Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *  Copyright (C) 2016 Mellanox Technologies
  21 *
  22 *	This program is free software; you can redistribute it and/or modify
  23 *	it under the terms of the GNU General Public License version 2,
  24 *	as published by the Free Software Foundation.
  25 */
  26
  27#include <linux/init.h>
  28#include <linux/kd.h>
  29#include <linux/kernel.h>
  30#include <linux/tracehook.h>
  31#include <linux/errno.h>
  32#include <linux/sched/signal.h>
  33#include <linux/sched/task.h>
  34#include <linux/lsm_hooks.h>
  35#include <linux/xattr.h>
  36#include <linux/capability.h>
  37#include <linux/unistd.h>
  38#include <linux/mm.h>
  39#include <linux/mman.h>
  40#include <linux/slab.h>
  41#include <linux/pagemap.h>
  42#include <linux/proc_fs.h>
  43#include <linux/swap.h>
  44#include <linux/spinlock.h>
  45#include <linux/syscalls.h>
  46#include <linux/dcache.h>
  47#include <linux/file.h>
  48#include <linux/fdtable.h>
  49#include <linux/namei.h>
  50#include <linux/mount.h>
  51#include <linux/netfilter_ipv4.h>
  52#include <linux/netfilter_ipv6.h>
  53#include <linux/tty.h>
  54#include <net/icmp.h>
  55#include <net/ip.h>		/* for local_port_range[] */
  56#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  57#include <net/inet_connection_sock.h>
  58#include <net/net_namespace.h>
  59#include <net/netlabel.h>
  60#include <linux/uaccess.h>
  61#include <asm/ioctls.h>
  62#include <linux/atomic.h>
  63#include <linux/bitops.h>
  64#include <linux/interrupt.h>
  65#include <linux/netdevice.h>	/* for network interface checks */
  66#include <net/netlink.h>
  67#include <linux/tcp.h>
  68#include <linux/udp.h>
  69#include <linux/dccp.h>
  70#include <linux/sctp.h>
  71#include <net/sctp/structs.h>
  72#include <linux/quota.h>
  73#include <linux/un.h>		/* for Unix socket types */
  74#include <net/af_unix.h>	/* for Unix socket types */
  75#include <linux/parser.h>
  76#include <linux/nfs_mount.h>
  77#include <net/ipv6.h>
  78#include <linux/hugetlb.h>
  79#include <linux/personality.h>
  80#include <linux/audit.h>
  81#include <linux/string.h>
  82#include <linux/selinux.h>
  83#include <linux/mutex.h>
  84#include <linux/posix-timers.h>
  85#include <linux/syslog.h>
  86#include <linux/user_namespace.h>
  87#include <linux/export.h>
  88#include <linux/msg.h>
  89#include <linux/shm.h>
  90#include <linux/bpf.h>
  91
  92#include "avc.h"
  93#include "objsec.h"
  94#include "netif.h"
  95#include "netnode.h"
  96#include "netport.h"
  97#include "ibpkey.h"
  98#include "xfrm.h"
  99#include "netlabel.h"
 100#include "audit.h"
 101#include "avc_ss.h"
 102
 103struct selinux_state selinux_state;
 104
 105/* SECMARK reference count */
 106static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 107
 108#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 109static int selinux_enforcing_boot;
 110
 111static int __init enforcing_setup(char *str)
 112{
 113	unsigned long enforcing;
 114	if (!kstrtoul(str, 0, &enforcing))
 115		selinux_enforcing_boot = enforcing ? 1 : 0;
 116	return 1;
 117}
 118__setup("enforcing=", enforcing_setup);
 119#else
 120#define selinux_enforcing_boot 1
 121#endif
 122
 123#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 124int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 125
 126static int __init selinux_enabled_setup(char *str)
 127{
 128	unsigned long enabled;
 129	if (!kstrtoul(str, 0, &enabled))
 130		selinux_enabled = enabled ? 1 : 0;
 131	return 1;
 132}
 133__setup("selinux=", selinux_enabled_setup);
 134#else
 135int selinux_enabled = 1;
 136#endif
 137
 138static unsigned int selinux_checkreqprot_boot =
 139	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 140
 141static int __init checkreqprot_setup(char *str)
 142{
 143	unsigned long checkreqprot;
 144
 145	if (!kstrtoul(str, 0, &checkreqprot))
 146		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 147	return 1;
 148}
 149__setup("checkreqprot=", checkreqprot_setup);
 150
 151static struct kmem_cache *sel_inode_cache;
 152static struct kmem_cache *file_security_cache;
 153
 154/**
 155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 156 *
 157 * Description:
 158 * This function checks the SECMARK reference counter to see if any SECMARK
 159 * targets are currently configured, if the reference counter is greater than
 160 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 161 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 162 * policy capability is enabled, SECMARK is always considered enabled.
 163 *
 164 */
 165static int selinux_secmark_enabled(void)
 166{
 167	return (selinux_policycap_alwaysnetwork() ||
 168		atomic_read(&selinux_secmark_refcount));
 169}
 170
 171/**
 172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 173 *
 174 * Description:
 175 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 176 * (1) if any are enabled or false (0) if neither are enabled.  If the
 177 * always_check_network policy capability is enabled, peer labeling
 178 * is always considered enabled.
 179 *
 180 */
 181static int selinux_peerlbl_enabled(void)
 182{
 183	return (selinux_policycap_alwaysnetwork() ||
 184		netlbl_enabled() || selinux_xfrm_enabled());
 185}
 186
 187static int selinux_netcache_avc_callback(u32 event)
 188{
 189	if (event == AVC_CALLBACK_RESET) {
 190		sel_netif_flush();
 191		sel_netnode_flush();
 192		sel_netport_flush();
 193		synchronize_net();
 194	}
 195	return 0;
 196}
 197
 198static int selinux_lsm_notifier_avc_callback(u32 event)
 199{
 200	if (event == AVC_CALLBACK_RESET) {
 201		sel_ib_pkey_flush();
 202		call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 203	}
 204
 205	return 0;
 206}
 207
 208/*
 209 * initialise the security for the init task
 210 */
 211static void cred_init_security(void)
 212{
 213	struct cred *cred = (struct cred *) current->real_cred;
 214	struct task_security_struct *tsec;
 215
 216	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 217	if (!tsec)
 218		panic("SELinux:  Failed to initialize initial task.\n");
 219
 220	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 221	cred->security = tsec;
 222}
 223
 224/*
 225 * get the security ID of a set of credentials
 226 */
 227static inline u32 cred_sid(const struct cred *cred)
 228{
 229	const struct task_security_struct *tsec;
 230
 231	tsec = cred->security;
 232	return tsec->sid;
 233}
 234
 235/*
 236 * get the objective security ID of a task
 237 */
 238static inline u32 task_sid(const struct task_struct *task)
 239{
 240	u32 sid;
 241
 242	rcu_read_lock();
 243	sid = cred_sid(__task_cred(task));
 244	rcu_read_unlock();
 245	return sid;
 246}
 247
 
 
 
 
 
 
 
 
 
 
 248/* Allocate and free functions for each kind of security blob. */
 249
 250static int inode_alloc_security(struct inode *inode)
 251{
 252	struct inode_security_struct *isec;
 253	u32 sid = current_sid();
 254
 255	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 256	if (!isec)
 257		return -ENOMEM;
 258
 259	spin_lock_init(&isec->lock);
 260	INIT_LIST_HEAD(&isec->list);
 261	isec->inode = inode;
 262	isec->sid = SECINITSID_UNLABELED;
 263	isec->sclass = SECCLASS_FILE;
 264	isec->task_sid = sid;
 265	isec->initialized = LABEL_INVALID;
 266	inode->i_security = isec;
 267
 268	return 0;
 269}
 270
 271static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 272
 273/*
 274 * Try reloading inode security labels that have been marked as invalid.  The
 275 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 276 * allowed; when set to false, returns -ECHILD when the label is
 277 * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
 278 * when no dentry is available, set it to NULL instead.
 279 */
 280static int __inode_security_revalidate(struct inode *inode,
 281				       struct dentry *opt_dentry,
 282				       bool may_sleep)
 283{
 284	struct inode_security_struct *isec = inode->i_security;
 285
 286	might_sleep_if(may_sleep);
 287
 288	if (selinux_state.initialized &&
 289	    isec->initialized != LABEL_INITIALIZED) {
 290		if (!may_sleep)
 291			return -ECHILD;
 292
 293		/*
 294		 * Try reloading the inode security label.  This will fail if
 295		 * @opt_dentry is NULL and no dentry for this inode can be
 296		 * found; in that case, continue using the old label.
 297		 */
 298		inode_doinit_with_dentry(inode, opt_dentry);
 299	}
 300	return 0;
 301}
 302
 303static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 304{
 305	return inode->i_security;
 306}
 307
 308static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 309{
 310	int error;
 311
 312	error = __inode_security_revalidate(inode, NULL, !rcu);
 313	if (error)
 314		return ERR_PTR(error);
 315	return inode->i_security;
 316}
 317
 318/*
 319 * Get the security label of an inode.
 320 */
 321static struct inode_security_struct *inode_security(struct inode *inode)
 322{
 323	__inode_security_revalidate(inode, NULL, true);
 324	return inode->i_security;
 325}
 326
 327static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 328{
 329	struct inode *inode = d_backing_inode(dentry);
 330
 331	return inode->i_security;
 332}
 333
 334/*
 335 * Get the security label of a dentry's backing inode.
 336 */
 337static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 338{
 339	struct inode *inode = d_backing_inode(dentry);
 340
 341	__inode_security_revalidate(inode, dentry, true);
 342	return inode->i_security;
 343}
 344
 345static void inode_free_rcu(struct rcu_head *head)
 346{
 347	struct inode_security_struct *isec;
 348
 349	isec = container_of(head, struct inode_security_struct, rcu);
 350	kmem_cache_free(sel_inode_cache, isec);
 351}
 352
 353static void inode_free_security(struct inode *inode)
 354{
 355	struct inode_security_struct *isec = inode->i_security;
 356	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 357
 358	/*
 359	 * As not all inode security structures are in a list, we check for
 360	 * empty list outside of the lock to make sure that we won't waste
 361	 * time taking a lock doing nothing.
 362	 *
 363	 * The list_del_init() function can be safely called more than once.
 364	 * It should not be possible for this function to be called with
 365	 * concurrent list_add(), but for better safety against future changes
 366	 * in the code, we use list_empty_careful() here.
 367	 */
 368	if (!list_empty_careful(&isec->list)) {
 369		spin_lock(&sbsec->isec_lock);
 370		list_del_init(&isec->list);
 371		spin_unlock(&sbsec->isec_lock);
 372	}
 373
 374	/*
 375	 * The inode may still be referenced in a path walk and
 376	 * a call to selinux_inode_permission() can be made
 377	 * after inode_free_security() is called. Ideally, the VFS
 378	 * wouldn't do this, but fixing that is a much harder
 379	 * job. For now, simply free the i_security via RCU, and
 380	 * leave the current inode->i_security pointer intact.
 381	 * The inode will be freed after the RCU grace period too.
 382	 */
 383	call_rcu(&isec->rcu, inode_free_rcu);
 384}
 385
 386static int file_alloc_security(struct file *file)
 387{
 388	struct file_security_struct *fsec;
 389	u32 sid = current_sid();
 390
 391	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
 392	if (!fsec)
 393		return -ENOMEM;
 394
 395	fsec->sid = sid;
 396	fsec->fown_sid = sid;
 397	file->f_security = fsec;
 398
 399	return 0;
 400}
 401
 402static void file_free_security(struct file *file)
 403{
 404	struct file_security_struct *fsec = file->f_security;
 405	file->f_security = NULL;
 406	kmem_cache_free(file_security_cache, fsec);
 407}
 408
 409static int superblock_alloc_security(struct super_block *sb)
 410{
 411	struct superblock_security_struct *sbsec;
 412
 413	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 414	if (!sbsec)
 415		return -ENOMEM;
 416
 417	mutex_init(&sbsec->lock);
 418	INIT_LIST_HEAD(&sbsec->isec_head);
 419	spin_lock_init(&sbsec->isec_lock);
 420	sbsec->sb = sb;
 421	sbsec->sid = SECINITSID_UNLABELED;
 422	sbsec->def_sid = SECINITSID_FILE;
 423	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 424	sb->s_security = sbsec;
 425
 426	return 0;
 427}
 428
 429static void superblock_free_security(struct super_block *sb)
 430{
 431	struct superblock_security_struct *sbsec = sb->s_security;
 432	sb->s_security = NULL;
 433	kfree(sbsec);
 434}
 435
 
 
 
 
 
 
 
 
 
 
 
 
 436static inline int inode_doinit(struct inode *inode)
 437{
 438	return inode_doinit_with_dentry(inode, NULL);
 439}
 440
 441enum {
 442	Opt_error = -1,
 443	Opt_context = 1,
 444	Opt_fscontext = 2,
 445	Opt_defcontext = 3,
 446	Opt_rootcontext = 4,
 447	Opt_labelsupport = 5,
 448	Opt_nextmntopt = 6,
 449};
 450
 451#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 452
 453static const match_table_t tokens = {
 454	{Opt_context, CONTEXT_STR "%s"},
 455	{Opt_fscontext, FSCONTEXT_STR "%s"},
 456	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 457	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 458	{Opt_labelsupport, LABELSUPP_STR},
 459	{Opt_error, NULL},
 460};
 461
 462#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 463
 464static int may_context_mount_sb_relabel(u32 sid,
 465			struct superblock_security_struct *sbsec,
 466			const struct cred *cred)
 467{
 468	const struct task_security_struct *tsec = cred->security;
 469	int rc;
 470
 471	rc = avc_has_perm(&selinux_state,
 472			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 473			  FILESYSTEM__RELABELFROM, NULL);
 474	if (rc)
 475		return rc;
 476
 477	rc = avc_has_perm(&selinux_state,
 478			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 479			  FILESYSTEM__RELABELTO, NULL);
 480	return rc;
 481}
 482
 483static int may_context_mount_inode_relabel(u32 sid,
 484			struct superblock_security_struct *sbsec,
 485			const struct cred *cred)
 486{
 487	const struct task_security_struct *tsec = cred->security;
 488	int rc;
 489	rc = avc_has_perm(&selinux_state,
 490			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 491			  FILESYSTEM__RELABELFROM, NULL);
 492	if (rc)
 493		return rc;
 494
 495	rc = avc_has_perm(&selinux_state,
 496			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 497			  FILESYSTEM__ASSOCIATE, NULL);
 498	return rc;
 499}
 500
 501static int selinux_is_sblabel_mnt(struct super_block *sb)
 502{
 503	struct superblock_security_struct *sbsec = sb->s_security;
 504
 505	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
 506		sbsec->behavior == SECURITY_FS_USE_TRANS ||
 507		sbsec->behavior == SECURITY_FS_USE_TASK ||
 508		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
 509		/* Special handling. Genfs but also in-core setxattr handler */
 510		!strcmp(sb->s_type->name, "sysfs") ||
 511		!strcmp(sb->s_type->name, "pstore") ||
 512		!strcmp(sb->s_type->name, "debugfs") ||
 513		!strcmp(sb->s_type->name, "tracefs") ||
 514		!strcmp(sb->s_type->name, "rootfs") ||
 515		(selinux_policycap_cgroupseclabel() &&
 516		 (!strcmp(sb->s_type->name, "cgroup") ||
 517		  !strcmp(sb->s_type->name, "cgroup2")));
 518}
 519
 520static int sb_finish_set_opts(struct super_block *sb)
 521{
 522	struct superblock_security_struct *sbsec = sb->s_security;
 523	struct dentry *root = sb->s_root;
 524	struct inode *root_inode = d_backing_inode(root);
 525	int rc = 0;
 526
 527	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 528		/* Make sure that the xattr handler exists and that no
 529		   error other than -ENODATA is returned by getxattr on
 530		   the root directory.  -ENODATA is ok, as this may be
 531		   the first boot of the SELinux kernel before we have
 532		   assigned xattr values to the filesystem. */
 533		if (!(root_inode->i_opflags & IOP_XATTR)) {
 534			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 535			       "xattr support\n", sb->s_id, sb->s_type->name);
 536			rc = -EOPNOTSUPP;
 537			goto out;
 538		}
 539
 540		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 541		if (rc < 0 && rc != -ENODATA) {
 542			if (rc == -EOPNOTSUPP)
 543				printk(KERN_WARNING "SELinux: (dev %s, type "
 544				       "%s) has no security xattr handler\n",
 545				       sb->s_id, sb->s_type->name);
 546			else
 547				printk(KERN_WARNING "SELinux: (dev %s, type "
 548				       "%s) getxattr errno %d\n", sb->s_id,
 549				       sb->s_type->name, -rc);
 550			goto out;
 551		}
 552	}
 553
 554	sbsec->flags |= SE_SBINITIALIZED;
 
 
 555
 556	/*
 557	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 558	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 559	 * us a superblock that needs the flag to be cleared.
 560	 */
 561	if (selinux_is_sblabel_mnt(sb))
 562		sbsec->flags |= SBLABEL_MNT;
 563	else
 564		sbsec->flags &= ~SBLABEL_MNT;
 565
 566	/* Initialize the root inode. */
 567	rc = inode_doinit_with_dentry(root_inode, root);
 568
 569	/* Initialize any other inodes associated with the superblock, e.g.
 570	   inodes created prior to initial policy load or inodes created
 571	   during get_sb by a pseudo filesystem that directly
 572	   populates itself. */
 573	spin_lock(&sbsec->isec_lock);
 574next_inode:
 575	if (!list_empty(&sbsec->isec_head)) {
 576		struct inode_security_struct *isec =
 577				list_entry(sbsec->isec_head.next,
 578					   struct inode_security_struct, list);
 579		struct inode *inode = isec->inode;
 580		list_del_init(&isec->list);
 581		spin_unlock(&sbsec->isec_lock);
 582		inode = igrab(inode);
 583		if (inode) {
 584			if (!IS_PRIVATE(inode))
 585				inode_doinit(inode);
 586			iput(inode);
 587		}
 588		spin_lock(&sbsec->isec_lock);
 589		goto next_inode;
 590	}
 591	spin_unlock(&sbsec->isec_lock);
 592out:
 593	return rc;
 594}
 595
 596/*
 597 * This function should allow an FS to ask what it's mount security
 598 * options were so it can use those later for submounts, displaying
 599 * mount options, or whatever.
 600 */
 601static int selinux_get_mnt_opts(const struct super_block *sb,
 602				struct security_mnt_opts *opts)
 603{
 604	int rc = 0, i;
 605	struct superblock_security_struct *sbsec = sb->s_security;
 606	char *context = NULL;
 607	u32 len;
 608	char tmp;
 609
 610	security_init_mnt_opts(opts);
 611
 612	if (!(sbsec->flags & SE_SBINITIALIZED))
 613		return -EINVAL;
 614
 615	if (!selinux_state.initialized)
 616		return -EINVAL;
 617
 618	/* make sure we always check enough bits to cover the mask */
 619	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 620
 621	tmp = sbsec->flags & SE_MNTMASK;
 622	/* count the number of mount options for this sb */
 623	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 624		if (tmp & 0x01)
 625			opts->num_mnt_opts++;
 626		tmp >>= 1;
 627	}
 628	/* Check if the Label support flag is set */
 629	if (sbsec->flags & SBLABEL_MNT)
 630		opts->num_mnt_opts++;
 631
 632	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 633	if (!opts->mnt_opts) {
 634		rc = -ENOMEM;
 635		goto out_free;
 636	}
 637
 638	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 639	if (!opts->mnt_opts_flags) {
 640		rc = -ENOMEM;
 641		goto out_free;
 642	}
 643
 644	i = 0;
 645	if (sbsec->flags & FSCONTEXT_MNT) {
 646		rc = security_sid_to_context(&selinux_state, sbsec->sid,
 647					     &context, &len);
 648		if (rc)
 649			goto out_free;
 650		opts->mnt_opts[i] = context;
 651		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 652	}
 653	if (sbsec->flags & CONTEXT_MNT) {
 654		rc = security_sid_to_context(&selinux_state,
 655					     sbsec->mntpoint_sid,
 656					     &context, &len);
 657		if (rc)
 658			goto out_free;
 659		opts->mnt_opts[i] = context;
 660		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 661	}
 662	if (sbsec->flags & DEFCONTEXT_MNT) {
 663		rc = security_sid_to_context(&selinux_state, sbsec->def_sid,
 664					     &context, &len);
 665		if (rc)
 666			goto out_free;
 667		opts->mnt_opts[i] = context;
 668		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 669	}
 670	if (sbsec->flags & ROOTCONTEXT_MNT) {
 671		struct dentry *root = sbsec->sb->s_root;
 672		struct inode_security_struct *isec = backing_inode_security(root);
 673
 674		rc = security_sid_to_context(&selinux_state, isec->sid,
 675					     &context, &len);
 676		if (rc)
 677			goto out_free;
 678		opts->mnt_opts[i] = context;
 679		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 680	}
 681	if (sbsec->flags & SBLABEL_MNT) {
 682		opts->mnt_opts[i] = NULL;
 683		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 684	}
 685
 686	BUG_ON(i != opts->num_mnt_opts);
 687
 688	return 0;
 689
 690out_free:
 691	security_free_mnt_opts(opts);
 692	return rc;
 693}
 694
 695static int bad_option(struct superblock_security_struct *sbsec, char flag,
 696		      u32 old_sid, u32 new_sid)
 697{
 698	char mnt_flags = sbsec->flags & SE_MNTMASK;
 699
 700	/* check if the old mount command had the same options */
 701	if (sbsec->flags & SE_SBINITIALIZED)
 702		if (!(sbsec->flags & flag) ||
 703		    (old_sid != new_sid))
 704			return 1;
 705
 706	/* check if we were passed the same options twice,
 707	 * aka someone passed context=a,context=b
 708	 */
 709	if (!(sbsec->flags & SE_SBINITIALIZED))
 710		if (mnt_flags & flag)
 711			return 1;
 712	return 0;
 713}
 714
 715/*
 716 * Allow filesystems with binary mount data to explicitly set mount point
 717 * labeling information.
 718 */
 719static int selinux_set_mnt_opts(struct super_block *sb,
 720				struct security_mnt_opts *opts,
 721				unsigned long kern_flags,
 722				unsigned long *set_kern_flags)
 723{
 724	const struct cred *cred = current_cred();
 725	int rc = 0, i;
 726	struct superblock_security_struct *sbsec = sb->s_security;
 727	const char *name = sb->s_type->name;
 728	struct dentry *root = sbsec->sb->s_root;
 729	struct inode_security_struct *root_isec;
 730	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 731	u32 defcontext_sid = 0;
 732	char **mount_options = opts->mnt_opts;
 733	int *flags = opts->mnt_opts_flags;
 734	int num_opts = opts->num_mnt_opts;
 735
 736	mutex_lock(&sbsec->lock);
 737
 738	if (!selinux_state.initialized) {
 739		if (!num_opts) {
 740			/* Defer initialization until selinux_complete_init,
 741			   after the initial policy is loaded and the security
 742			   server is ready to handle calls. */
 743			goto out;
 744		}
 745		rc = -EINVAL;
 746		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 747			"before the security server is initialized\n");
 748		goto out;
 749	}
 750	if (kern_flags && !set_kern_flags) {
 751		/* Specifying internal flags without providing a place to
 752		 * place the results is not allowed */
 753		rc = -EINVAL;
 754		goto out;
 755	}
 756
 757	/*
 758	 * Binary mount data FS will come through this function twice.  Once
 759	 * from an explicit call and once from the generic calls from the vfs.
 760	 * Since the generic VFS calls will not contain any security mount data
 761	 * we need to skip the double mount verification.
 762	 *
 763	 * This does open a hole in which we will not notice if the first
 764	 * mount using this sb set explict options and a second mount using
 765	 * this sb does not set any security options.  (The first options
 766	 * will be used for both mounts)
 767	 */
 768	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 769	    && (num_opts == 0))
 770		goto out;
 771
 772	root_isec = backing_inode_security_novalidate(root);
 773
 774	/*
 775	 * parse the mount options, check if they are valid sids.
 776	 * also check if someone is trying to mount the same sb more
 777	 * than once with different security options.
 778	 */
 779	for (i = 0; i < num_opts; i++) {
 780		u32 sid;
 781
 782		if (flags[i] == SBLABEL_MNT)
 783			continue;
 784		rc = security_context_str_to_sid(&selinux_state,
 785						 mount_options[i], &sid,
 786						 GFP_KERNEL);
 787		if (rc) {
 788			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
 789			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 790			       mount_options[i], sb->s_id, name, rc);
 791			goto out;
 792		}
 793		switch (flags[i]) {
 794		case FSCONTEXT_MNT:
 795			fscontext_sid = sid;
 796
 797			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 798					fscontext_sid))
 799				goto out_double_mount;
 800
 801			sbsec->flags |= FSCONTEXT_MNT;
 802			break;
 803		case CONTEXT_MNT:
 804			context_sid = sid;
 805
 806			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 807					context_sid))
 808				goto out_double_mount;
 809
 810			sbsec->flags |= CONTEXT_MNT;
 811			break;
 812		case ROOTCONTEXT_MNT:
 813			rootcontext_sid = sid;
 814
 815			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 816					rootcontext_sid))
 817				goto out_double_mount;
 818
 819			sbsec->flags |= ROOTCONTEXT_MNT;
 820
 821			break;
 822		case DEFCONTEXT_MNT:
 823			defcontext_sid = sid;
 824
 825			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 826					defcontext_sid))
 827				goto out_double_mount;
 828
 829			sbsec->flags |= DEFCONTEXT_MNT;
 830
 831			break;
 832		default:
 833			rc = -EINVAL;
 834			goto out;
 835		}
 836	}
 837
 838	if (sbsec->flags & SE_SBINITIALIZED) {
 839		/* previously mounted with options, but not on this attempt? */
 840		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 841			goto out_double_mount;
 842		rc = 0;
 843		goto out;
 844	}
 845
 846	if (strcmp(sb->s_type->name, "proc") == 0)
 847		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 848
 849	if (!strcmp(sb->s_type->name, "debugfs") ||
 850	    !strcmp(sb->s_type->name, "tracefs") ||
 851	    !strcmp(sb->s_type->name, "sysfs") ||
 852	    !strcmp(sb->s_type->name, "pstore") ||
 853	    !strcmp(sb->s_type->name, "cgroup") ||
 854	    !strcmp(sb->s_type->name, "cgroup2"))
 855		sbsec->flags |= SE_SBGENFS;
 856
 857	if (!sbsec->behavior) {
 858		/*
 859		 * Determine the labeling behavior to use for this
 860		 * filesystem type.
 861		 */
 862		rc = security_fs_use(&selinux_state, sb);
 863		if (rc) {
 864			printk(KERN_WARNING
 865				"%s: security_fs_use(%s) returned %d\n",
 866					__func__, sb->s_type->name, rc);
 867			goto out;
 868		}
 869	}
 870
 871	/*
 872	 * If this is a user namespace mount and the filesystem type is not
 873	 * explicitly whitelisted, then no contexts are allowed on the command
 874	 * line and security labels must be ignored.
 875	 */
 876	if (sb->s_user_ns != &init_user_ns &&
 877	    strcmp(sb->s_type->name, "tmpfs") &&
 878	    strcmp(sb->s_type->name, "ramfs") &&
 879	    strcmp(sb->s_type->name, "devpts")) {
 880		if (context_sid || fscontext_sid || rootcontext_sid ||
 881		    defcontext_sid) {
 882			rc = -EACCES;
 883			goto out;
 884		}
 885		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 886			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 887			rc = security_transition_sid(&selinux_state,
 888						     current_sid(),
 889						     current_sid(),
 890						     SECCLASS_FILE, NULL,
 891						     &sbsec->mntpoint_sid);
 892			if (rc)
 893				goto out;
 894		}
 895		goto out_set_opts;
 896	}
 897
 898	/* sets the context of the superblock for the fs being mounted. */
 899	if (fscontext_sid) {
 900		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 901		if (rc)
 902			goto out;
 903
 904		sbsec->sid = fscontext_sid;
 905	}
 906
 907	/*
 908	 * Switch to using mount point labeling behavior.
 909	 * sets the label used on all file below the mountpoint, and will set
 910	 * the superblock context if not already set.
 911	 */
 912	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 913		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 914		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 915	}
 916
 917	if (context_sid) {
 918		if (!fscontext_sid) {
 919			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 920							  cred);
 921			if (rc)
 922				goto out;
 923			sbsec->sid = context_sid;
 924		} else {
 925			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 926							     cred);
 927			if (rc)
 928				goto out;
 929		}
 930		if (!rootcontext_sid)
 931			rootcontext_sid = context_sid;
 932
 933		sbsec->mntpoint_sid = context_sid;
 934		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 935	}
 936
 937	if (rootcontext_sid) {
 938		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 939						     cred);
 940		if (rc)
 941			goto out;
 942
 943		root_isec->sid = rootcontext_sid;
 944		root_isec->initialized = LABEL_INITIALIZED;
 945	}
 946
 947	if (defcontext_sid) {
 948		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 949			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 950			rc = -EINVAL;
 951			printk(KERN_WARNING "SELinux: defcontext option is "
 952			       "invalid for this filesystem type\n");
 953			goto out;
 954		}
 955
 956		if (defcontext_sid != sbsec->def_sid) {
 957			rc = may_context_mount_inode_relabel(defcontext_sid,
 958							     sbsec, cred);
 959			if (rc)
 960				goto out;
 961		}
 962
 963		sbsec->def_sid = defcontext_sid;
 964	}
 965
 966out_set_opts:
 967	rc = sb_finish_set_opts(sb);
 968out:
 969	mutex_unlock(&sbsec->lock);
 970	return rc;
 971out_double_mount:
 972	rc = -EINVAL;
 973	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 974	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 975	goto out;
 976}
 977
 978static int selinux_cmp_sb_context(const struct super_block *oldsb,
 979				    const struct super_block *newsb)
 980{
 981	struct superblock_security_struct *old = oldsb->s_security;
 982	struct superblock_security_struct *new = newsb->s_security;
 983	char oldflags = old->flags & SE_MNTMASK;
 984	char newflags = new->flags & SE_MNTMASK;
 985
 986	if (oldflags != newflags)
 987		goto mismatch;
 988	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 989		goto mismatch;
 990	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 991		goto mismatch;
 992	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 993		goto mismatch;
 994	if (oldflags & ROOTCONTEXT_MNT) {
 995		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 996		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 997		if (oldroot->sid != newroot->sid)
 998			goto mismatch;
 999	}
1000	return 0;
1001mismatch:
1002	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
1003			    "different security settings for (dev %s, "
1004			    "type %s)\n", newsb->s_id, newsb->s_type->name);
1005	return -EBUSY;
1006}
1007
1008static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
1009					struct super_block *newsb,
1010					unsigned long kern_flags,
1011					unsigned long *set_kern_flags)
1012{
1013	int rc = 0;
1014	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
1015	struct superblock_security_struct *newsbsec = newsb->s_security;
1016
1017	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
1018	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
1019	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
1020
1021	/*
1022	 * if the parent was able to be mounted it clearly had no special lsm
1023	 * mount options.  thus we can safely deal with this superblock later
1024	 */
1025	if (!selinux_state.initialized)
1026		return 0;
1027
1028	/*
1029	 * Specifying internal flags without providing a place to
1030	 * place the results is not allowed.
1031	 */
1032	if (kern_flags && !set_kern_flags)
1033		return -EINVAL;
1034
1035	/* how can we clone if the old one wasn't set up?? */
1036	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1037
1038	/* if fs is reusing a sb, make sure that the contexts match */
1039	if (newsbsec->flags & SE_SBINITIALIZED)
1040		return selinux_cmp_sb_context(oldsb, newsb);
1041
1042	mutex_lock(&newsbsec->lock);
1043
1044	newsbsec->flags = oldsbsec->flags;
1045
1046	newsbsec->sid = oldsbsec->sid;
1047	newsbsec->def_sid = oldsbsec->def_sid;
1048	newsbsec->behavior = oldsbsec->behavior;
1049
1050	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1051		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1052		rc = security_fs_use(&selinux_state, newsb);
1053		if (rc)
1054			goto out;
1055	}
1056
1057	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1058		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1059		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1060	}
1061
1062	if (set_context) {
1063		u32 sid = oldsbsec->mntpoint_sid;
1064
1065		if (!set_fscontext)
1066			newsbsec->sid = sid;
1067		if (!set_rootcontext) {
1068			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1069			newisec->sid = sid;
1070		}
1071		newsbsec->mntpoint_sid = sid;
1072	}
1073	if (set_rootcontext) {
1074		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1075		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1076
1077		newisec->sid = oldisec->sid;
1078	}
1079
1080	sb_finish_set_opts(newsb);
1081out:
1082	mutex_unlock(&newsbsec->lock);
1083	return rc;
1084}
1085
1086static int selinux_parse_opts_str(char *options,
1087				  struct security_mnt_opts *opts)
1088{
1089	char *p;
1090	char *context = NULL, *defcontext = NULL;
1091	char *fscontext = NULL, *rootcontext = NULL;
1092	int rc, num_mnt_opts = 0;
1093
1094	opts->num_mnt_opts = 0;
1095
1096	/* Standard string-based options. */
1097	while ((p = strsep(&options, "|")) != NULL) {
1098		int token;
1099		substring_t args[MAX_OPT_ARGS];
1100
1101		if (!*p)
1102			continue;
1103
1104		token = match_token(p, tokens, args);
1105
1106		switch (token) {
1107		case Opt_context:
1108			if (context || defcontext) {
1109				rc = -EINVAL;
1110				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1111				goto out_err;
1112			}
1113			context = match_strdup(&args[0]);
1114			if (!context) {
1115				rc = -ENOMEM;
1116				goto out_err;
1117			}
1118			break;
1119
1120		case Opt_fscontext:
1121			if (fscontext) {
1122				rc = -EINVAL;
1123				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1124				goto out_err;
1125			}
1126			fscontext = match_strdup(&args[0]);
1127			if (!fscontext) {
1128				rc = -ENOMEM;
1129				goto out_err;
1130			}
1131			break;
1132
1133		case Opt_rootcontext:
1134			if (rootcontext) {
1135				rc = -EINVAL;
1136				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1137				goto out_err;
1138			}
1139			rootcontext = match_strdup(&args[0]);
1140			if (!rootcontext) {
1141				rc = -ENOMEM;
1142				goto out_err;
1143			}
1144			break;
1145
1146		case Opt_defcontext:
1147			if (context || defcontext) {
1148				rc = -EINVAL;
1149				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1150				goto out_err;
1151			}
1152			defcontext = match_strdup(&args[0]);
1153			if (!defcontext) {
1154				rc = -ENOMEM;
1155				goto out_err;
1156			}
1157			break;
1158		case Opt_labelsupport:
1159			break;
1160		default:
1161			rc = -EINVAL;
1162			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1163			goto out_err;
1164
1165		}
1166	}
1167
1168	rc = -ENOMEM;
1169	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1170	if (!opts->mnt_opts)
1171		goto out_err;
1172
1173	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1174				       GFP_KERNEL);
1175	if (!opts->mnt_opts_flags)
 
1176		goto out_err;
 
1177
1178	if (fscontext) {
1179		opts->mnt_opts[num_mnt_opts] = fscontext;
1180		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1181	}
1182	if (context) {
1183		opts->mnt_opts[num_mnt_opts] = context;
1184		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1185	}
1186	if (rootcontext) {
1187		opts->mnt_opts[num_mnt_opts] = rootcontext;
1188		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1189	}
1190	if (defcontext) {
1191		opts->mnt_opts[num_mnt_opts] = defcontext;
1192		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1193	}
1194
1195	opts->num_mnt_opts = num_mnt_opts;
1196	return 0;
1197
1198out_err:
1199	security_free_mnt_opts(opts);
1200	kfree(context);
1201	kfree(defcontext);
1202	kfree(fscontext);
1203	kfree(rootcontext);
1204	return rc;
1205}
1206/*
1207 * string mount options parsing and call set the sbsec
1208 */
1209static int superblock_doinit(struct super_block *sb, void *data)
1210{
1211	int rc = 0;
1212	char *options = data;
1213	struct security_mnt_opts opts;
1214
1215	security_init_mnt_opts(&opts);
1216
1217	if (!data)
1218		goto out;
1219
1220	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1221
1222	rc = selinux_parse_opts_str(options, &opts);
1223	if (rc)
1224		goto out_err;
1225
1226out:
1227	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1228
1229out_err:
1230	security_free_mnt_opts(&opts);
1231	return rc;
1232}
1233
1234static void selinux_write_opts(struct seq_file *m,
1235			       struct security_mnt_opts *opts)
1236{
1237	int i;
1238	char *prefix;
1239
1240	for (i = 0; i < opts->num_mnt_opts; i++) {
1241		char *has_comma;
1242
1243		if (opts->mnt_opts[i])
1244			has_comma = strchr(opts->mnt_opts[i], ',');
1245		else
1246			has_comma = NULL;
1247
1248		switch (opts->mnt_opts_flags[i]) {
1249		case CONTEXT_MNT:
1250			prefix = CONTEXT_STR;
1251			break;
1252		case FSCONTEXT_MNT:
1253			prefix = FSCONTEXT_STR;
1254			break;
1255		case ROOTCONTEXT_MNT:
1256			prefix = ROOTCONTEXT_STR;
1257			break;
1258		case DEFCONTEXT_MNT:
1259			prefix = DEFCONTEXT_STR;
1260			break;
1261		case SBLABEL_MNT:
1262			seq_putc(m, ',');
1263			seq_puts(m, LABELSUPP_STR);
1264			continue;
1265		default:
1266			BUG();
1267			return;
1268		};
1269		/* we need a comma before each option */
1270		seq_putc(m, ',');
1271		seq_puts(m, prefix);
1272		if (has_comma)
1273			seq_putc(m, '\"');
1274		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1275		if (has_comma)
1276			seq_putc(m, '\"');
1277	}
1278}
1279
1280static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1281{
1282	struct security_mnt_opts opts;
1283	int rc;
1284
1285	rc = selinux_get_mnt_opts(sb, &opts);
1286	if (rc) {
1287		/* before policy load we may get EINVAL, don't show anything */
1288		if (rc == -EINVAL)
1289			rc = 0;
1290		return rc;
1291	}
1292
1293	selinux_write_opts(m, &opts);
1294
1295	security_free_mnt_opts(&opts);
1296
1297	return rc;
1298}
1299
1300static inline u16 inode_mode_to_security_class(umode_t mode)
1301{
1302	switch (mode & S_IFMT) {
1303	case S_IFSOCK:
1304		return SECCLASS_SOCK_FILE;
1305	case S_IFLNK:
1306		return SECCLASS_LNK_FILE;
1307	case S_IFREG:
1308		return SECCLASS_FILE;
1309	case S_IFBLK:
1310		return SECCLASS_BLK_FILE;
1311	case S_IFDIR:
1312		return SECCLASS_DIR;
1313	case S_IFCHR:
1314		return SECCLASS_CHR_FILE;
1315	case S_IFIFO:
1316		return SECCLASS_FIFO_FILE;
1317
1318	}
1319
1320	return SECCLASS_FILE;
1321}
1322
1323static inline int default_protocol_stream(int protocol)
1324{
1325	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1326}
1327
1328static inline int default_protocol_dgram(int protocol)
1329{
1330	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1331}
1332
1333static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1334{
1335	int extsockclass = selinux_policycap_extsockclass();
1336
1337	switch (family) {
1338	case PF_UNIX:
1339		switch (type) {
1340		case SOCK_STREAM:
1341		case SOCK_SEQPACKET:
1342			return SECCLASS_UNIX_STREAM_SOCKET;
1343		case SOCK_DGRAM:
1344		case SOCK_RAW:
1345			return SECCLASS_UNIX_DGRAM_SOCKET;
1346		}
1347		break;
1348	case PF_INET:
1349	case PF_INET6:
1350		switch (type) {
1351		case SOCK_STREAM:
1352		case SOCK_SEQPACKET:
1353			if (default_protocol_stream(protocol))
1354				return SECCLASS_TCP_SOCKET;
1355			else if (extsockclass && protocol == IPPROTO_SCTP)
1356				return SECCLASS_SCTP_SOCKET;
1357			else
1358				return SECCLASS_RAWIP_SOCKET;
1359		case SOCK_DGRAM:
1360			if (default_protocol_dgram(protocol))
1361				return SECCLASS_UDP_SOCKET;
1362			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1363						  protocol == IPPROTO_ICMPV6))
1364				return SECCLASS_ICMP_SOCKET;
1365			else
1366				return SECCLASS_RAWIP_SOCKET;
1367		case SOCK_DCCP:
1368			return SECCLASS_DCCP_SOCKET;
1369		default:
1370			return SECCLASS_RAWIP_SOCKET;
1371		}
1372		break;
1373	case PF_NETLINK:
1374		switch (protocol) {
1375		case NETLINK_ROUTE:
1376			return SECCLASS_NETLINK_ROUTE_SOCKET;
1377		case NETLINK_SOCK_DIAG:
1378			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1379		case NETLINK_NFLOG:
1380			return SECCLASS_NETLINK_NFLOG_SOCKET;
1381		case NETLINK_XFRM:
1382			return SECCLASS_NETLINK_XFRM_SOCKET;
1383		case NETLINK_SELINUX:
1384			return SECCLASS_NETLINK_SELINUX_SOCKET;
1385		case NETLINK_ISCSI:
1386			return SECCLASS_NETLINK_ISCSI_SOCKET;
1387		case NETLINK_AUDIT:
1388			return SECCLASS_NETLINK_AUDIT_SOCKET;
1389		case NETLINK_FIB_LOOKUP:
1390			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1391		case NETLINK_CONNECTOR:
1392			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1393		case NETLINK_NETFILTER:
1394			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1395		case NETLINK_DNRTMSG:
1396			return SECCLASS_NETLINK_DNRT_SOCKET;
1397		case NETLINK_KOBJECT_UEVENT:
1398			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1399		case NETLINK_GENERIC:
1400			return SECCLASS_NETLINK_GENERIC_SOCKET;
1401		case NETLINK_SCSITRANSPORT:
1402			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1403		case NETLINK_RDMA:
1404			return SECCLASS_NETLINK_RDMA_SOCKET;
1405		case NETLINK_CRYPTO:
1406			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1407		default:
1408			return SECCLASS_NETLINK_SOCKET;
1409		}
1410	case PF_PACKET:
1411		return SECCLASS_PACKET_SOCKET;
1412	case PF_KEY:
1413		return SECCLASS_KEY_SOCKET;
1414	case PF_APPLETALK:
1415		return SECCLASS_APPLETALK_SOCKET;
1416	}
1417
1418	if (extsockclass) {
1419		switch (family) {
1420		case PF_AX25:
1421			return SECCLASS_AX25_SOCKET;
1422		case PF_IPX:
1423			return SECCLASS_IPX_SOCKET;
1424		case PF_NETROM:
1425			return SECCLASS_NETROM_SOCKET;
1426		case PF_ATMPVC:
1427			return SECCLASS_ATMPVC_SOCKET;
1428		case PF_X25:
1429			return SECCLASS_X25_SOCKET;
1430		case PF_ROSE:
1431			return SECCLASS_ROSE_SOCKET;
1432		case PF_DECnet:
1433			return SECCLASS_DECNET_SOCKET;
1434		case PF_ATMSVC:
1435			return SECCLASS_ATMSVC_SOCKET;
1436		case PF_RDS:
1437			return SECCLASS_RDS_SOCKET;
1438		case PF_IRDA:
1439			return SECCLASS_IRDA_SOCKET;
1440		case PF_PPPOX:
1441			return SECCLASS_PPPOX_SOCKET;
1442		case PF_LLC:
1443			return SECCLASS_LLC_SOCKET;
1444		case PF_CAN:
1445			return SECCLASS_CAN_SOCKET;
1446		case PF_TIPC:
1447			return SECCLASS_TIPC_SOCKET;
1448		case PF_BLUETOOTH:
1449			return SECCLASS_BLUETOOTH_SOCKET;
1450		case PF_IUCV:
1451			return SECCLASS_IUCV_SOCKET;
1452		case PF_RXRPC:
1453			return SECCLASS_RXRPC_SOCKET;
1454		case PF_ISDN:
1455			return SECCLASS_ISDN_SOCKET;
1456		case PF_PHONET:
1457			return SECCLASS_PHONET_SOCKET;
1458		case PF_IEEE802154:
1459			return SECCLASS_IEEE802154_SOCKET;
1460		case PF_CAIF:
1461			return SECCLASS_CAIF_SOCKET;
1462		case PF_ALG:
1463			return SECCLASS_ALG_SOCKET;
1464		case PF_NFC:
1465			return SECCLASS_NFC_SOCKET;
1466		case PF_VSOCK:
1467			return SECCLASS_VSOCK_SOCKET;
1468		case PF_KCM:
1469			return SECCLASS_KCM_SOCKET;
1470		case PF_QIPCRTR:
1471			return SECCLASS_QIPCRTR_SOCKET;
1472		case PF_SMC:
1473			return SECCLASS_SMC_SOCKET;
1474#if PF_MAX > 44
1475#error New address family defined, please update this function.
1476#endif
1477		}
1478	}
1479
1480	return SECCLASS_SOCKET;
1481}
1482
1483static int selinux_genfs_get_sid(struct dentry *dentry,
1484				 u16 tclass,
1485				 u16 flags,
1486				 u32 *sid)
1487{
1488	int rc;
1489	struct super_block *sb = dentry->d_sb;
1490	char *buffer, *path;
1491
1492	buffer = (char *)__get_free_page(GFP_KERNEL);
1493	if (!buffer)
1494		return -ENOMEM;
1495
1496	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1497	if (IS_ERR(path))
1498		rc = PTR_ERR(path);
1499	else {
1500		if (flags & SE_SBPROC) {
1501			/* each process gets a /proc/PID/ entry. Strip off the
1502			 * PID part to get a valid selinux labeling.
1503			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1504			while (path[1] >= '0' && path[1] <= '9') {
1505				path[1] = '/';
1506				path++;
1507			}
1508		}
1509		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1510					path, tclass, sid);
1511	}
1512	free_page((unsigned long)buffer);
1513	return rc;
1514}
1515
1516/* The inode's security attributes must be initialized before first use. */
1517static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1518{
1519	struct superblock_security_struct *sbsec = NULL;
1520	struct inode_security_struct *isec = inode->i_security;
1521	u32 task_sid, sid = 0;
1522	u16 sclass;
1523	struct dentry *dentry;
1524#define INITCONTEXTLEN 255
1525	char *context = NULL;
1526	unsigned len = 0;
1527	int rc = 0;
1528
1529	if (isec->initialized == LABEL_INITIALIZED)
1530		return 0;
1531
1532	spin_lock(&isec->lock);
1533	if (isec->initialized == LABEL_INITIALIZED)
1534		goto out_unlock;
1535
1536	if (isec->sclass == SECCLASS_FILE)
1537		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1538
1539	sbsec = inode->i_sb->s_security;
1540	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1541		/* Defer initialization until selinux_complete_init,
1542		   after the initial policy is loaded and the security
1543		   server is ready to handle calls. */
1544		spin_lock(&sbsec->isec_lock);
1545		if (list_empty(&isec->list))
1546			list_add(&isec->list, &sbsec->isec_head);
1547		spin_unlock(&sbsec->isec_lock);
1548		goto out_unlock;
1549	}
1550
1551	sclass = isec->sclass;
1552	task_sid = isec->task_sid;
1553	sid = isec->sid;
1554	isec->initialized = LABEL_PENDING;
1555	spin_unlock(&isec->lock);
1556
1557	switch (sbsec->behavior) {
1558	case SECURITY_FS_USE_NATIVE:
1559		break;
1560	case SECURITY_FS_USE_XATTR:
1561		if (!(inode->i_opflags & IOP_XATTR)) {
1562			sid = sbsec->def_sid;
1563			break;
1564		}
1565		/* Need a dentry, since the xattr API requires one.
1566		   Life would be simpler if we could just pass the inode. */
1567		if (opt_dentry) {
1568			/* Called from d_instantiate or d_splice_alias. */
1569			dentry = dget(opt_dentry);
1570		} else {
1571			/*
1572			 * Called from selinux_complete_init, try to find a dentry.
1573			 * Some filesystems really want a connected one, so try
1574			 * that first.  We could split SECURITY_FS_USE_XATTR in
1575			 * two, depending upon that...
1576			 */
1577			dentry = d_find_alias(inode);
1578			if (!dentry)
1579				dentry = d_find_any_alias(inode);
1580		}
1581		if (!dentry) {
1582			/*
1583			 * this is can be hit on boot when a file is accessed
1584			 * before the policy is loaded.  When we load policy we
1585			 * may find inodes that have no dentry on the
1586			 * sbsec->isec_head list.  No reason to complain as these
1587			 * will get fixed up the next time we go through
1588			 * inode_doinit with a dentry, before these inodes could
1589			 * be used again by userspace.
1590			 */
1591			goto out;
1592		}
1593
1594		len = INITCONTEXTLEN;
1595		context = kmalloc(len+1, GFP_NOFS);
1596		if (!context) {
1597			rc = -ENOMEM;
1598			dput(dentry);
1599			goto out;
1600		}
1601		context[len] = '\0';
1602		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1603		if (rc == -ERANGE) {
1604			kfree(context);
1605
1606			/* Need a larger buffer.  Query for the right size. */
1607			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1608			if (rc < 0) {
1609				dput(dentry);
1610				goto out;
1611			}
1612			len = rc;
1613			context = kmalloc(len+1, GFP_NOFS);
1614			if (!context) {
1615				rc = -ENOMEM;
1616				dput(dentry);
1617				goto out;
1618			}
1619			context[len] = '\0';
1620			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1621		}
1622		dput(dentry);
1623		if (rc < 0) {
1624			if (rc != -ENODATA) {
1625				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1626				       "%d for dev=%s ino=%ld\n", __func__,
1627				       -rc, inode->i_sb->s_id, inode->i_ino);
1628				kfree(context);
1629				goto out;
1630			}
1631			/* Map ENODATA to the default file SID */
1632			sid = sbsec->def_sid;
1633			rc = 0;
1634		} else {
1635			rc = security_context_to_sid_default(&selinux_state,
1636							     context, rc, &sid,
1637							     sbsec->def_sid,
1638							     GFP_NOFS);
1639			if (rc) {
1640				char *dev = inode->i_sb->s_id;
1641				unsigned long ino = inode->i_ino;
1642
1643				if (rc == -EINVAL) {
1644					if (printk_ratelimit())
1645						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1646							"context=%s.  This indicates you may need to relabel the inode or the "
1647							"filesystem in question.\n", ino, dev, context);
1648				} else {
1649					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1650					       "returned %d for dev=%s ino=%ld\n",
1651					       __func__, context, -rc, dev, ino);
1652				}
1653				kfree(context);
1654				/* Leave with the unlabeled SID */
1655				rc = 0;
1656				break;
1657			}
1658		}
1659		kfree(context);
1660		break;
1661	case SECURITY_FS_USE_TASK:
1662		sid = task_sid;
1663		break;
1664	case SECURITY_FS_USE_TRANS:
1665		/* Default to the fs SID. */
1666		sid = sbsec->sid;
1667
1668		/* Try to obtain a transition SID. */
1669		rc = security_transition_sid(&selinux_state, task_sid, sid,
1670					     sclass, NULL, &sid);
1671		if (rc)
1672			goto out;
1673		break;
1674	case SECURITY_FS_USE_MNTPOINT:
1675		sid = sbsec->mntpoint_sid;
1676		break;
1677	default:
1678		/* Default to the fs superblock SID. */
1679		sid = sbsec->sid;
1680
1681		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1682			/* We must have a dentry to determine the label on
1683			 * procfs inodes */
1684			if (opt_dentry) {
1685				/* Called from d_instantiate or
1686				 * d_splice_alias. */
1687				dentry = dget(opt_dentry);
1688			} else {
1689				/* Called from selinux_complete_init, try to
1690				 * find a dentry.  Some filesystems really want
1691				 * a connected one, so try that first.
1692				 */
1693				dentry = d_find_alias(inode);
1694				if (!dentry)
1695					dentry = d_find_any_alias(inode);
1696			}
1697			/*
1698			 * This can be hit on boot when a file is accessed
1699			 * before the policy is loaded.  When we load policy we
1700			 * may find inodes that have no dentry on the
1701			 * sbsec->isec_head list.  No reason to complain as
1702			 * these will get fixed up the next time we go through
1703			 * inode_doinit() with a dentry, before these inodes
1704			 * could be used again by userspace.
1705			 */
1706			if (!dentry)
1707				goto out;
1708			rc = selinux_genfs_get_sid(dentry, sclass,
1709						   sbsec->flags, &sid);
1710			dput(dentry);
1711			if (rc)
1712				goto out;
1713		}
1714		break;
1715	}
1716
1717out:
1718	spin_lock(&isec->lock);
1719	if (isec->initialized == LABEL_PENDING) {
1720		if (!sid || rc) {
1721			isec->initialized = LABEL_INVALID;
1722			goto out_unlock;
1723		}
1724
1725		isec->initialized = LABEL_INITIALIZED;
1726		isec->sid = sid;
1727	}
1728
1729out_unlock:
1730	spin_unlock(&isec->lock);
1731	return rc;
1732}
1733
1734/* Convert a Linux signal to an access vector. */
1735static inline u32 signal_to_av(int sig)
1736{
1737	u32 perm = 0;
1738
1739	switch (sig) {
1740	case SIGCHLD:
1741		/* Commonly granted from child to parent. */
1742		perm = PROCESS__SIGCHLD;
1743		break;
1744	case SIGKILL:
1745		/* Cannot be caught or ignored */
1746		perm = PROCESS__SIGKILL;
1747		break;
1748	case SIGSTOP:
1749		/* Cannot be caught or ignored */
1750		perm = PROCESS__SIGSTOP;
1751		break;
1752	default:
1753		/* All other signals. */
1754		perm = PROCESS__SIGNAL;
1755		break;
1756	}
1757
1758	return perm;
1759}
1760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1761#if CAP_LAST_CAP > 63
1762#error Fix SELinux to handle capabilities > 63.
1763#endif
1764
1765/* Check whether a task is allowed to use a capability. */
1766static int cred_has_capability(const struct cred *cred,
1767			       int cap, int audit, bool initns)
1768{
1769	struct common_audit_data ad;
1770	struct av_decision avd;
1771	u16 sclass;
1772	u32 sid = cred_sid(cred);
1773	u32 av = CAP_TO_MASK(cap);
1774	int rc;
1775
1776	ad.type = LSM_AUDIT_DATA_CAP;
1777	ad.u.cap = cap;
1778
1779	switch (CAP_TO_INDEX(cap)) {
1780	case 0:
1781		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1782		break;
1783	case 1:
1784		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1785		break;
1786	default:
1787		printk(KERN_ERR
1788		       "SELinux:  out of range capability %d\n", cap);
1789		BUG();
1790		return -EINVAL;
1791	}
1792
1793	rc = avc_has_perm_noaudit(&selinux_state,
1794				  sid, sid, sclass, av, 0, &avd);
1795	if (audit == SECURITY_CAP_AUDIT) {
1796		int rc2 = avc_audit(&selinux_state,
1797				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1798		if (rc2)
1799			return rc2;
1800	}
1801	return rc;
1802}
1803
 
