct common_audit_data *ad, u8 *proto)
4307{
4308 u8 nexthdr;
4309 int ret = -EINVAL, offset;
4310 struct ipv6hdr _ipv6h, *ip6;
4311 __be16 frag_off;
4312
4313 offset = skb_network_offset(skb);
4314 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4315 if (ip6 == NULL)
4316 goto out;
4317
4318 ad->u.net->v6info.saddr = ip6->saddr;
4319 ad->u.net->v6info.daddr = ip6->daddr;
4320 ret = 0;
4321
4322 nexthdr = ip6->nexthdr;
4323 offset += sizeof(_ipv6h);
4324 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4325 if (offset < 0)
4326 goto out;
4327
4328 if (proto)
4329 *proto = nexthdr;
4330
4331 switch (nexthdr) {
4332 case IPPROTO_TCP: {
4333 struct tcphdr _tcph, *th;
4334
4335 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4336 if (th == NULL)
4337 break;
4338
4339 ad->u.net->sport = th->source;
4340 ad->u.net->dport = th->dest;
4341 break;
4342 }
4343
4344 case IPPROTO_UDP: {
4345 struct udphdr _udph, *uh;
4346
4347 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4348 if (uh == NULL)
4349 break;
4350
4351 ad->u.net->sport = uh->source;
4352 ad->u.net->dport = uh->dest;
4353 break;
4354 }
4355
4356 case IPPROTO_DCCP: {
4357 struct dccp_hdr _dccph, *dh;
4358
4359 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4360 if (dh == NULL)
4361 break;
4362
4363 ad->u.net->sport = dh->dccph_sport;
4364 ad->u.net->dport = dh->dccph_dport;
4365 break;
4366 }
4367
4368#if IS_ENABLED(CONFIG_IP_SCTP)
4369 case IPPROTO_SCTP: {
4370 struct sctphdr _sctph, *sh;
4371
4372 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4373 if (sh == NULL)
4374 break;
4375
4376 ad->u.net->sport = sh->source;
4377 ad->u.net->dport = sh->dest;
4378 break;
4379 }
4380#endif
4381 /* includes fragments */
4382 default:
4383 break;
4384 }
4385out:
4386 return ret;
4387}
4388
4389#endif /* IPV6 */
4390
4391static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4392 char **_addrp, int src, u8 *proto)
4393{
4394 char *addrp;
4395 int ret;
4396
4397 switch (ad->u.net->family) {
4398 case PF_INET:
4399 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4400 if (ret)
4401 goto parse_error;
4402 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4403 &ad->u.net->v4info.daddr);
4404 goto okay;
4405
4406#if IS_ENABLED(CONFIG_IPV6)
4407 case PF_INET6:
4408 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4409 if (ret)
4410 goto parse_error;
4411 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4412 &ad->u.net->v6info.daddr);
4413 goto okay;
4414#endif /* IPV6 */
4415 default:
4416 addrp = NULL;
4417 goto okay;
4418 }
4419
4420parse_error:
4421 printk(KERN_WARNING
4422 "SELinux: failure in selinux_parse_skb(),"
4423 " unable to parse packet\n");
4424 return ret;
4425
4426okay:
4427 if (_addrp)
4428 *_addrp = addrp;
4429 return 0;
4430}
4431
4432/**
4433 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4434 * @skb: the packet
4435 * @family: protocol family
4436 * @sid: the packet's peer label SID
4437 *
4438 * Description:
4439 * Check the various different forms of network peer labeling and determine
4440 * the peer label/SID for the packet; most of the magic actually occurs in
4441 * the security server function security_net_peersid_cmp(). The function
4442 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4443 * or -EACCES if @sid is invalid due to inconsistencies with the different
4444 * peer labels.
4445 *
4446 */
4447static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4448{
4449 int err;
4450 u32 xfrm_sid;
4451 u32 nlbl_sid;
4452 u32 nlbl_type;
4453
4454 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4455 if (unlikely(err))
4456 return -EACCES;
4457 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4458 if (unlikely(err))
4459 return -EACCES;
4460
4461 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4462 nlbl_type, xfrm_sid, sid);
4463 if (unlikely(err)) {
4464 printk(KERN_WARNING
4465 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4466 " unable to determine packet's peer label\n");
4467 return -EACCES;
4468 }
4469
4470 return 0;
4471}
4472
4473/**
4474 * selinux_conn_sid - Determine the child socket label for a connection
4475 * @sk_sid: the parent socket's SID
4476 * @skb_sid: the packet's SID
4477 * @conn_sid: the resulting connection SID
4478 *
4479 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4480 * combined with the MLS information from @skb_sid in order to create
4481 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4482 * of @sk_sid. Returns zero on success, negative values on failure.
4483 *
4484 */
4485static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4486{
4487 int err = 0;
4488
4489 if (skb_sid != SECSID_NULL)
4490 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4491 conn_sid);
4492 else
4493 *conn_sid = sk_sid;
4494
4495 return err;
4496}
4497
4498/* socket security operations */
4499
4500static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4501 u16 secclass, u32 *socksid)
4502{
4503 if (tsec->sockcreate_sid > SECSID_NULL) {
4504 *socksid = tsec->sockcreate_sid;
4505 return 0;
4506 }
4507
4508 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4509 secclass, NULL, socksid);
4510}
4511
4512static int sock_has_perm(struct sock *sk, u32 perms)
4513{
4514 struct sk_security_struct *sksec = sk->sk_security;
4515 struct common_audit_data ad;
4516 struct lsm_network_audit net = {0,};
4517
4518 if (sksec->sid == SECINITSID_KERNEL)
4519 return 0;
4520
4521 ad.type = LSM_AUDIT_DATA_NET;
4522 ad.u.net = &net;
4523 ad.u.net->sk = sk;
4524
4525 return avc_has_perm(&selinux_state,
4526 current_sid(), sksec->sid, sksec->sclass, perms,
4527 &ad);
4528}
4529
4530static int selinux_socket_create(int family, int type,
4531 int protocol, int kern)
4532{
4533 const struct task_security_struct *tsec = current_security();
4534 u32 newsid;
4535 u16 secclass;
4536 int rc;
4537
4538 if (kern)
4539 return 0;
4540
4541 secclass = socket_type_to_security_class(family, type, protocol);
4542 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4543 if (rc)
4544 return rc;
4545
4546 return avc_has_perm(&selinux_state,
4547 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4548}
4549
4550static int selinux_socket_post_create(struct socket *sock, int family,
4551 int type, int protocol, int kern)
4552{
4553 const struct task_security_struct *tsec = current_security();
4554 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4555 struct sk_security_struct *sksec;
4556 u16 sclass = socket_type_to_security_class(family, type, protocol);
4557 u32 sid = SECINITSID_KERNEL;
4558 int err = 0;
4559
4560 if (!kern) {
4561 err = socket_sockcreate_sid(tsec, sclass, &sid);
4562 if (err)
4563 return err;
4564 }
4565
4566 isec->sclass = sclass;
4567 isec->sid = sid;
4568 isec->initialized = LABEL_INITIALIZED;
4569
4570 if (sock->sk) {
4571 sksec = sock->sk->sk_security;
4572 sksec->sclass = sclass;
4573 sksec->sid = sid;
4574 /* Allows detection of the first association on this socket */
4575 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4576 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4577
4578 err = selinux_netlbl_socket_post_create(sock->sk, family);
4579 }
4580
4581 return err;
4582}
4583
4584/* Range of port numbers used to automatically bind.
4585 Need to determine whether we should perform a name_bind
4586 permission check between the socket and the port number. */
4587
4588static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4589{
4590 struct sock *sk = sock->sk;
4591 struct sk_security_struct *sksec = sk->sk_security;
4592 u16 family;
4593 int err;
4594
4595 err = sock_has_perm(sk, SOCKET__BIND);
4596 if (err)
4597 goto out;
4598
4599 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4600 family = sk->sk_family;
4601 if (family == PF_INET || family == PF_INET6) {
4602 char *addrp;
4603 struct common_audit_data ad;
4604 struct lsm_network_audit net = {0,};
4605 struct sockaddr_in *addr4 = NULL;
4606 struct sockaddr_in6 *addr6 = NULL;
4607 u16 family_sa = address->sa_family;
4608 unsigned short snum;
4609 u32 sid, node_perm;
4610
4611 /*
4612 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4613 * that validates multiple binding addresses. Because of this
4614 * need to check address->sa_family as it is possible to have
4615 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4616 */
4617 switch (family_sa) {
4618 case AF_UNSPEC:
4619 case AF_INET:
4620 if (addrlen < sizeof(struct sockaddr_in))
4621 return -EINVAL;
4622 addr4 = (struct sockaddr_in *)address;
4623 if (family_sa == AF_UNSPEC) {
4624 /* see __inet_bind(), we only want to allow
4625 * AF_UNSPEC if the address is INADDR_ANY
4626 */
4627 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4628 goto err_af;
4629 family_sa = AF_INET;
4630 }
4631 snum = ntohs(addr4->sin_port);
4632 addrp = (char *)&addr4->sin_addr.s_addr;
4633 break;
4634 case AF_INET6:
4635 if (addrlen < SIN6_LEN_RFC2133)
4636 return -EINVAL;
4637 addr6 = (struct sockaddr_in6 *)address;
4638 snum = ntohs(addr6->sin6_port);
4639 addrp = (char *)&addr6->sin6_addr.s6_addr;
4640 break;
4641 default:
4642 goto err_af;
4643 }
4644
4645 ad.type = LSM_AUDIT_DATA_NET;
4646 ad.u.net = &net;
4647 ad.u.net->sport = htons(snum);
4648 ad.u.net->family = family_sa;
4649
4650 if (snum) {
4651 int low, high;
4652
4653 inet_get_local_port_range(sock_net(sk), &low, &high);
4654
4655 if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4656 snum > high) {
4657 err = sel_netport_sid(sk->sk_protocol,
4658 snum, &sid);
4659 if (err)
4660 goto out;
4661 err = avc_has_perm(&selinux_state,
4662 sksec->sid, sid,
4663 sksec->sclass,
4664 SOCKET__NAME_BIND, &ad);
4665 if (err)
4666 goto out;
4667 }
4668 }
4669
4670 switch (sksec->sclass) {
4671 case SECCLASS_TCP_SOCKET:
4672 node_perm = TCP_SOCKET__NODE_BIND;
4673 break;
4674
4675 case SECCLASS_UDP_SOCKET:
4676 node_perm = UDP_SOCKET__NODE_BIND;
4677 break;
4678
4679 case SECCLASS_DCCP_SOCKET:
4680 node_perm = DCCP_SOCKET__NODE_BIND;
4681 break;
4682
4683 case SECCLASS_SCTP_SOCKET:
4684 node_perm = SCTP_SOCKET__NODE_BIND;
4685 break;
4686
4687 default:
4688 node_perm = RAWIP_SOCKET__NODE_BIND;
4689 break;
4690 }
4691
4692 err = sel_netnode_sid(addrp, family_sa, &sid);
4693 if (err)
4694 goto out;
4695
4696 if (family_sa == AF_INET)
4697 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4698 else
4699 ad.u.net->v6info.saddr = addr6->sin6_addr;
4700
4701 err = avc_has_perm(&selinux_state,
4702 sksec->sid, sid,
4703 sksec->sclass, node_perm, &ad);
4704 if (err)
4705 goto out;
4706 }
4707out:
4708 return err;
4709err_af:
4710 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4711 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4712 return -EINVAL;
4713 return -EAFNOSUPPORT;
4714}
4715
4716/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4717 * and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.txt
4718 */
4719static int selinux_socket_connect_helper(struct socket *sock,
4720 struct sockaddr *address, int addrlen)
4721{
4722 struct sock *sk = sock->sk;
4723 struct sk_security_struct *sksec = sk->sk_security;
4724 int err;
4725
4726 err = sock_has_perm(sk, SOCKET__CONNECT);
4727 if (err)
4728 return err;
4729
4730 /*
4731 * If a TCP, DCCP or SCTP socket, check name_connect permission
4732 * for the port.
4733 */
4734 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4735 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4736 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4737 struct common_audit_data ad;
4738 struct lsm_network_audit net = {0,};
4739 struct sockaddr_in *addr4 = NULL;
4740 struct sockaddr_in6 *addr6 = NULL;
4741 unsigned short snum;
4742 u32 sid, perm;
4743
4744 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4745 * that validates multiple connect addresses. Because of this
4746 * need to check address->sa_family as it is possible to have
4747 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4748 */
4749 switch (address->sa_family) {
4750 case AF_INET:
4751 addr4 = (struct sockaddr_in *)address;
4752 if (addrlen < sizeof(struct sockaddr_in))
4753 return -EINVAL;
4754 snum = ntohs(addr4->sin_port);
4755 break;
4756 case AF_INET6:
4757 addr6 = (struct sockaddr_in6 *)address;
4758 if (addrlen < SIN6_LEN_RFC2133)
4759 return -EINVAL;
4760 snum = ntohs(addr6->sin6_port);
4761 break;
4762 default:
4763 /* Note that SCTP services expect -EINVAL, whereas
4764 * others expect -EAFNOSUPPORT.
4765 */
4766 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4767 return -EINVAL;
4768 else
4769 return -EAFNOSUPPORT;
4770 }
4771
4772 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4773 if (err)
4774 return err;
4775
4776 switch (sksec->sclass) {
4777 case SECCLASS_TCP_SOCKET:
4778 perm = TCP_SOCKET__NAME_CONNECT;
4779 break;
4780 case SECCLASS_DCCP_SOCKET:
4781 perm = DCCP_SOCKET__NAME_CONNECT;
4782 break;
4783 case SECCLASS_SCTP_SOCKET:
4784 perm = SCTP_SOCKET__NAME_CONNECT;
4785 break;
4786 }
4787
4788 ad.type = LSM_AUDIT_DATA_NET;
4789 ad.u.net = &net;
4790 ad.u.net->dport = htons(snum);
4791 ad.u.net->family = address->sa_family;
4792 err = avc_has_perm(&selinux_state,
4793 sksec->sid, sid, sksec->sclass, perm, &ad);
4794 if (err)
4795 return err;
4796 }
4797
4798 return 0;
4799}
4800
4801/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4802static int selinux_socket_connect(struct socket *sock,
4803 struct sockaddr *address, int addrlen)
4804{
4805 int err;
4806 struct sock *sk = sock->sk;
4807
4808 err = selinux_socket_connect_helper(sock, address, addrlen);
4809 if (err)
4810 return err;
4811
4812 return selinux_netlbl_socket_connect(sk, address);
4813}
4814
4815static int selinux_socket_listen(struct socket *sock, int backlog)
4816{
4817 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4818}
4819
4820static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4821{
4822 int err;
4823 struct inode_security_struct *isec;
4824 struct inode_security_struct *newisec;
4825 u16 sclass;
4826 u32 sid;
4827
4828 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4829 if (err)
4830 return err;
4831
4832 isec = inode_security_novalidate(SOCK_INODE(sock));
4833 spin_lock(&isec->lock);
4834 sclass = isec->sclass;
4835 sid = isec->sid;
4836 spin_unlock(&isec->lock);
4837
4838 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4839 newisec->sclass = sclass;
4840 newisec->sid = sid;
4841 newisec->initialized = LABEL_INITIALIZED;
4842
4843 return 0;
4844}
4845
4846static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4847 int size)
4848{
4849 return sock_has_perm(sock->sk, SOCKET__WRITE);
4850}
4851
4852static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4853 int size, int flags)
4854{
4855 return sock_has_perm(sock->sk, SOCKET__READ);
4856}
4857
4858static int selinux_socket_getsockname(struct socket *sock)
4859{
4860 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4861}
4862
4863static int selinux_socket_getpeername(struct socket *sock)
4864{
4865 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4866}
4867
4868static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4869{
4870 int err;
4871
4872 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4873 if (err)
4874 return err;
4875
4876 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4877}
4878
4879static int selinux_socket_getsockopt(struct socket *sock, int level,
4880 int optname)
4881{
4882 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4883}
4884
4885static int selinux_socket_shutdown(struct socket *sock, int how)
4886{
4887 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4888}
4889
4890static int selinux_socket_unix_stream_connect(struct sock *sock,
4891 struct sock *other,
4892 struct sock *newsk)
4893{
4894 struct sk_security_struct *sksec_sock = sock->sk_security;
4895 struct sk_security_struct *sksec_other = other->sk_security;
4896 struct sk_security_struct *sksec_new = newsk->sk_security;
4897 struct common_audit_data ad;
4898 struct lsm_network_audit net = {0,};
4899 int err;
4900
4901 ad.type = LSM_AUDIT_DATA_NET;
4902 ad.u.net = &net;
4903 ad.u.net->sk = other;
4904
4905 err = avc_has_perm(&selinux_state,
4906 sksec_sock->sid, sksec_other->sid,
4907 sksec_other->sclass,
4908 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4909 if (err)
4910 return err;
4911
4912 /* server child socket */
4913 sksec_new->peer_sid = sksec_sock->sid;
4914 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4915 sksec_sock->sid, &sksec_new->sid);
4916 if (err)
4917 return err;
4918
4919 /* connecting socket */
4920 sksec_sock->peer_sid = sksec_new->sid;
4921
4922 return 0;
4923}
4924
4925static int selinux_socket_unix_may_send(struct socket *sock,
4926 struct socket *other)
4927{
4928 struct sk_security_struct *ssec = sock->sk->sk_security;
4929 struct sk_security_struct *osec = other->sk->sk_security;
4930 struct common_audit_data ad;
4931 struct lsm_network_audit net = {0,};
4932
4933 ad.type = LSM_AUDIT_DATA_NET;
4934 ad.u.net = &net;
4935 ad.u.net->sk = other->sk;
4936
4937 return avc_has_perm(&selinux_state,
4938 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4939 &ad);
4940}
4941
4942static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4943 char *addrp, u16 family, u32 peer_sid,
4944 struct common_audit_data *ad)
4945{
4946 int err;
4947 u32 if_sid;
4948 u32 node_sid;
4949
4950 err = sel_netif_sid(ns, ifindex, &if_sid);
4951 if (err)
4952 return err;
4953 err = avc_has_perm(&selinux_state,
4954 peer_sid, if_sid,
4955 SECCLASS_NETIF, NETIF__INGRESS, ad);
4956 if (err)
4957 return err;
4958
4959 err = sel_netnode_sid(addrp, family, &node_sid);
4960 if (err)
4961 return err;
4962 return avc_has_perm(&selinux_state,
4963 peer_sid, node_sid,
4964 SECCLASS_NODE, NODE__RECVFROM, ad);
4965}
4966
4967static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4968 u16 family)
4969{
4970 int err = 0;
4971 struct sk_security_struct *sksec = sk->sk_security;
4972 u32 sk_sid = sksec->sid;
4973 struct common_audit_data ad;
4974 struct lsm_network_audit net = {0,};
4975 char *addrp;
4976
4977 ad.type = LSM_AUDIT_DATA_NET;
4978 ad.u.net = &net;
4979 ad.u.net->netif = skb->skb_iif;
4980 ad.u.net->family = family;
4981 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4982 if (err)
4983 return err;
4984
4985 if (selinux_secmark_enabled()) {
4986 err = avc_has_perm(&selinux_state,
4987 sk_sid, skb->secmark, SECCLASS_PACKET,
4988 PACKET__RECV, &ad);
4989 if (err)
4990 return err;
4991 }
4992
4993 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4994 if (err)
4995 return err;
4996 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4997
4998 return err;
4999}
5000
5001static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5002{
5003 int err;
5004 struct sk_security_struct *sksec = sk->sk_security;
5005 u16 family = sk->sk_family;
5006 u32 sk_sid = sksec->sid;
5007 struct common_audit_data ad;
5008 struct lsm_network_audit net = {0,};
5009 char *addrp;
5010 u8 secmark_active;
5011 u8 peerlbl_active;
5012
5013 if (family != PF_INET && family != PF_INET6)
5014 return 0;
5015
5016 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5017 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5018 family = PF_INET;
5019
5020 /* If any sort of compatibility mode is enabled then handoff processing
5021 * to the selinux_sock_rcv_skb_compat() function to deal with the
5022 * special handling. We do this in an attempt to keep this function
5023 * as fast and as clean as possible. */
5024 if (!selinux_policycap_netpeer())
5025 return selinux_sock_rcv_skb_compat(sk, skb, family);
5026
5027 secmark_active = selinux_secmark_enabled();
5028 peerlbl_active = selinux_peerlbl_enabled();
5029 if (!secmark_active && !peerlbl_active)
5030 return 0;
5031
5032 ad.type = LSM_AUDIT_DATA_NET;
5033 ad.u.net = &net;
5034 ad.u.net->netif = skb->skb_iif;
5035 ad.u.net->family = family;
5036 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5037 if (err)
5038 return err;
5039
5040 if (peerlbl_active) {
5041 u32 peer_sid;
5042
5043 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5044 if (err)
5045 return err;
5046 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5047 addrp, family, peer_sid, &ad);
5048 if (err) {
5049 selinux_netlbl_err(skb, family, err, 0);
5050 return err;
5051 }
5052 err = avc_has_perm(&selinux_state,
5053 sk_sid, peer_sid, SECCLASS_PEER,
5054 PEER__RECV, &ad);
5055 if (err) {
5056 selinux_netlbl_err(skb, family, err, 0);
5057 return err;
5058 }
5059 }
5060
5061 if (secmark_active) {
5062 err = avc_has_perm(&selinux_state,
5063 sk_sid, skb->secmark, SECCLASS_PACKET,
5064 PACKET__RECV, &ad);
5065 if (err)
5066 return err;
5067 }
5068
5069 return err;
5070}
5071
5072static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5073 int __user *optlen, unsigned len)
5074{
5075 int err = 0;
5076 char *scontext;
5077 u32 scontext_len;
5078 struct sk_security_struct *sksec = sock->sk->sk_security;
5079 u32 peer_sid = SECSID_NULL;
5080
5081 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5082 sksec->sclass == SECCLASS_TCP_SOCKET ||
5083 sksec->sclass == SECCLASS_SCTP_SOCKET)
5084 peer_sid = sksec->peer_sid;
5085 if (peer_sid == SECSID_NULL)
5086 return -ENOPROTOOPT;
5087
5088 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5089 &scontext_len);
5090 if (err)
5091 return err;
5092
5093 if (scontext_len > len) {
5094 err = -ERANGE;
5095 goto out_len;
5096 }
5097
5098 if (copy_to_user(optval, scontext, scontext_len))
5099 err = -EFAULT;
5100
5101out_len:
5102 if (put_user(scontext_len, optlen))
5103 err = -EFAULT;
5104 kfree(scontext);
5105 return err;
5106}
5107
5108static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5109{
5110 u32 peer_secid = SECSID_NULL;
5111 u16 family;
5112 struct inode_security_struct *isec;
5113
5114 if (skb && skb->protocol == htons(ETH_P_IP))
5115 family = PF_INET;
5116 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5117 family = PF_INET6;
5118 else if (sock)
5119 family = sock->sk->sk_family;
5120 else
5121 goto out;
5122
5123 if (sock && family == PF_UNIX) {
5124 isec = inode_security_novalidate(SOCK_INODE(sock));
5125 peer_secid = isec->sid;
5126 } else if (skb)
5127 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5128
5129out:
5130 *secid = peer_secid;
5131 if (peer_secid == SECSID_NULL)
5132 return -EINVAL;
5133 return 0;
5134}
5135
5136static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5137{
5138 struct sk_security_struct *sksec;
5139
5140 sksec = kzalloc(sizeof(*sksec), priority);
5141 if (!sksec)
5142 return -ENOMEM;
5143
5144 sksec->peer_sid = SECINITSID_UNLABELED;
5145 sksec->sid = SECINITSID_UNLABELED;
5146 sksec->sclass = SECCLASS_SOCKET;
5147 selinux_netlbl_sk_security_reset(sksec);
5148 sk->sk_security = sksec;
5149
5150 return 0;
5151}
5152
5153static void selinux_sk_free_security(struct sock *sk)
5154{
5155 struct sk_security_struct *sksec = sk->sk_security;
5156
5157 sk->sk_security = NULL;
5158 selinux_netlbl_sk_security_free(sksec);
5159 kfree(sksec);
5160}
5161
5162static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5163{
5164 struct sk_security_struct *sksec = sk->sk_security;
5165 struct sk_security_struct *newsksec = newsk->sk_security;
5166
5167 newsksec->sid = sksec->sid;
5168 newsksec->peer_sid = sksec->peer_sid;
5169 newsksec->sclass = sksec->sclass;
5170
5171 selinux_netlbl_sk_security_reset(newsksec);
5172}
5173
5174static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5175{
5176 if (!sk)
5177 *secid = SECINITSID_ANY_SOCKET;
5178 else {
5179 struct sk_security_struct *sksec = sk->sk_security;
5180
5181 *secid = sksec->sid;
5182 }
5183}
5184
5185static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5186{
5187 struct inode_security_struct *isec =
5188 inode_security_novalidate(SOCK_INODE(parent));
5189 struct sk_security_struct *sksec = sk->sk_security;
5190
5191 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5192 sk->sk_family == PF_UNIX)
5193 isec->sid = sksec->sid;
5194 sksec->sclass = isec->sclass;
5195}
5196
5197/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5198 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5199 * already present).
5200 */
5201static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5202 struct sk_buff *skb)
5203{
5204 struct sk_security_struct *sksec = ep->base.sk->sk_security;
5205 struct common_audit_data ad;
5206 struct lsm_network_audit net = {0,};
5207 u8 peerlbl_active;
5208 u32 peer_sid = SECINITSID_UNLABELED;
5209 u32 conn_sid;
5210 int err = 0;
5211
5212 if (!selinux_policycap_extsockclass())
5213 return 0;
5214
5215 peerlbl_active = selinux_peerlbl_enabled();
5216
5217 if (peerlbl_active) {
5218 /* This will return peer_sid = SECSID_NULL if there are
5219 * no peer labels, see security_net_peersid_resolve().
5220 */
5221 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5222 &peer_sid);
5223 if (err)
5224 return err;
5225
5226 if (peer_sid == SECSID_NULL)
5227 peer_sid = SECINITSID_UNLABELED;
5228 }
5229
5230 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5231 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5232
5233 /* Here as first association on socket. As the peer SID
5234 * was allowed by peer recv (and the netif/node checks),
5235 * then it is approved by policy and used as the primary
5236 * peer SID for getpeercon(3).
5237 */
5238 sksec->peer_sid = peer_sid;
5239 } else if (sksec->peer_sid != peer_sid) {
5240 /* Other association peer SIDs are checked to enforce
5241 * consistency among the peer SIDs.
5242 */
5243 ad.type = LSM_AUDIT_DATA_NET;
5244 ad.u.net = &net;
5245 ad.u.net->sk = ep->base.sk;
5246 err = avc_has_perm(&selinux_state,
5247 sksec->peer_sid, peer_sid, sksec->sclass,
5248 SCTP_SOCKET__ASSOCIATION, &ad);
5249 if (err)
5250 return err;
5251 }
5252
5253 /* Compute the MLS component for the connection and store
5254 * the information in ep. This will be used by SCTP TCP type
5255 * sockets and peeled off connections as they cause a new
5256 * socket to be generated. selinux_sctp_sk_clone() will then
5257 * plug this into the new socket.
5258 */
5259 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5260 if (err)
5261 return err;
5262
5263 ep->secid = conn_sid;
5264 ep->peer_secid = peer_sid;
5265
5266 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5267 return selinux_netlbl_sctp_assoc_request(ep, skb);
5268}
5269
5270/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5271 * based on their @optname.
5272 */
5273static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5274 struct sockaddr *address,
5275 int addrlen)
5276{
5277 int len, err = 0, walk_size = 0;
5278 void *addr_buf;
5279 struct sockaddr *addr;
5280 struct socket *sock;
5281
5282 if (!selinux_policycap_extsockclass())
5283 return 0;
5284
5285 /* Process one or more addresses that may be IPv4 or IPv6 */
5286 sock = sk->sk_socket;
5287 addr_buf = address;
5288
5289 while (walk_size < addrlen) {
5290 addr = addr_buf;
5291 switch (addr->sa_family) {
5292 case AF_UNSPEC:
5293 case AF_INET:
5294 len = sizeof(struct sockaddr_in);
5295 break;
5296 case AF_INET6:
5297 len = sizeof(struct sockaddr_in6);
5298 break;
5299 default:
5300 return -EINVAL;
5301 }
5302
5303 err = -EINVAL;
5304 switch (optname) {
5305 /* Bind checks */
5306 case SCTP_PRIMARY_ADDR:
5307 case SCTP_SET_PEER_PRIMARY_ADDR:
5308 case SCTP_SOCKOPT_BINDX_ADD:
5309 err = selinux_socket_bind(sock, addr, len);
5310 break;
5311 /* Connect checks */
5312 case SCTP_SOCKOPT_CONNECTX:
5313 case SCTP_PARAM_SET_PRIMARY:
5314 case SCTP_PARAM_ADD_IP:
5315 case SCTP_SENDMSG_CONNECT:
5316 err = selinux_socket_connect_helper(sock, addr, len);
5317 if (err)
5318 return err;
5319
5320 /* As selinux_sctp_bind_connect() is called by the
5321 * SCTP protocol layer, the socket is already locked,
5322 * therefore selinux_netlbl_socket_connect_locked() is
5323 * is called here. The situations handled are:
5324 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5325 * whenever a new IP address is added or when a new
5326 * primary address is selected.
5327 * Note that an SCTP connect(2) call happens before
5328 * the SCTP protocol layer and is handled via
5329 * selinux_socket_connect().
5330 */
5331 err = selinux_netlbl_socket_connect_locked(sk, addr);
5332 break;
5333 }
5334
5335 if (err)
5336 return err;
5337
5338 addr_buf += len;
5339 walk_size += len;
5340 }
5341
5342 return 0;
5343}
5344
5345/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5346static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5347 struct sock *newsk)
5348{
5349 struct sk_security_struct *sksec = sk->sk_security;
5350 struct sk_security_struct *newsksec = newsk->sk_security;
5351
5352 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5353 * the non-sctp clone version.
5354 */
5355 if (!selinux_policycap_extsockclass())
5356 return selinux_sk_clone_security(sk, newsk);
5357
5358 newsksec->sid = ep->secid;
5359 newsksec->peer_sid = ep->peer_secid;
5360 newsksec->sclass = sksec->sclass;
5361 selinux_netlbl_sctp_sk_clone(sk, newsk);
5362}
5363
5364static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5365 struct request_sock *req)
5366{
5367 struct sk_security_struct *sksec = sk->sk_security;
5368 int err;
5369 u16 family = req->rsk_ops->family;
5370 u32 connsid;
5371 u32 peersid;
5372
5373 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5374 if (err)
5375 return err;
5376 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5377 if (err)
5378 return err;
5379 req->secid = connsid;
5380 req->peer_secid = peersid;
5381
5382 return selinux_netlbl_inet_conn_request(req, family);
5383}
5384
5385static void selinux_inet_csk_clone(struct sock *newsk,
5386 const struct request_sock *req)
5387{
5388 struct sk_security_struct *newsksec = newsk->sk_security;
5389
5390 newsksec->sid = req->secid;
5391 newsksec->peer_sid = req->peer_secid;
5392 /* NOTE: Ideally, we should also get the isec->sid for the
5393 new socket in sync, but we don't have the isec available yet.
5394 So we will wait until sock_graft to do it, by which
5395 time it will have been created and available. */
5396
5397 /* We don't need to take any sort of lock here as we are the only
5398 * thread with access to newsksec */
5399 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5400}
5401
5402static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5403{
5404 u16 family = sk->sk_family;
5405 struct sk_security_struct *sksec = sk->sk_security;
5406
5407 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5408 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5409 family = PF_INET;
5410
5411 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5412}
5413
5414static int selinux_secmark_relabel_packet(u32 sid)
5415{
5416 const struct task_security_struct *__tsec;
5417 u32 tsid;
5418
5419 __tsec = current_security();
5420 tsid = __tsec->sid;
5421
5422 return avc_has_perm(&selinux_state,
5423 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5424 NULL);
5425}
5426
5427static void selinux_secmark_refcount_inc(void)
5428{
5429 atomic_inc(&selinux_secmark_refcount);
5430}
5431
5432static void selinux_secmark_refcount_dec(void)
5433{
5434 atomic_dec(&selinux_secmark_refcount);
5435}
5436
5437static void selinux_req_classify_flow(const struct request_sock *req,
5438 struct flowi *fl)
5439{
5440 fl->flowi_secid = req->secid;
5441}
5442
5443static int selinux_tun_dev_alloc_security(void **security)
5444{
5445 struct tun_security_struct *tunsec;
5446
5447 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5448 if (!tunsec)
5449 return -ENOMEM;
5450 tunsec->sid = current_sid();
5451
5452 *security = tunsec;
5453 return 0;
5454}
5455
5456static void selinux_tun_dev_free_security(void *security)
5457{
5458 kfree(security);
5459}
5460
5461static int selinux_tun_dev_create(void)
5462{
5463 u32 sid = current_sid();
5464
5465 /* we aren't taking into account the "sockcreate" SID since the socket
5466 * that is being created here is not a socket in the traditional sense,
5467 * instead it is a private sock, accessible only to the kernel, and
5468 * representing a wide range of network traffic spanning multiple
5469 * connections unlike traditional sockets - check the TUN driver to
5470 * get a better understanding of why this socket is special */
5471
5472 return avc_has_perm(&selinux_state,
5473 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5474 NULL);
5475}
5476
5477static int selinux_tun_dev_attach_queue(void *security)
5478{
5479 struct tun_security_struct *tunsec = security;
5480
5481 return avc_has_perm(&selinux_state,
5482 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5483 TUN_SOCKET__ATTACH_QUEUE, NULL);
5484}
5485
5486static int selinux_tun_dev_attach(struct sock *sk, void *security)
5487{
5488 struct tun_security_struct *tunsec = security;
5489 struct sk_security_struct *sksec = sk->sk_security;
5490
5491 /* we don't currently perform any NetLabel based labeling here and it
5492 * isn't clear that we would want to do so anyway; while we could apply
5493 * labeling without the support of the TUN user the resulting labeled
5494 * traffic from the other end of the connection would almost certainly
5495 * cause confusion to the TUN user that had no idea network labeling
5496 * protocols were being used */
5497
5498 sksec->sid = tunsec->sid;
5499 sksec->sclass = SECCLASS_TUN_SOCKET;
5500
5501 return 0;
5502}
5503
5504static int selinux_tun_dev_open(void *security)
5505{
5506 struct tun_security_struct *tunsec = security;
5507 u32 sid = current_sid();
5508 int err;
5509
5510 err = avc_has_perm(&selinux_state,
5511 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5512 TUN_SOCKET__RELABELFROM, NULL);
5513 if (err)
5514 return err;
5515 err = avc_has_perm(&selinux_state,
5516 sid, sid, SECCLASS_TUN_SOCKET,
5517 TUN_SOCKET__RELABELTO, NULL);
5518 if (err)
5519 return err;
5520 tunsec->sid = sid;
5521
5522 return 0;
5523}
5524
5525static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5526{
5527 int err = 0;
5528 u32 perm;
5529 struct nlmsghdr *nlh;
5530 struct sk_security_struct *sksec = sk->sk_security;
5531
5532 if (skb->len < NLMSG_HDRLEN) {
5533 err = -EINVAL;
5534 goto out;
5535 }
5536 nlh = nlmsg_hdr(skb);
5537
5538 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5539 if (err) {
5540 if (err == -EINVAL) {
5541 pr_warn_ratelimited("SELinux: unrecognized netlink"
5542 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5543 " pig=%d comm=%s\n",
5544 sk->sk_protocol, nlh->nlmsg_type,
5545 secclass_map[sksec->sclass - 1].name,
5546 task_pid_nr(current), current->comm);
5547 if (!enforcing_enabled(&selinux_state) ||
5548 security_get_allow_unknown(&selinux_state))
5549 err = 0;
5550 }
5551
5552 /* Ignore */
5553 if (err == -ENOENT)
5554 err = 0;
5555 goto out;
5556 }
5557
5558 err = sock_has_perm(sk, perm);
5559out:
5560 return err;
5561}
5562
5563#ifdef CONFIG_NETFILTER
5564
5565static unsigned int selinux_ip_forward(struct sk_buff *skb,
5566 const struct net_device *indev,
5567 u16 family)
5568{
5569 int err;
5570 char *addrp;
5571 u32 peer_sid;
5572 struct common_audit_data ad;
5573 struct lsm_network_audit net = {0,};
5574 u8 secmark_active;
5575 u8 netlbl_active;
5576 u8 peerlbl_active;
5577
5578 if (!selinux_policycap_netpeer())
5579 return NF_ACCEPT;
5580
5581 secmark_active = selinux_secmark_enabled();
5582 netlbl_active = netlbl_enabled();
5583 peerlbl_active = selinux_peerlbl_enabled();
5584 if (!secmark_active && !peerlbl_active)
5585 return NF_ACCEPT;
5586
5587 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5588 return NF_DROP;
5589
5590 ad.type = LSM_AUDIT_DATA_NET;
5591 ad.u.net = &net;
5592 ad.u.net->netif = indev->ifindex;
5593 ad.u.net->family = family;
5594 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5595 return NF_DROP;
5596
5597 if (peerlbl_active) {
5598 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5599 addrp, family, peer_sid, &ad);
5600 if (err) {
5601 selinux_netlbl_err(skb, family, err, 1);
5602 return NF_DROP;
5603 }
5604 }
5605
5606 if (secmark_active)
5607 if (avc_has_perm(&selinux_state,
5608 peer_sid, skb->secmark,
5609 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5610 return NF_DROP;
5611
5612 if (netlbl_active)
5613 /* we do this in the FORWARD path and not the POST_ROUTING
5614 * path because we want to make sure we apply the necessary
5615 * labeling before IPsec is applied so we can leverage AH
5616 * protection */
5617 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5618 return NF_DROP;
5619
5620 return NF_ACCEPT;
5621}
5622
5623static unsigned int selinux_ipv4_forward(void *priv,
5624 struct sk_buff *skb,
5625 const struct nf_hook_state *state)
5626{
5627 return selinux_ip_forward(skb, state->in, PF_INET);
5628}
5629
5630#if IS_ENABLED(CONFIG_IPV6)
5631static unsigned int selinux_ipv6_forward(void *priv,
5632 struct sk_buff *skb,
5633 const struct nf_hook_state *state)
5634{
5635 return selinux_ip_forward(skb, state->in, PF_INET6);
5636}
5637#endif /* IPV6 */
5638
5639static unsigned int selinux_ip_output(struct sk_buff *skb,
5640 u16 family)
5641{
5642 struct sock *sk;
5643 u32 sid;
5644
5645 if (!netlbl_enabled())
5646 return NF_ACCEPT;
5647
5648 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5649 * because we want to make sure we apply the necessary labeling
5650 * before IPsec is applied so we can leverage AH protection */
5651 sk = skb->sk;
5652 if (sk) {
5653 struct sk_security_struct *sksec;
5654
5655 if (sk_listener(sk))
5656 /* if the socket is the listening state then this
5657 * packet is a SYN-ACK packet which means it needs to
5658 * be labeled based on the connection/request_sock and
5659 * not the parent socket. unfortunately, we can't
5660 * lookup the request_sock yet as it isn't queued on
5661 * the parent socket until after the SYN-ACK is sent.
5662 * the "solution" is to simply pass the packet as-is
5663 * as any IP option based labeling should be copied
5664 * from the initial connection request (in the IP
5665 * layer). it is far from ideal, but until we get a
5666 * security label in the packet itself this is the
5667 * best we can do. */
5668 return NF_ACCEPT;
5669
5670 /* standard practice, label using the parent socket */
5671 sksec = sk->sk_security;
5672 sid = sksec->sid;
5673 } else
5674 sid = SECINITSID_KERNEL;
5675 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5676 return NF_DROP;
5677
5678 return NF_ACCEPT;
5679}
5680
5681static unsigned int selinux_ipv4_output(void *priv,
5682 struct sk_buff *skb,
5683 const struct nf_hook_state *state)
5684{
5685 return selinux_ip_output(skb, PF_INET);
5686}
5687
5688#if IS_ENABLED(CONFIG_IPV6)
5689static unsigned int selinux_ipv6_output(void *priv,
5690 struct sk_buff *skb,
5691 const struct nf_hook_state *state)
5692{
5693 return selinux_ip_output(skb, PF_INET6);
5694}
5695#endif /* IPV6 */
5696
5697static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5698 int ifindex,
5699 u16 family)
5700{
5701 struct sock *sk = skb_to_full_sk(skb);
5702 struct sk_security_struct *sksec;
5703 struct common_audit_data ad;
5704 struct lsm_network_audit net = {0,};
5705 char *addrp;
5706 u8 proto;
5707
5708 if (sk == NULL)
5709 return NF_ACCEPT;
5710 sksec = sk->sk_security;
5711
5712 ad.type = LSM_AUDIT_DATA_NET;
5713 ad.u.net = &net;
5714 ad.u.net->netif = ifindex;
5715 ad.u.net->family = family;
5716 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5717 return NF_DROP;
5718
5719 if (selinux_secmark_enabled())
5720 if (avc_has_perm(&selinux_state,
5721 sksec->sid, skb->secmark,
5722 SECCLASS_PACKET, PACKET__SEND, &ad))
5723 return NF_DROP_ERR(-ECONNREFUSED);
5724
5725 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5726 return NF_DROP_ERR(-ECONNREFUSED);
5727
5728 return NF_ACCEPT;
5729}
5730
5731static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5732 const struct net_device *outdev,
5733 u16 family)
5734{
5735 u32 secmark_perm;
5736 u32 peer_sid;
5737 int ifindex = outdev->ifindex;
5738 struct sock *sk;
5739 struct common_audit_data ad;
5740 struct lsm_network_audit net = {0,};
5741 char *addrp;
5742 u8 secmark_active;
5743 u8 peerlbl_active;
5744
5745 /* If any sort of compatibility mode is enabled then handoff processing
5746 * to the selinux_ip_postroute_compat() function to deal with the
5747 * special handling. We do this in an attempt to keep this function
5748 * as fast and as clean as possible. */
5749 if (!selinux_policycap_netpeer())
5750 return selinux_ip_postroute_compat(skb, ifindex, family);
5751
5752 secmark_active = selinux_secmark_enabled();
5753 peerlbl_active = selinux_peerlbl_enabled();
5754 if (!secmark_active && !peerlbl_active)
5755 return NF_ACCEPT;
5756
5757 sk = skb_to_full_sk(skb);
5758
5759#ifdef CONFIG_XFRM
5760 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5761 * packet transformation so allow the packet to pass without any checks
5762 * since we'll have another chance to perform access control checks
5763 * when the packet is on it's final way out.
5764 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5765 * is NULL, in this case go ahead and apply access control.
5766 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5767 * TCP listening state we cannot wait until the XFRM processing
5768 * is done as we will miss out on the SA label if we do;
5769 * unfortunately, this means more work, but it is only once per
5770 * connection. */
5771 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5772 !(sk && sk_listener(sk)))
5773 return NF_ACCEPT;
5774#endif
5775
5776 if (sk == NULL) {
5777 /* Without an associated socket the packet is either coming
5778 * from the kernel or it is being forwarded; check the packet
5779 * to determine which and if the packet is being forwarded
5780 * query the packet directly to determine the security label. */
5781 if (skb->skb_iif) {
5782 secmark_perm = PACKET__FORWARD_OUT;
5783 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5784 return NF_DROP;
5785 } else {
5786 secmark_perm = PACKET__SEND;
5787 peer_sid = SECINITSID_KERNEL;
5788 }
5789 } else if (sk_listener(sk)) {
5790 /* Locally generated packet but the associated socket is in the
5791 * listening state which means this is a SYN-ACK packet. In
5792 * this particular case the correct security label is assigned
5793 * to the connection/request_sock but unfortunately we can't
5794 * query the request_sock as it isn't queued on the parent
5795 * socket until after the SYN-ACK packet is sent; the only
5796 * viable choice is to regenerate the label like we do in
5797 * selinux_inet_conn_request(). See also selinux_ip_output()
5798 * for similar problems. */
5799 u32 skb_sid;
5800 struct sk_security_struct *sksec;
5801
5802 sksec = sk->sk_security;
5803 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5804 return NF_DROP;
5805 /* At this point, if the returned skb peerlbl is SECSID_NULL
5806 * and the packet has been through at least one XFRM
5807 * transformation then we must be dealing with the "final"
5808 * form of labeled IPsec packet; since we've already applied
5809 * all of our access controls on this packet we can safely
5810 * pass the packet. */
5811 if (skb_sid == SECSID_NULL) {
5812 switch (family) {
5813 case PF_INET:
5814 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5815 return NF_ACCEPT;
5816 break;
5817 case PF_INET6:
5818 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5819 return NF_ACCEPT;
5820 break;
5821 default:
5822 return NF_DROP_ERR(-ECONNREFUSED);
5823 }
5824 }
5825 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5826 return NF_DROP;
5827 secmark_perm = PACKET__SEND;
5828 } else {
5829 /* Locally generated packet, fetch the security label from the
5830 * associated socket. */
5831 struct sk_security_struct *sksec = sk->sk_security;
5832 peer_sid = sksec->sid;
5833 secmark_perm = PACKET__SEND;
5834 }
5835
5836 ad.type = LSM_AUDIT_DATA_NET;
5837 ad.u.net = &net;
5838 ad.u.net->netif = ifindex;
5839 ad.u.net->family = family;
5840 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5841 return NF_DROP;
5842
5843 if (secmark_active)
5844 if (avc_has_perm(&selinux_state,
5845 peer_sid, skb->secmark,
5846 SECCLASS_PACKET, secmark_perm, &ad))
5847 return NF_DROP_ERR(-ECONNREFUSED);
5848
5849 if (peerlbl_active) {
5850 u32 if_sid;
5851 u32 node_sid;
5852
5853 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5854 return NF_DROP;
5855 if (avc_has_perm(&selinux_state,
5856 peer_sid, if_sid,
5857 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5858 return NF_DROP_ERR(-ECONNREFUSED);
5859
5860 if (sel_netnode_sid(addrp, family, &node_sid))
5861 return NF_DROP;
5862 if (avc_has_perm(&selinux_state,
5863 peer_sid, node_sid,
5864 SECCLASS_NODE, NODE__SENDTO, &ad))
5865 return NF_DROP_ERR(-ECONNREFUSED);
5866 }
5867
5868 return NF_ACCEPT;
5869}
5870
5871static unsigned int selinux_ipv4_postroute(void *priv,
5872 struct sk_buff *skb,
5873 const struct nf_hook_state *state)
5874{
5875 return selinux_ip_postroute(skb, state->out, PF_INET);
5876}
5877
5878#if IS_ENABLED(CONFIG_IPV6)
5879static unsigned int selinux_ipv6_postroute(void *priv,
5880 struct sk_buff *skb,
5881 const struct nf_hook_state *state)
5882{
5883 return selinux_ip_postroute(skb, state->out, PF_INET6);
5884}
5885#endif /* IPV6 */
5886
5887#endif /* CONFIG_NETFILTER */
5888
5889static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5890{
5891 return selinux_nlmsg_perm(sk, skb);
5892}
5893
5894static int ipc_alloc_security(struct kern_ipc_perm *perm,
5895 u16 sclass)
5896{
5897 struct ipc_security_struct *isec;
5898
5899 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5900 if (!isec)
5901 return -ENOMEM;
5902
5903 isec->sclass = sclass;
5904 isec->sid = current_sid();
5905 perm->security = isec;
5906
5907 return 0;
5908}
5909
5910static void ipc_free_security(struct kern_ipc_perm *perm)
5911{
5912 struct ipc_security_struct *isec = perm->security;
5913 perm->security = NULL;
5914 kfree(isec);
5915}
5916
5917static int msg_msg_alloc_security(struct msg_msg *msg)
5918{
5919 struct msg_security_struct *msec;
5920
5921 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5922 if (!msec)
5923 return -ENOMEM;
5924
5925 msec->sid = SECINITSID_UNLABELED;
5926 msg->security = msec;
5927
5928 return 0;
5929}
5930
5931static void msg_msg_free_security(struct msg_msg *msg)
5932{
5933 struct msg_security_struct *msec = msg->security;
5934
5935 msg->security = NULL;
5936 kfree(msec);
5937}
5938
5939static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5940 u32 perms)
5941{
5942 struct ipc_security_struct *isec;
5943 struct common_audit_data ad;
5944 u32 sid = current_sid();
5945
5946 isec = ipc_perms->security;
5947
5948 ad.type = LSM_AUDIT_DATA_IPC;
5949 ad.u.ipc_id = ipc_perms->key;
5950
5951 return avc_has_perm(&selinux_state,
5952 sid, isec->sid, isec->sclass, perms, &ad);
5953}
5954
5955static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5956{
5957 return msg_msg_alloc_security(msg);
5958}
5959
5960static void selinux_msg_msg_free_security(struct msg_msg *msg)
5961{
5962 msg_msg_free_security(msg);
5963}
5964
5965/* message queue security operations */
5966static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5967{
5968 struct ipc_security_struct *isec;
5969 struct common_audit_data ad;
5970 u32 sid = current_sid();
5971 int rc;
5972
5973 rc = ipc_alloc_security(msq, SECCLASS_MSGQ);
5974 if (rc)
5975 return rc;
5976
5977 isec = msq->security;
5978
5979 ad.type = LSM_AUDIT_DATA_IPC;
5980 ad.u.ipc_id = msq->key;
5981
5982 rc = avc_has_perm(&selinux_state,
5983 sid, isec->sid, SECCLASS_MSGQ,
5984 MSGQ__CREATE, &ad);
5985 if (rc) {
5986 ipc_free_security(msq);
5987 return rc;
5988 }
5989 return 0;
5990}
5991
5992static void selinux_msg_queue_free_security(struct kern_ipc_perm *msq)
5993{
5994 ipc_free_security(msq);
5995}
5996
5997static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5998{
5999 struct ipc_security_struct *isec;
6000 struct common_audit_data ad;
6001 u32 sid = current_sid();
6002
6003 isec = msq->security;
6004
6005 ad.type = LSM_AUDIT_DATA_IPC;
6006 ad.u.ipc_id = msq->key;
6007
6008 return avc_has_perm(&selinux_state,
6009 sid, isec->sid, SECCLASS_MSGQ,
6010 MSGQ__ASSOCIATE, &ad);
6011}
6012
6013static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6014{
6015 int err;
6016 int perms;
6017
6018 switch (cmd) {
6019 case IPC_INFO:
6020 case MSG_INFO:
6021 /* No specific object, just general system-wide information. */
6022 return avc_has_perm(&selinux_state,
6023 current_sid(), SECINITSID_KERNEL,
6024 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6025 case IPC_STAT:
6026 case MSG_STAT:
6027 case MSG_STAT_ANY:
6028 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6029 break;
6030 case IPC_SET:
6031 perms = MSGQ__SETATTR;
6032 break;
6033 case IPC_RMID:
6034 perms = MSGQ__DESTROY;
6035 break;
6036 default:
6037 return 0;
6038 }
6039
6040 err = ipc_has_perm(msq, perms);
6041 return err;
6042}
6043
6044static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6045{
6046 struct ipc_security_struct *isec;
6047 struct msg_security_struct *msec;
6048 struct common_audit_data ad;
6049 u32 sid = current_sid();
6050 int rc;
6051
6052 isec = msq->security;
6053 msec = msg->security;
6054
6055 /*
6056 * First time through, need to assign label to the message
6057 */
6058 if (msec->sid == SECINITSID_UNLABELED) {
6059 /*
6060 * Compute new sid based on current process and
6061 * message queue this message will be stored in
6062 */
6063 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6064 SECCLASS_MSG, NULL, &msec->sid);
6065 if (rc)
6066 return rc;
6067 }
6068
6069 ad.type = LSM_AUDIT_DATA_IPC;
6070 ad.u.ipc_id = msq->key;
6071
6072 /* Can this process write to the queue? */
6073 rc = avc_has_perm(&selinux_state,
6074 sid, isec->sid, SECCLASS_MSGQ,
6075 MSGQ__WRITE, &ad);
6076 if (!rc)
6077 /* Can this process send the message */
6078 rc = avc_has_perm(&selinux_state,
6079 sid, msec->sid, SECCLASS_MSG,
6080 MSG__SEND, &ad);
6081 if (!rc)
6082 /* Can the message be put in the queue? */
6083 rc = avc_has_perm(&selinux_state,
6084 msec->sid, isec->sid, SECCLASS_MSGQ,
6085 MSGQ__ENQUEUE, &ad);
6086
6087 return rc;
6088}
6089
6090static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6091 struct task_struct *target,
6092 long type, int mode)
6093{
6094 struct ipc_security_struct *isec;
6095 struct msg_security_struct *msec;
6096 struct common_audit_data ad;
6097 u32 sid = task_sid(target);
6098 int rc;
6099
6100 isec = msq->security;
6101 msec = msg->security;
6102
6103 ad.type = LSM_AUDIT_DATA_IPC;
6104 ad.u.ipc_id = msq->key;
6105
6106 rc = avc_has_perm(&selinux_state,
6107 sid, isec->sid,
6108 SECCLASS_MSGQ, MSGQ__READ, &ad);
6109 if (!rc)
6110 rc = avc_has_perm(&selinux_state,
6111 sid, msec->sid,
6112 SECCLASS_MSG, MSG__RECEIVE, &ad);
6113 return rc;
6114}
6115
6116/* Shared Memory security operations */
6117static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6118{
6119 struct ipc_security_struct *isec;
6120 struct common_audit_data ad;
6121 u32 sid = current_sid();
6122 int rc;
6123
6124 rc = ipc_alloc_security(shp, SECCLASS_SHM);
6125 if (rc)
6126 return rc;
6127
6128 isec = shp->security;
6129
6130 ad.type = LSM_AUDIT_DATA_IPC;
6131 ad.u.ipc_id = shp->key;
6132
6133 rc = avc_has_perm(&selinux_state,
6134 sid, isec->sid, SECCLASS_SHM,
6135 SHM__CREATE, &ad);
6136 if (rc) {
6137 ipc_free_security(shp);
6138 return rc;
6139 }
6140 return 0;
6141}
6142
6143static void selinux_shm_free_security(struct kern_ipc_perm *shp)
6144{
6145 ipc_free_security(shp);
6146}
6147
6148static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6149{
6150 struct ipc_security_struct *isec;
6151 struct common_audit_data ad;
6152 u32 sid = current_sid();
6153
6154 isec = shp->security;
6155
6156 ad.type = LSM_AUDIT_DATA_IPC;
6157 ad.u.ipc_id = shp->key;
6158
6159 return avc_has_perm(&selinux_state,
6160 sid, isec->sid, SECCLASS_SHM,
6161 SHM__ASSOCIATE, &ad);
6162}
6163
6164/* Note, at this point, shp is locked down */
6165static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6166{
6167 int perms;
6168 int err;
6169
6170 switch (cmd) {
6171 case IPC_INFO:
6172 case SHM_INFO:
6173 /* No specific object, just general system-wide information. */
6174 return avc_has_perm(&selinux_state,
6175 current_sid(), SECINITSID_KERNEL,
6176 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6177 case IPC_STAT:
6178 case SHM_STAT:
6179 case SHM_STAT_ANY:
6180 perms = SHM__GETATTR | SHM__ASSOCIATE;
6181 break;
6182 case IPC_SET:
6183 perms = SHM__SETATTR;
6184 break;
6185 case SHM_LOCK:
6186 case SHM_UNLOCK:
6187 perms = SHM__LOCK;
6188 break;
6189 case IPC_RMID:
6190 perms = SHM__DESTROY;
6191 break;
6192 default:
6193 return 0;
6194 }
6195
6196 err = ipc_has_perm(shp, perms);
6197 return err;
6198}
6199
6200static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6201 char __user *shmaddr, int shmflg)
6202{
6203 u32 perms;
6204
6205 if (shmflg & SHM_RDONLY)
6206 perms = SHM__READ;
6207 else
6208 perms = SHM__READ | SHM__WRITE;
6209
6210 return ipc_has_perm(shp, perms);
6211}
6212
6213/* Semaphore security operations */
6214static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6215{
6216 struct ipc_security_struct *isec;
6217 struct common_audit_data ad;
6218 u32 sid = current_sid();
6219 int rc;
6220
6221 rc = ipc_alloc_security(sma, SECCLASS_SEM);
6222 if (rc)
6223 return rc;
6224
6225 isec = sma->security;
6226
6227 ad.type = LSM_AUDIT_DATA_IPC;
6228 ad.u.ipc_id = sma->key;
6229
6230 rc = avc_has_perm(&selinux_state,
6231 sid, isec->sid, SECCLASS_SEM,
6232 SEM__CREATE, &ad);
6233 if (rc) {
6234 ipc_free_security(sma);
6235 return rc;
6236 }
6237 return 0;
6238}
6239
6240static void selinux_sem_free_security(struct kern_ipc_perm *sma)
6241{
6242 ipc_free_security(sma);
6243}
6244
6245static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6246{
6247 struct ipc_security_struct *isec;
6248 struct common_audit_data ad;
6249 u32 sid = current_sid();
6250
6251 isec = sma->security;
6252
6253 ad.type = LSM_AUDIT_DATA_IPC;
6254 ad.u.ipc_id = sma->key;
6255
6256 return avc_has_perm(&selinux_state,
6257 sid, isec->sid, SECCLASS_SEM,
6258 SEM__ASSOCIATE, &ad);
6259}
6260
6261/* Note, at this point, sma is locked down */
6262static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6263{
6264 int err;
6265 u32 perms;
6266
6267 switch (cmd) {
6268 case IPC_INFO:
6269 case SEM_INFO:
6270 /* No specific object, just general system-wide information. */
6271 return avc_has_perm(&selinux_state,
6272 current_sid(), SECINITSID_KERNEL,
6273 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6274 case GETPID:
6275 case GETNCNT:
6276 case GETZCNT:
6277 perms = SEM__GETATTR;
6278 break;
6279 case GETVAL:
6280 case GETALL:
6281 perms = SEM__READ;
6282 break;
6283 case SETVAL:
6284 case SETALL:
6285 perms = SEM__WRITE;
6286 break;
6287 case IPC_RMID:
6288 perms = SEM__DESTROY;
6289 break;
6290 case IPC_SET:
6291 perms = SEM__SETATTR;
6292 break;
6293 case IPC_STAT:
6294 case SEM_STAT:
6295 case SEM_STAT_ANY:
6296 perms = SEM__GETATTR | SEM__ASSOCIATE;
6297 break;
6298 default:
6299 return 0;
6300 }
6301
6302 err = ipc_has_perm(sma, perms);
6303 return err;
6304}
6305
6306static int selinux_sem_semop(struct kern_ipc_perm *sma,
6307 struct sembuf *sops, unsigned nsops, int alter)
6308{
6309 u32 perms;
6310
6311 if (alter)
6312 perms = SEM__READ | SEM__WRITE;
6313 else
6314 perms = SEM__READ;
6315
6316 return ipc_has_perm(sma, perms);
6317}
6318
6319static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6320{
6321 u32 av = 0;
6322
6323 av = 0;
6324 if (flag & S_IRUGO)
6325 av |= IPC__UNIX_READ;
6326 if (flag & S_IWUGO)
6327 av |= IPC__UNIX_WRITE;
6328
6329 if (av == 0)
6330 return 0;
6331
6332 return ipc_has_perm(ipcp, av);
6333}
6334
6335static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6336{
6337 struct ipc_security_struct *isec = ipcp->security;
6338 *secid = isec->sid;
6339}
6340
6341static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6342{
6343 if (inode)
6344 inode_doinit_with_dentry(inode, dentry);
6345}
6346
6347static int selinux_getprocattr(struct task_struct *p,
6348 char *name, char **value)
6349{
6350 const struct task_security_struct *__tsec;
6351 u32 sid;
6352 int error;
6353 unsigned len;
6354
6355 rcu_read_lock();
6356 __tsec = __task_cred(p)->security;
6357
6358 if (current != p) {
6359 error = avc_has_perm(&selinux_state,
6360 current_sid(), __tsec->sid,
6361 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6362 if (error)
6363 goto bad;
6364 }
6365
6366 if (!strcmp(name, "current"))
6367 sid = __tsec->sid;
6368 else if (!strcmp(name, "prev"))
6369 sid = __tsec->osid;
6370 else if (!strcmp(name, "exec"))
6371 sid = __tsec->exec_sid;
6372 else if (!strcmp(name, "fscreate"))
6373 sid = __tsec->create_sid;
6374 else if (!strcmp(name, "keycreate"))
6375 sid = __tsec->keycreate_sid;
6376 else if (!strcmp(name, "sockcreate"))
6377 sid = __tsec->sockcreate_sid;
6378 else {
6379 error = -EINVAL;
6380 goto bad;
6381 }
6382 rcu_read_unlock();
6383
6384 if (!sid)
6385 return 0;
6386
6387 error = security_sid_to_context(&selinux_state, sid, value, &len);
6388 if (error)
6389 return error;
6390 return len;
6391
6392bad:
6393 rcu_read_unlock();
6394 return error;
6395}
6396
6397static int selinux_setprocattr(const char *name, void *value, size_t size)
6398{
6399 struct task_security_struct *tsec;
6400 struct cred *new;
6401 u32 mysid = current_sid(), sid = 0, ptsid;
6402 int error;
6403 char *str = value;
6404
6405 /*
6406 * Basic control over ability to set these attributes at all.
6407 */
6408 if (!strcmp(name, "exec"))
6409 error = avc_has_perm(&selinux_state,
6410 mysid, mysid, SECCLASS_PROCESS,
6411 PROCESS__SETEXEC, NULL);
6412 else if (!strcmp(name, "fscreate"))
6413 error = avc_has_perm(&selinux_state,
6414 mysid, mysid, SECCLASS_PROCESS,
6415 PROCESS__SETFSCREATE, NULL);
6416 else if (!strcmp(name, "keycreate"))
6417 error = avc_has_perm(&selinux_state,
6418 mysid, mysid, SECCLASS_PROCESS,
6419 PROCESS__SETKEYCREATE, NULL);
6420 else if (!strcmp(name, "sockcreate"))
6421 error = avc_has_perm(&selinux_state,
6422 mysid, mysid, SECCLASS_PROCESS,
6423 PROCESS__SETSOCKCREATE, NULL);
6424 else if (!strcmp(name, "current"))
6425 error = avc_has_perm(&selinux_state,
6426 mysid, mysid, SECCLASS_PROCESS,
6427 PROCESS__SETCURRENT, NULL);
6428 else
6429 error = -EINVAL;
6430 if (error)
6431 return error;
6432
6433 /* Obtain a SID for the context, if one was specified. */
6434 if (size && str[0] && str[0] != '\n') {
6435 if (str[size-1] == '\n') {
6436 str[size-1] = 0;
6437 size--;
6438 }
6439 error = security_context_to_sid(&selinux_state, value, size,
6440 &sid, GFP_KERNEL);
6441 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6442 if (!has_cap_mac_admin(true)) {
6443 struct audit_buffer *ab;
6444 size_t audit_size;
6445
6446 /* We strip a nul only if it is at the end, otherwise the
6447 * context contains a nul and we should audit that */
6448 if (str[size - 1] == '\0')
6449 audit_size = size - 1;
6450 else
6451 audit_size = size;
6452 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
6453 audit_log_format(ab, "op=fscreate invalid_context=");
6454 audit_log_n_untrustedstring(ab, value, audit_size);
6455 audit_log_end(ab);
6456
6457 return error;
6458 }
6459 error = security_context_to_sid_force(
6460 &selinux_state,
6461 value, size, &sid);
6462 }
6463 if (error)
6464 return error;
6465 }
6466
6467 new = prepare_creds();
6468 if (!new)
6469 return -ENOMEM;
6470
6471 /* Permission checking based on the specified context is
6472 performed during the actual operation (execve,
6473 open/mkdir/...), when we know the full context of the
6474 operation. See selinux_bprm_set_creds for the execve
6475 checks and may_create for the file creation checks. The
6476 operation will then fail if the context is not permitted. */
6477 tsec = new->security;
6478 if (!strcmp(name, "exec")) {
6479 tsec->exec_sid = sid;
6480 } else if (!strcmp(name, "fscreate")) {
6481 tsec->create_sid = sid;
6482 } else if (!strcmp(name, "keycreate")) {
6483 error = avc_has_perm(&selinux_state,
6484 mysid, sid, SECCLASS_KEY, KEY__CREATE,
6485 NULL);
6486 if (error)
6487 goto abort_change;
6488 tsec->keycreate_sid = sid;
6489 } else if (!strcmp(name, "sockcreate")) {
6490 tsec->sockcreate_sid = sid;
6491 } else if (!strcmp(name, "current")) {
6492 error = -EINVAL;
6493 if (sid == 0)
6494 goto abort_change;
6495
6496 /* Only allow single threaded processes to change context */
6497 error = -EPERM;
6498 if (!current_is_single_threaded()) {
6499 error = security_bounded_transition(&selinux_state,
6500 tsec->sid, sid);
6501 if (error)
6502 goto abort_change;
6503 }
6504
6505 /* Check permissions for the transition. */
6506 error = avc_has_perm(&selinux_state,
6507 tsec->sid, sid, SECCLASS_PROCESS,
6508 PROCESS__DYNTRANSITION, NULL);
6509 if (error)
6510 goto abort_change;
6511
6512 /* Check for ptracing, and update the task SID if ok.
6513 Otherwise, leave SID unchanged and fail. */
6514 ptsid = ptrace_parent_sid();
6515 if (ptsid != 0) {
6516 error = avc_has_perm(&selinux_state,
6517 ptsid, sid, SECCLASS_PROCESS,
6518 PROCESS__PTRACE, NULL);
6519 if (error)
6520 goto abort_change;
6521 }
6522
6523 tsec->sid = sid;
6524 } else {
6525 error = -EINVAL;
6526 goto abort_change;
6527 }
6528
6529 commit_creds(new);
6530 return size;
6531
6532abort_change:
6533 abort_creds(new);
6534 return error;
6535}
6536
6537static int selinux_ismaclabel(const char *name)
6538{
6539 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6540}
6541
6542static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6543{
6544 return security_sid_to_context(&selinux_state, secid,
6545 secdata, seclen);
6546}
6547
6548static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6549{
6550 return security_context_to_sid(&selinux_state, secdata, seclen,
6551 secid, GFP_KERNEL);
6552}
6553
6554static void selinux_release_secctx(char *secdata, u32 seclen)
6555{
6556 kfree(secdata);
6557}
6558
6559static void selinux_inode_invalidate_secctx(struct inode *inode)
6560{
6561 struct inode_security_struct *isec = inode->i_security;
6562
6563 spin_lock(&isec->lock);
6564 isec->initialized = LABEL_INVALID;
6565 spin_unlock(&isec->lock);
6566}
6567
6568/*
6569 * called with inode->i_mutex locked
6570 */
6571static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6572{
6573 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6574}
6575
6576/*
6577 * called with inode->i_mutex locked
6578 */
6579static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6580{
6581 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6582}
6583
6584static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6585{
6586 int len = 0;
6587 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6588 ctx, true);
6589 if (len < 0)
6590 return len;
6591 *ctxlen = len;
6592 return 0;
6593}
6594#ifdef CONFIG_KEYS
6595
6596static int selinux_key_alloc(struct key *k, const struct cred *cred,
6597 unsigned long flags)
6598{
6599 const struct task_security_struct *tsec;
6600 struct key_security_struct *ksec;
6601
6602 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6603 if (!ksec)
6604 return -ENOMEM;
6605
6606 tsec = cred->security;
6607 if (tsec->keycreate_sid)
6608 ksec->sid = tsec->keycreate_sid;
6609 else
6610 ksec->sid = tsec->sid;
6611
6612 k->security = ksec;
6613 return 0;
6614}
6615
6616static void selinux_key_free(struct key *k)
6617{
6618 struct key_security_struct *ksec = k->security;
6619
6620 k->security = NULL;
6621 kfree(ksec);
6622}
6623
6624static int selinux_key_permission(key_ref_t key_ref,
6625 const struct cred *cred,
6626 unsigned perm)
6627{
6628 struct key *key;
6629 struct key_security_struct *ksec;
6630 u32 sid;
6631
6632 /* if no specific permissions are requested, we skip the
6633 permission check. No serious, additional covert channels
6634 appear to be created. */
6635 if (perm == 0)
6636 return 0;
6637
6638 sid = cred_sid(cred);
6639
6640 key = key_ref_to_ptr(key_ref);
6641 ksec = key->security;
6642
6643 return avc_has_perm(&selinux_state,
6644 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6645}
6646
6647static int selinux_key_getsecurity(struct key *key, char **_buffer)
6648{
6649 struct key_security_struct *ksec = key->security;
6650 char *context = NULL;
6651 unsigned len;
6652 int rc;
6653
6654 rc = security_sid_to_context(&selinux_state, ksec->sid,
6655 &context, &len);
6656 if (!rc)
6657 rc = len;
6658 *_buffer = context;
6659 return rc;
6660}
6661#endif
6662
6663#ifdef CONFIG_SECURITY_INFINIBAND
6664static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6665{
6666 struct common_audit_data ad;
6667 int err;
6668 u32 sid = 0;
6669 struct ib_security_struct *sec = ib_sec;
6670 struct lsm_ibpkey_audit ibpkey;
6671
6672 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6673 if (err)
6674 return err;
6675
6676 ad.type = LSM_AUDIT_DATA_IBPKEY;
6677 ibpkey.subnet_prefix = subnet_prefix;
6678 ibpkey.pkey = pkey_val;
6679 ad.u.ibpkey = &ibpkey;
6680 return avc_has_perm(&selinux_state,
6681 sec->sid, sid,
6682 SECCLASS_INFINIBAND_PKEY,
6683 INFINIBAND_PKEY__ACCESS, &ad);
6684}
6685
6686static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6687 u8 port_num)
6688{
6689 struct common_audit_data ad;
6690 int err;
6691 u32 sid = 0;
6692 struct ib_security_struct *sec = ib_sec;
6693 struct lsm_ibendport_audit ibendport;
6694
6695 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6696 &sid);
6697
6698 if (err)
6699 return err;
6700
6701 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6702 strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6703 ibendport.port = port_num;
6704 ad.u.ibendport = &ibendport;
6705 return avc_has_perm(&selinux_state,
6706 sec->sid, sid,
6707 SECCLASS_INFINIBAND_ENDPORT,
6708 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6709}
6710
6711static int selinux_ib_alloc_security(void **ib_sec)
6712{
6713 struct ib_security_struct *sec;
6714
6715 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6716 if (!sec)
6717 return -ENOMEM;
6718 sec->sid = current_sid();
6719
6720 *ib_sec = sec;
6721 return 0;
6722}
6723
6724static void selinux_ib_free_security(void *ib_sec)
6725{
6726 kfree(ib_sec);
6727}
6728#endif
6729
6730#ifdef CONFIG_BPF_SYSCALL
6731static int selinux_bpf(int cmd, union bpf_attr *attr,
6732 unsigned int size)
6733{
6734 u32 sid = current_sid();
6735 int ret;
6736
6737 switch (cmd) {
6738 case BPF_MAP_CREATE:
6739 ret = avc_has_perm(&selinux_state,
6740 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6741 NULL);
6742 break;
6743 case BPF_PROG_LOAD:
6744 ret = avc_has_perm(&selinux_state,
6745 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6746 NULL);
6747 break;
6748 default:
6749 ret = 0;
6750 break;
6751 }
6752
6753 return ret;
6754}
6755
6756static u32 bpf_map_fmode_to_av(fmode_t fmode)
6757{
6758 u32 av = 0;
6759
6760 if (fmode & FMODE_READ)
6761 av |= BPF__MAP_READ;
6762 if (fmode & FMODE_WRITE)
6763 av |= BPF__MAP_WRITE;
6764 return av;
6765}
6766
6767/* This function will check the file pass through unix socket or binder to see
6768 * if it is a bpf related object. And apply correspinding checks on the bpf
6769 * object based on the type. The bpf maps and programs, not like other files and
6770 * socket, are using a shared anonymous inode inside the kernel as their inode.
6771 * So checking that inode cannot identify if the process have privilege to
6772 * access the bpf object and that's why we have to add this additional check in
6773 * selinux_file_receive and selinux_binder_transfer_files.