 
 
 
 
 
 
 
 
 
1804/* Check whether a task has a particular permission to an inode.
1805   The 'adp' parameter is optional and allows other audit
1806   data to be passed (e.g. the dentry). */
1807static int inode_has_perm(const struct cred *cred,
1808			  struct inode *inode,
1809			  u32 perms,
1810			  struct common_audit_data *adp)
1811{
1812	struct inode_security_struct *isec;
1813	u32 sid;
1814
1815	validate_creds(cred);
1816
1817	if (unlikely(IS_PRIVATE(inode)))
1818		return 0;
1819
1820	sid = cred_sid(cred);
1821	isec = inode->i_security;
1822
1823	return avc_has_perm(&selinux_state,
1824			    sid, isec->sid, isec->sclass, perms, adp);
1825}
1826
1827/* Same as inode_has_perm, but pass explicit audit data containing
1828   the dentry to help the auditing code to more easily generate the
1829   pathname if needed. */
1830static inline int dentry_has_perm(const struct cred *cred,
1831				  struct dentry *dentry,
1832				  u32 av)
1833{
1834	struct inode *inode = d_backing_inode(dentry);
1835	struct common_audit_data ad;
1836
1837	ad.type = LSM_AUDIT_DATA_DENTRY;
1838	ad.u.dentry = dentry;
1839	__inode_security_revalidate(inode, dentry, true);
1840	return inode_has_perm(cred, inode, av, &ad);
1841}
1842
1843/* Same as inode_has_perm, but pass explicit audit data containing
1844   the path to help the auditing code to more easily generate the
1845   pathname if needed. */
1846static inline int path_has_perm(const struct cred *cred,
1847				const struct path *path,
1848				u32 av)
1849{
1850	struct inode *inode = d_backing_inode(path->dentry);
1851	struct common_audit_data ad;
1852
1853	ad.type = LSM_AUDIT_DATA_PATH;
1854	ad.u.path = *path;
1855	__inode_security_revalidate(inode, path->dentry, true);
1856	return inode_has_perm(cred, inode, av, &ad);
1857}
1858
1859/* Same as path_has_perm, but uses the inode from the file struct. */
1860static inline int file_path_has_perm(const struct cred *cred,
1861				     struct file *file,
1862				     u32 av)
1863{
1864	struct common_audit_data ad;
1865
1866	ad.type = LSM_AUDIT_DATA_FILE;
1867	ad.u.file = file;
1868	return inode_has_perm(cred, file_inode(file), av, &ad);
1869}
1870
1871#ifdef CONFIG_BPF_SYSCALL
1872static int bpf_fd_pass(struct file *file, u32 sid);
1873#endif
1874
1875/* Check whether a task can use an open file descriptor to
1876   access an inode in a given way.  Check access to the
1877   descriptor itself, and then use dentry_has_perm to
1878   check a particular permission to the file.
1879   Access to the descriptor is implicitly granted if it
1880   has the same SID as the process.  If av is zero, then
1881   access to the file is not checked, e.g. for cases
1882   where only the descriptor is affected like seek. */
1883static int file_has_perm(const struct cred *cred,
1884			 struct file *file,
1885			 u32 av)
1886{
1887	struct file_security_struct *fsec = file->f_security;
1888	struct inode *inode = file_inode(file);
1889	struct common_audit_data ad;
1890	u32 sid = cred_sid(cred);
1891	int rc;
1892
1893	ad.type = LSM_AUDIT_DATA_FILE;
1894	ad.u.file = file;
1895
1896	if (sid != fsec->sid) {
1897		rc = avc_has_perm(&selinux_state,
1898				  sid, fsec->sid,
1899				  SECCLASS_FD,
1900				  FD__USE,
1901				  &ad);
1902		if (rc)
1903			goto out;
1904	}
1905
1906#ifdef CONFIG_BPF_SYSCALL
1907	rc = bpf_fd_pass(file, cred_sid(cred));
1908	if (rc)
1909		return rc;
1910#endif
1911
1912	/* av is zero if only checking access to the descriptor. */
1913	rc = 0;
1914	if (av)
1915		rc = inode_has_perm(cred, inode, av, &ad);
1916
1917out:
1918	return rc;
1919}
1920
1921/*
1922 * Determine the label for an inode that might be unioned.
1923 */
1924static int
1925selinux_determine_inode_label(const struct task_security_struct *tsec,
1926				 struct inode *dir,
1927				 const struct qstr *name, u16 tclass,
1928				 u32 *_new_isid)
1929{
1930	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1931
1932	if ((sbsec->flags & SE_SBINITIALIZED) &&
1933	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1934		*_new_isid = sbsec->mntpoint_sid;
1935	} else if ((sbsec->flags & SBLABEL_MNT) &&
1936		   tsec->create_sid) {
1937		*_new_isid = tsec->create_sid;
1938	} else {
1939		const struct inode_security_struct *dsec = inode_security(dir);
1940		return security_transition_sid(&selinux_state, tsec->sid,
1941					       dsec->sid, tclass,
1942					       name, _new_isid);
1943	}
1944
1945	return 0;
1946}
1947
1948/* Check whether a task can create a file. */
1949static int may_create(struct inode *dir,
1950		      struct dentry *dentry,
1951		      u16 tclass)
1952{
1953	const struct task_security_struct *tsec = current_security();
1954	struct inode_security_struct *dsec;
1955	struct superblock_security_struct *sbsec;
1956	u32 sid, newsid;
1957	struct common_audit_data ad;
1958	int rc;
1959
1960	dsec = inode_security(dir);
1961	sbsec = dir->i_sb->s_security;
1962
1963	sid = tsec->sid;
1964
1965	ad.type = LSM_AUDIT_DATA_DENTRY;
1966	ad.u.dentry = dentry;
1967
1968	rc = avc_has_perm(&selinux_state,
1969			  sid, dsec->sid, SECCLASS_DIR,
1970			  DIR__ADD_NAME | DIR__SEARCH,
1971			  &ad);
1972	if (rc)
1973		return rc;
1974
1975	rc = selinux_determine_inode_label(current_security(), dir,
1976					   &dentry->d_name, tclass, &newsid);
1977	if (rc)
1978		return rc;
1979
1980	rc = avc_has_perm(&selinux_state,
1981			  sid, newsid, tclass, FILE__CREATE, &ad);
1982	if (rc)
1983		return rc;
1984
1985	return avc_has_perm(&selinux_state,
1986			    newsid, sbsec->sid,
1987			    SECCLASS_FILESYSTEM,
1988			    FILESYSTEM__ASSOCIATE, &ad);
1989}
1990
 
 
 
 
 
 
 
 
 
1991#define MAY_LINK	0
1992#define MAY_UNLINK	1
1993#define MAY_RMDIR	2
1994
1995/* Check whether a task can link, unlink, or rmdir a file/directory. */
1996static int may_link(struct inode *dir,
1997		    struct dentry *dentry,
1998		    int kind)
1999
2000{
2001	struct inode_security_struct *dsec, *isec;
2002	struct common_audit_data ad;
2003	u32 sid = current_sid();
2004	u32 av;
2005	int rc;
2006
2007	dsec = inode_security(dir);
2008	isec = backing_inode_security(dentry);
2009
2010	ad.type = LSM_AUDIT_DATA_DENTRY;
2011	ad.u.dentry = dentry;
2012
2013	av = DIR__SEARCH;
2014	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
2015	rc = avc_has_perm(&selinux_state,
2016			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
2017	if (rc)
2018		return rc;
2019
2020	switch (kind) {
2021	case MAY_LINK:
2022		av = FILE__LINK;
2023		break;
2024	case MAY_UNLINK:
2025		av = FILE__UNLINK;
2026		break;
2027	case MAY_RMDIR:
2028		av = DIR__RMDIR;
2029		break;
2030	default:
2031		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
2032			__func__, kind);
2033		return 0;
2034	}
2035
2036	rc = avc_has_perm(&selinux_state,
2037			  sid, isec->sid, isec->sclass, av, &ad);
2038	return rc;
2039}
2040
2041static inline int may_rename(struct inode *old_dir,
2042			     struct dentry *old_dentry,
2043			     struct inode *new_dir,
2044			     struct dentry *new_dentry)
2045{
2046	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
2047	struct common_audit_data ad;
2048	u32 sid = current_sid();
2049	u32 av;
2050	int old_is_dir, new_is_dir;
2051	int rc;
2052
2053	old_dsec = inode_security(old_dir);
2054	old_isec = backing_inode_security(old_dentry);
2055	old_is_dir = d_is_dir(old_dentry);
2056	new_dsec = inode_security(new_dir);
2057
2058	ad.type = LSM_AUDIT_DATA_DENTRY;
2059
2060	ad.u.dentry = old_dentry;
2061	rc = avc_has_perm(&selinux_state,
2062			  sid, old_dsec->sid, SECCLASS_DIR,
2063			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2064	if (rc)
2065		return rc;
2066	rc = avc_has_perm(&selinux_state,
2067			  sid, old_isec->sid,
2068			  old_isec->sclass, FILE__RENAME, &ad);
2069	if (rc)
2070		return rc;
2071	if (old_is_dir && new_dir != old_dir) {
2072		rc = avc_has_perm(&selinux_state,
2073				  sid, old_isec->sid,
2074				  old_isec->sclass, DIR__REPARENT, &ad);
2075		if (rc)
2076			return rc;
2077	}
2078
2079	ad.u.dentry = new_dentry;
2080	av = DIR__ADD_NAME | DIR__SEARCH;
2081	if (d_is_positive(new_dentry))
2082		av |= DIR__REMOVE_NAME;
2083	rc = avc_has_perm(&selinux_state,
2084			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2085	if (rc)
2086		return rc;
2087	if (d_is_positive(new_dentry)) {
2088		new_isec = backing_inode_security(new_dentry);
2089		new_is_dir = d_is_dir(new_dentry);
2090		rc = avc_has_perm(&selinux_state,
2091				  sid, new_isec->sid,
2092				  new_isec->sclass,
2093				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2094		if (rc)
2095			return rc;
2096	}
2097
2098	return 0;
2099}
2100
2101/* Check whether a task can perform a filesystem operation. */
2102static int superblock_has_perm(const struct cred *cred,
2103			       struct super_block *sb,
2104			       u32 perms,
2105			       struct common_audit_data *ad)
2106{
2107	struct superblock_security_struct *sbsec;
2108	u32 sid = cred_sid(cred);
2109
2110	sbsec = sb->s_security;
2111	return avc_has_perm(&selinux_state,
2112			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2113}
2114
2115/* Convert a Linux mode and permission mask to an access vector. */
2116static inline u32 file_mask_to_av(int mode, int mask)
2117{
2118	u32 av = 0;
2119
2120	if (!S_ISDIR(mode)) {
2121		if (mask & MAY_EXEC)
2122			av |= FILE__EXECUTE;
2123		if (mask & MAY_READ)
2124			av |= FILE__READ;
2125
2126		if (mask & MAY_APPEND)
2127			av |= FILE__APPEND;
2128		else if (mask & MAY_WRITE)
2129			av |= FILE__WRITE;
2130
2131	} else {
2132		if (mask & MAY_EXEC)
2133			av |= DIR__SEARCH;
2134		if (mask & MAY_WRITE)
2135			av |= DIR__WRITE;
2136		if (mask & MAY_READ)
2137			av |= DIR__READ;
2138	}
2139
2140	return av;
2141}
2142
2143/* Convert a Linux file to an access vector. */
2144static inline u32 file_to_av(struct file *file)
2145{
2146	u32 av = 0;
2147
2148	if (file->f_mode & FMODE_READ)
2149		av |= FILE__READ;
2150	if (file->f_mode & FMODE_WRITE) {
2151		if (file->f_flags & O_APPEND)
2152			av |= FILE__APPEND;
2153		else
2154			av |= FILE__WRITE;
2155	}
2156	if (!av) {
2157		/*
2158		 * Special file opened with flags 3 for ioctl-only use.
2159		 */
2160		av = FILE__IOCTL;
2161	}
2162
2163	return av;
2164}
2165
2166/*
2167 * Convert a file to an access vector and include the correct open
2168 * open permission.
2169 */
2170static inline u32 open_file_to_av(struct file *file)
2171{
2172	u32 av = file_to_av(file);
2173	struct inode *inode = file_inode(file);
2174
2175	if (selinux_policycap_openperm() &&
2176	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2177		av |= FILE__OPEN;
2178
2179	return av;
2180}
2181
2182/* Hook functions begin here. */
2183
2184static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2185{
2186	u32 mysid = current_sid();
2187	u32 mgrsid = task_sid(mgr);
2188
2189	return avc_has_perm(&selinux_state,
2190			    mysid, mgrsid, SECCLASS_BINDER,
2191			    BINDER__SET_CONTEXT_MGR, NULL);
2192}
2193
2194static int selinux_binder_transaction(struct task_struct *from,
2195				      struct task_struct *to)
2196{
2197	u32 mysid = current_sid();
2198	u32 fromsid = task_sid(from);
2199	u32 tosid = task_sid(to);
2200	int rc;
2201
2202	if (mysid != fromsid) {
2203		rc = avc_has_perm(&selinux_state,
2204				  mysid, fromsid, SECCLASS_BINDER,
2205				  BINDER__IMPERSONATE, NULL);
2206		if (rc)
2207			return rc;
2208	}
2209
2210	return avc_has_perm(&selinux_state,
2211			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2212			    NULL);
2213}
2214
2215static int selinux_binder_transfer_binder(struct task_struct *from,
2216					  struct task_struct *to)
2217{
2218	u32 fromsid = task_sid(from);
2219	u32 tosid = task_sid(to);
2220
2221	return avc_has_perm(&selinux_state,
2222			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2223			    NULL);
2224}
2225
2226static int selinux_binder_transfer_file(struct task_struct *from,
2227					struct task_struct *to,
2228					struct file *file)
2229{
2230	u32 sid = task_sid(to);
2231	struct file_security_struct *fsec = file->f_security;
2232	struct dentry *dentry = file->f_path.dentry;
2233	struct inode_security_struct *isec;
2234	struct common_audit_data ad;
2235	int rc;
2236
2237	ad.type = LSM_AUDIT_DATA_PATH;
2238	ad.u.path = file->f_path;
2239
2240	if (sid != fsec->sid) {
2241		rc = avc_has_perm(&selinux_state,
2242				  sid, fsec->sid,
2243				  SECCLASS_FD,
2244				  FD__USE,
2245				  &ad);
2246		if (rc)
2247			return rc;
2248	}
2249
2250#ifdef CONFIG_BPF_SYSCALL
2251	rc = bpf_fd_pass(file, sid);
2252	if (rc)
2253		return rc;
2254#endif
2255
2256	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2257		return 0;
2258
2259	isec = backing_inode_security(dentry);
2260	return avc_has_perm(&selinux_state,
2261			    sid, isec->sid, isec->sclass, file_to_av(file),
2262			    &ad);
2263}
2264
2265static int selinux_ptrace_access_check(struct task_struct *child,
2266				     unsigned int mode)
2267{
2268	u32 sid = current_sid();
2269	u32 csid = task_sid(child);
2270
2271	if (mode & PTRACE_MODE_READ)
2272		return avc_has_perm(&selinux_state,
2273				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2274
2275	return avc_has_perm(&selinux_state,
2276			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2277}
2278
2279static int selinux_ptrace_traceme(struct task_struct *parent)
2280{
2281	return avc_has_perm(&selinux_state,
2282			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2283			    PROCESS__PTRACE, NULL);
2284}
2285
2286static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2287			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2288{
2289	return avc_has_perm(&selinux_state,
2290			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2291			    PROCESS__GETCAP, NULL);
2292}
2293
2294static int selinux_capset(struct cred *new, const struct cred *old,
2295			  const kernel_cap_t *effective,
2296			  const kernel_cap_t *inheritable,
2297			  const kernel_cap_t *permitted)
2298{
2299	return avc_has_perm(&selinux_state,
2300			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2301			    PROCESS__SETCAP, NULL);
2302}
2303
2304/*
2305 * (This comment used to live with the selinux_task_setuid hook,
2306 * which was removed).
2307 *
2308 * Since setuid only affects the current process, and since the SELinux
2309 * controls are not based on the Linux identity attributes, SELinux does not
2310 * need to control this operation.  However, SELinux does control the use of
2311 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2312 */
2313
2314static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2315			   int cap, int audit)
2316{
2317	return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2318}
2319
2320static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2321{
2322	const struct cred *cred = current_cred();
2323	int rc = 0;
2324
2325	if (!sb)
2326		return 0;
2327
2328	switch (cmds) {
2329	case Q_SYNC:
2330	case Q_QUOTAON:
2331	case Q_QUOTAOFF:
2332	case Q_SETINFO:
2333	case Q_SETQUOTA:
2334		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2335		break;
2336	case Q_GETFMT:
2337	case Q_GETINFO:
2338	case Q_GETQUOTA:
2339		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2340		break;
2341	default:
2342		rc = 0;  /* let the kernel handle invalid cmds */
2343		break;
2344	}
2345	return rc;
2346}
2347
2348static int selinux_quota_on(struct dentry *dentry)
2349{
2350	const struct cred *cred = current_cred();
2351
2352	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2353}
2354
2355static int selinux_syslog(int type)
2356{
 
 
2357	switch (type) {
2358	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2359	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2360		return avc_has_perm(&selinux_state,
2361				    current_sid(), SECINITSID_KERNEL,
2362				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2363	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2364	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2365	/* Set level of messages printed to console */
2366	case SYSLOG_ACTION_CONSOLE_LEVEL:
2367		return avc_has_perm(&selinux_state,
2368				    current_sid(), SECINITSID_KERNEL,
2369				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2370				    NULL);
2371	}
2372	/* All other syslog types */
2373	return avc_has_perm(&selinux_state,
2374			    current_sid(), SECINITSID_KERNEL,
2375			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
 
 
 
2376}
2377
2378/*
2379 * Check that a process has enough memory to allocate a new virtual
2380 * mapping. 0 means there is enough memory for the allocation to
2381 * succeed and -ENOMEM implies there is not.
2382 *
2383 * Do not audit the selinux permission check, as this is applied to all
2384 * processes that allocate mappings.
2385 */
2386static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2387{
2388	int rc, cap_sys_admin = 0;
2389
2390	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2391				 SECURITY_CAP_NOAUDIT, true);
2392	if (rc == 0)
2393		cap_sys_admin = 1;
2394
2395	return cap_sys_admin;
2396}
2397
2398/* binprm security operations */
2399
2400static u32 ptrace_parent_sid(void)
2401{
2402	u32 sid = 0;
2403	struct task_struct *tracer;
2404
2405	rcu_read_lock();
2406	tracer = ptrace_parent(current);
2407	if (tracer)
2408		sid = task_sid(tracer);
2409	rcu_read_unlock();
2410
2411	return sid;
2412}
2413
2414static int check_nnp_nosuid(const struct linux_binprm *bprm,
2415			    const struct task_security_struct *old_tsec,
2416			    const struct task_security_struct *new_tsec)
2417{
2418	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2419	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2420	int rc;
2421	u32 av;
2422
2423	if (!nnp && !nosuid)
2424		return 0; /* neither NNP nor nosuid */
2425
2426	if (new_tsec->sid == old_tsec->sid)
2427		return 0; /* No change in credentials */
2428
2429	/*
2430	 * If the policy enables the nnp_nosuid_transition policy capability,
2431	 * then we permit transitions under NNP or nosuid if the
2432	 * policy allows the corresponding permission between
2433	 * the old and new contexts.
2434	 */
2435	if (selinux_policycap_nnp_nosuid_transition()) {
2436		av = 0;
 
 
 
 
 
2437		if (nnp)
2438			av |= PROCESS2__NNP_TRANSITION;
2439		if (nosuid)
2440			av |= PROCESS2__NOSUID_TRANSITION;
2441		rc = avc_has_perm(&selinux_state,
2442				  old_tsec->sid, new_tsec->sid,
2443				  SECCLASS_PROCESS2, av, NULL);
2444		if (!rc)
2445			return 0;
2446	}
2447
2448	/*
2449	 * We also permit NNP or nosuid transitions to bounded SIDs,
2450	 * i.e. SIDs that are guaranteed to only be allowed a subset
2451	 * of the permissions of the current SID.
2452	 */
2453	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2454					 new_tsec->sid);
2455	if (!rc)
2456		return 0;
2457
2458	/*
2459	 * On failure, preserve the errno values for NNP vs nosuid.
2460	 * NNP:  Operation not permitted for caller.
2461	 * nosuid:  Permission denied to file.
2462	 */
2463	if (nnp)
2464		return -EPERM;
2465	return -EACCES;
2466}
2467
2468static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2469{
2470	const struct task_security_struct *old_tsec;
2471	struct task_security_struct *new_tsec;
2472	struct inode_security_struct *isec;
2473	struct common_audit_data ad;
2474	struct inode *inode = file_inode(bprm->file);
2475	int rc;
2476
2477	/* SELinux context only depends on initial program or script and not
2478	 * the script interpreter */
2479	if (bprm->called_set_creds)
2480		return 0;
2481
2482	old_tsec = current_security();
2483	new_tsec = bprm->cred->security;
2484	isec = inode_security(inode);
2485
2486	/* Default to the current task SID. */
2487	new_tsec->sid = old_tsec->sid;
2488	new_tsec->osid = old_tsec->sid;
2489
2490	/* Reset fs, key, and sock SIDs on execve. */
2491	new_tsec->create_sid = 0;
2492	new_tsec->keycreate_sid = 0;
2493	new_tsec->sockcreate_sid = 0;
2494
2495	if (old_tsec->exec_sid) {
2496		new_tsec->sid = old_tsec->exec_sid;
2497		/* Reset exec SID on execve. */
2498		new_tsec->exec_sid = 0;
2499
2500		/* Fail on NNP or nosuid if not an allowed transition. */
2501		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2502		if (rc)
2503			return rc;
2504	} else {
2505		/* Check for a default transition on this program. */
2506		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2507					     isec->sid, SECCLASS_PROCESS, NULL,
2508					     &new_tsec->sid);
2509		if (rc)
2510			return rc;
2511
2512		/*
2513		 * Fallback to old SID on NNP or nosuid if not an allowed
2514		 * transition.
2515		 */
2516		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2517		if (rc)
2518			new_tsec->sid = old_tsec->sid;
2519	}
2520
2521	ad.type = LSM_AUDIT_DATA_FILE;
2522	ad.u.file = bprm->file;
2523
2524	if (new_tsec->sid == old_tsec->sid) {
2525		rc = avc_has_perm(&selinux_state,
2526				  old_tsec->sid, isec->sid,
2527				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2528		if (rc)
2529			return rc;
2530	} else {
2531		/* Check permissions for the transition. */
2532		rc = avc_has_perm(&selinux_state,
2533				  old_tsec->sid, new_tsec->sid,
2534				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2535		if (rc)
2536			return rc;
2537
2538		rc = avc_has_perm(&selinux_state,
2539				  new_tsec->sid, isec->sid,
2540				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2541		if (rc)
2542			return rc;
2543
2544		/* Check for shared state */
2545		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2546			rc = avc_has_perm(&selinux_state,
2547					  old_tsec->sid, new_tsec->sid,
2548					  SECCLASS_PROCESS, PROCESS__SHARE,
2549					  NULL);
2550			if (rc)
2551				return -EPERM;
2552		}
2553
2554		/* Make sure that anyone attempting to ptrace over a task that
2555		 * changes its SID has the appropriate permit */
2556		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2557			u32 ptsid = ptrace_parent_sid();
 
2558			if (ptsid != 0) {
2559				rc = avc_has_perm(&selinux_state,
2560						  ptsid, new_tsec->sid,
2561						  SECCLASS_PROCESS,
2562						  PROCESS__PTRACE, NULL);
2563				if (rc)
2564					return -EPERM;
2565			}
2566		}
2567
2568		/* Clear any possibly unsafe personality bits on exec: */
2569		bprm->per_clear |= PER_CLEAR_ON_SETID;
 
2570
 
 
 
 
 
 
 
 
 
 
 
 
 
2571		/* Enable secure mode for SIDs transitions unless
2572		   the noatsecure permission is granted between
2573		   the two SIDs, i.e. ahp returns 0. */
2574		rc = avc_has_perm(&selinux_state,
2575				  old_tsec->sid, new_tsec->sid,
2576				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2577				  NULL);
2578		bprm->secureexec |= !!rc;
2579	}
2580
2581	return 0;
2582}
2583
2584static int match_file(const void *p, struct file *file, unsigned fd)
2585{
2586	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2587}
2588
2589/* Derived from fs/exec.c:flush_old_files. */
2590static inline void flush_unauthorized_files(const struct cred *cred,
2591					    struct files_struct *files)
2592{
2593	struct file *file, *devnull = NULL;
2594	struct tty_struct *tty;
2595	int drop_tty = 0;
2596	unsigned n;
2597
2598	tty = get_current_tty();
2599	if (tty) {
2600		spin_lock(&tty->files_lock);
2601		if (!list_empty(&tty->tty_files)) {
2602			struct tty_file_private *file_priv;
2603
2604			/* Revalidate access to controlling tty.
2605			   Use file_path_has_perm on the tty path directly
2606			   rather than using file_has_perm, as this particular
2607			   open file may belong to another process and we are
2608			   only interested in the inode-based check here. */
2609			file_priv = list_first_entry(&tty->tty_files,
2610						struct tty_file_private, list);
2611			file = file_priv->file;
2612			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2613				drop_tty = 1;
2614		}
2615		spin_unlock(&tty->files_lock);
2616		tty_kref_put(tty);
2617	}
2618	/* Reset controlling tty. */
2619	if (drop_tty)
2620		no_tty();
2621
2622	/* Revalidate access to inherited open files. */
2623	n = iterate_fd(files, 0, match_file, cred);
2624	if (!n) /* none found? */
2625		return;
2626
2627	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2628	if (IS_ERR(devnull))
2629		devnull = NULL;
2630	/* replace all the matching ones with this */
2631	do {
2632		replace_fd(n - 1, devnull, 0);
2633	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2634	if (devnull)
2635		fput(devnull);
2636}
2637
2638/*
2639 * Prepare a process for imminent new credential changes due to exec
2640 */
2641static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2642{
2643	struct task_security_struct *new_tsec;
2644	struct rlimit *rlim, *initrlim;
2645	int rc, i;
2646
2647	new_tsec = bprm->cred->security;
2648	if (new_tsec->sid == new_tsec->osid)
2649		return;
2650
2651	/* Close files for which the new task SID is not authorized. */
2652	flush_unauthorized_files(bprm->cred, current->files);
2653
2654	/* Always clear parent death signal on SID transitions. */
2655	current->pdeath_signal = 0;
2656
2657	/* Check whether the new SID can inherit resource limits from the old
2658	 * SID.  If not, reset all soft limits to the lower of the current
2659	 * task's hard limit and the init task's soft limit.
2660	 *
2661	 * Note that the setting of hard limits (even to lower them) can be
2662	 * controlled by the setrlimit check.  The inclusion of the init task's
2663	 * soft limit into the computation is to avoid resetting soft limits
2664	 * higher than the default soft limit for cases where the default is
2665	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2666	 */
2667	rc = avc_has_perm(&selinux_state,
2668			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2669			  PROCESS__RLIMITINH, NULL);
2670	if (rc) {
2671		/* protect against do_prlimit() */
2672		task_lock(current);
2673		for (i = 0; i < RLIM_NLIMITS; i++) {
2674			rlim = current->signal->rlim + i;
2675			initrlim = init_task.signal->rlim + i;
2676			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2677		}
2678		task_unlock(current);
2679		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2680			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2681	}
2682}
2683
2684/*
2685 * Clean up the process immediately after the installation of new credentials
2686 * due to exec
2687 */
2688static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2689{
2690	const struct task_security_struct *tsec = current_security();
2691	struct itimerval itimer;
2692	u32 osid, sid;
2693	int rc, i;
2694
2695	osid = tsec->osid;
2696	sid = tsec->sid;
2697
2698	if (sid == osid)
2699		return;
2700
2701	/* Check whether the new SID can inherit signal state from the old SID.
2702	 * If not, clear itimers to avoid subsequent signal generation and
2703	 * flush and unblock signals.
2704	 *
2705	 * This must occur _after_ the task SID has been updated so that any
2706	 * kill done after the flush will be checked against the new SID.
2707	 */
2708	rc = avc_has_perm(&selinux_state,
2709			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2710	if (rc) {
2711		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2712			memset(&itimer, 0, sizeof itimer);
2713			for (i = 0; i < 3; i++)
2714				do_setitimer(i, &itimer, NULL);
2715		}
2716		spin_lock_irq(&current->sighand->siglock);
2717		if (!fatal_signal_pending(current)) {
2718			flush_sigqueue(&current->pending);
2719			flush_sigqueue(&current->signal->shared_pending);
2720			flush_signal_handlers(current, 1);
2721			sigemptyset(&current->blocked);
2722			recalc_sigpending();
2723		}
2724		spin_unlock_irq(&current->sighand->siglock);
2725	}
2726
2727	/* Wake up the parent if it is waiting so that it can recheck
2728	 * wait permission to the new task SID. */
2729	read_lock(&tasklist_lock);
2730	__wake_up_parent(current, current->real_parent);
2731	read_unlock(&tasklist_lock);
2732}
2733
2734/* superblock security operations */
2735
2736static int selinux_sb_alloc_security(struct super_block *sb)
2737{
2738	return superblock_alloc_security(sb);
2739}
2740
2741static void selinux_sb_free_security(struct super_block *sb)
2742{
2743	superblock_free_security(sb);
2744}
2745
2746static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2747{
2748	if (plen > olen)
2749		return 0;
2750
2751	return !memcmp(prefix, option, plen);
2752}
2753
2754static inline int selinux_option(char *option, int len)
2755{
2756	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2757		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2758		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2759		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2760		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2761}
2762
2763static inline void take_option(char **to, char *from, int *first, int len)
2764{
2765	if (!*first) {
2766		**to = ',';
2767		*to += 1;
2768	} else
2769		*first = 0;
2770	memcpy(*to, from, len);
2771	*to += len;
2772}
2773
2774static inline void take_selinux_option(char **to, char *from, int *first,
2775				       int len)
2776{
2777	int current_size = 0;
2778
2779	if (!*first) {
2780		**to = '|';
2781		*to += 1;
2782	} else
2783		*first = 0;
2784
2785	while (current_size < len) {
2786		if (*from != '"') {
2787			**to = *from;
2788			*to += 1;
2789		}
2790		from += 1;
2791		current_size += 1;
2792	}
2793}
2794
2795static int selinux_sb_copy_data(char *orig, char *copy)
2796{
2797	int fnosec, fsec, rc = 0;
2798	char *in_save, *in_curr, *in_end;
2799	char *sec_curr, *nosec_save, *nosec;
2800	int open_quote = 0;
2801
2802	in_curr = orig;
2803	sec_curr = copy;
2804
2805	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2806	if (!nosec) {
2807		rc = -ENOMEM;
2808		goto out;
2809	}
2810
2811	nosec_save = nosec;
2812	fnosec = fsec = 1;
2813	in_save = in_end = orig;
2814
2815	do {
2816		if (*in_end == '"')
2817			open_quote = !open_quote;
2818		if ((*in_end == ',' && open_quote == 0) ||
2819				*in_end == '\0') {
2820			int len = in_end - in_curr;
2821
2822			if (selinux_option(in_curr, len))
2823				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2824			else
2825				take_option(&nosec, in_curr, &fnosec, len);
2826
2827			in_curr = in_end + 1;
2828		}
2829	} while (*in_end++);
2830
2831	strcpy(in_save, nosec_save);
2832	free_page((unsigned long)nosec_save);
2833out:
2834	return rc;
2835}
2836
2837static int selinux_sb_remount(struct super_block *sb, void *data)
2838{
2839	int rc, i, *flags;
2840	struct security_mnt_opts opts;
2841	char *secdata, **mount_options;
2842	struct superblock_security_struct *sbsec = sb->s_security;
2843
2844	if (!(sbsec->flags & SE_SBINITIALIZED))
2845		return 0;
2846
2847	if (!data)
2848		return 0;
2849
2850	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2851		return 0;
2852
2853	security_init_mnt_opts(&opts);
2854	secdata = alloc_secdata();
2855	if (!secdata)
2856		return -ENOMEM;
2857	rc = selinux_sb_copy_data(data, secdata);
2858	if (rc)
2859		goto out_free_secdata;
2860
2861	rc = selinux_parse_opts_str(secdata, &opts);
2862	if (rc)
2863		goto out_free_secdata;
2864
2865	mount_options = opts.mnt_opts;
2866	flags = opts.mnt_opts_flags;
2867
2868	for (i = 0; i < opts.num_mnt_opts; i++) {
2869		u32 sid;
2870
2871		if (flags[i] == SBLABEL_MNT)
2872			continue;
2873		rc = security_context_str_to_sid(&selinux_state,
2874						 mount_options[i], &sid,
2875						 GFP_KERNEL);
2876		if (rc) {
2877			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2878			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2879			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2880			goto out_free_opts;
2881		}
2882		rc = -EINVAL;
2883		switch (flags[i]) {
2884		case FSCONTEXT_MNT:
2885			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2886				goto out_bad_option;
2887			break;
2888		case CONTEXT_MNT:
2889			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2890				goto out_bad_option;
2891			break;
2892		case ROOTCONTEXT_MNT: {
2893			struct inode_security_struct *root_isec;
2894			root_isec = backing_inode_security(sb->s_root);
2895
2896			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2897				goto out_bad_option;
2898			break;
2899		}
2900		case DEFCONTEXT_MNT:
2901			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2902				goto out_bad_option;
2903			break;
2904		default:
2905			goto out_free_opts;
2906		}
2907	}
2908
2909	rc = 0;
2910out_free_opts:
2911	security_free_mnt_opts(&opts);
2912out_free_secdata:
2913	free_secdata(secdata);
2914	return rc;
2915out_bad_option:
2916	printk(KERN_WARNING "SELinux: unable to change security options "
2917	       "during remount (dev %s, type=%s)\n", sb->s_id,
2918	       sb->s_type->name);
2919	goto out_free_opts;
2920}
2921
2922static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2923{
2924	const struct cred *cred = current_cred();
2925	struct common_audit_data ad;
2926	int rc;
2927
2928	rc = superblock_doinit(sb, data);
2929	if (rc)
2930		return rc;
2931
2932	/* Allow all mounts performed by the kernel */
2933	if (flags & MS_KERNMOUNT)
2934		return 0;
2935
2936	ad.type = LSM_AUDIT_DATA_DENTRY;
2937	ad.u.dentry = sb->s_root;
2938	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2939}
2940
2941static int selinux_sb_statfs(struct dentry *dentry)
2942{
2943	const struct cred *cred = current_cred();
2944	struct common_audit_data ad;
2945
2946	ad.type = LSM_AUDIT_DATA_DENTRY;
2947	ad.u.dentry = dentry->d_sb->s_root;
2948	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2949}
2950
2951static int selinux_mount(const char *dev_name,
2952			 const struct path *path,
2953			 const char *type,
2954			 unsigned long flags,
2955			 void *data)
2956{
2957	const struct cred *cred = current_cred();
2958
2959	if (flags & MS_REMOUNT)
2960		return superblock_has_perm(cred, path->dentry->d_sb,
2961					   FILESYSTEM__REMOUNT, NULL);
2962	else
2963		return path_has_perm(cred, path, FILE__MOUNTON);
2964}
2965
2966static int selinux_umount(struct vfsmount *mnt, int flags)
2967{
2968	const struct cred *cred = current_cred();
2969
2970	return superblock_has_perm(cred, mnt->mnt_sb,
2971				   FILESYSTEM__UNMOUNT, NULL);
2972}
2973
2974/* inode security operations */
2975
2976static int selinux_inode_alloc_security(struct inode *inode)
2977{
2978	return inode_alloc_security(inode);
2979}
2980
2981static void selinux_inode_free_security(struct inode *inode)
2982{
2983	inode_free_security(inode);
2984}
2985
2986static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2987					const struct qstr *name, void **ctx,
2988					u32 *ctxlen)
2989{
2990	u32 newsid;
2991	int rc;
2992
2993	rc = selinux_determine_inode_label(current_security(),
2994					   d_inode(dentry->d_parent), name,
2995					   inode_mode_to_security_class(mode),
2996					   &newsid);
2997	if (rc)
2998		return rc;
2999
3000	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
3001				       ctxlen);
3002}
3003
3004static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
3005					  struct qstr *name,
3006					  const struct cred *old,
3007					  struct cred *new)
3008{
3009	u32 newsid;
3010	int rc;
3011	struct task_security_struct *tsec;
3012
3013	rc = selinux_determine_inode_label(old->security,
3014					   d_inode(dentry->d_parent), name,
3015					   inode_mode_to_security_class(mode),
3016					   &newsid);
3017	if (rc)
3018		return rc;
3019
3020	tsec = new->security;
3021	tsec->create_sid = newsid;
3022	return 0;
3023}
3024
3025static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
3026				       const struct qstr *qstr,
3027				       const char **name,
3028				       void **value, size_t *len)
3029{
3030	const struct task_security_struct *tsec = current_security();
3031	struct superblock_security_struct *sbsec;
3032	u32 newsid, clen;
3033	int rc;
3034	char *context;
3035
3036	sbsec = dir->i_sb->s_security;
3037
 
3038	newsid = tsec->create_sid;
3039
3040	rc = selinux_determine_inode_label(current_security(),
3041		dir, qstr,
3042		inode_mode_to_security_class(inode->i_mode),
3043		&newsid);
3044	if (rc)
3045		return rc;
3046
3047	/* Possibly defer initialization to selinux_complete_init. */
3048	if (sbsec->flags & SE_SBINITIALIZED) {
3049		struct inode_security_struct *isec = inode->i_security;
3050		isec->sclass = inode_mode_to_security_class(inode->i_mode);
3051		isec->sid = newsid;
3052		isec->initialized = LABEL_INITIALIZED;
3053	}
3054
3055	if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
3056		return -EOPNOTSUPP;
3057
3058	if (name)
3059		*name = XATTR_SELINUX_SUFFIX;
3060
3061	if (value && len) {
3062		rc = security_sid_to_context_force(&selinux_state, newsid,
3063						   &context, &clen);
3064		if (rc)
3065			return rc;
3066		*value = context;
3067		*len = clen;
3068	}
3069
3070	return 0;
3071}
3072
3073static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3074{
3075	return may_create(dir, dentry, SECCLASS_FILE);
3076}
3077
3078static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3079{
3080	return may_link(dir, old_dentry, MAY_LINK);
3081}
3082
3083static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3084{
3085	return may_link(dir, dentry, MAY_UNLINK);
3086}
3087
3088static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3089{
3090	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3091}
3092
3093static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3094{
3095	return may_create(dir, dentry, SECCLASS_DIR);
3096}
3097
3098static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3099{
3100	return may_link(dir, dentry, MAY_RMDIR);
3101}
3102
3103static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3104{
3105	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3106}
3107
3108static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3109				struct inode *new_inode, struct dentry *new_dentry)
3110{
3111	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3112}
3113
3114static int selinux_inode_readlink(struct dentry *dentry)
3115{
3116	const struct cred *cred = current_cred();
3117
3118	return dentry_has_perm(cred, dentry, FILE__READ);
3119}
3120
3121static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3122				     bool rcu)
3123{
3124	const struct cred *cred = current_cred();
3125	struct common_audit_data ad;
3126	struct inode_security_struct *isec;
3127	u32 sid;
3128
3129	validate_creds(cred);
3130
3131	ad.type = LSM_AUDIT_DATA_DENTRY;
3132	ad.u.dentry = dentry;
3133	sid = cred_sid(cred);
3134	isec = inode_security_rcu(inode, rcu);
3135	if (IS_ERR(isec))
3136		return PTR_ERR(isec);
3137
3138	return avc_has_perm_flags(&selinux_state,
3139				  sid, isec->sid, isec->sclass, FILE__READ, &ad,
3140				  rcu ? MAY_NOT_BLOCK : 0);
3141}
3142
3143static noinline int audit_inode_permission(struct inode *inode,
3144					   u32 perms, u32 audited, u32 denied,
3145					   int result,
3146					   unsigned flags)
3147{
3148	struct common_audit_data ad;
3149	struct inode_security_struct *isec = inode->i_security;
3150	int rc;
3151
3152	ad.type = LSM_AUDIT_DATA_INODE;
3153	ad.u.inode = inode;
3154
3155	rc = slow_avc_audit(&selinux_state,
3156			    current_sid(), isec->sid, isec->sclass, perms,
3157			    audited, denied, result, &ad, flags);
3158	if (rc)
3159		return rc;
3160	return 0;
3161}
3162
3163static int selinux_inode_permission(struct inode *inode, int mask)
3164{
3165	const struct cred *cred = current_cred();
3166	u32 perms;
3167	bool from_access;
3168	unsigned flags = mask & MAY_NOT_BLOCK;
3169	struct inode_security_struct *isec;
3170	u32 sid;
3171	struct av_decision avd;
3172	int rc, rc2;
3173	u32 audited, denied;
3174
3175	from_access = mask & MAY_ACCESS;
3176	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3177
3178	/* No permission to check.  Existence test. */
3179	if (!mask)
3180		return 0;
3181
3182	validate_creds(cred);
3183
3184	if (unlikely(IS_PRIVATE(inode)))
3185		return 0;
3186
3187	perms = file_mask_to_av(inode->i_mode, mask);
3188
3189	sid = cred_sid(cred);
3190	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3191	if (IS_ERR(isec))
3192		return PTR_ERR(isec);
3193
3194	rc = avc_has_perm_noaudit(&selinux_state,
3195				  sid, isec->sid, isec->sclass, perms, 0, &avd);
3196	audited = avc_audit_required(perms, &avd, rc,
3197				     from_access ? FILE__AUDIT_ACCESS : 0,
3198				     &denied);
3199	if (likely(!audited))
3200		return rc;
3201
3202	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3203	if (rc2)
3204		return rc2;
3205	return rc;
3206}
3207
3208static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3209{
3210	const struct cred *cred = current_cred();
3211	struct inode *inode = d_backing_inode(dentry);
3212	unsigned int ia_valid = iattr->ia_valid;
3213	__u32 av = FILE__WRITE;
3214
3215	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3216	if (ia_valid & ATTR_FORCE) {
3217		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3218			      ATTR_FORCE);
3219		if (!ia_valid)
3220			return 0;
3221	}
3222
3223	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3224			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3225		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3226
3227	if (selinux_policycap_openperm() &&
3228	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3229	    (ia_valid & ATTR_SIZE) &&
3230	    !(ia_valid & ATTR_FILE))
3231		av |= FILE__OPEN;
3232
3233	return dentry_has_perm(cred, dentry, av);
3234}
3235
3236static int selinux_inode_getattr(const struct path *path)
3237{
3238	return path_has_perm(current_cred(), path, FILE__GETATTR);
3239}
3240
3241static bool has_cap_mac_admin(bool audit)
3242{
3243	const struct cred *cred = current_cred();
3244	int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3245
3246	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3247		return false;
3248	if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3249		return false;
3250	return true;
 
 
 
 
 
 
 
 
 
 
3251}
3252
3253static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3254				  const void *value, size_t size, int flags)
3255{
3256	struct inode *inode = d_backing_inode(dentry);
3257	struct inode_security_struct *isec;
3258	struct superblock_security_struct *sbsec;
3259	struct common_audit_data ad;
3260	u32 newsid, sid = current_sid();
3261	int rc = 0;
3262
3263	if (strcmp(name, XATTR_NAME_SELINUX)) {
3264		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3265		if (rc)
3266			return rc;
3267
3268		/* Not an attribute we recognize, so just check the
3269		   ordinary setattr permission. */
3270		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3271	}
3272
3273	sbsec = inode->i_sb->s_security;
3274	if (!(sbsec->flags & SBLABEL_MNT))
3275		return -EOPNOTSUPP;
3276
3277	if (!inode_owner_or_capable(inode))
3278		return -EPERM;
3279
3280	ad.type = LSM_AUDIT_DATA_DENTRY;
3281	ad.u.dentry = dentry;
3282
3283	isec = backing_inode_security(dentry);
3284	rc = avc_has_perm(&selinux_state,
3285			  sid, isec->sid, isec->sclass,
3286			  FILE__RELABELFROM, &ad);
3287	if (rc)
3288		return rc;
3289
3290	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3291				     GFP_KERNEL);
3292	if (rc == -EINVAL) {
3293		if (!has_cap_mac_admin(true)) {
3294			struct audit_buffer *ab;
3295			size_t audit_size;
 
3296
3297			/* We strip a nul only if it is at the end, otherwise the
3298			 * context contains a nul and we should audit that */
3299			if (value) {
3300				const char *str = value;
3301
3302				if (str[size - 1] == '\0')
3303					audit_size = size - 1;
3304				else
3305					audit_size = size;
3306			} else {
 
3307				audit_size = 0;
3308			}
3309			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3310			audit_log_format(ab, "op=setxattr invalid_context=");
3311			audit_log_n_untrustedstring(ab, value, audit_size);
3312			audit_log_end(ab);
3313
3314			return rc;
3315		}
3316		rc = security_context_to_sid_force(&selinux_state, value,
3317						   size, &newsid);
3318	}
3319	if (rc)
3320		return rc;
3321
3322	rc = avc_has_perm(&selinux_state,
3323			  sid, newsid, isec->sclass,
3324			  FILE__RELABELTO, &ad);
3325	if (rc)
3326		return rc;
3327
3328	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3329					  sid, isec->sclass);
3330	if (rc)
3331		return rc;
3332
3333	return avc_has_perm(&selinux_state,
3334			    newsid,
3335			    sbsec->sid,
3336			    SECCLASS_FILESYSTEM,
3337			    FILESYSTEM__ASSOCIATE,
3338			    &ad);
3339}
3340
3341static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3342					const void *value, size_t size,
3343					int flags)
3344{
3345	struct inode *inode = d_backing_inode(dentry);
3346	struct inode_security_struct *isec;
3347	u32 newsid;
3348	int rc;
3349
3350	if (strcmp(name, XATTR_NAME_SELINUX)) {
3351		/* Not an attribute we recognize, so nothing to do. */
3352		return;
3353	}
3354
3355	rc = security_context_to_sid_force(&selinux_state, value, size,
3356					   &newsid);
3357	if (rc) {
3358		printk(KERN_ERR "SELinux:  unable to map context to SID"
3359		       "for (%s, %lu), rc=%d\n",
3360		       inode->i_sb->s_id, inode->i_ino, -rc);
3361		return;
3362	}
3363
3364	isec = backing_inode_security(dentry);
3365	spin_lock(&isec->lock);
3366	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3367	isec->sid = newsid;
3368	isec->initialized = LABEL_INITIALIZED;
3369	spin_unlock(&isec->lock);
3370
3371	return;
3372}
3373
3374static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3375{
3376	const struct cred *cred = current_cred();
3377
3378	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3379}
3380
3381static int selinux_inode_listxattr(struct dentry *dentry)
3382{
3383	const struct cred *cred = current_cred();
3384
3385	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3386}
3387
3388static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3389{
3390	if (strcmp(name, XATTR_NAME_SELINUX)) {
3391		int rc = cap_inode_removexattr(dentry, name);
3392		if (rc)
3393			return rc;
3394
3395		/* Not an attribute we recognize, so just check the
3396		   ordinary setattr permission. */
3397		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3398	}
3399
3400	/* No one is allowed to remove a SELinux security label.
3401	   You can change the label, but all data must be labeled. */
3402	return -EACCES;
3403}
3404
3405/*
3406 * Copy the inode security context value to the user.
3407 *
3408 * Permission check is handled by selinux_inode_getxattr hook.
3409 */
3410static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3411{
3412	u32 size;
3413	int error;
3414	char *context = NULL;
3415	struct inode_security_struct *isec;
3416
3417	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3418		return -EOPNOTSUPP;
3419
3420	/*
3421	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3422	 * value even if it is not defined by current policy; otherwise,
3423	 * use the in-core value under current policy.
3424	 * Use the non-auditing forms of the permission checks since
3425	 * getxattr may be called by unprivileged processes commonly
3426	 * and lack of permission just means that we fall back to the
3427	 * in-core context value, not a denial.
3428	 */
 
 
 
 
 
3429	isec = inode_security(inode);
3430	if (has_cap_mac_admin(false))
3431		error = security_sid_to_context_force(&selinux_state,
3432						      isec->sid, &context,
3433						      &size);
3434	else
3435		error = security_sid_to_context(&selinux_state, isec->sid,
3436						&context, &size);
3437	if (error)
3438		return error;
3439	error = size;
3440	if (alloc) {
3441		*buffer = context;
3442		goto out_nofree;
3443	}
3444	kfree(context);
3445out_nofree:
3446	return error;
3447}
3448
3449static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3450				     const void *value, size_t size, int flags)
3451{
3452	struct inode_security_struct *isec = inode_security_novalidate(inode);
3453	u32 newsid;
3454	int rc;
3455
3456	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3457		return -EOPNOTSUPP;
3458
3459	if (!value || !size)
3460		return -EACCES;
3461
3462	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3463				     GFP_KERNEL);
3464	if (rc)
3465		return rc;
3466
3467	spin_lock(&isec->lock);
3468	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3469	isec->sid = newsid;
3470	isec->initialized = LABEL_INITIALIZED;
3471	spin_unlock(&isec->lock);
3472	return 0;
3473}
3474
3475static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3476{
3477	const int len = sizeof(XATTR_NAME_SELINUX);
3478	if (buffer && len <= buffer_size)
3479		memcpy(buffer, XATTR_NAME_SELINUX, len);
3480	return len;
3481}
3482
3483static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3484{
3485	struct inode_security_struct *isec = inode_security_novalidate(inode);
3486	*secid = isec->sid;
3487}
3488
3489static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3490{
3491	u32 sid;
3492	struct task_security_struct *tsec;
3493	struct cred *new_creds = *new;
3494
3495	if (new_creds == NULL) {
3496		new_creds = prepare_creds();
3497		if (!new_creds)
3498			return -ENOMEM;
3499	}
3500
3501	tsec = new_creds->security;
3502	/* Get label from overlay inode and set it in create_sid */
3503	selinux_inode_getsecid(d_inode(src), &sid);
3504	tsec->create_sid = sid;
3505	*new = new_creds;
3506	return 0;
3507}
3508
3509static int selinux_inode_copy_up_xattr(const char *name)
3510{
3511	/* The copy_up hook above sets the initial context on an inode, but we
3512	 * don't then want to overwrite it by blindly copying all the lower
3513	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3514	 */
3515	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3516		return 1; /* Discard */
3517	/*
3518	 * Any other attribute apart from SELINUX is not claimed, supported
3519	 * by selinux.
3520	 */
3521	return -EOPNOTSUPP;
3522}
3523
3524/* file security operations */
3525
3526static int selinux_revalidate_file_permission(struct file *file, int mask)
3527{
3528	const struct cred *cred = current_cred();
3529	struct inode *inode = file_inode(file);
3530
3531	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3532	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3533		mask |= MAY_APPEND;
3534
3535	return file_has_perm(cred, file,
3536			     file_mask_to_av(inode->i_mode, mask));
3537}
3538
3539static int selinux_file_permission(struct file *file, int mask)
3540{
3541	struct inode *inode = file_inode(file);
3542	struct file_security_struct *fsec = file->f_security;
3543	struct inode_security_struct *isec;
3544	u32 sid = current_sid();
3545
3546	if (!mask)
3547		/* No permission to check.  Existence test. */
3548		return 0;
3549
3550	isec = inode_security(inode);
3551	if (sid == fsec->sid && fsec->isid == isec->sid &&
3552	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3553		/* No change since file_open check. */
3554		return 0;
3555
3556	return selinux_revalidate_file_permission(file, mask);
3557}
3558
3559static int selinux_file_alloc_security(struct file *file)
3560{
3561	return file_alloc_security(file);
3562}
3563
3564static void selinux_file_free_security(struct file *file)
3565{
3566	file_free_security(file);
3567}
3568
3569/*
3570 * Check whether a task has the ioctl permission and cmd
3571 * operation to an inode.
3572 */
3573static int ioctl_has_perm(const struct cred *cred, struct file *file,
3574		u32 requested, u16 cmd)
3575{
3576	struct common_audit_data ad;
3577	struct file_security_struct *fsec = file->f_security;
3578	struct inode *inode = file_inode(file);
3579	struct inode_security_struct *isec;
3580	struct lsm_ioctlop_audit ioctl;
3581	u32 ssid = cred_sid(cred);
3582	int rc;
3583	u8 driver = cmd >> 8;
3584	u8 xperm = cmd & 0xff;
3585
3586	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3587	ad.u.op = &ioctl;
3588	ad.u.op->cmd = cmd;
3589	ad.u.op->path = file->f_path;
3590
3591	if (ssid != fsec->sid) {
3592		rc = avc_has_perm(&selinux_state,
3593				  ssid, fsec->sid,
3594				SECCLASS_FD,
3595				FD__USE,
3596				&ad);
3597		if (rc)
3598			goto out;
3599	}
3600
3601	if (unlikely(IS_PRIVATE(inode)))
3602		return 0;
3603
3604	isec = inode_security(inode);
3605	rc = avc_has_extended_perms(&selinux_state,
3606				    ssid, isec->sid, isec->sclass,
3607				    requested, driver, xperm, &ad);
3608out:
3609	return rc;
3610}
3611
3612static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3613			      unsigned long arg)
3614{
3615	const struct cred *cred = current_cred();
3616	int error = 0;
3617
3618	switch (cmd) {
3619	case FIONREAD:
3620	/* fall through */
3621	case FIBMAP:
3622	/* fall through */
3623	case FIGETBSZ:
3624	/* fall through */
3625	case FS_IOC_GETFLAGS:
3626	/* fall through */
3627	case FS_IOC_GETVERSION:
3628		error = file_has_perm(cred, file, FILE__GETATTR);
3629		break;
3630
3631	case FS_IOC_SETFLAGS:
3632	/* fall through */
3633	case FS_IOC_SETVERSION:
3634		error = file_has_perm(cred, file, FILE__SETATTR);
3635		break;
3636
3637	/* sys_ioctl() checks */
3638	case FIONBIO:
3639	/* fall through */
3640	case FIOASYNC:
3641		error = file_has_perm(cred, file, 0);
3642		break;
3643
3644	case KDSKBENT:
3645	case KDSKBSENT:
3646		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3647					    SECURITY_CAP_AUDIT, true);
3648		break;
3649
3650	/* default case assumes that the command will go
3651	 * to the file's ioctl() function.
3652	 */
3653	default:
3654		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3655	}
3656	return error;
3657}
3658
3659static int default_noexec;
3660
3661static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3662{
3663	const struct cred *cred = current_cred();
3664	u32 sid = cred_sid(cred);
3665	int rc = 0;
3666
3667	if (default_noexec &&
3668	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3669				   (!shared && (prot & PROT_WRITE)))) {
3670		/*
3671		 * We are making executable an anonymous mapping or a
3672		 * private file mapping that will also be writable.
3673		 * This has an additional check.
3674		 */
3675		rc = avc_has_perm(&selinux_state,
3676				  sid, sid, SECCLASS_PROCESS,
3677				  PROCESS__EXECMEM, NULL);
3678		if (rc)
3679			goto error;
3680	}
3681
3682	if (file) {
3683		/* read access is always possible with a mapping */
3684		u32 av = FILE__READ;
3685
3686		/* write access only matters if the mapping is shared */
3687		if (shared && (prot & PROT_WRITE))
3688			av |= FILE__WRITE;
3689
3690		if (prot & PROT_EXEC)
3691			av |= FILE__EXECUTE;
3692
3693		return file_has_perm(cred, file, av);
3694	}
3695
3696error:
3697	return rc;
3698}
3699
3700static int selinux_mmap_addr(unsigned long addr)
3701{
3702	int rc = 0;
3703
3704	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3705		u32 sid = current_sid();
3706		rc = avc_has_perm(&selinux_state,
3707				  sid, sid, SECCLASS_MEMPROTECT,
3708				  MEMPROTECT__MMAP_ZERO, NULL);
3709	}
3710
3711	return rc;
3712}
3713
3714static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3715			     unsigned long prot, unsigned long flags)
3716{
3717	struct common_audit_data ad;
3718	int rc;
3719
3720	if (file) {
3721		ad.type = LSM_AUDIT_DATA_FILE;
3722		ad.u.file = file;
3723		rc = inode_has_perm(current_cred(), file_inode(file),
3724				    FILE__MAP, &ad);
3725		if (rc)
3726			return rc;
3727	}
3728
3729	if (selinux_state.checkreqprot)
3730		prot = reqprot;
3731
3732	return file_map_prot_check(file, prot,
3733				   (flags & MAP_TYPE) == MAP_SHARED);
3734}
3735
3736static int selinux_file_mprotect(struct vm_area_struct *vma,
3737				 unsigned long reqprot,
3738				 unsigned long prot)
3739{
3740	const struct cred *cred = current_cred();
3741	u32 sid = cred_sid(cred);
3742
3743	if (selinux_state.checkreqprot)
3744		prot = reqprot;
3745
3746	if (default_noexec &&
3747	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3748		int rc = 0;
3749		if (vma->vm_start >= vma->vm_mm->start_brk &&
3750		    vma->vm_end <= vma->vm_mm->brk) {
3751			rc = avc_has_perm(&selinux_state,
3752					  sid, sid, SECCLASS_PROCESS,
3753					  PROCESS__EXECHEAP, NULL);
3754		} else if (!vma->vm_file &&
3755			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3756			     vma->vm_end >= vma->vm_mm->start_stack) ||
3757			    vma_is_stack_for_current(vma))) {
3758			rc = avc_has_perm(&selinux_state,
3759					  sid, sid, SECCLASS_PROCESS,
3760					  PROCESS__EXECSTACK, NULL);
3761		} else if (vma->vm_file && vma->anon_vma) {
3762			/*
3763			 * We are making executable a file mapping that has
3764			 * had some COW done. Since pages might have been
3765			 * written, check ability to execute the possibly
3766			 * modified content.  This typically should only
3767			 * occur for text relocations.
3768			 */
3769			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3770		}
3771		if (rc)
3772			return rc;
3773	}
3774
3775	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3776}
3777
3778static int selinux_file_lock(struct file *file, unsigned int cmd)
3779{
3780	const struct cred *cred = current_cred();
3781
3782	return file_has_perm(cred, file, FILE__LOCK);
3783}
3784
3785static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3786			      unsigned long arg)
3787{
3788	const struct cred *cred = current_cred();
3789	int err = 0;
3790
3791	switch (cmd) {
3792	case F_SETFL:
3793		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3794			err = file_has_perm(cred, file, FILE__WRITE);
3795			break;
3796		}
3797		/* fall through */
3798	case F_SETOWN:
3799	case F_SETSIG:
3800	case F_GETFL:
3801	case F_GETOWN:
3802	case F_GETSIG:
3803	case F_GETOWNER_UIDS:
3804		/* Just check FD__USE permission */
3805		err = file_has_perm(cred, file, 0);
3806		break;
3807	case F_GETLK:
3808	case F_SETLK:
3809	case F_SETLKW:
3810	case F_OFD_GETLK:
3811	case F_OFD_SETLK:
3812	case F_OFD_SETLKW:
3813#if BITS_PER_LONG == 32
3814	case F_GETLK64:
3815	case F_SETLK64:
3816	case F_SETLKW64:
3817#endif
3818		err = file_has_perm(cred, file, FILE__LOCK);
3819		break;
3820	}
3821
3822	return err;
3823}
3824
3825static void selinux_file_set_fowner(struct file *file)
3826{
3827	struct file_security_struct *fsec;
3828
3829	fsec = file->f_security;
3830	fsec->fown_sid = current_sid();
3831}
3832
3833static int selinux_file_send_sigiotask(struct task_struct *tsk,
3834				       struct fown_struct *fown, int signum)
3835{
3836	struct file *file;
3837	u32 sid = task_sid(tsk);
3838	u32 perm;
3839	struct file_security_struct *fsec;
3840
3841	/* struct fown_struct is never outside the context of a struct file */
3842	file = container_of(fown, struct file, f_owner);
3843
3844	fsec = file->f_security;
3845
3846	if (!signum)
3847		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3848	else
3849		perm = signal_to_av(signum);
3850
3851	return avc_has_perm(&selinux_state,
3852			    fsec->fown_sid, sid,
3853			    SECCLASS_PROCESS, perm, NULL);
3854}
3855
3856static int selinux_file_receive(struct file *file)
3857{
3858	const struct cred *cred = current_cred();
3859
3860	return file_has_perm(cred, file, file_to_av(file));
3861}
3862
3863static int selinux_file_open(struct file *file, const struct cred *cred)
3864{
3865	struct file_security_struct *fsec;
3866	struct inode_security_struct *isec;
3867
3868	fsec = file->f_security;
3869	isec = inode_security(file_inode(file));
3870	/*
3871	 * Save inode label and policy sequence number
3872	 * at open-time so that selinux_file_permission
3873	 * can determine whether revalidation is necessary.
3874	 * Task label is already saved in the file security
3875	 * struct as its SID.
3876	 */
3877	fsec->isid = isec->sid;
3878	fsec->pseqno = avc_policy_seqno(&selinux_state);
3879	/*
3880	 * Since the inode label or policy seqno may have changed
3881	 * between the selinux_inode_permission check and the saving
3882	 * of state above, recheck that access is still permitted.
3883	 * Otherwise, access might never be revalidated against the
3884	 * new inode label or new policy.
3885	 * This check is not redundant - do not remove.
3886	 */
3887	return file_path_has_perm(cred, file, open_file_to_av(file));
3888}
3889
3890/* task security operations */
3891
3892static int selinux_task_alloc(struct task_struct *task,
3893			      unsigned long clone_flags)
3894{
3895	u32 sid = current_sid();
3896
3897	return avc_has_perm(&selinux_state,
3898			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3899}
3900
3901/*
3902 * allocate the SELinux part of blank credentials
3903 */
3904static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3905{
3906	struct task_security_struct *tsec;
3907
3908	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3909	if (!tsec)
3910		return -ENOMEM;
3911
3912	cred->security = tsec;
3913	return 0;
3914}
3915
3916/*
3917 * detach and free the LSM part of a set of credentials
3918 */
3919static void selinux_cred_free(struct cred *cred)
3920{
3921	struct task_security_struct *tsec = cred->security;
3922
3923	/*
3924	 * cred->security == NULL if security_cred_alloc_blank() or
3925	 * security_prepare_creds() returned an error.
3926	 */
3927	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3928	cred->security = (void *) 0x7UL;
3929	kfree(tsec);
3930}
3931
3932/*
3933 * prepare a new set of credentials for modification
3934 */
3935static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3936				gfp_t gfp)
3937{
3938	const struct task_security_struct *old_tsec;
3939	struct task_security_struct *tsec;
3940
3941	old_tsec = old->security;
3942
3943	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3944	if (!tsec)
3945		return -ENOMEM;
3946
3947	new->security = tsec;
3948	return 0;
3949}
3950
3951/*
3952 * transfer the SELinux data to a blank set of creds
3953 */
3954static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3955{
3956	const struct task_security_struct *old_tsec = old->security;
3957	struct task_security_struct *tsec = new->security;
3958
3959	*tsec = *old_tsec;
3960}
3961
3962static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3963{
3964	*secid = cred_sid(c);
3965}
3966
3967/*
3968 * set the security data for a kernel service
3969 * - all the creation contexts are set to unlabelled
3970 */
3971static int selinux_kernel_act_as(struct cred *new, u32 secid)
3972{
3973	struct task_security_struct *tsec = new->security;
3974	u32 sid = current_sid();
3975	int ret;
3976
3977	ret = avc_has_perm(&selinux_state,
3978			   sid, secid,
3979			   SECCLASS_KERNEL_SERVICE,
3980			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3981			   NULL);
3982	if (ret == 0) {
3983		tsec->sid = secid;
3984		tsec->create_sid = 0;
3985		tsec->keycreate_sid = 0;
3986		tsec->sockcreate_sid = 0;
3987	}
3988	return ret;
3989}
3990
3991/*
3992 * set the file creation context in a security record to the same as the
3993 * objective context of the specified inode
3994 */
3995static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3996{
3997	struct inode_security_struct *isec = inode_security(inode);
3998	struct task_security_struct *tsec = new->security;
3999	u32 sid = current_sid();
4000	int ret;
4001
4002	ret = avc_has_perm(&selinux_state,
4003			   sid, isec->sid,
4004			   SECCLASS_KERNEL_SERVICE,
4005			   KERNEL_SERVICE__CREATE_FILES_AS,
4006			   NULL);
4007
4008	if (ret == 0)
4009		tsec->create_sid = isec->sid;
4010	return ret;
4011}
4012
4013static int selinux_kernel_module_request(char *kmod_name)
4014{
 
4015	struct common_audit_data ad;
4016
 
 
4017	ad.type = LSM_AUDIT_DATA_KMOD;
4018	ad.u.kmod_name = kmod_name;
4019
4020	return avc_has_perm(&selinux_state,
4021			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4022			    SYSTEM__MODULE_REQUEST, &ad);
4023}
4024
4025static int selinux_kernel_module_from_file(struct file *file)
4026{
4027	struct common_audit_data ad;
4028	struct inode_security_struct *isec;
4029	struct file_security_struct *fsec;
4030	u32 sid = current_sid();
4031	int rc;
4032
4033	/* init_module */
4034	if (file == NULL)
4035		return avc_has_perm(&selinux_state,
4036				    sid, sid, SECCLASS_SYSTEM,
4037					SYSTEM__MODULE_LOAD, NULL);
4038
4039	/* finit_module */
4040
4041	ad.type = LSM_AUDIT_DATA_FILE;
4042	ad.u.file = file;
4043
4044	fsec = file->f_security;
4045	if (sid != fsec->sid) {
4046		rc = avc_has_perm(&selinux_state,
4047				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4048		if (rc)
4049			return rc;
4050	}
4051
4052	isec = inode_security(file_inode(file));
4053	return avc_has_perm(&selinux_state,
4054			    sid, isec->sid, SECCLASS_SYSTEM,
4055				SYSTEM__MODULE_LOAD, &ad);
4056}
4057
4058static int selinux_kernel_read_file(struct file *file,
4059				    enum kernel_read_file_id id)
4060{
4061	int rc = 0;
4062
4063	switch (id) {
4064	case READING_MODULE:
4065		rc = selinux_kernel_module_from_file(file);
4066		break;
4067	default:
4068		break;
4069	}
4070
4071	return rc;
4072}
4073
4074static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4075{
4076	return avc_has_perm(&selinux_state,
4077			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4078			    PROCESS__SETPGID, NULL);
4079}
4080
4081static int selinux_task_getpgid(struct task_struct *p)
4082{
4083	return avc_has_perm(&selinux_state,
4084			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4085			    PROCESS__GETPGID, NULL);
4086}
4087
4088static int selinux_task_getsid(struct task_struct *p)
4089{
4090	return avc_has_perm(&selinux_state,
4091			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4092			    PROCESS__GETSESSION, NULL);
4093}
4094
4095static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4096{
4097	*secid = task_sid(p);
4098}
4099
4100static int selinux_task_setnice(struct task_struct *p, int nice)
4101{
4102	return avc_has_perm(&selinux_state,
4103			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4104			    PROCESS__SETSCHED, NULL);
4105}
4106
4107static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4108{
4109	return avc_has_perm(&selinux_state,
4110			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4111			    PROCESS__SETSCHED, NULL);
4112}
4113
4114static int selinux_task_getioprio(struct task_struct *p)
4115{
4116	return avc_has_perm(&selinux_state,
4117			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4118			    PROCESS__GETSCHED, NULL);
4119}
4120
4121static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4122				unsigned int flags)
4123{
4124	u32 av = 0;
4125
4126	if (!flags)
4127		return 0;
4128	if (flags & LSM_PRLIMIT_WRITE)
4129		av |= PROCESS__SETRLIMIT;
4130	if (flags & LSM_PRLIMIT_READ)
4131		av |= PROCESS__GETRLIMIT;
4132	return avc_has_perm(&selinux_state,
4133			    cred_sid(cred), cred_sid(tcred),
4134			    SECCLASS_PROCESS, av, NULL);
4135}
4136
4137static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4138		struct rlimit *new_rlim)
4139{
4140	struct rlimit *old_rlim = p->signal->rlim + resource;
4141
4142	/* Control the ability to change the hard limit (whether
4143	   lowering or raising it), so that the hard limit can
4144	   later be used as a safe reset point for the soft limit
4145	   upon context transitions.  See selinux_bprm_committing_creds. */
4146	if (old_rlim->rlim_max != new_rlim->rlim_max)
4147		return avc_has_perm(&selinux_state,
4148				    current_sid(), task_sid(p),
4149				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4150
4151	return 0;
4152}
4153
4154static int selinux_task_setscheduler(struct task_struct *p)
4155{
4156	return avc_has_perm(&selinux_state,
4157			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4158			    PROCESS__SETSCHED, NULL);
4159}
4160
4161static int selinux_task_getscheduler(struct task_struct *p)
4162{
4163	return avc_has_perm(&selinux_state,
4164			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4165			    PROCESS__GETSCHED, NULL);
4166}
4167
4168static int selinux_task_movememory(struct task_struct *p)
4169{
4170	return avc_has_perm(&selinux_state,
4171			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4172			    PROCESS__SETSCHED, NULL);
4173}
4174
4175static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4176				int sig, const struct cred *cred)
4177{
4178	u32 secid;
4179	u32 perm;
 
4180
4181	if (!sig)
4182		perm = PROCESS__SIGNULL; /* null signal; existence test */
4183	else
4184		perm = signal_to_av(sig);
4185	if (!cred)
4186		secid = current_sid();
 
4187	else
4188		secid = cred_sid(cred);
4189	return avc_has_perm(&selinux_state,
4190			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
 
 
 
 
4191}
4192
4193static void selinux_task_to_inode(struct task_struct *p,
4194				  struct inode *inode)
4195{
4196	struct inode_security_struct *isec = inode->i_security;
4197	u32 sid = task_sid(p);
4198
4199	spin_lock(&isec->lock);
4200	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4201	isec->sid = sid;
4202	isec->initialized = LABEL_INITIALIZED;
4203	spin_unlock(&isec->lock);
4204}
4205
4206/* Returns error only if unable to parse addresses */
4207static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4208			struct common_audit_data *ad, u8 *proto)
4209{
4210	int offset, ihlen, ret = -EINVAL;
4211	struct iphdr _iph, *ih;
4212
4213	offset = skb_network_offset(skb);
4214	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4215	if (ih == NULL)
4216		goto out;
4217
4218	ihlen = ih->ihl * 4;
4219	if (ihlen < sizeof(_iph))
4220		goto out;
4221
4222	ad->u.net->v4info.saddr = ih->saddr;
4223	ad->u.net->v4info.daddr = ih->daddr;
4224	ret = 0;
4225
4226	if (proto)
4227		*proto = ih->protocol;
4228
4229	switch (ih->protocol) {
4230	case IPPROTO_TCP: {
4231		struct tcphdr _tcph, *th;
4232
4233		if (ntohs(ih->frag_off) & IP_OFFSET)
4234			break;
4235
4236		offset += ihlen;
4237		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4238		if (th == NULL)
4239			break;
4240
4241		ad->u.net->sport = th->source;
4242		ad->u.net->dport = th->dest;
4243		break;
4244	}
4245
4246	case IPPROTO_UDP: {
4247		struct udphdr _udph, *uh;
4248
4249		if (ntohs(ih->frag_off) & IP_OFFSET)
4250			break;
4251
4252		offset += ihlen;
4253		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4254		if (uh == NULL)
4255			break;
4256
4257		ad->u.net->sport = uh->source;
4258		ad->u.net->dport = uh->dest;
4259		break;
4260	}
4261
4262	case IPPROTO_DCCP: {
4263		struct dccp_hdr _dccph, *dh;
4264
4265		if (ntohs(ih->frag_off) & IP_OFFSET)
4266			break;
4267
4268		offset += ihlen;
4269		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4270		if (dh == NULL)
4271			break;
4272
4273		ad->u.net->sport = dh->dccph_sport;
4274		ad->u.net->dport = dh->dccph_dport;
4275		break;
4276	}
4277
4278#if IS_ENABLED(CONFIG_IP_SCTP)
4279	case IPPROTO_SCTP: {
4280		struct sctphdr _sctph, *sh;
4281
4282		if (ntohs(ih->frag_off) & IP_OFFSET)
4283			break;
4284
4285		offset += ihlen;
4286		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4287		if (sh == NULL)
4288			break;
4289
4290		ad->u.net->sport = sh->source;
4291		ad->u.net->dport = sh->dest;
4292		break;
4293	}
4294#endif
4295	default:
4296		break;
4297	}
4298out:
4299	return ret;
4300}
4301
4302#if IS_ENABLED(CONFIG_IPV6)
4303
4304/* Returns error only if unable to parse addresses */
4305static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4306			struct common_audit_data *ad, u8 *proto)
4307{
4308	u8 nexthdr;
4309	int ret = -EINVAL, offset;
4310	struct ipv6hdr _ipv6h, *ip6;
4311	__be16 frag_off;
4312
4313	offset = skb_network_offset(skb);
4314	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4315	if (ip6 == NULL)
4316		goto out;
4317
4318	ad->u.net->v6info.saddr = ip6->saddr;
4319	ad->u.net->v6info.daddr = ip6->daddr;
4320	ret = 0;
4321
4322	nexthdr = ip6->nexthdr;
4323	offset += sizeof(_ipv6h);
4324	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4325	if (offset < 0)
4326		goto out;
4327
4328	if (proto)
4329		*proto = nexthdr;
4330
4331	switch (nexthdr) {
4332	case IPPROTO_TCP: {
4333		struct tcphdr _tcph, *th;
4334
4335		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4336		if (th == NULL)
4337			break;
4338
4339		ad->u.net->sport = th->source;
4340		ad->u.net->dport = th->dest;
4341		break;
4342	}
4343
4344	case IPPROTO_UDP: {
4345		struct udphdr _udph, *uh;
4346
4347		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4348		if (uh == NULL)
4349			break;
4350
4351		ad->u.net->sport = uh->source;
4352		ad->u.net->dport = uh->dest;
4353		break;
4354	}
4355
4356	case IPPROTO_DCCP: {
4357		struct dccp_hdr _dccph, *dh;
4358
4359		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4360		if (dh == NULL)
4361			break;
4362
4363		ad->u.net->sport = dh->dccph_sport;
4364		ad->u.net->dport = dh->dccph_dport;
4365		break;
4366	}
4367
4368#if IS_ENABLED(CONFIG_IP_SCTP)
4369	case IPPROTO_SCTP: {
4370		struct sctphdr _sctph, *sh;
4371
4372		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4373		if (sh == NULL)
4374			break;
4375
4376		ad->u.net->sport = sh->source;
4377		ad->u.net->dport = sh->dest;
4378		break;
4379	}
4380#endif
4381	/* includes fragments */
4382	default:
4383		break;
4384	}
4385out:
4386	return ret;
4387}
4388
4389#endif /* IPV6 */
4390
4391static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4392			     char **_addrp, int src, u8 *proto)
4393{
4394	char *addrp;
4395	int ret;
4396
4397	switch (ad->u.net->family) {
4398	case PF_INET:
4399		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4400		if (ret)
4401			goto parse_error;
4402		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4403				       &ad->u.net->v4info.daddr);
4404		goto okay;
4405
4406#if IS_ENABLED(CONFIG_IPV6)
4407	case PF_INET6:
4408		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4409		if (ret)
4410			goto parse_error;
4411		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4412				       &ad->u.net->v6info.daddr);
4413		goto okay;
4414#endif	/* IPV6 */
4415	default:
4416		addrp = NULL;
4417		goto okay;
4418	}
4419
4420parse_error:
4421	printk(KERN_WARNING
4422	       "SELinux: failure in selinux_parse_skb(),"
4423	       " unable to parse packet\n");
4424	return ret;
4425
4426okay:
4427	if (_addrp)
4428		*_addrp = addrp;
4429	return 0;
4430}
4431
4432/**
4433 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4434 * @skb: the packet
4435 * @family: protocol family
4436 * @sid: the packet's peer label SID
4437 *
4438 * Description:
4439 * Check the various different forms of network peer labeling and determine
4440 * the peer label/SID for the packet; most of the magic actually occurs in
4441 * the security server function security_net_peersid_cmp().  The function
4442 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4443 * or -EACCES if @sid is invalid due to inconsistencies with the different
4444 * peer labels.
4445 *
4446 */
4447static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4448{
4449	int err;
4450	u32 xfrm_sid;
4451	u32 nlbl_sid;
4452	u32 nlbl_type;
4453
4454	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4455	if (unlikely(err))
4456		return -EACCES;
4457	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4458	if (unlikely(err))
4459		return -EACCES;
4460
4461	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4462					   nlbl_type, xfrm_sid, sid);
4463	if (unlikely(err)) {
4464		printk(KERN_WARNING
4465		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4466		       " unable to determine packet's peer label\n");
4467		return -EACCES;
4468	}
4469
4470	return 0;
4471}
4472
4473/**
4474 * selinux_conn_sid - Determine the child socket label for a connection
4475 * @sk_sid: the parent socket's SID
4476 * @skb_sid: the packet's SID
4477 * @conn_sid: the resulting connection SID
4478 *
4479 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4480 * combined with the MLS information from @skb_sid in order to create
4481 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4482 * of @sk_sid.  Returns zero on success, negative values on failure.
4483 *
4484 */
4485static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4486{
4487	int err = 0;
4488
4489	if (skb_sid != SECSID_NULL)
4490		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4491					    conn_sid);
4492	else
4493		*conn_sid = sk_sid;
4494
4495	return err;
4496}
4497
4498/* socket security operations */
4499
4500static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4501				 u16 secclass, u32 *socksid)
4502{
4503	if (tsec->sockcreate_sid > SECSID_NULL) {
4504		*socksid = tsec->sockcreate_sid;
4505		return 0;
4506	}
4507
4508	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4509				       secclass, NULL, socksid);
4510}
4511
4512static int sock_has_perm(struct sock *sk, u32 perms)
4513{
4514	struct sk_security_struct *sksec = sk->sk_security;
4515	struct common_audit_data ad;
4516	struct lsm_network_audit net = {0,};
 
4517
4518	if (sksec->sid == SECINITSID_KERNEL)
4519		return 0;
4520
4521	ad.type = LSM_AUDIT_DATA_NET;
4522	ad.u.net = &net;
4523	ad.u.net->sk = sk;
4524
4525	return avc_has_perm(&selinux_state,
4526			    current_sid(), sksec->sid, sksec->sclass, perms,
4527			    &ad);
4528}
4529
4530static int selinux_socket_create(int family, int type,
4531				 int protocol, int kern)
4532{
4533	const struct task_security_struct *tsec = current_security();
4534	u32 newsid;
4535	u16 secclass;
4536	int rc;
4537
4538	if (kern)
4539		return 0;
4540
4541	secclass = socket_type_to_security_class(family, type, protocol);
4542	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4543	if (rc)
4544		return rc;
4545
4546	return avc_has_perm(&selinux_state,
4547			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4548}
4549
4550static int selinux_socket_post_create(struct socket *sock, int family,
4551				      int type, int protocol, int kern)
4552{
4553	const struct task_security_struct *tsec = current_security();
4554	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4555	struct sk_security_struct *sksec;
4556	u16 sclass = socket_type_to_security_class(family, type, protocol);
4557	u32 sid = SECINITSID_KERNEL;
4558	int err = 0;
4559
4560	if (!kern) {
4561		err = socket_sockcreate_sid(tsec, sclass, &sid);
4562		if (err)
4563			return err;
4564	}
4565
4566	isec->sclass = sclass;
4567	isec->sid = sid;
4568	isec->initialized = LABEL_INITIALIZED;
4569
4570	if (sock->sk) {
4571		sksec = sock->sk->sk_security;
4572		sksec->sclass = sclass;
4573		sksec->sid = sid;
4574		/* Allows detection of the first association on this socket */
4575		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4576			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4577
4578		err = selinux_netlbl_socket_post_create(sock->sk, family);
4579	}
4580
4581	return err;
4582}
4583
4584/* Range of port numbers used to automatically bind.
4585   Need to determine whether we should perform a name_bind
4586   permission check between the socket and the port number. */
4587
4588static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4589{
4590	struct sock *sk = sock->sk;
4591	struct sk_security_struct *sksec = sk->sk_security;
4592	u16 family;
4593	int err;
4594
4595	err = sock_has_perm(sk, SOCKET__BIND);
4596	if (err)
4597		goto out;
4598
4599	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
 
 
 
 
4600	family = sk->sk_family;
4601	if (family == PF_INET || family == PF_INET6) {
4602		char *addrp;
 
4603		struct common_audit_data ad;
4604		struct lsm_network_audit net = {0,};
4605		struct sockaddr_in *addr4 = NULL;
4606		struct sockaddr_in6 *addr6 = NULL;
4607		u16 family_sa = address->sa_family;
4608		unsigned short snum;
4609		u32 sid, node_perm;
4610
4611		/*
4612		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4613		 * that validates multiple binding addresses. Because of this
4614		 * need to check address->sa_family as it is possible to have
4615		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4616		 */
4617		switch (family_sa) {
4618		case AF_UNSPEC:
4619		case AF_INET:
4620			if (addrlen < sizeof(struct sockaddr_in))
4621				return -EINVAL;
4622			addr4 = (struct sockaddr_in *)address;
4623			if (family_sa == AF_UNSPEC) {
4624				/* see __inet_bind(), we only want to allow
4625				 * AF_UNSPEC if the address is INADDR_ANY
4626				 */
4627				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4628					goto err_af;
4629				family_sa = AF_INET;
4630			}
4631			snum = ntohs(addr4->sin_port);
4632			addrp = (char *)&addr4->sin_addr.s_addr;
4633			break;
4634		case AF_INET6:
4635			if (addrlen < SIN6_LEN_RFC2133)
4636				return -EINVAL;
4637			addr6 = (struct sockaddr_in6 *)address;
4638			snum = ntohs(addr6->sin6_port);
4639			addrp = (char *)&addr6->sin6_addr.s6_addr;
4640			break;
4641		default:
4642			goto err_af;
4643		}
4644
4645		ad.type = LSM_AUDIT_DATA_NET;
4646		ad.u.net = &net;
4647		ad.u.net->sport = htons(snum);
4648		ad.u.net->family = family_sa;
4649
4650		if (snum) {
4651			int low, high;
4652
4653			inet_get_local_port_range(sock_net(sk), &low, &high);
4654
4655			if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4656			    snum > high) {
4657				err = sel_netport_sid(sk->sk_protocol,
4658						      snum, &sid);
4659				if (err)
4660					goto out;
4661				err = avc_has_perm(&selinux_state,
4662						   sksec->sid, sid,
 
 
 
4663						   sksec->sclass,
4664						   SOCKET__NAME_BIND, &ad);
4665				if (err)
4666					goto out;
4667			}
4668		}
4669
4670		switch (sksec->sclass) {
4671		case SECCLASS_TCP_SOCKET:
4672			node_perm = TCP_SOCKET__NODE_BIND;
4673			break;
4674
4675		case SECCLASS_UDP_SOCKET:
4676			node_perm = UDP_SOCKET__NODE_BIND;
4677			break;
4678
4679		case SECCLASS_DCCP_SOCKET:
4680			node_perm = DCCP_SOCKET__NODE_BIND;
4681			break;
4682
4683		case SECCLASS_SCTP_SOCKET:
4684			node_perm = SCTP_SOCKET__NODE_BIND;
4685			break;
4686
4687		default:
4688			node_perm = RAWIP_SOCKET__NODE_BIND;
4689			break;
4690		}
4691
4692		err = sel_netnode_sid(addrp, family_sa, &sid);
4693		if (err)
4694			goto out;
4695
4696		if (family_sa == AF_INET)
 
 
 
 
 
4697			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4698		else
4699			ad.u.net->v6info.saddr = addr6->sin6_addr;
4700
4701		err = avc_has_perm(&selinux_state,
4702				   sksec->sid, sid,
4703				   sksec->sclass, node_perm, &ad);
4704		if (err)
4705			goto out;
4706	}
4707out:
4708	return err;
4709err_af:
4710	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4711	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4712		return -EINVAL;
4713	return -EAFNOSUPPORT;
4714}
4715
4716/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4717 * and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.txt
4718 */
4719static int selinux_socket_connect_helper(struct socket *sock,
4720					 struct sockaddr *address, int addrlen)
4721{
4722	struct sock *sk = sock->sk;
4723	struct sk_security_struct *sksec = sk->sk_security;
4724	int err;
4725
4726	err = sock_has_perm(sk, SOCKET__CONNECT);
4727	if (err)
4728		return err;
4729
4730	/*
4731	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4732	 * for the port.
4733	 */
4734	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4735	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4736	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4737		struct common_audit_data ad;
4738		struct lsm_network_audit net = {0,};
4739		struct sockaddr_in *addr4 = NULL;
4740		struct sockaddr_in6 *addr6 = NULL;
4741		unsigned short snum;
4742		u32 sid, perm;
4743
4744		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4745		 * that validates multiple connect addresses. Because of this
4746		 * need to check address->sa_family as it is possible to have
4747		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4748		 */
4749		switch (address->sa_family) {
4750		case AF_INET:
4751			addr4 = (struct sockaddr_in *)address;
4752			if (addrlen < sizeof(struct sockaddr_in))
4753				return -EINVAL;
4754			snum = ntohs(addr4->sin_port);
4755			break;
4756		case AF_INET6:
4757			addr6 = (struct sockaddr_in6 *)address;
4758			if (addrlen < SIN6_LEN_RFC2133)
4759				return -EINVAL;
4760			snum = ntohs(addr6->sin6_port);
4761			break;
4762		default:
4763			/* Note that SCTP services expect -EINVAL, whereas
4764			 * others expect -EAFNOSUPPORT.
4765			 */
4766			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4767				return -EINVAL;
4768			else
4769				return -EAFNOSUPPORT;
4770		}
4771
4772		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4773		if (err)
4774			return err;
4775
4776		switch (sksec->sclass) {
4777		case SECCLASS_TCP_SOCKET:
4778			perm = TCP_SOCKET__NAME_CONNECT;
4779			break;
4780		case SECCLASS_DCCP_SOCKET:
4781			perm = DCCP_SOCKET__NAME_CONNECT;
4782			break;
4783		case SECCLASS_SCTP_SOCKET:
4784			perm = SCTP_SOCKET__NAME_CONNECT;
4785			break;
4786		}
4787
4788		ad.type = LSM_AUDIT_DATA_NET;
4789		ad.u.net = &net;
4790		ad.u.net->dport = htons(snum);
4791		ad.u.net->family = address->sa_family;
4792		err = avc_has_perm(&selinux_state,
4793				   sksec->sid, sid, sksec->sclass, perm, &ad);
4794		if (err)
4795			return err;
4796	}
4797
4798	return 0;
4799}
4800
4801/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4802static int selinux_socket_connect(struct socket *sock,
4803				  struct sockaddr *address, int addrlen)
4804{
4805	int err;
4806	struct sock *sk = sock->sk;
4807
4808	err = selinux_socket_connect_helper(sock, address, addrlen);
4809	if (err)
4810		return err;
4811
4812	return selinux_netlbl_socket_connect(sk, address);
 