6774 */
6775static int bpf_fd_pass(struct file *file, u32 sid)
6776{
6777 struct bpf_security_struct *bpfsec;
6778 struct bpf_prog *prog;
6779 struct bpf_map *map;
6780 int ret;
6781
6782 if (file->f_op == &bpf_map_fops) {
6783 map = file->private_data;
6784 bpfsec = map->security;
6785 ret = avc_has_perm(&selinux_state,
6786 sid, bpfsec->sid, SECCLASS_BPF,
6787 bpf_map_fmode_to_av(file->f_mode), NULL);
6788 if (ret)
6789 return ret;
6790 } else if (file->f_op == &bpf_prog_fops) {
6791 prog = file->private_data;
6792 bpfsec = prog->aux->security;
6793 ret = avc_has_perm(&selinux_state,
6794 sid, bpfsec->sid, SECCLASS_BPF,
6795 BPF__PROG_RUN, NULL);
6796 if (ret)
6797 return ret;
6798 }
6799 return 0;
6800}
6801
6802static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6803{
6804 u32 sid = current_sid();
6805 struct bpf_security_struct *bpfsec;
6806
6807 bpfsec = map->security;
6808 return avc_has_perm(&selinux_state,
6809 sid, bpfsec->sid, SECCLASS_BPF,
6810 bpf_map_fmode_to_av(fmode), NULL);
6811}
6812
6813static int selinux_bpf_prog(struct bpf_prog *prog)
6814{
6815 u32 sid = current_sid();
6816 struct bpf_security_struct *bpfsec;
6817
6818 bpfsec = prog->aux->security;
6819 return avc_has_perm(&selinux_state,
6820 sid, bpfsec->sid, SECCLASS_BPF,
6821 BPF__PROG_RUN, NULL);
6822}
6823
6824static int selinux_bpf_map_alloc(struct bpf_map *map)
6825{
6826 struct bpf_security_struct *bpfsec;
6827
6828 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6829 if (!bpfsec)
6830 return -ENOMEM;
6831
6832 bpfsec->sid = current_sid();
6833 map->security = bpfsec;
6834
6835 return 0;
6836}
6837
6838static void selinux_bpf_map_free(struct bpf_map *map)
6839{
6840 struct bpf_security_struct *bpfsec = map->security;
6841
6842 map->security = NULL;
6843 kfree(bpfsec);
6844}
6845
6846static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6847{
6848 struct bpf_security_struct *bpfsec;
6849
6850 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6851 if (!bpfsec)
6852 return -ENOMEM;
6853
6854 bpfsec->sid = current_sid();
6855 aux->security = bpfsec;
6856
6857 return 0;
6858}
6859
6860static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6861{
6862 struct bpf_security_struct *bpfsec = aux->security;
6863
6864 aux->security = NULL;
6865 kfree(bpfsec);
6866}
6867#endif
6868
6869static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6870 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6871 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6872 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6873 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6874
6875 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6876 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6877 LSM_HOOK_INIT(capget, selinux_capget),
6878 LSM_HOOK_INIT(capset, selinux_capset),
6879 LSM_HOOK_INIT(capable, selinux_capable),
6880 LSM_HOOK_INIT(quotactl, selinux_quotactl),
6881 LSM_HOOK_INIT(quota_on, selinux_quota_on),
6882 LSM_HOOK_INIT(syslog, selinux_syslog),
6883 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6884
6885 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6886
6887 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6888 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6889 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6890
6891 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6892 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6893 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6894 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6895 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6896 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6897 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6898 LSM_HOOK_INIT(sb_mount, selinux_mount),
6899 LSM_HOOK_INIT(sb_umount, selinux_umount),
6900 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6901 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6902 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6903
6904 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6905 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6906
6907 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6908 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6909 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6910 LSM_HOOK_INIT(inode_create, selinux_inode_create),
6911 LSM_HOOK_INIT(inode_link, selinux_inode_link),
6912 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6913 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6914 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6915 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6916 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6917 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6918 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6919 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6920 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6921 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6922 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6923 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6924 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6925 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6926 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6927 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6928 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6929 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6930 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6931 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6932 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6933 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6934
6935 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6936 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6937 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6938 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6939 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6940 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6941 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6942 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6943 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6944 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6945 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6946 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6947
6948 LSM_HOOK_INIT(file_open, selinux_file_open),
6949
6950 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6951 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6952 LSM_HOOK_INIT(cred_free, selinux_cred_free),
6953 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6954 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6955 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6956 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6957 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6958 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6959 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6960 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6961 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6962 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6963 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6964 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6965 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6966 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6967 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6968 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6969 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6970 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6971 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6972 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6973 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6974
6975 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6976 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6977
6978 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6979 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6980
6981 LSM_HOOK_INIT(msg_queue_alloc_security,
6982 selinux_msg_queue_alloc_security),
6983 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6984 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6985 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6986 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6987 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6988
6989 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6990 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6991 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6992 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6993 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6994
6995 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6996 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6997 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6998 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6999 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7000
7001 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7002
7003 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7004 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7005
7006 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7007 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7008 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7009 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7010 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7011 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7012 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7013 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7014
7015 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7016 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7017
7018 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7019 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7020 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7021 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7022 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7023 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7024 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7025 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7026 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7027 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7028 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7029 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7030 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7031 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7032 LSM_HOOK_INIT(socket_getpeersec_stream,
7033 selinux_socket_getpeersec_stream),
7034 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7035 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7036 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7037 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7038 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7039 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7040 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7041 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7042 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7043 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7044 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7045 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7046 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7047 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7048 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7049 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7050 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7051 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7052 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7053 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7054 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7055 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7056#ifdef CONFIG_SECURITY_INFINIBAND
7057 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7058 LSM_HOOK_INIT(ib_endport_manage_subnet,
7059 selinux_ib_endport_manage_subnet),
7060 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7061 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7062#endif
7063#ifdef CONFIG_SECURITY_NETWORK_XFRM
7064 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7065 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7066 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7067 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7068 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7069 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7070 selinux_xfrm_state_alloc_acquire),
7071 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7072 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7073 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7074 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7075 selinux_xfrm_state_pol_flow_match),
7076 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7077#endif
7078
7079#ifdef CONFIG_KEYS
7080 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7081 LSM_HOOK_INIT(key_free, selinux_key_free),
7082 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7083 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7084#endif
7085
7086#ifdef CONFIG_AUDIT
7087 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7088 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7089 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7090 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7091#endif
7092
7093#ifdef CONFIG_BPF_SYSCALL
7094 LSM_HOOK_INIT(bpf, selinux_bpf),
7095 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7096 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7097 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7098 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7099 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7100 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7101#endif
7102};
7103
7104static __init int selinux_init(void)
7105{
7106 if (!security_module_enable("selinux")) {
7107 selinux_enabled = 0;
7108 return 0;
7109 }
7110
7111 if (!selinux_enabled) {
7112 printk(KERN_INFO "SELinux: Disabled at boot.\n");
7113 return 0;
7114 }
7115
7116 printk(KERN_INFO "SELinux: Initializing.\n");
7117
7118 memset(&selinux_state, 0, sizeof(selinux_state));
7119 enforcing_set(&selinux_state, selinux_enforcing_boot);
7120 selinux_state.checkreqprot = selinux_checkreqprot_boot;
7121 selinux_ss_init(&selinux_state.ss);
7122 selinux_avc_init(&selinux_state.avc);
7123
7124 /* Set the security state for the initial task. */
7125 cred_init_security();
7126
7127 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7128
7129 sel_inode_cache = kmem_cache_create("selinux_inode_security",
7130 sizeof(struct inode_security_struct),
7131 0, SLAB_PANIC, NULL);
7132 file_security_cache = kmem_cache_create("selinux_file_security",
7133 sizeof(struct file_security_struct),
7134 0, SLAB_PANIC, NULL);
7135 avc_init();
7136
7137 avtab_cache_init();
7138
7139 ebitmap_cache_init();
7140
7141 hashtab_cache_init();
7142
7143 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7144
7145 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7146 panic("SELinux: Unable to register AVC netcache callback\n");
7147
7148 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7149 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7150
7151 if (selinux_enforcing_boot)
7152 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
7153 else
7154 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
7155
7156 return 0;
7157}
7158
7159static void delayed_superblock_init(struct super_block *sb, void *unused)
7160{
7161 superblock_doinit(sb, NULL);
7162}
7163
7164void selinux_complete_init(void)
7165{
7166 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
7167
7168 /* Set up any superblocks initialized prior to the policy load. */
7169 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
7170 iterate_supers(delayed_superblock_init, NULL);
7171}
7172
7173/* SELinux requires early initialization in order to label
7174 all processes and objects when they are created. */
7175security_initcall(selinux_init);
7176
7177#if defined(CONFIG_NETFILTER)
7178
7179static const struct nf_hook_ops selinux_nf_ops[] = {
7180 {
7181 .hook = selinux_ipv4_postroute,
7182 .pf = NFPROTO_IPV4,
7183 .hooknum = NF_INET_POST_ROUTING,
7184 .priority = NF_IP_PRI_SELINUX_LAST,
7185 },
7186 {
7187 .hook = selinux_ipv4_forward,
7188 .pf = NFPROTO_IPV4,
7189 .hooknum = NF_INET_FORWARD,
7190 .priority = NF_IP_PRI_SELINUX_FIRST,
7191 },
7192 {
7193 .hook = selinux_ipv4_output,
7194 .pf = NFPROTO_IPV4,
7195 .hooknum = NF_INET_LOCAL_OUT,
7196 .priority = NF_IP_PRI_SELINUX_FIRST,
7197 },
7198#if IS_ENABLED(CONFIG_IPV6)
7199 {
7200 .hook = selinux_ipv6_postroute,
7201 .pf = NFPROTO_IPV6,
7202 .hooknum = NF_INET_POST_ROUTING,
7203 .priority = NF_IP6_PRI_SELINUX_LAST,
7204 },
7205 {
7206 .hook = selinux_ipv6_forward,
7207 .pf = NFPROTO_IPV6,
7208 .hooknum = NF_INET_FORWARD,
7209 .priority = NF_IP6_PRI_SELINUX_FIRST,
7210 },
7211 {
7212 .hook = selinux_ipv6_output,
7213 .pf = NFPROTO_IPV6,
7214 .hooknum = NF_INET_LOCAL_OUT,
7215 .priority = NF_IP6_PRI_SELINUX_FIRST,
7216 },
7217#endif /* IPV6 */
7218};
7219
7220static int __net_init selinux_nf_register(struct net *net)
7221{
7222 return nf_register_net_hooks(net, selinux_nf_ops,
7223 ARRAY_SIZE(selinux_nf_ops));
7224}
7225
7226static void __net_exit selinux_nf_unregister(struct net *net)
7227{
7228 nf_unregister_net_hooks(net, selinux_nf_ops,
7229 ARRAY_SIZE(selinux_nf_ops));
7230}
7231
7232static struct pernet_operations selinux_net_ops = {
7233 .init = selinux_nf_register,
7234 .exit = selinux_nf_unregister,
7235};
7236
7237static int __init selinux_nf_ip_init(void)
7238{
7239 int err;
7240
7241 if (!selinux_enabled)
7242 return 0;
7243
7244 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
7245
7246 err = register_pernet_subsys(&selinux_net_ops);
7247 if (err)
7248 panic("SELinux: register_pernet_subsys: error %d\n", err);
7249
7250 return 0;
7251}
7252__initcall(selinux_nf_ip_init);
7253
7254#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7255static void selinux_nf_ip_exit(void)
7256{
7257 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
7258
7259 unregister_pernet_subsys(&selinux_net_ops);
7260}
7261#endif
7262
7263#else /* CONFIG_NETFILTER */
7264
7265#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7266#define selinux_nf_ip_exit()
7267#endif
7268
7269#endif /* CONFIG_NETFILTER */
7270
7271#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7272int selinux_disable(struct selinux_state *state)
7273{
7274 if (state->initialized) {
7275 /* Not permitted after initial policy load. */
7276 return -EINVAL;
7277 }
7278
7279 if (state->disabled) {
7280 /* Only do this once. */
7281 return -EINVAL;
7282 }
7283
7284 state->disabled = 1;
7285
7286 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
7287
7288 selinux_enabled = 0;
7289
7290 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7291
7292 /* Try to destroy the avc node cache */
7293 avc_disable();
7294
7295 /* Unregister netfilter hooks. */
7296 selinux_nf_ip_exit();
7297
7298 /* Unregister selinuxfs. */
7299 exit_sel_fs();
7300
7301 return 0;
7302}
7303#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/kernel_read_file.h>
28#include <linux/errno.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/task.h>
31#include <linux/lsm_hooks.h>
32#include <linux/xattr.h>
33#include <linux/capability.h>
34#include <linux/unistd.h>
35#include <linux/mm.h>
36#include <linux/mman.h>
37#include <linux/slab.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
40#include <linux/swap.h>
41#include <linux/spinlock.h>
42#include <linux/syscalls.h>
43#include <linux/dcache.h>
44#include <linux/file.h>
45#include <linux/fdtable.h>
46#include <linux/namei.h>
47#include <linux/mount.h>
48#include <linux/fs_context.h>
49#include <linux/fs_parser.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/inet_connection_sock.h>
57#include <net/net_namespace.h>
58#include <net/netlabel.h>
59#include <linux/uaccess.h>
60#include <asm/ioctls.h>
61#include <linux/atomic.h>
62#include <linux/bitops.h>
63#include <linux/interrupt.h>
64#include <linux/netdevice.h> /* for network interface checks */
65#include <net/netlink.h>
66#include <linux/tcp.h>
67#include <linux/udp.h>
68#include <linux/dccp.h>
69#include <linux/sctp.h>
70#include <net/sctp/structs.h>
71#include <linux/quota.h>
72#include <linux/un.h> /* for Unix socket types */
73#include <net/af_unix.h> /* for Unix socket types */
74#include <linux/parser.h>
75#include <linux/nfs_mount.h>
76#include <net/ipv6.h>
77#include <linux/hugetlb.h>
78#include <linux/personality.h>
79#include <linux/audit.h>
80#include <linux/string.h>
81#include <linux/mutex.h>
82#include <linux/posix-timers.h>
83#include <linux/syslog.h>
84#include <linux/user_namespace.h>
85#include <linux/export.h>
86#include <linux/msg.h>
87#include <linux/shm.h>
88#include <uapi/linux/shm.h>
89#include <linux/bpf.h>
90#include <linux/kernfs.h>
91#include <linux/stringhash.h> /* for hashlen_string() */
92#include <uapi/linux/mount.h>
93#include <linux/fsnotify.h>
94#include <linux/fanotify.h>
95#include <linux/io_uring/cmd.h>
96#include <uapi/linux/lsm.h>
97
98#include "avc.h"
99#include "objsec.h"
100#include "netif.h"
101#include "netnode.h"
102#include "netport.h"
103#include "ibpkey.h"
104#include "xfrm.h"
105#include "netlabel.h"
106#include "audit.h"
107#include "avc_ss.h"
108
109#define SELINUX_INODE_INIT_XATTRS 1
110
111struct selinux_state selinux_state;
112
113/* SECMARK reference count */
114static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115
116#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117static int selinux_enforcing_boot __initdata;
118
119static int __init enforcing_setup(char *str)
120{
121 unsigned long enforcing;
122 if (!kstrtoul(str, 0, &enforcing))
123 selinux_enforcing_boot = enforcing ? 1 : 0;
124 return 1;
125}
126__setup("enforcing=", enforcing_setup);
127#else
128#define selinux_enforcing_boot 1
129#endif
130
131int selinux_enabled_boot __initdata = 1;
132#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133static int __init selinux_enabled_setup(char *str)
134{
135 unsigned long enabled;
136 if (!kstrtoul(str, 0, &enabled))
137 selinux_enabled_boot = enabled ? 1 : 0;
138 return 1;
139}
140__setup("selinux=", selinux_enabled_setup);
141#endif
142
143static int __init checkreqprot_setup(char *str)
144{
145 unsigned long checkreqprot;
146
147 if (!kstrtoul(str, 0, &checkreqprot)) {
148 if (checkreqprot)
149 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is no longer supported.\n");
150 }
151 return 1;
152}
153__setup("checkreqprot=", checkreqprot_setup);
154
155/**
156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157 *
158 * Description:
159 * This function checks the SECMARK reference counter to see if any SECMARK
160 * targets are currently configured, if the reference counter is greater than
161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
162 * enabled, false (0) if SECMARK is disabled. If the always_check_network
163 * policy capability is enabled, SECMARK is always considered enabled.
164 *
165 */
166static int selinux_secmark_enabled(void)
167{
168 return (selinux_policycap_alwaysnetwork() ||
169 atomic_read(&selinux_secmark_refcount));
170}
171
172/**
173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174 *
175 * Description:
176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
177 * (1) if any are enabled or false (0) if neither are enabled. If the
178 * always_check_network policy capability is enabled, peer labeling
179 * is always considered enabled.
180 *
181 */
182static int selinux_peerlbl_enabled(void)
183{
184 return (selinux_policycap_alwaysnetwork() ||
185 netlbl_enabled() || selinux_xfrm_enabled());
186}
187
188static int selinux_netcache_avc_callback(u32 event)
189{
190 if (event == AVC_CALLBACK_RESET) {
191 sel_netif_flush();
192 sel_netnode_flush();
193 sel_netport_flush();
194 synchronize_net();
195 }
196 return 0;
197}
198
199static int selinux_lsm_notifier_avc_callback(u32 event)
200{
201 if (event == AVC_CALLBACK_RESET) {
202 sel_ib_pkey_flush();
203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 }
205
206 return 0;
207}
208
209/*
210 * initialise the security for the init task
211 */
212static void cred_init_security(void)
213{
214 struct task_security_struct *tsec;
215
216 tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 tsec->osid = tsec->sid = SECINITSID_KERNEL;
218}
219
220/*
221 * get the security ID of a set of credentials
222 */
223static inline u32 cred_sid(const struct cred *cred)
224{
225 const struct task_security_struct *tsec;
226
227 tsec = selinux_cred(cred);
228 return tsec->sid;
229}
230
231static void __ad_net_init(struct common_audit_data *ad,
232 struct lsm_network_audit *net,
233 int ifindex, struct sock *sk, u16 family)
234{
235 ad->type = LSM_AUDIT_DATA_NET;
236 ad->u.net = net;
237 net->netif = ifindex;
238 net->sk = sk;
239 net->family = family;
240}
241
242static void ad_net_init_from_sk(struct common_audit_data *ad,
243 struct lsm_network_audit *net,
244 struct sock *sk)
245{
246 __ad_net_init(ad, net, 0, sk, 0);
247}
248
249static void ad_net_init_from_iif(struct common_audit_data *ad,
250 struct lsm_network_audit *net,
251 int ifindex, u16 family)
252{
253 __ad_net_init(ad, net, ifindex, NULL, family);
254}
255
256/*
257 * get the objective security ID of a task
258 */
259static inline u32 task_sid_obj(const struct task_struct *task)
260{
261 u32 sid;
262
263 rcu_read_lock();
264 sid = cred_sid(__task_cred(task));
265 rcu_read_unlock();
266 return sid;
267}
268
269static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270
271/*
272 * Try reloading inode security labels that have been marked as invalid. The
273 * @may_sleep parameter indicates when sleeping and thus reloading labels is
274 * allowed; when set to false, returns -ECHILD when the label is
275 * invalid. The @dentry parameter should be set to a dentry of the inode.
276 */
277static int __inode_security_revalidate(struct inode *inode,
278 struct dentry *dentry,
279 bool may_sleep)
280{
281 struct inode_security_struct *isec = selinux_inode(inode);
282
283 might_sleep_if(may_sleep);
284
285 if (selinux_initialized() &&
286 isec->initialized != LABEL_INITIALIZED) {
287 if (!may_sleep)
288 return -ECHILD;
289
290 /*
291 * Try reloading the inode security label. This will fail if
292 * @opt_dentry is NULL and no dentry for this inode can be
293 * found; in that case, continue using the old label.
294 */
295 inode_doinit_with_dentry(inode, dentry);
296 }
297 return 0;
298}
299
300static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
301{
302 return selinux_inode(inode);
303}
304
305static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
306{
307 int error;
308
309 error = __inode_security_revalidate(inode, NULL, !rcu);
310 if (error)
311 return ERR_PTR(error);
312 return selinux_inode(inode);
313}
314
315/*
316 * Get the security label of an inode.
317 */
318static struct inode_security_struct *inode_security(struct inode *inode)
319{
320 __inode_security_revalidate(inode, NULL, true);
321 return selinux_inode(inode);
322}
323
324static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
325{
326 struct inode *inode = d_backing_inode(dentry);
327
328 return selinux_inode(inode);
329}
330
331/*
332 * Get the security label of a dentry's backing inode.
333 */
334static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
335{
336 struct inode *inode = d_backing_inode(dentry);
337
338 __inode_security_revalidate(inode, dentry, true);
339 return selinux_inode(inode);
340}
341
342static void inode_free_security(struct inode *inode)
343{
344 struct inode_security_struct *isec = selinux_inode(inode);
345 struct superblock_security_struct *sbsec;
346
347 if (!isec)
348 return;
349 sbsec = selinux_superblock(inode->i_sb);
350 /*
351 * As not all inode security structures are in a list, we check for
352 * empty list outside of the lock to make sure that we won't waste
353 * time taking a lock doing nothing.
354 *
355 * The list_del_init() function can be safely called more than once.
356 * It should not be possible for this function to be called with
357 * concurrent list_add(), but for better safety against future changes
358 * in the code, we use list_empty_careful() here.
359 */
360 if (!list_empty_careful(&isec->list)) {
361 spin_lock(&sbsec->isec_lock);
362 list_del_init(&isec->list);
363 spin_unlock(&sbsec->isec_lock);
364 }
365}
366
367struct selinux_mnt_opts {
368 u32 fscontext_sid;
369 u32 context_sid;
370 u32 rootcontext_sid;
371 u32 defcontext_sid;
372};
373
374static void selinux_free_mnt_opts(void *mnt_opts)
375{
376 kfree(mnt_opts);
377}
378
379enum {
380 Opt_error = -1,
381 Opt_context = 0,
382 Opt_defcontext = 1,
383 Opt_fscontext = 2,
384 Opt_rootcontext = 3,
385 Opt_seclabel = 4,
386};
387
388#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
389static const struct {
390 const char *name;
391 int len;
392 int opt;
393 bool has_arg;
394} tokens[] = {
395 A(context, true),
396 A(fscontext, true),
397 A(defcontext, true),
398 A(rootcontext, true),
399 A(seclabel, false),
400};
401#undef A
402
403static int match_opt_prefix(char *s, int l, char **arg)
404{
405 int i;
406
407 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
408 size_t len = tokens[i].len;
409 if (len > l || memcmp(s, tokens[i].name, len))
410 continue;
411 if (tokens[i].has_arg) {
412 if (len == l || s[len] != '=')
413 continue;
414 *arg = s + len + 1;
415 } else if (len != l)
416 continue;
417 return tokens[i].opt;
418 }
419 return Opt_error;
420}
421
422#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
423
424static int may_context_mount_sb_relabel(u32 sid,
425 struct superblock_security_struct *sbsec,
426 const struct cred *cred)
427{
428 const struct task_security_struct *tsec = selinux_cred(cred);
429 int rc;
430
431 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
432 FILESYSTEM__RELABELFROM, NULL);
433 if (rc)
434 return rc;
435
436 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
437 FILESYSTEM__RELABELTO, NULL);
438 return rc;
439}
440
441static int may_context_mount_inode_relabel(u32 sid,
442 struct superblock_security_struct *sbsec,
443 const struct cred *cred)
444{
445 const struct task_security_struct *tsec = selinux_cred(cred);
446 int rc;
447 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
448 FILESYSTEM__RELABELFROM, NULL);
449 if (rc)
450 return rc;
451
452 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
453 FILESYSTEM__ASSOCIATE, NULL);
454 return rc;
455}
456
457static int selinux_is_genfs_special_handling(struct super_block *sb)
458{
459 /* Special handling. Genfs but also in-core setxattr handler */
460 return !strcmp(sb->s_type->name, "sysfs") ||
461 !strcmp(sb->s_type->name, "pstore") ||
462 !strcmp(sb->s_type->name, "debugfs") ||
463 !strcmp(sb->s_type->name, "tracefs") ||
464 !strcmp(sb->s_type->name, "rootfs") ||
465 (selinux_policycap_cgroupseclabel() &&
466 (!strcmp(sb->s_type->name, "cgroup") ||
467 !strcmp(sb->s_type->name, "cgroup2")));
468}
469
470static int selinux_is_sblabel_mnt(struct super_block *sb)
471{
472 struct superblock_security_struct *sbsec = selinux_superblock(sb);
473
474 /*
475 * IMPORTANT: Double-check logic in this function when adding a new
476 * SECURITY_FS_USE_* definition!
477 */
478 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
479
480 switch (sbsec->behavior) {
481 case SECURITY_FS_USE_XATTR:
482 case SECURITY_FS_USE_TRANS:
483 case SECURITY_FS_USE_TASK:
484 case SECURITY_FS_USE_NATIVE:
485 return 1;
486
487 case SECURITY_FS_USE_GENFS:
488 return selinux_is_genfs_special_handling(sb);
489
490 /* Never allow relabeling on context mounts */
491 case SECURITY_FS_USE_MNTPOINT:
492 case SECURITY_FS_USE_NONE:
493 default:
494 return 0;
495 }
496}
497
498static int sb_check_xattr_support(struct super_block *sb)
499{
500 struct superblock_security_struct *sbsec = selinux_superblock(sb);
501 struct dentry *root = sb->s_root;
502 struct inode *root_inode = d_backing_inode(root);
503 u32 sid;
504 int rc;
505
506 /*
507 * Make sure that the xattr handler exists and that no
508 * error other than -ENODATA is returned by getxattr on
509 * the root directory. -ENODATA is ok, as this may be
510 * the first boot of the SELinux kernel before we have
511 * assigned xattr values to the filesystem.
512 */
513 if (!(root_inode->i_opflags & IOP_XATTR)) {
514 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
515 sb->s_id, sb->s_type->name);
516 goto fallback;
517 }
518
519 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
520 if (rc < 0 && rc != -ENODATA) {
521 if (rc == -EOPNOTSUPP) {
522 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
523 sb->s_id, sb->s_type->name);
524 goto fallback;
525 } else {
526 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
527 sb->s_id, sb->s_type->name, -rc);
528 return rc;
529 }
530 }
531 return 0;
532
533fallback:
534 /* No xattr support - try to fallback to genfs if possible. */
535 rc = security_genfs_sid(sb->s_type->name, "/",
536 SECCLASS_DIR, &sid);
537 if (rc)
538 return -EOPNOTSUPP;
539
540 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
541 sb->s_id, sb->s_type->name);
542 sbsec->behavior = SECURITY_FS_USE_GENFS;
543 sbsec->sid = sid;
544 return 0;
545}
546
547static int sb_finish_set_opts(struct super_block *sb)
548{
549 struct superblock_security_struct *sbsec = selinux_superblock(sb);
550 struct dentry *root = sb->s_root;
551 struct inode *root_inode = d_backing_inode(root);
552 int rc = 0;
553
554 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
555 rc = sb_check_xattr_support(sb);
556 if (rc)
557 return rc;
558 }
559
560 sbsec->flags |= SE_SBINITIALIZED;
561
562 /*
563 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
564 * leave the flag untouched because sb_clone_mnt_opts might be handing
565 * us a superblock that needs the flag to be cleared.
566 */
567 if (selinux_is_sblabel_mnt(sb))
568 sbsec->flags |= SBLABEL_MNT;
569 else
570 sbsec->flags &= ~SBLABEL_MNT;
571
572 /* Initialize the root inode. */
573 rc = inode_doinit_with_dentry(root_inode, root);
574
575 /* Initialize any other inodes associated with the superblock, e.g.
576 inodes created prior to initial policy load or inodes created
577 during get_sb by a pseudo filesystem that directly
578 populates itself. */
579 spin_lock(&sbsec->isec_lock);
580 while (!list_empty(&sbsec->isec_head)) {
581 struct inode_security_struct *isec =
582 list_first_entry(&sbsec->isec_head,
583 struct inode_security_struct, list);
584 struct inode *inode = isec->inode;
585 list_del_init(&isec->list);
586 spin_unlock(&sbsec->isec_lock);
587 inode = igrab(inode);
588 if (inode) {
589 if (!IS_PRIVATE(inode))
590 inode_doinit_with_dentry(inode, NULL);
591 iput(inode);
592 }
593 spin_lock(&sbsec->isec_lock);
594 }
595 spin_unlock(&sbsec->isec_lock);
596 return rc;
597}
598
599static int bad_option(struct superblock_security_struct *sbsec, char flag,
600 u32 old_sid, u32 new_sid)
601{
602 char mnt_flags = sbsec->flags & SE_MNTMASK;
603
604 /* check if the old mount command had the same options */
605 if (sbsec->flags & SE_SBINITIALIZED)
606 if (!(sbsec->flags & flag) ||
607 (old_sid != new_sid))
608 return 1;
609
610 /* check if we were passed the same options twice,
611 * aka someone passed context=a,context=b
612 */
613 if (!(sbsec->flags & SE_SBINITIALIZED))
614 if (mnt_flags & flag)
615 return 1;
616 return 0;
617}
618
619/*
620 * Allow filesystems with binary mount data to explicitly set mount point
621 * labeling information.
622 */
623static int selinux_set_mnt_opts(struct super_block *sb,
624 void *mnt_opts,
625 unsigned long kern_flags,
626 unsigned long *set_kern_flags)
627{
628 const struct cred *cred = current_cred();
629 struct superblock_security_struct *sbsec = selinux_superblock(sb);
630 struct dentry *root = sb->s_root;
631 struct selinux_mnt_opts *opts = mnt_opts;
632 struct inode_security_struct *root_isec;
633 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
634 u32 defcontext_sid = 0;
635 int rc = 0;
636
637 /*
638 * Specifying internal flags without providing a place to
639 * place the results is not allowed
640 */
641 if (kern_flags && !set_kern_flags)
642 return -EINVAL;
643
644 mutex_lock(&sbsec->lock);
645
646 if (!selinux_initialized()) {
647 if (!opts) {
648 /* Defer initialization until selinux_complete_init,
649 after the initial policy is loaded and the security
650 server is ready to handle calls. */
651 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
652 sbsec->flags |= SE_SBNATIVE;
653 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
654 }
655 goto out;
656 }
657 rc = -EINVAL;
658 pr_warn("SELinux: Unable to set superblock options "
659 "before the security server is initialized\n");
660 goto out;
661 }
662
663 /*
664 * Binary mount data FS will come through this function twice. Once
665 * from an explicit call and once from the generic calls from the vfs.
666 * Since the generic VFS calls will not contain any security mount data
667 * we need to skip the double mount verification.
668 *
669 * This does open a hole in which we will not notice if the first
670 * mount using this sb set explicit options and a second mount using
671 * this sb does not set any security options. (The first options
672 * will be used for both mounts)
673 */
674 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
675 && !opts)
676 goto out;
677
678 root_isec = backing_inode_security_novalidate(root);
679
680 /*
681 * parse the mount options, check if they are valid sids.
682 * also check if someone is trying to mount the same sb more
683 * than once with different security options.
684 */
685 if (opts) {
686 if (opts->fscontext_sid) {
687 fscontext_sid = opts->fscontext_sid;
688 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
689 fscontext_sid))
690 goto out_double_mount;
691 sbsec->flags |= FSCONTEXT_MNT;
692 }
693 if (opts->context_sid) {
694 context_sid = opts->context_sid;
695 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
696 context_sid))
697 goto out_double_mount;
698 sbsec->flags |= CONTEXT_MNT;
699 }
700 if (opts->rootcontext_sid) {
701 rootcontext_sid = opts->rootcontext_sid;
702 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
703 rootcontext_sid))
704 goto out_double_mount;
705 sbsec->flags |= ROOTCONTEXT_MNT;
706 }
707 if (opts->defcontext_sid) {
708 defcontext_sid = opts->defcontext_sid;
709 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
710 defcontext_sid))
711 goto out_double_mount;
712 sbsec->flags |= DEFCONTEXT_MNT;
713 }
714 }
715
716 if (sbsec->flags & SE_SBINITIALIZED) {
717 /* previously mounted with options, but not on this attempt? */
718 if ((sbsec->flags & SE_MNTMASK) && !opts)
719 goto out_double_mount;
720 rc = 0;
721 goto out;
722 }
723
724 if (strcmp(sb->s_type->name, "proc") == 0)
725 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
726
727 if (!strcmp(sb->s_type->name, "debugfs") ||
728 !strcmp(sb->s_type->name, "tracefs") ||
729 !strcmp(sb->s_type->name, "binder") ||
730 !strcmp(sb->s_type->name, "bpf") ||
731 !strcmp(sb->s_type->name, "pstore") ||
732 !strcmp(sb->s_type->name, "securityfs"))
733 sbsec->flags |= SE_SBGENFS;
734
735 if (!strcmp(sb->s_type->name, "sysfs") ||
736 !strcmp(sb->s_type->name, "cgroup") ||
737 !strcmp(sb->s_type->name, "cgroup2"))
738 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
739
740 if (!sbsec->behavior) {
741 /*
742 * Determine the labeling behavior to use for this
743 * filesystem type.
744 */
745 rc = security_fs_use(sb);
746 if (rc) {
747 pr_warn("%s: security_fs_use(%s) returned %d\n",
748 __func__, sb->s_type->name, rc);
749 goto out;
750 }
751 }
752
753 /*
754 * If this is a user namespace mount and the filesystem type is not
755 * explicitly whitelisted, then no contexts are allowed on the command
756 * line and security labels must be ignored.
757 */
758 if (sb->s_user_ns != &init_user_ns &&
759 strcmp(sb->s_type->name, "tmpfs") &&
760 strcmp(sb->s_type->name, "ramfs") &&
761 strcmp(sb->s_type->name, "devpts") &&
762 strcmp(sb->s_type->name, "overlay")) {
763 if (context_sid || fscontext_sid || rootcontext_sid ||
764 defcontext_sid) {
765 rc = -EACCES;
766 goto out;
767 }
768 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
769 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
770 rc = security_transition_sid(current_sid(),
771 current_sid(),
772 SECCLASS_FILE, NULL,
773 &sbsec->mntpoint_sid);
774 if (rc)
775 goto out;
776 }
777 goto out_set_opts;
778 }
779
780 /* sets the context of the superblock for the fs being mounted. */
781 if (fscontext_sid) {
782 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
783 if (rc)
784 goto out;
785
786 sbsec->sid = fscontext_sid;
787 }
788
789 /*
790 * Switch to using mount point labeling behavior.
791 * sets the label used on all file below the mountpoint, and will set
792 * the superblock context if not already set.
793 */
794 if (sbsec->flags & SE_SBNATIVE) {
795 /*
796 * This means we are initializing a superblock that has been
797 * mounted before the SELinux was initialized and the
798 * filesystem requested native labeling. We had already
799 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
800 * in the original mount attempt, so now we just need to set
801 * the SECURITY_FS_USE_NATIVE behavior.
802 */
803 sbsec->behavior = SECURITY_FS_USE_NATIVE;
804 } else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
805 sbsec->behavior = SECURITY_FS_USE_NATIVE;
806 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
807 }
808
809 if (context_sid) {
810 if (!fscontext_sid) {
811 rc = may_context_mount_sb_relabel(context_sid, sbsec,
812 cred);
813 if (rc)
814 goto out;
815 sbsec->sid = context_sid;
816 } else {
817 rc = may_context_mount_inode_relabel(context_sid, sbsec,
818 cred);
819 if (rc)
820 goto out;
821 }
822 if (!rootcontext_sid)
823 rootcontext_sid = context_sid;
824
825 sbsec->mntpoint_sid = context_sid;
826 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
827 }
828
829 if (rootcontext_sid) {
830 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
831 cred);
832 if (rc)
833 goto out;
834
835 root_isec->sid = rootcontext_sid;
836 root_isec->initialized = LABEL_INITIALIZED;
837 }
838
839 if (defcontext_sid) {
840 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
841 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
842 rc = -EINVAL;
843 pr_warn("SELinux: defcontext option is "
844 "invalid for this filesystem type\n");
845 goto out;
846 }
847
848 if (defcontext_sid != sbsec->def_sid) {
849 rc = may_context_mount_inode_relabel(defcontext_sid,
850 sbsec, cred);
851 if (rc)
852 goto out;
853 }
854
855 sbsec->def_sid = defcontext_sid;
856 }
857
858out_set_opts:
859 rc = sb_finish_set_opts(sb);
860out:
861 mutex_unlock(&sbsec->lock);
862 return rc;
863out_double_mount:
864 rc = -EINVAL;
865 pr_warn("SELinux: mount invalid. Same superblock, different "
866 "security settings for (dev %s, type %s)\n", sb->s_id,
867 sb->s_type->name);
868 goto out;
869}
870
871static int selinux_cmp_sb_context(const struct super_block *oldsb,
872 const struct super_block *newsb)
873{
874 struct superblock_security_struct *old = selinux_superblock(oldsb);
875 struct superblock_security_struct *new = selinux_superblock(newsb);
876 char oldflags = old->flags & SE_MNTMASK;
877 char newflags = new->flags & SE_MNTMASK;
878
879 if (oldflags != newflags)
880 goto mismatch;
881 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
882 goto mismatch;
883 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
884 goto mismatch;
885 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
886 goto mismatch;
887 if (oldflags & ROOTCONTEXT_MNT) {
888 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
889 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
890 if (oldroot->sid != newroot->sid)
891 goto mismatch;
892 }
893 return 0;
894mismatch:
895 pr_warn("SELinux: mount invalid. Same superblock, "
896 "different security settings for (dev %s, "
897 "type %s)\n", newsb->s_id, newsb->s_type->name);
898 return -EBUSY;
899}
900
901static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
902 struct super_block *newsb,
903 unsigned long kern_flags,
904 unsigned long *set_kern_flags)
905{
906 int rc = 0;
907 const struct superblock_security_struct *oldsbsec =
908 selinux_superblock(oldsb);
909 struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
910
911 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
912 int set_context = (oldsbsec->flags & CONTEXT_MNT);
913 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
914
915 /*
916 * Specifying internal flags without providing a place to
917 * place the results is not allowed.
918 */
919 if (kern_flags && !set_kern_flags)
920 return -EINVAL;
921
922 mutex_lock(&newsbsec->lock);
923
924 /*
925 * if the parent was able to be mounted it clearly had no special lsm
926 * mount options. thus we can safely deal with this superblock later
927 */
928 if (!selinux_initialized()) {
929 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
930 newsbsec->flags |= SE_SBNATIVE;
931 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
932 }
933 goto out;
934 }
935
936 /* how can we clone if the old one wasn't set up?? */
937 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
938
939 /* if fs is reusing a sb, make sure that the contexts match */
940 if (newsbsec->flags & SE_SBINITIALIZED) {
941 mutex_unlock(&newsbsec->lock);
942 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
943 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
944 return selinux_cmp_sb_context(oldsb, newsb);
945 }
946
947 newsbsec->flags = oldsbsec->flags;
948
949 newsbsec->sid = oldsbsec->sid;
950 newsbsec->def_sid = oldsbsec->def_sid;
951 newsbsec->behavior = oldsbsec->behavior;
952
953 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
954 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
955 rc = security_fs_use(newsb);
956 if (rc)
957 goto out;
958 }
959
960 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
961 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
962 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
963 }
964
965 if (set_context) {
966 u32 sid = oldsbsec->mntpoint_sid;
967
968 if (!set_fscontext)
969 newsbsec->sid = sid;
970 if (!set_rootcontext) {
971 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
972 newisec->sid = sid;
973 }
974 newsbsec->mntpoint_sid = sid;
975 }
976 if (set_rootcontext) {
977 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
978 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
979
980 newisec->sid = oldisec->sid;
981 }
982
983 sb_finish_set_opts(newsb);
984out:
985 mutex_unlock(&newsbsec->lock);
986 return rc;
987}
988
989/*
990 * NOTE: the caller is responsible for freeing the memory even if on error.
991 */
992static int selinux_add_opt(int token, const char *s, void **mnt_opts)
993{
994 struct selinux_mnt_opts *opts = *mnt_opts;
995 u32 *dst_sid;
996 int rc;
997
998 if (token == Opt_seclabel)
999 /* eaten and completely ignored */
1000 return 0;
1001 if (!s)
1002 return -EINVAL;
1003
1004 if (!selinux_initialized()) {
1005 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1006 return -EINVAL;
1007 }
1008
1009 if (!opts) {
1010 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1011 if (!opts)
1012 return -ENOMEM;
1013 *mnt_opts = opts;
1014 }
1015
1016 switch (token) {
1017 case Opt_context:
1018 if (opts->context_sid || opts->defcontext_sid)
1019 goto err;
1020 dst_sid = &opts->context_sid;
1021 break;
1022 case Opt_fscontext:
1023 if (opts->fscontext_sid)
1024 goto err;
1025 dst_sid = &opts->fscontext_sid;
1026 break;
1027 case Opt_rootcontext:
1028 if (opts->rootcontext_sid)
1029 goto err;
1030 dst_sid = &opts->rootcontext_sid;
1031 break;
1032 case Opt_defcontext:
1033 if (opts->context_sid || opts->defcontext_sid)
1034 goto err;
1035 dst_sid = &opts->defcontext_sid;
1036 break;
1037 default:
1038 WARN_ON(1);
1039 return -EINVAL;
1040 }
1041 rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1042 if (rc)
1043 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1044 s, rc);
1045 return rc;
1046
1047err:
1048 pr_warn(SEL_MOUNT_FAIL_MSG);
1049 return -EINVAL;
1050}
1051
1052static int show_sid(struct seq_file *m, u32 sid)
1053{
1054 char *context = NULL;
1055 u32 len;
1056 int rc;
1057
1058 rc = security_sid_to_context(sid, &context, &len);
1059 if (!rc) {
1060 bool has_comma = strchr(context, ',');
1061
1062 seq_putc(m, '=');
1063 if (has_comma)
1064 seq_putc(m, '\"');
1065 seq_escape(m, context, "\"\n\\");
1066 if (has_comma)
1067 seq_putc(m, '\"');
1068 }
1069 kfree(context);
1070 return rc;
1071}
1072
1073static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1074{
1075 struct superblock_security_struct *sbsec = selinux_superblock(sb);
1076 int rc;
1077
1078 if (!(sbsec->flags & SE_SBINITIALIZED))
1079 return 0;
1080
1081 if (!selinux_initialized())
1082 return 0;
1083
1084 if (sbsec->flags & FSCONTEXT_MNT) {
1085 seq_putc(m, ',');
1086 seq_puts(m, FSCONTEXT_STR);
1087 rc = show_sid(m, sbsec->sid);
1088 if (rc)
1089 return rc;
1090 }
1091 if (sbsec->flags & CONTEXT_MNT) {
1092 seq_putc(m, ',');
1093 seq_puts(m, CONTEXT_STR);
1094 rc = show_sid(m, sbsec->mntpoint_sid);
1095 if (rc)
1096 return rc;
1097 }
1098 if (sbsec->flags & DEFCONTEXT_MNT) {
1099 seq_putc(m, ',');
1100 seq_puts(m, DEFCONTEXT_STR);
1101 rc = show_sid(m, sbsec->def_sid);
1102 if (rc)
1103 return rc;
1104 }
1105 if (sbsec->flags & ROOTCONTEXT_MNT) {
1106 struct dentry *root = sb->s_root;
1107 struct inode_security_struct *isec = backing_inode_security(root);
1108 seq_putc(m, ',');
1109 seq_puts(m, ROOTCONTEXT_STR);
1110 rc = show_sid(m, isec->sid);
1111 if (rc)
1112 return rc;
1113 }
1114 if (sbsec->flags & SBLABEL_MNT) {
1115 seq_putc(m, ',');
1116 seq_puts(m, SECLABEL_STR);
1117 }
1118 return 0;
1119}
1120
1121static inline u16 inode_mode_to_security_class(umode_t mode)
1122{
1123 switch (mode & S_IFMT) {
1124 case S_IFSOCK:
1125 return SECCLASS_SOCK_FILE;
1126 case S_IFLNK:
1127 return SECCLASS_LNK_FILE;
1128 case S_IFREG:
1129 return SECCLASS_FILE;
1130 case S_IFBLK:
1131 return SECCLASS_BLK_FILE;
1132 case S_IFDIR:
1133 return SECCLASS_DIR;
1134 case S_IFCHR:
1135 return SECCLASS_CHR_FILE;
1136 case S_IFIFO:
1137 return SECCLASS_FIFO_FILE;
1138
1139 }
1140
1141 return SECCLASS_FILE;
1142}
1143
1144static inline int default_protocol_stream(int protocol)
1145{
1146 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1147 protocol == IPPROTO_MPTCP);
1148}
1149
1150static inline int default_protocol_dgram(int protocol)
1151{
1152 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1153}
1154
1155static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1156{
1157 bool extsockclass = selinux_policycap_extsockclass();
1158
1159 switch (family) {
1160 case PF_UNIX:
1161 switch (type) {
1162 case SOCK_STREAM:
1163 case SOCK_SEQPACKET:
1164 return SECCLASS_UNIX_STREAM_SOCKET;
1165 case SOCK_DGRAM:
1166 case SOCK_RAW:
1167 return SECCLASS_UNIX_DGRAM_SOCKET;
1168 }
1169 break;
1170 case PF_INET:
1171 case PF_INET6:
1172 switch (type) {
1173 case SOCK_STREAM:
1174 case SOCK_SEQPACKET:
1175 if (default_protocol_stream(protocol))
1176 return SECCLASS_TCP_SOCKET;
1177 else if (extsockclass && protocol == IPPROTO_SCTP)
1178 return SECCLASS_SCTP_SOCKET;
1179 else
1180 return SECCLASS_RAWIP_SOCKET;
1181 case SOCK_DGRAM:
1182 if (default_protocol_dgram(protocol))
1183 return SECCLASS_UDP_SOCKET;
1184 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1185 protocol == IPPROTO_ICMPV6))
1186 return SECCLASS_ICMP_SOCKET;
1187 else
1188 return SECCLASS_RAWIP_SOCKET;
1189 case SOCK_DCCP:
1190 return SECCLASS_DCCP_SOCKET;
1191 default:
1192 return SECCLASS_RAWIP_SOCKET;
1193 }
1194 break;
1195 case PF_NETLINK:
1196 switch (protocol) {
1197 case NETLINK_ROUTE:
1198 return SECCLASS_NETLINK_ROUTE_SOCKET;
1199 case NETLINK_SOCK_DIAG:
1200 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1201 case NETLINK_NFLOG:
1202 return SECCLASS_NETLINK_NFLOG_SOCKET;
1203 case NETLINK_XFRM:
1204 return SECCLASS_NETLINK_XFRM_SOCKET;
1205 case NETLINK_SELINUX:
1206 return SECCLASS_NETLINK_SELINUX_SOCKET;
1207 case NETLINK_ISCSI:
1208 return SECCLASS_NETLINK_ISCSI_SOCKET;
1209 case NETLINK_AUDIT:
1210 return SECCLASS_NETLINK_AUDIT_SOCKET;
1211 case NETLINK_FIB_LOOKUP:
1212 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1213 case NETLINK_CONNECTOR:
1214 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1215 case NETLINK_NETFILTER:
1216 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1217 case NETLINK_DNRTMSG:
1218 return SECCLASS_NETLINK_DNRT_SOCKET;
1219 case NETLINK_KOBJECT_UEVENT:
1220 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1221 case NETLINK_GENERIC:
1222 return SECCLASS_NETLINK_GENERIC_SOCKET;
1223 case NETLINK_SCSITRANSPORT:
1224 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1225 case NETLINK_RDMA:
1226 return SECCLASS_NETLINK_RDMA_SOCKET;
1227 case NETLINK_CRYPTO:
1228 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1229 default:
1230 return SECCLASS_NETLINK_SOCKET;
1231 }
1232 case PF_PACKET:
1233 return SECCLASS_PACKET_SOCKET;
1234 case PF_KEY:
1235 return SECCLASS_KEY_SOCKET;
1236 case PF_APPLETALK:
1237 return SECCLASS_APPLETALK_SOCKET;
1238 }
1239
1240 if (extsockclass) {
1241 switch (family) {
1242 case PF_AX25:
1243 return SECCLASS_AX25_SOCKET;
1244 case PF_IPX:
1245 return SECCLASS_IPX_SOCKET;
1246 case PF_NETROM:
1247 return SECCLASS_NETROM_SOCKET;
1248 case PF_ATMPVC:
1249 return SECCLASS_ATMPVC_SOCKET;
1250 case PF_X25:
1251 return SECCLASS_X25_SOCKET;
1252 case PF_ROSE:
1253 return SECCLASS_ROSE_SOCKET;
1254 case PF_DECnet:
1255 return SECCLASS_DECNET_SOCKET;
1256 case PF_ATMSVC:
1257 return SECCLASS_ATMSVC_SOCKET;
1258 case PF_RDS:
1259 return SECCLASS_RDS_SOCKET;
1260 case PF_IRDA:
1261 return SECCLASS_IRDA_SOCKET;
1262 case PF_PPPOX:
1263 return SECCLASS_PPPOX_SOCKET;
1264 case PF_LLC:
1265 return SECCLASS_LLC_SOCKET;
1266 case PF_CAN:
1267 return SECCLASS_CAN_SOCKET;
1268 case PF_TIPC:
1269 return SECCLASS_TIPC_SOCKET;
1270 case PF_BLUETOOTH:
1271 return SECCLASS_BLUETOOTH_SOCKET;
1272 case PF_IUCV:
1273 return SECCLASS_IUCV_SOCKET;
1274 case PF_RXRPC:
1275 return SECCLASS_RXRPC_SOCKET;
1276 case PF_ISDN:
1277 return SECCLASS_ISDN_SOCKET;
1278 case PF_PHONET:
1279 return SECCLASS_PHONET_SOCKET;
1280 case PF_IEEE802154:
1281 return SECCLASS_IEEE802154_SOCKET;
1282 case PF_CAIF:
1283 return SECCLASS_CAIF_SOCKET;
1284 case PF_ALG:
1285 return SECCLASS_ALG_SOCKET;
1286 case PF_NFC:
1287 return SECCLASS_NFC_SOCKET;
1288 case PF_VSOCK:
1289 return SECCLASS_VSOCK_SOCKET;
1290 case PF_KCM:
1291 return SECCLASS_KCM_SOCKET;
1292 case PF_QIPCRTR:
1293 return SECCLASS_QIPCRTR_SOCKET;
1294 case PF_SMC:
1295 return SECCLASS_SMC_SOCKET;
1296 case PF_XDP:
1297 return SECCLASS_XDP_SOCKET;
1298 case PF_MCTP:
1299 return SECCLASS_MCTP_SOCKET;
1300#if PF_MAX > 46
1301#error New address family defined, please update this function.
1302#endif
1303 }
1304 }
1305
1306 return SECCLASS_SOCKET;
1307}
1308
1309static int selinux_genfs_get_sid(struct dentry *dentry,
1310 u16 tclass,
1311 u16 flags,
1312 u32 *sid)
1313{
1314 int rc;
1315 struct super_block *sb = dentry->d_sb;
1316 char *buffer, *path;
1317
1318 buffer = (char *)__get_free_page(GFP_KERNEL);
1319 if (!buffer)
1320 return -ENOMEM;
1321
1322 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1323 if (IS_ERR(path))
1324 rc = PTR_ERR(path);
1325 else {
1326 if (flags & SE_SBPROC) {
1327 /* each process gets a /proc/PID/ entry. Strip off the
1328 * PID part to get a valid selinux labeling.
1329 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1330 while (path[1] >= '0' && path[1] <= '9') {
1331 path[1] = '/';
1332 path++;
1333 }
1334 }
1335 rc = security_genfs_sid(sb->s_type->name,
1336 path, tclass, sid);
1337 if (rc == -ENOENT) {
1338 /* No match in policy, mark as unlabeled. */
1339 *sid = SECINITSID_UNLABELED;
1340 rc = 0;
1341 }
1342 }
1343 free_page((unsigned long)buffer);
1344 return rc;
1345}
1346
1347static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1348 u32 def_sid, u32 *sid)
1349{
1350#define INITCONTEXTLEN 255
1351 char *context;
1352 unsigned int len;
1353 int rc;
1354
1355 len = INITCONTEXTLEN;
1356 context = kmalloc(len + 1, GFP_NOFS);
1357 if (!context)
1358 return -ENOMEM;
1359
1360 context[len] = '\0';
1361 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1362 if (rc == -ERANGE) {
1363 kfree(context);
1364
1365 /* Need a larger buffer. Query for the right size. */
1366 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1367 if (rc < 0)
1368 return rc;
1369
1370 len = rc;
1371 context = kmalloc(len + 1, GFP_NOFS);
1372 if (!context)
1373 return -ENOMEM;
1374
1375 context[len] = '\0';
1376 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1377 context, len);
1378 }
1379 if (rc < 0) {
1380 kfree(context);
1381 if (rc != -ENODATA) {
1382 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1383 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1384 return rc;
1385 }
1386 *sid = def_sid;
1387 return 0;
1388 }
1389
1390 rc = security_context_to_sid_default(context, rc, sid,
1391 def_sid, GFP_NOFS);
1392 if (rc) {
1393 char *dev = inode->i_sb->s_id;
1394 unsigned long ino = inode->i_ino;
1395
1396 if (rc == -EINVAL) {
1397 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1398 ino, dev, context);
1399 } else {
1400 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1401 __func__, context, -rc, dev, ino);
1402 }
1403 }
1404 kfree(context);
1405 return 0;
1406}
1407
1408/* The inode's security attributes must be initialized before first use. */
1409static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1410{
1411 struct superblock_security_struct *sbsec = NULL;
1412 struct inode_security_struct *isec = selinux_inode(inode);
1413 u32 task_sid, sid = 0;
1414 u16 sclass;
1415 struct dentry *dentry;
1416 int rc = 0;
1417
1418 if (isec->initialized == LABEL_INITIALIZED)
1419 return 0;
1420
1421 spin_lock(&isec->lock);
1422 if (isec->initialized == LABEL_INITIALIZED)
1423 goto out_unlock;
1424
1425 if (isec->sclass == SECCLASS_FILE)
1426 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1427
1428 sbsec = selinux_superblock(inode->i_sb);
1429 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1430 /* Defer initialization until selinux_complete_init,
1431 after the initial policy is loaded and the security
1432 server is ready to handle calls. */
1433 spin_lock(&sbsec->isec_lock);
1434 if (list_empty(&isec->list))
1435 list_add(&isec->list, &sbsec->isec_head);
1436 spin_unlock(&sbsec->isec_lock);
1437 goto out_unlock;
1438 }
1439
1440 sclass = isec->sclass;
1441 task_sid = isec->task_sid;
1442 sid = isec->sid;
1443 isec->initialized = LABEL_PENDING;
1444 spin_unlock(&isec->lock);
1445
1446 switch (sbsec->behavior) {
1447 /*
1448 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1449 * via xattr when called from delayed_superblock_init().
1450 */
1451 case SECURITY_FS_USE_NATIVE:
1452 case SECURITY_FS_USE_XATTR:
1453 if (!(inode->i_opflags & IOP_XATTR)) {
1454 sid = sbsec->def_sid;
1455 break;
1456 }
1457 /* Need a dentry, since the xattr API requires one.
1458 Life would be simpler if we could just pass the inode. */
1459 if (opt_dentry) {
1460 /* Called from d_instantiate or d_splice_alias. */
1461 dentry = dget(opt_dentry);
1462 } else {
1463 /*
1464 * Called from selinux_complete_init, try to find a dentry.
1465 * Some filesystems really want a connected one, so try
1466 * that first. We could split SECURITY_FS_USE_XATTR in
1467 * two, depending upon that...
1468 */
1469 dentry = d_find_alias(inode);
1470 if (!dentry)
1471 dentry = d_find_any_alias(inode);
1472 }
1473 if (!dentry) {
1474 /*
1475 * this is can be hit on boot when a file is accessed
1476 * before the policy is loaded. When we load policy we
1477 * may find inodes that have no dentry on the
1478 * sbsec->isec_head list. No reason to complain as these
1479 * will get fixed up the next time we go through
1480 * inode_doinit with a dentry, before these inodes could
1481 * be used again by userspace.
1482 */
1483 goto out_invalid;
1484 }
1485
1486 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1487 &sid);
1488 dput(dentry);
1489 if (rc)
1490 goto out;
1491 break;
1492 case SECURITY_FS_USE_TASK:
1493 sid = task_sid;
1494 break;
1495 case SECURITY_FS_USE_TRANS:
1496 /* Default to the fs SID. */
1497 sid = sbsec->sid;
1498
1499 /* Try to obtain a transition SID. */
1500 rc = security_transition_sid(task_sid, sid,
1501 sclass, NULL, &sid);
1502 if (rc)
1503 goto out;
1504 break;
1505 case SECURITY_FS_USE_MNTPOINT:
1506 sid = sbsec->mntpoint_sid;
1507 break;
1508 default:
1509 /* Default to the fs superblock SID. */
1510 sid = sbsec->sid;
1511
1512 if ((sbsec->flags & SE_SBGENFS) &&
1513 (!S_ISLNK(inode->i_mode) ||
1514 selinux_policycap_genfs_seclabel_symlinks())) {
1515 /* We must have a dentry to determine the label on
1516 * procfs inodes */
1517 if (opt_dentry) {
1518 /* Called from d_instantiate or
1519 * d_splice_alias. */
1520 dentry = dget(opt_dentry);
1521 } else {
1522 /* Called from selinux_complete_init, try to
1523 * find a dentry. Some filesystems really want
1524 * a connected one, so try that first.
1525 */
1526 dentry = d_find_alias(inode);
1527 if (!dentry)
1528 dentry = d_find_any_alias(inode);
1529 }
1530 /*
1531 * This can be hit on boot when a file is accessed
1532 * before the policy is loaded. When we load policy we
1533 * may find inodes that have no dentry on the
1534 * sbsec->isec_head list. No reason to complain as
1535 * these will get fixed up the next time we go through
1536 * inode_doinit() with a dentry, before these inodes
1537 * could be used again by userspace.
1538 */
1539 if (!dentry)
1540 goto out_invalid;
1541 rc = selinux_genfs_get_sid(dentry, sclass,
1542 sbsec->flags, &sid);
1543 if (rc) {
1544 dput(dentry);
1545 goto out;
1546 }
1547
1548 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1549 (inode->i_opflags & IOP_XATTR)) {
1550 rc = inode_doinit_use_xattr(inode, dentry,
1551 sid, &sid);
1552 if (rc) {
1553 dput(dentry);
1554 goto out;
1555 }
1556 }
1557 dput(dentry);
1558 }
1559 break;
1560 }
1561
1562out:
1563 spin_lock(&isec->lock);
1564 if (isec->initialized == LABEL_PENDING) {
1565 if (rc) {
1566 isec->initialized = LABEL_INVALID;
1567 goto out_unlock;
1568 }
1569 isec->initialized = LABEL_INITIALIZED;
1570 isec->sid = sid;
1571 }
1572
1573out_unlock:
1574 spin_unlock(&isec->lock);
1575 return rc;
1576
1577out_invalid:
1578 spin_lock(&isec->lock);
1579 if (isec->initialized == LABEL_PENDING) {
1580 isec->initialized = LABEL_INVALID;
1581 isec->sid = sid;
1582 }
1583 spin_unlock(&isec->lock);
1584 return 0;
1585}
1586
1587/* Convert a Linux signal to an access vector. */
1588static inline u32 signal_to_av(int sig)
1589{
1590 u32 perm = 0;
1591
1592 switch (sig) {
1593 case SIGCHLD:
1594 /* Commonly granted from child to parent. */
1595 perm = PROCESS__SIGCHLD;
1596 break;
1597 case SIGKILL:
1598 /* Cannot be caught or ignored */
1599 perm = PROCESS__SIGKILL;
1600 break;
1601 case SIGSTOP:
1602 /* Cannot be caught or ignored */
1603 perm = PROCESS__SIGSTOP;
1604 break;
1605 default:
1606 /* All other signals. */
1607 perm = PROCESS__SIGNAL;
1608 break;
1609 }
1610
1611 return perm;
1612}
1613
1614#if CAP_LAST_CAP > 63
1615#error Fix SELinux to handle capabilities > 63.
1616#endif
1617
1618/* Check whether a task is allowed to use a capability. */
1619static int cred_has_capability(const struct cred *cred,
1620 int cap, unsigned int opts, bool initns)
1621{
1622 struct common_audit_data ad;
1623 struct av_decision avd;
1624 u16 sclass;
1625 u32 sid = cred_sid(cred);
1626 u32 av = CAP_TO_MASK(cap);
1627 int rc;
1628
1629 ad.type = LSM_AUDIT_DATA_CAP;
1630 ad.u.cap = cap;
1631
1632 switch (CAP_TO_INDEX(cap)) {
1633 case 0:
1634 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1635 break;
1636 case 1:
1637 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1638 break;
1639 default:
1640 pr_err("SELinux: out of range capability %d\n", cap);
1641 BUG();
1642 return -EINVAL;
1643 }
1644
1645 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1646 if (!(opts & CAP_OPT_NOAUDIT)) {
1647 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1648 if (rc2)
1649 return rc2;
1650 }
1651 return rc;
1652}
1653
1654/* Check whether a task has a particular permission to an inode.
1655 The 'adp' parameter is optional and allows other audit
1656 data to be passed (e.g. the dentry). */
1657static int inode_has_perm(const struct cred *cred,
1658 struct inode *inode,
1659 u32 perms,
1660 struct common_audit_data *adp)
1661{
1662 struct inode_security_struct *isec;
1663 u32 sid;
1664
1665 if (unlikely(IS_PRIVATE(inode)))
1666 return 0;
1667
1668 sid = cred_sid(cred);
1669 isec = selinux_inode(inode);
1670
1671 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1672}
1673
1674/* Same as inode_has_perm, but pass explicit audit data containing
1675 the dentry to help the auditing code to more easily generate the
1676 pathname if needed. */
1677static inline int dentry_has_perm(const struct cred *cred,
1678 struct dentry *dentry,
1679 u32 av)
1680{
1681 struct inode *inode = d_backing_inode(dentry);
1682 struct common_audit_data ad;
1683
1684 ad.type = LSM_AUDIT_DATA_DENTRY;
1685 ad.u.dentry = dentry;
1686 __inode_security_revalidate(inode, dentry, true);
1687 return inode_has_perm(cred, inode, av, &ad);
1688}
1689
1690/* Same as inode_has_perm, but pass explicit audit data containing
1691 the path to help the auditing code to more easily generate the
1692 pathname if needed. */
1693static inline int path_has_perm(const struct cred *cred,
1694 const struct path *path,
1695 u32 av)
1696{
1697 struct inode *inode = d_backing_inode(path->dentry);
1698 struct common_audit_data ad;
1699
1700 ad.type = LSM_AUDIT_DATA_PATH;
1701 ad.u.path = *path;
1702 __inode_security_revalidate(inode, path->dentry, true);
1703 return inode_has_perm(cred, inode, av, &ad);
1704}
1705
1706/* Same as path_has_perm, but uses the inode from the file struct. */
1707static inline int file_path_has_perm(const struct cred *cred,
1708 struct file *file,
1709 u32 av)
1710{
1711 struct common_audit_data ad;
1712
1713 ad.type = LSM_AUDIT_DATA_FILE;
1714 ad.u.file = file;
1715 return inode_has_perm(cred, file_inode(file), av, &ad);
1716}
1717
1718#ifdef CONFIG_BPF_SYSCALL
1719static int bpf_fd_pass(const struct file *file, u32 sid);
1720#endif
1721
1722/* Check whether a task can use an open file descriptor to
1723 access an inode in a given way. Check access to the
1724 descriptor itself, and then use dentry_has_perm to
1725 check a particular permission to the file.
1726 Access to the descriptor is implicitly granted if it
1727 has the same SID as the process. If av is zero, then
1728 access to the file is not checked, e.g. for cases
1729 where only the descriptor is affected like seek. */
1730static int file_has_perm(const struct cred *cred,
1731 struct file *file,
1732 u32 av)
1733{
1734 struct file_security_struct *fsec = selinux_file(file);
1735 struct inode *inode = file_inode(file);
1736 struct common_audit_data ad;
1737 u32 sid = cred_sid(cred);
1738 int rc;
1739
1740 ad.type = LSM_AUDIT_DATA_FILE;
1741 ad.u.file = file;
1742
1743 if (sid != fsec->sid) {
1744 rc = avc_has_perm(sid, fsec->sid,
1745 SECCLASS_FD,
1746 FD__USE,
1747 &ad);
1748 if (rc)
1749 goto out;
1750 }
1751
1752#ifdef CONFIG_BPF_SYSCALL
1753 rc = bpf_fd_pass(file, cred_sid(cred));
1754 if (rc)
1755 return rc;
1756#endif
1757
1758 /* av is zero if only checking access to the descriptor. */
1759 rc = 0;
1760 if (av)
1761 rc = inode_has_perm(cred, inode, av, &ad);
1762
1763out:
1764 return rc;
1765}
1766
1767/*
1768 * Determine the label for an inode that might be unioned.
1769 */
1770static int
1771selinux_determine_inode_label(const struct task_security_struct *tsec,
1772 struct inode *dir,
1773 const struct qstr *name, u16 tclass,
1774 u32 *_new_isid)
1775{
1776 const struct superblock_security_struct *sbsec =
1777 selinux_superblock(dir->i_sb);
1778
1779 if ((sbsec->flags & SE_SBINITIALIZED) &&
1780 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1781 *_new_isid = sbsec->mntpoint_sid;
1782 } else if ((sbsec->flags & SBLABEL_MNT) &&
1783 tsec->create_sid) {
1784 *_new_isid = tsec->create_sid;
1785 } else {
1786 const struct inode_security_struct *dsec = inode_security(dir);
1787 return security_transition_sid(tsec->sid,
1788 dsec->sid, tclass,
1789 name, _new_isid);
1790 }
1791
1792 return 0;
1793}
1794
1795/* Check whether a task can create a file. */
1796static int may_create(struct inode *dir,
1797 struct dentry *dentry,
1798 u16 tclass)
1799{
1800 const struct task_security_struct *tsec = selinux_cred(current_cred());
1801 struct inode_security_struct *dsec;
1802 struct superblock_security_struct *sbsec;
1803 u32 sid, newsid;
1804 struct common_audit_data ad;
1805 int rc;
1806
1807 dsec = inode_security(dir);
1808 sbsec = selinux_superblock(dir->i_sb);
1809
1810 sid = tsec->sid;
1811
1812 ad.type = LSM_AUDIT_DATA_DENTRY;
1813 ad.u.dentry = dentry;
1814
1815 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1816 DIR__ADD_NAME | DIR__SEARCH,
1817 &ad);
1818 if (rc)
1819 return rc;
1820
1821 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1822 &newsid);
1823 if (rc)
1824 return rc;
1825
1826 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1827 if (rc)
1828 return rc;
1829
1830 return avc_has_perm(newsid, sbsec->sid,
1831 SECCLASS_FILESYSTEM,
1832 FILESYSTEM__ASSOCIATE, &ad);
1833}
1834
1835#define MAY_LINK 0
1836#define MAY_UNLINK 1
1837#define MAY_RMDIR 2
1838
1839/* Check whether a task can link, unlink, or rmdir a file/directory. */
1840static int may_link(struct inode *dir,
1841 struct dentry *dentry,
1842 int kind)
1843
1844{
1845 struct inode_security_struct *dsec, *isec;
1846 struct common_audit_data ad;
1847 u32 sid = current_sid();
1848 u32 av;
1849 int rc;
1850
1851 dsec = inode_security(dir);
1852 isec = backing_inode_security(dentry);
1853
1854 ad.type = LSM_AUDIT_DATA_DENTRY;
1855 ad.u.dentry = dentry;
1856
1857 av = DIR__SEARCH;
1858 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1859 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1860 if (rc)
1861 return rc;
1862
1863 switch (kind) {
1864 case MAY_LINK:
1865 av = FILE__LINK;
1866 break;
1867 case MAY_UNLINK:
1868 av = FILE__UNLINK;
1869 break;
1870 case MAY_RMDIR:
1871 av = DIR__RMDIR;
1872 break;
1873 default:
1874 pr_warn("SELinux: %s: unrecognized kind %d\n",
1875 __func__, kind);
1876 return 0;
1877 }
1878
1879 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1880 return rc;
1881}
1882
1883static inline int may_rename(struct inode *old_dir,
1884 struct dentry *old_dentry,
1885 struct inode *new_dir,
1886 struct dentry *new_dentry)
1887{
1888 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1889 struct common_audit_data ad;
1890 u32 sid = current_sid();
1891 u32 av;
1892 int old_is_dir, new_is_dir;
1893 int rc;
1894
1895 old_dsec = inode_security(old_dir);
1896 old_isec = backing_inode_security(old_dentry);
1897 old_is_dir = d_is_dir(old_dentry);
1898 new_dsec = inode_security(new_dir);
1899
1900 ad.type = LSM_AUDIT_DATA_DENTRY;
1901
1902 ad.u.dentry = old_dentry;
1903 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1904 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1905 if (rc)
1906 return rc;
1907 rc = avc_has_perm(sid, old_isec->sid,
1908 old_isec->sclass, FILE__RENAME, &ad);
1909 if (rc)
1910 return rc;
1911 if (old_is_dir && new_dir != old_dir) {
1912 rc = avc_has_perm(sid, old_isec->sid,
1913 old_isec->sclass, DIR__REPARENT, &ad);
1914 if (rc)
1915 return rc;
1916 }
1917
1918 ad.u.dentry = new_dentry;
1919 av = DIR__ADD_NAME | DIR__SEARCH;
1920 if (d_is_positive(new_dentry))
1921 av |= DIR__REMOVE_NAME;
1922 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1923 if (rc)
1924 return rc;
1925 if (d_is_positive(new_dentry)) {
1926 new_isec = backing_inode_security(new_dentry);
1927 new_is_dir = d_is_dir(new_dentry);
1928 rc = avc_has_perm(sid, new_isec->sid,
1929 new_isec->sclass,
1930 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1931 if (rc)
1932 return rc;
1933 }
1934
1935 return 0;
1936}
1937
1938/* Check whether a task can perform a filesystem operation. */
1939static int superblock_has_perm(const struct cred *cred,
1940 const struct super_block *sb,
1941 u32 perms,
1942 struct common_audit_data *ad)
1943{
1944 struct superblock_security_struct *sbsec;
1945 u32 sid = cred_sid(cred);
1946
1947 sbsec = selinux_superblock(sb);
1948 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1949}
1950
1951/* Convert a Linux mode and permission mask to an access vector. */
1952static inline u32 file_mask_to_av(int mode, int mask)
1953{
1954 u32 av = 0;
1955
1956 if (!S_ISDIR(mode)) {
1957 if (mask & MAY_EXEC)
1958 av |= FILE__EXECUTE;
1959 if (mask & MAY_READ)
1960 av |= FILE__READ;
1961
1962 if (mask & MAY_APPEND)
1963 av |= FILE__APPEND;
1964 else if (mask & MAY_WRITE)
1965 av |= FILE__WRITE;
1966
1967 } else {
1968 if (mask & MAY_EXEC)
1969 av |= DIR__SEARCH;
1970 if (mask & MAY_WRITE)
1971 av |= DIR__WRITE;
1972 if (mask & MAY_READ)
1973 av |= DIR__READ;
1974 }
1975
1976 return av;
1977}
1978
1979/* Convert a Linux file to an access vector. */
1980static inline u32 file_to_av(const struct file *file)
1981{
1982 u32 av = 0;
1983
1984 if (file->f_mode & FMODE_READ)
1985 av |= FILE__READ;
1986 if (file->f_mode & FMODE_WRITE) {
1987 if (file->f_flags & O_APPEND)
1988 av |= FILE__APPEND;
1989 else
1990 av |= FILE__WRITE;
1991 }
1992 if (!av) {
1993 /*
1994 * Special file opened with flags 3 for ioctl-only use.
1995 */
1996 av = FILE__IOCTL;
1997 }
1998
1999 return av;
2000}
2001
2002/*
2003 * Convert a file to an access vector and include the correct
2004 * open permission.
2005 */
2006static inline u32 open_file_to_av(struct file *file)
2007{
2008 u32 av = file_to_av(file);
2009 struct inode *inode = file_inode(file);
2010
2011 if (selinux_policycap_openperm() &&
2012 inode->i_sb->s_magic != SOCKFS_MAGIC)
2013 av |= FILE__OPEN;
2014
2015 return av;
2016}
2017
2018/* Hook functions begin here. */
2019
2020static int selinux_binder_set_context_mgr(const struct cred *mgr)
2021{
2022 return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2023 BINDER__SET_CONTEXT_MGR, NULL);
2024}
2025
2026static int selinux_binder_transaction(const struct cred *from,
2027 const struct cred *to)
2028{
2029 u32 mysid = current_sid();
2030 u32 fromsid = cred_sid(from);
2031 u32 tosid = cred_sid(to);
2032 int rc;
2033
2034 if (mysid != fromsid) {
2035 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2036 BINDER__IMPERSONATE, NULL);
2037 if (rc)
2038 return rc;
2039 }
2040
2041 return avc_has_perm(fromsid, tosid,
2042 SECCLASS_BINDER, BINDER__CALL, NULL);
2043}
2044
2045static int selinux_binder_transfer_binder(const struct cred *from,
2046 const struct cred *to)
2047{
2048 return avc_has_perm(cred_sid(from), cred_sid(to),
2049 SECCLASS_BINDER, BINDER__TRANSFER,
2050 NULL);
2051}
2052
2053static int selinux_binder_transfer_file(const struct cred *from,
2054 const struct cred *to,
2055 const struct file *file)
2056{
2057 u32 sid = cred_sid(to);
2058 struct file_security_struct *fsec = selinux_file(file);
2059 struct dentry *dentry = file->f_path.dentry;
2060 struct inode_security_struct *isec;
2061 struct common_audit_data ad;
2062 int rc;
2063
2064 ad.type = LSM_AUDIT_DATA_PATH;
2065 ad.u.path = file->f_path;
2066
2067 if (sid != fsec->sid) {
2068 rc = avc_has_perm(sid, fsec->sid,
2069 SECCLASS_FD,
2070 FD__USE,
2071 &ad);
2072 if (rc)
2073 return rc;
2074 }
2075
2076#ifdef CONFIG_BPF_SYSCALL
2077 rc = bpf_fd_pass(file, sid);
2078 if (rc)
2079 return rc;
2080#endif
2081
2082 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2083 return 0;
2084
2085 isec = backing_inode_security(dentry);
2086 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2087 &ad);
2088}
2089
2090static int selinux_ptrace_access_check(struct task_struct *child,
2091 unsigned int mode)
2092{
2093 u32 sid = current_sid();
2094 u32 csid = task_sid_obj(child);
2095
2096 if (mode & PTRACE_MODE_READ)
2097 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2098 NULL);
2099
2100 return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2101 NULL);
2102}
2103
2104static int selinux_ptrace_traceme(struct task_struct *parent)
2105{
2106 return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2107 SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2108}
2109
2110static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2111 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2112{
2113 return avc_has_perm(current_sid(), task_sid_obj(target),
2114 SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2115}
2116
2117static int selinux_capset(struct cred *new, const struct cred *old,
2118 const kernel_cap_t *effective,
2119 const kernel_cap_t *inheritable,
2120 const kernel_cap_t *permitted)
2121{
2122 return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2123 PROCESS__SETCAP, NULL);
2124}
2125
2126/*
2127 * (This comment used to live with the selinux_task_setuid hook,
2128 * which was removed).
2129 *
2130 * Since setuid only affects the current process, and since the SELinux
2131 * controls are not based on the Linux identity attributes, SELinux does not
2132 * need to control this operation. However, SELinux does control the use of
2133 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2134 */
2135
2136static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2137 int cap, unsigned int opts)
2138{
2139 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2140}
2141
2142static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2143{
2144 const struct cred *cred = current_cred();
2145 int rc = 0;
2146
2147 if (!sb)
2148 return 0;
2149
2150 switch (cmds) {
2151 case Q_SYNC:
2152 case Q_QUOTAON:
2153 case Q_QUOTAOFF:
2154 case Q_SETINFO:
2155 case Q_SETQUOTA:
2156 case Q_XQUOTAOFF:
2157 case Q_XQUOTAON:
2158 case Q_XSETQLIM:
2159 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2160 break;
2161 case Q_GETFMT:
2162 case Q_GETINFO:
2163 case Q_GETQUOTA:
2164 case Q_XGETQUOTA:
2165 case Q_XGETQSTAT:
2166 case Q_XGETQSTATV:
2167 case Q_XGETNEXTQUOTA:
2168 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2169 break;
2170 default:
2171 rc = 0; /* let the kernel handle invalid cmds */
2172 break;
2173 }
2174 return rc;
2175}
2176
2177static int selinux_quota_on(struct dentry *dentry)
2178{
2179 const struct cred *cred = current_cred();
2180
2181 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2182}
2183
2184static int selinux_syslog(int type)
2185{
2186 switch (type) {
2187 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2188 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2189 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2190 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2191 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2192 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2193 /* Set level of messages printed to console */
2194 case SYSLOG_ACTION_CONSOLE_LEVEL:
2195 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2196 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2197 NULL);
2198 }
2199 /* All other syslog types */
2200 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2202}
2203
2204/*
2205 * Check that a process has enough memory to allocate a new virtual
2206 * mapping. 0 means there is enough memory for the allocation to
2207 * succeed and -ENOMEM implies there is not.