4813}
4814
4815static int selinux_socket_listen(struct socket *sock, int backlog)
4816{
4817	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4818}
4819
4820static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4821{
4822	int err;
4823	struct inode_security_struct *isec;
4824	struct inode_security_struct *newisec;
4825	u16 sclass;
4826	u32 sid;
4827
4828	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4829	if (err)
4830		return err;
4831
4832	isec = inode_security_novalidate(SOCK_INODE(sock));
4833	spin_lock(&isec->lock);
4834	sclass = isec->sclass;
4835	sid = isec->sid;
4836	spin_unlock(&isec->lock);
4837
4838	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4839	newisec->sclass = sclass;
4840	newisec->sid = sid;
4841	newisec->initialized = LABEL_INITIALIZED;
4842
4843	return 0;
4844}
4845
4846static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4847				  int size)
4848{
4849	return sock_has_perm(sock->sk, SOCKET__WRITE);
4850}
4851
4852static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4853				  int size, int flags)
4854{
4855	return sock_has_perm(sock->sk, SOCKET__READ);
4856}
4857
4858static int selinux_socket_getsockname(struct socket *sock)
4859{
4860	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4861}
4862
4863static int selinux_socket_getpeername(struct socket *sock)
4864{
4865	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4866}
4867
4868static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4869{
4870	int err;
4871
4872	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4873	if (err)
4874		return err;
4875
4876	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4877}
4878
4879static int selinux_socket_getsockopt(struct socket *sock, int level,
4880				     int optname)
4881{
4882	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4883}
4884
4885static int selinux_socket_shutdown(struct socket *sock, int how)
4886{
4887	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4888}
4889
4890static int selinux_socket_unix_stream_connect(struct sock *sock,
4891					      struct sock *other,
4892					      struct sock *newsk)
4893{
4894	struct sk_security_struct *sksec_sock = sock->sk_security;
4895	struct sk_security_struct *sksec_other = other->sk_security;
4896	struct sk_security_struct *sksec_new = newsk->sk_security;
4897	struct common_audit_data ad;
4898	struct lsm_network_audit net = {0,};
4899	int err;
4900
4901	ad.type = LSM_AUDIT_DATA_NET;
4902	ad.u.net = &net;
4903	ad.u.net->sk = other;
4904
4905	err = avc_has_perm(&selinux_state,
4906			   sksec_sock->sid, sksec_other->sid,
4907			   sksec_other->sclass,
4908			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4909	if (err)
4910		return err;
4911
4912	/* server child socket */
4913	sksec_new->peer_sid = sksec_sock->sid;
4914	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4915				    sksec_sock->sid, &sksec_new->sid);
4916	if (err)
4917		return err;
4918
4919	/* connecting socket */
4920	sksec_sock->peer_sid = sksec_new->sid;
4921
4922	return 0;
4923}
4924
4925static int selinux_socket_unix_may_send(struct socket *sock,
4926					struct socket *other)
4927{
4928	struct sk_security_struct *ssec = sock->sk->sk_security;
4929	struct sk_security_struct *osec = other->sk->sk_security;
4930	struct common_audit_data ad;
4931	struct lsm_network_audit net = {0,};
4932
4933	ad.type = LSM_AUDIT_DATA_NET;
4934	ad.u.net = &net;
4935	ad.u.net->sk = other->sk;
4936
4937	return avc_has_perm(&selinux_state,
4938			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4939			    &ad);
4940}
4941
4942static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4943				    char *addrp, u16 family, u32 peer_sid,
4944				    struct common_audit_data *ad)
4945{
4946	int err;
4947	u32 if_sid;
4948	u32 node_sid;
4949
4950	err = sel_netif_sid(ns, ifindex, &if_sid);
4951	if (err)
4952		return err;
4953	err = avc_has_perm(&selinux_state,
4954			   peer_sid, if_sid,
4955			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4956	if (err)
4957		return err;
4958
4959	err = sel_netnode_sid(addrp, family, &node_sid);
4960	if (err)
4961		return err;
4962	return avc_has_perm(&selinux_state,
4963			    peer_sid, node_sid,
4964			    SECCLASS_NODE, NODE__RECVFROM, ad);
4965}
4966
4967static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4968				       u16 family)
4969{
4970	int err = 0;
4971	struct sk_security_struct *sksec = sk->sk_security;
4972	u32 sk_sid = sksec->sid;
4973	struct common_audit_data ad;
4974	struct lsm_network_audit net = {0,};
4975	char *addrp;
4976
4977	ad.type = LSM_AUDIT_DATA_NET;
4978	ad.u.net = &net;
4979	ad.u.net->netif = skb->skb_iif;
4980	ad.u.net->family = family;
4981	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4982	if (err)
4983		return err;
4984
4985	if (selinux_secmark_enabled()) {
4986		err = avc_has_perm(&selinux_state,
4987				   sk_sid, skb->secmark, SECCLASS_PACKET,
4988				   PACKET__RECV, &ad);
4989		if (err)
4990			return err;
4991	}
4992
4993	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4994	if (err)
4995		return err;
4996	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4997
4998	return err;
4999}
5000
5001static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5002{
5003	int err;
5004	struct sk_security_struct *sksec = sk->sk_security;
5005	u16 family = sk->sk_family;
5006	u32 sk_sid = sksec->sid;
5007	struct common_audit_data ad;
5008	struct lsm_network_audit net = {0,};
5009	char *addrp;
5010	u8 secmark_active;
5011	u8 peerlbl_active;
5012
5013	if (family != PF_INET && family != PF_INET6)
5014		return 0;
5015
5016	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5017	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5018		family = PF_INET;
5019
5020	/* If any sort of compatibility mode is enabled then handoff processing
5021	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5022	 * special handling.  We do this in an attempt to keep this function
5023	 * as fast and as clean as possible. */
5024	if (!selinux_policycap_netpeer())
5025		return selinux_sock_rcv_skb_compat(sk, skb, family);
5026
5027	secmark_active = selinux_secmark_enabled();
5028	peerlbl_active = selinux_peerlbl_enabled();
5029	if (!secmark_active && !peerlbl_active)
5030		return 0;
5031
5032	ad.type = LSM_AUDIT_DATA_NET;
5033	ad.u.net = &net;
5034	ad.u.net->netif = skb->skb_iif;
5035	ad.u.net->family = family;
5036	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5037	if (err)
5038		return err;
5039
5040	if (peerlbl_active) {
5041		u32 peer_sid;
5042
5043		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5044		if (err)
5045			return err;
5046		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5047					       addrp, family, peer_sid, &ad);
5048		if (err) {
5049			selinux_netlbl_err(skb, family, err, 0);
5050			return err;
5051		}
5052		err = avc_has_perm(&selinux_state,
5053				   sk_sid, peer_sid, SECCLASS_PEER,
5054				   PEER__RECV, &ad);
5055		if (err) {
5056			selinux_netlbl_err(skb, family, err, 0);
5057			return err;
5058		}
5059	}
5060
5061	if (secmark_active) {
5062		err = avc_has_perm(&selinux_state,
5063				   sk_sid, skb->secmark, SECCLASS_PACKET,
5064				   PACKET__RECV, &ad);
5065		if (err)
5066			return err;
5067	}
5068
5069	return err;
5070}
5071
5072static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5073					    int __user *optlen, unsigned len)
5074{
5075	int err = 0;
5076	char *scontext;
5077	u32 scontext_len;
5078	struct sk_security_struct *sksec = sock->sk->sk_security;
5079	u32 peer_sid = SECSID_NULL;
5080
5081	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5082	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5083	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5084		peer_sid = sksec->peer_sid;
5085	if (peer_sid == SECSID_NULL)
5086		return -ENOPROTOOPT;
5087
5088	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5089				      &scontext_len);
5090	if (err)
5091		return err;
5092
5093	if (scontext_len > len) {
5094		err = -ERANGE;
5095		goto out_len;
5096	}
5097
5098	if (copy_to_user(optval, scontext, scontext_len))
5099		err = -EFAULT;
5100
5101out_len:
5102	if (put_user(scontext_len, optlen))
5103		err = -EFAULT;
5104	kfree(scontext);
5105	return err;
5106}
5107
5108static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5109{
5110	u32 peer_secid = SECSID_NULL;
5111	u16 family;
5112	struct inode_security_struct *isec;
5113
5114	if (skb && skb->protocol == htons(ETH_P_IP))
5115		family = PF_INET;
5116	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5117		family = PF_INET6;
5118	else if (sock)
5119		family = sock->sk->sk_family;
5120	else
5121		goto out;
5122
5123	if (sock && family == PF_UNIX) {
5124		isec = inode_security_novalidate(SOCK_INODE(sock));
5125		peer_secid = isec->sid;
5126	} else if (skb)
5127		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5128
5129out:
5130	*secid = peer_secid;
5131	if (peer_secid == SECSID_NULL)
5132		return -EINVAL;
5133	return 0;
5134}
5135
5136static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5137{
5138	struct sk_security_struct *sksec;
5139
5140	sksec = kzalloc(sizeof(*sksec), priority);
5141	if (!sksec)
5142		return -ENOMEM;
5143
5144	sksec->peer_sid = SECINITSID_UNLABELED;
5145	sksec->sid = SECINITSID_UNLABELED;
5146	sksec->sclass = SECCLASS_SOCKET;
5147	selinux_netlbl_sk_security_reset(sksec);
5148	sk->sk_security = sksec;
5149
5150	return 0;
5151}
5152
5153static void selinux_sk_free_security(struct sock *sk)
5154{
5155	struct sk_security_struct *sksec = sk->sk_security;
5156
5157	sk->sk_security = NULL;
5158	selinux_netlbl_sk_security_free(sksec);
5159	kfree(sksec);
5160}
5161
5162static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5163{
5164	struct sk_security_struct *sksec = sk->sk_security;
5165	struct sk_security_struct *newsksec = newsk->sk_security;
5166
5167	newsksec->sid = sksec->sid;
5168	newsksec->peer_sid = sksec->peer_sid;
5169	newsksec->sclass = sksec->sclass;
5170
5171	selinux_netlbl_sk_security_reset(newsksec);
5172}
5173
5174static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5175{
5176	if (!sk)
5177		*secid = SECINITSID_ANY_SOCKET;
5178	else {
5179		struct sk_security_struct *sksec = sk->sk_security;
5180
5181		*secid = sksec->sid;
5182	}
5183}
5184
5185static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5186{
5187	struct inode_security_struct *isec =
5188		inode_security_novalidate(SOCK_INODE(parent));
5189	struct sk_security_struct *sksec = sk->sk_security;
5190
5191	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5192	    sk->sk_family == PF_UNIX)
5193		isec->sid = sksec->sid;
5194	sksec->sclass = isec->sclass;
5195}
5196
5197/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5198 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5199 * already present).
5200 */
5201static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5202				      struct sk_buff *skb)
5203{
5204	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5205	struct common_audit_data ad;
5206	struct lsm_network_audit net = {0,};
5207	u8 peerlbl_active;
5208	u32 peer_sid = SECINITSID_UNLABELED;
5209	u32 conn_sid;
5210	int err = 0;
5211
5212	if (!selinux_policycap_extsockclass())
5213		return 0;
5214
5215	peerlbl_active = selinux_peerlbl_enabled();
5216
5217	if (peerlbl_active) {
5218		/* This will return peer_sid = SECSID_NULL if there are
5219		 * no peer labels, see security_net_peersid_resolve().
5220		 */
5221		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5222					      &peer_sid);
5223		if (err)
5224			return err;
5225
5226		if (peer_sid == SECSID_NULL)
5227			peer_sid = SECINITSID_UNLABELED;
5228	}
5229
5230	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5231		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5232
5233		/* Here as first association on socket. As the peer SID
5234		 * was allowed by peer recv (and the netif/node checks),
5235		 * then it is approved by policy and used as the primary
5236		 * peer SID for getpeercon(3).
5237		 */
5238		sksec->peer_sid = peer_sid;
5239	} else if  (sksec->peer_sid != peer_sid) {
5240		/* Other association peer SIDs are checked to enforce
5241		 * consistency among the peer SIDs.
5242		 */
5243		ad.type = LSM_AUDIT_DATA_NET;
5244		ad.u.net = &net;
5245		ad.u.net->sk = ep->base.sk;
5246		err = avc_has_perm(&selinux_state,
5247				   sksec->peer_sid, peer_sid, sksec->sclass,
5248				   SCTP_SOCKET__ASSOCIATION, &ad);
5249		if (err)
5250			return err;
5251	}
5252
5253	/* Compute the MLS component for the connection and store
5254	 * the information in ep. This will be used by SCTP TCP type
5255	 * sockets and peeled off connections as they cause a new
5256	 * socket to be generated. selinux_sctp_sk_clone() will then
5257	 * plug this into the new socket.
5258	 */
5259	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5260	if (err)
5261		return err;
5262
5263	ep->secid = conn_sid;
5264	ep->peer_secid = peer_sid;
5265
5266	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5267	return selinux_netlbl_sctp_assoc_request(ep, skb);
5268}
5269
5270/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5271 * based on their @optname.
5272 */
5273static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5274				     struct sockaddr *address,
5275				     int addrlen)
5276{
5277	int len, err = 0, walk_size = 0;
5278	void *addr_buf;
5279	struct sockaddr *addr;
5280	struct socket *sock;
5281
5282	if (!selinux_policycap_extsockclass())
5283		return 0;
5284
5285	/* Process one or more addresses that may be IPv4 or IPv6 */
5286	sock = sk->sk_socket;
5287	addr_buf = address;
5288
5289	while (walk_size < addrlen) {
5290		addr = addr_buf;
5291		switch (addr->sa_family) {
5292		case AF_UNSPEC:
5293		case AF_INET:
5294			len = sizeof(struct sockaddr_in);
5295			break;
5296		case AF_INET6:
5297			len = sizeof(struct sockaddr_in6);
5298			break;
5299		default:
5300			return -EINVAL;
5301		}
5302
5303		err = -EINVAL;
5304		switch (optname) {
5305		/* Bind checks */
5306		case SCTP_PRIMARY_ADDR:
5307		case SCTP_SET_PEER_PRIMARY_ADDR:
5308		case SCTP_SOCKOPT_BINDX_ADD:
5309			err = selinux_socket_bind(sock, addr, len);
5310			break;
5311		/* Connect checks */
5312		case SCTP_SOCKOPT_CONNECTX:
5313		case SCTP_PARAM_SET_PRIMARY:
5314		case SCTP_PARAM_ADD_IP:
5315		case SCTP_SENDMSG_CONNECT:
5316			err = selinux_socket_connect_helper(sock, addr, len);
5317			if (err)
5318				return err;
5319
5320			/* As selinux_sctp_bind_connect() is called by the
5321			 * SCTP protocol layer, the socket is already locked,
5322			 * therefore selinux_netlbl_socket_connect_locked() is
5323			 * is called here. The situations handled are:
5324			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5325			 * whenever a new IP address is added or when a new
5326			 * primary address is selected.
5327			 * Note that an SCTP connect(2) call happens before
5328			 * the SCTP protocol layer and is handled via
5329			 * selinux_socket_connect().
5330			 */
5331			err = selinux_netlbl_socket_connect_locked(sk, addr);
5332			break;
5333		}
5334
5335		if (err)
5336			return err;
5337
5338		addr_buf += len;
5339		walk_size += len;
5340	}
5341
5342	return 0;
5343}
5344
5345/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5346static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5347				  struct sock *newsk)
5348{
5349	struct sk_security_struct *sksec = sk->sk_security;
5350	struct sk_security_struct *newsksec = newsk->sk_security;
5351
5352	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5353	 * the non-sctp clone version.
5354	 */
5355	if (!selinux_policycap_extsockclass())
5356		return selinux_sk_clone_security(sk, newsk);
5357
5358	newsksec->sid = ep->secid;
5359	newsksec->peer_sid = ep->peer_secid;
5360	newsksec->sclass = sksec->sclass;
5361	selinux_netlbl_sctp_sk_clone(sk, newsk);
5362}
5363
5364static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5365				     struct request_sock *req)
5366{
5367	struct sk_security_struct *sksec = sk->sk_security;
5368	int err;
5369	u16 family = req->rsk_ops->family;
5370	u32 connsid;
5371	u32 peersid;
5372
5373	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5374	if (err)
5375		return err;
5376	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5377	if (err)
5378		return err;
5379	req->secid = connsid;
5380	req->peer_secid = peersid;
5381
5382	return selinux_netlbl_inet_conn_request(req, family);
5383}
5384
5385static void selinux_inet_csk_clone(struct sock *newsk,
5386				   const struct request_sock *req)
5387{
5388	struct sk_security_struct *newsksec = newsk->sk_security;
5389
5390	newsksec->sid = req->secid;
5391	newsksec->peer_sid = req->peer_secid;
5392	/* NOTE: Ideally, we should also get the isec->sid for the
5393	   new socket in sync, but we don't have the isec available yet.
5394	   So we will wait until sock_graft to do it, by which
5395	   time it will have been created and available. */
5396
5397	/* We don't need to take any sort of lock here as we are the only
5398	 * thread with access to newsksec */
5399	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5400}
5401
5402static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5403{
5404	u16 family = sk->sk_family;
5405	struct sk_security_struct *sksec = sk->sk_security;
5406
5407	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5408	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5409		family = PF_INET;
5410
5411	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5412}
5413
5414static int selinux_secmark_relabel_packet(u32 sid)
5415{
5416	const struct task_security_struct *__tsec;
5417	u32 tsid;
5418
5419	__tsec = current_security();
5420	tsid = __tsec->sid;
5421
5422	return avc_has_perm(&selinux_state,
5423			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5424			    NULL);
5425}
5426
5427static void selinux_secmark_refcount_inc(void)
5428{
5429	atomic_inc(&selinux_secmark_refcount);
5430}
5431
5432static void selinux_secmark_refcount_dec(void)
5433{
5434	atomic_dec(&selinux_secmark_refcount);
5435}
5436
5437static void selinux_req_classify_flow(const struct request_sock *req,
5438				      struct flowi *fl)
5439{
5440	fl->flowi_secid = req->secid;
5441}
5442
5443static int selinux_tun_dev_alloc_security(void **security)
5444{
5445	struct tun_security_struct *tunsec;
5446
5447	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5448	if (!tunsec)
5449		return -ENOMEM;
5450	tunsec->sid = current_sid();
5451
5452	*security = tunsec;
5453	return 0;
5454}
5455
5456static void selinux_tun_dev_free_security(void *security)
5457{
5458	kfree(security);
5459}
5460
5461static int selinux_tun_dev_create(void)
5462{
5463	u32 sid = current_sid();
5464
5465	/* we aren't taking into account the "sockcreate" SID since the socket
5466	 * that is being created here is not a socket in the traditional sense,
5467	 * instead it is a private sock, accessible only to the kernel, and
5468	 * representing a wide range of network traffic spanning multiple
5469	 * connections unlike traditional sockets - check the TUN driver to
5470	 * get a better understanding of why this socket is special */
5471
5472	return avc_has_perm(&selinux_state,
5473			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5474			    NULL);
5475}
5476
5477static int selinux_tun_dev_attach_queue(void *security)
5478{
5479	struct tun_security_struct *tunsec = security;
5480
5481	return avc_has_perm(&selinux_state,
5482			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5483			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5484}
5485
5486static int selinux_tun_dev_attach(struct sock *sk, void *security)
5487{
5488	struct tun_security_struct *tunsec = security;
5489	struct sk_security_struct *sksec = sk->sk_security;
5490
5491	/* we don't currently perform any NetLabel based labeling here and it
5492	 * isn't clear that we would want to do so anyway; while we could apply
5493	 * labeling without the support of the TUN user the resulting labeled
5494	 * traffic from the other end of the connection would almost certainly
5495	 * cause confusion to the TUN user that had no idea network labeling
5496	 * protocols were being used */
5497
5498	sksec->sid = tunsec->sid;
5499	sksec->sclass = SECCLASS_TUN_SOCKET;
5500
5501	return 0;
5502}
5503
5504static int selinux_tun_dev_open(void *security)
5505{
5506	struct tun_security_struct *tunsec = security;
5507	u32 sid = current_sid();
5508	int err;
5509
5510	err = avc_has_perm(&selinux_state,
5511			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5512			   TUN_SOCKET__RELABELFROM, NULL);
5513	if (err)
5514		return err;
5515	err = avc_has_perm(&selinux_state,
5516			   sid, sid, SECCLASS_TUN_SOCKET,
5517			   TUN_SOCKET__RELABELTO, NULL);
5518	if (err)
5519		return err;
5520	tunsec->sid = sid;
5521
5522	return 0;
5523}
5524
5525static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5526{
5527	int err = 0;
5528	u32 perm;
5529	struct nlmsghdr *nlh;
5530	struct sk_security_struct *sksec = sk->sk_security;
5531
5532	if (skb->len < NLMSG_HDRLEN) {
5533		err = -EINVAL;
5534		goto out;
5535	}
5536	nlh = nlmsg_hdr(skb);
5537
5538	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5539	if (err) {
5540		if (err == -EINVAL) {
5541			pr_warn_ratelimited("SELinux: unrecognized netlink"
5542			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5543			       " pig=%d comm=%s\n",
5544			       sk->sk_protocol, nlh->nlmsg_type,
5545			       secclass_map[sksec->sclass - 1].name,
5546			       task_pid_nr(current), current->comm);
5547			if (!enforcing_enabled(&selinux_state) ||
5548			    security_get_allow_unknown(&selinux_state))
5549				err = 0;
5550		}
5551
5552		/* Ignore */
5553		if (err == -ENOENT)
5554			err = 0;
5555		goto out;
5556	}
5557
5558	err = sock_has_perm(sk, perm);
5559out:
5560	return err;
5561}
5562
5563#ifdef CONFIG_NETFILTER
5564
5565static unsigned int selinux_ip_forward(struct sk_buff *skb,
5566				       const struct net_device *indev,
5567				       u16 family)
5568{
5569	int err;
5570	char *addrp;
5571	u32 peer_sid;
5572	struct common_audit_data ad;
5573	struct lsm_network_audit net = {0,};
5574	u8 secmark_active;
5575	u8 netlbl_active;
5576	u8 peerlbl_active;
5577
5578	if (!selinux_policycap_netpeer())
5579		return NF_ACCEPT;
5580
5581	secmark_active = selinux_secmark_enabled();
5582	netlbl_active = netlbl_enabled();
5583	peerlbl_active = selinux_peerlbl_enabled();
5584	if (!secmark_active && !peerlbl_active)
5585		return NF_ACCEPT;
5586
5587	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5588		return NF_DROP;
5589
5590	ad.type = LSM_AUDIT_DATA_NET;
5591	ad.u.net = &net;
5592	ad.u.net->netif = indev->ifindex;
5593	ad.u.net->family = family;
5594	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5595		return NF_DROP;
5596
5597	if (peerlbl_active) {
5598		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5599					       addrp, family, peer_sid, &ad);
5600		if (err) {
5601			selinux_netlbl_err(skb, family, err, 1);
5602			return NF_DROP;
5603		}
5604	}
5605
5606	if (secmark_active)
5607		if (avc_has_perm(&selinux_state,
5608				 peer_sid, skb->secmark,
5609				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5610			return NF_DROP;
5611
5612	if (netlbl_active)
5613		/* we do this in the FORWARD path and not the POST_ROUTING
5614		 * path because we want to make sure we apply the necessary
5615		 * labeling before IPsec is applied so we can leverage AH
5616		 * protection */
5617		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5618			return NF_DROP;
5619
5620	return NF_ACCEPT;
5621}
5622
5623static unsigned int selinux_ipv4_forward(void *priv,
5624					 struct sk_buff *skb,
5625					 const struct nf_hook_state *state)
5626{
5627	return selinux_ip_forward(skb, state->in, PF_INET);
5628}
5629
5630#if IS_ENABLED(CONFIG_IPV6)
5631static unsigned int selinux_ipv6_forward(void *priv,
5632					 struct sk_buff *skb,
5633					 const struct nf_hook_state *state)
5634{
5635	return selinux_ip_forward(skb, state->in, PF_INET6);
5636}
5637#endif	/* IPV6 */
5638
5639static unsigned int selinux_ip_output(struct sk_buff *skb,
5640				      u16 family)
5641{
5642	struct sock *sk;
5643	u32 sid;
5644
5645	if (!netlbl_enabled())
5646		return NF_ACCEPT;
5647
5648	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5649	 * because we want to make sure we apply the necessary labeling
5650	 * before IPsec is applied so we can leverage AH protection */
5651	sk = skb->sk;
5652	if (sk) {
5653		struct sk_security_struct *sksec;
5654
5655		if (sk_listener(sk))
5656			/* if the socket is the listening state then this
5657			 * packet is a SYN-ACK packet which means it needs to
5658			 * be labeled based on the connection/request_sock and
5659			 * not the parent socket.  unfortunately, we can't
5660			 * lookup the request_sock yet as it isn't queued on
5661			 * the parent socket until after the SYN-ACK is sent.
5662			 * the "solution" is to simply pass the packet as-is
5663			 * as any IP option based labeling should be copied
5664			 * from the initial connection request (in the IP
5665			 * layer).  it is far from ideal, but until we get a
5666			 * security label in the packet itself this is the
5667			 * best we can do. */
5668			return NF_ACCEPT;
5669
5670		/* standard practice, label using the parent socket */
5671		sksec = sk->sk_security;
5672		sid = sksec->sid;
5673	} else
5674		sid = SECINITSID_KERNEL;
5675	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5676		return NF_DROP;
5677
5678	return NF_ACCEPT;
5679}
5680
5681static unsigned int selinux_ipv4_output(void *priv,
5682					struct sk_buff *skb,
5683					const struct nf_hook_state *state)
5684{
5685	return selinux_ip_output(skb, PF_INET);
5686}
5687
5688#if IS_ENABLED(CONFIG_IPV6)
5689static unsigned int selinux_ipv6_output(void *priv,
5690					struct sk_buff *skb,
5691					const struct nf_hook_state *state)
5692{
5693	return selinux_ip_output(skb, PF_INET6);
5694}
5695#endif	/* IPV6 */
5696
5697static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5698						int ifindex,
5699						u16 family)
5700{
5701	struct sock *sk = skb_to_full_sk(skb);
5702	struct sk_security_struct *sksec;
5703	struct common_audit_data ad;
5704	struct lsm_network_audit net = {0,};
5705	char *addrp;
5706	u8 proto;
5707
5708	if (sk == NULL)
5709		return NF_ACCEPT;
5710	sksec = sk->sk_security;
5711
5712	ad.type = LSM_AUDIT_DATA_NET;
5713	ad.u.net = &net;
5714	ad.u.net->netif = ifindex;
5715	ad.u.net->family = family;
5716	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5717		return NF_DROP;
5718
5719	if (selinux_secmark_enabled())
5720		if (avc_has_perm(&selinux_state,
5721				 sksec->sid, skb->secmark,
5722				 SECCLASS_PACKET, PACKET__SEND, &ad))
5723			return NF_DROP_ERR(-ECONNREFUSED);
5724
5725	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5726		return NF_DROP_ERR(-ECONNREFUSED);
5727
5728	return NF_ACCEPT;
5729}
5730
5731static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5732					 const struct net_device *outdev,
5733					 u16 family)
5734{
5735	u32 secmark_perm;
5736	u32 peer_sid;
5737	int ifindex = outdev->ifindex;
5738	struct sock *sk;
5739	struct common_audit_data ad;
5740	struct lsm_network_audit net = {0,};
5741	char *addrp;
5742	u8 secmark_active;
5743	u8 peerlbl_active;
5744
5745	/* If any sort of compatibility mode is enabled then handoff processing
5746	 * to the selinux_ip_postroute_compat() function to deal with the
5747	 * special handling.  We do this in an attempt to keep this function
5748	 * as fast and as clean as possible. */
5749	if (!selinux_policycap_netpeer())
5750		return selinux_ip_postroute_compat(skb, ifindex, family);
5751
5752	secmark_active = selinux_secmark_enabled();
5753	peerlbl_active = selinux_peerlbl_enabled();
5754	if (!secmark_active && !peerlbl_active)
5755		return NF_ACCEPT;
5756
5757	sk = skb_to_full_sk(skb);
5758
5759#ifdef CONFIG_XFRM
5760	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5761	 * packet transformation so allow the packet to pass without any checks
5762	 * since we'll have another chance to perform access control checks
5763	 * when the packet is on it's final way out.
5764	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5765	 *       is NULL, in this case go ahead and apply access control.
5766	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5767	 *       TCP listening state we cannot wait until the XFRM processing
5768	 *       is done as we will miss out on the SA label if we do;
5769	 *       unfortunately, this means more work, but it is only once per
5770	 *       connection. */
5771	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5772	    !(sk && sk_listener(sk)))
5773		return NF_ACCEPT;
5774#endif
5775
5776	if (sk == NULL) {
5777		/* Without an associated socket the packet is either coming
5778		 * from the kernel or it is being forwarded; check the packet
5779		 * to determine which and if the packet is being forwarded
5780		 * query the packet directly to determine the security label. */
5781		if (skb->skb_iif) {
5782			secmark_perm = PACKET__FORWARD_OUT;
5783			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5784				return NF_DROP;
5785		} else {
5786			secmark_perm = PACKET__SEND;
5787			peer_sid = SECINITSID_KERNEL;
5788		}
5789	} else if (sk_listener(sk)) {
5790		/* Locally generated packet but the associated socket is in the
5791		 * listening state which means this is a SYN-ACK packet.  In
5792		 * this particular case the correct security label is assigned
5793		 * to the connection/request_sock but unfortunately we can't
5794		 * query the request_sock as it isn't queued on the parent
5795		 * socket until after the SYN-ACK packet is sent; the only
5796		 * viable choice is to regenerate the label like we do in
5797		 * selinux_inet_conn_request().  See also selinux_ip_output()
5798		 * for similar problems. */
5799		u32 skb_sid;
5800		struct sk_security_struct *sksec;
5801
5802		sksec = sk->sk_security;
5803		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5804			return NF_DROP;
5805		/* At this point, if the returned skb peerlbl is SECSID_NULL
5806		 * and the packet has been through at least one XFRM
5807		 * transformation then we must be dealing with the "final"
5808		 * form of labeled IPsec packet; since we've already applied
5809		 * all of our access controls on this packet we can safely
5810		 * pass the packet. */
5811		if (skb_sid == SECSID_NULL) {
5812			switch (family) {
5813			case PF_INET:
5814				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5815					return NF_ACCEPT;
5816				break;
5817			case PF_INET6:
5818				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5819					return NF_ACCEPT;
5820				break;
5821			default:
5822				return NF_DROP_ERR(-ECONNREFUSED);
5823			}
5824		}
5825		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5826			return NF_DROP;
5827		secmark_perm = PACKET__SEND;
5828	} else {
5829		/* Locally generated packet, fetch the security label from the
5830		 * associated socket. */
5831		struct sk_security_struct *sksec = sk->sk_security;
5832		peer_sid = sksec->sid;
5833		secmark_perm = PACKET__SEND;
5834	}
5835
5836	ad.type = LSM_AUDIT_DATA_NET;
5837	ad.u.net = &net;
5838	ad.u.net->netif = ifindex;
5839	ad.u.net->family = family;
5840	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5841		return NF_DROP;
5842
5843	if (secmark_active)
5844		if (avc_has_perm(&selinux_state,
5845				 peer_sid, skb->secmark,
5846				 SECCLASS_PACKET, secmark_perm, &ad))
5847			return NF_DROP_ERR(-ECONNREFUSED);
5848
5849	if (peerlbl_active) {
5850		u32 if_sid;
5851		u32 node_sid;
5852
5853		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5854			return NF_DROP;
5855		if (avc_has_perm(&selinux_state,
5856				 peer_sid, if_sid,
5857				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5858			return NF_DROP_ERR(-ECONNREFUSED);
5859
5860		if (sel_netnode_sid(addrp, family, &node_sid))
5861			return NF_DROP;
5862		if (avc_has_perm(&selinux_state,
5863				 peer_sid, node_sid,
5864				 SECCLASS_NODE, NODE__SENDTO, &ad))
5865			return NF_DROP_ERR(-ECONNREFUSED);
5866	}
5867
5868	return NF_ACCEPT;
5869}
5870
5871static unsigned int selinux_ipv4_postroute(void *priv,
5872					   struct sk_buff *skb,
5873					   const struct nf_hook_state *state)
5874{
5875	return selinux_ip_postroute(skb, state->out, PF_INET);
5876}
5877
5878#if IS_ENABLED(CONFIG_IPV6)
5879static unsigned int selinux_ipv6_postroute(void *priv,
5880					   struct sk_buff *skb,
5881					   const struct nf_hook_state *state)
5882{
5883	return selinux_ip_postroute(skb, state->out, PF_INET6);
5884}
5885#endif	/* IPV6 */
5886
5887#endif	/* CONFIG_NETFILTER */
5888
5889static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5890{
5891	return selinux_nlmsg_perm(sk, skb);
5892}
5893
5894static int ipc_alloc_security(struct kern_ipc_perm *perm,
 
5895			      u16 sclass)
5896{
5897	struct ipc_security_struct *isec;
 
5898
5899	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5900	if (!isec)
5901		return -ENOMEM;
5902
 
5903	isec->sclass = sclass;
5904	isec->sid = current_sid();
5905	perm->security = isec;
5906
5907	return 0;
5908}
5909
5910static void ipc_free_security(struct kern_ipc_perm *perm)
5911{
5912	struct ipc_security_struct *isec = perm->security;
5913	perm->security = NULL;
5914	kfree(isec);
5915}
5916
5917static int msg_msg_alloc_security(struct msg_msg *msg)
5918{
5919	struct msg_security_struct *msec;
5920
5921	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5922	if (!msec)
5923		return -ENOMEM;
5924
5925	msec->sid = SECINITSID_UNLABELED;
5926	msg->security = msec;
5927
5928	return 0;
5929}
5930
5931static void msg_msg_free_security(struct msg_msg *msg)
5932{
5933	struct msg_security_struct *msec = msg->security;
5934
5935	msg->security = NULL;
5936	kfree(msec);
5937}
5938
5939static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5940			u32 perms)
5941{
5942	struct ipc_security_struct *isec;
5943	struct common_audit_data ad;
5944	u32 sid = current_sid();
5945
5946	isec = ipc_perms->security;
5947
5948	ad.type = LSM_AUDIT_DATA_IPC;
5949	ad.u.ipc_id = ipc_perms->key;
5950
5951	return avc_has_perm(&selinux_state,
5952			    sid, isec->sid, isec->sclass, perms, &ad);
5953}
5954
5955static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5956{
5957	return msg_msg_alloc_security(msg);
5958}
5959
5960static void selinux_msg_msg_free_security(struct msg_msg *msg)
5961{
5962	msg_msg_free_security(msg);
5963}
5964
5965/* message queue security operations */
5966static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5967{
5968	struct ipc_security_struct *isec;
5969	struct common_audit_data ad;
5970	u32 sid = current_sid();
5971	int rc;
5972
5973	rc = ipc_alloc_security(msq, SECCLASS_MSGQ);
5974	if (rc)
5975		return rc;
5976
5977	isec = msq->security;
5978
5979	ad.type = LSM_AUDIT_DATA_IPC;
5980	ad.u.ipc_id = msq->key;
5981
5982	rc = avc_has_perm(&selinux_state,
5983			  sid, isec->sid, SECCLASS_MSGQ,
5984			  MSGQ__CREATE, &ad);
5985	if (rc) {
5986		ipc_free_security(msq);
5987		return rc;
5988	}
5989	return 0;
5990}
5991
5992static void selinux_msg_queue_free_security(struct kern_ipc_perm *msq)
5993{
5994	ipc_free_security(msq);
5995}
5996
5997static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5998{
5999	struct ipc_security_struct *isec;
6000	struct common_audit_data ad;
6001	u32 sid = current_sid();
6002
6003	isec = msq->security;
6004
6005	ad.type = LSM_AUDIT_DATA_IPC;
6006	ad.u.ipc_id = msq->key;
6007
6008	return avc_has_perm(&selinux_state,
6009			    sid, isec->sid, SECCLASS_MSGQ,
6010			    MSGQ__ASSOCIATE, &ad);
6011}
6012
6013static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6014{
6015	int err;
6016	int perms;
6017
6018	switch (cmd) {
6019	case IPC_INFO:
6020	case MSG_INFO:
6021		/* No specific object, just general system-wide information. */
6022		return avc_has_perm(&selinux_state,
6023				    current_sid(), SECINITSID_KERNEL,
6024				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6025	case IPC_STAT:
6026	case MSG_STAT:
6027	case MSG_STAT_ANY:
6028		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6029		break;
6030	case IPC_SET:
6031		perms = MSGQ__SETATTR;
6032		break;
6033	case IPC_RMID:
6034		perms = MSGQ__DESTROY;
6035		break;
6036	default:
6037		return 0;
6038	}
6039
6040	err = ipc_has_perm(msq, perms);
6041	return err;
6042}
6043
6044static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6045{
6046	struct ipc_security_struct *isec;
6047	struct msg_security_struct *msec;
6048	struct common_audit_data ad;
6049	u32 sid = current_sid();
6050	int rc;
6051
6052	isec = msq->security;
6053	msec = msg->security;
6054
6055	/*
6056	 * First time through, need to assign label to the message
6057	 */
6058	if (msec->sid == SECINITSID_UNLABELED) {
6059		/*
6060		 * Compute new sid based on current process and
6061		 * message queue this message will be stored in
6062		 */
6063		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6064					     SECCLASS_MSG, NULL, &msec->sid);
6065		if (rc)
6066			return rc;
6067	}
6068
6069	ad.type = LSM_AUDIT_DATA_IPC;
6070	ad.u.ipc_id = msq->key;
6071
6072	/* Can this process write to the queue? */
6073	rc = avc_has_perm(&selinux_state,
6074			  sid, isec->sid, SECCLASS_MSGQ,
6075			  MSGQ__WRITE, &ad);
6076	if (!rc)
6077		/* Can this process send the message */
6078		rc = avc_has_perm(&selinux_state,
6079				  sid, msec->sid, SECCLASS_MSG,
6080				  MSG__SEND, &ad);
6081	if (!rc)
6082		/* Can the message be put in the queue? */
6083		rc = avc_has_perm(&selinux_state,
6084				  msec->sid, isec->sid, SECCLASS_MSGQ,
6085				  MSGQ__ENQUEUE, &ad);
6086
6087	return rc;
6088}
6089
6090static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6091				    struct task_struct *target,
6092				    long type, int mode)
6093{
6094	struct ipc_security_struct *isec;
6095	struct msg_security_struct *msec;
6096	struct common_audit_data ad;
6097	u32 sid = task_sid(target);
6098	int rc;
6099
6100	isec = msq->security;
6101	msec = msg->security;
6102
6103	ad.type = LSM_AUDIT_DATA_IPC;
6104	ad.u.ipc_id = msq->key;
6105
6106	rc = avc_has_perm(&selinux_state,
6107			  sid, isec->sid,
6108			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6109	if (!rc)
6110		rc = avc_has_perm(&selinux_state,
6111				  sid, msec->sid,
6112				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6113	return rc;
6114}
6115
6116/* Shared Memory security operations */
6117static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6118{
6119	struct ipc_security_struct *isec;
6120	struct common_audit_data ad;
6121	u32 sid = current_sid();
6122	int rc;
6123
6124	rc = ipc_alloc_security(shp, SECCLASS_SHM);
6125	if (rc)
6126		return rc;
6127
6128	isec = shp->security;
6129
6130	ad.type = LSM_AUDIT_DATA_IPC;
6131	ad.u.ipc_id = shp->key;
6132
6133	rc = avc_has_perm(&selinux_state,
6134			  sid, isec->sid, SECCLASS_SHM,
6135			  SHM__CREATE, &ad);
6136	if (rc) {
6137		ipc_free_security(shp);
6138		return rc;
6139	}
6140	return 0;
6141}
6142
6143static void selinux_shm_free_security(struct kern_ipc_perm *shp)
6144{
6145	ipc_free_security(shp);
6146}
6147
6148static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6149{
6150	struct ipc_security_struct *isec;
6151	struct common_audit_data ad;
6152	u32 sid = current_sid();
6153
6154	isec = shp->security;
6155
6156	ad.type = LSM_AUDIT_DATA_IPC;
6157	ad.u.ipc_id = shp->key;
6158
6159	return avc_has_perm(&selinux_state,
6160			    sid, isec->sid, SECCLASS_SHM,
6161			    SHM__ASSOCIATE, &ad);
6162}
6163
6164/* Note, at this point, shp is locked down */
6165static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6166{
6167	int perms;
6168	int err;
6169
6170	switch (cmd) {
6171	case IPC_INFO:
6172	case SHM_INFO:
6173		/* No specific object, just general system-wide information. */
6174		return avc_has_perm(&selinux_state,
6175				    current_sid(), SECINITSID_KERNEL,
6176				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6177	case IPC_STAT:
6178	case SHM_STAT:
6179	case SHM_STAT_ANY:
6180		perms = SHM__GETATTR | SHM__ASSOCIATE;
6181		break;
6182	case IPC_SET:
6183		perms = SHM__SETATTR;
6184		break;
6185	case SHM_LOCK:
6186	case SHM_UNLOCK:
6187		perms = SHM__LOCK;
6188		break;
6189	case IPC_RMID:
6190		perms = SHM__DESTROY;
6191		break;
6192	default:
6193		return 0;
6194	}
6195
6196	err = ipc_has_perm(shp, perms);
6197	return err;
6198}
6199
6200static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6201			     char __user *shmaddr, int shmflg)
6202{
6203	u32 perms;
6204
6205	if (shmflg & SHM_RDONLY)
6206		perms = SHM__READ;
6207	else
6208		perms = SHM__READ | SHM__WRITE;
6209
6210	return ipc_has_perm(shp, perms);
6211}
6212
6213/* Semaphore security operations */
6214static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6215{
6216	struct ipc_security_struct *isec;
6217	struct common_audit_data ad;
6218	u32 sid = current_sid();
6219	int rc;
6220
6221	rc = ipc_alloc_security(sma, SECCLASS_SEM);
6222	if (rc)
6223		return rc;
6224
6225	isec = sma->security;
6226
6227	ad.type = LSM_AUDIT_DATA_IPC;
6228	ad.u.ipc_id = sma->key;
6229
6230	rc = avc_has_perm(&selinux_state,
6231			  sid, isec->sid, SECCLASS_SEM,
6232			  SEM__CREATE, &ad);
6233	if (rc) {
6234		ipc_free_security(sma);
6235		return rc;
6236	}
6237	return 0;
6238}
6239
6240static void selinux_sem_free_security(struct kern_ipc_perm *sma)
6241{
6242	ipc_free_security(sma);
6243}
6244
6245static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6246{
6247	struct ipc_security_struct *isec;
6248	struct common_audit_data ad;
6249	u32 sid = current_sid();
6250
6251	isec = sma->security;
6252
6253	ad.type = LSM_AUDIT_DATA_IPC;
6254	ad.u.ipc_id = sma->key;
6255
6256	return avc_has_perm(&selinux_state,
6257			    sid, isec->sid, SECCLASS_SEM,
6258			    SEM__ASSOCIATE, &ad);
6259}
6260
6261/* Note, at this point, sma is locked down */
6262static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6263{
6264	int err;
6265	u32 perms;
6266
6267	switch (cmd) {
6268	case IPC_INFO:
6269	case SEM_INFO:
6270		/* No specific object, just general system-wide information. */
6271		return avc_has_perm(&selinux_state,
6272				    current_sid(), SECINITSID_KERNEL,
6273				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6274	case GETPID:
6275	case GETNCNT:
6276	case GETZCNT:
6277		perms = SEM__GETATTR;
6278		break;
6279	case GETVAL:
6280	case GETALL:
6281		perms = SEM__READ;
6282		break;
6283	case SETVAL:
6284	case SETALL:
6285		perms = SEM__WRITE;
6286		break;
6287	case IPC_RMID:
6288		perms = SEM__DESTROY;
6289		break;
6290	case IPC_SET:
6291		perms = SEM__SETATTR;
6292		break;
6293	case IPC_STAT:
6294	case SEM_STAT:
6295	case SEM_STAT_ANY:
6296		perms = SEM__GETATTR | SEM__ASSOCIATE;
6297		break;
6298	default:
6299		return 0;
6300	}
6301
6302	err = ipc_has_perm(sma, perms);
6303	return err;
6304}
6305
6306static int selinux_sem_semop(struct kern_ipc_perm *sma,
6307			     struct sembuf *sops, unsigned nsops, int alter)
6308{
6309	u32 perms;
6310
6311	if (alter)
6312		perms = SEM__READ | SEM__WRITE;
6313	else
6314		perms = SEM__READ;
6315
6316	return ipc_has_perm(sma, perms);
6317}
6318
6319static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6320{
6321	u32 av = 0;
6322
6323	av = 0;
6324	if (flag & S_IRUGO)
6325		av |= IPC__UNIX_READ;
6326	if (flag & S_IWUGO)
6327		av |= IPC__UNIX_WRITE;
6328
6329	if (av == 0)
6330		return 0;
6331
6332	return ipc_has_perm(ipcp, av);
6333}
6334
6335static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6336{
6337	struct ipc_security_struct *isec = ipcp->security;
6338	*secid = isec->sid;
6339}
6340
6341static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6342{
6343	if (inode)
6344		inode_doinit_with_dentry(inode, dentry);
6345}
6346
6347static int selinux_getprocattr(struct task_struct *p,
6348			       char *name, char **value)
6349{
6350	const struct task_security_struct *__tsec;
6351	u32 sid;
6352	int error;
6353	unsigned len;
6354
6355	rcu_read_lock();
6356	__tsec = __task_cred(p)->security;
6357
6358	if (current != p) {
6359		error = avc_has_perm(&selinux_state,
6360				     current_sid(), __tsec->sid,
6361				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6362		if (error)
6363			goto bad;
6364	}
6365
 
 
 
6366	if (!strcmp(name, "current"))
6367		sid = __tsec->sid;
6368	else if (!strcmp(name, "prev"))
6369		sid = __tsec->osid;
6370	else if (!strcmp(name, "exec"))
6371		sid = __tsec->exec_sid;
6372	else if (!strcmp(name, "fscreate"))
6373		sid = __tsec->create_sid;
6374	else if (!strcmp(name, "keycreate"))
6375		sid = __tsec->keycreate_sid;
6376	else if (!strcmp(name, "sockcreate"))
6377		sid = __tsec->sockcreate_sid;
6378	else {
6379		error = -EINVAL;
6380		goto bad;
6381	}
6382	rcu_read_unlock();
6383
6384	if (!sid)
6385		return 0;
6386
6387	error = security_sid_to_context(&selinux_state, sid, value, &len);
6388	if (error)
6389		return error;
6390	return len;
6391
6392bad:
6393	rcu_read_unlock();
6394	return error;
6395}
6396
6397static int selinux_setprocattr(const char *name, void *value, size_t size)
 
6398{
6399	struct task_security_struct *tsec;
6400	struct cred *new;
6401	u32 mysid = current_sid(), sid = 0, ptsid;
6402	int error;
6403	char *str = value;
6404
 
 
 
 
 
 
6405	/*
6406	 * Basic control over ability to set these attributes at all.
 
 
6407	 */
6408	if (!strcmp(name, "exec"))
6409		error = avc_has_perm(&selinux_state,
6410				     mysid, mysid, SECCLASS_PROCESS,
6411				     PROCESS__SETEXEC, NULL);
6412	else if (!strcmp(name, "fscreate"))
6413		error = avc_has_perm(&selinux_state,
6414				     mysid, mysid, SECCLASS_PROCESS,
6415				     PROCESS__SETFSCREATE, NULL);
6416	else if (!strcmp(name, "keycreate"))
6417		error = avc_has_perm(&selinux_state,
6418				     mysid, mysid, SECCLASS_PROCESS,
6419				     PROCESS__SETKEYCREATE, NULL);
6420	else if (!strcmp(name, "sockcreate"))
6421		error = avc_has_perm(&selinux_state,
6422				     mysid, mysid, SECCLASS_PROCESS,
6423				     PROCESS__SETSOCKCREATE, NULL);
6424	else if (!strcmp(name, "current"))
6425		error = avc_has_perm(&selinux_state,
6426				     mysid, mysid, SECCLASS_PROCESS,
6427				     PROCESS__SETCURRENT, NULL);
6428	else
6429		error = -EINVAL;
6430	if (error)
6431		return error;
6432
6433	/* Obtain a SID for the context, if one was specified. */
6434	if (size && str[0] && str[0] != '\n') {
6435		if (str[size-1] == '\n') {
6436			str[size-1] = 0;
6437			size--;
6438		}
6439		error = security_context_to_sid(&selinux_state, value, size,
6440						&sid, GFP_KERNEL);
6441		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6442			if (!has_cap_mac_admin(true)) {
6443				struct audit_buffer *ab;
6444				size_t audit_size;
6445
6446				/* We strip a nul only if it is at the end, otherwise the
6447				 * context contains a nul and we should audit that */
6448				if (str[size - 1] == '\0')
6449					audit_size = size - 1;
6450				else
6451					audit_size = size;
6452				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
6453				audit_log_format(ab, "op=fscreate invalid_context=");
6454				audit_log_n_untrustedstring(ab, value, audit_size);
6455				audit_log_end(ab);
6456
6457				return error;
6458			}
6459			error = security_context_to_sid_force(
6460						      &selinux_state,
6461						      value, size, &sid);
6462		}
6463		if (error)
6464			return error;
6465	}
6466
6467	new = prepare_creds();
6468	if (!new)
6469		return -ENOMEM;
6470
6471	/* Permission checking based on the specified context is
6472	   performed during the actual operation (execve,
6473	   open/mkdir/...), when we know the full context of the
6474	   operation.  See selinux_bprm_set_creds for the execve
6475	   checks and may_create for the file creation checks. The
6476	   operation will then fail if the context is not permitted. */
6477	tsec = new->security;
6478	if (!strcmp(name, "exec")) {
6479		tsec->exec_sid = sid;
6480	} else if (!strcmp(name, "fscreate")) {
6481		tsec->create_sid = sid;
6482	} else if (!strcmp(name, "keycreate")) {
6483		error = avc_has_perm(&selinux_state,
6484				     mysid, sid, SECCLASS_KEY, KEY__CREATE,
6485				     NULL);
6486		if (error)
6487			goto abort_change;
6488		tsec->keycreate_sid = sid;
6489	} else if (!strcmp(name, "sockcreate")) {
6490		tsec->sockcreate_sid = sid;
6491	} else if (!strcmp(name, "current")) {
6492		error = -EINVAL;
6493		if (sid == 0)
6494			goto abort_change;
6495
6496		/* Only allow single threaded processes to change context */
6497		error = -EPERM;
6498		if (!current_is_single_threaded()) {
6499			error = security_bounded_transition(&selinux_state,
6500							    tsec->sid, sid);
6501			if (error)
6502				goto abort_change;
6503		}
6504
6505		/* Check permissions for the transition. */
6506		error = avc_has_perm(&selinux_state,
6507				     tsec->sid, sid, SECCLASS_PROCESS,
6508				     PROCESS__DYNTRANSITION, NULL);
6509		if (error)
6510			goto abort_change;
6511
6512		/* Check for ptracing, and update the task SID if ok.
6513		   Otherwise, leave SID unchanged and fail. */
6514		ptsid = ptrace_parent_sid();
6515		if (ptsid != 0) {
6516			error = avc_has_perm(&selinux_state,
6517					     ptsid, sid, SECCLASS_PROCESS,
6518					     PROCESS__PTRACE, NULL);
6519			if (error)
6520				goto abort_change;
6521		}
6522
6523		tsec->sid = sid;
6524	} else {
6525		error = -EINVAL;
6526		goto abort_change;
6527	}
6528
6529	commit_creds(new);
6530	return size;
6531
6532abort_change:
6533	abort_creds(new);
6534	return error;
6535}
6536
6537static int selinux_ismaclabel(const char *name)
6538{
6539	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6540}
6541
6542static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6543{
6544	return security_sid_to_context(&selinux_state, secid,
6545				       secdata, seclen);
6546}
6547
6548static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6549{
6550	return security_context_to_sid(&selinux_state, secdata, seclen,
6551				       secid, GFP_KERNEL);
6552}
6553
6554static void selinux_release_secctx(char *secdata, u32 seclen)
6555{
6556	kfree(secdata);
6557}
6558
6559static void selinux_inode_invalidate_secctx(struct inode *inode)
6560{
6561	struct inode_security_struct *isec = inode->i_security;
6562
6563	spin_lock(&isec->lock);
6564	isec->initialized = LABEL_INVALID;
6565	spin_unlock(&isec->lock);
6566}
6567
6568/*
6569 *	called with inode->i_mutex locked
6570 */
6571static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6572{
6573	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6574}
6575
6576/*
6577 *	called with inode->i_mutex locked
6578 */
6579static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6580{
6581	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6582}
6583
6584static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6585{
6586	int len = 0;
6587	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6588						ctx, true);
6589	if (len < 0)
6590		return len;
6591	*ctxlen = len;
6592	return 0;
6593}
6594#ifdef CONFIG_KEYS
6595
6596static int selinux_key_alloc(struct key *k, const struct cred *cred,
6597			     unsigned long flags)
6598{
6599	const struct task_security_struct *tsec;
6600	struct key_security_struct *ksec;
6601
6602	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6603	if (!ksec)
6604		return -ENOMEM;
6605
6606	tsec = cred->security;
6607	if (tsec->keycreate_sid)
6608		ksec->sid = tsec->keycreate_sid;
6609	else
6610		ksec->sid = tsec->sid;
6611
6612	k->security = ksec;
6613	return 0;
6614}
6615
6616static void selinux_key_free(struct key *k)
6617{
6618	struct key_security_struct *ksec = k->security;
6619
6620	k->security = NULL;
6621	kfree(ksec);
6622}
6623
6624static int selinux_key_permission(key_ref_t key_ref,
6625				  const struct cred *cred,
6626				  unsigned perm)
6627{
6628	struct key *key;
6629	struct key_security_struct *ksec;
6630	u32 sid;
6631
6632	/* if no specific permissions are requested, we skip the
6633	   permission check. No serious, additional covert channels
6634	   appear to be created. */
6635	if (perm == 0)
6636		return 0;
6637
6638	sid = cred_sid(cred);
6639
6640	key = key_ref_to_ptr(key_ref);
6641	ksec = key->security;
6642
6643	return avc_has_perm(&selinux_state,
6644			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6645}
6646
6647static int selinux_key_getsecurity(struct key *key, char **_buffer)
6648{
6649	struct key_security_struct *ksec = key->security;
6650	char *context = NULL;
6651	unsigned len;
6652	int rc;
6653
6654	rc = security_sid_to_context(&selinux_state, ksec->sid,
6655				     &context, &len);
6656	if (!rc)
6657		rc = len;
6658	*_buffer = context;
6659	return rc;
6660}
6661#endif
6662
6663#ifdef CONFIG_SECURITY_INFINIBAND
6664static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6665{
6666	struct common_audit_data ad;
6667	int err;
6668	u32 sid = 0;
6669	struct ib_security_struct *sec = ib_sec;
6670	struct lsm_ibpkey_audit ibpkey;
6671
6672	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6673	if (err)
6674		return err;
6675
6676	ad.type = LSM_AUDIT_DATA_IBPKEY;
6677	ibpkey.subnet_prefix = subnet_prefix;
6678	ibpkey.pkey = pkey_val;
6679	ad.u.ibpkey = &ibpkey;
6680	return avc_has_perm(&selinux_state,
6681			    sec->sid, sid,
6682			    SECCLASS_INFINIBAND_PKEY,
6683			    INFINIBAND_PKEY__ACCESS, &ad);
6684}
6685
6686static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6687					    u8 port_num)
6688{
6689	struct common_audit_data ad;
6690	int err;
6691	u32 sid = 0;
6692	struct ib_security_struct *sec = ib_sec;
6693	struct lsm_ibendport_audit ibendport;
6694
6695	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6696				      &sid);
6697
6698	if (err)
6699		return err;
6700
6701	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6702	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6703	ibendport.port = port_num;
6704	ad.u.ibendport = &ibendport;
6705	return avc_has_perm(&selinux_state,
6706			    sec->sid, sid,
6707			    SECCLASS_INFINIBAND_ENDPORT,
6708			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6709}
6710
6711static int selinux_ib_alloc_security(void **ib_sec)
6712{
6713	struct ib_security_struct *sec;
6714
6715	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6716	if (!sec)
6717		return -ENOMEM;
6718	sec->sid = current_sid();
6719
6720	*ib_sec = sec;
6721	return 0;
6722}
6723
6724static void selinux_ib_free_security(void *ib_sec)
6725{
6726	kfree(ib_sec);
6727}
6728#endif
6729
6730#ifdef CONFIG_BPF_SYSCALL
6731static int selinux_bpf(int cmd, union bpf_attr *attr,
6732				     unsigned int size)
6733{
6734	u32 sid = current_sid();
6735	int ret;
6736
6737	switch (cmd) {
6738	case BPF_MAP_CREATE:
6739		ret = avc_has_perm(&selinux_state,
6740				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6741				   NULL);
6742		break;
6743	case BPF_PROG_LOAD:
6744		ret = avc_has_perm(&selinux_state,
6745				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6746				   NULL);
6747		break;
6748	default:
6749		ret = 0;
6750		break;
6751	}
6752
6753	return ret;
6754}
6755
6756static u32 bpf_map_fmode_to_av(fmode_t fmode)
6757{
6758	u32 av = 0;
6759
6760	if (fmode & FMODE_READ)
6761		av |= BPF__MAP_READ;
6762	if (fmode & FMODE_WRITE)
6763		av |= BPF__MAP_WRITE;
6764	return av;
6765}
6766
6767/* This function will check the file pass through unix socket or binder to see
6768 * if it is a bpf related object. And apply correspinding checks on the bpf
6769 * object based on the type. The bpf maps and programs, not like other files and
6770 * socket, are using a shared anonymous inode inside the kernel as their inode.
6771 * So checking that inode cannot identify if the process have privilege to
6772 * access the bpf object and that's why we have to add this additional check in
6773 * selinux_file_receive and selinux_binder_transfer_files.
6774 */
6775static int bpf_fd_pass(struct file *file, u32 sid)
6776{
6777	struct bpf_security_struct *bpfsec;
6778	struct bpf_prog *prog;
6779	struct bpf_map *map;
6780	int ret;
6781
6782	if (file->f_op == &bpf_map_fops) {
6783		map = file->private_data;
6784		bpfsec = map->security;
6785		ret = avc_has_perm(&selinux_state,
6786				   sid, bpfsec->sid, SECCLASS_BPF,
6787				   bpf_map_fmode_to_av(file->f_mode), NULL);
6788		if (ret)
6789			return ret;
6790	} else if (file->f_op == &bpf_prog_fops) {
6791		prog = file->private_data;
6792		bpfsec = prog->aux->security;
6793		ret = avc_has_perm(&selinux_state,
6794				   sid, bpfsec->sid, SECCLASS_BPF,
6795				   BPF__PROG_RUN, NULL);
6796		if (ret)
6797			return ret;
6798	}
6799	return 0;
6800}
6801
6802static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6803{
6804	u32 sid = current_sid();
6805	struct bpf_security_struct *bpfsec;
6806
6807	bpfsec = map->security;
6808	return avc_has_perm(&selinux_state,
6809			    sid, bpfsec->sid, SECCLASS_BPF,
6810			    bpf_map_fmode_to_av(fmode), NULL);
6811}
6812
6813static int selinux_bpf_prog(struct bpf_prog *prog)
6814{
6815	u32 sid = current_sid();
6816	struct bpf_security_struct *bpfsec;
6817
6818	bpfsec = prog->aux->security;
6819	return avc_has_perm(&selinux_state,
6820			    sid, bpfsec->sid, SECCLASS_BPF,
6821			    BPF__PROG_RUN, NULL);
6822}
6823
6824static int selinux_bpf_map_alloc(struct bpf_map *map)
6825{
6826	struct bpf_security_struct *bpfsec;
6827
6828	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6829	if (!bpfsec)
6830		return -ENOMEM;
6831
6832	bpfsec->sid = current_sid();
6833	map->security = bpfsec;
6834
6835	return 0;
6836}
6837
6838static void selinux_bpf_map_free(struct bpf_map *map)
6839{
6840	struct bpf_security_struct *bpfsec = map->security;
6841
6842	map->security = NULL;
6843	kfree(bpfsec);
6844}
6845
6846static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6847{
6848	struct bpf_security_struct *bpfsec;
6849
6850	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6851	if (!bpfsec)
6852		return -ENOMEM;
6853
6854	bpfsec->sid = current_sid();
6855	aux->security = bpfsec;
6856
6857	return 0;
6858}
6859
6860static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6861{
6862	struct bpf_security_struct *bpfsec = aux->security;
6863
6864	aux->security = NULL;
6865	kfree(bpfsec);
6866}
6867#endif
6868
6869static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6870	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6871	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6872	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6873	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6874
6875	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6876	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6877	LSM_HOOK_INIT(capget, selinux_capget),
6878	LSM_HOOK_INIT(capset, selinux_capset),
6879	LSM_HOOK_INIT(capable, selinux_capable),
6880	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6881	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6882	LSM_HOOK_INIT(syslog, selinux_syslog),
6883	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6884
6885	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6886
6887	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6888	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6889	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
 
6890
6891	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6892	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6893	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6894	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6895	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6896	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6897	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6898	LSM_HOOK_INIT(sb_mount, selinux_mount),
6899	LSM_HOOK_INIT(sb_umount, selinux_umount),
6900	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6901	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6902	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6903
6904	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6905	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6906
6907	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6908	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6909	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6910	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6911	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6912	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6913	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6914	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6915	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6916	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6917	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6918	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6919	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6920	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6921	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6922	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6923	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6924	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6925	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6926	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6927	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6928	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6929	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6930	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6931	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6932	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6933	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6934
6935	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6936	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6937	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6938	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6939	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6940	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6941	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6942	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6943	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6944	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6945	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6946	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6947
6948	LSM_HOOK_INIT(file_open, selinux_file_open),
6949
6950	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6951	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6952	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6953	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6954	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6955	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6956	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6957	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6958	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6959	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6960	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6961	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6962	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6963	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6964	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6965	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6966	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6967	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6968	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6969	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6970	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6971	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6972	LSM_HOOK_INIT(task_kill, selinux_task_kill),
 
6973	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6974
6975	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6976	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6977
6978	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6979	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6980
6981	LSM_HOOK_INIT(msg_queue_alloc_security,
6982			selinux_msg_queue_alloc_security),
6983	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6984	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6985	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6986	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6987	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6988
6989	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6990	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6991	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6992	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6993	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6994
6995	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6996	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6997	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6998	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6999	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7000
7001	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7002
7003	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7004	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7005
7006	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7007	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7008	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7009	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7010	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7011	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7012	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7013	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7014
7015	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7016	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7017
7018	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7019	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7020	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7021	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7022	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7023	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7024	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7025	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7026	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7027	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7028	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7029	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7030	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7031	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7032	LSM_HOOK_INIT(socket_getpeersec_stream,
7033			selinux_socket_getpeersec_stream),
7034	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7035	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7036	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7037	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7038	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7039	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7040	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7041	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7042	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7043	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7044	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7045	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7046	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7047	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7048	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7049	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7050	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7051	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7052	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7053	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7054	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7055	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7056#ifdef CONFIG_SECURITY_INFINIBAND
7057	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7058	LSM_HOOK_INIT(ib_endport_manage_subnet,
7059		      selinux_ib_endport_manage_subnet),
7060	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7061	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7062#endif
7063#ifdef CONFIG_SECURITY_NETWORK_XFRM
7064	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7065	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7066	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7067	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7068	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7069	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7070			selinux_xfrm_state_alloc_acquire),
7071	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7072	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7073	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7074	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7075			selinux_xfrm_state_pol_flow_match),
7076	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7077#endif
7078
7079#ifdef CONFIG_KEYS
7080	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7081	LSM_HOOK_INIT(key_free, selinux_key_free),
7082	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7083	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7084#endif
7085
7086#ifdef CONFIG_AUDIT
7087	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7088	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7089	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7090	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7091#endif
7092
7093#ifdef CONFIG_BPF_SYSCALL
7094	LSM_HOOK_INIT(bpf, selinux_bpf),
7095	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7096	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7097	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7098	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7099	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7100	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7101#endif
7102};
7103
7104static __init int selinux_init(void)
7105{
7106	if (!security_module_enable("selinux")) {
7107		selinux_enabled = 0;
7108		return 0;
7109	}
7110
7111	if (!selinux_enabled) {
7112		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
7113		return 0;
7114	}
7115
7116	printk(KERN_INFO "SELinux:  Initializing.\n");
7117
7118	memset(&selinux_state, 0, sizeof(selinux_state));
7119	enforcing_set(&selinux_state, selinux_enforcing_boot);
7120	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7121	selinux_ss_init(&selinux_state.ss);
7122	selinux_avc_init(&selinux_state.avc);
7123
7124	/* Set the security state for the initial task. */
7125	cred_init_security();
7126
7127	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7128
7129	sel_inode_cache = kmem_cache_create("selinux_inode_security",
7130					    sizeof(struct inode_security_struct),
7131					    0, SLAB_PANIC, NULL);
7132	file_security_cache = kmem_cache_create("selinux_file_security",
7133					    sizeof(struct file_security_struct),
7134					    0, SLAB_PANIC, NULL);
7135	avc_init();
7136
7137	avtab_cache_init();
7138
7139	ebitmap_cache_init();
7140
7141	hashtab_cache_init();
7142
7143	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7144
7145	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7146		panic("SELinux: Unable to register AVC netcache callback\n");
7147
7148	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7149		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7150
7151	if (selinux_enforcing_boot)
7152		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
7153	else
7154		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
7155
7156	return 0;
7157}
7158
7159static void delayed_superblock_init(struct super_block *sb, void *unused)
7160{
7161	superblock_doinit(sb, NULL);
7162}
7163
7164void selinux_complete_init(void)
7165{
7166	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
7167
7168	/* Set up any superblocks initialized prior to the policy load. */
7169	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
7170	iterate_supers(delayed_superblock_init, NULL);
7171}
7172
7173/* SELinux requires early initialization in order to label
7174   all processes and objects when they are created. */
7175security_initcall(selinux_init);
7176
7177#if defined(CONFIG_NETFILTER)
7178
7179static const struct nf_hook_ops selinux_nf_ops[] = {
7180	{
7181		.hook =		selinux_ipv4_postroute,
7182		.pf =		NFPROTO_IPV4,
7183		.hooknum =	NF_INET_POST_ROUTING,
7184		.priority =	NF_IP_PRI_SELINUX_LAST,
7185	},
7186	{
7187		.hook =		selinux_ipv4_forward,
7188		.pf =		NFPROTO_IPV4,
7189		.hooknum =	NF_INET_FORWARD,
7190		.priority =	NF_IP_PRI_SELINUX_FIRST,
7191	},
7192	{
7193		.hook =		selinux_ipv4_output,
7194		.pf =		NFPROTO_IPV4,
7195		.hooknum =	NF_INET_LOCAL_OUT,
7196		.priority =	NF_IP_PRI_SELINUX_FIRST,
7197	},
7198#if IS_ENABLED(CONFIG_IPV6)
7199	{
7200		.hook =		selinux_ipv6_postroute,
7201		.pf =		NFPROTO_IPV6,
7202		.hooknum =	NF_INET_POST_ROUTING,
7203		.priority =	NF_IP6_PRI_SELINUX_LAST,
7204	},
7205	{
7206		.hook =		selinux_ipv6_forward,
7207		.pf =		NFPROTO_IPV6,
7208		.hooknum =	NF_INET_FORWARD,
7209		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7210	},
7211	{
7212		.hook =		selinux_ipv6_output,
7213		.pf =		NFPROTO_IPV6,
7214		.hooknum =	NF_INET_LOCAL_OUT,
7215		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7216	},
7217#endif	/* IPV6 */
7218};
7219
7220static int __net_init selinux_nf_register(struct net *net)
7221{
7222	return nf_register_net_hooks(net, selinux_nf_ops,
7223				     ARRAY_SIZE(selinux_nf_ops));
7224}
7225
7226static void __net_exit selinux_nf_unregister(struct net *net)
7227{
7228	nf_unregister_net_hooks(net, selinux_nf_ops,
7229				ARRAY_SIZE(selinux_nf_ops));
7230}
7231
7232static struct pernet_operations selinux_net_ops = {
7233	.init = selinux_nf_register,
7234	.exit = selinux_nf_unregister,
7235};
7236
7237static int __init selinux_nf_ip_init(void)
7238{
7239	int err;
7240
7241	if (!selinux_enabled)
7242		return 0;
7243
7244	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
7245
7246	err = register_pernet_subsys(&selinux_net_ops);
7247	if (err)
7248		panic("SELinux: register_pernet_subsys: error %d\n", err);
7249
7250	return 0;
7251}
 
7252__initcall(selinux_nf_ip_init);
7253
7254#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7255static void selinux_nf_ip_exit(void)
7256{
7257	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
7258
7259	unregister_pernet_subsys(&selinux_net_ops);
7260}
7261#endif
7262
7263#else /* CONFIG_NETFILTER */
7264
7265#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7266#define selinux_nf_ip_exit()
7267#endif
7268
7269#endif /* CONFIG_NETFILTER */
7270
7271#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7272int selinux_disable(struct selinux_state *state)
 
 
7273{
7274	if (state->initialized) {
7275		/* Not permitted after initial policy load. */
7276		return -EINVAL;
7277	}
7278
7279	if (state->disabled) {
7280		/* Only do this once. */
7281		return -EINVAL;
7282	}
7283
7284	state->disabled = 1;
7285
7286	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
7287
 
7288	selinux_enabled = 0;
7289
7290	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7291
7292	/* Try to destroy the avc node cache */
7293	avc_disable();
7294
7295	/* Unregister netfilter hooks. */
7296	selinux_nf_ip_exit();
7297
7298	/* Unregister selinuxfs. */
7299	exit_sel_fs();
7300
7301	return 0;
7302}
7303#endif
v4.10.11
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
 
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
 
  32#include <linux/lsm_hooks.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  55#include <net/inet_connection_sock.h>
  56#include <net/net_namespace.h>
  57#include <net/netlabel.h>
  58#include <linux/uaccess.h>
  59#include <asm/ioctls.h>
  60#include <linux/atomic.h>
  61#include <linux/bitops.h>
  62#include <linux/interrupt.h>
  63#include <linux/netdevice.h>	/* for network interface checks */
  64#include <net/netlink.h>
  65#include <linux/tcp.h>
  66#include <linux/udp.h>
  67#include <linux/dccp.h>
 
 
  68#include <linux/quota.h>
  69#include <linux/un.h>		/* for Unix socket types */
  70#include <net/af_unix.h>	/* for Unix socket types */
  71#include <linux/parser.h>
  72#include <linux/nfs_mount.h>
  73#include <net/ipv6.h>
  74#include <linux/hugetlb.h>
  75#include <linux/personality.h>
  76#include <linux/audit.h>
  77#include <linux/string.h>
  78#include <linux/selinux.h>
  79#include <linux/mutex.h>
  80#include <linux/posix-timers.h>
  81#include <linux/syslog.h>
  82#include <linux/user_namespace.h>
  83#include <linux/export.h>
  84#include <linux/msg.h>
  85#include <linux/shm.h>
 
  86
  87#include "avc.h"
  88#include "objsec.h"
  89#include "netif.h"
  90#include "netnode.h"
  91#include "netport.h"
 
  92#include "xfrm.h"
  93#include "netlabel.h"
  94#include "audit.h"
  95#include "avc_ss.h"
  96
 
 
  97/* SECMARK reference count */
  98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
  99
 100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 101int selinux_enforcing;
 102
 103static int __init enforcing_setup(char *str)
 104{
 105	unsigned long enforcing;
 106	if (!kstrtoul(str, 0, &enforcing))
 107		selinux_enforcing = enforcing ? 1 : 0;
 108	return 1;
 109}
 110__setup("enforcing=", enforcing_setup);
 
 
 111#endif
 112
 113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 115
 116static int __init selinux_enabled_setup(char *str)
 117{
 118	unsigned long enabled;
 119	if (!kstrtoul(str, 0, &enabled))
 120		selinux_enabled = enabled ? 1 : 0;
 121	return 1;
 122}
 123__setup("selinux=", selinux_enabled_setup);
 124#else
 125int selinux_enabled = 1;
 126#endif
 127
 
 
 
 
 
 
 
 
 
 
 
 
 
 128static struct kmem_cache *sel_inode_cache;
 129static struct kmem_cache *file_security_cache;
 130
 131/**
 132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 133 *
 134 * Description:
 135 * This function checks the SECMARK reference counter to see if any SECMARK
 136 * targets are currently configured, if the reference counter is greater than
 137 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 138 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 139 * policy capability is enabled, SECMARK is always considered enabled.
 140 *
 141 */
 142static int selinux_secmark_enabled(void)
 143{
 144	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
 
 145}
 146
 147/**
 148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 149 *
 150 * Description:
 151 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 152 * (1) if any are enabled or false (0) if neither are enabled.  If the
 153 * always_check_network policy capability is enabled, peer labeling
 154 * is always considered enabled.
 155 *
 156 */
 157static int selinux_peerlbl_enabled(void)
 158{
 159	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
 
 160}
 161
 162static int selinux_netcache_avc_callback(u32 event)
 163{
 164	if (event == AVC_CALLBACK_RESET) {
 165		sel_netif_flush();
 166		sel_netnode_flush();
 167		sel_netport_flush();
 168		synchronize_net();
 169	}
 170	return 0;
 171}
 172
 
 
 
 
 
 
 
 
 
 
 173/*
 174 * initialise the security for the init task
 175 */
 176static void cred_init_security(void)
 177{
 178	struct cred *cred = (struct cred *) current->real_cred;
 179	struct task_security_struct *tsec;
 180
 181	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 182	if (!tsec)
 183		panic("SELinux:  Failed to initialize initial task.\n");
 184
 185	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 186	cred->security = tsec;
 187}
 188
 189/*
 190 * get the security ID of a set of credentials
 191 */
 192static inline u32 cred_sid(const struct cred *cred)
 193{
 194	const struct task_security_struct *tsec;
 195
 196	tsec = cred->security;
 197	return tsec->sid;
 198}
 199
 200/*
 201 * get the objective security ID of a task
 202 */
 203static inline u32 task_sid(const struct task_struct *task)
 204{
 205	u32 sid;
 206
 207	rcu_read_lock();
 208	sid = cred_sid(__task_cred(task));
 209	rcu_read_unlock();
 210	return sid;
 211}
 212
 213/*
 214 * get the subjective security ID of the current task
 215 */
 216static inline u32 current_sid(void)
 217{
 218	const struct task_security_struct *tsec = current_security();
 219
 220	return tsec->sid;
 221}
 222
 223/* Allocate and free functions for each kind of security blob. */
 224
 225static int inode_alloc_security(struct inode *inode)
 226{
 227	struct inode_security_struct *isec;
 228	u32 sid = current_sid();
 229
 230	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 231	if (!isec)
 232		return -ENOMEM;
 233
 234	spin_lock_init(&isec->lock);
 235	INIT_LIST_HEAD(&isec->list);
 236	isec->inode = inode;
 237	isec->sid = SECINITSID_UNLABELED;
 238	isec->sclass = SECCLASS_FILE;
 239	isec->task_sid = sid;
 240	isec->initialized = LABEL_INVALID;
 241	inode->i_security = isec;
 242
 243	return 0;
 244}
 245
 246static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 247
 248/*
 249 * Try reloading inode security labels that have been marked as invalid.  The
 250 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 251 * allowed; when set to false, returns -ECHILD when the label is
 252 * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
 253 * when no dentry is available, set it to NULL instead.
 254 */
 255static int __inode_security_revalidate(struct inode *inode,
 256				       struct dentry *opt_dentry,
 257				       bool may_sleep)
 258{
 259	struct inode_security_struct *isec = inode->i_security;
 260
 261	might_sleep_if(may_sleep);
 262
 263	if (ss_initialized && isec->initialized != LABEL_INITIALIZED) {
 
 264		if (!may_sleep)
 265			return -ECHILD;
 266
 267		/*
 268		 * Try reloading the inode security label.  This will fail if
 269		 * @opt_dentry is NULL and no dentry for this inode can be
 270		 * found; in that case, continue using the old label.
 271		 */
 272		inode_doinit_with_dentry(inode, opt_dentry);
 273	}
 274	return 0;
 275}
 276
 277static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 278{
 279	return inode->i_security;
 280}
 281
 282static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 283{
 284	int error;
 285
 286	error = __inode_security_revalidate(inode, NULL, !rcu);
 287	if (error)
 288		return ERR_PTR(error);
 289	return inode->i_security;
 290}
 291
 292/*
 293 * Get the security label of an inode.
 294 */
 295static struct inode_security_struct *inode_security(struct inode *inode)
 296{
 297	__inode_security_revalidate(inode, NULL, true);
 298	return inode->i_security;
 299}
 300
 301static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 302{
 303	struct inode *inode = d_backing_inode(dentry);
 304
 305	return inode->i_security;
 306}
 307
 308/*
 309 * Get the security label of a dentry's backing inode.
 310 */
 311static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 312{
 313	struct inode *inode = d_backing_inode(dentry);
 314
 315	__inode_security_revalidate(inode, dentry, true);
 316	return inode->i_security;
 317}
 318
 319static void inode_free_rcu(struct rcu_head *head)
 320{
 321	struct inode_security_struct *isec;
 322
 323	isec = container_of(head, struct inode_security_struct, rcu);
 324	kmem_cache_free(sel_inode_cache, isec);
 325}
 326
 327static void inode_free_security(struct inode *inode)
 328{
 329	struct inode_security_struct *isec = inode->i_security;
 330	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 331
 332	/*
 333	 * As not all inode security structures are in a list, we check for
 334	 * empty list outside of the lock to make sure that we won't waste
 335	 * time taking a lock doing nothing.
 336	 *
 337	 * The list_del_init() function can be safely called more than once.
 338	 * It should not be possible for this function to be called with
 339	 * concurrent list_add(), but for better safety against future changes
 340	 * in the code, we use list_empty_careful() here.
 341	 */
 342	if (!list_empty_careful(&isec->list)) {
 343		spin_lock(&sbsec->isec_lock);
 344		list_del_init(&isec->list);
 345		spin_unlock(&sbsec->isec_lock);
 346	}
 347
 348	/*
 349	 * The inode may still be referenced in a path walk and
 350	 * a call to selinux_inode_permission() can be made
 351	 * after inode_free_security() is called. Ideally, the VFS
 352	 * wouldn't do this, but fixing that is a much harder
 353	 * job. For now, simply free the i_security via RCU, and
 354	 * leave the current inode->i_security pointer intact.
 355	 * The inode will be freed after the RCU grace period too.
 356	 */
 357	call_rcu(&isec->rcu, inode_free_rcu);
 358}
 359
 360static int file_alloc_security(struct file *file)
 361{
 362	struct file_security_struct *fsec;
 363	u32 sid = current_sid();
 364
 365	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
 366	if (!fsec)
 367		return -ENOMEM;
 368
 369	fsec->sid = sid;
 370	fsec->fown_sid = sid;
 371	file->f_security = fsec;
 372
 373	return 0;
 374}
 375
 376static void file_free_security(struct file *file)
 377{
 378	struct file_security_struct *fsec = file->f_security;
 379	file->f_security = NULL;
 380	kmem_cache_free(file_security_cache, fsec);
 381}
 382
 383static int superblock_alloc_security(struct super_block *sb)
 384{
 385	struct superblock_security_struct *sbsec;
 386
 387	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 388	if (!sbsec)
 389		return -ENOMEM;
 390
 391	mutex_init(&sbsec->lock);
 392	INIT_LIST_HEAD(&sbsec->isec_head);
 393	spin_lock_init(&sbsec->isec_lock);
 394	sbsec->sb = sb;
 395	sbsec->sid = SECINITSID_UNLABELED;
 396	sbsec->def_sid = SECINITSID_FILE;
 397	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 398	sb->s_security = sbsec;
 399
 400	return 0;
 401}
 402
 403static void superblock_free_security(struct super_block *sb)
 404{
 405	struct superblock_security_struct *sbsec = sb->s_security;
 406	sb->s_security = NULL;
 407	kfree(sbsec);
 408}
 409
 410/* The file system's label must be initialized prior to use. */
 411
 412static const char *labeling_behaviors[7] = {
 413	"uses xattr",
 414	"uses transition SIDs",
 415	"uses task SIDs",
 416	"uses genfs_contexts",
 417	"not configured for labeling",
 418	"uses mountpoint labeling",
 419	"uses native labeling",
 420};
 421
 422static inline int inode_doinit(struct inode *inode)
 423{
 424	return inode_doinit_with_dentry(inode, NULL);
 425}
 426
 427enum {
 428	Opt_error = -1,
 429	Opt_context = 1,
 430	Opt_fscontext = 2,
 431	Opt_defcontext = 3,
 432	Opt_rootcontext = 4,
 433	Opt_labelsupport = 5,
 434	Opt_nextmntopt = 6,
 435};
 436
 437#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 438
 439static const match_table_t tokens = {
 440	{Opt_context, CONTEXT_STR "%s"},
 441	{Opt_fscontext, FSCONTEXT_STR "%s"},
 442	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 443	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 444	{Opt_labelsupport, LABELSUPP_STR},
 445	{Opt_error, NULL},
 446};
 447
 448#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 449
 450static int may_context_mount_sb_relabel(u32 sid,
 451			struct superblock_security_struct *sbsec,
 452			const struct cred *cred)
 453{
 454	const struct task_security_struct *tsec = cred->security;
 455	int rc;
 456
 457	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 458			  FILESYSTEM__RELABELFROM, NULL);
 459	if (rc)
 460		return rc;
 461
 462	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 463			  FILESYSTEM__RELABELTO, NULL);
 464	return rc;
 465}
 466
 467static int may_context_mount_inode_relabel(u32 sid,
 468			struct superblock_security_struct *sbsec,
 469			const struct cred *cred)
 470{
 471	const struct task_security_struct *tsec = cred->security;
 472	int rc;
 473	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 474			  FILESYSTEM__RELABELFROM, NULL);
 475	if (rc)
 476		return rc;
 477
 478	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 479			  FILESYSTEM__ASSOCIATE, NULL);
 480	return rc;
 481}
 482
 483static int selinux_is_sblabel_mnt(struct super_block *sb)
 484{
 485	struct superblock_security_struct *sbsec = sb->s_security;
 486
 487	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
 488		sbsec->behavior == SECURITY_FS_USE_TRANS ||
 489		sbsec->behavior == SECURITY_FS_USE_TASK ||
 490		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
 491		/* Special handling. Genfs but also in-core setxattr handler */
 492		!strcmp(sb->s_type->name, "sysfs") ||
 493		!strcmp(sb->s_type->name, "pstore") ||
 494		!strcmp(sb->s_type->name, "debugfs") ||
 495		!strcmp(sb->s_type->name, "rootfs");
 
 
 
 
 496}
 497
 498static int sb_finish_set_opts(struct super_block *sb)
 499{
 500	struct superblock_security_struct *sbsec = sb->s_security;
 501	struct dentry *root = sb->s_root;
 502	struct inode *root_inode = d_backing_inode(root);
 503	int rc = 0;
 504
 505	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 506		/* Make sure that the xattr handler exists and that no
 507		   error other than -ENODATA is returned by getxattr on
 508		   the root directory.  -ENODATA is ok, as this may be
 509		   the first boot of the SELinux kernel before we have
 510		   assigned xattr values to the filesystem. */
 511		if (!(root_inode->i_opflags & IOP_XATTR)) {
 512			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 513			       "xattr support\n", sb->s_id, sb->s_type->name);
 514			rc = -EOPNOTSUPP;
 515			goto out;
 516		}
 517
 518		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 519		if (rc < 0 && rc != -ENODATA) {
 520			if (rc == -EOPNOTSUPP)
 521				printk(KERN_WARNING "SELinux: (dev %s, type "
 522				       "%s) has no security xattr handler\n",
 523				       sb->s_id, sb->s_type->name);
 524			else
 525				printk(KERN_WARNING "SELinux: (dev %s, type "
 526				       "%s) getxattr errno %d\n", sb->s_id,
 527				       sb->s_type->name, -rc);
 528			goto out;
 529		}
 530	}
 531
 532	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 533		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 534		       sb->s_id, sb->s_type->name);
 535
 536	sbsec->flags |= SE_SBINITIALIZED;
 
 
 
 
 537	if (selinux_is_sblabel_mnt(sb))
 538		sbsec->flags |= SBLABEL_MNT;
 
 
 539
 540	/* Initialize the root inode. */
 541	rc = inode_doinit_with_dentry(root_inode, root);
 542
 543	/* Initialize any other inodes associated with the superblock, e.g.
 544	   inodes created prior to initial policy load or inodes created
 545	   during get_sb by a pseudo filesystem that directly
 546	   populates itself. */
 547	spin_lock(&sbsec->isec_lock);
 548next_inode:
 549	if (!list_empty(&sbsec->isec_head)) {
 550		struct inode_security_struct *isec =
 551				list_entry(sbsec->isec_head.next,
 552					   struct inode_security_struct, list);
 553		struct inode *inode = isec->inode;
 554		list_del_init(&isec->list);
 555		spin_unlock(&sbsec->isec_lock);
 556		inode = igrab(inode);
 557		if (inode) {
 558			if (!IS_PRIVATE(inode))
 559				inode_doinit(inode);
 560			iput(inode);
 561		}
 562		spin_lock(&sbsec->isec_lock);
 563		goto next_inode;
 564	}
 565	spin_unlock(&sbsec->isec_lock);
 566out:
 567	return rc;
 568}
 569
 570/*
 571 * This function should allow an FS to ask what it's mount security
 572 * options were so it can use those later for submounts, displaying
 573 * mount options, or whatever.
 574 */
 575static int selinux_get_mnt_opts(const struct super_block *sb,
 576				struct security_mnt_opts *opts)
 577{
 578	int rc = 0, i;
 579	struct superblock_security_struct *sbsec = sb->s_security;
 580	char *context = NULL;
 581	u32 len;
 582	char tmp;
 583
 584	security_init_mnt_opts(opts);
 585
 586	if (!(sbsec->flags & SE_SBINITIALIZED))
 587		return -EINVAL;
 588
 589	if (!ss_initialized)
 590		return -EINVAL;
 591
 592	/* make sure we always check enough bits to cover the mask */
 593	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 594
 595	tmp = sbsec->flags & SE_MNTMASK;
 596	/* count the number of mount options for this sb */
 597	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 598		if (tmp & 0x01)
 599			opts->num_mnt_opts++;
 600		tmp >>= 1;
 601	}
 602	/* Check if the Label support flag is set */
 603	if (sbsec->flags & SBLABEL_MNT)
 604		opts->num_mnt_opts++;
 605
 606	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 607	if (!opts->mnt_opts) {
 608		rc = -ENOMEM;
 609		goto out_free;
 610	}
 611
 612	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 613	if (!opts->mnt_opts_flags) {
 614		rc = -ENOMEM;
 615		goto out_free;
 616	}
 617
 618	i = 0;
 619	if (sbsec->flags & FSCONTEXT_MNT) {
 620		rc = security_sid_to_context(sbsec->sid, &context, &len);
 
 621		if (rc)
 622			goto out_free;
 623		opts->mnt_opts[i] = context;
 624		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 625	}
 626	if (sbsec->flags & CONTEXT_MNT) {
 627		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 
 
 628		if (rc)
 629			goto out_free;
 630		opts->mnt_opts[i] = context;
 631		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 632	}
 633	if (sbsec->flags & DEFCONTEXT_MNT) {
 634		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 
 635		if (rc)
 636			goto out_free;
 637		opts->mnt_opts[i] = context;
 638		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 639	}
 640	if (sbsec->flags & ROOTCONTEXT_MNT) {
 641		struct dentry *root = sbsec->sb->s_root;
 642		struct inode_security_struct *isec = backing_inode_security(root);
 643
 644		rc = security_sid_to_context(isec->sid, &context, &len);
 
 645		if (rc)
 646			goto out_free;
 647		opts->mnt_opts[i] = context;
 648		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 649	}
 650	if (sbsec->flags & SBLABEL_MNT) {
 651		opts->mnt_opts[i] = NULL;
 652		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 653	}
 654
 655	BUG_ON(i != opts->num_mnt_opts);
 656
 657	return 0;
 658
 659out_free:
 660	security_free_mnt_opts(opts);
 661	return rc;
 662}
 663
 664static int bad_option(struct superblock_security_struct *sbsec, char flag,
 665		      u32 old_sid, u32 new_sid)
 666{
 667	char mnt_flags = sbsec->flags & SE_MNTMASK;
 668
 669	/* check if the old mount command had the same options */
 670	if (sbsec->flags & SE_SBINITIALIZED)
 671		if (!(sbsec->flags & flag) ||
 672		    (old_sid != new_sid))
 673			return 1;
 674
 675	/* check if we were passed the same options twice,
 676	 * aka someone passed context=a,context=b
 677	 */
 678	if (!(sbsec->flags & SE_SBINITIALIZED))
 679		if (mnt_flags & flag)
 680			return 1;
 681	return 0;
 682}
 683
 684/*
 685 * Allow filesystems with binary mount data to explicitly set mount point
 686 * labeling information.
 687 */
 688static int selinux_set_mnt_opts(struct super_block *sb,
 689				struct security_mnt_opts *opts,
 690				unsigned long kern_flags,
 691				unsigned long *set_kern_flags)
 692{
 693	const struct cred *cred = current_cred();
 694	int rc = 0, i;
 695	struct superblock_security_struct *sbsec = sb->s_security;
 696	const char *name = sb->s_type->name;
 697	struct dentry *root = sbsec->sb->s_root;
 698	struct inode_security_struct *root_isec;
 699	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 700	u32 defcontext_sid = 0;
 701	char **mount_options = opts->mnt_opts;
 702	int *flags = opts->mnt_opts_flags;
 703	int num_opts = opts->num_mnt_opts;
 704
 705	mutex_lock(&sbsec->lock);
 706
 707	if (!ss_initialized) {
 708		if (!num_opts) {
 709			/* Defer initialization until selinux_complete_init,
 710			   after the initial policy is loaded and the security
 711			   server is ready to handle calls. */
 712			goto out;
 713		}
 714		rc = -EINVAL;
 715		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 716			"before the security server is initialized\n");
 717		goto out;
 718	}
 719	if (kern_flags && !set_kern_flags) {
 720		/* Specifying internal flags without providing a place to
 721		 * place the results is not allowed */
 722		rc = -EINVAL;
 723		goto out;
 724	}
 725
 726	/*
 727	 * Binary mount data FS will come through this function twice.  Once
 728	 * from an explicit call and once from the generic calls from the vfs.
 729	 * Since the generic VFS calls will not contain any security mount data
 730	 * we need to skip the double mount verification.
 731	 *
 732	 * This does open a hole in which we will not notice if the first
 733	 * mount using this sb set explict options and a second mount using
 734	 * this sb does not set any security options.  (The first options
 735	 * will be used for both mounts)
 736	 */
 737	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 738	    && (num_opts == 0))
 739		goto out;
 740
 741	root_isec = backing_inode_security_novalidate(root);
 742
 743	/*
 744	 * parse the mount options, check if they are valid sids.
 745	 * also check if someone is trying to mount the same sb more
 746	 * than once with different security options.
 747	 */
 748	for (i = 0; i < num_opts; i++) {
 749		u32 sid;
 750
 751		if (flags[i] == SBLABEL_MNT)
 752			continue;
 753		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
 
 
 754		if (rc) {
 755			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
 756			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 757			       mount_options[i], sb->s_id, name, rc);
 758			goto out;
 759		}
 760		switch (flags[i]) {
 761		case FSCONTEXT_MNT:
 762			fscontext_sid = sid;
 763
 764			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 765					fscontext_sid))
 766				goto out_double_mount;
 767
 768			sbsec->flags |= FSCONTEXT_MNT;
 769			break;
 770		case CONTEXT_MNT:
 771			context_sid = sid;
 772
 773			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 774					context_sid))
 775				goto out_double_mount;
 776
 777			sbsec->flags |= CONTEXT_MNT;
 778			break;
 779		case ROOTCONTEXT_MNT:
 780			rootcontext_sid = sid;
 781
 782			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 783					rootcontext_sid))
 784				goto out_double_mount;
 785
 786			sbsec->flags |= ROOTCONTEXT_MNT;
 787
 788			break;
 789		case DEFCONTEXT_MNT:
 790			defcontext_sid = sid;
 791
 792			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 793					defcontext_sid))
 794				goto out_double_mount;
 795
 796			sbsec->flags |= DEFCONTEXT_MNT;
 797
 798			break;
 799		default:
 800			rc = -EINVAL;
 801			goto out;
 802		}
 803	}
 804
 805	if (sbsec->flags & SE_SBINITIALIZED) {
 806		/* previously mounted with options, but not on this attempt? */
 807		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 808			goto out_double_mount;
 809		rc = 0;
 810		goto out;
 811	}
 812
 813	if (strcmp(sb->s_type->name, "proc") == 0)
 814		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 815
 816	if (!strcmp(sb->s_type->name, "debugfs") ||
 
 817	    !strcmp(sb->s_type->name, "sysfs") ||
 818	    !strcmp(sb->s_type->name, "pstore"))
 
 
 819		sbsec->flags |= SE_SBGENFS;
 820
 821	if (!sbsec->behavior) {
 822		/*
 823		 * Determine the labeling behavior to use for this
 824		 * filesystem type.
 825		 */
 826		rc = security_fs_use(sb);
 827		if (rc) {
 828			printk(KERN_WARNING
 829				"%s: security_fs_use(%s) returned %d\n",
 830					__func__, sb->s_type->name, rc);
 831			goto out;
 832		}
 833	}
 834
 835	/*
 836	 * If this is a user namespace mount, no contexts are allowed
 837	 * on the command line and security labels must be ignored.
 
 838	 */
 839	if (sb->s_user_ns != &init_user_ns) {
 
 
 
 840		if (context_sid || fscontext_sid || rootcontext_sid ||
 841		    defcontext_sid) {
 842			rc = -EACCES;
 843			goto out;
 844		}
 845		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 846			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 847			rc = security_transition_sid(current_sid(), current_sid(),
 
 
 848						     SECCLASS_FILE, NULL,
 849						     &sbsec->mntpoint_sid);
 850			if (rc)
 851				goto out;
 852		}
 853		goto out_set_opts;
 854	}
 855
 856	/* sets the context of the superblock for the fs being mounted. */
 857	if (fscontext_sid) {
 858		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 859		if (rc)
 860			goto out;
 861
 862		sbsec->sid = fscontext_sid;
 863	}
 864
 865	/*
 866	 * Switch to using mount point labeling behavior.
 867	 * sets the label used on all file below the mountpoint, and will set
 868	 * the superblock context if not already set.
 869	 */
 870	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 871		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 872		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 873	}
 874
 875	if (context_sid) {
 876		if (!fscontext_sid) {
 877			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 878							  cred);
 879			if (rc)
 880				goto out;
 881			sbsec->sid = context_sid;
 882		} else {
 883			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 884							     cred);
 885			if (rc)
 886				goto out;
 887		}
 888		if (!rootcontext_sid)
 889			rootcontext_sid = context_sid;
 890
 891		sbsec->mntpoint_sid = context_sid;
 892		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 893	}
 894
 895	if (rootcontext_sid) {
 896		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 897						     cred);
 898		if (rc)
 899			goto out;
 900
 901		root_isec->sid = rootcontext_sid;
 902		root_isec->initialized = LABEL_INITIALIZED;
 903	}
 904
 905	if (defcontext_sid) {
 906		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 907			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 908			rc = -EINVAL;
 909			printk(KERN_WARNING "SELinux: defcontext option is "
 910			       "invalid for this filesystem type\n");
 911			goto out;
 912		}
 913
 914		if (defcontext_sid != sbsec->def_sid) {
 915			rc = may_context_mount_inode_relabel(defcontext_sid,
 916							     sbsec, cred);
 917			if (rc)
 918				goto out;
 919		}
 920
 921		sbsec->def_sid = defcontext_sid;
 922	}
 923
 924out_set_opts:
 925	rc = sb_finish_set_opts(sb);
 926out:
 927	mutex_unlock(&sbsec->lock);
 928	return rc;
 929out_double_mount:
 930	rc = -EINVAL;
 931	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 932	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 933	goto out;
 934}
 935
 936static int selinux_cmp_sb_context(const struct super_block *oldsb,
 937				    const struct super_block *newsb)
 938{
 939	struct superblock_security_struct *old = oldsb->s_security;
 940	struct superblock_security_struct *new = newsb->s_security;
 941	char oldflags = old->flags & SE_MNTMASK;
 942	char newflags = new->flags & SE_MNTMASK;
 943
 944	if (oldflags != newflags)
 945		goto mismatch;
 946	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 947		goto mismatch;
 948	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 949		goto mismatch;
 950	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 951		goto mismatch;
 952	if (oldflags & ROOTCONTEXT_MNT) {
 953		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 954		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 955		if (oldroot->sid != newroot->sid)
 956			goto mismatch;
 957	}
 958	return 0;
 959mismatch:
 960	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
 961			    "different security settings for (dev %s, "
 962			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 963	return -EBUSY;
 964}
 965
 966static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 967					struct super_block *newsb)
 
 
 968{
 
 969	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 970	struct superblock_security_struct *newsbsec = newsb->s_security;
 971
 972	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 973	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 974	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 975
 976	/*
 977	 * if the parent was able to be mounted it clearly had no special lsm
 978	 * mount options.  thus we can safely deal with this superblock later
 979	 */
 980	if (!ss_initialized)
 981		return 0;
 982
 
 
 
 
 
 
 
 983	/* how can we clone if the old one wasn't set up?? */
 984	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 985
 986	/* if fs is reusing a sb, make sure that the contexts match */
 987	if (newsbsec->flags & SE_SBINITIALIZED)
 988		return selinux_cmp_sb_context(oldsb, newsb);
 989
 990	mutex_lock(&newsbsec->lock);
 991
 992	newsbsec->flags = oldsbsec->flags;
 993
 994	newsbsec->sid = oldsbsec->sid;
 995	newsbsec->def_sid = oldsbsec->def_sid;
 996	newsbsec->behavior = oldsbsec->behavior;
 997
 
 
 
 
 
 
 
 
 
 
 
 
 998	if (set_context) {
 999		u32 sid = oldsbsec->mntpoint_sid;
1000
1001		if (!set_fscontext)
1002			newsbsec->sid = sid;
1003		if (!set_rootcontext) {
1004			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1005			newisec->sid = sid;
1006		}
1007		newsbsec->mntpoint_sid = sid;
1008	}
1009	if (set_rootcontext) {
1010		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1011		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1012
1013		newisec->sid = oldisec->sid;
1014	}
1015
1016	sb_finish_set_opts(newsb);
 
1017	mutex_unlock(&newsbsec->lock);
1018	return 0;
1019}
1020
1021static int selinux_parse_opts_str(char *options,
1022				  struct security_mnt_opts *opts)
1023{
1024	char *p;
1025	char *context = NULL, *defcontext = NULL;
1026	char *fscontext = NULL, *rootcontext = NULL;
1027	int rc, num_mnt_opts = 0;
1028
1029	opts->num_mnt_opts = 0;
1030
1031	/* Standard string-based options. */
1032	while ((p = strsep(&options, "|")) != NULL) {
1033		int token;
1034		substring_t args[MAX_OPT_ARGS];
1035
1036		if (!*p)
1037			continue;
1038
1039		token = match_token(p, tokens, args);
1040
1041		switch (token) {
1042		case Opt_context:
1043			if (context || defcontext) {
1044				rc = -EINVAL;
1045				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1046				goto out_err;
1047			}
1048			context = match_strdup(&args[0]);
1049			if (!context) {
1050				rc = -ENOMEM;
1051				goto out_err;
1052			}
1053			break;
1054
1055		case Opt_fscontext:
1056			if (fscontext) {
1057				rc = -EINVAL;
1058				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1059				goto out_err;
1060			}
1061			fscontext = match_strdup(&args[0]);
1062			if (!fscontext) {
1063				rc = -ENOMEM;
1064				goto out_err;
1065			}
1066			break;
1067
1068		case Opt_rootcontext:
1069			if (rootcontext) {
1070				rc = -EINVAL;
1071				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1072				goto out_err;
1073			}
1074			rootcontext = match_strdup(&args[0]);
1075			if (!rootcontext) {
1076				rc = -ENOMEM;
1077				goto out_err;
1078			}
1079			break;
1080
1081		case Opt_defcontext:
1082			if (context || defcontext) {
1083				rc = -EINVAL;
1084				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1085				goto out_err;
1086			}
1087			defcontext = match_strdup(&args[0]);
1088			if (!defcontext) {
1089				rc = -ENOMEM;
1090				goto out_err;
1091			}
1092			break;
1093		case Opt_labelsupport:
1094			break;
1095		default:
1096			rc = -EINVAL;
1097			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1098			goto out_err;
1099
1100		}
1101	}
1102
1103	rc = -ENOMEM;
1104	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1105	if (!opts->mnt_opts)
1106		goto out_err;
1107
1108	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1109				       GFP_KERNEL);
1110	if (!opts->mnt_opts_flags) {
1111		kfree(opts->mnt_opts);
1112		goto out_err;
1113	}
1114
1115	if (fscontext) {
1116		opts->mnt_opts[num_mnt_opts] = fscontext;
1117		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1118	}
1119	if (context) {
1120		opts->mnt_opts[num_mnt_opts] = context;
1121		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1122	}
1123	if (rootcontext) {
1124		opts->mnt_opts[num_mnt_opts] = rootcontext;
1125		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1126	}
1127	if (defcontext) {
1128		opts->mnt_opts[num_mnt_opts] = defcontext;
1129		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1130	}
1131
1132	opts->num_mnt_opts = num_mnt_opts;
1133	return 0;
1134
1135out_err:
 
1136	kfree(context);
1137	kfree(defcontext);
1138	kfree(fscontext);
1139	kfree(rootcontext);
1140	return rc;
1141}
1142/*
1143 * string mount options parsing and call set the sbsec
1144 */
1145static int superblock_doinit(struct super_block *sb, void *data)
1146{
1147	int rc = 0;
1148	char *options = data;
1149	struct security_mnt_opts opts;
1150
1151	security_init_mnt_opts(&opts);
1152
1153	if (!data)
1154		goto out;
1155
1156	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1157
1158	rc = selinux_parse_opts_str(options, &opts);
1159	if (rc)
1160		goto out_err;
1161
1162out:
1163	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1164
1165out_err:
1166	security_free_mnt_opts(&opts);
1167	return rc;
1168}
1169
1170static void selinux_write_opts(struct seq_file *m,
1171			       struct security_mnt_opts *opts)
1172{
1173	int i;
1174	char *prefix;
1175
1176	for (i = 0; i < opts->num_mnt_opts; i++) {
1177		char *has_comma;
1178
1179		if (opts->mnt_opts[i])
1180			has_comma = strchr(opts->mnt_opts[i], ',');
1181		else
1182			has_comma = NULL;
1183
1184		switch (opts->mnt_opts_flags[i]) {
1185		case CONTEXT_MNT:
1186			prefix = CONTEXT_STR;
1187			break;
1188		case FSCONTEXT_MNT:
1189			prefix = FSCONTEXT_STR;
1190			break;
1191		case ROOTCONTEXT_MNT:
1192			prefix = ROOTCONTEXT_STR;
1193			break;
1194		case DEFCONTEXT_MNT:
1195			prefix = DEFCONTEXT_STR;
1196			break;
1197		case SBLABEL_MNT:
1198			seq_putc(m, ',');
1199			seq_puts(m, LABELSUPP_STR);
1200			continue;
1201		default:
1202			BUG();
1203			return;
1204		};
1205		/* we need a comma before each option */
1206		seq_putc(m, ',');
1207		seq_puts(m, prefix);
1208		if (has_comma)
1209			seq_putc(m, '\"');
1210		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1211		if (has_comma)
1212			seq_putc(m, '\"');
1213	}
1214}
1215
1216static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1217{
1218	struct security_mnt_opts opts;
1219	int rc;
1220
1221	rc = selinux_get_mnt_opts(sb, &opts);
1222	if (rc) {
1223		/* before policy load we may get EINVAL, don't show anything */
1224		if (rc == -EINVAL)
1225			rc = 0;
1226		return rc;
1227	}
1228
1229	selinux_write_opts(m, &opts);
1230
1231	security_free_mnt_opts(&opts);
1232
1233	return rc;
1234}
1235
1236static inline u16 inode_mode_to_security_class(umode_t mode)
1237{
1238	switch (mode & S_IFMT) {
1239	case S_IFSOCK:
1240		return SECCLASS_SOCK_FILE;
1241	case S_IFLNK:
1242		return SECCLASS_LNK_FILE;
1243	case S_IFREG:
1244		return SECCLASS_FILE;
1245	case S_IFBLK:
1246		return SECCLASS_BLK_FILE;
1247	case S_IFDIR:
1248		return SECCLASS_DIR;
1249	case S_IFCHR:
1250		return SECCLASS_CHR_FILE;
1251	case S_IFIFO:
1252		return SECCLASS_FIFO_FILE;
1253
1254	}
1255
1256	return SECCLASS_FILE;
1257}
1258
1259static inline int default_protocol_stream(int protocol)
1260{
1261	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1262}
1263
1264static inline int default_protocol_dgram(int protocol)
1265{
1266	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1267}
1268
1269static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1270{
 