2208 *
2209 * Do not audit the selinux permission check, as this is applied to all
2210 * processes that allocate mappings.
2211 */
2212static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2213{
2214 int rc, cap_sys_admin = 0;
2215
2216 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2217 CAP_OPT_NOAUDIT, true);
2218 if (rc == 0)
2219 cap_sys_admin = 1;
2220
2221 return cap_sys_admin;
2222}
2223
2224/* binprm security operations */
2225
2226static u32 ptrace_parent_sid(void)
2227{
2228 u32 sid = 0;
2229 struct task_struct *tracer;
2230
2231 rcu_read_lock();
2232 tracer = ptrace_parent(current);
2233 if (tracer)
2234 sid = task_sid_obj(tracer);
2235 rcu_read_unlock();
2236
2237 return sid;
2238}
2239
2240static int check_nnp_nosuid(const struct linux_binprm *bprm,
2241 const struct task_security_struct *old_tsec,
2242 const struct task_security_struct *new_tsec)
2243{
2244 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2245 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2246 int rc;
2247 u32 av;
2248
2249 if (!nnp && !nosuid)
2250 return 0; /* neither NNP nor nosuid */
2251
2252 if (new_tsec->sid == old_tsec->sid)
2253 return 0; /* No change in credentials */
2254
2255 /*
2256 * If the policy enables the nnp_nosuid_transition policy capability,
2257 * then we permit transitions under NNP or nosuid if the
2258 * policy allows the corresponding permission between
2259 * the old and new contexts.
2260 */
2261 if (selinux_policycap_nnp_nosuid_transition()) {
2262 av = 0;
2263 if (nnp)
2264 av |= PROCESS2__NNP_TRANSITION;
2265 if (nosuid)
2266 av |= PROCESS2__NOSUID_TRANSITION;
2267 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2268 SECCLASS_PROCESS2, av, NULL);
2269 if (!rc)
2270 return 0;
2271 }
2272
2273 /*
2274 * We also permit NNP or nosuid transitions to bounded SIDs,
2275 * i.e. SIDs that are guaranteed to only be allowed a subset
2276 * of the permissions of the current SID.
2277 */
2278 rc = security_bounded_transition(old_tsec->sid,
2279 new_tsec->sid);
2280 if (!rc)
2281 return 0;
2282
2283 /*
2284 * On failure, preserve the errno values for NNP vs nosuid.
2285 * NNP: Operation not permitted for caller.
2286 * nosuid: Permission denied to file.
2287 */
2288 if (nnp)
2289 return -EPERM;
2290 return -EACCES;
2291}
2292
2293static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2294{
2295 const struct task_security_struct *old_tsec;
2296 struct task_security_struct *new_tsec;
2297 struct inode_security_struct *isec;
2298 struct common_audit_data ad;
2299 struct inode *inode = file_inode(bprm->file);
2300 int rc;
2301
2302 /* SELinux context only depends on initial program or script and not
2303 * the script interpreter */
2304
2305 old_tsec = selinux_cred(current_cred());
2306 new_tsec = selinux_cred(bprm->cred);
2307 isec = inode_security(inode);
2308
2309 /* Default to the current task SID. */
2310 new_tsec->sid = old_tsec->sid;
2311 new_tsec->osid = old_tsec->sid;
2312
2313 /* Reset fs, key, and sock SIDs on execve. */
2314 new_tsec->create_sid = 0;
2315 new_tsec->keycreate_sid = 0;
2316 new_tsec->sockcreate_sid = 0;
2317
2318 /*
2319 * Before policy is loaded, label any task outside kernel space
2320 * as SECINITSID_INIT, so that any userspace tasks surviving from
2321 * early boot end up with a label different from SECINITSID_KERNEL
2322 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2323 */
2324 if (!selinux_initialized()) {
2325 new_tsec->sid = SECINITSID_INIT;
2326 /* also clear the exec_sid just in case */
2327 new_tsec->exec_sid = 0;
2328 return 0;
2329 }
2330
2331 if (old_tsec->exec_sid) {
2332 new_tsec->sid = old_tsec->exec_sid;
2333 /* Reset exec SID on execve. */
2334 new_tsec->exec_sid = 0;
2335
2336 /* Fail on NNP or nosuid if not an allowed transition. */
2337 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2338 if (rc)
2339 return rc;
2340 } else {
2341 /* Check for a default transition on this program. */
2342 rc = security_transition_sid(old_tsec->sid,
2343 isec->sid, SECCLASS_PROCESS, NULL,
2344 &new_tsec->sid);
2345 if (rc)
2346 return rc;
2347
2348 /*
2349 * Fallback to old SID on NNP or nosuid if not an allowed
2350 * transition.
2351 */
2352 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2353 if (rc)
2354 new_tsec->sid = old_tsec->sid;
2355 }
2356
2357 ad.type = LSM_AUDIT_DATA_FILE;
2358 ad.u.file = bprm->file;
2359
2360 if (new_tsec->sid == old_tsec->sid) {
2361 rc = avc_has_perm(old_tsec->sid, isec->sid,
2362 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2363 if (rc)
2364 return rc;
2365 } else {
2366 /* Check permissions for the transition. */
2367 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2368 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2369 if (rc)
2370 return rc;
2371
2372 rc = avc_has_perm(new_tsec->sid, isec->sid,
2373 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2374 if (rc)
2375 return rc;
2376
2377 /* Check for shared state */
2378 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2379 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2380 SECCLASS_PROCESS, PROCESS__SHARE,
2381 NULL);
2382 if (rc)
2383 return -EPERM;
2384 }
2385
2386 /* Make sure that anyone attempting to ptrace over a task that
2387 * changes its SID has the appropriate permit */
2388 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2389 u32 ptsid = ptrace_parent_sid();
2390 if (ptsid != 0) {
2391 rc = avc_has_perm(ptsid, new_tsec->sid,
2392 SECCLASS_PROCESS,
2393 PROCESS__PTRACE, NULL);
2394 if (rc)
2395 return -EPERM;
2396 }
2397 }
2398
2399 /* Clear any possibly unsafe personality bits on exec: */
2400 bprm->per_clear |= PER_CLEAR_ON_SETID;
2401
2402 /* Enable secure mode for SIDs transitions unless
2403 the noatsecure permission is granted between
2404 the two SIDs, i.e. ahp returns 0. */
2405 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2406 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2407 NULL);
2408 bprm->secureexec |= !!rc;
2409 }
2410
2411 return 0;
2412}
2413
2414static int match_file(const void *p, struct file *file, unsigned fd)
2415{
2416 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2417}
2418
2419/* Derived from fs/exec.c:flush_old_files. */
2420static inline void flush_unauthorized_files(const struct cred *cred,
2421 struct files_struct *files)
2422{
2423 struct file *file, *devnull = NULL;
2424 struct tty_struct *tty;
2425 int drop_tty = 0;
2426 unsigned n;
2427
2428 tty = get_current_tty();
2429 if (tty) {
2430 spin_lock(&tty->files_lock);
2431 if (!list_empty(&tty->tty_files)) {
2432 struct tty_file_private *file_priv;
2433
2434 /* Revalidate access to controlling tty.
2435 Use file_path_has_perm on the tty path directly
2436 rather than using file_has_perm, as this particular
2437 open file may belong to another process and we are
2438 only interested in the inode-based check here. */
2439 file_priv = list_first_entry(&tty->tty_files,
2440 struct tty_file_private, list);
2441 file = file_priv->file;
2442 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2443 drop_tty = 1;
2444 }
2445 spin_unlock(&tty->files_lock);
2446 tty_kref_put(tty);
2447 }
2448 /* Reset controlling tty. */
2449 if (drop_tty)
2450 no_tty();
2451
2452 /* Revalidate access to inherited open files. */
2453 n = iterate_fd(files, 0, match_file, cred);
2454 if (!n) /* none found? */
2455 return;
2456
2457 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2458 if (IS_ERR(devnull))
2459 devnull = NULL;
2460 /* replace all the matching ones with this */
2461 do {
2462 replace_fd(n - 1, devnull, 0);
2463 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2464 if (devnull)
2465 fput(devnull);
2466}
2467
2468/*
2469 * Prepare a process for imminent new credential changes due to exec
2470 */
2471static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2472{
2473 struct task_security_struct *new_tsec;
2474 struct rlimit *rlim, *initrlim;
2475 int rc, i;
2476
2477 new_tsec = selinux_cred(bprm->cred);
2478 if (new_tsec->sid == new_tsec->osid)
2479 return;
2480
2481 /* Close files for which the new task SID is not authorized. */
2482 flush_unauthorized_files(bprm->cred, current->files);
2483
2484 /* Always clear parent death signal on SID transitions. */
2485 current->pdeath_signal = 0;
2486
2487 /* Check whether the new SID can inherit resource limits from the old
2488 * SID. If not, reset all soft limits to the lower of the current
2489 * task's hard limit and the init task's soft limit.
2490 *
2491 * Note that the setting of hard limits (even to lower them) can be
2492 * controlled by the setrlimit check. The inclusion of the init task's
2493 * soft limit into the computation is to avoid resetting soft limits
2494 * higher than the default soft limit for cases where the default is
2495 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2496 */
2497 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2498 PROCESS__RLIMITINH, NULL);
2499 if (rc) {
2500 /* protect against do_prlimit() */
2501 task_lock(current);
2502 for (i = 0; i < RLIM_NLIMITS; i++) {
2503 rlim = current->signal->rlim + i;
2504 initrlim = init_task.signal->rlim + i;
2505 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2506 }
2507 task_unlock(current);
2508 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2509 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2510 }
2511}
2512
2513/*
2514 * Clean up the process immediately after the installation of new credentials
2515 * due to exec
2516 */
2517static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2518{
2519 const struct task_security_struct *tsec = selinux_cred(current_cred());
2520 u32 osid, sid;
2521 int rc;
2522
2523 osid = tsec->osid;
2524 sid = tsec->sid;
2525
2526 if (sid == osid)
2527 return;
2528
2529 /* Check whether the new SID can inherit signal state from the old SID.
2530 * If not, clear itimers to avoid subsequent signal generation and
2531 * flush and unblock signals.
2532 *
2533 * This must occur _after_ the task SID has been updated so that any
2534 * kill done after the flush will be checked against the new SID.
2535 */
2536 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2537 if (rc) {
2538 clear_itimer();
2539
2540 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2541 if (!fatal_signal_pending(current)) {
2542 flush_sigqueue(¤t->pending);
2543 flush_sigqueue(¤t->signal->shared_pending);
2544 flush_signal_handlers(current, 1);
2545 sigemptyset(¤t->blocked);
2546 recalc_sigpending();
2547 }
2548 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2549 }
2550
2551 /* Wake up the parent if it is waiting so that it can recheck
2552 * wait permission to the new task SID. */
2553 read_lock(&tasklist_lock);
2554 __wake_up_parent(current, unrcu_pointer(current->real_parent));
2555 read_unlock(&tasklist_lock);
2556}
2557
2558/* superblock security operations */
2559
2560static int selinux_sb_alloc_security(struct super_block *sb)
2561{
2562 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2563
2564 mutex_init(&sbsec->lock);
2565 INIT_LIST_HEAD(&sbsec->isec_head);
2566 spin_lock_init(&sbsec->isec_lock);
2567 sbsec->sid = SECINITSID_UNLABELED;
2568 sbsec->def_sid = SECINITSID_FILE;
2569 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2570
2571 return 0;
2572}
2573
2574static inline int opt_len(const char *s)
2575{
2576 bool open_quote = false;
2577 int len;
2578 char c;
2579
2580 for (len = 0; (c = s[len]) != '\0'; len++) {
2581 if (c == '"')
2582 open_quote = !open_quote;
2583 if (c == ',' && !open_quote)
2584 break;
2585 }
2586 return len;
2587}
2588
2589static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2590{
2591 char *from = options;
2592 char *to = options;
2593 bool first = true;
2594 int rc;
2595
2596 while (1) {
2597 int len = opt_len(from);
2598 int token;
2599 char *arg = NULL;
2600
2601 token = match_opt_prefix(from, len, &arg);
2602
2603 if (token != Opt_error) {
2604 char *p, *q;
2605
2606 /* strip quotes */
2607 if (arg) {
2608 for (p = q = arg; p < from + len; p++) {
2609 char c = *p;
2610 if (c != '"')
2611 *q++ = c;
2612 }
2613 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2614 if (!arg) {
2615 rc = -ENOMEM;
2616 goto free_opt;
2617 }
2618 }
2619 rc = selinux_add_opt(token, arg, mnt_opts);
2620 kfree(arg);
2621 arg = NULL;
2622 if (unlikely(rc)) {
2623 goto free_opt;
2624 }
2625 } else {
2626 if (!first) { // copy with preceding comma
2627 from--;
2628 len++;
2629 }
2630 if (to != from)
2631 memmove(to, from, len);
2632 to += len;
2633 first = false;
2634 }
2635 if (!from[len])
2636 break;
2637 from += len + 1;
2638 }
2639 *to = '\0';
2640 return 0;
2641
2642free_opt:
2643 if (*mnt_opts) {
2644 selinux_free_mnt_opts(*mnt_opts);
2645 *mnt_opts = NULL;
2646 }
2647 return rc;
2648}
2649
2650static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2651{
2652 struct selinux_mnt_opts *opts = mnt_opts;
2653 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2654
2655 /*
2656 * Superblock not initialized (i.e. no options) - reject if any
2657 * options specified, otherwise accept.
2658 */
2659 if (!(sbsec->flags & SE_SBINITIALIZED))
2660 return opts ? 1 : 0;
2661
2662 /*
2663 * Superblock initialized and no options specified - reject if
2664 * superblock has any options set, otherwise accept.
2665 */
2666 if (!opts)
2667 return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2668
2669 if (opts->fscontext_sid) {
2670 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2671 opts->fscontext_sid))
2672 return 1;
2673 }
2674 if (opts->context_sid) {
2675 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2676 opts->context_sid))
2677 return 1;
2678 }
2679 if (opts->rootcontext_sid) {
2680 struct inode_security_struct *root_isec;
2681
2682 root_isec = backing_inode_security(sb->s_root);
2683 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2684 opts->rootcontext_sid))
2685 return 1;
2686 }
2687 if (opts->defcontext_sid) {
2688 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2689 opts->defcontext_sid))
2690 return 1;
2691 }
2692 return 0;
2693}
2694
2695static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2696{
2697 struct selinux_mnt_opts *opts = mnt_opts;
2698 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2699
2700 if (!(sbsec->flags & SE_SBINITIALIZED))
2701 return 0;
2702
2703 if (!opts)
2704 return 0;
2705
2706 if (opts->fscontext_sid) {
2707 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2708 opts->fscontext_sid))
2709 goto out_bad_option;
2710 }
2711 if (opts->context_sid) {
2712 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2713 opts->context_sid))
2714 goto out_bad_option;
2715 }
2716 if (opts->rootcontext_sid) {
2717 struct inode_security_struct *root_isec;
2718 root_isec = backing_inode_security(sb->s_root);
2719 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2720 opts->rootcontext_sid))
2721 goto out_bad_option;
2722 }
2723 if (opts->defcontext_sid) {
2724 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2725 opts->defcontext_sid))
2726 goto out_bad_option;
2727 }
2728 return 0;
2729
2730out_bad_option:
2731 pr_warn("SELinux: unable to change security options "
2732 "during remount (dev %s, type=%s)\n", sb->s_id,
2733 sb->s_type->name);
2734 return -EINVAL;
2735}
2736
2737static int selinux_sb_kern_mount(const struct super_block *sb)
2738{
2739 const struct cred *cred = current_cred();
2740 struct common_audit_data ad;
2741
2742 ad.type = LSM_AUDIT_DATA_DENTRY;
2743 ad.u.dentry = sb->s_root;
2744 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2745}
2746
2747static int selinux_sb_statfs(struct dentry *dentry)
2748{
2749 const struct cred *cred = current_cred();
2750 struct common_audit_data ad;
2751
2752 ad.type = LSM_AUDIT_DATA_DENTRY;
2753 ad.u.dentry = dentry->d_sb->s_root;
2754 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2755}
2756
2757static int selinux_mount(const char *dev_name,
2758 const struct path *path,
2759 const char *type,
2760 unsigned long flags,
2761 void *data)
2762{
2763 const struct cred *cred = current_cred();
2764
2765 if (flags & MS_REMOUNT)
2766 return superblock_has_perm(cred, path->dentry->d_sb,
2767 FILESYSTEM__REMOUNT, NULL);
2768 else
2769 return path_has_perm(cred, path, FILE__MOUNTON);
2770}
2771
2772static int selinux_move_mount(const struct path *from_path,
2773 const struct path *to_path)
2774{
2775 const struct cred *cred = current_cred();
2776
2777 return path_has_perm(cred, to_path, FILE__MOUNTON);
2778}
2779
2780static int selinux_umount(struct vfsmount *mnt, int flags)
2781{
2782 const struct cred *cred = current_cred();
2783
2784 return superblock_has_perm(cred, mnt->mnt_sb,
2785 FILESYSTEM__UNMOUNT, NULL);
2786}
2787
2788static int selinux_fs_context_submount(struct fs_context *fc,
2789 struct super_block *reference)
2790{
2791 const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2792 struct selinux_mnt_opts *opts;
2793
2794 /*
2795 * Ensure that fc->security remains NULL when no options are set
2796 * as expected by selinux_set_mnt_opts().
2797 */
2798 if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2799 return 0;
2800
2801 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2802 if (!opts)
2803 return -ENOMEM;
2804
2805 if (sbsec->flags & FSCONTEXT_MNT)
2806 opts->fscontext_sid = sbsec->sid;
2807 if (sbsec->flags & CONTEXT_MNT)
2808 opts->context_sid = sbsec->mntpoint_sid;
2809 if (sbsec->flags & DEFCONTEXT_MNT)
2810 opts->defcontext_sid = sbsec->def_sid;
2811 fc->security = opts;
2812 return 0;
2813}
2814
2815static int selinux_fs_context_dup(struct fs_context *fc,
2816 struct fs_context *src_fc)
2817{
2818 const struct selinux_mnt_opts *src = src_fc->security;
2819
2820 if (!src)
2821 return 0;
2822
2823 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2824 return fc->security ? 0 : -ENOMEM;
2825}
2826
2827static const struct fs_parameter_spec selinux_fs_parameters[] = {
2828 fsparam_string(CONTEXT_STR, Opt_context),
2829 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2830 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2831 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2832 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2833 {}
2834};
2835
2836static int selinux_fs_context_parse_param(struct fs_context *fc,
2837 struct fs_parameter *param)
2838{
2839 struct fs_parse_result result;
2840 int opt;
2841
2842 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2843 if (opt < 0)
2844 return opt;
2845
2846 return selinux_add_opt(opt, param->string, &fc->security);
2847}
2848
2849/* inode security operations */
2850
2851static int selinux_inode_alloc_security(struct inode *inode)
2852{
2853 struct inode_security_struct *isec = selinux_inode(inode);
2854 u32 sid = current_sid();
2855
2856 spin_lock_init(&isec->lock);
2857 INIT_LIST_HEAD(&isec->list);
2858 isec->inode = inode;
2859 isec->sid = SECINITSID_UNLABELED;
2860 isec->sclass = SECCLASS_FILE;
2861 isec->task_sid = sid;
2862 isec->initialized = LABEL_INVALID;
2863
2864 return 0;
2865}
2866
2867static void selinux_inode_free_security(struct inode *inode)
2868{
2869 inode_free_security(inode);
2870}
2871
2872static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2873 const struct qstr *name,
2874 const char **xattr_name, void **ctx,
2875 u32 *ctxlen)
2876{
2877 u32 newsid;
2878 int rc;
2879
2880 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2881 d_inode(dentry->d_parent), name,
2882 inode_mode_to_security_class(mode),
2883 &newsid);
2884 if (rc)
2885 return rc;
2886
2887 if (xattr_name)
2888 *xattr_name = XATTR_NAME_SELINUX;
2889
2890 return security_sid_to_context(newsid, (char **)ctx,
2891 ctxlen);
2892}
2893
2894static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2895 struct qstr *name,
2896 const struct cred *old,
2897 struct cred *new)
2898{
2899 u32 newsid;
2900 int rc;
2901 struct task_security_struct *tsec;
2902
2903 rc = selinux_determine_inode_label(selinux_cred(old),
2904 d_inode(dentry->d_parent), name,
2905 inode_mode_to_security_class(mode),
2906 &newsid);
2907 if (rc)
2908 return rc;
2909
2910 tsec = selinux_cred(new);
2911 tsec->create_sid = newsid;
2912 return 0;
2913}
2914
2915static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2916 const struct qstr *qstr,
2917 struct xattr *xattrs, int *xattr_count)
2918{
2919 const struct task_security_struct *tsec = selinux_cred(current_cred());
2920 struct superblock_security_struct *sbsec;
2921 struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2922 u32 newsid, clen;
2923 u16 newsclass;
2924 int rc;
2925 char *context;
2926
2927 sbsec = selinux_superblock(dir->i_sb);
2928
2929 newsid = tsec->create_sid;
2930 newsclass = inode_mode_to_security_class(inode->i_mode);
2931 rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
2932 if (rc)
2933 return rc;
2934
2935 /* Possibly defer initialization to selinux_complete_init. */
2936 if (sbsec->flags & SE_SBINITIALIZED) {
2937 struct inode_security_struct *isec = selinux_inode(inode);
2938 isec->sclass = newsclass;
2939 isec->sid = newsid;
2940 isec->initialized = LABEL_INITIALIZED;
2941 }
2942
2943 if (!selinux_initialized() ||
2944 !(sbsec->flags & SBLABEL_MNT))
2945 return -EOPNOTSUPP;
2946
2947 if (xattr) {
2948 rc = security_sid_to_context_force(newsid,
2949 &context, &clen);
2950 if (rc)
2951 return rc;
2952 xattr->value = context;
2953 xattr->value_len = clen;
2954 xattr->name = XATTR_SELINUX_SUFFIX;
2955 }
2956
2957 return 0;
2958}
2959
2960static int selinux_inode_init_security_anon(struct inode *inode,
2961 const struct qstr *name,
2962 const struct inode *context_inode)
2963{
2964 const struct task_security_struct *tsec = selinux_cred(current_cred());
2965 struct common_audit_data ad;
2966 struct inode_security_struct *isec;
2967 int rc;
2968
2969 if (unlikely(!selinux_initialized()))
2970 return 0;
2971
2972 isec = selinux_inode(inode);
2973
2974 /*
2975 * We only get here once per ephemeral inode. The inode has
2976 * been initialized via inode_alloc_security but is otherwise
2977 * untouched.
2978 */
2979
2980 if (context_inode) {
2981 struct inode_security_struct *context_isec =
2982 selinux_inode(context_inode);
2983 if (context_isec->initialized != LABEL_INITIALIZED) {
2984 pr_err("SELinux: context_inode is not initialized\n");
2985 return -EACCES;
2986 }
2987
2988 isec->sclass = context_isec->sclass;
2989 isec->sid = context_isec->sid;
2990 } else {
2991 isec->sclass = SECCLASS_ANON_INODE;
2992 rc = security_transition_sid(
2993 tsec->sid, tsec->sid,
2994 isec->sclass, name, &isec->sid);
2995 if (rc)
2996 return rc;
2997 }
2998
2999 isec->initialized = LABEL_INITIALIZED;
3000 /*
3001 * Now that we've initialized security, check whether we're
3002 * allowed to actually create this type of anonymous inode.
3003 */
3004
3005 ad.type = LSM_AUDIT_DATA_ANONINODE;
3006 ad.u.anonclass = name ? (const char *)name->name : "?";
3007
3008 return avc_has_perm(tsec->sid,
3009 isec->sid,
3010 isec->sclass,
3011 FILE__CREATE,
3012 &ad);
3013}
3014
3015static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3016{
3017 return may_create(dir, dentry, SECCLASS_FILE);
3018}
3019
3020static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3021{
3022 return may_link(dir, old_dentry, MAY_LINK);
3023}
3024
3025static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3026{
3027 return may_link(dir, dentry, MAY_UNLINK);
3028}
3029
3030static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3031{
3032 return may_create(dir, dentry, SECCLASS_LNK_FILE);
3033}
3034
3035static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3036{
3037 return may_create(dir, dentry, SECCLASS_DIR);
3038}
3039
3040static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3041{
3042 return may_link(dir, dentry, MAY_RMDIR);
3043}
3044
3045static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3046{
3047 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3048}
3049
3050static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3051 struct inode *new_inode, struct dentry *new_dentry)
3052{
3053 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3054}
3055
3056static int selinux_inode_readlink(struct dentry *dentry)
3057{
3058 const struct cred *cred = current_cred();
3059
3060 return dentry_has_perm(cred, dentry, FILE__READ);
3061}
3062
3063static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3064 bool rcu)
3065{
3066 const struct cred *cred = current_cred();
3067 struct common_audit_data ad;
3068 struct inode_security_struct *isec;
3069 u32 sid;
3070
3071 ad.type = LSM_AUDIT_DATA_DENTRY;
3072 ad.u.dentry = dentry;
3073 sid = cred_sid(cred);
3074 isec = inode_security_rcu(inode, rcu);
3075 if (IS_ERR(isec))
3076 return PTR_ERR(isec);
3077
3078 return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3079}
3080
3081static noinline int audit_inode_permission(struct inode *inode,
3082 u32 perms, u32 audited, u32 denied,
3083 int result)
3084{
3085 struct common_audit_data ad;
3086 struct inode_security_struct *isec = selinux_inode(inode);
3087
3088 ad.type = LSM_AUDIT_DATA_INODE;
3089 ad.u.inode = inode;
3090
3091 return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3092 audited, denied, result, &ad);
3093}
3094
3095static int selinux_inode_permission(struct inode *inode, int mask)
3096{
3097 const struct cred *cred = current_cred();
3098 u32 perms;
3099 bool from_access;
3100 bool no_block = mask & MAY_NOT_BLOCK;
3101 struct inode_security_struct *isec;
3102 u32 sid;
3103 struct av_decision avd;
3104 int rc, rc2;
3105 u32 audited, denied;
3106
3107 from_access = mask & MAY_ACCESS;
3108 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3109
3110 /* No permission to check. Existence test. */
3111 if (!mask)
3112 return 0;
3113
3114 if (unlikely(IS_PRIVATE(inode)))
3115 return 0;
3116
3117 perms = file_mask_to_av(inode->i_mode, mask);
3118
3119 sid = cred_sid(cred);
3120 isec = inode_security_rcu(inode, no_block);
3121 if (IS_ERR(isec))
3122 return PTR_ERR(isec);
3123
3124 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3125 &avd);
3126 audited = avc_audit_required(perms, &avd, rc,
3127 from_access ? FILE__AUDIT_ACCESS : 0,
3128 &denied);
3129 if (likely(!audited))
3130 return rc;
3131
3132 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3133 if (rc2)
3134 return rc2;
3135 return rc;
3136}
3137
3138static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3139 struct iattr *iattr)
3140{
3141 const struct cred *cred = current_cred();
3142 struct inode *inode = d_backing_inode(dentry);
3143 unsigned int ia_valid = iattr->ia_valid;
3144 __u32 av = FILE__WRITE;
3145
3146 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3147 if (ia_valid & ATTR_FORCE) {
3148 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3149 ATTR_FORCE);
3150 if (!ia_valid)
3151 return 0;
3152 }
3153
3154 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3155 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3156 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3157
3158 if (selinux_policycap_openperm() &&
3159 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3160 (ia_valid & ATTR_SIZE) &&
3161 !(ia_valid & ATTR_FILE))
3162 av |= FILE__OPEN;
3163
3164 return dentry_has_perm(cred, dentry, av);
3165}
3166
3167static int selinux_inode_getattr(const struct path *path)
3168{
3169 return path_has_perm(current_cred(), path, FILE__GETATTR);
3170}
3171
3172static bool has_cap_mac_admin(bool audit)
3173{
3174 const struct cred *cred = current_cred();
3175 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3176
3177 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3178 return false;
3179 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3180 return false;
3181 return true;
3182}
3183
3184static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3185 struct dentry *dentry, const char *name,
3186 const void *value, size_t size, int flags)
3187{
3188 struct inode *inode = d_backing_inode(dentry);
3189 struct inode_security_struct *isec;
3190 struct superblock_security_struct *sbsec;
3191 struct common_audit_data ad;
3192 u32 newsid, sid = current_sid();
3193 int rc = 0;
3194
3195 if (strcmp(name, XATTR_NAME_SELINUX)) {
3196 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3197 if (rc)
3198 return rc;
3199
3200 /* Not an attribute we recognize, so just check the
3201 ordinary setattr permission. */
3202 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3203 }
3204
3205 if (!selinux_initialized())
3206 return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3207
3208 sbsec = selinux_superblock(inode->i_sb);
3209 if (!(sbsec->flags & SBLABEL_MNT))
3210 return -EOPNOTSUPP;
3211
3212 if (!inode_owner_or_capable(idmap, inode))
3213 return -EPERM;
3214
3215 ad.type = LSM_AUDIT_DATA_DENTRY;
3216 ad.u.dentry = dentry;
3217
3218 isec = backing_inode_security(dentry);
3219 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3220 FILE__RELABELFROM, &ad);
3221 if (rc)
3222 return rc;
3223
3224 rc = security_context_to_sid(value, size, &newsid,
3225 GFP_KERNEL);
3226 if (rc == -EINVAL) {
3227 if (!has_cap_mac_admin(true)) {
3228 struct audit_buffer *ab;
3229 size_t audit_size;
3230
3231 /* We strip a nul only if it is at the end, otherwise the
3232 * context contains a nul and we should audit that */
3233 if (value) {
3234 const char *str = value;
3235
3236 if (str[size - 1] == '\0')
3237 audit_size = size - 1;
3238 else
3239 audit_size = size;
3240 } else {
3241 audit_size = 0;
3242 }
3243 ab = audit_log_start(audit_context(),
3244 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3245 if (!ab)
3246 return rc;
3247 audit_log_format(ab, "op=setxattr invalid_context=");
3248 audit_log_n_untrustedstring(ab, value, audit_size);
3249 audit_log_end(ab);
3250
3251 return rc;
3252 }
3253 rc = security_context_to_sid_force(value,
3254 size, &newsid);
3255 }
3256 if (rc)
3257 return rc;
3258
3259 rc = avc_has_perm(sid, newsid, isec->sclass,
3260 FILE__RELABELTO, &ad);
3261 if (rc)
3262 return rc;
3263
3264 rc = security_validate_transition(isec->sid, newsid,
3265 sid, isec->sclass);
3266 if (rc)
3267 return rc;
3268
3269 return avc_has_perm(newsid,
3270 sbsec->sid,
3271 SECCLASS_FILESYSTEM,
3272 FILESYSTEM__ASSOCIATE,
3273 &ad);
3274}
3275
3276static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3277 struct dentry *dentry, const char *acl_name,
3278 struct posix_acl *kacl)
3279{
3280 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3281}
3282
3283static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3284 struct dentry *dentry, const char *acl_name)
3285{
3286 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3287}
3288
3289static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3290 struct dentry *dentry, const char *acl_name)
3291{
3292 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3293}
3294
3295static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3296 const void *value, size_t size,
3297 int flags)
3298{
3299 struct inode *inode = d_backing_inode(dentry);
3300 struct inode_security_struct *isec;
3301 u32 newsid;
3302 int rc;
3303
3304 if (strcmp(name, XATTR_NAME_SELINUX)) {
3305 /* Not an attribute we recognize, so nothing to do. */
3306 return;
3307 }
3308
3309 if (!selinux_initialized()) {
3310 /* If we haven't even been initialized, then we can't validate
3311 * against a policy, so leave the label as invalid. It may
3312 * resolve to a valid label on the next revalidation try if
3313 * we've since initialized.
3314 */
3315 return;
3316 }
3317
3318 rc = security_context_to_sid_force(value, size,
3319 &newsid);
3320 if (rc) {
3321 pr_err("SELinux: unable to map context to SID"
3322 "for (%s, %lu), rc=%d\n",
3323 inode->i_sb->s_id, inode->i_ino, -rc);
3324 return;
3325 }
3326
3327 isec = backing_inode_security(dentry);
3328 spin_lock(&isec->lock);
3329 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3330 isec->sid = newsid;
3331 isec->initialized = LABEL_INITIALIZED;
3332 spin_unlock(&isec->lock);
3333}
3334
3335static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3336{
3337 const struct cred *cred = current_cred();
3338
3339 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3340}
3341
3342static int selinux_inode_listxattr(struct dentry *dentry)
3343{
3344 const struct cred *cred = current_cred();
3345
3346 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3347}
3348
3349static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3350 struct dentry *dentry, const char *name)
3351{
3352 if (strcmp(name, XATTR_NAME_SELINUX)) {
3353 int rc = cap_inode_removexattr(idmap, dentry, name);
3354 if (rc)
3355 return rc;
3356
3357 /* Not an attribute we recognize, so just check the
3358 ordinary setattr permission. */
3359 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3360 }
3361
3362 if (!selinux_initialized())
3363 return 0;
3364
3365 /* No one is allowed to remove a SELinux security label.
3366 You can change the label, but all data must be labeled. */
3367 return -EACCES;
3368}
3369
3370static int selinux_path_notify(const struct path *path, u64 mask,
3371 unsigned int obj_type)
3372{
3373 int ret;
3374 u32 perm;
3375
3376 struct common_audit_data ad;
3377
3378 ad.type = LSM_AUDIT_DATA_PATH;
3379 ad.u.path = *path;
3380
3381 /*
3382 * Set permission needed based on the type of mark being set.
3383 * Performs an additional check for sb watches.
3384 */
3385 switch (obj_type) {
3386 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3387 perm = FILE__WATCH_MOUNT;
3388 break;
3389 case FSNOTIFY_OBJ_TYPE_SB:
3390 perm = FILE__WATCH_SB;
3391 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3392 FILESYSTEM__WATCH, &ad);
3393 if (ret)
3394 return ret;
3395 break;
3396 case FSNOTIFY_OBJ_TYPE_INODE:
3397 perm = FILE__WATCH;
3398 break;
3399 default:
3400 return -EINVAL;
3401 }
3402
3403 /* blocking watches require the file:watch_with_perm permission */
3404 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3405 perm |= FILE__WATCH_WITH_PERM;
3406
3407 /* watches on read-like events need the file:watch_reads permission */
3408 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3409 perm |= FILE__WATCH_READS;
3410
3411 return path_has_perm(current_cred(), path, perm);
3412}
3413
3414/*
3415 * Copy the inode security context value to the user.
3416 *
3417 * Permission check is handled by selinux_inode_getxattr hook.
3418 */
3419static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3420 struct inode *inode, const char *name,
3421 void **buffer, bool alloc)
3422{
3423 u32 size;
3424 int error;
3425 char *context = NULL;
3426 struct inode_security_struct *isec;
3427
3428 /*
3429 * If we're not initialized yet, then we can't validate contexts, so
3430 * just let vfs_getxattr fall back to using the on-disk xattr.
3431 */
3432 if (!selinux_initialized() ||
3433 strcmp(name, XATTR_SELINUX_SUFFIX))
3434 return -EOPNOTSUPP;
3435
3436 /*
3437 * If the caller has CAP_MAC_ADMIN, then get the raw context
3438 * value even if it is not defined by current policy; otherwise,
3439 * use the in-core value under current policy.
3440 * Use the non-auditing forms of the permission checks since
3441 * getxattr may be called by unprivileged processes commonly
3442 * and lack of permission just means that we fall back to the
3443 * in-core context value, not a denial.
3444 */
3445 isec = inode_security(inode);
3446 if (has_cap_mac_admin(false))
3447 error = security_sid_to_context_force(isec->sid, &context,
3448 &size);
3449 else
3450 error = security_sid_to_context(isec->sid,
3451 &context, &size);
3452 if (error)
3453 return error;
3454 error = size;
3455 if (alloc) {
3456 *buffer = context;
3457 goto out_nofree;
3458 }
3459 kfree(context);
3460out_nofree:
3461 return error;
3462}
3463
3464static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3465 const void *value, size_t size, int flags)
3466{
3467 struct inode_security_struct *isec = inode_security_novalidate(inode);
3468 struct superblock_security_struct *sbsec;
3469 u32 newsid;
3470 int rc;
3471
3472 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3473 return -EOPNOTSUPP;
3474
3475 sbsec = selinux_superblock(inode->i_sb);
3476 if (!(sbsec->flags & SBLABEL_MNT))
3477 return -EOPNOTSUPP;
3478
3479 if (!value || !size)
3480 return -EACCES;
3481
3482 rc = security_context_to_sid(value, size, &newsid,
3483 GFP_KERNEL);
3484 if (rc)
3485 return rc;
3486
3487 spin_lock(&isec->lock);
3488 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3489 isec->sid = newsid;
3490 isec->initialized = LABEL_INITIALIZED;
3491 spin_unlock(&isec->lock);
3492 return 0;
3493}
3494
3495static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3496{
3497 const int len = sizeof(XATTR_NAME_SELINUX);
3498
3499 if (!selinux_initialized())
3500 return 0;
3501
3502 if (buffer && len <= buffer_size)
3503 memcpy(buffer, XATTR_NAME_SELINUX, len);
3504 return len;
3505}
3506
3507static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3508{
3509 struct inode_security_struct *isec = inode_security_novalidate(inode);
3510 *secid = isec->sid;
3511}
3512
3513static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3514{
3515 u32 sid;
3516 struct task_security_struct *tsec;
3517 struct cred *new_creds = *new;
3518
3519 if (new_creds == NULL) {
3520 new_creds = prepare_creds();
3521 if (!new_creds)
3522 return -ENOMEM;
3523 }
3524
3525 tsec = selinux_cred(new_creds);
3526 /* Get label from overlay inode and set it in create_sid */
3527 selinux_inode_getsecid(d_inode(src), &sid);
3528 tsec->create_sid = sid;
3529 *new = new_creds;
3530 return 0;
3531}
3532
3533static int selinux_inode_copy_up_xattr(const char *name)
3534{
3535 /* The copy_up hook above sets the initial context on an inode, but we
3536 * don't then want to overwrite it by blindly copying all the lower
3537 * xattrs up. Instead, filter out SELinux-related xattrs following
3538 * policy load.