 
1271	switch (family) {
1272	case PF_UNIX:
1273		switch (type) {
1274		case SOCK_STREAM:
1275		case SOCK_SEQPACKET:
1276			return SECCLASS_UNIX_STREAM_SOCKET;
1277		case SOCK_DGRAM:
 
1278			return SECCLASS_UNIX_DGRAM_SOCKET;
1279		}
1280		break;
1281	case PF_INET:
1282	case PF_INET6:
1283		switch (type) {
1284		case SOCK_STREAM:
 
1285			if (default_protocol_stream(protocol))
1286				return SECCLASS_TCP_SOCKET;
 
 
1287			else
1288				return SECCLASS_RAWIP_SOCKET;
1289		case SOCK_DGRAM:
1290			if (default_protocol_dgram(protocol))
1291				return SECCLASS_UDP_SOCKET;
 
 
 
1292			else
1293				return SECCLASS_RAWIP_SOCKET;
1294		case SOCK_DCCP:
1295			return SECCLASS_DCCP_SOCKET;
1296		default:
1297			return SECCLASS_RAWIP_SOCKET;
1298		}
1299		break;
1300	case PF_NETLINK:
1301		switch (protocol) {
1302		case NETLINK_ROUTE:
1303			return SECCLASS_NETLINK_ROUTE_SOCKET;
1304		case NETLINK_SOCK_DIAG:
1305			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1306		case NETLINK_NFLOG:
1307			return SECCLASS_NETLINK_NFLOG_SOCKET;
1308		case NETLINK_XFRM:
1309			return SECCLASS_NETLINK_XFRM_SOCKET;
1310		case NETLINK_SELINUX:
1311			return SECCLASS_NETLINK_SELINUX_SOCKET;
1312		case NETLINK_ISCSI:
1313			return SECCLASS_NETLINK_ISCSI_SOCKET;
1314		case NETLINK_AUDIT:
1315			return SECCLASS_NETLINK_AUDIT_SOCKET;
1316		case NETLINK_FIB_LOOKUP:
1317			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1318		case NETLINK_CONNECTOR:
1319			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1320		case NETLINK_NETFILTER:
1321			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1322		case NETLINK_DNRTMSG:
1323			return SECCLASS_NETLINK_DNRT_SOCKET;
1324		case NETLINK_KOBJECT_UEVENT:
1325			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1326		case NETLINK_GENERIC:
1327			return SECCLASS_NETLINK_GENERIC_SOCKET;
1328		case NETLINK_SCSITRANSPORT:
1329			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1330		case NETLINK_RDMA:
1331			return SECCLASS_NETLINK_RDMA_SOCKET;
1332		case NETLINK_CRYPTO:
1333			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1334		default:
1335			return SECCLASS_NETLINK_SOCKET;
1336		}
1337	case PF_PACKET:
1338		return SECCLASS_PACKET_SOCKET;
1339	case PF_KEY:
1340		return SECCLASS_KEY_SOCKET;
1341	case PF_APPLETALK:
1342		return SECCLASS_APPLETALK_SOCKET;
1343	}
1344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1345	return SECCLASS_SOCKET;
1346}
1347
1348static int selinux_genfs_get_sid(struct dentry *dentry,
1349				 u16 tclass,
1350				 u16 flags,
1351				 u32 *sid)
1352{
1353	int rc;
1354	struct super_block *sb = dentry->d_sb;
1355	char *buffer, *path;
1356
1357	buffer = (char *)__get_free_page(GFP_KERNEL);
1358	if (!buffer)
1359		return -ENOMEM;
1360
1361	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1362	if (IS_ERR(path))
1363		rc = PTR_ERR(path);
1364	else {
1365		if (flags & SE_SBPROC) {
1366			/* each process gets a /proc/PID/ entry. Strip off the
1367			 * PID part to get a valid selinux labeling.
1368			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1369			while (path[1] >= '0' && path[1] <= '9') {
1370				path[1] = '/';
1371				path++;
1372			}
1373		}
1374		rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
 
1375	}
1376	free_page((unsigned long)buffer);
1377	return rc;
1378}
1379
1380/* The inode's security attributes must be initialized before first use. */
1381static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1382{
1383	struct superblock_security_struct *sbsec = NULL;
1384	struct inode_security_struct *isec = inode->i_security;
1385	u32 task_sid, sid = 0;
1386	u16 sclass;
1387	struct dentry *dentry;
1388#define INITCONTEXTLEN 255
1389	char *context = NULL;
1390	unsigned len = 0;
1391	int rc = 0;
1392
1393	if (isec->initialized == LABEL_INITIALIZED)
1394		return 0;
1395
1396	spin_lock(&isec->lock);
1397	if (isec->initialized == LABEL_INITIALIZED)
1398		goto out_unlock;
1399
1400	if (isec->sclass == SECCLASS_FILE)
1401		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1402
1403	sbsec = inode->i_sb->s_security;
1404	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1405		/* Defer initialization until selinux_complete_init,
1406		   after the initial policy is loaded and the security
1407		   server is ready to handle calls. */
1408		spin_lock(&sbsec->isec_lock);
1409		if (list_empty(&isec->list))
1410			list_add(&isec->list, &sbsec->isec_head);
1411		spin_unlock(&sbsec->isec_lock);
1412		goto out_unlock;
1413	}
1414
1415	sclass = isec->sclass;
1416	task_sid = isec->task_sid;
1417	sid = isec->sid;
1418	isec->initialized = LABEL_PENDING;
1419	spin_unlock(&isec->lock);
1420
1421	switch (sbsec->behavior) {
1422	case SECURITY_FS_USE_NATIVE:
1423		break;
1424	case SECURITY_FS_USE_XATTR:
1425		if (!(inode->i_opflags & IOP_XATTR)) {
1426			sid = sbsec->def_sid;
1427			break;
1428		}
1429		/* Need a dentry, since the xattr API requires one.
1430		   Life would be simpler if we could just pass the inode. */
1431		if (opt_dentry) {
1432			/* Called from d_instantiate or d_splice_alias. */
1433			dentry = dget(opt_dentry);
1434		} else {
1435			/* Called from selinux_complete_init, try to find a dentry. */
 
 
 
 
 
1436			dentry = d_find_alias(inode);
 
 
1437		}
1438		if (!dentry) {
1439			/*
1440			 * this is can be hit on boot when a file is accessed
1441			 * before the policy is loaded.  When we load policy we
1442			 * may find inodes that have no dentry on the
1443			 * sbsec->isec_head list.  No reason to complain as these
1444			 * will get fixed up the next time we go through
1445			 * inode_doinit with a dentry, before these inodes could
1446			 * be used again by userspace.
1447			 */
1448			goto out;
1449		}
1450
1451		len = INITCONTEXTLEN;
1452		context = kmalloc(len+1, GFP_NOFS);
1453		if (!context) {
1454			rc = -ENOMEM;
1455			dput(dentry);
1456			goto out;
1457		}
1458		context[len] = '\0';
1459		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1460		if (rc == -ERANGE) {
1461			kfree(context);
1462
1463			/* Need a larger buffer.  Query for the right size. */
1464			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1465			if (rc < 0) {
1466				dput(dentry);
1467				goto out;
1468			}
1469			len = rc;
1470			context = kmalloc(len+1, GFP_NOFS);
1471			if (!context) {
1472				rc = -ENOMEM;
1473				dput(dentry);
1474				goto out;
1475			}
1476			context[len] = '\0';
1477			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1478		}
1479		dput(dentry);
1480		if (rc < 0) {
1481			if (rc != -ENODATA) {
1482				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1483				       "%d for dev=%s ino=%ld\n", __func__,
1484				       -rc, inode->i_sb->s_id, inode->i_ino);
1485				kfree(context);
1486				goto out;
1487			}
1488			/* Map ENODATA to the default file SID */
1489			sid = sbsec->def_sid;
1490			rc = 0;
1491		} else {
1492			rc = security_context_to_sid_default(context, rc, &sid,
 
1493							     sbsec->def_sid,
1494							     GFP_NOFS);
1495			if (rc) {
1496				char *dev = inode->i_sb->s_id;
1497				unsigned long ino = inode->i_ino;
1498
1499				if (rc == -EINVAL) {
1500					if (printk_ratelimit())
1501						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1502							"context=%s.  This indicates you may need to relabel the inode or the "
1503							"filesystem in question.\n", ino, dev, context);
1504				} else {
1505					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1506					       "returned %d for dev=%s ino=%ld\n",
1507					       __func__, context, -rc, dev, ino);
1508				}
1509				kfree(context);
1510				/* Leave with the unlabeled SID */
1511				rc = 0;
1512				break;
1513			}
1514		}
1515		kfree(context);
1516		break;
1517	case SECURITY_FS_USE_TASK:
1518		sid = task_sid;
1519		break;
1520	case SECURITY_FS_USE_TRANS:
1521		/* Default to the fs SID. */
1522		sid = sbsec->sid;
1523
1524		/* Try to obtain a transition SID. */
1525		rc = security_transition_sid(task_sid, sid, sclass, NULL, &sid);
 
1526		if (rc)
1527			goto out;
1528		break;
1529	case SECURITY_FS_USE_MNTPOINT:
1530		sid = sbsec->mntpoint_sid;
1531		break;
1532	default:
1533		/* Default to the fs superblock SID. */
1534		sid = sbsec->sid;
1535
1536		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1537			/* We must have a dentry to determine the label on
1538			 * procfs inodes */
1539			if (opt_dentry)
1540				/* Called from d_instantiate or
1541				 * d_splice_alias. */
1542				dentry = dget(opt_dentry);
1543			else
1544				/* Called from selinux_complete_init, try to
1545				 * find a dentry. */
 
 
1546				dentry = d_find_alias(inode);
 
 
 
1547			/*
1548			 * This can be hit on boot when a file is accessed
1549			 * before the policy is loaded.  When we load policy we
1550			 * may find inodes that have no dentry on the
1551			 * sbsec->isec_head list.  No reason to complain as
1552			 * these will get fixed up the next time we go through
1553			 * inode_doinit() with a dentry, before these inodes
1554			 * could be used again by userspace.
1555			 */
1556			if (!dentry)
1557				goto out;
1558			rc = selinux_genfs_get_sid(dentry, sclass,
1559						   sbsec->flags, &sid);
1560			dput(dentry);
1561			if (rc)
1562				goto out;
1563		}
1564		break;
1565	}
1566
1567out:
1568	spin_lock(&isec->lock);
1569	if (isec->initialized == LABEL_PENDING) {
1570		if (!sid || rc) {
1571			isec->initialized = LABEL_INVALID;
1572			goto out_unlock;
1573		}
1574
1575		isec->initialized = LABEL_INITIALIZED;
1576		isec->sid = sid;
1577	}
1578
1579out_unlock:
1580	spin_unlock(&isec->lock);
1581	return rc;
1582}
1583
1584/* Convert a Linux signal to an access vector. */
1585static inline u32 signal_to_av(int sig)
1586{
1587	u32 perm = 0;
1588
1589	switch (sig) {
1590	case SIGCHLD:
1591		/* Commonly granted from child to parent. */
1592		perm = PROCESS__SIGCHLD;
1593		break;
1594	case SIGKILL:
1595		/* Cannot be caught or ignored */
1596		perm = PROCESS__SIGKILL;
1597		break;
1598	case SIGSTOP:
1599		/* Cannot be caught or ignored */
1600		perm = PROCESS__SIGSTOP;
1601		break;
1602	default:
1603		/* All other signals. */
1604		perm = PROCESS__SIGNAL;
1605		break;
1606	}
1607
1608	return perm;
1609}
1610
1611/*
1612 * Check permission between a pair of credentials
1613 * fork check, ptrace check, etc.
1614 */
1615static int cred_has_perm(const struct cred *actor,
1616			 const struct cred *target,
1617			 u32 perms)
1618{
1619	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1620
1621	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1622}
1623
1624/*
1625 * Check permission between a pair of tasks, e.g. signal checks,
1626 * fork check, ptrace check, etc.
1627 * tsk1 is the actor and tsk2 is the target
1628 * - this uses the default subjective creds of tsk1
1629 */
1630static int task_has_perm(const struct task_struct *tsk1,
1631			 const struct task_struct *tsk2,
1632			 u32 perms)
1633{
1634	const struct task_security_struct *__tsec1, *__tsec2;
1635	u32 sid1, sid2;
1636
1637	rcu_read_lock();
1638	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1639	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1640	rcu_read_unlock();
1641	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1642}
1643
1644/*
1645 * Check permission between current and another task, e.g. signal checks,
1646 * fork check, ptrace check, etc.
1647 * current is the actor and tsk2 is the target
1648 * - this uses current's subjective creds
1649 */
1650static int current_has_perm(const struct task_struct *tsk,
1651			    u32 perms)
1652{
1653	u32 sid, tsid;
1654
1655	sid = current_sid();
1656	tsid = task_sid(tsk);
1657	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1658}
1659
1660#if CAP_LAST_CAP > 63
1661#error Fix SELinux to handle capabilities > 63.
1662#endif
1663
1664/* Check whether a task is allowed to use a capability. */
1665static int cred_has_capability(const struct cred *cred,
1666			       int cap, int audit, bool initns)
1667{
1668	struct common_audit_data ad;
1669	struct av_decision avd;
1670	u16 sclass;
1671	u32 sid = cred_sid(cred);
1672	u32 av = CAP_TO_MASK(cap);
1673	int rc;
1674
1675	ad.type = LSM_AUDIT_DATA_CAP;
1676	ad.u.cap = cap;
1677
1678	switch (CAP_TO_INDEX(cap)) {
1679	case 0:
1680		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1681		break;
1682	case 1:
1683		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1684		break;
1685	default:
1686		printk(KERN_ERR
1687		       "SELinux:  out of range capability %d\n", cap);
1688		BUG();
1689		return -EINVAL;
1690	}
1691
1692	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
 
1693	if (audit == SECURITY_CAP_AUDIT) {
1694		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
 
1695		if (rc2)
1696			return rc2;
1697	}
1698	return rc;
1699}
1700
1701/* Check whether a task is allowed to use a system operation. */
1702static int task_has_system(struct task_struct *tsk,
1703			   u32 perms)
1704{
1705	u32 sid = task_sid(tsk);
1706
1707	return avc_has_perm(sid, SECINITSID_KERNEL,
1708			    SECCLASS_SYSTEM, perms, NULL);
1709}
1710
1711/* Check whether a task has a particular permission to an inode.
1712   The 'adp' parameter is optional and allows other audit
1713   data to be passed (e.g. the dentry). */
1714static int inode_has_perm(const struct cred *cred,
1715			  struct inode *inode,
1716			  u32 perms,
1717			  struct common_audit_data *adp)
1718{
1719	struct inode_security_struct *isec;
1720	u32 sid;
1721
1722	validate_creds(cred);
1723
1724	if (unlikely(IS_PRIVATE(inode)))
1725		return 0;
1726
1727	sid = cred_sid(cred);
1728	isec = inode->i_security;
1729
1730	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
 
1731}
1732
1733/* Same as inode_has_perm, but pass explicit audit data containing
1734   the dentry to help the auditing code to more easily generate the
1735   pathname if needed. */
1736static inline int dentry_has_perm(const struct cred *cred,
1737				  struct dentry *dentry,
1738				  u32 av)
1739{
1740	struct inode *inode = d_backing_inode(dentry);
1741	struct common_audit_data ad;
1742
1743	ad.type = LSM_AUDIT_DATA_DENTRY;
1744	ad.u.dentry = dentry;
1745	__inode_security_revalidate(inode, dentry, true);
1746	return inode_has_perm(cred, inode, av, &ad);
1747}
1748
1749/* Same as inode_has_perm, but pass explicit audit data containing
1750   the path to help the auditing code to more easily generate the
1751   pathname if needed. */
1752static inline int path_has_perm(const struct cred *cred,
1753				const struct path *path,
1754				u32 av)
1755{
1756	struct inode *inode = d_backing_inode(path->dentry);
1757	struct common_audit_data ad;
1758
1759	ad.type = LSM_AUDIT_DATA_PATH;
1760	ad.u.path = *path;
1761	__inode_security_revalidate(inode, path->dentry, true);
1762	return inode_has_perm(cred, inode, av, &ad);
1763}
1764
1765/* Same as path_has_perm, but uses the inode from the file struct. */
1766static inline int file_path_has_perm(const struct cred *cred,
1767				     struct file *file,
1768				     u32 av)
1769{
1770	struct common_audit_data ad;
1771
1772	ad.type = LSM_AUDIT_DATA_FILE;
1773	ad.u.file = file;
1774	return inode_has_perm(cred, file_inode(file), av, &ad);
1775}
1776
 
 
 
 
1777/* Check whether a task can use an open file descriptor to
1778   access an inode in a given way.  Check access to the
1779   descriptor itself, and then use dentry_has_perm to
1780   check a particular permission to the file.
1781   Access to the descriptor is implicitly granted if it
1782   has the same SID as the process.  If av is zero, then
1783   access to the file is not checked, e.g. for cases
1784   where only the descriptor is affected like seek. */
1785static int file_has_perm(const struct cred *cred,
1786			 struct file *file,
1787			 u32 av)
1788{
1789	struct file_security_struct *fsec = file->f_security;
1790	struct inode *inode = file_inode(file);
1791	struct common_audit_data ad;
1792	u32 sid = cred_sid(cred);
1793	int rc;
1794
1795	ad.type = LSM_AUDIT_DATA_FILE;
1796	ad.u.file = file;
1797
1798	if (sid != fsec->sid) {
1799		rc = avc_has_perm(sid, fsec->sid,
 
1800				  SECCLASS_FD,
1801				  FD__USE,
1802				  &ad);
1803		if (rc)
1804			goto out;
1805	}
1806
 
 
 
 
 
 
1807	/* av is zero if only checking access to the descriptor. */
1808	rc = 0;
1809	if (av)
1810		rc = inode_has_perm(cred, inode, av, &ad);
1811
1812out:
1813	return rc;
1814}
1815
1816/*
1817 * Determine the label for an inode that might be unioned.
1818 */
1819static int
1820selinux_determine_inode_label(const struct task_security_struct *tsec,
1821				 struct inode *dir,
1822				 const struct qstr *name, u16 tclass,
1823				 u32 *_new_isid)
1824{
1825	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1826
1827	if ((sbsec->flags & SE_SBINITIALIZED) &&
1828	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1829		*_new_isid = sbsec->mntpoint_sid;
1830	} else if ((sbsec->flags & SBLABEL_MNT) &&
1831		   tsec->create_sid) {
1832		*_new_isid = tsec->create_sid;
1833	} else {
1834		const struct inode_security_struct *dsec = inode_security(dir);
1835		return security_transition_sid(tsec->sid, dsec->sid, tclass,
 
1836					       name, _new_isid);
1837	}
1838
1839	return 0;
1840}
1841
1842/* Check whether a task can create a file. */
1843static int may_create(struct inode *dir,
1844		      struct dentry *dentry,
1845		      u16 tclass)
1846{
1847	const struct task_security_struct *tsec = current_security();
1848	struct inode_security_struct *dsec;
1849	struct superblock_security_struct *sbsec;
1850	u32 sid, newsid;
1851	struct common_audit_data ad;
1852	int rc;
1853
1854	dsec = inode_security(dir);
1855	sbsec = dir->i_sb->s_security;
1856
1857	sid = tsec->sid;
1858
1859	ad.type = LSM_AUDIT_DATA_DENTRY;
1860	ad.u.dentry = dentry;
1861
1862	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1863			  DIR__ADD_NAME | DIR__SEARCH,
1864			  &ad);
1865	if (rc)
1866		return rc;
1867
1868	rc = selinux_determine_inode_label(current_security(), dir,
1869					   &dentry->d_name, tclass, &newsid);
1870	if (rc)
1871		return rc;
1872
1873	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1874	if (rc)
1875		return rc;
1876
1877	return avc_has_perm(newsid, sbsec->sid,
 
1878			    SECCLASS_FILESYSTEM,
1879			    FILESYSTEM__ASSOCIATE, &ad);
1880}
1881
1882/* Check whether a task can create a key. */
1883static int may_create_key(u32 ksid,
1884			  struct task_struct *ctx)
1885{
1886	u32 sid = task_sid(ctx);
1887
1888	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1889}
1890
1891#define MAY_LINK	0
1892#define MAY_UNLINK	1
1893#define MAY_RMDIR	2
1894
1895/* Check whether a task can link, unlink, or rmdir a file/directory. */
1896static int may_link(struct inode *dir,
1897		    struct dentry *dentry,
1898		    int kind)
1899
1900{
1901	struct inode_security_struct *dsec, *isec;
1902	struct common_audit_data ad;
1903	u32 sid = current_sid();
1904	u32 av;
1905	int rc;
1906
1907	dsec = inode_security(dir);
1908	isec = backing_inode_security(dentry);
1909
1910	ad.type = LSM_AUDIT_DATA_DENTRY;
1911	ad.u.dentry = dentry;
1912
1913	av = DIR__SEARCH;
1914	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1915	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1916	if (rc)
1917		return rc;
1918
1919	switch (kind) {
1920	case MAY_LINK:
1921		av = FILE__LINK;
1922		break;
1923	case MAY_UNLINK:
1924		av = FILE__UNLINK;
1925		break;
1926	case MAY_RMDIR:
1927		av = DIR__RMDIR;
1928		break;
1929	default:
1930		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1931			__func__, kind);
1932		return 0;
1933	}
1934
1935	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1936	return rc;
1937}
1938
1939static inline int may_rename(struct inode *old_dir,
1940			     struct dentry *old_dentry,
1941			     struct inode *new_dir,
1942			     struct dentry *new_dentry)
1943{
1944	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1945	struct common_audit_data ad;
1946	u32 sid = current_sid();
1947	u32 av;
1948	int old_is_dir, new_is_dir;
1949	int rc;
1950
1951	old_dsec = inode_security(old_dir);
1952	old_isec = backing_inode_security(old_dentry);
1953	old_is_dir = d_is_dir(old_dentry);
1954	new_dsec = inode_security(new_dir);
1955
1956	ad.type = LSM_AUDIT_DATA_DENTRY;
1957
1958	ad.u.dentry = old_dentry;
1959	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1960			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1961	if (rc)
1962		return rc;
1963	rc = avc_has_perm(sid, old_isec->sid,
 
1964			  old_isec->sclass, FILE__RENAME, &ad);
1965	if (rc)
1966		return rc;
1967	if (old_is_dir && new_dir != old_dir) {
1968		rc = avc_has_perm(sid, old_isec->sid,
 
1969				  old_isec->sclass, DIR__REPARENT, &ad);
1970		if (rc)
1971			return rc;
1972	}
1973
1974	ad.u.dentry = new_dentry;
1975	av = DIR__ADD_NAME | DIR__SEARCH;
1976	if (d_is_positive(new_dentry))
1977		av |= DIR__REMOVE_NAME;
1978	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1979	if (rc)
1980		return rc;
1981	if (d_is_positive(new_dentry)) {
1982		new_isec = backing_inode_security(new_dentry);
1983		new_is_dir = d_is_dir(new_dentry);
1984		rc = avc_has_perm(sid, new_isec->sid,
 
1985				  new_isec->sclass,
1986				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1987		if (rc)
1988			return rc;
1989	}
1990
1991	return 0;
1992}
1993
1994/* Check whether a task can perform a filesystem operation. */
1995static int superblock_has_perm(const struct cred *cred,
1996			       struct super_block *sb,
1997			       u32 perms,
1998			       struct common_audit_data *ad)
1999{
2000	struct superblock_security_struct *sbsec;
2001	u32 sid = cred_sid(cred);
2002
2003	sbsec = sb->s_security;
2004	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
2005}
2006
2007/* Convert a Linux mode and permission mask to an access vector. */
2008static inline u32 file_mask_to_av(int mode, int mask)
2009{
2010	u32 av = 0;
2011
2012	if (!S_ISDIR(mode)) {
2013		if (mask & MAY_EXEC)
2014			av |= FILE__EXECUTE;
2015		if (mask & MAY_READ)
2016			av |= FILE__READ;
2017
2018		if (mask & MAY_APPEND)
2019			av |= FILE__APPEND;
2020		else if (mask & MAY_WRITE)
2021			av |= FILE__WRITE;
2022
2023	} else {
2024		if (mask & MAY_EXEC)
2025			av |= DIR__SEARCH;
2026		if (mask & MAY_WRITE)
2027			av |= DIR__WRITE;
2028		if (mask & MAY_READ)
2029			av |= DIR__READ;
2030	}
2031
2032	return av;
2033}
2034
2035/* Convert a Linux file to an access vector. */
2036static inline u32 file_to_av(struct file *file)
2037{
2038	u32 av = 0;
2039
2040	if (file->f_mode & FMODE_READ)
2041		av |= FILE__READ;
2042	if (file->f_mode & FMODE_WRITE) {
2043		if (file->f_flags & O_APPEND)
2044			av |= FILE__APPEND;
2045		else
2046			av |= FILE__WRITE;
2047	}
2048	if (!av) {
2049		/*
2050		 * Special file opened with flags 3 for ioctl-only use.
2051		 */
2052		av = FILE__IOCTL;
2053	}
2054
2055	return av;
2056}
2057
2058/*
2059 * Convert a file to an access vector and include the correct open
2060 * open permission.
2061 */
2062static inline u32 open_file_to_av(struct file *file)
2063{
2064	u32 av = file_to_av(file);
 
2065
2066	if (selinux_policycap_openperm)
 
2067		av |= FILE__OPEN;
2068
2069	return av;
2070}
2071
2072/* Hook functions begin here. */
2073
2074static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2075{
2076	u32 mysid = current_sid();
2077	u32 mgrsid = task_sid(mgr);
2078
2079	return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
 
2080			    BINDER__SET_CONTEXT_MGR, NULL);
2081}
2082
2083static int selinux_binder_transaction(struct task_struct *from,
2084				      struct task_struct *to)
2085{
2086	u32 mysid = current_sid();
2087	u32 fromsid = task_sid(from);
2088	u32 tosid = task_sid(to);
2089	int rc;
2090
2091	if (mysid != fromsid) {
2092		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
 
2093				  BINDER__IMPERSONATE, NULL);
2094		if (rc)
2095			return rc;
2096	}
2097
2098	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
 
2099			    NULL);
2100}
2101
2102static int selinux_binder_transfer_binder(struct task_struct *from,
2103					  struct task_struct *to)
2104{
2105	u32 fromsid = task_sid(from);
2106	u32 tosid = task_sid(to);
2107
2108	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
 
2109			    NULL);
2110}
2111
2112static int selinux_binder_transfer_file(struct task_struct *from,
2113					struct task_struct *to,
2114					struct file *file)
2115{
2116	u32 sid = task_sid(to);
2117	struct file_security_struct *fsec = file->f_security;
2118	struct dentry *dentry = file->f_path.dentry;
2119	struct inode_security_struct *isec;
2120	struct common_audit_data ad;
2121	int rc;
2122
2123	ad.type = LSM_AUDIT_DATA_PATH;
2124	ad.u.path = file->f_path;
2125
2126	if (sid != fsec->sid) {
2127		rc = avc_has_perm(sid, fsec->sid,
 
2128				  SECCLASS_FD,
2129				  FD__USE,
2130				  &ad);
2131		if (rc)
2132			return rc;
2133	}
2134
 
 
 
 
 
 
2135	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2136		return 0;
2137
2138	isec = backing_inode_security(dentry);
2139	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
 
2140			    &ad);
2141}
2142
2143static int selinux_ptrace_access_check(struct task_struct *child,
2144				     unsigned int mode)
2145{
2146	if (mode & PTRACE_MODE_READ) {
2147		u32 sid = current_sid();
2148		u32 csid = task_sid(child);
2149		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150	}
 
2151
2152	return current_has_perm(child, PROCESS__PTRACE);
 
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157	return task_has_perm(parent, current, PROCESS__PTRACE);
 
 
2158}
2159
2160static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2161			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2162{
2163	return current_has_perm(target, PROCESS__GETCAP);
 
 
2164}
2165
2166static int selinux_capset(struct cred *new, const struct cred *old,
2167			  const kernel_cap_t *effective,
2168			  const kernel_cap_t *inheritable,
2169			  const kernel_cap_t *permitted)
2170{
2171	return cred_has_perm(old, new, PROCESS__SETCAP);
 
 
2172}
2173
2174/*
2175 * (This comment used to live with the selinux_task_setuid hook,
2176 * which was removed).
2177 *
2178 * Since setuid only affects the current process, and since the SELinux
2179 * controls are not based on the Linux identity attributes, SELinux does not
2180 * need to control this operation.  However, SELinux does control the use of
2181 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2182 */
2183
2184static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2185			   int cap, int audit)
2186{
2187	return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2188}
2189
2190static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2191{
2192	const struct cred *cred = current_cred();
2193	int rc = 0;
2194
2195	if (!sb)
2196		return 0;
2197
2198	switch (cmds) {
2199	case Q_SYNC:
2200	case Q_QUOTAON:
2201	case Q_QUOTAOFF:
2202	case Q_SETINFO:
2203	case Q_SETQUOTA:
2204		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2205		break;
2206	case Q_GETFMT:
2207	case Q_GETINFO:
2208	case Q_GETQUOTA:
2209		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2210		break;
2211	default:
2212		rc = 0;  /* let the kernel handle invalid cmds */
2213		break;
2214	}
2215	return rc;
2216}
2217
2218static int selinux_quota_on(struct dentry *dentry)
2219{
2220	const struct cred *cred = current_cred();
2221
2222	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2223}
2224
2225static int selinux_syslog(int type)
2226{
2227	int rc;
2228
2229	switch (type) {
2230	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2231	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2232		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2233		break;
 
2234	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2235	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2236	/* Set level of messages printed to console */
2237	case SYSLOG_ACTION_CONSOLE_LEVEL:
2238		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2239		break;
2240	case SYSLOG_ACTION_CLOSE:	/* Close log */
2241	case SYSLOG_ACTION_OPEN:	/* Open log */
2242	case SYSLOG_ACTION_READ:	/* Read from log */
2243	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
2244	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
2245	default:
2246		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2247		break;
2248	}
2249	return rc;
2250}
2251
2252/*
2253 * Check that a process has enough memory to allocate a new virtual
2254 * mapping. 0 means there is enough memory for the allocation to
2255 * succeed and -ENOMEM implies there is not.
2256 *
2257 * Do not audit the selinux permission check, as this is applied to all
2258 * processes that allocate mappings.
2259 */
2260static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2261{
2262	int rc, cap_sys_admin = 0;
2263
2264	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2265				 SECURITY_CAP_NOAUDIT, true);
2266	if (rc == 0)
2267		cap_sys_admin = 1;
2268
2269	return cap_sys_admin;
2270}
2271
2272/* binprm security operations */
2273
2274static u32 ptrace_parent_sid(struct task_struct *task)
2275{
2276	u32 sid = 0;
2277	struct task_struct *tracer;
2278
2279	rcu_read_lock();
2280	tracer = ptrace_parent(task);
2281	if (tracer)
2282		sid = task_sid(tracer);
2283	rcu_read_unlock();
2284
2285	return sid;
2286}
2287
2288static int check_nnp_nosuid(const struct linux_binprm *bprm,
2289			    const struct task_security_struct *old_tsec,
2290			    const struct task_security_struct *new_tsec)
2291{
2292	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2293	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2294	int rc;
 
2295
2296	if (!nnp && !nosuid)
2297		return 0; /* neither NNP nor nosuid */
2298
2299	if (new_tsec->sid == old_tsec->sid)
2300		return 0; /* No change in credentials */
2301
2302	/*
2303	 * The only transitions we permit under NNP or nosuid
2304	 * are transitions to bounded SIDs, i.e. SIDs that are
2305	 * guaranteed to only be allowed a subset of the permissions
2306	 * of the current SID.
2307	 */
2308	rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2309	if (rc) {
2310		/*
2311		 * On failure, preserve the errno values for NNP vs nosuid.
2312		 * NNP:  Operation not permitted for caller.
2313		 * nosuid:  Permission denied to file.
2314		 */
2315		if (nnp)
2316			return -EPERM;
2317		else
2318			return -EACCES;
 
 
 
 
 
2319	}
2320	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2321}
2322
2323static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2324{
2325	const struct task_security_struct *old_tsec;
2326	struct task_security_struct *new_tsec;
2327	struct inode_security_struct *isec;
2328	struct common_audit_data ad;
2329	struct inode *inode = file_inode(bprm->file);
2330	int rc;
2331
2332	/* SELinux context only depends on initial program or script and not
2333	 * the script interpreter */
2334	if (bprm->cred_prepared)
2335		return 0;
2336
2337	old_tsec = current_security();
2338	new_tsec = bprm->cred->security;
2339	isec = inode_security(inode);
2340
2341	/* Default to the current task SID. */
2342	new_tsec->sid = old_tsec->sid;
2343	new_tsec->osid = old_tsec->sid;
2344
2345	/* Reset fs, key, and sock SIDs on execve. */
2346	new_tsec->create_sid = 0;
2347	new_tsec->keycreate_sid = 0;
2348	new_tsec->sockcreate_sid = 0;
2349
2350	if (old_tsec->exec_sid) {
2351		new_tsec->sid = old_tsec->exec_sid;
2352		/* Reset exec SID on execve. */
2353		new_tsec->exec_sid = 0;
2354
2355		/* Fail on NNP or nosuid if not an allowed transition. */
2356		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2357		if (rc)
2358			return rc;
2359	} else {
2360		/* Check for a default transition on this program. */
2361		rc = security_transition_sid(old_tsec->sid, isec->sid,
2362					     SECCLASS_PROCESS, NULL,
2363					     &new_tsec->sid);
2364		if (rc)
2365			return rc;
2366
2367		/*
2368		 * Fallback to old SID on NNP or nosuid if not an allowed
2369		 * transition.
2370		 */
2371		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2372		if (rc)
2373			new_tsec->sid = old_tsec->sid;
2374	}
2375
2376	ad.type = LSM_AUDIT_DATA_FILE;
2377	ad.u.file = bprm->file;
2378
2379	if (new_tsec->sid == old_tsec->sid) {
2380		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2381				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2382		if (rc)
2383			return rc;
2384	} else {
2385		/* Check permissions for the transition. */
2386		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2387				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2388		if (rc)
2389			return rc;
2390
2391		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2392				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2393		if (rc)
2394			return rc;
2395
2396		/* Check for shared state */
2397		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2398			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2399					  SECCLASS_PROCESS, PROCESS__SHARE,
2400					  NULL);
2401			if (rc)
2402				return -EPERM;
2403		}
2404
2405		/* Make sure that anyone attempting to ptrace over a task that
2406		 * changes its SID has the appropriate permit */
2407		if (bprm->unsafe &
2408		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2409			u32 ptsid = ptrace_parent_sid(current);
2410			if (ptsid != 0) {
2411				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2412						  SECCLASS_PROCESS,
2413						  PROCESS__PTRACE, NULL);
2414				if (rc)
2415					return -EPERM;
2416			}
2417		}
2418
2419		/* Clear any possibly unsafe personality bits on exec: */
2420		bprm->per_clear |= PER_CLEAR_ON_SETID;
2421	}
2422
2423	return 0;
2424}
2425
2426static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2427{
2428	const struct task_security_struct *tsec = current_security();
2429	u32 sid, osid;
2430	int atsecure = 0;
2431
2432	sid = tsec->sid;
2433	osid = tsec->osid;
2434
2435	if (osid != sid) {
2436		/* Enable secure mode for SIDs transitions unless
2437		   the noatsecure permission is granted between
2438		   the two SIDs, i.e. ahp returns 0. */
2439		atsecure = avc_has_perm(osid, sid,
2440					SECCLASS_PROCESS,
2441					PROCESS__NOATSECURE, NULL);
 
 
2442	}
2443
2444	return !!atsecure;
2445}
2446
2447static int match_file(const void *p, struct file *file, unsigned fd)
2448{
2449	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2450}
2451
2452/* Derived from fs/exec.c:flush_old_files. */
2453static inline void flush_unauthorized_files(const struct cred *cred,
2454					    struct files_struct *files)
2455{
2456	struct file *file, *devnull = NULL;
2457	struct tty_struct *tty;
2458	int drop_tty = 0;
2459	unsigned n;
2460
2461	tty = get_current_tty();
2462	if (tty) {
2463		spin_lock(&tty->files_lock);
2464		if (!list_empty(&tty->tty_files)) {
2465			struct tty_file_private *file_priv;
2466
2467			/* Revalidate access to controlling tty.
2468			   Use file_path_has_perm on the tty path directly
2469			   rather than using file_has_perm, as this particular
2470			   open file may belong to another process and we are
2471			   only interested in the inode-based check here. */
2472			file_priv = list_first_entry(&tty->tty_files,
2473						struct tty_file_private, list);
2474			file = file_priv->file;
2475			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2476				drop_tty = 1;
2477		}
2478		spin_unlock(&tty->files_lock);
2479		tty_kref_put(tty);
2480	}
2481	/* Reset controlling tty. */
2482	if (drop_tty)
2483		no_tty();
2484
2485	/* Revalidate access to inherited open files. */
2486	n = iterate_fd(files, 0, match_file, cred);
2487	if (!n) /* none found? */
2488		return;
2489
2490	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2491	if (IS_ERR(devnull))
2492		devnull = NULL;
2493	/* replace all the matching ones with this */
2494	do {
2495		replace_fd(n - 1, devnull, 0);
2496	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2497	if (devnull)
2498		fput(devnull);
2499}
2500
2501/*
2502 * Prepare a process for imminent new credential changes due to exec
2503 */
2504static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2505{
2506	struct task_security_struct *new_tsec;
2507	struct rlimit *rlim, *initrlim;
2508	int rc, i;
2509
2510	new_tsec = bprm->cred->security;
2511	if (new_tsec->sid == new_tsec->osid)
2512		return;
2513
2514	/* Close files for which the new task SID is not authorized. */
2515	flush_unauthorized_files(bprm->cred, current->files);
2516
2517	/* Always clear parent death signal on SID transitions. */
2518	current->pdeath_signal = 0;
2519
2520	/* Check whether the new SID can inherit resource limits from the old
2521	 * SID.  If not, reset all soft limits to the lower of the current
2522	 * task's hard limit and the init task's soft limit.
2523	 *
2524	 * Note that the setting of hard limits (even to lower them) can be
2525	 * controlled by the setrlimit check.  The inclusion of the init task's
2526	 * soft limit into the computation is to avoid resetting soft limits
2527	 * higher than the default soft limit for cases where the default is
2528	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2529	 */
2530	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2531			  PROCESS__RLIMITINH, NULL);
2532	if (rc) {
2533		/* protect against do_prlimit() */
2534		task_lock(current);
2535		for (i = 0; i < RLIM_NLIMITS; i++) {
2536			rlim = current->signal->rlim + i;
2537			initrlim = init_task.signal->rlim + i;
2538			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2539		}
2540		task_unlock(current);
2541		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2542			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2543	}
2544}
2545
2546/*
2547 * Clean up the process immediately after the installation of new credentials
2548 * due to exec
2549 */
2550static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2551{
2552	const struct task_security_struct *tsec = current_security();
2553	struct itimerval itimer;
2554	u32 osid, sid;
2555	int rc, i;
2556
2557	osid = tsec->osid;
2558	sid = tsec->sid;
2559
2560	if (sid == osid)
2561		return;
2562
2563	/* Check whether the new SID can inherit signal state from the old SID.
2564	 * If not, clear itimers to avoid subsequent signal generation and
2565	 * flush and unblock signals.
2566	 *
2567	 * This must occur _after_ the task SID has been updated so that any
2568	 * kill done after the flush will be checked against the new SID.
2569	 */
2570	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2571	if (rc) {
2572		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573			memset(&itimer, 0, sizeof itimer);
2574			for (i = 0; i < 3; i++)
2575				do_setitimer(i, &itimer, NULL);
2576		}
2577		spin_lock_irq(&current->sighand->siglock);
2578		if (!fatal_signal_pending(current)) {
2579			flush_sigqueue(&current->pending);
2580			flush_sigqueue(&current->signal->shared_pending);
2581			flush_signal_handlers(current, 1);
2582			sigemptyset(&current->blocked);
2583			recalc_sigpending();
2584		}
2585		spin_unlock_irq(&current->sighand->siglock);
2586	}
2587
2588	/* Wake up the parent if it is waiting so that it can recheck
2589	 * wait permission to the new task SID. */
2590	read_lock(&tasklist_lock);
2591	__wake_up_parent(current, current->real_parent);
2592	read_unlock(&tasklist_lock);
2593}
2594
2595/* superblock security operations */
2596
2597static int selinux_sb_alloc_security(struct super_block *sb)
2598{
2599	return superblock_alloc_security(sb);
2600}
2601
2602static void selinux_sb_free_security(struct super_block *sb)
2603{
2604	superblock_free_security(sb);
2605}
2606
2607static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2608{
2609	if (plen > olen)
2610		return 0;
2611
2612	return !memcmp(prefix, option, plen);
2613}
2614
2615static inline int selinux_option(char *option, int len)
2616{
2617	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2618		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2619		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2620		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2621		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2622}
2623
2624static inline void take_option(char **to, char *from, int *first, int len)
2625{
2626	if (!*first) {
2627		**to = ',';
2628		*to += 1;
2629	} else
2630		*first = 0;
2631	memcpy(*to, from, len);
2632	*to += len;
2633}
2634
2635static inline void take_selinux_option(char **to, char *from, int *first,
2636				       int len)
2637{
2638	int current_size = 0;
2639
2640	if (!*first) {
2641		**to = '|';
2642		*to += 1;
2643	} else
2644		*first = 0;
2645
2646	while (current_size < len) {
2647		if (*from != '"') {
2648			**to = *from;
2649			*to += 1;
2650		}
2651		from += 1;
2652		current_size += 1;
2653	}
2654}
2655
2656static int selinux_sb_copy_data(char *orig, char *copy)
2657{
2658	int fnosec, fsec, rc = 0;
2659	char *in_save, *in_curr, *in_end;
2660	char *sec_curr, *nosec_save, *nosec;
2661	int open_quote = 0;
2662
2663	in_curr = orig;
2664	sec_curr = copy;
2665
2666	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2667	if (!nosec) {
2668		rc = -ENOMEM;
2669		goto out;
2670	}
2671
2672	nosec_save = nosec;
2673	fnosec = fsec = 1;
2674	in_save = in_end = orig;
2675
2676	do {
2677		if (*in_end == '"')
2678			open_quote = !open_quote;
2679		if ((*in_end == ',' && open_quote == 0) ||
2680				*in_end == '\0') {
2681			int len = in_end - in_curr;
2682
2683			if (selinux_option(in_curr, len))
2684				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2685			else
2686				take_option(&nosec, in_curr, &fnosec, len);
2687
2688			in_curr = in_end + 1;
2689		}
2690	} while (*in_end++);
2691
2692	strcpy(in_save, nosec_save);
2693	free_page((unsigned long)nosec_save);
2694out:
2695	return rc;
2696}
2697
2698static int selinux_sb_remount(struct super_block *sb, void *data)
2699{
2700	int rc, i, *flags;
2701	struct security_mnt_opts opts;
2702	char *secdata, **mount_options;
2703	struct superblock_security_struct *sbsec = sb->s_security;
2704
2705	if (!(sbsec->flags & SE_SBINITIALIZED))
2706		return 0;
2707
2708	if (!data)
2709		return 0;
2710
2711	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2712		return 0;
2713
2714	security_init_mnt_opts(&opts);
2715	secdata = alloc_secdata();
2716	if (!secdata)
2717		return -ENOMEM;
2718	rc = selinux_sb_copy_data(data, secdata);
2719	if (rc)
2720		goto out_free_secdata;
2721
2722	rc = selinux_parse_opts_str(secdata, &opts);
2723	if (rc)
2724		goto out_free_secdata;
2725
2726	mount_options = opts.mnt_opts;
2727	flags = opts.mnt_opts_flags;
2728
2729	for (i = 0; i < opts.num_mnt_opts; i++) {
2730		u32 sid;
2731
2732		if (flags[i] == SBLABEL_MNT)
2733			continue;
2734		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
 
 
2735		if (rc) {
2736			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2737			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2738			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2739			goto out_free_opts;
2740		}
2741		rc = -EINVAL;
2742		switch (flags[i]) {
2743		case FSCONTEXT_MNT:
2744			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2745				goto out_bad_option;
2746			break;
2747		case CONTEXT_MNT:
2748			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2749				goto out_bad_option;
2750			break;
2751		case ROOTCONTEXT_MNT: {
2752			struct inode_security_struct *root_isec;
2753			root_isec = backing_inode_security(sb->s_root);
2754
2755			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2756				goto out_bad_option;
2757			break;
2758		}
2759		case DEFCONTEXT_MNT:
2760			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2761				goto out_bad_option;
2762			break;
2763		default:
2764			goto out_free_opts;
2765		}
2766	}
2767
2768	rc = 0;
2769out_free_opts:
2770	security_free_mnt_opts(&opts);
2771out_free_secdata:
2772	free_secdata(secdata);
2773	return rc;
2774out_bad_option:
2775	printk(KERN_WARNING "SELinux: unable to change security options "
2776	       "during remount (dev %s, type=%s)\n", sb->s_id,
2777	       sb->s_type->name);
2778	goto out_free_opts;
2779}
2780
2781static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2782{
2783	const struct cred *cred = current_cred();
2784	struct common_audit_data ad;
2785	int rc;
2786
2787	rc = superblock_doinit(sb, data);
2788	if (rc)
2789		return rc;
2790
2791	/* Allow all mounts performed by the kernel */
2792	if (flags & MS_KERNMOUNT)
2793		return 0;
2794
2795	ad.type = LSM_AUDIT_DATA_DENTRY;
2796	ad.u.dentry = sb->s_root;
2797	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2798}
2799
2800static int selinux_sb_statfs(struct dentry *dentry)
2801{
2802	const struct cred *cred = current_cred();
2803	struct common_audit_data ad;
2804
2805	ad.type = LSM_AUDIT_DATA_DENTRY;
2806	ad.u.dentry = dentry->d_sb->s_root;
2807	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2808}
2809
2810static int selinux_mount(const char *dev_name,
2811			 const struct path *path,
2812			 const char *type,
2813			 unsigned long flags,
2814			 void *data)
2815{
2816	const struct cred *cred = current_cred();
2817
2818	if (flags & MS_REMOUNT)
2819		return superblock_has_perm(cred, path->dentry->d_sb,
2820					   FILESYSTEM__REMOUNT, NULL);
2821	else
2822		return path_has_perm(cred, path, FILE__MOUNTON);
2823}
2824
2825static int selinux_umount(struct vfsmount *mnt, int flags)
2826{
2827	const struct cred *cred = current_cred();
2828
2829	return superblock_has_perm(cred, mnt->mnt_sb,
2830				   FILESYSTEM__UNMOUNT, NULL);
2831}
2832
2833/* inode security operations */
2834
2835static int selinux_inode_alloc_security(struct inode *inode)
2836{
2837	return inode_alloc_security(inode);
2838}
2839
2840static void selinux_inode_free_security(struct inode *inode)
2841{
2842	inode_free_security(inode);
2843}
2844
2845static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2846					const struct qstr *name, void **ctx,
2847					u32 *ctxlen)
2848{
2849	u32 newsid;
2850	int rc;
2851
2852	rc = selinux_determine_inode_label(current_security(),
2853					   d_inode(dentry->d_parent), name,
2854					   inode_mode_to_security_class(mode),
2855					   &newsid);
2856	if (rc)
2857		return rc;
2858
2859	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
 