3539 */
3540 if (selinux_initialized() && strcmp(name, XATTR_NAME_SELINUX) == 0)
3541 return 1; /* Discard */
3542 /*
3543 * Any other attribute apart from SELINUX is not claimed, supported
3544 * by selinux.
3545 */
3546 return -EOPNOTSUPP;
3547}
3548
3549/* kernfs node operations */
3550
3551static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3552 struct kernfs_node *kn)
3553{
3554 const struct task_security_struct *tsec = selinux_cred(current_cred());
3555 u32 parent_sid, newsid, clen;
3556 int rc;
3557 char *context;
3558
3559 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3560 if (rc == -ENODATA)
3561 return 0;
3562 else if (rc < 0)
3563 return rc;
3564
3565 clen = (u32)rc;
3566 context = kmalloc(clen, GFP_KERNEL);
3567 if (!context)
3568 return -ENOMEM;
3569
3570 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3571 if (rc < 0) {
3572 kfree(context);
3573 return rc;
3574 }
3575
3576 rc = security_context_to_sid(context, clen, &parent_sid,
3577 GFP_KERNEL);
3578 kfree(context);
3579 if (rc)
3580 return rc;
3581
3582 if (tsec->create_sid) {
3583 newsid = tsec->create_sid;
3584 } else {
3585 u16 secclass = inode_mode_to_security_class(kn->mode);
3586 struct qstr q;
3587
3588 q.name = kn->name;
3589 q.hash_len = hashlen_string(kn_dir, kn->name);
3590
3591 rc = security_transition_sid(tsec->sid,
3592 parent_sid, secclass, &q,
3593 &newsid);
3594 if (rc)
3595 return rc;
3596 }
3597
3598 rc = security_sid_to_context_force(newsid,
3599 &context, &clen);
3600 if (rc)
3601 return rc;
3602
3603 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3604 XATTR_CREATE);
3605 kfree(context);
3606 return rc;
3607}
3608
3609
3610/* file security operations */
3611
3612static int selinux_revalidate_file_permission(struct file *file, int mask)
3613{
3614 const struct cred *cred = current_cred();
3615 struct inode *inode = file_inode(file);
3616
3617 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3618 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3619 mask |= MAY_APPEND;
3620
3621 return file_has_perm(cred, file,
3622 file_mask_to_av(inode->i_mode, mask));
3623}
3624
3625static int selinux_file_permission(struct file *file, int mask)
3626{
3627 struct inode *inode = file_inode(file);
3628 struct file_security_struct *fsec = selinux_file(file);
3629 struct inode_security_struct *isec;
3630 u32 sid = current_sid();
3631
3632 if (!mask)
3633 /* No permission to check. Existence test. */
3634 return 0;
3635
3636 isec = inode_security(inode);
3637 if (sid == fsec->sid && fsec->isid == isec->sid &&
3638 fsec->pseqno == avc_policy_seqno())
3639 /* No change since file_open check. */
3640 return 0;
3641
3642 return selinux_revalidate_file_permission(file, mask);
3643}
3644
3645static int selinux_file_alloc_security(struct file *file)
3646{
3647 struct file_security_struct *fsec = selinux_file(file);
3648 u32 sid = current_sid();
3649
3650 fsec->sid = sid;
3651 fsec->fown_sid = sid;
3652
3653 return 0;
3654}
3655
3656/*
3657 * Check whether a task has the ioctl permission and cmd
3658 * operation to an inode.
3659 */
3660static int ioctl_has_perm(const struct cred *cred, struct file *file,
3661 u32 requested, u16 cmd)
3662{
3663 struct common_audit_data ad;
3664 struct file_security_struct *fsec = selinux_file(file);
3665 struct inode *inode = file_inode(file);
3666 struct inode_security_struct *isec;
3667 struct lsm_ioctlop_audit ioctl;
3668 u32 ssid = cred_sid(cred);
3669 int rc;
3670 u8 driver = cmd >> 8;
3671 u8 xperm = cmd & 0xff;
3672
3673 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3674 ad.u.op = &ioctl;
3675 ad.u.op->cmd = cmd;
3676 ad.u.op->path = file->f_path;
3677
3678 if (ssid != fsec->sid) {
3679 rc = avc_has_perm(ssid, fsec->sid,
3680 SECCLASS_FD,
3681 FD__USE,
3682 &ad);
3683 if (rc)
3684 goto out;
3685 }
3686
3687 if (unlikely(IS_PRIVATE(inode)))
3688 return 0;
3689
3690 isec = inode_security(inode);
3691 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3692 requested, driver, xperm, &ad);
3693out:
3694 return rc;
3695}
3696
3697static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3698 unsigned long arg)
3699{
3700 const struct cred *cred = current_cred();
3701 int error = 0;
3702
3703 switch (cmd) {
3704 case FIONREAD:
3705 case FIBMAP:
3706 case FIGETBSZ:
3707 case FS_IOC_GETFLAGS:
3708 case FS_IOC_GETVERSION:
3709 error = file_has_perm(cred, file, FILE__GETATTR);
3710 break;
3711
3712 case FS_IOC_SETFLAGS:
3713 case FS_IOC_SETVERSION:
3714 error = file_has_perm(cred, file, FILE__SETATTR);
3715 break;
3716
3717 /* sys_ioctl() checks */
3718 case FIONBIO:
3719 case FIOASYNC:
3720 error = file_has_perm(cred, file, 0);
3721 break;
3722
3723 case KDSKBENT:
3724 case KDSKBSENT:
3725 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3726 CAP_OPT_NONE, true);
3727 break;
3728
3729 case FIOCLEX:
3730 case FIONCLEX:
3731 if (!selinux_policycap_ioctl_skip_cloexec())
3732 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3733 break;
3734
3735 /* default case assumes that the command will go
3736 * to the file's ioctl() function.
3737 */
3738 default:
3739 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3740 }
3741 return error;
3742}
3743
3744static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3745 unsigned long arg)
3746{
3747 /*
3748 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3749 * make sure we don't compare 32-bit flags to 64-bit flags.
3750 */
3751 switch (cmd) {
3752 case FS_IOC32_GETFLAGS:
3753 cmd = FS_IOC_GETFLAGS;
3754 break;
3755 case FS_IOC32_SETFLAGS:
3756 cmd = FS_IOC_SETFLAGS;
3757 break;
3758 case FS_IOC32_GETVERSION:
3759 cmd = FS_IOC_GETVERSION;
3760 break;
3761 case FS_IOC32_SETVERSION:
3762 cmd = FS_IOC_SETVERSION;
3763 break;
3764 default:
3765 break;
3766 }
3767
3768 return selinux_file_ioctl(file, cmd, arg);
3769}
3770
3771static int default_noexec __ro_after_init;
3772
3773static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3774{
3775 const struct cred *cred = current_cred();
3776 u32 sid = cred_sid(cred);
3777 int rc = 0;
3778
3779 if (default_noexec &&
3780 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3781 (!shared && (prot & PROT_WRITE)))) {
3782 /*
3783 * We are making executable an anonymous mapping or a
3784 * private file mapping that will also be writable.
3785 * This has an additional check.
3786 */
3787 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3788 PROCESS__EXECMEM, NULL);
3789 if (rc)
3790 goto error;
3791 }
3792
3793 if (file) {
3794 /* read access is always possible with a mapping */
3795 u32 av = FILE__READ;
3796
3797 /* write access only matters if the mapping is shared */
3798 if (shared && (prot & PROT_WRITE))
3799 av |= FILE__WRITE;
3800
3801 if (prot & PROT_EXEC)
3802 av |= FILE__EXECUTE;
3803
3804 return file_has_perm(cred, file, av);
3805 }
3806
3807error:
3808 return rc;
3809}
3810
3811static int selinux_mmap_addr(unsigned long addr)
3812{
3813 int rc = 0;
3814
3815 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3816 u32 sid = current_sid();
3817 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3818 MEMPROTECT__MMAP_ZERO, NULL);
3819 }
3820
3821 return rc;
3822}
3823
3824static int selinux_mmap_file(struct file *file,
3825 unsigned long reqprot __always_unused,
3826 unsigned long prot, unsigned long flags)
3827{
3828 struct common_audit_data ad;
3829 int rc;
3830
3831 if (file) {
3832 ad.type = LSM_AUDIT_DATA_FILE;
3833 ad.u.file = file;
3834 rc = inode_has_perm(current_cred(), file_inode(file),
3835 FILE__MAP, &ad);
3836 if (rc)
3837 return rc;
3838 }
3839
3840 return file_map_prot_check(file, prot,
3841 (flags & MAP_TYPE) == MAP_SHARED);
3842}
3843
3844static int selinux_file_mprotect(struct vm_area_struct *vma,
3845 unsigned long reqprot __always_unused,
3846 unsigned long prot)
3847{
3848 const struct cred *cred = current_cred();
3849 u32 sid = cred_sid(cred);
3850
3851 if (default_noexec &&
3852 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3853 int rc = 0;
3854 if (vma_is_initial_heap(vma)) {
3855 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3856 PROCESS__EXECHEAP, NULL);
3857 } else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3858 vma_is_stack_for_current(vma))) {
3859 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3860 PROCESS__EXECSTACK, NULL);
3861 } else if (vma->vm_file && vma->anon_vma) {
3862 /*
3863 * We are making executable a file mapping that has
3864 * had some COW done. Since pages might have been
3865 * written, check ability to execute the possibly
3866 * modified content. This typically should only
3867 * occur for text relocations.
3868 */
3869 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3870 }
3871 if (rc)
3872 return rc;
3873 }
3874
3875 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3876}
3877
3878static int selinux_file_lock(struct file *file, unsigned int cmd)
3879{
3880 const struct cred *cred = current_cred();
3881
3882 return file_has_perm(cred, file, FILE__LOCK);
3883}
3884
3885static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3886 unsigned long arg)
3887{
3888 const struct cred *cred = current_cred();
3889 int err = 0;
3890
3891 switch (cmd) {
3892 case F_SETFL:
3893 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3894 err = file_has_perm(cred, file, FILE__WRITE);
3895 break;
3896 }
3897 fallthrough;
3898 case F_SETOWN:
3899 case F_SETSIG:
3900 case F_GETFL:
3901 case F_GETOWN:
3902 case F_GETSIG:
3903 case F_GETOWNER_UIDS:
3904 /* Just check FD__USE permission */
3905 err = file_has_perm(cred, file, 0);
3906 break;
3907 case F_GETLK:
3908 case F_SETLK:
3909 case F_SETLKW:
3910 case F_OFD_GETLK:
3911 case F_OFD_SETLK:
3912 case F_OFD_SETLKW:
3913#if BITS_PER_LONG == 32
3914 case F_GETLK64:
3915 case F_SETLK64:
3916 case F_SETLKW64:
3917#endif
3918 err = file_has_perm(cred, file, FILE__LOCK);
3919 break;
3920 }
3921
3922 return err;
3923}
3924
3925static void selinux_file_set_fowner(struct file *file)
3926{
3927 struct file_security_struct *fsec;
3928
3929 fsec = selinux_file(file);
3930 fsec->fown_sid = current_sid();
3931}
3932
3933static int selinux_file_send_sigiotask(struct task_struct *tsk,
3934 struct fown_struct *fown, int signum)
3935{
3936 struct file *file;
3937 u32 sid = task_sid_obj(tsk);
3938 u32 perm;
3939 struct file_security_struct *fsec;
3940
3941 /* struct fown_struct is never outside the context of a struct file */
3942 file = container_of(fown, struct file, f_owner);
3943
3944 fsec = selinux_file(file);
3945
3946 if (!signum)
3947 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3948 else
3949 perm = signal_to_av(signum);
3950
3951 return avc_has_perm(fsec->fown_sid, sid,
3952 SECCLASS_PROCESS, perm, NULL);
3953}
3954
3955static int selinux_file_receive(struct file *file)
3956{
3957 const struct cred *cred = current_cred();
3958
3959 return file_has_perm(cred, file, file_to_av(file));
3960}
3961
3962static int selinux_file_open(struct file *file)
3963{
3964 struct file_security_struct *fsec;
3965 struct inode_security_struct *isec;
3966
3967 fsec = selinux_file(file);
3968 isec = inode_security(file_inode(file));
3969 /*
3970 * Save inode label and policy sequence number
3971 * at open-time so that selinux_file_permission
3972 * can determine whether revalidation is necessary.
3973 * Task label is already saved in the file security
3974 * struct as its SID.
3975 */
3976 fsec->isid = isec->sid;
3977 fsec->pseqno = avc_policy_seqno();
3978 /*
3979 * Since the inode label or policy seqno may have changed
3980 * between the selinux_inode_permission check and the saving
3981 * of state above, recheck that access is still permitted.
3982 * Otherwise, access might never be revalidated against the
3983 * new inode label or new policy.
3984 * This check is not redundant - do not remove.
3985 */
3986 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3987}
3988
3989/* task security operations */
3990
3991static int selinux_task_alloc(struct task_struct *task,
3992 unsigned long clone_flags)
3993{
3994 u32 sid = current_sid();
3995
3996 return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3997}
3998
3999/*
4000 * prepare a new set of credentials for modification
4001 */
4002static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4003 gfp_t gfp)
4004{
4005 const struct task_security_struct *old_tsec = selinux_cred(old);
4006 struct task_security_struct *tsec = selinux_cred(new);
4007
4008 *tsec = *old_tsec;
4009 return 0;
4010}
4011
4012/*
4013 * transfer the SELinux data to a blank set of creds
4014 */
4015static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4016{
4017 const struct task_security_struct *old_tsec = selinux_cred(old);
4018 struct task_security_struct *tsec = selinux_cred(new);
4019
4020 *tsec = *old_tsec;
4021}
4022
4023static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4024{
4025 *secid = cred_sid(c);
4026}
4027
4028/*
4029 * set the security data for a kernel service
4030 * - all the creation contexts are set to unlabelled
4031 */
4032static int selinux_kernel_act_as(struct cred *new, u32 secid)
4033{
4034 struct task_security_struct *tsec = selinux_cred(new);
4035 u32 sid = current_sid();
4036 int ret;
4037
4038 ret = avc_has_perm(sid, secid,
4039 SECCLASS_KERNEL_SERVICE,
4040 KERNEL_SERVICE__USE_AS_OVERRIDE,
4041 NULL);
4042 if (ret == 0) {
4043 tsec->sid = secid;
4044 tsec->create_sid = 0;
4045 tsec->keycreate_sid = 0;
4046 tsec->sockcreate_sid = 0;
4047 }
4048 return ret;
4049}
4050
4051/*
4052 * set the file creation context in a security record to the same as the
4053 * objective context of the specified inode
4054 */
4055static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4056{
4057 struct inode_security_struct *isec = inode_security(inode);
4058 struct task_security_struct *tsec = selinux_cred(new);
4059 u32 sid = current_sid();
4060 int ret;
4061
4062 ret = avc_has_perm(sid, isec->sid,
4063 SECCLASS_KERNEL_SERVICE,
4064 KERNEL_SERVICE__CREATE_FILES_AS,
4065 NULL);
4066
4067 if (ret == 0)
4068 tsec->create_sid = isec->sid;
4069 return ret;
4070}
4071
4072static int selinux_kernel_module_request(char *kmod_name)
4073{
4074 struct common_audit_data ad;
4075
4076 ad.type = LSM_AUDIT_DATA_KMOD;
4077 ad.u.kmod_name = kmod_name;
4078
4079 return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4080 SYSTEM__MODULE_REQUEST, &ad);
4081}
4082
4083static int selinux_kernel_module_from_file(struct file *file)
4084{
4085 struct common_audit_data ad;
4086 struct inode_security_struct *isec;
4087 struct file_security_struct *fsec;
4088 u32 sid = current_sid();
4089 int rc;
4090
4091 /* init_module */
4092 if (file == NULL)
4093 return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4094 SYSTEM__MODULE_LOAD, NULL);
4095
4096 /* finit_module */
4097
4098 ad.type = LSM_AUDIT_DATA_FILE;
4099 ad.u.file = file;
4100
4101 fsec = selinux_file(file);
4102 if (sid != fsec->sid) {
4103 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4104 if (rc)
4105 return rc;
4106 }
4107
4108 isec = inode_security(file_inode(file));
4109 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4110 SYSTEM__MODULE_LOAD, &ad);
4111}
4112
4113static int selinux_kernel_read_file(struct file *file,
4114 enum kernel_read_file_id id,
4115 bool contents)
4116{
4117 int rc = 0;
4118
4119 switch (id) {
4120 case READING_MODULE:
4121 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4122 break;
4123 default:
4124 break;
4125 }
4126
4127 return rc;
4128}
4129
4130static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4131{
4132 int rc = 0;
4133
4134 switch (id) {
4135 case LOADING_MODULE:
4136 rc = selinux_kernel_module_from_file(NULL);
4137 break;
4138 default:
4139 break;
4140 }
4141
4142 return rc;
4143}
4144
4145static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4146{
4147 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4148 PROCESS__SETPGID, NULL);
4149}
4150
4151static int selinux_task_getpgid(struct task_struct *p)
4152{
4153 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4154 PROCESS__GETPGID, NULL);
4155}
4156
4157static int selinux_task_getsid(struct task_struct *p)
4158{
4159 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4160 PROCESS__GETSESSION, NULL);
4161}
4162
4163static void selinux_current_getsecid_subj(u32 *secid)
4164{
4165 *secid = current_sid();
4166}
4167
4168static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4169{
4170 *secid = task_sid_obj(p);
4171}
4172
4173static int selinux_task_setnice(struct task_struct *p, int nice)
4174{
4175 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4176 PROCESS__SETSCHED, NULL);
4177}
4178
4179static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4180{
4181 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4182 PROCESS__SETSCHED, NULL);
4183}
4184
4185static int selinux_task_getioprio(struct task_struct *p)
4186{
4187 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4188 PROCESS__GETSCHED, NULL);
4189}
4190
4191static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4192 unsigned int flags)
4193{
4194 u32 av = 0;
4195
4196 if (!flags)
4197 return 0;
4198 if (flags & LSM_PRLIMIT_WRITE)
4199 av |= PROCESS__SETRLIMIT;
4200 if (flags & LSM_PRLIMIT_READ)
4201 av |= PROCESS__GETRLIMIT;
4202 return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4203 SECCLASS_PROCESS, av, NULL);
4204}
4205
4206static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4207 struct rlimit *new_rlim)
4208{
4209 struct rlimit *old_rlim = p->signal->rlim + resource;
4210
4211 /* Control the ability to change the hard limit (whether
4212 lowering or raising it), so that the hard limit can
4213 later be used as a safe reset point for the soft limit
4214 upon context transitions. See selinux_bprm_committing_creds. */
4215 if (old_rlim->rlim_max != new_rlim->rlim_max)
4216 return avc_has_perm(current_sid(), task_sid_obj(p),
4217 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4218
4219 return 0;
4220}
4221
4222static int selinux_task_setscheduler(struct task_struct *p)
4223{
4224 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4225 PROCESS__SETSCHED, NULL);
4226}
4227
4228static int selinux_task_getscheduler(struct task_struct *p)
4229{
4230 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4231 PROCESS__GETSCHED, NULL);
4232}
4233
4234static int selinux_task_movememory(struct task_struct *p)
4235{
4236 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4237 PROCESS__SETSCHED, NULL);
4238}
4239
4240static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4241 int sig, const struct cred *cred)
4242{
4243 u32 secid;
4244 u32 perm;
4245
4246 if (!sig)
4247 perm = PROCESS__SIGNULL; /* null signal; existence test */
4248 else
4249 perm = signal_to_av(sig);
4250 if (!cred)
4251 secid = current_sid();
4252 else
4253 secid = cred_sid(cred);
4254 return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4255}
4256
4257static void selinux_task_to_inode(struct task_struct *p,
4258 struct inode *inode)
4259{
4260 struct inode_security_struct *isec = selinux_inode(inode);
4261 u32 sid = task_sid_obj(p);
4262
4263 spin_lock(&isec->lock);
4264 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4265 isec->sid = sid;
4266 isec->initialized = LABEL_INITIALIZED;
4267 spin_unlock(&isec->lock);
4268}
4269
4270static int selinux_userns_create(const struct cred *cred)
4271{
4272 u32 sid = current_sid();
4273
4274 return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4275 USER_NAMESPACE__CREATE, NULL);
4276}
4277
4278/* Returns error only if unable to parse addresses */
4279static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4280 struct common_audit_data *ad, u8 *proto)
4281{
4282 int offset, ihlen, ret = -EINVAL;
4283 struct iphdr _iph, *ih;
4284
4285 offset = skb_network_offset(skb);
4286 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4287 if (ih == NULL)
4288 goto out;
4289
4290 ihlen = ih->ihl * 4;
4291 if (ihlen < sizeof(_iph))
4292 goto out;
4293
4294 ad->u.net->v4info.saddr = ih->saddr;
4295 ad->u.net->v4info.daddr = ih->daddr;
4296 ret = 0;
4297
4298 if (proto)
4299 *proto = ih->protocol;
4300
4301 switch (ih->protocol) {
4302 case IPPROTO_TCP: {
4303 struct tcphdr _tcph, *th;
4304
4305 if (ntohs(ih->frag_off) & IP_OFFSET)
4306 break;
4307
4308 offset += ihlen;
4309 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4310 if (th == NULL)
4311 break;
4312
4313 ad->u.net->sport = th->source;
4314 ad->u.net->dport = th->dest;
4315 break;
4316 }
4317
4318 case IPPROTO_UDP: {
4319 struct udphdr _udph, *uh;
4320
4321 if (ntohs(ih->frag_off) & IP_OFFSET)
4322 break;
4323
4324 offset += ihlen;
4325 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4326 if (uh == NULL)
4327 break;
4328
4329 ad->u.net->sport = uh->source;
4330 ad->u.net->dport = uh->dest;
4331 break;
4332 }
4333
4334 case IPPROTO_DCCP: {
4335 struct dccp_hdr _dccph, *dh;
4336
4337 if (ntohs(ih->frag_off) & IP_OFFSET)
4338 break;
4339
4340 offset += ihlen;
4341 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4342 if (dh == NULL)
4343 break;
4344
4345 ad->u.net->sport = dh->dccph_sport;
4346 ad->u.net->dport = dh->dccph_dport;
4347 break;
4348 }
4349
4350#if IS_ENABLED(CONFIG_IP_SCTP)
4351 case IPPROTO_SCTP: {
4352 struct sctphdr _sctph, *sh;
4353
4354 if (ntohs(ih->frag_off) & IP_OFFSET)
4355 break;
4356
4357 offset += ihlen;
4358 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4359 if (sh == NULL)
4360 break;
4361
4362 ad->u.net->sport = sh->source;
4363 ad->u.net->dport = sh->dest;
4364 break;
4365 }
4366#endif
4367 default:
4368 break;
4369 }
4370out:
4371 return ret;
4372}
4373
4374#if IS_ENABLED(CONFIG_IPV6)
4375
4376/* Returns error only if unable to parse addresses */
4377static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4378 struct common_audit_data *ad, u8 *proto)
4379{
4380 u8 nexthdr;
4381 int ret = -EINVAL, offset;
4382 struct ipv6hdr _ipv6h, *ip6;
4383 __be16 frag_off;
4384
4385 offset = skb_network_offset(skb);
4386 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4387 if (ip6 == NULL)
4388 goto out;
4389
4390 ad->u.net->v6info.saddr = ip6->saddr;
4391 ad->u.net->v6info.daddr = ip6->daddr;
4392 ret = 0;
4393
4394 nexthdr = ip6->nexthdr;
4395 offset += sizeof(_ipv6h);
4396 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4397 if (offset < 0)
4398 goto out;
4399
4400 if (proto)
4401 *proto = nexthdr;
4402
4403 switch (nexthdr) {
4404 case IPPROTO_TCP: {
4405 struct tcphdr _tcph, *th;
4406
4407 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4408 if (th == NULL)
4409 break;
4410
4411 ad->u.net->sport = th->source;
4412 ad->u.net->dport = th->dest;
4413 break;
4414 }
4415
4416 case IPPROTO_UDP: {
4417 struct udphdr _udph, *uh;
4418
4419 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4420 if (uh == NULL)
4421 break;
4422
4423 ad->u.net->sport = uh->source;
4424 ad->u.net->dport = uh->dest;
4425 break;
4426 }
4427
4428 case IPPROTO_DCCP: {
4429 struct dccp_hdr _dccph, *dh;
4430
4431 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4432 if (dh == NULL)
4433 break;
4434
4435 ad->u.net->sport = dh->dccph_sport;
4436 ad->u.net->dport = dh->dccph_dport;
4437 break;
4438 }
4439
4440#if IS_ENABLED(CONFIG_IP_SCTP)
4441 case IPPROTO_SCTP: {
4442 struct sctphdr _sctph, *sh;
4443
4444 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4445 if (sh == NULL)
4446 break;
4447
4448 ad->u.net->sport = sh->source;
4449 ad->u.net->dport = sh->dest;
4450 break;
4451 }
4452#endif
4453 /* includes fragments */
4454 default:
4455 break;
4456 }
4457out:
4458 return ret;
4459}
4460
4461#endif /* IPV6 */
4462
4463static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4464 char **_addrp, int src, u8 *proto)
4465{
4466 char *addrp;
4467 int ret;
4468
4469 switch (ad->u.net->family) {
4470 case PF_INET:
4471 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4472 if (ret)
4473 goto parse_error;
4474 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4475 &ad->u.net->v4info.daddr);
4476 goto okay;
4477
4478#if IS_ENABLED(CONFIG_IPV6)
4479 case PF_INET6:
4480 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4481 if (ret)
4482 goto parse_error;
4483 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4484 &ad->u.net->v6info.daddr);
4485 goto okay;
4486#endif /* IPV6 */
4487 default:
4488 addrp = NULL;
4489 goto okay;
4490 }
4491
4492parse_error:
4493 pr_warn(
4494 "SELinux: failure in selinux_parse_skb(),"
4495 " unable to parse packet\n");
4496 return ret;
4497
4498okay:
4499 if (_addrp)
4500 *_addrp = addrp;
4501 return 0;
4502}
4503
4504/**
4505 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4506 * @skb: the packet
4507 * @family: protocol family
4508 * @sid: the packet's peer label SID
4509 *
4510 * Description:
4511 * Check the various different forms of network peer labeling and determine
4512 * the peer label/SID for the packet; most of the magic actually occurs in
4513 * the security server function security_net_peersid_cmp(). The function
4514 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4515 * or -EACCES if @sid is invalid due to inconsistencies with the different
4516 * peer labels.
4517 *
4518 */
4519static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4520{
4521 int err;
4522 u32 xfrm_sid;
4523 u32 nlbl_sid;
4524 u32 nlbl_type;
4525
4526 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4527 if (unlikely(err))
4528 return -EACCES;
4529 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4530 if (unlikely(err))
4531 return -EACCES;
4532
4533 err = security_net_peersid_resolve(nlbl_sid,
4534 nlbl_type, xfrm_sid, sid);
4535 if (unlikely(err)) {
4536 pr_warn(
4537 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4538 " unable to determine packet's peer label\n");
4539 return -EACCES;
4540 }
4541
4542 return 0;
4543}
4544
4545/**
4546 * selinux_conn_sid - Determine the child socket label for a connection
4547 * @sk_sid: the parent socket's SID
4548 * @skb_sid: the packet's SID
4549 * @conn_sid: the resulting connection SID
4550 *
4551 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4552 * combined with the MLS information from @skb_sid in order to create
4553 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy
4554 * of @sk_sid. Returns zero on success, negative values on failure.
4555 *
4556 */
4557static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4558{
4559 int err = 0;
4560
4561 if (skb_sid != SECSID_NULL)
4562 err = security_sid_mls_copy(sk_sid, skb_sid,
4563 conn_sid);
4564 else
4565 *conn_sid = sk_sid;
4566
4567 return err;
4568}
4569
4570/* socket security operations */
4571
4572static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4573 u16 secclass, u32 *socksid)
4574{
4575 if (tsec->sockcreate_sid > SECSID_NULL) {
4576 *socksid = tsec->sockcreate_sid;
4577 return 0;
4578 }
4579
4580 return security_transition_sid(tsec->sid, tsec->sid,
4581 secclass, NULL, socksid);
4582}
4583
4584static int sock_has_perm(struct sock *sk, u32 perms)
4585{
4586 struct sk_security_struct *sksec = sk->sk_security;
4587 struct common_audit_data ad;
4588 struct lsm_network_audit net;
4589
4590 if (sksec->sid == SECINITSID_KERNEL)
4591 return 0;
4592
4593 /*
4594 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4595 * inherited the kernel context from early boot used to be skipped
4596 * here, so preserve that behavior unless the capability is set.
4597 *
4598 * By setting the capability the policy signals that it is ready
4599 * for this quirk to be fixed. Note that sockets created by a kernel
4600 * thread or a usermode helper executed without a transition will
4601 * still be skipped in this check regardless of the policycap
4602 * setting.
4603 */
4604 if (!selinux_policycap_userspace_initial_context() &&
4605 sksec->sid == SECINITSID_INIT)
4606 return 0;
4607
4608 ad_net_init_from_sk(&ad, &net, sk);
4609
4610 return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4611 &ad);
4612}
4613
4614static int selinux_socket_create(int family, int type,
4615 int protocol, int kern)
4616{
4617 const struct task_security_struct *tsec = selinux_cred(current_cred());
4618 u32 newsid;
4619 u16 secclass;
4620 int rc;
4621
4622 if (kern)
4623 return 0;
4624
4625 secclass = socket_type_to_security_class(family, type, protocol);
4626 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4627 if (rc)
4628 return rc;
4629
4630 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4631}
4632
4633static int selinux_socket_post_create(struct socket *sock, int family,
4634 int type, int protocol, int kern)
4635{
4636 const struct task_security_struct *tsec = selinux_cred(current_cred());
4637 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4638 struct sk_security_struct *sksec;
4639 u16 sclass = socket_type_to_security_class(family, type, protocol);
4640 u32 sid = SECINITSID_KERNEL;
4641 int err = 0;
4642
4643 if (!kern) {
4644 err = socket_sockcreate_sid(tsec, sclass, &sid);
4645 if (err)
4646 return err;
4647 }
4648
4649 isec->sclass = sclass;
4650 isec->sid = sid;
4651 isec->initialized = LABEL_INITIALIZED;
4652
4653 if (sock->sk) {
4654 sksec = sock->sk->sk_security;
4655 sksec->sclass = sclass;
4656 sksec->sid = sid;
4657 /* Allows detection of the first association on this socket */
4658 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4659 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4660
4661 err = selinux_netlbl_socket_post_create(sock->sk, family);
4662 }
4663
4664 return err;
4665}
4666
4667static int selinux_socket_socketpair(struct socket *socka,
4668 struct socket *sockb)
4669{
4670 struct sk_security_struct *sksec_a = socka->sk->sk_security;
4671 struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4672
4673 sksec_a->peer_sid = sksec_b->sid;
4674 sksec_b->peer_sid = sksec_a->sid;
4675
4676 return 0;
4677}
4678
4679/* Range of port numbers used to automatically bind.
4680 Need to determine whether we should perform a name_bind
4681 permission check between the socket and the port number. */
4682
4683static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4684{
4685 struct sock *sk = sock->sk;
4686 struct sk_security_struct *sksec = sk->sk_security;
4687 u16 family;
4688 int err;
4689
4690 err = sock_has_perm(sk, SOCKET__BIND);
4691 if (err)
4692 goto out;
4693
4694 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4695 family = sk->sk_family;
4696 if (family == PF_INET || family == PF_INET6) {
4697 char *addrp;
4698 struct common_audit_data ad;
4699 struct lsm_network_audit net = {0,};
4700 struct sockaddr_in *addr4 = NULL;
4701 struct sockaddr_in6 *addr6 = NULL;
4702 u16 family_sa;
4703 unsigned short snum;
4704 u32 sid, node_perm;
4705
4706 /*
4707 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4708 * that validates multiple binding addresses. Because of this
4709 * need to check address->sa_family as it is possible to have
4710 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4711 */
4712 if (addrlen < offsetofend(struct sockaddr, sa_family))
4713 return -EINVAL;
4714 family_sa = address->sa_family;
4715 switch (family_sa) {
4716 case AF_UNSPEC:
4717 case AF_INET:
4718 if (addrlen < sizeof(struct sockaddr_in))
4719 return -EINVAL;
4720 addr4 = (struct sockaddr_in *)address;
4721 if (family_sa == AF_UNSPEC) {
4722 if (family == PF_INET6) {
4723 /* Length check from inet6_bind_sk() */
4724 if (addrlen < SIN6_LEN_RFC2133)
4725 return -EINVAL;
4726 /* Family check from __inet6_bind() */
4727 goto err_af;
4728 }
4729 /* see __inet_bind(), we only want to allow
4730 * AF_UNSPEC if the address is INADDR_ANY
4731 */
4732 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4733 goto err_af;
4734 family_sa = AF_INET;
4735 }
4736 snum = ntohs(addr4->sin_port);
4737 addrp = (char *)&addr4->sin_addr.s_addr;
4738 break;
4739 case AF_INET6:
4740 if (addrlen < SIN6_LEN_RFC2133)
4741 return -EINVAL;
4742 addr6 = (struct sockaddr_in6 *)address;
4743 snum = ntohs(addr6->sin6_port);
4744 addrp = (char *)&addr6->sin6_addr.s6_addr;
4745 break;
4746 default:
4747 goto err_af;
4748 }
4749
4750 ad.type = LSM_AUDIT_DATA_NET;
4751 ad.u.net = &net;
4752 ad.u.net->sport = htons(snum);
4753 ad.u.net->family = family_sa;
4754
4755 if (snum) {
4756 int low, high;
4757
4758 inet_get_local_port_range(sock_net(sk), &low, &high);
4759
4760 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4761 snum < low || snum > high) {
4762 err = sel_netport_sid(sk->sk_protocol,
4763 snum, &sid);
4764 if (err)
4765 goto out;
4766 err = avc_has_perm(sksec->sid, sid,
4767 sksec->sclass,
4768 SOCKET__NAME_BIND, &ad);
4769 if (err)
4770 goto out;
4771 }
4772 }
4773
4774 switch (sksec->sclass) {
4775 case SECCLASS_TCP_SOCKET:
4776 node_perm = TCP_SOCKET__NODE_BIND;
4777 break;
4778
4779 case SECCLASS_UDP_SOCKET:
4780 node_perm = UDP_SOCKET__NODE_BIND;
4781 break;
4782
4783 case SECCLASS_DCCP_SOCKET:
4784 node_perm = DCCP_SOCKET__NODE_BIND;
4785 break;
4786
4787 case SECCLASS_SCTP_SOCKET:
4788 node_perm = SCTP_SOCKET__NODE_BIND;
4789 break;
4790
4791 default:
4792 node_perm = RAWIP_SOCKET__NODE_BIND;
4793 break;
4794 }
4795
4796 err = sel_netnode_sid(addrp, family_sa, &sid);
4797 if (err)
4798 goto out;
4799
4800 if (family_sa == AF_INET)
4801 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4802 else
4803 ad.u.net->v6info.saddr = addr6->sin6_addr;
4804
4805 err = avc_has_perm(sksec->sid, sid,
4806 sksec->sclass, node_perm, &ad);
4807 if (err)
4808 goto out;
4809 }
4810out:
4811 return err;
4812err_af:
4813 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4814 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4815 return -EINVAL;
4816 return -EAFNOSUPPORT;
4817}
4818
4819/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4820 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4821 */
4822static int selinux_socket_connect_helper(struct socket *sock,
4823 struct sockaddr *address, int addrlen)
4824{
4825 struct sock *sk = sock->sk;
4826 struct sk_security_struct *sksec = sk->sk_security;
4827 int err;
4828
4829 err = sock_has_perm(sk, SOCKET__CONNECT);
4830 if (err)
4831 return err;
4832 if (addrlen < offsetofend(struct sockaddr, sa_family))
4833 return -EINVAL;
4834
4835 /* connect(AF_UNSPEC) has special handling, as it is a documented
4836 * way to disconnect the socket
4837 */
4838 if (address->sa_family == AF_UNSPEC)
4839 return 0;
4840
4841 /*
4842 * If a TCP, DCCP or SCTP socket, check name_connect permission
4843 * for the port.
4844 */
4845 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4846 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4847 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4848 struct common_audit_data ad;
4849 struct lsm_network_audit net = {0,};
4850 struct sockaddr_in *addr4 = NULL;
4851 struct sockaddr_in6 *addr6 = NULL;
4852 unsigned short snum;
4853 u32 sid, perm;
4854
4855 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4856 * that validates multiple connect addresses. Because of this
4857 * need to check address->sa_family as it is possible to have
4858 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4859 */
4860 switch (address->sa_family) {
4861 case AF_INET:
4862 addr4 = (struct sockaddr_in *)address;
4863 if (addrlen < sizeof(struct sockaddr_in))
4864 return -EINVAL;
4865 snum = ntohs(addr4->sin_port);
4866 break;
4867 case AF_INET6:
4868 addr6 = (struct sockaddr_in6 *)address;
4869 if (addrlen < SIN6_LEN_RFC2133)
4870 return -EINVAL;
4871 snum = ntohs(addr6->sin6_port);
4872 break;
4873 default:
4874 /* Note that SCTP services expect -EINVAL, whereas
4875 * others expect -EAFNOSUPPORT.
4876 */
4877 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4878 return -EINVAL;
4879 else
4880 return -EAFNOSUPPORT;
4881 }
4882
4883 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4884 if (err)
4885 return err;
4886
4887 switch (sksec->sclass) {
4888 case SECCLASS_TCP_SOCKET:
4889 perm = TCP_SOCKET__NAME_CONNECT;
4890 break;
4891 case SECCLASS_DCCP_SOCKET:
4892 perm = DCCP_SOCKET__NAME_CONNECT;
4893 break;
4894 case SECCLASS_SCTP_SOCKET:
4895 perm = SCTP_SOCKET__NAME_CONNECT;
4896 break;
4897 }
4898
4899 ad.type = LSM_AUDIT_DATA_NET;
4900 ad.u.net = &net;
4901 ad.u.net->dport = htons(snum);
4902 ad.u.net->family = address->sa_family;
4903 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4904 if (err)
4905 return err;
4906 }
4907
4908 return 0;
4909}
4910
4911/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4912static int selinux_socket_connect(struct socket *sock,
4913 struct sockaddr *address, int addrlen)
4914{
4915 int err;
4916 struct sock *sk = sock->sk;
4917
4918 err = selinux_socket_connect_helper(sock, address, addrlen);
4919 if (err)
4920 return err;
4921
4922 return selinux_netlbl_socket_connect(sk, address);
4923}
4924
4925static int selinux_socket_listen(struct socket *sock, int backlog)
4926{
4927 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4928}
4929
4930static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4931{
4932 int err;
4933 struct inode_security_struct *isec;
4934 struct inode_security_struct *newisec;
4935 u16 sclass;
4936 u32 sid;
4937
4938 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4939 if (err)
4940 return err;
4941
4942 isec = inode_security_novalidate(SOCK_INODE(sock));
4943 spin_lock(&isec->lock);
4944 sclass = isec->sclass;
4945 sid = isec->sid;
4946 spin_unlock(&isec->lock);
4947
4948 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4949 newisec->sclass = sclass;
4950 newisec->sid = sid;
4951 newisec->initialized = LABEL_INITIALIZED;
4952
4953 return 0;
4954}
4955
4956static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4957 int size)
4958{
4959 return sock_has_perm(sock->sk, SOCKET__WRITE);
4960}
4961
4962static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4963 int size, int flags)
4964{
4965 return sock_has_perm(sock->sk, SOCKET__READ);
4966}
4967
4968static int selinux_socket_getsockname(struct socket *sock)
4969{
4970 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4971}
4972
4973static int selinux_socket_getpeername(struct socket *sock)
4974{
4975 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4976}
4977
4978static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4979{
4980 int err;
4981
4982 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4983 if (err)
4984 return err;
4985
4986 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4987}
4988
4989static int selinux_socket_getsockopt(struct socket *sock, int level,
4990 int optname)
4991{
4992 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4993}
4994
4995static int selinux_socket_shutdown(struct socket *sock, int how)
4996{
4997 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4998}
4999
5000static int selinux_socket_unix_stream_connect(struct sock *sock,
5001 struct sock *other,
5002 struct sock *newsk)
5003{
5004 struct sk_security_struct *sksec_sock = sock->sk_security;
5005 struct sk_security_struct *sksec_other = other->sk_security;
5006 struct sk_security_struct *sksec_new = newsk->sk_security;
5007 struct common_audit_data ad;
5008 struct lsm_network_audit net;
5009 int err;
5010
5011 ad_net_init_from_sk(&ad, &net, other);
5012
5013 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5014 sksec_other->sclass,
5015 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5016 if (err)
5017 return err;
5018
5019 /* server child socket */
5020 sksec_new->peer_sid = sksec_sock->sid;
5021 err = security_sid_mls_copy(sksec_other->sid,
5022 sksec_sock->sid, &sksec_new->sid);
5023 if (err)
5024 return err;
5025
5026 /* connecting socket */
5027 sksec_sock->peer_sid = sksec_new->sid;
5028
5029 return 0;
5030}
5031
5032static int selinux_socket_unix_may_send(struct socket *sock,
5033 struct socket *other)
5034{
5035 struct sk_security_struct *ssec = sock->sk->sk_security;
5036 struct sk_security_struct *osec = other->sk->sk_security;
5037 struct common_audit_data ad;
5038 struct lsm_network_audit net;
5039
5040 ad_net_init_from_sk(&ad, &net, other->sk);
5041
5042 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5043 &ad);
5044}
5045
5046static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5047 char *addrp, u16 family, u32 peer_sid,
5048 struct common_audit_data *ad)
5049{
5050 int err;
5051 u32 if_sid;
5052 u32 node_sid;
5053
5054 err = sel_netif_sid(ns, ifindex, &if_sid);
5055 if (err)
5056 return err;
5057 err = avc_has_perm(peer_sid, if_sid,
5058 SECCLASS_NETIF, NETIF__INGRESS, ad);
5059 if (err)
5060 return err;
5061
5062 err = sel_netnode_sid(addrp, family, &node_sid);
5063 if (err)
5064 return err;
5065 return avc_has_perm(peer_sid, node_sid,
5066 SECCLASS_NODE, NODE__RECVFROM, ad);
5067}
5068
5069static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5070 u16 family)
5071{
5072 int err = 0;
5073 struct sk_security_struct *sksec = sk->sk_security;
5074 u32 sk_sid = sksec->sid;
5075 struct common_audit_data ad;
5076 struct lsm_network_audit net;
5077 char *addrp;
5078
5079 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5080 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5081 if (err)
5082 return err;
5083
5084 if (selinux_secmark_enabled()) {
5085 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5086 PACKET__RECV, &ad);
5087 if (err)
5088 return err;
5089 }
5090
5091 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5092 if (err)
5093 return err;
5094 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5095
5096 return err;
5097}
5098
5099static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5100{
5101 int err, peerlbl_active, secmark_active;
5102 struct sk_security_struct *sksec = sk->sk_security;
5103 u16 family = sk->sk_family;
5104 u32 sk_sid = sksec->sid;
5105 struct common_audit_data ad;
5106 struct lsm_network_audit net;
5107 char *addrp;
5108
5109 if (family != PF_INET && family != PF_INET6)
5110 return 0;
5111
5112 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5113 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5114 family = PF_INET;
5115
5116 /* If any sort of compatibility mode is enabled then handoff processing
5117 * to the selinux_sock_rcv_skb_compat() function to deal with the
5118 * special handling. We do this in an attempt to keep this function
5119 * as fast and as clean as possible. */
5120 if (!selinux_policycap_netpeer())
5121 return selinux_sock_rcv_skb_compat(sk, skb, family);
5122
5123 secmark_active = selinux_secmark_enabled();
5124 peerlbl_active = selinux_peerlbl_enabled();
5125 if (!secmark_active && !peerlbl_active)
5126 return 0;
5127
5128 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5129 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5130 if (err)
5131 return err;
5132
5133 if (peerlbl_active) {
5134 u32 peer_sid;
5135
5136 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5137 if (err)
5138 return err;
5139 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5140 addrp, family, peer_sid, &ad);
5141 if (err) {
5142 selinux_netlbl_err(skb, family, err, 0);
5143 return err;
5144 }
5145 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5146 PEER__RECV, &ad);
5147 if (err) {
5148 selinux_netlbl_err(skb, family, err, 0);
5149 return err;
5150 }
5151 }
5152
5153 if (secmark_active) {
5154 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5155 PACKET__RECV, &ad);
5156 if (err)
5157 return err;
5158 }
5159
5160 return err;
5161}
5162
5163static int selinux_socket_getpeersec_stream(struct socket *sock,
5164 sockptr_t optval, sockptr_t optlen,
5165 unsigned int len)
5166{
5167 int err = 0;
5168 char *scontext = NULL;
5169 u32 scontext_len;
5170 struct sk_security_struct *sksec = sock->sk->sk_security;
5171 u32 peer_sid = SECSID_NULL;
5172
5173 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5174 sksec->sclass == SECCLASS_TCP_SOCKET ||
5175 sksec->sclass == SECCLASS_SCTP_SOCKET)
5176 peer_sid = sksec->peer_sid;
5177 if (peer_sid == SECSID_NULL)
5178 return -ENOPROTOOPT;
5179
5180 err = security_sid_to_context(peer_sid, &scontext,
5181 &scontext_len);
5182 if (err)
5183 return err;
5184 if (scontext_len > len) {
5185 err = -ERANGE;
5186 goto out_len;
5187 }
5188
5189 if (copy_to_sockptr(optval, scontext, scontext_len))
5190 err = -EFAULT;
5191out_len:
5192 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5193 err = -EFAULT;
5194 kfree(scontext);
5195 return err;
5196}
5197
5198static int selinux_socket_getpeersec_dgram(struct socket *sock,
5199 struct sk_buff *skb, u32 *secid)
5200{
5201 u32 peer_secid = SECSID_NULL;
5202 u16 family;
5203
5204 if (skb && skb->protocol == htons(ETH_P_IP))
5205 family = PF_INET;
5206 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5207 family = PF_INET6;
5208 else if (sock)
5209 family = sock->sk->sk_family;
5210 else {
5211 *secid = SECSID_NULL;
5212 return -EINVAL;
5213 }
5214
5215 if (sock && family == PF_UNIX) {
5216 struct inode_security_struct *isec;
5217 isec = inode_security_novalidate(SOCK_INODE(sock));
5218 peer_secid = isec->sid;
5219 } else if (skb)
5220 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5221
5222 *secid = peer_secid;
5223 if (peer_secid == SECSID_NULL)
5224 return -ENOPROTOOPT;
5225 return 0;
5226}
5227
5228static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5229{
5230 struct sk_security_struct *sksec;
5231
5232 sksec = kzalloc(sizeof(*sksec), priority);
5233 if (!sksec)
5234 return -ENOMEM;
5235
5236 sksec->peer_sid = SECINITSID_UNLABELED;
5237 sksec->sid = SECINITSID_UNLABELED;
5238 sksec->sclass = SECCLASS_SOCKET;
5239 selinux_netlbl_sk_security_reset(sksec);
5240 sk->sk_security = sksec;
5241
5242 return 0;
5243}
5244
5245static void selinux_sk_free_security(struct sock *sk)
5246{
5247 struct sk_security_struct *sksec = sk->sk_security;
5248
5249 sk->sk_security = NULL;
5250 selinux_netlbl_sk_security_free(sksec);
5251 kfree(sksec);
5252}
5253
5254static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5255{
5256 struct sk_security_struct *sksec = sk->sk_security;
5257 struct sk_security_struct *newsksec = newsk->sk_security;
5258
5259 newsksec->sid = sksec->sid;
5260 newsksec->peer_sid = sksec->peer_sid;
5261 newsksec->sclass = sksec->sclass;
5262
5263 selinux_netlbl_sk_security_reset(newsksec);
5264}
5265
5266static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5267{
5268 if (!sk)
5269 *secid = SECINITSID_ANY_SOCKET;
5270 else {
5271 const struct sk_security_struct *sksec = sk->sk_security;
5272
5273 *secid = sksec->sid;
5274 }
5275}
5276
5277static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5278{
5279 struct inode_security_struct *isec =
5280 inode_security_novalidate(SOCK_INODE(parent));
5281 struct sk_security_struct *sksec = sk->sk_security;
5282
5283 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5284 sk->sk_family == PF_UNIX)
5285 isec->sid = sksec->sid;
5286 sksec->sclass = isec->sclass;
5287}
5288
5289/*
5290 * Determines peer_secid for the asoc and updates socket's peer label
5291 * if it's the first association on the socket.
5292 */
5293static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5294 struct sk_buff *skb)
5295{
5296 struct sock *sk = asoc->base.sk;
5297 u16 family = sk->sk_family;
5298 struct sk_security_struct *sksec = sk->sk_security;
5299 struct common_audit_data ad;
5300 struct lsm_network_audit net;
5301 int err;
5302
5303 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5304 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5305 family = PF_INET;
5306
5307 if (selinux_peerlbl_enabled()) {
5308 asoc->peer_secid = SECSID_NULL;
5309
5310 /* This will return peer_sid = SECSID_NULL if there are
5311 * no peer labels, see security_net_peersid_resolve().
5312 */
5313 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5314 if (err)
5315 return err;
5316
5317 if (asoc->peer_secid == SECSID_NULL)
5318 asoc->peer_secid = SECINITSID_UNLABELED;
5319 } else {
5320 asoc->peer_secid = SECINITSID_UNLABELED;
5321 }
5322
5323 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5324 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5325
5326 /* Here as first association on socket. As the peer SID
5327 * was allowed by peer recv (and the netif/node checks),
5328 * then it is approved by policy and used as the primary
5329 * peer SID for getpeercon(3).
5330 */
5331 sksec->peer_sid = asoc->peer_secid;
5332 } else if (sksec->peer_sid != asoc->peer_secid) {
5333 /* Other association peer SIDs are checked to enforce
5334 * consistency among the peer SIDs.
5335 */
5336 ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5337 err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5338 sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5339 &ad);
5340 if (err)
5341 return err;
5342 }
5343 return 0;
5344}
5345
5346/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5347 * happens on an incoming connect(2), sctp_connectx(3) or
5348 * sctp_sendmsg(3) (with no association already present).
5349 */
5350static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5351 struct sk_buff *skb)
5352{
5353 struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5354 u32 conn_sid;
5355 int err;
5356
5357 if (!selinux_policycap_extsockclass())
5358 return 0;
5359
5360 err = selinux_sctp_process_new_assoc(asoc, skb);
5361 if (err)
5362 return err;
5363
5364 /* Compute the MLS component for the connection and store
5365 * the information in asoc. This will be used by SCTP TCP type
5366 * sockets and peeled off connections as they cause a new
5367 * socket to be generated. selinux_sctp_sk_clone() will then
5368 * plug this into the new socket.
5369 */
5370 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5371 if (err)
5372 return err;
5373
5374 asoc->secid = conn_sid;
5375
5376 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5377 return selinux_netlbl_sctp_assoc_request(asoc, skb);
5378}
5379
5380/* Called when SCTP receives a COOKIE ACK chunk as the final
5381 * response to an association request (initited by us).
5382 */
5383static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5384 struct sk_buff *skb)
5385{
5386 struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5387
5388 if (!selinux_policycap_extsockclass())
5389 return 0;
5390
5391 /* Inherit secid from the parent socket - this will be picked up
5392 * by selinux_sctp_sk_clone() if the association gets peeled off
5393 * into a new socket.
5394 */
5395 asoc->secid = sksec->sid;
5396
5397 return selinux_sctp_process_new_assoc(asoc, skb);
5398}
5399
5400/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5401 * based on their @optname.
5402 */
5403static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5404 struct sockaddr *address,
5405 int addrlen)
5406{
5407 int len, err = 0, walk_size = 0;
5408 void *addr_buf;
5409 struct sockaddr *addr;
5410 struct socket *sock;
5411
5412 if (!selinux_policycap_extsockclass())
5413 return 0;
5414
5415 /* Process one or more addresses that may be IPv4 or IPv6 */
5416 sock = sk->sk_socket;
5417 addr_buf = address;
5418
5419 while (walk_size < addrlen) {
5420 if (walk_size + sizeof(sa_family_t) > addrlen)
5421 return -EINVAL;
5422
5423 addr = addr_buf;
5424 switch (addr->sa_family) {
5425 case AF_UNSPEC:
5426 case AF_INET:
5427 len = sizeof(struct sockaddr_in);
5428 break;
5429 case AF_INET6:
5430 len = sizeof(struct sockaddr_in6);
5431 break;
5432 default:
5433 return -EINVAL;
5434 }
5435
5436 if (walk_size + len > addrlen)
5437 return -EINVAL;
5438
5439 err = -EINVAL;
5440 switch (optname) {
5441 /* Bind checks */
5442 case SCTP_PRIMARY_ADDR:
5443 case SCTP_SET_PEER_PRIMARY_ADDR:
5444 case SCTP_SOCKOPT_BINDX_ADD:
5445 err = selinux_socket_bind(sock, addr, len);
5446 break;
5447 /* Connect checks */
5448 case SCTP_SOCKOPT_CONNECTX:
5449 case SCTP_PARAM_SET_PRIMARY:
5450 case SCTP_PARAM_ADD_IP:
5451 case SCTP_SENDMSG_CONNECT:
5452 err = selinux_socket_connect_helper(sock, addr, len);
5453 if (err)
5454 return err;
5455
5456 /* As selinux_sctp_bind_connect() is called by the
5457 * SCTP protocol layer, the socket is already locked,
5458 * therefore selinux_netlbl_socket_connect_locked()
5459 * is called here. The situations handled are:
5460 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5461 * whenever a new IP address is added or when a new
5462 * primary address is selected.
5463 * Note that an SCTP connect(2) call happens before
5464 * the SCTP protocol layer and is handled via
5465 * selinux_socket_connect().
5466 */
5467 err = selinux_netlbl_socket_connect_locked(sk, addr);
5468 break;
5469 }
5470
5471 if (err)
5472 return err;
5473
5474 addr_buf += len;
5475 walk_size += len;
5476 }
5477
5478 return 0;
5479}
5480
5481/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5482static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5483 struct sock *newsk)
5484{
5485 struct sk_security_struct *sksec = sk->sk_security;
5486 struct sk_security_struct *newsksec = newsk->sk_security;
5487
5488 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5489 * the non-sctp clone version.
5490 */
5491 if (!selinux_policycap_extsockclass())
5492 return selinux_sk_clone_security(sk, newsk);
5493
5494 newsksec->sid = asoc->secid;
5495 newsksec->peer_sid = asoc->peer_secid;
5496 newsksec->sclass = sksec->sclass;
5497 selinux_netlbl_sctp_sk_clone(sk, newsk);
5498}
5499
5500static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5501{
5502 struct sk_security_struct *ssksec = ssk->sk_security;
5503 struct sk_security_struct *sksec = sk->sk_security;
5504
5505 ssksec->sclass = sksec->sclass;
5506 ssksec->sid = sksec->sid;
5507
5508 /* replace the existing subflow label deleting the existing one
5509 * and re-recreating a new label using the updated context
5510 */
5511 selinux_netlbl_sk_security_free(ssksec);
5512 return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5513}
5514
5515static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5516 struct request_sock *req)
5517{
5518 struct sk_security_struct *sksec = sk->sk_security;
5519 int err;
5520 u16 family = req->rsk_ops->family;
5521 u32 connsid;
5522 u32 peersid;
5523
5524 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5525 if (err)
5526 return err;
5527 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5528 if (err)
5529 return err;
5530 req->secid = connsid;
5531 req->peer_secid = peersid;
5532
5533 return selinux_netlbl_inet_conn_request(req, family);
5534}
5535
5536static void selinux_inet_csk_clone(struct sock *newsk,
5537 const struct request_sock *req)
5538{
5539 struct sk_security_struct *newsksec = newsk->sk_security;
5540
5541 newsksec->sid = req->secid;
5542 newsksec->peer_sid = req->peer_secid;
5543 /* NOTE: Ideally, we should also get the isec->sid for the
5544 new socket in sync, but we don't have the isec available yet.
5545 So we will wait until sock_graft to do it, by which
5546 time it will have been created and available. */
5547
5548 /* We don't need to take any sort of lock here as we are the only
5549 * thread with access to newsksec */
5550 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5551}
5552
5553static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5554{
5555 u16 family = sk->sk_family;
5556 struct sk_security_struct *sksec = sk->sk_security;
5557
5558 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5559 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5560 family = PF_INET;
5561
5562 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5563}
5564
5565static int selinux_secmark_relabel_packet(u32 sid)
5566{
5567 const struct task_security_struct *tsec;
5568 u32 tsid;
5569
5570 tsec = selinux_cred(current_cred());
5571 tsid = tsec->sid;
5572
5573 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5574 NULL);
5575}
5576
5577static void selinux_secmark_refcount_inc(void)
5578{
5579 atomic_inc(&selinux_secmark_refcount);
5580}
5581
5582static void selinux_secmark_refcount_dec(void)
5583{
5584 atomic_dec(&selinux_secmark_refcount);
5585}
5586
5587static void selinux_req_classify_flow(const struct request_sock *req,
5588 struct flowi_common *flic)
5589{
5590 flic->flowic_secid = req->secid;
5591}
5592
5593static int selinux_tun_dev_alloc_security(void **security)
5594{
5595 struct tun_security_struct *tunsec;
5596
5597 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5598 if (!tunsec)
5599 return -ENOMEM;
5600 tunsec->sid = current_sid();
5601
5602 *security = tunsec;
5603 return 0;
5604}
5605
5606static void selinux_tun_dev_free_security(void *security)
5607{
5608 kfree(security);
5609}
5610
5611static int selinux_tun_dev_create(void)
5612{
5613 u32 sid = current_sid();
5614
5615 /* we aren't taking into account the "sockcreate" SID since the socket
5616 * that is being created here is not a socket in the traditional sense,
5617 * instead it is a private sock, accessible only to the kernel, and
5618 * representing a wide range of network traffic spanning multiple
5619 * connections unlike traditional sockets - check the TUN driver to
5620 * get a better understanding of why this socket is special */
5621
5622 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5623 NULL);
5624}
5625
5626static int selinux_tun_dev_attach_queue(void *security)
5627{
5628 struct tun_security_struct *tunsec = security;
5629
5630 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5631 TUN_SOCKET__ATTACH_QUEUE, NULL);
5632}
5633
5634static int selinux_tun_dev_attach(struct sock *sk, void *security)
5635{
5636 struct tun_security_struct *tunsec = security;
5637 struct sk_security_struct *sksec = sk->sk_security;
5638
5639 /* we don't currently perform any NetLabel based labeling here and it
5640 * isn't clear that we would want to do so anyway; while we could apply
5641 * labeling without the support of the TUN user the resulting labeled
5642 * traffic from the other end of the connection would almost certainly
5643 * cause confusion to the TUN user that had no idea network labeling
5644 * protocols were being used */
5645
5646 sksec->sid = tunsec->sid;
5647 sksec->sclass = SECCLASS_TUN_SOCKET;
5648
5649 return 0;
5650}
5651
5652static int selinux_tun_dev_open(void *security)
5653{
5654 struct tun_security_struct *tunsec = security;
5655 u32 sid = current_sid();
5656 int err;
5657
5658 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5659 TUN_SOCKET__RELABELFROM, NULL);
5660 if (err)
5661 return err;
5662 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5663 TUN_SOCKET__RELABELTO, NULL);
5664 if (err)
5665 return err;
5666 tunsec->sid = sid;
5667
5668 return 0;
5669}
5670
5671#ifdef CONFIG_NETFILTER
5672
5673static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5674 const struct nf_hook_state *state)
5675{
5676 int ifindex;
5677 u16 family;
5678 char *addrp;
5679 u32 peer_sid;
5680 struct common_audit_data ad;
5681 struct lsm_network_audit net;
5682 int secmark_active, peerlbl_active;
5683
5684 if (!selinux_policycap_netpeer())
5685 return NF_ACCEPT;
5686
5687 secmark_active = selinux_secmark_enabled();
5688 peerlbl_active = selinux_peerlbl_enabled();
5689 if (!secmark_active && !peerlbl_active)
5690 return NF_ACCEPT;
5691
5692 family = state->pf;
5693 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5694 return NF_DROP;
5695
5696 ifindex = state->in->ifindex;
5697 ad_net_init_from_iif(&ad, &net, ifindex, family);
5698 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5699 return NF_DROP;
5700
5701 if (peerlbl_active) {
5702 int err;
5703
5704 err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5705 addrp, family, peer_sid, &ad);
5706 if (err) {
5707 selinux_netlbl_err(skb, family, err, 1);
5708 return NF_DROP;
5709 }
5710 }
5711
5712 if (secmark_active)
5713 if (avc_has_perm(peer_sid, skb->secmark,
5714 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5715 return NF_DROP;
5716
5717 if (netlbl_enabled())
5718 /* we do this in the FORWARD path and not the POST_ROUTING
5719 * path because we want to make sure we apply the necessary
5720 * labeling before IPsec is applied so we can leverage AH
5721 * protection */
5722 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5723 return NF_DROP;
5724
5725 return NF_ACCEPT;
5726}
5727
5728static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5729 const struct nf_hook_state *state)
5730{
5731 struct sock *sk;
5732 u32 sid;
5733
5734 if (!netlbl_enabled())
5735 return NF_ACCEPT;
5736
5737 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5738 * because we want to make sure we apply the necessary labeling
5739 * before IPsec is applied so we can leverage AH protection */
5740 sk = skb->sk;
5741 if (sk) {
5742 struct sk_security_struct *sksec;
5743
5744 if (sk_listener(sk))
5745 /* if the socket is the listening state then this
5746 * packet is a SYN-ACK packet which means it needs to
5747 * be labeled based on the connection/request_sock and
5748 * not the parent socket. unfortunately, we can't
5749 * lookup the request_sock yet as it isn't queued on
5750 * the parent socket until after the SYN-ACK is sent.
5751 * the "solution" is to simply pass the packet as-is
5752 * as any IP option based labeling should be copied
5753 * from the initial connection request (in the IP
5754 * layer). it is far from ideal, but until we get a
5755 * security label in the packet itself this is the
5756 * best we can do. */
5757 return NF_ACCEPT;
5758
5759 /* standard practice, label using the parent socket */
5760 sksec = sk->sk_security;
5761 sid = sksec->sid;
5762 } else
5763 sid = SECINITSID_KERNEL;
5764 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5765 return NF_DROP;
5766
5767 return NF_ACCEPT;
5768}
5769
5770
5771static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5772 const struct nf_hook_state *state)
5773{
5774 struct sock *sk;
5775 struct sk_security_struct *sksec;
5776 struct common_audit_data ad;
5777 struct lsm_network_audit net;
5778 u8 proto = 0;
5779
5780 sk = skb_to_full_sk(skb);
5781 if (sk == NULL)
5782 return NF_ACCEPT;
5783 sksec = sk->sk_security;
5784
5785 ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5786 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5787 return NF_DROP;
5788
5789 if (selinux_secmark_enabled())
5790 if (avc_has_perm(sksec->sid, skb->secmark,
5791 SECCLASS_PACKET, PACKET__SEND, &ad))
5792 return NF_DROP_ERR(-ECONNREFUSED);
5793
5794 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5795 return NF_DROP_ERR(-ECONNREFUSED);
5796
5797 return NF_ACCEPT;
5798}
5799
5800static unsigned int selinux_ip_postroute(void *priv,
5801 struct sk_buff *skb,
5802 const struct nf_hook_state *state)
5803{
5804 u16 family;
5805 u32 secmark_perm;
5806 u32 peer_sid;
5807 int ifindex;
5808 struct sock *sk;
5809 struct common_audit_data ad;
5810 struct lsm_network_audit net;
5811 char *addrp;
5812 int secmark_active, peerlbl_active;
5813
5814 /* If any sort of compatibility mode is enabled then handoff processing
5815 * to the selinux_ip_postroute_compat() function to deal with the
5816 * special handling. We do this in an attempt to keep this function
5817 * as fast and as clean as possible. */
5818 if (!selinux_policycap_netpeer())
5819 return selinux_ip_postroute_compat(skb, state);
5820
5821 secmark_active = selinux_secmark_enabled();
5822 peerlbl_active = selinux_peerlbl_enabled();
5823 if (!secmark_active && !peerlbl_active)
5824 return NF_ACCEPT;
5825
5826 sk = skb_to_full_sk(skb);
5827
5828#ifdef CONFIG_XFRM
5829 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5830 * packet transformation so allow the packet to pass without any checks
5831 * since we'll have another chance to perform access control checks
5832 * when the packet is on it's final way out.
5833 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5834 * is NULL, in this case go ahead and apply access control.
5835 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5836 * TCP listening state we cannot wait until the XFRM processing
5837 * is done as we will miss out on the SA label if we do;
5838 * unfortunately, this means more work, but it is only once per
5839 * connection. */
5840 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5841 !(sk && sk_listener(sk)))
5842 return NF_ACCEPT;
5843#endif
5844
5845 family = state->pf;
5846 if (sk == NULL) {
5847 /* Without an associated socket the packet is either coming
5848 * from the kernel or it is being forwarded; check the packet
5849 * to determine which and if the packet is being forwarded
5850 * query the packet directly to determine the security label. */
5851 if (skb->skb_iif) {
5852 secmark_perm = PACKET__FORWARD_OUT;
5853 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5854 return NF_DROP;
5855 } else {
5856 secmark_perm = PACKET__SEND;
5857 peer_sid = SECINITSID_KERNEL;
5858 }
5859 } else if (sk_listener(sk)) {
5860 /* Locally generated packet but the associated socket is in the
5861 * listening state which means this is a SYN-ACK packet. In
5862 * this particular case the correct security label is assigned
5863 * to the connection/request_sock but unfortunately we can't
5864 * query the request_sock as it isn't queued on the parent
5865 * socket until after the SYN-ACK packet is sent; the only
5866 * viable choice is to regenerate the label like we do in
5867 * selinux_inet_conn_request(). See also selinux_ip_output()
5868 * for similar problems. */
5869 u32 skb_sid;
5870 struct sk_security_struct *sksec;
5871
5872 sksec = sk->sk_security;
5873 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5874 return NF_DROP;
5875 /* At this point, if the returned skb peerlbl is SECSID_NULL
5876 * and the packet has been through at least one XFRM
5877 * transformation then we must be dealing with the "final"
5878 * form of labeled IPsec packet; since we've already applied
5879 * all of our access controls on this packet we can safely
5880 * pass the packet. */
5881 if (skb_sid == SECSID_NULL) {
5882 switch (family) {
5883 case PF_INET:
5884 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5885 return NF_ACCEPT;
5886 break;
5887 case PF_INET6:
5888 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5889 return NF_ACCEPT;
5890 break;
5891 default:
5892 return NF_DROP_ERR(-ECONNREFUSED);
5893 }
5894 }
5895 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5896 return NF_DROP;
5897 secmark_perm = PACKET__SEND;
5898 } else {
5899 /* Locally generated packet, fetch the security label from the
5900 * associated socket. */
5901 struct sk_security_struct *sksec = sk->sk_security;
5902 peer_sid = sksec->sid;
5903 secmark_perm = PACKET__SEND;
5904 }
5905
5906 ifindex = state->out->ifindex;
5907 ad_net_init_from_iif(&ad, &net, ifindex, family);
5908 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5909 return NF_DROP;
5910
5911 if (secmark_active)
5912 if (avc_has_perm(peer_sid, skb->secmark,
5913 SECCLASS_PACKET, secmark_perm, &ad))
5914 return NF_DROP_ERR(-ECONNREFUSED);
5915
5916 if (peerlbl_active) {
5917 u32 if_sid;
5918 u32 node_sid;
5919
5920 if (sel_netif_sid(state->net, ifindex, &if_sid))
5921 return NF_DROP;
5922 if (avc_has_perm(peer_sid, if_sid,
5923 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5924 return NF_DROP_ERR(-ECONNREFUSED);
5925
5926 if (sel_netnode_sid(addrp, family, &node_sid))
5927 return NF_DROP;
5928 if (avc_has_perm(peer_sid, node_sid,
5929 SECCLASS_NODE, NODE__SENDTO, &ad))
5930 return NF_DROP_ERR(-ECONNREFUSED);
5931 }
5932
5933 return NF_ACCEPT;
5934}
5935#endif /* CONFIG_NETFILTER */
5936
5937static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5938{
5939 int rc = 0;
5940 unsigned int msg_len;
5941 unsigned int data_len = skb->len;
5942 unsigned char *data = skb->data;
5943 struct nlmsghdr *nlh;
5944 struct sk_security_struct *sksec = sk->sk_security;
5945 u16 sclass = sksec->sclass;
5946 u32 perm;
5947
5948 while (data_len >= nlmsg_total_size(0)) {
5949 nlh = (struct nlmsghdr *)data;
5950
5951 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5952 * users which means we can't reject skb's with bogus
5953 * length fields; our solution is to follow what
5954 * netlink_rcv_skb() does and simply skip processing at
5955 * messages with length fields that are clearly junk
5956 */
5957 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5958 return 0;
5959
5960 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5961 if (rc == 0) {
5962 rc = sock_has_perm(sk, perm);
5963 if (rc)
5964 return rc;
5965 } else if (rc == -EINVAL) {
5966 /* -EINVAL is a missing msg/perm mapping */
5967 pr_warn_ratelimited("SELinux: unrecognized netlink"
5968 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5969 " pid=%d comm=%s\n",
5970 sk->sk_protocol, nlh->nlmsg_type,
5971 secclass_map[sclass - 1].name,
5972 task_pid_nr(current), current->comm);
5973 if (enforcing_enabled() &&
5974 !security_get_allow_unknown())
5975 return rc;
5976 rc = 0;
5977 } else if (rc == -ENOENT) {
5978 /* -ENOENT is a missing socket/class mapping, ignore */
5979 rc = 0;
5980 } else {
5981 return rc;
5982 }
5983
5984 /* move to the next message after applying netlink padding */
5985 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5986 if (msg_len >= data_len)
5987 return 0;
5988 data_len -= msg_len;
5989 data += msg_len;
5990 }
5991
5992 return rc;
5993}
5994
5995static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5996{
5997 isec->sclass = sclass;
5998 isec->sid = current_sid();
5999}
6000
6001static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6002 u32 perms)
6003{
6004 struct ipc_security_struct *isec;
6005 struct common_audit_data ad;
6006 u32 sid = current_sid();
6007
6008 isec = selinux_ipc(ipc_perms);
6009
6010 ad.type = LSM_AUDIT_DATA_IPC;
6011 ad.u.ipc_id = ipc_perms->key;
6012
6013 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
6014}
6015
6016static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6017{
6018 struct msg_security_struct *msec;
6019
6020 msec = selinux_msg_msg(msg);
6021 msec->sid = SECINITSID_UNLABELED;
6022
6023 return 0;
6024}
6025
6026/* message queue security operations */
6027static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6028{
6029 struct ipc_security_struct *isec;
6030 struct common_audit_data ad;
6031 u32 sid = current_sid();
6032
6033 isec = selinux_ipc(msq);
6034 ipc_init_security(isec, SECCLASS_MSGQ);
6035
6036 ad.type = LSM_AUDIT_DATA_IPC;
6037 ad.u.ipc_id = msq->key;
6038
6039 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6040 MSGQ__CREATE, &ad);
6041}
6042
6043static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6044{
6045 struct ipc_security_struct *isec;
6046 struct common_audit_data ad;
6047 u32 sid = current_sid();
6048
6049 isec = selinux_ipc(msq);
6050
6051 ad.type = LSM_AUDIT_DATA_IPC;
6052 ad.u.ipc_id = msq->key;
6053
6054 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6055 MSGQ__ASSOCIATE, &ad);
6056}
6057
6058static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6059{
6060 u32 perms;
6061
6062 switch (cmd) {
6063 case IPC_INFO:
6064 case MSG_INFO:
6065 /* No specific object, just general system-wide information. */
6066 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6067 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6068 case IPC_STAT:
6069 case MSG_STAT:
6070 case MSG_STAT_ANY:
6071 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6072 break;
6073 case IPC_SET:
6074 perms = MSGQ__SETATTR;
6075 break;
6076 case IPC_RMID:
6077 perms = MSGQ__DESTROY;
6078 break;
6079 default:
6080 return 0;
6081 }
6082
6083 return ipc_has_perm(msq, perms);
6084}
6085
6086static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6087{
6088 struct ipc_security_struct *isec;
6089 struct msg_security_struct *msec;
6090 struct common_audit_data ad;
6091 u32 sid = current_sid();
6092 int rc;
6093
6094 isec = selinux_ipc(msq);
6095 msec = selinux_msg_msg(msg);
6096
6097 /*
6098 * First time through, need to assign label to the message
6099 */
6100 if (msec->sid == SECINITSID_UNLABELED) {
6101 /*
6102 * Compute new sid based on current process and
6103 * message queue this message will be stored in
6104 */
6105 rc = security_transition_sid(sid, isec->sid,
6106 SECCLASS_MSG, NULL, &msec->sid);
6107 if (rc)
6108 return rc;
6109 }
6110
6111 ad.type = LSM_AUDIT_DATA_IPC;
6112 ad.u.ipc_id = msq->key;
6113
6114 /* Can this process write to the queue? */
6115 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6116 MSGQ__WRITE, &ad);
6117 if (!rc)
6118 /* Can this process send the message */
6119 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6120 MSG__SEND, &ad);
6121 if (!rc)
6122 /* Can the message be put in the queue? */
6123 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6124 MSGQ__ENQUEUE, &ad);
6125
6126 return rc;
6127}
6128
6129static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6130 struct task_struct *target,
6131 long type, int mode)
6132{
6133 struct ipc_security_struct *isec;
6134 struct msg_security_struct *msec;
6135 struct common_audit_data ad;
6136 u32 sid = task_sid_obj(target);
6137 int rc;
6138
6139 isec = selinux_ipc(msq);
6140 msec = selinux_msg_msg(msg);
6141
6142 ad.type = LSM_AUDIT_DATA_IPC;
6143 ad.u.ipc_id = msq->key;
6144
6145 rc = avc_has_perm(sid, isec->sid,
6146 SECCLASS_MSGQ, MSGQ__READ, &ad);
6147 if (!rc)
6148 rc = avc_has_perm(sid, msec->sid,
6149 SECCLASS_MSG, MSG__RECEIVE, &ad);
6150 return rc;
6151}
6152
6153/* Shared Memory security operations */
6154static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6155{
6156 struct ipc_security_struct *isec;
6157 struct common_audit_data ad;
6158 u32 sid = current_sid();
6159
6160 isec = selinux_ipc(shp);
6161 ipc_init_security(isec, SECCLASS_SHM);
6162
6163 ad.type = LSM_AUDIT_DATA_IPC;
6164 ad.u.ipc_id = shp->key;
6165
6166 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6167 SHM__CREATE, &ad);
6168}
6169
6170static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6171{
6172 struct ipc_security_struct *isec;
6173 struct common_audit_data ad;
6174 u32 sid = current_sid();
6175
6176 isec = selinux_ipc(shp);
6177
6178 ad.type = LSM_AUDIT_DATA_IPC;
6179 ad.u.ipc_id = shp->key;
6180
6181 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6182 SHM__ASSOCIATE, &ad);
6183}
6184
6185/* Note, at this point, shp is locked down */
6186static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6187{
6188 u32 perms;
6189
6190 switch (cmd) {
6191 case IPC_INFO:
6192 case SHM_INFO:
6193 /* No specific object, just general system-wide information. */
6194 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6195 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6196 case IPC_STAT:
6197 case SHM_STAT:
6198 case SHM_STAT_ANY:
6199 perms = SHM__GETATTR | SHM__ASSOCIATE;
6200 break;
6201 case IPC_SET:
6202 perms = SHM__SETATTR;
6203 break;
6204 case SHM_LOCK:
6205 case SHM_UNLOCK:
6206 perms = SHM__LOCK;
6207 break;
6208 case IPC_RMID:
6209 perms = SHM__DESTROY;
6210 break;
6211 default:
6212 return 0;
6213 }
6214
6215 return ipc_has_perm(shp, perms);
6216}
6217
6218static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6219 char __user *shmaddr, int shmflg)
6220{
6221 u32 perms;
6222
6223 if (shmflg & SHM_RDONLY)
6224 perms = SHM__READ;
6225 else
6226 perms = SHM__READ | SHM__WRITE;
6227
6228 return ipc_has_perm(shp, perms);
6229}
6230
6231/* Semaphore security operations */
6232static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6233{
6234 struct ipc_security_struct *isec;
6235 struct common_audit_data ad;
6236 u32 sid = current_sid();
6237
6238 isec = selinux_ipc(sma);
6239 ipc_init_security(isec, SECCLASS_SEM);
6240
6241 ad.type = LSM_AUDIT_DATA_IPC;
6242 ad.u.ipc_id = sma->key;
6243
6244 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6245 SEM__CREATE, &ad);
6246}
6247
6248static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6249{
6250 struct ipc_security_struct *isec;
6251 struct common_audit_data ad;
6252 u32 sid = current_sid();
6253
6254 isec = selinux_ipc(sma);
6255
6256 ad.type = LSM_AUDIT_DATA_IPC;
6257 ad.u.ipc_id = sma->key;
6258
6259 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6260 SEM__ASSOCIATE, &ad);
6261}
6262
6263/* Note, at this point, sma is locked down */
6264static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6265{
6266 int err;
6267 u32 perms;
6268
6269 switch (cmd) {
6270 case IPC_INFO:
6271 case SEM_INFO:
6272 /* No specific object, just general system-wide information. */
6273 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6274 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6275 case GETPID:
6276 case GETNCNT:
6277 case GETZCNT:
6278 perms = SEM__GETATTR;
6279 break;
6280 case GETVAL:
6281 case GETALL:
6282 perms = SEM__READ;
6283 break;
6284 case SETVAL:
6285 case SETALL:
6286 perms = SEM__WRITE;
6287 break;
6288 case IPC_RMID:
6289 perms = SEM__DESTROY;
6290 break;
6291 case IPC_SET:
6292 perms = SEM__SETATTR;
6293 break;
6294 case IPC_STAT:
6295 case SEM_STAT:
6296 case SEM_STAT_ANY:
6297 perms = SEM__GETATTR | SEM__ASSOCIATE;
6298 break;
6299 default:
6300 return 0;
6301 }
6302
6303 err = ipc_has_perm(sma, perms);
6304 return err;
6305}
6306
6307static int selinux_sem_semop(struct kern_ipc_perm *sma,
6308 struct sembuf *sops, unsigned nsops, int alter)
6309{
6310 u32 perms;
6311
6312 if (alter)
6313 perms = SEM__READ | SEM__WRITE;
6314 else
6315 perms = SEM__READ;
6316
6317 return ipc_has_perm(sma, perms);
6318}
6319
6320static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6321{
6322 u32 av = 0;
6323
6324 av = 0;
6325 if (flag & S_IRUGO)
6326 av |= IPC__UNIX_READ;
6327 if (flag & S_IWUGO)
6328 av |= IPC__UNIX_WRITE;
6329
6330 if (av == 0)
6331 return 0;
6332
6333 return ipc_has_perm(ipcp, av);
6334}
6335
6336static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6337{
6338 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6339 *secid = isec->sid;
6340}
6341
6342static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6343{
6344 if (inode)
6345 inode_doinit_with_dentry(inode, dentry);
6346}
6347
6348static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6349 char **value)
6350{
6351 const struct task_security_struct *__tsec;
6352 u32 sid;
6353 int error;
6354 unsigned len;
6355
6356 rcu_read_lock();
6357 __tsec = selinux_cred(__task_cred(p));
6358
6359 if (current != p) {
6360 error = avc_has_perm(current_sid(), __tsec->sid,
6361 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6362 if (error)
6363 goto bad;
6364 }
6365
6366 switch (attr) {
6367 case LSM_ATTR_CURRENT:
6368 sid = __tsec->sid;
6369 break;
6370 case LSM_ATTR_PREV:
6371 sid = __tsec->osid;
6372 break;
6373 case LSM_ATTR_EXEC:
6374 sid = __tsec->exec_sid;
6375 break;
6376 case LSM_ATTR_FSCREATE:
6377 sid = __tsec->create_sid;
6378 break;
6379 case LSM_ATTR_KEYCREATE:
6380 sid = __tsec->keycreate_sid;
6381 break;
6382 case LSM_ATTR_SOCKCREATE:
6383 sid = __tsec->sockcreate_sid;
6384 break;
6385 default:
6386 error = -EOPNOTSUPP;
6387 goto bad;
6388 }
6389 rcu_read_unlock();
6390
6391 if (!sid)
6392 return 0;
6393
6394 error = security_sid_to_context(sid, value, &len);
6395 if (error)
6396 return error;
6397 return len;
6398
6399bad:
6400 rcu_read_unlock();
6401 return error;
6402}
6403
6404static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6405{
6406 struct task_security_struct *tsec;
6407 struct cred *new;
6408 u32 mysid = current_sid(), sid = 0, ptsid;
6409 int error;
6410 char *str = value;
6411
6412 /*
6413 * Basic control over ability to set these attributes at all.