2860}
2861
2862static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2863					  struct qstr *name,
2864					  const struct cred *old,
2865					  struct cred *new)
2866{
2867	u32 newsid;
2868	int rc;
2869	struct task_security_struct *tsec;
2870
2871	rc = selinux_determine_inode_label(old->security,
2872					   d_inode(dentry->d_parent), name,
2873					   inode_mode_to_security_class(mode),
2874					   &newsid);
2875	if (rc)
2876		return rc;
2877
2878	tsec = new->security;
2879	tsec->create_sid = newsid;
2880	return 0;
2881}
2882
2883static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2884				       const struct qstr *qstr,
2885				       const char **name,
2886				       void **value, size_t *len)
2887{
2888	const struct task_security_struct *tsec = current_security();
2889	struct superblock_security_struct *sbsec;
2890	u32 sid, newsid, clen;
2891	int rc;
2892	char *context;
2893
2894	sbsec = dir->i_sb->s_security;
2895
2896	sid = tsec->sid;
2897	newsid = tsec->create_sid;
2898
2899	rc = selinux_determine_inode_label(current_security(),
2900		dir, qstr,
2901		inode_mode_to_security_class(inode->i_mode),
2902		&newsid);
2903	if (rc)
2904		return rc;
2905
2906	/* Possibly defer initialization to selinux_complete_init. */
2907	if (sbsec->flags & SE_SBINITIALIZED) {
2908		struct inode_security_struct *isec = inode->i_security;
2909		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2910		isec->sid = newsid;
2911		isec->initialized = LABEL_INITIALIZED;
2912	}
2913
2914	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2915		return -EOPNOTSUPP;
2916
2917	if (name)
2918		*name = XATTR_SELINUX_SUFFIX;
2919
2920	if (value && len) {
2921		rc = security_sid_to_context_force(newsid, &context, &clen);
 
2922		if (rc)
2923			return rc;
2924		*value = context;
2925		*len = clen;
2926	}
2927
2928	return 0;
2929}
2930
2931static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2932{
2933	return may_create(dir, dentry, SECCLASS_FILE);
2934}
2935
2936static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2937{
2938	return may_link(dir, old_dentry, MAY_LINK);
2939}
2940
2941static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2942{
2943	return may_link(dir, dentry, MAY_UNLINK);
2944}
2945
2946static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2947{
2948	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2949}
2950
2951static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2952{
2953	return may_create(dir, dentry, SECCLASS_DIR);
2954}
2955
2956static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2957{
2958	return may_link(dir, dentry, MAY_RMDIR);
2959}
2960
2961static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2962{
2963	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2964}
2965
2966static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2967				struct inode *new_inode, struct dentry *new_dentry)
2968{
2969	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2970}
2971
2972static int selinux_inode_readlink(struct dentry *dentry)
2973{
2974	const struct cred *cred = current_cred();
2975
2976	return dentry_has_perm(cred, dentry, FILE__READ);
2977}
2978
2979static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2980				     bool rcu)
2981{
2982	const struct cred *cred = current_cred();
2983	struct common_audit_data ad;
2984	struct inode_security_struct *isec;
2985	u32 sid;
2986
2987	validate_creds(cred);
2988
2989	ad.type = LSM_AUDIT_DATA_DENTRY;
2990	ad.u.dentry = dentry;
2991	sid = cred_sid(cred);
2992	isec = inode_security_rcu(inode, rcu);
2993	if (IS_ERR(isec))
2994		return PTR_ERR(isec);
2995
2996	return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
 
2997				  rcu ? MAY_NOT_BLOCK : 0);
2998}
2999
3000static noinline int audit_inode_permission(struct inode *inode,
3001					   u32 perms, u32 audited, u32 denied,
3002					   int result,
3003					   unsigned flags)
3004{
3005	struct common_audit_data ad;
3006	struct inode_security_struct *isec = inode->i_security;
3007	int rc;
3008
3009	ad.type = LSM_AUDIT_DATA_INODE;
3010	ad.u.inode = inode;
3011
3012	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
 
3013			    audited, denied, result, &ad, flags);
3014	if (rc)
3015		return rc;
3016	return 0;
3017}
3018
3019static int selinux_inode_permission(struct inode *inode, int mask)
3020{
3021	const struct cred *cred = current_cred();
3022	u32 perms;
3023	bool from_access;
3024	unsigned flags = mask & MAY_NOT_BLOCK;
3025	struct inode_security_struct *isec;
3026	u32 sid;
3027	struct av_decision avd;
3028	int rc, rc2;
3029	u32 audited, denied;
3030
3031	from_access = mask & MAY_ACCESS;
3032	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3033
3034	/* No permission to check.  Existence test. */
3035	if (!mask)
3036		return 0;
3037
3038	validate_creds(cred);
3039
3040	if (unlikely(IS_PRIVATE(inode)))
3041		return 0;
3042
3043	perms = file_mask_to_av(inode->i_mode, mask);
3044
3045	sid = cred_sid(cred);
3046	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3047	if (IS_ERR(isec))
3048		return PTR_ERR(isec);
3049
3050	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
 
3051	audited = avc_audit_required(perms, &avd, rc,
3052				     from_access ? FILE__AUDIT_ACCESS : 0,
3053				     &denied);
3054	if (likely(!audited))
3055		return rc;
3056
3057	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3058	if (rc2)
3059		return rc2;
3060	return rc;
3061}
3062
3063static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3064{
3065	const struct cred *cred = current_cred();
 
3066	unsigned int ia_valid = iattr->ia_valid;
3067	__u32 av = FILE__WRITE;
3068
3069	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3070	if (ia_valid & ATTR_FORCE) {
3071		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3072			      ATTR_FORCE);
3073		if (!ia_valid)
3074			return 0;
3075	}
3076
3077	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3078			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3079		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3080
3081	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3082			&& !(ia_valid & ATTR_FILE))
 
 
3083		av |= FILE__OPEN;
3084
3085	return dentry_has_perm(cred, dentry, av);
3086}
3087
3088static int selinux_inode_getattr(const struct path *path)
3089{
3090	return path_has_perm(current_cred(), path, FILE__GETATTR);
3091}
3092
3093static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3094{
3095	const struct cred *cred = current_cred();
 
3096
3097	if (!strncmp(name, XATTR_SECURITY_PREFIX,
3098		     sizeof XATTR_SECURITY_PREFIX - 1)) {
3099		if (!strcmp(name, XATTR_NAME_CAPS)) {
3100			if (!capable(CAP_SETFCAP))
3101				return -EPERM;
3102		} else if (!capable(CAP_SYS_ADMIN)) {
3103			/* A different attribute in the security namespace.
3104			   Restrict to administrator. */
3105			return -EPERM;
3106		}
3107	}
3108
3109	/* Not an attribute we recognize, so just check the
3110	   ordinary setattr permission. */
3111	return dentry_has_perm(cred, dentry, FILE__SETATTR);
3112}
3113
3114static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3115				  const void *value, size_t size, int flags)
3116{
3117	struct inode *inode = d_backing_inode(dentry);
3118	struct inode_security_struct *isec;
3119	struct superblock_security_struct *sbsec;
3120	struct common_audit_data ad;
3121	u32 newsid, sid = current_sid();
3122	int rc = 0;
3123
3124	if (strcmp(name, XATTR_NAME_SELINUX))
3125		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
3126
3127	sbsec = inode->i_sb->s_security;
3128	if (!(sbsec->flags & SBLABEL_MNT))
3129		return -EOPNOTSUPP;
3130
3131	if (!inode_owner_or_capable(inode))
3132		return -EPERM;
3133
3134	ad.type = LSM_AUDIT_DATA_DENTRY;
3135	ad.u.dentry = dentry;
3136
3137	isec = backing_inode_security(dentry);
3138	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
3139			  FILE__RELABELFROM, &ad);
3140	if (rc)
3141		return rc;
3142
3143	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
 
3144	if (rc == -EINVAL) {
3145		if (!capable(CAP_MAC_ADMIN)) {
3146			struct audit_buffer *ab;
3147			size_t audit_size;
3148			const char *str;
3149
3150			/* We strip a nul only if it is at the end, otherwise the
3151			 * context contains a nul and we should audit that */
3152			if (value) {
3153				str = value;
 
3154				if (str[size - 1] == '\0')
3155					audit_size = size - 1;
3156				else
3157					audit_size = size;
3158			} else {
3159				str = "";
3160				audit_size = 0;
3161			}
3162			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3163			audit_log_format(ab, "op=setxattr invalid_context=");
3164			audit_log_n_untrustedstring(ab, value, audit_size);
3165			audit_log_end(ab);
3166
3167			return rc;
3168		}
3169		rc = security_context_to_sid_force(value, size, &newsid);
 
3170	}
3171	if (rc)
3172		return rc;
3173
3174	rc = avc_has_perm(sid, newsid, isec->sclass,
 
3175			  FILE__RELABELTO, &ad);
3176	if (rc)
3177		return rc;
3178
3179	rc = security_validate_transition(isec->sid, newsid, sid,
3180					  isec->sclass);
3181	if (rc)
3182		return rc;
3183
3184	return avc_has_perm(newsid,
 
3185			    sbsec->sid,
3186			    SECCLASS_FILESYSTEM,
3187			    FILESYSTEM__ASSOCIATE,
3188			    &ad);
3189}
3190
3191static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3192					const void *value, size_t size,
3193					int flags)
3194{
3195	struct inode *inode = d_backing_inode(dentry);
3196	struct inode_security_struct *isec;
3197	u32 newsid;
3198	int rc;
3199
3200	if (strcmp(name, XATTR_NAME_SELINUX)) {
3201		/* Not an attribute we recognize, so nothing to do. */
3202		return;
3203	}
3204
3205	rc = security_context_to_sid_force(value, size, &newsid);
 
3206	if (rc) {
3207		printk(KERN_ERR "SELinux:  unable to map context to SID"
3208		       "for (%s, %lu), rc=%d\n",
3209		       inode->i_sb->s_id, inode->i_ino, -rc);
3210		return;
3211	}
3212
3213	isec = backing_inode_security(dentry);
3214	spin_lock(&isec->lock);
3215	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3216	isec->sid = newsid;
3217	isec->initialized = LABEL_INITIALIZED;
3218	spin_unlock(&isec->lock);
3219
3220	return;
3221}
3222
3223static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3224{
3225	const struct cred *cred = current_cred();
3226
3227	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3228}
3229
3230static int selinux_inode_listxattr(struct dentry *dentry)
3231{
3232	const struct cred *cred = current_cred();
3233
3234	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3235}
3236
3237static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3238{
3239	if (strcmp(name, XATTR_NAME_SELINUX))
3240		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
3241
3242	/* No one is allowed to remove a SELinux security label.
3243	   You can change the label, but all data must be labeled. */
3244	return -EACCES;
3245}
3246
3247/*
3248 * Copy the inode security context value to the user.
3249 *
3250 * Permission check is handled by selinux_inode_getxattr hook.
3251 */
3252static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3253{
3254	u32 size;
3255	int error;
3256	char *context = NULL;
3257	struct inode_security_struct *isec;
3258
3259	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3260		return -EOPNOTSUPP;
3261
3262	/*
3263	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3264	 * value even if it is not defined by current policy; otherwise,
3265	 * use the in-core value under current policy.
3266	 * Use the non-auditing forms of the permission checks since
3267	 * getxattr may be called by unprivileged processes commonly
3268	 * and lack of permission just means that we fall back to the
3269	 * in-core context value, not a denial.
3270	 */
3271	error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3272			    SECURITY_CAP_NOAUDIT);
3273	if (!error)
3274		error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3275					    SECURITY_CAP_NOAUDIT, true);
3276	isec = inode_security(inode);
3277	if (!error)
3278		error = security_sid_to_context_force(isec->sid, &context,
 
3279						      &size);
3280	else
3281		error = security_sid_to_context(isec->sid, &context, &size);
 
3282	if (error)
3283		return error;
3284	error = size;
3285	if (alloc) {
3286		*buffer = context;
3287		goto out_nofree;
3288	}
3289	kfree(context);
3290out_nofree:
3291	return error;
3292}
3293
3294static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3295				     const void *value, size_t size, int flags)
3296{
3297	struct inode_security_struct *isec = inode_security_novalidate(inode);
3298	u32 newsid;
3299	int rc;
3300
3301	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3302		return -EOPNOTSUPP;
3303
3304	if (!value || !size)
3305		return -EACCES;
3306
3307	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
 
3308	if (rc)
3309		return rc;
3310
3311	spin_lock(&isec->lock);
3312	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3313	isec->sid = newsid;
3314	isec->initialized = LABEL_INITIALIZED;
3315	spin_unlock(&isec->lock);
3316	return 0;
3317}
3318
3319static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3320{
3321	const int len = sizeof(XATTR_NAME_SELINUX);
3322	if (buffer && len <= buffer_size)
3323		memcpy(buffer, XATTR_NAME_SELINUX, len);
3324	return len;
3325}
3326
3327static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3328{
3329	struct inode_security_struct *isec = inode_security_novalidate(inode);
3330	*secid = isec->sid;
3331}
3332
3333static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3334{
3335	u32 sid;
3336	struct task_security_struct *tsec;
3337	struct cred *new_creds = *new;
3338
3339	if (new_creds == NULL) {
3340		new_creds = prepare_creds();
3341		if (!new_creds)
3342			return -ENOMEM;
3343	}
3344
3345	tsec = new_creds->security;
3346	/* Get label from overlay inode and set it in create_sid */
3347	selinux_inode_getsecid(d_inode(src), &sid);
3348	tsec->create_sid = sid;
3349	*new = new_creds;
3350	return 0;
3351}
3352
3353static int selinux_inode_copy_up_xattr(const char *name)
3354{
3355	/* The copy_up hook above sets the initial context on an inode, but we
3356	 * don't then want to overwrite it by blindly copying all the lower
3357	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3358	 */
3359	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3360		return 1; /* Discard */
3361	/*
3362	 * Any other attribute apart from SELINUX is not claimed, supported
3363	 * by selinux.
3364	 */
3365	return -EOPNOTSUPP;
3366}
3367
3368/* file security operations */
3369
3370static int selinux_revalidate_file_permission(struct file *file, int mask)
3371{
3372	const struct cred *cred = current_cred();
3373	struct inode *inode = file_inode(file);
3374
3375	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3376	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3377		mask |= MAY_APPEND;
3378
3379	return file_has_perm(cred, file,
3380			     file_mask_to_av(inode->i_mode, mask));
3381}
3382
3383static int selinux_file_permission(struct file *file, int mask)
3384{
3385	struct inode *inode = file_inode(file);
3386	struct file_security_struct *fsec = file->f_security;
3387	struct inode_security_struct *isec;
3388	u32 sid = current_sid();
3389
3390	if (!mask)
3391		/* No permission to check.  Existence test. */
3392		return 0;
3393
3394	isec = inode_security(inode);
3395	if (sid == fsec->sid && fsec->isid == isec->sid &&
3396	    fsec->pseqno == avc_policy_seqno())
3397		/* No change since file_open check. */
3398		return 0;
3399
3400	return selinux_revalidate_file_permission(file, mask);
3401}
3402
3403static int selinux_file_alloc_security(struct file *file)
3404{
3405	return file_alloc_security(file);
3406}
3407
3408static void selinux_file_free_security(struct file *file)
3409{
3410	file_free_security(file);
3411}
3412
3413/*
3414 * Check whether a task has the ioctl permission and cmd
3415 * operation to an inode.
3416 */
3417static int ioctl_has_perm(const struct cred *cred, struct file *file,
3418		u32 requested, u16 cmd)
3419{
3420	struct common_audit_data ad;
3421	struct file_security_struct *fsec = file->f_security;
3422	struct inode *inode = file_inode(file);
3423	struct inode_security_struct *isec;
3424	struct lsm_ioctlop_audit ioctl;
3425	u32 ssid = cred_sid(cred);
3426	int rc;
3427	u8 driver = cmd >> 8;
3428	u8 xperm = cmd & 0xff;
3429
3430	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3431	ad.u.op = &ioctl;
3432	ad.u.op->cmd = cmd;
3433	ad.u.op->path = file->f_path;
3434
3435	if (ssid != fsec->sid) {
3436		rc = avc_has_perm(ssid, fsec->sid,
 
3437				SECCLASS_FD,
3438				FD__USE,
3439				&ad);
3440		if (rc)
3441			goto out;
3442	}
3443
3444	if (unlikely(IS_PRIVATE(inode)))
3445		return 0;
3446
3447	isec = inode_security(inode);
3448	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3449			requested, driver, xperm, &ad);
 
3450out:
3451	return rc;
3452}
3453
3454static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3455			      unsigned long arg)
3456{
3457	const struct cred *cred = current_cred();
3458	int error = 0;
3459
3460	switch (cmd) {
3461	case FIONREAD:
3462	/* fall through */
3463	case FIBMAP:
3464	/* fall through */
3465	case FIGETBSZ:
3466	/* fall through */
3467	case FS_IOC_GETFLAGS:
3468	/* fall through */
3469	case FS_IOC_GETVERSION:
3470		error = file_has_perm(cred, file, FILE__GETATTR);
3471		break;
3472
3473	case FS_IOC_SETFLAGS:
3474	/* fall through */
3475	case FS_IOC_SETVERSION:
3476		error = file_has_perm(cred, file, FILE__SETATTR);
3477		break;
3478
3479	/* sys_ioctl() checks */
3480	case FIONBIO:
3481	/* fall through */
3482	case FIOASYNC:
3483		error = file_has_perm(cred, file, 0);
3484		break;
3485
3486	case KDSKBENT:
3487	case KDSKBSENT:
3488		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3489					    SECURITY_CAP_AUDIT, true);
3490		break;
3491
3492	/* default case assumes that the command will go
3493	 * to the file's ioctl() function.
3494	 */
3495	default:
3496		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3497	}
3498	return error;
3499}
3500
3501static int default_noexec;
3502
3503static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3504{
3505	const struct cred *cred = current_cred();
 
3506	int rc = 0;
3507
3508	if (default_noexec &&
3509	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3510				   (!shared && (prot & PROT_WRITE)))) {
3511		/*
3512		 * We are making executable an anonymous mapping or a
3513		 * private file mapping that will also be writable.
3514		 * This has an additional check.
3515		 */
3516		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
 
 
3517		if (rc)
3518			goto error;
3519	}
3520
3521	if (file) {
3522		/* read access is always possible with a mapping */
3523		u32 av = FILE__READ;
3524
3525		/* write access only matters if the mapping is shared */
3526		if (shared && (prot & PROT_WRITE))
3527			av |= FILE__WRITE;
3528
3529		if (prot & PROT_EXEC)
3530			av |= FILE__EXECUTE;
3531
3532		return file_has_perm(cred, file, av);
3533	}
3534
3535error:
3536	return rc;
3537}
3538
3539static int selinux_mmap_addr(unsigned long addr)
3540{
3541	int rc = 0;
3542
3543	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3544		u32 sid = current_sid();
3545		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
3546				  MEMPROTECT__MMAP_ZERO, NULL);
3547	}
3548
3549	return rc;
3550}
3551
3552static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3553			     unsigned long prot, unsigned long flags)
3554{
3555	if (selinux_checkreqprot)
 
 
 
 
 
 
 
 
 
 
 
 
3556		prot = reqprot;
3557
3558	return file_map_prot_check(file, prot,
3559				   (flags & MAP_TYPE) == MAP_SHARED);
3560}
3561
3562static int selinux_file_mprotect(struct vm_area_struct *vma,
3563				 unsigned long reqprot,
3564				 unsigned long prot)
3565{
3566	const struct cred *cred = current_cred();
 
3567
3568	if (selinux_checkreqprot)
3569		prot = reqprot;
3570
3571	if (default_noexec &&
3572	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3573		int rc = 0;
3574		if (vma->vm_start >= vma->vm_mm->start_brk &&
3575		    vma->vm_end <= vma->vm_mm->brk) {
3576			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
 
 
3577		} else if (!vma->vm_file &&
3578			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3579			     vma->vm_end >= vma->vm_mm->start_stack) ||
3580			    vma_is_stack_for_current(vma))) {
3581			rc = current_has_perm(current, PROCESS__EXECSTACK);
 
 
3582		} else if (vma->vm_file && vma->anon_vma) {
3583			/*
3584			 * We are making executable a file mapping that has
3585			 * had some COW done. Since pages might have been
3586			 * written, check ability to execute the possibly
3587			 * modified content.  This typically should only
3588			 * occur for text relocations.
3589			 */
3590			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3591		}
3592		if (rc)
3593			return rc;
3594	}
3595
3596	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3597}
3598
3599static int selinux_file_lock(struct file *file, unsigned int cmd)
3600{
3601	const struct cred *cred = current_cred();
3602
3603	return file_has_perm(cred, file, FILE__LOCK);
3604}
3605
3606static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3607			      unsigned long arg)
3608{
3609	const struct cred *cred = current_cred();
3610	int err = 0;
3611
3612	switch (cmd) {
3613	case F_SETFL:
3614		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3615			err = file_has_perm(cred, file, FILE__WRITE);
3616			break;
3617		}
3618		/* fall through */
3619	case F_SETOWN:
3620	case F_SETSIG:
3621	case F_GETFL:
3622	case F_GETOWN:
3623	case F_GETSIG:
3624	case F_GETOWNER_UIDS:
3625		/* Just check FD__USE permission */
3626		err = file_has_perm(cred, file, 0);
3627		break;
3628	case F_GETLK:
3629	case F_SETLK:
3630	case F_SETLKW:
3631	case F_OFD_GETLK:
3632	case F_OFD_SETLK:
3633	case F_OFD_SETLKW:
3634#if BITS_PER_LONG == 32
3635	case F_GETLK64:
3636	case F_SETLK64:
3637	case F_SETLKW64:
3638#endif
3639		err = file_has_perm(cred, file, FILE__LOCK);
3640		break;
3641	}
3642
3643	return err;
3644}
3645
3646static void selinux_file_set_fowner(struct file *file)
3647{
3648	struct file_security_struct *fsec;
3649
3650	fsec = file->f_security;
3651	fsec->fown_sid = current_sid();
3652}
3653
3654static int selinux_file_send_sigiotask(struct task_struct *tsk,
3655				       struct fown_struct *fown, int signum)
3656{
3657	struct file *file;
3658	u32 sid = task_sid(tsk);
3659	u32 perm;
3660	struct file_security_struct *fsec;
3661
3662	/* struct fown_struct is never outside the context of a struct file */
3663	file = container_of(fown, struct file, f_owner);
3664
3665	fsec = file->f_security;
3666
3667	if (!signum)
3668		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3669	else
3670		perm = signal_to_av(signum);
3671
3672	return avc_has_perm(fsec->fown_sid, sid,
 
3673			    SECCLASS_PROCESS, perm, NULL);
3674}
3675
3676static int selinux_file_receive(struct file *file)
3677{
3678	const struct cred *cred = current_cred();
3679
3680	return file_has_perm(cred, file, file_to_av(file));
3681}
3682
3683static int selinux_file_open(struct file *file, const struct cred *cred)
3684{
3685	struct file_security_struct *fsec;
3686	struct inode_security_struct *isec;
3687
3688	fsec = file->f_security;
3689	isec = inode_security(file_inode(file));
3690	/*
3691	 * Save inode label and policy sequence number
3692	 * at open-time so that selinux_file_permission
3693	 * can determine whether revalidation is necessary.
3694	 * Task label is already saved in the file security
3695	 * struct as its SID.
3696	 */
3697	fsec->isid = isec->sid;
3698	fsec->pseqno = avc_policy_seqno();
3699	/*
3700	 * Since the inode label or policy seqno may have changed
3701	 * between the selinux_inode_permission check and the saving
3702	 * of state above, recheck that access is still permitted.
3703	 * Otherwise, access might never be revalidated against the
3704	 * new inode label or new policy.
3705	 * This check is not redundant - do not remove.
3706	 */
3707	return file_path_has_perm(cred, file, open_file_to_av(file));
3708}
3709
3710/* task security operations */
3711
3712static int selinux_task_create(unsigned long clone_flags)
 
3713{
3714	return current_has_perm(current, PROCESS__FORK);
 
 
 
3715}
3716
3717/*
3718 * allocate the SELinux part of blank credentials
3719 */
3720static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3721{
3722	struct task_security_struct *tsec;
3723
3724	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3725	if (!tsec)
3726		return -ENOMEM;
3727
3728	cred->security = tsec;
3729	return 0;
3730}
3731
3732/*
3733 * detach and free the LSM part of a set of credentials
3734 */
3735static void selinux_cred_free(struct cred *cred)
3736{
3737	struct task_security_struct *tsec = cred->security;
3738
3739	/*
3740	 * cred->security == NULL if security_cred_alloc_blank() or
3741	 * security_prepare_creds() returned an error.
3742	 */
3743	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3744	cred->security = (void *) 0x7UL;
3745	kfree(tsec);
3746}
3747
3748/*
3749 * prepare a new set of credentials for modification
3750 */
3751static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3752				gfp_t gfp)
3753{
3754	const struct task_security_struct *old_tsec;
3755	struct task_security_struct *tsec;
3756
3757	old_tsec = old->security;
3758
3759	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3760	if (!tsec)
3761		return -ENOMEM;
3762
3763	new->security = tsec;
3764	return 0;
3765}
3766
3767/*
3768 * transfer the SELinux data to a blank set of creds
3769 */
3770static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3771{
3772	const struct task_security_struct *old_tsec = old->security;
3773	struct task_security_struct *tsec = new->security;
3774
3775	*tsec = *old_tsec;
3776}
3777
 
 
 
 
 
3778/*
3779 * set the security data for a kernel service
3780 * - all the creation contexts are set to unlabelled
3781 */
3782static int selinux_kernel_act_as(struct cred *new, u32 secid)
3783{
3784	struct task_security_struct *tsec = new->security;
3785	u32 sid = current_sid();
3786	int ret;
3787
3788	ret = avc_has_perm(sid, secid,
 
3789			   SECCLASS_KERNEL_SERVICE,
3790			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3791			   NULL);
3792	if (ret == 0) {
3793		tsec->sid = secid;
3794		tsec->create_sid = 0;
3795		tsec->keycreate_sid = 0;
3796		tsec->sockcreate_sid = 0;
3797	}
3798	return ret;
3799}
3800
3801/*
3802 * set the file creation context in a security record to the same as the
3803 * objective context of the specified inode
3804 */
3805static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3806{
3807	struct inode_security_struct *isec = inode_security(inode);
3808	struct task_security_struct *tsec = new->security;
3809	u32 sid = current_sid();
3810	int ret;
3811
3812	ret = avc_has_perm(sid, isec->sid,
 
3813			   SECCLASS_KERNEL_SERVICE,
3814			   KERNEL_SERVICE__CREATE_FILES_AS,
3815			   NULL);
3816
3817	if (ret == 0)
3818		tsec->create_sid = isec->sid;
3819	return ret;
3820}
3821
3822static int selinux_kernel_module_request(char *kmod_name)
3823{
3824	u32 sid;
3825	struct common_audit_data ad;
3826
3827	sid = task_sid(current);
3828
3829	ad.type = LSM_AUDIT_DATA_KMOD;
3830	ad.u.kmod_name = kmod_name;
3831
3832	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
3833			    SYSTEM__MODULE_REQUEST, &ad);
3834}
3835
3836static int selinux_kernel_module_from_file(struct file *file)
3837{
3838	struct common_audit_data ad;
3839	struct inode_security_struct *isec;
3840	struct file_security_struct *fsec;
3841	u32 sid = current_sid();
3842	int rc;
3843
3844	/* init_module */
3845	if (file == NULL)
3846		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
 
3847					SYSTEM__MODULE_LOAD, NULL);
3848
3849	/* finit_module */
3850
3851	ad.type = LSM_AUDIT_DATA_FILE;
3852	ad.u.file = file;
3853
3854	fsec = file->f_security;
3855	if (sid != fsec->sid) {
3856		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
 
3857		if (rc)
3858			return rc;
3859	}
3860
3861	isec = inode_security(file_inode(file));
3862	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
 
3863				SYSTEM__MODULE_LOAD, &ad);
3864}
3865
3866static int selinux_kernel_read_file(struct file *file,
3867				    enum kernel_read_file_id id)
3868{
3869	int rc = 0;
3870
3871	switch (id) {
3872	case READING_MODULE:
3873		rc = selinux_kernel_module_from_file(file);
3874		break;
3875	default:
3876		break;
3877	}
3878
3879	return rc;
3880}
3881
3882static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3883{
3884	return current_has_perm(p, PROCESS__SETPGID);
 
 
3885}
3886
3887static int selinux_task_getpgid(struct task_struct *p)
3888{
3889	return current_has_perm(p, PROCESS__GETPGID);
 
 
3890}
3891
3892static int selinux_task_getsid(struct task_struct *p)
3893{
3894	return current_has_perm(p, PROCESS__GETSESSION);
 
 
3895}
3896
3897static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3898{
3899	*secid = task_sid(p);
3900}
3901
3902static int selinux_task_setnice(struct task_struct *p, int nice)
3903{
3904	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3905}
3906
3907static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3908{
3909	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3910}
3911
3912static int selinux_task_getioprio(struct task_struct *p)
3913{
3914	return current_has_perm(p, PROCESS__GETSCHED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3915}
3916
3917static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3918		struct rlimit *new_rlim)
3919{
3920	struct rlimit *old_rlim = p->signal->rlim + resource;
3921
3922	/* Control the ability to change the hard limit (whether
3923	   lowering or raising it), so that the hard limit can
3924	   later be used as a safe reset point for the soft limit
3925	   upon context transitions.  See selinux_bprm_committing_creds. */
3926	if (old_rlim->rlim_max != new_rlim->rlim_max)
3927		return current_has_perm(p, PROCESS__SETRLIMIT);
 
 
3928
3929	return 0;
3930}
3931
3932static int selinux_task_setscheduler(struct task_struct *p)
3933{
3934	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3935}
3936
3937static int selinux_task_getscheduler(struct task_struct *p)
3938{
3939	return current_has_perm(p, PROCESS__GETSCHED);
 
 
3940}
3941
3942static int selinux_task_movememory(struct task_struct *p)
3943{
3944	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3945}
3946
3947static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3948				int sig, u32 secid)
3949{
 
3950	u32 perm;
3951	int rc;
3952
3953	if (!sig)
3954		perm = PROCESS__SIGNULL; /* null signal; existence test */
3955	else
3956		perm = signal_to_av(sig);
3957	if (secid)
3958		rc = avc_has_perm(secid, task_sid(p),
3959				  SECCLASS_PROCESS, perm, NULL);
3960	else
3961		rc = current_has_perm(p, perm);
3962	return rc;
3963}
3964
3965static int selinux_task_wait(struct task_struct *p)
3966{
3967	return task_has_perm(p, current, PROCESS__SIGCHLD);
3968}
3969
3970static void selinux_task_to_inode(struct task_struct *p,
3971				  struct inode *inode)
3972{
3973	struct inode_security_struct *isec = inode->i_security;
3974	u32 sid = task_sid(p);
3975
3976	spin_lock(&isec->lock);
3977	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3978	isec->sid = sid;
3979	isec->initialized = LABEL_INITIALIZED;
3980	spin_unlock(&isec->lock);
3981}
3982
3983/* Returns error only if unable to parse addresses */
3984static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3985			struct common_audit_data *ad, u8 *proto)
3986{
3987	int offset, ihlen, ret = -EINVAL;
3988	struct iphdr _iph, *ih;
3989
3990	offset = skb_network_offset(skb);
3991	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3992	if (ih == NULL)
3993		goto out;
3994
3995	ihlen = ih->ihl * 4;
3996	if (ihlen < sizeof(_iph))
3997		goto out;
3998
3999	ad->u.net->v4info.saddr = ih->saddr;
4000	ad->u.net->v4info.daddr = ih->daddr;
4001	ret = 0;
4002
4003	if (proto)
4004		*proto = ih->protocol;
4005
4006	switch (ih->protocol) {
4007	case IPPROTO_TCP: {
4008		struct tcphdr _tcph, *th;
4009
4010		if (ntohs(ih->frag_off) & IP_OFFSET)
4011			break;
4012
4013		offset += ihlen;
4014		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4015		if (th == NULL)
4016			break;
4017
4018		ad->u.net->sport = th->source;
4019		ad->u.net->dport = th->dest;
4020		break;
4021	}
4022
4023	case IPPROTO_UDP: {
4024		struct udphdr _udph, *uh;
4025
4026		if (ntohs(ih->frag_off) & IP_OFFSET)
4027			break;
4028
4029		offset += ihlen;
4030		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4031		if (uh == NULL)
4032			break;
4033
4034		ad->u.net->sport = uh->source;
4035		ad->u.net->dport = uh->dest;
4036		break;
4037	}
4038
4039	case IPPROTO_DCCP: {
4040		struct dccp_hdr _dccph, *dh;
4041
4042		if (ntohs(ih->frag_off) & IP_OFFSET)
4043			break;
4044
4045		offset += ihlen;
4046		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4047		if (dh == NULL)
4048			break;
4049
4050		ad->u.net->sport = dh->dccph_sport;
4051		ad->u.net->dport = dh->dccph_dport;
4052		break;
4053	}
4054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4055	default:
4056		break;
4057	}
4058out:
4059	return ret;
4060}
4061
4062#if IS_ENABLED(CONFIG_IPV6)
4063
4064/* Returns error only if unable to parse addresses */
4065static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4066			struct common_audit_data *ad, u8 *proto)
4067{
4068	u8 nexthdr;
4069	int ret = -EINVAL, offset;
4070	struct ipv6hdr _ipv6h, *ip6;
4071	__be16 frag_off;
4072
4073	offset = skb_network_offset(skb);
4074	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4075	if (ip6 == NULL)
4076		goto out;
4077
4078	ad->u.net->v6info.saddr = ip6->saddr;
4079	ad->u.net->v6info.daddr = ip6->daddr;
4080	ret = 0;
4081
4082	nexthdr = ip6->nexthdr;
4083	offset += sizeof(_ipv6h);
4084	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4085	if (offset < 0)
4086		goto out;
4087
4088	if (proto)
4089		*proto = nexthdr;
4090
4091	switch (nexthdr) {
4092	case IPPROTO_TCP: {
4093		struct tcphdr _tcph, *th;
4094
4095		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4096		if (th == NULL)
4097			break;
4098
4099		ad->u.net->sport = th->source;
4100		ad->u.net->dport = th->dest;
4101		break;
4102	}
4103
4104	case IPPROTO_UDP: {
4105		struct udphdr _udph, *uh;
4106
4107		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4108		if (uh == NULL)
4109			break;
4110
4111		ad->u.net->sport = uh->source;
4112		ad->u.net->dport = uh->dest;
4113		break;
4114	}
4115
4116	case IPPROTO_DCCP: {
4117		struct dccp_hdr _dccph, *dh;
4118
4119		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4120		if (dh == NULL)
4121			break;
4122
4123		ad->u.net->sport = dh->dccph_sport;
4124		ad->u.net->dport = dh->dccph_dport;
4125		break;
4126	}
4127
 
 
 
 
 
 
 
 
 
 
 
 
 
4128	/* includes fragments */
4129	default:
4130		break;
4131	}
4132out:
4133	return ret;
4134}
4135
4136#endif /* IPV6 */
4137
4138static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4139			     char **_addrp, int src, u8 *proto)
4140{
4141	char *addrp;
4142	int ret;
4143
4144	switch (ad->u.net->family) {
4145	case PF_INET:
4146		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4147		if (ret)
4148			goto parse_error;
4149		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4150				       &ad->u.net->v4info.daddr);
4151		goto okay;
4152
4153#if IS_ENABLED(CONFIG_IPV6)
4154	case PF_INET6:
4155		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4156		if (ret)
4157			goto parse_error;
4158		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4159				       &ad->u.net->v6info.daddr);
4160		goto okay;
4161#endif	/* IPV6 */
4162	default:
4163		addrp = NULL;
4164		goto okay;
4165	}
4166
4167parse_error:
4168	printk(KERN_WARNING
4169	       "SELinux: failure in selinux_parse_skb(),"
4170	       " unable to parse packet\n");
4171	return ret;
4172
4173okay:
4174	if (_addrp)
4175		*_addrp = addrp;
4176	return 0;
4177}
4178
4179/**
4180 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4181 * @skb: the packet
4182 * @family: protocol family
4183 * @sid: the packet's peer label SID
4184 *
4185 * Description:
4186 * Check the various different forms of network peer labeling and determine
4187 * the peer label/SID for the packet; most of the magic actually occurs in
4188 * the security server function security_net_peersid_cmp().  The function
4189 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4190 * or -EACCES if @sid is invalid due to inconsistencies with the different
4191 * peer labels.
4192 *
4193 */
4194static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4195{
4196	int err;
4197	u32 xfrm_sid;
4198	u32 nlbl_sid;
4199	u32 nlbl_type;
4200
4201	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4202	if (unlikely(err))
4203		return -EACCES;
4204	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4205	if (unlikely(err))
4206		return -EACCES;
4207
4208	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
 
4209	if (unlikely(err)) {
4210		printk(KERN_WARNING
4211		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4212		       " unable to determine packet's peer label\n");
4213		return -EACCES;
4214	}
4215
4216	return 0;
4217}
4218
4219/**
4220 * selinux_conn_sid - Determine the child socket label for a connection
4221 * @sk_sid: the parent socket's SID
4222 * @skb_sid: the packet's SID
4223 * @conn_sid: the resulting connection SID
4224 *
4225 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4226 * combined with the MLS information from @skb_sid in order to create
4227 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4228 * of @sk_sid.  Returns zero on success, negative values on failure.
4229 *
4230 */
4231static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4232{
4233	int err = 0;
4234
4235	if (skb_sid != SECSID_NULL)
4236		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
 
4237	else
4238		*conn_sid = sk_sid;
4239
4240	return err;
4241}
4242
4243/* socket security operations */
4244
4245static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4246				 u16 secclass, u32 *socksid)
4247{
4248	if (tsec->sockcreate_sid > SECSID_NULL) {
4249		*socksid = tsec->sockcreate_sid;
4250		return 0;
4251	}
4252
4253	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4254				       socksid);
4255}
4256
4257static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4258{
4259	struct sk_security_struct *sksec = sk->sk_security;
4260	struct common_audit_data ad;
4261	struct lsm_network_audit net = {0,};
4262	u32 tsid = task_sid(task);
4263
4264	if (sksec->sid == SECINITSID_KERNEL)
4265		return 0;
4266
4267	ad.type = LSM_AUDIT_DATA_NET;
4268	ad.u.net = &net;
4269	ad.u.net->sk = sk;
4270
4271	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
 
 
4272}
4273
4274static int selinux_socket_create(int family, int type,
4275				 int protocol, int kern)
4276{
4277	const struct task_security_struct *tsec = current_security();
4278	u32 newsid;
4279	u16 secclass;
4280	int rc;
4281
4282	if (kern)
4283		return 0;
4284
4285	secclass = socket_type_to_security_class(family, type, protocol);
4286	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4287	if (rc)
4288		return rc;
4289
4290	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
4291}
4292
4293static int selinux_socket_post_create(struct socket *sock, int family,
4294				      int type, int protocol, int kern)
4295{
4296	const struct task_security_struct *tsec = current_security();
4297	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4298	struct sk_security_struct *sksec;
4299	u16 sclass = socket_type_to_security_class(family, type, protocol);
4300	u32 sid = SECINITSID_KERNEL;
4301	int err = 0;
4302
4303	if (!kern) {
4304		err = socket_sockcreate_sid(tsec, sclass, &sid);
4305		if (err)
4306			return err;
4307	}
4308
4309	isec->sclass = sclass;
4310	isec->sid = sid;
4311	isec->initialized = LABEL_INITIALIZED;
4312
4313	if (sock->sk) {
4314		sksec = sock->sk->sk_security;
4315		sksec->sclass = sclass;
4316		sksec->sid = sid;
 
 
 
 
4317		err = selinux_netlbl_socket_post_create(sock->sk, family);
4318	}
4319
4320	return err;
4321}
4322
4323/* Range of port numbers used to automatically bind.
4324   Need to determine whether we should perform a name_bind
4325   permission check between the socket and the port number. */
4326
4327static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4328{
4329	struct sock *sk = sock->sk;
 
4330	u16 family;
4331	int err;
4332
4333	err = sock_has_perm(current, sk, SOCKET__BIND);
4334	if (err)
4335		goto out;
4336
4337	/*
4338	 * If PF_INET or PF_INET6, check name_bind permission for the port.
4339	 * Multiple address binding for SCTP is not supported yet: we just
4340	 * check the first address now.
4341	 */
4342	family = sk->sk_family;
4343	if (family == PF_INET || family == PF_INET6) {
4344		char *addrp;
4345		struct sk_security_struct *sksec = sk->sk_security;
4346		struct common_audit_data ad;
4347		struct lsm_network_audit net = {0,};
4348		struct sockaddr_in *addr4 = NULL;
4349		struct sockaddr_in6 *addr6 = NULL;
 
4350		unsigned short snum;
4351		u32 sid, node_perm;
4352
4353		if (family == PF_INET) {
 
 
 
 
 
 
 
 
 
 
4354			addr4 = (struct sockaddr_in *)address;
 
 
 
 
 
 
 
 
4355			snum = ntohs(addr4->sin_port);
4356			addrp = (char *)&addr4->sin_addr.s_addr;
4357		} else {
 
 
 
4358			addr6 = (struct sockaddr_in6 *)address;
4359			snum = ntohs(addr6->sin6_port);
4360			addrp = (char *)&addr6->sin6_addr.s6_addr;
 
 
 
4361		}
4362
 
 
 
 
 
4363		if (snum) {
4364			int low, high;
4365
4366			inet_get_local_port_range(sock_net(sk), &low, &high);
4367
4368			if (snum < max(PROT_SOCK, low) || snum > high) {
 
4369				err = sel_netport_sid(sk->sk_protocol,
4370						      snum, &sid);
4371				if (err)
4372					goto out;
4373				ad.type = LSM_AUDIT_DATA_NET;
4374				ad.u.net = &net;
4375				ad.u.net->sport = htons(snum);
4376				ad.u.net->family = family;
4377				err = avc_has_perm(sksec->sid, sid,
4378						   sksec->sclass,
4379						   SOCKET__NAME_BIND, &ad);
4380				if (err)
4381					goto out;
4382			}
4383		}
4384
4385		switch (sksec->sclass) {
4386		case SECCLASS_TCP_SOCKET:
4387			node_perm = TCP_SOCKET__NODE_BIND;
4388			break;
4389
4390		case SECCLASS_UDP_SOCKET:
4391			node_perm = UDP_SOCKET__NODE_BIND;
4392			break;
4393
4394		case SECCLASS_DCCP_SOCKET:
4395			node_perm = DCCP_SOCKET__NODE_BIND;
4396			break;
4397
 
 
 
 
4398		default:
4399			node_perm = RAWIP_SOCKET__NODE_BIND;
4400			break;
4401		}
4402
4403		err = sel_netnode_sid(addrp, family, &sid);
4404		if (err)
4405			goto out;
4406
4407		ad.type = LSM_AUDIT_DATA_NET;
4408		ad.u.net = &net;
4409		ad.u.net->sport = htons(snum);
4410		ad.u.net->family = family;
4411
4412		if (family == PF_INET)
4413			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4414		else
4415			ad.u.net->v6info.saddr = addr6->sin6_addr;
4416
4417		err = avc_has_perm(sksec->sid, sid,
 
4418				   sksec->sclass, node_perm, &ad);
4419		if (err)
4420			goto out;
4421	}
4422out:
4423	return err;
 
 
 
 
 
4424}
4425
4426static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
 
 
 
 
4427{
4428	struct sock *sk = sock->sk;
4429	struct sk_security_struct *sksec = sk->sk_security;
4430	int err;
4431
4432	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4433	if (err)
4434		return err;
4435
4436	/*
4437	 * If a TCP or DCCP socket, check name_connect permission for the port.
 
4438	 */
4439	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4440	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
 
4441		struct common_audit_data ad;
4442		struct lsm_network_audit net = {0,};
4443		struct sockaddr_in *addr4 = NULL;
4444		struct sockaddr_in6 *addr6 = NULL;
4445		unsigned short snum;
4446		u32 sid, perm;
4447
4448		if (sk->sk_family == PF_INET) {
 
 
 
 
 
 
4449			addr4 = (struct sockaddr_in *)address;
4450			if (addrlen < sizeof(struct sockaddr_in))
4451				return -EINVAL;
4452			snum = ntohs(addr4->sin_port);
4453		} else {
 
4454			addr6 = (struct sockaddr_in6 *)address;
4455			if (addrlen < SIN6_LEN_RFC2133)
4456				return -EINVAL;
4457			snum = ntohs(addr6->sin6_port);
 
 
 
 
 
 
 
 
 
4458		}
4459
4460		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4461		if (err)
4462			goto out;
4463
4464		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4465		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
 
 
 
 
 
 
 
 
 
4466
4467		ad.type = LSM_AUDIT_DATA_NET;
4468		ad.u.net = &net;
4469		ad.u.net->dport = htons(snum);
4470		ad.u.net->family = sk->sk_family;
4471		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
4472		if (err)
4473			goto out;
4474	}
4475
4476	err = selinux_netlbl_socket_connect(sk, address);
 
 
 
 
 
 
 
 
 
 
 
 
4477
4478out:
4479	return err;
4480}
4481
4482static int selinux_socket_listen(struct socket *sock, int backlog)
4483{
4484	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4485}
4486
4487static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4488{
4489	int err;
4490	struct inode_security_struct *isec;
4491	struct inode_security_struct *newisec;
4492	u16 sclass;
4493	u32 sid;
4494
4495	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4496	if (err)
4497		return err;
4498
4499	isec = inode_security_novalidate(SOCK_INODE(sock));
4500	spin_lock(&isec->lock);
4501	sclass = isec->sclass;
4502	sid = isec->sid;
4503	spin_unlock(&isec->lock);
4504
4505	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4506	newisec->sclass = sclass;
4507	newisec->sid = sid;
4508	newisec->initialized = LABEL_INITIALIZED;
4509
4510	return 0;
4511}
4512
4513static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4514				  int size)
4515{
4516	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4517}
4518
4519static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4520				  int size, int flags)
4521{
4522	return sock_has_perm(current, sock->sk, SOCKET__READ);
4523}
4524
4525static int selinux_socket_getsockname(struct socket *sock)
4526{
4527	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4528}
4529
4530static int selinux_socket_getpeername(struct socket *sock)
4531{
4532	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4533}
4534
4535static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4536{
4537	int err;
4538
4539	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4540	if (err)
4541		return err;
4542
4543	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4544}
4545
4546static int selinux_socket_getsockopt(struct socket *sock, int level,
4547				     int optname)
4548{
4549	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4550}
4551
4552static int selinux_socket_shutdown(struct socket *sock, int how)
4553{
4554	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4555}
4556
4557static int selinux_socket_unix_stream_connect(struct sock *sock,
4558					      struct sock *other,
4559					      struct sock *newsk)
4560{
4561	struct sk_security_struct *sksec_sock = sock->sk_security;
4562	struct sk_security_struct *sksec_other = other->sk_security;
4563	struct sk_security_struct *sksec_new = newsk->sk_security;
4564	struct common_audit_data ad;
4565	struct lsm_network_audit net = {0,};
4566	int err;
4567
4568	ad.type = LSM_AUDIT_DATA_NET;
4569	ad.u.net = &net;
4570	ad.u.net->sk = other;
4571
4572	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
4573			   sksec_other->sclass,
4574			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4575	if (err)
4576		return err;
4577
4578	/* server child socket */
4579	sksec_new->peer_sid = sksec_sock->sid;
4580	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4581				    &sksec_new->sid);
4582	if (err)
4583		return err;
4584
4585	/* connecting socket */
4586	sksec_sock->peer_sid = sksec_new->sid;
4587
4588	return 0;
4589}
4590
4591static int selinux_socket_unix_may_send(struct socket *sock,
4592					struct socket *other)
4593{
4594	struct sk_security_struct *ssec = sock->sk->sk_security;
4595	struct sk_security_struct *osec = other->sk->sk_security;
4596	struct common_audit_data ad;
4597	struct lsm_network_audit net = {0,};
4598
4599	ad.type = LSM_AUDIT_DATA_NET;
4600	ad.u.net = &net;
4601	ad.u.net->sk = other->sk;
4602
4603	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
4604			    &ad);
4605}
4606
4607static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4608				    char *addrp, u16 family, u32 peer_sid,
4609				    struct common_audit_data *ad)
4610{
4611	int err;
4612	u32 if_sid;
4613	u32 node_sid;
4614
4615	err = sel_netif_sid(ns, ifindex, &if_sid);
4616	if (err)
4617		return err;
4618	err = avc_has_perm(peer_sid, if_sid,
 
4619			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4620	if (err)
4621		return err;
4622
4623	err = sel_netnode_sid(addrp, family, &node_sid);
4624	if (err)
4625		return err;
4626	return avc_has_perm(peer_sid, node_sid,
 
4627			    SECCLASS_NODE, NODE__RECVFROM, ad);
4628}
4629
4630static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4631				       u16 family)
4632{
4633	int err = 0;
4634	struct sk_security_struct *sksec = sk->sk_security;
4635	u32 sk_sid = sksec->sid;
4636	struct common_audit_data ad;
4637	struct lsm_network_audit net = {0,};
4638	char *addrp;
4639
4640	ad.type = LSM_AUDIT_DATA_NET;
4641	ad.u.net = &net;
4642	ad.u.net->netif = skb->skb_iif;
4643	ad.u.net->family = family;
4644	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4645	if (err)
4646		return err;
4647
4648	if (selinux_secmark_enabled()) {
4649		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4650				   PACKET__RECV, &ad);
4651		if (err)
4652			return err;
4653	}
4654
4655	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4656	if (err)
4657		return err;
4658	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4659
4660	return err;
4661}
4662
4663static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4664{
4665	int err;
4666	struct sk_security_struct *sksec = sk->sk_security;
4667	u16 family = sk->sk_family;
4668	u32 sk_sid = sksec->sid;
4669	struct common_audit_data ad;
4670	struct lsm_network_audit net = {0,};
4671	char *addrp;
4672	u8 secmark_active;
4673	u8 peerlbl_active;
4674
4675	if (family != PF_INET && family != PF_INET6)
4676		return 0;
4677
4678	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4679	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4680		family = PF_INET;
4681
4682	/* If any sort of compatibility mode is enabled then handoff processing
4683	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4684	 * special handling.  We do this in an attempt to keep this function
4685	 * as fast and as clean as possible. */
4686	if (!selinux_policycap_netpeer)
4687		return selinux_sock_rcv_skb_compat(sk, skb, family);
4688
4689	secmark_active = selinux_secmark_enabled();
4690	peerlbl_active = selinux_peerlbl_enabled();
4691	if (!secmark_active && !peerlbl_active)
4692		return 0;
4693
4694	ad.type = LSM_AUDIT_DATA_NET;
4695	ad.u.net = &net;
4696	ad.u.net->netif = skb->skb_iif;
4697	ad.u.net->family = family;
4698	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4699	if (err)
4700		return err;
4701
4702	if (peerlbl_active) {
4703		u32 peer_sid;
4704
4705		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4706		if (err)
4707			return err;
4708		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4709					       addrp, family, peer_sid, &ad);
4710		if (err) {
4711			selinux_netlbl_err(skb, family, err, 0);
4712			return err;
4713		}
4714		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
4715				   PEER__RECV, &ad);
4716		if (err) {
4717			selinux_netlbl_err(skb, family, err, 0);
4718			return err;
4719		}
4720	}
4721
4722	if (secmark_active) {
4723		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4724				   PACKET__RECV, &ad);
4725		if (err)
4726			return err;
4727	}
4728
4729	return err;
4730}
4731
4732static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4733					    int __user *optlen, unsigned len)
4734{
4735	int err = 0;
4736	char *scontext;
4737	u32 scontext_len;
4738	struct sk_security_struct *sksec = sock->sk->sk_security;
4739	u32 peer_sid = SECSID_NULL;
4740
4741	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4742	    sksec->sclass == SECCLASS_TCP_SOCKET)
 
4743		peer_sid = sksec->peer_sid;
4744	if (peer_sid == SECSID_NULL)
4745		return -ENOPROTOOPT;
4746
4747	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
 
4748	if (err)
4749		return err;
4750
4751	if (scontext_len > len) {
4752		err = -ERANGE;
4753		goto out_len;
4754	}
4755
4756	if (copy_to_user(optval, scontext, scontext_len))
4757		err = -EFAULT;
4758
4759out_len:
4760	if (put_user(scontext_len, optlen))
4761		err = -EFAULT;
4762	kfree(scontext);
4763	return err;
4764}
4765
4766static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4767{
4768	u32 peer_secid = SECSID_NULL;
4769	u16 family;
4770	struct inode_security_struct *isec;
4771
4772	if (skb && skb->protocol == htons(ETH_P_IP))
4773		family = PF_INET;
4774	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4775		family = PF_INET6;
4776	else if (sock)
4777		family = sock->sk->sk_family;
4778	else
4779		goto out;
4780
4781	if (sock && family == PF_UNIX) {
4782		isec = inode_security_novalidate(SOCK_INODE(sock));
4783		peer_secid = isec->sid;
4784	} else if (skb)
4785		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4786
4787out:
4788	*secid = peer_secid;
4789	if (peer_secid == SECSID_NULL)
4790		return -EINVAL;
4791	return 0;
4792}
4793
4794static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4795{
4796	struct sk_security_struct *sksec;
4797
4798	sksec = kzalloc(sizeof(*sksec), priority);
4799	if (!sksec)
4800		return -ENOMEM;
4801
4802	sksec->peer_sid = SECINITSID_UNLABELED;
4803	sksec->sid = SECINITSID_UNLABELED;
4804	sksec->sclass = SECCLASS_SOCKET;
4805	selinux_netlbl_sk_security_reset(sksec);
4806	sk->sk_security = sksec;
4807
4808	return 0;
4809}
4810
4811static void selinux_sk_free_security(struct sock *sk)
4812{
4813	struct sk_security_struct *sksec = sk->sk_security;
4814
4815	sk->sk_security = NULL;
4816	selinux_netlbl_sk_security_free(sksec);
4817	kfree(sksec);
4818}
4819
4820static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4821{
4822	struct sk_security_struct *sksec = sk->sk_security;
4823	struct sk_security_struct *newsksec = newsk->sk_security;
4824
4825	newsksec->sid = sksec->sid;
4826	newsksec->peer_sid = sksec->peer_sid;
4827	newsksec->sclass = sksec->sclass;
4828
4829	selinux_netlbl_sk_security_reset(newsksec);
4830}
4831
4832static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4833{
4834	if (!sk)
4835		*secid = SECINITSID_ANY_SOCKET;
4836	else {
4837		struct sk_security_struct *sksec = sk->sk_security;
4838
4839		*secid = sksec->sid;
4840	}
4841}
4842
4843static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4844{
4845	struct inode_security_struct *isec =
4846		inode_security_novalidate(SOCK_INODE(parent));
4847	struct sk_security_struct *sksec = sk->sk_security;
4848
4849	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4850	    sk->sk_family == PF_UNIX)
4851		isec->sid = sksec->sid;
4852	sksec->sclass = isec->sclass;
4853}
4854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4855static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4856				     struct request_sock *req)
4857{
4858	struct sk_security_struct *sksec = sk->sk_security;
4859	int err;
4860	u16 family = req->rsk_ops->family;
4861	u32 connsid;
4862	u32 peersid;
4863
4864	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4865	if (err)
4866		return err;
4867	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4868	if (err)
4869		return err;
4870	req->secid = connsid;
4871	req->peer_secid = peersid;
4872
4873	return selinux_netlbl_inet_conn_request(req, family);
4874}
4875
4876static void selinux_inet_csk_clone(struct sock *newsk,
4877				   const struct request_sock *req)
4878{
4879	struct sk_security_struct *newsksec = newsk->sk_security;
4880
4881	newsksec->sid = req->secid;
4882	newsksec->peer_sid = req->peer_secid;
4883	/* NOTE: Ideally, we should also get the isec->sid for the
4884	   new socket in sync, but we don't have the isec available yet.
4885	   So we will wait until sock_graft to do it, by which
4886	   time it will have been created and available. */
4887
4888	/* We don't need to take any sort of lock here as we are the only
4889	 * thread with access to newsksec */
4890	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4891}
4892
4893static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4894{
4895	u16 family = sk->sk_family;
4896	struct sk_security_struct *sksec = sk->sk_security;
4897
4898	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4899	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4900		family = PF_INET;
4901
4902	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4903}
4904
4905static int selinux_secmark_relabel_packet(u32 sid)
4906{
4907	const struct task_security_struct *__tsec;
4908	u32 tsid;
4909
4910	__tsec = current_security();
4911	tsid = __tsec->sid;
4912
4913	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
 
 
4914}
4915
4916static void selinux_secmark_refcount_inc(void)
4917{
4918	atomic_inc(&selinux_secmark_refcount);
4919}
4920
4921static void selinux_secmark_refcount_dec(void)
4922{
4923	atomic_dec(&selinux_secmark_refcount);
4924}
4925
4926static void selinux_req_classify_flow(const struct request_sock *req,
4927				      struct flowi *fl)
4928{
4929	fl->flowi_secid = req->secid;
4930}
4931
4932static int selinux_tun_dev_alloc_security(void **security)
4933{
4934	struct tun_security_struct *tunsec;
4935
4936	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4937	if (!tunsec)
4938		return -ENOMEM;
4939	tunsec->sid = current_sid();
4940
4941	*security = tunsec;
4942	return 0;
4943}
4944
4945static void selinux_tun_dev_free_security(void *security)
4946{
4947	kfree(security);
4948}
4949
4950static int selinux_tun_dev_create(void)
4951{
4952	u32 sid = current_sid();
4953
4954	/* we aren't taking into account the "sockcreate" SID since the socket
4955	 * that is being created here is not a socket in the traditional sense,
4956	 * instead it is a private sock, accessible only to the kernel, and
4957	 * representing a wide range of network traffic spanning multiple
4958	 * connections unlike traditional sockets - check the TUN driver to
4959	 * get a better understanding of why this socket is special */
4960
4961	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
4962			    NULL);
4963}
4964
4965static int selinux_tun_dev_attach_queue(void *security)
4966{
4967	struct tun_security_struct *tunsec = security;
4968
4969	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
 
4970			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4971}
4972
4973static int selinux_tun_dev_attach(struct sock *sk, void *security)
4974{
4975	struct tun_security_struct *tunsec = security;
4976	struct sk_security_struct *sksec = sk->sk_security;
4977
4978	/* we don't currently perform any NetLabel based labeling here and it
4979	 * isn't clear that we would want to do so anyway; while we could apply
4980	 * labeling without the support of the TUN user the resulting labeled
4981	 * traffic from the other end of the connection would almost certainly
4982	 * cause confusion to the TUN user that had no idea network labeling
4983	 * protocols were being used */
4984
4985	sksec->sid = tunsec->sid;
4986	sksec->sclass = SECCLASS_TUN_SOCKET;
4987
4988	return 0;
4989}
4990
4991static int selinux_tun_dev_open(void *security)
4992{
4993	struct tun_security_struct *tunsec = security;
4994	u32 sid = current_sid();
4995	int err;
4996
4997	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
 
4998			   TUN_SOCKET__RELABELFROM, NULL);
4999	if (err)
5000		return err;
5001	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
5002			   TUN_SOCKET__RELABELTO, NULL);
5003	if (err)
5004		return err;
5005	tunsec->sid = sid;
5006
5007	return 0;
5008}
5009
5010static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5011{
5012	int err = 0;
5013	u32 perm;
5014	struct nlmsghdr *nlh;
5015	struct sk_security_struct *sksec = sk->sk_security;
5016
5017	if (skb->len < NLMSG_HDRLEN) {
5018		err = -EINVAL;
5019		goto out;
5020	}
5021	nlh = nlmsg_hdr(skb);
5022
5023	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5024	if (err) {
5025		if (err == -EINVAL) {
5026			pr_warn_ratelimited("SELinux: unrecognized netlink"
5027			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5028			       " pig=%d comm=%s\n",
5029			       sk->sk_protocol, nlh->nlmsg_type,
5030			       secclass_map[sksec->sclass - 1].name,
5031			       task_pid_nr(current), current->comm);
5032			if (!selinux_enforcing || security_get_allow_unknown())
 
5033				err = 0;
5034		}
5035
5036		/* Ignore */
5037		if (err == -ENOENT)
5038			err = 0;
5039		goto out;
5040	}
5041
5042	err = sock_has_perm(current, sk, perm);
5043out:
5044	return err;
5045}
5046
5047#ifdef CONFIG_NETFILTER
5048
5049static unsigned int selinux_ip_forward(struct sk_buff *skb,
5050				       const struct net_device *indev,
5051				       u16 family)
5052{
5053	int err;
5054	char *addrp;
5055	u32 peer_sid;
5056	struct common_audit_data ad;
5057	struct lsm_network_audit net = {0,};
5058	u8 secmark_active;
5059	u8 netlbl_active;
5060	u8 peerlbl_active;
5061
5062	if (!selinux_policycap_netpeer)
5063		return NF_ACCEPT;
5064
5065	secmark_active = selinux_secmark_enabled();
5066	netlbl_active = netlbl_enabled();
5067	peerlbl_active = selinux_peerlbl_enabled();
5068	if (!secmark_active && !peerlbl_active)
5069		return NF_ACCEPT;
5070
5071	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5072		return NF_DROP;
5073
5074	ad.type = LSM_AUDIT_DATA_NET;
5075	ad.u.net = &net;
5076	ad.u.net->netif = indev->ifindex;
5077	ad.u.net->family = family;
5078	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5079		return NF_DROP;
5080
5081	if (peerlbl_active) {
5082		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5083					       addrp, family, peer_sid, &ad);
5084		if (err) {
5085			selinux_netlbl_err(skb, family, err, 1);
5086			return NF_DROP;
5087		}
5088	}
5089
5090	if (secmark_active)
5091		if (avc_has_perm(peer_sid, skb->secmark,
 
5092				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5093			return NF_DROP;
5094
5095	if (netlbl_active)
5096		/* we do this in the FORWARD path and not the POST_ROUTING
5097		 * path because we want to make sure we apply the necessary
5098		 * labeling before IPsec is applied so we can leverage AH
5099		 * protection */
5100		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5101			return NF_DROP;
5102
5103	return NF_ACCEPT;
5104}
5105
5106static unsigned int selinux_ipv4_forward(void *priv,
5107					 struct sk_buff *skb,
5108					 const struct nf_hook_state *state)
5109{
5110	return selinux_ip_forward(skb, state->in, PF_INET);
5111}
5112
5113#if IS_ENABLED(CONFIG_IPV6)
5114static unsigned int selinux_ipv6_forward(void *priv,
5115					 struct sk_buff *skb,
5116					 const struct nf_hook_state *state)
5117{
5118	return selinux_ip_forward(skb, state->in, PF_INET6);
5119}
5120#endif	/* IPV6 */
5121
5122static unsigned int selinux_ip_output(struct sk_buff *skb,
5123				      u16 family)
5124{
5125	struct sock *sk;
5126	u32 sid;
5127
5128	if (!netlbl_enabled())
5129		return NF_ACCEPT;
5130
5131	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5132	 * because we want to make sure we apply the necessary labeling
5133	 * before IPsec is applied so we can leverage AH protection */
5134	sk = skb->sk;
5135	if (sk) {
5136		struct sk_security_struct *sksec;
5137
5138		if (sk_listener(sk))
5139			/* if the socket is the listening state then this
5140			 * packet is a SYN-ACK packet which means it needs to
5141			 * be labeled based on the connection/request_sock and
5142			 * not the parent socket.  unfortunately, we can't
5143			 * lookup the request_sock yet as it isn't queued on
5144			 * the parent socket until after the SYN-ACK is sent.
5145			 * the "solution" is to simply pass the packet as-is
5146			 * as any IP option based labeling should be copied
5147			 * from the initial connection request (in the IP
5148			 * layer).  it is far from ideal, but until we get a
5149			 * security label in the packet itself this is the
5150			 * best we can do. */
5151			return NF_ACCEPT;
5152
5153		/* standard practice, label using the parent socket */
5154		sksec = sk->sk_security;
5155		sid = sksec->sid;
5156	} else
5157		sid = SECINITSID_KERNEL;
5158	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5159		return NF_DROP;
5160
5161	return NF_ACCEPT;
5162}
5163
5164static unsigned int selinux_ipv4_output(void *priv,
5165					struct sk_buff *skb,
5166					const struct nf_hook_state *state)
5167{
5168	return selinux_ip_output(skb, PF_INET);
5169}
5170
5171#if IS_ENABLED(CONFIG_IPV6)
5172static unsigned int selinux_ipv6_output(void *priv,
5173					struct sk_buff *skb,
5174					const struct nf_hook_state *state)
5175{
5176	return selinux_ip_output(skb, PF_INET6);
5177}
5178#endif	/* IPV6 */
5179
5180static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5181						int ifindex,
5182						u16 family)
5183{
5184	struct sock *sk = skb_to_full_sk(skb);
5185	struct sk_security_struct *sksec;
5186	struct common_audit_data ad;
5187	struct lsm_network_audit net = {0,};
5188	char *addrp;
5189	u8 proto;
5190
5191	if (sk == NULL)
5192		return NF_ACCEPT;
5193	sksec = sk->sk_security;
5194
5195	ad.type = LSM_AUDIT_DATA_NET;
5196	ad.u.net = &net;
5197	ad.u.net->netif = ifindex;
5198	ad.u.net->family = family;
5199	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5200		return NF_DROP;
5201
5202	if (selinux_secmark_enabled())
5203		if (avc_has_perm(sksec->sid, skb->secmark,
 
5204				 SECCLASS_PACKET, PACKET__SEND, &ad))
5205			return NF_DROP_ERR(-ECONNREFUSED);
5206
5207	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5208		return NF_DROP_ERR(-ECONNREFUSED);
5209
5210	return NF_ACCEPT;
5211}
5212
5213static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5214					 const struct net_device *outdev,
5215					 u16 family)
5216{
5217	u32 secmark_perm;
5218	u32 peer_sid;
5219	int ifindex = outdev->ifindex;
5220	struct sock *sk;
5221	struct common_audit_data ad;
5222	struct lsm_network_audit net = {0,};
5223	char *addrp;
5224	u8 secmark_active;
5225	u8 peerlbl_active;
5226
5227	/* If any sort of compatibility mode is enabled then handoff processing
5228	 * to the selinux_ip_postroute_compat() function to deal with the
5229	 * special handling.  We do this in an attempt to keep this function
5230	 * as fast and as clean as possible. */
5231	if (!selinux_policycap_netpeer)
5232		return selinux_ip_postroute_compat(skb, ifindex, family);
5233
5234	secmark_active = selinux_secmark_enabled();
5235	peerlbl_active = selinux_peerlbl_enabled();
5236	if (!secmark_active && !peerlbl_active)
5237		return NF_ACCEPT;
5238
5239	sk = skb_to_full_sk(skb);
5240
5241#ifdef CONFIG_XFRM
5242	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5243	 * packet transformation so allow the packet to pass without any checks
5244	 * since we'll have another chance to perform access control checks
5245	 * when the packet is on it's final way out.
5246	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5247	 *       is NULL, in this case go ahead and apply access control.
5248	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5249	 *       TCP listening state we cannot wait until the XFRM processing
5250	 *       is done as we will miss out on the SA label if we do;
5251	 *       unfortunately, this means more work, but it is only once per
5252	 *       connection. */
5253	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5254	    !(sk && sk_listener(sk)))
5255		return NF_ACCEPT;
5256#endif
5257
5258	if (sk == NULL) {
5259		/* Without an associated socket the packet is either coming
5260		 * from the kernel or it is being forwarded; check the packet
5261		 * to determine which and if the packet is being forwarded
5262		 * query the packet directly to determine the security label. */
5263		if (skb->skb_iif) {
5264			secmark_perm = PACKET__FORWARD_OUT;
5265			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5266				return NF_DROP;
5267		} else {
5268			secmark_perm = PACKET__SEND;
5269			peer_sid = SECINITSID_KERNEL;
5270		}
5271	} else if (sk_listener(sk)) {
5272		/* Locally generated packet but the associated socket is in the
5273		 * listening state which means this is a SYN-ACK packet.  In
5274		 * this particular case the correct security label is assigned
5275		 * to the connection/request_sock but unfortunately we can't
5276		 * query the request_sock as it isn't queued on the parent
5277		 * socket until after the SYN-ACK packet is sent; the only
5278		 * viable choice is to regenerate the label like we do in
5279		 * selinux_inet_conn_request().  See also selinux_ip_output()
5280		 * for similar problems. */
5281		u32 skb_sid;
5282		struct sk_security_struct *sksec;
5283
5284		sksec = sk->sk_security;
5285		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5286			return NF_DROP;
5287		/* At this point, if the returned skb peerlbl is SECSID_NULL
5288		 * and the packet has been through at least one XFRM
5289		 * transformation then we must be dealing with the "final"
5290		 * form of labeled IPsec packet; since we've already applied
5291		 * all of our access controls on this packet we can safely
5292		 * pass the packet. */
5293		if (skb_sid == SECSID_NULL) {
5294			switch (family) {
5295			case PF_INET:
5296				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5297					return NF_ACCEPT;
5298				break;
5299			case PF_INET6:
5300				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5301					return NF_ACCEPT;
5302				break;
5303			default:
5304				return NF_DROP_ERR(-ECONNREFUSED);
5305			}
5306		}
5307		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5308			return NF_DROP;
5309		secmark_perm = PACKET__SEND;
5310	} else {
5311		/* Locally generated packet, fetch the security label from the
5312		 * associated socket. */
5313		struct sk_security_struct *sksec = sk->sk_security;
5314		peer_sid = sksec->sid;
5315		secmark_perm = PACKET__SEND;
5316	}
5317
5318	ad.type = LSM_AUDIT_DATA_NET;
5319	ad.u.net = &net;
5320	ad.u.net->netif = ifindex;
5321	ad.u.net->family = family;
5322	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5323		return NF_DROP;
5324
5325	if (secmark_active)
5326		if (avc_has_perm(peer_sid, skb->secmark,
 
5327				 SECCLASS_PACKET, secmark_perm, &ad))
5328			return NF_DROP_ERR(-ECONNREFUSED);
5329
5330	if (peerlbl_active) {
5331		u32 if_sid;
5332		u32 node_sid;
5333
5334		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5335			return NF_DROP;
5336		if (avc_has_perm(peer_sid, if_sid,
 
5337				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5338			return NF_DROP_ERR(-ECONNREFUSED);
5339
5340		if (sel_netnode_sid(addrp, family, &node_sid))
5341			return NF_DROP;
5342		if (avc_has_perm(peer_sid, node_sid,
 
5343				 SECCLASS_NODE, NODE__SENDTO, &ad))
5344			return NF_DROP_ERR(-ECONNREFUSED);
5345	}
5346
5347	return NF_ACCEPT;
5348}
5349
5350static unsigned int selinux_ipv4_postroute(void *priv,
5351					   struct sk_buff *skb,
5352					   const struct nf_hook_state *state)
5353{
5354	return selinux_ip_postroute(skb, state->out, PF_INET);
5355}
5356
5357#if IS_ENABLED(CONFIG_IPV6)
5358static unsigned int selinux_ipv6_postroute(void *priv,
5359					   struct sk_buff *skb,
5360					   const struct nf_hook_state *state)
5361{
5362	return selinux_ip_postroute(skb, state->out, PF_INET6);
5363}
5364#endif	/* IPV6 */
5365
5366#endif	/* CONFIG_NETFILTER */
5367
5368static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5369{
5370	return selinux_nlmsg_perm(sk, skb);
5371}
5372
5373static int ipc_alloc_security(struct task_struct *task,
5374			      struct kern_ipc_perm *perm,
5375			      u16 sclass)
5376{
5377	struct ipc_security_struct *isec;
5378	u32 sid;
5379
5380	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5381	if (!isec)
5382		return -ENOMEM;
5383
5384	sid = task_sid(task);
5385	isec->sclass = sclass;
5386	isec->sid = sid;
5387	perm->security = isec;
5388
5389	return 0;
5390}
5391
5392static void ipc_free_security(struct kern_ipc_perm *perm)
5393{
5394	struct ipc_security_struct *isec = perm->security;
5395	perm->security = NULL;
5396	kfree(isec);
5397}
5398
5399static int msg_msg_alloc_security(struct msg_msg *msg)
5400{
5401	struct msg_security_struct *msec;
5402
5403	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5404	if (!msec)
5405		return -ENOMEM;
5406
5407	msec->sid = SECINITSID_UNLABELED;
5408	msg->security = msec;
5409
5410	return 0;
5411}
5412
5413static void msg_msg_free_security(struct msg_msg *msg)
5414{
5415	struct msg_security_struct *msec = msg->security;
5416
5417	msg->security = NULL;
5418	kfree(msec);
5419}
5420
5421static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5422			u32 perms)
5423{
5424	struct ipc_security_struct *isec;
5425	struct common_audit_data ad;
5426	u32 sid = current_sid();
5427
5428	isec = ipc_perms->security;
5429
5430	ad.type = LSM_AUDIT_DATA_IPC;
5431	ad.u.ipc_id = ipc_perms->key;
5432
5433	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
5434}
5435
5436static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5437{
5438	return msg_msg_alloc_security(msg);
5439}
5440
5441static void selinux_msg_msg_free_security(struct msg_msg *msg)
5442{
5443	msg_msg_free_security(msg);
5444}
5445
5446/* message queue security operations */
5447static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5448{
5449	struct ipc_security_struct *isec;
5450	struct common_audit_data ad;
5451	u32 sid = current_sid();
5452	int rc;
5453
5454	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5455	if (rc)
5456		return rc;
5457
5458	isec = msq->q_perm.security;
5459
5460	ad.type = LSM_AUDIT_DATA_IPC;
5461	ad.u.ipc_id = msq->q_perm.key;
5462
5463	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5464			  MSGQ__CREATE, &ad);
5465	if (rc) {
5466		ipc_free_security(&msq->q_perm);
5467		return rc;
5468	}
5469	return 0;
5470}
5471
5472static void selinux_msg_queue_free_security(struct msg_queue *msq)
5473{
5474	ipc_free_security(&msq->q_perm);
5475}
5476
5477static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5478{
5479	struct ipc_security_struct *isec;
5480	struct common_audit_data ad;
5481	u32 sid = current_sid();
5482
5483	isec = msq->q_perm.security;
5484
5485	ad.type = LSM_AUDIT_DATA_IPC;
5486	ad.u.ipc_id = msq->q_perm.key;
5487
5488	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5489			    MSGQ__ASSOCIATE, &ad);
5490}
5491
5492static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5493{
5494	int err;
5495	int perms;
5496
5497	switch (cmd) {
5498	case IPC_INFO:
5499	case MSG_INFO:
5500		/* No specific object, just general system-wide information. */
5501		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5502	case IPC_STAT:
5503	case MSG_STAT:
 
5504		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5505		break;
5506	case IPC_SET:
5507		perms = MSGQ__SETATTR;
5508		break;
5509	case IPC_RMID:
5510		perms = MSGQ__DESTROY;
5511		break;
5512	default:
5513		return 0;
5514	}
5515
5516	err = ipc_has_perm(&msq->q_perm, perms);
5517	return err;
5518}
5519
5520static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5521{
5522	struct ipc_security_struct *isec;
5523	struct msg_security_struct *msec;
5524	struct common_audit_data ad;
5525	u32 sid = current_sid();
5526	int rc;
5527
5528	isec = msq->q_perm.security;
5529	msec = msg->security;
5530
5531	/*
5532	 * First time through, need to assign label to the message
5533	 */
5534	if (msec->sid == SECINITSID_UNLABELED) {
5535		/*
5536		 * Compute new sid based on current process and
5537		 * message queue this message will be stored in
5538		 */
5539		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5540					     NULL, &msec->sid);
5541		if (rc)
5542			return rc;
5543	}
5544
5545	ad.type = LSM_AUDIT_DATA_IPC;
5546	ad.u.ipc_id = msq->q_perm.key;
5547
5548	/* Can this process write to the queue? */
5549	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5550			  MSGQ__WRITE, &ad);
5551	if (!rc)
5552		/* Can this process send the message */
5553		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
5554				  MSG__SEND, &ad);
5555	if (!rc)
5556		/* Can the message be put in the queue? */
5557		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
5558				  MSGQ__ENQUEUE, &ad);
5559
5560	return rc;
5561}
5562
5563static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5564				    struct task_struct *target,
5565				    long type, int mode)
5566{
5567	struct ipc_security_struct *isec;
5568	struct msg_security_struct *msec;
5569	struct common_audit_data ad;
5570	u32 sid = task_sid(target);
5571	int rc;
5572
5573	isec = msq->q_perm.security;
5574	msec = msg->security;
5575
5576	ad.type = LSM_AUDIT_DATA_IPC;
5577	ad.u.ipc_id = msq->q_perm.key;
5578
5579	rc = avc_has_perm(sid, isec->sid,
 
5580			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5581	if (!rc)
5582		rc = avc_has_perm(sid, msec->sid,
 
5583				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5584	return rc;
5585}
5586
5587/* Shared Memory security operations */
5588static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5589{
5590	struct ipc_security_struct *isec;
5591	struct common_audit_data ad;
5592	u32 sid = current_sid();
5593	int rc;
5594
5595	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5596	if (rc)
5597		return rc;
5598
5599	isec = shp->shm_perm.security;
5600
5601	ad.type = LSM_AUDIT_DATA_IPC;
5602	ad.u.ipc_id = shp->shm_perm.key;
5603
5604	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5605			  SHM__CREATE, &ad);
5606	if (rc) {
5607		ipc_free_security(&shp->shm_perm);
5608		return rc;
5609	}
5610	return 0;
5611}
5612
5613static void selinux_shm_free_security(struct shmid_kernel *shp)
5614{
5615	ipc_free_security(&shp->shm_perm);
5616}
5617
5618static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5619{
5620	struct ipc_security_struct *isec;
5621	struct common_audit_data ad;
5622	u32 sid = current_sid();
5623
5624	isec = shp->shm_perm.security;
5625
5626	ad.type = LSM_AUDIT_DATA_IPC;
5627	ad.u.ipc_id = shp->shm_perm.key;
5628
5629	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5630			    SHM__ASSOCIATE, &ad);
5631}
5632
5633/* Note, at this point, shp is locked down */
5634static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5635{
5636	int perms;
5637	int err;
5638
5639	switch (cmd) {
5640	case IPC_INFO:
5641	case SHM_INFO:
5642		/* No specific object, just general system-wide information. */
5643		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5644	case IPC_STAT:
5645	case SHM_STAT:
 
5646		perms = SHM__GETATTR | SHM__ASSOCIATE;
5647		break;
5648	case IPC_SET:
5649		perms = SHM__SETATTR;
5650		break;
5651	case SHM_LOCK:
5652	case SHM_UNLOCK:
5653		perms = SHM__LOCK;
5654		break;
5655	case IPC_RMID:
5656		perms = SHM__DESTROY;
5657		break;
5658	default:
5659		return 0;
5660	}
5661
5662	err = ipc_has_perm(&shp->shm_perm, perms);
5663	return err;
5664}
5665
5666static int selinux_shm_shmat(struct shmid_kernel *shp,
5667			     char __user *shmaddr, int shmflg)
5668{
5669	u32 perms;
5670
5671	if (shmflg & SHM_RDONLY)
5672		perms = SHM__READ;
5673	else
5674		perms = SHM__READ | SHM__WRITE;
5675
5676	return ipc_has_perm(&shp->shm_perm, perms);
5677}
5678
5679/* Semaphore security operations */
5680static int selinux_sem_alloc_security(struct sem_array *sma)
5681{
5682	struct ipc_security_struct *isec;
5683	struct common_audit_data ad;
5684	u32 sid = current_sid();
5685	int rc;
5686
5687	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5688	if (rc)
5689		return rc;
5690
5691	isec = sma->sem_perm.security;
5692
5693	ad.type = LSM_AUDIT_DATA_IPC;
5694	ad.u.ipc_id = sma->sem_perm.key;
5695
5696	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5697			  SEM__CREATE, &ad);
5698	if (rc) {
5699		ipc_free_security(&sma->sem_perm);
5700		return rc;
5701	}
5702	return 0;
5703}
5704
5705static void selinux_sem_free_security(struct sem_array *sma)
5706{
5707	ipc_free_security(&sma->sem_perm);
5708}
5709
5710static int selinux_sem_associate(struct sem_array *sma, int semflg)
5711{
5712	struct ipc_security_struct *isec;
5713	struct common_audit_data ad;
5714	u32 sid = current_sid();
5715
5716	isec = sma->sem_perm.security;
5717
5718	ad.type = LSM_AUDIT_DATA_IPC;
5719	ad.u.ipc_id = sma->sem_perm.key;
5720
5721	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5722			    SEM__ASSOCIATE, &ad);
5723}
5724
5725/* Note, at this point, sma is locked down */
5726static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5727{
5728	int err;
5729	u32 perms;
5730
5731	switch (cmd) {
5732	case IPC_INFO:
5733	case SEM_INFO:
5734		/* No specific object, just general system-wide information. */
5735		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5736	case GETPID:
5737	case GETNCNT:
5738	case GETZCNT:
5739		perms = SEM__GETATTR;
5740		break;
5741	case GETVAL:
5742	case GETALL:
5743		perms = SEM__READ;
5744		break;
5745	case SETVAL:
5746	case SETALL:
5747		perms = SEM__WRITE;
5748		break;
5749	case IPC_RMID:
5750		perms = SEM__DESTROY;
5751		break;
5752	case IPC_SET:
5753		perms = SEM__SETATTR;
5754		break;
5755	case IPC_STAT:
5756	case SEM_STAT:
 
5757		perms = SEM__GETATTR | SEM__ASSOCIATE;
5758		break;
5759	default:
5760		return 0;
5761	}
5762
5763	err = ipc_has_perm(&sma->sem_perm, perms);
5764	return err;
5765}
5766
5767static int selinux_sem_semop(struct sem_array *sma,
5768			     struct sembuf *sops, unsigned nsops, int alter)
5769{
5770	u32 perms;
5771
5772	if (alter)
5773		perms = SEM__READ | SEM__WRITE;
5774	else
5775		perms = SEM__READ;
5776
5777	return ipc_has_perm(&sma->sem_perm, perms);
5778}
5779
5780static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5781{
5782	u32 av = 0;
5783
5784	av = 0;
5785	if (flag & S_IRUGO)
5786		av |= IPC__UNIX_READ;
5787	if (flag & S_IWUGO)
5788		av |= IPC__UNIX_WRITE;
5789
5790	if (av == 0)
5791		return 0;
5792
5793	return ipc_has_perm(ipcp, av);
5794}
5795
5796static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5797{
5798	struct ipc_security_struct *isec = ipcp->security;
5799	*secid = isec->sid;
5800}
5801
5802static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5803{
5804	if (inode)
5805		inode_doinit_with_dentry(inode, dentry);
5806}
5807
5808static int selinux_getprocattr(struct task_struct *p,
5809			       char *name, char **value)
5810{
5811	const struct task_security_struct *__tsec;
5812	u32 sid;
5813	int error;
5814	unsigned len;
5815
 
 
 
5816	if (current != p) {
5817		error = current_has_perm(p, PROCESS__GETATTR);
 
 
5818		if (error)
5819			return error;
5820	}
5821
5822	rcu_read_lock();
5823	__tsec = __task_cred(p)->security;
5824
5825	if (!strcmp(name, "current"))
5826		sid = __tsec->sid;
5827	else if (!strcmp(name, "prev"))
5828		sid = __tsec->osid;
5829	else if (!strcmp(name, "exec"))
5830		sid = __tsec->exec_sid;
5831	else if (!strcmp(name, "fscreate"))
5832		sid = __tsec->create_sid;
5833	else if (!strcmp(name, "keycreate"))
5834		sid = __tsec->keycreate_sid;
5835	else if (!strcmp(name, "sockcreate"))
5836		sid = __tsec->sockcreate_sid;
5837	else
5838		goto invalid;
 
 
5839	rcu_read_unlock();
5840
5841	if (!sid)
5842		return 0;
5843
5844	error = security_sid_to_context(sid, value, &len);
5845	if (error)
5846		return error;
5847	return len;
5848
5849invalid:
5850	rcu_read_unlock();
5851	return -EINVAL;
5852}
5853
5854static int selinux_setprocattr(struct task_struct *p,
5855			       char *name, void *value, size_t size)
5856{
5857	struct task_security_struct *tsec;
5858	struct cred *new;
5859	u32 sid = 0, ptsid;
5860	int error;
5861	char *str = value;
5862
5863	if (current != p) {
5864		/* SELinux only allows a process to change its own
5865		   security attributes. */
5866		return -EACCES;
5867	}
5868
5869	/*
5870	 * Basic control over ability to set these attributes at all.
5871	 * current == p, but we'll pass them separately in case the
5872	 * above restriction is ever removed.
5873	 */
5874	if (!strcmp(name, "exec"))
5875		error = current_has_perm(p, PROCESS__SETEXEC);
 
 
5876	else if (!strcmp(name, "fscreate"))
5877		error = current_has_perm(p, PROCESS__SETFSCREATE);
 
 
5878	else if (!strcmp(name, "keycreate"))
5879		error = current_has_perm(p, PROCESS__SETKEYCREATE);
 
 
5880	else if (!strcmp(name, "sockcreate"))
5881		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
 
 
5882	else if (!strcmp(name, "current"))
5883		error = current_has_perm(p, PROCESS__SETCURRENT);
 
 
5884	else
5885		error = -EINVAL;
5886	if (error)
5887		return error;
5888
5889	/* Obtain a SID for the context, if one was specified. */
5890	if (size && str[0] && str[0] != '\n') {
5891		if (str[size-1] == '\n') {
5892			str[size-1] = 0;
5893			size--;
5894		}
5895		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
 
5896		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5897			if (!capable(CAP_MAC_ADMIN)) {
5898				struct audit_buffer *ab;
5899				size_t audit_size;
5900
5901				/* We strip a nul only if it is at the end, otherwise the
5902				 * context contains a nul and we should audit that */
5903				if (str[size - 1] == '\0')
5904					audit_size = size - 1;
5905				else
5906					audit_size = size;
5907				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5908				audit_log_format(ab, "op=fscreate invalid_context=");
5909				audit_log_n_untrustedstring(ab, value, audit_size);
5910				audit_log_end(ab);
5911
5912				return error;
5913			}
5914			error = security_context_to_sid_force(value, size,
5915							      &sid);
 
5916		}
5917		if (error)
5918			return error;
5919	}
5920
5921	new = prepare_creds();
5922	if (!new)
5923		return -ENOMEM;
5924
5925	/* Permission checking based on the specified context is
5926	   performed during the actual operation (execve,
5927	   open/mkdir/...), when we know the full context of the
5928	   operation.  See selinux_bprm_set_creds for the execve
5929	   checks and may_create for the file creation checks. The
5930	   operation will then fail if the context is not permitted. */
5931	tsec = new->security;
5932	if (!strcmp(name, "exec")) {
5933		tsec->exec_sid = sid;
5934	} else if (!strcmp(name, "fscreate")) {
5935		tsec->create_sid = sid;
5936	} else if (!strcmp(name, "keycreate")) {
5937		error = may_create_key(sid, p);
 
 
5938		if (error)
5939			goto abort_change;
5940		tsec->keycreate_sid = sid;
5941	} else if (!strcmp(name, "sockcreate")) {
5942		tsec->sockcreate_sid = sid;
5943	} else if (!strcmp(name, "current")) {
5944		error = -EINVAL;
5945		if (sid == 0)
5946			goto abort_change;
5947
5948		/* Only allow single threaded processes to change context */
5949		error = -EPERM;
5950		if (!current_is_single_threaded()) {
5951			error = security_bounded_transition(tsec->sid, sid);
 
5952			if (error)
5953				goto abort_change;
5954		}
5955
5956		/* Check permissions for the transition. */
5957		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
5958				     PROCESS__DYNTRANSITION, NULL);
5959		if (error)
5960			goto abort_change;
5961
5962		/* Check for ptracing, and update the task SID if ok.
5963		   Otherwise, leave SID unchanged and fail. */
5964		ptsid = ptrace_parent_sid(p);
5965		if (ptsid != 0) {
5966			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
 
5967					     PROCESS__PTRACE, NULL);
5968			if (error)
5969				goto abort_change;
5970		}
5971
5972		tsec->sid = sid;
5973	} else {
5974		error = -EINVAL;
5975		goto abort_change;
5976	}
5977
5978	commit_creds(new);
5979	return size;
5980
5981abort_change:
5982	abort_creds(new);
5983	return error;
5984}
5985
5986static int selinux_ismaclabel(const char *name)
5987{
5988	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5989}
5990
5991static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5992{
5993	return security_sid_to_context(secid, secdata, seclen);
 
5994}
5995
5996static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5997{
5998	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
 
5999}
6000
6001static void selinux_release_secctx(char *secdata, u32 seclen)
6002{
6003	kfree(secdata);
6004}
6005
6006static void selinux_inode_invalidate_secctx(struct inode *inode)
6007{
6008	struct inode_security_struct *isec = inode->i_security;
6009
6010	spin_lock(&isec->lock);
6011	isec->initialized = LABEL_INVALID;
6012	spin_unlock(&isec->lock);
6013}
6014
6015/*
6016 *	called with inode->i_mutex locked
6017 */
6018static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6019{
6020	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6021}
6022
6023/*
6024 *	called with inode->i_mutex locked
6025 */
6026static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6027{
6028	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6029}
6030
6031static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6032{
6033	int len = 0;
6034	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6035						ctx, true);
6036	if (len < 0)
6037		return len;
6038	*ctxlen = len;
6039	return 0;
6040}
6041#ifdef CONFIG_KEYS
6042
6043static int selinux_key_alloc(struct key *k, const struct cred *cred,
6044			     unsigned long flags)
6045{
6046	const struct task_security_struct *tsec;
6047	struct key_security_struct *ksec;
6048
6049	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6050	if (!ksec)
6051		return -ENOMEM;
6052
6053	tsec = cred->security;
6054	if (tsec->keycreate_sid)
6055		ksec->sid = tsec->keycreate_sid;
6056	else
6057		ksec->sid = tsec->sid;
6058
6059	k->security = ksec;
6060	return 0;
6061}
6062
6063static void selinux_key_free(struct key *k)
6064{
6065	struct key_security_struct *ksec = k->security;
6066
6067	k->security = NULL;
6068	kfree(ksec);
6069}
6070
6071static int selinux_key_permission(key_ref_t key_ref,
6072				  const struct cred *cred,
6073				  unsigned perm)
6074{
6075	struct key *key;
6076	struct key_security_struct *ksec;
6077	u32 sid;
6078
6079	/* if no specific permissions are requested, we skip the
6080	   permission check. No serious, additional covert channels
6081	   appear to be created. */
6082	if (perm == 0)
6083		return 0;
6084
6085	sid = cred_sid(cred);
6086
6087	key = key_ref_to_ptr(key_ref);
6088	ksec = key->security;
6089
6090	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
6091}
6092
6093static int selinux_key_getsecurity(struct key *key, char **_buffer)
6094{
6095	struct key_security_struct *ksec = key->security;
6096	char *context = NULL;
6097	unsigned len;
6098	int rc;
6099
6100	rc = security_sid_to_context(ksec->sid, &context, &len);
 
6101	if (!rc)
6102		rc = len;
6103	*_buffer = context;
6104	return rc;
6105}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6106
 
 
 
 
6107#endif
6108
6109static struct security_hook_list selinux_hooks[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6110	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6111	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6112	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6113	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6114
6115	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6116	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6117	LSM_HOOK_INIT(capget, selinux_capget),
6118	LSM_HOOK_INIT(capset, selinux_capset),
6119	LSM_HOOK_INIT(capable, selinux_capable),
6120	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6121	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6122	LSM_HOOK_INIT(syslog, selinux_syslog),
6123	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6124
6125	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6126
6127	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6128	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6129	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6130	LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
6131
6132	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6133	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6134	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6135	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6136	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6137	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6138	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6139	LSM_HOOK_INIT(sb_mount, selinux_mount),
6140	LSM_HOOK_INIT(sb_umount, selinux_umount),
6141	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6142	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6143	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6144
6145	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6146	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6147
6148	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6149	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6150	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6151	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6152	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6153	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6154	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6155	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6156	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6157	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6158	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6159	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6160	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6161	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6162	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6163	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6164	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6165	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6166	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6167	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6168	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6169	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6170	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6171	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6172	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6173	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6174	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6175
6176	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6177	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6178	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6179	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6180	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6181	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6182	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6183	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6184	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6185	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6186	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6187	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6188
6189	LSM_HOOK_INIT(file_open, selinux_file_open),
6190
6191	LSM_HOOK_INIT(task_create, selinux_task_create),
6192	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6193	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6194	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6195	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
 
6196	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6197	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6198	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6199	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6200	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6201	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6202	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6203	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6204	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6205	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6206	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
 
6207	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6208	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6209	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6210	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6211	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6212	LSM_HOOK_INIT(task_wait, selinux_task_wait),
6213	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6214
6215	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6216	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6217
6218	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6219	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6220
6221	LSM_HOOK_INIT(msg_queue_alloc_security,
6222			selinux_msg_queue_alloc_security),
6223	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6224	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6225	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6226	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6227	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6228
6229	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6230	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6231	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6232	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6233	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6234
6235	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6236	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6237	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6238	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6239	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6240
6241	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6242
6243	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6244	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6245
6246	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6247	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6248	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6249	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6250	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6251	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6252	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6253	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6254
6255	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6256	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6257
6258	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6259	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6260	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6261	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6262	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6263	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6264	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6265	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6266	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6267	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6268	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6269	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6270	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6271	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6272	LSM_HOOK_INIT(socket_getpeersec_stream,
6273			selinux_socket_getpeersec_stream),
6274	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6275	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6276	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6277	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6278	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6279	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
 
 
 
6280	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6281	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6282	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6283	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6284	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6285	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6286	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6287	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6288	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6289	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6290	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6291	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6292	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6293
 
 
 
 
 
 
6294#ifdef CONFIG_SECURITY_NETWORK_XFRM
6295	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6296	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6297	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6298	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6299	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6300	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6301			selinux_xfrm_state_alloc_acquire),
6302	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6303	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6304	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6305	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6306			selinux_xfrm_state_pol_flow_match),
6307	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6308#endif
6309
6310#ifdef CONFIG_KEYS
6311	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6312	LSM_HOOK_INIT(key_free, selinux_key_free),
6313	LSM_HOOK_INIT(key_permission, selinux_key_permission),
6314	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6315#endif
6316
6317#ifdef CONFIG_AUDIT
6318	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6319	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6320	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6321	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6322#endif
 
 
 
 
 
 
 
 
 
 
6323};
6324
6325static __init int selinux_init(void)
6326{
6327	if (!security_module_enable("selinux")) {
6328		selinux_enabled = 0;
6329		return 0;
6330	}
6331
6332	if (!selinux_enabled) {
6333		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
6334		return 0;
6335	}
6336
6337	printk(KERN_INFO "SELinux:  Initializing.\n");
6338
 
 
 
 
 
 
6339	/* Set the security state for the initial task. */
6340	cred_init_security();
6341
6342	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6343
6344	sel_inode_cache = kmem_cache_create("selinux_inode_security",
6345					    sizeof(struct inode_security_struct),
6346					    0, SLAB_PANIC, NULL);
6347	file_security_cache = kmem_cache_create("selinux_file_security",
6348					    sizeof(struct file_security_struct),
6349					    0, SLAB_PANIC, NULL);
6350	avc_init();
6351
6352	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
 
 
 
 
 
 
6353
6354	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6355		panic("SELinux: Unable to register AVC netcache callback\n");
6356
6357	if (selinux_enforcing)
 
 
 
6358		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
6359	else
6360		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
6361
6362	return 0;
6363}
6364
6365static void delayed_superblock_init(struct super_block *sb, void *unused)
6366{
6367	superblock_doinit(sb, NULL);
6368}
6369
6370void selinux_complete_init(void)
6371{
6372	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6373
6374	/* Set up any superblocks initialized prior to the policy load. */
6375	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6376	iterate_supers(delayed_superblock_init, NULL);
6377}
6378
6379/* SELinux requires early initialization in order to label
6380   all processes and objects when they are created. */
6381security_initcall(selinux_init);
6382
6383#if defined(CONFIG_NETFILTER)
6384
6385static struct nf_hook_ops selinux_nf_ops[] = {
6386	{
6387		.hook =		selinux_ipv4_postroute,
6388		.pf =		NFPROTO_IPV4,
6389		.hooknum =	NF_INET_POST_ROUTING,
6390		.priority =	NF_IP_PRI_SELINUX_LAST,
6391	},
6392	{
6393		.hook =		selinux_ipv4_forward,
6394		.pf =		NFPROTO_IPV4,
6395		.hooknum =	NF_INET_FORWARD,
6396		.priority =	NF_IP_PRI_SELINUX_FIRST,
6397	},
6398	{
6399		.hook =		selinux_ipv4_output,
6400		.pf =		NFPROTO_IPV4,
6401		.hooknum =	NF_INET_LOCAL_OUT,
6402		.priority =	NF_IP_PRI_SELINUX_FIRST,
6403	},
6404#if IS_ENABLED(CONFIG_IPV6)
6405	{
6406		.hook =		selinux_ipv6_postroute,
6407		.pf =		NFPROTO_IPV6,
6408		.hooknum =	NF_INET_POST_ROUTING,
6409		.priority =	NF_IP6_PRI_SELINUX_LAST,
6410	},
6411	{
6412		.hook =		selinux_ipv6_forward,
6413		.pf =		NFPROTO_IPV6,
6414		.hooknum =	NF_INET_FORWARD,
6415		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6416	},
6417	{
6418		.hook =		selinux_ipv6_output,
6419		.pf =		NFPROTO_IPV6,
6420		.hooknum =	NF_INET_LOCAL_OUT,
6421		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6422	},
6423#endif	/* IPV6 */
6424};
6425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6426static int __init selinux_nf_ip_init(void)
6427{
6428	int err;
6429
6430	if (!selinux_enabled)
6431		return 0;
6432
6433	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6434
6435	err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6436	if (err)
6437		panic("SELinux: nf_register_hooks: error %d\n", err);
6438
6439	return 0;
6440}
6441
6442__initcall(selinux_nf_ip_init);
6443
6444#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6445static void selinux_nf_ip_exit(void)
6446{
6447	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6448
6449	nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6450}
6451#endif
6452
6453#else /* CONFIG_NETFILTER */
6454
6455#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6456#define selinux_nf_ip_exit()
6457#endif
6458
6459#endif /* CONFIG_NETFILTER */
6460
6461#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6462static int selinux_disabled;
6463
6464int selinux_disable(void)
6465{
6466	if (ss_initialized) {
6467		/* Not permitted after initial policy load. */
6468		return -EINVAL;
6469	}
6470
6471	if (selinux_disabled) {
6472		/* Only do this once. */
6473		return -EINVAL;
6474	}
6475
 
 
6476	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6477
6478	selinux_disabled = 1;
6479	selinux_enabled = 0;
6480
6481	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6482
6483	/* Try to destroy the avc node cache */
6484	avc_disable();
6485
6486	/* Unregister netfilter hooks. */
6487	selinux_nf_ip_exit();
6488
6489	/* Unregister selinuxfs. */
6490	exit_sel_fs();
6491
6492	return 0;
6493}
6494#endif