6414 */
6415 switch (attr) {
6416 case LSM_ATTR_EXEC:
6417 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6418 PROCESS__SETEXEC, NULL);
6419 break;
6420 case LSM_ATTR_FSCREATE:
6421 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6422 PROCESS__SETFSCREATE, NULL);
6423 break;
6424 case LSM_ATTR_KEYCREATE:
6425 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6426 PROCESS__SETKEYCREATE, NULL);
6427 break;
6428 case LSM_ATTR_SOCKCREATE:
6429 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6430 PROCESS__SETSOCKCREATE, NULL);
6431 break;
6432 case LSM_ATTR_CURRENT:
6433 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6434 PROCESS__SETCURRENT, NULL);
6435 break;
6436 default:
6437 error = -EOPNOTSUPP;
6438 break;
6439 }
6440 if (error)
6441 return error;
6442
6443 /* Obtain a SID for the context, if one was specified. */
6444 if (size && str[0] && str[0] != '\n') {
6445 if (str[size-1] == '\n') {
6446 str[size-1] = 0;
6447 size--;
6448 }
6449 error = security_context_to_sid(value, size,
6450 &sid, GFP_KERNEL);
6451 if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6452 if (!has_cap_mac_admin(true)) {
6453 struct audit_buffer *ab;
6454 size_t audit_size;
6455
6456 /* We strip a nul only if it is at the end,
6457 * otherwise the context contains a nul and
6458 * we should audit that */
6459 if (str[size - 1] == '\0')
6460 audit_size = size - 1;
6461 else
6462 audit_size = size;
6463 ab = audit_log_start(audit_context(),
6464 GFP_ATOMIC,
6465 AUDIT_SELINUX_ERR);
6466 if (!ab)
6467 return error;
6468 audit_log_format(ab, "op=fscreate invalid_context=");
6469 audit_log_n_untrustedstring(ab, value,
6470 audit_size);
6471 audit_log_end(ab);
6472
6473 return error;
6474 }
6475 error = security_context_to_sid_force(value, size,
6476 &sid);
6477 }
6478 if (error)
6479 return error;
6480 }
6481
6482 new = prepare_creds();
6483 if (!new)
6484 return -ENOMEM;
6485
6486 /* Permission checking based on the specified context is
6487 performed during the actual operation (execve,
6488 open/mkdir/...), when we know the full context of the
6489 operation. See selinux_bprm_creds_for_exec for the execve
6490 checks and may_create for the file creation checks. The
6491 operation will then fail if the context is not permitted. */
6492 tsec = selinux_cred(new);
6493 if (attr == LSM_ATTR_EXEC) {
6494 tsec->exec_sid = sid;
6495 } else if (attr == LSM_ATTR_FSCREATE) {
6496 tsec->create_sid = sid;
6497 } else if (attr == LSM_ATTR_KEYCREATE) {
6498 if (sid) {
6499 error = avc_has_perm(mysid, sid,
6500 SECCLASS_KEY, KEY__CREATE, NULL);
6501 if (error)
6502 goto abort_change;
6503 }
6504 tsec->keycreate_sid = sid;
6505 } else if (attr == LSM_ATTR_SOCKCREATE) {
6506 tsec->sockcreate_sid = sid;
6507 } else if (attr == LSM_ATTR_CURRENT) {
6508 error = -EINVAL;
6509 if (sid == 0)
6510 goto abort_change;
6511
6512 if (!current_is_single_threaded()) {
6513 error = security_bounded_transition(tsec->sid, sid);
6514 if (error)
6515 goto abort_change;
6516 }
6517
6518 /* Check permissions for the transition. */
6519 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6520 PROCESS__DYNTRANSITION, NULL);
6521 if (error)
6522 goto abort_change;
6523
6524 /* Check for ptracing, and update the task SID if ok.
6525 Otherwise, leave SID unchanged and fail. */
6526 ptsid = ptrace_parent_sid();
6527 if (ptsid != 0) {
6528 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6529 PROCESS__PTRACE, NULL);
6530 if (error)
6531 goto abort_change;
6532 }
6533
6534 tsec->sid = sid;
6535 } else {
6536 error = -EINVAL;
6537 goto abort_change;
6538 }
6539
6540 commit_creds(new);
6541 return size;
6542
6543abort_change:
6544 abort_creds(new);
6545 return error;
6546}
6547
6548/**
6549 * selinux_getselfattr - Get SELinux current task attributes
6550 * @attr: the requested attribute
6551 * @ctx: buffer to receive the result
6552 * @size: buffer size (input), buffer size used (output)
6553 * @flags: unused
6554 *
6555 * Fill the passed user space @ctx with the details of the requested
6556 * attribute.
6557 *
6558 * Returns the number of attributes on success, an error code otherwise.
6559 * There will only ever be one attribute.
6560 */
6561static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6562 u32 *size, u32 flags)
6563{
6564 int rc;
6565 char *val = NULL;
6566 int val_len;
6567
6568 val_len = selinux_lsm_getattr(attr, current, &val);
6569 if (val_len < 0)
6570 return val_len;
6571 rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6572 kfree(val);
6573 return (!rc ? 1 : rc);
6574}
6575
6576static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6577 u32 size, u32 flags)
6578{
6579 int rc;
6580
6581 rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6582 if (rc > 0)
6583 return 0;
6584 return rc;
6585}
6586
6587static int selinux_getprocattr(struct task_struct *p,
6588 const char *name, char **value)
6589{
6590 unsigned int attr = lsm_name_to_attr(name);
6591 int rc;
6592
6593 if (attr) {
6594 rc = selinux_lsm_getattr(attr, p, value);
6595 if (rc != -EOPNOTSUPP)
6596 return rc;
6597 }
6598
6599 return -EINVAL;
6600}
6601
6602static int selinux_setprocattr(const char *name, void *value, size_t size)
6603{
6604 int attr = lsm_name_to_attr(name);
6605
6606 if (attr)
6607 return selinux_lsm_setattr(attr, value, size);
6608 return -EINVAL;
6609}
6610
6611static int selinux_ismaclabel(const char *name)
6612{
6613 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6614}
6615
6616static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6617{
6618 return security_sid_to_context(secid,
6619 secdata, seclen);
6620}
6621
6622static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6623{
6624 return security_context_to_sid(secdata, seclen,
6625 secid, GFP_KERNEL);
6626}
6627
6628static void selinux_release_secctx(char *secdata, u32 seclen)
6629{
6630 kfree(secdata);
6631}
6632
6633static void selinux_inode_invalidate_secctx(struct inode *inode)
6634{
6635 struct inode_security_struct *isec = selinux_inode(inode);
6636
6637 spin_lock(&isec->lock);
6638 isec->initialized = LABEL_INVALID;
6639 spin_unlock(&isec->lock);
6640}
6641
6642/*
6643 * called with inode->i_mutex locked
6644 */
6645static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6646{
6647 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6648 ctx, ctxlen, 0);
6649 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6650 return rc == -EOPNOTSUPP ? 0 : rc;
6651}
6652
6653/*
6654 * called with inode->i_mutex locked
6655 */
6656static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6657{
6658 return __vfs_setxattr_noperm(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6659 ctx, ctxlen, 0);
6660}
6661
6662static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6663{
6664 int len = 0;
6665 len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6666 XATTR_SELINUX_SUFFIX, ctx, true);
6667 if (len < 0)
6668 return len;
6669 *ctxlen = len;
6670 return 0;
6671}
6672#ifdef CONFIG_KEYS
6673
6674static int selinux_key_alloc(struct key *k, const struct cred *cred,
6675 unsigned long flags)
6676{
6677 const struct task_security_struct *tsec;
6678 struct key_security_struct *ksec;
6679
6680 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6681 if (!ksec)
6682 return -ENOMEM;
6683
6684 tsec = selinux_cred(cred);
6685 if (tsec->keycreate_sid)
6686 ksec->sid = tsec->keycreate_sid;
6687 else
6688 ksec->sid = tsec->sid;
6689
6690 k->security = ksec;
6691 return 0;
6692}
6693
6694static void selinux_key_free(struct key *k)
6695{
6696 struct key_security_struct *ksec = k->security;
6697
6698 k->security = NULL;
6699 kfree(ksec);
6700}
6701
6702static int selinux_key_permission(key_ref_t key_ref,
6703 const struct cred *cred,
6704 enum key_need_perm need_perm)
6705{
6706 struct key *key;
6707 struct key_security_struct *ksec;
6708 u32 perm, sid;
6709
6710 switch (need_perm) {
6711 case KEY_NEED_VIEW:
6712 perm = KEY__VIEW;
6713 break;
6714 case KEY_NEED_READ:
6715 perm = KEY__READ;
6716 break;
6717 case KEY_NEED_WRITE:
6718 perm = KEY__WRITE;
6719 break;
6720 case KEY_NEED_SEARCH:
6721 perm = KEY__SEARCH;
6722 break;
6723 case KEY_NEED_LINK:
6724 perm = KEY__LINK;
6725 break;
6726 case KEY_NEED_SETATTR:
6727 perm = KEY__SETATTR;
6728 break;
6729 case KEY_NEED_UNLINK:
6730 case KEY_SYSADMIN_OVERRIDE:
6731 case KEY_AUTHTOKEN_OVERRIDE:
6732 case KEY_DEFER_PERM_CHECK:
6733 return 0;
6734 default:
6735 WARN_ON(1);
6736 return -EPERM;
6737
6738 }
6739
6740 sid = cred_sid(cred);
6741 key = key_ref_to_ptr(key_ref);
6742 ksec = key->security;
6743
6744 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6745}
6746
6747static int selinux_key_getsecurity(struct key *key, char **_buffer)
6748{
6749 struct key_security_struct *ksec = key->security;
6750 char *context = NULL;
6751 unsigned len;
6752 int rc;
6753
6754 rc = security_sid_to_context(ksec->sid,
6755 &context, &len);
6756 if (!rc)
6757 rc = len;
6758 *_buffer = context;
6759 return rc;
6760}
6761
6762#ifdef CONFIG_KEY_NOTIFICATIONS
6763static int selinux_watch_key(struct key *key)
6764{
6765 struct key_security_struct *ksec = key->security;
6766 u32 sid = current_sid();
6767
6768 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6769}
6770#endif
6771#endif
6772
6773#ifdef CONFIG_SECURITY_INFINIBAND
6774static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6775{
6776 struct common_audit_data ad;
6777 int err;
6778 u32 sid = 0;
6779 struct ib_security_struct *sec = ib_sec;
6780 struct lsm_ibpkey_audit ibpkey;
6781
6782 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6783 if (err)
6784 return err;
6785
6786 ad.type = LSM_AUDIT_DATA_IBPKEY;
6787 ibpkey.subnet_prefix = subnet_prefix;
6788 ibpkey.pkey = pkey_val;
6789 ad.u.ibpkey = &ibpkey;
6790 return avc_has_perm(sec->sid, sid,
6791 SECCLASS_INFINIBAND_PKEY,
6792 INFINIBAND_PKEY__ACCESS, &ad);
6793}
6794
6795static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6796 u8 port_num)
6797{
6798 struct common_audit_data ad;
6799 int err;
6800 u32 sid = 0;
6801 struct ib_security_struct *sec = ib_sec;
6802 struct lsm_ibendport_audit ibendport;
6803
6804 err = security_ib_endport_sid(dev_name, port_num,
6805 &sid);
6806
6807 if (err)
6808 return err;
6809
6810 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6811 ibendport.dev_name = dev_name;
6812 ibendport.port = port_num;
6813 ad.u.ibendport = &ibendport;
6814 return avc_has_perm(sec->sid, sid,
6815 SECCLASS_INFINIBAND_ENDPORT,
6816 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6817}
6818
6819static int selinux_ib_alloc_security(void **ib_sec)
6820{
6821 struct ib_security_struct *sec;
6822
6823 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6824 if (!sec)
6825 return -ENOMEM;
6826 sec->sid = current_sid();
6827
6828 *ib_sec = sec;
6829 return 0;
6830}
6831
6832static void selinux_ib_free_security(void *ib_sec)
6833{
6834 kfree(ib_sec);
6835}
6836#endif
6837
6838#ifdef CONFIG_BPF_SYSCALL
6839static int selinux_bpf(int cmd, union bpf_attr *attr,
6840 unsigned int size)
6841{
6842 u32 sid = current_sid();
6843 int ret;
6844
6845 switch (cmd) {
6846 case BPF_MAP_CREATE:
6847 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6848 NULL);
6849 break;
6850 case BPF_PROG_LOAD:
6851 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6852 NULL);
6853 break;
6854 default:
6855 ret = 0;
6856 break;
6857 }
6858
6859 return ret;
6860}
6861
6862static u32 bpf_map_fmode_to_av(fmode_t fmode)
6863{
6864 u32 av = 0;
6865
6866 if (fmode & FMODE_READ)
6867 av |= BPF__MAP_READ;
6868 if (fmode & FMODE_WRITE)
6869 av |= BPF__MAP_WRITE;
6870 return av;
6871}
6872
6873/* This function will check the file pass through unix socket or binder to see
6874 * if it is a bpf related object. And apply corresponding checks on the bpf
6875 * object based on the type. The bpf maps and programs, not like other files and
6876 * socket, are using a shared anonymous inode inside the kernel as their inode.
6877 * So checking that inode cannot identify if the process have privilege to
6878 * access the bpf object and that's why we have to add this additional check in
6879 * selinux_file_receive and selinux_binder_transfer_files.
6880 */
6881static int bpf_fd_pass(const struct file *file, u32 sid)
6882{
6883 struct bpf_security_struct *bpfsec;
6884 struct bpf_prog *prog;
6885 struct bpf_map *map;
6886 int ret;
6887
6888 if (file->f_op == &bpf_map_fops) {
6889 map = file->private_data;
6890 bpfsec = map->security;
6891 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6892 bpf_map_fmode_to_av(file->f_mode), NULL);
6893 if (ret)
6894 return ret;
6895 } else if (file->f_op == &bpf_prog_fops) {
6896 prog = file->private_data;
6897 bpfsec = prog->aux->security;
6898 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6899 BPF__PROG_RUN, NULL);
6900 if (ret)
6901 return ret;
6902 }
6903 return 0;
6904}
6905
6906static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6907{
6908 u32 sid = current_sid();
6909 struct bpf_security_struct *bpfsec;
6910
6911 bpfsec = map->security;
6912 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6913 bpf_map_fmode_to_av(fmode), NULL);
6914}
6915
6916static int selinux_bpf_prog(struct bpf_prog *prog)
6917{
6918 u32 sid = current_sid();
6919 struct bpf_security_struct *bpfsec;
6920
6921 bpfsec = prog->aux->security;
6922 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6923 BPF__PROG_RUN, NULL);
6924}
6925
6926static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6927 struct bpf_token *token)
6928{
6929 struct bpf_security_struct *bpfsec;
6930
6931 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6932 if (!bpfsec)
6933 return -ENOMEM;
6934
6935 bpfsec->sid = current_sid();
6936 map->security = bpfsec;
6937
6938 return 0;
6939}
6940
6941static void selinux_bpf_map_free(struct bpf_map *map)
6942{
6943 struct bpf_security_struct *bpfsec = map->security;
6944
6945 map->security = NULL;
6946 kfree(bpfsec);
6947}
6948
6949static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6950 struct bpf_token *token)
6951{
6952 struct bpf_security_struct *bpfsec;
6953
6954 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6955 if (!bpfsec)
6956 return -ENOMEM;
6957
6958 bpfsec->sid = current_sid();
6959 prog->aux->security = bpfsec;
6960
6961 return 0;
6962}
6963
6964static void selinux_bpf_prog_free(struct bpf_prog *prog)
6965{
6966 struct bpf_security_struct *bpfsec = prog->aux->security;
6967
6968 prog->aux->security = NULL;
6969 kfree(bpfsec);
6970}
6971
6972static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6973 struct path *path)
6974{
6975 struct bpf_security_struct *bpfsec;
6976
6977 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6978 if (!bpfsec)
6979 return -ENOMEM;
6980
6981 bpfsec->sid = current_sid();
6982 token->security = bpfsec;
6983
6984 return 0;
6985}
6986
6987static void selinux_bpf_token_free(struct bpf_token *token)
6988{
6989 struct bpf_security_struct *bpfsec = token->security;
6990
6991 token->security = NULL;
6992 kfree(bpfsec);
6993}
6994#endif
6995
6996struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
6997 .lbs_cred = sizeof(struct task_security_struct),
6998 .lbs_file = sizeof(struct file_security_struct),
6999 .lbs_inode = sizeof(struct inode_security_struct),
7000 .lbs_ipc = sizeof(struct ipc_security_struct),
7001 .lbs_msg_msg = sizeof(struct msg_security_struct),
7002 .lbs_superblock = sizeof(struct superblock_security_struct),
7003 .lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
7004};
7005
7006#ifdef CONFIG_PERF_EVENTS
7007static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7008{
7009 u32 requested, sid = current_sid();
7010
7011 if (type == PERF_SECURITY_OPEN)
7012 requested = PERF_EVENT__OPEN;
7013 else if (type == PERF_SECURITY_CPU)
7014 requested = PERF_EVENT__CPU;
7015 else if (type == PERF_SECURITY_KERNEL)
7016 requested = PERF_EVENT__KERNEL;
7017 else if (type == PERF_SECURITY_TRACEPOINT)
7018 requested = PERF_EVENT__TRACEPOINT;
7019 else
7020 return -EINVAL;
7021
7022 return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7023 requested, NULL);
7024}
7025
7026static int selinux_perf_event_alloc(struct perf_event *event)
7027{
7028 struct perf_event_security_struct *perfsec;
7029
7030 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7031 if (!perfsec)
7032 return -ENOMEM;
7033
7034 perfsec->sid = current_sid();
7035 event->security = perfsec;
7036
7037 return 0;
7038}
7039
7040static void selinux_perf_event_free(struct perf_event *event)
7041{
7042 struct perf_event_security_struct *perfsec = event->security;
7043
7044 event->security = NULL;
7045 kfree(perfsec);
7046}
7047
7048static int selinux_perf_event_read(struct perf_event *event)
7049{
7050 struct perf_event_security_struct *perfsec = event->security;
7051 u32 sid = current_sid();
7052
7053 return avc_has_perm(sid, perfsec->sid,
7054 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7055}
7056
7057static int selinux_perf_event_write(struct perf_event *event)
7058{
7059 struct perf_event_security_struct *perfsec = event->security;
7060 u32 sid = current_sid();
7061
7062 return avc_has_perm(sid, perfsec->sid,
7063 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7064}
7065#endif
7066
7067#ifdef CONFIG_IO_URING
7068/**
7069 * selinux_uring_override_creds - check the requested cred override
7070 * @new: the target creds
7071 *
7072 * Check to see if the current task is allowed to override it's credentials
7073 * to service an io_uring operation.
7074 */
7075static int selinux_uring_override_creds(const struct cred *new)
7076{
7077 return avc_has_perm(current_sid(), cred_sid(new),
7078 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7079}
7080
7081/**
7082 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7083 *
7084 * Check to see if the current task is allowed to create a new io_uring
7085 * kernel polling thread.
7086 */
7087static int selinux_uring_sqpoll(void)
7088{
7089 u32 sid = current_sid();
7090
7091 return avc_has_perm(sid, sid,
7092 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7093}
7094
7095/**
7096 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7097 * @ioucmd: the io_uring command structure
7098 *
7099 * Check to see if the current domain is allowed to execute an
7100 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7101 *
7102 */
7103static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7104{
7105 struct file *file = ioucmd->file;
7106 struct inode *inode = file_inode(file);
7107 struct inode_security_struct *isec = selinux_inode(inode);
7108 struct common_audit_data ad;
7109
7110 ad.type = LSM_AUDIT_DATA_FILE;
7111 ad.u.file = file;
7112
7113 return avc_has_perm(current_sid(), isec->sid,
7114 SECCLASS_IO_URING, IO_URING__CMD, &ad);
7115}
7116#endif /* CONFIG_IO_URING */
7117
7118static const struct lsm_id selinux_lsmid = {
7119 .name = "selinux",
7120 .id = LSM_ID_SELINUX,
7121};
7122
7123/*
7124 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7125 * 1. any hooks that don't belong to (2.) or (3.) below,
7126 * 2. hooks that both access structures allocated by other hooks, and allocate
7127 * structures that can be later accessed by other hooks (mostly "cloning"
7128 * hooks),
7129 * 3. hooks that only allocate structures that can be later accessed by other
7130 * hooks ("allocating" hooks).
7131 *
7132 * Please follow block comment delimiters in the list to keep this order.
7133 */
7134static struct security_hook_list selinux_hooks[] __ro_after_init = {
7135 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7136 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7137 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7138 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7139
7140 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7141 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7142 LSM_HOOK_INIT(capget, selinux_capget),
7143 LSM_HOOK_INIT(capset, selinux_capset),
7144 LSM_HOOK_INIT(capable, selinux_capable),
7145 LSM_HOOK_INIT(quotactl, selinux_quotactl),
7146 LSM_HOOK_INIT(quota_on, selinux_quota_on),
7147 LSM_HOOK_INIT(syslog, selinux_syslog),
7148 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7149
7150 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7151
7152 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7153 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7154 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7155
7156 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7157 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7158 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7159 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7160 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7161 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7162 LSM_HOOK_INIT(sb_mount, selinux_mount),
7163 LSM_HOOK_INIT(sb_umount, selinux_umount),
7164 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7165 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7166
7167 LSM_HOOK_INIT(move_mount, selinux_move_mount),
7168
7169 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7170 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7171
7172 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7173 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7174 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7175 LSM_HOOK_INIT(inode_create, selinux_inode_create),
7176 LSM_HOOK_INIT(inode_link, selinux_inode_link),
7177 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7178 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7179 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7180 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7181 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7182 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7183 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7184 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7185 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7186 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7187 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7188 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7189 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7190 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7191 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7192 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7193 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7194 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7195 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7196 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7197 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7198 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7199 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7200 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7201 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7202 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7203
7204 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7205
7206 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7207 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7208 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7209 LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7210 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7211 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7212 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7213 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7214 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7215 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7216 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7217 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7218
7219 LSM_HOOK_INIT(file_open, selinux_file_open),
7220
7221 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7222 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7223 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7224 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7225 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7226 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7227 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7228 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7229 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7230 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7231 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7232 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7233 LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7234 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7235 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7236 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7237 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7238 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7239 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7240 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7241 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7242 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7243 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7244 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7245 LSM_HOOK_INIT(userns_create, selinux_userns_create),
7246
7247 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7248 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7249
7250 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7251 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7252 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7253 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7254
7255 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7256 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7257 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7258
7259 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7260 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7261 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7262
7263 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7264
7265 LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7266 LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7267 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7268 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7269
7270 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7271 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7272 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7273 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7274 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7275 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7276
7277 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7278 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7279
7280 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7281 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7282 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7283 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7284 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7285 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7286 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7287 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7288 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7289 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7290 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7291 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7292 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7293 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7294 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7295 LSM_HOOK_INIT(socket_getpeersec_stream,
7296 selinux_socket_getpeersec_stream),
7297 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7298 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7299 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7300 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7301 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7302 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7303 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7304 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7305 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7306 LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7307 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7308 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7309 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7310 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7311 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7312 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7313 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7314 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7315 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7316 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7317 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7318 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7319#ifdef CONFIG_SECURITY_INFINIBAND
7320 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7321 LSM_HOOK_INIT(ib_endport_manage_subnet,
7322 selinux_ib_endport_manage_subnet),
7323 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7324#endif
7325#ifdef CONFIG_SECURITY_NETWORK_XFRM
7326 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7327 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7328 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7329 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7330 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7331 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7332 selinux_xfrm_state_pol_flow_match),
7333 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7334#endif
7335
7336#ifdef CONFIG_KEYS
7337 LSM_HOOK_INIT(key_free, selinux_key_free),
7338 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7339 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7340#ifdef CONFIG_KEY_NOTIFICATIONS
7341 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7342#endif
7343#endif
7344
7345#ifdef CONFIG_AUDIT
7346 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7347 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7348 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7349#endif
7350
7351#ifdef CONFIG_BPF_SYSCALL
7352 LSM_HOOK_INIT(bpf, selinux_bpf),
7353 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7354 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7355 LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7356 LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7357 LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7358#endif
7359
7360#ifdef CONFIG_PERF_EVENTS
7361 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7362 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7363 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7364 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7365#endif
7366
7367#ifdef CONFIG_IO_URING
7368 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7369 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7370 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7371#endif
7372
7373 /*
7374 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7375 */
7376 LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7377 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7378 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7379 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7380#ifdef CONFIG_SECURITY_NETWORK_XFRM
7381 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7382#endif
7383
7384 /*
7385 * PUT "ALLOCATING" HOOKS HERE
7386 */
7387 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7388 LSM_HOOK_INIT(msg_queue_alloc_security,
7389 selinux_msg_queue_alloc_security),
7390 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7391 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7392 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7393 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7394 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7395 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7396 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7397 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7398#ifdef CONFIG_SECURITY_INFINIBAND
7399 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7400#endif
7401#ifdef CONFIG_SECURITY_NETWORK_XFRM
7402 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7403 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7404 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7405 selinux_xfrm_state_alloc_acquire),
7406#endif
7407#ifdef CONFIG_KEYS
7408 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7409#endif
7410#ifdef CONFIG_AUDIT
7411 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7412#endif
7413#ifdef CONFIG_BPF_SYSCALL
7414 LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7415 LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7416 LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7417#endif
7418#ifdef CONFIG_PERF_EVENTS
7419 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7420#endif
7421};
7422
7423static __init int selinux_init(void)
7424{
7425 pr_info("SELinux: Initializing.\n");
7426
7427 memset(&selinux_state, 0, sizeof(selinux_state));
7428 enforcing_set(selinux_enforcing_boot);
7429 selinux_avc_init();
7430 mutex_init(&selinux_state.status_lock);
7431 mutex_init(&selinux_state.policy_mutex);
7432
7433 /* Set the security state for the initial task. */
7434 cred_init_security();
7435
7436 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7437 if (!default_noexec)
7438 pr_notice("SELinux: virtual memory is executable by default\n");
7439
7440 avc_init();
7441
7442 avtab_cache_init();
7443
7444 ebitmap_cache_init();
7445
7446 hashtab_cache_init();
7447
7448 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7449 &selinux_lsmid);
7450
7451 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7452 panic("SELinux: Unable to register AVC netcache callback\n");
7453
7454 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7455 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7456
7457 if (selinux_enforcing_boot)
7458 pr_debug("SELinux: Starting in enforcing mode\n");
7459 else
7460 pr_debug("SELinux: Starting in permissive mode\n");
7461
7462 fs_validate_description("selinux", selinux_fs_parameters);
7463
7464 return 0;
7465}
7466
7467static void delayed_superblock_init(struct super_block *sb, void *unused)
7468{
7469 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7470}
7471
7472void selinux_complete_init(void)
7473{
7474 pr_debug("SELinux: Completing initialization.\n");
7475
7476 /* Set up any superblocks initialized prior to the policy load. */
7477 pr_debug("SELinux: Setting up existing superblocks.\n");
7478 iterate_supers(delayed_superblock_init, NULL);
7479}
7480
7481/* SELinux requires early initialization in order to label
7482 all processes and objects when they are created. */
7483DEFINE_LSM(selinux) = {
7484 .name = "selinux",
7485 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7486 .enabled = &selinux_enabled_boot,
7487 .blobs = &selinux_blob_sizes,
7488 .init = selinux_init,
7489};
7490
7491#if defined(CONFIG_NETFILTER)
7492static const struct nf_hook_ops selinux_nf_ops[] = {
7493 {
7494 .hook = selinux_ip_postroute,
7495 .pf = NFPROTO_IPV4,
7496 .hooknum = NF_INET_POST_ROUTING,
7497 .priority = NF_IP_PRI_SELINUX_LAST,
7498 },
7499 {
7500 .hook = selinux_ip_forward,
7501 .pf = NFPROTO_IPV4,
7502 .hooknum = NF_INET_FORWARD,
7503 .priority = NF_IP_PRI_SELINUX_FIRST,
7504 },
7505 {
7506 .hook = selinux_ip_output,
7507 .pf = NFPROTO_IPV4,
7508 .hooknum = NF_INET_LOCAL_OUT,
7509 .priority = NF_IP_PRI_SELINUX_FIRST,
7510 },
7511#if IS_ENABLED(CONFIG_IPV6)
7512 {
7513 .hook = selinux_ip_postroute,
7514 .pf = NFPROTO_IPV6,
7515 .hooknum = NF_INET_POST_ROUTING,
7516 .priority = NF_IP6_PRI_SELINUX_LAST,
7517 },
7518 {
7519 .hook = selinux_ip_forward,
7520 .pf = NFPROTO_IPV6,
7521 .hooknum = NF_INET_FORWARD,
7522 .priority = NF_IP6_PRI_SELINUX_FIRST,
7523 },
7524 {
7525 .hook = selinux_ip_output,
7526 .pf = NFPROTO_IPV6,
7527 .hooknum = NF_INET_LOCAL_OUT,
7528 .priority = NF_IP6_PRI_SELINUX_FIRST,
7529 },
7530#endif /* IPV6 */
7531};
7532
7533static int __net_init selinux_nf_register(struct net *net)
7534{
7535 return nf_register_net_hooks(net, selinux_nf_ops,
7536 ARRAY_SIZE(selinux_nf_ops));
7537}
7538
7539static void __net_exit selinux_nf_unregister(struct net *net)
7540{
7541 nf_unregister_net_hooks(net, selinux_nf_ops,
7542 ARRAY_SIZE(selinux_nf_ops));
7543}
7544
7545static struct pernet_operations selinux_net_ops = {
7546 .init = selinux_nf_register,
7547 .exit = selinux_nf_unregister,
7548};
7549
7550static int __init selinux_nf_ip_init(void)
7551{
7552 int err;
7553
7554 if (!selinux_enabled_boot)
7555 return 0;
7556
7557 pr_debug("SELinux: Registering netfilter hooks\n");
7558
7559 err = register_pernet_subsys(&selinux_net_ops);
7560 if (err)
7561 panic("SELinux: register_pernet_subsys: error %d\n", err);
7562
7563 return 0;
7564}
7565__initcall(selinux_nf_ip_init);
7566#endif /* CONFIG_NETFILTER */